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Abstract

One of the questions that arises when it comes to analysing mathematical models’ trustworthi-
ness and their practical application is the quantification of uncertainties related to the model.
This process requires the interpretation of different types of uncertainties, identification of
its sources, choice of particular quantitative metrics, design of algorithms to obtain these
metrics, and computational means to perform the algorithm. In most cases, such uncertainty
analysis is based on extensive parametric studies of the solution of the analysed model, which
is computationally prohibitively expensive for many real-world relevant problems.

This work presents an application of uncertainty quantification to a coupled system of
equations describing the evolution of plasma in the core of a toroidal device for magnetic
confinement of plasma. This work focuses on analysing plasma behaviour and associated
mathematical uncertainties in plasma transport due to turbulent processes, which are inher-
ently non-linear and computationally expensive to model, prone to parametric instabilities,
and challenging to capture in their parametric dependencies. The discussed turbulence
processes are the dominant mechanism of heat and particle transport in fusion plasmas, and
the ability to model them quickly and account for uncertainties is crucial for the design of
nuclear fusion reactors.

This dissertation suggests a method for quantifying uncertainties in the transport fluxes
computed by a turbulence model and uncertainties arising in plasma’s core temperature and
density profiles. The work presents the software workflows for uncertainty quantification and
their application to multi-scale multi-component turbulent transport simulation workflow,
which allowed the models’ sensitivity to uncertainty to be captured and the most influential
quantities to be revealed, and to quantitatively balance the uncertainty estimation accuracy
and the required computational cost.

Furthermore, this work demonstrates an application of data-driven machine learning surro-
gate models to substantially speed up the simulation workflow and uncertainty quantification
procedures. It also discusses multiple aspects of surrogate modelling, including the required
data, training and validation, control of their fidelity, and active learning.

ii



Kurzfassung

Eine der Fragen, die sich bei der Analyse der Vertrauenswürdigkeit mathematischer Modelle
und ihrer praktischen Anwendung stellt, ist die Quantifizierung der mit dem Modell ver-
bundenen Unsicherheiten. Dieser Prozess erfordert die Interpretation verschiedener Arten
von Unsicherheiten, die Identifizierung ihrer Quellen, die Wahl bestimmter quantitativer
Metriken, die Entwicklung von Algorithmen zur Ermittlung dieser Metriken und rechneri-
sche Mittel zur Durchführung des Algorithmus. In den meisten Fällen basiert eine solche
Unsicherheitsanalyse auf umfangreichen parametrischen Studien der Lösung des analysierten
Modells, was für viele in der Praxis relevante Probleme unvertretbar rechnenintensiv ist.

In vorliegenden Arbeit wird eine Anwendung der Unsicherheitsquantifizierung auf ein
gekoppeltes Gleichungssystem vorgestellt, welches die Entwicklung eines Fusionsplasmas im
Kern eines torusförmigen Gefässes zum magnetischen Plasmaeinschluss beschreibt. Diese
Arbeit konzentriert sich auf die Analyse des Plasmaverhaltens und der damit verbundenen
mathematischen Unsicherheiten beim Plasmatransport aufgrund turbulenter Prozesse, die
von Natur aus nichtlinear und rechenintensiv zu modellieren sind, anfällig für parametrische
Instabilitäten sind, und für welche es schwierig ist die parametrischen Abhängigkeiten zu
erfassen. Die erwähnten Turbulenzprozesse sind der dominierende Mechanismus des Wärme-
und Teilchentransports in Fusionsplasmen, und die Fähigkeit, sie schnell zu modellieren und
Unsicherheiten zu berücksichtigen, ist für das Design von Kernfusionsreaktoren entscheidend.

Diese Dissertation schlägt eine Methode zur Quantifizierung von Unsicherheiten vor,
sowohl von denen im Turbulenzmodell berechneten Transportflüssen, als auch jene die
in den Temperatur- und Dichteprofilen des Plasmas auftreten. In der Arbeit werden die
Software-Workflows für die Quantifizierung von Unsicherheiten und ihre Anwendung auf
Multiskalen-Multikomponenten-Simulationen des turbulenten Transports vorgestellt. Sie
ermöglichen es, die Empfindlichkeit der Modelle gegenüber Unsicherheiten zu erfassen
und die einflussreichsten Größen aufzudecken sowie ein quantitatives Balance zwischen der
Genauigkeit der Unsicherheitsabschätzung und den erforderlichen Rechenkosten zu finden.

Darüber hinaus demonstriert diese Arbeit eine Anwendung von datenbasierten Maschinellen-
Lernen-Surrogatmodellen, die zu einer wesentlichen Beschleunigung des Simulationsablaufs
und des Verfahrens zur Unsicherheitquantifizierung, und erörtert mehrere Aspekte der Sur-
rogatmodellierung, einschließlich der erforderlichen Daten, des Trainings und der Validierung,
der Kontrolle der Genauigkeit und des aktiven Lernens.
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1. Introduction

1.1. Nuclear Fusion

Nuclear Fusion is a process of merging nuclei, usually two of them, into a larger nucleus. For
nuclei of a small atomic number, the product nucleus mass is smaller than the sum of the
initial nuclei mass, and the surplus binding energy is usually released in the form of gamma
radiation or transferred to fast remainder particles. Being able to utilise this process as an
industrial source of energy has enormous potential as it would require only fuel, which is
abundant and has low technological hazard risk. Nuclear fusion happens when the kinetic
energy of reacting particles is sufficient to overcome the electrostatic forces. In ensembles
of particles, this process is described via cross-section σ measure of probability for such
a reaction to occur, which is a function of the temperature. In practice, such energies are
much higher than those binding the electrons and nuclei, meaning nuclear fusion reactions
en masse would happen in a medium of fully ionised gas or plasma. Such processes are
happening inside stars and are a dominant source of radiation of stars and hence energy
coming to planets like Earth. Even though the dominant type of fusion reaction in the Sun
is a proton-proton chain leading to the merging of several 1H nuclei into a 4He nuclei, the
reactions with highest cross-section possible are one between Deuterium and Tritium. Hence,
this D− T reaction is of the highest interest to tackle by human technology.

Since this type of reaction is happening in the plasma medium, the challenge of mastering
nuclear fusion is creating and controlling plasmas with the required conditions. One of
the ways to achieve this is magnetically confined fusion based on trapping plasma into a
toroidally configured magnetic field in order to separate plasma from the external medium [9].
Due to the basic topological properties of solenoidal vector fields like the magnetic field, the
most straightforward configuration of such a field to form a closed trap would be toroidal.

1.1.1. Tokamak

One of the types of such devices used to confine the plasma, currently in the purpose of
performing various experiments on plasma physics and exploring possibilities for the creation
of a practical nuclear fusion reactor, is called a tokamak, which bears its name after Russian
abbreviations of “тороидальная магнитная камера с катушками” and “тороидальная камера
с аксиальным магнитным полем” meaning “a toroidal magnetic chamber with coils” or “a
toroidal chamber with an axial magnetic field”. The other type is a stellarator, named after the
Latin “stēlla” for “star”.

The latter type creates a magnetic field required for plasma confinement with only external
coils of complex shape, which usually leads to toroidally asymmetric fields. Conversely, the

1



1. Introduction

tokamaks create nearly perfectly axisymmetric fields and, unlike stellarators, induce toroidal
currents inside the plasma.

Figure 1.1.: On the left schematic description of a tokamak, with principle coils and magnetic
field components depicted, credited to [10]. On the right: an image of a simula-
tion of turbulence in ASDEX Upgrade tokamak performed by gyrokinetic code
GENE [11].

Such a configuration determines a particular type of coordinate system used for plasma
modelling. One of the ways to define a point inside such a toroidal geometry is via a
coordinate system based on three scalar coordinates: radial coordinate, toroidal angle, and
poloidal angle. Each coordinate can be defined based on one of the multiple principles that
usually includes a concrete magnetic field distribution inside a torus. Here, some critical
properties indifferent to all of the coordinate choices are that most of the processes inside
such a toroidal device are symmetric with respect to the toroidal angle. Furthermore, the
toroidal motion of the plasma is the fastest component of its dynamics.

One of the principal features of such a device is that it creates a helically winding toroidal
magnetic field, as shown in figure 1.1 with the poloidal component being created by the
toroidal currents induced in the plasma itself. Such a magnetic field structure assures the
forces necessary to confine plasma inside the toroidal region [9].

The most essential scalar quantities to describe the quality of such a magnetical confinement
device are the maximal particle density n, plasma temperature T, and the confinement time
τE. The latter parameter estimates the time required for all energy to leave the plasma. It is
usually defined as a ratio of plasma energy W ≈ 3VnT and the heating power P required
to keep in steady state τE = W/P. The product of these three quantities nTτE is one of the
figures of merit describing the quality of the fusion plasma and is called the triple product.

This work considers the tokamak type of magnetic confinement devices and model, specif-
ically the ASDEX Upgrade (AUG) device from IPP, Garching, Germany [12]. However, the
presented methodology can be applied to other tokamaks, including the ones in the construc-
tion or planning process, like ITER, and, to some degree and with substantial modification, to

2



1. Introduction

stellarators.

1.1.2. Plasma Modelling and Magnetised Plasma Turbulence

Plasma can be described mathematically in a number of ways. Since the description of the
dynamics of a single particle, which a thermonuclear device may contain the order of 1023, is
out of the question for any approach, the most precise first-principle description of a plasma
is via a kinetic model. This framework describes the distribution function f of an ensemble of
particles over the phase space X×V, the product 3D configurational space and 3D velocity
space, and the conservation of the distribution function of time leads to Boltzmann equation.
The presence of an electromagnetic field and charged particles requires the inclusion of
Lorentz force, which leads to the Vlasov equation

∂ fα

∂t
+ vvvα · ∇xxx fα +

Zαe
mα

(
EEE +

vvvα

c
× BBB

)
· ∇vvv fα = 0 (1.1)

where α is species index, Zα is effective charge of species, e.g., −1 for electrons and +1 for
deutrons. Coupling this equation with the Maxwell equations for the field EEE and BBB leads to
the equations that comprehensively describe plasma as an ensemble of particles, each with 6
degrees of freedom (DoFs).

The next type of model in the hierarchy of complexity is gyrokinetics, which reduces the
dimensionality of the velocity space to 2D by integrating over the smallest scale of dynamics,
which is the gyration of particles in the magnetic field, yielding effectively a 5D model. The
other family of models that describe the velocity space of finite-dimensional structure are
fluid models. They describe only a finite number of moments of the distribution function
in velocity space and do not capture kinetic effects in plasma. A combination of these two
approaches, namely reducing the equations to avoid gyrations resolution and expressing
equations in terms of moments, leads to the gyrofluid model of plasma [13]. This type of
model is the model of choice for describing plasma turbulence in this work.

Furthermore, a description of plasma as a conducting fluid, characterised by a finite
number of moments interacting with the field via Lorentz force, leads to the plasma model of
Magnetohydrodynamics (MHD).

As in neutral fluid, described by Navier-Stokes (NS) equations, a phenomenon of turbulence
occurs in plasmas, bearing both similarities and differences to fluid turbulence. Common
properties include non-linear interactions of multiple scales, the requirement of injection of
energy into the system on certain scales, dissipation of energy on smaller scales, and the
emergence of an energy cascade across scales. Furthermore, given a strong background
magnetic field, resulting in high anisotropy of the system, fusion plasma turbulence bears
resemblance to 2D fluid one, which happens in thin layers, for example, in the Earth’s
atmosphere. The kinetic effects and non-local interaction, however, introduce dissimilarities
in different dissipation scales and mechanisms and a variety of instability classes not inherent
to fluids [13, 14].

The free energy sources required to drive turbulence in fusion plasmas are mainly tempera-
ture and density gradients. One of the types of plasma turbulence significant for heat and
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particle transport in the core of fusion plasmas is Ion Temperature Gradient (ITG) turbulence.
This type of turbulence is of particular relevance for the chosen cases to model, and as its main
drive is the ion temperature gradient ∇Ti, this quantity is the main independent parameter
of choice in this work.

Due to the limitations of the analytic results of most of the high-fidelity plasma models,
including gyrokinetic and gyrofluid ones, the study and predictions of plasmas require
numerical solutions for those models. This is done through various spatial and time dis-
cretisation methods, like Finite Element methods (FEM) or Fourier Spectral methods, and via a
variety of techniques to solve the resulting linear systems and integrate equations in time.
Those are implemented via highly performant parallelised program codes suited to be run on
High-Performance-Computing (HPC) systems and require� O(103) hours of computations on
a core (core-hours, CPUh) for cases relevant to experimental reactors.

An important way to characterise plasma behaviour is to consider the transport of the
main conserved quantities. One usually considers the transport of the particles, or particle
density n, moment, and heat. In this work, heat transport is the process of choice to study.
From the conservation equation point of view, one can define the transport of a quantity q
via the divergence of its flux, in the differential form expressed as ∂q

∂t +∇ ·QQQ = S. The S
denotes sources and sinks of the quantity, which are inconsistent with a considered closed
system model; in the context of fusion plasmas, it could be energy loss due to radiation or
injection of energy via a heating system. Further vector analysis allows for distinguishing
different processes responsible for transport or other separate channels. For the heat flux,
we can distinguish the diffusive end convective parts QQQ = −χn∇T + vvvnT, with a diffusive
part being characterised by diffusion coefficient D = χn and convective bulk transport with
convective velocity vvvconv.

It is observed by experiment and supported by the theory that in the core of fusion transport,
most of the transport is performed via a microscopic turbulent process, which is primarily
effectively attributed to diffusive channels. Due to high nonlinearity and inherently stochastic
dynamics, turbulence and effective turbulent transport have various associated uncertainties
requiring their quantification.

1.2. Uncertainty Quantification

As natural sciences aim to uncover the truth about reality, it is essential to allow science to
distinguish what is known from what is not. However, due to the fact that all knowledge
is partial, as well as due to imperfections in the way knowledge is acquired, the boundary
between known truth and the absence of understanding is blurred; thus, generalisation or
extrapolation of knowledge requires a notion of uncertainty. Out of two primary ways of
acquiring knowledge in natural science, namely experimental and theoretical, the former one,
while being ultimately more immediately connected to the studied reality, has developed
ways to understand how uncertain the discovered facts are in two main ways: one based on
estimating how imprecise the measurement mechanism is, and another based on evaluating
the effects of a finite sample of observations, meaning estimating the statistical errors. The
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latter way, namely the theoretical one, while naturally more directed towards producing
well-generalisable knowledge, still needs to introduce the notion of uncertainty. The most
elaborated way to produce theoretical knowledge is by creating mathematical models of the
studied real processes or phenomena, which in physics are usually formulated as systems of
ordinary or partial differential equations (PDEs). These systems of equations have to be solved
in order to be able to say anything about the studied systems, which, in general cases, could
be done only via methods of numerical mathematics.

There are many ways for a solution of a given mathematical model to be imprecise or
uncertain in the description of the actual reality. In general, the best mathematical tool to
understand such uncertainty is probability theory, which requires introducing the notion that
particular situations or outcomes could only be understood as random, and a probability
measure should be assigned to them. The goal of uncertainty quantification (UQ) is to provide
quantitive statements about probabilities of quantities related to the mathematical models
and their solutions when such quantities are understood as random variables [15, 16].

Applying uncertainty quantification to mathematical models in natural sciences allows,
among other things, establishing a common statistical understanding of the quantities between
their observations and computation and, for example, estimating various risks associated
with the models under uncertainty [17].

1.2.1. Epsitemic and Aleatoric Uncertainty

It makes sense to attribute uncertainty to different types for a better conceptual and algorith-
mic characterisation of uncertainties in mathematical models. An important categorisation
of uncertainties deals with their sources, relationship to knowledge beyond the model itself,
and how a person can influence the model uncertainty with this knowledge. The two types
of uncertainties presented are epistemic and aleatoric, and, as it will be discussed later in this
work, applying such a distinction to practical uncertainty quantification has practical benefits.

Epistemic uncertainty

The type of uncertainty most discussed within various scientific areas is epistemic uncertainty,
which is concerned with a lack of information. These uncertainty sources could include a
lack of knowledge about the real system described by the model, a lack of knowledge of a
particular model form, or, what is discussed most often, a lack of information on the specific
values of model parameters. In the latter case, one usually deals with a specific estimate of
some numerical parameters and hence would like to question how such uncertainties in a
parameter would influence the uncertainties in quantities of interest of the model solution.
This type of uncertainty derives its name from επιστηµη, a Greek word for knowledge or
understanding.

Often it is difficult to characterise or formalise any uncertainties arising from a lack of
knowledge about the model. The simplest type of epistemic uncertainties that could be
incorporated into a mathematical model are the ones associated with the uncertainties of
the model’s parameters. In such case, an uncertain numerical parameter could be treated
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as a random variable, or in a more general case, a random process or random field, and its
uncertainties can be characterised with a probability density function (PDF) or properties of the
respective random mathematical objects.

The practical question would be characterise how such a parametric uncertainty influences
and interacts with an uncertainty of the model’s dependent quantities of interest (QoIs). This
requires modelling them as random variables and characterising their PDFs, often as a
non-trivial function of independent random input variables.

Aleatoric uncertainty

One of the types of uncertainties in the solution for mathematical models dealing with the
inherent properties of the models is the aleatoric uncertainty. It is, in the first place, related to
the dynamic stochastic behaviour of the model and the quantities of interest for which it is
being solved. The designated name for such type of uncertainty is derived from alea, Latin
for dice, as it is considered that the model’s behaviour is truly random and is characterised
by the fact that no more information about the model and its parameters can reduce this
uncertainty. This parameter-independency distinguishes this type of uncertainty from the
epistemic one, primarily dealing with the lack of information, and also leads to another
synonym, the irreducible uncertainty.

Without changing the model and its solver, it is impossible to eliminate variability in the
quantity of interest, even having full precise knowledge of the parameters’ values of the
model. Examples of such uncertainty are the chaotic behaviour of some nonlinear dynamic
systems and the turbulent behaviour of fluids or plasmas. In some cases, aleatoric uncertainty
could also incorporate the uncertainty that comes from particular approaches for the model
solution, like introducing a random perturbation into some particular known solutions, which
could come from a random number generator. However, properties of the solution, like
uncertainty due to the solver’s approximation error or, in the case of a Monte Carlo (MC) class
solver, the random noise of the solution, are usually not considered as a part of aleatoric
uncertainty per se and are subject to the numerical analysis of the solver.

Most of the methods of aleatoric uncertainty analysis incorporate the following two prin-
ciples. The first principle is the separation of epistemic uncertainties. It assumes that a
particular model, its parametric form, and parameter values are given, and what is left is to
analyse the stochastic properties of the model given all the knowledge about it.

The second principle is the statistical treatment of the output quantities of interest. That
assumes that the behaviour of such quantity could be split into a mean or trend and the
stochastic noise on top of it. Given a sample representing an ensemble of runs, one could
analyse the properties of such a stochastic noise.

The result of such an analysis is a probabilistic model of some QoI as a stochastic process,
given its deterministic model for mean trend value and characterisation of irreducible noise,
for example, in terms of its covariance function. The understanding of physical dynamics as
a stochastic process requires ergodic properties of phase space, mixing, and the existence of
an equilibrium to relate the chaotic dynamical distributions with a notion of the uncertainty
of a state [18].
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1.2.2. Intrusive and Nonintrusive Methods

A categorisation of uncertainty quantification methods by how they engage the studied
mathematical model in uncertainty analysis often distinguishes intrusive and nonintrusive
methods.

A nonintrusive method assumes that a model is a black box capable of producing an
answer, in terms of values of certain QoIs, for given values of a set of some independent
input parameters. Hence, here, one can introduce a model solution function, and solving a
model could be understood as an evaluation of a function value. Often, this evaluation is
considered deterministic, while in the UQ framework, inputs and outputs are considered
random variables (or vectors or functions). Thus, a nonintrusive UQ algorithm is supposed to
capture information about the uncertainty of a random QoI in terms of its PDF or some of its
statistics, having only access to deterministic function evaluations. In such a case, estimating
some statistics about some model parameters requires some scheme involving evaluating
model solution function for multiple independent variables values, and such a scheme could
be designed for methods including numerical integration to calculate statistics as integrals or
as some statistical sampling [17, 19].

On the contrary, intrusive methods are based on the modification of the process of the model
solution itself, understanding the solution of the problem as random variables, vectors, or
fields whose properties are captured via a finite set of DoFs and expressed via an orthogonal
basis of the underlying Hilbert space of possible solutions [17].

Such methods increase the problem’s dimensionality, which could be understood in terms
of adding additional dimensions of possible values that a particular QoI can take and, in
terms of increasing total number of DoFs to describe the solution, now a probabilistic one.
However, due to the primary utilisation of the orthogonality of the employed bases, the total
increase in complexity of the problem is significantly lower than that of nonintrusive methods.

However, the most significant disadvantage of an intrusive method is that the existing
numerical framework to solve a deterministic problem no longer applies, and its program
implementations or computational codes can no longer be used. Applying any intrusive
UQ method requires reformulating the problem, usually in a weak form, and expanding an
existing system of equations into an even larger one that accounts for a new probabilistic
basis.

1.2.3. Forward and Backward Methods in Relation to Bayesian Statistics

Two major problems could be formulated within the uncertainty quantification when consid-
ering that arguments and values of a function are random variables.

The first one is associated with a situation when one has some qualitative and quantitative
consideration of the independent parameters of the model and can prescribe some concrete
probabilistic properties to those parameters. The question posed in such a situation is how
and in which way such input parameter uncertainties would influence the uncertainties in
the solution of the model, particularly in quantities of interest. Such a problem usually bears
the name of forward uncertainty quantification problem, or uncertainty propagation. One of the
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Figure 1.2.: A schematics of an uncertainty propagation problem, requiring characterisation
of a prior distribution of independent variables, and a code to solve the problem
of study deterministically, to quantify uncertainties in the quantities of interest.

key ideas for solving such a problem is to formulate it so that the uncertainties of the solution
QoIs can be expressed and defined by a finite sample of problem solutions in its deterministic
formulation. In this way, output uncertainties would require a finite number of solutions to
the problem for different values of input parameters. As shown in the figure 1.2, this requires
obtaining a sample of runs of codes by solving the problem.

The other problem is related to the characterisation of the model parameters and their
uncertainties, given a set of observations describing the model solution, which in its turn
could also come with uncertainties. This problem is called inverse uncertainty quantification
problem. Given the probabilistic description of the model parameters, it is usually solved in
the framework of Bayesian calibration or inversion.

In the Bayesian inversion, a forward model is used to formulate a likelihood model describing
the probability distribution of function values for a given value of argument value p(y|x). This
is similar to describing the likelihood of some dependent variable y given some determined
value of an observed variable x. Forward propagation of uncertainty would answer a question
about what the marginal distribution of the dependent QoI p(y) =

∫
X p(y|x)p(x)dx for a

given distribution of independent variable p(x) is. Such a model could be based on statistics
of function evaluations yi = f (xi) and expressed, for example, as a Gaussian Process Regression
(GPR) model [20]. The inverse problem would require formulating a conditional posterior for
the argument given an existing prior and likelihood for function value:

p(x|y) = p(y|x)p(x)∫
X p(y|x)p(x)dx

(1.2)

This could be done both as a new explicit model and as a part of an analytical expression for
future computations, partially due to the difficulty of calculating prefactor

∫
X p(y|x)p(x)dx

as an integral over a large high-dimensional input parameter space. With the posterior model
for the argument, one can reconstruct its marginal distribution for a given distribution of
function value as p(x) =

∫
Y p(x|y)p(y)dy. The schematic picture of the forward and backward

uncertainty quantification in Bayesian formulation is shown in figure 1.3. The domain model
is used to express the likelihood of a dependent variable given for any independent variable
values p(y|x). The forward uncertainty problem for a given prior uncertainty of inputs
ppr(x) is then solved through marginalization to get p(y). The inverse uncertainty problem
needs an expression of posterior distribution p(x|y), which uses the forward model or its
likelihood. Then one can reconstruct input posterior p(x) for a given observable distribution
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Figure 1.3.: A schematics of Bayesian approach to uncertainty quantification. The blue
arrows show that one can use a distribution of an uncertain input p(x) and
forward likelihood model p(y|x) to find out marginal output distribution
p(y) =

∫
X p(y|x)p(x)dx and solve a forward problem. The orange arrows demon-

strate the formulation of a posterior of input p(x|y) using the likelihood and
input prior. The orange arrows show how to solve an inverse problem and find
an input uncertainty for a given output uncertainty. Here, we present a possible
scenario of quantifying uncertainty in a particle or heat flux for an uncertain
transport function and an uncertain plasma temperature or density value on an
arbitrary scale. Furthermore, a Bayesian reconstruction of temperature or density
value is outlined.

of dependent variables pob(y).

1.3. Sensitivity Analysis

In most situations, one is interested in mathematical models mostly in terms of how some
quantity of interest y of its solution depends on the independent variable xxx = (x1, . . . , xn).
For such a reduced view, one should question how strongly this dependency y = f (xxx) is
influenced by each component of xxx. The goal of the sensitivity analysis (SA) field is to answer
this question by giving quantitative estimates of this influence [21].

One of the ways to analyse such sensitivities is local one. It answers the question of how a
small perturbation of xxx around a particular point influences yyy, usually utilising the model’s
parametric gradients ∇xxx f (xxx). The other type of sensitivity analysis is global, which considers
a variation of input parameter xxx over a whole region of the domain and gives an estimate of
sensitivity in the average sense.

For example, a derivative-based method could assume that the independent variables have
a particular prior distribution xxx ∼ p(xxx) and measure a global sensitivity as an integral of
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the models’ derivative over this prior distribution
∫

X∇xxx f (xxx)p(xxx)dx. However, the model’s
gradients to its parameters are often not analytically accessible. They have to be either
reconstructed using the model’s automatic differentiation or approximated with an intermediate
of a data-based proxy model. Another type of method, variance-based ones, targets measuring
the variance of the quantities of interest V[y] for given input priors.

Taking into account the multivariate nature of the dependency y = f (x1, . . . , xn), one would
like to expand into an additive combination of functions, each dependent only on the subset
of components I ⊂ {1, . . . , n}. Applying this type of expansion to the variance of the quantity
of interest is the basis of analysis of variance (ANOVA) methods.

Apart from giving some general information about the model, sensitivity analysis methods
are often coupled to dimensionality reduction methods, utilising the information on sensitivity
to simplify the y = f (xxx) dependency by decreasing the effective dimensionality of xxx → xxxred.

This work uses predominantly different types of Sobol indices, popular in ANOVA, as
sensitivity metrics.

1.4. Surrogate Modelling

A class of practical tasks, interesting for many areas of science and engineering, may include
multiple function evaluations, each of which, in practice, requires solving an expensive
numerical problem, often obtaining a numerical solution for a system of PDEs. Such a
class includes optimisation problems and uncertainty quantification. In these cases, an
external loop solving the corresponding problem requires many iterations, each performing
an expensive simulation. This class of problems is often denoted as multi-query problem,
referring to querying some opaque, black-box process from the perspective of the outer loop.

Depending on the complexity, regularity, and dimensionality of the problem, applying such
an algorithm may require O(102 − 105) function evaluation, or even more, each often being a
relatively challenging task to perform from the perspective of modern HPC systems.

