

Technische Universität München
TUM School of Computation, Information and Technology

Modeling Planning, Control, and Scheduling of Cyber-
Physical Systems for Reinforcement Learning

Mirco Maurice Theile

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung eines

 Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Matthias Althoff

Prüfende der Dissertation:

1. Prof. Dr. Marco Caccamo

2. Prof. Dr. Samarjit Chakraborty

3. Prof. Miroslav Pajic, Ph.D.

Die Dissertation wurde am 16.04.2024 bei der Technischen Universität München eingereicht

und durch die TUM School of Computation, Information and Technology am 25.06.2024

angenommen.

ii

Abstract

Modern cyber-physical systems (CPS) are becoming increasingly complex, motivating
data-driven techniques such as reinforcement learning (RL). Despite significant advances
in recent years, the real-world applicability of RL is still very limited for many reasons,
including exorbitant data requirements and safety concerns. This thesis is motivated by
the development of a long-endurance solar unmanned aerial vehicle (UAV), the UIUC-
TUM Solar Flyer, and the opportunities for improving its performance and capabilities
through RL. Therefore, it investigates how to apply RL to three branches of CPS:
Planning, Control, and Scheduling.

For planning, the thesis explores path planning for UAVs, with applications in coverage
path planning and path planning for wireless data harvesting in grid-world scenarios.
The problems are solved using map-based observations of the environment and RL agents
learning to generalize over different targets, battery states, and number of agents. In
control, the problem of real-time online learning is addressed through a cloud-edge
training architecture. Furthermore, the thesis discusses an action mapping approach that
can allow the integration of safety models into the learning process in continuous action
spaces. It further shows how to enable it by learning to generate all feasible actions.
The scheduling problem is addressed by formulating task-sets as directed acyclic graphs
(DAGs) and creating static schedules by adding edges to the DAGs.

In conclusion, this thesis aims to answer the following questions for RL in CPS: (i)
how to make the problems observable to enable generalization, (ii) how to include existing
knowledge to accelerate training, and (iii) how to make sure that the solutions of RL
are valid and safe. It paves the way for applying RL to real-world CPS, among others,
enabling the future development of an intelligent version of the solar UAV.

i

Abstract

ii

Contents

Abstract . i

Contents . iii

List of Publications . vii

1 Introduction 1

1.1 Cyber-Physical Systems and Reinforcement Learning 1

1.2 UIUC-TUM Solar Flyer . 3

1.2.1 Development . 4

1.2.2 Results . 7

1.3 Example Application: UAV-based Digital Agriculture as a Service 9

2 Reinforcement Learning Background 13

2.1 Markov Decision Process . 13

2.2 Reinforcement Learning . 14

2.2.1 Foundational Equations . 15

2.2.2 Q-Table Learning . 16

2.3 Deep Reinforcement Learning . 16

2.3.1 Deep Learning . 17

2.3.2 Function Approximation in RL . 17

2.3.3 Parameterization and Reparameterization Trick 18

2.3.4 Challenges of Function Approximation in RL 18

2.4 Deep Reinforcement Learning Algorithms 18

2.4.1 Deep Q-Learning . 19

2.4.2 Double Deep Q-Learning . 20

2.4.3 Deep Deterministic Policy Gradient 21

2.4.4 Twin Delayed Deep Deterministic Policy Gradient 21

2.4.5 Soft Actor-Critic . 22

2.4.6 Proximal Policy Optimization . 24

2.5 Summary . 25

iii

Contents

3 Unmanned Aerial Vehicles – Fixed-Wing Aircraft 27

3.1 Trajectory Estimation for Geo-Fencing Applications on Small-Size Fixed-

Wing UAVs . 28

3.2 uavAP: A Modular Autopilot Framework for UAVs 36

4 Reinforcement Learning for Map-based Path Planning 61

4.1 UAV Coverage Path Planning under Varying Power Constraints using

Deep Reinforcement Learning . 62

4.2 UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement

Learning Approach . 69

4.3 UAV Path Planning using Global and Local Map Information with Deep

Reinforcement Learning . 76

4.4 Multi-UAV Path Planning for Wireless Data Harvesting With Deep Rein-

forcement Learning . 85

5 Reinforcement Learning for Real-world Control Challenges 101

5.1 Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement

Learning . 102

5.2 Learning to Generate All Feasible Actions 111

6 Reinforcement Learning for Graph-based Task Scheduling 127

6.1 Latency-Aware Generation of Single-Rate DAGs from Multi-Rate Task Sets128

6.2 Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement

Learning . 142

7 Discussion 159

7.1 Summary . 159

7.2 The Law of the Hammer . 160

7.3 Future Work . 163

Appendices 165

A Reuse Statements 167

A.1 Trajectory Estimation for Geo-Fencing Applications on Small-Size Fixed-

Wing UAVs . 168

A.2 uavAP: A Modular Autopilot Framework for UAVs 169

A.3 UAV Coverage Path Planning under Varying Power Constraints using

Deep Reinforcement Learning . 170

A.4 UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement

Learning Approach . 171

A.5 UAV Path Planning using Global and Local Map Information with Deep

Reinforcement Learning . 172

iv

Contents

A.6 Multi-UAV Path Planning for Wireless Data Harvesting with Deep Rein-

forcement Learning . 173

A.7 Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement

Learning . 174

A.8 Learning to Generate All Feasible Actions 175

A.9 Latency-Aware Generation of Single-Rate DAGs from Multi-Rate Task Sets176

A.10 Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement

Learning . 177

v

Contents

vi

List of Publications

Core Publications

1. M. Theile, S. Yu, O. D. Dantsker, and M. Caccamo, “Trajectory estimation for
geo-fencing applications on small-size fixed-wing UAVs,” in 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pp. 1971–1977,
IEEE, 2019

2. M. Theile, O. Dantsker, R. Nai, M. Caccamo, and S. Yu, “uavAP: A modular
autopilot framework for UAVs,” in AIAA AVIATION 2020 FORUM, p. 3268, 2020

3. M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV coverage
path planning under varying power constraints using deep reinforcement learning,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1444–1449, IEEE, 2020

4. M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV path planning
using global and local map information with deep reinforcement learning,” in 2021
20th International Conference on Advanced Robotics (ICAR), pp. 539–546, IEEE,
2021

5. M. Theile, D. Bernardini, R. Trumpp, C. Piazza, M. Caccamo, and A. L. Sangiovanni-
Vincentelli, “Learning to generate all feasible actions,” IEEE Access, vol. 12,
pp. 40668–40681, 2024

Additional Publications

6. M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware generation
of single-rate dags from multi-rate task sets,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 226–238, IEEE, 2020

7. H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV path planning for
wireless data harvesting: A deep reinforcement learning approach,” in GLOBECOM
2020-2020 IEEE Global Communications Conference, pp. 1–6, IEEE, 2020

8. H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “Multi-UAV path planning
for wireless data harvesting with deep reinforcement learning,” IEEE Open Journal
of the Communications Society, vol. 2, pp. 1171–1187, 2021

vii

List of Publications

9. H. Cao, M. Theile, F. G. Wyrwal, and M. Caccamo, “Cloud-edge training architec-
ture for sim-to-real deep reinforcement learning,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9363–9370, IEEE, 2022

10. B. Sun, M. Theile, Z. Qin, D. Bernardini, D. Roy, A. Bastoni, and M. Caccamo,
“Edge generation scheduling for dag tasks using deep reinforcement learning,” IEEE
Transactions on Computers, 2024

viii

Chapter 1

Introduction

1.1 Cyber-Physical Systems and Reinforcement Learning

Cyber-physical systems (CPS) are ubiquitous in every aspect of our modern society,
encompassing a range from smartphones and intelligent vehicles to water kettles with
controllable temperatures. CPS can be generally defined as computer systems that
control or monitor physical components, such as electrical or mechanical hardware. This
interplay allows software to compensate for hardware errors or imprecision; however,
it also necessitates careful consideration of hardware constraints, particularly in terms
of real-time requirements. In 2012, Kim and Kumar [11] summarized the progress of
CPS in various fields. Since then, the field of CPS has evolved and expanded so rapidly
and broadly that it is impossible for a single document to encapsulate all of its recent
advancements comprehensively.

A popular application branch of CPS is the area of mobile robots, such as unmanned
aerial vehicles (UAVs), autonomous ground vehicles (AGVs), autonomous surface vehicles
(ASVs), or autonomous underwater vehicles (AUVs). The critical challenges of planning,
control, and scheduling are paramount in these applications. Planning involves generating
efficient paths, considering obstacle avoidance, and optimizing for speed and energy
consumption. Control is crucial for executing these plans accurately, requiring real-time
adaptation to environmental changes and maintaining stability under varying conditions.
Scheduling focuses on efficiently allocating resources to different tasks. While crucial
in multi-robot systems for coordinated operation, it is also instrumental for ensuring
the real-time performance of the complex required onboard computations through task
scheduling. Together, these elements are fundamental for the autonomy and effectiveness
of mobile robots.

Traditionally, the solutions to these challenges can be divided into two directions:
exact methods and heuristics. The former focuses on precisely modeling the problem
and finding the optimal solution by solving the resulting optimization problem. The
latter focuses on finding relatively simple algorithms that solve the underlying problem
sufficiently well. For planning, an exact method is model predictive control (MPC) [12],
in which the evolution of the system and environment is typically modeled in detail to
predict future states and optimize them by adapting the sequence of control inputs. On

1

Chapter 1. Introduction

the other hand, heuristics often abstract away the low-level details, focusing on finding
paths through probabilistic methods such as rapidly exploring random trees (RRTs) [13]
or probabilistic road maps (PRMs) [14]. In control, exact methods model the system
and find optimal control actions, e.g., state feedback control. However, heuristics such as
PID controllers [15] are often used, as they tend to offer sufficient performance in many
applications without complicated modeling. In scheduling, exact methods often require
solving NP-hard optimization problems, making heuristics based on priorities, such as
rate monotonic (RM) or earliest deadline first (EDF) popular [16]. In some cases, these
heuristics even yield the optimal solution.

As CPS are becoming increasingly complex, exact methods are becoming either too
complex to model perfectly or infeasible to solve optimally, and algorithmic heuristics no
longer offer sufficient solutions. In recent years, the focus has shifted towards data-driven
techniques to combat the ever-growing complexities. The idea is to learn relationships
between vast quantities of data instead of modeling the problem or hand-writing algorithms
to determine the relationships. These techniques have been outstandingly successful
in tasks of computer vision [17] and, recently, for natural language [18, 19]. In these
fields, labeled data is used to train deep neural networks to infer the correct outputs
from given inputs. In computer vision, this labeled data can be the classifications for
different images, and in natural language, it is often the next word in a given text. For
the tasks of planning, control, and scheduling, usually labeled data does not exist, as
optimal solutions to a problem are unknown, and human data is often suboptimal or
expensive to collect.

The data-driven technique suitable for these challenges is reinforcement learning
(RL) [20]. In contrast to the supervised learning techniques used in computer vision
and natural language processing, RL does not require labeled data. Instead, RL agents
learn policies through interactions with the environment. By exploring various actions
in different states, RL agents aim to maximize a cumulative reward quantified as the
return, often expressed through a value function. The strength of RL, specifically deep
RL in which the agent is expressed through a neural network, is its ability to generalize
to unseen scenarios, an essential element for CPS. RL agents are typically trained in a
simulation, which is effectively a complex forward model of the system. The resulting
policy is not necessarily optimal but delivers good performance even in complicated tasks.
Therefore, RL could be classified as a methodology that trains through interactions with
a complex model, yielding learned heuristics to perform well in challenging tasks.

While RL offers significant advantages for addressing the challenges of complex CPS,
it also presents notable challenges, especially concerning safety and data efficiency. One
of the primary concerns with RL is ensuring the safety of the system during both the
training and deployment phases. Since RL learns through trial and error, it is required to
violate safety constraints numerous times to learn to avoid them. Therefore, RL agents
are typically trained in simulation and deployed to the real physical system after training.
While training in simulation mitigates the safety risks during training, the difference
between simulation and the real world, referred to as the sim-to-real gap [21], typically
leads to significant decrements in performance. Additionally, given that the RL agent is
usually a black box neural network, proving that a trained agent will never violate safety

2

Chapter 1. Introduction

Figure 1.1: The UIUC-TUM Solar Flyer aircraft equipped with solar panels flying
autonomously in an agricultural environment [22].

constraints is challenging or potentially impossible.

This thesis addresses some of the challenges when applying RL to problems in CPS.
A primary focus lies in formulating the problems to allow RL agents to find generalizing
policies and ensure that the agents’ solutions are safe and feasible. To further motivate
the challenges, the following section summarizes a CPS we developed, which offers an
application case study to illustrate the challenges in planning, control, and scheduling.

1.2 UIUC-TUM Solar Flyer

In recent years, UAVs have surged in popularity, primarily fueled by the desire to apply
these aircraft to precision farming, infrastructure and environment monitoring, surveying
and mapping, surveillance, search and rescue missions, and weather forecasting. These
applications predominantly require continuous data collection, especially from visual
sensors. Additionally, the collected data must be processed to acquire the mission results.
Typically, there are three approaches to handling the collected data [23].

In the first approach, the data is processed offline and offboard. The data is collected
and stored on the UAV during the mission and downloaded to a ground station for
processing after landing [24–27]. This approach is very cost-effective since data storage is
inexpensive. However, the UAV cannot adapt the mission based on real-time stimuli,
making it suboptimal or sometimes infeasible for long-endurance missions. The second
approach is to process the data online but offboard. For this approach, the collected
data is continuously streamed down to a ground station, where the data is analyzed in
real-time to remotely adjust mission plans and objectives [28,29]. While this approach
enables the UAV to react to real-time stimuli, high-bandwidth communication requires
significant power and depends on communication infrastructure. Therefore, this approach

3

Chapter 1. Introduction

is problematic for many mission profiles, especially long-distance, long-endurance missions.
The UIUC-TUM solar flyer is designed for the third approach: collect and process

the data online and onboard, only relaying the results to a ground station if necessary.
This approach is ideal for long-endurance autonomous missions, offering closed-loop
control without requiring unreliable and costly communication. Before our solar flyer,
this approach had only been used in high-cost, classified aircraft [30] or for low-complexity
objectives such as “follow me” mode [31,32]. The solar flyer is equipped with solar panels
to combat the high demand for energy for propulsion, actuation, and computation.
Previously, there had been many existing aircraft that use solar panels and can sustain
continuous flight [33–39]. However, they cannot perform significant onboard computations
beyond automating flight. Moreover, the solar flyer only comprises commercial-off-the-
shelf (COTS) components. All the other long-endurance solar aircraft utilized custom
airframe designs with many custom components (e.g., single-application propellers and
gearboxes) [33,34]. Using only COTS components reduces the cost of the aircraft, which
in turn increases accessibility to the community.

1.2.1 Development

This section briefly summarizes the development of the UIUC-TUM Solar Flyer, discussing
its hardware, autopilot, and digital twin [40]. More detailed information on the autopilot
and a geo-fencing application are discussed in Chapter 3.

Hardware

The UIUC-TUM Solar Flyer was designed to continuously acquire and process high-
resolution visible and infrared imagery, focusing on optimizing its airframe, propulsion
system, energy system, and avionics. The aircraft’s development involved a systematic
trade study to select a high-efficiency, commercially available airframe with a wingspan
of at least three meters [41]. F5 Models and Top Model CZ were considered, and the
final choice was the F5 Models Pulsar 4E Pro, as shown in Figure 1.1. It offers a large
wingspan, lightweight construction, and efficient design, incorporating a kevlar pod,
carbon fiber, and balsa wood reinforced with carbon and kevlar fiber. Modifications were
made to facilitate the integration of computational devices and solar arrays.

The propulsion system of the Solar Flyer was specifically designed considering the
limited onboard energy. A comprehensive tool was developed to optimize the propulsion
system, considering various propeller and motor combinations for specific mission profiles
[42]. The propulsion system’s optimization required detailed performance data of potential
motors and propellers obtained through wind tunnel testing of 40 Aero-Naut CAM carbon
fiber folding propellers. The final selection, Model Motors AXi 480/1380 motor and
Aero-Naut CAM 12x8 propeller, resulted in a 15% increase in propulsion efficiency
compared with a common baseline combination. The energy system of the Solar Flyer
comprises Gallium arsenide solar arrays, an MPPT charge controller, and a lithium-ion
battery, ensuring efficient energy collection, storage, and distribution [23].

The avionics of the Solar Flyer are centered around a commercially available flight
control and data acquisition system, the AlVolo FDAQ+FC [43], integrating various

4

Chapter 1. Introduction

Motor ESC Battery Cells Elevator and Rudder Servos

Motor
ESC

Motor & Actuator Battery

GNSS Antenna

Propulsion Interface

Al Volo FC+DAQ

Instrumentation Battery

GNSS Receiver Elevator and Rudder Servos

RF Module

Aileron and Flap Servos Flap and Aileron Servos

Airspeed Sensor
& Probe

MultiplexerRC Receiver

RF Module

Multiplexer

RC Receiver

Propulsion Interface

Al Volo FC+DAQ

GNSS Receiver
& Antenna

3x MPPT Charge
Controllers

Aileron and Flap Servos Flap and Aileron Servos

Airspeed Sensor
& Probe

(a) (b)

(c) (d)
(a) Side-view of the fuselage and tail components.

Motor ESC Battery Cells Elevator and Rudder Servos

Motor
ESC

Motor & Actuator Battery

GNSS Antenna

Propulsion Interface

Al Volo FC+DAQ

Instrumentation Battery

GNSS Receiver Elevator and Rudder Servos

RF Module

Aileron and Flap Servos Flap and Aileron Servos

Airspeed Sensor
& Probe

MultiplexerRC Receiver

RF Module

Multiplexer

RC Receiver

Propulsion Interface

Al Volo FC+DAQ

GNSS Receiver
& Antenna

3x MPPT Charge
Controllers

Aileron and Flap Servos Flap and Aileron Servos

Airspeed Sensor
& Probe

(a) (b)

(c) (d)
(b) Top-down view of the wing components and instrumentation.

Figure 1.2: Components and instrumentation in different parts of the Solar Flyer [44].

sensors and modules for effective operation and data collection. The aircraft additionally
features an RF module and various sensors, including an inertial measurement unit,
GNSS, airspeed sensor, and motor sensor. The layout of the Solar Flyer’s fuselage and
wing components, as shown in Figure 1.2, shows the strategic placement of these systems
to maintain balance and efficiency.

Autopilot

To fully control the solar flyer’s autonomy, we developed our own autopilot framework,
uavAP [2]. The uavAP is a modular framework that enables rapid prototyping of
planning, control, and communication modules. The modules are executed in separate
processes to allow software failure isolation, as shown in Figure 1.3. Additionally, a
Watchdog process synchronizes the modules on startup and monitors the state of the
processes. An API provides an interface for external processes to supply sensor data
and read out action commands. The autopilot implements a control stack to follow
waypoint-based trajectories autonomously. Additionally, it offers the ability to automate
maneuver sequences that can be used to characterize the aircraft dynamics [40,45]. A
safety layer detects when a boundary violation is imminent and aborts the maneuvers
preemptively [1].

The ground station, uavGS, was designed to monitor, command, and tune the
autopilot. The ground station interface has a modular layout that can be customized for

5

Chapter 1. Introduction

Watchdog

Flight Control

Mission Control

Communication APIsensor_data

actuation

sync_run

trajectory

data_com_mc

data_com_fc

data_mc_com

data_fc_com

Figure 1.3: Processes and their default connections in uavAP [2].

Figure 1.4: Ground station design for monitoring the autopilot and tuning parameters [2].

each use case. Figure 1.4 shows a layout used for flight testing for system identification [40].
The top right shows an overhead map with the aircraft’s current position, its planned
trajectory in yellow with the current path section in green, and safety bounds in red.
The bottom right shows a primary flight display and the current sensor data of the UAV.
The bottom left shows the status of all the PID controllers with their target values in red
and the current value in green. Additionally, it allows for changing the PID parameters
and sending them to the UAV for tuning. The top left is specifically designed for the
mission of system identification. It allows to override target values in the control stack to
perform specific maneuvers. Additionally, it allows one to select from a list of predefined
maneuver sequences that can be used to determine airplane characteristics.

6

Chapter 1. Introduction

X‐Plane 11X‐Plane 11

uavEE Plugin

uavGSuavGS uavAPuavAP APIAPI

AlVolo BackendAlVolo Backend

Emulation InterfaceEmulation Interface

Sensor Data

Actuation

Link to
Sensors and
Actuators

Emulation

Real Flight

Both

Color Legend

Sensor Data/Actuation

Radio Comm

Figure 1.5: Architecture of the UAV emulation environment – uavEE [46].

Digital Twin

To test the autopilot software and computational hardware before deploying it on a
real aircraft, we developed the UAV emulation environment, uavEE [46]. The general
architecture of uavEE is shown in Figure 1.5, in which the colors of the components
indicate if they are present in emulation, real flight, or both. In the center is the uavAP
autopilot with its API, which exchanges sensor data and control commands with either an
AlVolo Backend [43] in real flight or an emulation interface during emulation. While the
AlVolo Backend aggregates sensor data from physical sensors and sends control commands
to the corresponding actuators and motors, the emulation interface communicates with a
plugin in a flight simulator. The flight simulator commonly in use is X-Plane 11 [47],
for which uavEE provides a plugin. To test the ground station uavGS, in emulation,
the connection between the autopilot and ground station is replaced with serial or UDP
connections. Depending on the stages of development, the different components can run
on one device to only test the software or on different devices to test the computational
hardware.

As a primary concern of a long-endurance solar UAV is energy consumption, we
further developed a power model that estimates the propulsion power from the current
state of the aircraft [46, 48]. The power model has been further augmented in [49] by
estimating the solar power generation depending on the UAV position, attitude, time
of day, and day of the year. In [50], these models were used to simulate the power
consumption and generation during long-endurance flights.

1.2.2 Results

uavEE accuracy

Initial flight tests were conducted with an Avistar Elite trainer aircraft, and the corre-
sponding simulation used the FS One® flight simulator [51]. A comparison of trajectories
between the real flight and the simulation (as shown in Figure 1.6a) indicates that the
trajectory-following behavior in the uavEE closely mirrors that of the actual flight. This

7

Chapter 1. Introduction

0

100

200

300

400

500

600

0

100

200

300

400

500

600

100

120

140

160

 − Experimental
 − Simulated

Northing (m)Easting (m)

A
lt

it
u

d
e

(m
)

Start

End

(a) Flight path of an experimental (red) and simulated (green) flight. For reference, the aircraft
is plotted every 2 seconds.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

100

200

300

400

500

600

P
ro

pu
ls

io
n

P
ow

er
 P

 (W
)

Measured
Modeled
Simulated

(b) Propulsion power

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

2

4

6

8

10

12

14

16

Pr
op

ul
si

on
 E

ne
rg

y
C

on
su

m
ed

 (K
J)

Measured
Modeled
Simulated

(c) Energy consumed

Figure 1.6: Comparison of experimentally measured (red), experimentally modeled (blue),
and simulated (green) results using the propulsion power model [46].

similarity suggests that the emulation environment effectively replicates the real-world
flight path of the aircraft, encompassing various maneuvers such as turns, climbs, and
straight flights.

Regarding power consumption, focusing on a specific interval (100s to 200s ticks),
compares the measured power during the flight (red) with the power model [46, 48]
estimations (blue) derived from inertial and GPS data. The findings, illustrated in
Figures 1.6b and 1.6c, reveal a near congruence between the estimated and measured
power for the given trajectory, despite some initial differences attributed to the wind-
induced angle of attack.

Further, when applying the same power model to simulated data, the power and
energy curves (green in the figures) exhibit less noise compared to the measured power.
Although there is a slight overestimation of consumed energy in the simulator for the
specific trajectory extract, these disturbances generally cancel out over the total energy
consumption. This indicates that the uavEE can accurately estimate power and energy
consumption, paralleling real-flight conditions.

8

Chapter 1. Introduction

Figure 1.7: Trajectory of the UIUC-TUM Solar Flyer during an 8-hour flight under
cloudy and gusty conditions [52].

Overall, the results demonstrate that the power model yields highly accurate results,
affirming the effectiveness of the emulation environment in replicating real flight conditions
in terms of both trajectory adherence and power consumption.

Long-endurance solar flight

As discussed in [52], on 31 August 2020, the UIUC-TUM Solar Flyer completed an
8-hour flight under non-ideal conditions, taking off at 7:55 AM and landing at 3:59 PM.
The flight took place with variable weather, featuring partly cloudy to cloudy skies and
winds ranging from 8 to 24 km/h (with gusts up to 32 km/h), shifting from east to
south-west. The aircraft followed a 650×150 meter race track flight pattern at an altitude
of 100 meters and an airspeed of 11 m/s, successfully completing 188 laps. Despite
the challenging conditions, this flight resulted in an effective coverage area of 14.1 km²,
equating to a coverage rate of 1.8 km² per hour. The trajectory of this flight is illustrated
in Figure1.7, depicting the aircraft’s position at 5-second intervals.

1.3 Example Application: UAV-based Digital Agriculture as a
Service

This thesis uses a conceptual example of a solar UAV to illustrate and motivate var-
ious reinforcement learning solutions. The example application focuses on vegetation
monitoring, a significant aspect of smart farming or digital agriculture due to its role in

9

Chapter 1. Introduction

data gathering [53]. UAVs equipped with sensors are valuable in this domain, capable of
delivering timely, high-resolution data [54]. Numerous studies have explored UAVs for
vegetation, livestock monitoring, and forestry, with comprehensive surveys in [55–57].
Further research has investigated UAVs as agrochemical distribution systems for specific
crops such as artichokes [58] and cotton [59].

Consider utilizing a long-endurance solar aircraft with onboard computation capabili-
ties, such as the UIUC-TUM Solar Flyer, for applications such as vegetation monitoring.
The optimal use case of such a UAV would not be that every farmer purchases and
operates its own, but instead that a company offers vegetation monitoring as a service to
different farmers in an area. In that scenario, farmers could decide asynchronously which
parts of their plot they want inspected, if any. After the aircraft inspected the area, the
farmer would get an immediate detailed analysis and could apply measures according to
the needs of the plants.

This use case results in challenging requirements for the company operating the UAV.
While the UAV operates in the same region consisting of landing zones, obstacles, and
no-fly zones, the area coverage target changes daily. This yields a coverage path planning
(CPP) problem for which the path with the lowest energy consumption needs to be found
to maximize utilization. Additionally, the UAV must fly reliably during varying weather
conditions, maximizing power efficiency. Finally, the direct vegetation analysis feedback
for the farmers requires the computation to be handled while computing the optimal path
and control command. To summarize, the main challenges in this application include:

1. Creating a path for the UAV such that the sensors cover the changing target zones,
the UAV avoids obstacles and designated no-fly zones, and ensures a return to a
landing zone when the battery is low.

2. Efficiently controlling the UAV to follow a planned trajectory under varying envi-
ronmental conditions, minimizing power consumption, and maximizing solar power
generation.

3. Managing all computations for planning, control, and data processing online and
onboard on a resource-constrained platform.

Each of these challenges presents a potential area for applying reinforcement learning.
The first is an instance of coverage path planning (CPP), a proven NP-hard problem [60]
that poses scalability issues for long-duration missions such as regional vegetation moni-
toring. The second challenge arises from the UAV model’s dependency on environmental
factors like wind, solar intensity, and thermals, for which model-free reinforcement learn-
ing can offer an efficient solution. The third challenge involves scheduling on potentially
heterogeneous multi-core platforms, another NP-hard problem with scalability issues as
the number of tasks on the UAV increases.

This thesis delves into these challenges, identifying and addressing the underlying
issues. In Chapter 2, the reinforcement learning background is provided to give a general
understanding and some details for the most popular algorithms. Chapter 3 elaborates on
the various challenges in CPS by discussing the development of an autopilot framework

10

Chapter 1. Introduction

and a geo-fencing application for fixed-wing UAVs. For the UAV path planning problems,
Chapter 4 focuses on formulating them to allow an RL agent to generalize. The problems
of grid-world coverage path planning and path planning for data harvesting are solved
by expressing the environment as a map and training an RL agent to find the shortest
path, generalizing over different problem instances. It also shows that the map-based
environment observation can be used for multi-agent scenarios. For control, two problems
are investigated in Chapter 5. The first centers on the challenge of pretraining an agent
in a simulation and continuing its training on the actual hardware. It establishes a
cloud-edge training architecture that is evaluated for an inverted pendulum system.
The second is how to avoid unsafe control commands in a manner that benefits the
learning agent. It introduces an action mapping scheme for filtering unsafe actions.
Chapter 6 addresses the scheduling problem by formulating different scheduling problems
as directed acyclic graph (DAG) problems. The chapter then offers a novel solution for
DAG scheduling that trains an RL agent to iteratively add edges to the graph until it is
statically schedulable and real-time guarantees can be made. Finally, Chapter 7 discusses
the contributions, provides a general overview of the applicability of RL in CPS, and
elaborates on future research directions.

11

Chapter 1. Introduction

12

Chapter 2

Reinforcement Learning Background

This chapter provides the mathematical background for reinforcement learning (RL).
It starts by introducing various forms of Markov Decision Processes (MDPs) that are
used to model systems for RL. In the following sections, the fundamentals of RL are
introduced, followed by an introduction to deep RL. The chapter finishes with a detailed
description of the most common RL algorithms.

2.1 Markov Decision Process

When formulating problems for RL, they usually need to be expressed as Markov decision
processes (MDPs) [61]. An MDP describes a system through states and actions, where
the state evolves according to a transition function. The system is an MDP if it has the
Markov property, for which the transition function can only depend on the current state
and the applied action and be independent of past states. All MDP variants consist of
a state space S, an action space A, and a reward function R : S × A → R that yields
rewards based on the state and action of the system. In some cases, the reward function
also depends on the state of the system after applying the action, i.e., R : S ×A×S → R.
The system evolves according to a transition function, which can be deterministic as
T : S ×A → S or stochastic as P : S ×A → P(S), where P(S) stands for the space of
all distributions over S, yielding a deterministic or stochastic MDP. If the state of the
system is not directly measured but rather indirectly observed, the system becomes a
partially observable MDP (POMDP). In that case, an observation space Ω is defined,
and a probabilistic observation function O : S → P(Ω) maps the state to a distribution
over possible observations. All MDP variants typically have a discount factor γ that
determines the importance of future rewards compared with current rewards. Table 2.1
provides a summary of these MDP variants, and the corresponding symbols are explained
in Table 2.2. For simplicity of notation, the following focuses on fully observable stochastic
MDPs.

The objective in an MDP is to maximize the cumulative discounted reward called
return, often abbreviated with an R. However, to avoid confusion with the reward or
reward function, we directly utilize the RL term value function V. To maximize the
value function, a different action must be applied to each state encountered in the MDP.

13

Chapter 2. Reinforcement Learning Background

MDP Tuple Type

(S,A,R,T, γ) Deterministic MDP

(S,A,R,P, γ) Stochastic MDP

(S,A,R,P,Ω,O, γ) POMDP

Table 2.1: Common types of Markov decision processes.

Symbol Mapping Description

S - State space

A - Action space

R S ×A(×S)→ R Reward function

T S ×A → S Deterministic transition function

P S ×A → P(S) Probabilistic transition function

Ω - Observation space

O S → P(Ω) Probabilistic observation function

γ - Discount factor ∈ [0, 1] ⊂ R

Table 2.2: Elements in the different MDP types.

Therefore, a policy π is introduced that maps the current state to an action. The policy
can either be deterministic as π : S → A or stochastic as π : S → P(A), with P(A) being
the space of all distributions over the action space. For generality, we assume that the
policy is stochastic in the following. With the policy, the value function can be defined as

Vπ(s) = E

[∞∑

t=0

γtR(st, at)
∣∣∣ at ∼ π(·|st), st+1 ∼ P(·|st, at), s0 = s

]
, (2.1)

which is the expectation of the cumulative discounted sum of rewards when applying
actions according to the policy, the system evolving according to the transition function,
and the initial state being s. Consequentially, the objective of an MDP is to find a policy
that maximizes the value function for all states as

π∗ = arg max
π

Vπ(s), ∀s ∈ S. (2.2)

RL is a tool to find that policy by interacting with the MDP. In RL, it is common to
simplify the temporal notation from st and st+1 to s and s′. Whenever possible, this
notation is adopted.

2.2 Reinforcement Learning

Reinforcement learning (RL) aims to learn a policy to maximize the value function in
an MDP through interactions with the environment. Figure 2.1 gives a visualization of
this interaction loop. It shows the RL agent observe a state s and perform an action a,
which yields a reward r and advances the environment to state s′. To find a good policy,

14

Chapter 2. Reinforcement Learning Background

Environment

Agent

s

s'

a r

Figure 2.1: Sketch of the interaction loop in RL.

the agent needs to explore various trajectories, for which it needs to find a compromise
between exploration and exploitation. The following details the foundational equations
and discusses different strategies.

2.2.1 Foundational Equations

The objective in RL is to maximize the value in (2.1), which is difficult to maximize
directly. The most common method to approach this maximization is to formulate a
Q-value

Q(s, a) = R(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

Q(s′, a′)
]

(2.3)

that aims to explicitly define the value of each specific action at a given state. It is a
recursive function adding the immediate reward obtained for performing action a in state
s with the γ−discounted expectation of the highest Q-value in the next state. Here, the
expectation is over the stochastic transition function. The corresponding policy is simply
using the action with the highest Q-value, i.e.,

π(s) = arg max
a∈A

Q(s, a). (2.4)

In continuous action spaces, the definition of the Q-value in (2.3) is challenging, as
the maximal Q-value at the next state is hard to find exactly. However, since the policy
aims to maximize the Q-value, it can be used directly in its definition as

Qπ(s, a) = R(s, a) + γEs′∼P(·|s,a)
[
Qπ(s′, π(s′))

]
, (2.5)

making the Q-value dependent on the policy. To facilitate exploration, the policy is often
explicitly stochastic, yielding the most general Q-value definition as

Qπ(s, a) = R(s, a) + γEa′∼π(·|s′),s′∼P(·|s,a)
[
Qπ(s′, a′)

]
. (2.6)

This Q-value definition includes the definition in (2.5) for deterministic policies and the
definition in (2.3) for deterministic policies in discrete action spaces. Using the definition
of the Q-value in (2.6), the value function from (2.1) can be written as

Vπ(s) = Ea∼π(·|s) [Qπ(s, a)] , (2.7)

15

Chapter 2. Reinforcement Learning Background

providing the relationship between the Q-value and the value.

For some algorithms, it is necessary to estimate an advantage function, which indicates
the advantage or disadvantage when performing a specific action at a given state compared
to the expectation of the current policy. It is simply defined as

Aπ(s, a) = Qπ(s, a)−Vπ(s), (2.8)

i.e., the difference between the Q-value and the value. Given these equations, the simplest
approach for RL can be introduced: Q-table learning.

2.2.2 Q-Table Learning

The simplest approach to Q-learning is to learn the Q-value as a table containing the
current estimate of the Q-value for each state-action pair. The values in the table can
then be updated after each interaction with the environment according to

Q(s, a)← (1− αt)Q(s, a) + αt

(
r + γmax

a′∈A
Q(s′, a′)

)
, (2.9)

in which s is the state before the interaction, a is the action applied, r = R(s, a) is the
reward received, s′ ∼ P(·|s, a) is the next state after the interaction and αt is a learning
rate that can vary throughout the training process. In a fully deterministic environment,
a learning rate of αt = 1 is optimal [20]. According to Watkins et al. [62], in discrete
environments, the Q-table method is guaranteed to converge to the ground-truth Q-values
if

1. the learning rate approaches zero throughout training with
∑∞

t=1 αt = ∞ and∑∞
t=1 α

2
t <∞;

2. all state-action pairs are visited infinitely often.

Practically, most environments are continuous, and the Q-table increases in size rapidly
with increased dimensionality of the state and action spaces. Additionally, the Q-table
cannot generalize, meaning that it cannot deduce Q-values for state-action pairs it did
not observe from those it did observe. The solution to these problems is to approximate
the Q-value with deep neural networks (DNNs) instead of a table, leading to deep
reinforcement learning (DRL). While transitioning to deep neural networks complicates
the proof of convergence, it significantly enhances applicability in diverse environments
and leverages the DNNs’ inherent capacity for generalization in RL.

2.3 Deep Reinforcement Learning

The idea in DRL is to approximate the relevant functions from Section 2.2.1 using
universal function approximators, such as deep neural networks. The following provides
the critical ideas of deep learning, followed by the general concepts of using deep learning
in RL.

16

Chapter 2. Reinforcement Learning Background

2.3.1 Deep Learning

In deep learning, deep neural networks (DNNs) are used as function approximators for
various input-output relationships [63]. The DNNs are parameterized with trainable
parameters, which are trained using backpropagation [64].

Specifically, a dense layer, or fully-connected layer can be defined as

li+1 = σi(Wili + bi), (2.10)

with an input li ∈ Rni and output li+1 ∈ Rni+1 . The parameters of the layer are the
weight matrix Wi ∈ Rni+1×ni and a bias bi ∈ Rni+1 and some non-linear activation
function σi : Rni+1 → Rni+1 . Depending on the use case, this activation function is
commonly a rectified linear unit (ReLU), sigmoid, or tanh. The activation functions need
to be non-linear to allow the neural network to approximate non-linear functions. For a
DNN with m layers, the input x and output y can be included as

l0 = x, y = lm. (2.11)

These layers are commonly summarized into one function definition as

y = fθ(x), θ = (W0, b0,W1, b1, . . . ,Wm−1, bm−1). (2.12)

Given a set of ground-truth data containing data points of the format (x,ygt) a loss
function can be defined such as a mean-squared error loss

Lθ(x,ygt) = ||fθ(x)− ygt||2. (2.13)

Depending on the use case, other loss functions can be used, such as cross-entropy for
classification tasks. Using backpropagation [64], a gradient of the loss to the parameters
can be computed, and the parameters can be updated according to

θ ← θ − α∇θLθ(x,ygt), (2.14)

such that the network approximates the relationship of the data points after multiple
training steps.

To process other data types, various layers were defined, such as convolution layers [17]
for images, attention layers [18] for language tokens, or recurrent long-short term memory
(LSTM) cells [65] to add memory and many more. In the following, these techniques are
used to approximate the fundamental functions of RL.

2.3.2 Function Approximation in RL

Depending on the MDP environment, different functions must be approximated with
DNNs for DRL. If the action space is discrete, it can be sufficient to approximate the
Q-value in (2.3) by processing the state as an input and yielding the Q-value estimate
for each action individually at corresponding output neurons. In that case, the Q-value
at a given state is directly estimated for each action, and the best one can be chosen

17

Chapter 2. Reinforcement Learning Background

according to (2.4) as done in [66]. However, if the action space is continuous, this is
impossible (unless the action space is discretized, e.g., Agent C51 in [67]). In that case,
training two networks, an actor and a critic [68] is common. The critic estimates the
value function in (2.1) or Q-value in (2.6), and the actor tries to maximize the Q-value
estimate or an advantage. Since the actor is learning the policy function, which can be
stochastic, it often parameterizes a parametric stochastic function.

2.3.3 Parameterization and Reparameterization Trick

Most neural networks are deterministic functions. The most common method to express
a stochastic policy πϕ(a|s) using a neural network with parameters ϕ is to parameterize
a known distribution with the network’s output. In most applications, the output of the
neural network is the mean (µ) and standard deviation (σ) of a Gaussian N (µ, σ2). This
representation significantly limits the space of possible policies, as it assumes that all
necessary action policies can be represented through a Gaussian distribution. However,
it has worked in many applications and is thus the de facto standard.

Given an action sample a ∼ πϕ(·|s), many RL algorithms are required to compute
the gradient ∇θa with respect to the policy’s parameters. If the policy parameterizes
a Gaussian through its mean and standard deviation, the stochastic operation of the
Gaussian makes the gradient computation challenging. Instead, a reparameterization
trick is applied, in which the action is expressed through

a = µθ(s) + σθ(s) · ϵ, ϵ ∼ N (0, 1), (2.15)

in which ϵ is sampled from a standard Gaussian. This trick treats the stochasticity of
the policy as a constant for the gradient computation, allowing the gradient to propagate
through the parameterization of the mean and standard deviation.

2.3.4 Challenges of Function Approximation in RL

In general, the first problem of function approximation in RL is that the ground truth
target value required for the loss computation in (2.13) is unknown. Therefore, the
target value needs to be estimated, commonly done using the same or similar network as
the one being trained, called bootstrapping. When applying bootstrapping, the target
value continuously changes during training, leading to a moving target problem and
ultimately causing stability problems. The second problem is that the stochastic gradient
descent in (2.14) assumes the data points are identically and independently distributed
(iid). Since the RL agent learns from consecutive interactions with the environment, the
resulting consecutive data points are strongly correlated, breaking this assumption and
leading to further instabilities. The following algorithms are solving these problems in
different ways, enabling the successful training of DRL agents.

2.4 Deep Reinforcement Learning Algorithms

In recent years, a variety of DRL algorithms have been developed. This section discusses
the most relevant ones, with a summary in Table 2.3.

18

Chapter 2. Reinforcement Learning Background

Algorithm On/Off-policy Action space Full name

DQN off disc. Deep Q-network

DDQN off disc. Double deep Q-network

DDPG off cont. Deep deterministic policy gradient

TD3 off cont. Twin delayed DDPG

SAC off cont. Soft actor-critic

PPO on cont. + disc. Proximal policy optimization

Table 2.3: Commonly used reinforcement learning algorithms and their characteristics.

2.4.1 Deep Q-Learning

In 2015, Mnih et al. [69] established combining three components to facilitate human-level
performance with reinforcement learning in Atari games. The three components are:

1. Function approximation using deep neural networks: Approximating the Q-function
with a neural network with parameters θ.

2. Utilizing experience replay: Using a buffer of experiences collected by the agent
throughout training and sampling random batches for each training step broke the
correlation between consecutive update steps.

3. Using target networks for bootstrapping: By using a target network with moving
average filtered parameters of the main network, called θ̄, the target value for the
Q-network was stabilized.

The loss function for the Q-network update is given by

L(θ) = E(s,a,r,s′)∼D
[(

Qθ(s, a)− (r + γmax
a′∈A

Qθ̄(s
′, a′))

︸ ︷︷ ︸
Target value

)2]
, (2.16)

in which the function approximation can be seen by Qθ, the experience replay buffer
as D, and the target network in the target value as Qθ̄. The target network is either
updated periodically by copying over the parameters of the main network or with a
moving average as

θ̄ ← (1− τ)θ̄ + τθ, (2.17)

with τ ∈ (0, 1] being the filter constant. By sampling from the replay memory, computing
the gradient of the loss with respect to the parameters of the main network, and applying
a gradient step to the network, the authors first achieved human-level performance in
many Atari games.

19

Chapter 2. Reinforcement Learning Background

Exploration

The simplest exploration strategy in discrete action spaces is ϵ-greedy exploration. In
ϵ-greedy, the action applied during training is

a =





uniform(A), with probability ϵ

argmax
a∈A

Qθ(s, a), with probability 1− ϵ, (2.18)

taking a uniformly random action with probability ϵ and the greedy best action otherwise.
The parameter ϵ can be set to a large value at the beginning and gradually decreased
throughout training.

While very simple to implement, ϵ-greedy has significant shortcomings. The main
problem is that the exploration action is independent of the state, making actions with
catastrophic outcomes happen throughout training, even after the agent learned to avoid
them. Another issue is that it is difficult to find the appropriate value for the decay rate
ϵ, as it is highly problem-dependent.

The softmax-exploration strategy aims to address these issues by making the prob-
ability of each action dependent on the Q-value estimate, resulting in the stochastic
exploration policy

π(a|s) =
exp(Qθ(s, a)/β)∑

a′∈A exp(Qθ(s, a′)/β)
(2.19)

The benefit is that catastrophic actions with a significantly lower Q-value are chosen
rarely once the agent learns their impact. While the parameter β needs to be tuned
according to the difference in Q-values, it can often remain constant throughout training.

2.4.2 Double Deep Q-Learning

A problem plaguing DQN is the overestimation of the target Q-value. Intuitively this
can be understood by considering Qθ but also Qθ̄ as a noisy estimate of Q. Therefore,
the max operator in the target value favors actions with overestimated Q-values rather
than underestimated values. Due to bootstrapping, the Q-network follows the target
value, generally overestimating Q-values and reinforcing the overestimation in the next
update step.

To combat this overestimation issue, in 2016 Van Hasselt et al. [70] introduced the
following alternative loss function:

L(θ) = E(s,a,r,s′)∼D
[(

Qθ(s, a)− (r + γQθ̄(s
′, a′))

)2 ∣∣ a′ = argmax
a′∈A

Qθ(s
′, a′)

]
(2.20)

In that proposed loss function, the selection of the next action is conducted by the normal
network Qθ, but the value of that action is estimated by the target network Qθ̄. This
decoupling was enough in many cases to limit overestimation and improve the agent’s
learning stability and performance. For exploration, the same strategies as in DQN can
be used.

20

Chapter 2. Reinforcement Learning Background

2.4.3 Deep Deterministic Policy Gradient

DQN and DDQN are applicable only in discrete action spaces, where the Q-value for each
action at a given state can be enumerated, and the maximal one can be explicitly selected.
However, in continuous action spaces, such as those encountered in control problems
within CPS—for example, torque control of electric motors—this explicit enumeration is
not feasible. Therefore, the determination of the maximum Q-value for a given state is
not straightforward in these scenarios. Many reinforcement learning algorithms adopt
an actor-critic architecture to address this limitation in continuous action spaces. A
critic-network estimates a value function in this framework, while the actor-network infers
actions based on given states.

In deep deterministic policy gradient (DDPG) introduced by Lillicrap et al. [71] in
2015, the critic-network with parameters θ estimates the Q-value for a state-action pair,
and the actor πϕ with parameters ϕ deterministically infers an action from a state. Like
in DQN, the loss function of the critic is defined as

LQ(θ) = E(s,a,r,s′)∼D
[(

Qθ(s, a)− (r + γQθ̄(s
′, πθ̄(s

′)))
)2]

, (2.21)

with the action in the next state chosen by the actor’s target network.
To train the actor-network, DDPG formulates the objective as

max
ϕ

Es∼D[Qθ(s, πϕ(s))], (2.22)

i.e., the actor aims to maximize the Q-value estimate of the critic-network for the actor’s
action given states from the replay buffer. The actor is optimized using the deterministic
gradient

∇ϕQθ(s, πϕ(s)) = ∇aQθ(s, a)∇ϕπϕ(s), (2.23)

taking the gradient of the critic with respect to the action, followed by the gradient of
the actor with respect to its parameters θ. The target networks for the actor and critic
are updated like in DDQN through a moving average. Using this method, learning action
policies for continuous action spaces was possible.

Exploration

In the DDPG algorithm, exploration is typically facilitated through additive noise, with
the original work recommending Ornstein-Uhlenbeck (OU) noise for its mean-reverting
qualities that mimic the correlated noise in physical control systems. However, recent
implementations often prefer Gaussian noise for its simplicity and effectiveness across
various applications. Gaussian noise provides necessary exploration without OU noise’s
complexity and hyperparameter tuning.

2.4.4 Twin Delayed Deep Deterministic Policy Gradient

While DDPG was a popular algorithm used for many problems with continuous action
spaces, it had issues with stability and overestimation. To improve the algorithm, in 2018,

21

Chapter 2. Reinforcement Learning Background

Fujimoto et al. established twin delayed deep deterministic policy gradient (TD3) [72].
TD3 introduced the following key changes compared to DDPG:

1. Two critic-networks: Employing two separate critic-networks and bootstrapping
with the lower critic value to reduce overestimation bias.

2. Additive noise in the next action: Adding noise to the action at the next state for
stabilized value estimates.

3. Delayed training of the actor: Updating the actor-network later and less frequently
than the critic-networks to ensure policy updates are based on reliable value
estimates.

Through these updates, TD3 requires six neural networks, two critics, one actor, and a
target network for each. The two critics are updated according to the loss

LQ(θi) = E(s,a,r,s′)∼D
[(

Qθi(s, a)− y(r, s′)
)2]

, i = 1, 2, (2.24)

in which the target value is given by

y(r, s′) = r + γ min
j∈{1,2}

Qθ̄j

(
s′, πϕ̄(s′) + clip(ϵ,−c, c)

)
, ϵ ∼ N (0, σ). (2.25)

In this target value, clipped Gaussian noise is added to the next action and the lower
of the two critic values is taken. These additions improved DDPG significantly, making
TD3 the standard implementation of DDPG.

2.4.5 Soft Actor-Critic

A branch of RL called maximum entropy learning aims to solve the exploration problem
by learning to balance performance and the entropy of the policy, in which entropy
quantifies the stochasticity of the action. The most popular maximum entropy learning
algorithm is soft actor-critic (SAC), introduced by Haarnoja et al. in 2018 [73].

In maximum entropy learning, the value function in (2.1) is extended to

Vπ(s) = E

[∞∑

t=0

γt
(

R(st, at) + αH
(
π(·|st)

)) ∣∣∣ at ∼ π(·|st), st+1 ∼ P(·|st, at), s0 = s

]
,

(2.26)
by including an entropy term, where the entropy is defined as

H(p) = Ex∼p
[
− log p(x)

]
. (2.27)

By adding the entropy term, the value depends not only on the maximum accumulation
of rewards through the policy but also on its stochasticity. This objective incentivizes
the agent to be as stochastic as possible while maintaining close to optimal performance.

According to the new definition of the value function, the Q-value changes to

Q(s, a) = R(s, a) + γEs′∼P(·|s,a)
[
Ea′∼π(·|s′)

[
Q(s′, a′)− α log π(a′|s′)

]]
. (2.28)

22

Chapter 2. Reinforcement Learning Background

In the original SAC paper [73], the authors propose to utilize an additional network with
parameters ψ to approximate the soft value function

Vψ(s) = Ea∼πϕ(·|s) [Qθ(s, a)− α log πϕ(a|s)] (2.29)

based on the Q-function approximation Qθ and the policy πϕ. However, most implemen-
tations of SAC, among others, the authors’ code [74] and a popular RL documentation
website [75] approximate the soft value function with a single policy sample. This
simplification leads to the following loss function for the critic:

LQ(θi) = E(s,a,r,s′)∼D
[(

Qθi(s, a)− y(r, s′)
)2]

, i = 1, 2, (2.30)

in which the target value is computed as

y(r, s′) = r + γ

(
min
j=1,2

Qθ̄j
(s′, a′)− α log πϕ(a′|s′)

)
, a′ ∼ πϕ(·|s′), (2.31)

similar to the one in TD3.

The target of the policy is an energy function based on the Q-values given through

p(a) =
exp(Qθ(s, a))

Z(s)
, Z(s) =

∫

A
exp(Qθ(s, a

′)) da′, (2.32)

which is similar to the softmax exploration strategy in discrete action spaces. To train the
policy to match this distribution, SAC uses the reverse Kullback-Leibler (KL) divergence
to formulate the loss as

Lπ(ϕ) = Es∼D

[
DKL

(
πϕ(·|s)

∣∣∣
∣∣∣ exp(Qθ(s, ·))

Zθ(s)

)]
. (2.33)

The benefit of using the reverse KL divergence is that when taking the gradient with
respect to the policy parameters ϕ, the typically intractable partition function Zθ(s)
is eliminated as it is independent of ϕ and a. By reparameterizing the policy with a
function

fϕ(ϵ; s) (2.34)

the loss of the actor can be given as

Lπ(ϕ) = Es∼D,ϵ∼N [log πϕ(fϕ(ϵ; s)|s)−Qθ(s, fϕ(ϵ; s)] , (2.35)

in which θ can either be θ1 or the lower Q-value of both critics is used.

A key advantage of SAC over DDPG and TD3 is that the exploration induced by
the entropy of the policy is state-dependent. Therefore, the agent can decrease entropy
in critical situations where some actions may lead to catastrophic outcomes, which is
impossible in the DDPG algorithms. The difference between SAC and DDPG is thus
analog to the difference between the soft-max and epsilon-greedy exploration strategies
in DQN.

23

Chapter 2. Reinforcement Learning Background

2.4.6 Proximal Policy Optimization

An alternative to the off-policy algorithms before is the proximal policy optimization
(PPO) algorithm introduced by Schulman et al. in 2017 [76]. PPO is an on-policy
algorithm, leading to a significantly different training procedure. Like DDPG, TD3, and
SAC, PPO is an actor-critic algorithm, but the critic estimates the state-value function
Vθ(s) instead of the state-action-value function Qθ(s, a). The critic estimates the value
of the current policy, and thus, experiences collected by other policies, such as older
versions of the current policy, cannot be used for training. Therefore, instead of storing
experiences collected throughout training in a replay memory, PPO collects a predefined
number of interactions using the current policy, called a rollout. Using this rollout, the
actor and critic are updated, after which it is discarded, and a new one is collected using
the updated policy.

Specifically, after conducting a rollout of T interactions with the environment, record-
ing states st, actions at, and rewards rt an advantage of each action is estimated using
the generalized advantage estimate [77] as

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (2.36)

where

δt = rt + γVθ(st+1)−Vθ(st). (2.37)

The advantage quantifies if an action led to a better or worse outcome compared to the
average performance of the policy. In this estimate, λ is a factor that balances the Monte
Carlo value estimate for λ = 1 and the fully bootstrapped estimate for λ = 0 to find an
appropriate variance-bias trade-off.

This advantage estimate is then used in the actor loss as

L(ϕ) = Êt
[
min{ρt(ϕ)Ât, clip(ρt(ϕ), 1− ϵ, 1 + ϵ)Ât}

]
, (2.38)

as the expectation over the rollout with

ρt(ϕ) =
πϕ(at|st)
πϕold(at|st)

(2.39)

as the ratio between the currently trained actor and the actor used to interact with
the environment to collect the rollout. The clip function clips the first value between
its second and third argument. Clipping the probability ratio of the trained policy to
the rollout policy prevents the policy from deviating too much during training on one
rollout. It keeps the current policy “proximal” to the old policy, giving PPO its name.
An additional loss on the policy’s entropy can be added to facilitate exploration and
prevent the policy from collapsing into a deterministic policy.

The critic is trained to estimate the expected value of the actor. The target of the
critic can be set to the actual discounted cumulative sum of rewards

V̂t = rt + γrt+1 + γ2rt+2 + · · ·+ γT−trT−1 + Vθ(sT), (2.40)

24

Chapter 2. Reinforcement Learning Background

which is bootstrapped only at the end of the rollout. Alternatively, the target can be set
to

V̂t = Ât + Vθ(st), (2.41)

which is a popular implementation, often yielding better performance. The reason may
be that the total cumulative sum is strongly biased towards one action sequence by the
actor, which may not represent its average performance. The alternative version in (2.41)
incorporates intermediary estimates of the value function, reducing the bias.

2.5 Summary

After formulating problems as MDPs, DRL can be used to find a policy to maximize
the value functions that reflect the problems’ objectives. Even though DRL does not
offer guarantees for finding an optimal policy, it is a promising tool that can potentially
find better solutions than hand-crafted heuristics or model-based techniques. While the
basic idea of RL is decades old, DRL has only been enabled in the last decade through
advances in computing, with rapid development in algorithms and applications. The tool
DRL is available to a large community worldwide through open-access publications of
algorithms and techniques and publicly available code repositories.

DRL has been successfully applied in ever-increasingly complex environments, starting
from Atari games [69] to Go [78] and other board games [79], and very complex video
games such as Dota [80] and Starcraft [81]. In the area of CPS, it has also been applied
to, e.g., UAV attitude control [82], dexterous in-hand manipulation [83], and locomotion
of four-legged robots [84], and many more. However, significant challenges remain to
overcome for the widespread adoption of DRL as a tool for problems in CPS and other
fields. Among these challenges are the enormous requirement for interaction data, lack of
safety assurance during and after training, and general explainability of decision-making.
The works within this thesis aim to address these challenges to make DRL more applicable
to CPS.

25

Chapter 2. Reinforcement Learning Background

26

Chapter 3

Unmanned Aerial Vehicles –
Fixed-Wing Aircraft

27

Chapter 3. Unmanned Aerial Vehicles – Fixed-Wing Aircraft

3.1 Trajectory Estimation for Geo-Fencing Applications on Small-

Size Fixed-Wing UAVs

Reference

M. Theile, S. Yu, O. D. Dantsker, and M. Caccamo, “Trajectory estimation for geo-fencing
applications on small-size fixed-wing UAVs,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1971–1977, IEEE, 2019
DOI: https://doi.org/10.1109/IROS40897.2019.8967579

Abstract

The steadily increasing popularity of Unmanned Aerial Vehicles (UAVs) is creating
new opportunities in diverse fields of technology and business. However, this increase
of popularity also raises safety concerns. To tackle the primary concern of keeping
the UAV inside a designated region, a novel trajectory estimation algorithm for geo-
fencing applications is proposed. We derive the Beta-Trajectory that takes into account
constraints in curvature as well as constraints in the change of curvature, which is bounded
by the maximum roll-rate of the aircraft. We incorporate the Beta-Trajectory into a
geo-fencing algorithm. By using our open-source uavAP autopilot, the applicability and
necessity of accurate trajectory estimation algorithms for geo-fencing applications are
shown on small fixed-wing aircraft. The model and algorithm are validated in high-fidelity
simulations as well as in real flight testing.

Contributions to this paper

• Derivation of the Beta-Trajectory

• Implementation in the autopilot framework

• Autopilot configuration and monitoring during flight testing

• Shared paper writing

Copyright

© 2019 IEEE. Reprinted, with permission, from Mirco Theile, Simon Yu, Or D Dantsker,
and Marco Caccamo, “Trajectory Estimation for Geo-Fencing Applications on Small-Size
Fixed-Wing UAVs”, 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), November 2019.

See Appendix A.1 for the reuse statement. The following shows the accepted version.

28

https://doi.org/10.1109/IROS40897.2019.8967579

Trajectory Estimation for Geo-Fencing Applications on Small-Size
Fixed-Wing UAVs

Mirco Theile1∗, Simon Yu2∗, Or D. Dantsker1 and Marco Caccamo1

Abstract— The steadily increasing popularity of Unmanned
Aerial Vehicles (UAVs) is creating new opportunities in diverse
fields of technology and business. However, this increase of
popularity also raises safety concerns. To tackle the primary
concern of keeping the UAV inside a designated region, a novel
trajectory estimation algorithm for geo-fencing applications is
proposed. We derive the Beta-Trajectory that takes into account
constraints in curvature as well as constraints in the change
of curvature which is bounded by the maximum roll-rate of
the aircraft. We incorporate the Beta-Trajectory into a geo-
fencing algorithm. By using our open-source uavAP autopilot,
the applicability and necessity of accurate trajectory estimation
algorithms for geo-fencing applications are shown on small
fixed-wing aircraft. The model and algorithm are validated in
high-fidelity simulations as well as in real flight testing.

I. INTRODUCTION

In recent years, we have seen an uptrend in the popularity
of Unmanned Aerial Vehicles (UAVs) driven by the desire
to apply these aircraft to areas such as precision farming,
infrastructure and environment monitoring, surveillance, sur-
veying, and mapping, search and rescue missions, weather
forecasting, and much more. All the above application sce-
narios require the aircraft to safely interact with the surround-
ing humans, environments, and other aircraft. Therefore,
unmanned aircraft should be constrained to a designated area
or space defined by a geo-fence.

For rotary aircraft, such as quadcopters, the task of staying
inside the geo-fence is relatively simple since those type of
aircraft are capable of stopping in mid-air and turning around
with zero translational velocity. For fixed-wing aircraft, on
the other hand, such execution of maneuvers is impossible
as they need to maintain a minimum velocity in order to
stay airborne. Consequently, a proper kinematic model for
fixed-wing aircraft is required to determine the feasibility
of a trajectory as well as the exact time for the initiation
of an evasion maneuver. Most analytical kinematic models
only constrain the maximum curvature of a trajectory, namely
a Dubin’s Curve ([1], [2]). In the context of geo-fencing, a
constraint in the change of curvature has been widely ignored
in the literature. The main contributions of this work are:

1) A precise kinematic model for a fixed-wing aircraft
with constrained roll rate.

*The first two authors contributed equally to this work.
1Mirco Theile, Or D. Dantsker, and Marco Caccamo are with

the TUM Department of Mechanical Engineering, Technical Univer-
sity of Munich, Germany {mirco.theile, or.dantsker,
mcaccamo}@tum.de

2Simon Yu is with the Dept. of Electrical and Computer En-
gineering, University of Illinois at Urbana-Champaign, Urbana, IL
jundayu2@illinois.edu

2) A geo-fencing algorithm using the model to avoid
boundaries and stay in a designated area.

3) An implementation of the model and algorithm using
our open-source uavAP autopilot.

4) An evaluation of the model and algorithm using high-
fidelity simulators as well as real flight data.

To the best of our knowledge, this is the first geo-fencing
algorithm that takes into account the constraint in the change
of curvature.

A. Rationale and Related Work

The related work on geo-fencing applications mainly fo-
cuses on multicopters ([3]–[8]). As previously mentioned, the
kinematic model of a fixed-wing aircraft is fundamentally
different from that of a multicopter. Therefore, geo-fencing
methods derived for multicopters cannot directly be adopted
for fixed-wing aircraft. The authors in [7] look at both
types of aircraft. They argue that the trajectories for a
fixed-wing aircraft form a symmetric fan pattern around
the velocity vector. This fan pattern, however, is based on
the instantaneous change in roll, which we show, is not
applicable for fixed-wing aircraft.

In related work done by [8], the velocity control of the
aircraft is assumed to be instantaneous, meaning that its
roll rate can be as high as infinity, giving an instantaneous
change of roll angle. The work done by [9] demonstrates the
issue of such an assumption by presenting discontinuity in
curvature when flying with a circle-line-circle Dubin’s path.
In real-life scenarios, on the other hand, the curvature, as
well as the roll rate of the aircraft, are limited. Finally, a
variety of geo-fencing strategies are introduced in the related
work. For instance, [8] limits the control space of the aircraft
instead of completely overriding its mission when close to
the geo-fence. In this work, on the other hand, the geo-
fencing technique is similar to the technique mentioned in
[7], which defines a soft boundary at a maximum distance
that the aircraft can travel once the threat of breaking the geo-
fence is detected. The authors in [10] developed an algorithm
that defines different levels of safe zones to determine the
necessity of an evasive maneuver. They use the Dubin’s curve
as their kinematic model and use slack variables to account
for the deviation from it.

The authors in [11] describe a kinematic model that takes
into account a constraint in the change of curvature for the
purposes of optimal path planning. The approximation in
this approach is only accurate for up to 30◦ of roll angle,
which is not applicable for a geo-fencing algorithm where the

Aircraft Wing- Cruise Max Max 0◦ Roll Max Roll
Model span Velocity Roll Roll Rate Deviation Deviation

(m) (m/s) (◦) (◦/s) (%) (%)
Avistar 1.6 22.0 45.0 30.0 37.3 133.3
Pulsar 4.0 12.0 45.0 33.8 60.5 215.5
Cessna 177 10.8 53.6 45.0 54.5 8.4 30.2
Boeing 747 59.6 263.0 30.0 19.1 1.8 6.8

TABLE I: The deviation is given for two types of rolling
maneuvers, from 0◦ to the maximum roll angle and from
negative maximum roll to positive maximum roll angle.
Data taken from: Cessna 177 [14], Boeing 747 [15], Pulsar
sailplane from our flight measurements, and Avistar which
is constrained to protect on-board equipment; the notion of
the deviations is described in Section II.

maximum turn capability has to be exploited. We compare
our approach to this approach as well as the Dubin’s curve
and show that we have higher accuracy than both of them
while maintaining the computability as in [11].

Table I shows the deviation, the ratio of the distance
between predicted orbit centers and the orbit radius (Figure
1), of the Dubin’s Curve from our Beta-Trajectory given four
example aircraft. The deviation shown is higher when the
total velocity is lower, which is crucial for small fixed-wing
UAVs such as the Pulsar by F5Models sailplane [12], [13]
with a deviations of 60 − 215%. In addition, the deviation
of middle-size (general aviation) aircraft like the Cessna 177
of 8 − 30% is also significant and should be considered in
trajectory planning. For large size aircraft like the Boeing
747, however, this effect can mostly be ignored.

This work is structured as follows: Section II contains
the derivation of the Beta-Trajectory model and the percent
deviation of the Dubin’s Curve showed in Table I. Section
III defines the geo-fencing algorithm using the derived Beta-
Trajectory model. In Section IV, the model and the algo-
rithms are validated using the simulator and real flight data.
Finally, Section V concludes this work and gives an outline
of future work.

II. DERIVATION OF KINEMATIC MODEL

This section shows the derivation of the Beta-Trajectory,
describing the frames of reference and presenting the devia-
tions of the Dubin’s Curve from the Beta-Trajectory as con-
trast metrics. Additionally, we discuss the difference between
the Beta-Trajectory and the approach in [11]. The underlying
assumptions for the Beta-Trajectory are the following:

1) A rolling maneuver utilizes an approximately constant
roll rate.

2) The aircraft’s altitude and velocity stay constant during
the maneuver.

3) The effects of wind are set to zero.

The argument for assumption 2 is that a change in al-
titude would add additional constraints to the system due
to maximum and minimum altitude bounds. Furthermore,
an autopilot is capable of keeping the altitude constant
during a rolling maneuver by applying a corresponding
pitching actuation. Regarding assumption 3, this algorithm

is developed for small fixed-wing aircraft which often lack
the necessary instrumentation to evaluate wind speed and
direction. Therefore the presented approach utilizes a slack
variable to account for the unknown wind effects. Modeling
wind as a steady, uniform flow-field as done in [11] would
only be a superposition between a translational motion and
the Beta-Trajectory.

A. Beta-Trajectory

The derivation of the trajectory with constant roll rate is
based on the relation between the aircraft’s roll angle φ and
its yaw rate ψ̇. Their relation can be expressed as follows:

ψ̇(t) = − g
V

tanφ(t) (1)

where g is the gravitational constant and V is the total veloc-
ity of the aircraft. The relation demonstrates the contribution
of the rotated lift-force to the centripetal force acting on the
aircraft. The constant roll angle rate φ̇c influences the roll
angle φ by

φ(t) = φ̇ct+ φ0 (2)

where φ0 is the initial roll angle of the aircraft. Since we
assume constant altitude during flights, the velocity and
position of the aircraft can be expressed in two dimensions.
To simplify the derivations of the trajectory, we define the
velocity, as well as the position, in the complex plane. Hence

ċ(t) = v(t) = vx(t) + ivy(t)

c(t) = x(t) + iy(t)

Using the complex form, we can then express the velocity
using Euler’s Equation as

v(t) = V eiψ(t) (3)

where ψ(t) can be found by integrating (1). The full deriva-
tion of the kinematic model can be found in our technical
report [16]. The following results are obtained by integrating
the yaw rate and velocity. The position of the aircraft flying
with constant roll rate can be expressed using the complex
Incomplete Beta Function defined as the following:

B(x; a, b) =

∫ x

0

ya−1(1− y)b−1dy (4)

where B : R × C × C 7→ C. By using the Incomplete Beta
Function, we are able to describe every point on the trajectory
as a function of the roll angle of the aircraft:

β(φ) = sign(φ)
V

2φ̇c

[
B(1; a, b)−B(cos2 φ; a, b)

]
(5)

where sign() is the sign function that returns the sign of its
argument. The parameters a and b for the Incomplete Beta
Function are defined as follows:

a =
1

2
+ i

g

2V φ̇c
, b =

1

2

Additionally, the yaw angle of the aircraft at each roll angle
can be calculated using

ψ(t) =
g

V φ̇c
ln cosφ(t) (6)

−10 0 10 20

Distance X [m]

−30

−20

−10

0

10

20

30

D
is

ta
nc

e
Y

[m
]

d

R

Right

Left

(a) φ0 = 0◦

−10 0 10 20 30 40

Distance X [m]

−30

−20

−10

0

10

20

30

D
is

ta
nc

e
Y

[m
]

Right

Left

(b) φ0 = −45◦

Fig. 1: Contrast between Dubin’s Path (red) and Beta-
Trajectory (green and blue, left and right turn, respectively);
Orange arrow indicates initial aircraft position and yaw
angle. Data is taken from the Pulsar sailplane in Table I.

The equations for the position and yaw angle of the aircraft
are relative to a trajectory frame. In this frame, the initial
position and yaw angle of the aircraft are the following:

c0 = sign(φ0)
V

2φ̇c

[
B(1; a, b)−B(cos2 φ0; a, b)

]
(7)

ψ0 =
g

V φ̇c
ln cosφ0 (8)

The full trajectory of an aircraft with a constrained roll rate
as well as a constrained maximum roll angle φmax can be
described as a disjunction of the Beta-Curve B and an orbit
O. We define

B(φ0, φmax) = {β(φ) | ∀φ ∈ [φ0, φmax]} (9)

depending on the initial and maximum roll angle. The orbit

O(ccenter, R) = {c ∈ C | ‖c− ccenter‖ = R} (10)

is defined by its radius R and center point ccenter. The radius
is calculated from the curvature in (1) as

R =

∥∥∥∥
V 2

g tanφ

∥∥∥∥ (11)

The center point is geometrically calculated by adding R
perpendicularly to the last point of the Beta-Curve in the
roll direction, thus

ccenter(φ) = β(φ)− i sign(φ)Reiψ(φ) (12)

Consequently, the full Beta-Trajectory is expressed through
the disjunction of the Beta-Curve and orbit as

T (φ0, φmax) = O(ccenter(φmax), R) ∪ B(φ0, φmax) (13)

Two example trajectories can be seen in Figure 1 using Pulsar
sailplane data from Table I.

B. Frames of Reference

The definition of the Beta-Trajectory in (13) is based
on the usage of different frames of reference. To apply
the description of the trajectory to a geo-fencing context,
a transformation needs to be established. In this work, we

0 50 100 150

Distance X [m]

0

50

100

150

D
is

ta
nc

e
Y

[m
]

Fig. 2: Frames of reference: Red is the Trajectory-Frame,
centered at β(φ = 0); Blue is the Aircraft-Frame, centered
at the aircraft position cE0 ; Black is the Earth-Frame, which
defines global positions (GPS); Green is an example Beta-
Curve B(−π2 , π2) with positive roll rate.

describe three frames of reference, illustrated in Figure 2.
First is the Trajectory-Frame, described as cT for position
and ψT for yaw angle where each point on the trajectory
can be described using (5). This frame is centered around the
point at which the roll angle of the aircraft is zero, hence,
βT (φ = 0) = 0 + i0, as well as ψT (φ = 0) = 0.

The second frame is the Earth-Frame, described by cE

and ψE and based on the GPS coordinates. In this work,
the Earth-Frame is the UTM-Frame in East-North-Up (ENU)
notation where the zero yaw angle is in the east direction.
The third frame is the Aircraft-Frame, described by cA and
ψA and centered around the current aircraft position where
the current aircraft yaw angle is defined as zero.

To transform from the Trajectory-Frame to the Earth-
Frame, the Aircraft-Frame serves as an intermediary for the
conversion. With respect to the Earth-Frame, the Aircraft-
Frame is offset by the current aircraft position cE0 and
rotated by the current aircraft yaw angle ψE0 . Additionally,
the Aircraft-Frame is defined in the Trajectory-Frame with
the offset cT0 from (7) and the rotation ψT0 from (8). The
transformation between the frames can be described in the
complex plane. The transformation from the Trajectory-
Frame to Aircraft-Frame can be expressed as

cA = e−iψ
T
0 (cT − cT0) (14)

ψA = ψT − ψT0 (15)

Similarly the transformation from Earth-Frame to Aircraft-
Frame is

cA = e−iψ
E
0 (cE − cE0) (16)

ψA = ψE − ψE0 (17)

Combining (14) and (16) as well as (15) and (17) yields

cE = eiψ
E
0 e−iψ

T
0 (cT − cT0) + cE0 (18)

= ei(ψ
E
0 −ψT0)(cT − cT0) + cE0 (19)

ψE = ψT − ψT0 + ψE0 (20)

as the transformation from the Trajectory-Frame to the Earth-
Frame.

For simplification of the following equations, the frame
notation is mostly avoided. An equation without frame indi-
cation assumes all the arguments are in the same frame. Since
the frames represent linear and orthonormal transformations,
an equation holding in one frame will hold in other frames.

C. Comparison to Other Approaches

To illustrate the necessity of the kinematic model, we
compare it to the Dubin’s-Curve model in [2], which is
primarily used in the literature. For Dubin’s-Curves, only
the curvature is constrained, but not the change in curvature
determined by the maximum roll rate. As seen in Figure
1, the trajectory deviates from the orbit predicted by the
Dubin’s-Curve. We define the percent deviation as the ratio
between the distance of the center points d and the radius
R. The radius R is calculated using (11) and the distance d
is calculated using the two center points:

d = ‖ccenter(φmax)− cdubin‖ (21)

Calculation for cdubin is similar to (12) except that it is set
next to the initial position. Hence

cdubin = β(φ0)− i sign(φ̇c)Reiψ(φ0) (22)

Using the above equations, the deviation values in Table I
are calculated.

The authors in [11] linearize the tan() in (1) to yield

ψ̇(t) ≈ − g
V
φ(t) (23)

which they call Continuous-Curvature Convected Dubins-
Curve (CCC-Dubin). This results in a representation of the
position on the trajectory using Fresnel integrals, which can
only be solved numerically, similar to the Beta Incomplete
Function. The linearization introduces deviations at roll an-
gles greater than 30◦, which we show in Section IV.

III. GEO-FENCING

We define the geo-fence F as a convex1 polygon described
by N fence segments where each segment Fk is defined as

Fk = {c ∈ C | Re {nkc} = bk} (24)

where nk is the unit normal vector of the line pointing into
the polygon and bk is the offset. nk is the complex conjugate
of nk and nkc represents the inner product of nk and c in
the complex plane. Using the definitions, a safe area with
respect to Fk can be expressed as

Sk = {c ∈ C | Re {nkc} > bk} (25)

which describes the safe half-space in C. We add a slack s
as a safety margin to account for factors such as the wind,
resulting in

Sk(s) = {c ∈ C | Re {nkc} > bk + s} (26)

1For concave polygons this approach can be used as well but requires
additional steps.

