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Zusammenfassung
Die Einführung der 6G-Technologie soll die Zugänglichkeit von Internet of Things
(IoT) und Taktiles-Internet-Anwendungen erweitern, was eine hochzuverlässige, sichere
und effiziente Infrastruktur erfordert, einschließlich der automatisierten Berech-
nung von Verbindungskapazitäten und Ressourcenzuweisungen. Diese Studie ver-
wendet das Konzept der Turing-Maschinen, um die algorithmische Bewertung von
Kommunikationsraten-Benchmarks für verschiedene Kanalmodelle zu untersuchen und
die grundlegenden Leistungsgrenzen der digitalen Datenverarbeitung in diesem Kontext
hervorzuheben.

Die Studie beginnt mit dem Compound Broadcast Channel with Confidential Mes-
sages. Sie untersucht die Stetigkeit der Secrecy-Kapazität in Bezug auf Systemparameter
und bestätigt die Robustheit des Modells.

Bei der Betrachtung von Finite State Channels (FSCs) mit Feedback wird jedoch
festgestellt, dass ihre Feedback-Kapazitätsfunktion nicht Banach-Mazur-berechenbar
und folglich nicht Borel-Turing-berechenbar ist. Dies deutet darauf hin, dass ent-
weder Erreichbarkeits- oder Umkehrergebnisse—oder möglicherweise beide—nicht al-
gorithmisch berechnet werden können. Dies bedeutet, dass es für diese FSCs unmöglich
ist, algorithmisch berechenbare scharfe obere und untere Grenzen für ihre Feedback-
Kapazitäten zu bestimmen.

Dieses negative Ergebnis wirft eine grundlegende Frage auf: Was ist der einfachste
Kommunikationskanal, dessen Kapazität nicht numerisch berechnet werden kann? Diese
Frage führt zum Band-limited Additive Colored Gaussian Noise (ACGN) Kanal, einem
Modell mit einer einfachen Struktur, aber komplexen Berechnungseigenschaften. Es
wird gezeigt, dass einige ACGN-Kanäle mit berechenbaren Rauschleistungsdichtespek-
tren nicht-berechenbare Kapazitäten haben und das Bestimmen berechenbarer scharfer
oberer Grenzen für diese Kapazitäten unmöglich ist.

Ein wichtiges Ergebnis ist, dass, wenn das Rauschleistungsdichtespektrum streng pos-
itiv und berechenbar ist, die Kapazität von ACGN-Kanälen berechenbar wird und
zu einem #P1-vollständigen Problem wird, was auf ein höheres Komplexitätsniveau
als NP1-vollständige Probleme hinweist. Diese Komplexität betrifft ebenso die Ermit-
tlung des kapazitätserreichenden Leistungsdichtespektrums, welches ebenfalls als #P1-
vollständig nachgewiesen wird.

Darüber hinaus untersucht diese Studie den Einfluss von berechenbaren konvexen
Nebenbedingungen auf die Berechenbarkeit optimaler Lösungen in konvexen Opti-
mierungsszenarien und zeigt, dass bestimmte konvexe Nebenbedingungen die genaue
Berechnung optimaler Punkte verhindern, selbst bei streng konvexen Zielfunktionen.

Diese Arbeit hebt bedeutende rechnerische Herausforderungen und Komplexitäten
beim Entwurf und der Bewertung von Kommunikationssystemen innerhalb der
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zukünftigen 6G-Technologie hervor und schlägt zukünftige Forschungen zu alternativen
Rechentechnologien für die Berechnung von Benchmarks für Kommunikationssysteme
vor, wie beispielsweise Analog Computing.

ii



Abstract
The advent of 6G technology is set to expand the accessibility of Internet of Things
(IoT) and Tactile Internet applications, necessitating a highly reliable, secure, and effi-
cient infrastructure, requiring the automated calculation of link capacities and resource
allocations. This study employs the concept of Turing machines to delve into the al-
gorithmic evaluation of communication rate benchmarks across various channel models,
highlighting the fundamental performance limits of digital computing in this context.

The study begins with the compound broadcast channel with confidential messages
(BCC), examining the continuity of its secrecy capacity region with respect to system
parameters and affirming the model’s robustness.

However, when considering finite state channels (FSCs) with feedback, it is revealed
that their feedback capacity function is not Banach-Mazur computable, and conse-
quently, not Borel-Turing computable. This indicates that either achievability or con-
verse results—or possibly both—cannot be algorithmically computed. This implies that
for these FSCs, it is impossible to algorithmically determine computable tight upper and
lower bounds for their feedback capacities.

This negative result raises a fundamental question: What is the simplest communica-
tion channel whose capacity cannot be numerically computed? This inquiry leads to the
band-limited additive colored Gaussian noise (ACGN) channel, a model with a straight-
forward structure but intricate computational properties. It is shown that some ACGN
channels with computable noise power spectral densities (psd) have non-computable ca-
pacities, and deriving computable tight upper bounds for these capacities is unfeasible.

A significant finding is that when the noise psd is strictly positive and computable,
the capacity of ACGN channels becomes computable and it is shown to be a #P1-
complete problem, indicating a higher complexity level than NP1-complete problems.
This complexity extends to finding the capacity-achieving distribution, also shown to be
#P1-complete.

Additionally, the study examines the impact of computable convex constraints on
the computability of optimal solutions in convex optimization scenarios, revealing that
certain constraints hinder the precise computation of optimal points, even with strictly
convex objective functions.

This work highlights significant computational challenges and complexities in the de-
sign and evaluation of communication systems within the emerging 6G landscape, sug-
gesting future research into alternative computing technologies for computing commu-
nication systems benchmarks, such as analog computing.
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Nomenclature
Number sets

N set of natural numbers

Q set of rational numbers

R set of real numbers

R≥0 set of non-negative real numbers

A,B, . . . ,X finite sets unless stated otherwise

X × Y Cartesian product of the sets X and Y

Other symbols

ln natural logarithm

log logarithm base 2

Probability

P(X ) set of all probability distributions on a finite set X

P(X × Y) set of all joint probability distributions on the set X × Y

P(Y|X ) set of stochastic matrices

PX probability distribution of the random variable X

PY |X conditional probability distribution of the random variable Y given X

X, Y, Z, U, V random variables over finite sets
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1 Introduction

1.1 Motivation
5G networks have laid the groundwork for Internet of Things (IoT) in industrial set-
tings. However, the next generation 6G networks are expected to provide the basis to
massively expand IoT and Tactile Internet usage among individual consumers in daily
life. This expansion promises to improve the quality of life through new and innovative
applications. However, this will also lead to a significant rise in data traffic and introduce
the need for managing both physical and virtual objects over the network. As a result,
6G infrastructure will have to provide reliable, scalable, and secure communication with
substantially higher throughput than 5G, and with more stringent latency requirements.
The advances in wireless network infrastructure for 6G will have to enable sensing and
coordination of control functions [1, 2]. Yet, as we push the boundaries of these tech-
nologies, we need to account for potential risks. For instance, without adequate security
protection, enhanced sensory capabilities could be misused. Thus, 6G needs to be de-
signed with robust security measures that also comply with legal and social standards,
such as the General Data Protection Regulation (GDPR). Therefore, it is crucial to
build a native, trustworthy architecture for 6G networks, addressing concerns that go
beyond traditional security and reliability.

Trustworthiness in 6G is built on following key pillars: privacy, security, integrity,
resilience, reliability, availability, accountability, authenticity, and device independence.
These principles are essential for establishing a 6G ecosystem where users can rely on
network services without fearing data breaches, service interruptions, or unauthorized
surveillance. This work focuses on the theoretical foundations of reliability, integrity,
and accountability.

Information theory provides the theoretical tools for achieving both high data through-
put and reliable communication over wireless channels. It offers a mathematical frame-
work to analyze communication scenarios, evaluate their characteristics, and establish
benchmarks for reliable transmission rates by taking into account the specific attributes
of the channel, as well as noise and power limitations in transceiver devices. These
benchmarks are key to designing communication systems that employ close to optimal
coding strategies, allowing for high transmission rates with minimal errors.

Evaluating a code’s performance, i.e., how closely it aligns with the theoretical bench-
mark or channel capacity, is essential in determining its effectiveness. This will become
important for 6G networks, which are expected to support critical applications in fields
such as mobile robotics and autonomous driving. This includes developing methods for
the automated evaluation of system performance. It is therefore essential to formulate
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1 Introduction

standards in a machine-readable format, and to guarantee that performance metrics can
be calculated by digital computers.

It is often assumed that performance functions, especially those involving entropic
quantities such as capacity expressions, are computable. In 1967, methods for con-
structing both upper and lower bounds for channel reliability functions were introduced
in [3]. These techniques were specifically designed to enable the computation of these
bounds using digital computers. In 1972, an algorithm to compute the capacity of arbi-
trary discrete memoryless channels (DMCs) was independently presented in [4] and [5].
In [5], an analogous algorithm was proposed to compute the rate distortion trade-off of
lossy source compression. Typically, channel capacity is expressed through mutual infor-
mation formulas. It is worth noting that even for the binary symmetric channel (BSC)
with a rational crossover probability, the capacity turns out to be a transcendental num-
ber [6]. This implies that a precise calculation is not possible, since the computation
has to stop after a finite number of steps. Only a suitable approximation of it can be
calculated.

Surprisingly, whether capacity functions can be calculated by digital computers, espe-
cially for channels modeling complex communication scenarios such as multi-user envi-
ronments or channels with memory, remains a relatively unexplored area in information
theory. When channels are modeled under such complex conditions, defining their capac-
ity becomes difficult, even for discrete channels with finite input and output alphabets.
Take finite state channels (FSCs), for example, which incorporate memory effects, al-
lowing the current output to be influenced by the channel’s state and indirectly by past
inputs and outputs. This characteristic of FSCs is particularly relevant for modeling
intersymbol interference (ISI). In [7], the capacity of indecomposable FSC has been de-
termined, showing that it is described by a multi-letter expression, which represents the
limit of a series of optimization problems. This complexity persists even for channels
with binary inputs, binary outputs, and binary states, making the task of computing
capacity particularly challenging.

The question of whether it is possible to compute such multi-letter expressions using
today’s technologies has only recently been raised. The algorithmic computability prop-
erties of channel capacities have been studied for channel models, including FSCs [8],
correlation-assisted DMCs [9], and compound channels [10]. For all of these channels,
it has been demonstrated that their capacities are not generally computable functions,
due to their complicated descriptions.

The primary focus of this work is on examining the analytical attributes, computa-
tional feasibility, and complexity of multi-letter capacity expressions in various com-
munication settings. Furthermore, the study extends to the exploration of capacities
expressed by integrals, investigating their algorithmic computability and computational
complexity. In addition to these subjects, this research addresses the challenge of algo-
rithmically solving convex optimization problems, which are pivotal in numerous capac-
ity computation efforts.

To address algorithmic computability of channel capacities, we use the concept of a
Turing machine [11, 12], which is a mathematical model of an abstract machine that
manipulates symbols on a strip of tape according to certain given rules. Any algorithm
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1.2 Contributions and Outline

can be translated into a sequence of steps that can be executed by a Turing machine and
therefore, Turing machines provide a simple and very powerful model of computation.
Turing machines have no limitations on computational complexity, computing capacity
or storage, and execute programs completely error-free. Accordingly, they provide fun-
damental performance limits for today’s digital computers. Turing machines account
for all those problems and tasks that are algorithmically computable on a classical (i.e.,
non-quantum) machine. They are equivalent to the von Neumann-architecture without
hardware limitations and the theory of recursive functions [13, 14, 15, 16].

1.2 Contributions and Outline
In Chapter 2, we introduce fundamental concepts in information theory, convex opti-
mization, and computability theory.

In Chapter 3, we delve into how the capacity region of the Broadcast Channel with
Confidential Messages (BCC) responds to changes in its parameters, focusing on the
uncertainty set. Our objective is to determine how variations in the uncertainty set
influence the capacity region, an essential consideration for designing secure and efficient
communication systems. We demonstrate that the BCC capacity region is a continuous
function of the uncertainty set. Parts of this chapter were published in [17] and [18].

In Chapter 4, we address questions regarding the computability of the feedback ca-
pacity of FSCs. Our study reveals that the feedback capacity of such channels is not
Banach-Mazur computability [12], which is the weakest form of computability and it
further implies that it is not Borel-Turing computable. In other words, it is not possible
to find a universal algorithm that takes the parameters describing an FSC as input and
returns its feedback capacity.

Moreover, we show the impossibility of algorithmically approximating the feedback
capacity of FSCs with any computable function within any desired margin of error. As
a consequence, we show that it is impossible to find computable arbitrarily tight upper
and lower bounds on the feedback capacity of FSCs. Furthermore, we show that it is not
possible to express the feedback capacity of FSCs by a finite-letter entropic expression.
Parts of this chapter were published in [19] and [20].

In Chapter 5, we address the task of computationally determining the capacity of
band-limited Additive Colored Gaussian Noise (ACGN) channels. We show that the
capacity of certain band-limited ACGN channels turns out to be a non-computable
number, indicating that there is no universal algorithm capable of accurately estimating
the capacity based on the channel’s parameters. Furthermore, we show that it is impos-
sible to find algorithmically computable sharp upper bounds for the capacity of these
channels. Lastly, we illustrate that even when the power constraints are loosened, the
inherent computational challenges in determining the capacity of band-limited ACGN
channels do not diminish. Parts of this chapter were published in [21].

In Chapter 6, we demonstrate that for band-limited ACGN channels with strictly
positive noise power spectral densities (psd), the channel capacity becomes computable.
We further establish that computing this capacity as a specific numerical value falls
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1 Introduction

within the #P1 complexity class—a class that consists of problems counting the number
of solutions of a problem that can be verified by a Turing machine in polynomial time.
Additionally, we explore the computational complexity involved in determining the op-
timal input psd that maximizes the channel capacity. Our analysis reveals that both
approximating the capacity and computing the optimal psd are #P1-complete tasks.
Parts of this chapter were published in [22] and [23].

In Chapter 7, we explore the computability of optimal points in constrained convex
optimization problems. We demonstrate that for certain constraint functions, the op-
timal points are non-computable numbers across all strictly convex and continuously
computable objective functions. Additionally, we reveal that for any such strictly con-
vex function, the optimal point of its associated Lagrangian dual problem, given these
constraints, is also non-computable. Parts of this chapter will be published in [24].
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2 Preliminaries
This chapter is designed to lay the groundwork essential for a comprehensive under-
standing of the analyses and contributions presented in this dissertation.

Subsequently, Section 2.1 explores the core principles of information theory, focusing
on the properties of information theory measures used in Chapter 3 and Chapter 4.

Next, Section 2.2 introduces the convex optimization framework. It provides the
foundational concepts that will be further analyzed in Chapter 7.

Lastly, Section 2.3 explores computability theory by detailing fundamental concepts
of computable numbers and functions. This section also introduces computational com-
plexity and complexity classes, and examines the computational complexity attributes
of integration. The concepts explained here will be instrumental in assessing the com-
putational aspects studied in Chapters 4, 5, 6, and 7.

2.1 Information Theory
In this section, we introduce the foundational tools of information theory, with a par-
ticular focus on the concepts of causal conditioning and directed information. These
concepts are crucial for characterizing the capacity of discrete channels and were intro-
duced and applied in [25], [26], [27], and [28].

Definition 1. The entropy of the random variable X, taking values in a discrete and
finite set X with probability distribution PX ∈ P(X ), is defined by

H(X) =
∑

x∈supp(PX)
−PX(x) logPX(x)

with supp(PX) := {x ∈ X : PX(x) > 0}.

Consider a binary alphabet X = {0, 1}. The entropy of the random variable X taking
values in X with probability distribution PX(0) = p is called the binary entropy function
and is denoted by

H2(p) = −p log p− (1 − p) log(1 − p).

Definition 2. Consider a joint distribution PXY (·) where the random variable Y takes
values in a discrete and finite alphabet Y and X takes values in a discrete and finite
alphabet X . The conditional entropy of X given Y is defined by

H(X|Y ) =
∑

(x,y)∈supp(PXY )
−PXY (x, y) logPX|Y (x|y).
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2 Preliminaries

Definition 3. The mutual information between two random variable X and Y with
respective discrete and finite alphabets X and Y is defined as

I(X;Y ) =
∑

(x,y)∈supp(PXY )
PXY (x, y) log PXY (x, y)

PX(x)PY (y) .

Next we introduce the concepts of causally conditioned probability distributions and
directed information.
Definition 4. The probability distribution of the sequences xn ∈ X n causally conditioned
on the sequence yn ∈ Yn is given by

p(xN∥yN) =
N∏

n=1
p(xn|yn, xn−1). (2.1)

A special case of Definition 4 used in the context of the FSC with feedback is

p(xN∥yN−1) =
N∏

n=1
p(xn|xn−1, yn−1). (2.2)

Definition 5. The directed information from a sequence XN to a sequence Y N is defined
by

I(XN → Y N) =
N∑

n=1
I(Xn;Yn|Y n−1)

=
N∑

n=1
H(Y n|Y n−1) −H(Yn|XnY n−1).

An important property of the directed information that we will use in our work, is
that it can be upper bounded. The upper bound of the directed information from Xn

to Y n is presented in the following lemma.
Lemma 1. [26, Theorem 2] If XN and Y N are the input and output sequences respec-
tively of a DMC, then

I(XN → Y N) ≤
N∑

n=1
I(Xn;Yn) (2.3)

with equality if and only if Y1, Y2, . . . , Yn are statistically independent.

2.2 Fundamentals of Convex Optimization
Optimization problems are part of the core problems in engineering, economics and
other fields. These problems involve the task of finding the best possible solution, often
under certain constraints and resource limitations. Whether it is designing efficient
structures, allocating resources effectively, or maximizing profits, optimization plays an
indispensable role in building today’s infrastructure.

In this section, we introduce the main concepts and properties of optimization prob-
lems, with a particular focus on convex optimization problems. The definitions of this
section are taken from [29].
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2.2 Fundamentals of Convex Optimization

2.2.1 Convex and Concave Functions
In this subsection we introduce some basic definitions for mathematical optimization.
Mathematical optimization deals with finding the best solution (maximum or minimum)
to a problem from a set of possible solutions. In particular, we focus on convex optimiza-
tion. A convex optimization problem has a convex objective function and is subject to
convex constraint functions on the function’s domain. The goal is to minimize the con-
vex objective function within the constraints. The constraints on the function’s domain
build a convex set. For this we first introduce the notion of convex set.

Definition 6. A set C ⊂ Rn is convex if every segment between two points in C lies in
C, i.e., if for any x1, x2 ∈ C and 0 ≤ λ ≤ 1, we have

λx1 + (1 − λ)x2 ∈ C. (2.4)

In other words, C is convex if it contains the convex combination of any two points in C.

Definition 7. Let C ⊂ Rn. A function f ∈ C → R is convex if C is a convex set and if
for all x, y ∈ C and λ with 0 ≥ λ ≥ 1, we have

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (2.5)

Minimization problems, such as cost minimization and and loss minimization can
be ideally modeled by convex optimization problems where the objective function is a
convex function. Convex functions have some key important properties, which makes
them easier to solve, i.e., to minimize, compared to non-convex functions. One important
property is that any local minimum of a convex function is also a global minimum. While
the global minimum of a convex function may not be unique, if a function is strictly
convex, it will always have a unique minimum. Next, we introduce the concept of strictly
convex functions.

Definition 8. Let C ⊂ Rn. A function f ∈ C → R is strictly convex if C is a convex
set and if for all x, y ∈ C and λ with 0 ≤ λ ≤ 1, we have

f(λx+ (1 − λ)y) < λf(x) + (1 − λ)f(y). (2.6)

Maximization problems, such as profit maximization and efficiency maximization on
the other hand, can be ideally modeled by optimization problems whose objective func-
tions are concave. A significant property of concave functions is that any local maximum
of the function is also a global maximum.

Definition 9. Let C ⊂ Rn. A function f ∈ C → R is concave if −f is convex. Further-
more, f is said to be strictly concave if −f is strictly convex.
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2 Preliminaries

2.2.2 Convex Optimization Problems
A convex optimization problem is of the form

minimize f(x)
subject to φi(x) ≤ 0, i = 1, . . . ,m,

γi(x) = 0, i = 1, . . . , p. (2.7)

It describes the problem of finding an x that minimizes f(x) among all x that satisfy
the conditions φi(x) ≤ 0, i = {1, . . . ,m} and γj(x) = 0, j = {1, . . . , p}.

The objective function f : Rn → R is convex. The optimization variable is x ∈ Rn. The
inequality constraints φi(x) ≤ 0, for convex functions φi : Rn → R with i = {1, . . . ,m},
along with the equality constraints γj(x) = 0, for affine functions γj : Rn → R with
j = {1, . . . , p} , build the feasible set of the problem;

D =
m⋂

i=1
domφi ∩

p⋂
j=1

domγj

.
We say x ∈ Rn is a feasible point if x ∈ D.
The optimal value of the problem is denoted by OptV(f, φ1, . . . , φm, γ1, . . . , γp):

OptV(f, φ1, . . . , φm, γ1, . . . , γp) = inf{f(x)| φ(x) ≤ 0, i = {1, . . . ,m}, γj(x) =
0, j = {1, . . . , p}} and the point x∗ is called the optimal point, if x∗ is feasible and
f(x∗) = OptV(f, φ1, . . . , φm, γ1, . . . , γp).

2.2.3 Duality
An optimization problem can be viewed from a different perspective. For this, we use
the duality principle. A constrained optimization problem can be reformulated into a
dual problem. If the original optimization problem consists of a minimization problem,
then the dual problem is formulated as a maximization problem.

Both problems are closely related since the optimal solution of one of the problems
gives a bound on the optimal solution of the other. The relationship between the original
and the dual problem can be categorized into two categories: strong and weak duality.
We have strong duality when the optimal solution of the dual problem equals the optimal
solution of the original problem. Weak duality holds when the optimal solution of the
dual problem differs from the optimal solution of the original problem.

Formulating an optimization problem into its dual problem is often very attractive
since the dual problem can be easier to solve. Consequently, it might be easier to find
the solution or a bound on the solution of the original optimization problem.

Lagrangian duality consists of reformulating a constrained optimization problem by
augmenting its objective function f with a weighted sum of the constraint functions
φi for i ∈ {1, . . . ,m} and γj for j ∈ {1, . . . , p}. For this we introduce the Lagrangian
function.

8
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Definition 10. The Lagrangian function L : Rn × Rm × Rp → R associated with the
problem (2.7) is given by

L(x, u, v) = f(x) +
m∑

i=1
uiφi(x) +

p∑
j=1

vjγj(x).

where u1, . . . , um and v1, . . . , vp are real scalars. We refer to ui as the Lagrange multiplier
associated with the ith inequality constraint φi(x) ≤ 0 and to vj associated with the jth
equality γj. The vectors u and v are called the dual variables or Lagrange multiplier
vectors associated with the problem (2.7).

Next we introduce the Lagrangian dual function in order to formulate the Lagrangian
dual problem.

Definition 11. The Lagrangian dual function is a function of the dual variables u and v
defined as the minimum value of the Lagrangian function over x for u ∈ Rm and v ∈ Rp,

g(u, v) = inf
x∈D

L(x, u, v).

Remark 1. Note that the Lagrangian dual function is −∞, when the Lagrangian is
unbounded from below in x.

Remark 2. Note that the Lagrangian dual function is the pointwise infimum of a family
of affine functions of (u, v) and hence, the Lagrangian dual function is concave, even
when the objective function of the original problem is not convex.

Next we introduce the Lagrangian dual problem.

Definition 12. The Lagrangian dual problem associated with the problem (2.7) is de-
fined as

max g(u, v) subject to u ≥ 0 (2.8)

where g(u, v) is the Lagrangian dual function associated with (2.7).

Remark 3. The Lagrangian dual problem is a convex optimization problem, since its
objective function is the Lagrangian dual function, which is a convex function.

Let OptV(f, φ1, . . . , φm, γ1, . . . , γp) be the optimal value of a primal problem and
OptV(g, u1, . . . , um, v1, . . . , vp) be the optimal value of its corresponding Lagrangian dual
problem. The difference OptV(f, φ1, . . . , φm, γ1, . . . , γp)−OptV(g, u1, . . . , um, v1, . . . , vp)
is called the duality gap. The duality gap is always non-negative, i.e.,
OptV(f, φ1, . . . , φm, γ1, . . . , γp) ≥ OptV(g, u1, . . . , um, v1, . . . , vp). This property is
called weak duality. If the duality gap is zero, i.e., OptV(f, φ1, . . . , φm, γ1, . . . , γp) =
OptV(g, u1, . . . , um, v1, . . . , vp), we say that we have strong duality. In this case, the
solution of the dual problem is also the solution of the primal problem.

9
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2.2.4 Optimality conditions
In this subsection we introduce the necessary and sufficient Karush-Kuhn-Tucker (KKT)
conditions for the optimality of a solution to a constrained optimization problem in the
form of (2.7).

Assume that the functions f, φ1, . . . , φm, γ1, . . . , γp are differentiable. The KKT con-
ditions are

• Stationarity:

0 ∈ ∂f(x) +
m∑

i=1
ui∂φi(x) +

p∑
j=1

vj∂γj(x).

• Complementary slackness:

uiφi(x) = 0 ∀i ∈ {1, . . . ,m}.

• Primal feasibility:

φi(x) ≤ 0 ∀i ∈ {1, . . . ,m}
γj(x) = 0 ∀j ∈ {1, . . . , p}.

• Dual feasibility:
ui ≥ 0 ∀i ∈ {1, . . . ,m}.

Theorem 1 ([30]). [Necessary Condition] If the optimization problem has strong duality,
i.e., zero duality gap, then for any primal solution x∗ and any dual solution u∗ and v∗,
the pair (x∗, u∗, v∗) must satisfy the KKT conditions.

Theorem 2 ([31]). [Sufficient Condition] If there exists a solution x∗ to the primal
problem and a solution (u∗, v∗) to the dual problem, such that (x∗, u∗, v∗) satisfy the
KKT conditions, then the problem pair has strong duality and (x∗, u∗, v∗) is a solution
pair to the primal and dual problems.

In Chapter 7, we explore algorithmically solving convex optimization problems that
have strictly convex objective functions. For this purpose, we introduce an optimiza-
tion problem and two lemma that provides insights into the Lagrangian dual function
associated with this problem.

We consider the following optimization problem:

minimize f(x)
subject to φ(x) ≤ λ

with f : D → R and φ : D → R where D = [a, b] with a, b ∈ R.

10



2.2 Fundamentals of Convex Optimization

Lemma 2. Let f : D → R be a strictly convex function, φ : D → R be a convex function
and λ ∈ R. Let L : D ×R → R be the Lagrangian function associated with the optimiza-
tion problem f, φ, λ and g : R → R be the Lagrangian dual function. Let x̂(u) ∈ D be
such that

g(u) = L(x̂(u), u).

Then for every u1 ̸= u2 with u1, u2 > 0 it holds that

x̂(u1) ̸= x̂(u2).

Proof. Let f and φ be fixed. We consider the Largangian function

L(x, u) = f(x) + u(φ(x) − 1).

For x ≥ x∗ and x ∈ [x∗, x̃], we have

L(x, u) = f(x).

This implies that L(x, u) is monotonically increasing on the interval [x, x̃].
In the interval [x̃, b] we have that φ(·) − 1 is monotonically increasing. Since u ≥ 0,

we have that L(x, u) is monotonically increasing on the interval [x∗, b].
Since L(x, u) is strictly convex with respect to x, then there exists exactly one x(u) ∈

[0, x∗] with
L(x(u), u) = min

x∈[0,b]
L(x, u) = g(u)

for u ≥ 0. Furthermore, f and φ are continuously differentiable functions. We then have

∂

∂x
L(x, u) = f ′(x) + uφ′(x).

φ is monotonically decreasing on the interval [0, x∗]. Thus φ′(0) ≤ 0. Furthermore, we
have f ′(0) ≥ 0. For the case where f ′(0) = 0, we have for all u > 0 that d

dx
L(x, u)

∣∣∣∣
x=0

<

0. This implies that there is an interval [0, x̂] where L(x, u) is monotonically decreasing.
For the case where f ′(0) > 0, for every u > û = − f ′(0)

φ′(0) there is an interval where
L(x, u) is monotonically decreasing. This way we have that for all u > û x(u) ∈ (0, x∗].

