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Abstract

Tensor networks offer a valuable framework for implementing Lindbladian dynamics in
many-body open quantum systems with nearest-neighbor couplings. In particular, a tensor
network ansatz known as the Locally Purified Density Operator employs the local purification
of the density matrix to guarantee the positivity of the state at all times. Within this
framework, the dissipative evolution utilizes the Trotter-Suzuki splitting, yielding a second-
order approximation error. However, due to the Lindbladian dynamics’ nature, employing
higher-order schemes results in non-physical quantum channels. In this work, we leverage
the gauge freedom inherent in the Kraus representation of quantum channels to improve
the splitting error. To this end, we formulate an optimization problem on the Riemannian
manifold of isometries and find a solution via the second-order trust-region algorithm. We
validate our approach using two nearest-neighbor noise models and achieve an improvement
of orders of magnitude compared to other positivity-preserving schemes. In addition, we
demonstrate the usefulness of our method as a compression scheme, helping to control the
exponential growth of computational resources, which thus far has limited the use of the
locally purified ansatz.
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Kurzfassung

Tensor-Netzwerke bieten einen wertvollen Rahmen für die Implementierung von Lindblad-
Dynamiken in offenen Vielteilchen-Quantensystemen mit Nachbarwechselwirkungen. Insbe-
sondere verwendet ein Tensor-Netzwerk-Ansatz, bekannt als der lokal purifizierte Dichtematrix-
Operator, die lokale Purifizierung der Dichtematrix, um die Positivität des Zustands zu jeder
Zeit zu garantieren. Innerhalb dieses Rahmens nutzt die dissipative Evolution die Trotter-
Suzuki-Aufspaltung, was einen Fehler zweiter Ordnung ergibt. Aufgrund der Natur der
Lindblad-Dynamik führt jedoch die Verwendung von Schemata höherer Ordnung zu nicht-
physikalischen Quantenkanälen. In dieser Arbeit nutzen wir die Eichfreiheit, die in der
Kraus-Darstellung von Quantenkanälen inhärent ist, um den Aufspaltungsfehler zu verbes-
sern. Zu diesem Zweck formulieren wir ein Optimierungsproblem auf der Riemannschen
Mannigfaltigkeit der Isometrien und finden eine Lösung über den Trust-Region-Algorithmus
zweiter Ordnung. Wir validieren unseren Ansatz anhand von zwei Nachbar-Rauschmodellen
und zeigen, dass wir in einigen Fällen Verbesserungen um Größenordnungen im Vergleich
zu anderen Positivität-erhaltenden Schemata erreichen können. Darüber hinaus demonstrie-
ren wir die Nützlichkeit unserer Methode als Kompressionsschema, um das exponentielle
Wachstum der Rechenressourcen zu kontrollieren, was bisher die Verwendung des lokal
purifizierten Ansatzes eingeschränkt hat.
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1. Introduction

The study of many-body quantum systems is of utmost importance in various branches of
physics, including quantum information and quantum computing. Moreover, to understand
realistic physical systems, we ought to consider how these interact with their environment,
i.e. we need to understand how they evolve under the influence of noise. This shifts our
focus to what is known as open quantum systems [1]. In particular, we are interested in the
evolution under Markovian noise, giving rise to the Lindblad master equation [1, 2]. Due
to the limited analytical methods available to describe such systems, numerical methods
play a pivotal role in our understanding of the so-called dissipative dynamics. In this context,
tensor networks variational ansätze [3] emerge as an efficient approach capable of describing
several systems of interest. One such structure, known as the Locally Purified Density Operator
(LPDO), exploits the main features of tensor networks ansätze while preserving the physical
properties of open quantum systems [4, 5]. Werner et al. [6] introduced an algorithm based
on the ubiquitous Trotter-Suzuki splitting [7] to simulate the Lindblad evolution with nearest-
neighbor interactions using the LPDO ansatz. However, due to the semigroup property
of Markovian dynamics, it remains an open problem to simulate the dissipative evolution
yielding higher-order approximation errors.

In this research, we aim to enhance the accuracy of the second-order Trotter splitting
method, which is used in the nearest-neighbor Lindbladian dynamics. To this end, we
leverage the gauge freedom present in the Kraus representation of quantum channels to
formulate an optimization problem on the Riemannian manifold of isometry matrices, i.e. the
Stiefel manifold. We then proceed to solve it via the second-order trust-region algorithm, taking
advantage of its global convergence properties [8].