The safe area of the full geo-fence F is then described by

S(s) =
⋂

∀k
Sk(s) (27)

A. Safety of Beta-Trajectory

We define the Beta-Trajectory T as safe if it satisfies

T (φ0, φmax) ⊂ S(s) (28)

For the trajectory to fully lie in the safe area, both the orbit
and the Beta-Curve need to lie in the safe area. For the orbit,
the condition can be written as

O(ccenter(φmax), R) ⊂ S(s) (29)

and trivially simplified to

ccenter(φmax) ∈ S(s+R) (30)

which can be immediately verified.
To evaluate

B(φ0, φmax) ⊂ S(s) (31)

it is necessary to check each fence segment Fk individually.
The Beta-Curve lies fully in Sk(s) if its outer most point,
a critical point, in the direction of a fence segment Fk lies
in Sk(s). This critical point is found through the following
minimizer:

φcrit,k = arg min
φ∈[φ0,φmax]

Re {nkβ(φ)} (32)

This equation could be solved analytically. However, there
is an intuitive solution simplifying the problem. Since
B(φ0, φmax) is a smooth function describing the aircraft
trajectory heading towards and away from the fence, poten-
tial critical points on the trajectory are the points where the
aircraft is flying parallel to the fence. The start and end point
of B(φ0, φmax), i.e. the current position and the start of the
orbit can be evaluated individually.

The direction of the fence segment Fk is defined by its
normal vector nk as

ψk(l) = arg{ink}+ lπ, l ∈ Z (33)

meaning that the direction is the 90-degree rotated normal
vector and all of its rotationally coinciding vectors. Those
coinciding vectors are significant since the Beta-Trajectory
has the form of a spiral and, thus, can have multiple parallels.
In the Trajectory-Frame, we can solve for the corresponding
roll angle by inverting (6). The inversion yields

φ = ± cos−1
(

e
φ̇cV
g ψT

)
:= λ(ψT) (34)

Consequently, the critical roll angles on the B(φ0, φmax)
with respect to fence segment Fk are

Φk =
{
φ = λ(ψTk (l)) | ∀l ∈ Z, φ ∈ [φ0, φmax]

}
(35)

where the global minimum of (32) satisfies φcrit,k ∈ Φk.
Note that if λ(ψTk (l)) > φmax, so is λ(ψTk (l + 1)), simpli-
fying the search for critical roll angles. We can write that

B(φ0, φmax) ⊂ Sk(s) (36)
iff β(φ) ∈ Sk(s), ∀φ ∈ Φk (37)

To conclude, the trajectory T (φ0, φmax) is safe if

β(φ) ∈ Sk(s), ∀φ ∈ Φk,∀k ∈ {1, .., N}
∧

ccenter(φmax) ∈ S(s+R)

This relation shows that for the geo-fencing algorithm only
a few distinct points on the predicted trajectory have to be
evaluated.

B. Implementation

Algorithm 1: Evaluate Safety
Input: T
Output: Safety of T
Data: aircraftState, F
orbitCenter = getOrbitCenter(T);
forall Fk ∈ F do

if orbitCenter /∈ Sk(s+R) then
return unsafe;

Φ = getCriticalRolls(T ,Fk);
for φ ∈ Φ do

if β(φ) /∈ Sk(s) then
return unsafe;

return safe;

The following geo-fencing algorithm is used to initiate an
evasive maneuver if the aircraft’s current position, attitude,
and velocity indicate that a violation of the geo-fence is
imminent. To determine if a violation is imminent, we
consider two evasive maneuvers: turning fully to the left or
right with the constant roll rate up to the maximum roll angle.
We say that the aircraft will inevitably break the fence if the
resulting trajectories of the evasive maneuvers violate the
geo-fence.

At every time step, both trajectories are generated and
evaluated. Algorithm 1 implements the derivation in the be-
ginning of this section. It returns unsafe if a given trajectory
violates any of the fence segments and safe otherwise. If both
trajectories are classified as unsafe, an evasive maneuver is
executed in the direction that was last classified as safe. The
evasive maneuver ends when the aircraft is flying away from
the violated fence segment.

The implementation of the algorithms in uavAP autopilot
makes use of an overriding framework that enables modules
to directly override the targets of the controller. When
initiating an evasive maneuver, the geo-fencing module over-
rides the controller roll target to the maximum roll angle
in the corresponding direction. To generate the trajectories
and evaluate the β function in (5), the Arb library [17] is
used. The Arb library uses ball arithmetic to solve real and
complex functions such as the incomplete beta function.

IV. EVALUATION

In order to evaluate the proposed kinematic model and
the geo-fencing algorithm, we conducted evaluations in

Sequence 1

Avistar Cessna
0

10

20

30

40

50

60

70

80

90

R
M

S
D

 [m
]

Sequence 3

Avistar Cessna
0

5

10

15

20

25

30

35

40

Dubin
CCC-Dubin
Beta-Trajectory

Sequence 2

Avistar Cessna
0

10

20

30

40

50

60

70

Fig. 3: Root-mean-square deviation of the trajectory predic-
tions of the three approaches for three 30 second maneuver-
ing sequences, comparing in two flight simulators, Trainer in
FS One R© and Cessna in X-Plane R© 11; note the different
scale of the y-axis.

simulations as well as in real flights. In this section, we
describe the experimental setup, followed by an evaluation
and comparison of the Beta-Trajectory, and concluding with
an experimental geo-fenced flight.

A. Experimental Setup

To evaluate the Beta-Trajectory, we compare it to the
Dubin’s-Curve in [9] as well as the Continuous-Curvature
Convected Dubin’s-Curve (CCC-Dubin) in [11]. The uavAP
autopilot is instructed to fly sequences of roll maneuvers in
two different flight simulators, namely the high-fidelity FS
One R© Flight Simulator ([18], [19]) as well as the X-Plane R©
11 ([20]). The aircraft used are a Trainer in FS One R© similar
to the Avistar Elite and the Cessna 172 in X-Plane R©11
similar to the Cessna 177. The simulators are connected
through the uavEE emulation environment described in [21].

The geo-fencing algorithm is evaluated by flying an air-
craft inside a defined geo-fence. The hardware used for the
actual flight is composed of an aircraft and computational
hardware. A fixed-wing trainer-type radio control aircraft, the
Great Planes Avistar Elite built for previous avionics devel-
opment [21]–[24], is used for the evaluation. The Avistar has
a 1.59 m wingspan and a mass of 3.92 kg; it has the following
control surfaces: two ailerons (roll), two flaps, one elevator
(pitch), and one rudder (yaw). The specifications of the
aircraft can be found in [23]. The aircraft was instrumented
with an Al Volo FC+DAQ 400 Hz flight computer and data
acquisition system [25], which integrates the open-source
uavAP autopilot [13]. The uavAP autopilot is based on a
modular and configurable framework that allows for easy
integration of different planning and control algorithms. For
detailed information about uavAP, the interested reader is
directed to the GitHub page2.

B. Trajectory Prediction

To evaluate the prediction accuracy of the Beta-Trajectory,
the autopilot is instructed to fly a sequence of roll maneuvers,
alternating from right to left, for 30 seconds in total. The

2https://github.com/theilem/uavAP.git

0 50 100 150 200 250 300 350 400

Position East [m]

0

50

100

150

200

P
os

iti
on

 N
or

th
 [m

]

Sequence 3 - Avistar

0 200 400 600 800 1000

Position East [m]

0

100

200

300

400

500

P
os

iti
on

 N
or

th
 [m

]

Sequence 2 - Cessna

Simulation
Dubin
CCC-Dubin
Beta-Trajectory

Fig. 4: Two simulated roll maneuver sequences recorded
and compared to the three prediction approaches; the orange
arrow shows the initial position and heading.

trajectory is recorded and compared to a prediction using
the three approaches. The predictions are based on the roll
sequences, the aircraft velocity, and the estimated roll rate.
The performance of the respective approaches is evaluated
based on the deviation to the simulated trajectory. The devia-
tion is calculated as the root-mean-squared deviation/distance
(RMSD) of the trajectories. Figure 3 shows the deviation
for three different sequences executed with the Avistar and
the Cessna. While sequence 1 and sequence 2 used roll
targets from the whole spectrum of roll angles (−45◦ to 45◦),
sequence 3 is constrained to angles from only −30◦ to 30◦,
the linearization limits of the CCC-Dubin’s curve. This is to
show that the deviation in CCC-Dubin’s curves arise from the
linearization of the tan(). It can be seen that both the CCC-
Dubin approach as well as the Beta-Trajectory outperform
the Dubin’s approach in the sequences. In sequences 1 and
2, the Beta-Trajectory performs better than the CCC-Dubin
approach while they show equal performance in sequence 3.

Figure 4 shows two examples from the sequences, first
the sequence 2 using the Cessna and second the sequence 3
using the avistar. Due to the low roll angles in sequence 3,
the CCC-Dubin and Beta-Trajectory give equal predictions.
In sequence 2, however, a significant drift towards the end of
the trajectory can be observed in the CCC-Dubin prediction.
The Dubin approach deviates immediately and demonstrates
that it is not suitable for short horizon predictions.

C. Geo-Fencing

Since it predicts the simulator path with high accuracy,
the Beta-Trajectory is incorporated into the geo-fencing
algorithm and deployed it onto a real aircraft. The autopilot
on the aircraft was instructed to fly out of the designated

−300 −200 −100 0 100 200 300

Distance X [m]

−300

−200

−100

0

100

200

300

D
is

ta
n

ce
Y

[m
]

1

2

3

4

Flight

Takeoff and Landing

Evasive Maneuver

Fig. 5: Real flight path of the Avistar deployed with the
uavAP autopilot and the geo-fencing algorithm; Red shows
the geo-fence. Blue shows the evasive maneuvers labeled
from 1-4. Slack value is 5 meters and velocity is 20 m/s.

area defined by the geo-fence. The higher level geo-fencing
algorithm observes the flight and intervenes the current flight
path when necessary. The result can be seen in Figure
5. The slack in Equation (26) was set low to emphasize
the effect. The aircraft is kept inside the geo-fence with
two prominent deviations. The first deviation is reflected by
evasive maneuver 4 where the aircraft slightly overshoots
the fence. The second deviation occurs in evasive maneuver
2, which has a greater safety margin than the others. These
two deviations are attributed to the effects of wind. Since
the initial assumption presumes no wind, the deviations
due to winds and gusts are expected. However, these slight
deviations show the algorithm’s ability to decently perform
in windy situations despite a low value for the slack. Future
work regarding wind integration will improve the results even
further.

V. CONCLUSION AND FUTURE WORK

In this work, we show the applicability and the impact of
the Beta-Trajectory as a new kinematic model for fixed-wing
aircraft. The trajectory is derived from the maximum roll
angle as well as the maximum roll rate constraints. Using the
newly derived kinematic model, we develop a geo-fencing
algorithm that aims to keep the aircraft in a designated area.
The theoretical derivation of the kinematic model and the
algorithms are validated in high-fidelity simulations using
the uavEE emulation environment as well as in real flights.
The source code related to this work is available in the open-
source autopilot uavAP.

For future work, the Beta-Trajectory can be used for
path and trajectory planning algorithms. The model can be
updated to incorporate a change of altitude which would
affect the relationship between the roll angle and yaw rate.
In order to make use of instrumentation that estimates wind
speed and direction, wind effects need to be added to the geo-

fencing algorithm. As mentioned previously, wind effects can
be incorporated as a superposition to the Beta-Trajectory. The
geo-fencing algorithm also needs to be adapted to calculate
critical roll angles based on the course angle of the aircraft,
which represents the direction of the total aircraft velocity
vector including the wind effects.

ACKNOWLEDGMENTS

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) un-
der grant number CNS-1646383. Marco Caccamo was also
supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education
and Research. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the
NSF.

REFERENCES

[1] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3,
pp. 497–516, 1957.

[2] I. Lugo-Crdenas, G. Flores, S. Salazar, and R. Lozano, “Dubins path
generation for a fixed wing uav,” in 2014 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 339–346, May 2014.

[3] M. N. Stevens and E. M. Atkins, “Multi-mode guidance for an
independent multicopter geofencing system,” in 16th AIAA Aviation
Technology, Integration, and Operations Conference, AIAA Paper No.
2016-3150, AIAA AVIATION Forum, Jun. 2016.

[4] S. Zhang, D. Wei, M. Q. Huynh, J. X. Quek, X. Ma, and L. Xie,
“Model predictive control based dynamic geofence system for un-
manned aerial vehicles,” in AIAA Paper No. 2017-0675, AIAA Infotech
@ Aerospace, Jan. 2017.

[5] M. N. Stevens, B. Coloe, and E. M. Atkins, “Platform-independent
geofencing for low altitude uas operations,” in AIAA Paper No. 2015-
3329, 15th AIAA Aviation Technology, Integration, and Operations
Conference, AIAA AVIATION Forum, Jun. 2015.

[6] H. T. Dinh, M. H. C. Torres, and T. Holvoet, “Dancing uavs: Using
linear programming to model movement behavior with safety re-
quirements,” in 2017 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 326–335, June 2017.

[7] E. T. Dill, S. D. Young, and K. J. Hayhurst, “Safeguard: An assured
safety net technology for uas,” in 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1–10, Sept 2016.

[8] T. Gurriet and L. Ciarletta, “Towards a generic and modular geofencing
strategy for civilian uavs,” in 2016 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 540–549, June 2016.

[9] M. Shanmugavel, A. Tsourdos, B. White, and R. bikowski, “Co-
operative path planning of multiple uavs using dubins paths with
clothoid arcs,” Control Engineering Practice, vol. 18, no. 9, pp. 1084
– 1092, 2010.

[10] A. J. Bateman, W. Gressick, and N. Gandhi, “Application of run-time
assurance architecture to robust geofencing of suas,” in AIAA Paper
No. 2018-1985, AIAA Infotech@ Aerospace, Jan. 2018.

[11] L. Techy, C. A. Woolsey, and K. A. Morgansen, “Planar path planning
for flight vehicles in wind with turn rate and acceleration bounds,”
in 2010 IEEE International Conference on Robotics and Automation,
pp. 3240–3245, IEEE, 2010.

[12] O. D. Dantsker, M. Theile, M. Caccamo, and R. Mancuso, “Design,
development, and initial testing of a computationally-intensive, long-
endurance solar-powered,” in AIAA Paper No. 2018-4217, AIAA Ap-
plied Aerodynamics Conference, Atlanta, Georgia, Jun. 2018.

[13] Real Time and Embedded System Laboratory, University of Illinois at
Urbana-Champaign, “Solar-Powered Long-Endurance UAV for Real-
Time Onboard Data Processing.” http://rtsl-edge.cs.illinois.edu/UAV/,
Accessed Sep. 2018.

[14] D. L. Kohlman, “Flight test data for a cessna cardinal. [steady state
performance and fixed stick dynamic stability characteristics],” NASA
Contractor Report CR-2337, Jan 1 1974.

[15] D. Geleyns, “Alternative flight control in civil aviation,” Master’s
thesis, Delft University of Technology,, the Netherlands, 2016.

[16] M. Theile and S. Yu, “Kinematic Model for Fixed-Wing Aircraft with
Constrained Roll-Rate,” tech. rep., University of Illinois at Urbana-
Champaign, Department of Computer Science, Sep. 2018.

[17] Fredrik Johansson, “Arb - a C library for arbitrary-precision ball
arithmetic.” http://arblib.org/, Accessed Sep. 2018.

[18] M. S. Selig, “Real-time flight simulation of highly maneuverable
unmanned aerial vehicles,” Journal of Aircraft, vol. 51, pp. 1705–
1725, Nov.-Dec. 2014.

[19] M. Selig, “Modeling propeller aerodynamics and slipstream effects
on small uavs in realtime,” in AIAA Paper No. 2010-7638, AIAA
Atmospheric Flight Mechanics Conference, Toronto, Ontario, Canada,
Aug. 2010.

[20] Laminar Research, “X-Plane 11.” http://www.x-plane.com/, Accessed
Mar. 2019.

[21] M. Theile, O. D. Dantsker, R. Nai, and M. Caccamo, “uavee: A
modular, power-aware emulation environment for rapid prototyping
and testing of uavs,” in IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, Hakodate, Japan,
Aug. 2018.

[22] R. Mancuso, O. D. Dantsker, M. Caccamo, and M. S. Selig, “A low-
power architecture for high frequency sensor acquisition in many-DOF
UAVs,” in ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), Berlin, Germany, Apr. 2014, pp. 103–114, 2014.

[23] O. D. Dantsker, R. Mancuso, M. S. Selig, and M. Caccamo, “High-
frequency sensor data acquisition system (sdac) for flight control and
aerodynamic data collection research on small to mid-sized uavs,” in
AIAA Paper No. 2014-2565, AIAA Applied Aerodynamics Conference,
Atlanta, Georgia, Jun. 2014.

[24] O. D. Dantsker, M. Theile, and M. Caccamo, “A high-fidelity, low-
order propulsion power model for fixed-wing electric unmanned
aircraft,” in AIAA Paper No. 2018-5009, AIAA/IEEE Electric Aircraft
Technologies Symposium, Cincinnati, Ohio, Jul. 2018.

[25] Al Volo LLC, “Al Volo: Flight Systems.” http://www.alvolo.us, Ac-
cessed Sep. 2018.

Chapter 3. Unmanned Aerial Vehicles – Fixed-Wing Aircraft

3.2 uavAP: A Modular Autopilot Framework for UAVs

Reference

M. Theile, O. Dantsker, R. Nai, M. Caccamo, and S. Yu, “uavAP: A modular autopilot
framework for UAVs,” in AIAA AVIATION 2020 FORUM, p. 3268, 2020
DOI: https://doi.org/10.2514/6.2020-3268

Abstract

Being applied to many fields of research and industry, UAVs require reliable but modular
autopilot software. An autopilot task can range from simple waypoint following to complex
maneuvering or adaptive mission tracking. The developed and presented autopilot, uavAP,
aims to be fully modular in a decentralized manner, embracing an object-oriented design
in C++. It implements a typical control stack comprising of a mission planner, global
planner, local planner, and controller. To facilitate its modularity, uavAP makes use of
its core, cpsCore, for module management as well as core utilities. cpsCore administers
the configuration, aggregation, and synchronization of all the modules in uavAP. With
the emulation environment uavEE, uavAP forms an ecosystem for rapid prototyping
and testing of modules for various research directions, ranging from scheduling and
memory management, through planning and control system design, to flight profile and
configuration optimization. The uavAP-uavEE ecosystem has facilitated the design of
an accurate UAV power model based on the aircraft’s physical model, flight maneuver
automation for aircraft system identification and dynamics parametrization, and an
algorithm for geo-fencing of fixed-wing UAVs. This paper describes the control stack of
uavAP, its core, cpsCore, as well as application examples highlighting the framework’s
modularity and flexibility.

Contributions to this paper

• Conceptualization of the software frameworks

• Main contributor to the cpsCore and uavAP source code

• Autopilot configuration and monitoring during flight testing

• Majority of paper writing

Copyright

© 2020 by Mirco Theile, Or D. Dantsker, Richard Nai, Marco Caccamo, and Simon
Yu. Published by the American Institute of Aeronautics and Astronautics, Inc., with
permission.

See Appendix A.2 for the reuse statement. The following shows the accepted version.

36

https://doi.org/10.2514/6.2020-3268

uavAP: A Modular Autopilot Framework for UAVs

Mirco Theile*, Or D. Dantsker†, Richard Nai‡, and Marco Caccamo §

Technical University of Munich, Garching, Germany

Simon Yu¶

University of Illinois at Urbana–Champaign, Urbana, IL, USA

Being applied to many fields of research and industry, UAVs require reliable but modular autopilot soft-
ware. An autopilot task can range from simple waypoint following to complex maneuvering or adaptive mission
tracking. The developed and presented autopilot, uavAP, aims to be fully modular in a decentralized manner,
embracing an object-oriented design in C++. It implements a typical control stack comprising of a mission
planner, global planner, local planner, and controller. To facilitate its modularity, uavAP makes use of its core,
cpsCore, for module management as well as core utilities. cpsCore administers the configuration, aggregation,
and synchronization of all the modules in uavAP. With the emulation environment uavEE, uavAP forms an
ecosystem for rapid prototyping and testing of modules for various research directions, ranging from schedul-
ing and memory management, through planning and control system design, to flight profile and configuration
optimization. The uavAP-uavEE ecosystem has facilitated the design of an accurate UAV power model based
on the aircraft’s physical model, flight maneuver automation for aircraft system identification and dynamics
parametrization, and an algorithm for geo-fencing of fixed-wing UAVs. This paper describes the control stack
of uavAP, its core, cpsCore, as well as application examples highlighting the framework’s modularity and
flexibility.

I. Introduction

The popularity of UAVs in many fields of research and industry creates the need for reliable but modular autopilot
software. An autopilot task can range from simple waypoint following to complex maneuvering or adaptive mission
tracking. While there are existing autopilot systems with excellent community support, they are not sufficiently modular
to enable rapid adaptability to varying research directions. The developed and presented autopilot, uavAP, aims to be
fully modular in a decentralized manner, embracing object-oriented design in C++. Every functionality in uavAP is
provided by a module, which can be adapted or replaced.

uavAP is an open-source autopilot framework.1 The autopilot structure is designed for distributed functional
executions that separate control, planning, and communication to increase safety and security at software level. It
implements a typical control stack comprising of a mission planner, global planner, local planner, and controller. The
high-level and abstract design of uavAP allows for seamless switching and transition between various planning and
control algorithms. The customizability of the autopilot structure provides the flexibility that allows for rapid interfacing
with various hardware systems such as the Al Volo FC+DAQ system,2 which is used for high precision data collection
necessary for applications such as power modeling.

To facilitate the modularity, uavAP makes use of cpsCore for module management as well as core utilities. cpsCore
administers the configuration, aggregation, and synchronization of all the modules in uavAP. Through these steps,

*Ph.D. Student, Department of Mechanical Engineering. mirco.theile@tum.de
†Researcher, Department of Mechanical Engineering, or.dantsker@tum.de
‡M.S. Student, Department of Informatics, richard.nai@tum.de
§Professor, Department of Mechanical Engineering, mcaccamo@tum.de
¶Ph.D. Student, Department of Electrical and Computer Engineering. jundayu2@illinois.edu

1 of 24

American Institute of Aeronautics and Astronautics

each module can easily specify a set of parameters which are loaded and applied on program startup, communicate
and interact with other modules, and start their task synchronously throughout threads and individual processes.
Additionally, cpsCore offers core utilities for essential tasks such as scheduling, inter-process communication, and more.
While initially only the core of uavAP, cpsCore has become an individual project because of its valuable support for
modularization of any C++ software framework for cyber-physical systems (CPS).

The uavAP autopilot framework forms an ecosystem with uavEE, an open-source emulation environment for
UAVs.3, 4 uavAP interfaces with uavEE for the communications with flight simulations while uavEE enables rapid
testing and debugging of the uavAP autopilot framework and planning and control designs and implementations. More
importantly, the combination of the uavAP and uavEE framework has enabled projects on variable applications in a
wide range of areas. The uavAP-uavEE ecosystem has facilitated the design of an accurate UAV power model based
on the physical model of the aircraft. Additionally, a flight maneuver automation framework5 has been developed in
uavAP and tested in uavEE. The framework automates flight testing maneuvers for aircraft system identification and
dynamics parametrization,6 yielding more consistent and repeatable results than human operators. Finally, an accurate
kinematic model and algorithm for fixed-wing aircraft geo-fencing have been developed using uavAP and uavEE.7

The paper is structured as follows: In Section II, the autopilot framework uavAP is introduced with a summary of its
planning and control stack and distributed architecture. This is followed by a description of its underlying core, cpsCore,
which manages the modules and provides core utilities. In Section IV, a flight maneuver automation integration into
uavAP is shown as an example of uavAP’s modularity and flexibility. Some applications of uavAP are shown in Section
V, followed by a comparison with other open-source autopilots in Section VI. Section VII concludes the paper and
presents an outlook into future work.

II. Modular Autopilot Framework – uavAP

This section describes the autopilot framework by introducing the implemented control stack and its individual
modules. Furthermore, its distributed architecture is depicted and described.

A. Planning and Control Stack

Mission Planner

Global Planner

Local Planner

Controller

Waypoints

Trajectory

Control Target

Actuation

Figure 1. Planning and control stack implemented in uavAP.

2 of 24

American Institute of Aeronautics and Astronautics

The hierarchy of the control process can be represented by a stack, depicted in Figure 1. A mission planner generates
waypoints according to the overall mission. The waypoints are passed to the global planner, which calculates the
mission trajectory. Based on the trajectory and the current position of the aircraft, the local planner calculates the
necessary angular rates and velocities to reach the trajectory, formulating a controller target. This controller target is
passed to the controller, which calculates the actual actuator commands. The individual modules, as implemented in
uavAP, are described in the following.

1. Mission Planner

The mission planner uses predefined missions, which can be selected by the user at run-time. The predefined mission
consists of waypoints which should be passed in specified order with a specified velocity. Alternatively, the mission
planner could generate waypoints to adapt its mission. However, this is out of scope for this work.

2. Global Planner

The global planner’s task is to calculate a trajectory based on the set of waypoints received from the mission planner.
The calculation of the trajectory can differ based on the overall goal of the mission. The simplest global planner is to
connect the waypoints with lines, leading to a polygonal path, which is not the best solution since it leads to abrupt
turns and consequently, high deviations from the planned trajectory. Alternatively, the waypoints can be connected with
three-dimensional cubic splines, which are implemented in the SplineGlobalPlanner in uavAP.

A cubic spline is defined through a third degree polynomial

x(u) = fx(u) = c0,x + c1,xu + c2,xu2 + c3,xu3. (1)

The parametrization u ∈ [0,1] is defined such that for u = 0 the spline is at the start point and at u = 1 at the end point.
Extending this expression to three dimensions yields

~x(u) = f(u) = c0 + c1u + c2u2 + c3u3, ~x =




x
y
z


 , ck =




ck,x

ck,y

ck,z


 (2)

for one specific spline. The spline between the waypoints pi and pi+1 is defined by

~x(i,u) = fi(u) = c0i + c1iu + c2iu
2 + c3iu

3. (3)

The SplineGlobalPlanner uses the Catmull-Rom formulation to calculate the parameters of the splines. The complete
mathematical derivation can be found in.8 Catmull-Rom splines enforce a specified tangent at each waypoint. The
tangent is based on the previous and next waypoint, making each spline dependent on only four waypoints. Defining
Ci = [c1i ,c2i ,c3i]

T , the spline parameters can be calculated as follows:

Ci =



−τ 0 τ 0
2τ τ−3 3−2τ −τ
−τ 2− τ τ−2 τ







pi−1

pi

pi+1

pi+2


 (4)

and c0i is pi. The parameter τ indirectly defines how high the curvature is at the waypoints. A higher τ reduces the
curvature at the waypoint but increases the curvature between the waypoints. Since each spline is dependent on a
constant number of four waypoints the complexity of the Catmull-Rom spline generation is O(n), where n is the total
number of waypoints in the mission. The SplineGlobalPlanner implements the calculation of Catmull-Rom splines

3 of 24

American Institute of Aeronautics and Astronautics

(a)

(b)

Figure 2. Catmull-Rom spline problem (a) and solution (b) for the z-coordinate spline.

because of their simplicity. The generated trajectory at its z-coordinate projection, however, shows problems when using
the Catmull-Rom formulation. Figure 2(a) shows a side view of the trajectory. The black arrows show the tangents at
the waypoints, which lead to unwanted altitude changes. The solution to this problem is to decouple the z-calculation
from the calculation in (4). The tangent at the waypoints is set to the minimum absolute slope of three different slopes
shown in Figure 2(b) on the left side. The three different slopes result from the vectors connecting the previous and
the current waypoint, the current and the next waypoint, and the previous to the next waypoint. This modification is
possible since the Catmull-Rom formulation allows for local control at each waypoint.

3. Local Planner

Figure 3. Three examples of the super-position in the Linear Local Planner; The X shows the position of the aircraft, and the green line is
the super-position of the tangential and the orthogonal components in black. The dashed green arrow incorporates the curvature.

The trajectory that is calculated in the global planner is passed to a local planner. The local planner calculates the
velocities and angular rates that are needed to converge to the trajectory. When the aircraft is moving on the trajectory,

4 of 24

American Institute of Aeronautics and Astronautics

the local planner calculates velocities and angular rates to stay on it. In the case of the LinearLocalPlanner in the
uavAP framework, the functionality is a super-position of the movement on and towards the trajectory. A graphical
representation of this super-position can be seen in Figure 3 represented by the solid green line.

Besides the super-position to calculate the target direction, the local planner can also incorporate the slope and
curvature of the trajectory. For this, the planner first calculates the closest point on the trajectory to determine the
local curvature and slope. For a line and orbit, the calculations of the closest point, the curvature, and the slope are
straight-forward. The calculations for the SplineGlobalPlanner are based on the derivatives of (3). The results of adding
the local curvature to the plan can be seen in Figure 3 represented by the dashed lines. A curvature target leads to
an offset from the direction target of the super-position in the direction of the curvature, which allows the aircraft to
converge faster.

4. Controller

RollPID RollRatePID

VelocityPID

ClimbAnglePID PitchPID

RollTarget

Roll

ClimbAngleTarget

ClimbAngle

VelocityTarget

Velocity

Acceleration

RollRate

PitchRate

Pitch

PitchTargetConstraint

RollRateTargetConstraint

ElevatorConstraint

AileronConstraint

ThrottleConstraint

ElevatorOutput

AileronOutput

ThrottleOutput

RollRate

Figure 4. PID cascade: orange inputs represent the controller target from the local planner, green inputs are representing sensor data, and
the yellow outputs are defining the actuation command.

Using the controller target, defining angular rate and velocity targets, the controller calculates the necessary actuation
command. For its controller, uavAP uses cascaded PIDs. The schematics of the controller cascade is shown in Figure
4. The cascade consists of five PIDs that are connected in series or parallel to achieve the actuation calculation. The
cascade can be separated into three different parts, yaw-rate control, climb-rate control, and velocity control. Additional
PIDs can be used to actuate the rudder of the aircraft for β control.

The advantage of this PID cascade is that it is easy to set up and tune for different aircraft, using on-line tuning, as
well as allowing intermediary constraints, such as the constraints on roll and pitch. Additional PIDs can be added if
roll-rate or pitch-rate has to be constrained as well. On-line tuning is done using the ground station of uavAP, a part of
uavEE.

5 of 24

American Institute of Aeronautics and Astronautics

Watchdog

Flight Control

Mission Control

Communication APIsensor_data

actuation

sync_run

trajectory

data_com_mc

data_com_fc

data_mc_com

data_fc_com

Figure 5. Control stack implementation showing processes and inter-process communication, green lines are message queues and blue lines
and ellipses shared memory objects.

B. Distributed Architecture

The processes implementing the control stack and the periphery are visualized in Figure 5. Mission control is taking
care of mission planning, and global planning and flight control is implementing the local planner and controller. The
two are separate in order to protect the essential flight control from crashes or timing issues in mission control.

The watchdog process is the master of the synchronization in the start-up of the processes. Afterward, it monitors
the processes, allowing them to restart them if they terminate or show a failure state. Additionally, the watchdog can
perform strict scheduler monitoring conducting restarts of the processes if they are missing their deadlines.

The communication process is the interface of the autopilot to the outside, mainly the ground station. It is a separate
process because it handles IO operations that can be slow or unpredictable. Additionally, since it is not mission-critical,
if the communication process crashes, the other processes can continue unaffected. The main task of the communication
process is to offer tuning, overriding, and selection interfaces to all the other processes. Additionally, it periodically
sends the status information from flight control to the ground. If the user at the ground station requests the active
mission and trajectory, the communication process forwards these requests to the appropriate process.

The API itself is not a process, but it is used by any background process that is responsible for the collection of
sensor data and the actuation of the actuators using the actuation command. The implementation of the data collection
can differ, but the API is defined in uavAP.

III. Autopilot Core – cpsCore

The core functionality of uavAP is grouped into cpsCore,9 a C++ framework designed to simplify the design and
implementation of cyber-physical systems. The cpsCore can be used as a baseline for modular object-oriented C++
frameworks. It allows for configuration, aggregation, and synchronization of individual modules and provides utility
modules for a variety of standard tasks such as scheduling. This section describes cpsCore and its role within uavAP.

6 of 24

American Institute of Aeronautics and Astronautics

A. Module Management

To facilitate uavAP’s high module configurability, cpsCore contains the functionality to parse configuration files for
configurable classes and create and arrange them on process start-up in a modular manner. The process uses a Helper
module, a module with knowledge of all possible modules that can be created to parse the configuration, which then
generates and configures the specified modules. These modules are passed to an Aggregator, which aggregates the
modules. This aggregation is then synchronized in stages and, if successfully passing all the stages, allowed to start its
schedule of tasks. This process is depicted in Figure 9. An example of the SplineGlobalPlanner’s usage of cpsCore is
provided in Figure 6. Specific details of configuration, aggregation, and synchronization are presented in the following.

class SplineGlobalPlanner : public IGlobalPlanner,
//uavAP: Its interface class
public AggregatableObject<ILocalPlanner, IPC, DataPresentation>,
//cpsCore: Dependencies to a local planner (uavAP), inter-process
// communication (cpsCore), and data presentation (cpsCore).
// Allows it to be aggregated.
public ConfigurableObject<SplineGlobalPlannerParams>,
//cpsCore: Struct with its parameters that should be configured
public IRunnableObject
//cpsCore: Indicating that it implements a run function for
// synchronization

{
...
};

Figure 6. Inheritance of the SplineGlobalPlanner using cpsCore’s functionality.

1. Configuration

Configuration is used to make the module assembly and the modules themselves configurable. Typically a JSON file is
used to define the configuration. However, support for other file types could be added easily. The configuration file
indicates which objects are to be created and how their parameters are to be set. A parameter struct is used to specify
the parameters of each object. An example is that of the SplineGlobalPlanner, as shown in Figure 7. In this struct, the
default value, the corresponding string in the configuration file, and the mandatoriness, indicating if the parameter has
to be specified in the configuration file, are defined. The templated configure(Config& c) function provides the
C++ struct with reflection, a concept that allows, among others, the struct to be iterated over. A corresponding JSON
type configuration file is shown in 8.

Additionally, the parameter structure is used to generate configuration files, showing all the possible parameters
that can be modified. This is particularly helpful while adding new modules to help maintain configuration files. The
parameter structure could further be used through other means of configuration, such as a graphical user interface, as
the basic structure of configuration is templated and allows for the necessary modifications.

2. Aggregation

The concept of Aggregation is a decentralized solution for setting pointers to dependencies within a process. Instead of
having one entity knowing all the dependencies of each module and setting all of them, an Aggregation of the modules
is formed. Each module that is an AggregatableObject can browse through the Aggregation for its dependencies. If
found, a weak pointer to the dependency is created and stored, which can be retrieved and upgraded to a shared pointer

7 of 24

American Institute of Aeronautics and Astronautics

struct SplineGlobalPlannerParams
{
// Parameter type name default id mandatory

Parameter<float> orbitRadius = {50.0, "orbit_radius", false};
Parameter<float> tau = {0.5, "tau", false};
Parameter<bool> smoothenZ = {true, "smoothen_z", false};

template <typename Config>
inline void
configure(Config& c)
{

c & orbitRadius;
c & tau;
c & smoothenZ;

}
};

Figure 7. Parameter structure of the SplineGlobalPlanner.

{
"orbit_radius": 50.0,
"tau": 0.5,
"smoothen_z": true

}

Figure 8. Generated .json configuration file of structure in Figure 7.

using a templated get<Dependency>() function. The weak pointer is used to avoid circular ownership, which can
lead to complications during tear down.

The Aggregator is the owner of the objects in a process and is therefore responsible for their destruction when the
process is terminated. To do so in a predictable manner, the Aggregator first stops active subscriptions, to avoid triggers
from other processes. Second, the scheduler is stopped, descheduling all of the periodic events. Finally, the Aggregation
container of the Aggregator can be emptied, destroying the aggregated objects sequentially.

3. Synchronization

Synchronization in a distributed system is a crucial factor for clean and predictable behavior. Especially if there
are dependencies between processes that need to be established first, synchronizing the start-up phase is crucial. In
uavAP synchronization is conducted among the modules inside one process, and among the processes in a distributed
multi-process setup.

As described before, the schematic, shown in Process 2 of Figure 9, illustrates the start-up steps of one single
process. For synchronization, a Runner utility sequentially triggers the current run stage for each module before moving
on to the next stage. It first triggers the INIT run stage. In this stage, each module should check if all its dependencies
are met. If not, the Runner aborts and prints corresponding error messages. In run stage NORMAL, the objects schedule
their tasks or communicate with other objects to set up the process. Run stage FINAL is reserved for tasks that need
three steps to set up. After run stage FINAL, the scheduler is triggered to start its schedule.

For multi-process synchronization, as necessary in Figure 5, the single process case is extended. An entity, such as
a Watchdog, starts all the desired processes, waiting until they all reach the beginning of run stage SYNC, which is
an idle run stage that is used to wait for the other processes. When all the processes reached that point, the Watchdog

8 of 24

American Institute of Aeronautics and Astronautics

Helper

Aggregator

Start Schedule

SynchRunner

INIT

NORMAL

FINAL

Process 2Process 1 Process 3

… …

Watchdog

SynchRunner
Master

Configuration

Objects

Aggregation

Scheduler

……
…… Trigger RunStage

Feedback on success

Figure 9. Multi process synchronization in uavAP

triggers the run stage INIT. All the processes now run their INIT run stage. If they succeed and do not discover a
problem, they notify the Watchdog that they succeeded. This is handled by using thread barriers with a count of the
number of processes. If they do not succeed, they do not notify the Watchdog leading to a time-out that lets the user
know that one of the processes failed. After run stage INIT, the same synchronization procedure is executed for run
stage NORMAL, followed by FINAL. After every process runs into the thread barrier of stage FINAL, they start their
schedule simultaneously. In the multi-process case, the synchronization information is shared with a segment of shared
memory, maintained by the synchronization master, e.g., the Watchdog.

B. Core Utilities

The core utilities of cpsCore comprise of functionality that is frequently used in CPS applications such as uavAP or also
uavEE. They are implemented to be as generic as possible while allowing low-level optimization. These core utilities
are used for scheduling, timing, inter-process communication, inter-device communication, and data presentation.

1. Scheduling and Timing

A scheduler handles every scheduling of periodic and non-periodic tasks in the autopilot. Any scheduler that is
implemented should provide the ability to schedule periodic and non-periodic events as well as the possibility to start

9 of 24

American Institute of Aeronautics and Astronautics

and stop the schedule. The current main scheduler of uavAP is the MultiThreadingScheduler, which, as indicated by its
name, uses multiple threads to execute tasks in parallel. When a task is scheduled, the scheduler creates an event object.
Each event contains the function handle, scheduling information, a condition variable, and a thread for execution. The
scheduler triggers the individual condition variables at the time of the task release. After completion of their tasks,
the threads either end execution, if they were non-periodic or canceled, or wait until called again. The time provider
handles the timing of the scheduler.

Any time provider in cpsCore has to provide the current time and the ability to sleep for a set amount of time or
until a specific time point. The time provider used in uavAP is the SystemTimeProvider, which uses the standard chrono
time library to provide time information as well as timing functionality, such as wait for or wait until. For manual time
and scheduling control, essential for unit testing, the MicroSimulator can be used. It provides objects with manual time
and scheduling information allowing full control during testing.

2. Inter-Process Communication

For the communication among processes, such as Mission Control and Flight Control, cpsCore offers inter-process
communication (IPC) utilities. The IPC module allows message passing to one or multiple destinations. If communica-
tion to only one destination is requested, the IPC module creates a message queue to which the destination process can
subscribe. For multiple destinations, the module creates a shared memory segment, allocating space for the data as well
as synchronization fields. The destination processes can find the message queues or shared memory segments via string
IDs. The general implementation is similar to message brokering, allowing publication and subscription.

3. Inter-Device Communication

To communicate with other devices, such as the ground station in uavAP, cpsCore provides utilities for inter-device
communication (IDC). The IDC is split up into two layers, the transport layer, and the network layer. The transport layer
is a current place holder if packet segmentation and acknowledgments are to be added. The network layer takes care
of the dissemination of the packets to their destination. For that, it can use serial communication using the boost asio
backbone, or ethernet communication using Redis,10 specifically its message broker service. For packet verification,
crucial for radio communication, a cyclic redundancy checksum (CRC) is implemented. The checksum is appended to
each packet and can be verified on the receiving end.

The network and transport layer functionality are hidden from the other modules by providing an IDC module,
which routes the packets according to configured string IDs. This way, the communication method can be changed
through configuration and does not require recompilation or rewriting of code.

4. Data Presentation

For IDC and IPC, the data structures in uavAP have to be represented as binary. For passive data structures or plain old
data (POD), this binary representation is as simple as a memory copy, provided the sender and receiver device use the
same endianness. For more complicated structures with optional fields or nested members, cpsCore provides a data
presentation utility. Similar to the configuration, the data presentation adds functions for code reflection, which specify
how to serialize and deserialize structures. Using these functions, data presentation creates string-based packets from
the complex structures which can be sent via IPC or appended with headers and send via IDC.

10 of 24

American Institute of Aeronautics and Astronautics

IV. Flight Maneuver Automation Framework – uavAP Extension

The introduced uavAP software framework allows for a simple and configurable extension of a flight maneuver
automation framework on top of the existing software stack. The flight maneuver automation framework utilizes the
introduced cpsCore framework to extend the current mission planner module, enabling automatic maneuver executions
and transitions. A new flight analysis process is also added for providing the extended mission planner module with
various aircraft states analysis needed for automating the aircraft flight maneuvers.

The current mainstream approach for collecting aircraft aerodynamic parameters is to manually pilot UAVs through
a series of flight testing maneuvers.11–15 Automating such flight testing maneuvers,5, 6 on the other hand, allows for
the process of aircraft parametrization and modeling to be performed systematically and repeatably with minimal
trial-and-error, and, more importantly, reduces the required amount of flight time and power consumption. For instance,
by automating maneuvers during the flight, aircraft states such as attitude angles and velocity vectors can be set and
maintained by controllers with better accuracy, consistency, and repeatability than manual piloting.

As the industry of small UAVs becomes increasingly popular, the safety and regulation for these small aircraft are
also becoming essential for their applications and deployment. One of the useful and practical methods of executing the
safety regulations on those small aircraft is to require them to have mandatory and built-in geo-fencing systems that
provide constraints to their behaviors and missions. The flight maneuver automation framework, together with a robust
and precise kinematic model detailed in,7, 16 forms an advanced geo-fencing system for UAVs to perform trajectory
modeling, boundary checking, and automated evasive maneuvers.

A. Maneuver Planner

As discussed in Section II, the mission planner module in the uavAP software framework provides high-level mission
planning and global plan generation. The existing global planner in the mission planner module takes mission waypoints
as input parameters and generates a position-based trajectory as its output. The generated trajectory is then passed to
the flight control module for local planning and controller target generation. In the above pipeline, flight maneuvers are
generated by the local planner as controller targets for keeping the aircraft on the planned trajectories.

The existing global planner is useful for simple and fixed-path missions such as a race track flight path illustrated
in Section V for surveying and power modeling. However, such missions limit the UAVs to fixed, position-based
trajectories which prevent the aircraft from performing customized maneuvers aside from path-keeping. Therefore,
in order to achieve more advanced autonomous UAV applications such as flight testing maneuver automation and
geo-fencing, a more versatile mission planner is needed for planning and sequencing ad-hoc and customized flight
maneuvers.

The new maneuver planner extends and augments the uavAP planning and control stack to achieve customized
and flexible planning. Specifically, the maneuver planner generates user-defined flight maneuvers into override objects
through the cpsCore configuration framework detailed in Section III. Such maneuvers, containing local plans, controller
targets, controller outputs, and more, are published through cpsCore’s IPC, as illustrated in Figure 10, to the respective
modules, in which the regular mission is overridden until after executing the received flight maneuvers.

In this design, the maneuver planner provides versatile, trajectory-independent capabilities in terms of aircraft states.
For instance, if a 45 degree right-rolling maneuver were needed for a particular application, the maneuver planner
would simply generate a flight maneuver containing a roll angle controller target of 45 degrees and publishes such
maneuver to the controller module for execution. When the maneuver was executed, the aircraft would override the
regular trajectory and roll right at 45 degrees from its current state in a trajectory-free manner.

11 of 24

American Institute of Aeronautics and Astronautics

User
Configuration Global Planner

Maneuver Set
Generation

Maneuver Set

Override
Objects

Local Planner

Controller

Aircraft

Inter-Process
Communication

Maneuver Planner Planning and Control Stack

Local Plan

Controller Target

Controller Output

Override

Override

Figure 10. The maneuver planner pipeline and the uavAP planning and control stack (mission planner omitted). The override objects,
representing the maneuvers, are generated by the maneuver planner, published through the cpsCore IPC framework discussed in Section
III, and are subscribed by the uavAP stack for maneuver execution.

Furthermore, the maneuver planner is also capable of concatenating a series of individual flight maneuvers into
a maneuver set, as shown in Figure 11, and executing through the set sequentially under some predefined transition
conditions. Similar to a finite state machine (FSM), the maneuver planner stays at the current maneuver in a maneuver
set and only continues to the next maneuver when the transition condition is met. When all the maneuvers in the
maneuver set are exhausted, the maneuver planner halts, and the aircraft returns to its regular mission.

Maneuver
1

Maneuver
3

Maneuver
2

Maneuver Set

…

Condition 1 Condition 3

Condition 2

Figure 11. An example of a maneuver set, containing a series of individual flight maneuvers connected by their transition conditions.

B. Flight Analysis

For automating customized flight maneuvers with various traits, a new flight analysis process is needed in addition
to the maneuver planner for analyzing various aspects of the aircraft during the flight. First of all, the analysis data
provided by the flight analysis module can be used by either the uavAP modules during the flight or by post-processing
programs through data collections after the flight. For example, during the execution of a particular maneuver set with

12 of 24

American Institute of Aeronautics and Astronautics

the maneuver planner, states of the aircraft are useful for post-processing, graphical visualization, scientific research
and validation, and so on.

More importantly, automating the customized flight maneuvers often requires information about various aircraft
states during the flight, such as whether the controllers have reached their steady states, aircraft control surface trims,
how much time has elapsed since the start of the current maneuver, etc.5 Maneuvers in many applications should
transition to the next maneuver only when the roll angle controller of the aircraft has reached its steady state, i.e., the
controller has stabilized around its given target. The flight analysis module would provide this steady-state information
and enable the enforcement of such transitions.

V. Applications

The uavAP autopilot has thus far been applied to 3 platforms: the prototyping ecosystem emulation environment,
uavEE; a robust, fixed-wing, testbed unmanned aircraft, the UIUC Avistar UAV; and a long-endurance, computationally-
intensive, solar-powered unmanned aircraft, the UIUC-TUM Solar Flyer. Between these 3 platforms, the uavAP
autopilot has enabled: the rapid prototyping of flight modeling and control algorithms in emulation and real flight, the
design of an accurate UAV power model based on the physical model of the aircraft, flight maneuver automation for
aircraft system identifications and dynamics parametrization, an algorithm for geo-fencing of fixed-wing UAVs, and
power-efficient flight through a turbulent and windy environment.

A. uavEE Emulation Environment

In order to decrease development time, emulation and modeling has become an important component of the UAV
development process. Instead of prototyping, testing, and analyzing through the many stages of aircraft development
in hardware, which is resource and time intensive, a virtual aircraft and its sub-systems were modeled and then
implemented into the uavEE emulation environment.4 Specifically, the environment starts by creating a real-time
connection between a high-fidelity flight simulator (e.g. X-Plane 11) and an autopilot software, i.e., uavAP on a desktop
machine or embedded hardware, and then modeling layers are introduced (e.g. power, communication, fault, etc.),
allowing for additional emulation complexity. Therefore, the physical aircraft design, the software, and the flight
computation and possibly payloads can be tested in the lab. Within the scope of applying the uavAP autopilot to
research tasks, uavEE was used to emulate each of the research efforts presented in the following subsections before
they were tested on an actual aircraft. uavEE also provides the backbone for a ground control interface, shown in Figure
12, which is used to command and monitor the aircraft and autopilot in both emulation as well as in real flight.

B. Avistar UAV Testbed

The Avistar UAV is a highly-robust, fixed-wind unmanned aircraft, which has been used as the testbed plaform for a
variety of flight software and hardware development efforts.17–21 The aircraft was developed from the Great Planes
Avistar Elite fixed-wing trainer-type radio control model and has wingspan of 1.59 m and a mass of 3.70 kg. The
completed flight-ready aircraft is shown in Figure 13 and its physical and component specifications can be found
in previous work.22 The uavAP autopilot was integrated into the Al Volo flight control and data acquisition system
installed in the Avistar UAV in order to enable several avenues of research: a high-fidelity, low-order propulsion power
model for fixed-wing electric unmanned aircraft, a flight testing automation tool for aircraft system identifications and
dynamics parametrization, and an algorithm for geo-fencing of fixed-wing UAVs.

13 of 24

American Institute of Aeronautics and Astronautics

Figure 12. The uavEE ground station interface, which provides functionality in emulation and real flight; it is shown being used to automate
a pitch doublet maneuver as part of the flight testing automation process.

Figure 13. Flight-ready Avistar UAV.

1. Propulsion Power Model for Fixed-Wing Electric Unmanned Aircraft

A high-fidelity, low-order power model for electric, fixed-wing unmanned aircraft19 was developed and integrated into
uavEE. Previous works have separately looked at aircraft power modelling23–25 and propulsion system modelling26–28

with varying degrees of assumptions and verification. Compared to existing works, the propulsion power model
developed provides a more holistic approach to UAV propulsion power modeling and has been tested under realistic
flight conditions. The power model uses propulsion system modeling of the propeller and motor as well as aircraft
power modeling using flight mechanics derivations. In order to enable online computation with limited resources, the
resulting expression has been limited to using only measurable aircraft state variables, propulsion system parameters
and curves, and (scalar) constants. The final expression for the developed power model is:

Ppropulsion = Kp
v3

ηpηm
+ Ki

cos2 γ
ηpηmvcos2 φ

+ mg
vsinγ
ηpηm

+ m
~a ·~v

ηpηm
(5)

where Kp and Ki are scalar constants that can be determined from aircraft specifications or can be learned through linear
regression with non-linear kernel using a training data set. Note that complete derivation and validation can be found in
related work.4, 19

14 of 24

American Institute of Aeronautics and Astronautics

The resulting power model was evaluated by means of flight testing using uavAP. By flying a reference flight path,
containing turns, climbs, descents, and straight line segments, the flight testing showed very close agreement between
the power and energy estimates determined using the power model from aircraft state data and actual experimental
power and energy measurements. Additionally, using the emulation environment, the reference flight path was also
flown using the same autopilot and a simulated radio control model aircraft trainer, which was very similar to the one
used in experimental flight testing. These flight paths are displayed in Figure 14. The flight path was nearly identical
with the exception of 2 corners, where in experimental flight testing, light wind gusts deviated the aircraft slightly.
The power and energy data generated was in close agreement with the experimental data as can be seen in Figure 15.
The significance of this result is that the developed propulsion power model is able to accurately estimate the power
consumption of an electric UAV based on flight path state, without needing precise aerodynamic measurements or
estimation, e.g. angle-of-attack. Therefore, power estimation can be done with minimal computation.

0

100

200

300

400

500

600

0

100

200

300

400

500

600

100

120

140

160

 − Experimental
 − Simulated

Northing (m)Easting (m)

A
lt

it
u
d
e

(m
)

Start

End

Figure 14. Comparison of aircraft path for experimental (red) and simulated flight (green) results; the airplane is plotted at 6x scale and
every 2 seconds.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

100

200

300

400

500

600

P
ro

pu
ls

io
n

P
ow

er
 P

 (W
)

Measured
Modeled
Simulated

(a)

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

2

4

6

8

10

12

14

16

Pr
op

ul
si

on
 E

ne
rg

y
C

on
su

m
ed

 (K
J)

Measured
Modeled
Simulated

(b)

Figure 15. Comparison of (a) propulsion power and (b) energy consumed from experimental measured (red), experimental modeled (blue),
and simulated (green) results using the propulsion power model.

2. Flight Testing Automation

The current state-of-the-art in performing flight testing maneuvers for aircraft parameterization has been manual piloting
with instruction relayed through flight test cards. Performing manual flight maneuvers off of manually read test cards
has shown to require thousands of hours of costly flight testing.29 There have been ongoing efforts to parameterize
aircraft dynamics on manned and unmanned aircraft using multi-sine and stick-shaker inputs. However, these can be
error-prone, very computationally intensive, and require large datasets.30–32 Instead, the flight maneuver automation
framework, described in Section IV, extends the existing uavAP stack to streamline the flight testing and flight dynamics

15 of 24

American Institute of Aeronautics and Astronautics

parameterization processes of an unmanned aircraft.6 The flight maneuver automation framework is able to command
the aircraft through a user-defined, conditional set of motions and states to induce certain maneuver sets, which allow
for dynamics to be more easily parameterized; these sets of maneuvers, motions, and states follow manned flight testing
techniques.33 Maneuvers of interest that have been implemented into the automation framework included: idle descent,
stall, phugoid, doublets, and singlets, which provide the basis for determining the aircraft aerodynamics, longitudinal
stability, and control effectiveness, respectively. Additionally, automating the data collection process using the new
flight analysis module allows for reliable data selecting, eliminating work hours of parsing and matching data ranges to
maneuvers.

The flight maneuver automation framework was initially demonstrated using software-in-the-loop simulation in the
uavEE. A comparison between automated and manually-piloted flight was performed for testing stall using the full-scale
Cessna 172 under ideal (still atmosphere) conditions in the X-Plane 11 Flight Simulatora; this can be seen in Figure
16–19. In those time histories, the difficulty exhibited by the trained human pilot in simultaneously controlling the
aircraft altitude and roll and heading angles can be seen. In comparison, the time history of autonomously controlled stall
speed maneuver show smooth and accurate results. The flight maneuver automation framework was then demonstrated
on the Avistar UAV testbed aircraft and subsequently used to collect an aircraft dataset. Due to limited calm weather
day opportunities, only a subset of the maneuvers developed were flown, which include stall speed, stall polar, idle
descent, singlets, and doublets. The complete resulting data set of flight testing maneuvers can be viewed in related
work21 and can be downloaded from our UAV Database Site.34

0

20

40

60

80

100

120

0

z
(m

)

140

100

200

300

400

x (m)

500

600

700

800

900

1000

y (m)

20
0

Figure 16. Trajectory plot of a stall speed maneuver performed by manual piloting (the aircraft is drawn once every 1.0 s).

0

50

100

0

z
(m

)

150

100

200

300

400

500

x (m)

600

700

800

900

1000

y (m)

0
-20

Figure 17. Trajectory plot of a stall speed maneuver performed by the flight maneuver automation framework (the aircraft is drawn once
every 1.0 s).

aThe manually-pilot aircraft was flown by a trained human pilot using a professional-grade simulator yoke system, throttle quadrant, and rudder
pedals. Both maneuvers were set up the same, with the aircraft flying at 40 m/s and oriented at a yaw angle of 0 deg (East).

16 of 24

American Institute of Aeronautics and Astronautics

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

20

40

60

80

100

120

140

160

180

200

P
os

iti
on

 (
m

)

Northing

Easting (1/10)

Altitude

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-60

-45

-30

-15

0

15

30

45

60

E
ul

er
 A

ng
le

 (
de

g)

 (Roll)

 (Pitch)

 (Heading)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
cc

el
er

at
io

n
(m

/s
2)

x

y

z

Tot

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

R
ot

at
io

n
R

at
e

(d
eg

/s
)

p

q

r

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-40

-30

-20

-10

0

10

20

30

40

50

B
od

y
V

el
oc

ity
 (

m
/s

)

u

v

w

V

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

250

500

750

1000

1250

1500

1750

2000

P
ro

pe
lle

r
R

ot
at

io
n

R
at

e
(R

P
M

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
ng

le
 o

f A
tta

ck
 (

de
g)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

C
on

tr
ol

 D
ef

le
ct

io
n

(d
eg

)

Aileron

Elevator

Rudder

Figure 18. A time history of a stall speed maneuver performed by manual piloting.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

20

40

60

80

100

120

140

160

180

200

P
os

iti
on

 (
m

)

Northing

Easting (1/10)

Altitude

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-60

-45

-30

-15

0

15

30

45

60

E
ul

er
 A

ng
le

 (
de

g)

 (Roll)

 (Pitch)

 (Heading)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
cc

el
er

at
io

n
(m

/s
2)

x

y

z

Tot

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

R
ot

at
io

n
R

at
e

(d
eg

/s
)

p

q

r

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-40

-30

-20

-10

0

10

20

30

40

50

B
od

y
V

el
oc

ity
 (

m
/s

)

u

v

w

V

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

250

500

750

1000

1250

1500

1750

2000

P
ro

pe
lle

r
R

ot
at

io
n

R
at

e
(R

P
M

)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
ng

le
 o

f A
tta

ck
 (

de
g)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

C
on

tr
ol

 D
ef

le
ct

io
n

(d
eg

)

Aileron

Elevator

Rudder

Figure 19. A time history of a stall speed maneuver performed by the maneuver automator.

17
of24

A
m

erican
Institute

ofA
eronautics

and
A

stronautics

3. Geo-Fencing Algorithm

To enable safe interactions among the surrounding humans, environments, and other aircraft, UAVs have to be
constrained to designated areas or spaces. For rotary aircraft, such as quadcopters, the task of enforcing the geo-fence is
relatively simple since those type of aircraft are capable of stopping in mid-air and turning around with zero translational
velocity. However, for fixed-wing aircraft, such execution of maneuvers is impossible as they need to maintain a
minimum velocity in order to stay airborne. Consequently, a precise kinematic model for fixed-wing aircraft is required
to determine the feasibility of a trajectory as well as the exact time for the initiation of an evasion maneuver. Most
analytical kinematic models only constrain the maximum curvature of a trajectory, namely a Dubin’s Curve.35, 36 These
fixed-wing aircraft geo-fencing algorithms37, 38 argue that the trajectories for a fixed-wing aircraft form a symmetric fan
pattern around the velocity vector. This fan pattern, however, is based on the instantaneous change in roll, which was
shown to not be applicable for fixed-wing aircraft.

Therefore, a precise kinematic model, the Beta-Trajectory, was developed for trajectory prediction and evasive
maneuvering.7 The Beta-Trajectory implements a kinematic model for fixed-wing aircraft where roll is governed by
constrained roll rates, yielding Beta-Curves. The algorithm then uses the results of the model to avoid boundaries and
stay in a designated area. The full derivation of the Beta-Trajectory can be found in this technical report.16 In order to
evaluate the proposed geo-fencing system, the Beta-Trajectory was implemented into uavAP using the flight maneuver
automation framework, tested in uavEE, and then subsequently tested in real flights using the Avistar UAV. Figure 20
shows the performance of the Beta-Trajectory geo-fencing algorithm in real flights.

−300 −200 −100 0 100 200 300

Distance X [m]

−300

−200

−100

0

100

200

300

D
is

ta
n

ce
Y

[m
]

1

2

3

4

Flight

Takeoff and Landing

Evasive Maneuver

Figure 20. The real-life flight path of the Avistar UAV deployed with the uavAP autopilot with geo-fencing; red shows the geo-fence, blue
shows the evasive maneuvers labeled from 1-4 (note that the boundary slack value is 5 meters and velocity is 20 m/s).

18 of 24

American Institute of Aeronautics and Astronautics

C. UIUC-TUM Solar Flyer

The UIUC-TUM Solar Flyer, which is shown in Figure 21, is a long-endurance, solar-powered unmanned aircraft
currently in development to enable computationally-intensive flight that could support real-time data processing for
a wide range of applications.39 The aircraft is a highly-optimized, fixed-wing design that was assembled from only
commercial-off-the-shelf (COTS) components and operates a narrow range of airspeeds in order to achieve highly-
efficient flight. The aircraft has been instrumented with a custom Al Volo flight control and data acquisition system that
integrates the uavAP autopilot, which has been adapted for the demanding requirements dictated by the aircraft and its
flight profile.

Due to the low operating airspeed of the sailplane design, the aircraft is very susceptible to atmospheric turbulence
and wind. Therefore it was crucial to integrate a responsive wind estimator and airspeed controller into uavAP. Among
other flight testing recently performed, the UIUC-TUM Solar Flyer was autonomously flown using uavAP to measure
the aircraft’s power consumption,40 which is crucial for modeling the aircraft. Additionally, in order to verify the
aircraft’s ability to maintain a precise flight path under varying flight conditions, the aircraft was flight tested using
uavAP in various amounts of wind, up to the aircraft’s typical cruise speed (note that the aircraft maximum speed is
greater than cruise). Figure 22 shows the resulting trajectory, of the UIUC-TUM Solar Flyer attempting to maintain a
repeated level race track maneuver under varying wind conditions, which would be sufficient to accomplish a typical
mission profile, e.g. equivalent zig-zagged racetrack coverage profile over a field.

Figure 21. The UIUC-TUM Solar Flyer aircraft shown with solar arrays.

Figure 22. The trajectory of the UIUC-TUM Solar Flyer during a repeated level race track maneuver (note that the aircraft is plotted 6x
scale every 0.5 sec).

19 of 24

American Institute of Aeronautics and Astronautics

VI. Related Autopilots

In this section, a comparison between uavAP and other openly available autopilot implementations is performed.
The control stacks and software framework of Ardupilot, Paparazzi and PX4 are examined.

A. Ardupilot

Ardupilot is an open source software suite first establised in 2009. It is not tied to a specific set of hardware but rather, it
is firmware capable of running on various embedded platforms.41 Nevertheless, fully packaged autopilots with hardware
and software, such as the The ArduPilot Mega (APM) based off the Arduino Mega, exist for convenience. APM has
inspired many derivatives, such as FlyMaple.42, 43 Ardupilot’s runtime stack is organized hierarchically as follows. The
lowest layer is the hardware level, consisting of external sensors, open hardware standards such as Pixhawk,44 controller
chips such as the Mateksys F40545 or Navio2, and complete drones such as the Bebop2.46 The next level is the OS
layer, which consists of OSs like ChibiOS, BusyBox Linux and Linux.41 Ardupilot itself then runs above the OS layer.
The flight code is further segmented into 3 layers, the hardware abstraction layer, shared libraries, and vehicle specific
flight code. The hardware abstraction layer allows ArduPilot to be portable and platform agnostic. Shared libraries exist
for the supported four vehicle types: Copter, Plane, Rover and AntennaTracker. The communication layer resides above
the flight layer and communication is done via devices implementing the MAVLink protocol. In addition to these core
autopilot modules, Ardupilot’s codebase also has miscellaneous support tools. The highest layer of the runtime stack is
the UI/API layer, which consists of the Ground Station and any DroneKit applications and their corresponding hosts.41

In terms of software design, Ardupilot is focused on reliably going from one waypoint to another. Ardupilot provides a
reliable trajectory planner to travel between waypoints and assumes the average user is not interested in modifying the
trajectory planner or other critical features. uavAP allows users to modify the trajectory planner, scheduler, inter device
communication, and various other low level features if they so desire. This modularity allows users to implement more
complex solutions ranging from low level to high level. Thus, uavAP is more geared towards being a testbed for various
state-of-the-art research implementations.

uavAP’s runtime stack is comparable to Ardupilot’s. At the hardware layer, uavAP uses Al Volo libraries to
communicate with sensors and data acquisition systems but can be extended to other platforms. One noteworthy
difference is that below the hardware level, uavAP can also be configured to take actuation and flight data from real
flights or emulated/replayed flight conditions in uavEE. uavEE is then capable of performing both SITL (Software in the
Loop) and HITL (Hardware in the Loop) Simulation, with flight simulators such as X-Plane 11. Conversely, Ardupilot
has its own SITL (Software In The Loop) simulation framework and simulator. It is a build of the autopilot using any
C++ compiler, and thus allows the autopilot to be tested without hardware. Ardupilot’s SITL Simulator can also be
used with a wide variety of 3rd party simulators, such as Gazebo, XPlane-10, RealFlight, Morse, Replay, JSBSIM,
AirSim, Silent Wings Soaring, Last Letter, CRRCSim, or SCRIMMAGE. Hardware In The Loop Simulation is currently
only supported for planes in X-Plane and FlightGear.41 While Ardupilot’s SITL necessitates manual connections from
the autopilot executable to the ground control station, physics and flight simulators, and proxy telemetry if multiple
ground control stations are desired, uavAP uses the uavEE system to handle all inter-agent communication associated
with HITL/SITL simulation. Ardupilot’s fixed wing operating modes are comparable to uavAP. Ardupilot has various
different flight modes, ranging from full manual control of aircraft control surfaces, to roll and pitch override, to circling
a point, to following a mission. In AUTO mode, where the autopilot flies a mission, Ardupilot’s framework allows the
ground station to update the mission.41 Conversely in uavAP, manual flight is not supported by default. In the interest
of autonomy, the mission is preconfigured ahead of the flight.

20 of 24

American Institute of Aeronautics and Astronautics

B. Paparazzi

Paparazzi UAV is another open-source project encompassing both the hardware and software aspects of UAV systems.
As per their website, they support more target platforms than Ardupilot.47 One example of a pre-built board running
the autopilot software is the STM based Chimera board.42, 43, 47 Paparazzi’s usage flow is as follows. The autopilot is
configurable by an XML, where the flight mode state machine is defined, along with aircraft modules, additional header
files, ground control settings, and exceptions. The specified firmware is then built and cross-compiled for that target
aircraft hardware, and uploaded to the embedded board. Paparazzi has a wide array of modules for performing tasks
such as reading external sensors or controlling cameras. The default features for fixed wing aircraft are the following:
manual control via an RC transmitter, RC receiver, servo and motor control, control with augmented stability (AUTO1),
autonomous navigation (AUTO2), and communication to and from the ground station. Autonomous navigation includes
features like waypoint navigation, segment and circle navigation, takeoff and landing, and advanced fail-safe planning
(e.g. geo-fencing).47 Its configurable state machine nature also allows high flexibility and complexity in algorithm
design for control, communication and other custom features. In comparison, uavAP provides a concrete control stack
with defined roles, with the goal of minimizing complexity associated with changing autopilot functionality.

The system communication flow is as follows. When configured for real flight, the aircraft communicates over a
wireless link to a ground network, which then sends the data to a server that logs, distributes, and pre-processes the
messages for the ground control station and other ground agents. When configured for simulated flight, the hardware
communication link is replaced with a SITL simulator that simulates actuation and radio communication. A Gaia agent
then allows the user to set environmental variables such as windspeed and direction, sensor failure, and flight simulation
speed. Paparazzi has two built in simulators, sim and nps (New Paparazzi Simulator). It also supports the Gazebo
simulator.47 In comparison to uavAP, uavAP sends sensor data and receives ground commands in real flight over a
radio link to a uavEE environment with radio communication and ground station nodes. In simulated flight, sensor data
from the flight simulator is sent over a simulated serial link to uavAP and processed with the same API. Environmental
factors such as wind can be configured in the flight simulator (currently X-Plane 11). All simulated sensor data can be
corrupted to simulate sensor fault, and all communication between simulation peripherals (i.e. flight simulator, power
modeller, sensor fault modeller) is handled by the ROS environment uavEE is built on.

C. PX4

PX4 is another open source autopilot for drones and other unmanned aerial vehicles focused on support for a broad
category of aerial vehicles, sensors and control hardware, and safe flight modes. It comes with a ground station called
QGroundControl, supports PixHawk hardware, and uses the MAVSDK library for communication with companion
devices using the MAVLink protocol.48 Various embedded boards are designed to use the PX4 autopilot, such as
PIXHAWK, Pixfalcon, and PixRacer.42, 43 PX4 is split into a flight stack layer and middleware layer. The flight stack
layer is responsible for all flight control tasks, such as guidance, navigation, control algorithms, and reading sensors.
The workflow inside the flight stack is as follows. An estimator feeds a state estimate to a controller, which produces a
command, and a mixer translates them to motor commands. This layer is vehicle specific and depends on factors such
as the aircraft’s motor arrangements and rotational inertia. PX4 uses a state machine in the flight controller to select a
flight controller based on the level of flight autonomy desired.48 The middleware layer handles communication with the
external world and it includes device drivers for embedded sensors and communication with companion computers,
ground control stations, etc. Similar to Ardupilot, PX4 provides broad community support and is focused on simple and
reliable flight control. Thus, PX4 focuses on providing robust semi-autonomous flight (e.g. pitch and roll controlled by
the autopilot but yaw manually controlled by RC stick) and autonomous waypoint following and assumes the average
user is not interested in modifying the trajectory planner or other critical underlying features. In contrast, uavAP’s

21 of 24

American Institute of Aeronautics and Astronautics

modular framework is designed to allow modifications to any underlying feature, making it more suitable to be a testbed
for various state-of-the-art research implementations.

In addition, PX4 can be interfaced to run on a computer modeled vehicle in a simulated flight world. Currently
for fixed wing aircraft, PX4 supports the Gazebo simulator for SITL and HITL and X-Plane for HITL only. When
doing SITL simulation, PX4 communicates with offboard APIs, the ground control station and the simulator over
the MAVLink protocol on UDP. Faster than real-time and lockstep simulation is also supported, as well as joystick
integration, sensor failure, and camera simulation.48 When uavAP communicates with uavEE and vice versa in SITL,
HITL and real flight, point to point serial communication with CRC is used. Faster than real-time simulation playback
is also supported in the uavEE environment via ROS-bags (saved flight data) and accelerated X-Plane simulation speed.

VII. Conclusion and Future Work

This work presented uavAP, a modular autopilot for UAVs, providing some details of its control stack implementation
as well as applications. uavAP has been used in past research for the design of an accurate UAV power model, a flight
maneuver automation framework, and an accurate kinematic model and algorithm for fixed-wing aircraft geo-fencing.
Its core, cpsCore, is the C++ object-oriented backbone, used for module management such as configuration, aggregation,
and synchronization. In essence, uavAP is a collection of modules merged together using cpsCore to form a flexible
and distributed autopilot framework for UAVs.

In future work, uavAP will be applied to a broad range of research directions. The critical computation path of flight
control provides a challenge for real-time system management, especially when parallelizing it with data-intensive
vision computation. Providing real-time guarantees requires complex software isolation techniques, which can be
implemented and tested in uavAP. Further work can be conducted with planning and control algorithms, branching out
into trajectory optimization or power-optimal flight using techniques of artificial intelligence. While expanding the
system to intelligent, unpredictable algorithms, a pairing of those algorithms with reliable, less complex algorithms
might be essential. This architectural challenge can easily be addressed with uavAP, in which the intelligent algorithm
can even be isolated as its own process. Another branch of research with the need for modularity and flexibility is the
area of multi-agent systems, specifically multi-agent UAVs. In this field, uavAP can be used to facilitate the testing and
development of various communication schemes, consensus algorithms, or even multi-agent reinforcement learning. As
it is an open-source project, uavAP aims to expand into more research communities, with the goal to be a testbed of
state-of-the-art research.

Acknowledgments

The material presented in this paper is based upon work supported by the National Science Foundation (NSF)
under grant number CNS-1646383. Marco Caccamo was also supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education and Research. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the
NSF.

References

1Mirco Theile, “uavAP: A Modular Autopilot for Unmanned Aerial Vehicles,” https://github.com/theilem/uavAP, Accessed May 2020.
2Al Volo LLC, “Al Volo: Flight Data Acquisition Systems,” http://www.alvolo.us.
3Mirco Theile, “uavEE: A Modular Emulation Environment for Rapid Development and Testing of Unmanned Aerial Vehicles,”

https://github.com/theilem/uavEE, Accessed May 2020.
4Theile, M., Dantsker, O. D., Nai, R., and Caccamo, M., “uavEE: A modular, power-aware emulation environment for rapid prototyping and

testing of uavs,” 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), IEEE, 2018,
pp. 217–224.

22 of 24

American Institute of Aeronautics and Astronautics

5Yu, S., Flight Maneuver Automation for System Analysis of Small Fixed-Wing UAVs, Bachelor’s thesis, University of Illinois at Urbana-
Champaign, Department of Electrical and Computer Engineering, Urbana, IL, 2019.

6Dantsker, O. D., Yu, S., Vahora, M., and Caccamo, M., “Flight Testing Automation to Parameterize Unmanned Aircraft Dynamics,” AIAA
Paper 2019-3230, AIAA Aviation and Aeronautics Forum and Exposition, Dallas, Texas, June 2019.

7Theile, M., Yu, S., Dantsker, O. D., and Caccamo, M., “Trajectory Estimation for Geo-Fencing Applications on Small-Size Fixed-Wing
UAVs,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 1971–1977.

8Twigg, C., “Catmull-rom splines,” Computer, Vol. 41, No. 6, 2003, pp. 4–6.
9Mirco Theile, “Modular C++ Framework for Cyber-Physical Systems,” https://github.com/theilem/cpsCore, Accessed May 2020.

10Redislabs, “Redis,” https://redis.io/, Accessed May 2020.
11Dantsker, O. D., Ananda, G. K., and Selig, M. S., “GA-USTAR Phase 1: Development and Flight Testing of the Baseline Upset and Stall

Research Aircraft,” AIAA Paper 2017-4078, AIAA Applied Aerodynamics Conference, Denver, Colorado, June 2017.
12Regan, C. D. and Taylor, B. R., “mAEWing1: Design, Build, Test - Invited,” AIAA Paper 2016-1747, AIAA Atmospheric Flight Mechanics

Conference, San Diego, California, Jun. 2016.
13Bunge, R. A., Alkurdi, A. E., Alfaris, E., and Kroo, I. M., “In-Flight Measurement of Wing Surface Pressures on a Small-Scale UAV During

Stall/Spin Maneuvers,” AIAA Paper 2016-3652, AIAA Flight Testing Conference, Washington, D.C., Jun. 2016.
14Bunge, R. A., Savino, F. M., and Kroo, I. M., “Approaches to Automatic Stall/Spin Detection Based on Small-Scale UAV Flight Testing,”

AIAA Paper 2015-2235, AIAA Atmospheric Flight Mechanics Conference, Dallas, Texas, Jun. 2015.
15Ragheb, A. M., Dantsker, O. D., and Selig, M. S., “Stall/Spin Flight Testing with a Subscale Aerobatic Aircraft,” AIAA Paper 2013-2806,

AIAA Applied Aerodynamics Conference, San Diego, CA, June 2013.
16M. Theile and S. Yu, “Kinematic Model for Fixed-Wing Aircraft with Constrained Roll-Rate,” Tech. rep., University of Illinois at Urbana-

Champaign, Department of Computer Science, Sep. 2018.
17Mancuso, R., Dantsker, O. D., Caccamo, M., and Selig, M. S., “A low-power architecture for high frequency sensor acquisition in many-DOF

UAVs,” 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), IEEE, 2014, pp. 103–114.
18Dantsker, O. D., Loius, A. V., Mancuso, R., Caccamo, M., and Selig, M. S., “SDAC-UAS: A Sensor Data Acquisition Unmanned Aerial

System for Flight Control and Aerodynamic Data Collection,” AIAA Infotech@Aerospace Conference, Kissimee, Florida, Jan 2015..
19Dantsker, O. D., Theile, M., and Caccamo, M., “A High-Fidelity, Low-Order Propulsion Power Model for Fixed-Wing Electric Unmanned

Aircraft,” AIAA Paper 2018-5009, AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, July 2018.
20Dantsker, O. D., Imtiaz, S., and Caccamo, M., “Electric Propulsion System Optimization for a Long-Endurance and Solar-Powered Unmanned

Aircraft,” AIAA Paper 2019-4486, AIAA/IEEE Electric Aircraft Technology Symposium, Indianapolis, Indiana, Aug. 2019.
21Dantsker, O. D., Caccamo, M., Theile, M., and Mancuso, R., “Flight & Ground Testing Data Set for an Unmanned Aircraft: Great Planes

Avistar Elite,” AIAA Paper 2020-0780, AIAA SciTech Forum, Orlando, Florida, Jan 2020.
22Dantsker, O. D., Mancuso, R., Selig, M. S., and Caccamo, M., “High-Frequency Sensor Data Acquisition System (SDAC) for Flight Control

and Aerodynamic Data Collection,” 32nd AIAA Applied Aerodynamics Conference, 2014, p. 2565.
23Lee, J. S. and Yu, K. H., “Optimal Path Planning of Solar-Powered UAV Using Gravitational Potential Energy,” IEEE Transactions on

Aerospace and Electronic Systems, Vol. 53, No. 3, June 2017, pp. 1442–1451.
24Grano-Romero, C., Garcı́a-Juárez, M., Guerrero-Castellanos, J. F., Guerrero-Sánchez, W. F., Ambrosio-Lázaro, R. C., and Mino-Aguilar,

G., “Modeling and control of a fixed-wing UAV powered by solar energy: An electric array reconfiguration approach,” 2016 13th International
Conference on Power Electronics (CIEP), June 2016, pp. 52–57.