One of the approaches applied for enabling the utilisation of such algorithms and solving
such multi-query problems is surrogate modelling. It assumes that there is a possibility to
extract enough information from a finite and realistic number of function evaluations, hence
simulation runs, and to regress parametric dependencies of all relevant quantities of interest
with sufficient accuracy over a specific parametric region of interest to form a cheap-to-
evaluate proxy surrogate model, such that replacement of original function evaluation by usage
of such cheap surrogate would lead to accurate enough solution of a multi-query problem.

1.5. Machine Learning

Machine Learning (ML) is a broad field that studies and designs algorithms capable of solving
problems based on extracting knowledge from data and by iterative improvement.

By way of how an algorithm assimilates data, ML methods are usually categorised into
classes of supervised, unsupervised (including semi-supervised and self-supervised sub-
types), and reinforcement learning.
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The main types of problems that Machine Learning algorithms can solve are classification,
regression, as well as generation, e.g., capturing a PDF of some data and sampling from it.

The regression ML models trained on simulation data can serve as fast and efficient
surrogate models introduced in section 1.4.

With the growth of the amount of data accumulated in the experimental and observational
fields and computations, as well as with growing computing capabilities employed for
theoretical calculations, the field of machine learning is gaining particular traction [22].

1.5.1. Problems and Methods

Supervised algorithms are based on the idea that an algorithm to solve a problem can be
created based on a finite sample of problem input independent data and the problem’s
numerical solutions. In other words, the algorithm should generalise a specific function
based on a set of function arguments and values, where the function could have arbitrary
properties, including being very non-linear, non-regular, or having a domain of extremely
high dimensionality.

Unsupervised learning, on the contrary, assumes that there are no given values of such a
function, and the algorithm is supposed to instead identify certain features or patterns of
data of a specific type and is sampled from a particular distribution. This type of algorithm
solves, among others, problems of clustering samples into groups by some similarity criteria
but without knowing specific labels or compressing or encoding data by finding patterns and
representations in small dimensional latent spaces.

Reinforcement Learning (RL) algorithms assume a rather specific formulation of the problem
to solve, which is based on learning the best strategies or policies for performing particular
tasks. This class of algorithms assumes that there is an agent that can perform actions that
change the state of its environment and that agent is able to receive rewarding or penalising
signals from the environment. Under such conditions, the algorithm aims to teach the agent
strategies to maximise some cumulative reward that describes how well the task is solved.

The classification task requires an algorithm to determine which class a sample belongs
to based on the sample’s features. A machine learning algorithm to perform such a task
would require a data set of samples, each presented by some numerical features and a label
describing its class.

The regression problem assumes that the value of the function, or label of the data, could be
non-categorical, usually a vector y ∈ Rn and the task of the algorithm is to approximate the
value of the function for previously unseen values of the arguments xxx ∈ RN . This method can
be applied to use finite data to capture dependencies in physics and other fields for quantities
that are expensive to compute.

One of the other prominent tasks solved by the Machine Learning model is generative
modelling, which is to create new data samples that match some properties of the learned
data, or, in other words, to capture PDF of the learned data and to sample from it.

One of the critical features of all the Machine Learning algorithms is that since they are
based on certain data following a certain PDF and covering a finite range of possible argument
values, they are inherently ill-fitted for extrapolation and describing data coming outside of
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the training data distribution. This issue has to be considered in any practical application of
Machine Learning algorithms, and some of the ways to validate the severity of extrapolation
errors and possible remedies suitable for the concrete cases are discussed in this work.

1.6. Thesis Overview

The next chapter 2, this work will overview the methods applied, including the particular
ways to quantify uncertainty, both aleatoric and epistemic, and the algorithms to do that, the
approach of surrogate modelling, and the different types of surrogate models applied.

Chapter 3 will discuss the physical model studied in this work, the aspects of its computer
implementation, and the aspects of multi-scale multi-component modelling of turbulent
transport.

In chapter 4, the work will present the practical results obtained through the application of
the methods to analyse uncertainties of the solution of turbulent codes as well as how the
suggested approaches enhanced the computational efficiency of the algorithm. This chapter
will show the analysis of uncertainties in fluctuating model solution QoIs, how to leverage
sequential analysis to save compute while getting statistical information for the solution, and
how to get and analyse statistics related to parametric uncertainties. Also, how to effectively
get data, train and utilise data-based surrogate models in multi-component simulations, and
ensure they maintain the fidelity of the physics they describe via adaptive retraining or active
learning methods. Finally, we will demonstrate how to capture the parametric and irreducible
uncertainties that arise due to turbulence in tokamak core plasma simulations and how to get
this uncertainty, saving the compute resources efficiently.

Chapter 5 will discuss the application of surrogate modelling to the coupled multi-scale
multi-component transport simulations. It will demonstrate the procedure of physics-
informed data-based model retraining and a method to capture uncertainties of global
parameters due to uncertainties in microscopic turbulence.

Finally, the last chapter 6 will summarise the work done and discuss the open questions
and possible directions for future research.
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This chapter introduces the methods to quantify the uncertainties in the numerical simula-
tions of plasma turbulent transport, targeting uncertainties of two types. The first is aleatoric
irreducible uncertainty of fluctuating physical quantities, treated as a stochastic process. Algo-
rithms to estimate these properties for time series are presented. The other type is epistemic
parametric uncertainties, which have to be quantified via statistical and numerical treatment
of the model’s independent and dependent quantities as random variables. Moreover, this
chapter describes methods to create and use fast data-based Machine Learning surrogate
models using simulation data.

2.1. Multiscale Modelling

Often, a mathematical model describes real-world phenomena that happen simultaneously
on different scales in space and time. In such cases, a property of the model on one scale is
defined by the properties of the processes on other scales. Examples of such a situation are
when the transport properties of a particular medium are defined by phenomena on much
smaller scales that might include microscale turbulence or interactions of individual particles
composing a physical medium.

The complete solution of such a model would require resolving the smallest and fastest,
hence more detailed and computationally expensive, model features spanning the largest
scale of the problem. However, in many situations, the similarity and homogeneity of the
phenomena on the smallest scales and large discrepancy of the characteristical dimensionality
of the scales allow us to assume a certain scale separation and to reuse information about
smaller scales, which furthermore influences larger scales only in terms of their averaged
properties.

For the time scale separation, from the point of view of a microscale model, the macroscopic
processes are quasi-stationary ∂yM

∂t = 0. Conversely, from the point of view of the macroscale
model, microscale processes provide an immediate response ym 6= ym(t). For the spatial
separation, the micromodel depends only on local point-wise quantities associated with
the macroscale model. And visa versa, the microscopic model influences only the local
parameters of the macroscopic model. To be benign for model formulation and computational
cost, an additional regularity property of both macroscopic and microscopic models should
accompany such a scale separation. In order to have a coarse spatial resolution, where each
DoF of the macroscopic model corresponds to an independent microscopic, hence expensive,
model, the quantities of the macroscopic model should be spatially well-correlated, and
the macroscopic model should not have large time derivatives. In the coupling context, the
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microscopic model’s QoI cannot be too sensitive to macroscopic parameters, which could be
expressed in terms of sensitivity indices or amplification factors for uncertainties (or, in a
general case, in terms of Lyapunov coefficients or Lipshitz continuity of microscopic QoIs as
a function of macroscopic quantities).

In such a favourable case when the scale separation assumptions could be effectively
applied, one could reformulate the problem in such a way that, at a time, only a subset of a
problem should be solved, and the parameters of this subset that depend on the rest of the
problem could be assumed fixed. In such a case, every scale of the model is described by
a sub-model, with every sub-model coupled to others in terms of parametric dependency.
Solution of the entire model would require an iterative solution of each sub-model with
subsequent calculation and substitution of the parameter values to the dependent model, be
it formulated in terms of forward time integration of some non-stationary process or iterative
process of convergence to a specific solution self-consistent with a given global model.

Figure 2.1.: Spatial and temporal scales of processes relevant for a tokamak plasma discharge
and their physical dimensionality. This work focuses on core transport and ion
turbulence processes, which have a discrepancy of 2− 3 orders of magnitude in
space and ∼ 6 orders in time.

In plasma physics, processes on multiple spatial and temporal scales occur within a single
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discharge. As shown in figure 2.1, the relevant scales in the time range from 10−9 to 103 s, from
picoseconds on atomic scales to hundreds of seconds for some wall material processes. For
the spatial scale, the processes vary from 10−10 to 103 m, from nanometers for single particle
interactions to several meters describing the entire devices. In order to model the plasma of a
discharge consistently, one has to accommodate this scale disparity of the processes, usually
each represented by its own model. This discrepancy, often more than 6 orders of magnitude,
leads to the need for methods to couple different models appropriately, both in mathematical
and programmatical senses, and to find an ability to solve microscopic models fast.

In the last two decades, significant progress has been made in modelling multiscale
turbulent transport in fusion plasmas. Following the primary approach in the work, we
consider a multi-component approach to model this process, where turbulence, transport,
and other subprocesses are each solved by its code.

A number of works were done in developing and studying workflows employing transport,
turbulence, and equilibrium components, including ones across the MAPPER, COMPAT, and
VECMA projects [23, 24, 25] and other projects [26, 27].

2.1.1. Multiscale Modelling Simulation Language

There are several methods of describing parametric dependencies of different model and the
related pipeline for their solution, most of them describing it in terms of a modified graph.
One such description approach is Multiscale Modelling Simulation Language (MMSL) [28].

This method describes a computational workflow as a directed graph where each vertex is
a particular mathematical model, and the edges are communication conduits between the
models. A model usually receives data on its independent parameters and sends out data on
the QoI of its solution. In this approach, the graph’s vertices are components, representing
codes that solve a particular problem. The edges of the graphs, respectively, are the conduits
connecting the ports of the components, describing the exchange of information on the partial
solution.

Such a graph description allows for multiple patterns of model interdependencies and
interactions with respect to the organisation of the models’ time integration. Furthermore,
it allows for a clear description of computational workflows via YAML-based configuration
files. This so-called YMMSL description may also include all the information required for
the program implementing the workflow, like the meta-information on the model parame-
ters, the models’ code implementations, the computational resources they need, and other
configuration parameters.

This work uses the MUSCLE3 library to implement such multi-component multiscale
computational workflows, updating previous implementations in the MUSCLE2 library and
adding capabilities to utilise surrogate and different codes to solve the turbulence problem [29,
30, 31, 32, 28]. This library translates a YMMSL workflow description into an executable
instance, runs the program components of workflows, manages the required resources, and
arranges the communication between coupled codes via TCP/IP sockets.
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2.2. Time Traces Analysis

This work deals with physical quantities evolving in time and exposing stochastic properties
due to underlying processes’ high non-linearity and parametric sensitivity. The study of
aleatoric uncertainties focuses on analysing properties of such fluctuating quantities. Those
are computed via time-discrete numerical codes and are considered on the level of separate
scalar quantities. Thus, to study the aleatoric uncertainties in plasma turbulence, this work
uses the time trace analysis methods as a tool of choice, which are discussed in this section.

2.2.1. Theory. Stochastic Processes

In a broad sense, stochastic process {Xt} is a set of random variables, each indexed by an
element t of some set T. Each random variable X in a probability space (Ω,F , P) is a function
X : Ω→ R measurable over is sigma-algebra F with a domain of sample space Ω, value in
space state R, and a probability measure P : F → [0, 1]. In this work, we consider a narrower
type of stochastic process where the indexing set T has a relationship of total order on itself.
In such a case, the index for random variables is physically understood as a time reading. We
consider two types of processes, a continuous process with indexing set isomorphic to an open
interval on R, e.g., (0, 1) and a discrete process indexed with a set isomorphic to an interval
on N. The resulting stochastic process is used to describe a change of a scalar quantity in
some process with time [33].

In this work, we mainly consider stationary stochastic processes, meaning that the properties
of the process do not change in time, or more precisely, the joint distribution of any subset of
{Xt} does not change under translation by an arbitrary τ : t→ t + τ.

One of the important properties of a stationary stochastic process is its autocorrelation function
(ACF) ρ(τ) describing how two of the elements of a stochastic process with indices τ distance
apart are correlated ρxx(τ) = Cov(xt, xt+τ)/σxt σxt+τ . For the realisation of a continuous
process, it can be estimated as an expected value for a product of value with itself with a lag
ρxx(τ) = E[(Xt − µxt)(Xt+τ − µxt+τ )]/σxt σxt+τ , normalised to have a zero mean and unitary
standard deviation. For an ergodic stationary process, it can be estimated via convolution of
the values against itself with a lag ρxx(τ) = limT→∞

1
T

∫ T
0 x∗(t)x(t + τ)dt. Equivalently, one

can compute it as a product in Fourier space ρxx(τ) = F−1{F ∗{x(t)} ·F{x(t)}}. In practice,
computation of ACF with Fourier transform via an algorithm like FFT [34] would require
padding the sample with zeros until the size is equal to the power of two [35]. Furthermore,
the evaluation of ACF is sensitive to the sample size.

An advantageous type of analysis for such one-dimensional stochastic processes if Fourier
analysis, based on the Fourier transformation of a series F ( f ) =

∫ ∞
−∞ x(t)e−i2π f tdt, a convo-

lution of the function with basic harmonics of frequency f .
In this work, the analysis of the spectra of all the heat flux time series revealed that the

frequency falls off quadratically f−2, which corresponds to Brownian noise behaviour and fits
with the spectrum of a Wiener process or a random walk. A representative power spectrum
in time of a radially localised ion heat flux value calculated by GEM is shown in figure 2.2.

Here, we also use a conception of autocorrelation time (ACT) defined as such an argument of
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Figure 2.2.: Fourier power spectrum for outward radial ion heat flux for an AUG discharge at
ρnorm

tor ≈ 0.7 from GEM. The log f = −2 slope (dashed black) and 99% cumulative
power cut-off (dashed red) are indicated.

ACF τ∗ for which its value falls off in e times. Generally, the autocorrelation function is non-
monotonic and can increase once the lag τ reaches some high-period oscillation component
of the time series.

When analysing stationary series, the essential statistics (the functions of a sample) are
often the main moments of the PDF of the process, as one is interested in the effective value
of some quantity and its variability.

In this work, the basis of the analysis is calculating the mean of the time series µ[x] =
1
n ∑x∈X x as well as the error of its estimate, standard error of the mean (SEM), which the

standard deviation σ[x] =
√

1
n−1 ∑x∈X (x− µ[x])2 normalised by the square root of the

sample size SEM[x] = σ[x]/
√

ns.
Unlike the analytical considerations for the continuous stochastic processes, dealing with

the data from practical problems, be it real-world observations or numerical experiments,
mostly requires analysing discrete time series. In this work, for example, we consider values of
specific quantities calculated with computer codes implementing a numerical method solving
a PDE, and these methods are naturally discrete in time. Even though this quantity is meant
to present a continuous physical one, what is accessible to analysis is only a finite ordered set
of numbers. This means that one may only obtain statistical estimates of the abovementioned
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characteristics. This requires numerical algorithms and introduces finite-sample statistical
errors. One of the features of such discrete time series is that one cannot capture any effects
associated with frequencies more than half of the sampling frequency f ≥ fN = fs/2, called
the Nyquist frequency [35]

The situation when approximates continuous processes that are dominated by frequencies
much larger than the sampling frequency f � fN introduces another type of consideration.
In this work, as in many other physical applications, the time steps between the calculation of
two consecutive values of QoI (heat fluxes) are much smaller than the period of fluctuation
of quantities of interest for the highest observed frequency, meaning that the time series
describing the evolution of the QoI does not lose any information that the given model can
provide. On the other side, taking the QoI value on every time step would represent the time
series in a way hardly suitable for statistical analysis as any small feature that we would like
to understand as a sample from a variety of possible stochastic behaviours of QoI would be
represented by a multitude of highly correlated readings. This leads to a need to deliberately
lose some information on QoI’s time dependency in order not to overrepresent any features
and to downsample the readings of QoI. In this work, the downsampling technique employed
is based on taking a single sample for a number of consecutive readings nw equal to the
time series autocorrelation time ACT[q] in time steps, where the new reading is equal to an
average value of all reading in such an ACT window qeff

i = 1
n ∑

(i+1)·ACT[q]
j=i·ACT[q] qj.

2.2.2. Data and Algorithm

The quantities that could be directly computed from the (gyro-) fluid model simulations that
are of most interest for the transport model describing processes on a larger time scale and
in terms of 1D profiles are time-averaged particle and energy fluxes, typically across flux
surfaces defined by a particular radial coordinate of a tokamak plasma.

In this work, we consider two particle species, electron and main ion, nucleus of Deuterium,
and the respective heat fluxes measured or calculated for a flux tube located at a particular
value of ρnorm

tor (normalised toroidal magnetic flux φ) and changing with time Qe,i(ρ
norm
tor , t).

We use the (·)e subscript for quantities associated with electrons, the (·)i subscript for the
ones related to main ion species, and the (·)e,i subscript when talking about things that are
general for both species.

Given the nature of the behaviour of the selected quantities of interest with time and our
goal to characterise aleatoric uncertainties, we treat them as a time series with the following
analysis steps.

Since the overall goal is to describe aleatoric uncertainty in terms of a particular noise’s
statistical properties on top of a quantity’s mean time-wise dynamics, we would like to work
with stationary time series.

The first step in preparing data for such time series is to eliminate the non-stationary part
of the readings. In the context of turbulence simulations, it is part of the reading from the
initial steps during which the turbulence develops until it reaches a saturated state.

The first type of statistic that is of interest in analysing such time traces and for subsequent
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usage in modelling is the sample mean value of the readings. This mean value is to be used
to calculate an effective value of the fluctuating quantity; here, effective means is the one
relevant for the resolution of the other larger scales.

In the context of turbulence and turbulent flows, even estimating such a natural first-order
statistic as a mean could entail some issues, first and foremost in the high statistical noise for
such an estimate [36, 37].

An example of the ion heat transport flux values growing and fluctuating with time
computed with code GEM, together with the estimated statistics, could be found in figure 2.3.

0 500 1000 1500 2000 2500 3000 3500 4000
t, code time-steps

2.0

2.2

2.4

2.6

2.8

Q
i, 

W m
2

×106

autocorrelation time windows, n=90, len=38
time traces of Qi

effective sample points
mean: 2.3e+06
+/- standard error: 1.9e+04
+/- standard deviation: 1.7e+05

Figure 2.3.: Ion heat flux Qi(t) at ρnorm
tor = 0.7 computed by a GEM flux tube simulation as a

function of time. The initial growth phase readings are discarded before analysis.
The autocorrelation time widows, effective averaged readings, mean, standard
deviation, and standard error of the mean estimates are indicated according to
the plot legend.

Even though the variance σ2 is a more natural quantitive characteristic of the uncertainty
related to a stochastic process, the additional consideration of standard error SEM of the
mean helps analyse the statistical noise. Furthermore, as it is more dependent on the sample
size, it could be used to provide judgment on the length of the time series, hence the duration
of the turbulence simulations, necessary to capture the information on the effective quantities
of interest behaviour.

In this work, we suggest a sequential procedure to analyse the convergence of the SEM of
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turbulent transport fluxes in the course of the time integration of the turbulence equations
that allow us to judge whether the collected sample in time is sufficient to estimate the
effective level of flux values.

The procedure assumes adding new readings associated with the time evolution of quanti-
ties of interest Yi to the total sample of readings every tn time steps of the integration. Once
the sample is expanded, the autocorrelation time of time series ACTi is recalculated, and a
new effective sample is downsampled using average values of every time window of the
length equal to the ACT. Using the new effective sample, the mean, standard deviation, and
standard error of the mean are recalculated. The new values of these three statistics are then
compared with those computed on previous procedure steps, and the relative change is then
compared to the pre-selected threshold values. When the relative change of the mean and the
standard error of its estimate drops below the chosen thresholds, the sample is considered
sufficient, and the simulation of turbulence for given kinetic characteristics is stopped. Such
an algorithm allows us to control the fidelity of the estimate of the transport fluxes by a
flexible choice of the simulation duration.

The outline of the procedure to calculate the SEM of a model solution QoI using its time
trace y(t) in a sequential manner during the simulation is presented via the following steps
in listing 2.2.2, which are also visually summarised in figure 2.4.

The procedure for analysing the QoI time traces y(t), representing a model solution for a
single parametric point, constitutes of the following steps:

1. For the time-traces y(t) of length tn representing a model solution in a scalar quantity
of interest at time steps {t}, we select a part in the saturated phase:

a) Define the y(t) ramp-up phase duration tr.u.: here, in practice, for the long term,
we chose an initial 15% of readings

b) Discard the readings from the ramp-up phase

2. Downsample the readings:

a) Calculate the Auto-Correlation Time: tA = ACT[y(t)] = min t∗ :
1

(tn−t∗) ∑tn
t=t∗ (y(t)− ȳ) · (y(t− t∗)− ȳ) < 1

tn
∑tn

t=t1
y2(t) · e−1

b) Split time series in saturated phase into neff = b
tn
tA
c windows

c) For every autocorrelation time window of length tA choose a downsampled reading
as a mean value yeff

i = 1
tA

∑(i+1)·tA
j=i·tA

yj for an effective time step teff
i = 1

tA
∑(i+1)·tA

j=i·tA
j

d) Collect downsampled readings into a new set YYYeff = {yeff
i }

3. Test the stationarity of the resulting time series:

a) Here: compute an ordinary least-squares linear multivariate regression model of
downsampled QoI readings over time

b) Apply Normal Equations to find coefficients: θ̂θθ =
(
XXX>XXX

)−1XXX>YYY where XXX consists
of effective time steps teff

i
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Figure 2.4.: A flowchart describing the steps to process the flux values time series computed
by turbulence code at a particular radial location.

c) Test if the linear regression coefficients are below a chosen relative tolerance:
θ̂θθ < εεεtol

i. If the coefficients are too large, continue simulating another trun time steps

ii. If the coefficients are small enough, stop the simulation and proceed to the
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statistics calculation

4. Compute the essential statistics estimates:

a) Mean: µ[y] = 1
neff

∑y∈YYYeff y

b) Standard deviation: σ[y] =
(

1
neff−1 ∑y∈YYYeff (y− µ[y])2

)− 1
2

c) Standard Error of the Mean: SEM[y] = σ[y]/√neff

However, the particular threshold quantities for the convergence criteria require fine-tuning
for particular simulation regimes, which in practice means producing several longer prelim-
inary exploratory runs to decide on the convergence criteria. Furthermore, consideration
of multiple QoIs with qualitatively similar behaviour within a single run requires to have a
way of combining various criteria CCC = {criti}. For that, one may employ the majority voting
principle, the unanimous voting principle (logical AND for all criteria), or criteria for linear
combinations of QoI or other functions of QoI.

The described procedure is applied to all GEM simulations in the study of its parametric
dependency, which allows us to estimate the error of the effective transport level, quantify the
model’s aleatoric uncertainty, and decide on the sufficient duration of turbulence simulation.

2.2.3. Literature Review

The area of aleatoric uncertainty quantification is relatively new as a single concept. However,
many problems it deals with are presented in other areas of computational science. These
problems include considering systems exposing chaotic behaviour and fluctuating quantities
of interest.

Specific properties of the studied system should support treating time traces of fluctuating
quantities as stochastic processes. Some argue that such a description is suitable primarily
for non-linear systems in a quasistationary state in the vicinity of an attractor and exposing
ergodicity of the dynamics [18, 38].

One of the works considers an ensemble of replicated simulations for the same fixed
values of independent parameters to compute purely aleatoric uncertainty in binding energies
computed by molecular dynamics (MD) simulations [39]. Other works approach the aleatoric
uncertainty in the context of filtering algorithms that split trend behaviour from the noisy
dynamics [40].

The primary type of aleatoric uncertainty considered in this work is the uncertainty related
to fluctuating QoIs in the solution of numerical models. Given the practicality of the analysis
of chosen scalar quantities and the discreteness of numerical quantities in terms of time, this
leads to a particular interest in studying time series. The consideration of uncertainties in the
time series is usually done by describing such time series as a stochastic process, usually a
stationary one, which raises questions about its quantification with properties of two kinds.
One kind is the properties of a stochastic process from its theoretical perspective, which
includes the estimation of its ACF, variance, and other moments. This type of quantity gives
insight and characterisation of the properties of the mathematical model that produced the
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time series and the physics behind the described process. The other type is purely statistical
errors in estimating the parameters of such stochastic properties. These quantities describe
the effects of the finite sample size and give an idea of the numerical error such a model can
produce.

The problem of characterising the time series in such a manner arises in multiple fields
of applied Computational Science, including molecular dynamics, computational chemistry,
computational fluid dynamics, climate modelling, and plasma physics. One of the works
in plasma physics highlights the statistical understanding of the error estimates for mean
values of fluctuating quantities and the importance of the dynamic control of the sample size
to produce such time series [36]. Another work in Computational Fluid Dynamics (CFD)
concerns the computational aspects of time series analysis of turbulent flow, especially the
memory footprint of autocorrelation computation for a large number of DoFs for which
the series is analysed, and suggests a way to perform such an analysis using temporary
local updates [37]. In the area of molecular dynamics, the problem of finding the time point
when the system has reached equilibrium so that simulation can be stopped arises, and
one can tackle it via a range of approaches based on sequential analysis of standard error
estimates [41].

2.3. Uncertainty Quantification. Forward problem

In this work, we perform uncertainty propagation, also called the solution of the forward
uncertainty quantification problem, for a computational model describing turbulent transport
in plasmas. Such a problem assumes that the model’s independent variables are random and
require quantifying properties of the model’s quantities of interest as random variables. This
means numerical characterisation of its distribution functions, which we perform by describing
its statistics. The computation of statistics requires numerical integration over the distribution
of independent variables, for which multiple methods were developed. This section presents
spectral projection quadrature methods, namely the Polynomial Chaos Expansion (PCE), the
collocation-based methods, and Monte Carlo (MC) numerical integration.

2.3.1. Polynomial Chaos Expansion

One of the most widely used and well-known methods for expressing uncertainties of a
random function is Polynomial Chaos Expansion (PCE) [17, 16].

It is based on the idea that the PDF of the function value y can be expressed via an
expansion using an orthonormal polynomial basis Pi(x) each depending on the subset of
function argument components

Y ≈ Ŷ(X) =
N

∑
i=0

ciPi(X) (2.1)

where N is the highest order of polynomials, defining the truncation of the expansion, and ci
are the coefficients of the expansion.

23



2. Methodology

For a given function Y = fX(x), the expansion coefficients ci and the points to evaluate
at xk could be determined as a quadrature scheme based on a Spectral Projection method,
exploiting the orthogonality of the basis polynomials and using normalisation factors Hi for
polynomials Pi:

ci =
1
Hi

∫
Ω

Y(x)Pi(x)p(x)dx ≈ 1
Hi

N

∑
k=1

Y(xk)Pi(xk)ωk

Hi =
∫

Ω
P2

i (x)p(x)dx

(2.2)

Quadrature scheme

For each of polynomial classes, for every degree p of a univariate polynomial pd(x) there is a
set of p + 1 points ξi values of a polynomial at which pd(ξi) fully define the polynomial.

In this case, we considering approximations of type Q( f ) = ∑N
i=1 wi f (xi).

An essential element of the expansion is the argument values to evaluate the function
at, which are called abscissas, nodes, or points of the quadrature. The other element of such
an expansion is multiplicative coefficients in front of the function values, which are called
respectively quadrature weights.

In this work, we employ Gaussian quadrature that optimises the order of accuracy of the
scheme and, having positive weights, is numerically stable. This quadrature uses weights in
the form of values of polynomials, and using n abscissas can exactly express polynomials up
to degree 2n− 1. This scheme uses zeros of the orthonormal basis polynomials as the nodes.