Let u1, u2 > û be arbitrary. Then, since L(x, ul) with l = 1, 2 is strictly convex with
respect to x, we have that

∂

∂x
L(x, ul) = 0 ⇐⇒ x = x(ul), l = 1, 2.

This result holds because the minimum points lie within the interior of the interval [0, b]
and are also global minima.

It holds that
L(x, u2) = L(x, u1) + (u2 − u1)(φ(x) − 1).

11
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Furthermore, since φ′(x∗) = 0, and f is monotonically increasing on [0, b], we have
x(ul) < x∗. It then holds that

∂

∂x
L(x, u2)|x=x(u1) = ∂

∂x
L(x, u2)|x=x(u1) + (u2 − u1)φ′(x)|x=x(u1)

= (u2 − u1)φ′(x)|x=x(u1) < 0

since φ is strictly monotonically decreasing on [0, x∗].
We then have that x(u2) ̸= x(u1).

Lemma 3. Let f : D → R be a strictly convex function, φ : D → R be a convex function
and λ ∈ R. Let L : D × R → R be the Lagrangian function associated with the opti-
mization problem f, φ, λ and g : R → R be the Lagrangian dual function. Then it holds
that

CD = sup
u≥0

g(u) = OptV(f, φ, λ).

Proof. Since for every u2 > u1 we have that x(u2) > x(u1), then there exists a x̄ ∈ [0, x∗]
with

lim
u→∞

x(u) = x̄.

Assume that x̄ < x∗. Then we have that f ′(x̄) > 0 and φ′(x) < 0. Hence, there is a
ū, such that for all u ≥ ū the following holds:

f ′(x̄) + uφ′(x̄) < −1.

Since f ′ and φ′ are continuous functions, there exists a δ > 0, such that for all u ≥ ū
and for all x ∈ [x̄− δ, x̄] it holds that

f ′(x) + uφ′(x) < −1
2 . (2.9)

Furthermore, there is a u0, such that for all u ≥ u0

x(u) ∈ [x̄− δ, x̄]

holds. However, we now have

(f ′(x) + uφ′(x))|x=x(u) = 0,

which contradicts (2.9). Hence, limu→∞ x(u) = x∗ must hold.
With this we have

f(x) = lim
u→∞

f(x(u))

≤ lim
u→∞

L(x(u), u)

= lim inf
u→∞

g(u)

≤ CD ≤ OptV(f, φ, λ).

Since f(x∗) = OptV(f, φ, λ), it holds that CD = OptV(f, φ, λ).

12
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2.3 Computability Framework
In this section, we cover the basics of computability theory, a field foundational to
understanding the limits and capabilities of algorithmic processes. The concept of com-
putability, along with the notion of computable real numbers, were initially proposed by
Turing in [32] and [11], where he introduced the idea of numbers that can be precisely
determined by Turing machines. For our definitions and notation, we draw upon the
comprehensive treatments found in [33, 34] and [35].

2.3.1 Computable Numbers
A sequence of rational numbers {rn}n∈N is called a computable sequence if there exist
recursive functions a, b, s : N → N with b(n) ̸= 0 for all n ∈ N and

rn = (−1)s(n)a(n)
b(n) , n ∈ N.

A real number x is said to be computable if there exists a computable sequence of
rational numbers {rn}n∈N, such that

|x− rn| < 2−n (2.10)

for all n ∈ N. This means that the computable real number x is completely characterized
by the recursive functions a, b, s : N → N. It has the representation (a, b, s), which we
also write as x ∼ (a, b, s). It is clear that this representation must not be unique and
that there might be other recursive functions a′, b′, s′ : N → N which characterize x, i.e.,
x ∼ (a′, b′, s′).

We denote the set of computable real numbers by Rc, which encompasses numbers
that can be computed to any desired precision by a Turing machine in a finite number
of steps.

2.3.2 Computable Sequences
In this dissertation, we extensively work with the concepts of computable sequences of
computable numbers and effective convergence. These fundamental notions provide a
framework for understanding how sequences can be computed and how they converge in
a manner that is algorithmically verifiable.

Definition 13. A sequence of real numbers {xn}n∈N is computable (as a sequence) if
there is a computable double sequence of rationals {rm,n}m,n∈N2 such that

|rm,n − xn| ≤ 2−m

for all m ∈ N and n ∈ N.

13
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Definition 14. A sequence {rn}n∈N of rational numbers converges effectively to a real
number x if there exists a recursive function e : N → N such that for all N ∈ N it holds
that

k ≥ e(N) implies |rk − x| ≤ 2k.

In what follows, we introduce the concept of Cauchy sequences and their subset, effec-
tively convergent Cauchy sequences, which are essential for the computability analysis
in Chapter 5.

Definition 15. A sequence {xn}n∈N is called a Cauchy sequence if for every ϵ > 0,
there is a n0 ∈ N such that for every m,n > n0 it holds that

|xn − xm| < ϵ.

Definition 16. A Cauchy sequence {xn}n∈N is said to converge effectively if there is a
recursive function e : N× N → N such that for all n,N ∈ N it holds that

k ≥ e(n,N) implies |xk − xn| ≤ 2−N

Remark 4. Let {xn}n∈N and {yn}n∈N be computable sequences of real number. Then
the following sequence are also computable:

xn ± yn, xnyn, xn/yn (yn ̸= 0 for all n), expxn, log xn (xn > 0 for all n).

Next, we introduce a new class of numbers which encompasses also the computable
numbers, Σ1, following the definition provided by Zheng in [36].

Definition 17. The set Σ1 is the set of numbers x ∈ R, such that there is a computable
sequence of rational numbers {µn}n∈N with µn ≤ µn+1 and

lim
n→∞

µn = x.

It is noteworthy that numbers in Σ1 may extend beyond computable numbers; in fact,
the set of computable numbers, Rc, is a subset of Σ1.

Remark 5. In Definition 17, we can also require the sequence {µn}n∈N can also be
considered as a sequence of computable numbers, not limited to rational numbers. This
implies that each µn must satisfy the condition µn ≤ µn+1 for n ∈ N.

2.3.3 Computable Functions
In this subsection, we explore the concept of computable functions, delving into various
classes of computability and examining how they interrelate.

Definition 18. A function fc : Rc → Rc is called Borel-Turing computable if there is
an algorithm (or Turing machine) that transforms each given representation (a, b, s) of
a computable real number x into a corresponding representation for the computable real
number fc(x).
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To address the questions from Chapter 4 and 5, we need the concept of computable
continuous functions [33, Def. A]. For this, let Ic denote a computable interval, i.e.,
Ic = [a, b] with a, b ∈ Rc.
Definition 19 ([33]). Let Ic ⊂ Rc be a computable interval. A function fc : Ic → Rc is
called computable continuous if:

1. fc is sequentially computable, i.e., fc maps every computable sequence {xn}n∈N of
points xn ∈ Ic into a computable sequence {fc(xn)}n∈N of real numbers,

2. fc is effectively uniformly continuous, i.e., there is a recursive function d : N → N
such that for all x, y ∈ Ic and all N ∈ N with

∥x− y∥ ≤ 1
d(N)

it holds that
|fc(x) − fc(y)| ≤ 1

2N
.

Remark 6. The notion of computable continuous functions is stronger than that of
Borel-Turing computable functions. Functions that are computable continuous are also
Borel-Turing computable.

There are other forms of computability including Banach-Mazur computability, which
is the weakest form of computability.
Definition 20. A function f : Rc → Rc is called Banach-Mazur computable if f maps
any given computable sequence {xn}n∈N of computable real numbers into a computable
sequence {f(xn)}n∈N of computable real numbers.

In particular, Borel-Turing computability and computable continuous functions imply
Banach-Mazur computability, but not vice versa.

For an overview of the logical relations between different notions of computability we
refer to [37].

We further need the concepts of a recursive set and a recursively enumerable set as
defined in [38]. These are used with the purpose of constructing sequences of computable
channels used to study the computability of the feedback capacity function.
Definition 21. A set A ⊂ N is called recursive if there exists a computable function f
such that f(x) = 1 if x ∈ A and f(x) = 0 if x /∈ A.
Definition 22. A set A ⊂ N is recursively enumerable if there exists a recursive function
whose domain is exactly A.

We have the following properties [38]:
• A is recursive is equivalent to: A is recursively enumerable and Ac is recursively

enumerable.

• There exist recursively enumerable sets A ⊂ N that are not recursive, i.e., Ac is
not recursively enumerable. This means there are no computable, i.e., recursive,
functions f : N → Ac with [f(N)] = {m ∈ N : ∃n ∈ N with f(n) = m} = Ac.
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2.3.4 Dyadic Representation of Computable Numbers and Oracle
Turing Machines

In this section, we introduce the fundamental concepts of computability and complexity
theory, which are essential for understanding the material presented in Chapter 6.

First, we introduce the dyadic representation of rational numbers.
The set D of dyadic rational numbers are rational numbers with finite binary ex-

pansion. Each dyadic rational number d is naturally represented by a binary string
s = ±snsn−1 · · · s0.t1t2 · · · tm satisfying

d = ±
n∑

i=1
si2i ±

m∑
j=1

tj2−j.

A representation s of a dyadic rational d has the precision m (prec(s) = m), if it has m
bits to the right of the binary point.

Next, we will use a notation different from the one in (2.10) to represent computable
numbers, which will be utilized to define the subsequent concept of function-oracle Tur-
ing machines.

A number t ∈ Rc is said to be computable if there exists a Turing machine M with
input n ∈ N and output φ(n) = M(n) ∈ Q such that

|t− φ(n)| ≤ 2−n.

A function-oracle Turing machine is an ordinary Turing machine M equipped with an
additional query tape and two additional states: the query state and the answer state.
When the machine enters the query state, the oracle function φ replaces the current
string s in the query tape by the string φ(s), moves the tape head back to the first
cell of the query tape and puts the machine M in the answer state. When the time
complexity is considered, the entire process of querying for the value φ(s) costs only one
time unit to the machine.

Next we introduce the notion of computable functions using the concept of oracle
Turing machines.
Definition 23. A real function f : R → R is computable if there is a function-oracle
Turing machine M such that for each x ∈ R and each φ that binary converges to x, the
function ψ computed by M with oracle φ (i.e., ψ(n) = Mφ(n)) binary converges to f(x).

Intuitively, a function f is computable, if for a given x and the oracle φ, the oracle
Turing machine Mφ takes n as input and computes a dyadic rational Mφ(n) that binary
converges to f(x), i.e., |Mφ(n) − f(x)| ≤ 2−n. During the computation, the information
about x can be obtained from the oracle φ in one time step.

2.3.5 Complexity of Real Functions
For any t ∈ Rc, the Turing machine will need several iterations to compute φ(n). The
number of iterations needed will increase when n increases. The quantitative relation be-
tween the number of iterations for computing φ(n) and n determines the computational
complexity of t ∈ Rc.
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Definition 24. Let t be an integer function. The time complexity of a computable real
number x is bounded by t if there exists a Turing machine which computes, on each input
n ∈ N, a dyadic rational number d in t(n) moves such that |d− x| ≤ 2−n.

Definition 25. A real number x is polynomial time computable if its time complexity
is bounded by a polynomial function P.

Definition 26. Let f : [0, 1] → R be a computable function. The complexity of f on
[0, 1] is bounded by a function q : N → N if there exists an oracle Turing machine M
which computes f such that for all φ that binary converge to a real number x ∈ [0, 1]
and for all n > 0, Mφ(n) halts in at most time q(n).

Definition 27. A real function f : [0, 1] → R is polynomial time computable if its time
complexity is bounded by a polynomial function P.

Definition 28. Let {αn}n∈N be a computable sequence of computable numbers. This
sequence is computable in polynomial time if there exists a polynomial P : N × N → N,
such that for all n ∈ N for each M ∈ N a number αn ∈ Q is computed in at most
P (n,M) steps such that

|αn − αn,M | ≤ 1
2M

holds.

2.3.6 Complexity Classes
In this subsection, we introduce some complexity classes that characterize the complexity
of solving certain problems. We introduce and discuss the complexity classes related to
decision and counting problems. The fundamental concepts discussed here are based on
the comprehensive analysis found in [35].

For decision problems, the best known complexity classes are P and NP. These are
problems that for a given input string only have two possible solutions, “0” = “no” or
“1” = “yes”.

Consider the language Σ ⊂ {0, 1}∗1which is an infinite subset. The Entschei-
dungsproblem is described as follows: Find a Turing machineM , such that for x ∈ {0, 1}∗

it holds that M(x) = 1 if and only if x ∈ Σ, otherwise it holds that M(x) = 0, i.e., the
output of TM is either 0 or 1. The class P is the set of all decision problems that can
be solved by a deterministic Turing machine in polynomial time, i.e., in a computation
time that grows polynomial in the input size. The class NP is the set of all problems
that can be solved by a non-deterministic Turing machine in polynomial time. It is clear
from the definition that P ⊂ NP but it remains an open question whether P = NP or
P ⊊ NP. It is widely assumed that P is a proper subset of NP.

In order to formally define the complexity classes, we consider the concept non-
deterministic Turing machines (NDTMs). The difference between a deterministic Turing

1Notation: {0, 1}∗ denotes the set of all finite words in {0, 1}, |x| denotes the length of the sequence
x.
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machine and a NDTM is that the latter has more than one possible move from a given
configuration, and also a special state qaccept. Hence, for a NDTM M , M outputs 1 on
a given input x if there is at least one sequence of moves for x that makes M reach
qaccept, otherwise, if x makes M stop, then it reaches the halting state and M(x) = 0. A
NDTM is polynomial, if there is a p : N → N such that for every x the NDTM reaches
the halting state or qaccept in at most p(|x|) steps.

Definition 29 (Classes P and NP ). Let Σ ⊂ {0, 1}∗ be a language. Then Σ is in
P if there exists a Turing machine M that solves the Entscheidungsproblem for Σ in
polynomial time.

A language Σ ⊂ {0, 1}∗ is in NP , if there exists a polynomial time NDTM M such
that x ∈ Σ ⇔ M(x) = 1.

The name NP comes originally from Non-deterministic Polynomial Turing machines.
Intuitively, the class NP is the class of all problems, which are verifiable in polynomial
time. This can be ilustrated in the following way: Let M be a polynomial NDTM.
Let y be a sequence of moves describing a non-deterministic path that makes M reach
qaccept on input x, then y is a certificate for x. This certificate has length p(|x|) and
can be then verified by a polynomial time Turing machine, which checks that M would
have entered qaccept after using the non-deterministic path of M . In other words, if a
set Σ ⊂ {0, 1}∗ is in NP, then there exists a Turing machine Mv that takes inputs from
{0, 1}∗ × {0, 1}∗ and outputs values in {0, 1} such that for any x ∈ Σ, there exists a
certificate y ∈ {0, 1}p(|x|) satisfying Mv(x, y) = 1.

Next, we consider functions that are defined on a different domain. More precisely,
we consider a complexity class similar to P and NP that contains functions whose input
belong to a singleton alphabet, i.e., functions whose domain is {0}∗.

Definition 30 (Classes P1 and NP1). Let Σ1 ⊂ {0}∗ be a language. Then Σ1 is in
P1 if there exists a Turing machine M that solves the Entscheidungsproblem for Σ1 in
polynomial time. A language Σ1 ⊂ {0}∗ is in NP1 , if there exists a non-deterministic
polynomial time Turing machine M such that x ∈ Σ1 ⇔ M(x) = 1.

Let us introduce the characteristic functions χΣ : {0, 1}∗ → {0, 1} and χΣ1 : {0}∗ →
{0, 1} for languages Σ ⊂ {0, 1}∗ and Σ1 ⊂ {0}∗, respectively. These characteristic
functions evaluate as follows: χΣ(x) = 1 ⇔ x ∈ Σ.

We can then consider Definitions 30 and 29 as complexity requirements for computing
the characteristic function χΣ. In other words, we can determine whether Σ is in the
complexity class P and whether Σ1 is in the complexity class P1 by investigating whether
the characteristic function χΣ is polynomial time computable.

We want to illustrate the same notions for the complexity classes for general functions.
To represent such problems, we use functions denoted as f : {0, 1}∗ → N, defined on
the set of all finite words in the binary alphabet {0, 1}. For any given word x ∈ {0, 1}∗,
the value of f(x) represents the count of solutions for that particular instance. The
classes analog to the classes P and NP for counting problems are denoted by FP and
#P respectively.
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Definition 31 (Classes FP and #P). A function f : {0, 1}∗ → N is in FP if it can be
computed by a deterministic Turing machine in polynomial time.

A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N → N and a
polynomial time Turing machine M , such that for every string x ∈ {0, 1}∗,

f(x) = |{y ∈ {0, 1}p(|x|) : M(x, y) = 1}|.

Remark 7. Definition 31 can also be described using NDTMs. #P consists of all
functions f , such that f(x) equals the number of certificates that describes the sequence
of moves of an accepting path of a polynomial time NDTM M on input x.

Remark 8. By Definition 31, it is evident that FP ⊆ #P . However, similar to P vs.
NP it is an open question whether FP = #P , i.e., whether any problem in #P can be
efficiently (in polynomial time) solved by a Turing machine. It is commonly assumed that
FP ⊊ #P . Moreover, if FP = #P , then this would imply that P = NP . Conversely,
P ̸= NP implies FP ̸= #P .

With this, we can argue that problems in #P and #P1 are considerably more complex
than problems in NP and NP1, respectively. In NP, it is generally challenging to find a
y∗ for x such that

f(x, y∗) = 1 (2.11)
assuming the commonly accepted complexity assumption that P ̸= NP . If ŷ is consid-
ered a potential solution for (2.11), it is a straightforward task to determine whether
f(x, ŷ) = 1 in polynomial time. The verification of whether ŷ is a solution for the prob-
lem or not can be performed in a simple manner. It should be noted that this asymmetry
between finding the solution and verifying if a given value is a solution or not forms the
foundation of cryptography as a whole.

For #P, such a behavior is unknown. Even if {y1, . . . , yr} is considered as a solution
set, the verification of whether f(x, yl) = 1 for 1 ≤ l ≤ r is easy to implement. However,
it is not clear if this approach is useful for #P since there may exist additional solutions
not included in the considered solution set. In the case of #P, we require the set of all
possible solutions. These arguments also apply to the sets NP1.

In this work, we are interested in studying functions that are defined on the singleton
alphabet, i.e., {0}∗ ⊂ {0, 1}∗. In other words, these functions are defined solely on the
set of finite words composed of the symbol 0. The classes analog to FP and #P defined
on singleton sets are denoted by FP1 and #P1 respectively.

Definition 32 (Classes FP1 and #P1). A function f : {0}∗ → N is said to be in FP1 if
it can be computed by a deterministic Turing machine in polynomial time.

A function f : {0}∗ → N is said to be in #P1 if there exists a polynomial p : N → N
and a polynomial time Turing machine M so that for every string x ∈ {0}∗

f(x) = |{y ∈ {0}p(|x|) : M(x, y) = 1}|.

Remark 9. As in the previous cases, we have FP1 ⊆ #P1 but it is open whether
FP1 = #P1. However, it is widely assumed that FP1 ⊊ #P1. Similarly as above,
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an f ∈ #P1 is said to be complete in #P1 if any other g ∈ #P1 can be reduced to f by
a polynomial time Turing machine.

Remark 10. Similar to the relation between the classes NP and #P, the class #P1 is
more general than NP1 since it not only contains problems for which a certificate can
be verified in polynomial time but also counts the number of certificates verifiable in
polynomial time. #P1 is therefore more difficult and more complex than NP1.

For the next definition we need the notion of reduction. A reduction is an algorithm
for transforming one problem into another problem.

Definition 33. A function f ∈ #P1 is said to be complete in #P1 if any other g ∈ #P1
can be reduced to f by a polynomial time Turing machine.

Suppose there is a deterministic Turing machine capable of solving a problem f in
polynomial time. In such a scenario, it implies that any other problem g belonging to the
complexity class #P1 can also be solved in polynomial time by a deterministic Turing
machine. In simpler terms, if f is considered as a complete problem within the class
#P1, then f is at least as challenging as the most difficult problem in #P1.

2.3.7 Computation and Complexity of the Logarithm Function

In this subsection, we examine the binary convergence and computational behavior of
the logarithm function. Additionally, we study the computational complexity arising
from applying the logarithm function to another computable function. These properties
are essential for showing the desired results in Chapter 6.

Lemma 4. Let α, ᾱ ∈ Q with 0 < α < ᾱ < ∞. Let x∗ = α+ᾱ
2 and β = 2α

ᾱ+α
. Let r

2s be a
dyadic number with s, r ∈ N such that β ≤ r

2s < 1 and let m1 ∈ N be such that rm1
2sm1 <

1
2 .

Then for all x ∈ [α, ᾱ] and for all m ≥ m1 we have

∣∣∣∣ ln x− ln(x∗) −
m2∑
ℓ=1

(−1)ℓ−1

ℓxℓ
∗

(x− x∗)ℓ

∣∣∣∣ < γ
1

2m

with γ = 2α
ᾱ−α

∈ Q.

Proof. ln(·) is an absolute convergent Taylor-series in x ∈ [α, ᾱ]. For Ψ(x) = ln(x) we
have Ψ (ℓ)(x) = (−1)ℓ−1

ℓxℓ
∗

, for ℓ ≥ 1 and x > 0.
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We then have ∣∣∣∣ ln x− ln(x∗) −
m2∑
ℓ=1

(−1)ℓ−1

ℓxℓ
∗

(x− x∗)ℓ

∣∣∣∣
=
∣∣∣∣ ∞∑

ℓ=m2+1

(−1)ℓ−1

ℓxℓ
∗

(x− x∗)ℓ

∣∣∣∣ ≤
∞∑

ℓ=m2+1

|x− x∗|ℓ

|x∗|ℓ

=
∞∑

ℓ=m2+1

∣∣∣∣1 − x

x∗

∣∣∣∣ℓ ≤
∞∑

ℓ=m2+1

∣∣∣∣α + ᾱ− (ᾱ− α)
α + ᾱ

∣∣∣∣ℓ

=
∞∑

ℓ=m2+1

( 2α
α + ᾱ

)ℓ

=
∞∑

ℓ=m2+1
βℓ

= βm2+1 1
1 − β

= β

1 − β
βM2

=
2α

α+ᾱ

1 − 2α
α+ᾱ

( 2α
α + ᾱ

)m2

= 2α
ᾱ− α

( 2α
α + ᾱ

)m2

≤ 2α
ᾱ− α

rm2

2sm2 = γ
(
rm

2sm

)m

< γ
1

2m
.

The constant γ, does not influence the binary convergence of the power series. So the
power series binary converges to the logarithm function. This is visualized in the next
lemma.
Lemma 5. Let m1,m2 ∈ N be arbitrary such that m2 ≥ m1. Let γ < 2m2. Then for all
m ∈ N and all x as in Lemma 4 we have∣∣∣∣ ln x− ln(x∗) −

(m2+m)2∑
ℓ=1

(−1)ℓ−1

ℓxℓ
∗

(x− x∗)ℓ

∣∣∣∣ < 1
2m
.

Proof. The proof follows from Lemma 4. We have∣∣∣∣ ∞∑
ℓ=(m2+m)2

(−1)ℓ−1

ℓxℓ
∗

(x− x∗)ℓ

∣∣∣∣ < γ
1

2m2+m
<

1
2m
.

Lemma 6. For x ∈ [α, ᾱ], β = ᾱ−α
ᾱ+α

and m ∈ N we consider the polynomial

Qm(x) = ln(x∗) +
m2∑
ℓ=1

(−1)ℓ−1

ℓxℓ
∗

(x− x∗)ℓ.

For x1, x2 ∈ [α, ᾱ] we have

|Qm(x1) −Qm(x2)| ≤ 2
β(1 − β)2 |x1 − x2|.
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Proof. Using the mean value theorem we get for fℓ(x) = (x− x∗)ℓ for 1 ≤ ℓ ≤ m2

|fℓ(x1) − fℓ(x2)| = |f ′
ℓ(x1,2)||x1 − x2|

≤ ℓ|(ᾱ− x∗)ℓ−1||x1 − x2|

= ℓ|( ᾱ− α

2 )ℓ−1||x1 − x2|.

We then have that

|Qm(x1) −Qm(x2)| ≤
m2∑
ℓ=1

(−1)ℓ+1

ℓxℓ
∗

ℓ( ᾱ− α

2 )ℓ−1||x1 − x2|

≤ |x1 − x2|
x∗

m2∑
ℓ=1

( ᾱ−α
2

ᾱ+α
2

)ℓ−1

<
|x1 − x2|

x∗

∞∑
ℓ=1

βℓ−1

≤ |x1 − x2|
x∗

∞∑
ℓ=0

βℓ

= |x1 − x2|
x∗

1
1 − β

= 2
β(1 − β)2 |x1 − x2|.

Next we look at the computability and complexity properties of the logarithm func-
tion. More precisely, we show that the composition of a computable continuous periodic
function g with the logarithm function, i.e. ln(g(ω)), results in a computable continuous
function. Moreover, if the function g has low complexity, then the composition ln(g(ω))
has also low complexity.

Lemma 7. Let g be a computable continuous 2π-periodic function with
minω∈[−π,π] g(ω) = c > 0.

1. Then ln ◦g is also a computable continuous 2π-periodic function.

2. Let g polynomial time computable, then ln ◦g is also polynomial time computable.

Proof. Let g be a fixed function. Let

c = min
ω∈[−π,π]

g(ω) > 0 and C̄ = max
ω∈[−π,π]

g(ω) < ∞.

We choose a α ∈ Q with α < c
2 and ᾱ ∈ Q with ᾱ > C̄ + 1. In this proof, we work with

the oracle Turing model. We start with an algorithm for computing g. Based on this
algorithm, we construct a new algorithm for computing ln ◦g. If the algorithm computing
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g computes the approximation of g with an approximation error of 1
2M in polynomial

time, then the new constructed algorithm for ln ◦g also computes an approximation of
ln ◦g with an approximation error of 1

2M in polynomial time.
We choose m3 ∈ N such that 2

β(1−β)2 < 2m3 holds. Let M ∈ N be arbitrary. Let
C(ω,M) be the approximation of g with precision M , i.e.,

|g(ω) − C(ω,M)| < 1
2M

.

Let the number C(ω, M̃) with M̃ = M +m3 + 1 +m2 be the approximation for g(ω)
with approximation error 1

2M computed by the algorithm to calculate g(ω) for input M
and Oracle input ω. We then have

|g(ω) − C(ω, M̃)| < 1
2M+1 .

We use the number C(ω, M̃) and calculate d(ω,M) := QM̃(C(ω, M̃)).
The polynomial

QM̃(x) =
M2∑
ℓ=0

(−1)ℓ+1

xℓ
∗

(x− x∗)ℓ.

has only polynomial many coefficients that are different from 0. All of them are rational
numbers and are computed depending on the precision M̃ in polynomial time. This way,
the approximation d(ω,M) of the number C(ω, M̃) can be computed in polynomial time
depending on M . Now we have

| ln(g(ω)) − d(ω,M)| = | ln(g(ω)) −QM̃(g(ω)) +QM̃(g(ω)) −QM̃(C(ω, M̃))|
≤ | ln(g(ω)) −QM̃(g(ω))| + |QM̃(g(ω)) −QM̃(C(ω, M̃))|.

From Lemma 5 we have that

| ln(g(ω)) −QM̃(g(ω))| < 1
2M+1 .

Further, from Lemma 6 and the definition of m3 we have

|QM̃(g(ω)) −QM̃(C(ω, M̃))| ≤ |g(ω) − C(ω, M̃)| < 1
2M+1 .

This way we have
| ln(g(ω)) − d(ω,M)| < 1

2M+1 + 1
2M+1 .

2.3.8 Computation and Complexity of Integration
In this subsection, we explore the computational aspects and complexity properties of
integration, which are important for the analysis in Chapters 5 and 6.
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Theorem 3 ([33, p.37]). Let [a, b] ⊂ R be a compact interval. If f : [a, b] → R is a
computable function then

∫ b
a f(t) dt is a computable number.

The first results regarding the computational complexity of integrals were derived in
[39]. The following theorem states that the integral of a polynomial time computable
function over an interval gives a polynomial time computable number if FP1 = #P1.