25Hosseini, S., Dai, R., and Mesbahi, M., “Optimal path planning and power allocation for a long endurance solar-powered UAV,” 2013
American Control Conference, June 2013, pp. 2588–2593.

26Karabetsky, D., “Solar rechargeable airplane: Power system optimization,” 2016 4th International Conference on Methods and Systems of
Navigation and Motion Control (MSNMC), Oct 2016, pp. 218–220.

27Lindahl, P., Moog, E., and Shaw, S. R., “Simulation, Design, and Validation of an UAV SOFC Propulsion System,” IEEE Transactions on
Aerospace and Electronic Systems, Vol. 48, No. 3, JULY 2012, pp. 2582–2593.

28Bradt, J. B. and Selig, M. S., “Propeller Performance Data at Low Reynolds Numbers,” AIAA Paper 2011-1255, AIAA Aerospace Sciences
Meeting, Orlando, Florida, Jan. 2011.

29Canin, D. G., McConnell, J. K., and James, P. W., “F-35 High Angle of AttackFlight Control Development and Flight Test Results,” AIAA
Paper 2019-3227, AIAA Aviation and Aeronautics Forum and Exposition, Dallas, Texas, June 2019.

30Morelli, E., “Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs,” AIAA Paper 1997-3711, AIAA
Atmospheric Flight Mechanics Conference, New Orleans, Louisiana, Aug. 1997.

31Sobron, A., On Subscale Flight Testing: Applications in Aircraft Conceptual Design, Ph.D. thesis, Linkoping University, Department of
Management and Engineering, Linkoping, Sweden, 2018.

32Grauer, J. A. and Boucher, M., “Aircraft System Identification from Multisine Inputs and Frequency Responses,” AIAA Paper 2020-0287,
AIAA SciTech Forum, Orlando, Florida, Jan. 2020.

33Kimberlin, R. D., Flight Testing of Fixed-Wing Aircraft, AIAA Education Series, AIAA, Reston, VA, 2003.
34O. D. Dantsker and R. Mancuso and M. Vahora and M. Caccamo, “Unmanned Aerial Vehicle Database,” http://www.uavdb.org.
35Dubins, L. E., “On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and

Tangents,” American Journal of Mathematics, Vol. 79, No. 3, 1957, pp. 497–516.
36Lugo-Cárdenas, I., Flores, G., Salazar, S., and Lozano, R., “Dubins path generation for a fixed wing UAV,” 2014 International Conference on

Unmanned Aircraft Systems (ICUAS), May 2014, pp. 339–346.
37Gurriet, T. and Ciarletta, L., “Towards a generic and modular geofencing strategy for civilian UAVs,” 2016 International Conference on

Unmanned Aircraft Systems (ICUAS), June 2016, pp. 540–549.
38Dill, E. T., Young, S. D., and Hayhurst, K. J., “SAFEGUARD: An assured safety net technology for UAS,” 2016 IEEE/AIAA 35th Digital

Avionics Systems Conference (DASC), Sept 2016, pp. 1–10.

23 of 24

American Institute of Aeronautics and Astronautics

39Dantsker, O. D., Theile, M., Caccamo, M., and Mancuso, R., “Design, Development, and Initial Testing of a Computationally-Intensive,
Long-Endurance Solar-Powered Unmanned Aircraft,” AIAA Paper 2018-4217, AIAA Applied Aerodynamics Conference, Atlanta, Georgia, Jun.
2018.

40Dantsker, O. D., Theile, M., Caccamo, M., Yu, S., Vahora, M., and Mancuso, R., “Continued Development and Flight Testing of a Long-
Endurance Solar-Powered Unmanned Aircraft: UIUC-TUM Solar Flyer,” AIAA Paper 2020-0781, AIAA Scitech 2020 Forum, Orlando, Florida, Jan
2020.

41“Ardupilot Autopilot suite,” http://ardupilot.org, 2019.
42Ebeid, E., Skriver, M., and Jin, J., “A survey on open-source flight control platforms of unmanned aerial vehicle,” 2017 Euromicro Conference

on Digital System Design (DSD), IEEE, 2017, pp. 396–402.
43Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., and Schultz, U. P., “A survey of open-source UAV flight controllers and flight simulators,”

Microprocessors and Microsystems, Vol. 61, 2018, pp. 11–20.
44“pixhawk — The Hardware Standard for Open Source Autopilots,” https://pixhawk.org/.
45“Matek Systems,” http://www.mateksys.com/.
46“Parrot Bepop 2 FPV Drone,” https://www.parrot.com/global/drones/parrot-bebop-2-fpv.
47http://wiki.paparazziuav.org/wiki/Overview, 2018.
48“PX4 Documentation,” https://docs.px4.io/, 2020.

24 of 24

American Institute of Aeronautics and Astronautics

Chapter 4

Reinforcement Learning for
Map-based Path Planning

61

Chapter 4. Reinforcement Learning for Map-based Path Planning

4.1 UAV Coverage Path Planning under Varying Power Con-

straints using Deep Reinforcement Learning

Reference

M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV coverage path
planning under varying power constraints using deep reinforcement learning,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1444–
1449, IEEE, 2020
DOI: https://doi.org/10.1109/IROS45743.2020.9340934

Abstract

Coverage path planning (CPP) is the task of designing a trajectory that enables a mobile
agent to travel over every point of an area of interest. We propose a new method to
control an unmanned aerial vehicle (UAV) carrying a camera on a CPP mission with
random start positions and multiple options for landing positions in an environment
containing no-fly zones. While numerous approaches have been proposed to solve similar
CPP problems, we leverage end-to-end reinforcement learning (RL) to learn a control
policy that generalizes over varying power constraints for the UAV. Despite recent
improvements in battery technology, the maximum flying range of small UAVs is still a
severe constraint, which is exacerbated by variations in the UAV’s power consumption
that are hard to predict. By using map-like input channels to feed spatial information
through convolutional network layers to the agent, we are able to train a double deep
Q-network (DDQN) to make control decisions for the UAV, balancing limited power
budget and coverage goal. The proposed method can be applied to a wide variety of
environments and harmonizes complex goal structures with system constraints.

Contributions to this paper

• Shared conceptualization of the map-based methodology for coverage path planning

• Creation of the CPP code base in uavSim

• Conducting of training and evaluation simulations

• Majority of paper writing

Copyright

© 2020 IEEE. Reprinted, with permission, from Mirco Theile, Harald Bayerlein, Richard
Nai, David Gesbert, and Marco Caccamo, “UAV Coverage Path Planning under Varying
Power Constraints using Deep Reinforcement Learning”, 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2020.

See Appendix A.3 for the reuse statement. The following shows the accepted version.

62

https://doi.org/10.1109/IROS45743.2020.9340934

UAV Coverage Path Planning under Varying Power Constraints using
Deep Reinforcement Learning

Mirco Theile1, Harald Bayerlein2, Richard Nai1, David Gesbert2, and Marco Caccamo1

Abstract— Coverage path planning (CPP) is the task of
designing a trajectory that enables a mobile agent to travel
over every point of an area of interest. We propose a new
method to control an unmanned aerial vehicle (UAV) carrying
a camera on a CPP mission with random start positions
and multiple options for landing positions in an environment
containing no-fly zones. While numerous approaches have been
proposed to solve similar CPP problems, we leverage end-to-
end reinforcement learning (RL) to learn a control policy that
generalizes over varying power constraints for the UAV. Despite
recent improvements in battery technology, the maximum flying
range of small UAVs is still a severe constraint, which is
exacerbated by variations in the UAV’s power consumption that
are hard to predict. By using map-like input channels to feed
spatial information through convolutional network layers to the
agent, we are able to train a double deep Q-network (DDQN)
to make control decisions for the UAV, balancing limited power
budget and coverage goal. The proposed method can be applied
to a wide variety of environments and harmonizes complex goal
structures with system constraints.

I. INTRODUCTION

Whereas the CPP problem for ground-based robotics has
already found its way into our everyday life in the form
of vacuum cleaning robots [1], autonomous coverage with
UAVs, while not yet having attained the same level of
prominence, is being considered for a wide range of applica-
tions, such as photogrammetry, smart farming and especially
disaster management [2]. UAVs can be deployed rapidly to
gather initial or continuous survey data of areas hit by natural
disasters, or mitigate their consequences. In the aftermath
of the 2019-20 Australian bushfire season, wildlife officers
inventively used quadcopter drones with infrared sensors to
conduct a search-and-rescue operation for koalas affected by
the blaze [3].

As its name suggests, covering all points inside an area of
interest with CPP is related to conventional path planning
where the goal is to find a path between start and goal
positions. In general, CPP aims to cover as much of the
target area as possible within given energy or path-length
constraints while avoiding obstacles or no-fly zones. Due to
the limitations in battery energy density, available power lim-
its mission duration for quadcopter UAVs severely. Finding
a CPP control policy that generalizes over varying power
constraints and setting a specific movement budget can be

1Mirco Theile, Richard Nai, and Marco Caccamo are with the
TUM Department of Mechanical Engineering, Technical University
of Munich, Germany {mirco.theile, richard.nai,
mcaccamo}@tum.de

2Harald Bayerlein and David Gesbert are with the Communi-
cation Systems Department, EURECOM, Sophia Antipolis, France
{harald.bayerlein, david.gesbert}@eurecom.fr

seen as a way to model the variations in actual power con-
sumption during the mission, e.g. caused by environmental
factors that are hard to predict. Similar to conventional path
planning, CPP can usually be reduced to some form of the
travelling salesman problem, which is NP-hard [1]. Lawn-
mowing and milling [4] are other examples of closely related
problems.

The most recent survey of UAV coverage path planning
is given by Cabreira et al. [2]. Galceran and Carreras [1]
provide a survey of general (ground robotics) approaches
to CPP. Autonomous UAVs for applications in wireless
communications have also sparked a lot of interest recently.
Some scenarios, e.g. deep RL trajectory planning for UAVs
providing wireless connectivity under battery power con-
straints, are related to CPP. An overview of UAV applications
in wireless communications can be found in [5].

To guarantee complete coverage, most existing CPP ap-
proaches split the target area and surrounding free space
into cells, by means of exact or approximate cellular de-
composition. Choset and Pignon [6] proposed the classical
boustrophedon (“the way of the ox”, back and forth motion)
cellular decomposition, an exact decomposition method that
guarantees full coverage but offers no bounds on path-
length. This algorithm was extended by Mannadiar and
Rekleitis [7] through encoding the cells of the boustrophedon
decomposition as a Reeb graph and then constructing the
Euler tour that covers every edge in the graph exactly once.
Cases where the mobile agent does not have enough power
to cover the whole area are not considered. The authors in
[8] adapted this method for use in a non-holonomic, fixed-
wing UAV and conducted extensive experimental validation.
Two other approaches combining CPP and the travelling
salesman problem to find near-optimal solutions for coverage
of target regions enclosed by non-target areas are proposed
by the authors in [9]: grid-based and dynamic programming-
based, respectively. Both approaches suffer from exponential
increase in time complexity with the number of target regions
and do not consider obstacles or UAV power limitations.

Non-standard approaches have made use of neural net-
works (NNs) before. The authors in [10] design a network of
neurons with only lateral connections that each represent one
grid cell in a cleaning robot’s non-stationary 2D environment.
The path planning is directly based on the neural network’s
activity landscape, which is computationally simple and can
support changing environments, but does not take path-length
or power constraints into account.

Reinforcement learning with deep neural networks has
only recently started to be considered for UAV path planning.

Maciel-Pearson et al. [11] proposed a method using an
extended double deep Q-network (EDDQN) to explore and
navigate from a start to a goal position in outdoor environ-
ments by combining map and camera information from the
drone. Their approach is focused on obstacle avoidance under
changing weather conditions. The authors in [12] investigate
the CPP-related drone patrolling problem where a UAV
patrols an area optimizing the relevance of its observations
through the use of a single-channel relevance map fed into a
convolutional layer of a DDQN agent. However, there is no
consideration for power constraints and the relevance map is
preprocessed showing only local information. To the best of
our knowledge, deep RL has not been considered for UAV
control in coverage path planning under power constraints
before.

The main contributions of this paper are the following:
• Introduction of a novel UAV control method for cover-

age path planning based on double deep Q-learning;
• The usage of map-like channels to feed spatial infor-

mation into convolutional network layers of the agent;
• Learning a control policy that generalizes over random

start positions and varying power constraints and de-
cides between multiple landing positions.

The remainder of this paper is organized as follows:
Section II introduces the CPP problem formulation, Section
III describes our DDQN learning approach and in Section IV
follow simulation results and their discussion. We conclude
the paper with a summary and outlook onto future work in
Section V.

II. PROBLEM FORMULATION

A. Setup

The sensors of the UAV forming the input of the rein-
forcement learning agent are depicted in Figure 1: camera
and GPS receiver. The camera gives a periodic frame of
the current coverage view and the GPS yields the drone’s
position. Power constraints determined by external factors
are modelled as a movement budget for the drone that is
fixed at mission start. Two additional software components
are running on the UAV. The first is the mission algorithm
which is responsible for the analysis of the camera data.
We assume that any mission algorithm can give feedback on
the area that was already covered. The second component is
a safety controller that evaluates the proposed action of the
agent and accepts or rejects it based on the safety constraints
(entering into no-fly zones or landing in unsuitable areas).
Note that the safety controller does not assist the agent in
finding the landing area. The last component is a map which
is provided by the operator on the ground. While this map
could be dynamic throughout the mission, we focus on static
maps for the duration of one mission in this paper.

B. 3-Channel Map

The coverage problem to be solved can be represented by
a two dimensional grid map with three channels. Each cell
in the grid represents a square area of the coverage region.
The three channels describe starting and landing zones, target

Fig. 1: System-level diagram depicting sensor and software
components on the UAV during a coverage mission.

zones, and no-fly zones. The start and landing zones are
areas the agent can start from and land on after finishing
a coverage path. Target zones have to be covered at least
once by the field of view (FoV) of the UAV’s camera. No-
fly zones represent areas which the drone is prohibited from
entering. Note that it is possible that a cell is declared as
none, or more than one of these zones, with the exception
that starting and landing zones can not be no-fly zones at the
same time.

C. Markov Decision Process

In order to solve the described coverage path planning
problem with reinforcement learning, it is converted into a
Markov decision process (MDP). An MDP is described by
the tuple (S,A, R, P), with the set of possible states S, the
set of possible actions A, the reward function R, and the
deterministic state transition function P : S ×A 7→ S.

In a N × N grid, the state space S has the following
dimensions:

S = BN×N×3
︸ ︷︷ ︸

Map

×BN×N︸ ︷︷ ︸
Coverage

× R2
︸︷︷︸

Position

× N︸︷︷︸
Movement Budget

× B︸︷︷︸
Safety Flag

where B is the Boolean domain {0, 1}. The action space A
contains the following five actions:

A = {north, east, south,west, land}

The reward function R : S × A 7→ R, mapping the current
state s ∈ S and current action a ∈ A to a real-valued reward,
consists of multiple components:

• rcov (positive) coverage reward for each target cell that
is covered by the UAV’s field of view for the first time;

• rsc (negative) safety penalty in case the safety controller
(SC) rejects the agent’s proposed action;

• rmov (negative) constant movement penalty that is ap-
plied for every unit of the movement budget the UAV
uses

• rcrash (negative) penalty in case the UAV runs out of
movement budget without having safely landed in a
landing zone.

III. METHODOLOGY

A. Q-Learning

Reinforcement learning, in general, proceeds in a cycle of
interactions between an agent and its environment. At time
t, the agent observes a state st ∈ S , performs an action
at ∈ A and subsequently receives a reward r(st, at) ∈ R.
The time index is then incremented and the environment
propagates the agent to a new state st+1, from where the
cycle restarts. The goal of the agent is to maximize the
discounted cumulative return Rt from the current state up
to a terminal state at time T . It is given as

Rt =
T∑

k=t

γk−tr(sk, ak). (1)

with γ ∈ [0, 1] being the discount factor, balancing the
importance of immediate and future rewards. The return is
maximized by adapting the agent’s behavioral policy π. The
policy can be deterministic with π(s) such that π : S 7→ A,
or probabilistic with π(a|s) such that π : S × A 7→ R,
yielding a probability distribution over the action space for
each s ∈ S.

To find a policy which maximizes the return, we utilize
Q-learning, a model-free reinforcement learning approach. It
is based on learning the state-action-value function, or Q-
function Q : S ×A 7→ R, defined as

Qπ(s, a) = Eπ [Rt|st = s, at = a] . (2)

Q-learning relies on iteratively updating the current knowl-
edge of the Q-function. When the optimal Q-function is
known, it is easy to construct an optimal policy by taking
actions that maximize the Q-function. For convenience, st
and at are abbreviated to s and a and st+1 and at+1 to s′

and a′ in the following.

B. Deep Q-Learning

The Q-function from (2) can be represented through a
table of Q-values with the dimension S × A. This is not
feasible for large state or action spaces, but it is possible to
approximate the Q-function by a neural network in those
cases. A deep Q-network (DQN) parameterizing the Q-
function with the parameter vector θ is trained to minimize
the expected temporal difference (TD) error given by

L(θ) = Eπ[(Qθ(s, a)− Y (s, a, s′))2] (3)

with the target value

Y (s, a, s′) = r(s, a) + γmax
a′

Qθ(s
′, a′). (4)

While a DQN is significantly more data efficient com-
pared to a Q-table due to its ability to generalize, the

deadly triad [13] of function approximation, bootstrapping
and off-policy training can make its training unstable and
cause divergence. In 2015, Mnih et al. [14] presented a
methodology to stabilize the DQN learning process. Their
training approach makes use of an experience replay memory
D which stores experience tuples (s, a, r, s′) collected by the
agent during each interaction with the environment. Training
the agent on uniformly sampled batches from the replay
memory decorrelates the individual samples and rephrases
the TD-error as

LDQN(θ) = Es,a,s′∼D[(Qθ(s, a)− Y DQN(s, a, s′))2]. (5)

Additionally, Mnih et al. used a separate target network for
the estimation of the next maximum Q-value changing the
target value to

Y DQN(s, a, s′) = r(s, a) + γmax
a′

Qθ̄ (s′, a′) (6)

with θ̄ representing the parameters of the target network. The
parameters of the target network θ̄ can either be updated as
a periodic hard copy of θ or as a soft update with

θ̄ ← (1− τ)θ̄ + τθ (7)

after each update of θ. τ ∈ [0, 1] is the update factor
determining the adaptation pace. The combination of replay
memory and target network separation to stabilize the train-
ing process laid the groundwork for the rise in popularity of
DQN methods.

An additional improvement was proposed by Van Hasselt
et al. [15], who showed that under certain conditions, action
values in (6) get overestimated. To solve this issue, the
double deep Q-network (DDQN) was introduced. The target
value is then given by

Y DDQN(s, a, s′) = r(s, a)+γQθ̄(s
′, argmax

a′
Qθ(s

′, a′)) (8)

and the corresponding loss function

LDDQN(θ) = Es,a,s′∼D[(Qθ(s, a)− Y DDQN(s, a, s′))2], (9)

in which the overestimation of action values is reduced by
selecting the best action using θ but estimating the value of
that action using θ̄. When calculating ∇θLDDQN(θ) the target
value is taken as is, hence, the back-propagating gradient is
stopped before Y DDQN(s, a, s′).

C. Neural Network Model and Training Procedure

The DQN solving the MDP from Section II consists of
convolutional and fully-connected layers. It is visualized in
Figure 2. The UAV’s own position is converted to a 2D one-
hot representation, i.e. the encoding of the occupied cell
inside the whole grid. With the position encoded in this
way, it can be stacked with the three-channel map and the
coverage grid to form the five-channel input of the network’s
convolutional layers. The kernels of the convolutional layers
are then able to form direct spatial connections between the
current position and nearby cells. The remaining movement
budget is fed into the network after the convolutional layers.

argmax

softmax 𝜋(𝑎|𝑠)

Hidden Layers

Flatten Layer

Convolution Layers

Q-values

map

position

coverage
movement

budget

𝜋(𝑠)
16x16x16

5

5

5

5

16x16x5 256 256 256
5

4097

Fig. 2: Neural network structure for the reinforcement learning agent.

The convolutional layers are padded so that their output
shape remains the same as their input shape. All layers are
zero-padded for all channels, with the exception of the first
layer’s no-fly zone channel, which is one-padded. This is
an explicit representation of the no-fly zone surrounding the
mission grid. The rectified linear unit (ReLU) is chosen as
activation function for the convolutional layers. The last layer
of the convolutional network is flattened and concatenated
with the movement budget input. Fully-connected layers with
ReLU activation are attached to this flatten layer.

The last fully-connected layer is of size |A| and has no
activation function. It directly represents the Q-values for
each action given the input state. Choosing the argmax of
the Q-values is called the greedy policy and exploits already
learned knowledge. The greedy policy given by

π(s) = argmax
a∈A

Qθ(s, a) (10)

is deterministic and used when evaluating the agent’s learn-
ing progress. During training, the sampled soft-max policy
for exploration of the state and action space is used instead.
It is given by

π(ai|s) =
eQθ(s,ai)/β

∑
∀aj∈A eQθ(s,aj)/β

(11)

with the temperature parameter β ∈ R scaling the balance of
exploration versus exploitation. When β is increased so does
exploration. The limit β → 0 of the soft-max policy (11)
is the greedy policy (10). The soft-max policy was chosen
over the ε-greedy policy because it offers variable exploration
based on the relative difference of Q-values and does not
depend on the number of training steps or episodes. This
appeared to be beneficial for this particular problem.

Algorithm 1 describes the training procedure for the dou-
ble deep Q-network in more detail. After replay memory and
network parameters are initialized, a new training episode
begins with resetting the state, choosing a random UAV
starting position and random movement budget b0 ∈ B. The
episode continues as long as the movement budget is greater
than zero and the UAV has not landed. A new action a ∈ A

Algorithm 1 DDQN training for coverage path planning

Initialize D, initialize θ randomly, θ̄ ← θ
1: for n = 0 to Nmax do
2: Initialize state s0 with random starting position and

sample initial movement budget b0 uniformly from B
3: while b > 0 and not landed do
4: Sample a according to (11)
5: Observe r, s′

6: Store (s, a, r, s′) in D
7: for i = 1 to m do
8: Sample (si, ai, ri, s

′
i) uniformly from D

9: Yi =

{
ri, if s′i terminal
according to (8), otherwise

10: Compute loss Li(θ) according to (9)
11: end for
12: Update θ with gradient loss 1

m

∑m
i=1 Li(θ)

13: Soft update of θ̄ according to (7)
14: b = b− 1
15: end while
16: end for

is chosen according to (11) and the subsequent experience
stored in the replay memory buffer D.

Sampling a minibatch of size m from the replay memory,
the primary network parameters θ are updated by performing
a gradient step using the Adam optimizer. Subsequently,
the target network parameters θ̄ are updated using the soft
update (7) and the movement budget is decremented. The
episode ends when either the drone lands or the movement
budget decreases to zero. Then, a new episode starts unless
the maximum number of episodes Nmax is reached. The
hyperparameters that were used during training are listed in
Table I.

IV. EXPERIMENTS

A. Simulation Setup

The agent can move in a two dimensional grid through
action commands in A if accepted by the safety controller.

Parameter Value Description

|θ| 1,190,389 number of trainable parameters
|D| 50,000 replay memory buffer size
Nmax 10,000 maximum number of training episodes
β 0.1 temperature parameter (11)
m 128 minibatch size
γ 0.95 discount factor for target value in (8)
τ 0.005 target network update factor (7)

TABLE I: Hyperparameters for DDQN training.

Each action, no matter if accepted or rejected, consumes
one unit of movement budget since energy is spent during
hovering as well. The agent’s initial state s0 ∈ S consists of
a fixed map, a zero-initialized coverage grid and a position,
which is uniformly sampled from the starting and landing
zone of the map. Additionally, the initial movement budget is
uniformly sampled from a movement budget range B, which
is set to 25-75 for the purpose of this evaluation. The value
of the safety flag in s0 is initialized to zero and the UAV’s
camera field of view (FoV) is set to a fixed 3-by-3-cell area
centered underneath the agent. After each step the mission
algorithm marks the FoV as seen in the coverage grid map.

Three evaluation scenarios were chosen, each with a
unique problem for the agent to solve. Map A depicted in
Figure 3 (a)-(c) has a large starting and landing zone, which
yields high variation during training. Additionally, the shape
of the target area is challenging to cover. The difficulty of
map B in Figure 3 (d)-(f) lies in the yellow area that is
marked as target zone, but also marked as a no-fly zone, and
therefore must be covered by flying adjacent to it. Map C, in
Figure 3 (g)-(i) with a narrow passage between no-fly zones,
while easy to cover is very difficult for training as discussed
later.

B. Evaluation

After being trained on their respective scenario with
varying movement budgets and varying starting positions
under the exploration policy π(a|s) from (11), the agents
are evaluated under their exploitation policy π(s) from (10).
Their performance during coverage for the full movement
budget range and all possible starting positions is evaluated.
The performance is described through Figures 3 and 4 and
Table II.

The agents’ ability to plan a trajectory that ends with a safe
landing inside the landing zone over the full movement bud-
get range and starting at each possible position is evaluated
through Table II, showing the ratio of landing for all scenario
variations. Despite the agent’s good landing performance, the
safety controller’s capabilities on a real-world UAV would
likely be extended to force navigation to the closest landing
zone in the rare cases when the RL agent misses the right
moment to return.

To evaluate the impact of movement budget on the
achieved coverage ratio, the starting position was fixed. For
the selected starting positions the agents successfully landed
after completing a trajectory for each movement budget.
Figure 4 shows the coverage ratio of each agent with respect

to initial movement budget. Selected trajectories for each
map under three different movement budgets are depicted in
Figure 3. Whereas the movement budget is increasing from
left to right, the agent does not necessarily utilize the whole
allocated budget if it determines that there is a risk of not
returning to the landing area in time or the coverage goal
is already fulfilled. It can be seen that the agent finds a
trajectory balancing the goals of safe landing and maximum
coverage ratio.

Figure 5 shows the training process of an agent on map C.
The curve describes the cumulative reward of the exploitation
strategy when evaluated during the training process. Three
major phases appear during the training process, which are
highlighted in the graph. In phase one the agent learns to
land safely, but does not venture far enough from the landing
zone to find the target zone. When transitioning to phase two,
the agent discovers the target zone, yielding high immediate
reward. Due to the focus on mid-term reward through the
choice of discount factor γ, this strategy represents a local
optimum. In phase three the agent discovers the path back
to the landing zone, avoiding the crashing penalty rcrash.
After refining the trajectory, the agent finds the optimal path
at the end of phase three. The phase transitions are highly
dependent on the exploration strategy. Soft-max exploration
appeared to be more effective than the ε-greedy policy to
guide these transitions. The basic pattern of this incremental
learning process is also visible when applied to other maps,
albeit with less pronounced transitions due to bigger varia-
tions in coverage ratios.

V. CONCLUSION

We have introduced a new deep reinforcement learning
approach for the longstanding problem of coverage path
planning. While existing approaches might offer guarantees
on the (near)-optimality of their solutions, the case where
available power constrains the path planning is usually not
considered. By feeding spatial information through map-
like input channels to the agent, we train a double deep
Q-network to learn a UAV control policy that generalizes
over varying starting positions and varying power constraints
modelled as movement budgets. Using this method, we
observed an incremental learning process that successfully
balances safe landing and coverage of the target area on three
different environments, each with unique challenges.

In the future we will investigate the possibilities of transfer
learning for this set of problems. At first we will train the
agents on a curriculum of problems based on individual map
channels to further accelerate the training process described
in this work. From there we will examine approaches to
transfer the two dimensional grid agent to higher dimensions
and dynamics, e.g. adding altitude and heading. To this
effect, it might be beneficial to investigate other RL tech-
niques such as actor-critic methods and policy optimization.
The proposed approach can also be seen as an initial step
for handling variable power consumption in a real-world
scenario. Through these steps an application on physical
hardware will likely be within reach.

(a) 25/25 movement (b) 30/30 movement (c) 37/37 movement

(d) 23/25 movement (e) 37/40 movement (f) 51/60 movement

(g) 25/25 movement (h) 29/29 movement (i) 29/40 movement

Fig. 3: Coverage plots for three different maps (map A: (a)-(c), map B:
(d)-(f), map C: (g)-(i)) with three different movement budgets each; red,
blue, and green are no-fly zones, starting/landing zones, and target zones,
respectively; the red arrows describe the trajectory and the yellow and
white cell describe start and landing position, respectively; lighter cells
were covered by the agent’s FoV.

Map A Map B Map C
Landing ratio 99.37% 99.78% 98.26%

TABLE II: Landing ratio for each map
evaluated on the full range of movement
budgets and possible starting positions.

Fig. 4: Coverage ratio with varying move-
ment budget for the three maps.

Fig. 5: Training process of an agent trained
on map C with dashed lines indicating train-
ing phase transitions.

ACKNOWLEDGMENTS

Marco Caccamo was supported by an Alexander von
Humboldt Professorship endowed by the German Federal
Ministry of Education and Research. Harald Bayerlein and
David Gesbert are supported by the PERFUME project
funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
program (grant agreement no. 670896).

REFERENCES

[1] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1258–1276, 2013.

[2] T. Cabreira, L. Brisolara, and P. R Ferreira, “Survey on coverage path
planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, 2019.

[3] D. Gimesy, “Drones and thermal imaging: saving koalas injured in the
bushfires - [news],” The Guardian, 10 Feb 2020.

[4] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1-2, pp. 25–50, 2000.

[5] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on
UAV communications for 5G and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, 2019.

[6] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and service robotics, pp. 203–209,
Springer, 1998.

[7] R. Mannadiar and I. Rekleitis, “Optimal coverage of a known arbitrary
environment,” in 2010 IEEE International conference on robotics and
automation, pp. 5525–5530, 2010.

[8] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain
coverage using an unmanned aerial vehicle,” in 2011 IEEE Interna-
tional conference on robotics and automation, pp. 2513–2519, 2011.

[9] J. Xie, L. R. G. Carrillo, and L. Jin, “An integrated traveling salesman
and coverage path planning problem for unmanned aircraft systems,”
IEEE control systems letters, vol. 3, no. 1, pp. 67–72, 2018.

[10] S. X. Yang and C. Luo, “A neural network approach to complete
coverage path planning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 718–724, 2004.

[11] B. G. Maciel-Pearson, L. Marchegiani, S. Akcay, A. Atapour-
Abarghouei, J. Garforth, and T. P. Breckon, “Online deep reinforce-
ment learning for autonomous UAV navigation and exploration of
outdoor environments,” arXiv preprint arXiv:1912.05684, 2019.

[12] C. Piciarelli and G. L. Foresti, “Drone patrolling with reinforcement
learning,” in Proceedings of the 13th International Conference on
Distributed Smart Cameras, ACM, 2019.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: an introduc-
tion. MIT Press, second ed., 2018.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[15] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Thirtieth AAAI conference on artificial
intelligence, pp. 2094–2100, 2016.

Chapter 4. Reinforcement Learning for Map-based Path Planning

4.2 UAV Path Planning for Wireless Data Harvesting: A Deep

Reinforcement Learning Approach

Reference

H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV path planning for wireless
data harvesting: A deep reinforcement learning approach,” in GLOBECOM 2020-2020
IEEE Global Communications Conference, pp. 1–6, IEEE, 2020
DOI: https://doi.org/10.1109/GLOBECOM42002.2020.9322234

Abstract

Autonomous deployment of unmanned aerial vehicles (UAVs) supporting next-generation
communication networks requires efficient trajectory planning methods. We propose a
new end-to-end reinforcement learning (RL) approach to UAV-enabled data collection
from Internet of Things (IoT) devices in an urban environment. An autonomous drone is
tasked with gathering data from distributed sensor nodes subject to limited flying time
and obstacle avoidance. While previous approaches, learning and non-learning based,
must perform expensive recomputations or relearn a behavior when important scenario
parameters such as the number of sensors, sensor positions, or maximum flying time,
change, we train a double deep Q-network (DDQN) with combined experience replay
to learn a UAV control policy that generalizes over changing scenario parameters. By
exploiting a multi-layer map of the environment fed through convolutional network layers
to the agent, we show that our proposed network architecture enables the agent to make
movement decisions for a variety of scenario parameters that balance the data collection
goal with flight time efficiency and safety constraints. Considerable advantages in learning
efficiency from using a map centered on the UAV’s position over a non-centered map are
also illustrated.

Contributions to this paper

• Shared conceptualization of the map-based planning methodology for data harvest-
ing using map-centering

• Shared adaptation of the uavSim code for data harvesting

• Share of paper writing

Copyright

© 2020 IEEE. Reprinted, with permission, from Harald Bayerlein, Mirco Theile, Marco
Caccamo, and David Gesbert, “UAV Path Planning for Wireless Data Harvesting:
A Deep Reinforcement Learning Approach”, GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, December 2020.

See Appendix A.4 for the reuse statement. The following shows the accepted version.

69

https://doi.org/10.1109/GLOBECOM42002.2020.9322234

UAV Path Planning for Wireless Data Harvesting:
A Deep Reinforcement Learning Approach

Harald Bayerlein1, Mirco Theile2, Marco Caccamo2, and David Gesbert1
1Communication Systems Department, EURECOM, Sophia Antipolis, France

2TUM Department of Mechanical Engineering, Technical University of Munich, Germany
{harald.bayerlein, david.gesbert}@eurecom.fr, {mirco.theile, mcaccamo}@tum.de

Abstract—Autonomous deployment of unmanned aerial vehi-
cles (UAVs) supporting next-generation communication networks
requires efficient trajectory planning methods. We propose a
new end-to-end reinforcement learning (RL) approach to UAV-
enabled data collection from Internet of Things (IoT) devices
in an urban environment. An autonomous drone is tasked with
gathering data from distributed sensor nodes subject to limited
flying time and obstacle avoidance. While previous approaches,
learning and non-learning based, must perform expensive re-
computations or relearn a behavior when important scenario
parameters such as the number of sensors, sensor positions,
or maximum flying time, change, we train a double deep Q-
network (DDQN) with combined experience replay to learn
a UAV control policy that generalizes over changing scenario
parameters. By exploiting a multi-layer map of the environment
fed through convolutional network layers to the agent, we show
that our proposed network architecture enables the agent to make
movement decisions for a variety of scenario parameters that
balance the data collection goal with flight time efficiency and
safety constraints. Considerable advantages in learning efficiency
from using a map centered on the UAV’s position over a non-
centered map are also illustrated.

I. INTRODUCTION

While unmanned aerial vehicles (UAVs) are envisioned for
a multitude of applications, their prospective roles in telecom-
munications can be classified into two categories: cellular-
connected UAVs attached to mobile network links or UAVs
providing communication services themselves, e.g. collecting
data from distributed Internet of Things (IoT) devices [1]. As
an example in the context of infrastructure maintenance and
preserving structural integrity, Hitachi is already commercially
deploying partially autonomous UAVs that collect data from
IoT sensors embedded in large infrastructure structures [2].

Collecting data from sensor devices in an urban environment
imposes challenging constraints on the trajectory design for
autonomous UAVs. Battery energy density restricts mission
duration for quadcopter drones severely, while the complex
urban environment poses challenges in obstacle avoidance
and the adherence to regulatory no-fly zones (NFZs). Addi-
tionally, the wireless communication channel is characterized

H. Bayerlein and D. Gesbert are supported by the PERFUME project
funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agree-
ment no. 670896). M. Caccamo was supported by an Alexander von
Humboldt Professorship endowed by the German Federal Ministry of
Education and Research. The code for this work is available under
https://github.com/hbayerlein/uav_data_harvesting.

by frequent fluctuations in attenuation through alternating
line-of-sight (LoS) and non-line-of-sight (NLoS) links. Deep
reinforcement learning (DRL) offers the opportunity to balance
challenges and data collection goal for complex environments
in a straightforward way by combining them in the reward
function. This advantage also holds for other instances of UAV
path planning, such as coverage path planning, a classical
robotics problem where the UAV’s goal is to cover all points
inside an area of interest. By basing our proposed method on
an approach to UAV coverage path planning [3], we would
like to highlight the connection between these research areas.

A recent tutorial covering the paradigms of cellular-
connected UAVs as well as UAV-assisted communications,
including trajectory planning for IoT data collection, is given
in [1]. Bithas et al. [4] provide a survey on machine learning
techniques, including but not limited to reinforcement learning
(RL), for various UAV communications scenarios.

Most existing approaches to UAV data collection are not
based on RL and only find a solution for one set of scenario
parameters at a time. Esrafilian et al. [5] proposed a two-step
algorithm to optimize a UAV’s trajectory and its scheduling
decisions in an urban data collection mission using a combina-
tion of dynamic and sequential convex programming. While
set in a similar environment, the scenario does not account
for NFZs or obstacle avoidance as the drone is assumed to
always fly above the highest building. This also holds for the
hybrid offline-online optimization approach presented in [6],
where a preliminary trajectory is computed before the UAV’s
start based on a probabilistic LoS channel model and then
optimized while the UAV is on its mission in an online fashion.

(Deep) reinforcement learning has been explored in other
related UAV communication scenarios. The approach in the
simple scenario of [7], where a UAV base station serves
two ground users, is focused on showing the advantages of
neural network (NN) over table-based Q-learning, while not
making any explicit assumptions about the environment at the
price of long training time. Deep deterministic policy gradient
(DDPG), an actor-critic RL method, was proposed by Qi et al.
[8] to learn a continuous control policy for a UAV providing
persistent communications coverage to a group of users in an
environment without obstacles. If a critical scenario parameter
like the number of users changes, the agent has to undergo
computationally expensive retraining.

Some works under the paradigm of mobile crowdsensing,

where mobile devices are leveraged to collect data of com-
mon interest, have also suggested the use of UAVs for data
collection. Liu et al. [9] proposed an RL multi-agent DDPG
algorithm collecting data simultaneously with ground and
aerial vehicles in an environment with obstacles and charging
stations. While their approach also makes use of convolutional
processing to exploit a map of the environment, they do not
center the map on the agent’s position, which we show to
be highly beneficial. Furthermore, in contrast to our method,
control policies have to be relearned entirely when scenario
and environmental parameters change.

If deep RL methods are to be applied in real-world missions,
the prohibitively high training data demand poses one of the
most severe challenges [10]. This is exacerbated by the fact
that even small changes in the scenario, such as the number
of sensor devices typically require complete retraining. By
taking varying parameters in the design and training of the
neural network model into account, we take a step towards
the mitigation of this challenge.

The main contributions of this paper are the following:
• Introducing a novel DDQN-based method to control a

UAV on an IoT data harvesting mission, maximizing col-
lected data under flying time and navigation constraints
without prior information about the wireless channel
characteristics;

• Showing the considerable increase in learning efficiency
for the RL agent when exploiting a centered multi-layer
map of the environment;

• Learning to effectively adapt to variations in environ-
mental and scenario parameters as the first step to more
realistic RL methods in the context of UAV IoT data
collection.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a square grid world of size M ×M ∈ N2 with
the UAV collecting data from K static IoT devices. The k-th
device is located on ground level at uk = [xk, yk, 0]T ∈ R3

with k ∈ [1,K]. The UAV’s data collection mission is over
at time T ∈ N, where the time horizon is discretized into
equal mission time slots t ∈ [0, T]. The UAV’s position is
given by [x(t), y(t), h]T ∈ R3 with constant altitude h. Its
2D projection on the ground is given by p(t) = [x(t), y(t)]T.
Mission time slots are chosen sufficiently small so that the
UAV’s velocity v(t) can be considered to remain constant in
one time slot. The UAV is limited to moving with constant
velocity V or hovering, i.e. v(t) ∈ {0, V } for all t ∈ [0, T].

As it is expected that the communication channel is subject
to faster changes than the UAV’s movement, we partition
each mission time slot t ∈ [0, T] into a number of δ ∈ N
communication time slots. The communication time index is
then n ∈ [0, N] with N = δT . The number of communication
time slots per mission time slot δ is chosen sufficiently large so
that the UAV’s position, which is interpolated linearly between
p(t) and p(t + 1), and the channel gain can be considered
constant within one communication time slot.

Similar to the channel model in [5], the communication
links between UAV and the K IoT devices are modeled as
LoS/NLoS point-to-point channels with log-distance path loss
and shadow fading. The information rate at time n for the k-th
device is given by

Rk(n) = log2 (1 + SNRk(n)) , (1)

where the signal-to-noise ratio (SNR) with transmit power Pk,
white Gaussian noise power at the receiver σ2, UAV-device
distance dk(n), path loss exponent αl and ηl ∼ N (0, σ2

l)
modeled as a Gaussian random variable, is defined as

SNRk(n) =
Pk
σ2
· dk(n)−αl · 10ηl/10. (2)

Note that the urban environment causes a strong dependence of
the propagation parameters on the l ∈ {LoS, NLoS} condition
and that (2) is the SNR averaged over small scale fading.

The sensor nodes are served by the UAV in a simple time-
division multiple access (TDMA) manner where, in each com-
munication time slot n ∈ [0, N], the sensor node k ∈ [1,K]
with the highest SNRk(n) with remaining data to be uploaded
is picked by the scheduling algorithm. The TDMA constraint
for the scheduling variable qk(n) ∈ {0, 1} is given by

K∑

k=1

qk(n) ≤ 1, n ∈ [0, N] . (3)

The achievable throughput for one mission time slot t
is then the sum of the achieved rates of the corresponding
communication time slots n ∈ [δt, δ(t+1)−1] over K sensor
nodes and given by

C(t) =

δ(t+1)−1∑

n=δt

K∑

k=1

qk(n)Rk(n). (4)

The central goal of the trajectory optimization problem is
the maximization of throughput over the whole data collection
mission while minimizing flight duration, subject to the con-
straints of maximum flight time, adherence to NFZs, obstacle
avoidance, and safe landing in designated landing areas. We
translate this optimization problem into a reward function as
part of a Markov decision process, which we solve using deep
reinforcement learning.

B. Markov Decision Process

A Markov decision process (MDP) is defined by the tuple
(S,A, R, P) with state-space S, action space A and reward
function R. We consider a finite horizon MDP with a proba-
bilistic state transition function P : S × A × S → R. In line
with standard MDP convention, the time index t is written in
subscript in the following.

The state at mission time t in the grid world of size M ×
M is given by st = (Dt,pt, bt,M,U) and consists of five
components:
• Dt ∈ RK×2 represents the initially available and the

already collected data for each device;
• pt ∈ R2 is the UAV position projected on the ground;

• bt ∈ N is the UAV’s remaining flying time;
• M ∈ BM×M×3 is the map of the physical environment

in the Boolean domain {0, 1} encoded with three map
layers for start/landing positions, NFZs and buildings;

• U ∈ RK×2 are the 2D coordinates of the K IoT devices.
Note that the state is transformed before being fed into the
agent as detailed in III-C. Considering the five described
components, the total size of the state space is

S = R2
︸︷︷︸

Position

×BM×M×3
︸ ︷︷ ︸
Environment

Map

×RK×2
︸ ︷︷ ︸
Device

Positions

×RK×2
︸ ︷︷ ︸
Device
Data

× N︸︷︷︸
Flying
Time

,

while the UAV is limited to six actions contained in the action
space

A = {north, east, south,west, hover, land}.

The reward function maps state-action pairs to a real-valued
reward, i.e. R : S × A → R. Representing the mission goals,
the reward function consists of the following components:
• rdata (positive) the data collection reward given by the

achieved throughput (4) in the current time slot;
• rsc (negative) safety controller (SC) penalty in case the

drone has to be prevented from colliding with a building
or entering an NFZ;

• rmov (negative) constant movement penalty that is ap-
plied for every action the UAV takes without completing
the mission;

• rcrash (negative) penalty in case the drone’s remaining
flying time reaches zero without having landed safely in
a landing zone.

III. METHODOLOGY

A. Q-Learning

Q-learning is a model-free RL method [11] where a cycle of
interaction between an agent and the environment enables the
agent to learn and optimize a behavior, i.e. the agent observes
state st ∈ S and performs an action at ∈ A at time t and
the environment subsequently assigns a reward r(st, at) ∈ R
to the agent. The cycle restarts with the propagation of the
agent to the next state st+1. The agent’s goal is to learn a
behavior rule, referred to as a policy that maximizes the reward
it receives. A probabilistic policy π(a|s) is a distribution over
actions given the state such that π : S × A → R. In the
deterministic case, it reduces to π(s) such that π : S → A.

Q-learning is based on iteratively improving the state-action
value function or Q-function to guide and evaluate the process
of learning a policy π. It is given as

Qπ(s, a) = Eπ [Rt|st = s, at = a] (5)

and represents an expectation of the discounted cumulative
return Rt from the current state st up to a terminal state at
time T given by

Rt =
T∑

k=t

γk−tr(sk, ak) (6)

with γ ∈ [0, 1] being the discount factor, balancing the
importance of immediate and future rewards. For the ease of
exposition, st and at are abbreviated to s and a and st+1 and
at+1 to s′ and a′ in the following.

B. Double Deep Q-learning and Combined Experience Replay

As demonstrated in [7], representing the Q-function (5) as
a table of values is not efficient in the large state and action
spaces of UAV trajectory planning. Through the work of Mnih
et al. [12] on the application of techniques such as experience
replay, it became possible to stably train large neural networks
with parameters θ, referred to as deep Q-networks (DQNs), to
approximate the Q-function instead.

Experience replay is a technique to reduce correlations in
the sequence of training data where new experiences made
by the agent, represented by quadruples of (s, a, r, s′), are
stored in the replay memory D. During training, minibatches
of size m are sampled uniformly from D, where the buffer
size |D| was shown to be an important hyperparameter for
the agent’s performance and must be carefully tuned for
different scenarios. Zhang and Sutton [13] proposed combined
experience replay as a remedy for this sensitivity with very low
computational complexity O(1). Then, only m−1 samples of
the minibatch are sampled from memory, while the agent’s
latest experience is always added. Therefore, all new transi-
tions influence the agent immediately, making the agent less
sensitive to the selection of the replay buffer size.

Further improvements to the training process were sug-
gested in [14], resulting in the inception of double deep Q-
networks (DDQNs). We train our network with parameters θ
accordingly to minimize the loss function given by

L(θ) = Es,a,s′∼D[(Qθ(s, a)− Y (s, a, s′))2] (7)

where the target value, computed using a separate target
network with parameters θ̄, is given by

Y (s, a, s′) = r(s, a) + γQθ̄(s
′, argmax

a′
Qθ(s

′, a′)). (8)

C. Centered Global Map

The global map is composed of the static environmental
map and a dynamic device data map, which is formatted
as two real-valued map layers. The first layer represents the
data available for collection from each device at its respective
position and the second layer records the data that has already
been collected throughout the mission.

With this encoding, it would be possible to feed the map
data directly into the agent as it was done in [3], with an input
space defined through

I = R2
︸︷︷︸

Position

×BM×M×3
︸ ︷︷ ︸
Environment

Map

×RM×M×2
︸ ︷︷ ︸
Device Data

Map

× N︸︷︷︸
Flying
Time

.

In this work, we show that centering the map layers on the
UAV’s position greatly benefits its ability to generalize over
varying scenario parameters. While centering an input map
was already applied to local maps that only show the area
immediately surrounding the agent, such as in the related field

(a) Non-centered input map (b) Centered input map

Fig. 1: Comparison of non-centered and centered input maps,
with UAV’s position represented by the green star and the
intersection of the dashed lines.

Symbol Description

D
Q

N
In

pu
t Start and landing zone

Regulatory no-fly zone (NFZ)
Buildings blocking wireless links
IoT device

V
is

ua
liz

at
io

n Summation of building shadows
Starting and landing positions during an episode
UAV movement while comm. with green device
Hovering while comm. with green device
Actions without comm. (all data collected)

TABLE I: Legend for scenario plots.

of UAV navigation [15], we apply it for the first time to global
maps in a UAV data collection scenario.

The map centering process inside the computational graph
is illustrated in Fig. 1 with a legend provided in Table I. For
centering, the maps are expanded to (2M − 1)× (2M − 1) in
order to enable the agent to observe the entire map independent
of its position in it. Translation of the original map centers
the expanded map on the UAV’s position. The resulting input
space is defined through

Ic = B(2M−1)×(2M−1)×3
︸ ︷︷ ︸

Centered Environment
Map

×R(2M−1)×(2M−1)×2
︸ ︷︷ ︸

Centered Device
Data Map

× N︸︷︷︸
Flying
Time

.

The benefit of using a centered map is the result of a change
in position to which a neuron of the "Flatten" layer (see Fig.
2) corresponds. If the map is not centered, the neurons in that
layer correspond to features at absolute positions. If the map
is centered, they correspond to features at positions relative
to the agent. Since the agent’s actions are solely based on
its relative position to features, e.g. its distance to devices,
learning efficiency increases considerably.

D. Neural Network Model

Fig. 2 shows the DQN structure and the map centering pre-
processing. The centered map is fed through convolutional lay-
ers with ReLU activation and then flattened and concatenated
with the scalar input indicating remaining flight time. After
passing through fully connected layers with ReLU activation,

the data reaches the last fully-connected layer of size |A| and
without activation function, directly representing the Q-values
for each action given the input state. The argmax of the Q-
values, the greedy policy is given by

π(s) = argmax
a∈A

Qθ(s, a). (9)

It is deterministic and used when evaluating the agent. During
training, the soft-max policy

π(ai|s) =
eQθ(s,ai)/β

∑
∀aj∈A eQθ(s,aj)/β

(10)

is used. The temperature parameter β ∈ R scales the balance
of exploration versus exploitation.

IV. SIMULATIONS

A. Simulation Setup

The UAV starts each new mission in a world discretized into
16×16 cells where each grid cell is of size 10m×10m. It starts
with a remaining flying time of T steps, which is decremented
by one after every action the agent takes, no matter if moving
or hovering. The UAV flies at a constant altitude of h = 10m
inside ’urban canyons’ through a city environment or open
fields and is, for regulatory reasons, not allowed to fly over
buildings, enter NFZs, or leave the 16× 16 grid.

Each mission time slot contains δ = 4 scheduled communi-
cation time slots. Propagation parameters (see II-A) are chosen
in-line with [5] according to the urban micro scenario with
αLoS = 2.27, αNLoS = 3.64, σ2

LoS = 2 and σ2
NLoS = 5. The

shadowing maps to simulate the environment were computed
using ray tracing from and to the center points of cells.
Transmission and noise powers are normalized through the
definition of a cell-edge SNR of -15dB, which describes the
SNR between the drone on ground level at the very center of
the map and an unobstructed device at one of the grid corners.
The agent has absolutely no prior knowledge of the shadowing
maps or wireless channel characteristics.

We use the following metrics to evaluate the agent’s perfor-
mance in different scenarios and to compare training instances:
• Cumulative reward: the sum of all rewards received

throughout an episode;
• Has landed: records whether the agent landed in time at

the end of an episode;
• Collection ratio: the ratio of collected data to total

initially available device data at the end of a mission;
• Collection ratio and landed: the product of has landed

and collection ratio per episode.
Evaluation is challenging as we train a single agent to

generalize over a large scenario parameter space. During train-
ing, we evaluate the agent’s training progress in a randomly
selected scenario every ten episodes and form an average over
multiple evaluations. As it is computationally infeasible to
evaluate the trained agent on all possible scenario variations,
we perform Monte Carlo analysis on a large number of
randomly selected scenario parameter combinations.

Fig. 2: DQN architecture with map centering, with the device map encoded in separate layers but visualized in RGB channels.

(a) Episodic cumulative reward (b) Collection ratio and landed

Fig. 3: Training process comparison between centered and
non-centered map input showing the average and 99% quan-
tiles of three training processes each, with episodic metrics
grouped in bins of 5000 step width.

B. Centered vs. Non-Centered Map

Centering the map information on the UAV’s position as
described in III-C proved to be highly beneficial to the learning
performance and the generalization ability of the DDQN
agent. Fig. 3 shows comparisons of two performance metrics,
cumulative reward per episode, and achieved data collection
ratio in missions with in-time landing over training time, for
centered and non-centered map inputs in identical scenarios.
To compare the two approaches, the input of the non-centered
agent is padded with NFZ cells to have the same shape as the
centered agent. The only difference between the agents is that
the non-centered agent receives the position as a 2D-one-hot
encoded map layer similar to [3]. Each graph is averaged over
three training runs to account for possible random variations
in the training process. A clear performance advantage for the
agent using the centered map input can be seen throughout the
whole learning process.

C. Collectible Data and Device Accessibility

The scenario map in Fig. 4 is divided into an open field
and an adjacent city. To show the agent’s responsiveness to
differences in collectible data at the same devices, we fixed
the number of IoT devices to K = 2, while allowing for
fully randomized device positions in unoccupied map space,
for each device randomized collectible data (D0 ∈ [1.0, 25.0]
data units), randomized flying time limits (b0 ∈ [35, 70] steps)
and eight possible start positions.

Fig. 4 shows the agent adapting to a change in collectible
data at the two devices. The agent only enters the hard
to navigate courtyard if the amount of data at the orange

(a) Equal data amounts (b) Orange device with a quarter
of the green device’s data

Fig. 4: Illustration of the same agent adapting to differences
in collectible data with all other mission parameters fixed.

device requires it. While starting to communicate with the
unobstructed green device in Fig. 4a, the agent proceeds to
collect data from the harder-to-access orange device first, then
picking up the rest from the green device before returning
straight to the landing area. For the case in Fig. 4b, the UAV
changes its strategy. While immediately reducing its distance
to the green node after starting and collecting all its data, it
collects the data from the orange device on the way back with a
detour only as long as required, minimizing the overall mission
duration. The UAV is also clearly able to identify unobstructed
positions to communicate with the orange device.

D. Manhattan Scenario

The main scenario we investigate is defined by a Manhattan-
like city structure (see Fig. 5) containing regularly distributed
city blocks with streets in between, as well as an NFZ district.
In this challenging setting, we want to demonstrate the agent’s
ability to generalize over significant variations in scenario
parameters with randomly changing device count (K ∈ [2, 5]),
device data (D0 ∈ [5.0, 20.0] data units), maximum flying time
(b0 ∈ [35, 70] steps), and eight possible starting positions. Sim-
ilar to the previous scenario, device positions are randomized
throughout the unoccupied map space.

This and the previous scenario are evaluated using Monte
Carlo simulations on their full range of scenario parameters
with average performance metrics shown in Table II. Both
agents show a similarly high successful landing performance.
It is expected that the collection ratio must be less than

100% in some scenario instances depending on the randomly
assigned maximum flying time and IoT device parameters.

In Fig. 5, four scenario instances chosen from the random
Monte Carlo evaluation for device counts of K ∈ {2, 3, 4, 5}
for 5a through 5d illustrate the agent’s adaptability. With
K = 2 devices in Fig. 5a, finding a trajectory is complicated
by the location of the blue device inside the NFZ and the
resulting shadowing effects, which have to be deduced by
the agent from building and device positions. In Fig. 5b, the
considerable distance to the red device requires the agent to
exhaust its entire flight time. For the scenario in Fig. 5c the
available flying time T = 35 is not sufficient to collect all
data. Therefore, the agent ignores the isolated blue device and
lands early after collecting all data within reach. In Fig. 5d
the agent successfully collects all data in an efficient order
while minimizing its flying time, e.g. by turning away from
the green device before transmitting all its data. We observed
that rerunning the same scenario configuration leads to a
variation in trajectories which adapt to effects of the random
communication channel fading.

Metric Manhattan Open Field and City

Has Landed 99.5% 99.9%
Collection Ratio 94.8% 90.0%

Collection Ratio and Landed 94.6% 89.9%

TABLE II: Performance metrics averaged over 1000 random
scenario Monte Carlo iterations.

(a) Time 31/38; Data 17.4/17.4 (b) Time 41/41; Data 34.5/34.5

(c) Time 30/35; Data 32.0/50.6 (d) Time 45/65; Data 60.7/60.7

Fig. 5: Illustration of the same agent adapting to differences
in device count and device placement as well as flight time
limits, showing used and available flying time and collected
and available total data in the Manhattan scenario.

V. CONCLUSION

We have introduced a new DDQN method with combined
experience replay for UAV trajectory planning in an IoT data
harvesting scenario. By leveraging a neural network model
that exploits information about the environment from centered
map layers through convolutional processing, we show that
the UAV agent learns to effectively adapt to significant vari-
ations in the scenario such as number and position of IoT
devices, amount of collectible data or maximum flying time,
without the need for expensive retraining or recollection of
training data. Using this method, we have shown that the
UAV balances the goals of data collection, obstacle avoidance,
and minimizing mission time effectively, while not requiring
any prior information about the challenging wireless channel
characteristics in an urban environment. In future work, we
will tackle the issue of scalability to larger maps, namely the
linear increase of trainable parameters in the flatten layer with
map area. We also envision to combine our approach with
multi-task reinforcement learning or transfer learning [10], as
well as extending the UAV’s action space to altitude control.

REFERENCES

[1] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on
UAV communications for 5G and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, 2019.

[2] M. Minevich, “How Japan is tackling the national & global infrastructure
crisis & pioneering social impact - [news],” Forbes, 21 Apr 2020.

[3] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV
coverage path planning under varying power constraints using deep rein-
forcement learning,” arXiv:2003.02609 [cs.RO], accepted at IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, 2020.

[4] P. S. Bithas, E. T. Michailidis, N. Nomikos, D. Vouyioukas, and A. G.
Kanatas, “A survey on machine-learning techniques for UAV-based
communications,” Sensors, vol. 19, no. 23, p. 5170, 2019.

[5] O. Esrafilian, R. Gangula, and D. Gesbert, “Learning to communicate
in UAV-aided wireless networks: Map-based approaches,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 1791–1802, 2018.

[6] C. You and R. Zhang, “Hybrid offline-online design for UAV-enabled
data harvesting in probabilistic los channel,” IEEE Transactions on
Wireless Communications, 2020.

[7] H. Bayerlein, P. De Kerret, and D. Gesbert, “Trajectory optimization
for autonomous flying base station via reinforcement learning,” in IEEE
19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2018.

[8] H. Qi, Z. Hu, H. Huang, X. Wen, and Z. Lu, “Energy efficient 3-D
UAV control for persistent communication service and fairness: A deep
reinforcement learning approach,” IEEE Access, vol. 8, 2020.

[9] C. H. Liu, Z. Dai, Y. Zhao, J. Crowcroft, D. O. Wu, and K. Leung,
“Distributed and energy-efficient mobile crowdsensing with charging
stations by deep reinforcement learning,” IEEE Transactions on Mobile
Computing, 2019.

[10] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” arXiv:1904.12901 [cs.LG], 2019.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: an introduction.
MIT Press, second ed., 2018.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] S. Zhang and R. S. Sutton, “A deeper look at experience replay,”
arXiv:1712.01275 [cs.LG], 2017.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Thirtieth AAAI conference on artificial
intelligence, pp. 2094–2100, 2016.

[15] B. G. Maciel-Pearson, L. Marchegiani, S. Akcay, A. Atapour-
Abarghouei, J. Garforth, and T. P. Breckon, “Online deep reinforcement
learning for autonomous UAV navigation and exploration of outdoor
environments,” arXiv:1912.05684 [cs.CV], 2019.

Chapter 4. Reinforcement Learning for Map-based Path Planning

4.3 UAV Path Planning using Global and Local Map Information

with Deep Reinforcement Learning

Reference

M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV path planning
using global and local map information with deep reinforcement learning,” in 2021 20th
International Conference on Advanced Robotics (ICAR), pp. 539–546, IEEE, 2021
DOI: https://doi.org/10.1109/ICAR53236.2021.9659413

Abstract

Path planning methods for autonomous unmanned aerial vehicles (UAVs) are typically
designed for one specific type of mission. This work presents a method for autonomous
UAV path planning based on deep reinforcement learning (DRL) that can be applied
to a wide range of mission scenarios. Specifically, we compare coverage path planning
(CPP), where the UAV’s goal is to survey an area of interest to data harvesting (DH),
where the UAV collects data from distributed Internet of Things (IoT) sensor devices.
By exploiting structured map information of the environment, we train double deep
Q-networks (DDQNs) with identical architectures on both distinctly different mission
scenarios to make movement decisions that balance the respective mission goal with
navigation constraints. By introducing a novel approach exploiting a compressed global
map of the environment combined with a cropped but uncompressed local map showing
the vicinity of the UAV agent, we demonstrate that the proposed method can efficiently
scale to large environments. We also extend previous results for generalizing control
policies that require no retraining when scenario parameters change and offer a detailed
analysis of crucial map processing parameters’ effects on path planning performance.

Contributions to this paper

• Conceptualization of global-local map processing for UAV path planning

• Adaptation of the CPP and DH code for global-local processing and target gener-
alization

• Conducting training and evaluation experiments

• Majority of paper writing

Copyright

© 2021 IEEE. Reprinted, with permission, from Mirco Theile, Harald Bayerlein, Richard
Nai, David Gesbert, and Marco Caccamo, “UAV Path Planning using Global and Local
Map Information with Deep Reinforcement Learning”, 2021 20th International Conference
on Advanced Robotics (ICAR), December 2021.

See Appendix A.5 for the reuse statement. The following shows the accepted version.

76

https://doi.org/10.1109/ICAR53236.2021.9659413

UAV Path Planning using Global and Local Map Information with
Deep Reinforcement Learning

Mirco Theile1, Harald Bayerlein2, Richard Nai1, David Gesbert2, and Marco Caccamo1

Abstract— Path planning methods for autonomous unmanned
aerial vehicles (UAVs) are typically designed for one specific
type of mission. This work presents a method for autonomous
UAV path planning based on deep reinforcement learning
(DRL) that can be applied to a wide range of mission scenarios.
Specifically, we compare coverage path planning (CPP), where
the UAV’s goal is to survey an area of interest to data harvesting
(DH), where the UAV collects data from distributed Internet of
Things (IoT) sensor devices. By exploiting structured map infor-
mation of the environment, we train double deep Q-networks
(DDQNs) with identical architectures on both distinctly dif-
ferent mission scenarios to make movement decisions that
balance the respective mission goal with navigation constraints.
By introducing a novel approach exploiting a compressed
global map of the environment combined with a cropped but
uncompressed local map showing the vicinity of the UAV agent,
we demonstrate that the proposed method can efficiently scale
to large environments. We also extend previous results for
generalizing control policies that require no retraining when
scenario parameters change and offer a detailed analysis of
crucial map processing parameters’ effects on path planning
performance.

I. INTRODUCTION

Autonomous unmanned aerial vehicles (UAVs) are envi-
sioned for a multitude of applications that all require effi-
cient and safe path planning methods, which necessitate the
combination of a mission goal with navigation constraints,
e.g., flying time and obstacle avoidance. Examples for these
applications are area coverage path planning (CPP) [1], and
data harvesting (DH) from Internet of Things (IoT) sensor
nodes [2]. As its name suggests, covering all points inside
an area of interest with CPP is related to conventional path
planning, where the goal is to find a path between start and
goal positions. In general, CPP aims to cover as much of the
target area as possible within given energy or path-length
constraints while avoiding obstacles or no-fly zones.

In the DH scenario, the UAV’s goal is to collect data
from IoT devices distributed in an urban environment, which
implies challenging radio channel conditions through alter-
nating line-of-sight (LoS) and non-line-of-sight (NLoS) links
between UAV and IoT devices through building obstruction.
DH and CPP are very similar when described as an RL
problem since the path planning problem’s constraints are
mostly identical, and only the goal function changes. In

1Mirco Theile, Richard Nai, and Marco Caccamo are with the
TUM School of Engineering and Design, Technical University
of Munich, Germany {mirco.theile, richard.nai,
mcaccamo}@tum.de

2Harald Bayerlein and David Gesbert are with the Communi-
cation Systems Department, EURECOM, Sophia Antipolis, France
{harald.bayerlein, david.gesbert}@eurecom.fr

previous work, we have looked at CPP [1] and DH [2]
separately. We show that both problems can be solved using
the same deep reinforcement learning (DRL) approach based
on feeding spatial map information directly to the DRL
agent via convolutional network layers. This work’s focus
lies in proposing improvements to existing DRL approaches
to generalized, large-scale UAV path planning problems with
CPP and DH as examples.

Using maps as a direct input becomes problematic for
large map sizes, as the network’s size, trainable parameters,
and training time increase equivalently. We introduce a
global-local map scheme to address the scalability problems
of the standard map-based input. In path planning, the
intuition is that distant features lead to general direction
decisions, while close features lead to immediate actions
such as collision avoidance. Thus, the level of detail passed to
the agent for distant objects can be less than for close objects.
With the global map, a compressed version of the complete
environment map centered on the agent’s position, general
information of all objects on the map is provided to the
agent. In contrast, the local map, uncompressed but cropped
to show only the UAV agent’s immediate surroundings,
provides detailed local information.

While numerous path planning algorithms for both prob-
lems exist, DRL offers the possibility to solve both distinctly
different problems with the same approach. For each prob-
lem, DRL agents can learn control policies that generalize
over a large scenario parameter space requiring no expensive
retraining or recomputation when the scenario changes. How-
ever, previous work usually only focuses on finding optimal
paths for one single scenario at a time. The DRL paradigm
is popular in this context because of its flexibility regarding
prior knowledge and assumptions about the environment,
the computational efficiency of DRL inference, as well as
the complexity of autonomous UAV control tasks, which are
usually non-convex optimization problems and proven to be
NP-hard in many instances [3], [4]. A general summary of
issues in using UAVs as part of communication networks,
including IoT data harvesting, can be found in [3]. A survey
of various applications for UAV systems from a cyber-
physical perspective is offered in [4]. Cabreira et al. [5]
provide a survey of UAV coverage path planning.

Previous works in UAV path planning have already made
use of convolutional map processing for DRL agents. In the
drone patrolling problem presented in [6], a local relevance
map of the patrolling area showing the agent’s vicinity
cropped to a fixed size is fed into a DDQN agent. No in-
formation of the physical environment is included, and there

is no consideration for navigation constraints like obstacle
avoidance or flying time. In [7], fixed-wing UAVs are tasked
with monitoring a wildfire propagating stochastically over
time. Control decisions are based on either direct observa-
tions or belief maps fed into the DRL agents. The focus
here is the inherent uncertainty of the problem, not balancing
a mission goal and navigation constraints in large complex
environments. Wildfire surveillance is also the mission of the
quadcopter UAVs in [8], which is set in a similar scenario
without navigation constraints and makes use of uncertainty
maps to guide path planning. Their approach is based on an
extended Kalman filter and not the reinforcement learning
(RL) paradigm. To monitor another natural disaster situation,
Baldazo et al. [9] present a multi-agent DRL method for
flood surveillance using the UAVs’ local observations of the
inundation map to make control decisions. All mentioned ap-
proaches focus on solving a single class of UAV missions in
simple physical environments and do not consider combining
local and global map information.

Missions, where UAVs provide communication services to
ground users or devices, include the work in [10] set in a
complex urban environment where the UAV path planning
is based on exploiting map information with a method
combining dynamic and sequential convex programming. In
[11], data is collected simultaneously with ground and aerial
vehicles on a small map with obstacles. Due to the small
map size, the full global map information can be fed into the
DRL agents. Another scenario is investigated in [12], where
a cellular-connected UAV has to navigate from a start to an
end position maintaining connectivity with a ground network
exploiting a radio map. The approach includes global radio
map compression to reduce computational complexity but is
not based on RL and includes no higher precision local map
or hard navigation constraints. To the best of our knowledge,
no dual global-local map processing method applicable to
multiple mission types for autonomous UAVs has been
suggested previously.

The main contributions of this paper are the following:

• Establishing the presented DRL approach as a general
method for UAV path planning by demonstrating its ap-
plicability to two distinctly different mission scenarios:
coverage path planning and path planning for wireless
data harvesting;

• Introducing a novel approach1 to exploit global-local
map information that allows DRL for path planning to
scale to large, realistic scenario environments efficiently,
with an order of magnitude more grid cells compared
to earlier works [1], [2];

• Overcoming the limitation of fixed target zones in
previous DRL CPP approaches [1] by extending con-
trol policy generalization over scenario parameters to
randomly generated target zones;

• Analyzing and discussing the effects of key map pro-
cessing parameters on the path learning performance.

1https://www.github.com/theilem/uavSim.git

II. PROBLEM FORMULATION

In the following, we show that a universal problem de-
scription of coverage path planning and path planning for
data harvesting can be established through separation into
two parts: the environment and the target.

A. Environment and UAV Model

We consider a square grid world of size M ×M ∈ N2

with cell size c, where N is the set of natural numbers.
The environment contains designated start/landing positions,
regulatory no-fly zones (NFZs), and obstacles. The map
can be described through a tensor M ∈ BM×M×3, where
B = {0, 1} and with the start/landing zones in map-layer
1, the union of NFZs and obstacles in map-layer 2, and the
obstacles alone in map-layer 3.

The UAV moves through this environment at a constant
altitude h occupying one cell of the environment. Its position
can thus be defined through p(t) ∈ N2. The movement
of the UAV is constrained through collision avoidance with
obstacles and not entering NFZs. Additionally, the UAV must
start and end its mission in any cell belonging to the start and
landing zones while staying within its maximum flying time
determined by its initial battery level. The battery level of the
UAV b(t) is set to b0 ∈ N at time t = 0 and is decremented
by 1 per action step.

B. Target and Mission Definitions

1) Coverage Path Planning: In coverage path planning,
the mission is to cover a designated target area by flying
above or near it, such that it is in the field of view of a
camera-like sensor mounted underneath the UAV. The target
area can be described through T(t) ∈ BM×M , in which each
element describes whether a cell has to be covered or not.
The current field of view of the camera can be described with
V(t) ∈ BM×M indicating for each cell whether it is in the
current field of view or not. In this work, the field of view
is a square of 5 × 5 surrounding the current UAV position.
Additionally, buildings can block line-of-sight, which is also
incorporated in calculating V(t). This prohibits the UAV
from seeing around the corner.

Consequently, the target area evolves according to

T(t+ 1) = T(t) ∧ ¬V(t), (1)

in which ∧ and ¬ are the cell-wise logical and and negation
operators, respectively. In our mission definition, obstacle
cells in the environment cannot be a coverage target, while
start and landing zones and no-fly-zones can be. The goal
is to cover as much of the target area as possible within the
maximum flying time constraint.

2) Data Harvesting: Conversely, the mission in path plan-
ning for wireless data harvesting is to collect data from K ∈
N stationary IoT devices spread throughout the environment
at ground-level, with the position of device k ∈ [1,K]
given through uk ∈ N2. Each device has an amount of data
Dk(t) ∈ R to be collected by the UAV. The data throughput
Ck(t) between the selected device k and the UAV is based
on the standard log-distance path loss model with Gaussian

shadow fading and whether they can establish a line-of-
sight connection or are obstructed by obstacles. The UAV
is communicating with one device at a time and selects the
device with remaining data and the highest possible data rate.
A detailed description of the link performance and multiple
access protocol can be found in [2]. The data at each device
evolves according to

Dk(t+ 1) = Dk(t)− Ck(t) (2)

Devices can be located in every cell except for the starting
and landing zones or inside obstacles. The goal of the data
harvesting problem is to collect as much of the devices’ data
as possible within the maximum flying time.

3) Unifying Map-Layer Description: Both problems can
be described through a single target map-layer D(t) ∈
RM×M . In CPP, the target map-layer is given through T(t)
evolving according to (1). In DH, the target map-layer shows
the amount of available data in each cell that one of the
devices is occupying, i.e. the cell at position uk has value
Dk(t) and is evolving according to (2). If a cell does not
contain a device or the device data has been collected fully,
the cell’s value is 0. Since the two problems can be described
with similar state representations, both can be solved through
deep reinforcement learning with a neural network having the
same structure.

III. METHODOLOGY

While a variety of methods exist to solve the CPP and
DH problems separately, the approach presented in the fol-
lowing can be directly applied to both distinct path planning
problems. In most classical CPP approaches, individual target
zones are extracted through segmentation and then connected
with distance costs into a graph, while each segment is
covered with a boustrophedon path. This reduces the CPP
problem to an instance of the travelling salesman problem
(TSP), which is NP-hard and can be solved by classical
methods, e.g. as demonstrated in [13] at the price of an
exponential increase in time complexity with the number of
target zones.

In principle, the DH problem can also be converted into
a TSP with the IoT devices as nodes in the graph and
the distances between the devices as edge costs. However,
the conversion neglects that communication with the device
happens while traveling to and from it. In general, the
optimal behavior in DH problems is not a sequential visit
of all devices, as data can already be efficiently collected by
establishing a LoS link from farther away, or a large amount
of data waiting to be collected might require the drone to
hover for an extended period of time near the device. These
constraints in conjunction with stochastic communication
channel models and the various possibilities for the choice
of multiple access protocol are non-trivial to model and
solve with classical approaches. For both problems, the UAV
battery constraint adds another complication for classical
approaches, as full coverage or full collection are not always
feasible. The following DRL methodology allows us to
combine all goals and constraints of the respective path

planning problems directly without the need for additional
approximations.