Basis choice

In order to implement the approximation optimally, in terms of its accuracy increment
with an addition of a DoF, the basis of the expansion is chosen to be orthogonal. For the
polynomials used in the Polynomial Chaos Expansion (PCE) class of expansions, one such
possible basis is a family of polynomials to form such a Gaussian quadrature, described later
in this section. They are orthonormal in the sense of a product in a weighted Hilbert space
〈pi(x)pj(x)〉p =

∫
Ω pi(x)pj(x)p(x)dx.

Polynomial classes and Wiener-Askey scheme

For different types of distributions of independent variables, one should choose a correspond-
ing quadrature scheme with the appropriate basis and quadrature nodes.

The Hilbert space to which the expansion belongs is chosen to be weighted with a PDF of the
independent variables p(xxx), chosen as inputs of the analysis, and serving as prior distributions
in the Bayesian analysis of uncertainties. In this way, we are speaking about choosing an
appropriate basis in L2(R, γ, R) where γ is chosen to be the PDF of the independent variable
γ = px(x) of the expansion of the function f (x) : R → R. For example, for the normally
distributed random variable ξ : ξ ∼ γ = N (0, 1), such basis is composed of Hermite
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polynomials Hen(ξ) orthonormal with respect to the product with the Normal measure∫
Ξ Hen(ξ)Hem(ξ)dγ(ξ) = n!δmn.
Subsequently, the expansion has the form f (ξ) = ∑n∈N0

unHen(ξ) with the coefficients
defined by the projections on the chosen Hermite basis:

un =
〈 f , Hen〉L2(γ)

||Hen||2L2
γ

=
∫ ∞

−∞
f (ξ)Hen(ξ)e−ξ2/2dξ (2.3)

Such a PC expansion leads to simple expressions for the expected value and variance of the
value of random function U = f (ξ); namely, it is 0th term of the expansion, and the weighted
sum of the squared expansion terms:

E[U] = u0

V[U] = ∑
n∈N

n!u2
n

(2.4)

This leads to a choice of a particular polynomial class based on the input PDF with a
mapping of these PDF on polynomial type known as Wiener-Askey scheme [42]. For every
class of PDF of the independent uncertain input variable, there is a type of polynomial
and respective quadrature suitable for such a polynomial expression of uncertainties in the
function value. This correspondence is described in the table 2.1.

Table 2.1.: Wiener-Askey scheme table for correspondence of parameter PDF classes and
polynomial quadrature schemes [42].

Polynomial Support Distribution Name Density Normalisation
Hermite (−∞, ∞) Gaussian e−x2 √

π2nn!
Laguerre [0, ∞] Gamma xαe−x Γ(n+α++1)

n!

Jacobi [a, b] Beta (1− x)α(1 + x)β 2α+β+1Γ(n+α+1)Γ(n+β+1)

n!(2n+α+β+1)Γ(n+α+β+1)
Legendre [a, b] Uniform 1 2

2n+1
Charlier N0 Poisson e−ααx/x! α−nn!
Meixner N0 Negative Binomial (β)xcx/x! n!c−n

(β)n(1−c)β

Hahn {0, 1, . . . , N} Hypergeometric (α+1)x(β+1)N−x
x!(n−x)!

−1n(n+α+β+1)N+1(β+1)nn!
(2n+α+β+1)(α1)n(−N)n N!

Krawtchouk {0, 1, . . . , N} Binomial
(

n
x

)
px(1− p)x

(
1−p

p

)n
(

N
n

)

Finite truncations

In practice, the number of components of the expansion, meaning the maximum degree of
the polynomial used for the approximation, should be chosen as finite. For the application,
where a range of different maximum degrees of the polynomials could be tested, one should
truncate by an elbow-like change in the increment of the approximation.

The approximation error in terms of its L2(γ) norm for U −Uk for the expansion U ≈
UK = ∑K

k=0 ukHek(Ξ) tends to zero in mean square limk→∞(Uk −U) = 0.
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Curse of dimensionality

Usually, such an expansion is used for a function of multiple variables; hence, polynomials
are multivariate functions with different arguments contributing in different degrees.

The PCE expansion in the form presented earlier could be generalised for multivariate
functions trivially if it is performed for independent, in the probabilistic sense, of its argument
components. Such a modified expansion, often called generalised Polynomial Chaos (gPC), uses a
set of mutually orthogonal polynomials to span the product of underlying spaces L2(Θ, µ, R)

for Θ =
⊗

1≤i≤d Θi and µ =
⊗

1≤i≤d µi
Analysing the contribution of every component, out of d total argument components, and

their combinations up to some total degree p would be respectively combinatorially complex
in the number of required function evaluations N = (d + p)!/(p! · d!). Such phenomenon,
colloquially known as curse of dimensionality, leads to prohibitively high computational costs
for any parametric studies in large dimensionalities and leads to a need to drastically reduce
the compute by some of the means, that include dimensionality reduction techniques or
adaptive type of sampling.

There are multiple modifications that allow to partially alleviate the issue of the course of
the dimensionality. Among those are sparse quadrature formulae like Smolyak sparse grids
that use a set of nested 1D quadrature rules to construct a node and weight choice to use
only a sparse subset of the basis functions [43, 44, 45]. The other methods that work around
the high dimensionality are Monte Carlo (MC) [46] method based on statistics of random
variable evaluations and the Law of Large Numbers (LLN), which will be discussed in a later
subsection.

2.3.2. Stochastic Collocation

In some cases, finding an approximate (uncertain) solution for a system of equations is
required, given a set of (parameter) points for which the equation should be satisfied exactly.
Such points then are called collocation points, and the respective method is called collocation
approach [47, 17]. It differs from the previously described method in that the points are
pre-described; hence, the subset of the solution space that is used is also pre-described. Such
a set of collocation points defines the low-dimensional object, usually polynomial, used to
approximate the solution, and the dimensionality of this object is proportional to the number
of collocation points.

Often, such an approximate polynomial has to interpolate the solution; hence, polynomials
of the Lagrange family are frequently used. For a given set of points Θ = {θn} such a
polynomial will have the form of:

Ũ(θ) = ∑
θn∈Θ

U(θn) ∏
θk∈Θ,θk 6=θn

θ − θk

θn − θk
(2.5)

Such an interpolation could be prone to multiple issues, including the Runge phenomenon,
and still, the collocation method could benefit from control of choosing the particular colloca-
tion points like Chebyshev nodes [48].
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2.3.3. Monte Carlo

A famous and widely-used family of methods for numerical integration is Monte Carlo
(MC). It is based on the (pseudo-) random approach and the formulation of the integration
problem so that the sought quantity f (X) is an estimate of an expected value of some random
variable [46, 17]. Then, one could employ the Law of Large Numbers (LLN) to calculate it
as EX∼µ[ f (X)] ≈ Sn( f ) = 1

n ∑n
i=1 f (X(i)). With such an approach, the integration process is

based on random sampling from a PDF µ.
One of the main advantages of this class of methods is that they do not suffer from the

course of dimensionality. For most cases, the error convergence of MC methods does not
depend on the dimensionality of the problem and has a relatively slow rate of ε ∼ n−1/2

samples.
This arises due to Chebyshev inequality relating the error of the mean estimate with its
variance P(|Sn −E[ f (X)]| ≥ t) ≤ V[ f (X)]

nt2 .
However, the integration of multivariate functions f : Rk → R requires an independent

variation of every component of the argument vector xxx ∈ R. Furthermore, some statistics,
including Sobol indices, which describe variance fractions due to the impact of subsets of
input components and which shall be introduced in a later subsection, require integration over
non-hyperrectangular domains, which in principle could lead to combinatorial or exponential
complexity with the dimensionality k for MC integration. Due to the partition of unity
property, however, the calculation of Sobol indices (which also entails the calculation of total
variance and the mean) can be done in linear in dimensionality k complexity with a practical
algorithm of Saltelli sampling [49, 50] requiring only n(k + 2) function evaluations.

More advanced versions of MC algorithms utilize knowledge of the independent parameters
of the model to re-weight the sampling probability accordingly. This includes a CDF inversion
or inverse transform method, which produces samples as xi ∼ CDF−1(U[0, 1]) [51]. This
requires Cumulative Distribution Function CDF(x) to be well-behaved and accessible, and
for its Radon-Nikodym derivative dµ

dν with respect to a standard distribution function ν, like a
uniform distribution U[0, 1] to exist and have a closed expression.

For an untractable distribution µ, one can apply a Markov Chain Monte Carlo (MCMC)
method based on constructing such a Markov Chain whose stationary distribution approxi-
mates the distribution µ. This is usually complicated to perform, especially for multivariate
distributions of high dimensionality. One of the methods applied for such a problem is
the Metropolis-Hastings (MH) algorithm based on the iterative proposal and rejection of
samples [52].

Other important Monte Carlo methods in simulations are Hamiltonian MC (HMC) used to
model conservative physical systems and Multi-Level MC that leverages the correspondence
between the density µ and quality of the numerical resolution of a physical problem [53].
Combining the methods, like the Multi-Level approach and Markov Chain Monte Carlo
(MCMC), is also possible [54].

The high computational cost of MC methods in terms of the number of function evaluations
can be alleviated by the inclusion of more information, like the high-order derivative values,
function evaluations of multiple fidelity levels, and assumptions on the geometry of the
sampled PDF [55, 56].
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Worth noting is a popular method of Quasi-Monte Carlo (QMC) used to improve the
convergence rate of MC algorithms by applying pseudo-random sampling schemes utilising
low-discrepancy number sequences [57].

2.3.4. Literature Review

In recent years, the increasing accessibility of computational resources has enabled the
performance of uncertainty propagation and, more generally, the numerical analysis of
epistemic uncertainties in practically relevant mathematical models in multiple applied
computational sciences.

One area that faces multiple challenges similar to those of plasma turbulence transport is
MD simulations, which also require HPC codes for model solutions, experience uncertainty
of epistemic and aleatoric types, and are inherently multiscale. There are multiple works
dedicated to UQ for MD simulations. One of the works addresses two issues of the field,
namely the Bayesian approach to forward uncertainty problem and software automation of
UQ methods [58].

The mathematical challenges of the robust and computationally effective UQ, data util-
isation for surrogate, and engineering effective software are tackled by multiple research
groups [59, 60, 61, 62, 63, 64, 65, 66].

There are multiple examples in the area of fusion research. One of the works in the
field of material sciences applies PCE to recover the dependency of the sputter yield of
iron and tungsten surfaces on the properties of a deuterium beam, which also allowed for
global SA [67]. The UQ and SA were previously applied to high-fidelity plasma turbulence
simulations focusing on sensitivity-adaptive sparse grids, significantly saving computational
cost [68]. A uniform framework for analysing both data coming from experiment and
simulation requires performing UQ for the latter. A paper suggests an approach for kinetic
models to assimilate simulation data into a Bayesian statistics framework [69]. In a similar
manner, another work utilised impurity transport simulation and experimental spectroscopy
to infer plasma profiles [70].

The previous work on the UQ applied to the multiscale fusion plasma simulation workflow
from this thesis is addressed in [1].

Moreover, the UQ allows for a rigorous statistical comparison of experimental and mod-
elling results, leading to a more precise validation of numerical models. Several works were
done in this area, including ones applied to fusion plasmas. A validation effort was performed
in the context of a multi-component turbulent transport model in plasma in [2], as well as
other models [71].

A statistical approach to measure uncertainties based on a finite number of function
evaluations and data of specific parameterised PDF is variational inference. Methods of this
class leverage the parameterisation and metrics in the space of PDFs, e.g., Kullback-Leibler
divergence, as well as the ability to access information on the function derivatives to deduce
the parameters values [72, 73].
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2.4. Sensitivity Analysis

One of the fields that is often tightly connected to uncertainty quantification is sensitivity
analysis (SA). In general, this field covers algorithms to conclude how different factors influence
solutions of mathematical models in terms of their relative importance. Usually, by factors,
we mean values of concrete quantities, e.g. parameters in parametric PDEs. Often, this
field’s final object of study is some measures of such sensitivity and how to obtain their
numerical values. These measures could be produced in different ways, for instance, based
on derivatives with respect to the model’s parameters, calculated numerically, or based on
statistics of model solution QoI. Also, they could be local, defining the model’s response
to some small parameter perturbation, or global, capturing the model’s behaviour for wide
PDFs of the uncertain parameter. In this work, we mainly employ Sobol indices as a measure
of sensitivity, a statistic based on the decomposition of the total model’s solution QoI variance
as a multivariate function, as it is done in the ANOVA [21, 74, 75]:

f (x1, . . . , xn) = f∅ +
n

∑
i=1

f{i}(xi) + ∑
1≤i<j≤n

f{i,j}(xi, xj) + · · ·+ = ∑
I⊆N

fI (xI ) (2.6)

This quantity denotes a partial variance explained by the variation of a subset of components
of model input parameters. They are calculated as a variance V of an expected value E

of function output Y conditioned on Xi a subset of input components i ∈ {i} ⊂ I and
normalised by the total variance of the output. In this work, we consider the first-order Sobol
index Si for estimating the influence of a single parameter i, as well as higher-order Sobol
indices S{i} to calculate the impact of interacting parameters in a set of {i}. Furthermore,
we consider total Stot

i indices, defining both influences of a single parameter and all its
interactions, using a set −i = I \ i of all components excluding the one of interest i:

S{i} =
V[E[Y|X{i}]]

V[Y]
, Stot

i = 1− V[E[Y|X−i]]

V[Y]
(2.7)

The Sobol indices of all orders until the total order sum up to one ∑I∈2N SI = 1 and serve as
a partition of unity. The value of the Sobol index indicates how strongly this input parameter,
or combination of parameters, influences the variation of the chosen QoI.

2.4.1. Literature Review

One of the issues often omitted in practical applications is that assumptions of probabilistic
independence of the input parameters are usually not valid. In situations when inputs
are themselves functions of some arguments, especially in cases when collocation methods
are applied to existing data with known correlations, one has to apply an appropriate
transformation, e.g., Rosenblatt one, to account for input correlations [76].

The Sobol indices are not the only metrics used in the ANOVA methodology. Another type
of indices measuring the importance of dependent high-dimensional input are non-negative
Shapley values [77].

29



2. Methodology

A number of other works touch multiple trends in SA and aim method comparison [78, 79,
80].

2.5. Surrogate Modelling

In this work, we utilised a surrogate modelling approach to design several algorithms to
quantify uncertainties in Plasma Physics simulations. This approach is based on using
simulation data to regress over a sample of argument-value pairs to create a fast proxy
function that can be used in place of an expensive to-evaluate function for an algorithm that
requires a large number of function evaluations. The schematic depiction of the surrogate
approach for uncertainty propagation is shown in figure 2.5.

Figure 2.5.: A cartoon of uncertainty propagation using a surrogate model. A data sample is
used to create a regression likelihood model p(y|x) for the studied dependency,
which could be used, together with a prior argument distribution p(x), to estimate
the distribution of function values p(y).

This method is usually applied to a class of multi-query problems, which include uncertainty
quantification, variational influence, and optimisation using simulation-in-the-loop. Often,
these methods would like to use high-fidelity simulations to evaluate function values studied
in a problem, and they require large numbers of simulations, which is, in practice, not
feasible even when using modern supercomputers. Then, one can use a finite sample of
function evaluations to approximate the studied dependency over some parametric region
of interest [81]. This approach requires the preparation of a data sample of simulations and
the use of data-based regression models D = {(xxxi, yi)}i=1..ns → y = fsurr(xxx|D). For complex
multivariate dependencies requiring large amounts of data, these methods are usually based
on ML.

An important aspect of surrogate simulation methods is that data acquisition is a very
expensive process compared to other areas using statistical regression. This raises a question
of the effective utilisation of existing data and the effective design of numerical experiments
to sample the data required to create an efficient surrogate for solving the studied problem.
This aspect led to the development of various Active Learning (AL) approaches for surrogate
models, discussed in later sections.
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2.5.1. Literature Review

The surrogate modelling approach effectively solves problems requiring extreme computa-
tional costs to resolve processes on extremely disparate scales. It was applied in multiple
areas, starting from its pioneering field of geosciences and continuing with climate science,
plasma physics, molecular dynamics, and other computational areas of mathematics, physics,
and engineering [82].

The surrogate approach gains particular traction in fusion research. In the area of plasma
turbulence, it was applied as a surrogate for a high-fidelity code for micro-tearing modes [83].
Furthermore, the Gaussian Process Regression surrogates for nonlinear gyrokinetic turbulence
codes were used to predict kinetic profiles for new potential magnetic confinement devices
via a Bayesian Optimisation targeting flux matching [84]. In the area of MHD, the Artificial
Neural Network (ANN) surrogates were utilised to infer equilibria for a stellarator [85].

One of the examples resolves the properties of active materials utilising the simulations
down to the molecular scales and dynamically constructing surrogates to resolve energetic
QoI at the microscopic scales [86]. The problem of a dynamical update of a surrogate and
interaction of its inferred results with high-fidelity simulations during time-integration is
approached in the work suggesting an online neural network surrogate learning to reduce
instabilities in climate models [87]. Another work approaches the issue of the data amounts
produced by high-fidelity fluid simulations and the capturing of the correct information
required by an effective surrogate from this data via reduced spectral models [88].

2.5.2. Machine Learning Aspects

Since the surrogate method, contrary to Reduced Order Models (ROM) method, assumes a
data-driven approach, the problem of creation of such a surrogate is usually formulated as a
regression problem, meaning a process of finding a mathematical expression for a particular
dependency given a sample of argument-value pairs describing this dependency.

One of the inherent issues for the regression algorithms applied for non-linear dependencies
is a poor ability to extrapolate. In a probabilistic context, it is often defined as an issue of a
distribution shift between the PDF of data used to train a regression model and the one PDF of
the new data to which a regression model is applied. Due to such an issue, one of the critical
diagnostics of the applicability of any surrogate model is to check whether it is used in its
interpolation regime. In ML, this is also known as Out-of-Distribution (OOD) Detection [89].

For this, in this work, we applied a wide range of checks on whether data for which a
surrogate model infers certain QoI adhere to the training sample density and whether the
surrogate is well applicable for it.

One such check uses explicit knowledge of the training sample distribution for every new
input value. The other check utilises the properties of a Gaussian Process Regression model
to have high posterior prediction uncertainties for data far away from the training sample.

Producing a review of the vast successes and advances of Machine Learning is a highly
challenging task, even if one is up to limiting oneself to the areas of physics and computational
sciences. A recent overview of Machine Learning applications in nuclear fusion research
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mentions various applications of ML both for processing experimental data and for decreasing
the computational cost of fusion plasma modelling, as well as the usage of ML models in
operating fusion devices [90].

2.6. Gaussian Process Regression

One of the classes of regression models widely used in Bayesian statistics and related methods
applied to various fields of engineering and science is Gaussian Process Regression (GPR). It is
also known as Kriging after one of the first applied uses by Krige [91].

2.6.1. GPR Theory

This method is non-parametric, which here means that its functioning, hence inference,
depends on an entire data sample of some observable dependencies. In the context of
applying such a regression model, such a data sample would consist of pairs of numerical
model input parameters, usually forming a vector of real numbers and corresponding values
of the solution QoI, also forming a vector of real numbers [20].

Covariance Matrix and Kernels

The main ingredient of the regression model is the covariance matrix K describing how the
outcomes are correlated with respect to change in the input variables. Besides the dataset
of input values, the covariance matrix is defined by the covariance structure in the input
parametric space, usually characterised by the covariance function k(·, ·) defined for all pairs of
values in the input space.

Covariance functions, also known as kernels, also encode information on the function that is
being modelled. The kernel is chosen to be a symmetric positive semi-definite (s.p.s.d.) function∫

k(x, x′) f (x) f (x′)dµ(x)dµ(x′) ≥ 0, ∀ f ∈ L2(χ, µ).
By Mercer’s theorem, the s.p.s.d kernel can be represented as an eigendecomposition of

form k(x, x′) = ∑∞
i=1 λiφi(x)φ∗i (x′) where λi are the eigenvalues and φi(x) are normalised

eigenfunctions [92]. Such a representation builds a correspondence between the representation
of the process in a high (infinitely) dimensional feature space and the representation in terms
of covariance function, which is known as kernel trick and allows for efficient computation of
kernel values.

In the majority of cases, the random process describing the sought dependency is assumed
to be stationary, hence depending only on the metrics in the input parameter space k(xi, xj) =

k(||xi − xj||) = k(r).
Bochner’s theorem allows expressing a stationary kernel as a function of distance via its

eigendecomposition k(x, x′) = k(x − x′) = k(τ) =
∫

RD e−i2π〈s,τ〉dµ(s) for a finite positive
measure µ [93]. This is analogous to the Fourier decomposition of the measure in terms of
kernels.
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One of the most commonly used kernels is Squared Exponential (SE):

kSE(xi, xj) = σ exp

(
−1

2
|xi − xj|2

λ

)
(2.8)

also known as Radial Basis Function (RBF) or Gaussian kernel.
The other widely applied covariance functions belong to the Matérn class, expressed by

kMatern
ν (r) =

21−ν

Γ(ν)

(√
2νr
λ

)ν

Kν

(√
2νr
λ

)
(2.9)

where Kν is a modified Bessel function. This covariance function has an additional degrees-of-
freedom parameter ν which in infinity limit would give SE kernel limν→∞ kMatern

ν (r) = e−r2/λ2
.

This expression could be simplified for half-integer values ν = p+ 1
2 and in this work, in some

cases, a rough and quickly changing Mateŕn-3/2 kernel k(r) = σ2
(

1 +
√

3 r
l

)
exp

(
−
√

3 r
l

)
was used.

In principle, one can generate new kernels as linear and multiplicative combinations of
existing kernels, as operations of addition and multiplication do not break symmetricity and
positive semi-definiteness.

The choice of the kernel to describe a Gaussian Process corresponds to a choice of a basis
for a reproducible kernel Hilbert space (RKHS) defining the class of functions that the process
can approximate. This correspondence allows us to interpret a choice of a kernel for GPR
as a choice of prior over the functional space and the training with new observable data as
Bayesian update of the posterior over the functions in the selected RKHS [20].

The covariance matrix of a stationary process given its covariance function would be simply
defined as having elements equal to the value of the covariance function for every pair of
observations K =

(
k(xi, xj)

)
i,j=1..N ∈ RN×N .

Such a covariance function should have ones on the main diagonal due to the limitations
of kernel functions in having a unit value for zero argument, meaning that observations
with zero distance apart are equivalent and perfectly correlated. Being constructed out of
values of s.p.s.d functions, the covariance matrix is also positive semi-definite xKx> ≥ 0, ∀x ∈
Rn. Often, one would like to consider the noise of the observations or, in the context of
uncertainties in mathematical models, an aleatoric irreducible uncertainty of certain QoI. In
this situation, one would add a diagonal matrix with σn free parameter of noise intensity to
the covariance matrix Ky = K + σ2

n I to capture such a noise.
Given the covariance function, the inference of the model, the posterior probability for the

values of the process for an arbitrary new observable is Normal, with the following mean
and variance expressions

p( f (x∗)|X, y, x∗) ∼ N (µ(x∗), σ2(x∗))
µ(x∗) = K(x∗, X)>

(
K(X, X) + σ2

n(I)
)−1yyy

σ2(x∗) = K(x∗, x∗)− K(x∗, X)>
(
K(X, X) + σ2

n(I)
)−1K(x∗, X)

(2.10)
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The particular choice of the kernel to describe the dependency is generally a complicated
question, and the kernel type is usually treated as a categorical hyperparameter during the
model fitting.

Model Fitting

In principle, once we express the inverse of the covariance matrix, the inference process is
based on matrix-vector multiplication. It has ∼ O(N3) complexity, where N is the sample
size describing the Gaussian Process. For a given regression model, one would usually
express the inverse of the covariance matrix via Cholesky decomposition K = LL>, which is
of O(N3) complexity with the size of the matrix [20]. In numerical linear algebra, it is one
of the most convenient methods to solve systems of linear equations for symmetric positive
definite matrices, like a covariance matrix, via the decomposition of a matrix into a product
of two lower-triangular matrices, which can be efficiently done with direct methods. For
large covariance matrices describing large samples of data, the computational cost of the
decomposition could be reduced by a multitude of methods. For example, by utilising the
fact that covariance is a quickly decaying function and by applying a cut-off, a covariance
matrix can be transformed into a block or a band matrix [20].

In order to perform the regression, one would like to find such parameters θθθ of the
covariance matrix, hence the covariance function, which would lead to the best explanation of
the observed training data sample. These parameters may include all the free parameters of
the compound kernel, like its lengthscale λ and amplitude σf , as well as the noise level σn.
In practice, there are several ways to do it. In this work, we employ the Maximum Likelihood
Estimation (MLE) method of Bayesian model selection, meaning that we find parameter values
that would maximise the regression model’s likelihood of explaining the data. For a GPR
model with Normal prior, that would mean that we would like to optimise log p(yyy|X, θθθ) =

− 1
2yyy>K−1

y yyy− 1
2 log |Ky| − n

2 log 2π.
This optimisation is usually performed via some gradient-based method like LBFGS where

the computation of the derivative ∂
∂θj

log p(yyy|X, θθθ) = 1
2 tr
(
(K−1yyyyyy>K−1> − K−1) ∂K

∂θj

)
takes

O(N2) operations in sample size.
Furthermore, other methods may imply that the parameter θθθ itself is a random variable,

and we would like to optimise the Marginal Likelihood over the entire p(θθθ). Such a fully
Bayesian approach for model parameter selection requires integration over complex intractable
functions, typically done numerically with an MCMC approach.

2.6.2. Modifications

The general concept behind GPR is not limited to the processes with particular Gaussian
likelihood. A similar approach could be applied to model data as realisations of different
stochastic processes.

This work included several tests on regression for Student-t processes. Student-t distribution
has a degree-of-freedom parameter ν, which would yield a Normal distribution in infinity
limit limν→∞ ST P(µ(x), k(x, x′), ν) = GP(µ(x), k(x, x′)). The update of GPR to Student-t
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processes requires a change of likelihood in the fitting and modifying covariance matrix
update expression to accommodate additional DoFs [94]. The application of Student-t
processes allows for accommodating heavier tails of data distribution and makes the regression
significantly more robust to outliers [95, 96].

2.6.3. Literature Review

The GPR is a type of model widely used for statistical regression and as a surrogate for
expensive models in science and engineering. The last decades have led to many areas where
it is applied and many methods to improve the regression and adapt to particular situations.

Being a stationary process, it is difficult for a GPR to model a parametric dependency
of noise, i.e., to model heteroscedastic process. A number of methods allow for GPR het-
eroscedasticity, including a replication approach using multiple outputs for a single input
value [97].

One of the ideas that increases the efficiency of GPR is adding information on the derivatives
of the dependency into the training data and process, which allows having a data-based
surrogate for PDE solvers in an efficient way [98, 99].

GPR, as a non-parametric method, is equal to a Bayesian Neural Network (BNN) in the limit
of an infinitely large layer. The combination of ideas of composition of GPRs and matching
kernels to activation functions lead to the method of Deep Gaussian Processes [100].

Furthermore, in fusion research, GPR is used for a variety of purposes, including modelling
and regressing over experimental measurements of tokamak profiles [101].