Theorem 4 ([34, p.184]). The computation of
∫ 1

0 f(t) dt lies in #P1 for all polynomial
time computable functions f : [0, 1] → R. Moreover, there exists a polynomial-time
computable function g which is infinitely differentiable and such that the computation
of its integral is #P1-complete.
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3 Capacity Region Continuity of
Compound Broadcast Channels with
Confidential Messages

In this chapter, we delve into the study of the compound BCC. Compound channels
provide a framework for modeling a realistic Channel State Information (CSI) scenario,
where legitimate users lack precise knowledge of the actual channel realization. Instead,
they are aware that the current channel belongs to a known uncertainty set and that
the channel remains constant throughout the entire transmission. This model applies,
for example, to the down-link of a cellular system, in which the base station transmits
information to a user. The base station obtains limited CSI, for example via the up-link
from pilot signal estimation at the receiver. Compound channels model the channel
uncertainty based on a finite number of estimates.

The discrete memoryless compound BCC consists of one sender and two receivers.
The sender aims to transmit two messages: a common message for both receivers and a
confidential message intended solely for receiver 1, while keeping receiver 2 unaware of
the confidential message.

In [40], the compound BCC capacity region using the strong secrecy criterion was
characterized. This characterization involves a multi-letter expression, which represents
the limit of a sequence of optimization problems, despite the channel being described
only by discrete and finite parameters.

Multi-letter expressions present challenges in practical applications. One such chal-
lenge is the difficulty in extracting important insights, such as robustness and com-
putability, from these expressions. Understanding the continuity properties of capacity
with multi-letter expressions is crucial for addressing these challenges.

Here, we aim to determine whether the capacity region of the compound BCC de-
pends continuously on the uncertainty set. If small changes in the uncertainty set lead
to significant changes in the corresponding capacity region, the compound BCC is con-
sidered fragile, complicating the design of practical communication systems. Therefore,
a continuous behavior of the capacity region is desired.
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3.1 Compound Broadcast Channel with Confidential
Messages

The transmitter and the receiver of a compound channel know an uncertainty set of
channels to which the channel belongs; however, they do not know the actual channel
realization. The channel remains constant during the entire transmission. We consider a
two receiver compound BCC. The transmitter sends simultaneously a common message
to both receivers and a confidential message to receiver 1, which must be kept secret
from receiver 2. Let X be the finite input alphabet, Y and Z the finite output alphabets
of receivers 1 and 2, respectively, and let S be a finite set of channel states. For each
channel state s ∈ S, input sequence xn ∈ X n and output sequences yn ∈ Yn and
zn ∈ Zn, the discrete memoryless broadcast channel is given by

Qn
s (yn, zn|xn) :=

n∏
i=1

Qs(yi, zi|xi)

with marginal channels W n
s (yn|xn) and V n

s (zn|xn).

Definition 34. The discrete memoryless compound broadcast channel W is given by the
channel pair family with common input

W := {(Ws, Vs) : s ∈ S}.

3.1.1 Codes for Compound Broadcast Channels
We consider a block-code of arbitrary but fixed length n. Let M0 := {1, . . . ,M0,n} be
the common message set and M1 := {1, . . . ,M1,n} the confidential message set. We use
the abbreviation M := M0 × M1.

Definition 35. An (n,M0,n,M1,n)-code for the compound BCC consists of a stochastic
encoder

E : M0 × M1 → P(X n)
i.e., a stochastic matrix, and decoders at receivers 1 and 2

φ1 : Yn → M0 × M1

φ2 : Zn → M0.

The average error probability for receivers 1 and 2 and the channel realization s ∈ S
are

e1,n(s) := 1
|M|

∑
m∈M

∑
xn∈X n

∑
yn:φ1(yn )̸=m

W n
s (yn|xn)E(xn|m)

e2,n(s) := 1
|M|

∑
m∈M

∑
xn∈X n

∑
zn:φ2(zn )̸=m0

V n
s (zn|xn)E(xn|m).
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Since reliable communication is required for all s ∈ S, we consider the maximum average
error probabilities, i.e. e1,n = maxs∈S e1,n(s) and e2,n = maxs∈S e2,n(s).

The confidential message has to be kept secret from the non-legitimate receiver for
all channel realizations. Therefore, we require maxs∈S I(M1;Zn

s ) ≤ ϵn for some ϵn > 0
with M1 uniformly distributed over the set M1 and Zn

s the output at the non-legitimate
receiver for the channel realization s ∈ S. This criterion is known as strong secrecy
[41, 42].

Definition 36. A rate pair (R0, R1) ∈ R2
+ is said to be achievable for the compound

BCC if for any τ > 0 there is an n(τ) ∈ N and a sequence of (n,M0,n,M1,n)-codes such
that for all n ≥ n(τ) we have 1

n
logM0,n ≥ R0 − τ , 1

n
logM1,n ≥ R1 − τ , and

max
s∈S

I(M1;Zn
s ) ≤ ϵn (3.1)

with e1,n, e2,n, ϵn → 0 as n → ∞.

Definition 37. The set closure of all achievable rate pairs is the capacity region C(W)
of the compound BCC W.

3.1.2 Capacity Results
In this section we present an achievable rate region and a multi-letter characterization
of the compound BCC capacity region [40].

Lemma 8 ([40]). An achievable secrecy rate region for the compound BCC is given by
the set of all rate pairs (R0, R1) ∈ R2

+ satisfying

R0 ≤ min
s∈S

min{I(U ;Ys), I(U ;Zs)}

R1 ≤ min
s∈S

I(V ;Ys|U) − max
s∈S

I(V ;Zs|U)

for some random variables U, V,X where U − V −X − (Ys, Zs) forms a Markov chain.
Furthermore, the strong secrecy criterion goes exponentially fast to zero and the decoding
error at the non-legitimate receiver goes exponentially fast to one.

We next present a multi-letter description of C(W) of the compound BCC W. Let
n ∈ N be arbitrary but fixed. We define the rate region Rn(W, U, V,Xn) as the set of
all rate pairs (R0, R1) ∈ R2

+ satisfying

R0 ≤ 1
n

inf
s∈S

min{I(U ;Y n
s ), I(U ;Zn

s )} (3.2)

R1 ≤ 1
n

(inf
s∈S

I(V ;Y n
s |U) − sup

s∈S
I(V ;Zn

s |U)) (3.3)

for the random variables satisfying the Markov chain relationship U−V −Xn−(Y n
s , Z

n
s ).

For a given n ∈ N we define the region

Mn(W) =
⋃

U−V −Xn

Rn(W, U, V,Xn)
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that is, Mn(W) is the union of the regions Rn(W, U, V,Xn) over all random variables
satisfying the Markov chain relationship U − V −Xn.

Theorem 5. The strong secrecy capacity region C(W) of the compound BCC W is the
convex hull closure of the union of the regions Mn(W) over all n ∈ N, i.e.

C(W) = conv(
⋃

n∈N
Mn(W)).

Remark 11. To the best of our knowledge, there is still no single-letter characterization
of C(W) known.

Remark 12. The union of the rate regions ⋃n∈N Mn(W) may itself not be convex.
However, all rate pairs in the convex hull can be achieved by time sharing between the
points in the rate regions Mn(W).

3.2 Continuity of the Compound BCC Capacity Region
In this section we first define the distance between two compound BCCs and the distance
between rate regions. We then analyze the continuity of the compound BCC capacity
region.

3.2.1 Distance between Compound Broadcast Channels and Sets
Let (W,V ) and (W̃ , Ṽ ) be two broadcast channels. We define the distance between
channels as

d(W, W̃ ) := max
x∈X

∑
y∈Y

|W (y|x) − W̃ (y|x)|

d(V, Ṽ ) := max
x∈X

∑
z∈Z

|V (z|x) − Ṽ (z|x)|

and the distance between two broadcast channels as

d((W,V ), (W̃ , Ṽ )) := max(d(W, W̃ ), d(V, Ṽ )).

Let W1 = {(Ws1 , Vs1) : s1 ∈ S1} and W2 = {(Ws2 , Vs2) : s2 ∈ S2} be two finite com-
pound broadcast channels with marginal compound channels Wi = {Wsi

: si ∈ Si} and
Vi = {Vsi

: si ∈ Si} for i ∈ {1, 2}. We define the distance between two marginal com-
pound channels as

d1(W1,W2) = max
s2∈S2

min
s1∈S1

d(Ws1 ,Ws2)

d2(W1,W2) = max
s1∈S1

min
s2∈S2

d(Ws1 ,Ws2)

d1(V1,V2) = max
s2∈S2

min
s1∈S1

d(Vs1 , Vs2)

d2(V1,V2) = max
s1∈S1

min
s2∈S2

d(Vs1 , Vs2).
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Definition 38. Let W1 and W2 be two compound broadcast channels. The distance
D(W1,W2) between W1 and W2 is defined as

D(W1,W2) = max
{
d1(W1,W2), d2(W1,W2),

d1(V1,V2), d2(V1,V2)
}
.

To compare different rate regions, we define the following distance of sets.

Definition 39. Let R1 and R2 be two non-empty compact subsets of the metric space
(R2

+, d) with d(x, y) = ∑2
i=1 |xi − yi| for all x, y ∈ R2

+. We define the distance between
two sets as

DR(R1,R2) = max
{

max
r1∈R1

min
r2∈R2

d(r1, r2),

max
r2∈R2

min
r1∈R2

d(r1, r2)
}
.

3.2.2 Continuity of the Capacity Region of the Compound BCC
We use the following technical result, which is an extension of [43, Lem. 2,].

Lemma 9 ([43]). Let ϵ ∈ (0, 1) be arbitrary. For all (X, Y ) and (X̃, Ỹ ) be two
pairs of random variables with finite range X × Y and joint probabilities distributions
PX,Y , PX̃,Ỹ

∈ P(X × Y). If ||PX,Y − P
X̃,Ỹ

|| ≤ ϵ, then it holds

|H(Y |X) −H(Ỹ |X̃)| ≤ δ1(ϵ, |Y|) (3.4)

with δ1(ϵ, |Y|) := 2ϵ log |Y| + 2H2(ϵ).

Remark 13. Note that the right-hand side of (3.4) depends only on the size of the
alphabet Y, but it is independent of X .

Lemma 10. Let X and Y be finite alphabets and W, W̃ : X → P(Y) be arbitrary chan-
nels with

d(W, W̃ ) ≤ ϵ

for some ϵ > 0. For an arbitrary n ∈ N, let U and V be two finite sets, PU ∈ P(U) be
the uniform distribution on U , PV |U(·|u) be the conditional distribution of the random
variable V over V given U = u, and E(xn|v) with xn ∈ X n conditioned on u ∈ U be an
arbitrary stochastic encoder. We consider the probability distributions

PUV Y n(u, v, yn) =
∑

xn∈X n

W n(yn|xn)E(xn|v)PV |U(v|u)PU(u)

P
UV Ỹ n(u, v, yn) =

∑
xn∈X ñ

W n(yn|xn)E(xn|v)PV |U(v|u)PU(u).

Then it holds that
|I(V ;Y n|U) − I(V ; Ỹ n|U)| ≤ nδ2(ϵ, |Y|) (3.5)

with δ2(ϵ, |Y|) := 4ϵ log |Y| + 4H2(ϵ).
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Proof. Let 0 ≤ k ≤ n be arbitrary. We define

P
UV Y k

1 Ỹ n
k+1

(u, v, yk
1 , y

n
k+1) :=

∑
xn∈X n

k∏
l=1

W (yl|xl)
n∏

l=k+1
W̃ (yl|xl)E(xn|v)PV |U(v|u)PU(u).

So we have

I(V ;Y n|U) − I(V ; Ỹ n|U) =
n−1∑
k=0

(
I(V ;Y k+1

1 Ỹ n
k+2|U) − I(V ;Y k

1 Ỹ
n

k+1|U)
)
. (3.6)

For all 0 ≤ k ≤ n− 1 it holds

I(V ;Y k+1
1 Ỹ n

k+2|U) − I(V ;Y k
1 Ỹ

n
k+1|U) = I(V ;Y k

1 |U) + I(V ;Yk+1Ỹ
n

k+2|Y k
1 U)

− I(V ;Y k
1 |U) − I(V ; Ỹ n

k+1|Y k
1 U)

= I(V ;Yk+1Ỹ
n

k+2|Y k
1 U) − I(V ; Ỹ n

k+1|Y k
1 U)

= I(V ; Ỹ n
k+2|Y k

1 U) + I(V ;Yk+1|Ỹ n
k+2Y

k
1 U)

− I(V ; Ỹ n
k+2|Y k

1 U) − I(V ; Ỹk+1|Ỹ n
k+2Y

k
1 U)

= I(V ;Yk+1|Ỹ n
k+2Y

k
1 U) − I(V ; Ỹk+1|Ỹ n

k+2Y
k

1 U)
= H(Yk+1|Ỹ n

k+2Y
k

1 U) −H(Ỹk+1|Ỹ n
k+2Y

k
1 U)

−H(V Yk+1|Ỹ n
k+2Y

k
1 U) +H(V Ỹk+1|Ỹ n

k+2Y
k

1 U). (3.7)

We want to analyze the right-hand side of (3.7). For 0 ≤ k ≤ n− 1, it holds

∥P
UV Y k+1

1 Ỹ n
k+2

− P
UV Y k

1 Ỹ n
k+1

∥

=
∑
v∈V

∑
u∈U

∑
yn∈Yn

∣∣∣∣PUV Y k+1
1 Ỹ n

k+2
(u, v, yk+1

1 yn
k+2) − P

UV Y k
1 Ỹ n

k+1
(u, v, yk

1y
n
k+1)

∣∣∣∣
=
∑
v∈V

∑
u∈U

∑
yn∈Yn

∣∣∣∣ ∑
xn∈X n

( k+1∏
l=1

W (yl|xl)
n∏

l=k+2
W̃ (yl|xl) −

k+1∏
l=1

W (yl|xl)
n∏

l=k+2
W̃ (yl|xl)

)

× E(xn|v)PV |U(v|u)PU(u)
∣∣∣∣

=
∑
v∈V

∑
u∈U

∑
yn∈Yn

∣∣∣∣ ∑
xn∈X n

k∏
l=1

W (yl|xl)
n∏

l=k+2
W̃ (yl|xl)

(
W (yk+1|xk+1) − W̃ (yk+1|xk+1)

)

× E(xn|v)PV |U(v|u)PU(u)
∣∣∣∣

≤
∑
v∈V

∑
u∈U

∑
yn∈Yn

∑
xn∈X n

k∏
l=1

W (yl|xl)
n∏

l=k+2
W̃ (yl|xl)

∣∣∣∣W (yk+1|xk+1) − W̃ (yk+1|xk+1)
∣∣∣∣

× E(xn|v)PV |U(v|u)PU(u)

=
∑
v∈V

∑
u∈U

∑
xn∈X n

( ∑
yn∈Yn

k∏
l=1

W (yl|xl)
n∏

l=k+2
W̃ (yl|xl)

∣∣∣∣W (yk+1|xk+1) − W̃ (yk+1|xk+1)
∣∣∣∣)

× E(xn|v)PV |U(v|u)PU(u)
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=
∑
u∈U

∑
xn∈X n

∑
yk+1∈Y

∣∣∣∣W (yk+1|xk+1) − W̃ (yk+1|xk+1)
∣∣∣∣

× E(xn|v)PV |U(v|u)PU(u)
< ϵ

∑
v∈V

∑
u∈U

∑
xn∈X n

E(xn|v)PV |U(v|u)PU(u) = ϵ.

Which shows that the total variation between the joint probability distribution
P

UV Y kỸ n
k+1

and P
UV Y k+1Ỹ n

k+2
is smaller than ϵ. Then by Lemma 9 it holds

∣∣∣∣H(Yk+1|Ỹ n
k+2Y

k
1 U) −H(Ỹk+1|Ỹ n

k+2Y
k

1 U)
∣∣∣∣ < 2ϵ log |Y| + 2H2(ϵ) (3.8)

and ∣∣∣∣H(V Yk+1|Ỹ n
k+2Y

k
1 U)−H(V Ỹk+1|Ỹ n

k+2Y
k

1 U)
∣∣∣∣

=
∣∣∣∣H(V |Ỹ n

k+2Y
k

1 U) +H(Yk+1|V Ỹ n
k+2Y

k
1 U)

−H(V |Ỹ n
k+2Y

k
1 U) −H(Ỹk+1|V Ỹ n

k+2Y
k

1 U)
∣∣∣∣

=
∣∣∣∣H(Yk+1|V Ỹ n

k+2Y
k

1 U) −H(Ỹk+1|V Ỹ n
k+2Y

k
1 U)

∣∣∣∣
< 2ϵ log |Y| + 2H2(ϵ) (3.9)

Inserting (3.8) and (3.9) into (3.7) we obtain∣∣∣∣I(V ;Y k+1
1 Ỹ n

k+2|U) − I(V ;Y k
1 Ỹ

n
k+1|U)

∣∣∣∣ ≤ 4ϵ log |Y| + 4H2(ϵ) =: δ2(ϵ, |Y|) (3.10)

This gives in particular the following upper bound for the difference between I(V ;Y n|U)
and I(V ; Ỹ n|U)

∣∣∣∣I(V ;Y n|U) − I(V ; Ỹ n|U)
∣∣∣∣ ≤

n−1∑
k=0

∣∣∣∣I(V ;Y k+1
1 Ỹ n

k+2|U) − I(V ;Y k
1 Ỹ

n
k+1|U)

∣∣∣∣
≤ nδ2(ϵ, |Y|)

proving the lemma.

Remark 14. Note that the right-hand side of (3.5) depends only on the size of the
output alphabet Y, and is independent of the size of the auxiliary alphabets U and V, the
conditional distribution PV |U and the chosen stochastic encoder E.

Lemma 11. Let ϵ ∈ (0, 1) and n ∈ N. Let W1 and W2 be two compound BCCs and
consider random variables satisfying the Markov chain relationship U − V −Xn. If

D(W1,W2) ≤ ϵ
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then it holds that

DR(Rn(W1, U, V,X
n),Rn(W2, U, V,X

n)) ≤ δ(ϵ, |Y|, |Z|)

with δ(ϵ, |Y|, |Z|) = δ′(ϵ, |Y|, |Z|) + δ′′(ϵ, |Y|, |Z|), δ′(ϵ, |Y|, |Z|) := 4H2(ϵ) +
4ϵmax{log |Y|, log |Z|} and δ′′(ϵ, |Y|, |Z|) := 4ϵ log |Y||Z| + 8H2(ϵ).

Proof. The regions Rn(W1, U, V,X
n) ∈ R2

+ and Rn(W2, U, V,X
n) ∈ R2

+ are rectangles
described by the rates (R0,S1 , R1,S1) and (R0,S2 , R1,S2) satisfying (3.2) and (3.3) respec-
tively. For i = 1, 2, we define A0Si

and A1Si
as

A0Si
= max

(R0,Si
,R1,Si

)∈Rn(Wi,U,V,Xn)
R0,Si

A1Si
= max

(R0,Si
,R1,Si

)∈Rn(Wi,U,V,Xn)
R1,Si

.

Note that both regions are rectangles sharing the corner point (0, 0). Therefore, the
longest distance between these two sets is given by the corner points (A0S1

, A1S1
) and

(A0S2
, A1S2

), i.e.,

DR(Rn(W1, U, V,X
n),Rn(W2, U, V,X

n))
= |A0S1

− A0S2
| + |A1S1

− A1S2
|.

We first analyze the difference between the maximum achievable common rates, i.e.,
|A0S1

− A0S2
| and then the difference between the maximum achievable confidential

rates, i.e., |A1S1
− A1S2

|.

Common Message Rate

There are four cases that may occur:

1) A0S1
= 1

n
infs1∈S1 I(U ;Y n

s1)
A0S2

= 1
n

infs2∈S2 I(U ;Y n
s2)

2) A0S1
= 1

n
infs1∈S1 I(U ;Zn

s1)
A0S2

= 1
n

infs2∈S2 I(U ;Zn
s2)

3) A0S1
= 1

n
infs1∈S1 I(U ;Y n

s1)
A0S2

= 1
n

infs2∈S2 I(U ;Zn
s2)

4) A0S1
= 1

n
infs1∈S1 I(U ;Zn

s1)
A0S2

= 1
n

infs2∈S2 I(U ;Y n
s2)
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3.2 Continuity of the Compound BCC Capacity Region

For Case 1), we have∣∣∣∣A0S1
− A0S2

∣∣∣∣
=
∣∣∣∣ 1n inf

s1∈S1
I(U ;Y n

s1) − 1
n

inf
s2∈S2

I(U ;Y n
s2)
∣∣∣∣. (3.11)

Let η > 0 be arbitrary. There exists an ŝ1 = ŝ1(η) such that

inf
s1∈S1

I(U ;Y n
s1) ≥ I(U ;Y n

ŝ1) − η. (3.12)

Since D(W1,W2) < ϵ, there is an ŝ2 = ŝ2(ŝ1) such that

d(Wŝ1 ,Wŝ2) < ϵ. (3.13)

We can now apply Lemma 10. (We let U in (3.5) be a constant and we let U in (3.11)
take the role of V in (3.5).) By (3.13), we have∣∣∣∣I(U ;Y n

ŝ1) − I(U ;Y n
ŝ2)
∣∣∣∣ ≤ nδ2(ϵ, |Y|). (3.14)

Combining (3.12) and (3.14) we obtain

inf
s1∈S1

I(U ;Y n
s1) ≥ I(U ;Y n

ŝ2) − nδ2(ϵ, |Y|) − η

≥ inf
s2∈S2

I(U ;Y n
s2) − nδ2(ϵ, |Y|) − η.

Since this inequality holds for all η > 0, we then obtain

inf
s1∈S1

I(U ;Y n
s1) > inf

s2∈S2
I(U ;Y n

s2) − nδ2(ϵ, |Y|).

By changing the roles of S1 and S2 in the previous derivation, we get∣∣∣∣ inf
s1∈S1

I(U ;Y n
s1) − inf

s2∈S2
I(U ;Y n

s2)
∣∣∣∣ ≤ nδ2(ϵ, |Y|).

Using the same line of argument as for Case 1), for Case 2), we have∣∣∣∣ inf
s1∈S1

I(U ;Zn
s1) − inf

s2∈S2
I(U ;Zn

s2)
∣∣∣∣ ≤ nδ2(ϵ, |Z|).

In Case 3) and Case 4) we have that for one compound BCC the maximum achiev-
able common rate depends on the random variable Y and for the other, the maximum
achievable common rate depends on the random variable Z. We first study Case 3). We
have

B0S1
= 1
n

inf
s1∈S1

I(U ;Zn
s1) ≥ 1

n
inf

s1∈S1
I(U ;Y n

s1) = A0S1

B0S2
= 1
n

inf
s2∈S2

I(U ;Y n
s2) ≥ 1

n
inf

s2∈S2
I(U ;Zn

s2) = A0S2
.

We have six possibilities to relate the two previous inequalities:

33



3 Capacity Region Continuity of Compound Broadcast Channels with Confidential
Messages

I) B0S1
≥ A0S1

≥ B0S2
≥ A0S2

and Lemma 10 implies∣∣∣∣A0S1
− A0S2

∣∣∣∣ ≤
∣∣∣∣B0S1

− A0S2

∣∣∣∣ ≤ δ2(ϵ, |Z|)

II) B0S1
≥ B0S2

≥ A0S1
≥ A0S2

implying

|A0S1
− A0S2

| ≤ |B0S1
− A0S2

| ≤ δ2(ϵ, |Z|)

III) B0S1
≥ B0S2

≥ A0S2
≥ A0S1

implying

|A0S1
− A0S2

| ≤ |A0S1
−B0S2

| ≤ δ2(ϵ, |Y|)

IV) B0S2
≥ A0S2

≥ B0S1
≥ A0S1

implying

|A0S1
− A0S2

| ≤ |A0S1
−B0S2

| ≤ δ2(ϵ, |Y|)

V) B0S2
≥ B0S1

≥ A0S2
≥ A0S1

implying

|A0S1
− A0S2

| ≤ |A0S1
−B0S2

| ≤ δ2(ϵ, |Y|)

VI) B0S2
≥ B0S1

≥ A0S1
≥ A0S2

implying

|A0S1
− A0S2

| ≤ |A0S2
−B0S1

| ≤ δ2(ϵ, |Z|)

We use the same line of argument for Case 4) as for Case 3) to bound the distance
between the two maximum achievable common rates. It then holds for all cases that

|A0S1
− A0S2

| ≤ max{δ2(ϵ, |Y|), δ2(ϵ, |Y|)}
= 4H2(ϵ) + 4ϵmax{log |Y|, log |Z|}.

Confidential Message Rate

Using the same line of argument as in Case 1) for the common-message rate, we obtain

|A1S1
− A1S2

|=
∣∣∣∣ 1n inf

s1∈S1
I(V ;Y n

s1|U)− 1
n

sup
s1∈S1

I(V ;Zn
s1|U)

− 1
n

inf
s2∈S2

I(V ;Y n
s2 |U)+ 1

n
sup

s2∈S2

I(V ;Zn
s2 |U)

∣∣∣∣
≤ 1
n

∣∣∣∣ inf
s1∈S1

I(V ;Y n
s1|U) − inf

s2∈S2
I(V ;Y n

s2|U)
∣∣∣∣

+ 1
n

∣∣∣∣ inf
s2∈S2

I(V ;Zn
s2|U) − inf

s1∈S1
I(V ;Zn

s1|U)
∣∣∣∣

≤ δ2(ϵ, |Y|) + δ2(ϵ, |Z|)
≤ 4ϵ log |Y||Z| + 8H2(ϵ).
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Theorem 6. Let ϵ ∈ (0, 1). Let W1 and W2 be two compound BCCs. If

D(W1,W2) ≤ ϵ (3.15)

then it holds that

DR(C(W1), C(W2)) ≤ δ(ϵ, |Y|, |Z|).

Proof. We define the sets D1,B1 ⊂ R2
+ and

D1 =
⋃

n∈N

⋃
U−V −Xn

Rn(W1, U, V,X
n)

B1 = C(W1)\
⋃

n∈N

⋃
U−V −Xn

Rn(W1, U, V,X
n)

with random variables U−V −Xn forming a Markov chain. Let (R0S1
, R1S1

) ∈ D1. Then
there exists an n ∈ N and random variables satisfying the Markov chain relationship
Û − V̂ − X̂n such that (R0S1

, R1S1
) ∈ Rn(W1, Û , V̂ , X̂n). From Lemma 11 and (3.15)

we have that

DR(Rn(W1, Û , V̂ , X̂n),Rn(W2, Û , V̂ , X̂n)) ≤ δ(ϵ, |Y|, |Z|).

This means that there exists a rate pair (R0S2
(R0S1

), R1S2
(R1S1

)) ∈ Rn(W2, Û , V̂ , X̂n)
such that

|R0S1
−R0S2

| + |R1S1
−R1S2

| ≤ δ(ϵ, |Y|, |Z|).

Let (R̂0S1
, R̂1S1

) ∈ B1. Then there exist two rate pairs (Ṙ0S1
, Ṙ1S1

), (R̃0S1
, R̃1S1

) ∈ D1
such that

R̂0S1
= λṘ0S1

+ (1 − λ)R̃0S1

R̂1S1
= λṘ1S1

+ (1 − λ)R̃1S1

for some λ ∈ (0, 1). For each (Ṙ0S1
, Ṙ1S1

) and (R̃0S1
, R̃1S1

) there exist random variables
satisfying the Markov chain relation U̇−V̇ −Ẋn and Ũ−Ṽ −X̃n such that (Ṙ0S1

, Ṙ1S1
) ∈

Rn(W1, U̇ , V̇ , Ẋ
n) and (R̃0S1

, R̃1S1
) ∈ Rn(W1, Ũ , Ṽ , X̃

n). Then from Lemma 11 and
(3.15) we have that there exist rate pairs (Ṙ0S2

(Ṙ0S1
), Ṙ1S2

(Ṙ1S1
)) ∈ Rn(W2, U̇ , V̇ , Ẋ

n)
and (R̃0S2

(R̃0S1
), R̃1S2

(R̃1S1
)) ∈ Rn(W2, Ũ , Ṽ , X̃

n) such that

|Ṙ0S1
− Ṙ0S2

| + |Ṙ1S1
− Ṙ1S2

| ≤ δ(ϵ, |Y|, |Z|)
|R̃0S1

− R̃0S2
| + |R̃1S1

− R̃1S2
| ≤ δ(ϵ, |Y|, |Z|).