A. Partially Observable Markov Decision Process

To address the aforementioned problems we formu-
late them as a partially observable Markov decision pro-
cess (POMDP) [14] which is defined through the tuple
(S,A, P,R,Ω,O, γ). In the POMDP, S describes the state
space, A the action space, and P : S × A × S 7→ R the
transition probability function. R : S × A × S 7→ R is the
reward function mapping state, action, and next state to a real
valued reward. The observation space is defined through Ω
and O : S 7→ Ω is the observation function. The discount
factor γ ∈ [0, 1] varies the importance of long and short term
rewards.

We unify the UAV path planning problems by describing
their state space with

S = BM×M×3
︸ ︷︷ ︸
Environment

Map

×RM×M︸ ︷︷ ︸
Target
Map

× N2
︸︷︷︸

Position

× N︸︷︷︸
Flying
Time

, (3)

in which the elements s(t) ∈ S are

s(t) = (M,D(t),p(t), b(t)). (4)

The four components of the tuple are
• M the environment map containing start and landing

zones, no-fly zones, and obstacles;
• D(t) the target map indicating remaining data at device

locations or remaining cells to be uncovered at time t;
• p(t) the UAV’s position at time t;
• b(t) the UAV’s remaining movement budget at time t;

Action a(t) ∈ A of the UAV at time t is given as one of the
possible actions

A = {north, east, south,west, hover, land}.
The generalized reward function R(s(t), a(t), s(t+ 1)) con-
sists of the following elements:
• rc (positive) the data collection or cell covering reward

given by the collected data or the amount of newly
covered target cells, comparing s(t+ 1) and s(t);

• rsc (negative) safety controller (SC) penalty in case the
drone has to be prevented from colliding with a building
or entering an NFZ;

• rmov (negative) constant movement penalty that is ap-
plied for every action the UAV takes without completing
the mission;

• rcrash (negative) penalty in case the drone’s remaining
flying time reaches zero without having landed safely
in a landing zone.

B. Map Processing

To aid an agent in interpreting the large state space given in
(3), two map processing steps are used. The first is centering
the map around the agent’s position, shown in [2] to improve
the agent’s performance significantly. The downside of this
approach is that it increases the representation size of the
state space even further. Thus, the second map processing

𝜋(𝑎|𝑠)

Hidden Layers

Flatten Layers
Convolution Layers

Q-values

flying time

𝜋(𝑠)

5

5

5

5

256 256 256

6

4001
13x13x16

5

5

5

5

17x17x4

environment

map

position

target

map

𝑓𝑐𝑒𝑛𝑡𝑒𝑟

𝑓𝑙𝑜𝑐𝑎𝑙

𝑓𝑔𝑙𝑜𝑏𝑎𝑙

21x21x4 17x17x16
19x19x4 15x15x16

3233

softmax

argmax

Fig. 1: DQN architecture with map centering and global and local mapping, showing differences of layer size in blue for
the ’Manhattan32’ and orange for the ’Urban50’ scenario.

step, the main contribution of this work, is to present the
centered map as two inputs: a full-detail local map showing
the agent’s immediate surroundings and a compressed global
map showing the entire environment with less detail. The
mathematical description of the three functions is presented
in the following. Fig. 1 indicates where the functions are
used within the data pipeline.

1) Map Centering: Given a tensor A ∈ RM×M×n de-
scribing the map layers of the environment, a centered tensor
B ∈ RMc×Mc×n with Mc = 2M − 1 is defined through

B = fcenter(A,p,xpad), (5)

with the centering function defined as

fcenter : RM×M×n × N2 × Rn 7→ RMc×Mc×n. (6)

The elements of B with respect to the elements of A are
defined as

bi,j =





ai+p0−M+1,j+p1−M+1, M ≤ i+ p0 + 1 < 2M

∧ M ≤ j + p1 + 1 < 2M

xpad, otherwise,
(7)

effectively padding the map layers of A with the padding
value xpad. Note that ai,j , bi,j , and xpad are vector valued of
dimension Rn. For both problems, the map layers are padded
with [0, 1, 1, 0]T, i.e. NFZs and obstacles. A qualitative
description of centering with an example can be found in
[2].

2) Global-Local Mapping: The tensor B ∈ RMc×Mc×n

resulting from the map centering function is processed in
two ways. The first is creating a local map according to

X = flocal(B, l) (8)

with the local map function defined by

flocal : RMc×Mc×n × N 7→ Rl×l×n. (9)

The elements of X with respect to the elements of B are
defined as

xi,j = bi+M−d l
2 e,j+M−d l

2 e. (10)

This operation is effectively a central crop of size l × l.

The global map is created according to

Y = fglobal(B, g) (11)

with the global map function defined by

fglobal : RMc×Mc×n × N 7→ Rb
Mc
g c×b

Mc
g c×n. (12)

The elements of Y with respect to the elements of B are
defined as

yi,j =
1

g2

g−1∑

u=0

g−1∑

v=0

bgi+u,gj+v, (13)

which is an operation equal to average pooling.
The functions flocal and fglobal are parameterized through

l and g, respectively. Increasing l increases the size of the
local map, whereas increasing g increases the size of the
average pooling cells, decreasing the size of the global map.

C. Observation Space

The observation space Ω, which is the input to the agent,
is given as

Ω = Ωl × Ωg × N

containing the local map Ωl = Bl×l×3 × Rl×l and the
global map Ωg = Rb

Mc
g c×b

Mc
g c×3×Rb

Mc
g c×b

Mc
g c. Note that

the compression of the map layers through average pooling
transforms the environment layers from boolean to real. The
observations o(t) ∈ Ω are defined through the tuple

o(t) = (Ml(t),Dl(t),Mg(t),Dg(t), b(t)). (14)

In the observation, Ml(t) and Mg(t) are the local and global
observations of the environment, and Dl(t) and Dg(t) are
the local and global observations of the target, respectively.
b(t) is the remaining flying time of the UAV and is equal
to the one in the state space. Note that the local and global
observations of the environment are time-dependent, as they
are centered around the time-dependent position of the UAV.

The mapping from state to observation space is given by
O : S 7→ Ω, with the elements o(t) ∈ O defined as:

Ml(t) =flocal(fcenter(M,p(t), [0, 1, 1]T), l) (15a)
Dl(t) =flocal(fcenter(D(t),p(t), 0), l) (15b)

Mg(t) =fglobal(fcenter(M,p(t), [0, 1, 1]T), g) (15c)
Dg(t) =fglobal(fcenter(D(t),p(t), 0), g) (15d)

By feeding the observation space Ω into the agent instead
of the state space S, the problem is artificially converted into
a partially observable MDP. The partial observability results
from the restricted size of the local map and the averaging
in the global map. With the following results, we show that
partial observability does not make the problem infeasible for
memory-less agents and that the compression greatly reduces
the size of the neural network, yielding significantly less
training time.

D. Double Deep Reinforcement Learning - Neural Network

To solve the aforementioned POMDP, we use rein-
forcement learning, specifically double deep Q-networks
(DDQNs) proposed by Van Hasselt et al. [15]. DDQNs
approximate the Q-value of each state-action pair given as

Qπ(s(t), a(t)) = Eπ

[
T∑

k=t

γk−tR(s(k), a(k), s(k + 1))

]
, (16)

describing the discounted cumulative reward of an agent
following policy π. To converge to the optimal Q-value
the agent explores the environment, collecting experiences
(s(t), a(t), r(t), s(t+ 1)) and storing them as (s, a, r, s′) in
a replay memory D, omitting temporal information. Two Q-
networks parameterized through θ and θ̄ are used, in which
the first Q-network is updated by minimizing the loss

L(θ) = Es,a,s′∼D[(Qθ(s, a)− Y (s, a, s′))2] (17)

given by experiences in the replay memory. The target value
is given by

Y (s, a, s′) = r(s, a) + γQθ̄(s
′, argmax

a′
Qθ(s

′, a′)). (18)

The parameters of the second Q-network are updated as θ̄ ←
(1− τ)θ̄ + τθ with the soft update parameter τ ∈ (0, 1]. To
address training sensitivity to the size of the replay memory
we make use of combined experience replay proposed by
Zhang and Sutton [16].

The neural network architecture used for both Q-networks
is shown in Fig. 1. The environment map and target map are
stacked and centered around the UAV position and then con-
verted into global and local observation components. After
being fed through two convolutional layers each, the resulting
tensors are flattened and concatenated with the remaining
flying time input and passed through three hidden layers
with ReLU activation functions. The output layer with no
activation function represents the Q-values directly, passed
through a softmax function to create an action distribution
for exploration or an argmax function for exploitation.

Parameter 32× 32 50× 50 Description

|θ| 1,175,302 978,694 trainable parameters
l 17 17 local map size
g 3 5 global map scaling
nc 2 number of conv. layers
nk 16 number of kernels
sk 5 conv. kernel width

TABLE I: Hyperparameters for 32× 32 and 50× 50 maps.

The relevant parameter for scalability is the size of the
flatten layer. It can be calculated through

N = nk

((
l − ncbsk

2
c
)2

+

(
bMc

g
c − ncbsk

2
c
)2
)

+ 1 (19)

with nk being the number of kernels, nc the number of
convolutional layers, and sk being the kernel size. Setting
the global map scaling parameter to g = 1 and the local map
size to l = 0 deactivates global-local map processing, i.e.,
no downsampling and no extra local map. The parameters
used in evaluation are listed in Table I.

IV. SIMULATIONS

A. Simulation Setup

The UAV is flying in two different grid worlds. The
’Manhattan32’ scenario (Fig. 2a and 2c) with 32× 32 cells
with two starting and landing zones in the top left and
bottom right corners. Besides regular building patterns, some
irregularly shaped buildings and additional NFZs are present.
The ’Urban50’ scenario (Fig. 2b and 2d) contains 50 × 50
cells and one starting and landing area around the center
building. Buildings are generally larger and spaced out, and
an additional large NFZ is present on the bottom of the
map. Note that the number of cells in the ’Urban50’ map
is roughly one magnitude larger than in the previous works
[1] and [2]. The cell size for the scenarios is 10m × 10m
with Table II providing a legend for the plots.

1) Coverage Path Planning: For the CPP problem, the
UAV is flying at a constant altitude of 25m with a camera
mounted underneath that has a field of view angle of 90◦.
Consequently, the UAV can cover an area of 5×5 cells simul-
taneously, as long as obstacles do not block line of sight. The
target areas are generated by randomly sampling geometric
shapes of different sizes and types and overlaying them,
creating partially connected target zones. For evaluation, a
traditional metric for the CPP problem is the path length.
However, this metric only offers meaningful comparison
when full coverage is possible. In this work, we investigate
flight time constrained CPP, in which full coverage is often
impossible. Therefore, the evaluation metrics used are the
coverage ratio (CR), i.e. the ratio of covered target cells to
the initial target cells at the end of the episode, and coverage
ratio and landed (CRAL), which is zero if the UAV did not
land successfully and equal to CR if it did. The benefits
of the CRAL metric are that it combines the two goals,
achieving high coverage and returning to the landing zone

(a) Movement 124/140, CR=0.94 (b) Movement 234/250, CR=0.94 (c) Movement 92/150, CR=0.99 (d) Movement 191/200, CR=1.0

Fig. 2: Example trajectories from the Monte Carlo simulations for CPP (a)+(b) and DH (c)+(d) on 32× 32 Manhattan map
(a)+(c) and 50× 50 Urban map (b)+(d).

Symbol Description

D
Q

N
In

pu
t Start and landing zone

Regulatory no-fly zone (NFZ)
Buildings blocking wireless links and FoV
DH: IoT device
CPP: Remaining target zone (yellow also NFZ)

V
is

ua
liz

at
io

n

DH: Summation of building shadows
DH: Movement while comm. with green device
DH: Hovering while comm. with green device
CPP: Not covered and covered
Starting and landing positions during an episode
Actions without comm.

TABLE II: Legend for scenario plots, DH and CPP are only
applicable in data harvesting and coverage path planning
scenarios, respectively.

within the flight time constraint. By normalizing performance
to a value in [0, 1], it enables performance comparisons over
the changing scenarios with randomly generated target zones.

2) Data Harvesting: In the DH problem, the UAV is
flying at a constant altitude of 10m communicating with
devices on ground level. The achievable data rate is calcu-
lated based on distance, random shadow fading, and line-
of-sight condition with the same communication channel
parameters used in [2]. As in CPP, the path length is not
an applicable metric. It is impossible to collect all data in
all scenarios depending on the randomly changing locations
of IoT devices, data amount, and maximum flying time.
Therefore, the evaluation metric used is the collection ratio
(CR), describing the ratio of collected data from all devices
to the initially available data summed over all devices. Like
in CPP, we also use collection ratio and landed (CRAL) in
this context, showing the full data collection and landing
performance in one normalized metric.

B. General Evaluation

The CPP agents were trained on target zones containing
3-8 shapes covering 20-50% of the available area. The move-
ment range was set to 50-150 steps for the ’Manhattan32’
scenario and 150-250 for the ’Urban50’ scenario. For the DH
scenarios, 3-10 devices are placed randomly in free cells and

Metric Manhattan32 Manhattan32 Urban50 Urban50
CPP DH CPP DH

Landed 98.5% 98.2% 98.1% 99.5%
CR 71.0% 83.6% 81.5% 74.5%

CRAL 70.3% 82.5% 80.1% 74.2%

TABLE III: Performance metrics averaged over 1000 random
scenario Monte Carlo iterations.

contain 5.0-20.0 data units. The movement range was set to
50-150 steps for the ’Manhattan32’ scenario and 100-200
for the ’Urban50’ scenario. Four scenarios are evaluated in
detail.

In the CPP scenarios, the agents in Fig. 2a and 2b show
that they can find trajectories to cover most of the target
area. Even the area in the NFZs is mostly covered. It can be
seen that small areas that would require a detour are ignored,
leading to incomplete coverage. However, most of the target
area is covered efficiently.

The agents in the DH scenarios in Fig. 2c and 2d perform
very well. In the ’Manhattan32’ scenario, the agent leaves
small amounts of data at the orange and purple devices
totaling a collection ratio of 99.1%. However, the agent finds
a concise path, using only 92 of the allowed 150 movement
steps. In the ’Urban50’ scenario, the agent manages to collect
all the data and return with some movement steps in spare.

All four agents were trained for 2 million steps. When
analyzing their performance in all four missions using 1000
Monte Carlo generated scenarios (see Table III), it can be
seen that all agents’ landing performances are good, with
the ’Urban50’ DH agent being slightly better.

C. Global-Local Parameter Evaluation

To establish the performance sensitivity to the new hyper-
parameters, global map scaling g, and local map size l, we
trained multiple agents with different parameters on the CPP
and DH problems. We chose four values for l and four for
g and trained three agents for each possible combination.
Additionally, we trained three agents without the usage of
global and local map processing, which is equivalent to
setting g = 1 and l = 0. The resulting 51 agents for the

Global map Local map scaling l
scaling g 9 17 25 33

2 8,481 9,761 13,089 18,465
3 2,721 4,001 7,329 12,705
5 273 1,553 4,881 10,257
7 33 1,313 4,641 10,017

TABLE IV: Flatten layer size for ’Manhattan32’ with differ-
ent global map scaling and local map sizes; Without global-
local map processing the size is 48,401 neurons.

Global Local map scaling l
map 9 17 25 33

scaling g CPP DH CPP DH CPP DH CPP DH
2 2.7 2.2 2.3 2.0 1.8 1.6 1.3 1.1
3 3.5 3.0 3.0 2.5 2.2 1.9 1.6 1.4
5 4.2 3.6 3.4 3.0 2.5 2.2 1.9 1.6
7 4.7 3.8 3.6 3.0 2.5 2.2 2.5 2.1

TABLE V: Training time speedup for the CPP and DH
problem relative to without global-local map processing.

CPP and DH problems were trained for 500k steps each
and evaluated on 200 Monte Carlo generated scenarios. The
difference to the previous evaluation is that the movement
budget range was set to 150− 300.

Table IV shows the selected parameters and the resulting
flatten layer size according to (19). A significant speedup of
the training process compared to agents without global and
local map processing can be observed in Table V.

The resulting CRAL values from the Monte Carlo sim-
ulations for each agent with respect to the agent’s flatten
layer size are shown in Fig. 3a and 3b for the CPP and DH
problem, respectively. It can be seen that the DH problem
is more sensitive to the parameters than the CPP problem.
Generally, a larger flatten layer yields better performance up
to a point. For both problems, it can be seen that a large
flatten layer can cause the learning to get unstable, resulting
in a CRAL of zero for some runs. This is caused by the
agent’s failure to learn how to land. The DH agents, which
are not using the global-local map approach, never learn how
to land reliably and thus have a CRAL score near zero.

In both cases, the agents with l = 17 and g = 3 or g = 5
show the best performance with respect to their flatten layer
size, justifying the selection in Table I. Besides these two
parameter combinations, it is noteworthy that the agents with
l = 9 and g = 7 also perform well in both scenarios, despite
their small flatten layer size of only 33 neurons.

V. CONCLUSION

We have presented a method for generalizing autonomous
UAV path planning over two distinctly different mission
types, coverage path planning and data harvesting. Through
the flexibility afforded by combining specific mission goals
and navigation constraints in the reward function, we trained
DDQNs with identical structures in both scenarios to make

(a) Grid search for CPP

(b) Grid search for DH

Fig. 3: Parameter grid search for CPP and DH with param-
eters from Table IV; the black stars correspond to agents
without global-local map processing.

efficient movement decisions. We have introduced a novel
global-local map processing scheme that allows to feed large
maps directly into convolutional layers of the DRL agent
and analyzed the effects of map processing parameters on
learning performance. In future work, we will investigate
still existing hindrances for applying our method to even
larger maps, namely avoiding small-scale decision alternation
through the use of macro-actions or options [17]. Combining
the presented high-level path planning approach with a low-
level flight dynamics controller will also make it possible
to conduct experiments with realistic open-source UAV sim-
ulators in the future. Additionally, we will investigate the
effect of irregularly shaped, non-convex obstacles on the path
planning performance.

ACKNOWLEDGMENTS

Marco Caccamo was supported by an Alexander von
Humboldt Professorship endowed by the German Federal
Ministry of Education and Research. Harald Bayerlein and
David Gesbert were partially supported by the French gov-
ernment, through the 3IA Côte d’Azur project number ANR-
19-P3IA-0002, as well as by the TSN CARNOT Institute
under project Robots4IoT.

REFERENCES

[1] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV
coverage path planning under varying power constraints using deep
reinforcement learning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[2] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV path
planning for wireless data harvesting: A deep reinforcement learning
approach,” in IEEE Global Communications Conference (GLOBE-
COM), 2020.

[3] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on
UAV communications for 5G and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, 2019.

[4] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab,
A. K. Al-Ali, K. A. Harras, and M. Guizani, “Design challenges of
multi-UAV systems in cyber-physical applications: A comprehensive
survey and future directions,” IEEE Communications Surveys & Tuto-
rials, vol. 21, no. 4, pp. 3340–3385, 2019.

[5] T. Cabreira, L. Brisolara, and P. R Ferreira, “Survey on coverage path
planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, 2019.

[6] C. Piciarelli and G. L. Foresti, “Drone patrolling with reinforcement
learning,” in Proceedings of the 13th International Conference on
Distributed Smart Cameras, ACM, 2019.

[7] K. D. Julian and M. J. Kochenderfer, “Distributed wildfire surveillance
with autonomous aircraft using deep reinforcement learning,” Journal
of Guidance, Control, and Dynamics, vol. 42, no. 8, pp. 1768–1778,
2019.

[8] E. Seraj and M. Gombolay, “Coordinated control of UAVs for human-
centered active sensing of wildfires,” in American Control Conference
(ACC), pp. 1845–1852, IEEE, 2020.

[9] D. Baldazo, J. Parras, and S. Zazo, “Decentralized multi-agent deep
reinforcement learning in swarms of drones for flood monitoring,”
in 27th European Signal Processing Conference (EUSIPCO), IEEE,
2019.

[10] O. Esrafilian, R. Gangula, and D. Gesbert, “Learning to communi-
cate in UAV-aided wireless networks: Map-based approaches,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1791–1802, 2018.

[11] C. H. Liu, Z. Dai, Y. Zhao, J. Crowcroft, D. O. Wu, and K. Leung,
“Distributed and energy-efficient mobile crowdsensing with charging
stations by deep reinforcement learning,” IEEE Transactions on Mo-
bile Computing, vol. 20, no. 1, pp. 130–146, 2021.

[12] S. Zhang and R. Zhang, “Radio map based path planning for
cellular-connected UAV,” in IEEE Global Communications Confer-
ence (GLOBECOM), 2019.

[13] J. Xie, L. R. G. Carrillo, and L. Jin, “An integrated traveling salesman
and coverage path planning problem for unmanned aircraft systems,”
IEEE Control Systems Letters, vol. 3, no. 1, pp. 67–72, 2019.

[14] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[15] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Thirtieth AAAI conference on artificial
intelligence, pp. 2094–2100, 2016.

[16] S. Zhang and R. S. Sutton, “A deeper look at experience replay,”
arXiv:1712.01275 [cs.LG], 2017.

[17] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

Chapter 4. Reinforcement Learning for Map-based Path Planning

4.4 Multi-UAV Path Planning for Wireless Data Harvesting With

Deep Reinforcement Learning

Reference

H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “Multi-UAV path planning for
wireless data harvesting with deep reinforcement learning,” IEEE Open Journal of the
Communications Society, vol. 2, pp. 1171–1187, 2021
DOI: https://doi.org/10.1109/OJCOMS.2021.3081996

Abstract

Harvesting data from distributed Internet of Things (IoT) devices with multiple au-
tonomous unmanned aerial vehicles (UAVs) is a challenging problem requiring flexible
path planning methods. We propose a multi-agent reinforcement learning (MARL) ap-
proach that, in contrast to previous work, can adapt to profound changes in the scenario
parameters defining the data harvesting mission, such as the number of deployed UAVs,
number, position and data amount of IoT devices, or the maximum flying time, without
the need to perform expensive recomputations or relearn control policies. We formulate
the path planning problem for a cooperative, non-communicating, and homogeneous team
of UAVs tasked with maximizing collected data from distributed IoT sensor nodes subject
to flying time and collision avoidance constraints. The path planning problem is translated
into a decentralized partially observable Markov decision process (Dec-POMDP), which
we solve through a deep reinforcement learning (DRL) approach, approximating the
optimal UAV control policy without prior knowledge of the challenging wireless channel
characteristics in dense urban environments. By exploiting a combination of centered
global and local map representations of the environment that are fed into convolutional
layers of the agents, we show that our proposed network architecture enables the agents
to cooperate effectively by carefully dividing the data collection task among themselves,
adapt to large complex environments and state spaces, and make movement decisions that
balance data collection goals, flight-time efficiency, and navigation constraints. Finally,
learning a control policy that generalizes over the scenario parameter space enables us
to analyze the influence of individual parameters on collection performance and provide
some intuition about system-level benefits.

Contributions to this paper

• Shared conceptualization of the multi-UAV data harvesting problem

• Shared adaptation of the code base for multi-agent

• Share of paper writing

Copyright

Creative Commons License – CC BY 4.0 DEED
https://creativecommons.org/licenses/by/4.0/

See Appendix A.6 for the reuse statement. The following shows the accepted version.

85

https://doi.org/10.1109/OJCOMS.2021.3081996
https://creativecommons.org/licenses/by/4.0/

1

Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning

Harald Bayerlein, Student Member, IEEE, Mirco Theile, Student Member, IEEE,
Marco Caccamo, Fellow, IEEE, and David Gesbert, Fellow, IEEE

Harvesting data from distributed Internet of Things (IoT) devices with multiple autonomous unmanned aerial vehicles (UAVs)
is a challenging problem requiring flexible path planning methods. We propose a multi-agent reinforcement learning (MARL)
approach that, in contrast to previous work, can adapt to profound changes in the scenario parameters defining the data harvesting
mission, such as the number of deployed UAVs, number, position and data amount of IoT devices, or the maximum flying time,
without the need to perform expensive recomputations or relearn control policies. We formulate the path planning problem for
a cooperative, non-communicating, and homogeneous team of UAVs tasked with maximizing collected data from distributed IoT
sensor nodes subject to flying time and collision avoidance constraints. The path planning problem is translated into a decentralized
partially observable Markov decision process (Dec-POMDP), which we solve through a deep reinforcement learning (DRL) approach,
approximating the optimal UAV control policy without prior knowledge of the challenging wireless channel characteristics in dense
urban environments. By exploiting a combination of centered global and local map representations of the environment that are fed
into convolutional layers of the agents, we show that our proposed network architecture enables the agents to cooperate effectively
by carefully dividing the data collection task among themselves, adapt to large complex environments and state spaces, and make
movement decisions that balance data collection goals, flight-time efficiency, and navigation constraints. Finally, learning a control
policy that generalizes over the scenario parameter space enables us to analyze the influence of individual parameters on collection
performance and provide some intuition about system-level benefits.

Index Terms—Internet of Things (IoT), map-based planning, multi-agent reinforcement learning (MARL), trajectory planning,
unmanned aerial vehicle (UAV).

I. INTRODUCTION

Autonomous unmanned aerial vehicles (UAVs) are not only
envisioned as passive cellular-connected users of telecommu-
nication networks but also as active connectivity enablers
[2]. Their fast and flexible deployment makes them espe-
cially useful in situations where terrestrial infrastructure is
overwhelmed or destroyed, e.g. in disaster and search-and-
rescue situations [3], or where fixed coverage is in any way
lacking. UAVs have shown particular promise in collecting
data from distributed Internet of Things (IoT) sensor nodes.
For instance, IoT operators can deploy UAV data harvesters
in the absence of otherwise expensive cellular infrastructure
nearby. Another reason is the throughput efficiency benefits
related to having UAVs that describe a flight pattern that
brings them close to the IoT devices. As an example in the
context of infrastructure maintenance and preserving structural
integrity, Hitachi is already commercially deploying partially
autonomous UAVs that collect data from IoT sensors embed-
ded in large structures, such as the San Juanico and Agas-Agas
Bridges in the Philippines [4]. Research into UAV-aided data
collection from IoT devices or wireless sensors include the

H. Bayerlein and D. Gesbert were partially supported by the French
government, through the 3IA Côte d’Azur project number ANR-19-P3IA-
0002, as well as by the TSN CARNOT Institute under project Robots4IoT.
M. Caccamo was supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education and Research. This
article was presented in part at IEEE GLOBECOM 2020 [1]. The code for this
work is available under https://github.com/hbayerlein/uav_data_harvesting.
(Corresponding author: Harald Bayerlein)

H. Bayerlein and D. Gesbert are with the Communication Sys-
tems Department, EURECOM, Sophia Antipolis, France, {harald.bayerlein,
david.gesbert}@eurecom.fr.

M. Theile and M. Caccamo are with the TUM Department of Mechan-
ical Engineering, Technical University of Munich, Germany, {mirco.theile,
mcaccamo}@tum.de.

works [5]–[9], with [10]–[13] concentrating on minimizing the
age of information of the collected data. Additional coverage
of past related work is offered in the next section.

In this work, we focus on controlling a team of UAVs,
consisting of a variable number of identical drones tasked with
collecting varying amounts of data from a variable number of
stationary IoT sensor devices at variable locations in an urban
environment. This imposes challenging constraints on the tra-
jectory design for autonomous UAVs. In addition, the limited
on-board battery energy density restricts mission duration for
quadcopter drones severely. At the same time, the complex
urban environment poses challenges in obstacle avoidance and
adherence to regulatory no-fly zones (NFZs). Additionally, the
wireless communication channel is characterized by random
signal blocking events due to alternating between line-of-sight
(LoS) and non-line-of-sight (NLoS) links. We believe this
work is the first to address multi-UAV path planning where
learned control policies are generalized over a wide scenario
parameter space and can be directly applied when scenario
parameters change without the need for retraining.

While some challenges to real-world deep reinforcement
learning (DRL) such as limited training samples, safety and
lack of explainable actions remain, DRL offers the opportunity
to balance challenges and data collection goals for complex
environments in a straightforward way by combining them
in the reward function. Another reason for the popularity
of the DRL paradigm in this context is the computational
efficiency of DRL inference. DRL is also one of the few
methods that allows us to tackle the complex task directly,
given that UAV control and deployment in communication
scenarios are generally non-convex optimization problems [2],
[14]–[18], and proven to be NP-hard in many instances [2],
[16], [17]. These advantages of DRL also hold for other UAV

2

path planning instances, such as coverage path planning [19],
a classical robotics problem where the UAV’s goal is to cover
all points inside an area of interest. The equivalence of these
path planning problems and the connection between the often
disjoint research areas is highlighted in [20].

A. Related Work
A survey that spans the various application areas for multi-

UAV systems from a cyber-physical perspective is provided
in [17]. The general challenges and opportunities of UAV
communications are summarized in publications by Zeng et
al. [2] and Saad et al. [18], which both include data collection
from IoT devices. This specific scenario is also included
in [21] and [22], surveys that comprise information on the
classification of UAV communication applications with a focus
on DRL methods.

Path planning for UAVs providing some form of commu-
nication services or collecting data has been studied exten-
sively, including numerous approaches based on reinforcement
learning (RL). However, it is crucial to note that the majority
of previous works concentrates on only finding the optimal
trajectory solution for one set of scenario parameters at a time,
requiring full or partial retraining if the scenario changes. In
contrast, our approach aims to train and generalize over a large
scenario parameter space directly, finding efficient solutions
without the need for lengthy retraining, but also increasing
the complexity of the path planning problem significantly.

Many existing RL approaches also only focus on single-
UAV scenarios. An early proposal given in [23] to use (deep)
RL in a related scenario where a single UAV base station
serves ground users shows the advantages of using a deep Q-
network (DQN) over table-based Q-learning, while not making
any explicit assumptions about the environment at the price of
long training time. The authors in [5] only investigate table-
based Q-learning for UAV data collection. A particular variety
of IoT data collection is the one tackled in [10], where the
authors propose a DQN-based solution to minimize the age of
information of data collected from sensors. In contrast to our
approach, the mentioned approaches are set in much simpler
environments and agents have to undergo computationally
expensive retraining when scenario parameters change.

Multi-UAV path planning for serving ground users employ-
ing table-based Q-learning is investigated in [16], based on
a relatively complex 3-step algorithm consisting of grouping
the users with a genetic algorithm, then deployment and
movement design in two separated instances of Q-learning.
The investigated optimization problem is proven to be NP-
hard, with Q-learning being confirmed as a useful tool to solve
it. Pan et al. [6] investigate an instance of multi-UAV data
collection from sensor nodes formulated as a classical traveling
salesman problem without modeling the communication phase
between UAV and node. The UAVs’ trajectories are designed
with a genetic algorithm that uses some aspects of DRL,
namely training a deep neural network and experience replay.
In contrast to the multi-stage optimization algorithms in [16]
and [6], our approach consists of a more straightforward
end-to-end DRL approach that scales to large and complex
environments, generalizing over varying scenario parameters.

The combination of DRL and multi-UAV control has been
studied previously in various scenarios. The authors in [11] fo-
cus on trajectory design for minimizing the age of information
of sensing data generated by multiple UAVs themselves where
the data can be either transmitted to terrestrial base stations or
mobile cellular devices. Their focus lies on balancing the UAV
sensing and transmission protocol in an unobstructed environ-
ment for one set of scenario parameters at a time. Other MARL
path planning approaches to minimize the age of information
of collected data include [12] and [13]. In [24], a swarm
of UAVs on a target detection and tracking mission in an
unknown environment is controlled through a distributed DQN
approach. While the authors also use convolutional processing
to feed map information to the agents, the map is initially
unknown and has to be explored to detect the targets. The
agents’ goal is to learn transferable knowledge that enables
adaptation to new scenarios with fast relearning, compared to
our approach to learn a control policy that generalizes over
scenario parameters and requires no relearning.

Hu et al. [14] proposed a distributed multi-UAV meta-
learning approach to control a group of drone base stations
serving ground users with random uplink access demands.
While meta-learning allows them to reduce the number of
training episodes needed to adapt to a new unseen uplink
demand scenario, several hundred are still required. Our ap-
proach focuses on training directly on random but observable
scenario parameters within a given value range, therefore not
requiring retraining to adapt. Due to the small and obstruction-
less environment, no maps are required in [14] and navigation
constraints are omitted by keeping the UAVs at dedicated
altitudes. In [7], multi-agent deep Q-learning is used to opti-
mize trajectories and resource assignment of UAVs that collect
data from pre-defined clusters of IoT devices and provide
power wirelessly to them. The focus here is on maximizing
minimum throughput in a wirelessly powered network without
a complex environment and navigation constraints, only for a
single scenario at a time. Similarly, in [8] there is also a strong
focus on the energy supply of IoT devices through backscatter
communications when a team of UAVs collects their data. The
authors propose a multi-agent approach that relies on the def-
inition of ambiguous boundaries between clusters of sensors.
The scenario is set in a simple, unobstructed environment, not
requiring maps or adherence to multiple navigation constraints,
but requiring retraining when scenario parameters change.

In [25], a group of interconnected UAVs is tasked with
providing long-term communication coverage to ground users
cooperatively. While the authors also formulate a POMDP that
they solve by a DRL variant, there is no need for map informa-
tion or processing. The scenario is set in a simple environment
without obstacles or other navigation constraints. This work
was extended under the paradigm of mobile crowdsensing,
where mobile devices are leveraged to collect data of common
interest in [9]. The authors proposed a heterogeneous multi-
agent DRL algorithm collecting data simultaneously with
ground and aerial vehicles in an environment with obstacles
and charging stations. While in this work, the authors also
suggest a convolutional neural network to exploit a map of
the environment, the small grid world does not necessitate

3

extensive map processing. Furthermore, they do not center the
map on the agent’s position, which is highly beneficial [1]. In
contrast to our method, control policies have to be relearned
entirely in a lengthy training process for both mentioned ap-
proaches when scenario and environmental parameters change.

B. Contributions

If DRL methods are to be applied in any real-world mission,
the prohibitively high training data demand poses one of the
most severe challenges [26]. This is exacerbated by the fact
that even minor changes in the scenario, such as in the number
or location of sensor devices in data collection missions,
typically requires repeating the full training procedure of the
DRL agent. This is the case for existing approaches such as
[7]–[9], [11]–[13], [23], [25]. Other approaches to reduce the
training data demand include meta-learning [14] and transfer
learning [26]. To the best of our knowledge, this is the first
work that addresses this problem in path planning for multi-
UAV data harvesting by proposing a DRL method that is
able to generalize over a large space of scenario parameters
in complex urban environments without prior knowledge of
wireless channel characteristics based on centered global-local
map processing.

The main contributions of this paper are the following:

• We formulate a flying time constrained multi-UAV path
planning problem to maximize harvested data from IoT
sensors. We consider its translation to a decentralized par-
tially observable Markov decision process (Dec-POMDP)
with full reward function description in large, complex,
and realistic environments that include no-fly zones,
buildings that block wireless links (some possible to be
flown over, some not), and dedicated start/landing zones.

• To solve the Dec-POMDP under navigation constraints
without any prior knowledge of the urban environment’s
challenging wireless propagation conditions, we employ
deep multi-agent reinforcement learning with centralized
learning and decentralized execution.

• We show the advantage in learning and adaptation ef-
ficiency to large maps and state spaces through a dual
global-local map approach with map centering over more
conventional scalar neural network input in a multi-UAV
setting.

• As perhaps our most salient feature, our algorithm offers
parameter generalization, which means that the learned
control policy can be reused over a wide array of
scenario parameters, including the number of deployed
UAVs, variable start positions, maximum flying times,
and number, location and data amount of IoT sensor
devices, without the need to restart the training procedure
as typically required by existing DRL approaches.

• Learning a generalized control policy enables us to
compare performance over a large scenario parameter
space directly. We analyze the influence of individual
parameters on collection performance and provide some
intuition about system-level benefits.

C. Organization

The paper is organized as follows: Section II introduces
the multi-UAV mobility and communication channel model,
which is translated to an MDP in Section III and followed by
a description of the proposed map preprocessing in Section
IV and multi-agent DRL learning approach in Section V.
Simulation results and their discussion follow in Section VI,
and we conclude the paper with a summary and outlook to
future work in Section VII.

II. SYSTEM MODEL

In the following, we present the key models for the multi-
UAV path planning problem. Note that some level of sim-
plification is needed when modeling the robots’ dynamics in
order to enable the implementation of the RL approach. Our
assumptions are explicit whenever suitable.

We consider a square grid world of size " × " ∈ N2

with cell size 2 and the set of all possible positions M.
Discretization of the environment is a necessary condition for
our map-processing approach, however note that our method
can be applied to any rectangular grid world. The environment
contains ! designated start/landing positions given by the set

L =
{[
G;8 , H

;
8

]T
, 8 = 1, . . . , !, :

[
G;8 , H

;
8

]T ∈ M
}

and the combination of the / positions the UAVs cannot
occupy is given by the set

Z =
{[
GI8 , H

I
8

]T
, 8 = 1, . . . , /, :

[
GI8 , H

I
8

]T ∈ M
}
.

This includes tall buildings which the UAVs can not fly over
and regulatory no-fly zones (NFZ). The number of � obstacles
blocking wireless links are given by the set

B =
{[
G18 , H

1
8

]T
, 8 = 1, . . . , �, :

[
G18 , H

1
8

]T ∈ M
}
,

representing all buildings, also smaller ones that can be flown
over. The lowercase letters ;, I, 1 indicate the coordinates
of the respective set of environmental features L,Z,B. An
example of a grid world is depicted in Fig. 1, where obstacles,
NFZs, start/landing zone, and an example of a single UAV
trajectory are marked as described in the attached legend in
Tab. I.

A. UAV Model

The set I of � deployed UAVs moves within the limits of
the grid world M. The state of the 8-th UAV is described
through its:
• position p8 (C) = [G8 (C), H8 (C), I8 (C)]T ∈ R3 with altitude
I8 (C) ∈ {0, ℎ}, either at ground level or in constant
altitude ℎ;

• operational status q8 (C) ∈ {0, 1}, either inactive or active;
• battery energy level 18 (C) ∈ N.

Note that the assumption of all UAVs sharing the same flying
altitude is not too restrictive and that our method allows each
UAV to fly at a different altitude as long as it remains constant
throughout the mission. The UAV agent’s altitude can be
made observable by simply adding it to the observation space

4




"

Fig. 1. Example of a single UAV collecting data from two IoT devices in
an urban environment of size " ×" with NFZs, a single start/landing zone,
and buildings causing shadowing. Small buildings can be flown over and tall
buildings act as navigation obstacles.

Symbol Description

D
Q

N
In

pu
t

Start and landing zone
Regulatory no-fly zone (NFZ)
Tall buildings* (UAVs cannot fly over)
Small buildings* (UAVs can fly over)
IoT device
Other agents
*all buildings obstruct wireless links

V
is

ua
liz

at
io

n Summation of building shadows
Starting and landing positions during an episode
UAV movement while comm. with green device
Hovering while comm. with green device
Actions without comm. (all data collected)

TABLE I
LEGEND FOR SCENARIO PLOTS.

along the flying time. This work only tackles 2D trajectory
optimization, as the environment is dominated by high-rise
buildings that would require long climbing phases to be
overflown. The mission time limited by the UAVs’ on-board
batteries restricts the effectiveness of 3D control for the data
collection performance given that climbing flight consumes
more energy [27] and that the UAVs needs to land at ground
level at the end of the mission. The data collection mission
is over after) ∈ N mission time steps for all UAVs, where
the time horizon is discretized into equal mission time slots
C ∈ [0,)] of length XC seconds.

The action space of each UAV is defined as

A =

{ 
0
0
0

︸︷︷︸
hover

,


2
0
0

︸︷︷︸
east

,


0
2
0

︸︷︷︸
north

,


−2
0
0

︸︷︷︸
west

,


0
−2
0

︸︷︷︸
south

,


0
0
−ℎ

︸︷︷︸
land

}
. (1)

Each UAV’s movement actions a8 (C) ∈ Ã(p8 (C)) are limited
to

Ã(p8 (C)) =
{
A, p8 (C) ∈ L
A \ [0, 0,−ℎ]T, otherwise,

(2)

where Ã defines the set of feasible actions depending on the
respective UAV’s position, specifically that the landing action
is only allowed if the UAV is in the landing zone.

The distance the UAV travels within one time slot is
equivalent to the cell size 2. Mission time slots are chosen
sufficiently small so that each UAV’s velocity E8 (C) can be
considered to remain constant in one time slot. The UAVs
are limited to moving with horizontal velocity + = 2/XC or
standing still, i.e. E8 (C) ∈ {0, +} for all C ∈ [0,)]. Each UAV’s
position evolves according to the motion model given by

p8 (C + 1) =
{

p8 (C) + a8 (C), q8 (C) = 1
p8 (C), otherwise,

(3)

keeping the UAV stationary if inactive. The evolution of the
operational status q8 (C) of each UAV is given by

q8 (C + 1) =



0, a8 (C) = [0, 0,−ℎ]T
∨ q8 (C) = 0

1, otherwise,
(4)

where the operational status becomes inactive when the UAV
has safely landed. The end of the data harvesting mission)
is defined as the time slot when all UAVs have reached their
terminal state and are not actively operating anymore, i.e. the
operational state is q8 (C) = 0 for all UAVs.

The 8-th UAV’s battery content evolves according to

18 (C + 1) =
{
18 (C) − 1, q8 (C) = 1
18 (C), otherwise,

(5)

assuming a constant energy consumption while the UAV is
operating and zero energy consumption when operation has
terminated. This is a simplification justified by the fact that
power consumption for small quadcopter UAVs is dominated
by the hovering component. Using the model from [27], the
ratio between the additional power necessary for horizontal
flight at 10m/s and just hovering could be roughly estimated
as 30W/310W ≈ 10%, which is negligible. Considering power
consumption of on-board computation and communication
hardware which does not differ between flight and hovering,
the overall difference becomes even smaller. In the following,
we will refer to the battery content as remaining flying time,
as it is directly equivalent.

The overall multi-UAV mobility model is restricted by the
following constraints:

p8 (C) ≠ p 9 (C) ∨ q 9 (C) = 0, ∀8, 9 ∈ I, 8 ≠ 9 ,∀C (6a)
p8 (C) ∉ Z, ∀8 ∈ I,∀C (6b)
18 (C) ≥ 0, ∀8 ∈ I,∀C (6c)

p8 (0) ∈ L ∧ I8 (0) = ℎ, ∀8 ∈ I (6d)
q8 (0) = 1, ∀8 ∈ I (6e)

The constraint (6a) describes collision avoidance among active
UAVs with the exception that UAVs can land at the same
location. (6b) forces the UAVs to avoid collisions with tall
obstacles and prevents them from entering NFZs. The con-
straint (6c) limits operation time of the drones, forcing UAVs
to end their mission before their battery has run out. Since
operation can only be concluded with the landing action as
described in (4) and the landing action is only available in
the landing zone as defined in (2), the constraint (6c) ensures

5

that each UAV safely lands in the landing zone before their
batteries are empty. The starting constraint (6d) defines that
the UAV start positions are in the start/landing zones and that
their starting altitude is ℎ, while (6e) ensures that the UAVs
start in the active operational state.

B. Communication Channel Model

1) Link Performance Model
As communication systems typically operate on a smaller

timescale than the UAVs’ mission planning system, we in-
troduce the notion of communication time slots in addition
to mission time slots. We partition each mission time slot
C ∈ [0,)] into a number of _ ∈ N communication time
slots. The communication time index is then = ∈ [0, #]
with # = _) . One communication time slot = is of length
X= = XC/_ seconds. The number of communication time slots
per mission time slot _ is chosen sufficiently large so that the
8-th UAV’s position, which is interpolated linearly between
p8 (C) and p8 (C + 1), and the channel gain can be considered to
stay constant within one communication time slot.

The :-th IoT device is located on ground level at u: =
[G: , H: , 0]T ∈ R3 with : ∈ K where |K | = . Each IoT
sensor has a finite amount of data �: (C) ∈ R+ that needs to
be picked up over the whole mission time C ∈ [0,)]. The
device data volume is set to an initial value at the start of
the mission �: (C = 0) = �:,8=8C . The data volume of each
IoT node evolves depending on the communication time index
= over the whole mission time, given by �: (=) with = ∈
[0, #], # = _) .

We follow the same UAV-to-ground channel model as used
in [1]. The communication links between UAVs and the
IoT devices are modeled as LoS/NLoS point-to-point channels
with log-distance path loss and shadow fading. The maximum
achievable information rate at time = for the :-th device is
given by

'max
8,: (=) = log2

(
1 + SNR8,: (=)

)
. (7)

Considering the amount of data available at the :-th device
�: (=), the effective information rate is given as

'8,: (=) =
{
'max
8,: (=), �: (=) ≥ X='max

8,: (=)
�: (=)/X=, otherwise.

(8)

The SNR with transmit power %8,: , white Gaussian noise
power at the receiver f2, UAV-device distance 38,: , path loss
exponent U4 and [4 ∼ N(0, f2

4) modeled as a Gaussian
random variable, is defined as

SNR8,: (=) =
%8,:

f2 · 38,: (=)
−U4 · 10[4/10. (9)

Note that the urban environment with the set of obstacles B
hindering free propagation causes a strong dependence of the
propagation parameters on the 4 ∈ {LoS, NLoS} condition
and that (9) is the SNR averaged over small scale fading. We
would also like to point out that our DQN-based trajectory
planning approach is model-free and does therefore not rely
on any specific channel model. While a more accurate and
complex model could be directly used with our approach, the
most important features for data collection missions of the

urban channel, the dependence of SNR on 38,: and the 4 ∈
{LoS, NLoS} condition, are already captured in (9).

2) Multiple Access Protocol
The multiple access protocol is assumed to follow the

standard time-division multiple access (TDMA) model when
it comes to the communication between one single UAV
and the various ground nodes. We further assume that the
communication channel between the ground nodes and a
given UAV operates on resource blocks (time-frequency slots)
that are orthogonal to the channels linking the ground nodes
and other UAVs, so that no inter-UAV interference exists in
our model and inter-UAV synchronization is not necessary.
Hence, the UAVs are similar to base stations that would
be assigned orthogonal spectral resources. We also assume
that IoT devices are operating in multi-band mode, hence
are capable of simultaneously communicating with all UAVs
on the set of all orthogonal frequencies. As a consequence,
scheduling decisions are not part of the action space. The num-
ber of available orthogonal subchannels for UAV-to-ground
communication is one of the variable scenario parameters and
equivalent to the number of deployed UAVs.

Designing multiple access protocols for UAV networks is in
itself a challenging research problem [28] due to high mobility
of the nodes and fast changing link performance and is out of
scope for this work. However, our proposed algorithm can
in principle be integrated with existing solutions and does
not rely on any specific channel model or multiple access
protocol. While our model avoids and does not consider inter-
UAV interference, we would like to point out that the behavior
of the UAV agents that emerges naturally during the learning
process of dividing the data collection task geographically,
as illustrated in section VI-D, would mitigate the influence
of interference on the trajectory planning decisions to some
extent.

Our scheduling protocol is assumed to follow the max-rate
rule: in each communication time slot = ∈ [0, #], the sensor
node : ∈ [1,] with the highest SNR8,: (=) with remaining
data to be uploaded is picked by the scheduling algorithm. The
TDMA constraint for the scheduling variable @8,: (=) ∈ {0, 1}
is given by

 ∑
:=1

@8,: (=) ≤ 1, = ∈ [0, #] ,∀8 ∈ I. (10)

It follows that the :-th device’s data volume evolves within
one communication time slot according to

�: (= + 1) = �: (=) −
�∑
8=1

@8,: (=)'8,: (=)X=. (11)

The achievable throughput for the 8-th UAV for one mission
time slot C ∈ [0,)], comprised of _ communication time slots,
is the sum of rates achieved in the communication time slots
= ∈ [_C, _(C + 1) − 1] over sensor nodes. It depends on the
UAV’s operational status q8 (C) and is given by

�8 (C) = q8 (C)
_(C+1)−1∑
==_C

 ∑
:=1

@8,: (=)'8,: (=)X=. (12)

6

C. Optimization Problem

Using the described UAV model in II-A and communication
model in II-B, the central goal of the multi-UAV path planning
problem is the maximization of throughput over the whole
mission time and over all � deployed UAVs while adhering
to mobility constraints (6a)-(6e) and the scheduling constraint
(10). The maximization problem is given by

max
×8a8 (C)

)∑
C=0

�∑
8=1

�8 (C). (13)

s.t. (6a), (6b), (6c), (6d), (6e), (10)

optimizing over joint actions ×8a8 (C).

III. MARKOV DECISION PROCESS (DEC-POMDP)

To address the aforementioned optimization problem, we
translate it to a decentralized partially observable Markov
decision process (Dec-POMDP) [29], which is defined through
the tuple (S,A×, %, ',Ω×,O, W). In the Dec-POMDP, S de-
scribes the state space, A× = A � the joint action space, and
% : S × A× × S ↦→ R the transition probability function.
' : S × A × S ↦→ R is the reward function mapping state,
individual action, and next state to a real valued reward. The
joint observation space is defined through Ω× = Ω� and
O : S × I ↦→ Ω is the observation function mapping state
and agents to one agent’s individual observation. The discount
factor W ∈ [0, 1] controls the importance of long vs. short term
rewards.

A. State Space

The state space of the multi-agent data collection problem
consists of the environment information, the state of the agents,
and the state of the devices. It is given as

S = L︸︷︷︸
Landing
Zones

× Z︸︷︷︸
NFZs

× B︸︷︷︸
Obstacles

}
Environment

× R�×3︸︷︷︸
UAV

Positions

× N�︸︷︷︸
Flying
Times

× B�︸︷︷︸
Operational

Status

}
Agents (14)

× R ×3︸︷︷︸
Device

Positions

× R ︸︷︷︸
Device
Data

}
Devices

in which the elements B(C) ∈ S are

B(C) = (M, {p8 (C)}, {18 (C)}, {q8 (C)}, {u: }, {�: (C)}), (15)

∀8 ∈ I and ∀: ∈ K, in which M ∈ B"×"×3 is the tensor
representation of the set of start/landing zones L, obstacles
and NFZs Z, and obstacles only B. The other elements of the
tuple define positions, remaining flying times, and operational
status of all agents, as well as positions and available data
volume of all IoT devices.

B. Safety Controller

To enforce the collision avoidance constraint (6a) and the
NFZ and obstacle avoidance constraint (6b), a safety controller
is introduced into the system. Additionally, the safety con-
troller enforces the limited action space excluding the landing
action when the respective agent is not in the landing zone as
defined in (2). The safety controller evaluates the action a8 (C)
of agent 8 and determines if it should be accepted or rejected.
If rejected, the resulting safe action is the hovering action. The
safe action aB,8 (C) is thus defined as

aB,8 (C) =




[0, 0, 0]T, p8 (C) + a8 (C) ∈ Z
∨ p8 (C) + a8 (C) = p 9 (C) ∧ q 9 (C) = 1,
∀ 9 , 9 ≠ 8
∨ a8 (C) = [0, 0,−ℎ]T ∧ p8 (C) ∉ L

a8 (C), otherwise.
(16)

Without path planning capabilities, the safety controller cannot
enforce the flying time and safe landing constraint in (6c).
Therefore, we relax the hard constraint on flight time by
adding a high penalty on not landing in time instead. In the
simulation, a crashed agent, i.e. an agent with 18 (C) < 0, is
defined as not operational.

C. Reward Function

The reward function ' : S×A×S ↦→ R of the Dec-POMDP
is comprised of the following elements:

A8 (C) = U
∑
:∈K

(
�: (C + 1) − �: (C)

)
+ V8 (C) + W8 (C) + n . (17)

The first term of the sum is a collective reward for the collected
data from all devices by all agents within mission time slot C.
It is parameterized through the data collection multiplier U.
This is the only part of the reward function that is shared
among all agents. The second addend is an individual penalty
when the safety controller rejects an action and given through

V8 (C) =
{
V, a8 (C) ≠ a8,B (C)
0, otherwise.

(18)

It is parameterized through the safety penalty V. The third term
is the individual penalty for not landing in time given by

W8 (C) =
{
W, 18 (C + 1) = 0 ∧ p8 (C + 1) = [·, ·, ℎ]T
0, otherwise.

(19)

and parameterized through the crashing penalty W. The last
term is a constant movement penalty parameterized through
n , which is supposed to incentivize the agents to reduce their
flying time and prioritize efficient trajectories.

IV. MAP-PROCESSING AND OBSERVATION SPACE

To aid the agents in interpreting the large state space given
in (14), we implement two map processing steps. The first
is centering the map around the agent’s position, shown in
[1] to significantly improve the agent’s learning performance.
This benefit is a consequence of neurons in the layer after
the convolutional layers (compare Fig. 3) corresponding to

7

features relative to the agent’s position, rather than to absolute
positions if the map is not centered. This is advantageous as
one agent’s actions are solely based on its relative position
to features, e.g. its distance to sensor devices. The downside
of this approach is that it increases the size of the maps and
the observation space even further, therefore requiring larger
networks with more trainable parameters.

The second map processing step is to present the centered
map as a compressed global and uncompressed but cropped
local map as previously evaluated in [20]. In path planning,
as distant features lead to general direction decisions while
close features lead to immediate actions such as collision
avoidance, the level of detail passed to the agent for distant
objects can be less than for close objects. The advantage is
that the compression of the global map reduces the necessary
neural network size considerably.

This reduction in network size directly translates to a
reduction in computational load. Table II shows the number
of floating point operations needed for each of the two
maps under different map processing regimes as given by
the TensorFlow graph profiler. Only centering increases the
computational load considerably, as explained in [1], while
global-local map processing offsets the increase and reduces
floating point operations considerably. Considering that mod-
ern embedded processors operate in the region of giga floating
point operations, it seems realistic that the required processing
can be carried out even on small and energy-limited UAVs. The
mathematical descriptions of the map processing functions and
the observation space are detailed in the following.

Map No Processing Centering Centering + Global-Local

Manhattan32 15 80 7.7
Urban50 45 217 6.5

TABLE II
MILLION FLOATING POINT OPERATIONS (MFLOPS) NEEDED FOR

INFERENCE OF THE NETWORKS BASED ON MAP-PROCESSING.

A. Map-Processing

For ease of exposition, we introduce the 2D projections of
the UAV and IoT device positions on the ground, ũ: ∈ N2 and
p̃: ∈ N2 respectively, given by

ũ: =
⌊(1
2 0 0
0 1

2 0

)
u:

⌉
, p̃8 =

⌊(1
2 0 0
0 1

2 0

)
p8

⌉
(20)

rounded to integer grid coordinates.
1) Mapping
The centering and global-local mapping algorithms are

based on map-layer representations of the state space. To
represent any state with a spatial aspect given by a position
and a corresponding value as a map-layer, we define a general
mapping function

5mapping : N&×2 × R& ↦→ R"×" . (21)

In this function, a map layer A ∈ R"×" is defined as

A = 5mapping ({p̃@}, {E@}), (22)

︸ ︷︷ ︸
"

(a) Non-centered input map

︸ ︷︷ ︸
"2

(b) Centered input map

Fig. 2. Comparison of non-centered and centered input maps, with UAV
position represented by the green star and the intersection of the dashed lines.

with a set of grid coordinates {p̃@} and a set of corresponding
values {E@}. The elements of A are given through

0 ?̃@,0 , ?̃@,1 = E@ , ∀@ ∈ [0, ..., & − 1] (23)

or 0 if the index is not in the grid coordinates. With this general
function, we define the map-layers

D(C) = 5mapping ({ũ: }, {�: (C)}) (24a)
B(C) = 5mapping ({p̃8 (C)}, {18 (C)}) (24b)
Φ(C) = 5mapping ({p̃8 (C)}, {q8 (C)}) (24c)

for device data, UAV flying times, and UAV operational status
respectively. If the map-layers are of same type they can be
stacked to form a tensor of R"×"×= for ease of representation.

2) Map Centering
Given a tensor A ∈ R"×"×= describing the map-layers, a

centered tensor B ∈ R"2×"2×= with "2 = 2" − 1 is defined
through

B = 5center (A, p̃, xpad), (25)

with the centering function defined as

5center : R"×"×= × N2 × R= ↦→ R"2×"2×=. (26)

The elements of B with respect to the elements of A are
defined as

b8, 9 =



a8+ ?̃0−"+1, 9+ ?̃1−"+1, " ≤ 8 + ?̃0 + 1 < 2"
∧ " ≤ 9 + ?̃1 + 1 < 2"

xpad, otherwise,
(27)

effectively padding the map layers of A with the padding
value xpad. Note that a8, 9 , b8, 9 , and xpad are vector valued
of dimension R=. An illustration of the centering on a 16×16
map (" = 16, "2 = 31) can be seen in Figure 2 with the
legend in Table I.

3) Global-Local Map
The tensor B ∈ R"2×"2×= resulting from the map centering

function is processed in two ways. The first is creating a local
map according to

X = 5local (B, ;) (28)

8

with the local map function defined by

5local : R"2×"2×= × N ↦→ R;×;×=. (29)

The elements of X with respect to the elements of B are
defined as

x8, 9 = b8+"−d ;2 e, 9+"−d ;2 e (30)

This operation is effectively a central crop of size ; × ;.
The second processing creates a global map according to

Y = 5global (B, 6) (31)

with the global map function

5global : R"2×"2×= × N ↦→ R b"2
6 c×b"2

6 c×= (32)

The elements of Y with respect to the elements of B are
defined as

y8, 9 =
1
62

6−1∑
D=0

6−1∑
E=0

b68+D,6 9+E (33)

This operation is equal to an average pooling operation with
pooling cell size 6.

The functions 5local and 5global are parameterized through ;
and 6, respectively. Increasing ; increases the size of the local
map, whereas increasing 6 increases the size of the average
pooling cells, therefore decreasing the size of the global map.

B. Observation Space

Using the map processing functions, the observation space
can be defined. The observation space Ω, which is the input
space to the agent, is given as

Ω = Ω;︸︷︷︸
Local
Map

× Ω6︸︷︷︸
Global
Map

× N︸︷︷︸
Flying
Time

containing the local map

Ω; = B
;×;×3 × R;×; × N;×; × B;×;

and the global map

Ω6 = R
6̄×6̄×3 × R6̄×6̄ × R6̄×6̄ × R6̄×6̄ .

with 6̄ = b"2

6 c. Note that the compression of the global map
through average pooling transforms all map layers into R.
Observations >8 (C) ∈ Ω are defined through the tuple

>8 (C) = (M;,8 (C),D;,8 (C),B;,8 (C),Φ;,8 (C),
M6,8 (C),D6,8 (C),B6,8 (C),Φ6,8 (C), 18 (C)). (34)

In one observation tuple, M;,8 (C) is the local observation of
agent 8 of the environment, D;,8 (C) is the local observation of
the data to be collected, B;,8 (C) is the local observation of the
remaining flying time of all agents, and Φ;,8 (C) is the local
observation of the operational status of the agents. M6,8 (C),
D6,8 (C), B6,8 (C), and Φ6,8 (C) are the respective global obser-
vations. 18 (C) is the remaining flying time of agent 8, which is
equal to the one in the state space. Note that the environment
map’s local and global observations are dependent on time, as
they are centered around the UAV’s time-dependent position.
Additionally, it should be noted that the remaining flying time

of agent 8 is given in the center of B;,8 (C) and additionally
as a scalar 18 (C). This redundancy in representation helps the
agent to interpret the remaining flying time.

Consequently, the complete mapping from state to observa-
tion space is given by

O : S × I ↦→ Ω (35)

in which the elements of >8 (C) are defined as follows:

M;,8 (C) = 5local (5center (M, p8 (C), [0, 1, 1]T), ;) (36a)
D;,8 (C) = 5local (5center (D(C), p8 (C), 0), ;) (36b)
B;,8 (C) = 5local (5center (B(C), p8 (C), 0), ;) (36c)
Φ;,8 (C) = 5local (5center (Φ(C), p8 (C), 0), ;) (36d)

M6,8 (C) = 5global (5center (M, p8 (C), [0, 1, 1]T), 6) (36e)
D6,8 (C) = 5global (5center (D(C), p8 (C), 0), 6) (36f)
B6,8 (C) = 5global (5center (B(C), p8 (C), 0), 6) (36g)
Φ6,8 (C) = 5global (5center (Φ(C), p8 (C), 0), 6) (36h)

By passing the observation space Ω into the agent instead
of the state space S as done in the previous approaches [19]
and [1], the presented path planning problem is artificially con-
verted into a partially observable MDP. Partial observability is
a consequence of the restricted size of the local map and the
compression of the global map. However, as shown in [20],
partial observability does not render the problem infeasible,
even for a memory-less agent. Instead, the compression greatly
reduces the neural network’s size, leading to a significant
reduction in training time.

V. MULTI-AGENT REINFORCEMENT LEARNING (MARL)

A. Q-Learning

Q-learning is a model-free RL method [30] where a cycle
of interaction between one or multiple agents and the envi-
ronment enables the agents to learn and optimize a behavior,
i.e. the agents observe state BC ∈ S and each performs an
action 0C ∈ A at time C and the environment subsequently
assigns a reward A (BC , 0C) ∈ R to the agents. The cycle restarts
with the propagation of the agents to the next state BC+1.
The agents’ goal is to learn a behavior rule, referred to as
a policy that maximizes their reward. A probabilistic policy
c(0 |B) is a distribution over actions given the state such that
c : S × A → R. In the deterministic case, it reduces to c(B)
such that c : S → A.

Q-learning is based on iteratively improving the state-action
value function or Q-function to guide and evaluate the process
of learning a policy c. It is given as

& c (B, 0) = Ec [�C |BC = B, 0C = 0] (37)

and represents an expectation of the discounted cumulative
return �C from the current state BC up to a terminal state at
time) given by

�C =
)∑
:=C

W:−CA (B: , 0:) (38)

with W ∈ [0, 1] being the discount factor, balancing the
importance of immediate and future rewards. For the ease of

9

exposition, BC and 0C are abbreviated to B and 0, while BC+1
and 0C+1 are abbreviated to B′ and 0′ in the following.

B. Double Deep Q-learning and Combined Experience Re-
play

As demonstrated in [23], representing the Q-function (37)
as a table of values is not efficient in the large state and
action spaces of UAV trajectory planning. Instead, a deep
Q-network (DQN) parameterizing the Q-function with the
parameter vector \ can be trained to minimize the expected
temporal difference (TD) error. While a neural network is
significantly more data efficient compared to a Q-table due
to its ability to generalize, the deadly triad [30] of function
approximation, bootstrapping and off-policy training can make
its training unstable and cause divergence.

Mnih et al. [31] applied stabilizing techniques to the DQN
training process, such as experience replay, reducing correla-
tions in the sequence of training data. New experiences made
by the agent, represented by quadruples of (B, 0, A, B′), are
stored in the replay memory D. During training, a minibatch
of size < is sampled uniformly from D and used to compute
the loss. The size of the replay memory |D| was shown
to be an essential hyperparameter for the agent’s learning
performance and typically must be carefully tuned for different
tasks or scenarios. Zhang and Sutton [32] proposed combined
experience replay as a remedy for this sensitivity with very
low computational complexity O(1). In this extension to the
replay memory method, only < − 1 samples of the minibatch
are sampled from memory, and the latest experience the agent
made is always added. This corrected minibatch is then used
to train the agent. Therefore, all new transitions influence
the agent immediately, making the agent less sensitive to the
selection of the replay buffer size in our approach.

In addition to experience replay, Mnih et al. used a separate
target network for the estimation of the next maximum Q-
value, giving the loss as

!DQN (\) = EB,0,B′∼D [(& \ (B, 0) − .DQN (B, 0, B′))2] (39)

with target value

.DQN (B, 0, B′) = A (B, 0) + Wmax
0′
& \̄ (B′, 0′) . (40)

\̄ represents the parameters of the target network. The parame-
ters of the target network \̄ can either be updated as a periodic
hard copy of \ or as in our approach with a soft update

\̄ ← (1 − g)\̄ + g\ (41)

after each update of \. g ∈ [0, 1] is the update factor
determining the adaptation pace.

Further improvements to the training process were sug-
gested in [33], resulting in the inception of double deep Q-
networks (DDQNs). With the application of this extension,
we avoid the overestimation of action values under certain
conditions in standard DQN and arrive at the loss function for
our network given by

!DDQN (\) = EB,0,B′∼D [(& \ (B, 0) − . (B, 0, B′))2] (42)

where the target value is given by

.DDQN (B, 0, B′) = A (B, 0) + W& \̄ (B′, argmax
0′

& \ (B′, 0′)). (43)

C. Multi-agent Q-learning

The original table-based Q-learning algorithm was extended
to the cooperative multi-agent setting by Claus and Boutilier
in 1998 [34]. Without changing the underlying principle, it
can also be applied to DDQN-based multi-agent cooperation.
With the taxonomy from [35], our agents can be classified
as homogeneous and non-communicating. Homogeneity is a
consequence of deploying a team of identical UAVs with the
same internal structure, domain knowledge, and identical ac-
tion spaces. Non-communication is to be interpreted in a multi-
agent system sense, i.e. that the agents can not coordinate
their actions or choose what to communicate. However, as
they all perceive state information that includes other UAVs’
positions, in a practical sense, position information would most
likely be communicated via the command and control links of
the UAVs, that especially autonomous UAVs would have to
maintain for regulatory purposes in any case.

The best way to describe our learning approach is by de-
centralized deployment or execution with centralized training.
As DDQN learning requires an extensive experience database
to train the neural networks on, it is reasonable to assume that
the experiences made by independently acting agents can be
centrally pooled throughout the training phase. After training
has concluded, the control systems are individually deployed
to the distributed drone agents. The rationale behind this
concept is that we investigate a team of homogeneous UAVs
with identical capabilities and tasks, therefore all experiences
are useful for the training of all agents. In a real-world
deployment of a team of quadcopter UAVs, all UAVs would
be required to regularly return to a charging station, as flying
time remains strongly limited by available on-board battery
capacity. While being recharged, the UAVs would upload their
experience data to a central server with larger memory and
computation resources.

Our setting can not be characterized as fully cooperative as
our agents do not share a common reward [36]. Instead, each
agent has an individual but identical reward function. As the
main component of the reward function is based on the jointly
collected data from the IoT devices described in Section III-C,
they do share a common goal, leading to the classification of
our setting as a simple cooperative one.

D. Neural Network Model

We use a neural network model very similar to the one
presented in [20]. Fig. 3 shows the DQN structure and the map
centering and global-local map processing. The map informa-
tion of the environment, NFZs, obstacles, and start/landing
area is stacked with the IoT device map and the map with the
other UAVs’ flying times and operational status. According to
Section IV-A, the map is centered on the UAV’s position and
split into a global and local map. The global and local maps
are fed through convolutional layers with ReLU activation and
then flattened and concatenated with the scalar input indicating
battery content or remaining flight time. After passing through
fully connected layers with ReLU activation, the data reaches
the last fully-connected layer of size |A| without activation
function, directly representing the Q-values for each action

10

Fig. 3. DQN architecture with map centering and global and local map processing. Layer sizes are shown in in blue for the smaller ’Manhattan32’ scenario
and orange for the larger ’Urban50’ scenario.

Parameter 32 × 32 50 × 50 Description

|\ | 1,175,302 978,694 trainable parameters
#max 3,000,000 4,000,000 maximum training steps
; 17 17 local map scaling
6 3 5 global map scaling
|D| 50,000 replay memory buffer size
< 128 minibatch size
g 0.005 soft update factor in (41)
W 0.95 discount factor in (43)
V 0.1 temperature parameter (45)

TABLE III
DDQN HYPERPARAMETERS FOR 32 × 32 AND 50 × 50 MAPS.

given the input observation. The argmax of the Q-values, the
greedy policy is given by

c(B) = argmax
0∈A

& \ (B, 0). (44)

It is deterministic and used when evaluating the agent. During
training, the soft-max policy

c(08 |B) = e&\ (B,08)/V∑
∀0 9 ∈A e&\ (B,0 9)/V (45)

is used. The temperature parameter V ∈ R scales the balance
of exploration versus exploitation. Hyperparameters are listed
in Tab. III.

VI. SIMULATIONS

A. Simulation Setup

In this work, we aim to provide an algorithm1 that is
able to generalize the learned UAV control policy over a
large parameter space that defines the specific data collection
scenario. That means that at the start of a new training episode,
a set of scenario parameters is sampled randomly from a given

1The Python code for this work is available under https://github.com/
hbayerlein/uav_data_harvesting.

range of possible values defining the mission. Then the mission
starts and the agents are deployed to collect as much data as
possible in the given circumstances. Specifically, we define a
new mission through the following randomly varying scenario
parameters:
• Number of UAVs deployed;
• Number and position of IoT sensor nodes;
• Amount of data to be collected from IoT nodes;
• Flying time available for UAVs at mission start;
• UAV start positions.

The exact value ranges from which these parameters are
sampled are given in the following Sections VI-C and VI-D
depending on the map. We deploy our system on two different
maps. In ’Manhattan32’, the UAVs fly inside ’urban canyons’
through a dense city environment discretized into 32×32 cells,
whereas ’Urban50’ is an example of a less dense but larger
50 × 50 urban area. Note that we only trained a single agent
on each of these maps, meaning that all results discussed
in the following are a result of only two trained agents.
Generalization over this large parameter space is possible in
part due to the learning efficiency benefits from feeding map
information centered on the agents’ respective positions into
the network, as we have described previously in [1].

We use the following metrics to evaluate the agents’
performance on different maps and under different scenario
instances:
• Successful landing: records whether all agents have

landed in time at the end of an episode;
• Collection ratio: the ratio of total collected data at the end

of the mission to the total device data that was available
at the beginning of the mission;

• Collection ratio and landed: the product of successful
landing and collection ratio per episode.

Evaluation is challenging as we train a single control
policy to generalize over a large scenario parameter space.
During training, we evaluate the agents’ training progress in
a randomly selected scenario every five episodes and form an
average over multiple evaluations. A single evaluation could

11

be tainted by unusually easy conditions, e.g. when all devices
are placed very close to each other by chance. Therefore, only
an average over multiple evaluations can be indicative of the
agents’ learning progress. As it is computationally infeasible to
evaluate the trained system on all possible scenario variations,
we perform Monte Carlo analysis on a large number of
randomly selected scenario parameter combinations.

Irrespective of the map, the grid cell size is 2 = 10m and the
UAVs fly at a constant altitude of ℎ = 10m over city streets.
The UAVs are not allowed to fly over tall buildings, enter
NFZs, or leave the respective grid worlds. Each mission time
slot C ∈ [0,)] contains _ = 4 scheduled communication time
slots = ∈ [0, #]. Propagation parameters (see II-B) are chosen
in-line with [37] according to the urban micro scenario with
ULoS = 2.27, UNLoS = 3.64, f2

LoS = 2 and f2
NLoS = 5.

Due to the drones flying below or slightly above build-
ing height, the wireless channel is characterized by strong
LoS/NLoS dependency and shadowing. The shadowing maps
used for simulation of the environment were computed using
ray tracing from and to the center points of cells based on
a variation of Bresenham’s line algorithm. Transmission and
noise powers are normalized by defining a cell-edge SNR for
each map, which describes the SNR between one drone on
ground level at the center of the map and an unobstructed IoT
device maximally far apart at one of the grid corners. The
agents have absolutely no prior knowledge of the shadowing
maps or wireless channel characteristics.

B. Training with Map-based vs. Scalar Inputs

In this section, we show that our map-based approach has a
good complexity-performance trade-off in comparison to clas-
sical scalar input neural network approaches from the literature
despite the added complexity through map-processing. To
illustrate that it is in fact imperative for training success to feed
map information instead of concatenated scalar values as state
input to the agent, we extend our previous analysis from [1]
and [20] by comparing our proposed centered global-local map
approach to agents trained only on scalar inputs. This is not
an entirely fair comparison as the location of NFZs, buildings,
and start/landing zones can not be efficiently represented by
scalar inputs and must be therefore learned by the scalar agents
through trial and error. However, the comparison illustrates
the need for state space representations that are different from
the traditional scalar inputs and confirms that scalar agents
are not able to solve the multi-UAV path planning problem
over the large scenario parameter space presented. Conversely,
the alternative comparison of map-based and scalar agents
trained on a single data harvesting scenario would not yield
meaningful results as our method is specifically designed to
generalize over a large variety of scenarios and would require
tweaking in exploration behavior and reward balance to find
the optimal solution to a single scenario. Note that most of the
previous work discussed in section I-A is precisely focused on
finding optimal DRL solutions to single scenario instances.

The observation space of the agents trained with concate-

(a) Cumulative reward per episode

(b) Data collection ratio with successful landing per episode

Fig. 4. Training process comparison between map-based DRL path planning
and scalar input DRL path planning. Scalar inputs to the neural networks
(NNs) are either encoded as absolute coordinate values or relative distances
from the respective agent. We compare two different scalar input network
architectures with large and small numbers of trainable parameters. The
average and 99% quantiles are shown with metrics per training episode
grouped in bins of 2e5 step width. Note that the metrics are plotted over
training steps as training episode length is variable.

nated scalar inputs is described by

Oscalar = N
2︸︷︷︸

Ego
Position

× N︸︷︷︸
Ego Flying

Time

}
Ego agent

× N�×2︸︷︷︸
UAV

Positions

× N�︸︷︷︸
Flying
Times

× B�︸︷︷︸
Operational

Status

}
Other agents (46)

× N ×2︸︷︷︸
Device

Positions

× R ︸︷︷︸
Device
Data

}
Devices

forming the input of the neural network as concatenated scalar
values. Since the number of agents and devices is variable, the
scalar input size is fixed to the maximum number of agents and
devices. The agent and device positions are either represented
as absolute values in the grid coordinate frame or relative as
distances from the ego agent. The neural network is either
small, containing the same number of hidden layers as in
Fig. 3, or large, for which the number and size of hidden
layers is adapted such that the network has as many trainable
parameters as the map-based 32 × 32 agent in Tab. III.

12

Metric Manhattan32 Urban50

Successful Landing 99.4% 98.8%
Collection Ratio 88.0% 82.1%

Collection Ratio and Landed 87.5% 81.1%

TABLE IV
PERFORMANCE METRICS AVERAGED OVER 1000 RANDOM SCENARIO

MONTE CARLO ITERATIONS.

Fig. 4 shows the cumulative reward and the collection
ratio with successful landing metric over training time on the
’Manhattan32’ map for the five different network architectures.
It is clear that the scalar agents are not able to effectively
adapt to the changing scenario conditions. The small neural
network agents seem to have a slight edge over the large
agents, but representing the positions as absolute or relative
does not influence the results.