2.7. Artificial Neural Networks

The other type of Machine Learning model employed in this work was Artificial Neural Network
(ANN). The core idea of this type of model is that a particular dependency is described as
a composition of a number of parametrised multivariate functions, often nonlinear y =

fn ◦ · · · ◦ f1(x). Each elementary transformation fi(·) is called a layer, having n of those in the
aforementioned expression. It usually works as a combination of matrix multiplication and a
non-linear transformation fi(x) = NLi(Wi · x + bi) where W is a matrix of free parameters
called weights, b is intercept or bias allowing for dependencies not-aligned with the origin, and
NL is non-linear activation function, e.g., a ReLU function.

For complex high-dimensional dependencies, one should use a large number of layers.
Model of such type is called a Deep Neural Network (DNN) and the respective field is called
Deep Learning (DL).

The particular set of parameter values needed to express the dependency is found through
optimisation of a certain loss or risk function θ∗ = argmin L(X, y, θ) that usually expresses
how well the model captures the studied dependency given a sample of arguments and
values of this dependency, known as the training data set. In the case of regression, it can be
an L2 norm of the error with respect to the training data sample, and for the classification
task, it can be a cross-entropy measure. Such an optimisation procedure is enabled via
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the backpropagation of the loss gradients ∇θ L with respect to the model parameters and
implemented via automatic differentiation. From the optimisation theory point of view, the
search of optimal parameter values is performed via gradient descent-based methods, like
the popular ADAM algorithm [102], which employs multiple features due to several common
issues inherent to the usual form of the loss function in ML, like its high dimensionality, non-
convexity, and poor regularity, including the presence of multiple local optima. These features
helping with the optimisation procedure include stochastisation, i.e., using a subsample for
performing an optimisation (to speed up high-dimensional search), regularisation of the loss
function (like a family additive Tikhonov regularisation, which targets better generalisation
properties of the model), Nesterov moment based algorithm (to avoid local extrema).

2.7.1. Literature Review

Machine Learning is a field that gets particular traction in all areas of science, not excluding
fusion research. Being the most widely used ML model for classification, regression, and
sampling (generation), they were studied as a methodology in depth in multiple reviews,
including ones in [103, 22, 90]. An example of classification is using experimental data from
various fusion devices to define whether a particular experiment will experience a disruption
or to define confinement types [104, 105, 106].

Physics Informed Neural Networks (PINNs), an architecture of ANNs that gained a particular
traction as a surrogate for a surrogate of physical systems. Their base idea is to utilise the
structure of the PDE structure to solve, as well as the information on the gradient values of the
employed differential operators and the initial and boundary conditions applied, to explicitly
formulate residual loss so that ANN training can solve the PDE [107]. This architecture was
applied for multiple problems of fusion research, for example, for calculating heat fluxes on
the device wall [108].

Furthermore, physics-aware ANN models were applied to predictor-corrector numeri-
cal schemes to upscale simulation of plasma fluid Hasegawa-Wakatani turbulence simula-
tions [109], as well as to direct numerical simulations of NS fluid turbulence [110]. A vast
amount of plasma turbulence simulations data were utilised to create fast ANN surrogates
for turbulent transport inference [111].

2.8. Active Learning

Since one of the critical aspects of creating and applying a Machine Learning model or any
type of data-based regression or classification model is data that is used for creating and
training such a model, fields or applications without an abundance of pre-existing data have
to find workarounds for the lack of data. In particular, this applies to the areas where data
samples have to be gathered from scratch, and acquisition of such new data is especially
costly and associated with performing costly real-life or experimental measurements or, in
more theoretical fields, performing computationally expensive simulations to solve particular
mathematical equations for a specific model. Often, in such situations, one would like to
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apply one of the AL approaches, where information about the performance of the model
using existent data is utilised to define how to acquire new data, for example, what are the
important or interesting independent variables values of experiment or simulations for which
we would like to know some QoI values [112]. These methods are often implemented in the
venue of the sequential design of experiments, and one of the approaches how to design a
particular sequential sampling scheme is to apply Bayesian Optimisation algorithms.

2.8.1. Bayesian Optimisation

Bayesian Optimisation (BO) usually deals with optimisation of a specific function f (x) over
support X under uncertainty, which is specified in terms of a conditional PDF p f (x) defined
for function values over the studied domain or parametrisation of this PDF. This conditional
PDF could be understood as a likelihood for functional values given a certain observed value
of a function argument. One of the straightforward approaches is to assume this likelihood to
be Normal. In such a case, this likelihood could be provided by a Gaussian Process Regression
performed for a finite sample of pairs of dependent and independent variables.

Given such a likelihood model, BO algorithms leverage the additional information to find
the extrema of a function by performing optimisation on a proxy function, helping to define
new points in the support, called acquisition function.

BO is a class of gradient-free methods requiring only a finite sample of function evaluations
and a regression model over it, with a gradient defined by this regression model. Every next
iteration of the optimisation procedure assumes one or more function evaluations, which
could be added to the existing pairs sample and followed by an update of the regression
model to include new data.

A result of a GPR surrogate training for a noisy GEM0 model, introduced in the later
chapter 3.4, as a univariate function for a visual demonstration is shown in figure 2.6.

Here we used the global variance as the acquisition function facq(xxx) = Vy(xxx) which here,
without any additional information about the target function, yields a uniform coverage of
parameter space and reduces a compound error over its chosen region of interest [113].

2.8.2. Literature Review

The field of BO applied to Active Learning of surrogates for computationally expensive
surrogates reached significant successes in various fields in recent years. One of the first
works on AL for data-based models was performed to minimise the variances of the neural
networks [114]. One of the works suggests domain-adaptive GPR for CFD problem [115]. The
studies on different types of acquisition functions for BO were also performed [113].

In the area of fusion research, the BO using GPR was applied to a number of problems,
including predicting kinetic profiles consistent with turbulent transport [116], modelling
and calibrating parameters for runaway electron simulations [117], and for inertial fusion
confinement research [118]. Another case on the intersection of plasma and molecular
dynamics applies an ensemble of ANNs instead of GPRs to produce predictions of transport
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Figure 2.6.: A result of AL for a GEM0 GPR surrogate model via BO using maximum variance
as an acquisition function. The learning is performed in aO(10) number iterations
for a univariate dependency of ion heat flux on ion temperature surrogate. The
larger green markers indicate newer function evaluations and the darker shaded
area indicates the reducing (epistemic) uncertainty of the surrogate model.

coefficients with uncertainties, actively learn ANN surrogates, and use them for multiscale
modelling [119].

2.9. Software and HPC Aspects

All the elements described in this work required the implementation of computational proce-
dures to analyse uncertainties, including running and managing multiple (101−3) instances of
simulations using High-Performance-Computing (HPC) machines.
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2.9.1. HPC

Most of the presented work was done using Cobra, a supercomputer of Max-Planck Comput-
ing and Data Facility (MPCDF) [120].

MPCDF Cobra

Operational from the spring of 2018, Cobra is a supercomputer managed by MPCDF and
equipped with 136, 960 CPU cores. The CPU partition is organised into nodes, each consisting
of two Intel Xeon Gold 6148 processors of 20 2.4 GHz cores of the Skylake family. The nodes
are connected with 100 Gb/s OmniPath interconnect and are organised into islands, 636
nodes each, which is the limitation for a single batch job submission. The supercomputer
manages the jobs submitted by users with SLURM workload manager [121].

2.9.2. Pilot Job Mechanism

Multi-query problems, like uncertainty quantification and multi-component computational
workflows, require the execution of multiple jobs that can be highly inhomogeneous in
their dependencies and resource requirements. Conventional workload managers are mostly
designed to operate with large jobs or groups of highly similar jobs, using resources in a
homogeneous way. The need to deal with the inhomogeneity led to the rise of elements of
High-Throughput-Computing (HTC) in the domain of HPC. One such hybrid approach to deal
with parallel computational jobs, used for most of the workflows presented in this work, is pilot
job mechanism. It provides a program abstraction and the related middleware implementation
to redistribute resources among multiple jobs of various types from what a supercomputer
considers a single large job submission. In this work, we use QCG-PilotJob [122] for such a
mechanism to run the Multiscale Fusion Workflow (MFW), introduced in the later chapter 3,
which solves the physical problem, to manage multiple code instances while propagating
uncertainties, and to manage various surrogate instances during their hyperparameter tuning.

2.10. Chapter Summary

This chapter presented an algorithm to measure aleatoric uncertainties if time traces of
fluctuating quantities in solutions of computational models that allow regulation of the
simulation duration and accuracy of statistical estimates, as well as the underlying theory. It
gave an overview of methods for parametric uncertainty propagation, namely Polynomial
Chaos Expansion, Stochastic Collocation, and Monte Carlo integration. Furthermore, it
discusses the surrogate approach to solving problems requiring large numbers of simulations,
focusing on Gaussian Process Regression as a surrogate model of choice and its Active
Learning method. Finally, it describes some aspects of applied computer science of the
presented algorithms.
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To study the effects of turbulent processes happening on the scales of microseconds in time
and millimeters in space on the temperature and density profiles of a nuclear fusion device
across the confinement scales of meters and seconds, we solve non-stationary transport
equations inferring its anomalous transport properties from solving local gyrofluid equations.

Transport  
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Equilibrium 

Code

Fluxes to 

Coeffic ients

Sources

Experiment

Core 

Profiles

Transport  

coeffic ients

Source 
profiles

Validat ion

Equilibrium
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Figure 3.1.: A schematic view of Multiscale Fusion Workflow. The rectangles denote codes,
each solving a system of equations, and the arrows denote the information
exchange on partial solutions. The red denotes the flow of information about core
profiles, the green is for MHD equilibrium, and the blue is for turbulence. Some
workflow parameters, such as power and particle sources, must be specified from
external information. One of the usage scenarios is model validation against the
experimental data.

The software implementation of a solution for such a system of equations used in this
work is the Multiscale Fusion Workflow (MFW) [123, 124, 23]. It consists of three main models,
each implemented as a separate computer code, independently solving its subset of studied
equations. Each code serves as an independent component, being a black box to others but
capable of exchanging information on the partial solution with other components.

The codes, as shown in figure 3.1, are the equilibrium code that describes plasma geometry,
the transport code that evolves the transport profiles, and the turbulence code that is able to
compute effective transport fluxes.
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Each code reads and writes information about external and computed physical quantities
into a standardised data structure called Consistent Physical Objects (CPOs) [125]. These data
structures consist of a hierarchy of dictionaries, each containing scalar 0D quantities values
or 1D or 2D arrays for spatially resolved quantities. Several types of CPO data structures are
employed in this work, each explaining its aspect of a plasma state or plasma evolution. In this
work, we use coreprof CPOs for a description of plasma core kinetic profiles, equilibrium
CPOs to describe MHD equilibrium quantities and magnetic field geometry, and coretransp
CPOs to represent transport properties, including fluxes and transport coefficients. Each CPO
object can be stored as a separate ascii file and serve as an input for a standalone code or as
a unit of data exchange between workflow components in binary format.

The codes exchange information in the form of CPOs in a point-to-point fashion using the
MUSCLE3 coupling library [28]. To manage computational resources required by heteroge-
neous code, this library uses QCG-PilotJob middleware [122].

During the work, the workflow implementation was updated from version using MUS-
CLE2 [24] to MUSCLE3 library, which allowed reducing dependencies on an additional level
of wrapping implemented in Ruby language and allowed the introduction of new features.

Such a modular workflow implementation allows for easy choice of different transport
parametrisation, meaning here: models for computing anomalous turbulent transport coeffi-
cients and implementations of their solvers.

3.1. Multiscale Fusion Workflow Components

In this section, we will give an overview of the main components of the Multiscale Fusion
Workflow that allow for a self-consistent solution of the non-stationary heat and particle
transport equation considering turbulent anomalous transport properties.

3.1.1. Transport Code: ETS

From the point of view of the largest scale, and the point of view of integrating information
from different sources, the main component of the workflow is the transport code. This work
uses the European Transport Solver (ETS) [126, 26] as the transport model. This code uses
mean field approximation of 3D conservation laws and solves 1D equations for quantities as
functions of time and a monotonic radial coordinate describing distance from the core axis of a
toroidal magnetic device. As such a radial coordinate, this work uses ρnorm

tor = ρtor/ max (ρtor)

where, ρtor =
√

φ
πB0

is a function of toroidal magnetic flux φ and axial magnetic field B0. For
this coordinate, we can transform the volume V enclosed by a flux surface on this radial
coordinate.

The exemplary mean filed heat conservation equation governing the change of ion tem-
perature over time and radius are similar to those in ASTRA [27] and has the form of:

3
2

(
∂

∂t
− Ḃ0

2B0
· ∂

∂ρ
ρ

)
(niTiV ′

5
3 ) + V ′

2
3

∂

∂ρ
(qi + Tiγi) = V ′

5
3

[
Sexp

i − Simp
i · Ti + Qie + Qγi

]
(3.1)
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where ∂
∂t is time derivative, Ḃ0

2B0
· ∂

∂ρ ρ is adiabatic compression term, V ′ is volume derivative,

qi is ion heat flux, Sexp
i and Simp

i are explicit and implicit heat sources, and Qie and Qγi are
exchange terms [127]. The explicit terms should be provided by the external description of
sources.

Furthermore, the conversion from magnetic flux surface average quantities into SI quantities
is needed. This requires using elements of the metric tensor to convert values into units
of meters, meaning that here we need only the diagonal elements gρρ representing spatial
scaling. The scaling metric element factor

√
gρρ here is computed via the framework of the

equilibrium code described in the following subsection 3.1.2.
In this work, for the purpose of having a smaller effective problem dimensionality and in

order to analyse key concepts, we mainly focus on the heat transport inside the core of a
tokamak.

In general, information that is sufficient to describe transport is averaged over time and
integrated over flux surface fluctuation-based transport flux, mainly considering particle
flux for different species (here we consider only deuterium ions and electrons) Γi, Γe and
associated with them heat flux Qi, Qe.

However, since the transport code solves the equations using the effective diffusivity D
and convection velocity vconv, calculation of these transport coefficients and splitting the flux
values into the respective diffusive and convective terms is a necessary step. The presence of
different transport channels, however, introduces an additional degree of freedom into the
model and requires some analytical and practical considerations on how to resolve it. Here,
we use an auxiliary code IMP4DV to recompute D and v based on the given heat fluxes [128].

A transport simulation is performed on a characteristic time scale of energy confinement
time, for AUG considered τconf ≈ 0.3s. A single time step of kinetic profile evolution is set
to ∆tETS = ∆tMFW = 10−3s. However, the ETS time step can adapt by reacting to changes in
time derivatives of kinetic profiles and their spatial gradients so that turbulence can adapt
to those changes [129]. This approach halves the next time step size if on the current step
profiles and the gradients change more than a prescribed limit:∣∣∣Te,i(t− ∆t)− Te,i(t)

Te,i(t− ∆t)

∣∣∣ > ∆Tlim
e,i∣∣∣ ∂ρTe,i(t− ∆t)− ∂ρTe,i(t)

|∂ρTe,i(t− ∆t)|+ Te,i(t−∆t)
a

∣∣∣ > ∆∂ρTlim
e,i

(3.2)

3.1.2. Equilibrium Code: CHEASE

In order to solve the transport equations for a plasma in a toroidal magnetic field, one should
know the particular geometry of the equilibrium magnetic field. By equilibrium, we mean the
situation when the forces described by the model of plasma describing MHD are in balance,
namely, the plasma pressure p is balanced by Lorenz forces of the current JJJ induced by the
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magnetic field BBB. The MHD equations describe these quantities:

JJJ × BBB = ∇p
∇× BBB = JJJ
∇ · BBB = 0

(3.3)

where BBB is magnetic field, JJJ is current density and p is plasma pressure. The magnetic field is
usually described as BBB = T∇φ +∇φ×∇Ψ in terms of its flux function Ψ.

Usually, the system is casted into the non-linear second-order elliptic Grad-Shafranov
equation:

∇ · 1
R2∇Ψ =

jφ
R

= −p′(Ψ)− 1
R2 TT′(Ψ) (3.4)

The code we use to solve this system of equations is fixed-boundary equilibrium code
CHEASE[130]. We prescribe the boundary of the closed-flux-surface region of plasma ∂Ω
where magnetic flux is zero Ψ|∂Ω = 0.

When dealing with axisymmetric tokamak plasma, the primary description of equilibrium
is done in terms of the 2D distribution of quantities across a poloidal cross-section of a plasma.
Describing level sets of particular quantities is done discretely by employing bicubic Hermite
finite elements.

The quantities that are interesting in the context of the transport equation include the
safety factor or inverse rotational transform q(ρ) describing the ratio of toroidal to poloidal
windings of the magnetic field around the torus. Also, its derivative quantity, the magnetic
shear ŝ = d log q

d log ρ plays a role. Moreover, the information of the magnetic flux defines the
geometry of the coordinate system used for the turbulence and transport computation,
including the computation of ρtor. The metric tensor, which gm3(ρ) component, describes the
scaling of the magnetic-field-aligned radial coordinate with respect to the lab system and is
the most important for the radial transport description. Finally, some global scalar magnetic
quantities are important, like the ratio of hydrodynamic plasma and magnetic pressures β.

3.1.3. Turbulence Code: GEM

The transport processes simulated with the workflow are governed by the effective transport
coefficients as a function of the plasma state, defined by average effective radial outward
heat and particle fluxes across the magnetic flux surface. Since the highest contribution
to overall transport processes is attributed to anomalous turbulent transport, in order to
compute transport fluxes, we use a code that solves equations that capture turbulence. This
work uses the gyrofluid electromagnetic nonlinear 3D code GEM [131, 132].

This code uses the gyrokinetic theory of plasma to derive equations described in terms of a
finite number of moments of a distribution function in particle phase space. In the particular
model of the code, six moments are used to describe the distribution function of a toroidal
plasma.

Here, the analytical reduction of kinetic theory to gyrokinetic theory is followed by the
expression of the velocity-space components in terms of integral (over velocity space) quan-
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tities. The kinetic theory assumes that 6 degrees of freedom, namely a spacial coordinate
vector xxx ∈ R3 in some coordinate system and its velocity vector vvv ∈ R3, fully describes a
particle state. Conversely, a system of N particles is described via its distribution function
f (xxx, vvv) : R6 → [0, 1] describing a probability density of particles over the particle phase space,
or in other interpretation a fraction of particles being in an infinitesimal dxxx × dvvv volume
of phase space. The phase space of states of the kinetic system, thus, is a Hilbert space
L1(R6, λ, [0, 1]) of unit-integrable functions weighted with a natural Lebesgue measure with a
valid symbolic substitution dλ(x)→ ∏i dxi:

∫
R6 ( f (x))1dλ(x) =

∫
R3

∫
R3 f (xxx, vvv)dxxxdvvv = 1. The

gyrokinetic approach allows for the reduction of the velocity part of the particle phase space
to a dimensionality of 2, utilising the fact that the fastest particle motion scale is gyration
around magnetic field lines. For example, using gyro-averaging operators brings the equation
towards the description of the motion of gyrating discs and their respective centres, and a
change of coordinates leads to an effective 2D particle velocity phase space [13]. The next
step is describing the velocity space distribution with a finite number of moments, meaning
integrals of power functions of quantities employing the distribution function as weight
Mn =

∫
R3 vvvn f (xxx, vvv)dxxxdvvv. One might also see this approach in a dual manner as describing

the distribution function f in terms of projections on a finite polynomial basis {vvvn}. This
description is called a fluid model and describes systems in the vicinity of an equilibrium
distribution function. Here, the code is implementing a six-moment fluid model, using the
first moments of the distribution function, namely number density ne,i, moment density ne,iuuu,
and temperatures Te,i, conductive heat flux qe,i.

In this workflow, we use the flux tube approximation of the code, where all the processes
are defined for the vicinity of a particular magnetic field line winding around the torus and
described with a small interval of poloidal coordinate values. Such a flux tube is considered a
line object with respect to transport scales. The flux tube description also assumes periodicity
at the poloidal and toroidal angles. This model includes the gradient drive terms explicitly
and considers locally linear temperature and density profiles with constant gradients, defined
as n(ρ) = −|L⊥∇ρ ln n| · ρ and T(ρ) = −|L⊥∇ρ ln T| · ρ. As one of the first steps to start
turbulence computations for transport, we define the flux tube locations spanning the entire
minor radius of the device to interpolate well the transport properties for the whole plasma.
In this work, we simulate AUG tokamak for which we choose 8 flux tubes at different radial
locations of plasma. For the AUG plasma, we are using the location of flux tubes defined by
ρnorm

tor, fluxtube =
( n+0.5

N

)0.7.
All the properties defined by the transport code on its more finely-resolved radial grid shall

be interpolated onto the transport grid of flux tube locations, which we perform using 3rd

order Lagrange polynomials in a fashion similar to the stochastic collocation method and
formula 2.3.2 while using core profile radial grid points as collocation points.

The internal GEM time step is computed using profile perpendicular length scale L⊥ and
speed of sound cs as ∆tGEM = 2 · 10−3L⊥/cs. This definition makes turbulence simulation
time step vary when the profiles are updated by a transport code.

The last part of the turbulence simulation we are interested in is the computation of
the effective radial fluxes. In order to capture the effective mean level of flux value, we
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reduce the influence of the fluctuation of this integral quantity in time via exponential
averaging 〈Q(t + ∆t)〉 = (1 − α)〈Q(t)〉 + αQ(t + ∆t), or in continuous version 〈Q(t)〉 =∫ t
−∞ αe−α(t−t′)Q(t′)dt′, leaving a low coefficient of forgetting at the level of α = 1/200. This

allows to smooth the fluctuations of the flux values on the finest internal time scale of the
turbulence simulation.

Regarding the parallelisation scaling properties, the local flux tube version of the code
scales well up to 1024 cores for 8 flux tubes, requiring time of order 30s to compute 50∆tGEM.
In this work, we used 32 cores dedicated to a single flux tube simulation, which fits on a
single node of all major contemporary HPC systems and leverages fast intra-node memory
communication.

Turbulence is a highly nonlinear process, and, to some degree, it could be decomposed on
different scales, and while exposing highly nonlinear local behaviour with time on a small
spatial scale, the dependency of its averaged integral QoIs, like heat flux, on independent
parameters like free energy is more regular.

This model captures the ITG turbulence, often dominant in transport for tokamak core
plasma. This consideration led to particular attention to the code sensitivity towards ion
temperature gradient ∇Ti, which is the main drive for this type of turbulence.

3.2. Formalism for Multiscale Components

This understanding of scale separation allows such system splitting and treating turbulence as
a slow-changing quasi-stationary process and turbulent transport model as a map qqq : S→ Q

between independent global parameters, for instance temperature gradients ∇Ti,∇Te, or
more generally some global plasma state sss ∈ S, which in this work is described via core
kinetic profiles (a set of functions of radial coordinate) and magnetic equilibrium, and possible
values of transport, in this work primarily described as average turbulent heat flux values
from Q, but more generally a set of different transport coefficients. The consideration of scale
separation and the multi-component approach to multiscale problems was discussed in an
earlier section 2.1. Furthermore, this allows for a distinction between notions of aleatoric
and epistemic uncertainties, where the former describes fluctuations around some uncertain
effective value of transport flux qqq ∼ pal(qqq)|sss for a fixed plasma state sss and the latter describes
the variation of the transport flux values qqq ∼ pep(qqq) = pep(qqq(sss)) due to a finite (probabilistic)
perturbation of the plasma state sss ∼ p(sss) itself.

With the given notation, the equilibrium code implements a mapping EQUIL : Sc.p. → Seq

of core profile properties of a plasma state sssc.p ∈ Sc.p. to a self-consistent equilibrium part
of the plasma state Seq 3 ssseq = EQUIL(sssc.p), describing quantities like the inverse rotational
transform q(ρ). The transport code, respectively, evolves the core profile component, including
temperature profiles Te,i(ρ) and their gradients ∇Te,i(ρ), of a plasma state sssc.p(t) with time for
a given time step ∆t of time integration of the ODE solver for a given fixed magnetic equilib-
rium ssseq and for a given transport coefficients or transport flux parametrisation qqq(sss), shortened
to TRANSP : Sc.p.×Seq×Q× T → Sc.p. and sssc.p(t+∆t) = TRANSP (sssc.p(t), ssseq, qqq(sss), ∆t). The
transport parametrisation, the main object of the study, is implemented via plasma turbulence

45



3. Computational Model

code TURB : Sc.p. × Seq → Q, capable of computing average transport fluxes, like radial heat
flux Qe,i(ρ) and respective effective transport coefficients, like diffusivity D and convection
velocity vconv for a given quasi-stationary magnetic equilibrium ssseq and core profiles sssc.p.,
expressing that as qqq(sss) = TURB(sssc.p, ssseq).

Furthermore, having introduced these elements, we can speak of a total plasma evolution
operator describing the working of our computational workflow WF∆t(sss) acting as an endo-
morphism on the space of plasma states WF∆t: S→ S and describing the change of plasma
state sss(t + ∆t) = WF∆t(sss(t)) in a time of ∆t. We define this operator as a composition of our
three mappings

WF∆t(sss) = 〈TRANSP (sssc.p, EQUIL(sssc.p), TURB(sssc.p, EQUIL(sssc.p)), ∆t) , EQUIL(sssc.p)〉 (3.5)

with a natural computational re-utilisation of equilibrium operator result and a notational
shortening to WF(·) for future usage convenience.

3.3. MFW Parameters

The presented coupled system requires a number of parameters to close the system and make
it solvable. These parameters define a case for which the model has to be solved, and, from the
system’s point of view, they must be provided as a piece of external information. This could
be done via further coupling with other physical models or via a choice of parametrisation by
a user for a particular study.

As for most PDE systems, these parameters include the right-hand side of the equation
(RHS), the boundary conditions (BC), and the initial condition (IC). Here, the RHS is defined
by the sources and sinks of energy and particles for a particular plasma. In general, sources
have to be defined by the physical model for plasma heating and injection systems and sinks
via a model of exhaust through the plasma’s edge, its scrape-off layer, and tokamak wall and
divertor processes [12]. Here, however, we model sources as a beam of heat and particles with
a Gaussian radial profile, which is parametrised by three scalars: its position H0, width Hw

and total injected heat Qtot
e,i . For the radially outer part of the plasma, the BC is considered to

be of Dirichlet type with a prescribed ion and heat temperature TBC
e , TBC

i at ρnorm
tor = 1. Given

that the model assumes that the plasma transport adapts self-consistently to the injected
power, the model is not expected to be sensitive to the initial conditions. However, those
have to be specified in terms of particular radial profiles of temperatures TIC

e,i (ρ) and densities
nIC

e,i (ρ), as well as an equilibrium magnetic field. These are taken from a particular AUG
discharge. Here, for most of the cases, we use standard H-mode discharge #28906. With
this description, the small number of scalar physical quantities that define the temperature
evolution of a discharge is required to specify the macro-model nM = 6.

Furthermore, a number of numerical parameters have to be specified. Most importantly, one
has to define the total duration of the simulation. For the given discharge, it has to be taken at
least of the order of confinement time, which is τE ≈ 0.3s. For fluctuating profiles, one might
need to gather sufficient statistics in time, requiring several seconds of simulation duration.
Furthermore, one should define the transport time step ∆t, which would be sufficient to
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capture the characteristic time derivatives and rate of change for the evolution of plasma
profiles. In the general case, the time step has to adapt to the time derivatives of profiles and
their gradients, which was implemented into ETS and MFW via time bridging technique [129].
Finally, one needs to specify the resolution of the configurational domain, both a global radial
domain for transport scales and a local domain for turbulence simulations. Here, we use 100
points to resolve the radial coordinate ρnorm

tor , the normalised toroidal magnetic flux.