Then there is a rate pair (R̂0S2
, R̂1S2

) ∈ C(W2) with

R̂0S2
= λṘ0S2

+ (1 − λ)R̃0S2

R̂1S2
= λṘ1S2

+ (1 − λ)R̃1S2
.
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Further we have

|R̂0S1
− R̂0S2

| = |λṘ0S2
+ (1 − λ)R̃0S2

− λṘ0S1
+ (1 − λ)R̃0S1

|
≤ λ|Ṙ0S1

− Ṙ0S2
| + (1 − λ)|R̃0S1

− R̃0S2
|

≤ δ′(ϵ, |Y|, |Z|)

and using the same line of argument

|R̂1S1
− R̂1S2

| ≤ δ′′(ϵ, |Y|, |Z|).

This leads us to the following result:

|R̂0S1
− R̂0S2

| + |R̂1S1
− R̂1S2

| ≤ δ(ϵ, |Y|, |Z|).

We can conclude that for every rate pair (R0S1
, R1S1

) ∈ C(W1) we can find a rate pair
(R0S2

(R0S1
), R1S2

(R1S1
)) ∈ C(W2) such that

|R0S1
−R0S2

| + |R1S1
−R1S2

| ≤ δ(ϵ, |Y|, |Z|). (3.16)

We use the same line of argument to show that for every rate pair (R0S2
, R1S2

) ∈ C(W2)
there is a rate pair (R0S1

(R0S2
), R1S1

(R1S2
)) ∈ C(W1) such that (3.16) holds. This

completes the proof.

3.3 Conclusions
We have shown that the compound BCC model is robust, i.e., small changes in the
uncertainty set lead to small changes in the capacity region, which is desirable.

Let us see what happens when the user’s CSI is reduced further. For example, the
arbitrarily varying BCC is described by the same uncertainty set as the compound BCC,
but in addition, the actual channel realization varies from channel use to channel use
in an arbitrary fashion. The arbitrarily varying BCC can be used for example to model
the presence of jamming; see [43]. This may lead the channel to ”emulate” a valid input,
impeding the legitimate receiver to decide on the correct codeword. This property is
known as symmetrizability; see [43, Sec. III, Def. 5].

We adapt the AVC example from [43, Sec. V] to the channel of receiver 1 of the
arbitrarily varying BCC, where the input and the output alphabets are of size |X | = 2
and |Y| = 3, respectively, and the uncertainty set consists of only two elements, i.e.,
|S| = 2. The AVC to receiver 1 is given by W(λ) = {W1(λ),W2(λ)} with

W1(λ) =
(

1 0 0
1 λ 1 − λ

)
and W2(λ) =

(
λ 0 1 − λ
0 1 0

)

where λ ∈ [0, 1]. The AVC V to receiver 2 has an output alphabet of size |Z| = 2 and
is defined as V = {V, V } with

V =
(1

2
1
2

1
2

1
2

)
.
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3.3 Conclusions

In [43, Sec. V], it is shown that the arbitrarily varying channel W(λ) is non-
symmetrizable for all λ ∈ (0, 1], and symmetrizable for λ = 0, in which case the capacity
region collapses to the point (0, 0) ∈ R2

+. Following the argumentation in [43, Sec. V],
it can be shown that capacity region is indeed discontinuous at λ = 0.
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4 Computability of the Finite State
Channel Capacity with Feedback

FSCs model channels with memory where the channel output depends not only on the
current channel input but also on the underlying channel state. The channel state allows
the channel output to implicitly depend on previous channel inputs and outputs. FSCs
are of significant interest as they allow one to model certain types of channel variations
appearing in wireless communications including, e.g., flat fading and ISI [7].

Determining the capacity of FSCs is a very difficult task. For instance, the trapdoor
channel is relatively simple to describe: it comprises binary input and output alphabets,
with the channel having two states, 0, 1. When the channel is in state 0, it operates
noiselessly; otherwise, when in state 1, it behaves as a BSC with a crossover probability
of ϵ = 0.5. Despite its straightforward description, only a lower bound [44] and an upper
bound [45] for the capacity are known. For general FSCs, only a general formula based
on the inf-information rate has been established in [46]. Moreover, in [8] it was shown
that the FSC capacity is not a computable function.

In [47], it was shown that feedback does not increase the capacity of a DMC. However,
the zero error capacity for a channel with feedback might be greater in some cases, while
there is still no closed-form formula for the zero error capacity without feedback so far.
The feedback capacity for Markov channels without ISI was studied in[48] and general
FSCs in [49, 50, 51]. Only a multi-letter characterization of the capacity is known in
these cases to date.

In recent years, there has been a growing interest in computing the capacity function
for FSCs with feedback. The feedback capacity of FSCs was first formulated as a dynamic
program for Markov channels without ISI in [48] and [52]. This formulation has also been
used to compute the feedback capacity of the trapdoor channel [53], the binary Ising
channel [54], the input-constrained BSC [55] and the input-constrained binary erasure
channel [56]. In [57], reinforcement learning algorithms have been proposed to estimate
the feedback capacity of a class of unifilar FSCs.

4.1 Finite State Channels with Feedback
In this section we introduce the concept of discrete FSCs and present the capacity results
with feedback known to date.

Let X , Y , and S be finite input, output, and state sets, respectively. FSCs are
described by the following probability law:

P (yn, sn|xn, sn−1) ∈ P(Y × S|X × S), (4.1)
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xn(m, yn−1) P (yn, sn|xn, sn−1) m̂(yN)

Unit Delay

m xn yn m̂

ynyn−1

Figure 4.1: Finite state channel with deterministic feedback yn−1.

where yn ∈ Y and sn ∈ S are the output and state of the channel at time instant n
whose probability distribution depends on the input xn ∈ X at time instant n and on
the previous state sn−1 ∈ S at time instant n − 1. We consider the transmission in the
presence of feedback. The feedback at time instant n ∈ N is the last output symbol of
the channel, i.e., yn−1; see Fig. 4.1.

For a fixed blocklength n, the probability of the output sequence yn and the final state
sn at time instant n given an input sequence xn and an initial state s0 is given by

P n(yn, sn|xn, s0) =
∑

sn−1∈S
P (yn, sn|xn, sn−1P

n−1(yn−1, sn−1|xn−1, s0). (4.2)

In this work we focus on unifilar FSCs.

Definition 40. An FSC is called unifilar if there exists a time-invariant function f : S ×
X × Y → S such that the state evolves according to the equation

sn = f(sn−1, xn, yn).

Remark 15. The probability law of a unifilar FSC is described by

P (yn, sn|xn, sn−1) = W (yn|xn, sn−1)p(sn|yn, xn, sn−1)
= W (yn|xn, sn−1)1(sn = f(sn−1, xn, yn)). (4.3)

From (4.3), we see that we only need the channel W ∈ P(Y|X × S) and the state
transition function f to fully describe a unifilar FSC.

The capacity of general FSCs with deterministic feedback was derived in [50]. Here, we
study the algorithmic behavior of the capacity depending on the parameters {W, f, s0}.
To this aim, we express the FSC feedback capacity of unifilar FSCs as a function of
{W, f, s0}, i.e., CF B({W, f, s0}).

To describe the feedback capacity function, we introduce the upper and lower capacity
as follows:

CF B({W, f}) = lim
N→∞

1
N

max
p(xN ∥yN−1)

min
s0

I(XN → Y N |s0),

CF B({W, f}) = lim
N→∞

1
N

max
p(xN ∥yN−1)

max
s0

I(XN → Y N |s0).
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4.1 Finite State Channels with Feedback

Theorem 7. [50] For any unifilar FSC with deterministic feedback, the capacity is
bounded as

CF B({W, f}) ≤ CF B({W, f, s0}) ≤ CF B({W, f}).

Indecomposable FSCs are channels for which the initial state effect on the capacity
vanishes with time. To define indecomposable FSCs we set

qn(sn|xn, s0) =
∑

yn∈Yn

P n(yn, sn|xn, s0).

Definition 41. An FSC is called indecomposable if for every ϵ > 0 there exists an
n0 ∈ N such that for all n ≥ n0 we have |qn(sn|xn, s0) − qn(sn|xn, s′

0)| ≤ ϵ for all sn ∈ S,
xn ∈ X n, s0 ∈ S, and s′

0 ∈ S.

For a strongly connected unifilar channel, the feedback capacity has a simpler expres-
sion. We next introduce the definition of strongly connected FSCs.

Definition 42. A finite state channel is said to be strongly connected if for any state
s there exists an integer T and an input distribution of the form {p(xn|sn−1)}T

n=1 such
that the probability that the channel reaches state s for any starting state s′ in less than
T time-steps is positive, i.e.

T∑
n=1

Pr(Sn = s|S0 = s′) > 0, ∀s ∈ S,∀s′ ∈ S.

Remark 16. Strongly connected FSCs are also indecomposable FSCs. However, not
every indecomposable FSC is a strongly connected FSC.

If a unifilar FSC is strongly connected, and therefore indecomposable, then the lower
and upper capacity coincide, and are equal to the capacity, i.e., CF B({W, f, s0}) =
CF B({W, f, s0}) = CF B({W, f, s0}). The capacity of indecomposable unifilar FSCs with
feedback is presented in the following theorem.

Theorem 8 ([50]). The capacity of an indecomposable unifilar FSC with deterministic
feedback is

CF B({W, f, s0}) = lim
N→∞

max
p(xN ∥yN−1)

1
N
I(XN → Y N). (4.4)

for all s0 ∈ S.

Remark 17. The relationship in (4.4) represents the capacity of an indecom-
posable unifilar FSC with deterministic feedback as the limit of the sequence
{maxp(xN ∥yN−1)

1
N
I(XN → Y N)}N∈N. This representation cannot be used to com-

pute the number CF B({W, f, s0}), since the speed of convergence cannot be charac-
terized algorithmically, i.e., there is no known computable stopping criterion for the
sequence {maxp(xN ∥yN−1)

1
N
I(XN → Y N)}N∈N. If we had a computable function ϕ :

N → N, so that for every M ∈ N it computes the index N̂ = ϕ(M), such that
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|CF B({W, f, s0})−maxp(xN̂ ∥yN̂−1)
1
N̂
I(XN̂ → Y N̂)| < 1

2M , then a stopping criterion would
exist and we could actually use maxp(xN̂ ∥yN̂−1)

1
N̂
I(XN̂ → Y N̂) as an approximation for

CF B({W, f, s0}). Note that no generality is lost by measuring the approximation error
in the following form: 1

2M . One could also use many other monotonically decreasing
sequences of rational numbers.

Remark 18. It is interesting to note that in general the capacity function is expected to
have computable behavior as a function of the approximation error. However, in [10],
a computable compound channel {Wn}n∈N , i.e. {Wn}n∈N, a computable sequence of
computable channels, with binary input and output alphabets, was found whose capac-
ity C({Wn}n∈N) was shown to be an uncomputable number. In [10], it was shown that
for the compound capacity C({Wn}n∈N), a monotonically decreasing sequence of com-
putable numbers {zn}n∈N can be found that converges to the compound capacity, i.e.,
limn∈N{zn} = C({Wn}n∈N). However, a stopping criterion cannot be found for these
sequences, otherwise C({Wn}n∈N) would be a computable number.

4.2 Problem Formulation
Capacity functions arising in communication scenarios have entropic formulations. For
example, for finite input and output alphabets |X | < ∞ and |Y| < ∞, the capacity
of a DMC W ∈ P(Y|X ) is maxp∈P(X ) I(p,W ), i.e., the maximization of an entropic
function over the input probabilities [58]. Let us consider a BSC with a rational crossover
probability ϵ ∈ [0, 1) ∩ Q. Such a channel is clearly computable, since every rational
number can be exactly expressed by a digital computer. Interestingly, the capacity of
a BSC with a rational crossover probability, except for ϵ = {0, 1

2}, is a transcendental
number.

Subsets of the transcendental numbers are non-computable. Intuitively, a number x ∈
R is computable if there exists an algorithm for x, that given a desired precision, returns
an approximation of the number to that precision in finitely many steps. A function
g : R → R is Turing computable if there exists an algorithm that returns a computable
number for every possible computable input parameter. The Blahut-Arimoto algorithm
is an algorithm that takes any computable DMC as input and computes the capacity,
see [4, 5]. Hence, the capacity of DMCs is a computable function.

Coming back to the FSC with feedback, as stated in Theorem 7, the capacity of general
FSCs with feedback can be bounded from above and from below. Both bounds are given
by multi-letter expressions. If we restrict the class of FSCs to be indecomposable and
unifilar, then a mathematical expression of the capacity is known.

In Theorem 8, the capacity of indecomposable unifilar FSCs with feedback is given
by a multi-letter expression. This expression is the limit of a sequence of optimization
problems. At first glance, this expression looks complicated to compute. It would be
desirable to have a universal algorithm for indecomposable and unifilar FSCs that takes
the channel W ∈ P(Y|X × S), the state transition function f ∈ SS×X ×Y , and the initial
state s0 ∈ S and computes the capacity in the presence of feedback. This is visualized
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W
f
s0

TCF B CF B({W, f, s0})

Figure 4.2: Turing machine TCF B
for capacity computation for fixed and finite alphabets

X , Y , and S. It takes the channel W ∈ P(Y|X × S), the state transition
function f ∈ SS×X ×Y , and the initial state s0 ∈ S and computes the capacity
in the presence of feedback CF B({W, f, s0}.

in Fig. 4.2.
In [59], it was shown that there are computable functions whose optimal values are

uncomputable numbers. In [10], as discussed previously in Remark 18, it was shown
that although the compound capacity C({Wn}n∈N) has a single-letter expression, i.e.
C({Wn}n∈N) = supp∈P(X ) infn∈N I(p,Wn)1, there are computable compound channels
whose capacities are uncomputable numbers. In other words, the capacities of compound
channels are not computable. It is of interest to know whether such a behavior can occur
for the function CF B. This evokes the following question:

Question 1: For fixed and finite alphabets X , Y, and S, is there an algorithm that
takes a channel W , a state transition function f and an initial state s0 as inputs and
computes the feedback capacity function CF B({W, f, s0})?

In case the FSC feedback capacity is not a computable function, one could aim to
approximate the capacity function by a computable function. We are also interested
in studying whether or not it is possible to algorithmically approximate the capacity of
FSCs in the presence of feedback. This leads us to the next question:

Question 2: For fixed and finite alphabets X , Y, and S, is it possible to approximate
the capacity function of unifilar FSCs with feedback CF B({W, f, s0}) by a computable
function within a desired margin of error?

Coding schemes and general achievability results provide us with lower bounds. Upper
bounds are established via converse arguments. In [3], techniques to derive lower and
upper bounds on the reliability function of DMCs were presented. These techniques
provide an approach for finding tight upper and lower bounds that are computable on
digital computers.

In practical communication scenarios (such as described in [60]) and in standard ap-
proaches, the design, optimization and standardization of communication networks sim-
ulate the behavior of coding procedures and complex protocols and thus provide achiev-
able performance lower bounds for optimal performance. In practice, the behavior of
coding procedures is always compared with upper bounds or, if possible, optimal per-
formance. Such upper and lower bounds should be computable to enable a numerical
evaluation on digital computers. This brings us to our next question:

Question 3: For fixed and finite alphabets X , Y, and S, is it possible to find arbitrarily
tight computable lower and upper bounds that depend on the parameters {W, f, s0} for

1Here the mutual information is presented as a function of the input distribution p ∈ P(X ) and the
channel W ∈ P(Y|X ).
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the feedback capacity of unifilar FSCs?
In [58], the well know capacity characterization of the DMC is formulated as a max-

imization problem over the input distribution set P(X ). The determination of the
capacities of communication channels as optimization problems is frequently used, e.g.,
the wiretap channel [61]. There is significant interest in formulating the FSC feedback
capacity, among other communication scenarios, as such an optimization problem. This
leads us to the following question:

Question 4: For fixed and finite alphabets X , Y, and S, is it possible to characterize
the capacity function of unifilar FSCs with feedback CF B({W, f, s0}) as an optimization
of a finite letter function?

4.3 Computability Analysis
In this section, we explore the ability of a Turing machine to compute the feedback
capacity CF B({W, f, s0}) for any given computable tuple {W, f, s0}, where W represents
the channel, f the feedback function, and s0 the initial state. Our focus is particularly
on FSCs that are computable and serve as input parameters.

To support this investigation, we first define the set of computable probability distri-
butions Pc(X ) as all distributions p within P(X ) such that p(x) is a computable real
number Rc for every x in X . Similarly, the set of computable conditional probability dis-
tributions Pc(Y|X ) includes those stochastic matrices W : X → P(Y) for which W (·|x)
is computable for each x in X . This is essential since a Turing machine can only process
computable real numbers.

Next, we introduce the concept of computable channels.

Definition 43. A computable channel is a stochastic matrix W : X → P(Y) whose
elements are all computable numbers, i.e., W (y|x) ∈ Rc for every y ∈ Y and x ∈ X .

In [8], it was shown that the capacity of a general class FSC is not Banach-Mazur
computable. The authors used a class of channels for which the current output and
current state are statistically independent, given the current input and previous state.
For this particular channel class, the capacity is not affected by the presence of feedback.
Here we consider the feedback capacity function and restrict the class of channels to the
unifilar channels. For this particular class of channel, feedback increases the capacity.

We consider sequences of rational unifilar channels. We show that even restricting the
channel set to the set of unifilar channels, the FSC feedback capacity CF B({W, f, s0}) is
not even computable according to the weakest form of computability, i.e., Banach-Mazur
computability. Unfortunately, this result provides Question 1 with a negative answer.

Theorem 9. For all |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2, the feedback capacity function
CF B({W, f, s0}) : Wc × SS×X ×Y × S → R of unifilar FSCs feedback with parameters
{W, f, s0} is not Banach-Mazur computable.

Proof. We consider the set of computable FSCs. The capacity is a function CF B : Wc ×
SS×X ×Y × S → R≥0. To prove the computability we use an indirect proof. We assume
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that the feedback capacity CF B is Borel-Turing computable and we prove the opposite
by contradiction. The proof is organized as follows:

• We design a suitable class of rational unifilar FSCs {Wλ, f}λ∈[0, 1
2 ]∩Q characterized

by a parameter λ.

• We consider a recursively enumerable non-recursive set A. The elements of the
recursive enumerable set are listed by a unique recursive function φA : N → N.
There is a Turing machine TA that stops for input n if and only if n ∈ A. Otherwise
TA runs forever.

• We generate a computable double sequence of rational numbers {λn,m}n,m∈N using
the Turing machine TA. We use {λn,m}n,m∈N to construct a computable double
sequence of rational unifilar FSCs {Wλn,m , f}n,m∈N from the class of unifilar FSCs
{Wλ, f}λ∈[0, 1

2 ]∩Q. This sequence of rational unifilar FSCs converges effectively to
the computable sequence of computable FSCs {Wλ∗

n
, f}n∈N. Hence, the set A is

encoded in the sequence {Wλ∗
n
, f}n∈N.

• We define the function ϕ({W, f}) = CF B({W, f, 0}) − CF B({W, f, 1}). Since CF B

is assumed to be a computable function, ϕ is also Borel-Turing computable. This
would mean that the sequence {ϕ({Wλ∗

n
, f})}n∈N is a computable sequence of com-

putable reals. With this computable sequence of computable reals we can build a
Turing machine T∗ that stops for input n if and only if ϕ({Wλ∗

n
, f}) > 0. Thus, T∗

stops if n ∈ Ac, which is a contradiction, since it would mean that A is a recursive
set. Hence, the assumption that CF B({W, f, s0}) is computable is wrong. Even if
CF B would be Banach-Mazur computable, then it would solve the halting problem,
which is known to be unsolvable.

To begin the proof, we first introduce a notion of distance between FSCs. In particular,
for two FSCs P1, P2 ∈ P(Y × S|X × S) we define the distance between P1 and P2 based
on the total variation distance as

D(P1, P2) = max
s′∈S

max
x∈X

∑
y∈Y

∑
s∈S

|P1(y, s|x, s′) − P2(y, s|x, s′)|.

We begin by proving the result for |X | = |Y| = |S| = 2. Then we extend it to |X | ≥ 2,
|Y| ≥ 2, and |S| ≥ 2.

We consider the channel

W (yn|xn, 0) =
(

1 0
0 1

)
,W (yn|xn, 1) =

(
1−ϵ ϵ

0 1

)
(4.5)

for some ϵ ∈ (0, 1
2) ∩Q, i.e., for state sn−1 = 0 the channel is noiseless; for sn−1 = 1 it is

noisy. Further, we consider the state transition function f : S × X × Y → S described
by the state diagram in Fig. 4.3. The nodes represent the states and the tuple of the
edges represent the input and output symbols (xn, yn) of the channel.
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0 1(0, 0) ∧ (1, 1)

(0, 1) ∧ (1, 0)

(0, 0) ∧ (1, 1) ∧ (0, 1)

(1, 0)

Figure 4.3: Diagram of the state transition function f .

Table 4.1: The state sn given xn, yn and sn−1.
xn 0 0 0 0 1 1 1 1
yn 0 0 1 1 0 0 1 1
sn−1 0 1 0 1 0 1 0 1
sn 0 1 1 1 1 0 0 1

The state of the channel sn given the input xn, output yn and previous state sn−1 is
also shown in Table 4.1.

The channel {W, f, 0} corresponds to a discrete memoryless channel. Since the initial
state is s0 = 0, i.e. the channel W (yn|xn, 0) is noiseless, the only two possible input-
output tuples are (0, 0) and (1, 1). Applying the state transition function f to the tuples
(x1, y1, s0) ∈ {(0, 0, 0), (1, 1, 0)}, we get that for both tuples the next state is s1 = 0.
This implies that if the initial state is 0, then the state stays 0 forever. Applying Lemma
1 to the directed information for this channel, we get

I(XN → Y N |s0 = 0) = I(XN ;Y N |s0 = 0).

This and the fact that W (y|x, 0) is a binary noiseless channel imply that the FSC
feedback capacity and initial state s0 = 0 is

CF B({W, f, 0}) = 1.

The channel {W, f, 1} corresponds to the discrete memoryless channel W (y|x, 1)
with x ∈ X , y ∈ Y . Similar to the line of arguments for {W, f, 0}, if the ini-
tial state is s0 = 1, then the channel has only three possible input output tu-
ples, (0, 0), (0, 1) and (1, 1). Applying the state transition function f to the tuples
(x1, y1, s0) ∈ {(0, 0, 1), (0, 1, 1), (1, 1, 1)}, we get that for all three tuples the next state
is s1 = 1. Meaning that if the initial channel state is 1, then the channels stays in state
1 forever. Applying Lemma 1 we have that

I(XN → Y N |s0 = 1) = I(XN ;Y N |s0 = 1). (4.6)

Note that the channel {W, f, 1} is a Z-channel. Due to (4.6) we see that the FSC
feedback capacity with initial state s0 = 1 is

CF B({W, f, 1}) = max
p∈P(X )

H2(p(1 − ϵ)) − pH2(ϵ)

= log2

(
1 + 2−g(ϵ)

)
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with g(ϵ) = H2(ϵ)
1−ϵ

. The optimal input distribution is p(0) =
[
(1 − ϵ)

(
1 + 2

H2(ϵ)
(1−ϵ)

)]−1
and

p(1) = 1 −
[
(1 − ϵ)

(
1 + 2

H2(ϵ)
(1−ϵ)

)]−1
.

Next we show that CF B({W, f, 0}) and CF B({W, f, 1}) cannot be simultaneously
Banach-Mazur computable. Let A ∈ N be an arbitrary recursively enumerable but
not recursive set. Let TA be a Turing machine that stops for input n if and only if
n ∈ A. Otherwise TA runs forever. Such a Turing machine can easily be found as
argued next: Let φA : N → N be a recursive function that lists all elements of the set A
and for which φA : N → A is a unique function.

Let n ∈ N be arbitrary. The Turing machine TA with input n is defined as follows:
We start with l = 1 and compute φA(1). If n = φA(1), then the Turing machine stops.
In the other case, the Turing machine computes φA(2). Similarly, if n = φA(2), then
the Turing machine stops and otherwise it continues computing the next element. It is
clear that this Turing machine stops if and only if n ∈ A.

Assume CF B({W, f, 0}) and CF B({W, f, 1}) are both Borel-Turing computable. For
λ ∈ (0, 1

2 ] ∩ Rc we consider the channel Wλ ∈ Wc with

Wλ(yn|xn, 0) =
(

1 − λ λ
λ 1 − λ

)
,

Wλ(yn|xn, 1) =
(

1 − ϵ ϵ
λ 1 − λ

)
. (4.7)

For λ ∈ [0, 1
2 ] ∩ Rc, both Wλ(yn|xn, 0) and Wλ(yn|xn, 1) are computable probability

distributions.
For λ = 0, we have

CF B({W0, f, 0})−CF B({W0, f, 1})

= 1 − log2

(
1 + 2−g(ϵ)

)
> 0.

Note that for λ ∈ (0, 1
2 ] ∩ Rc and f as described in Fig. 4.3 and Table 4.1, the FSC

{Wλ, f, s0} is strongly connected. For s0 = 0, the FSC achieves the state s1 = 1 if the
input output tuple (x1, y1) of the channel is either (0, 1) or (1, 0). Since Wλ(1|0, 0) =
Wλ(0|1, 0) = λ > 0, the channel can reach the state s1 = 1 in a one time-step for any
input distribution p(x1|0) > 0. Similarly, for s0 = 1, the FSC achieves the state s1 = 0
if the input output tuple (x1, y1) of the channel is (1, 0). Since Wλ(0|1, 1) = λ > 0, the
channel can reach the state s1 = 0 in a one time-step for any input distribution with
p(0|0) > 0. This implies that the FSC {Wλ, f, s0} with s0 ∈ S is also indecomposable.

Hence, for every λ ∈ (0, 1
2 ], we have

CF B({Wλ, f, 0}) = CF B({Wλ, f, 1}). (4.8)

Next we generate the indirect proof. First, we build a Turing machine that encodes
the recursively enumerable non-recursive set A in a sequence of unifilar FSCs. For the
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construction of the Turing machine, we rely on the construction introduced in [62][ Case
I, page 336]. This plays an important role in emphasizing the properties of the FSC
feedback capacity. Similar constructions have been developed in [63] and [64].

Let n ∈ N be arbitrary. Now, for every n ∈ N and m ∈ N, let

λn,m =


1
2l TA stops for input n after l ≤ m steps
1

2m TA does not stop for input n after m steps.

Then the sequence {λn,m}n,m∈N is a computable double sequence of rationals. For arbi-
trary n ∈ N and for all m ≥ M , m,M ∈ N, we have

|λn,m − λn,M | < 1
2M

. (4.9)

To prove (4.9) we will consider both cases: TA stops for input n and TA does not stop
for input n.

• TA stops for input n after l ≤ M iterations: In this case λn,M = λn,m, so |λn,m −
λn,M | = 0.

• TA has not stopped for input n in M iterations: For every m ≥ M it holds that
λn,M ≥ λn,m, meaning that |λn,m − λn,M | = λn,M − λn,m = 1

2M − λn,m < 1
2M .

The sequence {λn,m}n,m∈N is a computable double sequence of rationals that converges
effectively in m. This implies that for every n ∈ N the sequence {λn,m}m∈N converges
effectively to its limit λ∗

n and the limit is a computable real number λ∗
n ∈ Rc. Since

{λn,m}n,m∈N is a computable double sequence of rationals such that as m → ∞, λn,m →
λ∗

n, {λ∗
n}n∈N is a sequence of computable real numbers. It further holds λ∗

n ≥ 0 with
equality if and only if the Turing machine TA does not stop for input n.

We consider the computable double sequence of rational unifilar FSCs {Pλn,m}n,m∈N2

defined by the computable double sequence of rational channels {Wλn,m}n,m∈N and the
function f defined in Table 4.1.