Referring further to Fig. 4, the map-based agent converges
to final performance metric levels after the first 20% of the
training steps. However we observed that additional training is
needed after that to optimize the trajectories in a more subtle
way for flight time efficiency and multi-UAV coordination.
The overall training time for the full 3 million training steps
was around 40 hours on a 2017 Nvidia Titan Xp GPU.

C. ’Manhattan32’ Scenario

The scenario, as shown in Fig. 5 is defined by a Manhattan-
like city structure containing mostly regularly distributed city
blocks with streets in between, as well as two NFZ districts
and an open space in the upper left corner, divided into
" = 32 cells in each grid direction. This is double the size of
the otherwise similarly designed single UAV scenario in [1].
We are able to solve the larger scenario without increasing
network size, thanks to the global-local map approach. The
value ranges from which the randomized scenario parameters
are chosen as follows: number of deployed UAVs � ∈ {1, 2, 3},
number of IoT sensors ∈ [3, 10], data volume to be
collected �:,8=8C ∈ [5.0, 20.0] data units per device, maximum
flying time 10 ∈ [50, 150] steps, and 18 possible starting
positions. The IoT device positions are randomized throughout
the unoccupied map space.

The performance on both maps is evaluated using Monte
Carlo simulations on their respective full range of scenario
parameters with overall average performance metrics shown in
Table IV. Both agents show a similarly high successful landing
performance. It is expected that the collection ratio cannot
reach 100% in some scenario instances depending on the
randomly assigned maximum flying time, number of deployed
UAVs, and IoT device parameters.

In Fig. 5, three scenario instances chosen from the random
Monte Carlo evaluation for number of deployed UAVs � ∈
{1, 2, 3} for 5a through 5c illustrate how the path planning
adapts to the increasing number of deployed UAVs. All other
scenario parameters are kept fixed. It is a fairly complicated
scenario with a large number of IoT devices spread out over
the whole map, including the brown and purple device inside
an NFZ. The agents have no access to the shadowing map and

have to deduce shadowing effects from building and device
positions.

In Fig. 5a, only one UAV starting in the upper left corner is
deployed. Due to its flight time constraint, the agent ignores
the blue, red, purple, and brown IoT devices while collecting
all data from the other devices on an efficient trajectory to the
landing zone in the lower right corner. When a second UAV
is deployed in Fig. 5b, the data collection ratio increases to
76.5%. While the first UAV’s behavior is almost unchanged
compared to the single UAV deployment, the second UAV
flies to the landing zone in the lower right corner via an
alternative trajectory collecting data from the devices the first
UAV ignores. With the number of deployed UAVs increased
to three (two starting from the upper left and one from the
lower right zone) in Fig. 5c, all data can be collected. The
second UAV modifies its behavior slightly, accounting for the
fact that the third UAV can collect the cyan device’s data now.
The three UAVs divide the data harvesting task fairly among
themselves, leading to full data collection with in-time landing
on efficient trajectories while avoiding the NFZs.

D. ’Urban50’ Scenario

Fig. 6 shows three example trajectories for UAV counts of
� ∈ {1, 2, 3} for 6a through 6c in the large 50×50 urban map.
The scenario is defined by an urban structure containing irreg-
ularly shaped large buildings, city blocks and an NFZ, with the
start/landing zone surrounding a building in the center, divided
into " = 50 cells in each grid direction. The map has an order
of magnitude more cells than the scenarios in [1]. The ranges
for randomized scenario parameters are chosen as follows:
number of deployed UAVs � ∈ {1, 2, 3}, number of IoT sensors
 ∈ [5, 10], data volume to be collected �:,8=8C ∈ [5.0, 20.0]
data units, maximum flying time 10 ∈ [100, 200] steps, and
40 possible starting positions. The IoT device positions are
randomized throughout the unoccupied map space.

Fig. 6a shows a single agent trying to collect as much data
as possible during the allocated maximum flying time. The
agent focuses on collecting the data from the relatively easily
reachable device clusters on the right and lower half before
safely landing. With a second UAV assigned to the mission
as shown in Fig. 6b, one UAV services the devices on the
lower left of the map, while the other one collects data from
the devices on the lower right, ignoring the more isolated blue
and orange device in the top half of the map. A third UAV
makes it possible to divide the map into three sectors and
collect all IoT device data, as shown in Fig. 6c.

This map’s primary purpose is to showcase the significant
advantages in terms of training time efficiency and the required
network size from the global-local map approach. Thanks to
a higher global map scaling or compression factor 6 (see
Table III), the number of trainable parameters of the network
employed in this scenario is even smaller compared to the
network used for ’Manhattan32’. A network without a map
scaling approach would need to be of size 34,061,446, hence
a size that is infeasible to train using reasonable resources.

13

(a) � = 1 agent, data collection ratio 56.2% (b) � = 2 agents, data collection ratio 76.5% (c) � = 3 agents, data collection ratio 100%

Fig. 5. Example trajectories for ’Manhattan32’ map with = 10 IoT devices, all with �:,8=8C = 15 data units to be picked up and a maximum flying time
of 10 = 60 steps. The color of the UAV movement arrows shows with which device the drone is communicating at the time (see legend in Table I).

(a) � = 1 agent, data collection ratio 41.8% (b) � = 2 agents, data collection ratio 80.2% (c) � = 3 agents, data collection ratio 100.0%

Fig. 6. Example trajectories for ’Urban50’ map with = 10 IoT devices, all with �:,8=8C = 15 data units to be picked up and a maximum flying time of
10 = 100 steps for all UAVs (legend in table I).

(a) Number of agents � ∈ {1, 2, 3, 4}
.

(b) Number of devices ∈ [3, 14]
sorted into bins of two.

(c) Data to be collected from devices
�:,8=8C ∈ [5, 25] sorted into eight bins.

(d) Maximum flying time sorted into six
bins in 10 ∈ [50, 200]

Fig. 7. Influence of specific scenario parameters on the data collection ratio with successful landing of all agents. Each data point is an average of 500 Monte
Carlo iterations over the respective parameter spaces for the ’Manhattan32’ and ’Urban50’ map. The parameters within the training range are rendered in
solid lines and the out-of-distribution parameter evaluation in dashed lines.

14

E. Influence of Scenario Parameters on Performance and
System-level Benefits

An advantage of our approach to learn a generalized path
planning policy over various scenario parameters is the pos-
sibility to analyze how performance indicators change over
a variable parameter space. This makes it possible for an
operator to decide on system-level trade-offs, e.g. how many
drones to deploy vs. collected data volume. An excellent
example that we found for the ’Manhattan32’ map was that
deploying multiple coordinating drones can trade-off the cost
of extra equipment (i.e. the extra drones) for substantially
reduced mission time. For instance, it takes twice the flying
time (10 = 150) for a single UAV to complete the data
collection mission that two coordinating UAVs will require
(10 = 75) to conclude successfully. Specifically, that means
that for both scenarios the average data collection ratio with
in-time successful landing stays at the same performance level
of around 88%.

We first analyze the performance of the agent in Fig. 7
within the training range of the scenario parameters (solid
lines), then extend the analysis to out-of-distribution scenarios
(dashed lines) in the last paragraph of this section. Fig. 7 shows
the influence of single scenario parameters on the average data
collection ratio with successful landing of all agents. As al-
ready evident from the example trajectories shown previously,
Fig. 7a indicates the increase in collection performance when
more UAVs are deployed. At the same time, more UAVs lead
to increased collision avoidance requirements, as we observed
through more safety controller activations in the early training
phases. As IoT devices are positioned randomly throughout the
unoccupied map space, an increase in devices leads to more
complex trajectory requirements and a drop in performance,
as depicted in Fig. 7b.

Fig. 7c shows the influence of increasing initial data volume
per device on the overall collection performance. It appears
that higher initial data volumes per device are beneficial
roughly up to the point of �:,8=8C ∈ [10, 12.5] data units,
after which flying time constraints force the UAVs to abandon
some of the data, and the collection ratio shows a slightly
negative trend. An increase in available flying time is clearly
beneficial to the collection performance, as indicated in Fig.
7d. However, the effect becomes smaller when most of the
data is collected, and the UAVs start to prioritize minimizing
overall flight time and safe landing over the collection of the
last bits of data.

It is further shown in Fig. 7 how the agents react to scenario
parameters which were not encountered during training. The
corresponding values are highlighted with dashed lines. It can
be seen that the performance of the agents follows the same
trend as in the rest of the data, when increasing the number
of devices (Fig. 7b) or initial data per device (Fig. 7c) out
of the trained region. When increasing the maximum flying
time (Fig. 7d) for the Manhattan32 agents, or decreasing it
for Urban50 agents, the collection ratio with successful landing
performance, increases or decreases accordingly. Incrementing
the number of agents to four (Fig. 7a) reduces the performance
slightly. The reason is the decrease in landing performance.

However, this is to be expected since the probability of all
agents landing decreases with the number of agents. Since
the collection ratio is nearly saturated for the scenarios with
three agents, the drop in overall landing performance decreases
the collection ratio and landed performance. In general, it is
evident that the proposed approach cannot only generalize
over the whole range of scenario parameters encountered
during training but can also extrapolate successfully to out-
of-distribution parameters.

VII. CONCLUSION

We have introduced a multi-agent reinforcement learning
approach that allows us to control a team of cooperative
UAVs on a data harvesting mission in a large variety of
scenarios without the need for recomputation or retraining
when the scenario changes. By leveraging a DDQN with
combined experience replay and convolutionally processing
dual global-local map information centered on the agents’
respective positions, the UAVs are able to find efficient trajec-
tories that balance data collection with safety and navigation
constraints without any prior knowledge of the challenging
wireless channel characteristics in the urban environments. We
have also presented a detailed description of the underlying
path planning problem and its translation to a decentralized
partially observable Markov decision process. In future work,
we will extend the UAVs’ action space to altitude and con-
tinuous control, requiring an RL algorithm different from Q-
learning with a continuous action space and adding height
information to the agents’ observations space. Moreover, we
will investigate if attention-based mechanisms can be used
for map processing, assessing their viability with respect to
performance and computational requirements in this context.
Further improvements in learning efficiency could be achieved
when combining our approach with multi-task reinforcement
learning or transfer learning [26], a step that would bring RL-
based autonomous UAV control in the real-world even closer
to realization.

REFERENCES

[1] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV path
planning for wireless data harvesting: A deep reinforcement learning
approach,” in IEEE Global Communications Conference (GLOBECOM),
2020.

[2] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on
UAV communications for 5G and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, 2019.

[3] K. Namuduri, “Flying cell towers to the rescue,” IEEE Spectrum, vol. 54,
no. 9, pp. 38–43, sep 2017.

[4] M. Minevich, “How Japan is tackling the national & global infrastructure
crisis & pioneering social impact - [online],” Forbes, 21 Apr 2020.

[5] J. Cui, Z. Ding, Y. Deng, and A. Nallanathan, “Model-free based
automated trajectory optimization for UAVs toward data transmission,”
in IEEE Global Communications Conference (GLOBECOM), 2019.

[6] Y. Pan, Y. Yang, and W. Li, “A deep learning trained by genetic
algorithm to improve the efficiency of path planning for data collection
with multi-UAV,” IEEE Access, vol. 9, pp. 7994–8005, 2021.

[7] J. Tang, J. Song, J. Ou, J. Luo, X. Zhang, and K.-K. Wong, “Mini-
mum throughput maximization for multi-UAV enabled WPCN: A deep
reinforcement learning method,” IEEE Access, vol. 8, pp. 9124–9132,
2020.

[8] Y. Zhang, Z. Mou, F. Gao, L. Xing, J. Jiang, and Z. Han, “Hierarchical
deep reinforcement learning for backscattering data collection with
multiple UAVs,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3786–3800, 2021.

15

[9] C. H. Liu, Z. Dai, Y. Zhao, J. Crowcroft, D. O. Wu, and K. Leung,
“Distributed and energy-efficient mobile crowdsensing with charging
stations by deep reinforcement learning,” IEEE Transactions on Mobile
Computing, vol. 20, no. 1, pp. 130–146, 2021.

[10] M. Yi, X. Wang, J. Liu, Y. Zhang, and B. Bai, “Deep reinforcement
learning for fresh data collection in UAV-assisted IoT networks,” in
IEEE Conference on Computer Communications Workshops, 2020.

[11] F. Wu, H. Zhang, J. Wu, L. Song, Z. Han, and H. V. Poor, “UAV-
to-device underlay communications: Age of information minimization
by multi-agent deep reinforcement learning,” IEEE Transactions on
Communications (early access), 2021.

[12] J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor, “Cooperative
Internet of UAVs: Distributed trajectory design by multi-agent deep re-
inforcement learning,” IEEE Transactions on Communications, vol. 68,
no. 11, pp. 6807–6821, 2020.

[13] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad, “Deep re-
inforcement learning for minimizing age-of-information in UAV-assisted
networks,” in IEEE Global Communications Conference (GLOBECOM),
2019.

[14] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed multi-
agent meta learning for trajectory design in wireless drone networks,”
to appear in IEEE Journal on Selected Areas in Communications,
arXiv:2012.03158 [cs.LG], 2020.

[15] X. Li, H. Yao, J. Wang, S. Wu, C. Jiang, and Y. Qian, “Rechargeable
multi-UAV aided seamless coverage for QoS-guaranteed IoT networks,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 902–10 914, 2019.

[16] X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-UAV
networks: Deployment and movement design,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 8036–8049, 2019.

[17] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab,
A. K. Al-Ali, K. A. Harras, and M. Guizani, “Design challenges of multi-
UAV systems in cyber-physical applications: A comprehensive survey
and future directions,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 4, pp. 3340–3385, 2019.

[18] W. Saad, M. Bennis, M. Mozaffari, and X. Lin, Wireless Communi-
cations and Networking for Unmanned Aerial Vehicles. Cambridge
University Press, 2020.

[19] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV
coverage path planning under varying power constraints using deep
reinforcement learning,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2020.

[20] ——, “UAV path planning using global and local map information with
deep reinforcement learning,” arXiv:2010.06917 [cs.RO], 2021.

[21] Z. Ullah, F. Al-Turjman, and L. Mostarda, “Cognition in UAV-aided
5G and beyond communications: A survey,” IEEE Transactions on
Cognitive Communications and Networking, vol. 6, no. 3, pp. 872–891,
2020.

[22] M.-A. Lahmeri, M. A. Kishk, and M.-S. Alouini, “Artificial intelligence

for UAV-enabled wireless networks: A survey,” IEEE Open Journal of
the Communications Society, vol. 2, pp. 1015–1040, 2021.

[23] H. Bayerlein, P. De Kerret, and D. Gesbert, “Trajectory optimization
for autonomous flying base station via reinforcement learning,” in IEEE
19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2018.

[24] F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Testolin, A. Zanella,
and M. Zorzi, “Distributed reinforcement learning for flexible UAV
swarm control with transfer learning capabilities,” in Proceedings of
the 6th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications, 2020.

[25] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient
multi-UAV navigation for long-term communication coverage by deep
reinforcement learning,” IEEE Transactions on Mobile Computing,
vol. 19, no. 6, pp. 1274–1285, 2020.

[26] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” International Conference on Machine
Learning Workshop on Real-Life RL, arXiv:1904.12901 [cs.LG], 2019.

[27] Z. Liu, R. Sengupta, and A. Kurzhanskiy, “A power consumption
model for multi-rotor small unmanned aircraft systems,” in International
Conference on Unmanned Aircraft Systems (ICUAS), 2017.

[28] A. I. Hentati and L. C. Fourati, “Comprehensive survey of uavs
communication networks,” Computer Standards & Interfaces, p. 103451,
2020.

[29] F. A. Oliehoek and C. Amato, A concise introduction to decentralized
POMDPs. Springer, 2016.

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: an introduction,
2nd ed. MIT Press, 2018.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[32] S. Zhang and R. S. Sutton, “A deeper look at experience replay,”
arXiv:1712.01275 [cs.LG], 2017.

[33] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Thirtieth AAAI conference on artificial
intelligence, 2016, pp. 2094–2100.

[34] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in
cooperative multiagent systems,” AAAI/IAAI, vol. 1998, no. 746-752,
p. 2, 1998.

[35] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383,
2000.

[36] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” arXiv:1911.10635
[cs.LG], to be published as chapter in Handbook on RL and Control
(Springer), 2019.

[37] 3GPP TR 38.901 version 14.0.0 Release 14, “Study on channel model
for frequencies from 0.5 to 100 GHz,” ETSI, Tech. Rep., May 2017.

Chapter 5

Reinforcement Learning for
Real-world Control Challenges

101

Chapter 5. Reinforcement Learning for Real-world Control Challenges

5.1 Cloud-Edge Training Architecture for Sim-to-Real Deep Re-

inforcement Learning

Reference

H. Cao, M. Theile, F. G. Wyrwal, and M. Caccamo, “Cloud-edge training architecture
for sim-to-real deep reinforcement learning,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 9363–9370, IEEE, 2022
DOI: https://doi.org/10.1109/IROS47612.2022.9981565

Abstract

Deep reinforcement learning (DRL) is a promising approach to solve complex control tasks
by learning policies through interactions with the environment. However, the training of
DRL policies requires large amounts of training experiences, making it impractical to
learn the policy directly on physical systems. Sim-to-real approaches leverage simulations
to pretrain DRL policies and then deploy them in the real world. Unfortunately, the
direct real-world deployment of pretrained policies usually suffers from performance
deterioration due to the different dynamics, known as the reality gap. Recent sim-to-real
methods, such as domain randomization and domain adaptation, focus on improving the
robustness of the pretrained agents. Nevertheless, the simulation-trained policies often
need to be tuned with real-world data to reach optimal performance, which is challenging
due to the high cost of real-world samples. This work proposes a distributed cloud-edge
architecture to train DRL agents in the real world in real-time. In the architecture,
the inference and training are assigned to the edge and cloud, separating the real-time
control loop from the computationally expensive training loop. To overcome the reality
gap, our architecture exploits sim-to-real transfer strategies to continue the training of
simulation-pretrained agents on a physical system. We demonstrate its applicability on a
physical inverted-pendulum control system, analyzing critical parameters. The real-world
experiments show that our architecture can adapt the pretrained DRL agents to unseen
dynamics consistently and efficiently.

Contributions to this paper

• Shared conceptualization of the cloud-edge training framework

• Shared implementation of the framework for the inverted pendulum system

• Share of paper writing

Copyright

© 2022 IEEE. Reprinted, with permission, from Hongpeng Cao, Mirco Theile, Federico
G Wyrwal, and Marco Caccamo, “Cloud-Edge Training Architecture for Sim-to-Real
Deep Reinforcement Learning”, 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2022.

See Appendix A.7 for the reuse statement. The following shows the accepted version.

102

https://doi.org/10.1109/IROS47612.2022.9981565

Cloud-Edge Training Architecture for
Sim-to-Real Deep Reinforcement Learning

Hongpeng Cao, Mirco Theile, Federico G. Wyrwal, and Marco Caccamo

Abstract— Deep reinforcement learning (DRL) is a promising
approach to solve complex control tasks by learning poli-
cies through interactions with the environment. However, the
training of DRL policies requires large amounts of training
experiences, making it impractical to learn the policy directly on
physical systems. Sim-to-real approaches leverage simulations
to pretrain DRL policies and then deploy them in the real world.
Unfortunately, the direct real-world deployment of pretrained
policies usually suffers from performance deterioration due to
the different dynamics, known as the reality gap. Recent sim-
to-real methods, such as domain randomization and domain
adaptation, focus on improving the robustness of the pretrained
agents. Nevertheless, the simulation-trained policies often need
to be tuned with real-world data to reach optimal performance,
which is challenging due to the high cost of real-world samples.

This work proposes a distributed cloud-edge architecture
to train DRL agents in the real world in real-time. In the
architecture, the inference and training are assigned to the
edge and cloud, separating the real-time control loop from the
computationally expensive training loop. To overcome the reality
gap, our architecture exploits sim-to-real transfer strategies
to continue the training of simulation-pretrained agents on a
physical system. We demonstrate its applicability on a physical
inverted-pendulum control system, analyzing critical parame-
ters. The real-world experiments show that our architecture
can adapt the pretrained DRL agents to unseen dynamics
consistently and efficiently. 1

I. INTRODUCTION

Deep reinforcement learning (DRL) enables robots to
master complicated tasks with human-level performance.
Instead of learning from labeled data, the DRL agent learns
control policies via interactions with the environment, aiming
to maximize cumulative rewards. Recent progress shows that
DRL can achieve impressive performances in the robotic
control domain, e.g., in locomotion [1], grasping [2], and
manipulation [3].

However, due to the high demand for data for DRL,
direct training on physical systems presents many challenges,
as discussed in [4], [5]. Collecting training data in the
real world is expensive concerning time and labor. Human
supervision is usually needed to reset the system and monitor
its hardware maintenance and safety status. Recent work
in the field aims to address these challenges. In [1], an
improved soft actor-critic algorithm [6] is proposed to reduce
the learning sensitivities to hyperparameter settings, making

Hongpeng Cao, Mirco Theile, Federico G. Wyrwal, and
Marco Caccamo are with the Technical University of Munich
(TUM), School of Engineering and Design, Munich, Germany
{cao.hongpeng, mirco.theile, federico.wyrwal,
mcaccamo}@tum.de

1A video showing a real-world training process under the proposed
method can be found from https://youtu.be/hMY9-c0SST0.

training on physical systems more stable. Approaches of off-
policy training with replay memory [7], [8] and model-based
reinforcement learning [9], [10] can significantly increase
real-world sampling efficiency. Moreover, training using
demonstrations [11] and scripted policies [12] can ease the
real-world exploration. When training on hardware, addi-
tional problems are that the dynamics of the systems might
be non-stationary due to hardware wear and tear, making
long training harder or even impossible. Environmental noise
and disturbances can further exacerbate this issue. Moreover,
physical systems’ inherent sensing, actuating, computation,
and data communication delays often violate the Markovian
assumption, a prerequisite for reinforcement learning.

In contrast, modern simulations can simulate complex
systems and various environments. Recent sim-to-real ap-
proaches pretrain agents in simulations and then directly de-
ploy the learned policies for real-world applications without
further training. Simulation-based training boosts sampling
efficiency significantly since simulations run faster than
physical systems and can be further improved via parallel
training. Additionally, the system can reset automatically
without human intervention. Simulation training also does
not require hardware maintenance and safety measures, dras-
tically reducing the need for human supervision. Unfortu-
nately, direct deployment of simulation-trained agents often
fails in real-world applications due to the dynamic divergence
between the real world and the simulated environment, the
so-called reality gap.The reality gap arises mainly from sys-
tem under-modeling [4], [13], where the complex dynamics,
e.g., the contact and friction effects, are difficult to mea-
sure and model. Moreover, computation and communication
delays and environmental noise introduce extra modeling
errors. System identification approaches such as [14] aim
to create more accurate simulations, mitigating modeling
errors. However, most of the sim-to-real approaches utilize
domain randomization [15], [16], [17] or domain adaptation
[18], [19] to improve the agents’ robustness in simulations,
resulting in a successful direct real-world deployment. In
many scenarios, the domain randomization strategies might
not be feasible since there might not exist a single policy
that can solve all problems within the domain.

Pretraining in simulation to learn a sub-optimal policy
and then continuing the training in the real world can
take advantage of the efficient simulation training and the
real dynamics. With this approach, all the advantages of
simulation learning can be adopted, and the reality gap
can be closed while training in the real world. We follow
the continuous sim-to-real training paradigm in this work,

as we believe it is the most promising approach for real-
world DRL. However, the continuous sim-to-real training
paradigm suffers from two main problems. First, DRL
requires high-performance computation and benefits from
dedicated devices such as GPUs or TPUs for its training loop.
In many real-time control systems, e.g., unmanned aerial
vehicles or other mobile robots, the plant cannot have a high-
performance device onboard due to power, weight, and space
constraints. It cannot be controlled directly from a remote
high-performance device, as perfect, loss-less, and low-delay
communication cannot be guaranteed. The second problem
is that the transfer of a pretrained agent to the real physical
system is non-trivial. The dynamics can change abruptly,
making the value estimates of the DRL agent inaccurate,
leading to deteriorating performance.

This work addresses the real-world training problem by
introducing a novel distributed cloud-edge architecture. The
real-time control loop on the edge is decoupled from the
computationally intensive training loop on the cloud. The
agent on the edge collects experiences in real-time, send-
ing them to the trainer on the cloud, which periodically
updates the edge with the optimized parameters. The agent
is double-buffered such that the real-time inference loop is
not interrupted by the policy updates. We address the sim-to-
real transfer problem by delaying the neural network training
at the beginning of the real-world interactions. Specifically,
we start the policy optimization later than the value estimate
training to avoid policy deterioration based on unstable value
estimates.

We evaluate our approach on a physical inverted-pendulum
system controlled by a DRL agent deployed on a Raspberry
Pi 4B. The training loop is offloaded to a high-performance
workstation. The agents are pretrained in intentionally under-
modeled simulations to induce different levels of the reality
gap to analyze the sim-to-real transfer. We further analyze the
impact of the neural network optimization delays, highlight-
ing their necessity. Additionally, we investigate the relevance
of the edge update frequency on training performance to
show that the architecture can work in constrained band-
width settings, albeit with an impact on training time. Our
contributions can be summarized as follows:

• Design of a distributed cloud-edge architecture that
enables continuous sim-to-real training for DRL agents;

• Conception and evaluation of sim-to-real transfer meth-
ods that mitigate policy performance deterioration after
deployment to the physical system;

• Evaluation and analysis of our approach using an off-
policy actor-critic DRL method to control a physical
inverted pendulum system with the actor deployed on
an embedded system.

This work is structured as follows: Section II describes the
background needed for the proposed architecture and sim-to-
real transfer strategies in Section III. The proposed approach
is evaluated with experimental setup discussed in Section IV
and results presented in Section V. Section VI concludes the
work and gives a brief outlook on future work.

II. BACKGROUND

This section introduces the basics of RL methods and
describes the foundations of the Deep Deterministic Policy
Gradient (DDPG) algorithm [20], an off-policy algorithm,
which we adapted for the proposed cloud-edge architecture.

A. Reinforcement Learning

A DRL agent is interacting with its environment in discrete
timesteps, which can be formulated as a Markov Decision
Process (MDP) with M = {S,A, P,R, γ}. In the MDP, S
represents a set of states, A a set of actions, and P : S×A×
S 7→ R the state-transition probability function indicating
the probability of a state-action pair leading to a specific
next state. The reward function R : S × A × S 7→ R maps
a state-action-next state triple to a real-valued reward. The
discount factor γ ∈ [0, 1] controls the relative importance
of immediate and future rewards. The goal in DRL is to
find a policy π : S 7→ A, mapping a state to an action that
maximizes the expected return from step t

Gt =

∞∑

i=t

γi−tR(si, ai, si+1). (1)

To find a policy that maximizes the return, Q-learning
approaches estimate the state-action value

Qπ(s, a) = Eπ [Gt|st = s, at = a] , (2)

as the return if taking action a at state s and following policy
π afterwards.

B. Deep Deterministic Policy Gradient

DDPG is an off-policy actor-critic algorithm, in which
the actor is parameterized using a deep neural network with
parameters θ, creating the policy approximate πθ. The critic
is parameterized by a deep neural network with parameters φ
to estimate the state-action value Qφ(s, a). During training,
the critic network is trained to minimize the expectation of
the temporal difference (TD) error

L(φ) = E
[
(Qφ(st, at)− yt)2

]
, (3)

where

yt = R(st, at, st+1) + γ(1− β(st+1))Qφ̄(st+1, πθ̄(st+1)),
(4)

with β(st+1) indicating whether st+1 is a terminal state.
The value and action at the next state are estimated by the
critic and actor target networks parameterized with φ̄ and θ̄,
respectively.

The actor is aiming to maximize the value estimate of the
critic and is optimized using the deterministic gradient

∇θQφ(st, πθ(st)) = ∇aQφ(st, a)∇θπθ(st). (5)

DDPG also proposes to soft update the target networks by
slowly tracking the learned network: φ̄← τφ+(1−τ)φ̄ with
τ ∈ (0, 1] and similarly for θ̄. The resulting moving-average
over the network parameters stabilizes training.

Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm [21], a variant of the DDPG family, utilizes

delayed policy optimization, target policy smoothing regu-
larization, and clipped double Q-learning. In our simulation,
we found that only policy smoothing regularization helps
the training converge faster, while the others do not show
improvements. Thus, we only adopt the idea of policy
smoothing regularization used in TD3 by replacing the
πθ̄(st+1) in (4) with

clip(πθ̄(st+1) + aN ,−amax, amax), (6)

which regularizes the target action by adding a clipped action
noise aN = clip(ε,−c, c) where ε is sampled from a Gaus-
sian distributions N (0, σ). The clip(z, zmin, zmax) function
constraints the value of z to the range [zmin, zmax].

C. Combined Experience Replay

Experience Replay (ER) is a technique to train the agent
with a batch of B experiences sampled from a buffer of
previous transitions. ER is used in DDPG and other recent
off-policy RL algorithms to provide uncorrelated data for
training deep neural networks [22] and improve sampling
efficiency significantly [23].

A common method for improving replay memory effi-
ciency is to use prioritized experience replay [24]. We chose
not to use prioritized replay because we hypothesize that for
experiences collected in the real world, prioritization may
increase the sampling probability of corrupted or abnormal
experiences, which arise from noise or other disturbances.
We will investigate this hypothesis in future work.

Instead, we use Combined Experience Replay (CER),
proposed by Zhang et al. in [25], which aims to remedy
the training sensitivity to the buffer capacity with very low
computational complexity O(1). In CER, only B−1 samples
are sampled from memory, and the agent’s latest experience
is always added. This allows the training process to react
quickly to newly observed transitions.

III. METHODOLOGY

This section presents our continuous training method: a
distributed cloud-edge training architecture and the sim-to-
real transfer learning strategies.

A. Remote Training Architecture

We devised a distributed cloud-edge training architecture
to minimize the computational load on the embedded device
used to control the plant. To this end, most of the computa-
tion is offloaded to a high-performance device, the cloud, as
shown in Figure 1. The diagram shows the three devices, the
cloud, the edge, and the plant. The cloud contains the reward
function, replay memory, and the full actor-critic setup of the
DDPG algorithm. The edge only contains the actor network.
The plant represents the physical control system, including
actuators and sensors, and is directly connected to the edge.
The cloud and edge can be connected via any networking
protocol. Two decoupled interaction loops arise by double-
buffering the actor on the edge, a real-time control loop
between the edge and plant, and a training loop between
the cloud and edge.

Edge

Cloud

Plant

ActorA

ActorB

Toggle

+

Real-Time
Control Loop

Replay
Memory

Reward
Function

Target Actor

Target Critic

Critic

DDPG Algorithm

Actor

Training Loop

𝑠𝑡+1𝑠𝑡

𝑎𝑡

(𝑠𝑡 , 𝑎𝑡)

𝜃

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)

𝑠, 𝑎, 𝑟, 𝑠′ × 𝐵

Fig. 1: Distributed cloud-edge training architecture display-
ing the cloud, edge, and plant with the cloud and edge
interacting through the training loop, and the edge and plant
interacting through the real-time control loop; the loops are
disconnected by double-buffering the actor on the edge.

1) Real-Time Control Loop: In the real-time control loop,
the currently active actor-network on the edge (ActorA in
Figure 1) infers an action at based on the observed state st,
which is passed to the actuators of the plant. This interaction
loop is real-time critical, meaning that it has to be temporally
deterministic and predictable. This requirement arises from
the necessity of the Markov property for reinforcement
learning. In a system that fulfills the Markov property, the
transition probability function P only depends on the current
state st and current action at and is independent of the
past states and actions [26]. On physical control systems,
this property can be easily violated by sensing, computation,
actuation, and communication delays, which can make the
next state depending on previous actions. This problem can
be mitigated by making past actions or states part of the
observation space or adding recurrence to the policy [5].

However, these augmentations only create a Markovian
observation under consistent or predictable delays. Consis-
tent delays are achieved by scheduling computation and
communication in fixed time slots with a fixed period.
This mimics traditional real-time control systems [27]. Fixed
periods can only be achieved if the computation time has
an upper bound smaller than the period. In the proposed
architecture, the computation time is given by the inference
time of the actor-network on the edge. By decoupling the
inference from the training utilizing the cloud and from
policy updates by double-buffering the actor, we enable its
real-time capabilities.

2) Training Loop: The state-action pairs (st, at) created
through the interaction in the control loop are sent to the
cloud. The reward function R uses the state st, the action
at, and the next state st+1 to compute the reward rt for
the experience tuple (st, at, rt, st+1), which is added to the
replay memory. The time index is removed in the replay
memory, as it is not needed for off-policy training. A batch
of B experiences is sampled from the replay memory and
passed to the DDPG algorithm. The relative next states in the
batch are indicated with s′. The algorithm updates the critics
and actors, sending the new actor parameters θ to the edge.
On the edge, the parameters are applied to the inactive actor
(ActorB in Figure 1), toggling the active actor on completion.

0−𝑥𝑚𝑎𝑥 𝑥𝑚𝑎𝑥

𝛼

ሶ𝛼

𝑥

ሶ𝑥

𝑑

𝑑𝑇

Fig. 2: Inverted pendulum system consisting of a cart and
a pole with the target configuration faded out in the mid-
dle. The Cartesian Euclidean distance from the tip of the
pendulum to the target is indicated by d.

B. Sim-to-Real Transfer

As mentioned before, we augmented the observation space
with the previous five actions to overcome non-Markovianess
due to delays. However, the agent learned to ignore these
extra observations in simulation, as they were not needed
in the non-delayed simulation environment. We introduced a
one-step delay in simulation, such that the extra observations
cannot be ignored.

The main problem when transferring to the real world
arises from the replay buffer. A certain amount of experi-
ences is needed in the buffer, such that when sampling from
it, the experience batch is uncorrelated. One potential remedy
would be to keep experiences from simulation and gradually
replace them with real-world data. However, this approach
could be sensitive to the size of the reality gap because
the transition probability function P might be significantly
different. We will investigate this assumption in the future.
Instead, we adopted a solution that is independent of the size
of the reality gap by starting with an empty replay memory
and collecting Nc real-world samples without training. After
Nc steps, the training starts.

An additional problem is that the temporal difference
error of the value estimate is very high, which is probably
caused by the reality gap. Consequently, the critic is changing
significantly at the beginning of the real-world training.
Training the actor on the varying critic often leads to losses in
performance. Therefore, we further delay optimization steps
of the actor to Na steps in total, with Na ≥ Nc.

IV. EXPERIMENTAL SETUP

This section describes the experimental setup for analyzing
our proposed architecture and sim-to-real transfer strategies.

A. Inverted Pendulum Control System

The inverted pendulum control system, schematically
shown in Figure 2, is a classical benchmark that has been
widely studied in the control and real-time domain [28].
The goal in the inverted pendulum control task is to swing
up a pendulum and balance it at the upright position under
physical constraints. The inverted pendulum is an inherently
unstable non-linear system, making it non-trivial to derive a
controller that can swing the pendulum up and balance it.
In this work, we formulate the inverted pendulum control

problem as a discounted, continuing finite MDP and train a
DDPG agent to solve it.

1) State, Action and Observation Spaces: The state of
the inverted pendulum consists of four elements st =
(xt, ẋt, αt, α̇t), with the horizontal cart position xt, its
horizontal velocity ẋt, the angle of the pole with respect
to the upright position α ∈ (−π, π], and its angular velocity
α̇t. We convert the measured angle αt into sinαt and cosαt
to simplify the learning process. The control action at ∈
[−1, 1] is the scaling factor of the supply voltage of a DC
motor, which drives the cart. Since the delays of the system
violate the Markov property, we augment the observation by
combing the state observation with the last five actions to
make the system observable [5]. The observation space can
be expressed as

ot = (xt, ẋt, sinαt, cosαt, α̇t, at−5, . . . , at−1), (7)

in which at−5, . . . , at−1 are the previous five actions. We add
terminal states to the discounted infinite MDP that stop the
process when safety bounds are violated. A state is terminal
if

β(st) =

{
1, if |xt| ≥ xmax or |α̇t| ≥ α̇max
0, otherwise,

(8)

i.e., if either its position is exceeding the bounds of the track
or the angular velocity is too high, posing a threat to humans
or the system.

2) Reward Function: In the MDP, the agent aims to
minimize the Cartesian Euclidean distance d(s) between the
tip of the pole and the target position, as shown in Figure 2.
The target position is given by the position of the tip of the
pole when x = α = 0. We define the reward function as

R(st, at, st+1) = e−δd(st) − ua2
t − vβ(st+1). (9)

The first term is rewarding smaller distances to the target.
We chose the exponential function because it limits this term
to (0, 1] and has strong gradients when the distance is close
to zero. This helps the agent to balance the pendulum exactly
on target, avoiding drifts. The second term is penalizing high
actions and the third term penalizes safety violations. The
parameter δ stretches the exponential and u and v balance
the importance of the action and safety penalties.

B. Evaluation Metrics

We split the training process into episodes with a maxi-
mum length of Te steps to evaluate the training performance.
After every five training episodes, we run an evaluation
episode, in which no exploration noise is applied. In these
evaluation episodes, we determine if the agent can swing up
and balance the pendulum, defined as follows.

The pendulum is defined to be on target if the distance
d(st) is smaller than a predefined target distance dT . The
consecutive steps that the pendulum is on target are called
the consecutive on-target-steps and its evolution is defined
as

nt+1 =

{
nt + 1, d(st) ≤ dT
0, otherwise.

(10)

We define that the agent can swing up and balance the
pendulum if at step Te the consecutive on-target steps are
nTe ≥ Tg .

The training is finished if the agent can reach five con-
secutive successful evaluation episodes. At this point, we
define that the agent converged. The convergence time is the
cumulative number of steps in training episodes until the
agent converges. During evaluation episodes, no steps are
accumulated since no experiences are collected.

C. Simulation Pretraining

The simulation environment used for pretraining is adapted
from the OpenAI-Gym cart-pole environment [29], with the
parameters set to the values of the physical pendulum. We
adapted the original OpenAI-Gym cart-pole environment to
use continuous actions and incorporate friction on the cart
and pole. To induce different reality gaps, we vary a friction
factor kf in simulation, setting the friction at the cart to kf
and at the pole mount to kf × 10−4.

The actor and critic networks in the DDPG algorithm
are both implemented as a Multi-Layer Perceptron (MLP)
with three fully connected hidden layers of 256, 128, and 64
neurons activated with ReLU. The observations ot form the
input of the actor, and the observations ot and the action at
form the input of the critic. The output layers of the actor
and critic are a single neuron activated with Tanh and without
activation, respectively.

For simulation training, we use the commonly used OU-
noise [30] with decaying noise magnitude. We reset episodes
to a random initial state after either Te is reached, or if
β(st) = 1. We further reset the episode when nt exceeds 100
steps because the experiences collected when the pendulum
is on target are very similar and do not improve the learning.
These experiences reduce the efficiency of the replay mem-
ory as more crucial experiences of the swing-up phase get
sampled less likely. The models are pretrained for 1 million
steps, with a moving average of the performance determining
at which step the best model is saved.

D. Architecture Setup

The distributed architecture follows a cloud-edge pattern.
The cloud device is a workstation with a Xeon Silver-CPU
(2.1GHz) and an NVIDIA Quadro RTX 8000 Graphics card.
The edge device is a Raspberry Pi 4B board without DNN
accelerators. The plant is a linear inverted pendulum built by
Quanser [31]. The edge device is connected with the plant via
USB, through which the sensor readings and control actua-
tion are passed. The cloud and edge are physically connected
via Ethernet in a local network. The data communication
between the edge and cloud devices is based on TCP packets
handled by Redis [32] hosted on the cloud.

The double buffered2 actors are deployed on the edge
device and interact with the physical system at 30 Hz.
The trainer on the cloud optimizes once per experience

2When implementing the double-buffering in a multi-threaded Python
environment, the global interpreter lock (GIL) needs to be taken into
consideration.

Parameter Value Parameter Value
xmax 0.34 m δ 5
α̇max 20 rad/s u 0.1
dT 0.05 m v 20
kf 10 Nc 3500
Te 1000 Na 5000
Tg 750 B 128

TABLE I: Default parameters for the experiments.

received from the edge. If the cloud is slower than the edge
interactions, a backlog is accumulated and consumed during
physical system resets or evaluation episodes where no new
experiences are collected. The edge requests new weights
from the cloud whenever it finishes applying the previous
weights.

As in simulation, we reset the pendulum after Te steps, or
if β(st) = 1, or if nt exceeds 100. The reset is conducted
with a simple P-controller which moves the cart to a random
position along the track. The angle and angular rate are
naturally randomized. Additionally, every 10,000 steps, we
calibrate the angular encoder by letting the pendulum settle
and reset the angle to π radians. This is to prevent angle drift
over long training sessions. A list of the parameters can be
found in Table I.

V. RESULTS

In this work, we are interested in the following three
questions:

1) How are different sizes of the reality gap affecting
training time?

2) How do various combinations of optimization delays
influence training performance on the physical system?

3) Is the communication latency between the cloud and
edge affecting training performance?

We assume that these experimental variables are orthog-
onal to each other. Therefore, we vary these parameters
independently and compare the convergence time of cor-
responding real-world training instances. A comparison be-
tween pretraining in simulation and directly training in the
real world was not possible. When training from scratch,
the randomly initialized agent was too aggressive, repeatedly
causing damage to the physical system.

For all the experiments, if not indicated otherwise, the
parameters used are listed in Table I. We conducted five real-
world training instances for each configuration, on average
trained for around one hour each.

A. Reality Gap

To study the influence of the reality gap, we vary the
friction properties of the system, as they are hard to model
and can thus be an essential contributor to the reality gap
[33]. We vary the friction factor kf in simulation, setting its
value to one of {0, 5, 10, 12, 16}. For kf = 0, the system
is frictionless, and kf = 16 results in the maximum friction
under which the agent can learn to swing up the pendulum.

Fig. 3: Convergence time comparison of real-world training
instances with different models pretrained with different
friction factors.

For kf > 16, the agent does not learn repeatably, which we
attribute to the high energy losses.

The convergence times for each configuration are depicted
in Figure 3. The results show that the convergence time is
lowest for kf = 5, closely followed by kf = 10. When
training with kf = 0, the pendulum does not reach the
target at the beginning of the training where it overshoots
the target with kf > 10. This is expected as, compared with
the simulation, the friction decelerates the pendulum stronger
or weaker, respectively.

Taking a closer look at the training process, Figure 4 shows
the training time-series for the training instances that resulted
in the median convergence time of each configuration. It can
be seen that the training instances for kf = 5 and kf = 10
converged very fast after only a few evaluation episodes.
The other configurations required significantly more training
time. The frictionless pretrained agent needs to learn to swing
up but is already sufficiently good at balancing, since in
the frictionless simulation, the swing-up is easier and the
balancing is harder. This can be observed in the training
time-series, as the kf = 0 agent requires many training steps
to succeed once, corresponding to learning to swing up, but
then converges quickly as it can already balance well. The
pretrained agents with kf = 12 and kf = 16 succeed earlier,
indicating that they can swing up but require more training
steps to learn how to stabilize the pendulum consistently.
This might have been exacerbated by our early resetting
policy, which was supposed to balance the replay memory
by reducing the experiences with a stabilized pendulum. This
strategy could have inadvertently favored pretrained agents
that were already good at balancing and needed to learn to
swing up and disadvantaged agents that needed to learn to
stabilize the pendulum.

Generally, it can be observed that using the proposed dis-
tributed cloud-edge architecture with the transfer strategies,
pretrained models with different reality gaps can learn to
swing up and balance the inverted pendulum in the real world
repeatably and consistently. For the following experiments,
we selected the pretrained model with kf = 10 as it cannot

succeed immediately, requiring real-world training. It further
has low variance, making the following comparisons easier.

B. Optimization Delay

To study the effect of the optimization delays Nc and
Na on the convergence time we compare different delay
combinations out of {128, 3500, 5000} for Nc and Na in
Figure 5. The minimal delay is the batch size B = 128.
Since the actor is trained on the critic, we only investigate
configurations with Na ≥ Nc. Additionally, as the actor
optimization delay has similarities with the delayed training
in TD3, we tested one configuration with the actor delay
implementation of TD3.

The first conclusion from the data is that an Nc = B
is not sufficient since the replay memory cannot decorre-
late experience samples, leading to unpredictable learning
behavior of the critic. The bad learning performance of the
critic cannot be recovered by delaying the actor optimization
as seen for Na = 5000. Additionally, a high Nc = 5000,
appears to be less beneficial than Nc = 3500. However, this
effect is marginal, possibly caused by statistical errors due
to few samples. The second observation is that the additional
actor delay Na > Nc seems to give a slight advantage since
the combination Nc = 3500 and Na = 5000 performed
the best. The introduced TD3-delay did not improve training
performance.

This experiment concludes that the prefilling of the replay
memory by delaying the critic optimization is essential for
stable learning performance. The additional actor optimiza-
tion delay may slightly improve the learning performance,
but the effect is marginal.

C. Cloud-Edge Communication Latency

With the last experiments, we aim to analyze the sensitivity
of the proposed architecture to the data bandwidth between
the cloud and the edge. A constrained bandwidth reduces the
actor update frequency, potentially changing learning perfor-
mance. To this end, we artificially constrained the bandwidth
by delaying actor packets accordingly. For the experiments,
we selected bandwidths from {0.06, 0.1, 0.5, 5, 10, 15, >50}
Mbit/s which correspond to an actor update roughly every
{681, 408, 81, 8, 4, 2, 1} interaction steps. The lowest value,
0.06 Mbit/s, is the minimum bandwidth needed from the
edge to the cloud to send state-action pairs continuously. The
networked Ethernet setup in the previous experiments corre-
sponds to >50 Mbit/s. The bandwidth values can be split
into two groups, a low-bandwidth region ({0.06, 0.1, 0.5})
and a high-bandwidth region ({5, 10, 15, >50}). Since we
suspected that combined experience replay (CER) should be
affected by the bandwidth, we conducted all experiments
with and without the usage of CER.

Figure 6 shows a clear trend in the high-bandwidth region
that for lower bandwidths, average convergence time and
variance increase. The convergence time average and vari-
ance do not increase further in the low-bandwidth region.
This trend is similar with and without CER. A notewor-
thy observation is that CER only improves performance

Fig. 4: Time-series plot showing the learning progress of five models pretrained with different friction factors, indicated
by the color. Each data point corresponds to an evaluation episode with the horizontal axis’ cumulative training steps and
the vertical axis’ consecutive on-target steps. Data points with more than 750 consecutive on-target steps are classified as a
success. The fifth success data point in a row is highlighted with a star, indicating that the training converged.

Fig. 5: Convergence time of different optimization delay
configurations including one TD3-like actor delay implemen-
tation.

without a bandwidth constraint. For most other bandwidth
constraints, CER decreases performance. We hypothesize
that the on-policy behavior induced by CER biases the
training process if the actor does not change every step. This
hypothesis could explain the performance reduction for the
other configurations.

This experiment concludes that the proposed architecture
and transfer strategies perform best under high bandwidths
from the cloud to the edge. However, agents can be trained
within reasonable time even under highly constrained band-
widths. A side conclusion is that CER is only beneficial if
the actor is updated on every interaction step. Otherwise, it
is even detrimental, which is a significant limitation for the
usage of CER.

VI. CONCLUSIONS AND FUTURE WORK

Training deep reinforcement learning agents on physical
systems is challenging due to expensive data collection.
Sim-to-real approaches train agents in simulations and di-
rectly deploy them to the physical system, suffering from
performance losses induced by the reality gap. Sim-to-real
approaches with continued training on the physical system

Fig. 6: Convergence time comparison of training instances
with different bandwidth settings classified in low and high,
trained with and without CER.

may be the best compromise of simulation and real-world
training, which is why we adopt this strategy for this work.

In this work, we propose a distributed cloud-edge architec-
ture to address the problem of training reinforcement learning
agents on computationally constrained physical systems. We
further propose sim-to-real transfer strategies with delayed
optimization of the neural networks and introduce a one-
step delay in simulation to force the agent to learn from its
observation augmentation.

We evaluate the proposed methods with a linear inverted
pendulum case study. We vary the reality gap, optimization
delays, and cloud-edge bandwidth to analyze the perfor-
mance of the proposed architecture. As expected, higher
reality gaps lead to longer training time. However, it is still
possible to train agents with high reality gaps repeatably
using the architecture. After the sim-to-real transfer, we
identified a crucial replay memory prefill that stabilizes
the learning process. The training is faster with higher
bandwidths, but the architecture still allows training with
very constrained bandwidths. An additional conclusion is that
CER [25] is only beneficial if the actor can be updated every
interaction step, and even detrimental if the updates happen

less frequently. A final observation is that with the cloud-
edge architecture, the training process on the cloud is robust
to crashes of the plant or edge.

Training data from physical systems often contains noise
and disturbances. These faulty experiences can delay the
entire training process. We will filter faulty experiences
in future work to stabilize the training process further.
Moreover, to reduce the sensitivity to the bandwidth, we
will look into the usage of residual networks, where only
smaller residual networks need to be trained and sent to the
edge. Additionally, we will expand the architecture to other
applications such as UAVs and use other state-of-the-art DRL
algorithms.

ACKNOWLEDGMENT
Marco Caccamo was supported by an Alexander von

Humboldt Professorship endowed by the German Federal
Ministry of Education and Research.

The authors would like to thank Daniele Bernardini, An-
drea Bastoni, Alexander Züpke and Andres Rodrigo Zapata
Rodriguez for helpful discussions.

REFERENCES

[1] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in Proceedings of
Robotics: Science and Systems, (FreiburgimBreisgau, Germany), June
2019.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[3] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexter-
ous manipulation with deep reinforcement learning: Efficient, general,
and low-cost,” in 2019 International Conference on Robotics and
Automation (ICRA), pp. 3651–3657, IEEE, 2019.

[4] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[5] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” The International Journal of Robotics Research,
vol. 40, no. 4-5, pp. 698–721, 2021.

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, pp. 1861–
1870, PMLR, 2018.

[7] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, and V. Vanhoucke, “Scalable
deep reinforcement learning for vision-based robotic manipulation,” in
Conference on Robot Learning, pp. 651–673, PMLR, 2018.

[8] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA), pp. 3389–3396, IEEE, 2017.

[9] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, OpenReview.net, 2019.

[10] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani,
“Data efficient reinforcement learning for legged robots,” in Confer-
ence on Robot Learning, pp. 1–10, PMLR, 2020.

[11] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint arXiv:1707.08817, 2017.

[12] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 International Conference on Robotics and
Automation (ICRA), pp. 6023–6029, IEEE, 2019.

[13] M. Neunert, T. Boaventura, and J. Buchli, “Why off-the-shelf physics
simulators fail in evaluating feedback controller performance-a case
study for quadrupedal robots,” in Advances in Cooperative Robotics,
pp. 464–472, World Scientific, 2017.

[14] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” in Proceedings of Robotics: Science and Systems,
(Pittsburgh, Pennsylvania), June 2018.

[15] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA),
pp. 3803–3810, IEEE, 2018.

[16] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” in Proceedings of Robotics: Science and Systems,
(Cambridge, Massachusetts), July 2017.

[17] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[18] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12627–12637, 2019.

[19] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

[21] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning, pp. 1587–1596, PMLR, 2018.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[23] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
tech. rep., Carnegie-Mellon Univ Pittsburgh PA School of Computer
Science, 1993.

[24] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” in 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

[25] S. Zhang and R. S. Sutton, “A deeper look at experience replay,” arXiv
preprint arXiv:1712.01275, 2017.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[27] G. C. Buttazzo, Hard real-time computing systems: predictable
scheduling algorithms and applications, vol. 24. Springer Science
& Business Media, 2011.

[28] D. Seto and L. Sha, “A case study on analytical analysis of the
inverted pendulum real-time control system,” tech. rep., CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST, 1999.

[29] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[30] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

[31] “Quanser courseware and resources.” https://www.quanser.
com/solution/control-systems/.

[32] J. Carlson, Redis in action. Simon and Schuster, 2013.
[33] P. F. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell,

J. Tobin, P. Abbeel, and W. Zaremba, “Transfer from simulation to
real world through learning deep inverse dynamics model,” CoRR,
vol. abs/1610.03518, 2016.

Chapter 5. Reinforcement Learning for Real-world Control Challenges

5.2 Learning to Generate All Feasible Actions

Reference

M. Theile, D. Bernardini, R. Trumpp, C. Piazza, M. Caccamo, and A. L. Sangiovanni-
Vincentelli, “Learning to generate all feasible actions,” IEEE Access, vol. 12, pp. 40668–
40681, 2024
DOI: https://doi.org/10.1109/ACCESS.2024.3376739

Abstract

Modern cyber-physical systems are becoming increasingly complex to model, thus moti-
vating data-driven techniques such as reinforcement learning (RL) to find appropriate
control agents. However, most systems are subject to hard constraints such as safety or
operational bounds. Typically, to learn to satisfy these constraints, the agent must violate
them systematically, which is computationally prohibitive in most systems. Recent efforts
aim to utilize feasibility models that assess whether a proposed action is feasible to avoid
applying the agent’s infeasible action proposals to the system. However, these efforts
focus on guaranteeing constraint satisfaction rather than the agent’s learning efficiency.
To improve the learning process, we introduce action mapping, a novel approach that
divides the learning process into two steps: first learn feasibility and subsequently, the
objective by mapping actions into the sets of feasible actions. This paper focuses on the
feasibility part by learning to generate all feasible actions through self-supervised querying
of the feasibility model. We train the agent by formulating the problem as a distribution
matching problem and deriving gradient estimators for different divergences. Through an
illustrative example, a robotic path planning scenario, and a robotic grasping simulation,
we demonstrate the agent’s proficiency in generating actions across disconnected feasible
action sets. By addressing the feasibility step, this paper makes it possible to focus future
work on the objective part of action mapping, paving the way for an RL framework that
is both safe and efficient.

Contributions to this paper

• Conceptualization of the action mapping framework

• Shared derivation of the various gradient estimators

• Implementation of the algorithms and case studies

• Evaluation of the algorithm

• Majority of paper writing

Copyright

Creative Commons License – CC BY 4.0 DEED
https://creativecommons.org/licenses/by/4.0/

See Appendix A.8 for the reuse statement. The following shows the accepted version.

111

https://doi.org/10.1109/ACCESS.2024.3376739
https://creativecommons.org/licenses/by/4.0/

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.3376739

Learning to Generate All Feasible Actions
MIRCO THEILE1,2, (Student Member, IEEE), DANIELE BERNARDINI1,3, (Member, IEEE),
RAPHAEL TRUMPP1, (Student Member, IEEE), CRISTINA PIAZZA3, (Senior Member, IEEE),
MARCO CACCAMO1, (Fellow, IEEE), ALBERTO L. SANGIOVANNI-VINCENTELLI2, (Fellow, IEEE)
1TUM School of Engineering and Design, Technical University of Munich (e-mail: {mirco.theile,daniele.bernardini,raphael.trumpp,mcaccamo}@tum.de)
2Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley (e-mail: alberto@berkeley.edu)
3TUM School of Computation, Information and Technology, Technical University of Munich (e-mail: cristina.piazza@tum.de)

Corresponding author: Mirco Theile (e-mail: mirco.theile@tum.de).

Marco Caccamo was supported by an Alexander von Humboldt Professorship endowed by the German Federal Ministry of Education and
Research.

ABSTRACT Modern cyber-physical systems are becoming increasingly complex to model, thus motivating
data-driven techniques such as reinforcement learning (RL) to find appropriate control agents. However,
most systems are subject to hard constraints such as safety or operational bounds. Typically, to learn to
satisfy these constraints, the agent must violate them systematically, which is computationally prohibitive
in most systems. Recent efforts aim to utilize feasibility models that assess whether a proposed action is
feasible to avoid applying the agent’s infeasible action proposals to the system. However, these efforts focus
on guaranteeing constraint satisfaction rather than the agent’s learning efficiency. To improve the learning
process, we introduce action mapping, a novel approach that divides the learning process into two steps: first
learn feasibility and subsequently, the objective by mapping actions into the sets of feasible actions. This paper
focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying
of the feasibility model. We train the agent by formulating the problem as a distribution matching problem
and deriving gradient estimators for different divergences. Through an illustrative example, a robotic path
planning scenario, and a robotic grasping simulation, we demonstrate the agent’s proficiency in generating
actions across disconnected feasible action sets. By addressing the feasibility step, this paper makes it possible
to focus future work on the objective part of action mapping, paving the way for an RL framework that is
both safe and efficient.

INDEX TERMS action mapping, feasibility, generative neural network, self-supervised learning

I. INTRODUCTION

Cyber-physical systems are becoming increasingly complex,
with applications ranging from autonomous vehicles in chaotic
urban environments to robotic assistants for support in every-
day tasks. Most of these applications require the development
of complex control systems. Traditionally, these systems were
modeled in detail, and control strategies were derived using
model-based techniques. However, the increasing complexity
of these systems limits the applicability of model-based
techniques, thus making data-driven techniques appealing.
While data-driven techniques such as reinforcement learning
(RL) improved significantly in recent years, they still lack
guarantees that they meet all system constraints, i.e., only
providing feasible control commands.

A popular idea is deriving only the feasibility-relevant
part of the system to ensure feasibility while using learning
techniques to optimize the underlying objective. The feasibility

model only delineates whether a suggested control command
in a given situation is feasible, i.e., the control command does
not violate any constraints and does not lead to a state from
which a future constraint violation is inevitable. Given this
feasibility model, the subsequent challenge is integrating it
within a learning framework in which a policy aims to optimize
an objective function subject to feasibility constraints. The
commonly applied techniques are action rejection, resampling,
and action projection.

Action rejection is a traditional approach, e.g., applied in
the Simplex architecture [1], which can be summarized as
follows. If the policy’s proposed action is feasible according
to the feasibility model, it is applied to the system. Otherwise,
a backup policy is used, which generates a feasible action,
usually independent of the objective. While this is the sim-
plest method to implement, and the timing requirements are
predictable, the drawback is that the policy needs to learn the

VOLUME 11, 2023 1

Theile et al.: Learning to Generate All Feasible Actions

feasibility model explicitly to avoid its action being rejected
and replaced with the sub-optimal backup action.
As a straightforward augmentation of the action rejection

scheme, action resampling can be applied when training a
stochastic policy. Instead of directly switching to the safe
action, if the proposed action is infeasible, the policy can be
resampled, and the newly generated action can be tested [2].
This process can be repeated until either a feasible action is
proposed or a timeout is reached, at which point the safe action
of the feasibility controller is applied to the system. While this
method may decrease the rejection rate of the policy’s actions,
it adds computational costs. Additionally, most learning meth-
ods train agents that output a reparameterization of a single
Gaussian. Resampling from this Gaussian may not offer a
feasible action if it is too narrow or poorly aligned with the
set of feasible actions. Moreover, the learning agent must still
explicitly learn to avoid proposing infeasible actions.
A more nuanced method is action projection [3], which

replaces a proposed infeasible action with a feasible action
closest to the proposed action. This projection is typically
formulated as an optimization problem that must be solved
online. The supposed advantage of this method over action
rejection is that the replacement action is better than the safe
action, which was derived independently of the objective.
However, only because the projected action is close in the
action space does not mean it is also close in performance.
Additionally, the online optimization requirement may not
be computationally feasible, especially for complex systems.
From a learning perspective, the projection can either be
penalized or ignored. If penalized, the agent again needs to
learn explicitly to avoid infeasible actions, but it could receive
guidance from the projection distance. If the agent does not
penalize infeasible actions, the agent is not required to learn
the feasibility model. However, the projection to the closest
feasible action will map all infeasible actions to the borders
of the feasible action sets. Learning algorithms that require
action densities or policy gradients must be adapted to handle
the resulting high action density on the borders.
In all three approaches, the learning agent that aims to

find an optimum of the objective subject to the feasibility
constraints is not aided by the feasibility model; it is solely
made safe. The agent must still violate the constraints sys-
tematically during interactions with the environment, albeit
without actually applying infeasible actions to the system, to
learn to satisfy them in the future. We introduce a different
approach that allows the learning agent to benefit explicitly
from the model-based feasibility model. We call the approach
action mapping. The idea is to learn the feasibility and the
objective consecutively. First, a feasibility policy is trained
to generate all feasible actions for a given state. Using this
feasibility policy, an objective policy can learn to choose the
optimal action from the feasible ones, given an objective. Note
that the optimization problem in the feasible actions could
be solved with various methods, including, but not limited to,
learning, which can all benefit from the guarantee of constraint
satisfaction.

This methodology promises multiple potential advantages.
First, the feasibility policy can be trained directly on the
feasibility model, requiring no interactions with the environ-
ment. Afterward, the objective policy learns to choose among
feasible actions, which could significantly reduce the number
of interactions with the environment. The combined agent,
i.e., feasibility plus objective policy, still needs to exhaustively
violate constraints. However, it can learn constraint satisfaction
offline from the feasibility model without interactions with the
environment. Second, the feasibility policy can be reused if
multiple objectives are subject to the same constraints. Third,
any knowledge of the environment that can be extracted from
the feasibility model can potentially be utilized in the objective
policy through parameter sharing between both policies. Lastly,
once deployed, it requires precisely one pass of the feasibility
policy and the objective policy per step if the feasibility policy
has no support in the infeasible action space.
Given these potential advantages, the pivotal question is:

How do we train the feasibility policy? This paper endeavors
to answer this very question. To this end, we derive the
objective of the feasibility policy as a distribution matching
problem in which the target is a uniform distribution over
the feasible action space. The uniform distribution is chosen
since the feasibility policy is agnostic to the objective and
should thus not be biased toward specific actions. We further
present a methodology for estimating the gradient of different
divergence measures to train a feasibility policy toward the
target distribution. To evaluate our proposed methodology, we
perform three experiments. The first is an illustrative example
with an analytical and highly parallelizable feasibility function
that shows the input and output of the feasibility policy. The
second example illustrates how the feasibility policy can
learn to generate feasible trajectory segments for robotic path
planning problems, providing a closer tie to reinforcement
learning. The third experiment showcases a simple robotic
grasping example where feasibility is defined as grasping
poses that lead to a successful grasp. This experiment shows
how a feasibility policy can be learned for systems without a
feasibility model that can be efficiently parallelized.
The contributions of this work are the following:

• Conceptualization of action mapping as a framework for
safe and efficient reinforcement learning;

• Formulation of a distribution matching problem to train
the feasibility policy towards generating all feasible
actions;

• Derivation of gradient estimators for different divergence
measures utilizing kernel density estimates, resampling,
and importance sampling;

• Evaluation of the proposed approach in an illustrative
2D example, a qualitative example for spline-based path
planning, and a quantitative planar robotic grasping
example.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work. Section III describes the action
mapping motivation and the formulation as a distribution

2 VOLUME 11, 2023

Theile et al.: Learning to Generate All Feasible Actions

matching problem, followed by the gradient estimation in
Section IV. Section V provides an illustrative example to
visualize the feasibility policy and Section VI provides an ad-
ditional example that showcases how action mapping could be
used in robotic path planning problems. Sections VII and VIII
introduce and discuss the robotic grasping experiments.

II. RELATED WORK
In discrete action spaces, the equivalent of action mapping
is action masking, for which the feasibility of each action is
evaluated, and the agent chooses the best action among the
feasible ones. In [4], the action masking concept is termed
shielding, in which the shield is based on linear temporal
logic. The authors in [5] investigate the consequences of
actionmasking for policy gradient deep reinforcement learning
(DRL) algorithms. Applications in various domains show
significant performance improvements, e.g., in autonomous
driving [6], unmanned aerial vehicle (UAV) path planning [7],
and vehicle routing [8].
For continuous action spaces, a straightforward masking

approach is not yet available. As discussed before, the ap-
proaches can be grouped into action rejection, resampling [9],
and action projection [10], [11], [12]. The safety model
can be based on control barrier functions [13], Lyapunov
functions [14], or variants thereof. Cheng et al. [3] use
action projection and train a second model on the previous
interventions to reduce the need for future interventions. Zhong
et al. [15] derive a safe-visor that rejects infeasible actions
proposed by the agent and replaces it with a safe action.
The distribution matching problem is similar to posterior

sampling, a long-standing problem in statistics. State-of-the-
art methods in Bayesian statistics rely onMarkov ChainMonte
Carlo (MCMC) algorithms [16], [17], eliminating the need
to normalize the distribution, which is often an intractable
problem [18]. Variational Inference (VI) relies instead on
fitting the posterior with a family of parametric probability
distributions that can be sampled [19], [20]. Neural samplers
offer another alternative by approximating the posterior with
a generative neural network [21], [22].
Normalizing Flows (NFs) infer the probability density

function (pdf) for each sample using invertible mappings [23],
[24], [25]. While NFs do not require density estimates, they
have been shown to require a prohibitive number of layers
to effectively match a target distribution in more than one
dimension [26]. However, the depth of such models can lead
to challenges like vanishing or exploding gradients, which are
even exacerbated by the inherent conditioning difficulties of
NFs [27].

For robotic grasping, the authors in [28] propose using DRL
to find optimal grasps through interaction with multiple real-
world robots. If the goal is to find grasping poses explicitly
to be used as the target of a classical controller, supervised
learning techniques are often utilized [29]. To support various
downstream tasks, it would be necessary to find all feasible
grasps. To this end, the action space is typically discretized,
and grasping success is estimated for each discrete action

through heat-maps. This can be learned using supervised [30],
[31] or self-supervised [32] methods. [32] explicitly utilizes
the structure given by spatial equivariances. We aim to find
a solution that needs neither discretization nor the use of the
structure, as these requirements are specific to grasping and
also restrict applicability to planar picking in carefully crafted
environments.

III. OPTIMIZATION PROBLEM
A. ACTION MAPPING
For a state space S and an action spaceA, the feasibility model
can be expressed through the function

g : S ×A → B, (1)

which delineates if a suggested action is feasible in a given
state. Given g, the state-dependent set of feasible actionsA+

s ⊆
A contains all actions that are feasible for the state s, i.e., all
actions for which g(s, a) = 1.
For action mapping, the feasibility policy is defined as

πfeasibility : S × Z → A+
s . (2)

It learns a state-conditioned surjective map from a bounded
latent space Z ⊂ Rm, with appropriate dimensionality m, into
the set of feasible actions for that state. The latent space Z can
be thought of as an infinite set of indices. For each index, the
feasibility policy has to output a different feasible action.

Given the task specifics, an objective policy can be defined
that learns the optimal latent value as

πobjective : S → Z. (3)

This optimal index in the latent space can then be mapped to
a feasible action using πfeasiblity. Convolving the functions as
(πfeasibility ◦ πobjective) : S → A+

s , yields the action mapping
policy

π(s) = πfeasibility(s, πobjective(s)). (4)

In this work, we derive how to train the feasibility policy.
Since this work only concerns the feasibility policy, the
subscript is dropped in the following.

B. FEASIBILITY POLICY
To train the feasibility policy πθ, we parameterize it with
parameters θ and formulate a distribution matching problem.
The goal is that πθ maps every z ∈ Z to an a ∈ A+

s , without
any bias toward any specific feasible actions. Therefore, by
sampling uniformly in Z , πθ should generate a uniform
distribution in A+

s .
When sampling uniformly in Z , πθ becomes a generator

with a conditional probability density function (pdf) qθ(a|s).
The target distribution is the uniform distribution in the feasible
action space given as

p(a|s) =
g(s, a)∫

A g(s, a′)da′
. (5)

VOLUME 11, 2023 3

Theile et al.: Learning to Generate All Feasible Actions

TABLE 1: Non-exhaustive list of f-divergences and the corre-
sponding first derivative for gradient estimators.

f (t) f ′(t)

JS 1
2

[
(t + 1) log

(
2

t+1

)
+ t log(t)

]
1
2
log

(
2t
t+1

)

FKL − log(t) − 1
t

RKL t log(t) log(t) + 1
The f-divergences are obtained by substituting the f functions above in
(7) and setting t = qθ/p. The conventions for p, q, FKL and RKL assume
that p is the target distribution, q is the model, and the FKL divergence is∫
p log(p/q).

Given a divergence measureD, the optimal parameters are the
solution to the optimization problem

argminθ∈Θ

∫

S
D
(
p(·|s) || qθ(·|s)

)
ds, (6)

with Θ being the set of possible parameters. The following
section details how to iteratively minimize the divergence.

IV. METHODOLOGY
The following derives the gradient w.r.t. θ to iteratively
minimize the divergence for a given state. For simplicity of
notation, we omit the state and action dependence of qθ and p.

A. F-DIVERGENCE
As the divergence measure, we choose the f-divergence, a
generalization of the Kullback-Leibler (KL) divergence ([33]).
The f-divergence between two pdfs p and qθ has the form

Df (p || qθ) =

∫

A
p f

(
qθ
p

)
da, (7)

where f : (0,∞)→ R is a convex function. Different choices
of f lead to well-known divergences as summarized in Table 1.
The gradients of the f-divergence w.r.t. θ can be estimated
commuting the derivative with the integral ([34]) and using
the score function gradient estimator ([35]) as

∂

∂θ
Df =

∂

∂θ

∫

A
p f

(
qθ
p

)
da

=

∫

A
p f ′

(
qθ
p

)
1

p
∂

∂θ
qθ da

=

∫

A
qθ f ′

(
qθ
p

)
∂

∂θ
log qθ da, (8)

considering that p does not depend on θ. Since qθ is normalized
to 1 and thus ∂θ

∫
A q da =

∫
A q ∂θ log q da = 0, a Lagrangian

term λ can be added to the gradient:

∂

∂θ
Df =

∫

A
qθ

(
f ′
(
qθ
p

)
+ λ

)
∂

∂θ
log qθ da. (9)

If the support of qθ includes all of A the above formula in (9)
can be rewritten as the expectation on qθ as

∂

∂θ
Df = Eqθ

[(
f ′
(
qθ
p

)
+ λ

)
∂

∂θ
log qθ

]
. (10)

Alternatively, using a proposal distribution q′ with full support
in A, the expectation in (10) can be reformulated as

∂

∂θ
Df = Eq′

[
qθ
q′

(
f ′
(
qθ
p

)
+ λ

)
∂

∂θ
log qθ

]
. (11)

B. GRADIENT ESTIMATION
Given a sample a ∼ qθ, it is not possible to directly evaluate
qθ(a) as it is not available in closed form. Therefore, qθ needs
to be estimated to compute the gradients of the f-divergence.
Given N sampled actions ai ∼ qθ, qθ can be approximated
with a Kernel Density Estimation (KDE) by

qθ(a) ≈ q̂θ,σ(a) =
1

N

∑

ai∼qθ

kσ(a− ai), (12)

where kσ is a Gaussian kernel with a diagonal bandwidth
matrix σ. The KDE enables the estimation of the expectation.
Using (10), computing the expectation value as the average
over the samples yields

∂

∂θ
Df ≈

1

N

∑

ai∼qθ

(
f ′
(
q̂θ,σ
p

)
+ λ

)
∂

∂θ
log q̂θ,σ. (13)

The gradient estimator in (13) did not converge in our exper-
iments. While a systematic investigation of the convergence
issue was not completed, we suspect two primary reasons.
First, the support qθ usually does not cover the whole action
spaceA, which is necessary for the expectation formulation in
(10). Second, evaluating qθ(ai) based on a KDE, which uses
aj as supports, has a bias for j = i.

Adding Gaussian noise to the samples gives full support in
A and reduces the bias at the support points of the KDE, which
led to convergence in the experiments. The new samples are
given by a∗j = ai + ϵ for mi ≤ j < m(i+ 1) and ϵ ∼ N (0, σ′),
where m indicates the number of samples drawn for each
original sample. This is equivalent to sampling from a KDE
with ai as supports and σ′ as bandwidth. Using importance
sampling in (11), the gradient in (13) after resampling can be
rewritten as follows

∂

∂θ
Df ≈

1

M

∑

a∗j ∼q̂θ,σ′

q̂θ,σ
q̂θ,σ′

(
f ′
(
q̂θ,σ
p

)
+ λ

)
∂

∂θ
log q̂θ,σ, (14)

with M = mN . Additionally, equation (14) requires an
estimate of p, which in turn requires an estimate of the volume
in (5)

∫

A
g(a) da ≈ 1

M

∑

a∗j

g(a∗j)

q̂θ,σ′(a∗j)
. (15)

This volume estimation in (15) is similar to self-normalized
importance sampling ([36]) but uses the proposal distribution.
The bandwidth σ′ of the proposal distribution is a hyper-
parameter. Setting σ′ = cσ, experiments show that in most
cases c > 1 helps convergence. Intuitively, a larger bandwidth
enables the exploration of nearby modes in the action space.
Specific estimators for the different f-divergences can be
obtained by substituting f ′ from Table 1 into (14). A summary
of the gradient estimators used in this work is given in Table 2.

4 VOLUME 11, 2023

Theile et al.: Learning to Generate All Feasible Actions

TABLE 2: Gradient estimators of various losses and choice of
Lagrangian multiplier λ.

Loss Actor Gradient Estimator λ

JS 1
2M

∑
a∗j

q̂θ,σ
q̂θ,σ′ log

(
2q̂θ,σ
p+q̂θ,σ

)
∂
∂θ

log q̂θ,σ 0

FKL - 1
M

∑
a∗j

p
q̂θ,σ′

∂
∂θ

log q̂θ,σ 0

RKL 1
M

∑
a∗j

q̂θ,σ
q̂θ,σ′ log

(
q̂θ,σ
p

)
∂
∂θ

log q̂θ,σ -1

GAN 1
N

∑
ai

∂
∂a log(1− ξϕ)

∂
∂θ
ai -

ME 1
N

∑
ai

∂
∂θ

log q̂θ,σ − ∂
∂a log ξϕ

∂
∂θ
ai -

C. TRAINING PROCESS

Algorithm 1 shows a training loop when training a feasibility
policy directly on the feasibilitymodel using a Jensen-Shannon
(JS) loss. The training iterates as follows: A batch of random
states is sampled, and the actor generates N actions ai per
state. For each action ai, m values are sampled from a normal
distribution N (0, σ′) and added to the action values to create
the M action samples a∗j . Using the actions ai as support
of the KDE in (12), the densities q̂θ,σ(a∗j) and q̂θ,σ′(a∗j) are
computed. Then the feasibility model g is evaluated on all
samples a∗j and the estimate of p(a∗j) is computed using (5)
and importance sampling in (15). Finally, the gradient of θ
can be computed according to (14). For a better understanding
of the gradient, the trace of the gradient is highlighted in red
throughout the algorithm.