The rest of this work is structured as follows. In Chapter 2, we cover the theory needed to
understand and formulate the main optimization problem addressed in this work. We begin
by discussing the Markovian dynamics of open quantum systems, followed by a description
of tensor networks, both as a diagrammatic language and as a numerical backend. Then,
we explore the basics of optimization algorithms on Riemannian manifolds, focusing on the
Stiefel manifold and the components required for implementing the trust-region algorithm.
Next, in Chapter 3, we leverage this theory to formulate an optimization problem acting on
a real-valued function defined on the Stiefel manifold. The caveats of the implementation
along with a summary of the main algorithm are discussed in Chapter 4. We conclude this
work by presenting the numerical simulations in Chapter 5, where we study the effects of the
input parameters on the algorithm performance, benchmark our work against other known
schemes, and analyze the scope of our approach. In all simulations, we have employed
two nearest-neighbor models, namely the Kitaev wire [9] and a modification of the sparse
Pauli-Lindblad model [10] we call Pseudo Sparse Pauli-Lindblad (PSPL).
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2. Theory

Across this work we will follow a convention similar to the one in [11] with the following
definitions:

Definition 2.0.1 (Hilbert spaces). {Hi}i∈N are finite dimensional complex Hilbert spaces of
dimension di. We will omit the index i whenever we can infer the Hilbert space from the
context without ambiguity.

Definition 2.0.2 (Linear operators). L (H1, H2) is the space of bounded linear operators from
H1 to H2

σ : H1 →H2 (2.1)

with L (H1) := L (H1, H1). Writing σ ∈ L (H1, H2) means that σ is a d1 × d2 matrix.

Definition 2.0.3 (Superoperators). Also known as operator maps, T (H1, H2) is the space of
linear maps from operators to operators

Φ : L (H1)→ L (H2) (2.2)

with T (H1) := T (H1, H1).

2.1. Open quantum systems

The study of closed quantum systems is fully governed by Schrödinger’s equation, giving
rise to a deterministic process. However, closed systems undergoing a unitary evolution are
rather a mathematical artifact. In reality, quantum systems interact with their environment,
which means that to accurately depict their time dynamics, we must look at the interaction
between the quantum system of interest and its surroundings. We label these systems as
open quantum systems. The state of these systems is described by a stochastic process, since
the environment’s effect on the system is to produce stochastic transitions between energy
levels and to randomize the phase between states in the system of interest. A comprehensive
resource describing the physical concepts and mathematical techniques surrounding open
quantum system dynamics can be found in [1].

Based on this fundamental difference, while state vectors are used to describe closed
systems, the density matrix formalism is the standard method to describe the state and
dynamics of an open system, as the density matrix ρsys represents a probability distribution
of the system’s state

ρsys = ∑
i

pi|ψi⟩⟨ψi| , ∑
i

pi = 1 . (2.3)

2



2. Theory

In this equation, |ψi⟩ are the possible pure states the system can be in, each with a classical
probability of occurring pi. In complete analogy to Schrödinger’s equation being used to
describe the time evolution of a closed system, one can use the so-called master equations to
describe the evolution of an open system. The particular form of this equation depends on
the assumptions done on the nature of the system, the environment, and their interactions.
However, the general recipe focuses on a reduced description of the full system, by tracing
out the degrees of freedom of the environment. This leaves us with the system of interest
being affected implicitly by its environment

ρsys = Trenv

[
ρtotal

]
. (2.4)

A particularly common instance of these equations, partly due to its wide applicability, is
the Lindbladian master equation. The particular assumptions giving rise to this equation are [1,
12]:

1. Separability: At the initial time t0, which we define to be zero without loss of generality,
there are no correlations between the system and its environment. Hence, we start with
a product state ρtotal

t0
= ρ

sys
t0
⊗ ρenv

t0
.

2. Born approximation: The back reaction of the system onto the environment is negligible
(weak interaction), and the separability condition is preserved (environment is much
larger than the system), i.e. ρtotal

t ≈ ρ
sys
t ⊗ ρenv

t0
.

3. Markov approximation: The correlation functions of the environment decay way faster
than the smallest correlations of the system. This is known as a short memory environment.

4. Secular approximation: We neglect the fast terms in the interaction picture.

Remark. These conditions are concisely described in the "Lindbladian master equation solver"
tutorial by QuTip [13, 14].