For arbitrary n ∈ N and for all m ≥ M , m,M ∈ N, we have

D(Pλn,m , Pλn,M
) = max

s′∈S
max
x∈X

∑
y∈Y

∑
s∈S

|Pλn,m(y, s|x, s′) − Pλn,M
(y, s|x, s′)|

= max
s′∈S

max
x∈X

∑
y∈Y

∑
s∈S

|Wλn,m(y|x, s′) −Wλn,M
(y|x, s′)|1(s = f(s′, x, y))

(4.10)
= max

s′∈S
max
x∈X

∑
y∈Y

|Wλn,m(y|x, s′) −Wλn,M
(y|x, s′)|

= 2|λn,m − λn,M | < 1
2M−1 , (4.11)
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where (4.10) holds, since {Pλn,m}n,m∈N are unifilar. (4.11) results from (4.7) in the
following way: ∑

y∈Y
|Wλn,m(y|0, 0) −Wλn,M

(y|0, 0)|

=
∑
y∈Y

|Wλn,m(y|1, 0) −Wλn,M
(y|1, 0)|

=
∑
y∈Y

|Wλn,m(y|1, 1) −Wλn,M
(y|1, 1)|

= |(1 − λn,m) − (1 − λn,M)| + |λn,m − λn,M |
= 2|λn,m − λn,M |

and ∑
y∈Y

|Wλn,m(y|0, 1) −Wλn,M
(y|0, 1)| = 0.

As a result of (4.9) and (4.11), we have that Wλn,m → Wλ∗
n

as m → ∞, for every
n ∈ N. Hence {Wλ∗

n
}n∈N is a sequence of computable channels.

We prove our result by contradiction. So we assume that CF B is Borel-Turing com-
putable, and we construct an example that proves the contrary. Since CF B({W, f, 0})
and CF B({W, f, 1}) are assumed to be Borel-Turing computable functions, the difference
ϕ({W, f}) = CF B({W, f, 1}) −CF B({W, f, 0}) is a Borel-Turing computable function as
well.

Further we use a sequence of computable unifilar FSCs {Pλ∗
n
}n∈N = {Wλ∗

n
, f}n∈N,

where the state transition function is fixed and ϕ defines the sequence {µn}n∈N as follows:

µn = ϕ({Wλ∗
n
, f}), n ∈ N.

µn is a computable sequence of computable real numbers. From Definition 13, we
have that for every computable sequence of computable real numbers there is a com-
putable double sequence {νn,m}n,m∈N of rational numbers converging effectively to the
computable sequence of computable real numbers, i.e.,

∣∣∣µn − νn,m

∣∣∣ < 1
2m
.

For every n, we can consider the following Turing machine T∗: For input n, we set m = 1
and check if

νn,1 >
1
2

is satisfied. If this is true, the Turing machine stops. Otherwise, we set m = 2 and check
if

νn,2 >
1
4

is satisfied. If this is true, the Turing machine stops. Otherwise, it continues as described.
Next, we show that this Turing machine T∗ stops for input n if and only if µn > 0.
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“⇐” If µn > 0, then there exists an M̃ with
1

2M̃
<
µn

2
so that

µn = µn − νn,M̃ + νn,M̃ ≤
∣∣∣µn − νn,M̃

∣∣∣+ νn,M̃

<
1

2M̃
+ νn,M̃ <

µn

2 + νn,M̃ ,

i.e., the Turing machine T∗ stops for input n within M̃ steps.
“⇒” It holds νn,M̂ > 1

2M̂
for a certain M̂ . Then,

1
2M̂

< νn,M̂ = νn,M̂ − µn + µn

≤
∣∣∣νn,M̂ − µn

∣∣∣+ µn <
1

2M̂
+ µn

so that µn > 0 is true.
This means that there exists a Turing machine TS with

TS(n) =
n ∈ A if TA stops for input n
n ∈ Ac if T∗ stops for input n.

(4.12)

This implies that A is a recursive set, which is a contradiction. This contradiction
shows that CF B({W, f, 0}) and CF B({W, f, 1}) cannot be Banach-Mazur computable.
This immediately implies that they cannot be Borel-Turing computable as well.

To extend the proof to |X | ≥ 2, |Y| ≥ 2, and S ≥ 2, we will divide the extension in
two steps:

• The state set remains binary and the input and output alphabets may grow, i.e.,
|S| = 2 and |X | ≥ 2, |Y| ≥ 2.

• We allow the state set to grow, i.e., |S| ≥ 2.

Step I: For |X | ≥ 2, |Y| ≥ 2, and |S| = 2, we take the sequence of parameters {Wλ, f}
as above and extend them as follows: We set Wλ(yn|xn, sn−1) = 0 for yn ∈ Y \ {0, 1},
xn ∈ X and sn−1 ∈ S and also for yn ∈ Y , xn ∈ X \ {0, 1} and sn−1 ∈ S. For every pair
(xn, yn) ∈ (X \ {0, 1} × Y) ∪ (X × Y \ {0, 1}), we define the state transition function to
be f(xn, yn, sn−1) = sn−1.

Step II: Let |S| ≥ 2. For every s ∈ S \ {0, 1} set

Wλ(0, |0, s) = 1 −
(
ϵ+

(1
2 − ϵ

)s−1)
,

Wλ(1, |0, s) = ϵ+
(1

2 − ϵ
)s−1

,

Wλ(0, |1, s) = 0, Wλ(1, |1, s) = 1.
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Note that for (x, y) ∈ {0, 1}2, for every s we have the Z-channel with the probability
of transmitting bit 0 incorrectly of δs = ϵ +

(
1
2 − ϵ

)s−1
. It also holds that for every

s ∈ S \ {0, 1}, ϵ < δs ≤ 1
2 , and hence the channel at state s = 1 is less noisy than the

channels at states s ≥ 2.
We set Wλ(yn|xn, s) = 0 for yn ∈ Y \{0, 1}, xn ∈ X and sn−1 ∈ S and also for yn ∈ Y ,

xn ∈ X \ {0, 1} and sn−1 ∈ S.
Next we modify the state transition function f as follows: For |S| = 3 we have a

new state s = 2. For (xn, yn, sn−1) = (0, 1, 0), we modify the function f by setting the
next state sn to be sn = f(0, 1, 0) = 2. For the state sn−1 = 2 we complete the state
transition function as follows:

f(xn, yn, 2) =
0 for every (xn, yn) s.t. W (xn, yn, 2) > 0,

2 for every (xn, yn) s.t. W (xn, yn, 2) = 0.

The diagram of the state transition function f for |X | = |Y| = 2 and |S| = 3 is illustrated
in Fig. 4.4.

0 12

(0, 0) ∧ (1, 1)
(1, 0)(0, 1)

(0, 0) ∧ (1, 1)
∧(0, 1)

(1, 0)(0, 0) ∧ (0, 1) ∧ (1, 1)

(1, 0)

Figure 4.4: Diagram of the state transition function f for |X | = |Y| = 2 and |S| = 3.

If |S| ≥ 4, we extend the state transition function iteratively as described above:

• Let 2 ≤ s < |S| − 1. For sn−1 = s we set sn = f(xn, yn, sn−1) to be

f(xn, yn, s)=


0 (xn, yn) ∈ (X × Y) \ {(0, 1)} s.t. W (xn, yn, s) > 0,
s (xn, yn) ∈ X × Y s.t. W (xn, yn, s) = 0,
s+ 1 (xn, yn) = (0, 1) s.t. W (xn, yn, s) = 0.

• For s = |S| − 1 and s ≥ 2 we have

f(xn, yn, s) =
0 (xn, yn) ∈ X × Y s.t. W (xn, yn, s) > 0,
s (xn, yn) ∈ X × Y s.t. W (xn, yn, s) = 0.

This way the FSCs with |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2 preserve the properties of the
FSCs constructed above, i.e., they are unifilar and strongly connected.

The fact that the FSC feedback capacity is not Banach-Mazur computable automat-
ically implies that the feedback capacity of FSCs is not Borel-Turing computable. This
leads us to the following corollary:
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Corollary 1. For all |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2, the feedback capacity function
CF B({W, f, s0}) : Wc × SS×X ×Y × S → R of unifilar FSCs feedback with parameters
{W, f, s0} is not Borel-Turing computable.

Corollary 1 states that the FSC feedback capacity is not Borel-Turing computable.
This implies that there is no Turing machine, which for a fixed alphabet |X | ≥ 2, |Y| ≥ 2,
and |S| ≥ 2, takes {W, f, s0} as input and computes the capacity CF B({W, f, s0}). This
gives us a negative answer to Question 1.

We further obtain the statement for the impossibility of obtaining the integrity con-
dition for Turing machines, aimed to calculate the FSC feedback capacity CF B.

Corollary 2. The integrity requirement cannot be fulfilled for the computation of CF B

on the basis of Turing machines.

Proof. If we find a Turing Machine TM∗ that computes CF B and satisfies the integrity
requirement, then for every representation of {W, f, s0}, TM∗ must necessarily compute
a representation of a certain number z∗ ∈ Rc. But since CF B is not Borel-Turing
computable, there must exist a triplet {W ∗, f, s0} with a computable channel W ∗ such
that TM∗ generates two different numbers z∗

1 and z∗
2 for two different representations

of {W ∗, f, s0}. So, we cannot have CF B({W ∗, f, s0}) = z∗
1 and CF B({W ∗, f, s0}) = z∗

2 .
Thus TM∗ does not fulfill the integration requirement when computing CF B.

Remark 19. We have shown that the FSC feedback capacity is not Banach-Mazur com-
putable for a special class of FSCs, the unifilar FSCs. This result holds for more general
classes of FSCs as well.

4.4 Non Approximability of the Capacity and
Consequences for Achievability and Converse

In the previous section, we showed that the FSC feedback capacity is not a computable
function. Here we are interested in finding a computable function that approximates
the FSC feedback capacity. Moreover, we are interested in finding computable tight
upper and lower bounds on the feedback capacity function and therewith a computable
representation of tight achievability and converse.

Let us now revisit the concept of compound capacity for computable compound chan-
nels that was previously mentioned in Remark 18. Specifically, we will explore the
information-theoretic implications arising from the non-computability of the number
C({Wn}n∈N). Let M ∈ N be arbitrary but fixed for a compound set {Wn}n=1,...,M ;
we have C({Wn}n=1,...,M) = maxp∈P(X ) min1≤n≤M I(p;Wn). Hence, C({Wn}n=1,...,M)
is a computable number. With zM = C({Wn}n=1,...,M) we have the following rela-
tion: zM ≥ zM+1, and it follows limM→∞ zM = C({Wn}n∈N). With this, we can
find a computable sequence of ever-improving upper bounds for the compound capacity
C({Wn}n∈N) that converges to the compound capacity. In other words, we can always
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find better converses for the coding theorem of compound channels {Wn}n∈N. However,
there are no computable sequences {um}m∈N of computable numbers, such that it holds
that um ≤ um+1 and limm→∞ um = C({Wn}), since otherwise C({Wn}n∈N) would be a
computable number. In the sense of coding theory, therefore, the achievability cannot de-
termine a sequence of ever-improving lower bounds for compound capacity. Specifically,
there cannot exist a computable sequence {Rn}n∈N of achievable computable rates Rn,
with n ∈ N, such that {Rn}n∈N converges to the number C({Wn}n∈N), i.e., there is no
computable capacity achieving sequence {Rn}n∈N of achievable rates for the computable
compound channel {Wn}n∈N. In other words, it is impossible to find a computable
sequence of achievable rates that approaches C({Wn}n∈N) effectively.

In [65], a new technique for deriving an upper bound for the feedback capacity for
unifilar FSC was developed. This bound was shown to be tight for some channels. In
this section, we study the question of whether there is a computable function that takes
any FSC and approximates its feedback capacity within a certain margin of error. We
show that it is impossible to find a computable function that approximates the FSC
feedback capacity within a small margin of error, providing us with a negative answer
to Question 2.

Theorem 10. For |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2 arbitrary but fixed. Let
CF B({W, f, s0}) : Wc × SS×X ×Y × S → R be the FSC feedback capacity. Let G : Wc ×
SS×X ×Y × S → R be a function such that for a fixed f ∈ SS×X ×Y and for every s0 ∈ S,
we have

sup
W ∈Wc

|G({W, f, s0}) − CF B({W, f, s0})| ≤ δ,

with δ = 1 − log2

(
1 + 2g(ϵ)

)
with ϵ ∈ (0, 1

2) and g(ϵ) = H2(ϵ)
1−ϵ

. Then G cannot be a
computable function.

Proof. We prove the result by contradiction. We consider the FSC {Wλ, f, s0}n∈N for
λ ∈ [0, 1

2 ] ∩ Rc as in (4.7). For λ = 0, we have

CF B({W0, f, 0})−CF B({W0, f, 1}) = 1 − log2

(
1 + 2−g(ϵ)

)
> 0, (4.13)

with ϵ ∈ (0, 1
2) and g(ϵ) = H2(ϵ)

1−ϵ
. Let δ = 1−log2

(
1+2g(ϵ)

)
. Assume that for CF B there is

a computable function G : Wc ×SS×X ×Y ×S → R such that for every f : S ×X ×Y → S
and for every s0 ∈ S we have that

sup
W ∈Wc

|G({W, f, s0}) − CF B({W, f, s0})| ≤ δ. (4.14)

We define the sequence of unifilar FSCs {Wλn∗, f, s0}n∈N as in the proof of Theorem
9. For every n ∈ N and for s0, s̃0 ∈ S with CF B({W, f, s0}) = C̄F B({Wλn∗, f}) and
CF B({W, f, s̃0}) = CF B({Wλn∗, f}), we have that

|G({Wλn∗, f, s0}) −G({Wλn∗, f, s̃0})| ≥ 0.
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For every n ∈ A the FSC {Wλn∗, f, s0} is indecomposable. Hence, we have

|G({Wλn∗, f, s0}) −G({Wλn∗, f, s̃0})| = |G({Wλn∗, f, s0}) − C̄F B({Wλn∗, f})
+ C̄F B({Wλn∗, f}) − CF B({Wλn∗, f}) + CF B({Wλn∗, f}) −G({Wλn∗, f, s̃0})|
≤ |G({Wλn∗, f, s0}) − CF B({Wλn∗, f, s0})|
+ |CF B({Wλn∗, f, s̃0}) −G({Wλn∗, f, s̃0})|
≤ 2δ.

On the other hand, for every n ∈ N and n /∈ A we have

|G({Wλn∗,f, s0}) −G({Wλn∗, f, s̃0})| = |G({Wλn∗, f, s0}) − C̄F B({Wλn∗, f})
+ C̄F B({Wλn∗, f}) − CF B({Wλn∗, f})
+ CF B({Wλn∗, f}) −G({Wλn∗, f, s̃0})|
≤ |G({Wλn∗, f, s0}) − C̄F B({Wλn∗, f})|
+ |C̄F B({Wλn∗, f}) − CF B({Wλn∗, f})
+ |CF B({Wλn∗, f}) −G({Wλn∗, f, s̃0})|
≤ 2δ + |C̄F B({Wλn∗, f}) − CF B({Wλn∗, f})|
= 2δ + ϕ({Wλn∗, f})
= 2δ + µn.

We can use the same Turing machine T∗ as for the proof of Theorem 9 to compute µn.
Hence, we can construct a Turing machine as in (4.12) that decides for every n ∈ N
if n ∈ A or n /∈ A. This is a contradiction, since A is a recursively enumerable but
non-recursive set. So the assumption that G is computable is wrong.

Theorem 10 states that there is no computable function that approximates the FSC
feedback capacity within a tolerance of at most δ = 1 − log2

(
1 + 2−g(ϵ)

)
, ϵ ∈ (0, 1

2) and

g(ϵ) = H2(ϵ)
1−ϵ

. From this result, we can conclude that there are no computable sequences
of computable functions that converge pointwise to the FSC feedback capacity.

There are two approaches to prove coding theorems. Lower bounds on the capacity
are derived via achievability results. We are interested in studying whether such lower
bounds can be computed on digital computers. On the other hand, upper bounds are
derived via converses. We study whether it is possible to find algorithms that compute
such upper bounds on digital computers.

Upper and lower bounds enclose the FSC feedback capacity. If there are, in fact,
computable upper and lower bounds, it would be desirable for them to be very close
to the FSC feedback capacity. We are interested in determining the smallest distance
between the computable upper and lower bounds.

The following theorem states that there exist no computable upper and lower bounds
that are both tight to the capacity of FSCs. Moreover, Theorem 11 derives the minimum
distance between the computable upper and lower bounds and the FSC feedback capacity
that can be achieved. This provides us with a negative answer to Question 3.
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Theorem 11. Let |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2 be arbitrary but fixed. For all mono-
tonically increasing computable sequences {FN}N∈N of computable continuous functions
satisfying

FN({W, f, s0}) ≤ FN+1({W, f, s0})
and

FN({W, f, s0}) ≤ CF B({W, f, s0})
for every N ∈ N, every W ∈ Wc, f ∈ SS×X ×Y and s0 ∈ S, and for all monotonically
decreasing computable sequences {GN}N∈N of computable continuous functions satisfying

GN+1({W, f, s0}) ≤ GN({W, f, s0})

and
CF B({W, f, s0}) ≤ GN({W, f, s0})

for every N ∈ N, every W ∈ Wc, f ∈ SS×X ×Y and s0 ∈ S, we have that the following
holds: For a fixed f ∈ SS×X ×Y there is an ŝ0 ∈ S and a Ŵ ∈ Wc such that

lim inf
N→∞

max{CF B({Ŵ , f, ŝ0}) − FN({Ŵ , f, ŝ0}),

GN({Ŵ , f, ŝ0}) − CF B({Ŵ , f, ŝ0})} > δ

with δ = 1 − log2

(
1 + 2−g(ϵ)

)
, ϵ ∈ (0, 1

2) and g(ϵ) = H2(ϵ)
1−ϵ

.

Proof. We prove this theorem by contradiction.
Assume that {FN}N∈N is a monotonically increasing computable sequence of com-

putable functions such that

lim
N→∞

FN({W, f, s0}) = CF B({W, f, s0})

for every W ∈ Wc, s0 ∈ S and every f ∈ SS×X ×Y .
Assume {GN}N∈N is a monotonically decreasing computable sequence of computable

functions such that
lim

N→∞
GN({W, f, s0}) = CF B({W, f, s0})

for every W ∈ Wc, s0 ∈ S and every f ∈ SS×X ×Y . Then for every {W, f, s0} ∈
Wc × SS×X ×Y × S, we define the sequence of functions {ϵN}N∈N as follows:

ϵN({W, f, s0}) = GN({W, f, s0}) − FN({W, f, s0}) ≥ 0.

Since {GN}N∈N is a sequence of monotonically decreasing functions and {FN}N∈N is a
sequence of monotonically increasing functions, we have that

ϵN({W, f, s0}) = GN({W, f, s0}) − FN({W, f, s0})
≥ GN+1({W, f, s0}) − FN({W, f, s0})
≥ GN+1({W, f, s0}) − FN+1({W, f, s0})
= ϵN+1({W, f, s0}),

55
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i.e., ϵN is a monotonically decreasing sequence of functions with

lim
N→∞

ϵN({W, f, s0}) = 0

for every {W, f, s0} ∈ Wc × SS×X ×Y × S. Since both {GN}N∈N and {FN}N∈N are
computable sequences of computable functions this implies that {ϵN}N∈N is also a com-
putable sequence of computable functions. From [8, Theorem 10], we have that {ϵN}N∈N
converges effectively to 0.

On the other hand, for every {W, f, s0} ∈ Wc × SS×X ×Y × S and for every N ∈ N we
have

0 ≤ GN({W, f, s0}) − CF B({W, f, s0})
+ CF B({W, f, s0}) − FN({W, f, s0})

= GN({W, f, s0}) − FN({W, f, s0})
= ϵN({W, f, s0}).

Thus, we have

sup
W ∈Wc

|GN({W, f, s0}) − CF B({W, f, s0})| ≤ ϵN({W, f, s0})

and
sup

W ∈Wc

|CF B({W, f, s0}) − FN({W, f, s0})| ≤ ϵN({W, f, s0}).

If there exist computable sequences of functions {FN}N∈N and {GN}N∈N that converge
effectively to CF B for every {W, f, s0} ∈ Wc × SS×X ×Y × S, then for every δ > 0
there must be a computable function Gδ := Wc × SS×X ×YS → R such that for every
f ∈ SS×X ×Y and every s0 ∈ S we have

sup
W ∈Wc

|Gδ({W, f, s0}) − CF B({W, f, s0})| ≤ δ.

However, this is a contradiction, since from Theorem 10 we have that for δ∗ = 1 −
log2

(
1 + 2g(ϵ)

)
with ϵ ∈ (0, 1

2) and g(ϵ) = H2(ϵ)
1−ϵ

there is no computable function Gδ∗ such
that for every f ∈ SS×X ×Y and every s0 ∈ S

sup
W ∈Wc

|Gδ∗({W, f, s0}) − CF B({W, f, s0})| ≤ δ∗

holds. Hence there must be a Ŵ such that either

lim inf
N→∞

|GN({Ŵ , f, s0}) − CF B({Ŵ , f, s0})| ≥ δ∗

or
lim inf
N→∞

|CF B({Ŵ , f, s0}) − FN({Ŵ , f, s0})| ≥ δ∗.
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In Theorem 11, we consider two sequences of computable functions. The first one
is a monotonically increasing sequence of computable functions and the second one is
a monotonically decreasing sequence of computable functions. If the sequences con-
verged uniformly, then it would imply that the sequences of upper and lower bounds
also converge pointwise to the FSC feedback capacity. However, Theorem 11 defines the
channel Ŵ at which the convergence fails. The difference from Theorem 10 is that with
the latter, we do not require finding sequences of bounds that converge monotonically.
However, we do demand the existence of a single function that can approximate the
FSC feedback capacity. In Theorem 10, although both the initial state s0 and the state
transition function f are fixed, it is shown that the maximum distance between the FSC
feedback capacity and a computable approximation function over the channels cannot
be smaller than δ∗ = 1 − log2

(
1 + 2g(ϵ)

)
with ϵ ∈ (0, 1

2) and g(ϵ) = H2(ϵ)
1−ϵ

.
The monotonically increasing sequence of functions {FN}N∈N is a sequence of lower

bounds on the capacity and can be interpreted as achievability bounds. On the other
hand, the monotonically decreasing sequence of functions {GN}N∈N is a sequence of up-
per bounds on the capacity and can be interpreted as converse bounds. As a consequence
of Theorem 11, it is impossible to find tight computable achiveability and computable
converse bounds simultaneously. Hence, at least one of them is not computable.

Thus, one cannot find techniques, such as the ones for DMCs, that can be implemented
on a digital computer and give us, up to any desired precision, the range in which the
optimal performance lies. Consequently, if one is interested in studying the behavior of
a coding procedure for FSCs with feedback, it is impossible to numerically evaluate it
by comparing it to tight bounds of its optimal performance.

4.5 Feedback Capacity as a Finite Multi-Letter
Optimization Problem

In this section, we study whether or not it is possible to formulate the FSC feedback
capacity as a finite multi-letter optimization problem. To this aim, we first have to
study the continuity behavior of the capacity function. We show that the capacity
function is discontinuous for certain s0 ∈ S, f ∈ SS×X ×Y and computable W ∈ Wc.
The discontinuity result makes it impossible to describe the FSC feedback capacity as a
finite multi-letter optimization problem providing us with a negative answer to Question
4.

Theorem 12. For all |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2, the capacity function CF B :
P(Y|X × S) × SS×X ×Y → R is discontinuous.

Proof. We consider the channels W (yn|xn, 0) and W (yn|xn, 1) as in (4.5) and the state
transition function f as described in Table 4.1.
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Next, we consider {Wk, f, s0} for k ≥ 1 with

Wk(yn|xn, 0) =
(

1 − 1
k

1
k

1
k

1 − 1
k

)
(4.15)

Wk(yn|xn, 1) =
(

1 − ϵ ϵ
1
k

1 − 1
k

)
. (4.16)

We observe that the FSC {Wk, f, s0}, s0 ∈ S, k ≥ 1, as defined above is unifilar and
strongly connected, and therefore indecomposable. Note that for every xn ∈ X , yn ∈ Y
and s0 ∈ S we have Wk(yn|xn, s0) ∈ Wc, which implies that the channels are computable.

For FSCs as defined in (4.5)-(4.15), we have for any s0 ∈ S,
D({W, f, s0}, {Wk, f, s0}) = 2

k
. Next, let us assume that CF B({W, f, s0}),

s0 ∈ {0, 1} is a continuous function on P(Y|X × S) × SS×X ×Y . Then we must
have limk→∞ CF B({Wk, f, 0}) = CF B({W, f, 0}) and limk→∞ CF B({Wk, f, 1}) =
CF B({W, f, 1}). Since for all k ∈ N the FSC {Wk, f, s0}, s0 ∈ S is indecomposable, we
then have CF B({Wk, f, 0}) = CF B({Wk, f, 1}) and consequently obtain

1 = CF B({W, f, 0}) = lim
k→∞

C({Wk, f, 0})

= lim
k→∞

C({Wk, f, 1}) = CF B({W, f, 1})

= log2

(
1 + 2−g(ϵ)

)
< 1

with g(ϵ) = H2(ϵ)
1−ϵ

and ϵ ∈ (0, 1
2) ∩ Q. This is a contradiction. Hence, at least one of

the functions C({W, f, 0}) or C({W, f, 1}) must be discontinuous, proving the desired
result.

Theorem 13. Let |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2 be arbitrary. Then there is no natural
number n0 ∈ N such that the capacity CF B({W, f, s0}) can be expressed as

CF B({W, f, s0}) = max
u∈U

F (u,W, f, s0), (4.17)

with U ⊂ Rn0 being a compact set and F : U × P(Y|X × S) × SS×X ×Y × S → R a
continuous function.

Proof. We use the same line of argument as for [9, Theorem 1]. The crucial observation
is the following: To be able to express the capacity CF B({W, f, s0}) as in (4.17), the
capacity necessarily needs to be a continuous function. This cannot be the case as shown
by Theorem 12.

Theorem 13 implies that the feedback capacity cannot be expressed by a finite multi-
letter formula. This further implies that there is no closed-form solution possible for the
FSC feedback capacity in general.
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4.6 Conclusions
In this chapter, we have studied the FSC feedback capacity from an algorithmic point
of view. We have shown that the feedback capacity function is not Banach-Mazur
computable, which is the weakest form of computability. Hence, the FSC feedback
capacity is also not Borel-Turing computable. This means that there is no algorithm
on digital computers that takes an arbitrary FSC {W, f, s0} as input and computes its
feedback capacity effectively, i.e., that stops when a certain desired precision has been
achieved. To prove this result, we used a restricted class of FSCs: unifilar FSCs. This
automatically implies that the feedback capacity of more general channel classes is also
not computable. We have further shown that if the feedback capacity of FSCs had been
computable, then this could yield a solution for the halting problem, which has been
proven to be an unsolvable problem. Unfortunatly, this implies that it is not possible
to fulfill the integrity requirement of the upcoming generation of mobile communication
using digital computers. Therefore, the trustworthiness requirement cannot be met for
the computation of the feedback capacity.

There have been techniques developed for computing the capacity of some FSCs with
feedback. Our results show that although these techniques are computable for the spe-
cific channels, they cannot be effective on the channel in general.

Since the capcity of FSCs with feedback is not computable, one could aim to design
computable functions that approximate the capacity. We have shown that if such com-
putable functions exist, they can approximate the capacity up to a certain margin of
error. Yet, it is impossible to algorithmically approximate the capacity of FSCs within
a smaller margin of error.

Unfortunately, the non-approximability of the FSC feedback capacity has a direct im-
plication in computing upper and lower bounds on the FSC feedback capacity. We have
shown that it is impossible to find tight upper and lower bounds that are simultaneously
computable. This implies that if we aim for tight achievability and converse, either
achievability or converse or both are non-computable. Tight upper and lower bounds
are crucial for the study of code implementation for communication models. The lack of
bounds, in this case for the FSC feedback capacity, makes it hard to evaluate how good
a particular code is.

The FSC feedback capacity is given in terms of a multi-letter formula, which means
that it is specified by the limit of a sequence of optimization problems. This makes
it especially difficult to compute. Finding a finite letter formulation could facilitate
computing the capacity. However, we have shown that the FSC feedback capacity cannot
be expressed as a finite multi-letter optimization problem. Hence, none of the approaches
studied in this paper to approximate the capacity allow us to compute the FSC feedback
capacity.
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5 Computability of the Additive
Colored Gaussian Noise Channel
Capacity

In Chapter 4, we have shown that the capacity of FSCs with feedback is not a com-
putable function, due to its complicated description. This prompts the main question
of this chapter: What is the simplest communication channel for which such a numeri-
cal computation of the capacity is not possible? We provide an answer to this query by
showing that there are band-limited ACGN channels, which are standard communication
channels with a very simple structure that do not have a computable capacity.