Algorithm 1: Jensen-Shannon training loop

1 Initialize θ
2 for 1 to Training Steps do
3 for k = 1 to K do
4 sk ← Sample from S
5 zi ← Sample uniformly in Z, ∀i ∈ [1,N]
6 ai ← πθ(sk , zi), ∀i ∈ [1,N]
7 ϵj ∼ N (0, σ′), ∀j ∈ [1,M]
8 a∗j ← stop_gradient(a⌈j/m⌉) + ϵj, ∀j ∈

[1,M] // Resample from KDE

9 q̂j ← 1
N

∑N
i=1 kσ(a∗j − ai), ∀j ∈ [1,M]

// Evaluate KDE on samples

10 q̂′j ← 1
N

∑N
i=1 kσ′(a∗j − ai), ∀j ∈ [1,M]

// Evaluate proposal pdf
11 r̂j ← g(sk , a∗j), ∀j ∈ [1,M] // Evaluate

feasibility model on samples

12 V̂ ← 1
M

∑M
j=1

r̂j
q̂′j

// MC integration

with importance sampling

13 p̂j ← r̂j
V̂
, ∀j ∈ [1,M]

14 gk ← 1
2M

∑M
j=1

q̂j
q̂′j

log
(

2q̂j
q̂j+p̂j

)
∇θ log(q̂j)

// gradient trace
15 end
16 θ ← θ − αθ 1

K

∑K
k=1 gk

17 end

Intuitively, the gradient in (14) attracts support actions ai to-
wards sample actions a∗j where p(a

∗
j) > q̂θ,σ(a∗j) and repulses

support actions from samples where p(a∗j) < q̂θ,σ(a∗j). The
different f-divergences place different weights on attraction
and repulsion. FKL only attracts support actions towards
samples with high p, while RKL repulses strongly from
samples with p = 0, and JS attracts and repulses with lower
magnitude.

D. ACTOR-CRITIC
Algorithm 1 assumes that the training can be performed
directly on the feasibility model. However, multiple actions
must be evaluated for the same state to train the actor. This is
possible if g is available in closed form or effectively simulated.
In some scenarios, g can be a real experiment that does not
allow reproducibility of states. To mitigate this problem, an
auxiliary neural network ξϕ : S ×A → R with parameters ϕ
can be trained to imitate the environment g. The policy can
then be trained to match the distribution of feasible actions
according to this auxiliary neural network. We refer to πθ and
ξϕ as actor and critic, respectively.

The actor and critic can be trained simultaneously. The critic
is trained on data from a replay memory collected through
interactions between the actor and the environment, with
each training batch containing half feasible actions and half
infeasible actions to stabilize training. To further improve
the training efficiency of the critic, when the actor interacts
with the environment, it suggests multiple actions, which the
critic evaluates. The action with the highest uncertainty, i.e.,
the action with ξ ≈ 0.5 is selected as it contains the most
information for the critic. We call this process maximum
uncertainty sampling. During evaluation, to improve the
precision of the actor, the critic can be evaluated on proposed
actions, and actions with low values can be rejected. This
action optimization can increase precision but may reduce
recall or the ability to find all the disconnected sets of feasible
actions.

V. ILLUSTRATIVE EXAMPLE
This section provides illustrative examples to elucidate the
feasibility policy and demonstrates the potential for direct
training on a parallelizable feasibility model across multiple
actions for a given state. Hyperparameters, their ranges, and
training and inference times are summarized in Table 3.

A. PROBLEM
Consider three circles with given radii and center points as the
state s. The feasibility model g deems any point a a feasible
action if it falls within at least one circle and lies inside a
unit square, described as follows: s = (ck, rk)k∈1,2,3 where
(ck, rk) are the center points and radii of the circles, and
a ∈ R2 represents a coordinate. The feasibility model is thus
expressed by

g(s,a) = (0 ≤ a ≤ 1) ∧
3∨

k=1

(|a− ck| < rk). (16)

VOLUME 11, 2023 5

Theile et al.: Learning to Generate All Feasible Actions

zy

zx

(a) Latent Space

ay

ay

ay

ax ax ax

(1)

(2)

(3)

JS FKL RKL

(b) Circles

ay

ay

ay

ax ax ax

(1)

(2)

(3)

JS FKL RKL

(c) Annuli

FIGURE 1: Illustrative example showing two feasibility models, which specify feasible regions as the union of three random
circles (b) or annuli (c). Three states (1)-(3) are shown for each example, solved with the JS, FKL, and RKL divergence, with
feasible and infeasible action space in white and black, respectively. The colored points are actions generated by the feasibility
policy when using the corresponding latent space value (zx , zy) ∈ Z in (a).

In the extended example, each circle includes an inner radius,
forming annular regions.

B. RESULTS

Figure 1 illustrates the outcomes of applying three distinct
divergences, JS, FKL, and RKL, to the circle and annulus
scenarios, depicted in subfigures (b) and (c), respectively.
Actions are generated from a grid of 2562 latent values
shown in subfigure (a), where each color corresponds to a
specific latent value. Three states, marked as (1), (2), and
(3), represent various configurations: disconnected shapes,
partially connected shapes, and fully connected shapes. The
figure visually underscores the different outcomes using the
divergences: the RKL approach tends to focus on singular
modes, even failing to span overlapping regions, as seen in the
third row of both (b) and (c). On the contrary, both FKL and JS
exhibit a more expansive coverage, approaching the borders
of the feasible space, indicated by the white regions, with the
JS divergence showing a reduced density within the infeasible
space, represented by the black regions, as compared to FKL.
This phenomenon is particularly evident in the first and second
states for the circle and annulus examples, which can be
attributed to the repulsive gradient present in JS divergence
that is absent in the FKL divergence.
These visualizations show that a feasibility policy can be

trained to navigate complex distributions beyond the Gaussian
reparameterization commonly found in the literature. They
further elucidate the importance of enabling the FKL and JS
divergences to address disconnected feasible sets effectively.
Ultimately, these examples offer an intuitive comprehension
of the aim: for the feasibility policy to generate all feasible

actions by learning to map the latent space into diverse shapes
conditioned on the state.

VI. FEASIBLE TRAJECTORY SEGMENTS EXAMPLE
When solving problems in robotic path planning with rein-
forcement learning, a standard action space is the direction
and velocity target of the robot. However, in tasks that span a
long time horizon, it can be beneficial to reduce the number of
actions by bundling multiple actions in parametric trajectory
segments, often splines, to be followed. Another benefit of
generating splines is that these can be checked for collisions
with obstacles and other system constraints, such as maximum
curvature. This application example shows how learning all
feasible actions could be used in this context.

A. PROBLEM
Consider a stationary agent at the center of an environment
with known obstacles. In this example, the objective is to find
all quadratic splines that fulfill the following conditions

1) does not intersect with any obstacle;
2) longer than a minimum length;
3) shorter than a maximum length;
4) its maximal curvature is less than a threshold.

Figure 2a shows an example scenario with randomly generated
obstacles (gray) and example splines. For each constraint, the
figure shows an example that violates it, additionally providing
examples of feasible splines. The splines are parameterized
through the endpoint and an intermediary point that bends
the spline, yielding a 4D action space. The feasibility model
checks for any constraint violation numerically along the
spline. The agent observes the obstacles as a black and white

6 VOLUME 11, 2023

Theile et al.: Learning to Generate All Feasible Actions

max
length

max
curvature

min
length

obstacle

(a) Example actions on map 1 (b) Map 1 (c) Map 2 (d) Map 3

FIGURE 2: Quadratic spline action space application showing three different maps: a randomly generated map in (a) and (b) and
two handcrafted maps in (c) and (d). In (a), example splines are shown with green indicating a feasible spline and red indicating
an infeasible one. An example for each constraint violation is given. In (b)-(d), the agent generates 256 actions that are displayed
with the color depending on the feasibility of each proposed action.

image with size 31 × 31. It is trained with the JS loss on
randomly generated obstacle maps and evaluated on maps not
seen during training. The parameters for training, and training
and inference times are given in Table 3.

B. RESULTS
Figure 2 shows three example obstacle maps and action
samples from the agent. In Figure 2b, the agent provides 256
splines for the randomly generated map, among which 254 are
feasible. On the right side of the map, with only two smaller
obstacles, the agent produces a wide range of splines that avoid
the two obstacles, with a larger margin toward the bottom
obstacle. The left side of the map, with larger obstacles and
only a smaller gap for feasible paths, shows that the agent
also produced a group of splines. Given the minimum length
constraint on the splines, the splines going to the left are
disconnected from the splines on the right, considering the
parameter space. The two infeasible splines generated by the
agent are likely to be on the transition boundary between these
disconnected sets of feasible splines.
Map 2 in Figure 2c shows a situation that contains four

disconnected sets of feasible splines, one in each diagonal
direction. The agent produces feasible splines in each direction,
though generating more infeasible splines. This is likely due to
the difficulty of generating four relatively small disconnected
sets separated by large volumes of infeasible action space. Map
3 in Figure 2d shows a simpler problem with three small obsta-
cles resulting in three disconnected sets of feasible splines. In
this example, the agent again generated 254 feasible splines in
all three sets with only two splines when transitioning between
sets. Overall, the agent can generate splines in all disconnected
sets, largely avoiding generating infeasible splines.

This example shows how action mapping could be applied
to motion or path planning problems when they are solved
with reinforcement learning. It can be clearly seen that the
feasibility policy learned to generate splines representative
of all feasible options with only a few infeasible splines.
Therefore, an objective policy should be greatly aided if it

only needs to choose among the splines that the feasibility
policy can generate. In our future work, we plan to investigate
actionmapping using splines as action space in a reinforcement
learning-based path planning problem.

VII. ROBOTIC GRASPING SETUP
Besides the illustrative examples, the proposed method was
tested in a simplified robotic grasping simulation, where we
compare different f-divergences with other approaches and
investigate how the proposed approach reacts to distortions in
the observation.

A. GRASPING SIMULATION
Our grasping simulator generates four shapes (H, 8, Spoon, T)
for training and a Box shape for testing. The shape position,
orientation, color, and geometry parameters are randomly
sampled, producing various observations. The observation
space is a 128× 128 pixel RGB image. We assume a vertical
configuration of a parallel gripper with three degrees of free-
dom x, y, andα and assume that the object is an extrusion of the
2D shape in the observation. The action space is constrained to
the center 78× 78 pixel region to avoid undefined behavior at
the border of the RGB image. The angle of the grasp is in [0, π)
as the gripper is symmetrical; thus, a complete revolution is
unnecessary.
The success of a grasp is only determined by the relative

position and alignment of the gripper to the outline of the
object, as seen from a camera positioned above the experi-
ment. Given the alignment of the gripper, i.e., x, y, and α
and a simulated picture of the object from a fixed camera,
we developed an algorithm that provides a success/failure
outcome in a deterministic and reproducible manner. Given
the maximum aperture of the parallel gripper l and the width
of the gripper claws w, the simulation analyzes the cropped
image content of dimensions l × w between the gripper claws
before the claws close on the object. The simulation checks if
the object is sufficiently present, equidistant from the claws,
and aligned within parameterized margins. Figure 3 shows

VOLUME 11, 2023 7

Theile et al.: Learning to Generate All Feasible Actions

TABLE 3: List of parameters for all experiments.

Sec. V Sec. VI Sec. VII Description
N 128 256 128 Support size
M 256 256 256 Resampling size
σxy 0.01 0.1 0.025 KDE bw. x, y
σsc - - 0.4 (RKL: 0.1) KDE bw. sinα, cosα
c 2.0 2.0 3.0 Sampling bw. σ′ = cσ
U - - 64 Max Uncertainty Proposals

|M| - - 320,000 Replay memory size
K 16 16 16 Actor batch size
L - - 32 Critic batch size
lra 5 ∗ 10−5 5 ∗ 10−5 5 ∗ 10−5 Learning rate actor
lrc - - 5 ∗ 10−5 Learning rate critic
c [0.0, 1.0]2 - - Center point range
r [0.1, 0.3] - - Radius range circles
ro [0.2, 0.3] - - Outer radius range annuli
ri [0.3, 0.7] ∗ ro - - Inner radius range annuli
lmin - 0.5 - Minimum spline length
lmax - 1.0 - Maximum spline length
cmax - 8.0 - Maximum curvature
Tt 8 h 4 h 48 h Training time
I1 2.2 ms 1.5 ms 4.0 ms Inference time 1 action
I256 2.2 ms 1.5 ms 8.3 ms Inference time 256 actions
I4096 9.0 ms 4.0 ms 92.0 ms Inference time 4096 actions
The training and inference times were measured on an NVIDIA A100 GPU.
Inference times for multiple actions measure generating multiple actions for
one problem. RKL is sensitive to large KDE bandwidths and benefits from a
smaller bandwidth for sinα, cosα.

successful grasping poses and the respective gripper content
for the objects that are trained on.
In the primary experiment, we test the algorithm under

aligned observation and action spaces. In a second study,
we investigate if distortions of the observation affect the
performance. The distortions investigated are a rotation, pro-
jection, and rotation + projection as shown in Figure 4. These
distortions correspond to different camera perspectives. The
applied distortion is only on the observation and does not
change the mechanics of the experiment.

B. NEURAL NETWORK DESIGN
The neural network that was used for the actor and critic in
the robotic experiment is illustrated in Figure 5. The neural
network design was guided by simplicity and inspired by
Generative Adversarial Networks (GANs). Features that rely
on domain-specific knowledge are avoided to evaluate better
the learning method presented in the paper. The actor and
critic share the residual feature extraction network ([37]). The
hyperparameters for training and training and inference times
are summarized in Table 3.
As a peculiarity of the network and the loss, the actor’s

inferred action has four components, [x, y, r sinα, r cosα],
with r ∈ [0,

√
2]. The angle can be extracted trivially with the

arctan of the ratio of the third and fourth action components.
As the scale factor r does not change the angle, the critic
receives the normalized action [x, y, sinα, cosα] as input. To
avoid the actor from reaching the singularity at r = 0 and
the distribution q being spread along the radius, g(s, a) and
ξ(s, a) are scaled with an unnormalized Gaussian on the radius,
centered at 0.5 with the standard deviation of σsc.

C. COMPARISON
In the primary experiment, we are comparing different f-
divergences with each other and with two other approaches.
The first is a maximum entropy (ME) RL algorithm similar
to Soft Actor-Critic (SAC) in [38], which trains the actor to
minimize

min
θ

Es∼M,z∼Z [log qθ(πθ(s, z)|s)− ξϕ(s, πθ(s, z))] , (17)

withM being the replay memory. The critic is trained as
described in Section IV-D. Instead of using the reparameteri-
zation trick with a known distribution to estimate the entropy,
we use the KDE. The other approach is an implementation of a
conditional GAN ([39]) with a growing dataset. The min-max
optimization problem is given through

min
θ

max
ϕ

Es,a∼Mp
z∼Z

[log(ξϕ(s, a))− log(1− ξϕ(s, πθ(s, z)))] ,

(18)
with a positive replay memoryMp only containing feasible
actions. An asterisk is added (e.g., JS*) when using action
optimization, rejecting 10% of the proposed actions with the
lowest critic value.
In the secondary evaluation, we compare with a common

approach in the literature ([32]) that uses spatial equivariance.
The domain-specific approach utilizes fully convolutional
networks to output a probability of success for each action of a
discretized action space. As in [32], the observation is fed into
the neural network multiple times with different rotations. The
neural network then only needs to output a one-channel image
containing the probability of success of each discretized x, y
action for the given rotation of the image. This approach thus
uses translation equivariance by using a convolutional neural
network (CNN) and rotation equivariance. In the experiments,
we denote it as the heat-map approach (H).

The approach is implemented using fully convolutional
networks with an hourglass structure, adopting the beginning
of the Resnet in Figure 5 and adding the same structure in
reverse order with nearest-neighbor upsampling. The approach
predicts grasping success for 78x78 pixels with 16 rotation
angles, trained on a cross-entropy loss on the grasping outcome
sampled from the replay buffer. The replay buffer is also filled
with imitation learning examples, and maximum uncertainty
sampling is applied. For evaluation, the success estimate
of each discretized action is used as its probability to be
sampled. To increase accuracy, an inverted temperature factor
increases the difference between higher and lower score
actions. Specifically, the actions are sampled according to

q(a|s) =
exp(β log ξ(s, a))∑

∀a∈Ad
exp(β log ξ(s, a))

, (19)

with ξ being the fully convolutional network with s as input and
as output shape the discretized action space Ad . The inverted
temperature was set to β = 100 for H and β = 1000 for H∗.

8 VOLUME 11, 2023

Theile et al.: Learning to Generate All Feasible Actions

(a) (b) (c) (d) (e) (f) (g) (h)

FIGURE 3: Feasible gripper positions (red) for different variations of the shapes (H-shape (a+b), 8-shape (c+d), Spoon (e+f),
and T-shape (g+h)) used in training, with a detailed view of the area between the gripper to the right of each figure.

FIGURE 4: Different distortions are applied, showing a
colored chess board for illustration and an example shape
under all distortions.

+ ...

...

(128x128x32)

Positional
Encoding

(128x128x32)
(43x43x32)

(22x22x64)
(11x11x128)

Shared MLP
(121x(128+d))

Latent/Action Input (d)

FC

FIGURE 5: Before processing, the image is embedded (in
gray) and augmented with positional encoding, resulting in 32
total channels. After positional encoding, a convolutional layer
with stride 3, followed by 7 residual blocks (in yellow) with
a bottleneck, preprocesses the state. The output is processed
by 3 layers of "pixel-wise" shared MLPs (in brown), with the
features being concatenated with a latent input (in purple) of
length d . The latent input is a random sample from Z for the
actor and the action to be evaluated for the critic. Four (for the
actor) or three (for the critic) fully connected layers (in blue)
output the action and the feasibility estimate, respectively.

VIII. ROBOTIC GRASPING RESULTS
A. TOP-DOWN OBSERVATION
For each configuration, three agents were trained for 1 million
interaction steps with the environment, taking approximately
48 hours per agent on a single NVIDIA 40GB A100 GPU. At
the start of the training, 80k examples, including positives and
negatives, for randomly generated shapes were added to the re-
play memory to bootstrap the critic and discriminator learning.

The training architecture is implemented in TensorFlow[40]
with the parameters in Table 3.

Figure 6 shows the problem, the ground truth feasible
picking positions, the critic estimate, and a heat-map of the
actor’s proposed actions. All figures are projections taking
the maximum over the dimension that is not shown. In the
problem visualization in Figure 6a, five feasible picks are
shown in different colors, which correspond to the markers in
Figure 6b. These markers highlight the complex multimodality
of the problem. While it appears that, e.g., red and purple are
in the same mode in the x-y projection, it is visible in the x-α
projection that they are not directly connected. Figure 6c shows
that the critic has an approximate understanding of the feasible
regions of the action space, showing five modes clearly in the
x-y projection. The actor distribution in Figure 6d also shows
all five modes, while the output is significantly sharper in the
centers of the modes. This is due to the use of the KDEs and
the choice of bandwidth σ.

In the qualitative comparison in Figure 7, the actor distribu-
tions of the different algorithms are shown for three different
shapes. While the H and 8 shapes were trained on, the Box
shape has not been seen during training. The different subfig-
ures show the action heat-maps of all implemented algorithms,
showing only the x-y projections. The H-row shows that
Jensen-Shannon (JS) and Forward Kullback-Leibler (FKL)
learned all fivemodes, with JS having the fewest samples in the
connecting area. Against the expectation from the illustrative
examples, Reverse Kullback-Leibler (RKL) also learned all
modes. The most probable reason is that the actor learns to
match the critic’s distribution, changing simultaneously from a
rough estimate of one feasibility region to the refined shape of
individual modes. If the actor learns the entire distribution of
the critic early on, when the critic learns to distinguish different
modes, the actor’s distribution has support in all modes and is
thus trapped in each mode. The GAN implementation shows
four very unbalanced modes. Additionally, the modes are
single points, which correspond to the automatically generated
imitation examples, showing that the GAN approach can
only imitate but cannot find other feasible actions. The ME
implementation collapses in a single mode. The 8-row and
the Box-row show a similar pattern with the most pronounced
spread of the action distributions in JS, FKL, and RKL and
mostly collapsed action regions in the other approaches.

Each algorithm’s accuracy and shares of modes on all shapes
were evaluated to quantify the capability of generating actions

VOLUME 11, 2023 9

Theile et al.: Learning to Generate All Feasible Actions

(a) Problem

x

α

y

(b) Truth

x

(c) Critic

x

(d) Actor

FIGURE 6: Critic classification and actor distribution trained with JS compared with the ground truth. Five example grasps are
shown in the problem and their associated locations in the ground truth. The figures show projections onto the x-y plane (top
row) and the x-α plane (bottom row).

H

8

Box

(a) Problem (b) Truth (c) JS (d) FKL (e) RKL (f) GAN (g) ME

FIGURE 7: Qualitative comparison of the implemented algorithms, showing action heat-maps on three different states, with the
last state never been observed during training.

in all disconnected sets of feasible actions. 1024 random states
were generated for each shape that differed in pose, color, and
geometry. For each state, 1024 actions were sampled from the
different actors. The actions were then evaluated, and the mode
of each action was recorded. The modes were then ranked and
averaged over all the states of that shape by frequency. By
averaging the ranks instead of the modes, the last rank shows
the average ratio of the least frequent mode for each state.

Figure 8 shows the shares of each rank for the H and
Box shapes for all the algorithms. This figure presents the
multimodal capabilities of the proposed approaches. For the
H shape, JS and FKL have the most balanced distribution over
the grasping modes. The GAN approach sometimes generates
actions in all the modes but primarily focuses the actions in a
primary mode. The ME approach almost exclusively generates

actions in one mode. The comparison on the Box shape shows
that the generalization capability of the JS and FKL algorithms
outperform the other approaches, which could indicate that
explicitly learning all feasible actions improves generalization.
The generalization capability of the GAN implementation
is significantly lower than the others, as seen on the Box
shape, indicating that that approach overfitted on the imitation
examples.

To quantify the overall performance, Table 4 shows the pre-
cision (feasible actions generated over total actions generated)
for each shape and the last ranked mode for the H, T, and Box
shapes. The table shows that ME has solid performance on all
shapes trained on but has lower generalization performance
and fails to find the different modes. The GAN algorithm
shows some actions in the last ranked modes, but it is signifi-

10 VOLUME 11, 2023

Theile et al.: Learning to Generate All Feasible Actions

(a) H Shape

(b) Box Shape

FIGURE 8: Gripping rank comparison, with the ratio of picks
for each ranked mode or failure in %.

cantly weaker overall. The best approach is JS with the highest
precision and similar shares in the last rankedmode as FKL. As
discussed before, action optimization improves precision but
reduces recall, slightly decreasing the least ranked mode for
most approaches. The maximum deviations in the superscript
show that all approaches learn reliably, with the GAN having
the highest performance deviations among runs.

B. OBSERVATION VARIATION EXPERIMENTS
For each observation distortion, we trained one agent using
the JS loss and one agent using the heat-map approach, each
for 106 training steps. The results are shown in Figure 9 and
Table 5, which compare the performance of the proposed
Jensen-Shannon (JS) approach with the heat-map (H) ap-
proach. As expected, the domain-specific heat-map approach
performs well on the original problem. In that scenario, no
scene understanding is required, and only local features need
to be considered to estimate grasping success. Therefore, the
approach is expected to generalize well to unseen shapes, as
seen for the Box-Shape, since the grasping success depends
only on gripper alignment. It only needs to learn to imitate the
grasping success heuristic shown in Figure 3.

Rotating the observation does not seem to impact its perfor-
mance. However, under projection and projection + rotation,
the heat-map approach fails to learn to grasp reliably. Our

(a) H Shape

(b) Box Shape

FIGURE 9: Gripping rank comparison, with the ratio of picks
for each ranked mode or failure in %.

proposed approach learns well under all distortions. In general,
the performance of our proposed approach does not depend on
the distortion as it does not explicitly use the spatial structure.
Its design does not depend on the specifics of the experiment
at all. It can, therefore, learn independently of the distortion
applied as long as the object is still fully observable.

IX. DISCUSSION
This paper introduced the concept of action mapping, in which
an optimization process can be learned sequentially by first
learning feasibility and then learning the objective. In this
paper, we focused on the former part by learning to generate
all feasible actions. We showed that by formulating a distri-
bution matching problem and deriving a gradient estimator
for general f-divergences, we train a feasibility policy that
can function as a map between a latent space and the feasible
action space. An illustrative example, a robotic path planning
example, and experiments for robotic grasping show that our
approach allows the feasibility policy to generate actions in
all disconnected sets of feasible actions, a challenging task for
state-of-the-art approaches. Enabling FKL and JS through our
gradient estimator was instrumental.
Our experiments, detailed in Table 3, reveal that training

VOLUME 11, 2023 11

Theile et al.: Learning to Generate All Feasible Actions

TABLE 4: Grasping score and mode comparison.

JS* JS FKL* FKL RKL* RKL GAN* GAN ME* ME
Sc

or
e

H 97.60.0 93.90.1 95.60.5 89.90.6 93.81.6 89.51.3 83.35.9 81.36.1 96.60.3 95.80.5

T 98.20.6 96.20.6 97.10.4 93.50.1 96.11.4 93.21.3 84.85.7 82.85.3 96.70.1 95.80.7

8 93.01.2 88.41.4 89.51.0 84.50.7 87.34.3 83.74.6 58.97.8 57.37.9 86.61.1 87.22.6

Spoon 98.80.5 98.50.5 97.40.6 94.21.4 98.20.5 96.90.9 86.56.4 86.26.9 96.70.5 96.60.7

Box 70.34.3 70.44.0 63.62.4 62.92.1 49.913.5 48.412.7 22.63.3 22.44.0 46.81.0 52.616.0

Avg 91.60.8 89.50.7 88.60.3 85.00.1 85.13.9 82.33.7 67.25.2 66.05.4 84.70.1 85.63.6

M
od

e H 9.20.2 9.70.3 9.70.8 9.30.5 5.50.3 5.60.3 1.52.2 1.72.3 0.00.0 0.00.0

T 13.80.8 14.41.1 17.10.6 17.30.2 9.13.0 9.43.0 2.01.3 2.01.3 0.00.0 0.00.0

Box 9.51.2 10.20.9 9.10.7 9.50.7 4.42.2 4.42.0 0.10.1 0.10.1 0.00.0 0.00.0

Comparison on all shapes with the mean of the grasping success ratio in % on top and the least ranked mode in % on the
bottom, with the maximum deviations over the three runs in superscript.

TABLE 5: Grasping score and mode comparison under perspective distortions.

Normal Rotated Projected Rotated + Projected
JS* H H* JS* H H* JS* H H* JS* H H*

Sc
or
e

H 97.8 87.5 91.5 98.3 84.6 89.5 96.0 41.9 47.9 95.2 34.3 37.4

T 98.9 88.4 92.3 98.9 87.2 91.8 97.4 41.9 46.0 96.2 38.6 40.7

8 91.6 84.8 89.4 94.9 80.9 86.4 90.3 24.5 28.0 86.6 17.2 19.0

Spoon 99.4 89.0 93.0 98.9 88.0 92.2 98.3 43.5 46.1 97.1 38.0 40.9

Box 69.7 86.2 90.2 76.3 82.2 87.4 66.8 22.5 23.0 64.8 24.1 26.0

Avg 91.5 87.2 91.3 93.5 84.6 89.4 89.8 34.9 38.2 88.0 30.5 32.8

M
od

e H 9.5 9.2 9.8 10.6 8.5 8.1 9.9 1.3 0.7 9.8 0.2 0.0

T 13.8 17.9 18.5 12.8 16.5 15.5 8.2 1.6 0.9 8.8 0.4 0.2

Box 9.3 15.9 16.5 10.7 12.9 12.0 7.6 0.7 0.3 6.7 0.1 0.0

time varies significantly across different setups, with no clear
correlation to increases in dimensionality. Surprisingly, the
2D system described in Section V required more training
time than the 4D system in Section VI. While our results
do not show increased complexity with higher dimensions, we
anticipate that scalability to higher-dimensional action spaces
may still pose challenges. Nevertheless, adopting alternative
non-parametric density estimators from existing literature
could help mitigate these scalability concerns.
Given the proposed method for training the feasibility

policy from a feasibility model, the following steps will
focus on action mapping. We will test it in reinforcement
learning scenarios for which a feasibility model is known. A
potential problem could be that the rough transition between
disconnected sets of feasible actions makes deterministic
objective policies more challenging. An added regularizing
loss on smoothness could improve the transition, all be it
by likely reducing accuracy. Further, the approach is very
sensitive to the KDE bandwidth. We may need to adapt it
throughout training, learn it, or derive a better estimate based
on the Jacobian of the network.

REFERENCES
[1] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha,

‘‘The system-level simplex architecture for improved real-time embedded
system safety,’’ in 2009 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, pp. 99–107, IEEE, 2009.

[2] H. Bharadhwaj, A. Kumar, N. Rhinehart, S. Levine, F. Shkurti, and A. Garg,
‘‘Conservative safety critics for exploration,’’ in International Conference
on Learning Representations, 2021.

[3] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, ‘‘End-to-end
safe reinforcement learning through barrier functions for safety-critical

continuous control tasks,’’ in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, pp. 3387–3395, 2019.

[4] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu,
‘‘Safe reinforcement learning via shielding,’’ in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, 2018.

[5] S. Huang and S. Ontañón, ‘‘A closer look at invalid action masking in policy
gradient algorithms,’’ in The International FLAIRS Conference Proceedings,
vol. 35, 2022.

[6] H. Krasowski, X. Wang, and M. Althoff, ‘‘Safe reinforcement learning
for autonomous lane changing using set-based prediction,’’ in IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC),
2020.

[7] M. Theile, H. Bayerlein, M. Caccamo, and A. L. Sangiovanni-Vincentelli,
‘‘Learning to recharge: Uav coverage path planning through deep reinforce-
ment learning,’’ 2023.

[8] M. Nazari, A. Oroojlooy, L. Snyder, andM. Takác, ‘‘Reinforcement learning
for solving the vehicle routing problem,’’ Advances in Neural Information
Processing Systems, vol. 31, 2018.

[9] J. Garcıa and F. Fernández, ‘‘A comprehensive survey on safe reinforcement
learning,’’ Journal of Machine Learning Research, vol. 16, no. 1, pp. 1437–
1480, 2015.

[10] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, ‘‘A general safety framework for learning-based control
in uncertain robotic systems,’’ IEEE Transactions on Automatic Control,
vol. 64, no. 7, pp. 2737–2752, 2019.

[11] Z. Li, U. Kalabić, and T. Chu, ‘‘Safe reinforcement learning: Learning with
supervision using a constraint-admissible set,’’ in 2018 Annual American
Control Conference (ACC), pp. 6390–6395, 2018.

[12] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, ‘‘Safe exploration in continuous action spaces,’’ arXiv preprint
arXiv:1801.08757, 2018.

[13] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, ‘‘Control barrier functions: Theory and applications,’’ in 2019
18th European control conference (ECC), pp. 3420–3431, IEEE, 2019.

[14] L. Sha et al., ‘‘Using simplicity to control complexity,’’
[15] B. Zhong, A. Lavaei, H. Cao, M. Zamani, and M. Caccamo, ‘‘Safe-visor

architecture for sandboxing (ai-based) unverified controllers in stochastic
cyber–physical systems,’’ Nonlinear Analysis: Hybrid Systems, vol. 43,
p. 101110, 2021.

12 VOLUME 11, 2023

Theile et al.: Learning to Generate All Feasible Actions

[16] W. K. Hastings, ‘‘Monte Carlo sampling methods using Markov chains and
their applications,’’ Biometrika, vol. 57, pp. 97–109, 04 1970.

[17] A. E. Gelfand and A. F. Smith, ‘‘Sampling-based approaches to calculating
marginal densities,’’ Journal of the American statistical association, vol. 85,
no. 410, pp. 398–409, 1990.

[18] J. K. Kruschke, ‘‘Chapter 5 - bayes’ rule,’’ in Doing Bayesian Data Analysis
(Second Edition) (J. K. Kruschke, ed.), pp. 99–120, Boston: Academic Press,
second edition ed., 2015.

[19] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, ‘‘An introduction
to variational methods for graphical models,’’Machine Learning, vol. 37,
pp. 183–233, 01 1999.

[20] M. Wainwright and M. Jordan, ‘‘Graphical models, exponential families,
and variational inference,’’ Foundations and Trends in Machine Learning,
vol. 1, pp. 1–305, 01 2008.

[21] S. Nowozin, B. Cseke, and R. Tomioka, ‘‘f-gan: Training generative
neural samplers using variational divergence minimization,’’ in Advances in
Neural Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, eds.), vol. 29, Curran Associates, Inc., 2016.

[22] T. Hu, Z. Chen, H. Sun, J. Bai, M. Ye, and G. Cheng, ‘‘Stein neural sampler,’’
ArXiv, vol. abs/1810.03545, 2018.

[23] D. J. Rezende and S. Mohamed, ‘‘Variational inference with normalizing
flows,’’ in ICML, 2015.

[24] E. G. Tabak and C. V. Turner, ‘‘A family of nonparametric density estimation
algorithms,’’ Communications on Pure and Applied Mathematics, vol. 66,
2013.

[25] E. G. Tabak and E. Vanden-Eijnden, ‘‘Density estimation by dual ascent
of the log-likelihood,’’ Communications in Mathematical Sciences, vol. 8,
pp. 217–233, 2010.

[26] Z. Kong and K. Chaudhuri, ‘‘The expressive power of a class of normalizing
flow models,’’ in International conference on artificial intelligence and
statistics, pp. 3599–3609, PMLR, 2020.

[27] F. Koehler, V. Mehta, and A. Risteski, ‘‘Representational aspects of
depth and conditioning in normalizing flows,’’ in Proceedings of the 38th
International Conference on Machine Learning (M. Meila and T. Zhang,
eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 5628–
5636, PMLR, 18–24 Jul 2021.

[28] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,
E. Holly, M. Kalakrishnan, V. Vanhoucke, et al., ‘‘Scalable deep reinforce-
ment learning for vision-based robotic manipulation,’’ in Conference on
Robot Learning, pp. 651–673, PMLR, 2018.

[29] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, ‘‘A survey on
learning-based robotic grasping,’’ Current Robotics Reports, vol. 1, no. 4,
pp. 239–249, 2020.

[30] S. Kumra, S. Joshi, and F. Sahin, ‘‘Antipodal robotic grasping using genera-
tive residual convolutional neural network,’’ in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9626–9633, IEEE,
2020.

[31] D. Morrison, P. Corke, and J. Leitner, ‘‘Learning robust, real-time, reactive
robotic grasping,’’ The International journal of robotics research, vol. 39,
no. 2-3, pp. 183–201, 2020.

[32] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, ‘‘Tossingbot:
Learning to throw arbitrary objects with residual physics,’’ IEEE Transac-
tions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[33] F. Liese and I. Vajda, ‘‘On divergences and informations in statistics and
information theory,’’ IEEE Transactions on Information Theory, vol. 52,
no. 10, pp. 4394–4412, 2006.

[34] P. L’Ecuyer, ‘‘On the interchange of derivative and expectation for likelihood
ratio derivative estimators,’’Management Science, vol. 41, no. 4, pp. 738–
748, 1995.

[35] J. Kleijnen and R. Rubinstein, ‘‘Optimization and Sensitivity Analysis of
Computer Simulation Models by the Score Function Method,’’ Other publi-
cations TiSEM 958c9b9a-544f-48f3-a3d1-c, Tilburg University, School of
Economics and Management, 1996.

[36] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[38] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in International conference on machine learning, pp. 1861–1870,
PMLR, 2018.

[39] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial nets,’’ ArXiv,
vol. abs/1411.1784, 2014.

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, ‘‘TensorFlow: Large-scale machine learning on heterogeneous
systems,’’ 2015. Software available from tensorflow.org.

MIRCO THEILE received the M.Sc. degree in
electrical engineering and information technology
from Technical University of Munich, Germany,
in 2018, where he is currently pursuing a Ph.D.
degree. Currently, he is also a visiting researcher at
the University of California in Berkeley, USA. His
research interests extend to reinforcement learning
in applications of cyber-physical systems, including
UAVs, robotics, and real-time systems.

DANIELE BERNARDINI received his M.Sc. de-
gree in Theoretical Physics at the University of
Florence in 1997. After graduation, he spent 2 more
years as a researcher at the Ludwig Maximilians
University, Munich before transitioning to the in-
dustry, where he gained more than 20 years of
experience in software development and data sci-
ence. In 2021 he joined the Technical University of
Munich as research group leader where he focuses
on advancing perception for robotic manipulation.

Since 2021 he is a co-founder and CEO of Cognivix, a startup specializing in
automation solutions for industries requiring high variability and low volume
production.

RAPHAEL TRUMPP graduated with a M.Sc. de-
gree in mechanical engineering from the Technical
University of Munich in 2021, where he is currently
pursuing a Ph.D. in informatics. His research fo-
cuses on machine learning, especially combining
deep reinforcement learning with classical control
methods. He is interested in applying these to
interactive multi-agent scenarios like autonomous
racing and robotics.

CRISTINA PIAZZA received a B.Sc. in Biomedical
Engineering, a M.S. in Automation and Robotics
Engineering and a PhD degree in Robotics (summa
cum laude, 2019) from the University of Pisa
(Italy). She subsequently moved to Chicago (USA)
where she worked as a postdoctoral researcher at
Northwestern University. Since 2020, Prof. Piazza
is tenure track assistant professor at Technical
University of Munich

VOLUME 11, 2023 13

Theile et al.: Learning to Generate All Feasible Actions

MARCO CACCAMO earned his Ph.D. in computer
engineering from Scuola Superiore Sant’Anna
(Italy) in 2002. Shortly after graduation, he joined
University of Illinois at Urbana-Champaign as
assistant professor in Computer Science and was
promoted to full professor in 2014. Since 2018,
Prof. Caccamo has been appointed to the chair of
Cyber-Physical Systems in Production Engineering
at Technical University of Munich, Germany. In
2003, he was awarded an NSF CAREER Award.

He is a recipient of the Alexander von Humboldt Professorship and he is IEEE
Fellow.

ALBERTO L. SANGIOVANNI-VINCENTELLI is
the Edgar L. and Harold H. Buttner Chair of
Electrical Engineering and Computer Sciences at
the University of California, Berkeley. He was
a co-founder of Cadence and Synopsys, the two
leading companies in the area of Electronic Design
Automation. He is currently a Board member of 8
companies, including Cadence, and Chairman of
the Board of Quantum Motion, Innatera, Phoelex,
e4Life and Phononic Vibes. He is the recipient

of several academic honors, and research awards including the IEEE/RSE
Wolfson James Clerk Maxwell Medal “for groundbreaking contributions
that have had an exceptional impact on the development of electronics and
electrical engineering or related fields”, the BBVA Frontiers of Knowledge
Award in the Information and Communication Technologies category, the
Kaufmann Award for seminal contributions to EDA, the IEEE Darlington
Award, the EDAA lifetimeAchievement Award, and four Honorary Doctorates
from University of Aalborg, KTH, AGH and University of Rome, Tor Vergata.
He is an author of over 1000 papers, 17 books and 3 patents in the area
of design tools and methodologies, large scale systems, embedded systems,
hybrid systems, and AI.

14 VOLUME 11, 2023

Chapter 5. Reinforcement Learning for Real-world Control Challenges

126

Chapter 6

Reinforcement Learning for
Graph-based Task Scheduling

127

Chapter 6. Reinforcement Learning for Graph-based Task Scheduling

6.1 Latency-Aware Generation of Single-Rate DAGs from Multi-

Rate Task Sets

Reference

M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware generation
of single-rate dags from multi-rate task sets,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 226–238, IEEE, 2020
DOI: https://doi.org/10.1109/RTAS48715.2020.000-4

Abstract

Modern automotive and avionics embedded systems integrate several functionalities that
are subject to complex timing requirements. A typical application in these fields is
composed of sensing, computation, and actuation. The ever-increasing complexity of
heterogeneous sensors implies the adoption of multi-rate task models scheduled onto
parallel platforms. Aspects like freshness of data or first reaction to an event are
crucial for the performance of the system. The Directed Acyclic Graph (DAG) is a
suitable model to express the complexity and the parallelism of these tasks. However,
deriving age and reaction timing bounds is not trivial when DAG tasks have multiple
rates. In this paper, a method is proposed to convert a multi-rate DAG task-set with
timing constraints into a single-rate DAG that optimizes schedulability, age and reaction
latency, by inserting suitable synchronization constructs. An experimental evaluation
is presented for an autonomous driving benchmark, validating the proposed approach
against state-of-the-art solutions.

Contributions to this paper

• Shared conceptualization of expressing timing constraints through dummy and
synchronization nodes

• Shared implementation of the DAG generation methodology

• Share of paper writing

Copyright

© 2020 IEEE. Reprinted, with permission, from Micaela Verucchi, Mirco Theile, Marco
Caccamo, and Marko Bertogna, “Latency-Aware Generation of Single-Rate DAGs from
Multi-Rate Task Sets”, 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2020.

See Appendix A.9 for the reuse statement. The following shows the accepted version.

128

https://doi.org/10.1109/RTAS48715.2020.000-4

Latency-Aware Generation of Single-Rate DAGs
from Multi-Rate Task Sets

Micaela Verucchi∗†, Mirco Theile†, Marco Caccamo† and Marko Bertogna∗
∗University of Modena and Reggio Emilia, Italy
{micaela.verucchi, marko.bertogna}@unimore.it

†Technical University of Munich, Germany
{mirco.theile, mcaccamo}@tum.de

Abstract—Modern automotive and avionics embedded systems
integrate several functionalities that are subject to complex tim-
ing requirements. A typical application in these fields is composed
of sensing, computation, and actuation. The ever increasing
complexity of heterogeneous sensors implies the adoption of
multi-rate task models scheduled onto parallel platforms. Aspects
like freshness of data or first reaction to an event are crucial
for the performance of the system. The Directed Acyclic Graph
(DAG) is a suitable model to express the complexity and the
parallelism of these tasks. However, deriving age and reaction
timing bounds is not trivial when DAG tasks have multiple rates.
In this paper, a method is proposed to convert a multi-rate
DAG task-set with timing constraints into a single-rate DAG that
optimizes schedulability, age and reaction latency, by inserting
suitable synchronization constructs. An experimental evaluation
is presented for an autonomous driving benchmark, validating
the proposed approach against state-of-the-art solutions.

Index Terms—DAG, multi-rate, end-to-end latency, schedula-
bility.

I. INTRODUCTION

Modern automotive and avionics real-time embedded sys-
tems are composed of applications including sensors, control
algorithms and actuators to regulate the state of a system in its
environment within given timing constraints. Task chains are
commonly adopted to model a sequence of steps performed
along the control path. Complex data dependencies may exist
between task chains with different activation rates, making
it very hard to find reliable upper bounds on the end-to-end
latency of critical effect chains [1].

This problem is exacerbated by the adoption of even more
complex task models based on Directed Acyclic Graphs
(DAG) to capture the parallel activation of multiple jobs
executing on heterogeneous multi-core platforms. A recent
example in the automotive domain is given in the WATERS
industrial challenge [2], focusing on the minimization of the
end-to-end latency of critical effect chains of an autonomous
driving system involving several sensors. The application is
modeled in Figure 1, with three sensors providing input to
multiple task chains. Nodes represent tasks with different
activation periods, while edges represent the exchange of
data between tasks, forming effect chains. Reaction to input
stimuli and freshness of data are key factors to consider when
deploying the application on a selected computing platform.
Data age quantifies for how long an input data affects an
output of a task chain, i.e., it is the maximum delay between

GPS
T = 50
τ0

Lidar
T = 50
τ1

Camera
T = 25
τ5

Detection
T = 50
τ3

Fusion
T = 50
τ4

Localization
T = 50
τ2

EKF
T = 10
τ6

Planner
T = 10
τ7

Control
T = 10
τ8

cloud

cloud

occupancy grid

frame bbox

objects

gps pose

pose state steer,speed

Fig. 1: An example of high-utilization automotive application
with tasks at different periods.

a valid sensor input until the last output related to that input in
the chain. Data age constraints are commonly found in control
systems, where the age of the data can directly influence the
quality of the control. In the considered application, key effect
chains to optimize for data age are connected to the processing
of camera frames and LiDAR point clouds: the older the input,
the less precise is the localization of the ego vehicle and the
detection of obstacles.

Another key metric to optimize is the reaction latency,
a parameter that measures the reactivity of the system to
a change in the input. It is defined as the maximum delay
between a valid sensor input until the first output of the event
chain that reflects such an input. It measures how much time
it takes for a new event to propagate through a chain. In the
considered autonomous driving example, key reaction times to
optimize are the detection of an obstacle in the driving path,
and the related actuation on the steering and breaking system
to safely avoid it in due time.

The aim of this work is to consider such systems composed
of DAG tasks having multiple rates with given constraints on
age and reaction latencies. Starting from a high-level repre-
sentation, a method is presented to create a single-rate DAG
that fulfills the given restrictions, optimizing schedulability
and end-to-end delays. To do so, a set of DAG candidates
is generated and evaluated by a constrained cost function
designed to pick the best DAG meeting the given requirements.

The paper is organized as follows: in the next section, an
overview of the state-of-the-art is given before introducing
the system model of the proposed approach. In Section IV,
the mathematical basis of the following sections is derived.
Section V gives a detailed explanation of the conversion from
the multi-rate task set to the single-rate DAG. Section VI
focuses on the requirements: end-to-end latency, schedulability
and their evaluation. Finally, we conclude with an experimen-
tal part, in which the results of our framework are shown,
comparing them with other existing methods.

II. RELATED WORK

A. End-to-end latency

A task chain is a sequence of communicating tasks in which
every task receives data from its predecessor. In literature,
two types of task chains can be found: periodic chains and
event-driven chains [3]. In the former, each task is activated
independently at a given rate, and it communicates with its
successor by means of shared variables; in the latter, task exe-
cutions are triggered by an event issued from a preceding task.
The propagation delays of a task chain affect responsiveness,
performance and stability of an application.

We hereafter focus on the periodic model, which is the
most common in the automotive domain [1]. Di Natale et
al. [4] proposed a method to evaluate the worst-case latency of
mixed chains of real-time tasks and Controller Area Network
(CAN) messages. Zeng et al. [5], [6] computed the probability
distribution, via statistical analysis, of end-to-end latencies for
CAN message chains.

Feiertag et al. [7] were the first to define data age and
reaction time and to propose a framework to calculate end-to-
end latencies in automotive systems, where each task operates
according to the read-execute-write semantic, also known as
the implicit communication model of AUTOSAR [8].

Becker et al. presented in [9] [10] a method to compute
worst- and best-case data age for periodic tasks with implicit
deadlines using implicit, explicit and Logical Execution Time
(LET) communication models. The analysis is based on Read
Interval (RI) and Data Interval (DI), which respectively are the
interval in which a task can possibly read its input data in order
to complete its execution before the deadline, and the interval
for which the output data of a task can be available to the
successor task in the chain. Multiple Data Propagation Trees
(DPT) are constructed in order to compute the data age. A
method is also described to constrain the maximum latency by
inserting job-level dependencies. A tool, called MECHAniSer
[11], is presented to compute latency values for a given task
set. Regarding the LET model, Biondi et al. [12] and Martinez
et al. [13] addressed the problem of computing end-to-end
latency bounds on multi-cores, improving the results of Becker
et al. in [10]. Our paper does not focus on the LET model,
but it aims at deriving better latency bounds for the implicit
model.

There exist other works that aim at selecting the best
periods or deadlines to minimize data age in simpler task
models. In [14], this is done on a single core platform, without

considering task chains. In [15], the authors propose a method
to find the best period to bound data freshness of task chains,
assuming the task set given in input be already schedulable.
Adapting these solutions to our setting is not trivial, because
we assume periods and deadline to be given.

B. Multi-rate DAG

In [16], Saito et al. present a framework developed for
the Robot Operating System (ROS) to handle automotive
applications with multi-rate tasks. The model assumes an
event-driven data-flow system in which a node starts when the
predecessor nodes are completed. In order to handle multi-rate
tasks, a synchronization system is adopted consisting of two
kinds of additional nodes: synch driver nodes and synch nodes.
The synch driver node is used to adjust the publishing period
of the sensors, buffering the data of the highest rate one, in
order to have a node with a unique rate for all the sensors.
Synch nodes are then inserted before the tasks to handle
buffered data. In this way, a single-rate DAG is obtained and
scheduled using a fixed-priority algorithm based on the HLBS
scheduler [17].

Forget et al. [18] faced the same problem for autopilot
applications, considering periodic tasks modeled as nodes
in a DAG with two kinds of edges: simple and extended.
Simple edges are precedence constraints between tasks having
the same rate, while extended edges are data dependencies
between tasks having different rates. To handle extended
edges, a method is proposed to generate multiple conversions
from extended edges through simple precedence constraints
between jobs, selecting a permutation that guarantees Earliest
Deadline First (EDF) schedulability.

Another conversion method from a multi-rate DAG to a
single-rate one has been proposed by Saidi et al. in [19] for
a similar DAG model. The output DAG has a period equal to
the hyper-period of the input task set. The nodes are the job
instances activated in a hyper-period for each task. Edges are
precedence constraints between jobs, which are inserted based
on the ratio between the periods of the communicating tasks.
A multi-core heuristic is proposed to schedule the DAG, while
minimizing a cost function related to task schedulability.

Converting the original task set to a DAG is a very
convenient approach that allows seamlessly inserting explicit
precedence constraints to control end-to-end latency. To our
knowledge, most of the other methods in the literature perform
similar conversions to impose such precedence constraints for
limiting latency. While the work of Becker [9] may appear
different, as it does not explicitly consider DAGs, it ends
up implementing a similar approach by inserting precedence
constraints between different jobs. In Section VII, we will
highlight the differences between the presented methods and
our approach.

III. SYSTEM MODEL

This work shows how to convert a Multi-Rate Task set with
Constraints into a Single-Rate Directed Acyclic Graph (DAG),

in order to analyze schedulability and end-to-end latency of
task-chains.

A. Multi-Rate Task set with Constraints

The input to the proposed method is a task set Γ, modeling
an application like the one in Figure 1, composed of N
periodic tasks τx arriving at time t = 0. Each task τx is
described by the tuple (WCx, BCx, Tx, Dx), where:

• WCx ∈ R is the Worst Case Execution Time (WCET)
of the task;

• BCx ∈ R is the Best Case Execution Time (BCET);
• Tx ∈ N is the period;
• Dx ∈ R represents the relative deadline.
The exchange of data between two tasks is modeled with as

data edge, a directed (dashed) edge between the producer and
the consumer of the data. Moreover, precedence constraints
may be specified between two tasks (τx, τy), stating that a
job τy,b cannot start until all the jobs of τx released in τy’s
period completed their execution. For this reason, precedence
constraints can be inserted only between tasks having the same
period, corresponding to job level precedence constraints.

To constrain the latency of data propagation in task-chains,
upper bounds on data age and on reaction time can be given.
The latency constraints evaluation is described in more detail
in Section VI.

Our approach is based on a global non-preemptive list
scheduling approach, as described in Section VI-B. Such a
policy allows different instances of the same task to run on
different cores, while preventing a job to be migrated during
its execution, mitigating the preemption overhead.

B. Directed Acyclic Graph

The output of the proposed method is a single-rate Directed
Acyclic Graph (DAG). Such a model is based on the parallel
DAG model proposed by Baruah in [20] to capture the
parallelism of a task to be scheduled on a multi-core platform.
In this model, tasks are represented as directed acyclic graphs,
each with a unique source vertex and a unique sink vertex.
Each vertex represents a sequential job, while edges represent
precedence constraints between jobs.

In this work, we use a similar model with a semantic
difference, i.e., a DAG represents a full application, with each
vertex representing a task instance, which we call job. In detail,
the DAG is specified by a 3-tuple (V,E,HP) where:

• V represents the set of nodes, namely the jobs of the
tasks of Γ, and n = |V |;

• E is the set of edges describing job-level precedence
constraints;

• HP is the period of the DAG, namely the hyper-period
of the tasks involved: HP = lcm∀τx∈Γ{Tx}.

In this model, the communication between jobs utilizes
buffers in shared memory, which can be accessed by all the
cores. The time to write/read a shared buffer is included
in the execution time of each task. We adopt the implicit
communication model defined in AUTOSAR [8], solving
mutual exclusion via double-buffering. Each task complies

with a read-execute-write semantic, i.e., it reads a private copy
before the execution, and it writes a private copy at the end
of the execution [1].

C. Notation

For the sake of clarity, a standardized set of indexing names
is adopted throughout the entire paper, i.e., {i, j, k} denote
general nodes in a DAG (jobs, synchronization or dummy
nodes), {x, y, z} indicate tasks, and {a, b, c} are used for jobs.

IV. BACKGROUND

This part describes the main algorithms used in the fol-
lowing sections. A DAG is represented as an adjacency
matrix T ∈ Bn×n, in which Ti,j = 1 iff there exists an
edge e(vj , vi)1. Given this Boolean formulation of the DAG,
Boolean algebra can be applied. Therefore, the Boolean matrix
product is defined as:

C = AB, A ∈ Bn×m,B ∈ Bm×n,C ∈ Bn×n (1)

for which the cells of C evaluate to

ci,j =
m−1∨

k=0

ai,k ∧ bk,j (2)

Cell-wise Boolean operations are denoted as ∧ and ∨ for and
and or, respectively. Additionally, a maximum matrix multi-
plication is used in this work to combine Boolean matrices
with real matrices. It is defined as

C = maxProduct(A,B), (3)
A ∈ Bn×m,B ∈ Rm×n,C ∈ Rn×n

where the cells of C are calculated as

ci,j = max
k∈{0,...,m−1}

{ai,kbk,j}. (4)

A. Transitive Closure

The proposed scheduling method and the related end-to-end
latency computation make use of the mathematical principles
of graph theory [21]. One principle is the transitive closure
[22] of a DAG, defined as

D =
n∨

k=1

Tk (5)

where the exponentiation of a Boolean matrix is calculated
through the Boolean matrix product defined in (1). The tran-
sitive closure of a DAG describes the set of descendants of
each node, where di,j = 1 if there exists a path from vj to vi,
i.e., vi is a descendant of vj . Consequently, vj is an ascendant
of vi. The transpose of the descendants matrix, DT, therefore
represents the ascendants matrix.

Computing the power of k of an adjacency matrix of a graph
means calculating the nodes reachable through any k-step walk
from every node vi, which is a general result in graph theory

1We chose the column-row approach over the commonly used row-column
approach to perform state and value propagation, described later in this
section, by left-multiplying the transition matrix to a column state vector.

(Lemma 2.5 in [21]). Instead of computing the descendants
matrix via (5), we can adopt a simpler formulation. By
introducing a self-loop to every node, the power of k of
the adjacency matrix calculates not only the reachable nodes
of any k-step walk, but it also includes the reachable nodes
through all shorter walks. Therefore,

D = (T ∨ I)n ∧ ¬I (6)

where I ∈ Bn×n is the identity matrix, and ¬I is the Boolean
complement of I. Given that T is an acyclic transition matrix,
Tk has no element on the main diagonal ∀k ∈ N>0. Therefore,
the elements introduced on the main diagonal are set back to
zero.

B. State and Value Propagation

To use the DAG matrix T for the analysis of a DAG, two
propagation methods are useful. The first is a Boolean state
propagation and the second is a maximum value propagation.
Let xk ∈ Bn×1 denote a state describing which node of the
DAG is visited at iteration k. Then, the state of the DAG in
iteration k + 1 can be calculated using the Boolean matrix
multiplication as:

xk+1 = Txk (7)

In this way xk+1 will contain 1 for the nodes that are reached
with one step-walk from the ones in state xk, 0 for the others.

Similarly, a value can be propagated through the DAG. Let
vk ∈ Rn×1 denote a value for each node of the DAG at
iteration k. This value can be propagated through the paths of
the DAG by using

vk+1 = maxProduct(T,vk), (8)

where the vector vk+1 describes the value vk in the next
iteration.

In this work, we are interested in propagating execution
times along the DAG. Given that in a DAG more paths can
converge to the same node, we will propagate the maximum
value among converging paths. In the case of propagating
execution times through the DAG, we can define a value
function v as

v = maxProduct(T,v + c), (9)

with c being the execution time of each node (WC or BC).
In this equation, the value of a node is equal to the maximum
of its predecessors’ values plus its execution time. The fixed-
point v∗ solving Equation (9) can be found by iterating

vk+1 = maxProduct(T,vk + c) (10)

until it converges to v∗ when vk+1 = vk. Convergence is
guaranteed to happen after at most n iterations, because the
graph is acyclic and, therefore, all its paths are composed of
n or fewer nodes.

τ0

T0 = 10

τ1

T1 = 30

τ2

T2 = 30

data data

Fig. 2: The simple task set defined in Example 1.

S Eτ0,0 τ0,1 τ0,2

τ1,0

τ2,0

(a) Replication

S Eτ0,0 τ0,1 τ0,2

τ1,0

τ2,0

s10 s20

d0 d1 d2

(b) Synchronization

S Eτ0,0 τ0,1 τ0,2

τ1,0

τ2,0

s10 s20

d0 d1 d2

(c) Permutation

S Eτ0,0 τ0,1 τ0,2

τ1,0

τ2,0

s10 s20

d0 d1 d2

(d) Reduction

Fig. 3: The 4-Stage DAG generation depicted.

V. DAG GENERATION

In this section, we explain how to convert a task set of
periodic tasks with constraints to a set of potential single-
rate DAGs. The explanation and mathematical derivations are
augmented with an example to illustrate the conversion.

Example 1. We consider an application modeled as a
Multi-Rate task set Γ = {τ0 = (7, 5, 10, 10), τ1 =
(13, 10, 30, 30), τ2 = (10, 8, 30, 30)}, with a constraint on the
maximum data age of chain {τ0, τ1, τ2} to be smaller than 50.
The Multi-Rate task set is represented in Figure 2.

A set of DAGs is generated using a 4-Stage DAG Genera-
tion. The set is subsequently pruned to accelerate the analysis
in the next sections.

A. 4-Stage DAG Generation

We aim at generating a set of DAGs that have the potential
to meet all the constraints. The DAG generation can be split
into four stages:

1) The respective jobs of the tasks are created.
2) The jobs are synchronized to meet their respective

deadlines.
3) The job-level precedence edges are added to address the

data edges.
4) The DAGs are simplified by removing redundant edges.

The four steps for the example are depicted in Figure 3. We
hereafter detail each step.

0 3 6 9 12 15

0 5 10 15

τi,0 τi,1 τi,2 τi,4 τi,5

τj,0 τj,1 τj,2

Fig. 4: Example of jobs of non-harmonic tasks limited to their
super-period. Doubled arches indicate possible interaction
between jobs.

1) Replication: Each task has to execute a number of jobs
within one hyper-period. For a task τx, the number of jobs is
HP
Tx

. Since jobs are just instances of the same task, they should
always run sequentially, therefore job-level precedence edges
are added between successive jobs τx,a and τx,a+1 where a ∈
{0, . . . , HPTx

− 1}. Additionally, the start node of the DAG is
connected to each first job of each task, and each last job is
connected to the end node. The resulting DAG for the example
is shown in Figure 3a. To synchronize the jobs in the following
step, each job gets an offset and deadline. For τx,a, the offset
is aTx and the deadline is aTx +Dx.

2) Synchronization: To be sure that tasks instances maintain
their original period and deadlines in the DAG, a synchronisa-
tion mechanism has to be applied. In this way, we can enforce
a job to start after its offset and to finish before its deadline. To
accomplish this, we add additional nodes for synchronization
purposes, as in Figure 3b. Firstly, we add a synchronization
node σt, with WC = BC = 0, for each unique value
t in the list of offsets and deadlines of all jobs. Secondly,
we add dummy nodes δ between each two consecutive syn-
chronization nodes σt and σt′ , with WC = BC = t′ − t,
i.e., the difference in the timestamps of the corresponding
synchronization nodes. The source and sink of the DAG are
synchronization nodes too, with a timestamp of 0 and HP ,
respectively.

To enforce the jobs to execute in a time-window within
its offset and deadline, an edge to the job is added from the
synchronization node of the corresponding offset, and another
one from the job to the synchronization node corresponding
to its deadline.

3) Permutation: The various instances of tasks with differ-
ent periods may be scheduled in multiple ways. We would like
to enforce a suitable execution order between such instances,
in order to minimize the latency of a given set of task chains.
Thus, we convert the original multi-rate task set into several
single-rate DAGs, each representing a possible activation pat-
tern of the considered tasks. To do so, we include additional
precedence edges to the DAG obtained at the previous step.

Consider two tasks τx and τy with periods Tx and Ty ,
assuming Ty ≥ Tx without loss of generality. Let SPx,y be the
super-period of tasks τx and τy , defined as the least common
multiple of their periods, i.e., SPx,y = lcm(Tx, Ty). Note
there are HP

SPx,y
− 1 super-periods in the hyper-period HP of

the whole task set.
There exist multiple ways to insert precedence edges be-

tween jobs of τx and τy in each super-period of length SPx,y .

S Eτ0,0 τ0,1 τ0,2

τ1,0

(a) A0,1 = (0, 2, 1)

S Eτ0,0 τ0,1 τ0,2

τ1,0

(b) A0,1 = (1, 1, 1)

S Eτ0,0 τ0,1 τ0,2

τ1,0

(c) A0,1 = (2, 0, 1)

Fig. 5: Arrangement permutations with one parallel job of τx;
there are three permutations because Q = 3 and ψ0 = 1,
therefore Q+ 1− ψ = 3. The permutation (b) corresponds to
the example in 3c.

Each possible edge assignment that complies with the multi-
rate task specification is called “job arrangement”.

To find all the possible permutations, two cases must be
considered: harmonic and non-harmonic periods. In the former
case, there exists q ∈ N for which q =

Ty

Tx
and SPx,y = Ty .

Therefore, finding all the permutations between one job of
τy and q of τx allows finding all the job arrangements in
their super-period. The non-harmonic case is slightly more
complicated. For two non-harmonic tasks, q ∈ N can be
computed as q = ⌈Ty

Tx
⌉, but SPx,y ̸= Ty . In this case, one

job of τy can be arranged with q or q+ 1 jobs of τx, because
of the non-harmonicity. To better understand the problem, let
us consider an example in which Tx = 3 and Ty = 5, as in
Figure 4.

When periods are harmonic, a job of τx always interact
with exactly one job of τy (and respectively, τy interacts with
exactly q jobs of τy) . However, for non-harmonic periods,
a job of τx can interact with 1 or 2 (at most) jobs of τy ,
as shown in Figure 4. For this reason, in the non-harmonic
scenario some jobs of τy will interact with q (in the example
⌈ 53⌉ = 2, as for τy,0 and τy,2) jobs of τx, while others with
q + 1 (in this case 3, as for τy,1). In general, a job τy,a can
interact with all the jobs between τx,b and τx,c, where b and
c can be obtained as:

b ∈ N | o(τx,b) ≤ o(τy,a) ∧ o(τx,b) + Tx > o(τy,a) (11)

c ∈ N | o(τx,c) < o(τy,a) + Ty ∧ o(τx,c) + Tx ≥ o(τy,a) + Ty
(12)

where o(τx,b) stands for the offset of the job τx,b.
Once the interacting job of τx and τy have been associated,

this case can be traced back to the harmonic one.
Now, let us consider a job τy,s and all the possible arrange-

ments with Q jobs of τx (which is either q or q+ 1), denoted
as Ax,y(s) = (pres, posts, ψs) in the super-period SPx,y . In
this tuple, pres (resp. posts) denotes the number of jobs of τx
executing before (resp. after) each job of τy . ψs denotes the
number of jobs of τx that can execute in parallel to the job of
τy . This parameter is critical for the data update variability,
that is defined as the difference between the maximum and
minimum number of data updates. Since pres, posts, and ψs
comprise all the jobs of τx interacting with τy,s, it follows that

pres + posts + ψs = Q. (13)

Three example arrangements for two tasks, τ0 with T0 = 10
and τ1 with T1 = 30, are shown in Figure 5. In all three
arrangements, the job of τ1 is parallel to one job of τ0 (ψ0 =

1). The number of permutations of arrangements with each
τy,s can be calculated as:

perm(Ax,y(s)) =
∑

ψ={0...Q}
(Q+ 1− ψ), (14)

while the permutations can be found combining all the possible
edges between the jobs of the two tasks.

For the harmonic case, this value is also the total number
of permutations of a super-period:

permSPx,y = perm(Ax,y(s)). (15)

On the other hand, for the non-harmonic case, the number of
permutations for the super-period is obtained as:

permSPx,y =
∏

∀τy,s∈{0...SPx,y
Ty

}

perm(Ax,y(s)). (16)

Finally, considering all the super-periods contained in a
hyper-period, the total number of permutations can be given
by:

permtotal =
∏

∀x,y
perm

HP
SPx,y

SPx,y
, (17)

where x ̸= y and τx and τy are consecutive tasks in a given
task chain. Each combination of arrangement permutations
generates a new DAG that can be analyzed. Therefore, it is
critical to keep the number of possible permutations as small
as possible. A reduction of the exploration space is discussed
in Section V-B.

Figure 3c shows one of the obtained DAG, whose sim-
plified2 adjacency matrix T and transitive closure matrix D
(obtained with (6)) are the following:

T =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E




0 1 0 0 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0




D =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E




0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 1 1 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0




4) Reduction: While constructing the DAGs, it is possible
to end up generating redundant edges. There is a redundant
edge between two nodes when there exist both a direct edge
and a non-direct path. Redundant edges can be removed using
a technique called transitive reduction, firstly proposed by Aho
et al. in [23]. The transitive reduction of a DAG uniquely
describes the sub-graph of this DAG with the fewest possible
edges, while maintaining the same reachability relation.

The transitive reduction of a DAG can be calculated in
different ways. Since in this work we need the transitive
reduction as well as the transitive closure of the DAG, we
compute the transitive reduction using

Tr = T ∧ ¬(T ·D), (18)

where (T ·D) has 1 in (j, i) if the node j can reach the node
i in more than one step, 0 otherwise. Applying equation (18)

2Without synchronization and dummy nodes, removed for a clearer repre-
sentation, but used in the actual algorithm.

means removing direct edges e(vj , vi) in T that are redundant
because a non-direct path already exists between node j and
node i.

In Figure 3d, the obtained DAG with reduced edges is
presented. For that example, the matrix T·D and Tr (obtained
with (18)) are the following3:

T ·D =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E




0 0 1 1 1 1 1
0 0 0 1 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0




Tr =

S
τ0,0
τ0,1
τ0,2
τ1,0
τ2,0
E




0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0




The interaction of the different data edges during the
Permutation stage can result in DAGs that are inherently not
schedulable. These DAGs can be removed to speed up the
analysis. Then, two factors are further inspected: potential
cycles in the generated DAG, and length of the longest chain.

DAGs containing cycles need to be removed, as they are
inconsistent with the task semantics and they could not be
feasibly scheduled. Finding cycles in a graph is a common
problem which can be solved with several approaches. In this
work, we use state propagation, described in Section IV-B.
We adopt a state vector x, whose elements indicate whether
a path exists (1) or not (0). Initially, x0 = 1 to consider
the potential paths from all the nodes. Then, we apply state
propagation in Equation (7), multiplying the state vector with
the adjacency matrix T. This means stepping from a node to
its successor: if it has any, the resulting vector will have a
1 in the corresponding position, otherwise it will have a 0.
Repeating this operation means going through all the possible
paths. Since the graph is acyclic and it has n nodes, there
should be no path with a length greater than n. In other words,
the resulting vector should have all 0’s after at most n steps,
indicating that all the paths have ended, i.e., there are no more
nodes to step into. If this is not the case, it means the DAG
contains cycles, and it can be discarded.

Finally, the longest chain in the DAG corresponds to the
chain with the longest execution time. This chain can be
explicitly found by calculating the fixed-point of (9) with
c = WC, the WCET of each node. If any value in v∗ +WC
is bigger than the hyper-period HP , it means that there
exists a path whose sum of WCETs exceeds the hyper-period,
which makes the DAG not schedulable. Also these DAGs are
discarded.

In the example, the vectors of WC and v∗ are the follow-
ing:

WC =




0
7
7
7
10
13
0




v∗ =




30
23
7
0
10
0
0




3Given the previously mentioned simplification, consecutive jobs of the
same task have precedence constraints between them, rather than having edges
to and from synchronization nodes. In the example, there is an edge from τ0,0
to τ0,1 and one from τ0,1 to τ0,2.

SPs SPs+1

τi,0 τi,1 τi,2

τj,0

τi,0 τi,1 τi,2

τj,0

(a) Heterogeneous arrangement example with Ax,y(s) = (0, 2, 1)
and Ax,y(s+ 1) = (2, 1, 0)

SPs SPs+1

τi,0 τi,1 τi,2

τj,0

τi,0 τi,1 τi,2

τj,0

(b) Homogeneous arrangement example with Ax,y(s) = Ax,y(s +
1) = (0, 2, 1)

Fig. 6: Examples showing heterogeneous and homogeneous
arrangements.

B. Permutation Space Reduction

The worst-case number of permutations, and thus the total
number of DAGs created, is given in (17), i.e., it is scaling
exponentially with the size of the task set. Therefore, a
reduction of the permutation space is essential to keep the
approach computationally tractable for larger task sets. To
reduce the permutation space, we inspect the inter-super-
period-arrangement.

Given the previously adopted tasks τ0 and τ1, Figure 6
shows two possible arrangements, omitting synchronization
nodes for simplicity.

Let us consider a couple of harmonic tasks τx, a τy in
their super-period SPx,y . For a given parallelism ψs, relative
to job τy,s, the execution order of the parallel jobs is not
defined. Therefore, a bounded number of jobs of τx, denoted
as prePars ∈ {0, . . . , ψs}, can execute before τy,s. Conse-
quently ψs − prePars jobs of τx will execute after τy,s. The
probability distribution of prePars is not relevant since the
only values that affect the latency variability are, by definition,
the extremes, i.e.,

max(prePars) = ψs and min(prePars) = 0 (19)

Based on these definitions, the number of jobs of τx between
two consecutive jobs τy,s and τy,s+1 (in the following super-
period) is given by

ns,s+1 = posts+(ψs−prePars)+pres+1+prePars+1 (20)

The upper and lower bound of this value are given by

max(ns,s+1) = posts + ψs + pres+1 + ψs+1 (21)
min(ns,s+1) = posts + pres+1 (22)

The variability of the data updates, i.e., the difference
between the maximum and the minimum data updates in
between, can be formalized as:

V arx,y = max
s
{max(ns,s+1)} −min

t
{min(nt,t+1)}, (23)

using t in the minimum to highlight that the maximum
and minimum do not need to consider the same job of τy ,

and thus the same arrangement. However, in a homogeneous
arrangement, Ax,y(s) = Ax,y(s + 1) = (pre, post, ψ) and
s = t. Therefore,

V arx,y,hom = 2ψs (24)

Comparing to heterogeneous arrangements, in which
Ax,y(s) ̸= Ax,y(s + 1),∀s, two observations can be made.
On the one hand, a higher value of ψs for a job τy,s increases
schedulability of the related super-period, since it allows
for more parallelism and shortens the longest path. Given
that the schedulability of all the super-periods determines
the schedulability of the hyper-period, the value of ψs is
crucial. On the other hand, from an application side, the data
update variability should be as low as possible to constrain
end-to-end latency.

To reduce the permutation space while investigating all
the permutations that optimize latency, we chose to sacrifice
optimality w.r.t. schedulability. Homogeneous arrangements
are better at this compromise. To show it, we prove that

V arx,y,het > V arx,y,hom (25)

Proposition: Given two tasks τx and τy with periods
gTx = Ty, hTy = HP, g, h ∈ N+, a heterogeneous
arrangement results in a strictly higher variability than a
homogeneous arrangement.

Proof: In a heterogeneous arrangement, Ax,y(s) ̸=
Ax,y(s + 1), which means that (pres, posts, ψs) ̸=
(pres+1, posts+1, ψs+1). Let us define αs ∈ Z (resp.
βs ∈ Z) as the difference between the jobs of τx that execute
before (resp. after) τy,s+1 and the jobs of τx that execute
before (resp. after) τy,s4

αs = pres+1 − pres (26)
βs = posts+1 − posts (27)

Consequently, considering that pres+posts+ψs = pres+1 +
posts+1 + ψs+1 = Q, we derive

ψs+1 = ψs − αs − βs (28)

With this definition, Equation (20) provides

ns,s+1 = posts + (ψs − prePars) + pres+1 + prePars+1

ns,s+1 = posts + (ψs − prePars) + pres + αs + prePars+1

= Q+ αs − prePars + prePars+1.

Then,

max(ns,s+1) = Q+ αs + ψs+1

= Q+ ψs − βs
min(ns,s+1) = Q+ αs − ψs

4Remember that there is only one job of τy,s in each super-period SPx,y .
Therefore, τy,s+1 refers to the next super-period.

The variability in Equation (23) can then be simplified to

V arx,y,het = max
s
{max(ns,s+1)} −min

t
{min(nt,t+1)}

= max
s
{ψs − βs} −min

t
{αt − ψt}

= max
s
{ψs − βs}+ max

t
{ψt − αt}

= 2ψs + max
s
{−βs}+ max

t
{−αt}.

As the full arrangement is the same in each hyper-period,
the super-period arrangement is cyclic. Since αs and βs denote
the change of the arrangement, the cyclicity of A requires

∑

s∈{0,...,HP
Ty

}
αs =

∑

s∈{0,...,HP
Ty

}
βs = 0. (29)

Therefore, ∃αs < 0 and ∃βs < 0 such that

V arx,y,het > 2ψs (30)

Since V arx,y,het > 2ψs, it then follows
V arx,y,het > V arx,y,hom, proving the proposition.

We can therefore omit heterogeneous arrangements without
affecting the resulting end-to-end latency, since no such ar-
rangement can provide a better compromise with respect to
variability. By discarding the heterogeneous arrangements in
the permutations, the value of permtotal in (17) can be reduced
to

permtotal =
∏

∀x,y
permSPx,y

, (31)

where x ̸= y and τx and τy are consecutive tasks in a given
task chain, and the full hyper-period arrangement is defined
by a unique super-period arrangement. This is valid both for
harmonic and non-harmonic tasks.