While a thorough review on the Lindblad equation and its different derivations can be
found in [2], here we focus on a more mathematical description as outlined in [15] and [16],
as this will allow us to introduce some useful concepts that we will employ later on. Under
the aforementioned assumptions, the stochastic process describing our open quantum system
becomes a Markov process, i.e. a process whose next state depends only on the current
state. Analogous to the equation describing the evolution of a classical markov process, the
differential equation for our system’s density matrix ρ is

dρ

dt
= L(ρ), (2.5)

where we dropped the index and the time dependence for convenience. The operator L in
Eq. (2.5) is an example of a superoperator as defined in Def. (2.0.3). Similarly to the classical
linear equation of the form

dx
dt

= Ax,

3



2. Theory

where the solution is x = eAt, the formal solution of Eq. (2.5) is given by,

|ρt⟩⟩ = Λt |ρ0⟩⟩, Λt = etL̂, t ≥ 0, (2.6)

with Λt a superoperator whose structure we will explore soon, and |ρi⟩⟩ and L̂ the vectoriza-
tions of ρi and L, respectively.

Definition 2.1.1 (Vectorization). A vectorization is a linear mapping that transforms a matrix
into a vector. In literature [17], we can find two conventions: row-wise and column-wise
vectorization, depending on whether we stack the matrix row by row, or column by column,
respectively. In the rest of this work, we will follow the row-wise convention. For a matrix
A = ∑i,j ai,j|vi⟩

〈
wj
∣∣ belonging to L (H1, H2) ∼= Cd1×d2 , its row-wise vectorization is defined

as
vec(A) = |A⟩⟩ := ∑

i,j
ai,j|wj⟩ ⊗ |vi⟩ ∈ Cd2 ⊗Cd1 . (2.7)

For completeness, the column-wise vectorization is

vec(A)C = |A⟩⟩C := ∑
i,j

ai,j|vi⟩ ⊗ |wj⟩ ∈ Cd1 ⊗Cd2 . (2.8)

This transformation expresses the isomorphism between matrices and vector spaces:

Cm×n := Cm ⊗Cn ∼= Cmn (2.9)

The next step involves finding out the structure that L should follow, in order for Eq. (2.6)
to have physical meaningfulness. To begin with, for ρ to represent a physical system, we will
require that it satisfies the following conditions:

1. Hermitian: ρ = ρ† ⇐⇒ ρ = UDU†, with U a unitary matrix, and D a diagonal matrix
of the eigenvalues λi, such that all of them satisfy λi = λ∗i (complex conjugate) =⇒ all
the eigenvalues are real: λi ∈ R.

2. Unit trace: Tr[ρ] = 1, so that the probabilities pi in Eq. (2.3) are normalized.

3. Positive semi-definite: ρ ≥ 0, which further restricts the eigenvalues λi to be positive or
zero, hence, allowing us to associate them with physical probabilities.

Definition 2.1.2 (Positive semi-definite). An operator ρ ∈ L (H ) is called positive semidefi-
nite, and we write ρ ≥ 0, if it satisfies any of the equivalent definitions [18]:

1. ⟨x| ρ|x⟩ ≥ 0, ∀x ∈H .

2. ρ = XX†, for some X ∈ L (H ).

3. ρ = ρ† ∧ spec(ρ) ⊆ [0, ∞).

4



2. Theory

If ρ0 is a valid density matrix, we want Λt to output a valid density matrix ρt at all times.
In other words, we want Λt to generate a Completely Positive Trace Preserving (CPTP) linear
map, i.e. a quantum channel Φ. Therefore, the map Φ sending density matrices from H1 to
H2, see Def. (2.0.3), must satisfy the conditions stated in Section 9.8 of [19] and in [20]:

Definition 2.1.3 (Linearity). Consider an ensemble of systems that can be found in state
ρ1 and ρ2 with probabilities p1 and p2, respectively. With the full ensemble described as:
ρ = p1ρ1 + p2ρ2. The map Φ defined above is a linear map if

Φ(ρ) = p1Φ(ρ1) + p2Φ(ρ2). (2.10)

This is equivalent to describing the map as "respecting the mixing of states".

Definition 2.1.4 (Trace preserving (TP)). A linear map Φ is said to be trace preserving if

Tr[Φ(ρ)] = Tr[ρ], ∀ρ ∈ L (H ) (2.11)

Looking at Eq. (2.3), this implies a preservation of the normalization of the probabilities pi.

Definition 2.1.5 (Positive). A linear map Φ is positive (or rather, positive preserving) if it
satisfies

Φ(ρ) ≥ 0, ∀ρ ≥ 0. (2.12)

So that it maps positive semi-definite operators to positive semi-definite operators.

Besides requiring it to be positive, the quantum channel should also satisfy a stronger
condition, namely, being completely positive.

Definition 2.1.6 (Completely positive (CP)). A linear map Φ is completely positive if

Φ⊗ idn is positive, ∀n ∈N, (2.13)

where idn is the identity map acting on the auxiliary Hilbert space H n with dimension n.
From this definition we see that CP implies positivity, but the converse is not always true.