3.3.1. Plasma State and Dimensionality Reduction

The introduced notion of plasma state, while being quite abstract, has a concrete meaning for
the implementation of the computational workflow. Here, the plasma state is defined by a
finite vector in Rd where d is defined by the core profile and equilibrium radially-distributed
quantities like temperature for two species Te,i, their gradients ∇Te,i, and rotational transform
q. Each of these quantities is resolved at a finite number of radial points. In practice, it means
storing parameter values in suitable data structures, like CPO, and reading and saving data
in particular types of files.

However, in general case, one could define a state of plasma in a number of ways, including
2D and 3D fields. The computational efficiency and even applicability of algorithms for
uncertainty quantification, including algorithms involving surrogates, would depend on the
effective dimensionality of such a plasma state representation, meaning the total number of
scalars or DoFs needed to fully distinguish any two meaningfully different plasma states for
a given model.

In the general case, bridging the physical models, requiring multiple, often O(10d), d > 6
DoFs, and uncertainty capturing methods, should include dimensionality reduction methods.

One of the most widely used methods is Principle Component Analysis (PCA), related to
Singular Value Decomposition (SVD), which allows us to find linear combinations of factors or
input components, explaining the most variance in the data. This method, however, utilises
only linear interaction between independent variables and usually does not account for the
problem for which its results would be used; hence, it does not involve data on QoIs. The
issue of linearity could be solved by utilising encoder-decoder network architecture, including
Variational Autoencoder (VAE), that can find small effective latent spaces describing objects of
high dimensionality very effectively. These models are artificial neural networks that allow for
arbitrary complexity of the data and high levels of non-linear interactions among the degrees
of freedom. On the other hand, the methods based on the Sensitivity Analysis are designed
to explain contributions to the variance of particular QoIs for the problem and are wired to
be used for the solutions of computational problems. Methods that utilise both sensitivity
indices and non-linear encoding, like Deep Active Subspace (DAS) [133, 134], often serve as
effective methods for dimensionality reduction for algorithms that use surrogate models in
various fields of computational science.
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3.4. Workflow Time Integration

The workflow implements time integration of a solution of plasma heat and particle equations.
It starts with setting up the initial core profiles, initial MHD equilibrium, and the heat and
particle sources. Also, the toroidal magnetic field, impurities, and neutrals must be specified.
The latter two are for simplicity and are absent in this work. From the software point of
view, it required reading the corresponding CPO data structures and informing the TRANSP
component to initialise the solution.

On every iteration, the workflow would modify the core plasma kinetic profiles Te,i and ne,i,
resolved on 100 points of the radial grid, according to the time discretisation of the equations,
which changes our macroscopic state of the plasma sssc.p.(t) → sssc.p.(t + ∆t). This is usually
done with a fixed time step size ∆t. However, it can adapt to the derivatives of the profiles
as described in section 3.1.1. This work, however, keeps density profiles constant for the
sake of simplicity. Each step of the iteration, programmatically, starts with receiving the
necessary information in CPO format by a respective component and ends with sending out
the information on the partial solution.

For every iteration, the workflow computes a MHD equilibrium ssseq(t) consistent with
kinetic profiles by the EQUIL component. An iteration substep then starts with the TRANSP
component sending out a signal and a coreprof CPO to the EQUIL code, followed by the run
of CHEASE and sending a final signal and a equilibrium CPO to all other active workflow
components. In practice, the equilibrium changes significantly only during the first few
iterations of the workflow, reaching fast convergence.

Also, on every iteration, the workflow computes the transport coefficient D and v consistent
with core profiles sssc.p. and equilibrium ssseq. This is done first by performing turbulence
simulations, calling the TURB component, computing the radial heat fluxes qqq (and possibly
particle fluxes Γe,i), and then recomputing effective transport coefficients via a “Fluxes-
to-coefficients” component, implemented via IMP4DV utility code in this work D, v =

FLUX2COEFF(Qe, Qi). This step requires deciding on a particular flux splitting between
diffusive and convective components, resolving this additional degree of freedom with
physical considerations. The iteration substep starts with TURB receiving the coreprof and
equilibrium CPOs, followed by a GEM simulation, the most expensive part of the workflow,
sending coretransp to IMP4DV to recompute transport coefficients, and finally sending the
completed version of coretransp to TRANSP workflow component.

For simple turbulence models, the profiles and the transport coefficients change drastically
over a time comparable to confinement time t ∼ τE, equivalent to several tens of transport time
steps nTRANSP

t.st. ∼ O(10) and then reach a slower phase of convergence towards a stationary
plasma state sssst. The convergence corresponds to a self-consistency between profiles and
the transport model, capturing the balance between the power sources and the turbulent
transport via finding a consistent turbulent drive.

A time step ∆t too large could lead to a convergence of the solution towards a steady state
and non-physical oscillations of the system around the equilibrium of fluxes and profiles that
should be treated as numerical artifacts.

In the general case, the profiles dynamically and non-linearly interact with the microscopic
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turbulence, which results in fluctuating behaviour. The high-fidelity turbulence codes are
highly non-linear and sensitive to their external parameters, which could be expressed in
non-trivial conditions for the turbulence onset, turbulence marginality, and complicated
dependency of the effective transport. This naturally leads to more complicated interactions
between profiles and fluxes, resulting in fluctuations. Furthermore, they expose the stochastic
dynamics property in the computation of the effective transport, meaning there will be a
finite perturbation from the equilibrium state on every time iteration. This leads to the
emergence of irreducible uncertainty and the impossibility of finding the exact equilibrium of
plasma state sssst due to the uncertainty in turbulent fluxes. The workflow time integration
reaches a quasi-steady state fluctuating in the vicinity of the attracting equilibrium state sssst.
Given the uncertain nature of turbulence computation, it is required to capture all the related
uncertainties, primarily the uncertainties of the macroscopic plasma state p(sss) and in the
turbulent response p(qqq) to describe the quasi-stationary state of plasma experiencing turbulent
transport.

3.4.1. Workflow Run with Analytical Turbulence Model

As a tool for prototyping and proof-of-principle methodology development, the work was
started by using the GEM0 model. This model estimates the anomalous heat and particle
fluxes for electron and ion species based on GyroBohm scaling

Qi ∼
niT

5
2

e |∇ ln Ti|
a|B0| L⊥

∼ T
3
2

e |∇Ti|
L⊥

Qe ∼
neT

5
2

e |∇ ln Te|
a|B0| L⊥

∼ T
3
2

e |∇Te|
L⊥

(3.6)

where a is a tokamak minor radius, B0 is magnetic field, and L⊥ = min
(

R, a| Te
∇Te
|, a| Ti

∇Ti
|
)

is
a profile length scale.

This model serves as a simple plug-in replacement of the gyrofluid GEM model, identical
from the software organisation point of view; however, ∼ 105 times less in computational
cost. Apart from the low physical fidelity, the GEM0 model does not expose any aleatoric
uncertainty. Firstly, it means that the convergence of a coupled transport workflow happens
significantly faster, and the self-consistent solution does not expose any fluctuations. Secondly,
this model is unsuitable for studies of aleatoric uncertainties in turbulent simulations, and
this problem requires another approach.

The figure 3.2 shows an MFW simulation of an AUG discharge around a steady state using
an analytical GEM0 model for turbulence.

3.4.2. Workflow Run with High-fidelity Turbulence Model

This subsection describes previous results in running a multiscale multi-component Transport-
Equilibrium-Turbulence workflow MFW using nonlinear 3D electromagnetic code GEM to
compute turbulent transport. Figure 3.3 shows the resulting self-consistent ion and electron
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Figure 3.2.: Convergence of Ti and Te core profiles, and their gradients ∇Ti and ∇Te, as well
equilibrium 1D profiles of q and gm3, to a self-consistent plasma state during
an MFW simulation with GEM0 for turbulent transport model. The transition
from red to blue denotes the pass of the simulation time, and the dashed lines
represent the flux tube locations.

temperature profiles computed by the workflow compared to the experimental measurements
of different AUG shots. The demonstrated results were conducted in [123]. The run had
7500 time steps required to capture the quasi-stationary state of plasma. Experimental
uncertainties show the need to estimate their modelling counterparts for consistent and sound

50



3. Computational Model

validation. The fluctuating flux values indicate the uncertain nature of turbulence, with
statistical preservation of mean values dictated by the power balance but overall stochastic
dynamics.

Figure 3.3.: The stationary plasma quantities computed by MFW using GEM for turbulence
solution. The two leftmost figures show the electron (left) and ion (middle)
temperature profiles. The solid line indicates the comparable experimental mea-
surements, with shaded areas denoting the experimental uncertainties. The black
lines and error bars are respective quantities computed by the workflow at the
flux tube locations. The rightmost figure shows the evolution of total fluxes com-
puted by the workflow for 8 respective flux tubes. The dotted lines indicate the
respective fluxes computed via power source integration. The presented results
are from [123].

The results were performed with an old version of the workflow using MUSCLE2 library.
They do not account for the initial epistemic uncertainty and are computationally expensive.
The modification introduced in this work and described in a later chapter, section 5.1, brings
capabilities to significantly speed up the workflow via considerate surrogate exploitation,
which enables uncertainty propagation for such a workflow.

Figure 3.4 shows MFW run, in its modification implemented in this work, using GEM
for turbulence component. Due to the high computational cost, the simulations were not
performed until the system reached a quasi-stationarity state.
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Figure 3.4.: An evolution of Ti, Te core profiles, and their gradients ∇Ti,∇Te using MFW
simulation with GEM for turbulent transport model. The transition from red to
blue denotes the pass of the simulation time, and the dashed lines represent the
flux tube locations.

3.5. Chapter Summary

This chapter presents the Multiscale Fusion Workflow, a multi-component computational
workflow that solves nonstationary heat and particle transport equations for core tokamak
plasmas self-consistently. We presented components to solve equations for transport, equilib-
rium, and turbulent fluxes and discussed the software and other aspects of the implementation.
Furthermore, we demonstrated a solution for stationary core profiles using the workflow.

The following two chapters cover the questions on utilising data-driven surrogates to enable
uncertainty quantification of turbulent transport models and how both aleatoric and epistemic
uncertainties manifest in high-fidelity turbulence models.
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4. Uncertainty Quantification and Surrogate
Modelling Results for Turbulence Code

This chapter focuses on the studies performed on the gyrofluid electromagnetic plasma
turbulence code GEM. We discuss the procedure for estimating properties of the time
series describing the fluctuating turbulent transport fluxes, which allows computing the
uncertainties of the effective transport and deciding on the sufficient turbulence simulation
duration. Furthermore, the quantification of epistemic parametric uncertainties on GEM and
its parametric sensitivity analysis are discussed. Finally, the chapter talks about surrogate
models for turbulent transport simulations, and their training, validation, and utilisation
aspects are addressed.

4.1. Aleatoric Uncertainty and Fluxes Time Traces Analysis

The study of uncertainty benefits from identifying different sources of uncertainty and
uncertainties of various types. This section describes the uncertainties of estimating effective
transport fluxes from plasma turbulence simulations. We consider turbulent heat fluxes
attributed to ions Qi and electrons Qe as a function of time and radial coordinate, computed
as integral quantities of plasma turbulence simulations by GEM code. Furthermore, from the
macroscopic point of view, the flux values are described as a function of plasma state, mainly
the kinetic profiles, which in this work mean ion and electron temperature Ti, Te and their
gradients ∇Ti and ∇Te, with the ion temperature gradient often being the most influential
parameter, driving the ITG turbulence prominent for transport studies in this work. The time
dependency of the fluxes during a simulation follows the general pattern of initial exponential
growth followed by domination of non-linear effects leading to turbulence saturation and
quasistationary behaviour of fluxes around a particular value. Without a change in external
parameters, the mean values of fluxes stay the same; however, the overall flux dynamics are
chaotic and fluctuate with time. Such behaviour leads to the analysis of transport fluxes as a
result of a stochastic process and to the importance of time traces analysis of flux values.

Figure 4.1 shows a typical situation of the parametric dependency cases of the turbulence
model, here ion heat fluxes produced by GEM. In this case, which is complicated to analyse
from a naïve perspective, there is a high possibility of a meaningful dependency of QoI
values on the model’s independent parameters. However, the level of fluctuations of QoI and
resulting aleatoric uncertainty does not allow an apparent reconstruction of such dependency.

Such a situation, often appearing in turbulence simulation, leads to the need for the separa-
tion of aleatoric and epistemic uncertainties. Figure 4.2 shows how an algorithm 2.2.2, applied
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Figure 4.1.: The dependency of Qi on ∇Ti at ρ = 0.7 for a fixed set of other core profile values
computed by GEM. The distributions of the heat flux values significantly overlap,
and the estimation of the mean has an error that should not be neglected while
reconstructing the dependency and performing epistemic uncertainty studies.

to every instance of turbulence simulation, together with a consideration of controllable
numerical parameters like simulation duration, allows distinguishing well-posed, from the
point of uncertainty, simulation cases and influence the separation of uncertainties to recover
the dependencies of interest.

In this work, we created a software workflow to manage the numerical experimental design
and sampling of the uncertain parameter values, the simulation performance and analysis, as
well as the collection, management, analysis, and storage of simulation result data, targeting
the subsequent workflow concerning the work with surrogate database models. As a part
of simulation management and the result analysis steps, the functionality to sequentially
process the time-dependent scalar quantities of interest described in procedure 2.2.2 was
implemented. As mentioned, the primary quantities of interest analysed in the turbulent
transport GEM model solution are time traces of outward radial heat fluxes associated with a
specific particle species.

Every GEM simulation run for a fixed set of input parameters, namely the core profile
description of a plasma state sssc.p. (temperatures for every species, density, and respective
gradient), as well as plasma equilibrium ssseq geometry of magnetic field (metric tensor,
magnetic flux, pressure, safety factor, and current), underwent such an analysis described in
procedure 2.2.2.

The result of such an analysis gave us the final statistical error for the estimation of effective
transport level for a given case as well as a quantification of the fluctuation of the respective
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Figure 4.2.: Different cases of aleatoric uncertainty levels of fluxes computed by GEM. In-
troducing control of numerical parameters to manage the uncertainties in the
model allowed us to recover model behaviour with sufficient clarity. Here, we
iteratively increase the polynomial order of PCE analysis to raise the level of
accuracy in capturing the ion heat flux value dependent on the ion temperature of
a flux tube. The level of temperature uncertainty defines the study’s domain, and
the simulation’s duration is defined to control the error in the mean behaviour
estimate.

fluxes, characterising the aleatoric uncertainty.
Here is a result of such an analysis using the 648 GEM turbulence simulations sample.

Approaching the problem retrospectively during the postprocessing allowed us to judge the
accuracy of the mean flux value estimates as a function of simulation duration and tolerance
criteria values and analyse the estimation accuracy as a function of tolerance criteria.

4.1.1. Time Traces Analysis

A result of this algorithm applied for an ion heat fluxes time evolution at a particular flux tube
ρ during a single instance of the GEM simulation for fixed values describing plasma’s kinetic
profiles and magnetic equilibrium sss is shown in the figure 4.3, and the statistics convergence
is shown in figure 4.4. For GEM simulations in the studied regime, the SEM converges after
O(10) of simulation time windows.

55



4. Uncertainty Quantification and Surrogate Modelling Results for Turbulence Code

0 500 1000 1500 2000 2500 3000 3500 4000

t, code time-steps

2.0

2.2

2.4

2.6

2.8

Q
i,

W m
2

×106

time traces

simulation length, n=150

mean: 2.3e+06

+/- standard error: 2.4e+04

95% predictive interval, std: 1.7e+05

Figure 4.3.: An example of the results of the postfactum application of time trace analysis.
Readings left of the leftmost grey vertical line are considered to relate to the
turbulence growth phase and not to be part of the stationary process. The black
vertical line indicates the suggested end of the simulation, as all the readings
right to it do not bring much additional information for the statistical estimates.
The vertical dashed lines denote the right-hand limits of the simulation time
windows. Each iteration of the sequential analysis uses all readings left to the
corresponding dashed line (but to the right of the leftmost dashed line). The
horizontal solid line denotes the mean of the effective sample for this window, the
dashed lines represent the standard error of the mean, and the dotted lines denote
95% confidence intervals. For a given simulation case and given convergence
thresholds for mean change and SEM, the accuracy of statistical estimates for flux
QoI would not significantly improve after a total of 2600 steps.

Finding the effective values of transport fluxes allows us to distinguish the aleatoric
and epistemic uncertainty and apply uncertainty propagation analysis to average fluxes.
Furthermore, for this procedure, we use convergence criteria criti and simulation duration
ttot
turb as a free numerical parameter to control the fidelity of turbulent flux estimation. Setting

convergence criteria for the estimates of simulation data allows us to balance the accuracy
and the simulation cost and to effectively use the compute resources via an early-stopping
mechanism.

The following section describes the approach and results in creating surrogate models for
GEM as a dependency of heat fluxes QQQ = (Qe, Qi) on the plasma state sss and its core profiles
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Figure 4.4.: A plot of the convergence of ACT and SEM with the sequential processing of the
time trace from 4.3.

and equilibrium, to use it as a component of the turbulence-transport-equilibrium workflow.
Furthermore, it will elaborate on how to manage the fidelity of the surrogate in the workflow,
re-train it in an active manner, and use surrogates to estimate uncertainties.

4.2. Parametric Studies of Gyrofluid Turbulence Model GEM

Having a procedure to analyse the aleatoric uncertainties for single turbulence simulations
allowed the next step to be performed, which is the analysis of the behaviour of the 3D
electromagnetic gyrofluid model GEM in its flux tube approximation. This was done by
performing a Polynomial Chaos Expansion of the model with respect to its most influential
independent parameters. The choice of this algorithm for uncertainty analysis is multi-fold.
First, it is proven to be a working method to capture uncertainty in the QoI of the model
solution for many practical mathematical models in the form of PDE systems, including
non-linear ones, yet sufficiently well-behaved. Second, for a given sample of model solution
function evaluations, this method provides a comprehensive set of essential statistics for QoI
up to high moments of its PDF (variance, skewness, kurtosis) and partial variance associated
with an arbitrary subset of independent parameters. The statistics that could be calculated
the easiest are Sobol indices, which are used to judge the sensitivity of the model to a
given input component and, hence, define the importance of inputs. Third, in association
with the first two, for many types of independent parameter PDF, PCE allows refining the
resolution associated with particularly important inputs based on increasing the polynomial
order of expansion with respect to a chosen quantity, in some cases, reusing the old model
solution function evaluations. Fourth, but not least by motivation, the default variants of the
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PCE method use quadrature schemes based on full tensor products of the grids for chosen
independent parameters and to have the possibility to clearly distinguish the influence of a
single parameter by fixing values of others is very important for all initial steps of studying
any model.

The flux tube model assumes that the development and behaviour of the plasma turbulence
are essentially local and uniform for an entire flux tube, a part of the plasma that follows
a given part of a poloidal cross-section along the lines of the magnetic field. Such local
behaviour is mainly defined by the local values of the several first central moments of the
distribution function, hence the kinetic quantities of temperature and density and, more
importantly, their gradients as the main drive of the flow and source of free energy.

For a given AUG discharge, heat transport driven by temperature gradient is believed to
be of the most importance. Hence, we focus the most on the variation in this parameter
and use it as the exemplary quantity to describe the plasma state from the turbulence point
of view most often. Furthermore, the measurements of the temperature gradients, being a
derived quantity, are especially problematic to capture and usually have high experimental
uncertainties.

4.2.1. Epistemic Uncertainty Quantification

In this work, we analysed a number of GEM runs for flux tubes located at different toroidal
plasma radial coordinate values ρ. We varied both temperature T(ρ) values and gradients
∇T(ρ) for both electrons and main ion species of deutrons.

For an exemplary study of the propagation of epistemic uncertainties for GEM, we took a
plasma state sss with core profiles and magnetic equilibrium of AUG shot #28906 and assumed
a uniform uncertainty for core profiles and their gradient at the locations of 8 flux tubes. To
describe the influence of uncertainty in every scalar parameter, we performed a Polynomial
Chaos Expansion of the model with the respective choice of samples for every uncertain
input, visualised in figure 4.5.

Figure 4.5.: A simple visual explanation of the uncertainty propagation for a turbulence code
computing transport coefficients as a dependency of kinetic profiles.

To capture the epistemic uncertainty in the behaviour of turbulent transport heat fluxes
pep(qqq) depending on the uncertainty in the heat profiles p(sssc.p.) we used several quantities.
We estimated the Coefficient of Variation (CV), the ratio of standard deviation and mean
value CV[xxx] = σ[xxx]/µ[xxx], of the flux uncertainty. Furthermore, we used the Uncertainty
Amplification Factor (UAF), a ratio of CVs of functions values to the one for its arguments
UAF[y|x] = CV[y]/CV[x] as an important uncertainty metrics for the model [135]. Such a
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quantity can help judge the global stability of the equation solution with respect to uncer-
tainties and indicate whether a propagating uncertainty would explode or stay at a finite
level. To include information on the interdependency of the input and output variables, one
could use a modified quantity of Correlated Uncertainty Amplification Factor via additional
multiplicative covariance factor cUAF(y|x) = UAF(y|x) · ρ(x, y) = UAF(y|x) · Cov(x,y)

σ(x)σ(y) . An-
other modification of this metric is to include information per input component by scaling
the metrics with Sobol indices to get the Sensitivity-scaled Uncertainty Amplification Factor
sUAF(y|x) = UAF(y|x) · Si.

For the model flux tube at ρ = 0.7, the coefficient of variation for ion heat flux is CV[Qi] ≈
2.96. The uncertainty amplification factor is UAF(Qi|xxx) ≈ 11.9, which shows a significant
sensitivity of the computational model to the parametric uncertainty.

Choice of parameters: perspective of transport model, analytical theory, and surrogates

It is analytically described and practically proven that turbulence and its effective fluxes
are well described as a function of dimensionless parameters like relative profile gradient
lengthscales RLTe,i, or LTe,i , temperature fraction κ = Te

Ti
, as well as parameters like plasma β

and ρ∗. However, since both experimental measurements and transport codes describe plasma
state sss in terms of absolute physical quantities like temperature and density, in this work, we
have chosen to describe uncertainties and variations in a plasma state with the presented
parameters. Even though transforming the plasma state description to the dimensionless
parameters can potentially reduce the dimensionality of the problem (and effective surrogate
dimensionality, e.g. number of function evaluations required), the turbulent flux model as a
function of κ and LTe,i loses some information. Furthermore, the choice of turbulence model
and the type of plasma discharges is suitable for studying the influence of the ITG type of
turbulence on transport.

4.2.2. Sensitivity Analysis

A class of useful and interesting statistics calculated with the PCE study is Sobol indices,
which indicate the model’s sensitivity to its parameters by attributing fractions of QoI variance.

It is a global metric, which denotes which fraction of the QoI variance is attributed to a
variance of each component, given their prior distribution. As a full expansion of variance
as a multivariate function, an approach known as ANOVA also measures sensitivity to the
interactions of arguments.

This work uses Sobol indices as a measure of the importance of specific parameters,
targeting the utilisation of such measures to decide how well each parameter should be
studied and how well its variation should be presented in surrogate models.

Here we indicated the sensitivity of Qe and Qi for Te, Ti, and ∇Te, ∇Ti.
Figure 4.6 shows the first Sobol sensitivity indices for the GEM0 code. No radial dependency

is observed, and further, almost no sensitivity of Qe on Ti and ∇Ti, and of Qi on Ti. Electron
heat flux can be approximated well as a function of electron temperature gradient only and
ion heat flux as a function of both gradients only, respectively.
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Figure 4.6.: The result of SA ANOVA analysis performed via PCE of order 4 method for
GEM0 at different regions of a tokamak plasma.

Figure 4.7 shows the influence of different profile parameters on the turbulent heat fluxes.
The variation in Qi is predominantly explained by the uncertainty in the ∇Ti for most of the
radial location of plasma, and Ti being the less influential parameter. Also, in the middle of
the plasma at ρ = 0.3− 0.7, some amount of the flux variation is explained via interaction
terms.

Unlike the GEM0 case, the sensitivity of the solution of the gyrofluid model GEM shows
a significant dependency on the radial coordinate. Even though the turbulence in flux tube
approximation should depend mainly on the local quantities and drive terms, the variation of
priors distribution of those parameters and variation of equilibrium properties and magnetic
geometry introduces a dependency on ρ. Also, unlike GEM0, all parameters play a non-
negligible role in the flux as a function of profiles, and the particular level of sensitivity of
parameters is different for GEM.

4.3. Surrogate Models

The prime reason for the interest in surrogate models is the cost of the single run of a high-
fidelity simulation, which makes prohibitively expensive any extensive parametric studies,
including forward and backward uncertainty quantification, as well as usage of the turbulence
code in a simulation of a workflow that includes multiple components, each solving its own
physical sub-problem.

Furthermore, the surrogates are usually differentiable with respect to the micro-model
parameters xxxm, whereas the legacy HPC codes typically are not, which makes it impossible to
use them with different gradient-based methods, including optimisation and derivative-based
sensitivity analysis.

In the next part, we are presenting surrogates for heat flux as a function of plasma state
qqqsurr(sss), results on its validation, as well as multiple scenarios in which one could use
surrogates for multiscale simulations and their uncertainty quantification.
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Figure 4.7.: The result of SA ANOVA analysis performed via PCE method for GEM at different
regions of a tokamak plasma. Here, we show the first-order Sobol indices of Qe,i
computed by GEM as a function of flux tube location ρnorm

tor for Te,i and ∇Te,i. The
sum of index values, showing the interaction effects, is shown. The shaded area
indicates the estimated one standard deviation error based on the sample size used
to calculate the statistic. The graph indicated that the fluxes are most sensitive
to the ion temperature gradient for most flux tubes. The electron temperature
gradient is most impactful in the plasma core but loses its importance in the outer
parts of plasma. Ion and electron temperatures in all plasma regions explain a
fraction of flux variation. Also, the interactions of parameters influence fluxes
for all radial locations, but most prominently for ρ = 0.3− 0.7. The character of
dependency is more regular for the outer parts of the tokamak core, with some
variation in the inner regions.

4.3.1. Gaussian Process Regression

Gaussian Process Regression, described in section 2.6, is this work’s prime machine learning
surrogate model type. As this type of model predicts the likelihood for values of certain QoI
for given independent variables, it would be a good choice of model to capture uncertainties
in the underlying process, first of all, due to the lack of parametric data. Furthermore,
such a method would be suitable for an application in Bayesian statistics, for example, for
Beysian inference of parameter values given some prior PDF of model input parameters, for
statistical comparison, validation, and calibration using experimental observable data, and
other statistical methods.

The data that were used to train a surrogate describe the response of a turbulence model on
a variation of core profiles for an AUG shot (#28906). This data does not include a variation of
magnetic geometry as it mainly varies weakly during the chosen phase of the discharge and
due to solid indications that turbulent transport fluxes are defined primarily by the kinetic
profiles.

Given that core turbulence, analysed in this work, is local and defined on small scales, the
surrogate model to capture dependency of ion and electron heat fluxes over a specific radial
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domain is implemented as a set of independent regression models, each describing a process
happening at a particular flux tube located at a specific radial position of a tokamak.