The band-limited ACGN channel is a very important model for wireless communica-
tion, as it can be used to model commonly encountered channels such as the frequency
selective fading channel. The band-limited Gaussian channel, introduced in [58, 66], is
a continuous-time channel. In [66], two noise models are introduced: white and colored
Gaussian noise. Colored Gaussian noise is Gaussian distributed and has a psd that varies
with frequency while the spectral density of white Gaussian noise is a constant over all
frequencies. The capacity and error performance of codes for the band-limited ACGN
channel were carefully studied in [67, 68, 69]. A detailed description of the band-limited
ACGN channel and its results can be found in [70, 71, 72, 73, 74]. In [7], Gallager showed
that the capacity-achieving psd of the linear ACGN channel can be determined using
the water pouring technique. In [75], the authors provide an overview of techniques for
constructing capacity-achieving codes for the ACGN channel.

Computing the capacity of the band-limited ACGN channel is a very important task
for practical systems. The capacity serves as a benchmark for designing and optimizing
systems to achieve optimal message transmission. This enables the design of codes that
fulfill prescribed reliability and efficiency system requirements while also optimizing the
use of communication resources.

This chapter addresses the question of whether the capacity of the band-limited ACGN
channel can be computationally determined.

5.1 Continuous Gaussian Channels
In this section we consider a communication scenario where both the input and output
of the channel are amplitude- and time-continuous. Amplitude-continuous means that
the signal alphabets are uncountable infinite, and by time-continuous we allow the trans-
mission to be continuous over time. The time continuous additive Gaussian channel is
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5 Computability of the Additive Colored Gaussian Noise Channel Capacity

represented by the following formula:

y(t) = x(t) + z(t),

where x(t), y(t), and z(t) are the channel input, channel output and noise at time instant
t ∈ T ⊂ R and they take values in R. The noise z(t) is zero-mean Gaussian distributed.
The Fourier transforms of the input signals and noise are represented by

X(f) =
∫ ∞

−∞
x(t)e−i2πft dt

Z(f) =
∫ ∞

−∞
z(t)e−i2πft dt.

Let xT (t) be the fraction of the signal x(t) that is equal to x(t) in the time interval
[−T

2 ,
T
2 ] and 0 outside. The total signal power Ptot is given by

Ptot = lim
T →∞

1
T

∫ T
2

− T
2

|xT (t)|2 dt = lim
T →∞

1
T

∫ ∞

∞
|XT (f)|2 df =

∫ ∞

∞
Px(f) df

where
|XT (f)|2 =

∫ ∞

−∞

[ ∫ ∞

−∞
xT (t− τ)xT (t) dt

]
e−i2πfτ dτ

and Px(f) = limT →∞
|XT (f)|2

T
is the psd of the signal x(t). Similarly, let zT (t) be equal

to the noise z(t) in the time interval [−T
2 ,

T
2 ] and 0 outside. The noise psd is given by

N(f) =
∫ ∞

−∞
Rz(τ)e−i2πfτ dτ

with Rz(τ) = limT →∞
1
T

∫∞
−∞ zT (t− τ)zT (t) dt.

We consider only band-limited signals. Letting the bandwidth be B > 0, the psd of
band-limited signals with bandwidth B has the following structure:

Px(f) =
Px(f) for |f | ∈ [0, B]

0 else.

z(t) is a band-limited colored Gaussian noise with spectral density N(f) with

N(f) =
≥ 0 for |f | ∈ [0, B]

0 else.

We consider a communication scenario subject to a power constraint P . This means
that the total signal power should not exceed P , and it is described by∫ B

−B
Px(f) df ≤ P.

We aim to find codes for the band-limited channel described above. The code should
consist of band-limited signals. For this we consider the set X (B, T, P ) which is the set
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5.1 Continuous Gaussian Channels

of approximately band-limited signals with bandwidth B, approximately time-limited to
T seconds and with a total power not exceeding P , i.e., for every signal x ∈ X (B, T, P ) it
holds that

∫ B
−B Px(f) df ≤ P . We define Y(B, T ) to be the set of received signals, which

are approximately band-limited with bandwidth B and approximately time-limited to
T .

A code for the band-limited ACGN channel with power constraint consists of a pair
of functions (f, ϕ), where f is an encoder function f : M → C ⊂ X (B, T, P ), where C
is the codebook, and a decoder function ϕ : Y(B, T ) → M. The transmission rate R is
defined by

R = 1
T

ln |M|.

The average error probability Pe is given by

Pe = 1
|M|

|M|∑
i=1

Pr(ϕ(f(i)) ̸= i).

A rate R is called achievable for the band-limited ACGN channel, if one can find a
code (f, ϕ) that operates at a transmission rate of R and for which the average error
probability vanishes Pe → 0 as T → ∞. The channel capacity is defined as the supremum
of all achievable rates.

Theorem 14 ([66]). The capacity of the band-limited ACGN channel with bandwidth
B, and continuous noise power spectrum N on the interval [0, B] subject to a power
constraint P > 0 is given by

C(N,P ) =
∫ B

0
ln
(

1 + P ∗
x (P, f)
N(f)

)
df.

The capacity-achieving power spectrum density is given by

P ∗
x (P, f) =


[
ν −N(f)

]
+

for |f | ∈ [0, B]

0 for |f | /∈ [0, B],
(5.1)

where ν is chosen such that
∫ B

−B P
∗
x (P, f) df = P is satisfied.

There are a large number of different derivations for the formula, see [71, 76, 73, 77].
The capacity-achieving psd is given by the water pouring solution. Water pouring

is well known for its simple derivation [78]. In general, the problem is approached by
dividing the noise spectrum into n sub-channels of width ∆fn and assuming that each
sub-channel is independent of the others. N(f) is then approximated by N(fi) for
f ∈ [fi − ∆fn

2 , fi + ∆fn

2 ] and i ∈ {1, . . . , n}. The capacity of each sub channel fi is given
by

Cn(N,P, fi) = ∆fn ln
(

1 + P ∗
x (P, fi)
N(fi)

)
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5 Computability of the Additive Colored Gaussian Noise Channel Capacity

where P ∗
x (P, fi) = ν−N(fi) and ν is derived by using the method of Lagrange multipliers.

The total capacity and the total transmit power are given by

Cn(N,P ) =
n∑

i=1
∆fn ln

(
1 + P ∗

x (P, fi)
N(fi)

)
(5.2)

P =
n∑

i=1
∆fnP

∗
x (P, fi). (5.3)

As n → ∞ then ∆fn → 0 and Eqs. 5.2 and 5.3 become integrals:

C(N,P ) = lim
n→∞

Cn(N,P ) =
∫ B

0
ln
(

1 + P ∗
x (P, f)
N(f)

)
df

P = lim
n→∞

n∑
i=1

∆fnP
∗
x (P, fi) =

∫ B

0
P ∗

x (P, f) df.

5.2 Problem Formulation
In general, to show a channel capacity result, it is necessary to show achievability and
converse. The achievability refers to the possibility of asymptotically achieving error-free
communication at rates less than the capacity, and the converse shows the impossibility
of asymptotically achieving error-free communication at rates exceeding the capacity.

Achievability results give lower bounds on the capacity. To establish the achievability
of band-limited ACGN channels, one must demonstrate the possibility of constructing
almost band-limited and almost time-limited codebooks that operate at a rate lower than
the channel capacity, i.e., R < C. For a given error probability Pe > 0, the achievability
provides us with a monotonically increasing sequence of achievable rates {Rn}n∈N that
converges to the capacity as the signal duration {Tn}n∈N increases, i.e., {Tn}n∈N is a
monotonically increasing sequence of time duration. For n ∈ N, the rate Rn describes
the codebook size of band-limited signals of Tn time duration for which it is possible to
find a decoder strategy, such that the error probability does not exceed Pe.

The converse gives an upper bound on the coding theorem. More specifically, a con-
verse provides us with a monotonically decreasing sequence of rates {Un}n∈N that con-
verges to the capacity. For every n ∈ N, Un is an upper bound on the codebook size
of band-limited signals of Tn time duration for which it is possible to find a decoder
strategy, such that the error probability does not exceed Pe.

Finding algorithms that can calculate both lower and upper bounds would be useful.
Moreover, it would be desirable to have an algorithm that takes a band-limited ACGN
channel and computes its corresponding capacity-achieving code. This prompts the
following question:

Question 1: Is it possible find an algorithm that takes a noise power spectrum N , a
power constraint P , and a precision M as input and computes a codebook and a decoding
strategy with rate R for the band-limited ACGN channel, such that R ≥ C(N,P ) − 1

2M

is achieved?
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P
N
M

TC αM(N,P )

Figure 5.1: Turing machine TC for the computation of the capacity approximation of
band-limited ACGN channels. It takes the power constraint P , noise power
spectrum N and the approximation precision M and computes αM(N,P )
with |C(N,P ) − αM(N,P )| < 1

2M .

M TC(N,P ) αM

Figure 5.2: Turing machine TC(N,P ) for the computation of the capacity approximation
of band-limited ACGN channels for fixed N and P . For P ∈ Rc and N
computable, T(N,P ) takes the approximation precision M and computes αM

with |C(N,P ) − αM | < 1
2M .

There has been a long-standing interest in the algorithmic computation of the capacity
of communication scenarios in information theory. One example of such an algorithm
is the Blahut-Arimoto algorithm, which can compute the capacity of any computable
discrete memoryless channel given as input (see [4, 5]). However, there is no algorithm
known to date that can compute the capacity of a band-limited ACGN channel with
noise spectral density N(f) similarly to the Blahut-Arimoto algorithm. Ideally, it is
desirable to find such an algorithm.

Question 2: Is it possible to find an algorithm that takes a noise spectral density N ,
a power constraint P , and a precision M as input and computes the number αM(N,P )
with

|C(N,P ) − αM(N,P )| < 1
2M

?

The Turing machine that describes the algorithm of Question 2 is illustrated in Fig.
5.1.

We could simplify the requirements of the desired algorithm by fixing N and P . This
prompts the following question:

Question 3: For a fixed N and a fixed P , is it possible to find an algorithm that takes
a precision M as input and computes the number αM with

|C(N,P ) − αM | < 1
2M

?

A Turing machine describing the algorithm of Question 3 is illustrated in Fig. 5.2.
If a constructive proof is found for Theorem 14, including an effective construction for

capacity-achieving codes and an algorithmic description of the converse, then it would
provide a positive answer to all three questions. However, our analysis demonstrates
that for fixed N and P it is not possible to provide such a constructive proof.
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5 Computability of the Additive Colored Gaussian Noise Channel Capacity

5.3 Computability of the ACGN Channel Capacity
In this section, we aim to address Question 1, Question 2, and Question 3 from Section
5.1. Specifically, we construct an example of a noise power spectrum N for a band-
limited ACGN channel that yields a negative answer to all three questions. To achieve
this, we will introduce a band-limited ACGN channel that has computable parame-
ters, including computable bandwidth, computable noise power spectrum, computable
capacity-achieving power density spectrum, and a computable power constraint. Both
the noise power spectrum and the capacity-achieving power spectrum will be computable
continuous functions of the frequency domain f ∈ R.

We consider the following band-limited channel with bandwidth B ∈ Rc and B > 0

y(t) = x(t) + z(t).

N(f) is also band-limited with a B bandwidth. For f ∈ [0, B
2 ], N(f) is strictly mono-

tonically decreasing and for f ∈ [B
2 , B] is strictly monotonically increasing. N is an even

function with respect to B
2 and 0.

The communication is subject to a power constraint P ∈ Rc, P > 0. The psd Px(f)
with f ∈ [−B,B] is a non-negative continuous function with

∫ B

−B
Px(f) df = P

We denote the capacity achieving psd by P ∗
x (f), which is uniquely determined by the

water pouring technique.
We choose f1 ∈

(
0, B

2

]
, f1 ∈ Rc. We want to look for a capacity-achieving psd P ∗

f1(f),

that is different from zero only in the interval
[

B
2 − f1,

B
2 + f1

]
. This optimal psd is

uniquely coupled with the power Pf1 and is given by

Pf1 =
∫ B

2 +f1

B
2 −f1

(
N
(
B

2 + f1

)
−N(f)

)
df.

Note that N(B
2 + f1) = N

(
B
2 − f1

)
. Pf1 is a computable number.

This means that when we are given a power P , such that for a certain f̂1 we have that
P = Pf̂1

, we have that the optimal power allocation is

P ∗
f̂1

(f) =

N
(

B
2 + f̂1

)
−N(f), for |f | ∈

[
B
2 + f̂1,

B
2 − f̂1

]
0, otherwise.

The corresponding capacity can hence be expressed as a function of f1 and is given
by

C1(N, f1) =
∫ B

0
ln(P ∗

f1(f) +N(f)) df −
∫ B

0
ln(N(f)) df.
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5.3 Computability of the ACGN Channel Capacity

Now, if C(N,P ) is the capacity of the band-limited ACGN channel, then the following
representation applies for 0 ≤ f1 ≤ B

2 and the corresponding power Pf1 :

C(N,Pf1) = C1(N, f1),

i.e., the capacity is a function of f1.

Theorem 15. Let B ∈ Rc
≥0. There are computable continuous functions N := [0, B] →

Rc
≥0, such that for each such function, and for all f1 ∈ [0, B

2 ], f1 ∈ Rc, we have that

C1(N, f1) /∈ Rc.

Moreover, for each such function N , and for every f1 ∈ [0, B
2 ], f1 ∈ Rc, there is no

computable sequence of computable numbers {un}n∈N with un ≥ un+1, n ∈ N and

lim
n→∞

un = C1(N, f1).

Proof. To prove the result of Theorem 15, we construct a non-negative computable con-
tinuous psd N . The construction of N is based on a recursively enumerable non-recursive
set A. There are countably infinitely many recursively enumerable non-recursive sets
[38]. We denote {Ai}i∈N as the family of recursively enumerable non-recursive sets. For
every such set Ai, one can use the same approach to construct a different non-negative
computable continuous psd Ni. The capacity of every Ni yields a non-computable num-
ber ξi.

Next, we start with the construction of the noise psd N . Let B > 0 be a fixed
computable number. Let n0 ∈ N, such that 1

n0
< B

2 .
We consider the following function for n ≥ n0

Gn(f) =


− 1

|f− B
2 | , for f ∈

[
0, B

2 − 1
n

]
∪
[

B
2 + 1

n
, B

2

]
−n, for f ∈

[
B
2 − 1

n
, B

2 + 1
n

] (5.4)

Gn is a computable continuous function. Let

Cn =
∫ B

0
Gn(f) df = 2

∫ B

B
2

Gn(f) df

= −2
∫ 1

n

0
n df −

∫ B
2

1
n

1
f
df

= −2 − 2
(

log B2 − 2 ln 1
n

)
= −2

(
1 + ln nB2

)
. (5.5)

Note that nB
2 > 1, and hence ln nB

2 > 0.
We set C(1)

n = |Cn|.
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5 Computability of the Additive Colored Gaussian Noise Channel Capacity

Let A ∈ N be a recursively enumerable non-recursive set. Let φA : N → A be a
recursive function that lists all elements of the set A.

We consider the following sequence of functions:

NM(f) =
(
f − B

2

)2
exp

( M∑
n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
)

(5.6)

NM is a computable continuous function on [0, B], since Gn are computable continuous
functions for 1 ≤ n ≤ M , the exponential function exp(·) maps computable continuous
functions to computable continuous functions, and the multiplication with

(
f− B

2

)2
gen-

erates, in any case, computable functions. Hence, {NM}M∈N is a computable sequence
of computable continuous functions. NM is itself a strictly monotonically increasing
function in [B

2 , B] and an even function with respect to B
2 .

Let K ∈ N be arbitrary. We have

NM+K(f) −NM(f) =
(
f − B

2

)2
exp

( M∑
n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
)

×
[

exp
( M+K∑

n=M+1

1
2φA(n)

1
C

(1)
n

Gn(f)
)

− 1
]
,

|NM+K(f) −NM(f)| =
(
f − B

2

)2
exp

( M∑
n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
)

×
∣∣∣∣1 − exp

( M+K∑
n=M+1

1
2φA(n)

1
C

(1)
n

Gn(f)
)∣∣∣∣.

For x ∈ [0, 1] we have
1 − e−x ≤ 2x.

Let L ∈ N with L > n0 be arbitrary. On the interval [0, B
2 − 1

L
] and [B

2 + 1
L
, B] we

have that for M > L

B

2 − 1
M

>
B

2 − 1
L

and B

2 + 1
M

<
B

2 + 1
L
.

Hence
GM(f) = − 1

|f − B
2 |

for f ∈
[
0, B2 − 1

L

]
∪
[
B

2 + 1
L
,B
]
,

so that for M > L the following holds:

M+K∑
n=M+1

1
2φA(n)

1
C

(1)
n

Gn(f) = − 1
|f − B

2 |

M+K∑
n=M+1

1
2φA(n)

1
C

(1)
n

and
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M+K∑
n=M+1

1
2φA(n)

1
C

(1)
n

<
1

C
(1)
M+1

M+K∑
n=M+1

1
2φA(n)

<
1

C
(1)
M+1

∞∑
n=1

1
2φA(n)

<
1

C
(1)
M+1

∞∑
n=1

1
2n

= 1
C

(1)
M+1

.

Here we have used that {C(1)
n }n∈N is a monotonically increasing sequence. It also holds

that

0 ≥
M+K∑

n=M+1

1
2φA(n)

1
C

(1)
n

Gn(f)

≥ − 1
|f − B

2 |
1

C
(1)
M+1

We also have that
1

|f − B
2 |

≤ 1
|B

2 + 1
L

− B
2 |

= L,

hence
0 ≥

M+K∑
n=M+1

1
2φA(n)

1
C

(1)
n

Gn(f) ≥ − L

C
(1)
M+1

. (5.7)

For M ∈ N and K ∈ N, such that M > U3L2 with U ∈ N, U ≥ 1, B
2 U > 1 we have

that

|NM+K(f) −NM(f)| ≤
(
f − B

2

)2
exp

( M∑
n=1

1
2φA(n)

L

C
(1)
n

Gn(f)
)

L

C
(1)
M+1

<
(
B

2

)2
× 1 × L

2(1 + ln BU3L2

2 )
(5.8)

=
(
B

2

)2
× 1 × L

(2 + 2 log BU
2 + 2 ln 3L2)

<
(
B

2

)2 L

(2 ln 3L2)

<
(
B

2

)2 L

2L2 . (5.9)

(5.8) follows from (5.5).
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Let U1 be the smallest natural number such that U1 >
B
2 . Then for all L > n0, L ∈ N,

for all M ≥ U3L2 , for all K ∈ N, and for all f ∈ [0, B
2 − 1

L
] ∪ [B

2 + 1
L
, B], we have that

|NM+K(f) −NM(f)| < U2
1

2L.

For f ∈ [B
2 − 1

L
, B

2 + 1
L

] we have the following:

|NM+K(f) −NM(f)| ≤
(
f − B

2

)2

×
[

exp
(M+K∑

n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
)

+ exp
( M∑

n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
)]

≤ 2
(
f − B

2

)2

≤ 2
(
B

2 + 1
L

− B

2

)2

≤ 1
2L2 .

Thus {NM}M∈N is an effective Cauchy sequence of computable continuous functions,
and it converges effectively to the function

N(f) =
(
f − B

2

)2
exp

( ∞∑
n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
)
. (5.10)

Eq. (5.10) describes an algorithm that takes the recursive function φA as input and
computes N . N is a computable continuous function with N(f) ≥ 0 for f ∈ [0, B]. N
is a strictly monotonically increasing function in the interval [B

2 , B] and it is an even
function with respect to B

2 .
We take an f1 ∈ (0, B], f1 ∈ Rc, and compute the number C1(N, f1). For

Pf1 =
∫ B

2 +f1

B
2 −f1

(
N
(
B

2 + f1

)
−N(f)

)
df

we have that

C1(N, f1) =
∫ B

2 +f1

B
2 −f1

ln(P ∗
f1(f) +N(f)) df +

∫ B
2 −f1

0
ln(N(f)) df

+
∫ B

B
2 +f1

ln(N(f)) df −
∫ B

0
ln(N(f)) df

=
∫ B

2 +f1

B
2 −f1

ln
(
N
(
B

2 + f1

))
df1 −

∫ B
2 +f1

B
2 −f1

ln(N(f)) df. (5.11)

Since f1 ∈ Rc, we have that B
2 + f1 ∈ Rc and hence N(B

2 + f1) ∈ Rc and N(B
2 + f1) > 0.

Consequently, we have that ln(N(B
2 +f1)) ∈ Rc and therefore also 2f1 lnN(B

2 +f1) ∈ Rc.
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Now we have to rewrite the number

Z(f1) =
∫ B

2 +f1

B
2 −f1

lnN(f) df

=
∫ B

0
lnN(f) df −

∫ B
2 −f1

0
lnN(f) df −

∫ B

B
2 +f1

lnN(f) df (5.12)

We then have∫ B

0
lnN(f) df =

∫ B

0
ln
(
f − B

2

)2
df +

∫ B

0
ln
(

exp
( ∞∑

n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
))

df

We have that ln
(

· −B
2

)2
is a computable function in L1[0, B], see [33]. This way, we

have that ∫ B

0
ln
(

· −B

2

)2
df ∈ Rc. (5.13)

Furthermore, we also have that

exp
( ∞∑

n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
)

= 2
log2 exp

(∑∞
n=1

1
2φA(n)

1
C

(1)
n

Gn(f)

)

and ∫ B

0
log2

(
exp

( ∞∑
n=1

1
2φA(n)

1
C

(1)
n

Gn(f)
))

df = log2(e)
∫ B

0

∞∑
n=1

1
2φA(n)

1
C

(1)
n

Gn(f) df.

We consider the following function for f ∈ [0, B] and M ∈ N:

ψM(f) =
M∑

n=1

1
2φA(n)

1
C

(1)
n

Gn(f).

Note that ψ is a continuous function. For K ∈ N, it holds that

∫ B

0
|ψM+K(f) − ψM(f)| df =

∫ M

0

M+K∑
n=M

∣∣∣∣ 1
2φA(n)

1
C

(1)
n

Gn(f)
∣∣∣∣ df

≤
M+K∑
n=M

1
2φA(n)

1
C

(1)
n

∫ M

0
|Gn(f)| df (5.14)

=
M+K∑
n=M

1
2φA(n) (5.15)

<
∞∑

n=M

1
2φA(n) .
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Eq. (5.14) holds due to the triangle inequality for the ℓ1−norm. Eq. (5.15) holds
from the definition of C(1)

n . Consequently, the sequence {ψM(f)}M∈N converges in the
ℓ1−norm to the function

ψ(f) =
∞∑

n=M

1
2φA(n)

1
C

(1)
n

Gn(f)

for f ∈ [0, B].
Thus, we have that∫ B

0
ψ(f) df = lim

M→∞

∫ B

0

M∑
n=1

1
2φA(n)

1
C

(1)
n

Gn(f) df

= lim
M→∞

M∑
n=0

1
2φA(n)

1
C

(1)
n

∫ B

0
Gn(f) df

= lim
M→∞

−
M∑

n=0

1
2φA(n)

= −
∞∑

n=0

1
2φA(n) .

Since A ⊂ N is a recursively enumerable non-recursive set and from [33, Chapter 1], we
have

−
∞∑

n=0

1
2φA(n) = ξ /∈ Rc.

Next, we must analyze the integral
∫ B

2 −f1
0 logN(f) df . We have already shown in the

inequality (5.7) that for L ∈ N with 1
L
< f1, it always holds the following relation for

M > U3L2 :
|NM+K(f) −NM(f)| < L

C
(1)
M+1

.

Following similar calculations as in Eq. (5.9), for f ∈ [0, B
2 − f1] and M > U3L2 we have

that
|ψM+K(f) − ψM(f)| < 1

L
.

Since {ψM(f)}M∈N is a computable continuous sequence of continuous functions on
[0, B

2 −f1]. This sequence converges effectively on [0, B
2 −f1] to the function ψ. ψ is itself

a computable continuous function on [0, B
2 −f1]. With this and from [33], it follows that

∫ B
2 −f1

0
ψ(f) df ∈ Rc. (5.16)

Following the same line of arguments, we get that ψ is also a computable continuous
function on the interval [B

2 + f1, B], and hence∫ B

B
2 +f1

ψ(f) df ∈ Rc.

72



5.3 Computability of the ACGN Channel Capacity

From Eqs. (5.12), (5.16) and (5.3) it must hold that

Z(f1) /∈ Rc,

and hence
C1(N, f1) /∈ Rc.

Since f1 ∈ Rc can take any value in the interval (0, B
2 ], we have shown the first

statement of Theorem 15.
Next, we show the second statement. We prove this by contradiction and assume that

the second statement is wrong. Assume that there is a f1 ∈ (0, B
2 ], f1 ∈ Rc so that we

can find a computable sequence of computable numbers {un}n∈N, such that the following
holds:

un ≥ un+1 for n ∈ N and lim
n→∞

un = C1(N, f̂1).

From the proof of the first statement, we have that

C1(N, f̂1) = a(f̂1) + ξ

with a(f̂1) ∈ Rc and ξ = −∑∞
n=1

1
2φA(n) /∈ Rc.

We set U(M) = −∑M
n=1

1
2φA(n) for M ∈ N. Then we have a computable sequence of

computable numbers with

U(M) ≥ U(M + 1) and lim
M→∞

U(M) = ξ.

If C1(N, f1) were the limit value of a monotonically decreasing sequence of com-
putable numbers, then this would also hold for C1(N, f1) − a(f̂1). Since a(f̂1) is a
computable number, there is a monotonically increasing computable sequence {mn}n∈N

of computable numbers with limn→∞ mn = a(f̂1). Furthermore, since a(f̂1) ≥ mn it also
holds that −a(f̂1) ≤ −mn. We then have

un −mn ≥ C1(N, f̂1) − a(f̂1) n ∈ N

and
un+1 −mn+1 ≤ un −mn+1 ≤ un −mn,

i.e.,{un −mn}n∈N is a computable sequence of computable numbers and the sequence is
monotonically decreasing. It then holds that

lim
n→∞

(un −mn) = lim
n→∞

un − lim
n→∞

mn = C1(N, f̂1) − a(f̂1) = ξ. (5.17)

This way is ξ the limit value of computable sequences. One of the computable se-
quences is a monotonically decreasing sequence and the other one is a monotonically
increasing sequences. This automatically implies that ξ ∈ Rc which is a contradic-
tion. This contradiction shows that our assumption is wrong and hence there is no
monotonically decreasing computable sequence of computable numbers that converges
to C1(N, f̂1).
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5 Computability of the Additive Colored Gaussian Noise Channel Capacity

Remark 20. Theorem 15 states that there are band-limited ACGN channels whose ca-
pacities are non-computable numbers. This result is the second known instance in in-
formation theory where capacity has been proven to be non-computable, following the
compound channel case in [10]. In that study, the authors considered a computable
compound channel {Wn}n∈N with finite input and output alphabets. {Wn}n∈N is a com-
putable sequence, and C({Wn}n∈N) /∈ Rc. The capacity C({Wn}n∈N) is the limit value of
a monotonically decreasing computable sequence {un}n∈N that serves as a computable up-
per bound for C({Wn}n∈N), but there exists no computable sequence of lower bounds that
converges to the capacity. In contrast, Theorem 15 shows that for C(N,P ), the capacity
of the band-limited ACGN channel with colored noise, we have the opposite situation.

Remark 21. In previous works such as [66, 7, 71], the capacity of the ACGN channel
was typically related to the capacity of the discrete Gaussian channel. This was achieved
through a discrete approximation of the time-continuous Gaussian channel. When ana-
lyzing these solutions, it is observed that as the approximation of the discrete channels
becomes finer, the sequence of capacities of the discrete channels approaches the capacity
of the time-continuous ACGN channel. However, a stopping criterion for the approxi-
mation process has not yet been identified. In our case, such a stopping criterion refers
to an algorithm that takes an approximation error of 1

2M as input for the computation
of the capacity of a fixed ACGN channel, and then the algorithm stops the approxi-
mation process when the result of the computation is within a margin of error of 1

2M

from the capacity of the time-continuous ACGN channel. Our result shows that there
are band-limited ACGN channels with color noise for which such a stopping criterion
cannot exist.