C. Computational Complexity

The computational cost of the overall method can be sum-
marized as O(permψ × permA × n4). The first term permψ

represents all the permutations for all the possible ψ values.
From (31), it can be expressed as

permψ =
∏

(ex,ey)∈E

max(Tx, Ty)

min(Tx, Ty)
. (32)

The second term permA represents all the arrangement per-
mutations for a fixed ψ. From (14), it can be expressed as

permA =
∏

(ex,ey)∈E

(max(Tx, Ty)

min(Tx, Ty)
− ψ + 1

)
. (33)

Lastly, O(n4) is the maximum cost of all the math opera-
tions applied on the obtained DAGs, which are matrix-vector
multiplication O(n2), matrix multiplication O(n3) and matrix
exponentiation O(n4). Let us define R as the maximum ratio
between periods of the taskset, i.e., R = max(Tx)

min(Ty)
∀x, y ∈

{0 . . . N −1}. The computational cost of the method can then
be expressed as:

O(R|E|R|E|(RN)4) = O(R2|E|(RN)4). (34)

job EST LST EFT LFT
τ0,0 0 0 5 7
τ0,1 10 13 15 20
τ0,2 20 23 25 30
τ1,0 5 7 15 20
τ2,0 15 20 23 30

TABLE I: Timing attribute for the for Example 1.

The complexity is thus exponential in the number of edges
|E|. Such a high cost is mainly determined by the need to
take into account all the permutations at once. However, this
is also the reason why the proposed conversion method allows
better controlling end-to-end latencies, jointly optimizing data
and reaction times of all the task chains given in input. This
is achieved by picking up the best configuration out of all the
permutations generated by means of a cost function.

VI. END-TO-END LATENCY AND SCHEDULABILITY

In this section, a method to calculate an upper bound on
data age and reaction time is proposed. As explained in
the introduction, data age defines the maximum time a data
produced by the first task of the chain can influence the
last one. Reaction time is the maximum interval between the
acquisition of a stimulus in the first task of a chain and the
moment the first instance of the last task in the chain reacts
to it.

We first define a set of additional timing attributes, that will
be used to compute the end-to-end latency. The schedulability
of the DAG is verified by deriving a static schedule. If more
than one generated DAG meets the latency and schedulability
constraints, we select the DAG that maximizes a weighted sum
of the end-to-end latencies, taking into account all the tasks
chains in input.

For each job, we define the following timing attributes:
Earliest Finishing Time (EFT), Latest Finishing Time (LFT),
Earliest Starting Time (EST) and Latest Starting Time (LST).
The earliest a node can start is the maximum of all its
predecessors’ earliest finishing times. Similarly, the latest a
node can finish is the minimum of its successors’ latest starting
times. These values can be iteratively calculated using the
operators defined in Section IV, initializing ESTj = 0 and
EFTj = HP for all nodes j:

ESTi = max
∀j
{(ESTj +BCj)Tj,i}

LFTi = min
∀j
{(LFTj −WCj)Ti,j}

EFTi = ESTi +BCi

LSTi = LFTi −WCi.

Table I reports the timing attributes computed for Example 1.

A. Task Chain Propagation

In a DAG G, a node j is defined to react to node i if there
exists a direct or indirect edge from node i to node j. A node
k reacting to node j also reacts to node i. Further, a node k
reacts to the chain (i, j) if node j reacts to node i and node
k reacts to node j.

Extending this definition to tasks and jobs:
• τy,b reacts to τy,a,∀b > a;
• Consequently, if τy,a reacts to τx,c, it follows that τy,b

reacts to τx,c.
Given a task chain (τx, . . . , τz), the reactions of jobs of task
τz to each job of τx can be found. Consider a job τx,a of the
first task in the chain. The first (resp. last) reaction to τx,a is
defined as the first (resp. last) job of the last task τz that reacts
to τx,a. The reaction time (resp. data age) is then defined as
the maximum interval between a stimulus in a job τx,a and
the finishing time of the first (resp. last) reaction, taken over
all instances τx,a, for all a ∈ [0, HPTx

]. Since the structure of
the DAG repeats after each hyper-period, it is sufficient to
consider only the first hyper-period.

Algorithm 1: findReactions
Input: C = {τstart, ..., τend}
Output: 1streactions, lastreactions

1 forall a ∈ {0, . . . , HP
Tstart

+ 1} do
2 fr job = τstart,a;
3 lr job = null;
4 forall τx ∈ C \ τstart do
5 b = 0;
6 while τx,b does not react to fr job do
7 b++;

8 fr job = τx,b;
9 if b > 0 then

10 lr job = τx,b−1;

11 if a ≤ HP
Tstart

then
12 1streactions.insert(τstart,a, fr job);

13 if (b ̸= null) and (a > 0) and
(1streactions(τstart,a−1) ̸= fr job) then

14 lastreactions.insert(τstart,a−1, lr job);

15 return 1streactions, lastreactions;

A method to compute the first and last reactions is shown in
Algorithm 1. The algorithm considers every job of the starting
task of the chain in one hyper-period, plus an additional job (to
cover the last reactions). The first reacting job (fr job) is set
to τstart,a. Then, for each task in the chain, we find the first job
τx,b that reacts to fr job, and we use it to update fr job. This
can happen either in the same hyper-period of fr job, or in the
next one. The preceding job τx,b−1 is instead used to update
lr job, which keeps track of the last reaction to τstart,a−1.
Once the whole chain has been considered, 1streactions and
lastreactions are updated. The latter is updated only if b is
not null and if the first reaction to τstart,a is different from
the first reaction to τstart,a−1. Reaction time and data age can
then be simply derived as

RT = max
τx,a∈1streactions

{LFT1streactions − ESTτx,a
} (35)

DA = max
τx,a∈lastreactions

{LFTlastreaction − ESTτx,a}, (36)

i.e., reaction time (resp. data age) is the difference between
the first (resp. last) moment some data is used by a job of the
last task in the chain (LFT) and the first moment the same
data is read from the job of the first task in the chain (EST).
Since the schedule repeats identically after each hyper-period,
it is sufficient to consider all the jobs of the first task in the
first hyper-period.

We hereafter prove that Algorithm 1 correctly finds the first
and last reactions. The algorithm considers all the jobs of the
starting task in the chain (line 1). For each of the starting jobs,
it iterates over all the other tasks in the chain, always looking
for the first and last reacting job (lines 4-14). Let us consider
two consecutive tasks in the chain τx and τy and only one job
a of τx.

• To find the maximum reaction time, the jobs of τy that are
said to react to τx,a are those that are definitely executing
after τx,a, i.e., they belong to τx,a’s descendants, or their
EST is greater than the LFT of τx,a. Since the DAG is
schedulable, a reacting job can always be found (and the
loop at line 6 is not infinite) either in the same hyper-
period of τx,a, or in the next one. Once a job τx,b is found
to react to τx,a, it becomes the starting job to find the first
reaction between τy and the next task in the chain.

• The maximum data age of τx,a is strictly related to the
first reaction to τx,a+1. Indeed, the first reaction to τx,a+1

assures that the data from τx,a are no longer used: the
last time they were used was by the job preceding the
one that surely reacts to τx,a+1. Thus, when finding the
first reaction τx,a+1, the last reaction of τx,a can be found
(line 14).

In the example DAG in Figure 3d, data age is 30, while
reaction time is 50. The chains leading to these values are
{τ0,0, τ1,0, τ2,0} for data age and {τ0,1, τ ′1,0, τ ′2,0} for reaction
time, where a prime indicates that the job is in the next hyper-
period.

B. Schedulability

To build a feasible schedule for a given number of cores,
we apply a list-scheduling heuristic for non-preemptive DAG,
very similar to the Heterogeneous Earliest Finishing Time
(HEFT) algorithm presented in [24]. We decided to use a
(node-level) limited preemptive scheduling for (i) avoiding
job-level migrations, (ii) reducing cache-related preemption
delays, and (iii) minimizing the input-output delay and jitter
[25].

The list-scheduling algorithm is summarized in Algorithm
2. Jobs are sorted in increasing LFT order (line 3). Given p
homogeneous processors, a job is scheduled at time t only
if it is ready and a processor is available. A job enters the
ready queue (line 8) at time t only if (i) its EST is greater
than or equal than t, (ii) all its predecessors in the DAG
have been executed, and (iii) its LFT is the smallest between
all the remaining jobs’ LFT. The ready queue is sorted in
increasing LFT order (line 9). A ready job is scheduled if a
processor is available and if its execution time, starting from
the current t, does not exceed its LFT (lines 13,16,17). If

P0 τ0,0

0

τ1,0

7

τ0,2

20 30

P1

0

τ0,1

10 17

τ2,0

20 30

Fig. 7: Schedule produced for the DAG in Figure 3d with 2
cores

this last condition is not met, the algorithm declares the DAG
not schedulable (lines 13,14). An example of the schedule
obtained for Example 1 is shown in Figure 7.

Algorithm 2: isDAGSchedulable
Input: V, pred, p, EST, LFT,WC
Output: true if the DAG is schedulable on p

processors, false otherwise
Data: Ready queue of jobs rq = {}, procExec vector

1 pqi = {},∀i = 1, . . . , p;
2 nodes = {v0, . . . , vn−1}, n = |V |;
3 sort(nodes) sort by ascending value of

LFT
4 for t = 0, 1, . . . ,HP do
5 forall node ∈ nodes do
6 if EST [node] > t and all pred[node] have

finished and LFT [node] ≤ all other nodes
LFTs then

7 nodes = nodes \ node;
8 rq.push(node);

9 sort(rq) sort by ascending value of
LFT

10 for i = 1, ..., p do
11 if rq ̸= {} and procExeci == 0 then
12 readyJob = rq.pop();
13 if t+WC[readyJob] > LFT [readyJob]

then
14 return false;

15 else
16 procExeci = WC[readyJob];
17 pqi.push(readyjob);

18 if procExeci > 0 then
19 procExeci = procExeci − 1 ;

20 return true;

VII. EVALUATION

To evaluate our approach, we first use simulation to validate
end-to-end latency bounds as well as schedulability and then
compare the proposed method with the state-of-the-art using
a realistic automotive benchmark.

A. Evaluation via Simulation

To validate that the DAGs generated with the method pre-
sented in this paper comply with the constraints, we developed

Taskset Γ
τi = (WCi, BCi, Pi, Di) Task

τ0 = (7, 5, 50, 50) GPS
τ1 = (12, 10, 50, 50) Lidar
τ2 = (28, 22, 50, 50) Localization
τ3 = (28, 25, 50, 50) Detection
τ4 = (25, 18.9, 50, 50) Fusion
τ5 = (2, 1.8, 25, 25) Camera
τ6 = (6.5, 3, 10, 10) EKF
τ7 = (5, 3.2, 10, 10) Planner
τ8 = (4.5, 1.8, 10, 10) Control

Task chains
chain {τstart, . . . , τend} (Age, Reaction)

{τ5, τ3, τ4} (120, 120)
{τ0, τ2, τ6, τ7, τ8} (120, 150)
{τ1, τ2, τ6, τ7, τ8} (120, 150)
{τ5, τ3, τ4, τ7, τ8} (150, 150)

Scheduling constraints
6 processors

TABLE II: Periodic taskset and constraints used for the
simulation, referring to the application of Figure 1.

a simulation tool. The tool uses the DAG to schedule the
individual tasks, which tracks the data propagation through
the task chains under analysis. The execution time of each
task is identically and independently sampled from the BC to
WC interval. The schedule is generated according to EDF, and
the deadline is set equal to LFT.

We simulated the best DAG, in terms of schedulability and
end-to-end latency, produced for the application introduced in
Figure 1. The task set specification and constraint are detailed
in Table II. The latency computed for the given chains is
reported in Table III.

Using the simulation tool, the DAG is simulated for 109

ms, which leads to the following results. Two distributions
of reaction time and data age of two task chains are shown
in Figure 8 and 9. In Figure 8 the reaction time plot is
showing two distributions, one for each camera frame. In
the DAG, the camera jobs are serialized to the detection job,
leading to only one distribution for the data age, because the
detection job always receives the freshest camera frame. A
similar distribution for the reaction time can be seen for the
task chain in Figure 9, as the task chain, is extended with the
planner and control task. The data age, however, shows several
distributions. This is due to the higher rate of the planner and
control task with respect to the fusion task. Nevertheless, the
data age of the data corresponding to each control output is
always based on the freshest camera frame, which can be seen
by comparing the distribution shapes. The simulation showed
that all the calculated upper bounds for data age and reaction
time for the four task chains are not exceeded.

B. Evaluation via Benchmark

To further analyze the performance of the proposed
method the detailed automotive benchmark proposed by
BOSCH for the WATERS challenge in 2015 [26] has been
adopted. Multi-rate periodic task sets and cause-effect chains
are randomly generated while conforming with the char-

chain {τx, . . . , τy} (Age, Reaction)
{τ5, τ3, τ4} (75, 98.2)
{τ0, τ2, τ6, τ7, τ8} (105, 65)
{τ1, τ2, τ6, τ7, τ8} (105, 65)
{τ5, τ3, τ4, τ7, τ8} (125, 108.2)

TABLE III: Maximum data age and reaction time for task
chains of the best DAG produced for the task set described by
Table II

55 60 65 70 75 80 85 90 95 100
Reaction time [ms]

0

0.5

1

1.5

2

C
ou

nt

10 4

55 60 65 70 75 80 85 90 95 100
Data age [ms]

0

0.5

1

1.5

2

C
ou

nt

10 4

Fig. 8: Reaction time and data age of the chain {Camera,
Detection, Fusion}, or {τ5, τ3, τ4}, evaluated in simulation
with the red lines showing the calculated maximum.

70 80 90 100 110 120 130
Reaction time [ms]

0

1

2

3

4

C
ou

nt

10 4

70 80 90 100 110 120 130
Data age [ms]

0

1

2

3

4

C
ou

nt

10 4

Fig. 9: Reaction time and data age of the chain {Camera,
Detection, Fusion, Planner, Control}, or {τ5, τ3, τ4, τ7, τ8},
evaluated in simulation with the red lines showing the cal-
culated maximum.

permutation admissible (%) schedulable (%)
min 0.00 0.00 0.00
avg 1.830.48 62.10 61.60
max 18.148.00 100.00 100.00

TABLE IV: Statistics about DAG permutations, admissible and
schedulable DAGs on 1000 different task set.

0,00

2.000,00

4.000,00

6.000,00

8.000,00

10.000,00

12.000,00

14.000,00

16.000,00

18.000,00

20.000,00

N
um

be
r

of
 D

A
G

s

Test (50 random example)

permutation schedulable admissible

Fig. 10: Statistic about produced DAG on 50 randomly chosen
task set of the 1000 analyzed.

acterization. Task periods are selected with given distri-
bution, out of the periods found in automotive applica-
tions [1, 5, 10, 20, 50, 100, 200, 1000]ms. Cause-effect chains
are generated to include tasks of either 1, 2, or 3 different
period wherein tasks of the same period can appear 2 to
5 times. To obtain a higher utilization, the individual task
execution times are generated based on UUniFast [27]. For
the experiments 1000 task set composed of 5 tasks and 15
chains have been taken into account, with a utilization equal
to 1.5, considering 2 cores available.

Table IV reports some statistics about the DAG obtained
from the 1000 multi-rate periodic task sets. From the initial
generated permutations the 40% is on average removed due to
cycles or a non-schedulable longest chain. However, between
the admissible generated DAGs5, almost the totality is also
schedulable on 2 cores. Figure 10 shows 50 randomly selected
examples in which the number of permutations, admissible
DAGs and schedulable DAGs are compared.

C. Comparison with state-of-the-art

1) Qualitative: In [19], Saidi et al. present a method to
convert a parallel multi-rate task set with precedence and data
edges into a single-rate DAG. However, the end-to-end latency
is not considered, and only one possible DAG is generated.
Therefore, no guarantee is given on reaction time or data age.
Moreover, there are no synchronization methods to force task
instances to execute within their periods, potentially leading
to a wrong implementation of the system.

In [18], Foget et al. present another conversion method,
producing different DAGs. However, neither this work takes
into account latency. Different solutions are created just for

5DAGs that have a correct structure (i.e., no cycles and no path greater
than the hyper-period) but that may still be unschedulable.

Forget [18] Saidi [19] Becker [9] this paper
schedulable task set(%) 46.9 21.8 90.56 90.5
1st lowest data age (%) 45.89 17.85 77.81 96.82
2nd lowest data age (%) 2.79 0.09 13.55 3.15
3rd lowest data age (%) 3.03 1.46 6.38 0.03
4th lowest data age (%) 0.00 4.58 2.25 0.00

TABLE V: Schedulability and data age results on 1000 task
set compliant to [26] of 5 tasks and 15 chains, with utilization
equals to 1.5.

Forget [18] Saidi [19] Becker [9] this paper
min [ms] 0.002 0.002 0.078 0.002
avg [ms] 0.571 0.022 3.001 21.410
max [ms] 4.422 0.116 16.614 433.033

TABLE VI: Execution times in milliseconds on an Intel(R)
Core(TM) i7-7700HQ CPU @2.80GHz.

schedulability reasons, picking the version that makes the
DAG schedulable with EDF.

Focusing on data latency, the most related approach is the
one introduced by Becker et al. in [9], where the focus is
on the computation of data age. In their work, they can
compute data age for a given chain of periodic tasks, given
a communication model (i.e. implicit, explicit or LET). The
method allows generating job-level dependencies to meet
latency requirements. However, data age is the only parameter
under their analysis. Moreover, they can optimize end-to-end
latency for only a single chain. Once job-level dependencies
are inserted, all the other chains are affected. Finally, their
work assumes the input task set is already schedulable. Our
work has several improvements over their approach, i.e., (i) the
model is more general and can jointly optimize the latency
of multiple chains, (ii) we consider not only data age, but
also reaction time, and (iii) our task allocation and scheduling
algorithms also consider the schedulability of the system.

2) Quantitative: To show that our method dominates the
state-of-the-art, we implemented the solutions proposed in
[19], [18], [9], and tested them on the previously presented
automotive benchmark by BOSCH. Table V shows the results
for the 1000 task sets considered, and all the 15000 task chains,
while Table VI offers a comparison of the running times of
the considered methods for larger task sets, i.e., composed of
10 tasks with 15 task chains.

The proposed method not only dominates the others in term
of schedulability, but also in terms of data age. Given that
[18] and [19] do not propose a method to compute end-to-end
latency, we adopted our algorithm for this scope. Considering
data age, our method produces a DAG that leads to the lowest
end-to-end latency bound in 96.82% of cases. There are some
cases in which Becker [9] method obtains a tighter latency,
since it optimizes a single chain. However, the limitation of
that approach is that it is not able to optimize all the given
chains for a task set, while our method optimizes them all.
Therefore, we are willing to sacrifice the latency of some
chains for a more balanced improvement of all chains.

6Since no method is proposed in [9] to check schedulability, we applied
our method to derive the schedulable task sets.

On the other hand, when optimizing a single chain, our
method allows finding a better solution than with the method
presented in [9]. As an example, consider the task chain in
Example 1. Using the method by Becker et al., a minimum
data age of 40 can be achieved, inserting a precedence
constraint between τ1,0 and τ2,0. Instead, our method allows
achieving a data age of 30, picking a DAG with additional
precedence constraints.

As can be expected, the improved performance of the
proposed algorithm are obtained by paying a somewhat higher
computational cost. Table VI shows that our method is on
average about 7 times slower than [9]. We believe such a slow-
down is acceptable for an offline analysis performed at system
design time, as it allows obtaining the best solution for even
complex task systems within a reasonable time.

VIII. CONCLUSIONS

This paper presented a detailed method that allows con-
verting a multi-rate task set into a single-rate DAG which
meets schedulability and timing requirements. To the best
of our knowledge, this approach is the most general and
complete w.r.t. the methods available in the literature. The
transformation process maps the whole application into a
DAG, using precedence constraints for synchronizing jobs
to comply with task activation periods. Multiple DAGs are
generated in four stages and a pruning process is applied
to exclude the ones that are inherently not feasible. The set
of feasible DAGs is narrowed down using a further analysis
that considers data age and reaction time bounds on specific
task chains, as well as the schedulability of the system on
the considered homogeneous multi-core platform. The best
DAG is selected based on the weighted sum of end-to-end
latencies. Most of the operations performed are based on a
matrix representation of the DAG. The conversion method
and a simulation tool have been implemented and made avail-
able7. The efficiency of the proposed approach over existing
methods has been extensively validated on real experimental
benchmarks. In future works, we plan to extend this model to
heterogeneous platforms. Moreover, we plan to integrate the
proposed approach considering predictable execution models
to solve the contention problems on the memory hierarchy
[28].

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 Programme under
the CLASS Project (https://class-project.eu/), grant agreement
n° 780622. Marco Caccamo was supported by an Alexander
von Humboldt Professorship endowed by the German Federal
Ministry of Education and Research.

7https://github.com/mive93/multi-rate-DAG

REFERENCES

[1] A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst, and D. Ziegen-
bein, “Waters industrial challenge 2017,” 2017.

[2] A. Hamann, F. Dasari, Dakshina Wurst, I. Sañudo, N. Capodieci,
P. Burgio, and M. Bertogna, “Waters industrial challenge 2019,” 2017.

[3] A. Vincentelli, P. Giusto, C. Pinello, W. Zheng, and M. Natale, “Op-
timizing end-to-end latencies by adaptation of the activation events in
distributed automotive systems,” in 13th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS’07). IEEE, 2007, pp.
293–302.

[4] M. D. Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and
Using the Controller Area Network Communication Protocol: Theory
and Practice. Springer Publishing Company, Incorporated, 2012.

[5] H. Zeng, M. D. Natale, P. Giusto, and A. L. Sangiovanni-Vincentelli,
“Statistical analysis of controller area network message response times,”
in IEEE Fourth International Symposium on Industrial Embedded Sys-
tems, SIES 2009, Ecole Polytechnique Federale de Lausanne, Switzer-
land, July 8-10, 2009, 2009, pp. 1–10.

[6] H. Zeng, “Probabilistic timing analysis of distributed real-time auto-
motive systems,” Ph.D. dissertation, EECS Department, University of
California, Berkeley, Dec 2008.

[7] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in IEEE Real-Time Systems Symposium:
30/11/2009-03/12/2009. IEEE Communications Society, 2009.

[8] “Autosar - specification of timing extensions,” Tech. Rep., 2014.
[9] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-

sizing job-level dependencies for automotive multi-rate effect chains,”
in 2016 IEEE 22nd International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). IEEE, 2016, pp.
159–169.

[10] ——, “End-to-end timing analysis of cause-effect chains in automotive
embedded systems,” Journal of Systems Architecture, vol. 80, pp. 104–
113, 2017.

[11] ——, “Mechaniser-a timing analysis and synthesis tool for multi-
rate effect chains with job-level dependencies,” in 7th International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems WATERS, vol. 16, no. 05, 2016.

[12] A. Biondi and M. D. Natale, “Achieving Predictable Multicore Execution
of Automotive Applications Using the LET Paradigm,” in Proceedings
of the 24th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2018), Porto, Portugal, April 2018.

[13] J. Martinez, I. Sañudo, P. Burgio, and M. Bertogna, “End-to-end latency
characterization of implicit and let communication models,” in Proc. of
the 8th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems, ser. WATERS, 2017.

[14] M. Xiong, S. Han, K.-Y. Lam, and D. Chen, “Deferrable scheduling for
maintaining real-time data freshness: Algorithms, analysis, and results,”
IEEE Transactions on Computers, vol. 57, no. 7, pp. 952–964, 2008.

[15] D. Golomb, D. Gangadharan, S. Chen, O. Sokolsky, and I. Lee, “Data
freshness over-engineering: Formulation and results,” in 2018 IEEE 21st
International Symposium on Real-Time Distributed Computing (ISORC).
IEEE, 2018, pp. 174–183.

[16] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio, “Rosch: Real-time
scheduling framework for ros,” in 2018 IEEE 24th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, 2018, pp. 52–58.

[17] Y. Suzuki, T. Azumi, S. Kato et al., “Hlbs: Heterogeneous laxity-based
scheduling algorithm for dag-based real-time computing,” in 2016 IEEE
4th International Conference on Cyber-Physical Systems, Networks, and
Applications (CPSNA). IEEE, 2016, pp. 83–88.

[18] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
dependent periodic tasks without synchronization mechanisms,” in 2010
16th IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, 2010, pp. 301–310.

[19] S. E. Saidi, N. Pernet, and Y. Sorel, “Automatic parallelization of
multi-rate fmi-based co-simulation on multi-core,” in Proceedings of the
Symposium on Theory of Modeling & Simulation. Society for Computer
Simulation International, 2017, p. 5.

[20] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Generalized
multiframe tasks,” Real-Time Systems, vol. 17, pp. 5–22, 1999.

[21] N. Biggs, N. L. Biggs, and B. Norman, Algebraic graph theory.
Cambridge university press, 1993, vol. 67.

[22] P. Purdom, “A transitive closure algorithm,” BIT Numerical Mathemat-
ics, vol. 10, no. 1, pp. 76–94, 1970.

[23] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction
of a directed graph,” SIAM Journal on Computing, vol. 1, no. 2, pp.
131–137, 1972.

[24] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[25] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation of
jitter control methods,” in Proceedings of the 15th conference on Real-
Time and Network Systems, 2007, pp. 163–172.

[26] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
2015.

[27] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[28] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium. IEEE, 2011, pp. 269–279.

Chapter 6. Reinforcement Learning for Graph-based Task Scheduling

6.2 Edge Generation Scheduling for DAG Tasks Using Deep Re-

inforcement Learning

Reference

B. Sun, M. Theile, Z. Qin, D. Bernardini, D. Roy, A. Bastoni, and M. Caccamo, “Edge
generation scheduling for dag tasks using deep reinforcement learning,” IEEE Transactions
on Computers, 2024
DOI: https://doi.org/10.1109/TC.2024.3350243

Abstract

Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to
model complex applications from the automotive, avionics, and industrial domains that
implement their functionalities through chains of intercommunicating tasks. This paper
studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability
test based on the concept of trivial schedulability. Using this schedulability test, we
propose a new DAG scheduling framework (edge generation scheduling—EGS) that
attempts to minimize the DAG width by iteratively generating edges while guaranteeing
the deadline constraint. We study how to efficiently solve the problem of generating
edges by developing a deep reinforcement learning algorithm combined with a graph
representation neural network to learn an efficient edge generation policy for EGS. We
evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art
DAG scheduling heuristics and an optimal mixed-integer linear programming baseline.
Experimental results show that the proposed algorithm outperforms the state-of-the-art
by requiring fewer processors to schedule the same DAG tasks.

Contributions to this paper

• Conceptualization of trivial schedulability

• Shared conceptualization of the edge generation framework

• Share of the implementation of edge generation scheduling for DAG scheduling

• Share of paper writing

Copyright

© 2024 IEEE. Reprinted, with permission, from Binqi Sun, Mirco Theile, Ziyuan
Qin, Daniele Bernardini, Debayan Roy, Andrea Bastoni, and Marco Caccamo, “Edge
Generation Scheduling for DAG Tasks Using Deep Reinforcement Learning”, IEEE
Transactions on Computers (Volume: 73, Issue: 4), April 2024.

See Appendix A.10 for the reuse statement. The following shows the accepted version.

142

https://doi.org/10.1109/TC.2024.3350243

1

Edge Generation Scheduling for DAG Tasks
using Deep Reinforcement Learning

Binqi Sun, Student Member, IEEE , Mirco Theile, Student Member, IEEE , Ziyuan Qin,
Daniele Bernardini, Member, IEEE , Debayan Roy, Andrea Bastoni, Member, IEEE ,

and Marco Caccamo, Fellow, IEEE

Abstract—Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the
automotive, avionics, and industrial domains that implement their functionalities through chains of intercommunicating tasks. This
paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial
schedulability. Using this schedulability test, we propose a new DAG scheduling framework (edge generation scheduling—EGS) that
attempts to minimize the DAG width by iteratively generating edges while guaranteeing the deadline constraint. We study how to
efficiently solve the problem of generating edges by developing a deep reinforcement learning algorithm combined with a graph
representation neural network to learn an efficient edge generation policy for EGS. We evaluate the effectiveness of the proposed
algorithm by comparing it with state-of-the-art DAG scheduling heuristics and an optimal mixed-integer linear programming baseline.
Experimental results show that the proposed algorithm outperforms the state-of-the-art by requiring fewer processors to schedule the
same DAG tasks. The code is available at https://github.com/binqi-sun/egs.

Index Terms—DAG scheduling, real-time, edge generation, deep reinforcement learning

✦

1 INTRODUCTION

Current real-time applications in the automotive, avion-
ics, and industrial domains realize their functionalities
through complex chains of intercommunicating tasks. For
example, [1], [2] present recent driving assistance and au-
tonomous driving applications where data is processed
through multiple periodically-activated steps, from sensor
data acquisition (e.g., Lidar and cameras) to actuators (e.g.,
brakes and steering wheel). Such applications—including
their execution and precedence-constraint requirements—
are modeled using directed acyclic graph (DAG) tasks with
different periods that can be reduced to a single DAG using
techniques such as [3].

Reasoning on real-time properties of DAG tasks has
proved challenging. Testing the schedulability of DAG tasks
is NP-hard in the strong sense [4], and many works have
focused on devising heuristics for sufficient schedulability
tests (see Section 2 for relevant related works and refer
to [5]–[7] for a comprehensive survey), while exact results
(e.g., [8]–[10]) can only be obtained for simple DAG tasks.

This work focuses on the setup where a single periodic
non-preemptive DAG task is executed on a multicore plat-
form with identical processors. Drawing from graph theory,

• Binqi Sun, Mirco Theile, Ziyuan Qin, Daniele Bernardini, Andrea Bas-
toni, and Marco Caccamo are with TUM School of Engineering and De-
sign, Technical University of Munich, 85748 Munich, Germany. E-mail:
{binqi.sun, mirco.theile, ziyuan.qin, daniele.bernardini, andrea.bastoni,
mcaccamo}@tum.de.

• Mirco Theile is also with the Department of Electrical Engineering
and Computer Sciences, University of California Berkeley, Berkeley, CA
94720, USA.

• Debayan Roy was formerly with TUM School of Engineering and De-
sign, Technical University of Munich, 85748 Munich, Germany. E-mail:
debayan.roy.tum@gmail.com

Marco Caccamo was supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education and Research.

we develop a novel schedulability test based on the key
observation that a DAG whose width is not greater than
the number of available processors and whose length is less
than or equal to the deadline of the DAG is schedulable.
We classify such a DAG as a trivially schedulable DAG and
show that any DAG is schedulable if and only if it can be
converted into a trivially schedulable DAG by adding edges.
In addition, we show that a trivially schedulable DAG
task can be dispatched via global and partitioned strategies.
While global dispatching strategies usually require priori-
tized queues for ready jobs, we show that prioritization is
not needed when dispatching a trivially schedulable DAG
task because a ready job is guaranteed to have an idle pro-
cessor available for execution. For partitioned dispatching
strategies, the paths covering a DAG can simply be assigned
to processors in the order of the precedence constraints.

To test whether a DAG task is schedulable, we then
focus on the problem of adding appropriate edges to convert
it into a trivially schedulable DAG task without violating
its original constraints. To this end, we propose the Edge
Generation Scheduling (EGS) framework that attempts to
make a DAG task trivially schedulable by iteratively adding
appropriately chosen edges. If EGS succeeds in reducing the
width to the number of processors while maintaining the
length less than or equal to the deadline, the original DAG
task is guaranteed to be schedulable.

The EGS framework shifts the complexity of solving the
DAG scheduling problem to the problem of selecting the best
edges to add to a DAG to make it trivially schedulable. We
exploit topological and temporal graph properties to limit
the search space for the edges to add and propose a deep
reinforcement learning (DRL) approach to learn an edge
generation policy. In particular, we use the DRL algorithm
Proximal Policy Optimization (PPO) [11] and the graph

2

representation neural network architecture Graphormer [12]
that is well suited for solving this class of problems.

Combining the proposed EGS framework and the edge
generation policy learned by the developed DRL, we derive
a concrete DAG scheduling algorithm called EGS-PPO and
evaluate it against state-of-the-art DAG scheduling heuris-
tics. Our results show that EGS-PPO consistently outper-
forms the other approaches by requiring fewer processors to
schedule the same DAGs. Additionally, EGS with a random
edge generation policy can achieve results similar to the
state-of-the-art, highlighting the significance of the EGS
framework. We also compare against an optimal mixed-
integer linear programming (MILP) baseline for small DAG
tasks. EGS-PPO outperforms the other approaches, achiev-
ing three to five times smaller optimality gaps.

In summary, in this paper, we:

1) Present a new schedulability test (trivial schedula-
bility) for DAG tasks based on observations from
the graph domain;

2) Propose a novel DAG scheduling framework (EGS)
that minimizes processor usage by iteratively gen-
erating edges;

3) Formulate the edge generation problem as a Markov
decision process (MDP) and develop a deep rein-
forcement learning (DRL) agent to learn an effective
edge generation policy for EGS;

4) Evaluate the effectiveness of the proposed EGS
framework and DRL algorithm by comparing with
exact solutions and state-of-the-art DAG scheduling
algorithms through extensive experiments on syn-
thetic DAG tasks.

The remainder of the paper is organized as follows.
Section 2 reviews the literature on DAG scheduling, and
Section 3 describes the system model and introduces the
employed concepts of graph theory. Section 4 and Section 5
present our schedulability test and the EGS scheduling
framework. A DRL algorithm is developed in Section 6
to learn an efficient edge generation policy for EGS. Sec-
tion 7 discusses our experimental evaluation, and Section 8
presents future research directions and conclusions.

2 RELATED WORK

2.1 Real-time DAG scheduling
The periodic computation in many cyber-physical sys-
tems (CPS) domains, such as automotive, avionics, and
manufacturing, is often modeled as a DAG task [2], [13].
Many applications in these domains are part of safety-
critical control loops (e.g., brake, speed, and steering control)
and hence, have stringent timing requirements (i.e., they
are required to meet their deadlines [14], [15]). These re-
quirements led to a body of work performing timing and
scheduling analyses of a variety of DAG-based software
models, ranging from a single DAG modeling one task [16]–
[21], DAGs for multiple tasks with different periods [22]–
[27], and more recently, to conditional DAGs [28]–[30],
heterogeneous DAGs [31]–[34], and DAGs with mutually
exclusive vertices [35]. Given the techniques proposed in [3]
to reduce a DAG task set to a single DAG, this work focuses
on single DAGs for establishing a new scheduling strategy.

We note that our method can be trivially extended to the
scheduling of multiple DAGs with federated scheduling
architectures following the approach in [24]. For brevity,
the following focuses on real-time DAG scheduling closely
related to this work. We refer the readers to [5]–[7] for a
comprehensive survey.

The real-time DAG scheduling literature has mainly per-
formed analysis to (i) derive schedulability tests, (ii) bound
the response times, and (iii) put forward scheduling strate-
gies to improve schedulability. Baruah et al. [16] first pro-
posed a schedulability test for a single DAG task with
constrained deadlines and the global earliest deadline first
(EDF) scheduling policy. The test is mainly based on the
task’s deadline and period, the length of the longest task
chain, and the volume (i.e., the sum of the WCETs) of the
DAG. Later, Bonifaci et al. [22] extended the test to a global
deadline monotonic (DM) scheduling policy, arbitrary dead-
lines, and a set of DAG tasks. Furthermore, Baruah et al. [23]
improved the schedulability test for constrained deadlines
by exploiting the concept of work functions.

One of the earliest works in the DAG response time
analysis provided a bound—popularly known as Graham’s
bound—for the response time of a task based on the longest
path in and the volume of the DAG [17], which is valid
for any work-conserving scheduling policy on homoge-
neous multicore platforms. Recently, He et al. [21] demon-
strated the pessimism in Graham’s bound and proposed a
tighter bound considering multiple long paths instead of
the longest one. Melani et al. [29] also extended Graham’s
bound to systems with multiple DAG tasks by considering
inter-task interference. Global earliest-deadline-first (EDF)
and fixed-priority (FP) scheduling policies were studied in
that work. Further, in [25], the bounds were made tighter
for two-level FP scheduling, where a DM scheme was
followed at the task level, while subtasks were assigned
priorities based on the topological order. In recent years,
He et al. [18] proposed prioritizing subtasks in the longest
paths to reduce the response time and improve schedula-
bility, while at the task level, they still applied DM. Later,
Zhao et al. [19] improved the priority assignment strategy
at the subtask level by considering dependencies between
subtasks and parallelization opportunities. Different from
the above approaches, He et al. [20] relaxed the constraint
that priority assignment must comply with the topological
order of the DAG and proposed a new priority assignment
policy, leading to smaller response time bounds.

Note that some of the works above performed analyses
for given scheduling policies [16], [17], [21]–[23], [29], while
others propose techniques to determine schedule configura-
tion (e.g., priorities) to improve the schedulability [18]–[20].
Our work follows the latter direction, i.e., we determine a
static ordering of sub-tasks that will make the task schedu-
lable. In our experiments (Section 7), we show that our
proposed approach outperforms the most recent works [18]–
[20] in generating feasible schedules for DAG tasks.

2.2 DRL for DAG scheduling
Deep reinforcement learning (DRL) has been applied to
various combinatorial optimization problems, including
scheduling tasks. In recent years, several studies have ap-
plied DRL to DAG scheduling. Mao et al. [36] proposed a

3

DRL-based DAG scheduler for scheduling data processing
jobs in the Spark cluster. Their model takes the cluster’s state
information as input and learns to select the next DAG node
to be executed via a graph convolution network (GCN) and
a policy gradient method. Sun et al. [37] proposed a DRL ap-
proach to solve a coflow scheduling problem in distributed
computing. It also uses a graph neural network (GNN)
in combination with a policy gradient method. However,
different from our work, it learns to schedule the edges of a
DAG job representing communication stages (i.e., coflows)
instead of the DAG nodes representing computation stages.

More recently, Lee et al. [38] proposed a DRL-based
DAG task scheduler, which employs a GCN to process a
complex interdependent task structure and minimize the
makespan of a DAG task. The scheduler assigns priorities
to each sub-task to be used in list scheduling. Similar
to [38], Joen et al. [39] developed a learning-based scheduler
to assign priorities for list scheduling. The difference is
that they proposed a one-shot neural network encoder to
sample priorities instead of using an episodic reinforcement
learning approach. In contrast to these works, our proposed
method remains in the graph domain and adds edges to
make the DAG task trivially schedulable. Since the code
or implementation details of [38] and [39] have not been
released, we cannot compare our method with theirs in the
experimental evaluation.

3 SYSTEM MODEL AND PRELIMINARIES

3.1 Task model
We consider a DAG task running on M identical processors.
The DAG task is characterized by (G, D ≤ T), where G is
a graph defining the set of sub-tasks, T denotes the task
period defined as the inter-arrival time of two consecutive
jobs (i.e., task instances), and D denotes the task deadline
by which all the active sub-jobs must finish their execution.
Without loss of generality, we consider constrained dead-
line, which means the deadline is smaller or equal to the
task period (i.e., D ≤ T). The task graph G is defined by
(V, E), where V = (vi) is a set of n nodes representing n sub-
tasks, and E = (eij) is a set of directed edges representing
the precedence constraints between the sub-tasks. Each sub-
task vi is a non-preemptive sequential computing workload,
and its worst-case execution time (WCET) is denoted as
Ci. For any two nodes vi and vj connected by a directed
edge eij , vj can start execution only if vi has finished its
execution. Node vi is called a predecessor of vj , and vj is a
successor of vi. The predecessors and successors of a node
vi are formally defined as pre(vi) = {vj ∈ V|eji ∈ E} and
suc(vi) = {vj ∈ V|eij ∈ E}, respectively. Moreover, the
nodes that are either directly or transitively predecessors
(resp., successors) of node vi are defined as the ancestors
(resp., descendants) of node vi, denoted by anc(vi) (resp.,
des(vi)). Furthermore, a node with no ancestor (resp., de-
scendant) is referred to as the source (resp., sink) node of
the DAG. Without loss of generality, we assume only one
source node and one sink node exist in a DAG. A DAG
with multiple source (sink) nodes can be easily supported
by adding dummy nodes with zero WCET.

Example 1. Consider a DAG task (G, D) consisting of 7 nodes
and 8 edges. The DAG G is shown in Fig. 1. The number

below each node denotes its WCET. The task deadline is set
as D = 8. Take node v6 as an example, the predecessors
and successors of node v6 are pre(v6) = {v2, v3, v4} and
suc(v6) = {v7}; the ancestors and descendants of node v6 are
anc(v6) = {v1, v2, v3, v4} and des(v6) = {v7}, respectively.

0
v1

5
v2

4
v3

3
v4

3
v5

1
v6

0
v7

D = 8

Fig. 1: Example of a DAG task.

3.2 Scheduling model

A DAG task is considered schedulable if all the sub-tasks can
finish their execution no later than the deadline. At runtime,
a sub-job is ready once the job is released and its predecessors
have finished their execution. We consider two different
strategies for dispatching ready sub-jobs to processors: (i) a
global strategy, where sub-jobs are dynamically dispatched
on the available processors and (ii) a partitioned strategy,
where the assignment of nodes to processors is predeter-
mined offline.

The global dispatching strategy can be implemented by
maintaining a prioritized queue to store the ready sub-jobs
waiting for execution. Once a sub-job is ready, it goes into
the waiting queue, and when a processor becomes idle, the
highest priority sub-job in the queue is assigned to the pro-
cessor for execution. Note that since the node-to-processor
mapping is not fixed in the global dispatching strategy,
different sub-jobs of the same node can execute on different
processors. A partitioned strategy can be implemented by
maintaining a list for each processor to store the nodes to be
executed and their relative execution order.

3.3 Boolean algebra in graph theory

In graph theory, Boolean matrices are widely-used to repre-
sent graph structures. Thus, Boolean algebra can be applied.
Here, we introduce some basic Boolean matrix operators
and show how they are used in graph operations.

3.3.1 Adjacency matrix and transitive closure
An adjacency matrix A ∈ Bn×n is a binary square matrix
used to represent the connectivity relations in a graph G =
(V, E), where [A]ij = 1 if and only if there exists an edge
eij ∈ E between node vi and node vj . The transitive closure
of a DAG is defined to represent the reachability relation
between the nodes. It can be represented as a binary matrix
Tc ∈ Bn×n, where [Tc]ij = 1 if and only if node vi is an
ancestor of node vj .

The adjacency matrix of the transitive closure can be
calculated based on the adjacency matrix of the original
graph by the Floyd-Warshall algorithm [40], which requires
a time complexity of O(n3).

4

3.3.2 Matrix multiplication

We introduce two matrix multiplication methods in Boolean
algebra: Boolean matrix multiplication and max-plus matrix
multiplication. The matrix multiplication is used to deter-
mine ancestors and dependents of nodes, while the max-
plus matrix multiplication is used to compute execution
time bounds.

Given two Boolean matrices A,B ∈ Bn×n, the Boolean
matrix multiplication Bn×n × Bn×n 7→ Bn×n is defined as:

[AB]ij =
n∨

k=1

([A]ik ∧ [B]kj), ∀i, j = 1, ..., n (1)

where [AB]ij denotes the (i, j)-th element in the Boolean
matrix multiplication product AB; ∨ and ∧ denote the or
and and operators, respectively.

Given a Boolean matrix A ∈ Bn×n and a real vector b ∈
Rn, the max-plus matrix multiplication Bn×n × Rn 7→ Rn is
defined as:

[A⊗ b]i = max
k=1,...,n

([A]ik · [b]k), ∀i = 1, ..., n (2)

where [A ⊗ b]i is the i-th element in the max-plus matrix
multiplication product A⊗ b.

3.4 Length of a DAG task

3.4.1 Path and DAG length

The length of a DAG is a lower bound on the total execution
time of the DAG task. It is later used as a core element of the
EGS scheduler. Formally, it is defined through the length of
the critical path. A path p = {vp1 , ..., vpm} is a sequence of
nodes that are connected by a sequence of edges in the same
direction (i.e., epkpk+1

∈ E ,∀k = 1, 2, ...,m − 1). The length
of path p is defined as the sum WCET of the nodes included
in the path: L(p) =

∑m
k=1 Cpk . A complete path of a DAG is

a path that includes the source node and sink node of the
DAG. The longest complete path is defined as the critical
path p∗, and the length of the critical path is defined as the
length of the DAG. More formally, we have:

Definition 3.1 (DAG length). The length of a DAG task
(G, D) equals the length of the longest path in the DAG.
L(G) = maxp∈P L(p), where P is the set of paths in G.

The length of a DAG can be computed within time
complexity O(n2).

3.4.2 Node-level timing attributes

For each node, we define four timing attributes related to the
DAG length: earliest starting time (EST), earliest finishing
time (EFT), latest starting time (LST), and latest finishing
time (LFT). The EST means the earliest time a node can
start its execution, which equals the maximum of its prede-
cessors’ EFT. Similarly, the LFT represents the latest time a
node can finish its execution while meeting the deadline, i.e.,
the minimum of its successors’ LST. These timing attributes
are used to restrict the action space of the reinforcement

learning agent, and are part of the node features to aid the
agent’s learning. They are defined through:

tEFT = tEST + C

tEST = A⊗ tEFT

tLST = tLFT −C

tLFT = AT ⊗ tLST

(3)

where tEST, tEFT, tLST, tLFT ∈ Rn are vectors denoting the
EST, EFT, LST, and LFT of the nodes, respectively; C ∈ Rn
is a vector denoting the WCET of each node.

Equations (3) can be solved by fixed-point iteration. First,
we initialize tEST

i = 0, tLFT
i = D, ∀i = 1, ..., n. Then, at each

iteration k = 1, ..., n, we update the values of each timing
attribute according to (3) until they converge (i.e., no value
is updated from iteration k to iteration k + 1). It can be
guaranteed that the values will converge within n iterations
since the critical path of the DAG is composed of at most
n nodes [3]. Thus, the time complexity of computing the
node-level timing attributes is O(n3).

Example 2. The critical path of the DAG in Example 1 is
{v1, v2, v5, v7}, and the length of the DAG is C1 + C2 + C5 +
C7 = 8. The EFT and LST of each node are shown in Fig. 2.

0
0 0
v1

5
0 5
v2

4
3 4
v3

3
4 3
v4

3
5 8
v5

1
7 6
v6

0
8 8
v7

WCET
LST EFT

D = 8

Fig. 2: Example of DAG length and node-level timing at-
tributes. The nodes and edges of the critical path are marked
in red. The numbers inside each node represent the node’s
WCET, LST, and EFT with corresponding colors.

3.5 Width of a DAG task
3.5.1 Antichain and DAG width
The width of a DAG task indicates the maximum number
of nodes that can be run in parallel. It can be computed
using the critical antichain of the DAG. An antichain q =
{vq1 , ..., vqm} in a DAG is a set of nodes that are pair-wise
non-reachable (i.e., vi /∈ anc(vj),∀i, j ∈ (q1, ..., qm)). The
size of an antichain is defined as the number of nodes in the
antichain. The maximum-size antichain is called the critical
antichain, and the size of the critical antichain is defined as
the width of the DAG. By Dilworth’s theorem [41], the width
of G also equals the minimum number of paths needed to
cover all the nodes of DAG G.

Definition 3.2 (DAG width). The width of a DAG task
(G, D) is defined as the size of the maximum-size antichain
in DAG G. It is equivalent to the minimum number of paths
needed to cover all the nodes in DAG G.

There have been several methods proposed for DAG
width computation in the literature. The most well-known

5

ones are minimum path cover algorithms, where the prob-
lem is reduced to either the maximum matching in bipartite
graphs with time complexityO(

√
nm∗) [42] or the minimum

flows in directed graphs with time complexity O(nm) [43],
where m and m∗ denote the number of edges in graph G
and the transitive closure of graph G, respectively.

3.5.2 Node-level parallelism attributes
For each node vi ∈ V , we define three attributes related
to the DAG width: lateral width (LW), in-width (IW), and
out-width (OW). The LW of node vi means the maximum
number of pair-wise non-reachable nodes with which node
vi can run in parallel. It equals the width of the DAG
derived by removing node vi and all its ancestors and
descendants from DAG G. The IW (resp., OW) of node vi
denotes the maximum number of pair-wise non-reachable
nodes among the ancestors (resp., descendants) of node vi
and the nodes that are parallel to vi. As with the node-
level timing attributes, the parallelism attributes are used
to restrict action space and are part of the node features
intended to improve the agent’s understanding of the DAG.
Similar to the LW, the IW (resp., OW) of node vi can be
calculated as the width of the DAG after removing node vi
and all its descendants (resp., ancestors) from DAG G:

mLW
i = W(G \ V ′),V ′ = anc(vi) ∪ des(vi) ∪ {vi}

mIW
i = W(G \ V ′), V ′ = des(vi) ∪ {vi}

mOW
i = W(G \ V ′),V ′ = anc(vi) ∪ {vi}, ∀i = 1, ..., n

(4)

where mLW
i , mIW

i , and mOW
i denote the LW, IW, and OW

of node vi, respectively; G \ V ′ denotes the graph with the
nodes in node set V ′ and all their connected edges removed
from graph G. The time complexity of computing each node-
level parallelism attribute is the same as the complexity of
computing the graph width.

Example 3. The critical antichains of the DAG in Example 1 are
{v2, v3, v4} and {v3, v4, v5}, and the DAG width is 3. The LW,
IW and OW of each node are illustrated in Fig. 3.

0
0 3
v1

2
2 3
v2

2
2 2
v3

2
2 2
v4

2
3 2
v5

1
3 1
v6

0
3 0
v7

LW
IW OW

D = 8

Fig. 3: Example of DAG width and node-level parallelism
attributes. The nodes belonging to the critical antichains are
marked red, and a dotted line surrounds each antichain. The
numbers inside each node represent the node’s LW, IW, and
OW with corresponding colors.

4 SCHEDULABILITY TEST

We present an exact schedulability test for a DAG task based
on the concept of trivial schedulability defined by the length
and width of the DAG:

Definition 4.1 (Trivial schedulability). A DAG task (G, D)
is trivially schedulable on M processors if it satisfies the
following two conditions:

1) the length of G is no larger than the task deadline:
L(G) ≤ D;

2) the width of G is no larger than the number of
processors: W(G) ≤M .

Based on Definition 4.1, we can derive several important
properties of a trivially schedulable DAG task, which are
later used to prove our schedulability test.

First, we show that a trivially schedulable DAG is guar-
anteed to be schedulable under a global dispatching strategy
by formulating the following Lemmas 4.1 - 4.3.

Lemma 4.1. If a DAG task (G, D) is trivially schedulable on M
processors, then at most M sub-jobs are active at the same time.

Proof. We prove the lemma by contradiction. Suppose there
are M + 1 active sub-jobs at the same time. Since two sub-
jobs can be active at the same time only if they do not have
precedence constraints, there must be M + 1 nodes that are
pair-wise non-reachable. Thus, they constitute an antichain
of sizeM+1. By Definition 3.2, the width of G is thus at least
M + 1, which contradicts the width constraint W(G) ≤ M
in Definition 4.1.

Lemma 4.2. If a DAG task (G, D) is trivially schedulable on M
processors, each sub-job vi ∈ V can start execution at its ready
time using any global work-conserving dispatching strategies.

Proof. We prove the lemma by contradiction. Suppose a sub-
job of node vi cannot start its execution at its ready time
ri. Since we consider a global work-conserving dispatching
strategy, allM processors must be busy executing other sub-
jobs at time ri. Thus, we know that at least M + 1 sub-
jobs (including vi) are active at time ri, which contradicts
Lemma 4.1.

By Lemma 4.2, we know that a trivially schedulable
DAG task will not have any ready sub-jobs waiting for
processors to become idle. Therefore, it is not necessary to
use a prioritized queue under a global dispatching strategy
if the DAG task is trivially schedulable.

Additionally, Lemma 4.2 allows us to derive the schedu-
lability of a trivially schedulable DAG task under a global
work-conserving dispatching strategy:

Lemma 4.3. If a DAG task (G, D) is trivially schedulable on
M processors, then it is schedulable on M processors using any
global work-conserving dispatching strategies.

Proof. By Lemma 4.2, we know each sub-job can find at least
an idle processor to start its execution at its ready time.
Thus, the response time of the sink node is given by the
length of the critical path in G. By Definition 4.1, we know
L(G) ≤ D. Therefore, the sink node finishes its execution
no later than the task deadline. Since the sink node is a
descendant of all other nodes, all the nodes finish their
execution by the task deadline.

Second, we show that a trivially schedulable DAG task is
also schedulable using the partitioned dispatching strategy
in Algorithm 1.

6

Algorithm 1: Partitioned dispatching strategy

Input: (G, D): a trivially schedulable DAG task on
M processors;

Output: a partitioned schedule;
1 Split G into M paths {p1, ..., pM} using a minimum

path cover algorithm (e.g., [42]);
2 for k ← 1 to M do
3 Assign the nodes in pk to processor k and specify

their execution order according to the
precedence constraints in G;

0
v1

5
v2

4
v3

3
v4

3
v5

1
v6

0
v7

D = 8

P3

P2

P1

0 1 2 3 4 5 6 7 8

v2 v5

v3 v6

v4

Fig. 4: Example of the trivial schedule with M = 3.

Lemma 4.4. If a DAG task (G, D) is trivially schedulable on
M processors, then it is schedulable on M processors using the
partitioned dispatching strategy in Algorithm 1.

Proof. By Definition 4.1, since (G, D) is trivially schedulable
on M processors, we know L(G) ≤ D and W(G) ≤ M .
Since W(G) ≤ M , there exist M paths {p1, ..., pM} that
can cover all the nodes in G (line 1, Algorithm 1). Since
L(G) ≤ D, the length of each path in {p1, ..., pM} is smaller
than or equal to L(G) ≤ D. Therefore, we can construct
a feasible schedule of task (G, D) by assigning each path
in {p1, ..., pM} to a unique processor, where the execution
order is determined according to the precedence constraints
(lines 2-3, Algorithm 1).

Lemma 4.4 not only proves the schedulability of a triv-
ially schedulable DAG task, but also provides a way to
generate a feasible assignment of nodes to processors that
can be used by the partitioned dispatching strategy. We use
the following example to show the generation process.

Example 4. The trivial schedule of the DAG task in Fig. 4 (left)
on M = 3 processors is illustrated in Fig. 4 (right). The DAG
is split into 3 paths: p1 = {v1, v2, v5, v7}, p2 = {v3, v6}, and
p3 = {v4}, which are mapped to P1, P2, and P3, respectively.

Now, we use Lemma 4.3 and 4.4 to derive the following
exact schedulability test that can be used in conjunction with
global and partitioned dispatching strategies.

Theorem 4.5 (Schedulability test). A DAG task (G, D) is
schedulable on M processors if and only if there exists a trivially
schedulable DAG task (G′, D), where G′ ⊇E G (i.e., V ′ = V and
E ′ ⊇ E in the transitive closures of G and G′).

Proof. Sufficiency. Suppose we have a graph G′ ⊇E G, and
task (G′, D) is trivially schedulable on M processors. By
Lemma 4.3 (resp., Lemma 4.4), we know that task (G′, D)
is schedulable using a global (resp., partitioned) dispatching
strategy. Since task (G′, D) has the same nodes and deadline
with task (G, D), and all the precedence constraints in G

0
v1

5
v2

4
v3

3
v4

3
v5

1
v6

0
v7

D = 8

P2

P1

0 1 2 3 4 5 6 7 8

v2 v5

v3 v4 v6

Fig. 5: Example of the trivial schedule with M = 2.

are included in G′ (i.e., E ′ ⊇ E), a feasible schedule of task
(G′, D) is also a feasible schedule of task (G, D). Thus, task
(G, D) is schedulable on M processors.

Necessity. We prove the necessity by showing that a
trivially schedulable DAG task (G′ ⊇E G, D) exists if task
(G, D) is schedulable on M processors. Suppose S is a static
schedule of (G, D) on M processors. The static schedule S
specifies the processor allocation p(vi) ∈ {1, . . . ,M} and
execution starting time s(vi),∀vi ∈ V . Using the set of edges
describing the precedence per processor k as

Êk = {eij , ∀i, j | p(vi) = p(vj) = k ∧ s(vi) ≤ s(vj)}

and Ê = Ê1 ∪ ... ∪ ÊM , we can construct the graph G′ =
(V, E ∪ Ê). By construction, the nodes in G′ can be covered
by M paths, each of which contains the nodes assigned to a
processor k, whose precedence is described by Êk, yielding
W(G′) ≤ M . In addition, since S respects all precedence
constraints in E and Ê , it is a feasible schedule of task
(G′, D), thus L(G′) ≤ D. Since W(G′) ≤M and L(G′) ≤ D,
G′ ⊇E G is trivially schedulable on M processors.

From Theorem 4.5, we know that a feasible schedule
of task (G, D) on fewer processors than the current DAG
width can be obtained by generating a graph G′ that has
additional edges to G and satisfies both the length and width
constraints. Example 5 shows a DAG generated by adding
edge e3,4 to the DAG task in Example 4. As illustrated in
Fig. 5, the resulting DAG is trivially schedulable on M = 2
processors (compared to M = 3 in Example 4). Based on
this observation, we propose a new DAG scheduling algo-
rithm called Edge Generation Scheduling (EGS) to minimize
processor usage in Section 5.

Example 5. The trivial schedule of the DAG task in Fig. 5 (left)
on M = 2 processors is illustrated in Fig. 5 (right). The DAG is
split into 2 paths: p1 = {v1, v2, v5, v7} and p2 = {v3, v4, v6},
which are mapped to P1 and P2, respectively.

5 EDGE GENERATION SCHEDULING

We propose the edge generation scheduling (EGS) frame-
work based on trivial schedulability. Consider a common
DAG scheduling problem: is a given DAG task (G, D)
schedulable on M processors? For EGS, we reformulate
the question: what is the minimum number of processors
needed to schedule the DAG task (G, D)? Using trivial
schedulability, the question forms the optimization problem:

minimize
G′⊇EG

W(G′) (5)

subject to L(G′) ≤ D

7

i.e., finding a graph G′ ⊇E G that has minimal width while
maintaining the length constraint. We aim to find this G′
by iteratively adding edges until no edges can be added
without violating the length constraint or until a lower
bound on the width is reached.

The rest of the section describes which edges can be
added in Section 5.1 and how to compute the lower bound
in Section 5.2. Section 5.3 shows the algorithm and complex-
ity of EGS, and Section 5.4 shows an example to highlight
the challenge in the edge selection choice.

5.1 Eligible edges
We define edge masks as Boolean matrices, where each entry
is active if the corresponding edge can be added to the cur-
rent DAG and inactive otherwise. Four different edge masks
are developed for different purposes: redundancy mask, cycle
mask, length mask, and width mask.

• Redundancy mask Mr. The redundancy mask avoids
adding redundant edges already existing in the cur-
rent graph. The redundancy mask can be calculated
as the reverse of the graph’s transitive closure:

Mr = ¬Tc (6)

• Cycle mask Mc. The cycle mask avoids introducing
cycles when adding edges to the graph. It can be
computed as

Mc = ¬((Tc)⊺ ∨ I), (7)

where (Tc)⊺ is the transpose of the transitive closure
and I denotes the Boolean identity matrix.

• Length mask Ml. The length mask avoids adding
edges that would violate the length constraint. The
length mask can be derived by comparing the EFT of
the predecessor node vi and the LST of the successor
node vj of the candidate edge eij :

[Ml]ij = 1tEFT
i ≤tLST

j
, ∀i, j = 1, ..., n (8)

where 1tEFT
i ≤tLST

j
is an indicator function, returning 1

if tEFT
i ≤ tLST

j and 0 otherwise. The correctness of the
length mask is proved by Theorem 5.1.

• Width mask Mw. The width mask restricts edges to be
generated between the nodes with the largest lateral
width, which is a necessary condition to reduce DAG
width as shown in Theorem 5.2.

[Mw]ij = 1mLW
i =mLW

j =W(G)−1, ∀i, j = 1, ..., n, (9)

where mLW
i denotes the lateral width of node vi.

Theorem 5.1 (Length constraint). Given a DAG task (G, D)
with L(G) ≤ D and DAG G′ = (V, E ∪ {eij}), with vj /∈
des(vi) (redundant) and vj /∈ anc(vi)∪{vi} (cycle), L(G′) ≤ D
if and only if tEFT

i ≤ tLST
j in task (G, D).

Proof. Adding an edge eij to G to create G′ does not change
tEFT
i and tLST

j as it does not alter the ancestors and descen-
dants of vi and vj , respectively. By definition, tEFT

i equals
the length of the longest path between the source node and
vi (denoted by pli,L(pli) = tEFT

i). Conversely, tLST
j equals the

difference ofD minus the length of the longest path between
vj and the sink node (denoted by prj ,L(prj) = D−tLST

j). Since

eij connects vi and vj in G′, there exists a path p̂ij = pli ∪ prj
with L(p̂ij) = tEFT

i + D − tLST
j , which is the longest path

among all the paths that go through vi and vj . Therefore,

L(G′) ≥ L(p̂ij) = tEFT
i +D − tLST

j .

The inequality is tight when p̂ij is a critical path of G′.
Sufficiency. Denote P as set of paths of G and P∗′ as the

set of critical paths of G′. There are two cases to consider:

• p̂ij ∈ P∗′. The above inequality is tight, i.e., L(G′) =
tEFT
i +D−tLST

j . It follows tEFT
i ≤ tLST

j =⇒ L(G′) ≤ D.
• p̂ij /∈ P∗′. Since p̂ij is the longest path among all the

paths that go through vi and vj , it follows that either
vi /∈ p∗′ or vj /∈ p∗′,∀p∗′ ∈ P∗′. Therefore, P∗′ ⊆ P ,
L(G′) = L(G) ≤ D.

Necessity. L(G′) ≤ D ∧ L(G′) ≥ tEFT
i + D − tLST

j =⇒
tEFT
i +D − tLST

j ≤ D =⇒ tEFT
i ≤ tLST

j .

Theorem 5.2 (Width reduction). For any DAG G′ ⊇E G,
W(G′) < W(G) only if the transitive closure of G′ has at least
one edge between the nodes with the largest lateral width in G.

Proof. We prove the theorem by contradiction. Suppose
there exists a DAG G′ ⊇E G whose width is lower than
G and has no edge between the nodes with the largest
LW in G. We denote the critical antichain of DAG G as q
(i.e., |q| = W(G)). Since G′ has no edge between the nodes
with the largest LW, there is no edge between the nodes
belonging to the critical antichain q. Thus, q is an antichain
of G′. By the definition of the DAG width, we know that the
width of G′ is equal to or larger than |q| = W(G), which
contradicts our assumption.

Finally, the complete edge mask is obtained by combin-
ing all the above edge masks:

M = Mr ∧Mc ∧Ml ∧Mw (10)

Example 6. The valid and invalid edges of the DAG task in
Example 1 are illustrated in Fig. 6.

0 0
0 0
v1

5 0
5 2
v2

4 3
4 2
v3

3 4
3 2
v4

3 5
8 2
v5

1 7
6 1
v6

0 8
8 0
v7

WCET LST
EFT LW

Mr

Mw

Ml

Mc

D = 8

Fig. 6: Example of the valid and invalid edges, shown with
the green and red dashed edges, respectively. For ease of
presentation, we only show one invalid action masked out
by each type of action mask (Mr, Mc, Ml or Mw). The
numbers inside each node represent the node’s WCET, LST,
EFT, and LW with corresponding colors.

8

5.2 Lower bound of task parallelism

Theorem 5.3 (Lower bound). Given a DAG task (G, D), a set
of sub-tasks V̂ ⊆ V are not schedulable on fewer than LB(V̂)
processors:

LB(V̂) =




∑
vi∈V̂ Ci

max
vi∈V̂

tLFT
i − min

vj∈V̂
tEST
j




(11)

Proof. We prove the theorem by contradiction. Assume all
the sub-tasks in V̂ are schedulable on M ′ ≤ LB(V̂) −
1 processors. Then, the maximum response time among
all the sub-tasks in V̂ is at least

∑
vi∈V̂ Ci/M

′ ≥∑
vi∈V̂ Ci/(LB(V̂)− 1) > max

vi∈V̂
tLFT
i − min

vj∈V̂
tEST
j . This implies

that some sub-task cannot finish its execution within the
required finishing time, which contradicts the assumption
that all the sub-tasks in V̂ are schedulable.

As LB(V̂) gives the lower bound of the number of
processors required by the subset of task nodes V̂ , it is
also a valid lower bound of the DAG task’s parallelism
M . By computing the LB(V̂) of each node subset V̂ , we
could derive a tighter M by taking the maximum LB(V̂)
among all possible node subsets (i.e., M = maxV̂ LB(V̂)).
However, since the total number of node subsets is expo-
nential with respect to the number of nodes in the DAG,
deriving the lower bound of every possible node subset is
not computationally tractable. In this paper, we consider
two special cases of V̂ : (i) all the nodes in the DAG (i.e.,
V̂ = V), (ii) the nodes with the largest lateral width (i.e.,
V̂ = {vi ∈ V|mLW

i = W(G)− 1}), and take the larger LB(V̂)
as the lower bound of the task parallelism M , as shown in
Corollary 5.3.1.

Corollary 5.3.1. Given a DAG task (G, D), the task is not
schedulable on fewer than M processors:

M = max{LB(V),LB({vi ∈ V|mLW
i = W(G)− 1})} (12)

5.3 EGS framework

Algorithm 2 shows specific procedures of the EGS frame-
work. In line 1, a DAG G′ is initialized as the input graph G.
The width of the DAG and its lower bound are computed
accordingly. In line 2, the edge mask of DAG G′ is initialized
using Equations (6)-(10). In lines 3-6, edges are added itera-
tively to DAG G′ until (i) no edges can be added according
to the edge mask M or (ii) the current DAG width reaches its
lower bound. In each iteration, an edge is selected according
to an edge generation policy π (line 4). The policy takes the
current DAG as input and outputs an edge eij to be added
in line 5. The generated edge must comply with the edge
mask such that [M]ij = 1. At the end of each iteration, The
DAG width and its lower bound are updated in line 6, and
the edge mask is updated in line 7.

The time complexity of the proposed EGS framework
is analyzed as follows. In each iteration of EGS, the time
complexity depends on the complexity of updating the edge
masks and selecting the edge to be added to the graph.
Recall that we consider four edge masks. Updating each of
them requires the update of the transitive closure, which

Algorithm 2: The EGS framework

Input: (G, D): the DAG task to be scheduled;
Output: G′: the DAG with minimized width;

1 G′ ← G, M ← LB(G′);
2 Compute edge mask M according to Equation (10);
3 while ∨ni=1 ∨nj=1 [M]ij and M < W(G) do
4 eij ← Select with policy π and edge mask M;
5 G′ ← G′ ∪ {eij};
6 M ← LB(G′);
7 Update edge mask M;

8 return G′;

takes a complexity of O(n2). Once we get the updated
transitive closure, the redundancy mask and the cycle mask
can be updated within O(n2). The update of the length
and width mask requires recomputing each node’s timing
and parallelism attributes from scratch, which takes a time
complexity of O(n3) and O(n

√
nm∗), respectively (details

see Section 3.3). Thus, the overall complexity of updating
the edge masks is bounded by O(n3 + n

√
n · m∗), where

m∗ denotes the number of edges in the transitive closure.
Since in the worst case at most n2 edges can be added to the
original graph, the time complexity of the EGS algorithm is
bounded by O(n2 · (n3 + n

√
n ·m∗ + Ωπ)), where Ωπ is the

time complexity of the edge generation policy π.

5.4 Example of edge generation policy

So far, we have not discussed specific edge generation poli-
cies that can be used within the proposed EGS framework.
Here, we use an example to illustrate two different edge
generation policies, which result in two different schedules
with different processor usage. This example indicates that
the edge generation policy is critical to the scheduling
performance of EGS and motivates us to develop a deep
reinforcement learning algorithm to learn an efficient edge
generation policy in Section 6.

Example 7. We apply the EGS with two different edge generation
policies to the DAG task in Fig. 7a and compare their scheduling
results. In the first iteration of the EGS, the two policies select to
add edge e43 and e35, resulting in the DAGs shown in Fig. 7b
and Fig. 7c, respectively.

6 DEEP REINFORCEMENT LEARNING

Finding an optimal edge generation policy is challenging.
Recall that EGS aims to reduce the DAG width by adding
one edge in each step. Since the decision made in one step
impacts the following decision process, a greedy policy that
always selects the edge with the maximum intermediate
width reduction may lead to a local optimum. Other simple
heuristics also often struggle with the global complexity of
NP-hard problems. In this section, we formulate the edge
generation as a Markov Decision Process (MDP) that aims
to maximize the width reduction. Then, we use the DRL
algorithm Proximal Policy Optimization (PPO) [11] to find a
policy with good global performance for this NP-hard MDP.

9

0
v1

1
v2

2
v3

2
v4

2
v5

1
v6

2
v7

2
v8

0
v9

D = 8

(a) Original DAG task with W = 3.

0
v1

1
v2

2
v3

2
v4

2
v5

1
v6

2
v7

2
v8

0
v9

D = 8

(b) First add e23, then add e76.

0
v1

1
v2

2
v3

2
v4

2
v5

1
v6

2
v7

2
v8

0
v9

D = 8

(c) Add e34, then no eij ∈ M can be added.

Fig. 7: Example of different edge generation policies. Given a DAG task (G, D) with G illustrated in (a) and D = 8, the
edge generation policy used in (b) reduces the DAG width to 2, while the policy used in (c) cannot reduce the DAG width.

6.1 MDP formulation
An MDP is defined through the tuple (S,A,R,T, γ) with
the state space S and the action space A. A reward function
R : S × A 7→ R assigns a scalar reward to state-action
pairs. In a deterministic MDP such as used in this work, a
transition function T : S ×A 7→ S determines the next state
according to the current state and current action. A discount
factor γ ∈ [0, 1) balances the importance of immediate and
future rewards. The goal in an MDP is to find a policy
π : S × A 7→ R+ that assigns a probability to each action
given a state. The policy aims to maximize the expected
cumulative discounted return

Rπ(s) = Ea∼π(a|s)

[∞∑

t=0

γtR(st, at) | s0 = s

]
. (13)

In the EGS framework, the state st ∈ S is a DAG Gt =
(V, Et) with its constant vertices and increasing set of edges.
The initial state is the DAG to be scheduled, i.e., G0 = G. The
action space A is defined as all eligible edges according to
the action mask Mt, of which the policy can choose an edge
at ∈Mt to add to the graph. Thus, the transition function T
results in Et+1 = Et ∪ {at}, and Mt+1 is updated according
to the new edges using (10). In EGS, the goal is to minimize
the number of cores needed to schedule the DAG. Therefore,
the reward is defined as

R(st, at) = W(Gt)−W(Gt+1), (14)

giving a reward equal to the width reduction after adding an
edge. The MDP terminates if the action mask is empty or the
width reaches the lower bound. To aid the agent in solving
the MDP we provide it with precomputed node features
consisting of (i) the node-level timing attributes, including
the WCET, EFT, and LST and (ii) the node-level parallelism
attributes, including the LW, IW, and OW.

6.2 PPO algorithm
The PPO algorithm [11] is an on-policy, actor-critic reinforce-
ment learning algorithm that trains a value function V πϕ (s)
(known as critic network) that predicts the cumulative re-
turnR(s) of a state s under the currently active policy πθ(s)
(known as actor-network). Conducting a rollout (i.e., a long
sequence of state-action-reward tuples), an advantage of the
actions in the rollout is approximated using a generalized
advantage estimate (GAE) [44]. The advantage indicates
whether the action taken was better or worse than the
average performance of the current policy. If the action was
better (resp., worse) than the expectation, the probability of

taking this action is increased (resp., decreased). We refer the
reader to [11] for the details of the PPO algorithm.

6.3 Neural network architecture

We apply an encoder-decoder architecture in the actor and
critic network of the PPO algorithm. The encoder learns the
node embedding of an input graph, and the decoder uses
the node embedding to produce an output depending on its
downstream task. Recall that in the PPO algorithm, the actor
and critic have the same input but different outputs. Hence,
we use the same encoder but different decoder architectures
for the two networks. The overall architecture of the actor
and critic networks is illustrated in Fig. 8.

The encoder is built upon a recent graph representa-
tion network Graphormer [12], which achieves state-of-the-
art performance in various graph applications. Graphormer
consists of multiple encoder layers, each of which includes
a multi-head attention (MHA) module and a multi-layer
perceptron (MLP) block with Layer normalization (LN)
applied before the MHA and the MLP. The MHA is the
key component in Graphormer, which effectively encodes
the structural graph information via a residual term in the
attention module. In this work, since a directed graph is
considered, we encode both the forward and backward con-
nectivity using the adjacency matrices of transitive closure
Tc and its transpose (Tc)

⊺, respectively. Concretely, for each
attention head, we assign different trainable scalars to each
feasible value (i.e., 0 and 1) in Tc and (Tc)

⊺. Then, the
trainable scalars corresponding to the (i, j)-th node pair
will be added to the (i, j)-th entry of the attention product
matrix Attn ∈ Rn×n:

[Attn′]ij = [Attn]ij + b1([Tc]ij) + b2([T⊺
c]ij),∀i, j (15)

where b1([Tc]ij) and b2([T⊺
c]ij) denote the trainable scalars

corresponding to [Tc]ij and [T⊺
c]ij , respectively. Note that

the trainable scalars are different in different attention
heads, and shared across all encoder layers. For simplic-
ity of presentation, we illustrate the single-head attention
in Fig. 8 and Equation (15). The extension to the multi-
head attention is standard and straightforward. We note
that there are many other design choices of graph repre-
sentation networks, e.g., graph neural networks (GNNs).
A comprehensive survey can be found in [45]. Evaluating
different design choices of graph representation network
architectures is beyond the scope of this paper.

The decoder of the actor-network transforms the node
embedding learned from the encoder network into edge

10

En
co

de
r L

ay
er

M
LP

Li
ne

ar
Li

ne
ar M

at
M

ul

Actor encoder Actor decoder

Critic decoder

En
co

de
r L

ay
er

En
co

de
r L

ay
er

Critic encoder

Estimated
state value

Fl
at

te
n

So
ftm

ax

Edge mask

Edge generation
probability

Sample and
generate edge

X encoding

SoftMax

MatMul

LinearLinear Linear

MatMul

(Tc)T encoding

Tc encoding

MLP

LN

MHA

LN

the l-th Encoder layer

Q K V

R
ed

uc
eM

ea
n

Attn

Attn'En
co

de
r L

ay
er

State st

State st+1

Fig. 8: Illustration of the actor and critic network.

generation probabilities. It first applies two linear layers
to generate two linear transformations of each node em-
bedding. Next, it conducts an inner product between the
linear transformations of every two nodes to derive a scalar
representing the edge generation score between the two
nodes. Written in the matrix form, we have:

S = (HW1)(HW2)⊺ (16)

where W1 ∈ Rd×d and W2 ∈ Rd×d denote the linear
transformation matrices; H ∈ Rn×d denotes the node em-
bedding learned from the encoder network; S ∈ Rn×n
denotes the edge generation score matrix where [S]ij is the
edge generation score from node vi to vj . Then, the action
mask is used to mask out the ineligible edges by setting their
generation score to 0. Finally, a Flatten layer transforms
the edge generation score matrix into a long vector, and
a Softmax layer is applied to convert the edge generation
scores into probabilities.