The GPR models in this work use linear regression over the training data to express the
model for the mean of the process µ(xxx) = h(xxx)>β. This transformation is equivalent to
removing the linear trend of the dependency and modelling the residuals as a Gaussian Pro-
cess: y(xxx) = fGPR(xxx) + h(xxx)>β. Furthermore, the preprocessed data are whitened, meaning
rescaled to have zero mean µX = 0 and unit standard deviation σX = 1. The GPR training is
done in this space, which is defined by the composition of the two affine transformations of
linear trend removal and whitening.

For different scenarios, surrogates for different data dimensionality were used, which
include parametric spaces of one dimension (∇Ti), two dimensions (additionally Ti or ∇Te),
four dimensions (additionally Ti, Te, and ∇Te) and six dimensions (additionally q, gm3).
Furthermore, the surrogates consider either a scalar QoI (Qi) or a vector of length two as
an output (additionally Qe). The default version of the surrogate discussed in this work
is a surrogate for nf.t. = 8 independent and decorrelated flux tube locations, mapping a
four-dimensional output xxx ∈ X ⊂ R4 onto a two-dimensional output yyy ∈ Y ⊂ R2, not
considering correlation between the output components.

Some diagnostics of a GPR model behaviour include analysis of its hyperparameters and
validation.

Generally, GPR’s statistical modelling assumes that its hyperparameters could be random
variables with a particular PDF. In one of the approaches, tuning GPR by maximising the like-
lihood of explaining observable data assumes finding deterministic optimal hyperparameter
values. Most kernels have length scale parameter λ as the most descriptive one, and it is often
used to describe how smooth the dependency is with respect to specific input parameters.
The short length scales can also indicate that a given parameter is the most influential for the
modelled dependency.

The validation in this work was typically performed by reserving 20% of the data set and
computing validation loss. As the most important performance metric, this work uses the
coefficient of determination:

R2 = 1−
∑ntest

i=1

(
yg.t.

i − ysurr
i

)2

∑ntest
i=1

(
yg.t.

i − yg.t.
)2 (4.1)

Here (·)g.t. superscript denote the ground truth values from the test data set, (·)surr mean
values produced with a surrogate and (·) stands for averaging operation over the test data set.
This quantity indicates how well the given model can explain the variation in the validation
data set.

Furthermore, the machine learning model’s response was analysed by per-case comparison
against the ground truth validation dataset in terms of capturing the actual values within the
model’s uncertainty intervals as shown in figure 4.8.
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Figure 4.8.: The ground-truth flux values produced by GEM against the ones predicted by a
GPR surrogate model for the validation dataset for a model flux tube. For most
cases in the region of interest of plasma core profile states, defined by the MFW
simulations, the true values lie in the 1.96 σ uncertainty values (95% confidence
intervals) and within 15% relative error bounds. The coefficient of determination
value of R2 = 0.988 indicates the high explainability quality of the surrogates.

A test of the continuous response of a GPR model for turbulent transport fluxes is shown
in figure 4.9. Here, one can see the key properties of such a model, including the choice
of length scale depending on the regularity of the dependency, uncertainty decorrelation
due to lack of data, and high uncertainties in the extrapolation regimes. The surrogate finds
very high length scales of dependency on ion temperature and its gradient λTi /σ[Ti] ≈ 14
and λ∇Ti /σ[∇Ti] ∼ 106 with a much higher uncertainty on the electron temperature and its
gradient λTe /σ[Te] ≈ 0.13 and λ∇Te /σ[∇Te] ≈ 3.5.

The dependency of turbulent fluxes on core profiles qqq(sssc.p.) computed by GEM has exposed
more complexity and nonlinearity. These properties should lead to more complexity of the
type of model used for a surrogate. For a non-parametric GPR model, it means searching
through more complex kernel functions, more possible base regression models for mean
trends, and more possible parameter space representations. Also, such a model could lead
to less apparent results in the found model hyperparameters θθθ like the length-scales of
covariance for different parameters. The figure 4.10 shows central cuts of the GPR model
fitting data from GEM. Here, we assume that the heat flux should be outwards, which makes
us avoid situations with an inward pinch transport component vconv < 0 and steep profiles.
Moreover, it allowed us to work in the space of logarithmic flux values y = ln Qe,i, which is
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Figure 4.9.: The depiction of a GPR model response of Qe,Qi scan for only a single scalar
out of Te, Ti, ∇Te, ∇Ti being varied. The model was trained on the sample of 54

evaluations of GEM0 code. Red denotes electron heat flux, and blue denotes the
ion channel. Solid dotes indicate the training data points appearing in this cut
of the parametric space. The solid lines and the shaded area denote the model
prediction’s mean and ±1.96σ. The surrogate has a shorter covariance length
scale for more complex dependencies and quickly loses certainty outside its
training domain. In the presented cases the lengthscales are likely to be defined
by ion temperature profiles L⊥ ∼ a Te

|∇Te| given a baseline model for fluxes as

Qi ∼ T
1
2

e ∇Te∇Ti and Qe ∼ T
1
2

e (∇Te)
2.

equivalent to the exponential model for the mean Qe,i = Qexp
e,i · e∑i∈SSS λi ·xi , which is employed in

the model in figure 4.10. A further assumption of monotonic profiles allows to work in space
of negative logarithmic gradients x = ln(−∇Te,i) which is equivalent to the power mean
model of Qe,i = Qpow

e,i ·∏i∈SSS xαi
i . The next transformation of the parametric space is working

with temperature ratios Te
Ti

and relative or gradient logarithmic profiles ln∇Te,i.
The data acquisition from the high-fidelity GEM turbulence model is much more expensive,
∼ 5 orders of magnitude, compared to a simple analytical model. Thus, here, we used 3
points per dimension instead of 5, influencing the quality of surrogate models. Moreover, the
GEM model exposes aleatoric uncertainty in the QoI, which is non-trivial to capture with a
surrogate model, especially in the case of heteroscedastic uncertainty being itself a function of
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Figure 4.10.: The graph of a central cuts GPR model response of Qe, Qi as a function of Te, Ti,
∇Te, ∇Ti being varied. The model is trained using the 34 GEM evaluations data
sample. The target quantity of training was ln Qe,i, which led to an approximately
exponential dependency of the mean value, strictly positive values of flux covered
only, a highly skewed confidence interval, and even faster growth of uncertainty
outside of the learned domain.

independent parameters. The aspect of aleatoric dependency also raised the question of the
quality of the training data in the sense of having enough data sample size and simulation
duration to estimate the statistical quantities. Simulation convergence is especially important
for the inner plasma regions where turbulence develops slower and requires more extended
simulation runs to converge and produce a sufficiently large effective sample. The surrogates
behave differently for different flux tubes at different values of ρnorm

tor , which is apparent when
they are used as a part of the workflow, which will be discussed in the later chapter.

Software Implementation

All the functionality related to the GPR surrogate was implemented into the EasySurrogate
Python software library [136]. This includes obtaining data samples, both from physical
code wrappers and the databases of UQ studies via EasyVVUQ, data preprocessing and
feature engineering specific for GPRs and plasma turbulence models, surrogate training,
its validation, hyper-parameter optimisation on an HPC machine using a combination of
EasySurrogate, EasyVVUQ and QCG-PJ, surrogate model persistence and storage, regression
model testing, Bayesian Optimisation with a data feedback loop to EasyVVUQ uncertainty
quantification description.
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4.3.2. Active Learning

In this section, we present the results of the Active Learning approach for surrogate training
based on Bayesian Optimisation.

Figure 4.11 shows cases when a surrogate is trained on simulation data, acquired sequen-
tially based on two types of acquisition functions that utilise uncertainties for a GPR model.
A method based on the maximal variance only produces a space-filling set of points, whereas
the technique that also minimises the distance to a flux (expected from a power balance
calculation) captures a level set of fluxes. Both approaches require O(10) simulations for a
two-dimensional surrogate.

Figure 4.11.: The demonstration for sequential AL as a sequential design of experiments with
BO. Here, we prepared a surrogate that finds ion heat flux Qi at ρnotm

tor = 0.7
based on the ion temperature and its gradient ∇Te, ∇Ti using data from GEM0.
The global variance acquisition function xi+1 = arg minX σ2

GPR(x) produces a
space covering data set and a surrogate of validation error RMSE ≈ 100 with
14 simulations. A more elaborated acquisition function targeting minimisa-

tion of distance to a target flux y∗ : xi+1 = arg minX
( fm(x∗)−y∗)

2−(µGPR(x)−y∗)
2+ε

σGPR(x)+ε

convergence after 9 iterations.

4.3.3. Artificial Neural Networks

As an additional type of surrogate data-based model for this work, Artificial Neural Networks
(ANNs) were used.

In their most common implementations, the inference or forward pass usually returns a
deterministic vector value of length equal to the size of the last layer.

Direct usage of such models to assess the likelihood of a specific QoI outcome based on
inputs requires the usage of a specific type of neural networks, like BNNs, or introducing
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some assumptions, like interpreting the value of a function with yyy ∈ [0.0, 1.0] range (logistic
function and others) as probabilities. However, in most non-intrusive UQ approaches applied
in this work, a surrogate was required only to produce a deterministic answer, so a wide
variety of ANNs were applicable.

This work tested an ANN of a Mutli-Layer Perceptron (MLP) type or a Feed-forward Neural
Network (FFNN) with various layer and neuron numbers and different activation functions.

In this case, the same validation approach, including the same validation metrics as for
GPRs, was applied to ANN surrogates.

For this dataset size, the quality of regression using FFNN is comparable to that of a GPR
model without the advantage of predicting entire likelihood distributions for QoIs.

Furthermore, ANNs have more free hyper-parameters to analyse and require a more
extensive search in these parameters’ space, taking care of overfitting, gradient vanishing and
explosion, and other issues.

Figure 4.12 shows the central cut of the response of the ANN model trained with a data
sample of flux values computed by GEM.
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Figure 4.12.: The testing of ANN MLP model with 2 hidden layers 8 neurons each, with
ReLU activation functions and trained to minimise L2 loss function. The model
is trained using 34 GEM evaluations. The differences in the loss curve during
training indicate the complexity of the underlying dependency for various flux
tubes.

The application of an ANN surrogate also required more careful analysis of the generalisa-
tion properties of the model as higher complexity of the model can lead to overfitting issues.
Furthermore, it led to more considerations about the error analysis during learning and the
correct duration of the training process.

4.4. Chapter Summary

In this chapter, we present the results of studies that involve the computation of transport
fluxes with a high-fidelity turbulence code. This includes the study of its irreducible aleatoric
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uncertainty in fluctuating quantities, how to effectively decide on simulation duration, and
the amount of data required for the estimates. Moreover, it covers the parametric study of
the code and the quantification of epistemic parametric uncertainties, showing the level of
the model’s sensitivity towards uncertainty and quantitatively recovering the most important
parameters influencing turbulent transport. Finally, we discuss the creation of surrogate
models for such a turbulence code, as well as ways to diagnose their quality and dynamically
utilise and update with new simulation data.
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5. Multiscale Turbulent Transport Workflow
Studies

This chapter presents the modifications to the Multiscale Fusion Workflow done to enable
the usage of the surrogate for the turbulence model and to control the surrogate quality.
Moreover, it presents a way to re-train surrogates using information on multiple scales in the
learning loop. Finally, we present a forward uncertainty quantification study of the coupled
transport-equilibrium-turbulence simulation workflow, focusing on how uncertainties in
turbulent flux estimations due to their stochasticity influence the uncertainties in the tokamak
plasma core kinetic profile prediction.

5.1. MFW Modifications

Due to the limited fidelity of any data regression-based surrogate, primarily due to extrapola-
tion weakness, as well as to enable the idea of dynamical and physics-informed update of
a surrogate, several modifications that combine different implementations of the expensive
model for turbulent transport explaining the smallest scales are required and were imple-
mented. The approach of combining different models explaining the same processes allows
further blending information of different levels of fidelity for a single problem solution.

5.1.1. Introduction of New Components

In order to enable the usage of the surrogate models, the workflow was modified to have
a flexible, dynamic choice of implementations of models providing transport information.
Here, the “Turbulence” component was replaced by a subgraph tree of components. The
element, which communicates with other codes, is Turbulence Manager, and it has ports
allowing accepting equilibrium and core profile information and sending core transport data.

The other new components communicate only with the new manager component, and
based on the information received during the iteration, the manager decides which component
to run and what information to expose to other codes.

In basic implementation, the turbulence manager receives the updated equilibrium and
core profile values and passes information to the surrogate component. Apart from the
respective flux values, the surrogate provides the manager component with information on
whether the received data were within the learned support of the surrogate and values of its
uncertainty estimates in terms of its relative standard deviation. Based on this information,
the manager component decides whether to perform the respective flux value calculations
via a higher fidelity numerical code. As a general check, the manager decides to run a
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full-pledged turbulence simulation if the core profile values are simply outside the margins
of the surrogate training data set, information on which is stored by workflow and accessible
by the surrogate component on any iteration. The modified workflow is depicted in figure 5.3.
Every workflow iteration is then modified according to the following steps in algorithm 1:

Algorithm 1 Turbulence Manager extension logic
. . .
receive sssc.p. and ssseq

send sssc.p. to TURBsurr(·)
receive fluxes qqq and fidelity information fidfidfidqqq . Here: fidelity information is surrogate
learned domain extrema Ssurr

c.p. and the surrogate uncertainty σ2
surr

if fidelity information fidfidfidqqq /∈ FIDFIDFIDqqq trusted fidelity region then . Here: whether the input
core profiles sssc.p. /∈ Ssurr

c.p. outside of surrogate domain
send sssc.p. and ssseq to TURBhi−fi(·)
receive qqq

end if
send flux values qqq out
. . .

The fidelity information could use detailed information on the learned domain. Also, the
decision criterion can include information on the distance to the boundary of the learned
domain, the relative or absolute size of surrogate uncertainty, the combination of those criteria
for multiple flux tubes or sub-models, including logical OR, AND, majority or unanimous voting
or other ways to combine criteria.

5.1.2. Profile Trajectory Tracking and Surrogate Fidelity Domain

Furthermore, the workflow tracks whether the trajectory of the core profile evolution stays
within the surrogate applicability bounds. This tracking functionality is used to suggest which
region of core profile parameter space the surrogate training dataset should be expanded into.
Figure 5.1 shows a run of an MFW workflow with a GPR surrogate for turbulent transport
while the profile values for a given flux tube stay within the domain learned by the surrogate
model.

This tracking functionality is based on the explicit knowledge of the surrogate module on
its training data distribution. From the point of view of the workflow’s current software
implementation, this requires specifying a particular file from which a surrogate component
computes the hypercube envelope of its fidelity domain FIDFIDFIDqqq, serving as a bound of the
training data set. A future extension for a more precise description of training data distribution
is also possible. Each iteration involving surrogate inference is enhanced with an additional
check on the surrogate fidelity in terms of whether the incoming input parameters are inside
the fidelity domain sss ∈ FIDFIDFIDqqq. Here, the input parameters sss are ion and electron temperature
values and their gradients at the chosen flux tube locations Te(ρ), Ti(ρ), ∇Te(ρ), ∇Ti(ρ). The
variation of a fidelity criterion based on the epistemic uncertainty of the surrogate was also
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Figure 5.1.: Time evolution of Te,i and ∇Te,i during an MFW simulation of AUG with quanti-
ties renormalised to fit [0, 1] interval corresponding to the extreme input values
of a surrogate training dataset. The expression in the legend shows the transfor-
mation of the quantity values back to the SI units, indicating the actual values of
the surrogate fidelity domain boundaries. The workflow uses a surrogate based
on GEM0 data to infer turbulent fluxes and the workflow convergence to a steady
state within the 1% error relative to the ground-truth one after ∼ 60 iterations.
Here, the plot on the left demonstrates a benign case for the innermost flux tube
at ρnorm

tor ≈ 0.14 when a surrogate can be trusted during the whole workflow
simulation. The plot on the right demonstrates the profile evolution for an outer
flux tube located at ρnorm

tor ≈ 0.85, with a rapid change in the gradient values at
the beginning of the simulation, and a return in the fidelity region later on.

implemented. However, this method is more difficult to interpret due to different sources
of uncertainty and complicated generalisation for other surrogate model types. The latest
workflow version was left with the explicit boundary check as criteria for surrogate fidelity
and as the prevention measure against extrapolation.

On every iteration, for the incoming surrogate input parameters describing plasma state sss(t),
the turbulence component TURB determines the point sssinter where the trajectory of evolving
scalar quantities extracted from the current coreprof intersects the surface of the surrogate
fidelity hypercube FIDFIDFIDqqq. For this point sssinter it creates a suggestion of new parametric points
{ssssug} for which new turbulence simulations should be performed to enhance the turbulence
surrogate quality.

One might also choose to stop the workflow simulation due to losing trust in the consistency
of future turbulent flux inference. However, in the working version of the workflow, this
halting was not used because it was observed that there were cases when the system would
return to the fidelity region. Such an approach revealed that the surrogate fidelity differs for
different flux tube locations with respect to its ability to capture relevant plasma evolution
and the convergence towards self-consistent kinetic profiles.

For the cases based on the GEM0 turbulence model, the surrogate stays more accurate in the
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inner parts of the tokamak plasma, smoothly converging to the steady state. In contrast, the
outer regions of the core plasma tended to rapid changes at the beginning of the simulations,
with possible temporary leaving of the fidelity domain. However, the experience with the
GEM model sometimes showed the reverse of the trend concerning the easiness of capturing
turbulence in the inner and outer regions of a tokamak plasma. The flux tube difference
highlights the importance of the initial experimental design for turbulence simulations when
preparing data for a surrogate and choosing the representative initial conditions, e.g., initial
core kinetic profiles, for turbulent transport simulations.

The simulations of the recent MFW version using a GPR surrogate based on log-fluxes
computed by GEM show that the collected data is insufficient to simulate quasi-stationary
AUG profiles. Figure 5.2 shows that at some point in the simulation, workflow exposes
unrealistic from the physics point of view behaviour, with profiles flattening in the inner
parts of the tokamak core plasma. The flattening happens likely due to the poor capturing of
the turbulent behaviour of plasma due to the slow growth and saturation of turbulence for
innermost flux tubes and due to the small range of temperature gradient values presented in
the training data for the intermediate values of the radial coordinate. The outermost parts of
the core plasma, for ρnorm

tor > 0.4, show a reasonable behaviour of core profiles.
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Figure 5.2.: The plot on the left shows the intermediate results of ion temperature evolution
by the MFW using a surrogate for GEM. The flattening of profiles in the plasma
core indicates that surrogates do not capture physics correctly in this region and
require more data. The overall behaviour of profiles in the outer regions is less
problematic compared to the inner core. The plot on the right shows the evolution
trajectory of temperatures and their gradients for the third flux tube counting
from the tokamak axis. Starting from the centre of the surrogate fidelity region,
the parameters quickly leave the learned domain and converge on the values
outside of the surrogate’s area of trust, which can cause unphysical behaviour of
the workflow deeper in the core.
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Figure 5.3.: The workflow variant using the Turbulence Manager configuration. This com-
ponent abstracts out the implementation of the turbulence model, providing
standard ports for core profile, equilibrium, and fluxes data. At the same time, it
manages communication with existing turbulence models, all with their standard
ports. It tries to compute the fluxes based on the least accurate model, which
is the surrogate one. Also, it uses information on its fidelity level, namely the
operational parametric domain and uncertainties, to decide whether the QoI value
should be trusted or whether a more expensive model should be used.

5.1.3. Computational Cost and Other Studies

Introducing a surrogate as a model for turbulent transport significantly decreases the cost
of performing a simulation of a coupled workflow and changes the cost composition. As
the estimation of turbulent flux values becomes cheap, as shown in figure 5.4, the dominant
fraction of the computational cost is shifted to the equilibrium computation.

As the equilibrium quantities and the geometry of the magnetic field change only within
small bounds (for ∼ 1% of nominal values), this cost could be further reduced by fixing the
equilibrium state ssseq after several (∼ 2− 3) iterations of the workflow, which would introduce
a finite error to the final core profiles state sssfin

c.p. However, a preferable way to reduce the
cost for the equilibrium calculation would be creating a surrogate for the EQUIL model as
a function of profile state sssc.p, which requires capturing dependency on a large number of
DoFs describing the equilibrium and performing a large number of simulations on itself.

An uncertainty propagation study for the uncertain independent parameters of the work-
flow, like the parameterisation of sources or boundary conditions influencing the core profiles,
was previously conducted using simple deterministic turbulence models [137].

Addressing the absence of aleatoric uncertainty analysis and following the idea of analysing
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Figure 5.4.: The fraction of computational resources required for different components of
the MFW. The first group shows the wall-clock time spent per component in a
version of workflow using a surrogate for turbulent fluxes inference. The second
group shows the wall-clock time for the workflow employing GEM code. The
third group shows the same workflow version, but resources are measured in
CPU time.

ensembles of dynamically evolving MFW simulations, the work presents a procedure to
quantify such aleatoric uncertainties influencing global kinetic quantities. The key idea of
this approach is to utilise variations of data to train different surrogate models and capture
aleatoric uncertainty.

5.2. Simulation-coupled Surrogate Retraining Workflow

The other approach to make a surrogate capture the transport behaviour for the relevant
distributions of independent variables it depends on is assuring it is accurate enough around
the quasi-steady-state solution of the simulation workflow by iteratively adding new data
around the assumed steady state.

The iteration proposed in this type of workflow consists of several steps described in the

74



5. Multiscale Turbulent Transport Workflow Studies

listing 5.2:

1. Prepare an initial guess for the state of the plasma sss0 =
(
coreprof0, equilibrium0

)
with

some uncertainty p0(sss)

2. Produce a data set D0 = (SSS, QQQ) of turbulent transport flux function evaluations (using
a turbulence code) qqq = qqq(sss) to capture uncertainty p0(sss): sample {sssk} ∼ p0(sss) with a
Monte-Carlo scheme or using a polynomial quadrature

3. Train a surrogate q∗0(sss|D0) using the training data D0

4. Run a workflow with transport parametrisation using q∗0(sss) until some convergence
criterion critWF to solve for a stationary solution with a plasma state sssi=1 (estimate the
new state uncertainty pi=1(sssi=1))

5. Use pi=1(si=1si=1si=1) to create a new data set Di=1 and train a new surrogate q∗i=1(sss|D
+
i=1) on

an expanded dataset D+
1 :=

⋃
i<1 Di

6. Repeat the workflow run with a new transport parametrisation q∗i=1(sss) and get a new
candidate for a stationary state of the system sssi=2

7. Compare the states of sssi and sssi+1 (for i = 1) according to some metric for plasma states
ds(sssk, sssl)

8. Repeat steps 5-7 until the some convergence criterion critsss for ds(sssi, sssi+1)

In such a fashion, the surrogate is be refitted with more data on every iteration, with
the new data coming close to the candidate stationary states of the plasma for the model
described by the workflow.

Given a sufficiently regular problem in the vicinity of an attractor described by the stationary
state for the transport parametrisation surrogate tries to learn, on every iteration both the
surrogate for transport flux function and the stationary state should be closer to the one
described by the original turbulent transport description with a high-fidelity code.

5.2.1. Computational Complexity Considerations

Such a re-training loop saves computing time (in the first place, in terms of a number of
turbulence transport model solutions) if only a few re-training iterations are needed.

One of the ways to view this algorithm is that it utilises the simulation WF(·) that changes
the state of the system (parametrised via a number of scalars, vectors, fields) sssinit to sssfin to
determine an essential direction, or a basis state, of state parameter space ∆sss∗ = sssfin − sssinit.

This idea allows talking about a vector space of plasma state evolutions ∆S to which such
∆sss would belong. Such a view would be helpful when describing the behaviour of plasma
states near a single stationary self-consistent state sss∗. This space could also be defined as
a space of endomorphisms on the plasma state space ∆S 3 ∆sss : S → S. Moreover, given
the continuous nature of evolution ∆sss in the course of PDE time integration, it is a state of
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diffeomorphisms. For a space of states S, this would serve as a fixed point for evolution
mapping of the introduced type WF(·). Stating distance from the stationary state sss∗ to an
arbitrary state in the domain, hence, is a helpful definition of a norm for a plasma state
‖sss‖∆S = d(sss∗, sss) in the state space.

Furthermore, such a ∆sss∗ may be considered important if the system’s evolution is suffi-
ciently regular. If the conditions allow for such an interpretation of ∆sss∗, it could be used to
cast the epistemic uncertainty of the plasma state pep(sss) not in terms of uncertainty over the
space state, but in terms of possible perturbations of the given state. This view allows using a
set of ∆sss as a basis element to generate data sets of low dimensionality, which the surrogate
or simulation model has to capture.

Each of the algorithm’s iterations would introduce comparatively little change to the
evolution dynamics, and hence, the set of vectors ∆sssi would be rather colinear with respect to
cosine-like metrics. Hence, such an algorithm is expected to bring the most of the practical
improvement to the surrogate in its first single or several iterations.

With this, one could compare creating a data set of model solution evaluation by varying
every input component of sssinit and yielding effective dimensionality d1 of the surrogate with
varying sssinit in a changed basis, only along new components proportional to a set of basic
∆sss∗i with a smaller effective dimensionality of d2 � d1. Here, since a surrogate is a function
of a data set of function evaluations D, and for a vast majority of non-parametric methods
that explicitly use function evaluations as basis elements, the dimensionality of a surrogate is
proportional to the cardinality of the training dataset d ∼ |D|.

Thus, such an algorithm would be computationally profitable if it can converge to a
surrogate that can capture the behaviour of the parametrised function sufficiently well around
the stationary state of the system, at least as well as the one using a surrogate of size d2, for a
given domain in such a number of iterations nit such that nit · d2 < d1.

5.2.2. Convergence for Different Scenarios

We would like to present the run of such an algorithm performed for the initial state being
core profiles and magnetic equilibrium of AUG shot #28906. The system is being evolved
using the previously described configuration of MFW, using analytical approximation code
GEM0 as parametrisation of turbulent transport. The choice of turbulence model is defined by
the possibility to demonstrate some core prototype ideas with compute requiring to compute
of the order of O(102)CPUh instead of O(104−6)CPUh for a high fidelity PDE solver. Worth
noting that the initial magnetic equilibrium state ssseq

init is in practice made consistent by running
a single iteration of equilibrium code EQUIL(·) for a given core profile component sssc.p.

init of the
initial step.

The metric that is used to describe the distance between two plasma states sss1, sss2 ∈ S is the
mean of Symmetrised Relative Root Mean Square Error (srRMSE) for core temperatures and its
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gradients x ∈ XS = {Ti, Te,∇Ti,∇Te} taken at the ρnorm
tor values for the 8 flux tube locations P:

dsrRMSE(sssi, sssj) =
1
|XS| ∑

x∈XS

√√√√ 4
|P| ∑

ρ∈P

(
xi(ρ)− xj(ρ)

|xi(ρ)|+ |xj(ρ)|

)2

(5.1)

Here, for every iteration of the retraining workflow introduced previously, we calculate
the dsrRMSE between the final stationary state achieved using the turbulence code as transport
parametrisation and the workflow’s micromodel sssg.t.

fin , denoted as the ground truth one as
it is the highest fidelity we can achieve using the simulation workflow, and the final state
achieved by the surrogate on this iteration sssi

fin: d(sssg.t.
fin , sssi

fin). This quantity is a measure of
the quality of the surrogate model as a proxy in the simulation workflow and is supposed
to asymptotically converge to a finite small value. Furthermore, we measure the difference
between the final states between this and the previous iteration d(sssi−1

fin , sssi
fin), which is the

quantity that is supposed to asymptotically converge to zero, if there is a fixed point best
surrogate model for such an algorithm. Lastly, we measure how much a simulation changes
the state of the plasma between the initial state and the final state d(sssi

fin, sssinit) to have an idea
of the scale of the metric. The following metrics convergence is summarised in the table 5.1.