Remark 22. We not only demonstrate the existence of a non-negative computable con-
tinuous noise spectral density, but we also develop an algorithm that can effectively con-
struct a noise power spectrum N for which the conclusion of Theorem 15 holds. The
algorithm takes a recursive function φA as input and computes N . The recursive func-
tion φA generates a recursively enumerable non-recursive set A. There are countably
infinitely many recursive enumerable non-recursive sets {A1,A2, . . . }. By applying the
same algorithm to the generative function φAi

of any other recursively enumerable non-
recursive set Ai, we obtain a different computable noise power spectrum Ni which has
the same structure as N and that satisfies Theorem 15.

Theorem 16. Let B ∈ Rc
≥0. There are computable continuous functions N :=

[−B,B] → Rc
≥0, such that for each such function there are infinitely many P̂ ∈ [0, P∗],

P̂ ∈ Rc where

P∗ =
∫ B

−B
(N(0) −N(f)) df,

and for which the following holds:

C(N, P̂ ) /∈ Rc.

74



5.3 Computability of the ACGN Channel Capacity

Furthermore, for each such function N , there is no computable sequence of computable
numbers {un}n∈N with un ≥ un+1, n ∈ N, and

lim
n→∞

un = C(N, P̂ ).

Proof. We consider the non-negative and computable continuous psd N from Eq. (5.10).
Let f1 ∈ (0, B

2 ), f1 ∈ Rc be arbitrary but fixed. We have that

Pf1 =
∫ B

2 +f1

B
2 −f1

(N(B + f1) −N(f)) df

is the corresponding power concentrated in the interval [B
2 −f1,

B
2 +f1]. It holds that P̂ =

Pf1 and hence C(N, P̂ ) = C1(N, f1) however we have already shown that C1(N, f1) /∈ Rc.
This way we have proven the first statement.

Consider the family of recursively enumerable non recursive sets {Ai}i∈N. This result
holds for every N computed from the algorithm for Eq. (5.10) that takes as input any
recursive function φAi

generating a recursively enumerable non-recursive set Ai. Note
that P̂ is also a function of φA, since it depends on N , which in turn is determined by
φA.

The proof of the second statement of the theorem follows the same line of argument
as in the proof for the second statement of Theorem 16.

Theorem 17. Let B ∈ Rc
≥0. There are computable continuous functions N :=

[−B,B] → Rc
≥0, such that for each such function, and for every P > P∗ with P ∈ Rc

and
P∗ =

∫ B

−B
(N(0) −N(f)) df

we have that
C(N,P ) /∈ Rc.

Furthermore, for each such function N , there is no computable sequence of computable
numbers {un}n∈N with un ≥ un+1, n ∈ N, and

lim
n→∞

un = C(N,P ).

Proof. We consider the non-negative and computable continuous psd N from Eq. (5.10).
Let P > P∗, P ∈ Rc be arbitrary but fixed.
We have that

P = P∗ +∆B

hence ∆ = P −P∗
B

. Since P, P∗, B ∈ Rc then we have that ∆ ∈ Rc.
We then have that the optimal psd for P is given by

P ∗
x (P, f) = N(0) +∆−N(f)
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5 Computability of the Additive Colored Gaussian Noise Channel Capacity

for f ∈ [0, B]. This way we have

C(N,P ) =
∫ B

0
ln(P ∗

x (P, f) +N(f)) df −
∫ B

0
lnN(f) df

= B ln(N(0) +∆) −
∫ B

0
lnN(f) df.

We have that B ln(N(0) + ∆) ∈ Rc however we have already shown that∫ B
0 lnN(f) df /∈ Rc. This implies that C(N,P ) /∈ Rc, which proves the first statement

of the theorem.
Consider the family of recursively enumerable non-recursive sets {Ai}i∈N. This result

holds for every N computed from the algorithm for Eq.(5.10) that takes any recursive
function φAi

generating a recursively enumerable non-recursive set Ai. Note that P∗ is
also a function of φA since it depends on N , which in turn is determined by φA.

To prove the second statement, we have to follow the same line of arguments as in the
proof of the second statement of Theorem 15.

Corollary 3. There are infinitely many P with P ∈ Rc that fulfill the conditions of
Theorem 16 or 17, and for which there is no computable sequence of computable upper-
bounds {un}n∈N with

lim
n→∞

un = C1(N, f1).

Proof. Assume there is a computable sequence of computable upper bounds {un}n∈N
with un ≥ C(N,P ) for all n ∈ N. Consider N from Eq. (5.10). Let ûn be such that

ûn = min
1≤k≤n

uk.

{ûn}n∈N is a monotonically decreasing computable sequence of computable numbers. It
then holds that

lim
n→∞

ûn = C(N,P ).

This implies that C(N,P ) must be a computable number. However, in the proof of
Theorem 15, we have shown that C(N,P ) /∈ Rc, leading to the conclusion that our
initial assumption must be incorrect.

Remark 23. Corollary 3 states that we can find a computable sequence of achievable
rates {Rn}n∈N that converges effectively to the capacity, making the achievability part
algorithmically computable. However, it is impossible to algorithmically compute how far
the achievable rates Rn are from the capacity. Its implications are beyond the inability
to compute a capacity-achieving codebook. Even if we relax the requirement to achieve
capacity and allow for some decoding error, it is still impossible to compute an upper
bound on the size of the codebook.

Remark 24. It is interesting to note that while there exist examples of band-limited
ACGN channels with computable power spectral densities whose capacities are non-
computable numbers, this does not necessarily imply that the converse results of non-
computable capacities are also non-computable in general. By non-computable converses,
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we mean that there is no computable sequence of computable asymptotically sharp upper-
bounds. To this end, consider the compound channel. Recent computability studies in
[10] have shown a converse result: while the compound capacity’s converse is computable,
i.e., there exist computable sequences of computable upper-bounds that are asymptotically
sharp, the achievability of this capacity is not algorithmically computable, i.e., there are
no computable sequences of computable lower-bounds that are asymptotically sharp.

5.4 Conclusions
In this chapter, we have focused on studying the algorithmic properties of a simple com-
munication channel: the band-limited ACGN channel. We have shown that there are
ACGN channels whose capacities are non-computable numbers. Thus, for a given com-
putable bandwidth, noise power spectrum, and power constraint, there is no algorithm
that can effectively compute the capacity of such a channel within a certain desired pre-
cision level. Moreover, we have also shown that the converse result for those channels
is also not algorithmically computable. Although one can algorithmically construct a
sequence of achievable rates that converges to the capacity, it is impossible to compute
how far they are from the capacity. So it is impossible to algorithmically compute an
upper bound on the size of the codebook for the channel.

We have also studied the influence of the power constraint on the computability of the
capacity of ACGN channels. Unfortunately, we have shown that for those computable
channels whose capacity yields a non-computable number adjusting the power constraint
does not influence the computability property of the capacity. Moreover, adjusting the
power constraint would not enable one to algorithmically compute upper bounds on the
capacity.

For more complex channels, such as the FSC, FSC with feedback, and identification
of correlation-assisted DMC, it has been shown that the capacity is not Borel-Turing
computable, meaning there is no universal algorithm capable of computing the capacity
for any channel. However, it is still an open problem whether the capacity of those
channels can be computed as a number. By showing that the capacity of this particular
ACGN channel is a non-computable number, it immediately implies that the capacity
cannot be expressed as a computable function of the channel and power constraint
parameters. Therefore, there is no universal algorithm that can take a noise power
spectrum, bandwidth, and power constraint as inputs and compute the capacity based
on those parameters.
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6 Complexity of Computing the
Additive Colored Gaussian Noise
Channel Capacity

In Chapter 5, it was shown that there exist band-limited computable noise psds whose
capacities yield non-computable numbers. This implies that the capacity C of the band-
limited ACGN channel is in general a non-computable function of its parameter, in
this case, the noise psd N and power constraint P . The question now is whether it
is possible to restrict the set of band-limited ACGN channels such that the capacity
becomes computable for this set of channels. In other words, is there a Turing machine
that computes an approximation αM of the capacity C(P,N)? This means, that for
every precision M ∈ N, the Turing machine computes an approximation αM such that

|C(P,N) − αM | ≤ 1
2M

.

In this chapter, the objective is to establish a sufficient condition for an ACGN channel to
have a computable capacity. Once we have determined the subset of band-limited ACGN
channels, whose capacities yield a computable number, we delve into the computational
complexity associated with approximating the capacity of these channels. Our focus is
on understanding the computational complexity of approximating the channel capacity
when the input parameters, namely N and P , exhibit low complexity. Additionally, we
examine the implications of the complexity of computing the capacity of band-limited
ACGN channels for the implementation of finite blocklength performances.

6.1 Problem Formulation
We consider the band-limited ACGN channel with noise psd N on [0, B]. N is continuous
and strictly positive. For the average noise power spectrum N̄ with

N̄ = 1
B

∫ B

0
N(f) df.

Let L∗ = maxf∈[0,B] N(f) and P̂ = LB−BN̄ . We have that for a power constraint P > P̂
and from Theorem 14, the optimal psd of the signal is given by P ∗

x (P, f) = (L−N(f)),
where

∫ B
0 P ∗

x (P, f) df = P . Hence,

LB −
∫ B

0
N(f) df = P,
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which implies that
L = P

B
+ 1
B

∫ B

0
N(f) df.

From Theorem 14 we have that the capacity of the band-limited ACGN channel with
power constraint P and noise psd N is

C(P,N) =
∫ B

0
ln(P ∗

x (P, f) −N(f)) df −
∫ B

0
ln(N(f)) df

= B lnL−
∫ B

0
ln(N(f)) df. (6.1)

We consider noise spectral densities N which are infinitely differentiable, strictly positive
and can be computed in polynomial time. For these channels, we are interested in the
capacity-achieving psds P ∗

x whose values are computable numbers. This prompts the
following question:

Question 1 : What is the computational complexity of computing the values of the
capacity-achieving psd P ∗

x (P, ·) as a function of the frequency?
In [21], it was shown, that there are ACGN channels with computable continuous

non-negative psds, whose capacities yield a non-computable number. We consider noise
spectral densities N which are infinitely differentiable, strictly positive and can be com-
puted in polynomial time. Assume P is a rational number. We consider the computable
subset of such N and P whose capacity yields a computable number. Namely, let M be
the desired precision for the computation of the capacity, i.e., the capacity lies at most

1
2M away from the computed approximation. Then there exists a Turing machine MC ,
that takes P,N,M as input and computes an approximation C̃ = MC(P,N,M) of the
capacity C(P,N) of the ACGN channel with psd N and power constraint P such that
|C̃ − C(P,N)| ≤ 1

2M . We are interested in knowing how much time does such a Turing
machine need to compute the capacity approximation within the desired precision. This
prompts the following question:

Question 2 : What is the computational complexity of computing the capacity
C(P,N)?

We formalize and answer Question 1 and Question 2 in Section 6.2 using the framework
of complexity theory introduced in Section 2.3.4.

Currently, the computation of problems is limited to digital machines. Therefore, to
examine the fundamental limits of today’s computers and address the former questions,
the application of Alan Turing’s computability theory, specifically Turing machines, is
of central importance.

6.2 Complexity Blowup of the ACGN Capacity
Computation

In this section we focus on studying the computational complexity property of the
capacity-achieving psd and the capacity of the band-limited ACGN channel. The goal
is to answer Question 1 and Question 2.
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First we focus on the capacity-achieving psd. The capacity-achieving psd of the band-
limited ACGN, can be approached using the water pouring technique. To study the
complexity of computing the capacity-achieving psd we consider a band-limited channel
with rational bandwidth and power constraint and a polynomial time computable con-
tinuous noise spectral density. The following theorem classifies the complexity class to
which the computation of the capacity-achieving psd for f = 0 belongs.

Theorem 18. Let B ∈ Rc be a polynomial time computable number, N : [0, B] → R be
a polynomial time computable continuous function and P ∈ Q with P > P̂ be arbitrary.
Then P ∗

x (P, 0) is in #P1. Furthermore, there exists a strictly positive computable noise
psd N∗ that is infinitely differentiable on [0, B], such that for all P > P̂∗, where N̄∗ is
the average noise psd and P ∈ Q, the function P ∗

x (P, 0) is complete in #P1.

The proof of Theorem 18 consists of two parts. In the first part, it is shown that for
strictly positive computable continuous functions, the computation of the value Px(P, 0)
for P ∈ Q is always in #P1. This part of the proof thus provides an upper bound for
the complexity class for the calculation of the value Px(P, 0).

The second part of the proof of Theorem 18 provides, for a special infinitely differ-
entiable computable continuous function N̄ , a lower bound to the complexity class for
computing the value Px(P, 0) for all P ∈ Q, P > P̂ .

Proof. Let N be a strictly positive and polynomial time computable noise psd. We have
that

P ∗
x (P, f) = L−N(f), f ∈ [0, B]

with
L = 1

B
(P +

∫ B

0
N(f) df).

Since B is a polynomial time computable number, we have that 1
B

is also polynomial
time computable. P ∈ Q and hence P is also a polynomial time computable number.
From Theorem 4, we have that the computation of

∫ B
0 N(f) df is in #P1. This implies

that L is also in #P1. This proves the first statement of the theorem.
From Theorem 4, we have that there exists a computable function g defined on the

interval [0, 1] that is infinitely differentiable and polynomial time computable, such that
the computation of

∫ 1
0 g(f) df is #P1-complete. We consider the function

g1(f) := 1
B
g
(
f

B

)
0 ≤ f ≤ B.

g1 is an infinitely differentiable function, and it is polynomial time computable. There
is a rational number α such that for every ω ∈ [0, 1]

N∗(f) = α + g1(ω)

fulfills the condition minf∈[0,B] N∗(f) > 0.
Then, for P ∈ Q, P > 1

B

∫ B
0 N∗(f) df = N̄∗ we have

L = 1
B

(P +
∫ B

0
N∗(f) df).
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Thus with ∫ B

0
N∗(f) df =

∫ 1

0
g(f) df + αB

we have
LB − P − αB =

∫ 1

0
N∗(f) df.

This way, the computation of the number LB − P − αB is complete in #P1. Since
P, α ∈ Q and B are polynomial time computable, we have that the computation of L is
#P1-complete.

Now we have
P ∗

x (P, 0) = L−N∗(0).
Since N∗(0) is polynomial time computable, we have that the computation of P ∗

x (P, 0)
is #P1-complete.
Remark 25. Theorem 18 considers parameters with simple characteristics, specifically,
rational bandwidth and power constraints, along with continuous noise spectral den-
sities that are computable in polynomial time. Since both the bandwidth and power
constraints are rational, their computation can also be achieved in polynomial time.
While all three parameters are polynomial time computable, it is only established that
the capacity-achieving psd belongs to the class #P1. Whether the capacity-achieving psd
can be expressed as a polynomial time computable function of the frequency remains an
unanswered question. Resolving this question would require understanding the relation-
ship between FP1 and #P1, which is currently an open problem. It is widely assumed,
though not proven, that FP1 ̸= #P1. If this assumption holds true, then we can derive
the following result.

From Theorem 18, we have that computing the capacity-achieving psd of the band-
limited ACGN channel is complete in #P1. This problem is more complex than
NP-complete problems. #P-complete problems are generally more complex than NP-
complete problems. While both classes represent computationally challenging problems,
#P-complete problems involve counting or enumerating solutions, which typically re-
quires more computational resources than verifying a solution (as in NP-complete prob-
lems).

Even computing the capacity-achieving distribution for discrete memoryless channels
(DMCs) is challenging. While there exist algorithms that can compute the capacity of
DMCs [4, 5], a general stopping criterion for computing the capacity-achieving distri-
butions for DMCs cannot exist [6]. Even in cases where the capacity-achieving distri-
bution of DMCs becomes computable, no definitive assertions have been made about
the complexity of computing the optimal distribution. On the other hand, in the case
of continuous channels, more precisely, the band-limited ACGN channel, Theorem 18
demonstrates that computing the capacity-achieving psd is #P1-complete, indicating its
hardness comparable to solving any problem in #P1.
Theorem 19. If FP1 ̸= #P1, then there exists an infinitely differentiable noise psd N∗
defined on [0, B], which is computable in polynomial time, such that P ∗

x (P, 0) for P ∈ Q
and P > P̂∗ cannot be computed in polynomial time.
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Proof. With Theorem 18, we have the complete characterization of the computational
complexity of the capacity-achieving psd for f = 0 fully characterized. This result holds
for all rational frequencies f ∈ [0, B].

Remark 26. Based on Theorem 19, if the widely accepted assumption FP1 ̸= #P1
holds true, it implies the existence of a noise psd N∗ that can be computed in polynomial
time. Remarkably, in this case, the capacity-achieving psd exhibits a complexity-blowup
phenomenon.

Next, we focus on the capacity function of the band-limited ACGN channel with the
goal of answering Question 2. In [21], it was shown that there are infinitely many noise
psds whose capacity yields a non-computable number. In this work, we aim to charac-
terize the classes of band-limited ACGN channels whose capacities yield a computable
number. The following theorem provides a description of the structure of the noise psd
that ensures the computability of the capacity.

Theorem 20. If N is a strictly positive and computable continuous noise psd and P ∈ Q
with P > P̂ , then the capacity C(P,N) ∈ Rc.

Proof. Let N be a computable continuous function, such that minf∈[0,B] N(f) > 0. From
Eq.(6.1), we have that

C(P,N) = B lnL−
∫ B

0
ln(N(f)) df. (6.2)

The term B lnL is computable, since B is computable, L is computable and ln is a
computable function. From the first statement of Lemma 7, we have that lnN(f) is
also a computable continuous function. And hence, from Theorem 3, we have that∫ B

0 ln(N(f)) df ∈ Rc.

While we have characterized the class of ACGN channels for which the capacity be-
comes computable, our focus now shifts to studying the computational complexity in-
volved in computing the capacity. In other words, we aim to determine the level of
complexity associated with computing the capacity of band-limited ACGN channels,
given a noise spectral density with low complexity and a power constraint that can be
computed in polynomial time.

Theorem 21. Let B be a polynomial time computable number, and N be a strictly
positive and polynomial time computable noise psd. Then the computation of the capacity
C(P,N) for the power constraint P ∈ Q, P > P̂ is in #P1. Furthermore, there is an
infinitely differentiable and strictly positive noise psd N∗ and a power constraint P∗ > P̂∗
where N̄∗ is the average noise psd, such that the computation of C(P∗, N∗) cannot be
polynomial time computable if FP1 ̸= #P1.

Proof. Let N be such that it satisfies the conditions of Theorem 21. Then from Lemma
7 we have that lnN is polynomial time computable, since N is strictly a positive com-
putable continuous function. Furthermore we have that L > 0. Since the computation
of L is in #P1 then from Lemma 7 we have that the computation of lnL is also in #P1.
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We start the proof by demonstrating the first statement. For P > P̂ , P ∈ Q. From
(6.1), we have that the capacity has the following form

C(P,N) = B lnL−
∫ B

0
lnN(f) df

We study the computation of each of the terms of the right hand side of (6.1). In the
first term of (6.1), we have that L > 0 and since the computation of L is in #P1, then
the computation of lnL is also in #P1. Now we consider the second term of (6.1). Let
N be a noise psd satisfying the conditions of Theorem 21. Then we have that lnN is
also polynomial time computable, since N is a strictly positive computable continuous
function that is polynomial time computable. This implies that the computation of
C(P,N) is in #P1. This way we have shown the first statement.

Now we prove the second statement. Let β ∈ Q, 0 < β ≤ 1. We consider the following
noise psd

N(f, β) = βN∗(f).
For P > BN̄∗, β1, β2 ∈ Q, 0 < βl ≤ 1, l = 1, 2 and β1 ̸= β2, we have that the

corresponding capacity is

C(P,N(·, βl)) = B lnLl −
∫ B

0
lnN(f, β) df

with

Ll = P

B
+ 1
B

∫ B

0
lnN(f, βl) df = P

B
+ βl

B

∫ B

0
lnN∗(f) df.

Assume that the computation of both numbers C(P,N(·, β1)) and C(P,N(·, β2)) are
possible in polynomial time, then the computation of the number

C(P,N(·,P1)) − C(P,N(·, P2))
= B lnL1 −B lnL2 − β1B + β2B

= B ln L1

L2
−B(β1 − β2)

is polynomial time computable. Since β1, β2 ∈ Q we have that the number B(β1 −β2) is
polynomial time computable as well. This way we have that the number z = B ln L1

L2
is

polynomial time computable. Hence, L1
L2

= 2 z
B = c is polynomial time computable. We

have that
c = L1

L2
= P + β1

∫ B
0 lnN∗(f) df

P + β2
∫ B

0 lnN∗(f) df
,

and hence
z∗ =

∫ B

0
lnN∗(f) df = P (c− 1)

β1 − cβ2
,

where β1 ̸= cβ2 and c ̸= 1. Since P, β1, β2 ∈ Q and c are polynomial time computable,
then z∗ must also be polynomial time computable. However, if FP1 ̸= #P1, then this
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z∗ cannot be polynomial time computable. This way we prove the second statement.
That is, for l = 1, 2 at least one of the numbers C(P,N(·, βl)) is not polynomial time
computable.

Remark 27. The proof of Theorem 21, like the proof of Theorem 18, consists of two
parts and provides the exact characterization of the compelxity class of the computation
of the number C(P∗, N∗).

Remark 28. Considering Theorem 21, and assuming the widely accepted assumption
FP1 ̸= #P1 is correct, we find that there exists a noise psd N∗ and a corresponding
power constraint P∗ that can both be computed in polynomial time. Remarkably, under
these conditions, the computation of the capacity of the band-limited ACGN channel
demonstrates a complexity-blowup phenomenon.

Remark 29. Generally, the complexity problems that are studied aim to classify prob-
lems into the P or NP complexity classes. However, when it comes to computing
the capacity-achieving psd, which is #P1-complete, the task is typically more challeng-
ing compared to solving an NP1-complete problem. Therefore computing the capacity-
achieving psd and the capacity of the band-limited ACGN channels are harder problems
than NP1.

Theorems 18 and 21 demonstrate, for the function N∗, that the corresponding capacity
C(P,N∗) and the value P ∗

x (P, 0) for P > P̂ , P ∈ Q, cannot be computed in polynomial
time. The computation of these numbers is even complete in #P1. Regarding the
dependence of this result on P , we observe a desired behavior, as this holds for all
P > P̂ , P ∈ Q.

It is now an interesting open question how often this behavior can occur in the set of
admissible computable continuous noise psds. It should be mentioned at this point that,
for many practically relevant computing scenarios, it is required that almost all problems
in a problem class are not solvable in polynomial time. This is, for example, a central
requirement for the applicability of today’s cryptography, where parameter-dependent
methods are used. Parameters are generally chosen at random when using cryptographic
protocols, such as the two prime numbers in RSA. However, the cryptographic protocol
should then not be computable with a very high probability, i.e., the corresponding
computational problem must be difficult to solve for almost all parameters.

Whether such a behavior also occurs in the computation of the capacity of the ACGN
channel is currently unclear. However, it is noteworthy that complexity classes #P1
and #P play a crucial role in the capacity computation. For instance, computing the
permanent of a matrix is known to be a #P-complete problem. When considering the
permanent of random matrices from practically relevant number fields, it is established
that for ’almost all’ matrices, computing the permanent is a challenging task. Never-
theless, it remains uncertain whether such results also extend to the computation of the
ACGN channel capacity.

In Theorem 21, the complexity of computing the number C(P∗, N∗) for P∗ ∈ Q with
P∗ > P̂∗ is analyzed. Algorithms are considered that receive only the natural number
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n

C
-C − 1

4

n2

•
•

Figure 6.1: The red line represents the band-limited ACGN capacity C = C(P,N∗) for
the psd N∗ and the power constraint P in the asymptotic regime. The black
curve represents the finite blocklength achievable rate Rn(ϵ) for some fixed
ϵ > 0. For nM we have RnM

(ϵ) > C − 1
M

.

M as input and compute the rational number αM , such that |C(P∗, N∗) − αM | < 1
2M

holds. For practical implementations, it would be interesting to compute the capacity
function C(·, N∗), i.e., to compute the function C(P,N∗) with P ∈ [0, P̂ ] where P̂ ∈ Rc

and P̂ < ∞. For this task, the algorithms should take M ∈ N as well as P as input. One
can expect that the complexity of computing the capacity function C(·, N) is captured
by the complexity class #P.

Theorem 21 has also interesting consequences for coding theory. Assume that a se-
quence, as a function of the blocklength, of capacity-achieving codes can be found such
that the encoding and decoding processes corresponding to the blocklength have poly-
nomial complexity, then it is possible to calculate the code’s rate as a function of the
blocklength in polynomial complexity. A more detailed analysis on this topic is given in
the following subsection.

6.3 Implications for Finite Blocklength Performance
An important problem in coding theory and information theory is the analysis of the
finite blocklength of capacity-achieving coding strategies.

In the finite blocklength regime, sequences of achievable rates and converses that are
blocklength-dependent are derived while allowing a predefined decoding error. When
considering a sequence of achievable rates {Rn}n∈N, the index n of each element Rn of
the sequence indicates the blocklength of the code. Since we allow a decoding error
ϵ > 0 with ϵ ∈ Q, the achievable rates will be represented as a function of ϵ. Hence, the
sequence of achievable rates blocklength-dependent is represented by {Rn(ϵ)}n∈N with
Rn(ϵ) = 1

n
log Mn(ϵ) for every n ∈ N, where Mn(ϵ) is the number of codewords, i.e., the

size of the message set as a function of n and ϵ.
Now, from a practical point of view, it is interesting to determine, for M ∈ N, where

M describes the precision of the deviation of C(P,N), for a certain blocklength nM ,
when the following holds:

RnM
(ϵ) ≥ C(P,N∗) − 1

2M
. (6.3)
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This is visualized in Figure 6.1.
The complexity of computing the sequence {RnM

(ϵ)}n∈N is addressed in the following
corollary.

Corollary 4. Let {RnM
(ϵ)}M∈N be an arbitrary sequence of achievable rates for some

ϵ > 0 with ϵ ∈ Q, such that for all M ∈ N the following holds

RnM
(ϵ) > C(P,N∗) − 1

2M
. (6.4)

Then, the sequence {RnM
(ϵ)}M∈N cannot be computed in polynomial time.

Proof. Let us assume that there exists a sequences of blocklengths {nM}M∈N, such
that {RnM

(ϵ)}M∈N can be computed in polynomial time. Let P : N × N → N be
the corresponding polynomial from Definition 28. Then for x ∈ N, the function
P1(x) := P (x + 1, x + 1) is also a polynomial. The numbers αn,M with n ∈ N and
M ∈ N are calculated in maximum P (n,M) steps and the following holds

|RnM
(ϵ) − αn,M | < 1

2M
.

We consider now the computable sequence {α̃M}M∈N with α̃M := αM+1,M+1 for M ∈ N.
The rational number α̃M is computed in maximum P1(M) steps. Hence, {α̃M}M∈N is a
polynomial time computable sequence of rational numbers.

For M ∈ N arbitrary, we have

|C(P,N∗) − α̃M | = |C(P,N∗) −RnM+1(ϵ)
+RnM+1(ϵ) − α̃M |

≤ |C(P,N∗) −RnM+1(ϵ)|
+ |RnM+1(ϵ) − α̃M |

≤ 1
2M+1 + 1

2M+1 = 1
2M

.

In this manner, the computation of C(P,N∗) would be polynomial-time feasible, leading
to a contradiction to the Theorem 21.

Remark 30. We observe that RnM
(ϵ) = 1

n
log2 MnM

(ϵ) is, for a fixed M , a polynomial-
time computable number. Consequently, {RnM

(ϵ)}M∈N forms a computable sequence of
polynomially time computable numbers. However, the sequence itself is not computable
in polynomial time. In other words, for every M , we can find a polynomial PM such
that, for every N ∈ N, there exists a rational number α̃∗

M,N computed in at most PM(N)
steps, satisfying

|RnM
(ϵ) − α̃∗

M,N | ≤ 1
2N
.

However, Corollary 4 shows that the sequence of achievable rates {RnM
(ϵ)}M∈N cannot

be computed in polynomial time as a sequence. The parameters of the polynomial PM ,
which depend on M , must grow faster than any polynomial.

87



6 Complexity of Computing the Additive Colored Gaussian Noise Channel Capacity

Remark 31. This result applies also for any capacity achieving coding scheme. There-
fore, if the sequence {Rn(ϵ)}n∈N is a computable sequence of computable numbers, one
of the following statements must always be valid:

• The sequence {Rn(ϵ)}n∈N is not a polynomial time computable sequence.