The decoder of the critic network is given by a MLP
shared across different nodes. The input dimension of the
MLP is the same as the dimension of node embedding,
and the output dimension equals one. The MLP downscales
each node’s embedding into a scalar. The mean of scalars
corresponding to all nodes is then used to estimate the
cumulative return R(s) of the current input state s.

7 EVALUATION

7.1 DAG task generation

We follow the DAG generation method proposed in [29]
to generate random DAG tasks for evaluation. The C++
implementation of the DAG generation method is available
online1. To evaluate the proposed algorithm on DAG tasks
with various characteristics, we generate a DAG task set
with two varied parameters: (i) task utilization defined as
the sum of sub-task utilization (i.e., U =

∑n
i=1 Ui, where

Ui = Ci/D); (ii) task density defined as the ratio of the
DAG length and its deadline (i.e., dens = L(G)/D). For the
task utilization, we consider seven ranges U ∈ [U,U + 1)
with U varied from {1.0, 2.0, ..., 7.0}. For the task density,

1. https://github.com/mive93/DAG-scheduling

we consider five ranges dens ∈ [dens, dens+0.1) with dens
varied from {0.5, 0.6, ..., 0.9}. For each combination of the
above parameter ranges, we generate 3, 000 random DAG
tasks, which constitute a set of 7 × 5 × 3, 000 = 105, 000
tasks. Then, we randomly split the whole task set into train,
validation, and test sets using a ratio of 0.6 : 0.2 : 0.2 ,
applying the split equally for each parameter range. We use
the splits respectively for training the DRL agent, tuning the
DRL hyperparameters and the final evaluation of the pre-
trained DRL agent and other comparison algorithms.

We note that the task generation method does not sup-
port specifying the number of nodes as a parameter of DAG
generation. To show the variety of n in our generated task
set, we plot a histogram of n in Fig. 9. From the figure, we
can see that n ∈ [0, 140], with the majority of cases falling
between 10 and 80.

0 20 40 60 80 100 120 140
Number of nodes n

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

Fig. 9: Histogram of number of nodes n.

7.2 Comparison algorithms

We evaluate the proposed EGS framework and DRL algo-
rithm by comparing the performance of the following DAG
scheduling algorithms on the generated task set.

Edge generation scheduling heuristics. We consider
three heuristics based on the proposed EGS framework,
integrated with different edge generation policies, i.e., PPO
policy (EGS-PPO), greedy policy (EGS-GRD), and random
policy (EGS-RND). In each iteration of EGS, EGS-PPO gen-
erates the edge with the maximum confidence given by a
pre-trained PPO agent. EGS-GRD selects an edge that leads

11

TABLE 1: Comparison results on processor usage.

Utilization Density EGS-PPO EGS-GRD EGS-RND He2019 Zhao2020 He2021
[0.5, 0.6) 2.060.52 2.220.61 2.260.63 2.060.51 2.090.53 2.060.51

[0.6, 0.7) 2.100.54 2.190.59 2.230.62 2.140.57 2.150.57 2.120.55

[1.0, 2.0) [0.7, 0.8) 2.140.56 2.200.60 2.280.64 2.200.60 2.230.61 2.170.59

[0.8, 0.9) 2.200.60 2.290.66 2.310.66 2.290.66 2.330.71 2.270.65

[0.9, 1.0) 2.390.75 2.460.81 2.480.79 2.470.81 2.550.91 2.470.80

[0.5, 0.6) 3.320.47 3.730.57 3.680.56 3.380.49 3.410.49 3.360.48

[0.6, 0.7) 3.380.49 3.740.59 3.780.57 3.500.51 3.560.53 3.500.50

[2.0, 3.0) [0.7, 0.8) 3.490.51 3.790.62 3.840.65 3.650.56 3.700.59 3.600.54

[0.8, 0.9) 3.670.58 3.990.66 4.050.69 3.920.67 4.090.76 3.900.63

[0.9, 1.0) 3.990.74 4.330.83 4.350.84 4.320.93 4.581.03 4.280.86

[0.5, 0.6) 4.170.38 4.820.57 4.740.52 4.390.49 4.460.50 4.370.49

[0.6, 0.7) 4.440.51 4.970.57 4.900.56 4.630.54 4.720.55 4.630.50

[3.0, 4.0) [0.7, 0.8) 4.600.56 5.070.62 5.100.63 4.900.56 5.010.64 4.850.59

[0.8, 0.9) 4.910.67 5.470.75 5.510.79 5.330.82 5.590.92 5.240.72

[0.9, 1.0) 5.390.84 5.950.97 6.060.98 5.951.16 6.441.43 5.871.09

[0.5, 0.6) 5.480.51 6.260.68 6.070.61 5.590.51 5.670.56 5.600.51

[0.6, 0.7) 5.630.55 6.490.74 6.350.66 5.900.60 5.970.57 5.860.56

[4.0, 5.0) [0.7, 0.8) 5.890.60 6.710.85 6.600.79 6.240.66 6.440.81 6.200.68

[0.8, 0.9) 6.300.73 7.120.98 7.190.96 6.800.92 7.201.15 6.710.85

[0.9, 1.0) 6.870.99 7.711.13 7.921.25 7.771.63 8.551.99 7.471.26

[0.5, 0.6) 6.400.49 7.510.70 7.220.62 6.670.53 6.800.54 6.630.51

[0.6, 0.7) 6.680.53 7.820.77 7.560.77 7.050.64 7.190.69 7.040.62

[5.0, 6.0) [0.7, 0.8) 7.010.59 8.050.79 7.950.75 7.530.69 7.720.79 7.390.65

[0.8, 0.9) 7.470.72 8.610.98 8.601.07 8.131.03 8.541.19 8.000.88

[0.9, 1.0) 8.411.05 9.621.28 9.661.36 9.711.95 10.732.47 9.141.38

[0.5, 0.6) 7.660.54 9.010.82 8.630.74 7.880.57 8.010.60 7.850.59

[0.6, 0.7) 8.030.59 9.370.87 9.050.83 8.360.72 8.550.75 8.320.69

[6.0, 7.0) [0.7, 0.8) 8.480.80 9.771.05 9.731.05 9.050.88 9.250.98 8.910.83

[0.8, 0.9) 9.030.89 10.411.11 10.451.23 9.811.11 10.191.39 9.600.96

[0.9, 1.0) 10.101.42 11.711.74 11.891.71 11.832.62 13.143.34 11.202.00

[0.5, 0.6) 9.080.65 10.911.06 10.260.86 9.280.65 9.420.68 9.260.65

[0.6, 0.7) 9.420.76 11.211.17 10.730.96 9.880.81 10.030.84 9.790.80

[7.0, 8.0) [0.7, 0.8) 10.020.90 11.721.26 11.591.15 10.691.05 10.841.05 10.551.00

[0.8, 0.9) 10.781.06 12.601.43 12.731.44 11.711.39 12.281.79 11.461.21

[0.9, 1.0) 12.001.80 14.132.20 14.372.35 14.323.49 15.764.22 13.102.18

to the maximum intermediate width reduction, with a tie-
breaking strategy of selecting the one with the minimum
intermediate length increase. EGS-RND generates an edge
uniformly at random. We note that all three policies only
generate edges that are deemed eligible by the edge masks,
as defined in the EGS framework. The effectiveness of the
proposed PPO policy can be evaluated through the compar-
ison with EGS-GRD and EGS-RND.

Mixed-integer linear programming (MILP). We formu-
late the DAG scheduling problem as a mixed-integer linear
program that can be solved by standard mathematical pro-
gramming solvers to obtain optimal solutions. Although the
optimality can be guaranteed, MILP is not computationally
tractable. Thus, it can only be used to solve relatively small
instances within a reasonable time (in our experiments,
DAGs with n ≤ 20 are solved by MILP within a 2-hour time
limit). Through the comparison with MILP, the optimality
gap of each comparison algorithm can be acquired. The
detailed formulation of the MILP is reported in Appendix A.

State-of-the-art DAG scheduling heuristics. The pro-
posed EGS framework is compared with three state-of-the-
art DAG scheduling algorithms: He2019 [18], Zhao2020
[19], and He2021 [20]. These algorithms are all developed
based on list scheduling framework. The main differences
are the priorities assigned to the DAG nodes. For example,
He2021 uses the vertex lengths (i.e., tEFT

i + D − tLFT
i) as

node priorities, while He2019 and Zhao2020 developed
more sophisticated priority assignment rules. We note that

the objective used in these list scheduling heuristics is to
minimize the makespan of a DAG task given a fixed num-
ber of processors. However, they can be easily adapted to
minimize processor usage given task deadline through an
incremental search as shown in Appendix B.

7.3 Experimental setup
All the experiments are conducted on a workstation
equipped with AMD EPYC 7763 CPUs and Nvidia A100
GPUs running GNU/Linux. The proposed EGS framework
is implemented in Python 3.8.12, and the PPO algorithm is
implemented using Tensorflow 2.7.0. The MILP is solved by
a standard mathematical programming solver Gurobi 9.5.02

with a Python interface. The hyper-parameters used in our
PPO implementation are reported in Appendix C.

The training of the DRL agent takes approximately 30
hours. The trained actor network is used to make edge
generation decisions on unseen tasks in the test set, taking
on average 3.53 seconds to schedule one DAG task.

7.4 Comparison results
7.4.1 Overall results
Table 1 compares the proposed EGS algorithms with the
state-of-the-art DAG scheduling heuristics. It summarizes
each algorithm’s average processor usage and associated

2. https://www.gurobi.com

12

TABLE 2: Average optimality gap Malg−Mopt

Mopt
when n ≤ 20.

EGS-PPO EGS-GRD EGS-RND He2019 Zhao2020 He2021
1.78% 7.20% 8.92% 5.95% 8.86% 5.29%

standard deviation (indicated in the superscript) under dif-
ferent task utilization and density. We use boldface type
to indicate the best results within the comparison. The
results show that EGS-PPO algorithm outperforms other
list scheduling heuristics in terms of processor usage across
all tested utilization and density levels, which demonstrates
the effectiveness of the proposed EGS framework and PPO
policy. Additionally, the performance gain of EGS-PPO im-
proves as the task utilization and density increase. EGS-GRD
and EGS-RND show a similar trend. In particular, they
perform worse than other algorithms at lower densities but
perform better than Zhao2020 at higher densities. This in-
dicates that EGS framework has more potential to schedule
DAGs with higher densities than list scheduling methods.

By comparing EGS-GRD and EGS-RND, it shows that
the greedy policy performs better than the random when
utilization is low, or density is high. This is expected since
the greedy policy tends to lead the decision process to local
optima, thus it is more difficult to achieve globally good
performance for a long decision episode.

To further understand how the algorithms perform com-
pared to the optimal solution, we compute their optimality
gaps, which are defined as the relative performance devia-
tions between the test algorithms and the optimal solution,
i.e., Malg−Mopt

Mopt
, where Malg and Mopt denote the number of

processors used by the test algorithm and the optimal solu-
tion, respectively. In our experiments, the optimal solutions
are obtained by solving MILP. Since the MILP solver is not
computationally tractable, we run it on DAGs with n ≤ 20
and present the average optimality gap of each comparison
algorithm in Table 2. It shows that EGS-PPO achieves the
best optimality gap (smaller than 2%) among all compari-
son algorithms. Moreover, EGS-GRD and EGS-RND achieve
similar optimality gaps to Zhao2020.

7.4.2 Sensitivity of task utilization

Fig. 10 illustrates the average number of processors required
by each algorithm under different task utilization U . The
figure shows similar findings as in Table 1 that EGS-PPO
outperforms other algorithms for all task utilization levels,
and the performance gain increases with task utilization.
With regards to the list scheduling heuristics, He2021
achieves the best performance, demonstrating that its pri-
ority assignment is better than He2019 and Zhao2020.

Additionally, we compare the acceptance ratio (i.e.,
schedulable tasks

tasks in the test set , for each utilization level with increments
of 0.1) achieved by each algorithm given M = 8. We can
see from Fig. 11 that EGS-PPO achieves the best acceptance
ratio among all algorithms. While EGS-GRD and EGS-RND
achieve high acceptance ratio for low utilization tasks (i.e.,
better than He2019 and Zhao2020 for U < 4 and U < 5,
respectively), their performance drops rapidly as U > 6.
This is because the advantage of EGS-GRD and EGS-RND lies
in scheduling high-density tasks (see Table 1). As U → M ,
most high-density tasks require more than M processors for

1 2 3 4 5 6 7 8
Utilization

2

4

6

8

10

12

14

Pr
oc

es
so

r
us

ag
e

EGS-PPO
EGS-GRD
EGS-RND
He2019
Zhao2020
He2021

Fig. 10: Average processor usage with various U .

1 2 3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 r

at
io

EGS-PPO
EGS-GRD
EGS-RND
He2019
Zhao2020
He2021

Fig. 11: Acceptance ratio with M = 8 and various U .

all algorithms (see Table 1). Thus, the advantage of achiev-
ing lower processor usage for high-density tasks cannot
contribute to the acceptance ratio. More details about the
impact of task density on processor usage are discussed in
the following.

7.4.3 Sensitivity of task density
Fig. 12 illustrates the processor usage with different task
densities with a violin plot. The ticks of each violin show
the maximum, average, and minimum (from top to bottom)
processor usage among all the test instances within each
density range. The figure shows that the overall processor
usage increases with task density, and EGS-PPO outper-
forms other algorithms in terms of average processor usage
and performance stability, as indicated by the violin size. In
particular, when dens ≥ 0.9, EGS-PPO can save up to 5 and
8 processors compared to He2019 and Zhao2020, respec-
tively. Moreover, it shows similar findings as in Table 1 that
EGS-GRD and EGS-RND perform better than He2019 and
Zhao2020 for high task density (dens ≥ 0.9).

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0)
Density

6

8

10

12

14

16

Pr
oc

es
so

r
us

ag
e

EGS-PPO
EGS-GRD
EGS-RND
He2019
Zhao2020
He2021

Fig. 12: Processor usage with U = 5 and various dens.

13

8 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of scheduling real-
time DAG tasks on multicore platforms to minimize proces-
sor usage while guaranteeing schedulability. We presented
a new schedulability test based on the observation that a
DAG task is schedulable if its width is not greater than
the number of available processors and its length is less
than or equal to the deadline. A new Edge Generation
Scheduling (EGS) framework is proposed that converts a
DAG task into a trivially schedulable DAG by iteratively
adding edges. A DRL algorithm combined with a graph
representation neural network is developed to learn an
efficient edge generation policy for EGS. The effectiveness of
three EGS variants (i.e., EGS-PPO, EGS-GRD, and EGS-RND)
was evaluated by comparing to exact solutions and state-
of-the-art DAG scheduling algorithms. Experimental results
show that EGS-PPO outperforms other approaches, while
EGS-GRD and EGS-RND achieve comparable results to the
state-of-the-art for low-utilization and high-density tasks.

Although the main focus of the paper is on the schedula-
bility aspects of a DAG task, we note that the approach can
also be extended to solve joint optimization of schedulability
and other timing attributes such as reaction time or data
age. Additionally, given that the proposed method requires
fewer processors than the state-of-the-art, it is expected to
also provide better results when scheduling multiple tasks
under a federated scheduling policy (e.g., [24]).

In the future, we plan to study real-time DAG schedul-
ing in heterogeneous platforms. We are also interested in
extending the proposed method to minimize the makespan
of a DAG, which is important for production scheduling
and cloud computing applications.

REFERENCES

[1] M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini, “Industrial
Challenge 2022: A High-Performance Real-Time Case Study on
Arm,” in Euromicro Conference on Real-Time Systems (ECRTS), vol.
231, 2022, pp. 1:1–1:15.

[2] A. Hamann, D. Dasari, F. Wurst, I. Saudo, N. Capodieci, P. Burgio,
and M. Bertogna, “WATERS industrial challenge,” in Proceedings
of the 10th International Workshop on Analysis Tools and Methodologies
for Embedded Real-Time Systems (WATERS), 2019.

[3] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-
aware generation of single-rate DAGs from multi-rate task sets,”
in IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2020, pp. 226–238.

[4] J. D. Ullman, “NP-complete scheduling problems,” Journal of Com-
puter and System sciences, vol. 10, no. 3, pp. 384–393, 1975.

[5] M. Verucchi, “A comprehensive analysis of DAG tasks: solutions
for modern real-time embedded systems,” Doctoral Dissertation,
University of Modena and Reggio Emilia, Italy, 2020.

[6] J. Li, K. Agrawal, and C. Lu, “Parallel real-time scheduling,” in
Handbook of Real-Time Computing. Springer, 2022, pp. 447–467.

[7] M. Verucchi, I. S. Olmedo, and M. Bertogna, “A survey on real-
time DAG scheduling, revisiting the global-partitioned infinity
war,” Real-Time Systems, vol. 59, no. 3, pp. 479–530, 2023.

[8] S. Baruah, “Scheduling DAGs when processor assignments are
specified,” in ACM International Conference on Real-Time Networks
and Systems (RTNS), 2020, pp. 111–116.

[9] S. Chang, J. Sun, Z. Hao, Q. Deng, and N. Guan, “Computing
exact WCRT for typed DAG tasks on heterogeneous multi-core
processors,” Journal of Systems Architecture, vol. 124, p. 102385,
2022.

[10] S. Ahmed and J. H. Anderson, “Exact response-time bounds of
periodic DAG tasks under server-based global scheduling,” in
IEEE Real-Time Systems Symposium (RTSS), 2022, pp. 447–459.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[12] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y.
Liu, “Do transformers really perform badly for graph representa-
tion?” Advances in Neural Information Processing Systems (NeurIPS),
vol. 34, pp. 28 877–28 888, 2021.

[13] A. Minaeva, D. Roy, B. Akesson, Z. Hanzalek, and S. Chakraborty,
“Control performance optimization for application integration on
automotive architectures,” IEEE Transactions on Computers, vol. 70,
no. 7, pp. 1059–1073, 2021.

[14] AUTOSAR, “Requirements on Timing Extensions,” Standard,
2022. [Online]. Available: https://www.autosar.org/fileadmin/
standards/R22-11/FO/AUTOSAR RS TimingExtensions.pdf

[15] ARINC, “Avionics Application Software Standard Interface,
Part 0, Overview of ARINC 653,” Standard, 2021.
[Online]. Available: https://aviation-ia.sae-itc.com/events/
avionics-application-executive-apex-software-subcommittee

[16] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-
time processes,” in IEEE Real-Time Systems Symposium (RTSS),
2012, pp. 63–72.

[17] R. L. Graham, “Bounds on multiprocessing timing anomalies,”
SIAM Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429,
1969.

[18] Q. He, N. Guan, Z. Guo et al., “Intra-task priority assignment in
real-time scheduling of DAG tasks on multi-cores,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–
2295, 2019.

[19] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, “DAG scheduling
and analysis on multiprocessor systems: Exploitation of paral-
lelism and dependency,” in IEEE Real-Time Systems Symposium
(RTSS), 2020, pp. 128–140.

[20] Q. He, M. Lv, and N. Guan, “Response time bounds for DAG
tasks with arbitrary intra-task priority assignment,” in Euromicro
Conference on Real-Time Systems (ECRTS), 2021, pp. 8:1–8:21.

[21] Q. He, N. Guan, M. Lv, X. Jiang, and W. Chang, “Bounding the
response time of DAG tasks using long paths,” in IEEE Real-Time
Systems Symposium (RTSS), 2022, pp. 474–486.

[22] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Fea-
sibility analysis in the sporadic DAG task model,” in Euromicro
Conference on Real-Time Systems (ECRTS), 2013, pp. 225–233.

[23] S. Baruah, “Improved multiprocessor global schedulability anal-
ysis of sporadic DAG task systems,” in Euromicro Conference on
Real-Time Systems (ECRTS), 2014, pp. 97–105.

[24] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah,
“Analysis of federated and global scheduling for parallel real-time
tasks,” in 26th Euromicro Conference on Real-Time Systems (ECRTS),
2014, pp. 85–96.

[25] R. Pathan, P. Voudouris, and P. Stenström, “Scheduling parallel
real-time recurrent tasks on multicore platforms,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 29, no. 4, pp. 915–928,
2018.

[26] Y. Yadlapalli and C. Liu, “LAG-based analysis techniques for
scheduling multiprocessor hard real-time sporadic DAGs,” in
IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 316–328.

[27] S. Zhao, X. Dai, and I. Bate, “DAG scheduling and analysis on
multi-core systems by modelling parallelism and dependency,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 12,
pp. 4019–4038, 2022.

[28] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global
edf scheduling of systems of conditional sporadic DAG tasks,” in
Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp. 222–
231.

[29] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional DAG tasks
in multiprocessor systems,” in Euromicro Conference on Real-Time
Systems (ECRTS), 2015, pp. 211–221.

[30] N. Ueter, M. Günzel, and J.-J. Chen, “Response-time analysis and
optimization for probabilistic conditional parallel DAG tasks,” in
IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 380–392.

[31] K. Yang, M. Yang, and J. H. Anderson, “Reducing response-time
bounds for DAG-based task systems on heterogeneous multicore
platforms,” in ACM International Conference on Real-Time Networks
and Systems (RTNS), 2016, pp. 349–358.

14

[32] S. Chang, X. Zhao, Z. Liu, and Q. Deng, “Real-time scheduling and
analysis of parallel tasks on heterogeneous multi-cores,” Journal of
Systems Architecture, vol. 105, p. 101704, 2020.

[33] H. Zahaf, N. Capodieci, R. Cavicchioli, G. Lipari, and M. Bertogna,
“The HPC-DAG task model for heterogeneous real-time systems,”
IEEE Transactions on Computers, vol. 70, no. 10, pp. 1747–1761, 2021.

[34] F. Reghenzani, A. Bhuiyan, W. Fornaciari, and Z. Guo, “A multi-
level DPM approach for real-time DAG tasks in heterogeneous
processors,” in IEEE Real-Time Systems Symposium (RTSS), 2021,
pp. 14–26.

[35] R. Bi, Q. He, J. Sun, Z. Sun, Z. Guo, N. Guan, and G. Tan,
“Response time analysis for prioritized DAG task with mutually
exclusive vertices,” in IEEE Real-Time Systems Symposium (RTSS),
2022, pp. 460–473.

[36] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proceedings of the ACM special interest group on data
communication (SIGCOMM), 2019, pp. 270–288.

[37] P. Sun, Z. Guo, J. Wang, J. Li, J. Lan, and Y. Hu, “Deepweave: Ac-
celerating job completion time with deep reinforcement learning-
based coflow scheduling,” in International Conference on Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI), 2021, pp.
3314–3320.

[38] H. Lee, S. Cho, Y. Jang, J. Lee, and H. Woo, “A global DAG task
scheduler using deep reinforcement learning and graph convolu-
tion network,” IEEE Access, vol. 9, pp. 158 548–158 561, 2021.

[39] W. Jeon, M. Gagrani, B. Bartan, W. W. Zeng, H. Teague, P. Zappi,
and C. Lott, “Neural DAG scheduling via one-shot priority
sampling,” in International Conference on Learning Representations
(ICLR), 2023.

[40] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[41] R. Dilworth, “A decomposition theorem for partially ordered
sets,” Annals of Mathematics, pp. 161–166, 1950.

[42] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on computing, vol. 2,
no. 4, pp. 225–231, 1973.

[43] J. Bang-Jensen and G. Z. Gutin, Digraphs: theory, algorithms and
applications. Springer Science & Business Media, 2008.

[44] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage esti-
mation,” arXiv preprint arXiv:1506.02438, 2015.

[45] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transac-
tions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24,
2020.

Binqi Sun received the master’s degree in con-
trol science and engineering from the Depart-
ment of Automation, Tsinghua University, Bei-
jing, China, in 2020. He is currently a doctoral
candidate in computer science with TUM School
of Computation, Information and Technology,
Technical University of Munich, Germany. His
research interests include real-time scheduling,
combinatorial optimization, and cyber-physical
systems.

Mirco Theile received the M.Sc. degree in elec-
trical engineering and information technology
from Technical University of Munich, Germany,
in 2018, where he is currently pursuing the Ph.D.
degree. Currently, he is a visiting researcher at
University of California in Berkeley, USA. His
current research interests extend to reinforce-
ment learning in applications of cyber-physical
systems, including UAVs, robotics, and real-time
systems.

Ziyuan Qin received his B.Sc. degree in oper-
ations research from Cornell University in 2018.
He is a master student studying computer sci-
ence at Technical University of Munich, Ger-
many. His current research interests include
graph neural networks, explainable artificial in-
telligence, and robot learning.

Daniele Bernardini received his M.Sc. degree
in Theoretical Physics at the University of Flo-
rence in 1997. After graduation, he spent 2 more
years as a researcher at the Ludwig Maximilians
University, Munich before transitioning to the in-
dustry, where he gained more than 20 years of
experience in software development and data
science. In 2021 he joined the Technical Univer-
sity of Munich as research group leader where
he focuses on advancing perception for robotic
manipulation. Since 2021 he is a co-founder and

CEO of Cognivix, a startup specializing in automation solutions for
industries requiring high variability and low volume production.

Debayan Roy obtained his Ph.D. in electrical
and computer engineering from the Technical
University of Munich, Germany in 2020. Since
2022, he is a Senior Research Engineer at
Huawei Munich Research Center, Germany in
the Automotive Software Platform Laboratory.
His research interests primarily include mod-
eling, design and analysis of real-time cyber-
physical systems. He won the best paper award
at RTCSA 2017.

Andrea Bastoni received his Ph.D. in computer
engineering from the University of Rome Tor Ver-
gata in 2011. Since 2007, he has been working
in the industry as Software Engineer and Soft-
ware Architect and has acquired more than 10
years of experience in real-time operating sys-
tems for safety-critical certified products in the
avionics, railway, and automotive fields. In 2020,
he joined the Technical University of Munich
as Research Fellow focusing on safety-critical
RTOS, predictability on complex heterogenous

architectures, and virtualization.

Marco Caccamo earned his Ph.D. in computer
engineering from Scuola Superiore Sant’Anna
(Italy) in 2002. Shortly after graduation, he joined
University of Illinois at Urbana-Champaign as
assistant professor in Computer Science and
was promoted to full professor in 2014. Since
2018, Prof. Caccamo has been appointed to the
chair of Cyber-Physical Systems in Production
Engineering at Technical University of Munich,
Germany. In 2003, he was awarded an NSF CA-
REER Award. He is a recipient of the Alexander

von Humboldt Professorship and he is IEEE Fellow.

15

APPENDIX A
MILP FORMULATION

The DAG scheduling problem is formulated as a mixed-
integer linear program (MILP) with the notations in Table 3.

TABLE 3: Table of notations used in the MILP.

Notation Implication
Problem data
G = (V, E) Task graph with n nodes (sub-tasks);
D Task deadline;
m Width of the task graph (i.e., W(G) = m);
i, j Node index, i = 1, ..., n, j = i, ..., n;
k Processor index, k = 1, ...,m;
Ci WCET of node i;
M1,M2 Two large constant numbers.
Decisions
xik 1, if node vi executes on processor k; 0, otherwise;
yk 1, if any node executes on processor k; 0, otherwise;
γij 1, if node vi and j execute on the same processor,

and node vi executes later than vj ; 0, otherwise;
fi Finishing time of node vi.

minimize
m∑

k=1

yk (17)

subject to:
m∑

k=1

xik = 1, ∀vi ∈ V (18)

fi ≤ fj − Cj +M1 · γij
+M2 · (2− xik − xjk),∀vi ̸= vj , k = 1, ...,m (19)

fj ≤ fi − Ci +M1 · (1− γij)
+M2 · (2− xik − xjk),∀vi ̸= vj , k = 1, ...,m (20)

Ci ≤ fi, ∀vi ∈ V (21)

fi ≤ D, ∀vi ∈ V (22)

fi + Cj ≤ fj , eij ∈ E (23)

xik ≤ yk, ∀vi ∈ V, k = 1, ...,m (24)

Objective (17) minimizes the number of processors used to
schedule the DAG task. Constraints (18) ensure that each
node is assigned to one and only one processor to execute.
Constraints (19) and (20) guarantee the execution order of
the nodes assigned to the same processor and make sure
there is at most one node running on each processor at each
time instant. Constraints (21) and (22) ensure all the nodes
start and finish their execution no earlier than the release
time 0 and no later than the deadline D, respectively. Con-
straints (23) implement the precedence constraints between
the nodes. Constraints (24) indicate busy processors (i.e., the
processors to which at least one node is assigned).

Algorithm 3: Incremental search to minimize pro-
cessor usage with list scheduling heuristics

Input: (G, D): the DAG task to be scheduled;
Output: M∗: number of processors used;

1 for M∗ ← 1 to n do
2 Makespan← ListSched(G,M∗) [3], [18], [19];
3 if G is schedulable (i.e., Makespan ≤ D) then
4 return M∗;

APPENDIX B
INCREMENTAL SEARCH FOR LIST SCHEDULING

Algorithm 3 presents the incremental search procedures of
minimizing processor usage with list scheduling heuristics.

APPENDIX C
PPO HYPERPARAMETERS

We summarized the hyperparameters of the PPO implemen-
tation in Table 4.

TABLE 4: PPO hyper-parameters.

Hyper-parameter Value Hyper-parameter Value
Discount factor γ 0.99 Number of encoder layers 2
GAE parameter λ 0.97 Number of attention heads 8
Clipping parameter ϵ 0.2 Node embedding dimension 64
Number of iterations 500 MLP hidden dimension 64
Length of rollout 50, 000 Initial learning rate 10−4

Batch size 100 End learning rate 10−5

Epochs per iteration 10 Learning rate decay steps 106

Chapter 6. Reinforcement Learning for Graph-based Task Scheduling

158

Chapter 7

Discussion

7.1 Summary

This thesis has explored the application of reinforcement learning (RL) to cyber-physical
systems (CPS), specifically focusing on planning, control, and scheduling challenges.
Motivated by the development of a long-endurance solar unmanned aerial vehicle (UAV),
the TUM-UIUC Solar Flyer, the different chapters explored the diverse challenges of
applying RL to ultimately real-world CPS.

The autopilot development in Chapter 3 emphasized the complexity of a CPS, focusing
mainly on the cyber component. It showed the development of the autopilot framework
uavAP1, its core cpsCore2, and its implementation of a planning and control stack. The
applications of the framework to different fixed-wing aircraft showed its adaptability
and the long-endurance flight tests showed its reliability. The derived beta trajectory
describing the evasion trajectory of small-size fixed-wing UAVs with roll-rate constraints
shows how feasibility models can be created for this aircraft type, enabling the future
implementation of safety layers for RL algorithms.

Chapter 4 showed how maps of the environment can be used for UAV path planning
with RL. It elaborated on the importance of map processing in aiding shallow neural
network structures in learning generalizing policies for coverage path planning and path
planning for data harvesting. Additionally, maps enable implicit collaboration among
multi-agent UAVs as they allow the straightforward expression of all UAV positions in
the maps. The projects further lead to the open-source code repositories uavSim3 for
coverage path planning, and uav data harvesting4 for the data harvesting problem. The
chapter illustrates that RL could be used in increasingly more complex challenges, hinting
at the scalability of RL toward real-world applications in UAV path planning.

The papers on the RL challenges in real-world control problems in Chapter 5 intro-
duced a cloud-edge5 framework for online learning RL policies in a real-time setting and

1https://github.com/theilem/uavAP
2https://github.com/theilem/cpsCore
3https://github.com/theilem/uavSim
4https://github.com/hbayerlein/uav_data_harvesting
5https://github.com/HP-CAO/cloud_edge

159

https://github.com/theilem/uavAP
https://github.com/theilem/cpsCore
https://github.com/theilem/uavSim
https://github.com/hbayerlein/uav_data_harvesting
https://github.com/HP-CAO/cloud_edge

Chapter 7. Discussion

an action mapping concept to efficiently exploit model knowledge. The former allows
training or fine-tuning off-policy RL algorithms when the computing unit of the controller
is limited, and the sim-to-real gap is too large to directly deploy a pretrained agent to
the real-world system. It further elaborated on the challenges of real-world systems, such
as non-Markovian behavior, and emphasized the importance of timing accuracy for the
collection of training data. The action mapping framework presented in the latter is
intended to efficiently utilize models that predict the feasibility of actions during RL
training. To enable this framework, it established how to learn to generate all feasible
actions, leading to a feasibility policy that can be used as a map from a latent space to
all feasible actions. An objective policy that aims to maximize a value function can use
this map by searching for the optimal action in the latent space instead of in the action
space, likely leading to significant training acceleration.

Chapter 6 focuses on directed acyclic graphs (DAGs) for task scheduling in CPS.
The first paper shows how periodic multi-rate tasksets can be transformed into DAGs
by expressing timing constraints through dummy and synchronization nodes. It further
shows how end-to-end latencies of task chains can be bounded and minimized by adding
edges to the DAG. The second paper dives deeper into the scheduling of DAG tasks
by observing that DAGs with specific characteristics are trivial to schedule and that
all DAGs that are schedulable can be transformed into a trivially schedulable DAG by
adding edges. For the resulting edge generation scheduling (EGS 6) framework, RL can
be used to find appropriate edges to add to find a schedule for a given DAG. Using action
masks that disallow adding specific edges derived from topological and temporal features
of the DAG, model knowledge was used to significantly accelerate the training of the RL
agent. After adding all the necessary edges, EGS yields a trivially schedulable DAG,
which is proven to be schedulable, providing guarantees required in real-time scheduling.

The critical challenges addressed in this thesis are formulating problems in CPS to
effectively apply RL and including prior knowledge in the learning process. Besides
insights and novel methodologies to address these challenges, the thesis also yielded
open-source code repositories to help advance the applicability of RL to CPS. While RL
is a powerful tool for many challenges in CPS and other fields, an open question is, which
problems are suitable for RL?

7.2 The Law of the Hammer

“If the only tool you have is a hammer,
it is tempting to treat everything as if it were a nail.”

– Abraham Maslow, 1966 [85]

The law of the hammer, which is commonly attributed to Abraham Maslow, describes
the cognitive bias of overly relying on a familiar tool. Reinforcement learning is not
necessarily a familiar tool but an attractive one in research and industry. Consequently,
there is a tendency to apply RL to problems for which it may not be the most suitable

6https://github.com/binqi-sun/egs

160

https://github.com/binqi-sun/egs

Chapter 7. Discussion

solution. This section aims to summarize the experiences gathered for this thesis in
identifying problems that are true nails for the RL hammer.

A guideline for deciding whether to use RL for a given problem could be answering
the following questions about the problem:

1. Is the problem complex to solve?

2. Can the problem be solved interactively?

3. Is the optimal policy unknown?

4. Can the problem be simulated?

5. Does the problem require generalization?

If all of these questions are answered with yes, RL may be an applicable solution for the
problem. Otherwise, other algorithms may be preferred. The following provides details
to the questions.

1) Is the problem complex to solve?

The first question should be whether the problem is too complex to solve efficiently
with traditional algorithms or hand-crafted heuristics. This question can be reframed to
whether simpler solutions fail, are insufficient, or lack scalability. Generally, the state
space should be large or not directly observable, yielding large observation spaces. In
small state or observation spaces, it is often easier to formulate a heuristic to solve the
problem. Control problems should be non-linear since otherwise optimal solutions are
trivial to derive. If it is a combinatorial problem, NP-hard problems are usually complex
enough to motivate using RL, as no efficient and scalable optimal solution exists.

One motivation for using RL is its potential to scale while the problem formulation
progressively approaches real-world applications. Consider the CPP problem discussed
in Section 4.1. While the initial problem could have been solved with other algorithms,
the proposed RL approach could be adapted to solve the more complex challenge in
Section 4.3 and an even harder challenge in preliminary results in [86]. It thus holds
the potential to be a successful approach for the continuous-world CPP problem that
the UIUC-TUM Solar Flyer faces in the agricultural monitoring case study discussed in
Section 1.3.

2) Can the problem be solved interactively?

The second question ensures that the problem at hand is an optimization problem that
can be formulated as an MDP and solved iteratively in an interactive fashion. It further
verifies that the goal of the problem is to find a policy that solves this problem adequately.
Most classification or regression problems do not typically meet this condition, indicating
that RL may not be applicable in such cases. However, some classification and regression
problems can be reformulated.

Take the DAG scheduling problem from Section 6.2 as an example. The original
question in that paper was: “Is a given DAG task schedulable using a specific number

161

Chapter 7. Discussion

of cores?”, a classification problem. The classification problem was converted into a
regression problem by asking: “How many cores are needed to schedule the DAG task?”
If the answer is lower than the number of available cores, it is schedulable on these cores.
Ultimately, the question was formulated as an optimization problem: “Minimize the
number of cores needed to schedule the DAG task.” Therefore, formulating it as an MDP
and solving it with RL is possible.

3) Is the optimal policy unknown?

For some interactive problems where a policy is needed, there already exist an optimal
policy, such as numerical solvers, or sufficiently good policies, such as human demonstra-
tion data. In both cases, the task is usually to replace the expensive optimal solver or
the human with a cheaper approximate solution. If the quantity of data is sufficiently
large, it is likely advantageous to utilize techniques such as imitation learning [87] instead
of RL. In case a policy is searched for that is better than the policies from which the
data is gathered, e.g., if the data is coming from different suboptimal heuristics, offline
or batch RL methods [88] (not to be confused with off-policy RL) are the go-to solution.

The primary application area of RL is the set of problems for which optimal solutions
or good solutions are unknown, and humans do not naturally solve the problem well.
The problems in this thesis, primarily CPP and DAG scheduling, do not have efficient
optimal policies, and human demonstration data is not beneficial as these tasks are too
complex for humans to solve.

4) Can the problem be simulated?

Since RL requires learning from interactions, it is highly beneficial if the problem can
be simulated efficiently, and the sim-to-real gap, discussed in Section 5.1, needs to be
manageable. If RL algorithms become more sample efficient and robust and safe methods
are developed, learning directly on the real system may be possible. However, given the
algorithms currently available, direct application is feasible only in particular contexts,
such as in [84], underscoring the necessity of simulations for RL.

In some real-world problems, no models exist for the environment with which the
agent interacts, but there is an abundance of data. If the environment is unaffected
by the agent’s behavior, it may be possible to train an RL agent based on a learned
environment model. However, this may become impossible if the agent’s decisions
affect the environment. This problem is common in multi-agent scenarios, in which
the other agents are unknown but reactive to the agent. Therefore, training an RL
agent in data-driven models is only applicable if the agent’s decisions do not change the
environment.

5) Does the problem require generalization?

The final question is critical to determining if RL is the appropriate tool for a given
problem. The primary advantage of RL, specifically deep RL, over other optimization
solvers lies in generalizing a policy to unseen problem instances. Therefore, RL should

162

Chapter 7. Discussion

only be used for problems where a good policy for all instances of a problem class is
sought.

Consider the CPP example in Section 4.3 and [86]. If only one specific scenario is
given, i.e., one map with one set of target zones and one level of battery charge, RL could
be used to find the optimal solution for this scenario. However, it would most likely
require much longer than employing any numerical solver or branch-and-bound method.
Similarly, in the DAG scheduling example in Section 6.2, other optimization methods
would be better suited if searching for the schedule of one specific DAG task. However,
in this thesis’s CPP and DAG scheduling problems, the objective is to find a policy for
all instances of a problem, motivating the use of RL.

Summary

Thus, a one-sentence summary of RL could be: Reinforcement learning is a tool that
utilizes large quantities of interactions to find a generalizing policy for an optimization
problem that solves all instances of that problem or problem class sufficiently well.

7.3 Future Work

For RL in planning, specifically in the field of UAV path planning, future work focuses
on scaling the problem toward the real-world application of quadcopter or fixed-wing
aircraft planning. A challenge that needs to be addressed is that most tasks, including
the “agricultural monitoring as a service” case study in this thesis, require long-horizon
planning. Preliminary work on the problem of power-constrained coverage path planning
with recharge [86] shows the difficulties of long-horizon problems and offers mitigating
strategies that can be further explored. An additional problem is the exorbitant amount
of interactions with the environment needed for RL. This could be reduced by leveraging
existing system knowledge, such as symmetries, as done in other preliminary work [89].

When transitioning to continuous state and action spaces, temporal abstraction of the
action space by parameterizing splines as trajectory segments to follow could be beneficial
to not exacerbate the long-horizon challenge. Additionally, the local planner in uavAP is
designed to follow splines that are currently generated by the SplineGlobalPlanner. With
the parameters of splines as the action space, deriving a feasibility model is possible,
yielding the question of how to efficiently include it in the learning process. Action
mapping, conceptualized in this thesis, will be explored as the methodology to integrate
the model knowledge and safety assurance into the RL agent. Besides the specific
challenge of path planning, future work will also explore action mapping’s potential for
efficiently safe RL in other contexts.

If action mapping can provide safety guarantees during and after training, the RL
agent can be deployed and fine-tuned on the real physical UAV. However, the computation
unit on the physical system is likely constrained in performance due to space, cooling,
and power constraints. To enable online fine-tuning, the proposed cloud-edge framework
can be used to offload the training to the ground station and only keep the inference on

163

Chapter 7. Discussion

board. However, the framework needs to be adapted to handle the intermittent data
communication between the UAV edge and the base station cloud.

Despite offloading the training computation to the ground station, the computations
for perception, planning, control, and data processing will remain onboard. The resulting
computational load on the onboard device will further require advances in real-time
scheduling for large parallelizable tasksets. Formulating the multi-rate taskset as a DAG
and using EGS for scheduling may prove advantageous. However, advances in the EGS
algorithm will be required to handle pipelined tasksets and tasks with arbitrary deadlines,
which are likely found in the data processing tasks. Furthermore, the EGS algorithm can
be reformulated for makespan minimization to enable its application to various other
fields.

In conclusion, the projects in this thesis enable further development in many branches
of RL in CPS, ultimately leading to the development of an intelligent version of the
TUM-UIUC Solar Flyer.

164

Appendices

165

Appendix A

Reuse Statements

167

Appendix A. Reuse Statements

A.1 Trajectory Estimation for Geo-Fencing Applications on Small-

Size Fixed-Wing UAVs

4/4/24, 2:01 PM Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

Trajectory Estimation for Geo-Fencing Applications on Small-Size Fixed-
Wing UAVs

Conference Proceedings:

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Author: Mirco Theile

Publisher: IEEE

Date: November 2019

Copyright © 2019, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

168

Appendix A. Reuse Statements

A.2 uavAP: A Modular Autopilot Framework for UAVs

30/4/24, 2:57 PMRights and Permissions | AIAA

Page 3 of 6https://www.aiaa.org/publications/Publish-with-AIAA/Rights-and…Ix*_ga_BFMKMMYM72*MTcxNDQ3NzcyMC4xLjEuMTcxNDQ3Nzk2NS42LjAuMA..

submission process. All authors and/or authorized individuals must assert that the manuscript

is cleared for release, if required; acknowledge the originality and publication status of the

work; and grant copyright or a license for AIAA’s use of the material.

An explanation of the submission requirements and copyright options available to authors

can be found here.

AIAA cannot advise authors on whether their work is within or outside the scope of their

official duties, nor can AIAA advise coauthors with different employers how to determine

copyright ownership and appropriate transfer or license.

Reuse Licenses and Permission Requests

Transfer of copyright to AIAA does not prevent authors from reproducing or adapting their

work, in whole or in part, for their own private use, including for educational purposes,

provided the material is not systematically reproduced or distributed and is not for sale.

Examples of permitted uses retained by authors or their employers include incorporating

material into lectures and in-house training materials and presentations, and posting

accepted manuscripts of conference papers and journal articles on a personal website or in

an institutional or government archive. Refer to AIAA’s Self-Archiving and Posting Policy,

which addresses posting the accepted manuscript version on private websites and in

institutional archives; for additional details on sharing your work before and after publication,

also go to How Can I Share My Research? Links to the version of record (VOR) in AIAA’s

electronic library, Aerospace Research Central (ARC) (https://arc.aiaa.org) , should be

maintained, as appropriate.

In most cases when AIAA is the copyright holder of a work, authors will be automatically

granted permission by AIAA to reprint their own material in subsequent works, to include

Author Reuse Rights and Posting Policy 

(click to hide)

30/4/24, 2:57 PMRights and Permissions | AIAA

Page 4 of 6https://www.aiaa.org/publications/Publish-with-AIAA/Rights-and…Ix*_ga_BFMKMMYM72*MTcxNDQ3NzcyMC4xLjEuMTcxNDQ3Nzk2NS42LjAuMA..

figures, tables, and verbatim portions of text, upon request. Explicit permission should be

sought from AIAA through Copyright Clearance Center (CCC) (https://www.copyright.com) , as

described below; all reprinted material must be acknowledged and the original source cited

in full.

All versions of a publication are subject to the copyright terms and conditions executed

between AIAA and the authors. AIAA has no copyright claim on material in the public domain

or owned by individuals, institutions, or foreign governments.

All versions of AIAA content are subject to this end-user license, to include accepted

manuscript versions and other open access publications. Click here for more information

(/publications/comprehensive-end-user-license?SSO=true) .

Authors whose works are the result of research performed under a grant from a government

funding agency are free to exercise all rights pertaining to public access as specified by the

contract and to fulfill author deposit mandates from that funding agency provided that the

mandate allows for a minimum 12-month embargo, starting from the official date of

publication by AIAA, and so long as the accepted manuscript version, and not the AIAA

published VOR is used for this purpose. Reproductions in whole or in part shall include a full

citation in reference to the AIAA publication and notice of copyright.

As a member of CHORUS (https://www.chorusaccess.org) , AIAA also will make available the

accepted manuscript versions of journal articles that are subject to U.S. federal funding

agency public access mandates, following the 12-month embargo period. These Open

Access versions will be available through Aerospace Research Central (ARC)

(https://arc.aiaa.org) .

Sharing and reusing material from AIAA Open Access publications is subject to the terms of

copyright.

Comprehensive End-User License


(click to show)

Funding Agency Mandates and Open Access


(click to show)

30/4/24, 2:57 PMRights and Permissions | AIAA

Page 5 of 6https://www.aiaa.org/publications/Publish-with-AIAA/Rights-and…Ix*_ga_BFMKMMYM72*MTcxNDQ3NzcyMC4xLjEuMTcxNDQ3Nzk2NS42LjAuMA..

Text data mining of AIAA content available in Aerospace Research Central (ARC)

(https://arc.aiaa.org) requires a bilateral agreement with AIAA. Terms of use for all content

remain subject to copyright.

If you wish to reuse your own or someone else’s material previously published by AIAA, in

print or electronically, first determine whether or not AIAA is the copyright owner of the

publication. Please review the copyright statement for the source material before submitting

a reprint permission request:

For AIAA conference papers, journal articles, or individual chapters in multi-authored

books, look at the bottom of the first full-text page (not the cover page). There will be a

footnote indicating who holds copyright.

For single-author books, look at the copyright statement on the back of the title page.

AIAA owns the copyright on all articles published in Aerospace America

(https://www.aiaa.org/publications/aerospace-america) .

If the statement reads “Copyright © by “the author …” or by “a university or other corporate

entity … ,” then AIAA does not hold copyright, and you must seek permission to reprint from

the copyright owner.

In the case of a U.S. government–sponsored work, where the work is “not subject to

copyright protection in the United States,” then the material is in the public domain and can

be reused without permission within the United States so long as the original source is

acknowledged and fully cited.

The Copyright Clearance Center (CCC) (https://www.copyright.com) processes permission

requests on behalf of AIAA. If AIAA is the copyright owner, you may submit your request by

visiting www.copyright.com (http://www.copyright.com/) .

Data Mining of Text


(click to show)

How to Request Permission to Reprint from AIAA 

(click to hide)

30/4/24, 2:57 PMRights and Permissions | AIAA

Page 6 of 6https://www.aiaa.org/publications/Publish-with-AIAA/Rights-and…Ix*_ga_BFMKMMYM72*MTcxNDQ3NzcyMC4xLjEuMTcxNDQ3Nzk2NS42LjAuMA..

When requesting to reuse material from AIAA conference papers, journal or magazine

articles, or book chapters, be sure to search for the conference proceedings title (e.g.,

Plasmadynamics and Lasers Conference), the journal title (e.g., Journal of Aircraft

(https://arc.aiaa.org/journal/ja)) or book title, not the article/chapter title. If you are unable to find

the appropriate publication, place a Special Order with CCC to work on your behalf to obtain

permission.

Depending on who is making the request and the intended use, a modest reprinting fee may

apply. Upon approval by AIAA to reprint, the author should acknowledge that AIAA has

granted permission for reuse, and the original source should be fully cited in the author’s

reference list.

Any additional questions can be directed to Katrina Buckley at katb@aiaa.org

(mailto:katb@aiaa.org) .

(https://www.copyright.com/CCCDirect?publishername=AIAA&WT.mc.id=AIAA)

(Copyright Clearance Center (https://marketplace.copyright.com/rs-ui-web/mp))

American Institute of Aeronautics and Astronautics
12700 Sunrise Valley Drive, Suite 200

Reston, VA 20191-5807

800-639-AIAA (2422)© 2024 American Institute of

Aeronautics and Astronautics

169

Appendix A. Reuse Statements

A.3 UAV Coverage Path Planning under Varying Power Con-

straints using Deep Reinforcement Learning

4/4/24, 1:59 PM Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

UAV Coverage Path Planning under Varying Power Constraints using
Deep Reinforcement Learning

Conference Proceedings:

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Author: Mirco Theile

Publisher: IEEE

Date: 24 October 2020

Copyright © 2020, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

170

Appendix A. Reuse Statements

A.4 UAV Path Planning for Wireless Data Harvesting: A Deep

Reinforcement Learning Approach

4/4/24, 2:00 PM Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

UAV Path Planning for Wireless Data Harvesting: A Deep
Reinforcement Learning Approach

Conference Proceedings: GLOBECOM 2020 - 2020 IEEE Global Communications Conference

Author: Harald Bayerlein

Publisher: IEEE

Date: December 2020

Copyright © 2020, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

171

Appendix A. Reuse Statements

A.5 UAV Path Planning using Global and Local Map Information

with Deep Reinforcement Learning

4/4/24, 1:58 PM Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning

Conference Proceedings: 2021 20th International Conference on Advanced Robotics (ICAR)

Author: Mirco Theile

Publisher: IEEE

Date: 06 December 2021

Copyright © 2021, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

172

Appendix A. Reuse Statements

A.6 Multi-UAV Path Planning for Wireless Data Harvesting with

Deep Reinforcement Learning

30/4/24, 4:44 PMCC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

Page 1 of 3https://creativecommons.org/licenses/by/4.0/deed.en

Canonical URL : https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/ See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal codeSee the legal code

You are free to:

Share — copy and redistribute the material in any
medium or format for any purpose, even commercially.

Adapt — remix, transform, and build upon the material
for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as
you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit appropriate credit , provide
a link to the license, and indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made indicate if changes were made .
You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal
terms or technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures technological measures that legally restrict

WHO WE ARE WHAT WE DO LICENSES AND TOOLS BLOG SUPPORT US

English Search Donate Explore CC

CC BY 4.0 DEED
Attribution 4.0 International

30/4/24, 4:44 PMCC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

Page 2 of 3https://creativecommons.org/licenses/by/4.0/deed.en

others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the
material in the public domain or where your use is permitted by an
applicable exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation exception or limitation .

No warranties are given. The license may not give you all of the
permissions necessary for your intended use. For example, other
rights such as publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights publicity, privacy, or moral rights may limit how you
use the material.

 Notice

This deed highlights only some of the key features and terms of
the actual license. It is not a license and has no legal value. You
should carefully review all of the terms and conditions of the
actual license before using the licensed material.

Creative Commons is not a law firm and does not provide legal
services. Distributing, displaying, or linking to this deed or the
license that it summarizes does not create a lawyer-client or any
other relationship.

Creative Commons is the nonprofit behind the open licenses and
other legal tools that allow creators to share their work. Our legal
tools are free to use.

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our workLearn more about our work
Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC LicensingLearn more about CC Licensing
Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our workSupport our work
Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.Use the license for your own material.
Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses ListLicenses List

30/4/24, 4:44 PMCC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

Page 3 of 3https://creativecommons.org/licenses/by/4.0/deed.en

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain ListPublic Domain List

Footnotes

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 appropriate credit — If supplied, you must provide the name of the creator and attribution
parties, a copyright notice, a license notice, a disclaimer notice, and a link to the material. CC
licenses prior to Version 4.0 also require you to provide the title of the material if supplied, and may
have other slight di!erences.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 indicate if changes were made — In 4.0, you must indicate if you modified the material and
retain an indication of previous modifications. In 3.0 and earlier license versions, the indication of
changes is only required if you create a derivative.

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guideMarking guide
More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 technological measures — The license prohibits application of e!ective technological
measures, defined with reference to Article 11 of the WIPO Copyright Treaty.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 exception or limitation — The rights of users under exceptions and limitations, such as fair use
and fair dealing, are not a!ected by the CC licenses.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 publicity, privacy, or moral rights — You may need to get additional permissions before using
the material as you intend.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

Contact Newsletter Privacy Policies Terms

CONTACT US

Creative Commons PO Box 1866,
Mountain View, CA 94042

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.orginfo@creativecommons.org

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753+1-415-429-6753

SUBSCRIBE TO OUR NEWSLETTER SUPPORT OUR WORK

Our work relies on you! Help us
keep the Internet free and open.

DONATE NOW
Except where otherwise noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted noted , content on this site is licensed under a
Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license . Icons by Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

FontFont
Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome Awesome .

Your email SUBSCRIBE

173

Appendix A. Reuse Statements

A.7 Cloud-Edge Training Architecture for Sim-to-Real Deep Re-

inforcement Learning

4/4/24, 1:58 PM Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning

Conference Proceedings:

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Author: Hongpeng Cao

Publisher: IEEE

Date: 23 October 2022

Copyright © 2022, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

174

Appendix A. Reuse Statements

A.8 Learning to Generate All Feasible Actions

30/4/24, 4:44 PMCC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

Page 1 of 3https://creativecommons.org/licenses/by/4.0/deed.en

Canonical URL : https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/ See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal code

See the legal codeSee the legal code

You are free to:

Share — copy and redistribute the material in any
medium or format for any purpose, even commercially.

Adapt — remix, transform, and build upon the material
for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as
you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit

appropriate credit appropriate credit , provide
a link to the license, and indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made

indicate if changes were made indicate if changes were made .
You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal
terms or technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures

technological measures technological measures that legally restrict

WHO WE ARE WHAT WE DO LICENSES AND TOOLS BLOG SUPPORT US

English Search Donate Explore CC

CC BY 4.0 DEED
Attribution 4.0 International

30/4/24, 4:44 PMCC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

Page 2 of 3https://creativecommons.org/licenses/by/4.0/deed.en

others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the
material in the public domain or where your use is permitted by an
applicable exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation

exception or limitation exception or limitation .

No warranties are given. The license may not give you all of the
permissions necessary for your intended use. For example, other
rights such as publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights

publicity, privacy, or moral rights publicity, privacy, or moral rights may limit how you
use the material.

 Notice

This deed highlights only some of the key features and terms of
the actual license. It is not a license and has no legal value. You
should carefully review all of the terms and conditions of the
actual license before using the licensed material.

Creative Commons is not a law firm and does not provide legal
services. Distributing, displaying, or linking to this deed or the
license that it summarizes does not create a lawyer-client or any
other relationship.

Creative Commons is the nonprofit behind the open licenses and
other legal tools that allow creators to share their work. Our legal
tools are free to use.

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our work

Learn more about our workLearn more about our work
Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC Licensing

Learn more about CC LicensingLearn more about CC Licensing
Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our work

Support our workSupport our work
Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.

Use the license for your own material.Use the license for your own material.
Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses List

Licenses ListLicenses List

30/4/24, 4:44 PMCC BY 4.0 Deed | Attribution 4.0 International | Creative Commons

Page 3 of 3https://creativecommons.org/licenses/by/4.0/deed.en

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain List

Public Domain ListPublic Domain List

Footnotes

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 appropriate credit — If supplied, you must provide the name of the creator and attribution
parties, a copyright notice, a license notice, a disclaimer notice, and a link to the material. CC
licenses prior to Version 4.0 also require you to provide the title of the material if supplied, and may
have other slight di!erences.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 indicate if changes were made — In 4.0, you must indicate if you modified the material and
retain an indication of previous modifications. In 3.0 and earlier license versions, the indication of
changes is only required if you create a derivative.

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guide

Marking guideMarking guide
More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 technological measures — The license prohibits application of e!ective technological
measures, defined with reference to Article 11 of the WIPO Copyright Treaty.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 exception or limitation — The rights of users under exceptions and limitations, such as fair use
and fair dealing, are not a!ected by the CC licenses.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

 return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to reference

return to referencereturn to reference

 publicity, privacy, or moral rights — You may need to get additional permissions before using
the material as you intend.

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More info

More infoMore info

Contact Newsletter Privacy Policies Terms

CONTACT US

Creative Commons PO Box 1866,
Mountain View, CA 94042

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.org

info@creativecommons.orginfo@creativecommons.org

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753

+1-415-429-6753+1-415-429-6753

SUBSCRIBE TO OUR NEWSLETTER SUPPORT OUR WORK

Our work relies on you! Help us
keep the Internet free and open.

DONATE NOW
Except where otherwise noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted

noted noted , content on this site is licensed under a
Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license

Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license . Icons by Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

Font

FontFont
Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome

Awesome Awesome .

Your email SUBSCRIBE

175

Appendix A. Reuse Statements

A.9 Latency-Aware Generation of Single-Rate DAGs from Multi-

Rate Task Sets

4/4/24, 2:00 PM Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

Latency-Aware Generation of Single-Rate DAGs from Multi-Rate Task
Sets

Conference Proceedings:

2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

Author: Micaela Verucchi

Publisher: IEEE

Date: April 2020

Copyright © 2020, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

176

Appendix A. Reuse Statements

A.10 Edge Generation Scheduling for DAG Tasks Using Deep

Reinforcement Learning

4/4/24, 1:54 PM Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement
Learning

Author: Binqi Sun

Publication: IEEE Transactions on Computers

Publisher: IEEE

Date: April 2024

Copyright © 2024, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

177

Appendix A. Reuse Statements

178

Bibliography

[1] M. Theile, S. Yu, O. D. Dantsker, and M. Caccamo, “Trajectory estimation for geo-
fencing applications on small-size fixed-wing UAVs,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1971–1977, IEEE, 2019.

[2] M. Theile, O. Dantsker, R. Nai, M. Caccamo, and S. Yu, “uavAP: A modular
autopilot framework for UAVs,” in AIAA AVIATION 2020 FORUM, p. 3268, 2020.

[3] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV coverage path
planning under varying power constraints using deep reinforcement learning,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1444–1449, IEEE, 2020.

[4] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV path planning
using global and local map information with deep reinforcement learning,” in 2021
20th International Conference on Advanced Robotics (ICAR), pp. 539–546, IEEE,
2021.

[5] M. Theile, D. Bernardini, R. Trumpp, C. Piazza, M. Caccamo, and A. L. Sangiovanni-
Vincentelli, “Learning to generate all feasible actions,” IEEE Access, vol. 12,
pp. 40668–40681, 2024.

[6] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware generation
of single-rate dags from multi-rate task sets,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 226–238, IEEE, 2020.

[7] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV path planning for
wireless data harvesting: A deep reinforcement learning approach,” in GLOBECOM
2020-2020 IEEE Global Communications Conference, pp. 1–6, IEEE, 2020.

[8] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “Multi-UAV path planning
for wireless data harvesting with deep reinforcement learning,” IEEE Open Journal
of the Communications Society, vol. 2, pp. 1171–1187, 2021.

[9] H. Cao, M. Theile, F. G. Wyrwal, and M. Caccamo, “Cloud-edge training architec-
ture for sim-to-real deep reinforcement learning,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9363–9370, IEEE, 2022.

179

Bibliography

[10] B. Sun, M. Theile, Z. Qin, D. Bernardini, D. Roy, A. Bastoni, and M. Caccamo,
“Edge generation scheduling for dag tasks using deep reinforcement learning,” IEEE
Transactions on Computers, 2024.

[11] K.-D. Kim and P. R. Kumar, “Cyber–physical systems: A perspective at the
centennial,”Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1287–
1308, 2012.

[12] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory and
practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[13] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress and
prospects: Steven m. lavalle, iowa state university, a james j. kuffner, jr., university
of tokyo, tokyo, japan,” Algorithmic and computational robotics, pp. 303–307, 2001.

[14] R. Geraerts and M. H. Overmars, “A comparative study of probabilistic roadmap
planners,” in Algorithmic foundations of robotics V, pp. 43–57, Springer, 2004.

[15] T. Wescott, “Pid without a phd,” Embedded Systems Programming, vol. 13, no. 11,
pp. 1–7, 2000.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61,
1973.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, 2012.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[19] T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A brief overview of
chatgpt: The history, status quo and potential future development,” IEEE/CAA
Journal of Automatica Sinica, vol. 10, no. 5, pp. 1122–1136, 2023.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[21] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the reality gap: A
survey on sim-to-real transferability of robot controllers in reinforcement learning,”
IEEE Access, vol. 9, pp. 153171–153187, 2021.

[22] O. Dantsker, “The future of agriculture, powered by the sun,” 2022.

[23] O. D. Dantsker, M. Theile, M. Caccamo, S. Yu, M. Vahora, and R. Mancuso, “Con-
tinued development and flight testing of a long-endurance solar-powered unmanned
aircraft: Uiuc-tum solar flyer,” in AIAA Scitech 2020 Forum, p. 0781, 2020.

180

Bibliography

[24] Precision Hawk, “Precision Agriculture, Commercial UAV and Farm Drones For
Sale.” http://precisionhawk.com/, Accessed Dec. 2023.

[25] MicroPilot, “MicroPilot - MP-Vision.” https://www.micropilot.com/, Accessed Dec.
2023.

[26] Pix4D SA, “Pix4D.” https://www.pix4d.com/, Accessed Dec. 2023.

[27] Reconstruct Inc., “Reconstruct.” https://www.reconstructinc.com/, Accessed Dec.
2023.

[28] Silent Falcon UAS Technologies, “Silent Falcon.” https://silentfalconuas.com/, Ac-
cessed May. 2023.

[29] AeroVironment, “Aerovironment solar-powered puma ae small un-
manned aircraft achieves continuous flight for more than nine hours.”
https://www.avinc.com/resources/press-releases/view/aerovironment-solar-
powered-puma-ae-small-unmanned-aircraft-achieves-contin, Accessed Dec. 2023.

[30] BAE Systems, “Autonomous Real-Time Ground Ubiquitous Surveillance Imag-
ing System (ARGUS-IS).” https://www.baesystems.com/en/product/autonomous-
realtime-ground-ubiquitous-surveillance-imaging-system-argusis, Accessed Dec. 2023.

[31] SZ DJI Technology Co., Ltd., “DJI.” https://www.dji.com/, Accessed Dec. 2023.

[32] Shenzhen Hubsan Technology Co., Ltd., “Hubsan.” https://www.hubsan.com/,
Accessed Dec. 2023.

[33] A. Noth, Design of Solar Powered Airplanes for Continuous Flight. PhD thesis,
ETH Zurich, 2008.

[34] Oettershagen, P. et al., “Design of small hand-launched solar-powered uavs: From
concept study to a multi-day world endurance record flight,”Journal of Field Robotic,
vol. 34, p. 1352–1377, 2017.

[35] ETH Zurich, Autonomous Systems Lab, “Atlantik-Solar.”
https://www.atlantiksolar.ethz.ch/, Accessed Dec. 2023.

[36] I.-Y. Ahn, J.-S. Bae, S. Park, and Y.-M. Yang, “Development and flight test of a
small solar powered uav,” vol. 41, 11 2013.

[37] A. Weider, H. Levy, I. Regev, L. Ankri, T. Goldenberg, Y. Ehrlich, A. Vladimirsky,
Z. Yosef, and M. Cohen, “Sunsailor: solar powered uav,”Technion IIT, Haifa, Israel,
vol. 6, 2006.

[38] S. Morton, R. D’Sa, and N. Papanikolopoulos, “Solar powered uav: Design and
experiments,” 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2460–2466, 2015.

181

Bibliography

[39] N. J. P. Betancourth and et al., “Design and Manufacture of a Solar-Powered
Unmanned Aerial Vehicle for Civilian Surveillance Missions,” Journal of Aerospace
Technology and Management, vol. 8, pp. 385 – 396, 12 2016.

[40] O. D. Dantsker, M. Theile, and M. Caccamo, “A cyber-physical prototyping and
testing framework to enable the rapid development of UAVs,” Aerospace, vol. 9,
no. 5, p. 270, 2022.

[41] O. D. Dantsker, M. Theile, M. Caccamo, and R. Mancuso, “Design, development,
and initial testing of a computationally-intensive, long-endurance solar-powered
unmanned aircraft,” in 2018 Applied Aerodynamics Conference, p. 4217, 2018.

[42] O. Dantsker, M. Caccamo, and S. Imtiaz, “Propulsion system design, optimization,
simulation, and testing for a long-endurance solar-powered unmanned aircraft,” in
AIAA Propulsion and Energy 2020 Forum, p. 3966, 2020.

[43] Al Volo LLC, “Al Volo: Flight Systems.” http://www.alvolo.us, Accessed Jan.
2024.

[44] O. D. Dantsker, M. Caccamo, and R. Mancuso, “Energy system instrumentation
and data acquisition for flight testing a long-endurance, solar-powered unmanned
aircraft,” in AIAA Propulsion and Energy 2021 Forum, p. 3721, 2021.

[45] O. D. Dantsker, S. Yu, M. Vahora, and M. Caccamo, “Flight testing automation to
parameterize unmanned aircraft dynamics,” in AIAA Aviation 2019 Forum, p. 3230,
2019.

[46] M. Theile, O. D. Dantsker, R. Nai, and M. Caccamo, “uavEE: A modular, power-
aware emulation environment for rapid prototyping and testing of UAVs,” in 2018
IEEE 24th International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pp. 217–224, IEEE, 2018.

[47] Laminar Research, “X-Plane 11.” https://www.x-plane.com/, Accessed Jan. 2024.

[48] O. D. Dantsker, M. Theile, and M. Caccamo, “A high-fidelity, low-order propulsion
power model for fixed-wing electric unmanned aircraft,” in 2018 AIAA/IEEE Electric
Aircraft Technologies Symposium (EATS), pp. 1–16, IEEE, 2018.

[49] O. D. Dantsker, M. Theile, and M. Caccamo, “Integrated power modeling for a
solar-powered, computationally-intensive unmanned aircraft,” in 2020 AIAA/IEEE
Electric Aircraft Technologies Symposium (EATS), pp. 1–21, IEEE, 2020.

[50] O. D. Dantsker, M. Theile, M. Caccamo, and S. Hong, “Integrated power simula-
tion for a solar-powered, computationally-intensive unmanned aircraft,” in AIAA
Propulsion and Energy 2021 Forum, p. 3317, 2021.

[51] InertiaSoft, Inc, “FS One RC Flight Simulator.” https://www.fsone.com/, Accessed
Jan. 2024.

182

http://www.alvolo.us
https://www.x-plane.com/

Bibliography

[52] O. D. Dantsker, M. Theile, and M. Caccamo, “Long endurance flight testing results
for the uiuc-tum solar flyer,” in AIAA AVIATION 2021 FORUM, p. 3196, 2021.

[53] S. D. Alwis, Z. Hou, Y. Zhang, M. H. Na, B. Ofoghi, and A. Sajjanhar, “A survey on
smart farming data, applications and techniques,” Computers in Industry, vol. 138,
p. 103624, June 2022.

[54] X. Jin, L. Kumar, Z. Li, H. Feng, X. Xu, G. Yang, and J. Wang, “A review of data
assimilation of remote sensing and crop models,” European Journal of Agronomy,
vol. 92, pp. 141–152, Jan. 2018.

[55] J. Kim, S. Kim, C. Ju, and H. I. Son, “Unmanned aerial vehicles in agriculture: A
review of perspective of platform, control, and applications,” IEEE Access, vol. 7,
pp. 105100–105115, 2019.

[56] A. I. de Castro, Y. Shi, J. M. Maja, and J. M. Peña, “UAVs for vegetation monitoring:
Overview and recent scientific contributions,” Remote Sensing, vol. 13, p. 2139, May
2021.

[57] M. F. Aslan, A. Durdu, K. Sabanci, E. Ropelewska, and S. S. Gültekin, “A com-
prehensive survey of the recent studies with UAV for precision agriculture in open
fields and greenhouses,” Applied Sciences, vol. 12, p. 1047, Jan. 2022.

[58] A. Sassu, J. Motta, A. Deidda, L. Ghiani, A. Carlevaro, G. Garibotto, and F. Gam-
bella, “Artichoke deep learning detection network for site-specific agrochemicals UAS
spraying,” Computers and Electronics in Agriculture, vol. 213, p. 108185, Oct. 2023.

[59] C. Cavalaris, C. Karamoutis, and A. Markinos, “Efficacy of cotton harvest aids
applications with unmanned aerial vehicles (UAV) and ground-based field sprayers –
a case study comparison,” Smart Agricultural Technology, vol. 2, p. 100047, Dec.
2022.

[60] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[61] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J., vol. 6, pp. 679–
684, 1957.

[62] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292,
1992.

[63] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[64] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[65] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

183

http://www.deeplearningbook.org

Bibliography

[66] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[67] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on
reinforcement learning,” in International conference on machine learning, pp. 449–
458, PMLR, 2017.

[68] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,”Advances in neural information
processing systems, vol. 12, 1999.

[69] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[70] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30,
2016.

[71] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[72] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in
actor-critic methods,” in International conference on machine learning, pp. 1587–
1596, PMLR, 2018.

[73] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor,” in International
conference on machine learning, pp. 1861–1870, PMLR, 2018.

[74] “Softlearning.” https://github.com/rail-berkeley/softlearning. Accessed:
January 15, 2024.

[75] “Soft Actor-Critic.” https://spinningup.openai.com/en/latest/algorithms/

sac.html. Accessed: January 15, 2024.

[76] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[77] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” arXiv preprint
arXiv:1506.02438, 2015.

[78] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,
pp. 484–489, 2016.

184

https://github.com/rail-berkeley/softlearning
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://spinningup.openai.com/en/latest/algorithms/sac.html

Bibliography

[79] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play
with a general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815,
2017.

[80] C. Berner, G. Brockman, B. Chan, V. Cheung, P. D ↪ebiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforcement
learning,” arXiv preprint arXiv:1912.06680, 2019.

[81] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster level in starcraft
ii using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354,
2019.

[82] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement learning for
uav attitude control,” ACM Transactions on Cyber-Physical Systems, vol. 3, no. 2,
pp. 1–21, 2019.

[83] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous in-hand
manipulation,” The International Journal of Robotics Research, vol. 39, no. 1,
pp. 3–20, 2020.

[84] L. Smith, I. Kostrikov, and S. Levine, “A walk in the park: Learning to walk in 20
minutes with model-free reinforcement learning,” arXiv preprint arXiv:2208.07860,
2022.

[85] A. Maslow, The Psychology of Science: A Reconnaissance. Gateway edition, Harper
& Row, 1966.

[86] M. Theile, H. Bayerlein, M. Caccamo, and A. L. Sangiovanni-Vincentelli, “Learning
to recharge: UAV coverage path planning through deep reinforcement learning,”
arXiv preprint arXiv:2309.03157, 2023.

[87] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey of
learning methods,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–35, 2017.

[88] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,
review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.

[89] M. Theile, H. Cao, M. Caccamo, and A. L. Sangiovanni-Vincentelli, “Equivariant
ensembles and regularization for reinforcement learning in map-based path plan-
ning,” arXiv preprint arXiv:2403.12856, submitted to 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2024.

185

	Abstract
	Contents
	List of Publications
	1 Introduction
	1.1 Cyber-Physical Systems and Reinforcement Learning
	1.2 UIUC-TUM Solar Flyer
	1.2.1 Development
	1.2.2 Results

	1.3 Example Application: UAV-based Digital Agriculture as a Service

	2 Reinforcement Learning Background
	2.1 Markov Decision Process
	2.2 Reinforcement Learning
	2.2.1 Foundational Equations
	2.2.2 Q-Table Learning

	2.3 Deep Reinforcement Learning
	2.3.1 Deep Learning
	2.3.2 Function Approximation in RL
	2.3.3 Parameterization and Reparameterization Trick
	2.3.4 Challenges of Function Approximation in RL

	2.4 Deep Reinforcement Learning Algorithms
	2.4.1 Deep Q-Learning
	2.4.2 Double Deep Q-Learning
	2.4.3 Deep Deterministic Policy Gradient
	2.4.4 Twin Delayed Deep Deterministic Policy Gradient
	2.4.5 Soft Actor-Critic
	2.4.6 Proximal Policy Optimization

	2.5 Summary

	3 Unmanned Aerial Vehicles – Fixed-Wing Aircraft
	3.1 Trajectory Estimation for Geo-Fencing Applications on Small-Size Fixed-Wing UAVs
	3.2 uavAP: A Modular Autopilot Framework for UAVs

	4 Reinforcement Learning for Map-based Path Planning
	4.1 UAV Coverage Path Planning under Varying Power Constraints using Deep Reinforcement Learning
	4.2 UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement Learning Approach
	4.3 UAV Path Planning using Global and Local Map Information with Deep Reinforcement Learning
	4.4 Multi-UAV Path Planning for Wireless Data Harvesting With Deep Reinforcement Learning

	5 Reinforcement Learning for Real-world Control Challenges
	5.1 Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement Learning
	5.2 Learning to Generate All Feasible Actions

	6 Reinforcement Learning for Graph-based Task Scheduling
	6.1 Latency-Aware Generation of Single-Rate DAGs from Multi-Rate Task Sets
	6.2 Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement Learning

	7 Discussion
	7.1 Summary
	7.2 The Law of the Hammer
	7.3 Future Work

	Appendices
	A Reuse Statements
	A.1 Trajectory Estimation for Geo-Fencing Applications on Small-Size Fixed-Wing UAVs
	A.2 uavAP: A Modular Autopilot Framework for UAVs
	A.3 UAV Coverage Path Planning under Varying Power Constraints using Deep Reinforcement Learning
	A.4 UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement Learning Approach
	A.5 UAV Path Planning using Global and Local Map Information with Deep Reinforcement Learning
	A.6 Multi-UAV Path Planning for Wireless Data Harvesting with Deep Reinforcement Learning
	A.7 Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement Learning
	A.8 Learning to Generate All Feasible Actions
	A.9 Latency-Aware Generation of Single-Rate DAGs from Multi-Rate Task Sets
	A.10 Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement Learning