Table 5.1.: The results of surrogate retraining algorithm. Each row indicates a procedure
iteration consisting of data preparation, surrogate training, workflow simulation,
and results. The algorithm was applied to capture stationary profiles for GEM0
model. The first column indicates the distance between the final plasma state
computed by a workflow using a surrogate and the corresponding state computed
by using the underlying code. The right column indicates the distance between the
final states of workflow achieved by consecutive iterations of surrogate retraining.
The (2, 2) cell of the table is the scale of metrics for the surrogate improvement,
and the (1, 1) cell shows how much the workflow evolves the state in a single
simulation.

Iteration# d(sssg.t.
fin , sssi

fin) d(sssi−1
fin , sssi

fin)

0 176495.9 —
1 603.41 177104.4
2 396.99422 277.11
3 396.90099 1.0399
4 396.90088 0.010746
5 396.90089 0.00034825

For the given case, indeed the convergence criterion d(sssi−1
fin , sssi

fin) reach a small value of
O(10−5) after 2 iterations. For the same 2 iterations the surrogate quality d(sssg.t.

fin , sssi
fin) converges

(up to the 5-th significant digit) to O(102), which is a value O(103) smaller than how much
the state changes during the iteration. For some applications critical to accuracy, one can
reduce this finite error by performing a simulation workflow with a transport parametrisation
for a few steps.
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Figure 5.5.: A convergence plot of the algorithm that iteratively retrains a surrogate based on
the stationary state produced by simulation workflow using this surrogate as the
transport model. The metrics between two states is srRMSE described in 5.2.2,
The distance between the simulation final stationary states for two consecutive
retraining iterations falls exponentially with O(10−2n). However, the algorithm
does not converge to the surrogate that would produce a final stationary state
equivalent to the one while using the ground-truth model, but it has a finite
systematic bias.

The systematic discrepancy for the final plasma states obtained by using code and
its surrogate, however, is by all practical means negligible for the given metric value of
dsrRMSE(ssscode

fin , ssssurr
fin ) ≈ 396.9, as shown in the figure 5.6.

Since the original procedure of surrogate training considers uncertainty and variation only
of core profiles sssc.p., but not the equilibrium ssseq, to create a data set for a surrogate, such a
quick convergence additionally supports the idea that magnetic equilibrium does not strongly
influence the behaviour of turbulent transport model. However, the importance of equilibrium
should be supported by introducing metrics between equilibrium components of the plasma
state and, ideally, by studying uncertainty in equilibrium p(ssseq) and sensitivity indices of
turbulent transport fluxes with respect to it.

An additional test was conducted on the level of influence of equilibrium parameters on
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Figure 5.6.: Radial profiles for ion and electron temperatures as well as their gradients for
the convergent stationary state of MFW using code and surrogate as turbulent
transport model, are visually indistinguishable. The density gradients serve as a
constant background input for the workflow and are not being evolved.

the effective heat fluxes. Here, we considered the 1D equilibrium quantities, being a function
of radial coordinate ρ but poloidally homogeneous, primarily the safety factor q and metrics
scaling coefficient gm3.

The consideration of the variable equilibrium quantities within the same data set but
without the explicit dependency of the surrogate model on any equilibrium parameters means
that the model has to account for the uncertainty due to a lack of equilibrium information
and the noise or error introduced by throwing away equilibrium dependency and considering
only the projection of the plasma state sss on its core profile subspace Sc.p.

In this attempt to explain the inconsistency of the method to find stationary self-consistent
profiles with surrogate retraining, we expanded the number of independent variables by
adding q and gm3 to the epistemic uncertainty description and to surrogate training dataset
variation. Using these new quantities required adding these new terms to the dsrRMSE metrics
definition by expanding the summation over new XS := XS ∪ {q, gm3}, which transforms the
scale of the metric and the norm, taken as a distance to the “ground true” state. Furthermore,
since we use a full-tensor-product-based method to capture the profile uncertainty and
generate new data for a surrogate, it exponentially increased the expense for single algorithm
iteration in the number of turbulence model solution function evaluations. In our case, the
data set grew 9 times with the addition of the equilibrium data.
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The comparison of the surrogate retraining algorithm results, however, shows that adding
data did not solve the inconsistency issue and improved the surrogate approximation power
for the stationary plasma state by around 1% only, as seen in table 5.2.2. Both cases, with
equilibrium data and without, reached saturation after a single iteration on decent for practical
purposes level as shown in the figure 5.7. Furthermore, the algorithm with equilibrium data
has a slower surrogate improvement rate per iteration of dn

dn+1
∼ O(10req), req ∼ 1.67 compared

to previous r ∼ 1.78. Overall, the inclusion of the equilibrium data to the metric definition
only changed the convergence down from r ∼ 2.18.

This observation leads to a conclusion that for the given turbulent transport model, GEM0,
the influence of equilibrium is insignificant, and its consideration by a surrogate brings
overhead costs much higher than possible benefits.
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d(fin, fin-1) for data w/o eq.
d(fin, g.t.st.st) for data w/ eq.
d(fin, fin-1) for data w/ eq.

Figure 5.7.: Adding equilibrium data to the surrogate does not significantly change similar
surrogate quality levels, saturation speeds, and algorithm convergence rates.

Table 5.2.: Comparison of retraining procedure results using surrogates that either explicitly
include dependency on equilibrium or not.
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Iteration# d(sssg.t.
fin , sssi

fin) d(sssi−1
fin , sssi

fin)

0 88251.68 —
1 6684.846 81224.63
2 561.1208 6415.358
3 569.631339 35.08944
4 569.664854 0.32789178
5 569.665844 0.0061919296
6 569.665872 0.0001025095

Iteration# d(sssg.t.
fin , sssi

fin) d(sssi−1
fin , sssi

fin)

0 88251.68 —
1 5277.631 82685.02
2 562.5339 4994.789
3 564.417244 8.14617533
4 564.945749 5.23832979
5 564.945318 0.009808316
6 564.944993 0.0003694049

The figure 5.8 shows the distance between the stationary plasma state achieved with a
workflow using a surrogate and the one using the code. It further shows which quantities
change the most at which locations for a workflow simulation.
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Figure 5.8.: The contribution of different quantities computed at different locations to the
difference between plasma states. The first figure shows the distance between
the final workflow states with surrogate and code as turbulent transport model.
The highest contribution to the systematic error is due to the ∇Te resolution.
The second figure shows the evolution of quantities made during a workflow
simulation. The temperatures evolve significantly compared to their gradients.

A further consideration is to improve the quality of a surrogate by getting rid of clusters
of data set reading and leaving a training data set of constant size and via updating step 5
as D+

i := Di, showed the best approximation of the stationary plasma states as shown in
figure 5.9.

A potential remedy for the systematic error ∆ssserr in the algorithm would be fine-tuning the
stationary profiles by performing a short simulation using a high-fidelity turbulent transport
model starting with the candidate stationary profiles suggested by the algorithm WFhi−fi(sssfin).

Furthermore, in the current implementation of the algorithm, we consider a fixed epistemic
uncertainty of the plasma state final for a simulation workflow pep(sssfin). A further develop-
ment would be to replace every simulation workflow with a number of those to capture the
self-consistent uncertainty of the current state for every iteration pep,i(sssfin).
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Figure 5.9.: Results of a retraining algorithm using only the latest dataset for surrogate
training. In this case, the surrogate has no explicit dependency on equilibrium
quantities. For core profile and equilibrium update on every step, the quality of
the final surrogate is the best among all trials.

5.3. Aleatoric Uncertainty Influence in Coupled Simulations

One of the interesting questions that could be posed about the aleatoric uncertainties is how
they, accounted in the solutions of some subproblem, usually on a microscale, could influence
QoIs in the solution of coupled simulation on the largest scale.

5.3.1. Preliminary Steps for Aleatoric Analysis

Given that we consider the outcome of a micromodel solution to be probabilistic, there
are several ways to incorporate this uncertainty analysis into the coupled system. The
algorithm employed in this work assumes a separation of the measurement process of
aleatoric uncertainty and its propagation. The first step is studying the model behaviour with
respect to its aleatoric uncertainties for the parametric region of interest. Then, the procedure
assumes the aleatoric uncertainty can be captured via a surrogate or a number of surrogate
models. For this procedure, we employ an ensemble of surrogates, each trained on perturbed
data capturing aleatoric uncertainties. The final step is using the knowledge of the aleatoric
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uncertainty to propagate it across the multi-scale model and measure its influence on the
global quantities of interest.

5.3.2. Algorithm for Analysis of Turbulence Model Aleatoric Uncertainties on
Global Plasma Parameters

In this part of the work, we suggest using a surrogate approach to capture aleatoric uncertain-
ties since this scenario requires a large number of micromodel solutions due to multiple time
iterations of the coupled system solution and sampling from an aleatoric uncertainty PDF.

One of the approaches would be to utilise a probabilistic surrogate for the micro-model and
sampling from its trained PDF whenever the evaluation of this model solution is required.

The other approach would be using an ensemble of surrogates, each providing mean values
for the solution.

Here we suggest and approach to first analyse the aleatoric uncertainties pal(qqq) of the
underlying model and sample possible QoI values qqqi ∼ pal(qqq) to create a set of possible
model behaviours for some set of independent variables values {sssj} coming outside of the
micromodel. This employs a set of datasets {(SSS, DDDi)} = {

(
{sssj}, {qqqi(sssj)}

)
}. Having such

an ensemble of possible micromodel evaluations, perturbed from its mean behaviour, each
represented by its own surrogate, one could run an ensemble of coupled simulation instances,
and then analyse statistics in global solution QoI due to aleatoric uncertainties.

This procedure requires having aleatoric uncertainties pal(qqq(sss)) analysed beforehand, which
is, in principle, possible due to the scale separation principle. The preliminary aleatoric uncer-
tainty analysis can be done by an analysis of independent micromodel aleatoric uncertainties
for a set of independent variable values, via fitting parameters of a pal(qqq(sss)) from some PDF
family, and then pal(qqq) generalised for any sss.

In this work, we fit such an aleatoric uncertainty for heat flux values Q(ρ) as a function of
kinetic profiles and magnetic equilibrium as Normal distribution, requiring specification only
of its mean µ[qqq(sss)] and standard deviation σ[qqq(sss)].

Procedure Steps

The following steps describe the procedure implemented in this work to analyse the influence
of aleatoric uncertainties of the turbulence model in the value of effective radial outward
turbulent transport heat fluxes Q(ρ) due to its local fluctuations in time on the quasi-stationary
profiles of the transport simulations using this turbulence model as transport parametrisation.
The steps of aleatoric analysis algorithm are described in listing 5.3.2:

1. Based on a finite set of plasma states {sss} described with its kinetic profiles and magnetic
equilibrium, realise a finite set of turbulence model solution function evaluations {qqq(sss)}

2. For every evaluation, estimate aleatoric uncertainty pal(qqq(sss)) and form a generalised
description for (marginal) aleatoric uncertainty pal(qqq) (here: as a function of radial
coordinate ρ but not plasma state sss)
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3. Prepare a set of perturbations of turbulent flux behaviour Q = {qj(·)}, based on the
general aleatoric uncertainty qj(·) ∼ pal(qqq)

4. For a plasma state of interest sss∗ and its epistemic uncertainty estimate pep(sss∗), prepare
a sample of perturbed plasma states S = {sssi}

5. Based on a full (tensor) product of sets of perturbations of turbulence model behaviours
and plasma states Q

⊗
S prepare a set of training datasets D = {Dj}, Dj =

(
Qj, S

)
,

Qj = {qj(sssi)} of all the model perturbations applied to all state perturbations

6. Train an ensemble of surrogates Q∗ = {qqq∗j (sss|Dj)} based on a set of different training
datasets D

7. Perform an ensemble of coupled transport-equilibrium-turbulence workflow runs, each
with its own turbulent transport parametrisation from Q∗, producing a sample of final
plasma states S f = {sssfin}, each with its own QoI values. Here, the primary QoI analysed
was ion temperature at the axis of a tokamak plasma y = Ti(ρ

norm
tor = 0)

8. Given the set of QoI values {y} for the final plasma states S f estimate its uncertainty
p(y) in terms of a finite number of central moments of it PDF. Here, we chose the first
statistical moments of mean, variance, skewness, and kurtosis

Such an algorithm depends on an assumption of ergodicity of the transport flux fluctuations
and on the existence of a correspondence of their distribution in time to a distribution over an
ensemble of possible perturbations. With such an assumption, it is possible to interpret the
algorithm’s results as the spread of core profile values over time during a particular discharge.

Also, the existence of general pal(qqq) from step 2 is a strong assumption as, in a general case,
we have to analyse such an aleatoric uncertainty as a function of sss.

Consequently, the product of two types of perturbation might not be applicable with a
strong correlation of the aleatoric uncertainty of turbulent model behaviour on plasma states,
and one should instead use a method to construct a dataset that accounts for this correlation.

Here, we calculate the core profile uncertainties with a Monte Carlo (MC) approach,
for which we perform sampling from the turbulence heat flux uncertainty using a Saltelli
scheme [49]. Due to the relatively small training dataset required for each of the surrogates
and, subsequently, a low computational cost to create one, one could afford to have a large
ensemble of surrogates, and MC integration is a suitable approach for such a situation.

Apart from providing a general tool for code behavior validation in terms of statistical tests
employing both experimental and simulation uncertainties, such uncertainty for p (Ti,e(ρ

norm
tor ))

can be used to answer more practical questions for the predictive simulations. For example,
one can use it to answer questions on risks associated with a discharge like what is the
probability that plasma will leave the previously established bound of stability Sstab ⊂ S:
P (sss(t) /∈ Sstab).

Moreover, one can propagate an uncertainty of this type to analyse two different types of
parameters. The first one is meant to capture physical properties and can be measured via
propagating a natural relative fluctuation of fluxes. This, with some assumptions on how
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easily fluctuations can propagate across scales, can serve as an estimate of the possible level of
fluctuations of profiles on the macro level. The second approach is statistical and, being more
sound, is meant to measure errors in a statistical sense. Propagation of error in the estimate
of mean flux value through the simulation estimates the statistical error in the computation
of core profiles due to the stochasticity of turbulence.

Algorithm Parameters and Run Results

The pal(qqq) were taken as normally distributed ∼ N (µal(ρ), σal(ρ)) with properties defined
via analysis of a finite set of GEM simulations for 8 different flux tubes for various core
profiles sampled from a priorly assumed pep(sss). To get the compound properties of such
aleatoric uncertainty as a function of ρ the µal(ρ) and σal(ρ), these values were marginalised
over the underlying distribution of core profiles pep(sssc.p.), conveniently reusing the surrogate
representation provided by the PCE expansions and the respective quadrature scheme
pal(qqq) =

∫
sss∈S pal(qqq(sss))dpep(sss) = ∑sssi

uiqqq(sssi). This way of getting aleatoric uncertainty in
turbulent flux values additionally introduces some dependence of aleatoric uncertainty on
the epistemic one, as the epistemic uncertainty pep(sss) serves as a prior distribution for the
aleatoric uncertainty pal(qqq).

The raw result of such analysis would be a sample of different final stationary core profiles
{sssc.p.

fin } for different surrogate as transport model, trained on a perturbed set of flux values.
A result for the coefficient of variation of turbulent fluxes CVal = 0.1 can be seen in the
figure 5.10.

Next, we present the aleatoric uncertainty analysis results for a finite set of GEM runs for 8
flux tubes, 4 uncertain quantities captured with PCE of order 2. Each heat flux time trace was
analysed according to the procedure discussed in 5.3.2. For each case, the autocorrelation-
time-window-averaged subsample was used to calculate the mean, standard deviation, and
coefficient of variation of flux value. Then, for each flux tube, we integrated out the local
values of profile quantities, which in the case of PCE representation means taking a sum
weighted with Gaussian quadrature coefficients. The results, serving as input pal(qqq) for the
aleatoric uncertainty analysis procedure are summarised in figure 5.11.

For these calculated values of µal[qqq(ρ)] and σal[qqq(ρ)] we executed the algorithm described
above and the resulting uncertainties of core profiles p(sssc.p.) are described in the figure 5.12.

A more detailed analysis judging by the figure 5.13 should go beyond the Gaussian
assumption for flux values aleatoric uncertainties and have a more nuanced model for
this distribution, parametrised by more than just µal and σal. A possible step would be
including nonstationary heteroschedastic uncertainty psurr(qqq(sss)) to a GPR surrogate for flux
as a function of core profiles or having a separate regression model for parameters of the
aleatoric uncertainty.

The software implementation of this procedure employed EasyVVUQ, EasySurrogate, MUSCLE3,
QCG-PJ libraries, a part of a toolkit suit developed within VECMA and SEAVEA projects [59,
138, 139]. Here, the EasyVVUQ [140] was used to define the aleatoric uncertainty pal(qqq), deter-
mine how to treat sssc.p. and qqq from the point of view of software implementation (CPO files
and data sets of respective values), as well as the sampling mechanism from the respective
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Figure 5.10.: A sample of final stationary core temperature profiles for different perturbed
transport models. The results are computed with an ensemble of GPR surrogates
trained on perturbed GEM0 data. Shades of red denote Te whether blue is for Ti.

distributions (here, as MC method with Saltelli sample [49]) and ways to compute expansion
weights and respective statistics. The EasySurrogate was used to train GPR models for sets
of qqq(sss) usable at turbulent transport model proxies in simulations. The MUSCLE3 [141] was
used as a coupling library for different components of MFW EQUIL(·), TRANSP(·) and
TURBsurr(·) solving a system of non-stationary equations for heat transport in a tokamak
plasma. Moreover, the QCG-PJ was used to manage multiple instances of workflows for
different variations of qqq(sss) as well as to manage different independent MFW component
instances.

The algorithm runs were performed at MPCDF’s COBRA supercomputer, each taking 4
nodes of 40 cores for about 4 hours of wall-clock time. Each run consisted of embarrassingly
parallel jobs with sequential parts corresponding only to the UQ overhead of preparing
samples, encoding, collating the results, and final analysis.

86



5. Multiscale Turbulent Transport Workflow Studies

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
norm
tor

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ea

n,
 W

/m
2

1e6 Mean Heat Flux
min-max
min-max
E[Qe] ± 1.96 STD
E[Qi] ± 1.96 STD

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
norm
tor

0.2

0.0

0.2

0.4

0.6

0.8

1.0

CV
, f

ra
ct

io
n 

of
 th

e 
m

ea
n

Marginalised Aleatoric Coefficient of Variation for Heat Flux Fluctuations
min-max
min-max
CV[Qe] ± 1.96 STD
CV[Qi] ± 1.96 STD

Figure 5.11.: On the left: mean of ion and electron heat flux E[Qe,i] of GEM for flux tube
turbulence simulations of AUG shot #28906, for different epistemic variations of
core profiles. Minimum, maximum, and 95% confidence intervals are given. The
confidence interval is computed with Gaussian assumptions as ±1.96σ[E[Q]].
The comparison of the extreme values and standard deviation shows a significant
skewness of fluxes towards higher values, with an anomalous peak at ρnorm

tor ≈
0.31. On the right: marginalised over plasma state coefficient of variation for
aleatoric uncertainty of ion and electron heat flux fluctuations E[CV[Q]] for GEM.
Its minimum and maximal values, as well as ±1.96 standard deviation errors,
are indicated. There is a significant spread between minimal and maximal values
of CV for variations of core profiles, as well as significant skewness towards
higher values, which is common for values from R0+.

Statistics for Core Profiles

Apart from studying the influence of aleatoric uncertainty pal(qqq) using estimates of flux
values fluctuations of GEM, we performed an analysis of such uncertainties in core profiles as
a function of variable uncertainties of flux values. Here we assumed a normally distributed
uncertainty of the flux estimate pal(qqq) ∼ N (µal, σal) with a variable coefficient of variation
CVal[qqq] = µal/σal and cast the uncertainty of tokamak core temperature as a function of these
coefficient of variation σ[Te,i|ρnorm

tor =0] = σ[Te,i|ρnorm
tor =0](CVal[qqq]).

Figure 5.13 is the result of scanning such a dependency across different values of CVal[qqq]
for normally distributed pal(qqq) and interpreting the results of the scan in terms of the mean
and standard deviation of the QoI at the crucial location of ρnorm

tor = 0.
The overall characteristic of such aleatoric uncertainty propagation is that significant varia-

tion of the transport fluxes Q̃
Q ∼ O(10−1) lead to much smaller uncertainties for temperatures

in the stationary state T̃
T ∼ O(10−2) even though turbulent model exposes significant fluc-

tuations. This optimistic result for practical applications could be attributed to a certain
strength of the system’s attraction towards an equilibrium core profile state and stability with
respect to perturbations. In this case, it happens due to a relatively simple parametrisation of

87



5. Multiscale Turbulent Transport Workflow Studies

0.0 0.2 0.4 0.6 0.8

250

500

750

1000

1250

1500

1750

2000

T,
 e

V

Stationary core profile temperatures for MFW 
 with GEM0 surrogate and its aleatoric flux uncertainty

Te ± 1.96 STD , CV[Q] = 0.05
Ti ± 1.96 STD , CV[Q] = 0.05
Te ± 1.96 STD , CV[Q] = 0.25
Ti ± 1.96 STD , CV[Q] = 0.25

Figure 5.12.: The core temperature profiles, red for electrons Te(ρ) and blue for ions Ti(ρ),
their 95% confidence interval and spread between minimal and maximal values
for AUG shot #28906 simulated with an ensemble of GPR surrogates based on a
set of perturbed GEM0 simulations.

turbulent transport, and for a model of higher fidelity with more non-linearity and higher
stiffness, the domination of convergence over uncertainty might not happen.

Further analysis shows a similar trend for various radial plasma locations as seen in fig-
ure 5.14. Furthermore, with the radial coordinate moving outwards, the absolute uncertainties
decrease, and relative ones increase.

The standard deviation of core profiles in the simulation’s stationary state uncertainties
due to turbulent transport aleatoric uncertainty is higher in the inner core and stronger for
electrons, as shown in figure 5.15. In relative terms, however, the uncertainty for the outer
plasma core is higher and is higher for ions than electrons due to normalisation on smaller
values.

As a next step, we performed the SA in terms of total Sobol indices for fluctuations of heat
flux at different flux tube locations Qe,i(ρ). We measured sensitivity indices for the fractional
influence on the temperature values as the tokamak axis Te,i|ρ=0 using bootstrap methods
for the Saltelli MC sample. The result of such analysis in figure 5.16 shows that on-axis ion
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Figure 5.14.: Standard deviation and coefficient of variation for stationary core temperature
profiles as a function of aleatoric transport flux uncertainties.

temperature is strongly influenced by ion heat flux value close to the core of the plasma, and
other heat fluxes influence on-axis temperature uniformly across the radial coordinate (which
might be due to the disadvantages of the statistical method).

For the results of the algorithm for a variable CV[Q], a more detailed analysis that goes
beyond the first two moments of the QoI values shows some further properties of profile
uncertainties arising due to aleatoric uncertainties of transport flux models. Here, we
performed Kernel Density Estimation (KDE) for the sample of Te,i(ρ = 0) as well as per-
case analysis. The density fit displayed in the figures 5.17 shows that such an aleatoric
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Figure 5.16.: Total Sobol indices for heat fluxes at different radial locations influencing the
ion (left) and electron (right) temperatures at the very tokamak core ρ = 0.

uncertainty can be distributed non-normally with a significant skewness and, furthermore,
be multi-modal, with stationary profiles sssc.p. clustered around several key profile shapes.

Due to the nonlinearity of the dependency of the global system solution on micromodels,
the estimates of uncertainties in global QoIs could be a non-trivial non-linear function of
the input aleatoric uncertainties. The nonlinearity can lead to the loss of normality of QoI
distributions even given normally distributed independent input variables.
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Figure 5.17.: KDE fit of Te(ρ = 0) and Ti(ρ = 0) for different perturbed turbulent transport
models and different aleatoric uncertainty of those. Crosses denote the individual
readings. The smaller uncertainty in fluxes yields more peaked uncertainty
of the core’s temperature and has lower mean values. After a particular flux
uncertainty value, the overall spread starts increasing. Furthermore, multi-modal
non-Gaussian distributions of core temperatures arise. For both temperatures,
there is a some skewness towards smaller values. Also, core ion temperature
uncertainty significantly peaks more than electron one. The described algorithm
used surrogates based on perturbed GEM0 data.

5.4. Aspects of Computational Cost-benefit Analysis. Gain and
Profitability of Surrogate Approach

Creating a surrogate requires a sufficient amount of data to regress the studied model
dependencies over parametric regions of interest. In a vast majority of practical applications,
no preliminary data suitable for a given problem is available. Regardless of the methodology
of the design of numerical experiments, one should perform a finite number of simulations
to get a sufficiently large sample of model solution function evaluations. For high-fidelity
codes, the computational cost of a single simulation could be significant, which leads to a
rise of practical questions about whether applying a surrogate approach would require fewer
computational resources than solving the problem with an expensive simulation in a loop.
Apart from the question of how to design numerical experiments to get the data required to
solve the problem as cheaply and efficiently as possible, one should also compare the total
cost of data acquisition for a surrogate with the cost of a direct solution. A further feature of
high-fidelity cost utilisation is that the solution of this model dominates the computational
cost, and other steps of algorithms, like resolving the largest scales, performing optimisation
steps, training, or calling regression models, introduce only a minor additive correction in
the cost estimate. This does not affect, however, the cost and complexity of the version of the
algorithm that uses a code or a surrogate as its step. The cost of an algorithm is understood
as a function of the number of DoFs that define the model’s behaviour on the level necessary
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to solving the given problem.
In this work, the problem that requires multiple solutions of a model is forward uncertainty

quantification for coupled transport simulations depending on turbulent fluxes. The most
expensive micro-model is the model for turbulent processes, which is affected by a number
nm of parameters describing the state of the plasma sss. Usually, turbulent behaviour is defined
by driving terms like gradients in the system. In this work, as we study heat fluxes in
flux tube approximation, we analyse the influence of nm = 4 parameters on turbulence:
Te,i,∇Te,i. In order to create a surrogate, one should express the dependency of QoI on the
most essential nm parameters in sufficient accuracy. In this work, we performed studies
using a PCE method of order p = 2 for the GEM model and p = 4 for the GEM0 model,
using a tensor product of grids of independent scalar parameters. This requires, in our case,
a total number of runs (simulations) nm

r = (p + 1)nm = 34 = 81 as a baseline number to
capture the dependency of the model for any given situation for a single flux tube with
nf.t. = 8 flux tubes to capture radial dependency of turbulence for AUG. Furthermore, we
perform a convergence and aleatoric uncertainty analysis for every simulation of turbulent
fluxes, which requires different durations of simulations. Still, on average, every run required
nm

t.st. ≈ 2000 internal time steps to estimate mean flux values and their uncertainty. Each
of the time steps was performed using nc = 32 of COBRA cores and requiring tt.st. ≈ 0.25
hours with good scalability and a small fraction of cost for non-parallelisable overhead.
This leads to a computational cost of a single time step CGEM−t.st. ≈ 8 CPUh, on average
approximately CGEM = nm

t.st. · CGEM−t.st. ≈ 16 kCPUh for a single GEM simulation and totally
CGEM−DS = nm

r · CGEM ≈ 10 MCPUh for a dataset to create a surrogate.
On the other side, the epistemic uncertainties of the coupled workflow on the scale of the

largest macro model are defined by several nM DoFs. In our case, the turbulent transport
simulations on the scale of core kinetic profiles are defined by models for boundary conditions
and right-hand side of equations, or sources and sinks, more precisely in this case, meaning
the boundary conditions for temperatures at the edge of the plasma TBC and sources of
energy in the inner parts of plasma SE. This is a simple case that can be parametrised with
nM = 6 scalars: ion and electron temperatures at the edge of the plasma TBC

e,i , total integral
source heat in ions and electrons Qtot

e,i and the position H0 and width Hw of a Gaussian
heating profile. In a previous work [123], an analysis of sensitivities to these parameters,
considered as having Normal uncertainties with CV = 0.2 coefficient of variation, was
performed for an MFW version with GEM0 as a turbulent transport model. Performing
the same analysis with GEM instead of GEM0 would, for a single run, require around
nM

t.st. ≈ 7500 time steps which requires about CMFW = nM
t.st. · CMFW−it. ≈ 97 kCPUh. A forward

uncertainty PCE analysis of complexity nM
r = (p + 1)nM with the same p = 2 would require

thus CMFW−UQ = nM
r · CMFW = 70.9 MCPUh

In general, this leads to the estimate of the computational profitability of the surrogate
approach in the case when the total cost of creation and usage of a surrogate is less than the
total cost of solving a problem using simulations with the original model:

fC =
C1

C2
=

Csurr + csurr−o.h.