• The sequence of blocklegths {nM}M∈N, for which the following holds

RnM
(ϵ) > C(P,N∗) − 1

2M
,

is not a polynomial time computable sequence of natural numbers.

6.4 Conclusions
While the capacity of band-limited ACGN channels is generally not computable, we have
successfully characterized the subset of these channels that do have computable capac-
ities. Our findings demonstrate that as long as the continuous noise spectral densities
are strictly positive and computable, the resulting capacity will always be a computable
number.

Furthermore, we have studied the computational complexity involved in determining
the capacity of such channels. Our analysis reveals that calculating the capacity of
polynomial time computable continuous ACGN channels not only falls within the #P1
class. Additionally, we have shown that if the widely accepted assumption FP1 ̸= #P1
holds true, then it is impossible to compute the capacity of band-limited ACGN channels
in polynomial time.

Moreover, we have explored the computational complexity of determining the
capacity-achieving psd of band-limited ACGN channels. Our analysis examines the
relationship between the complexity of computing the capacity-achieving psd and the
computational complexity of the power constraint and the ACGN channel itself. Our re-
sults demonstrate that when considering polynomial time computable parameters, such
as the power constraint, bandwidth, and noise psd, the computation of the capacity-
achieving psd becomes #P1-complete.

This finding implies that if the assumption FP1 ̸= #P1 holds true, there can exist
a noise psd that is computable in polynomial time, while the capacity-achieving psd
associated with it cannot be calculated within polynomial time. This demonstrates
a complexity blowup behavior, illustrating the increased difficulty of determining the
capacity-achieving psd in such scenarios.

This has also interesting consequences for coding theory, especially in the finite block-
length regime. Assume that a sequence of capacity-achieving codes has polynomial
complexity; this does not immediately imply that the achievable rate sequence can be
computed in polynomial time. An achievable rate itself can be computed in polynomial
time as a number. However, we have shown, that either the sequence of achievable rates
as a function of the blocklength is not a polynomial time computable sequence, or the
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sequence of blocklength corresponding to the achievable rates with guaranteed distance
to capacity is not a polynomial time computable sequence of natural numbers.

The focus of studying the complexity of problems in information and communica-
tion theory lies in determining whether a computational problem belongs to the classes
P or NP (or P1 and NP1, respectively). In this paper, we show that both the com-
putation of the capacity of band-limited ACGN channels and the computation of the
capacity-achieving psd fall within the class #P1. In NP, one can efficiently verify a
single certificate for a problem. However, NP1 does not provide information about the
number of certificates. #P1 counts the certificates that can be efficiently verified, mak-
ing it a more general and complex class than NP1. And hence problems classified as
#P1-complete are harder than problems classified as NP1-complete, under the common
complexity assumptions.
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7 Computability of Convex
Optimization Problems

In Chapter 4 and Chapter 5, we have shown that both the capacity of the FSC with feed-
back and the capacity of the band-limited ACGN channel are non-computable functions.
On the one hand, the capacity of the FSC with feedback has a multi-letter expression,
indicating that it is the limit of a sequence of optimization problems. On the other hand,
the capacity of the band-limited ACGN channel is represented by a Riemann integral. A
Riemann integral represents the area under the curve of a function, which is determined
by the limit of the sum of function values multiplied by infinitesimal widths of intervals.
Hence, both capacity representations show a characteristic that can become challenging
for digital computers to compute. In this chapter, our focus shifts to a more simpler
setting: convex optimization problems.

Convex optimization is a crucial field within mathematical optimization. It focuses
on minimizing convex functions (or, equivalently, maximizing concave functions) over
convex sets arising from equality and inequality constraints imposed on the problem
domain. One fundamental property of convex functions is that any local minimum is also
a global minimum. Due to these characteristics, many convex optimization problems
have efficient algorithms to find their global optima. Moreover, many optimization
problems that may not initially appear to be convex can be reformulated as convex
problems. In [29], there is a detailed exploration of techniques to recognize and harness
the convex properties of a wide array of optimization problems.

Several techniques have been developed to solve convex optimization problems, par-
ticularly for those with a feasible set defined by inequality constraints. Examples of
these techniques include interior-point methods [79, 80], cutting-plane methods [81],
and sub-gradient methods [82], among others. Interior-point methods, for instance, can
efficiently solve a class of convex optimization problems, such as linear programming.
It was shown in [83] that linear programming can be solved in polynomial time by an
interior-point method algorithm. Whether all constrained convex optimization problems
can be efficiently solved is still an open question.

These methods are designed to be used on digital computers. Digital hardware in-
herently deals with discrete quantities, and this limitation poses a significant challenge
when solving problems in a continuous scenario. To understand whether there is a
discrepancy between discrete and continuous models, one should study how the digital
solution approximates the solution of the continuous problem. In other words, it involves
investigating whether algorithms can be developed to compute the continuous model’s
solution using digital hardware. Here, we address the question of whether, in general,
all constrained convex optimization problems can be solved using digital computers.
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7.1 Problem Formulation
In the forthcoming section, our focus lies on addressing the algorithmic computability
of convex optimization problems.

In general, optimization problems are often complex and involve searching through a
vast solution space to find the best or optimal solution. Frequently, in practical systems,
the feasible sets of these optimization problems are implicitly defined by inequality
constraints, which typically take the following forms:

• φ(x) ≥ λ: This arises for instance, in scenarios where certain values, not too small,
are permissible, as seen in power allocation for wireless systems. In this case, the
transmission power cannot be set too low, as the amplifier operates effectively only
within specific ranges.

• φ(x) ≤ λ: Conversely, this arises, again for example in power allocation in wireless
systems, where excessively high transmission powers are disallowed due to potential
non-linear effects that could introduce power amplification outside the designated
power band.

These constraints play a pivotal role in shaping the optimization process, ensuring that
solutions are not only optimal but also viable within the given practical considerations.

Several numerical algorithms have been developed with the goal of solving these op-
timization problems. In particular, a large number of algorithms have been specifically
designed to tackle convex optimization problems, which have the advantage of possessing
a unique global minimum. Gradient descent, interior point methods, linear program-
ming, dual decomposition, among others, are some of the algorithms commonly used for
convex optimization problems; see, e.g., [29].

Thanks to the well-established numerical methods for solving convex optimization
problems, there exists a belief that any convex optimization problem can be algorithmi-
cally solved. Convex optimization problems with computable, continuous, and convex
objective functions, as well as computable intervals defining their feasible sets, are com-
putable (see [33]). We aim to investigate whether a convex problem is computable when
its feasible set is defined by a computable convex constraint function. Consequently, we
are also interested in exploring whether the optimal point of such a convex problem is
computable.

Next, we characterize a convex optimization problem by examining its primary com-
ponents and pose the question of whether algorithms exist that can solve any convex
optimization problem by utilizing its fundamental components as input.

Suppose m ∈ N and B = [0, b]m with b ∈ N. Let f : B → R be a strictly convex
function and φ : B → R be a convex function. Let λ ∈ Rc. We consider a convex
optimization problem of the following form:

minimize f(x)
subject to φ(x) ≤ λ (7.1)
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We consider only those λ for which Mλ(φ) ̸= ∅ where

Mλ(φ) = {x ∈ B : φ(x) ≤ λ}.

It then holds that Mλ(φ) is a closed convex set in B. Specifically, we consider the convex
functions f for which the following condition holds:

Condition 1. Let x(1), x(2) ∈ B ⊂ Rn be arbitrary. If x(1)
k ≤ x

(2)
k for every 1 ≤ k ≤ n,

element-wise, then it also holds that

f(x(1)) ≤ f(x(2)).

Convex functions for which Condition 1 is satisfied, is convex and pointwise monoton-
ically increasing and has a unique optimal value. Furthermore, if the objective function
is strictly convex and satisfies Condition 1, then the optimal point is unique.

An optimal value of a convex problem can be characterized as a function of the
objective function f , constraint function φ, and its constraint value λ, i.e.,

OptV(f, φ, λ) = min
x∈Mλ(φ)

f(x). (7.2)

Note that computing the optimal value OptV is a standard convex optimization task.
In studying computabilty of this problem, we will consider only objective functions f
that are strictly convex and computable continuous, constraint functions φ that are
convex and computable continuous, and computable constraint values λ ∈ Rc.

The optimal values of minimization or maximization problems are computable when
the feasible sets consist of simple intervals, as demonstrated in [33]. We are now inter-
ested in feasible sets modeled by constraint inequalities (φ(x) ≥ λ or φ(x) ≤ λ), which
are highly relevant in practical scenarios. This prompts the following question:

Question 1: Let f be an objective function, φ be a constraint function and λ be a
constraint value of an optimization problem such that Mλ(φ) ̸= ∅. Is it possible to find
an algorithm, specifically a Turing machine, that takes the parameters f, φ, and, λ as
input and computes a description of the real number OptV(f, φ, λ)?

In the convex optimization literature, there is often a tacit assumption that such a
Turing machine exists, i.e., a universal algorithm capable of taking parameters from any
convex optimization problem and computing its optimal value.

A less ambitious task would be to find a problem-specific algorithm for each individual
convex optimization problem to compute its optimal value. This prompts the following
question:

Question 2: Let f be an objective function, φ be a constraint function and λ be a
constraint value of an optimization problem such that Mλ(φ) ̸= ∅. Is it possible to find
an algorithm that takes a precision M ∈ N as input and computes the rational number
yM , such that

|OptV(f, φ, λ) − yM | ≤ 1
2M

? (7.3)

The optimal value in our context may be either rational or irrational. However, due
to the limitations of Turing machines, which can only compute rational numbers, we
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aim to find a Turing machine that can generate a rational approximation of the optimal
value for a given problem. To assess the quality of such an approximation, it is crucial to
set a precision threshold. In simpler terms, we consider an approximation of the optimal
value as ’good enough’ when it falls within the chosen level of precision.

In the context of Question 6, the objective is to develop an algorithm tailored for solv-
ing a particular convex optimization problem. This algorithm takes a desired precision
parameter, denoted as M , as input and computes an approximation, denoted as yM , for
the optimal value. The requirement is that yM should be accurate within a maximum
deviation of 2−M from the true optimal value.

Remark 32. Note that there is no difference in using a different scale than 2−M for the
approximation error in (7.3).

Remark 33. If φ and λ are chosen, such that Mλ(φ) = B, then we have that
OptV(f, φ, λ) is a computable number, as defined in the following section.

7.2 Convex Optimization Problems on Turing Machines
In this section, we delve into the algorithmic properties of convex optimization problems,
with a particular emphasis on their solvability on Turing machines. This study is crucial
for understanding the computational boundaries and capabilities associated with these
optimization challenges.

A key aspect of our investigation is the computability of solutions to convex optimiza-
tion problems. To address this, we introduce a foundational lemma that clarifies the
relationship between the computability of a function’s output and the computability of
the corresponding input for a given domain.

Lemma 12. Let b ∈ N and f be a strict monotonically increasing computable continuous
function on [0, b]. If f(x) ∈ Rc for some x ∈ [0, b], then x ∈ Rc.

Proof. We prove this result by contradiction by assuming that there is a x∗ ∈ [0, b] with
x∗ /∈ Rc, such that f(x∗) ∈ Rc. We then generate a contradiction.

For n ∈ N, we consider the lattice points xk,n = k
2n for 0 ≤ k ≤ b2n. We use two

Turing machines TM>λ∗ and TM<λ∗ for λ∗ = f(x∗), λ∗ ∈ Rc.
TM<λ∗ receives as input a representation for z ∈ Rc and either stops the computation

or calculates forever. The machine stops if and only if z < λ∗.
TM<λ∗ has the same property. It receives as input a representation for z ∈ Rc and

either stops the computation or calculates forever. The machine stops if and only if
z > λ∗. The existence of such a machine is shown in [33].

We use both machines to compute f(x∗,n). TM<λ∗(f(x∗,n)) stops if and only if
f(x∗,n) < λ∗. This holds if and only if x∗,n < x∗. The machine can never stop for
x∗,n = x∗, since x∗ /∈ Rc. Similarly, TM>λ∗(f(x∗,n)) stops if and only if f(x∗,n) > λ∗.
This holds if and only if x∗,n > x∗.

94



7.2 Convex Optimization Problems on Turing Machines

Since f is a strictly monotonically increasing function, one of the Turing machines
stops for x∗,n. We can generate two computable sequences {un}n∈N and {ūn}n∈N, such
that un ≤ un+1, ūn ≥ ūn+1 for n ∈ N and

lim
n→∞

un = x∗ = lim
n→∞

ūn.

Then x∗ must be a computable number, with which we have created a contradiction.
We proceed as follows: For n = 1, we start both Turing machines TM<λ∗ and TM>λ∗

in parallel for f(xk,n), 0 ≤ k ≤ 2b, for one calculation step each. If none of them stops ,
then we set u1 = 0 and ū1 = b. If one of them stops, then we set u1 = max xk,1 if TM<λ∗

stopped, and ū1 =∈ xk,1 if TM>λ∗ stopped.
For n = 2, we compute the second step for all xk,1, for which the computation of

TM<λ∗ or of TM>λ∗ did not stop. Further, we compute for xk,2, 0 ≤ k ≤ 4b for TM<λ∗

and TM>λ∗ each one step. We then compute u2 = max x2. x2 is in the set of xk,2 rsp.
xk,1 , 0 ≤ k ≤ 4b, for which TM<λ∗f(x2) has stopped. Similarly, ū2 is computed.

This way we get two computable sequences of rational number {un}n∈N and {ūn},
such that un ≤ un+1 and ūn ≥ ūn+1 where n ∈ N. Furthermore, for xk,n < x∗ the
TM<λ∗f(xk,n) must stop at some point. With this, there is an index m ∈ N, such that
um > xk,m. This limn→∞ un = x∗. Following the same line of arguements, we have
that limn→∞ ūn = x∗ which then implies that x∗ ∈ Rc. Thus, we have generated a
contradiction.

We now present the central theorem of this chapter, which addresses the computability
of optimal values within convex optimization problems. It demonstrates that for certain
computable convex constraint sets, the optimal values of all computable strictly convex
objective functions are non-computable.
Theorem 22. Let m ∈ N, m ≥ 1 be arbitrary. Then there exists a computable con-
tinuous convex function φm and a number λm with Mλm(φm) ̸= ∅, such that for all
f : B → R that are strictly convex, computable continuous, and satisfy condition A, the
following holds:

OptV(f, φ, λ) /∈ Rc. (7.4)
Proof. We start with m = 1. Let x∗ be arbitrary with x∗ /∈ Rc. Let {µn}n∈N be a
computable seqeunce of rational numbers with µn < µn+1 for n ∈ N and

lim
n→∞

µn = x∗, µ0 > 0.

Let b > µ1 be an arbitrary computable number. We set

gn(x) =


x
µn

for 0 ≤ x ≤ µn

1 for µn < x ≤ b.

It holds that gn(x) = min x
µn

for x ∈ [0, b]. This way we have that gn is a computable
continuous function. gn is furthermore a concave function. We now consider the following
function:

g∗(x) =
∞∑

n=1

1
2n+1 gn(x) x ∈ [0, b].
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For M ∈ N arbitrary, we have

|g∗(x)−
M∑

n=1

1
2n+1 gn(x)| ≤

∞∑
n=M+1

1
2n+1 = 1

2M+2

∞∑
ℓ=0

1
2ℓ

= 1
2M+2

1
1 − 1

2
= 1

2M+1 <
1

2M
.

Thus, we have that the computable sequence {∑M
n=1

1
2n+1 gn(·)}M∈N converges effectively

to the function g∗. And this again implies that g∗ is a computable continuous function.
Let x1, x2 be two arbitrary real numbers with 0 ≤ x1 ≤ x2 ≤ x∗. Since gn(x) > 0 for
x ∈ [0, b] and n ∈ N and since for all n with µn > x∗ it holds that gn(x1) < gn(x2), we
have that g∗(x1) < g∗(x2).

For all x ∈ [0, x∗] we have that gn(x) = 1 for n ∈ N and hence

g∗(x) =
∞∑

n=1

1
2n+1 = 1

2 .

Therefore, maxx∈[0,b] g∗(x) = 1
2 and for all x ∈ (x∗, b] we have g∗(x) < 1

2 .
Next, we consider the following function:

φ∗(x) = 2(1 − g∗(x)). (7.5)

φ∗ is a computable continuous convex function. It holds that φ∗(x) > 1 for all x ∈ [0, x∗)
φ∗(x) = 1 for x ∈ [x∗, b].

For λ1 = 1 we have
Mλ1(φ∗) = {x ∈ [0, b] : φ∗(x) ≤ 1}

and hence Mλ1(φ∗) = [x∗, b].
Let f be a strictly convex monotonically increasing computable continuous function.

Since x∗ ∈ Σ1, x∗ /∈ Rc, we have that f(x∗) /∈ Rc from Lemma 12. Thus, we have proven
Theorem 22 for m = 1.

Let m ≥ 2 arbitrary. Let f : [0, b]m → R an arbitrary computable continuous strictly
convex function for which condition A holds. Then it holds that

min
x∈Mλ1 (φ∗)

= f(x∗)

and hence, from Lemma 12 we have that OptV(f, φ∗, λ∗) /∈ Rc. This way we prove
Theorem 22.

Corollary 5. For each m ∈ N, there exists a computable continuous convex function
φm and a number λm with Mλm(φm) ̸= ∅, such that for all computable continuous and
strictly convex functions f Question 2 has a negative answer.

Proof. For every function f , for which Theorem 22 holds, we have that OptV(f, φ, λ) /∈
Rc. And hence, yM cannot be generated such that Eq. (7.3) holds.
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Remark 34. According to Theorem 22, we observe that, regardless of the simplicity of
the objective function, i.e., whether it is computable and strictly convex, the use of convex
inequalities to describe the feasible set of a constrained optimization problem results in
a non-computable optimal value for every possible strictly convex objective function. In
other words, when dealing with a specific computable convex problem, the existence of an
algorithm that approximates the optimal value up to any preselected precision becomes
impossible.

Consequently, this implies a negative response to Question 2. Furthermore, it sug-
gests the impossibility of designing a universal algorithm capable of taking core input
parameters of a convex optimization problem—namely, the objective function, constraint
inequality function, and constraint values—and computing the optimal value to any de-
sired precision. This negative result provides an answer to Question 1.

Remark 35. This shows that when solving algorithmically convex optimization problems
on digital computers, both the computation of the optimal value of a function and the
computation of the optimal point can never be algorithmically transparent and, therefore,
can never fulfill the integrity condition.

Remark 36. Note that the results of Theorem 22 and Corollary 5 also hold for a convex
maximization problem, where the objective function is a strictly concave function, and
the feasible set is defined by the same constraint functions.

7.3 Lagrangian Dual Problem on Turing Machines
We consider the following optimization problem:

minimize f(x)
subject to φ(x) ≤ λ

where f : D → R is a computable continuous function and φ : D → R is a computable
continuous convex function with domain D = [a, b]m, where m ∈ N and a, b ∈ Rc. The
constraint function φ determines the feasible set Mλ = {x ∈ D : φ(x) ≤ λ}. Hence, the
goal is to solve the following problem:

min
x∈M

f(x). (7.6)

We consider the Lagrangian function L : D × R → R associated with the problem
(7.6):

L(x, u) = f(x) + uφ(x).
We also consider the Lagrangian dual function associated with (7.6):

g(u) = min
x∈D

L(x, u). (7.7)

Note that since L is a computable continuous function in both variables x and u, then,
in particular, L is continuous in x for a fixed u. Since D is a compact set, then (7.7) is
actually a minimum and for every u ≥ 0 there is a x(u) ∈ D with g(u) = L(x(u), u).
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Since u ≥ 0 is not a compact set, we consider the problem

CD = sup
u≥0

g(u) = CD(f, φ, λ)

We would like to know whether for f computable continuous and φ computable contin-
uous and convex, the number CD can be computed by a Turing machine or not.

Theorem 23. There exists a computable continuous convex function φ : D → R, and
a number λ ∈ Rc such that for all f : D → R that are strictly convex, computable
continuous and satisfy condition A, the following holds:

CD(f, φ, λ) = sup
u≥0

g(u) /∈ Rc

and for all K ∈ N
max

u∈[0,K]
g(u) < CD(f, φ, λ).

And, thus, we have
lim

K→∞

(
max

u∈[0,K]
g(u)

)
= CD(f, φ, λ) (7.8)

Proof. We prove the result for m = 1. For m > 1 the proof follows the same steps.
Let f, φ, λ be such that Theorem 22 holds.
For u ≥ 0, we consider

L(x, u) = f(x) + u(φ(x) − 1).

We observe that L(x, u) ≥ 0 for x ∈ [0, b] and u ≥ 0. Since f is strictly convex and
φ(x)−1 is convex, it follows that L(x, u) is strictly convex with respect to x. Additionally,
because φ(x) − 1 ≥ 0 for x ∈ [0, b], L(x, u) is monotonically increasing with respect to
u. With this we have that

g(u) = min
x∈[0,b]

L(x, u)

is monotonically increasing and concave for u ≥ 0.
Furthermore, it holds that

min
x∈[0,b]

L(x, u) ≤ L(x∗, u) = OptV(f, φ, λ)

and also g(u) ≤ OptV(f, φ, λ) for u ≥ 0.
Since L(x, u) is strictly convex for u > 0, there is exactly one x̂ = x̂(u) with x̂ ∈ [0, b]

and
g(u) = min

x∈[0,b]
L(x, u) = L(x̂(u), u). (7.9)

It also holds that x̂ ∈ (0, b). Furthermore, from Lemma 2 we have that for u1 ̸= u2
where u1, u2 ∈ (0, u) it holds that

x̂(u1) ̸= x̂(u2).
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Hence, for 0 < u1 < u2 < +∞ ,u(µ) = (1 − µ)u1 + µu2 and µ ∈ [0, 1] arbitrary we have

g(u(µ)) = min
x∈[0,b]

L(x, u(µ))

= min
x∈[0,b]

((1 − µ)L(x, u1) + µL(x, u2))

> (1 − µ)L(x̂(µ), u1) + µL(x̂(µ), u2)
> (1 − µ)L(x̂1, u1) + µL(x̂2, u2)
= (1 − µ)g(u1) + µg(u2).

This shows that g is strictly concave and monotonically increasing. Furthermore we
have that g(u) ≤ OptV(f, φ, λ) and thus there exists a limit value

CD = sup
u≥0

g(u) ≤ OptV(f, φ, λ).

However, from Lemma 3, we have that CD = OptV(f, φ, λ). Using Theorem 22, we get
that CD = OptV(f, φ, λ) /∈ Rc.

The following corollary follows from Theorem 23.

Corollary 6. Let f, φ, λ be fixed and for which Theorem 23 holds. There exists no
algorithm that receives as input N ∈ N and computes a K(N) ∈ N such that

|CD(f, φ, λ) − max
u∈[0,K(N)]

g(u)| < 2−N . (7.10)

Proof. The proof follows directly from Theorem 23, since CD(f, φ, λ) /∈ Rc and hence
CD(f, φ, λ) cannot be effectively approximated.

Remark 37. We observe that the sequence {maxu∈[0,K(N)] g(u)}N∈N converges to
CD(f, φ, λ). However, this convergence is not effective. Consequently, it is not possible
to algorithmically control the approximation error |CD(f, φ, λ) − maxu∈[0,K(N)] g(u)|. In
other words, one cannot exploit the convergence of (7.8) to determine K(N) for a given
error of 2−N in such a way that the approximation error is respected.

Theorem 24. Let y∗ ∈ Σ1, y∗ > 0. Let b > y∗. Then thre exists a computable conti-
nously differentiable function φ∗ and a computable number λ∗, such that φ∗ is strictly
monotonically decreasing and convex on [0, y∗] and for x ∈ [y∗, b] we have φ∗(x) = λ∗.
Furthermore, for

L1(x, u) = x− u(φ∗(x) − λ∗)
it holds that

sup
u≥0

g1(u) = y∗.

Proof. An analysis of the proof of Theorem 23 shows that if φ∗ is strictly convex on
[0, y∗], then the function f does not necessarily need to be strictly convex. Hence, the
convexity property of f is sufficient to perform all the proof steps also for the Lagrangian
function x+ u(φ∗(x) − λ∗).
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7.4 Conclusions
In this chapter, we have studied the algorithmic properties of convex optimization prob-
lems. We have considered minimization problems with strictly convex, continuous, and
computable objective functions and with inequality constraints that are convex and
also computable. We have demonstrated the existence of a computable continuous,
and convex constraint function such that the optimal value is a non-computable num-
ber for any computable continuous objective function that satisfies the strict convexity
property. Consequently, for this specific convex optimization problem, it is impossible
to design an algorithm that takes a pre-specified precision as input and computes an
approximation of the problem’s optimal value within the desired precision. Thus, con-
strained convex optimization problems cannot always be algorithmically solved. This
result immediately implies that constructing a universal algorithm that takes an arbi-
trary optimization problem with objective and constraint functions as parameters and
computes the problem’s optimal value is impossible.

Furthermore, we have demonstrated that, although a converging sequence of com-
putable numbers exists for the solution of the Lagrangian dual problem in optimization
problems subject to such constraint functions, it is impossible to compute the distance
of each element in the sequence from the solution. Consequently, there is no algorithm
that, given such a constrained convex optimization problem, can compute its optimal
solution up to any desired precision. Hence, there are constraint functions for which the
Lagrangian dual problem cannot be algorithmically solved.
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8 Conclusions
In this work, we have explored the computational and continuity properties of the capac-
ity function of various communication models and convex optimization problems. Here,
we summarize the key results of this work.

In Chapter 3, we have demonstrated the robustness of the compound BCC model,
showing that minor changes in the uncertainty set have minimal impact on the capacity
region. However, when expanding to the next level of uncertainty model, namely arbi-
trarily varying BCC model, which incorporates symmetrizability challenges, we already
observed notable discontinuities in the capacity region.

In Chapter 4, we have shown that the feedback capacity of FSCs is not Banach-Mazur
computable, which also implies that it is not Borel-Turing computable. This inherently
means that devising a universal algorithm to approximate the capacity based on channel
parameters at any desired precision is unfeasible. This complicates establishing sharp
bounds for code performance evaluation, suggesting achievability, converse, or both may
be non-computable, thus challenging code efficacy assessment.

In Chapter 5, we have shown that, even for a rather simple channel model, comput-
ing it capacity can become very challenging. In particular, we examine the algorithmic
properties of band-limited ACGN channel capacities, revealing that there are computable
noise psd whose capacities yield a non-computable number; this again implies the im-
possibility of finding a universal algorithm that takes the describing parameters of an
ACGN channel and computes the capacity at any desired precision. Fortunately, one
can algorithmically construct a sequence of achievable rates that converge to capacity.
However, it is impossible to compute how far they are from capacity. Consequently, it is
impossible to algorithmically compute an upper bound on the size of the codebook for
the channel.

In Chapter 6, we have successfully identified the conditions for computable capacities
in ACGN channels, showing that as long as the continuous noise spectral densities are
strictly positive and computable, the resulting capacity will always be a computable
number. Additionally, we have shown that computing the ACGN channel capacity lies
within the #P1 complexity class. Moreover, we have shown that the computation of the
capacity-achieving psd becomes #P1-complete. Under the widely accepted assumption
that FP1 ̸= #P1, this implies that computing both the channel capacity and the optimal
psd within polynomial time is unfeasible.

In Chapter 7, we have shown that the constraint functions in convex optimization
problems can negatively affect solutions, potentially resulting in non-computable opti-
mal points, even with strictly convex functions. We have found that certain computable
convex constraints make it impossible to compute the optimal point to a desired pre-
cision, regardless of the strict convexity of the objective function. This indicates the
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8 Conclusions

impossibility of constructing a universal algorithm that takes an arbitrary optimization
problem with objective and constraint functions as parameters and computes its optimal
point.

Our findings suggest significant challenges in meeting integrity requirements for reli-
able communication operating at rates close to the capacity in future mobile communi-
cations networks. This is attributed to the existence of commonly encountered channels
whose capacity cannot be precisely determined within acceptable margins of error by
digital computers. Consequently, this makes it very challenging to algorithmically gen-
erate codes at high rates and evaluate their efficacy for those particular channel models.
Exploring alternative technologies, such as analog computing, might offer more effective
solutions for computing these benchmarks.
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[13] K. Gödel, “Die Vollständigkeit der Axiome des logischen Funktionenkalküls,”
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