Cm
WF + cWF−o.h.

≈ CGEM−DS

CMFW−UQ
< 1 (5.2)
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The cost of surrogate creation is expressed as Csurr = NL(nm, θref) · Cm where the cost
of the micro-model (turbulence) run is expressed in terms of number of time steps and a
time step atomic cost Cm = nm

t.st. · cm
t.st.. The NL(nm, θref) is the complexity of the surrogate

learning algorithm in terms of number of function evaluations required, which could be
a non-trivial function of number of micro-model parameters nm and algorithm refinement
parameters θref. For a simple case that does not utilise any dynamic information about the
problem, e.g., a full-product-grid quadrature bases method, this complexity is exponential in
the number of parameters and, in the case of the PCE algorithm version used in this work,
it is NL(nm, p) = (p + 1)nm . A variation that uses polynomials only up to degree p uses a
slightly smaller combinatorial complexity of (p+nm)!

p!·nm ! . In this work, the number of internal
solution time steps for a single case nm

t.st. is also a non-trivial function of the parameters of
the micro-model due to the presented convergence analysis, however, in this cost analysis,
we are using average values n̄m

t.st.. The cost of the single solution step cm
t.st. also depends on

multiple factors, including the physics and the level of the fidelity of the model, the level of
the refinement in terms of internal DoFs, the numerical approach and the HPC hardware and
configuration, which is left out of the scope of the presented analysis and with only empirical
average values used. The cost of the surrogate usage as a part of the simulations, as well as
the cost of the surrogate training (in terms of incorporating the existent simulation data in
the surrogate), is considered to be a subdominant cost overhead, which, however, in some
cases may still have a significant contribution.

The determinant part of the expression denotes the cost of the direct solution that does
not include the cost of the surrogate expression and is dominated by the cost spent on the
micromodel evaluations Cm

WF dependent on the algorithmic complexity of the problem itself
and the cost of the micro-model Cm

WF = Nprob · Cm. In the previous example, however, the
problem considered is the forward uncertainty propagation using the full-product grid for
the uncertain parameters, meaning the same type of algorithmic complexity, which, however,
here depends on the parameters of the macro-model and workflow on the largest scale
Nprob = Nprob(nM, p). The part of the cost spent outside the expensive macro model is
considered to be a more negligible overhead. Furthermore, the surrogate-related overhead
cost csurr−o.h. usually includes a term that is proportional to the complexity of the problem
Nprob. However, the multiplicative factor of the single function evaluation cost for a surrogate
is much smaller than the one for a physical model Csurr � Cm.

In our case, given a small overhead related to operations and models other than the
most expensive one csurr−o.h. � Csurr and cWF−o.h. � Cm

WF, performing UQ with or without
surrogate is computationally beneficial by a factor of fC ≈ 10 MCPUh

70.9 MCPUh ≈ 0.14.
Having in mind this computational cost comparison, it is worth noting that a surrogate

approach is practical only in cases of a sufficiently expensive problem requiring simulation-in-
the-loop, and for simple cases requiring only a few simulation instances, surrogate creation
might not be worthy when fC > 1. However, for more ambitious problems requiring analysis
with respect to a large number of macroscopic parameters nM and a high level of chosen
algorithmic complexity, chosen by θref, the surrogate approach might be a necessity if one
can achieve fC � 1. The figure 5.18 shows the analysis of situations where performing UQ is
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more cost-beneficial with surrogate models. However, none of the cost analyses presented in
the expressions or plots considers the trade-off with the surrogate quality. This is supported
by the practical experience during the work that the surrogate, once trained with a finite
resolution, e.g., pm ≥ 2, can approximate the workflow solution well enough. This experience
leads to the further conclusion that for a given workflow, the biggest challenge for any
parametric study is the curse of dimensionality and not the complexity of the dependency.
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Figure 5.18.: The analysis of the cases for different numbers of models’ independent parame-
ters n and refinement of the algorithm (polynomial order p). The first plot shows
cost dependence of cost on the polynomial order C(p) for different parameter
numbers n — there are situations for large turbulence micro-model parameters
when it is no longer suitable to use surrogates. In the default workflow formula-
tion used in this work with nm = 4 and nM = 6 and for the given UQ procedure,
the usage of surrogates is beneficial with a large margin for any computationally
feasible resolution of all the parameters (marked by Cmax = 1 GCPUh in the
plot). Furthermore, the inclusion of 2 additional equally well-resolved channels
into a surrogate, be it densities ne,i or equilibrium 1D profiles q and gm3, would
still lead to surrogate approach cost justification. The second plot shows a heat
map of cost fraction fC(pm, pM) as a bivariate function of polynomial order of
analysis for micro-model (turbulence) pm and macro-model (workflow) pM. It is
beneficial to apply a surrogate for all cases but a high resolution of micro-model
dependencies with its surrogate.

A further important aspect is the cost amortisation of the surrogate model, which in this
context means the further utilisation of the surrogate model for different problems in order to
save computational cost on performing high-fidelity simulations. In practice, that means that
having a sufficiently accurate and general surrogate, meaning having a high expressivity and
a high coefficient of determination (and small validation errors) for a wide distribution of
parameters, can computationally be very profitable. Having such a well-trained and validated
surrogate, one should choose further problems P to solve with the surrogate to make it more
worthy of creation. In terms of the cost factor, this would mean enlarging the determinant by
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using multiple problems f = Csurr+csurr−o.h.

∑i∈P(Cm
WF,i+cWF−o.h.,i)

.

The further advantage of the surrogate is in the wall-clock time requirement to analyse a
particular situation, e.g., tokamak discharge. Using a computational workflow like MFW with
an expensive high-fidelity turbulent transport model requires a particular time for solving
and predicting profiles, which may not be reduced to the final scalability of the code. On
the contrary, producing data for surrogate requires significantly less turbulent transport
simulation time, e.g., in the presented case nGEM

t.st. ≈ 2000 < 7500 ≈ nMFW
t.st. . Given a sufficiently

large amount of instantly available computational resources, the wall-clock time of producing
a result with a code in a workflow and with a surrogate in a workflow will be proportional
to the number of time steps of the most expensive model needed to obtain the required
information. Such an embarrassing parallelisation might not be true if one uses an AL scheme
that approaches training data acquisition from simulation sequentially, with a surrogate
update on every step of a process. In an example, where a surrogate is trained to fit well for
specific flux values, the preparation of the surrogate will require wall-clock time equal to
several convergence times of surrogate code simulation. Given the approach presented in this
section, predicting a tokamak discharge stationary kinetic profiles using GEM in MFW takes
∼ 95 h on 1024 cores. In contrast, preparing a surrogate would take ∼ 26 h, leaving days to
research and modelling a discharge using surrogate-based simulation, which might be crucial
in planning experiments.

5.5. Chapter Summary

This chapter presents the uncertainty quantification algorithms that involve an entire multi-
scale workflow. We presented the turbulence manager modification of the MFW that allows us
to dynamically choose different implementations of a model for turbulent flux computation
and switch to high-fidelity turbulence code utilisation if the surrogate trustworthiness is
too low. Furthermore, the chapter presents a procedure to update surrogates based on the
evolution of the quantities computed by the entire workflow and its benefits, limitations,
and implications. It discussed an algorithm utilising surrogates that quantify the influence
of aleatoric uncertainties in fluctuating flux values on the computation of stationary core
profiles of tokamak plasmas. Finally, we discussed the justification of the surrogate approach
to uncertainty quantification algorithm in multi-scale simulations from the point of their
computational cost.
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This chapter summarises the work performed in the scope of this thesis, discusses the
questions left open, and outlines the possible direction for future research.

6.1. Summary

This work overviews how uncertainty considerations could be introduced in plasma physics
simulations, how these uncertainties can be quantified, and how to develop algorithms for
such uncertainty analysis that utilise computing power effectively.

One of the types of uncertainty considered in this work is aleatoric uncertainty, which is
an irreducible uncertainty due to chaotic or stochastic fluctuating behaviour of the physical
system. Here, we analyse how turbulent heat fluxes behave on the microscopic time scales
and suggest a way to characterise fluctuations for quasi-stationary states, as well as a
way to determine statistical errors in the estimation of the effective level of fluxes that
allows for saving compute time by controlling the simulation duration. An algorithm for
sequential analysis of flux time traces was developed and applied to an ensemble of 3D
nonlinear electromagnetics gyrofluid code GEM runs, which identified that via the analysis
of convergence of estimates of the errors of the mean for fluxes, it is possible to save up to
50% of computational resources compared to the default applied approach.

The other type of uncertainty we consider is epistemic, which arises from a lack of knowledge
of the model and its parameter values. In this work, we used Polynomial Chaos Expansion
to analyse how uncertain values of kinetic profiles of a tokamak core plasmas can influence
turbulence and effective anomalous transport, as well as how such uncertainties can propagate
through a system of non-stationary equations describing the transport of heat in a tokamak.
The performed study also allowed us to apply sensitivity analysis for turbulent flux values,
quantitively recovering the most important parameters influencing turbulence. We created a
software workflow to propagate uncertainty, collect and store data from ∼ 1000 high-fidelity
plasma turbulence simulations, analyse the produced time traces, and quantify parametric
uncertainties. The study recovered that the turbulence model GEM can amplify uncertainties
in profile, translating them into ∼ 12 times larger uncertainties in fluxes. For the studied
cases, ∼ 40% of flux variation could be attributed to ion temperature gradient uncertainty,
with a variation depending on flux tube location ρtor and magnetic geometry, with ∼ 20%
attributed to the interaction of profiles’ parameters.

This work studied an approach to decrease the computational expense of performing un-
certainty quantification in turbulence simulations and running multiscale turbulent transport
simulations, which is the surrogate approach. We focused on the inference of the likelihood of
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radial heat flux values based on a space of plasma described by core kinetic profiles using
Gaussian Process Regression models based on a data set of plasma turbulence simulations.
We implemented a GPR extension for the EasySurrogate library [136] capable of collecting
turbulence simulation, training and tuning an ensemble of ML models using HPC resources,
validating and testing the performance of surrogates for flux value inference, and their
utilisation and active learning coupled to multiscale turbulent transport simulations. The
resulting surrogate models reached the coefficient of determination quality level of R2 ≈ 0.99,
which was, in practice, sufficient to capture the studied dependencies.

Furthermore, the surrogates were applied as a replacement for the numerical turbulence
solver in the coupled workflow for the turbulent transport problem. We modified the
simulation workflow capable of tracking the fidelity of surrogate prediction, identifying its
high epistemic uncertainties, avoiding switching to an extrapolation regime, and dynamically
choosing between surrogate or numerical code flux calculation. Moreover, we implemented
a surrogate tuning procedure that allowed us to retrain the surrogate based on the profiles
produced by multiscale simulations, which allowed us to use surrogates to predict steady-
state tokamak core temperature profiles within 1% error compared to the ones computed by
multiscale workflows using the turbulence code that produces the data for the surrogate.

Finally, we implemented a surrogate-based algorithm to quantify the influence of aleatoric
uncertainties in turbulent flux calculation on the prediction of core kinetic profiles. The
studies performed by the algorithm allowed us to observe a 2− 8 times decrease in relative
uncertainties in profiles for higher uncertainties in computed flux values and to assign
consistent uncertainties of predicted core profiles based on simulations.

6.2. Outlook

The data set of high-fidelity turbulence simulations used to train surrogates was limited
due to the high computational cost of simulations. There are strong indications that it does
not represent the turbulent transport behaviour on a large enough domain of parametric
space to be confidently used for AUG profile predictions. For future work, capturing larger
regions of interest with a higher variability of parameter values would be beneficial. However,
due to the high computational cost of simulations and high dimensionality of the transport
dependency, the particular choice of experimental design for new simulations to populate the
training data set should use physical considerations and approaches for surrogate learning
discussed in this work. For instance, the MFW simulations demonstrated that the range
of ion temperature gradients, especially for the intermediate values of radial coordinate, is
insufficient and should be expanded, which can be formally included in the learning process.
Furthermore, the surrogates would benefit from including information on dependency on
more physical parameters.

One of the parts deliberately missed in this work is the question of particle transport. It
is believed, on a rather qualitative level, that it is essential for methodology development to
have characteristics similar to those of heat transport. One of the following steps should be
applying the same methodology to heat transport to get an idea of whether the same methods
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are applicable to it and to more physically consistent simulations of both heat and transport
in a multiscale workflow.

Including density parameters and particle flux, or other physical quantities, will increase
the effective dimensionality of the problem, which leads to several complications. One is
the need to decrease the dimensionality dependency of transport, meaning finding a smaller
number of parameters that influence it the most. The dimensionality reduction question was
touched upon a number of times in this work, and several approaches to it were suggested.
One is based on utilising SA to resolve some of the parameters in less detail or completely
discard the influence of their variation. The other related method would be to use explicit
knowledge of the correlation among dependent and independent parameters. In this work,
uncertainty propagation methods assumed probabilistic independence of input parameters,
and none of the methods explicitly leveraged the reduction of complexity that comes with
correlation. Related to this, one may have a different choice of the independent parameters
influencing turbulent transport, using the expectations provided by physical theory and
experiment. Also worth applying are model reduction methods based on other principles,
like linear and nonlinear dependency analysis: SVD, VAE, DAS, and other methods.

The surrogates presented in this work could be improved in multiple ways. The GPR
applied to model turbulent transport can benefit from more explicit utilisation of physical
knowledge, which includes adding information on the model’s gradients or knowledge on a
different character of dependency for different domains of parametric space corresponding to
different dominant types of turbulence. Furthermore, the GPR model could be modified to
accommodate non-stationary heteroscedastic noise properties.

The inclusion of more independent parameters, entailing the effective increase of problem
dimensionality, may require significant reconsideration of the types of surrogates applied.
There are many ways to include more information in the surrogate, but training it not only on
the statistics of the simulations but also on finely resolved data which may require employing
parametric machine learning methods like Deep Neural Networks for surrogates. Such a
surrogate may benefit from a multi-fidelity approach, assimilating data from solutions of the
same problem using codes or resolutions of different fidelity.

Higher dimensionality may lead to the need for explicit utilisation of the sensitivity of the
model, data correlation, and effective representation of the space of independent parameters.
A possible approach to that, while pertaining to the probabilistic nature of the surrogate
model, would be combining the ideas of DL and Gaussian Process Regression. This could
be done via BNNs, explicitly encoding probabilistic relationships between layers. The other
types of probabilistic models, in the sense of their ability to predict uncertainties, could be
applied, including VAEs, which are suitable for nonlinear dependencies, search for small
latent spaces, and work with correlated data. Furthermore, one can apply Deep Gaussian
Process regression, forming a composition of several GPR models. Another approach would
be to apply a DNN model to express the covariance function in the high-dimensional input
space and serve as a GPR model component.

This work primarily considers the global properties of the model, including broad regions
of interest and independent parameter distributions. The other approach would utilise more
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local data, meaning the gradients of the model with respect to its parameters. Having a fully
differentiable numerical model with access to the Jacobians allows the use of derivative-based
sensitivity analysis and advanced methods of variational inference, which can significantly
save computing resources.

6.3. Discussion

One of the questions arising is the applicability of the presented methods to a broader variety
of cases and ways of including uncertainties that appear due to the variability of a larger
number of parameters.

For example, the influence of equilibrium magnetic geometry is not considered in detail in
this work. On the one hand, it is based on prior knowledge, which is an aspect that weakly
influences plasma turbulence. However, from the other side, the evolution of equilibrium
distributions is present in the solution of non-stationary cases, and a finite change of turbulent
transport fluxes due to equilibrium variation was observed in this work alone. Thus, a more
complete approach would require analysing uncertainties due to equilibrium and including
more equilibrium effects in the surrogate, both of which are complicated due to a large
number of degrees of freedom used for a parametrisation of equilibrium magnetic geometry.

Also, applying the approach to capture uncertainties accounting for a significantly more
significant number of parameters could benefit from quantitatively discriminating them by
their importance and influence on the QoIs. In such cases, algorithms that utilise sensitivity
analysis to rank and classify the parameters by importance and choose their variability
level or the accuracy level of capturing dependency on these parameters may be beneficial.
These approaches include an adaptive sparse grid that uses sensitivity metrics to refine the
resolution of a subset of parameters by adding more quadrature points to the grid.

Furthermore, analysis of an arbitrary discharge (and of different devices) would require
starting all the computational workflows from scratch due to an inherently local and biased
understanding of uncertainties.

Considering the question of surrogates, even though one would like to reuse as much
information on the parametric dependency of the model, creating a single surrogate that will
capture the plasma turbulent transport for arbitrary situations is still very expensive and often
not needed in practical applications. One of the approaches would be to create a surrogate for
a particular device, discharge, or otherwise case with a large number of parameters practically
fixed and use such a surrogate in a very targeted manner. Such an approach would save a
lot of computing power required to collect training samples for such a surrogate. Also, it
can trade a level of generality of a surrogate to increase its accuracy. Using a more targeted
surrogate, however, would require a higher level of algorithmic automation of collection of a
sample of numerical solutions to train a data-based model on, and the process of its active
training and fine-tuning according to criteria that a problem, e.g., quantifying uncertainty for
a particular discharge, is requiring.

Some intermediate approaches that assume the usage of a general surrogate, fine-tuned
via an active learning process coupled with a simulation workflow, could be a possible way
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to get both good generality and accuracy and save the total computing resources the most.
The combination approach would highly benefit from an effort towards creating foundational
models coupled with the data from high-fidelity numerical models for computationally
expensive plasma physics problems, especially the problem of turbulent transport.

At the moment of writing this work, the inherently complicated nature of plasma physics
modelling and the high computational cost pose significant challenges for creating machine
learning surrogates based on high-fidelity simulation data. However, the immense potential of
this approach gives significant promises for the surrogate-based modelling of future devices
or experiments and provides incentives for future research in this field.
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A.1. Uncertainty Propagation

To perform uncertainty propagation of some random input variable through a model and
analyse the uncertainties in its solution, one is required to perform the following steps
described in A.1.

1. Define input parameters xxx

2. Define PDF type and parameters for inputs p(x)

• In the general case, it could be defined as a joint probability distribution, but in
the vast majority of applications, a number of independent input components are
assumed p(x) = ∏i p(xi)

• In notation of EasyVVUQ and used by it ChaosPy library those are vary and
distribution objects

3. Define the model’s QoI or outputs yyy

4. Define how the program implementations can read and modify its inputs and outputs

• In EasyVVUQ terminology it is equal to definition of Encoder and Decoder

5. Define the model to express uncertainty.

• This requires the definition of the sampling scheme as well as its effective sample
size and fidelity

6. Defining the program implementation of the studied model and its parameters

• This requires specifying the program executables as well as managing all its
dependencies, like input files, libraries, environments, etc.

• An important step is specifying the means to parallelise the execution of solution
for multiple model instances: how to run multiple programs, its parallelisation,
and the resources required for a run

7. Definition of the analysis procedure

• This includes definition of what statistics over output yyy shall be computed and any
additional steps; this corresponds to Analysis objects of EasyVVUQ

• Generally, the type of the analysis is bound to the uncertainty expression model
and the respective sampler
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The uncertainty propagation performed in this work was done using the EasyVVUQ Python
library [142]. The details of the steps were given while keeping in mind the implementations
of this library and are depicted in fugure A.1 using the EasyVVUQ terminology. However,
they are typical for any software designed for forward uncertainty problem solutions.

Figure A.1.: A visual explanation of the steps and program element required to propagate
uncertainty through a numerical code.

A.2. Consistent Physical Objects and Their Modification

The basic unit of data storage and exchange in this work is a CPO [125]. It is a data structure
consisting of a hierarchical tree of dictionaries, where labels describe the physical quantities or
their categories, and leaf elements describe their values. The values can be scalar 0D numbers,
1D array for quantities with a radial dependency, or 2D array for quantities depending on
radial coordinate and poloidal angle. This data structure describes the physical state of
a tokamak plasma, or its evolution, and ignores toroidal dependencies. Several different
CPO types describe different physical processes, and in this work, we mainly use CPOs of
coreprof, equilibrium, and coretransp types.

The CPO format can be serialised as ascii format files, in binary format, and deserialised
into Fortran of Python objects.

In this work, we were interested in specifying a variation of a plasma state, described via
a number of radial profiles, to capture the epistemic uncertainty of plasma. This was done
on the level of modification of coreprof CPO, serving as an input to the turbulence code.
Due to the consideration of local turbulence in flux tube approximation only, this required
us to modify the corresponding profile values and their gradients (Te, Ti, ∇Te, ∇Ti) in the
neighborhood of the flux tube located at a specific value of radial coordinate ρnorm

tor . The flux
tube turbulence model considers a single value of the background temperature and a single
value of its gradient, meaning it is sufficient to present the profile as an interval of line.

Dealing with uncertainties in 1D profiles, we utilised the local turbulence model to trans-
form the problem into describing the uncertainties of scalar variables for quantities at fixed
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values of radial coordinate (Te,i(ρ), ∇Te,i(ρ)). This allowed to specify uncertainty of a particu-
lar probability distribution for separate scale random variables and sample according to the
chosen scheme Tpert

i ∼ p(Ti|θθθ), then collecting a sample of the modified scalars {Tpert
i }.

Due to the employed 3rd order Lagrange interpolation to compute the gradients and their
profiles, and due to different radial grids for turbulence (8 flux tube locations for AUG
tokamak) and transport (100 points for radial coordinate) we required to linearly extrapolate
the specified temperature quantities using the radial gradient value onto the 4 neighboring
points. Then, without loss of generality, the workflow will interpolate the profiles onto the
location of the flux tube and afterwards interpolate the transport coefficient on the transport
radial grid using Lagrange interpolation.

This core profile uncertainty encoding process is described in the pseudocode scheme 2.

Algorithm 2 CPO coreprof encoding

1: For given flux tube location ρf.t., interpolate the default profile value Tdef
e,i (ρf.t.) and its gra-

dient ∇Tdef
e,i (ρf.t.) using Lagrange interpolation LTe,i(ρ) = ∑

p
j=0 Te,i(ρj)∏0≤m≤k,m 6=k

ρ−ρm
ρj−ρm

of
order p using profile radial grid points ρi=0..p, and respectively the derivative of Lagrange
interpolating polynomial ∇ρLTe,i(ρ) = ∑

p
j=0 Te,i(ρj)∏0≤m≤k,m 6=k

ρ−ρm
ρj−ρm

∑k
i=0,i 6=k

1
ρ−ρi . Here:

for most of the uncertainty PDFs p(·|θθθ), for given ρf.t. it serves as the parameter of mean
value µ

2: Sample the profile and gradient values Tpert
e,i (ρf.t.),∇Tpert

e,i (ρf.t.) ∼ p(Ti,∇Te,i|θθθ) . Here:
we use Normally distributed uncertainty ∼ N (µ, σ2) and PCE sampling using Gaussian
quadrature nodes

3: Find p + 1 points P = {ρc.p.
i=1..p+1} of profile grid nearest to the ρf.t. via bisection algorithm

. Here: p is the order of interpolation polynomial
4: Compute the linear extrapolation for the perturbed segment of a core profile ∀ρ

c.p.
i ∈ P :

∇Te,i(ρ
c.p.
i ) = ∇Tpert

e,i (ρf.t.), Te,i(ρ
c.p.
i ) = Tpert

e,i (ρf.t.) +∇Tpert
e,i (ρf.t.) · (ρc.p.

i − ρf.t.)

5: Replace the corresponding readings of the CPO object using the resulting Te,i(ρ
c.p.
i ) and

∇Te,i(ρ
c.p.
i ), pass it to the turbulence code

Figure A.2 shows a result of such encoding and profile modification for a single flux tube
at ρnorm

tor ≈ 0.66 using a sample of 16 perturbations.
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Figure A.2.: A sample of 16 different variations of ion temperature Ti profiles based on an
AUG shot. Petrutbation was done for a flux tube at the ρ value shown in the
dashed line. The colored lines indicate different profile variations. The black dots
indicated the actual values used by the transport code at its radial grid.
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BNN Bayesian Neural Network. 35, 66, 98

BO Bayesian Optimisation. 37, 38, 66, 106, 108

CFD Computational Fluid Dynamics. 23, 37

CPO Consistent Physical Object. 41, 47, 48, 102

CV Coefficient of Variation. 58, 89, 111

DAS Deep Active Subspace. 47, 98

DL Deep Learning. 35, 98

DNN Deep Neural Network. 35, 98

DoF degree of freedom. 3, 7, 13, 23, 24, 35, 47, 91, 92, 93

ETS European Transport Solver. 41, 42, 47

FFNN Feed-forward Neural Network. 67
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97, 98, 106, 108, 110, 111
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ITG Ion Temperature Gradient. 4, 45, 53, 59
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KDE Kernel Density Estimation. 89, 91, 111

MC Monte Carlo. 6, 23, 26, 27, 84, 86, 88

MCMC Markov Chain Monte Carlo. 27, 34

MD molecular dynamics. 22, 28

MFW Multiscale Fusion Workflow. 39, 40, 47, 49, 50, 51, 52, 63, 71, 72, 74, 86, 92, 95, 97, 106,
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MMSL Multiscale Modelling Simulation Language. 15

NS Navier-Stokes. 3, 36

PCA Principle Component Analysis. 47

PCE Polynomial Chaos Expansion. 23, 24, 26, 28, 55, 57, 58, 59, 60, 61, 85, 92, 93, 107
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srRMSE Symmetrised Relative Root Mean Square Error. 76, 78, 110

SVD Singular Value Decomposition. 47, 98

UAF Uncertainty Amplification Factor. 58

UQ uncertainty quantification. 5, 7, 28, 65, 67

VAE Variational Autoencoder. 47, 98
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