We can get an intuition on why complete positivity is required, and not only positivity, by
thinking about an entangled state ρAB on a bipartite system AB. If we decide to act with the
quantum channel Φ only on the subsystem A, and let B untouched, we would like to get as a
result another physical state ρ

′
AB. However, due to the entanglement in the system, even this

innocent-looking operation may result in nonphysical results, i.e. negative eigenvalues on the
output density matrix. For a common example of a map satisfying positivity but not CP, see
the transpose map in example 1.18 of [18].

Definition 2.1.7 (Completely positive trace preserving (CPTP)). A linear map Φ is CPTP, if it
satisfies Defs. (2.1.4) and (2.1.6).

A CPTP linear map ensures that if the spectrum of the original density matrix encodes a
valid probability distribution, so does the final state [20]. The final piece of our puzzle to find
out the structure of L is to realize that the one-parameter family of maps {Λt, t ≥ 0} forms a
semigroup, with L as its generator.

5



2. Theory

Definition 2.1.8 (Semigroup). The family of maps {Λt, t ≥ 0} together with matrix multi-
plication as the composition operation form a semigroup [21]. Therefore, Λt satisfies the
semigroup (markov) property or composition rule

Λt2+t1 = Λt2 Λt1 , ∀t1, t2 ≥ 0. (2.14)

Contrary to a full group, the positivity constraint on t implies that the inverse term Λ−t = e−tL

is not necessarily a member of the group.

This important distinction is the manifestation of irreversible dynamics, allowing us to
distinguish the future from the past [15], and will play a pivotal role in the development of
our main algorithm. An alternative way of arriving to the semigroup property of Λt is to
observe the linearity in Eq. (2.5), implying the divisibility in its solution.

Finally, (and remarkably) just by requiring Λt to be a CPTP map satisfying the semigroup
property in Eq. (2.14), Lindblad, Gorini, Kossakowski, and Sudarshan (L-GKS) introduced the
most general form of the generator L in [12].

Theorem 2.1.1 (Lindblad’s theorem). The generator L of any quantum operation satisfying
the semigroup property must have the form

L(ρ) =− i(Hρ− ρH) + ∑
k

(
LkρL†

k −
1
2

L†
k Lkρ− 1

2
ρL†

k Lk

)
=H (ρ) +D (ρ) ,

(2.15)

where the first term H (ρ) corresponds to the von Neumann equation (unitary evolution)
through the Hamiltonian H = ∑j Hj of the system, and second term is known as the
dissipative term D(ρ), with the jump operators Lk modelling the interaction of the system with
its environment. Any evolution generated from this equation is guaranteed to be CPTP
(physical). Conversely, any CPTP and divisible is guaranteed to have a generator of this form.

In this work, we will focus on the typical scenario where both the unitary and the dissipative
terms are made up of two-local operators, i.e. the individual Hamiltonian and Lindblad terms
only couple neighboring sites, H[l,l+1]

j and L[l,l+1]
k , respectively.

2.2. A diagrammatic language

Tensor networks have become a ubiquitous technique in many areas of physics, ranging
from condensed matter to quantum information, and other areas of application such as
machine learning. In particular, using tensor networks as backends for numerical simulations
has become a well established approach when trying to assess the state-of-the-art classical
methods [22, 23, 24].

However, it is also important to recall that tensor networks go far beyond a numerical tool.
They provide us with an intuitive graphical language that can be used in formal reasoning
and proofs. A great resource on this topic are the lecture notes of J.Biamonte [25]. In this

6



2. Theory

work, we intend to use this diagrammatic reasoning language whenever possible. Therefore,
this section will begin with a brief overview of the tensor techniques we will use across the
work. Previous familiarity with the tensor network notation and basic operations, as well
as the basic tensor network structures, is assumed. Great introductory materials to these
topics include [26] and [27], as well as a personal favourite in the work of V. Bergholm and
J.Biamonte [28].

Let us begin by recalling two well known tensor diagrams, a rank-one and a rank-two
tensor, i.e. a vector and a matrix, respectively.

(a) A rank-one tensor (b) A rank-two tensor

Figure 2.1.: Two basic tensor diagrams: (a) shows a rank-one tensor, which is a vector, and (b)
shows a rank-two tensor, a matrix.

Remark. The indices m and n of the matrix in Fig. (2.1b) correspond to the row and column
dimensions, respectively.

Back in Def. (2.1.1), we described the concept of vectorization of a matrix in mathematical
terms. Conversely, now we look at this transformation through the tensor diagrams lens. The
diagrammatic representation of the isomorphism in Eq. (2.9) is

vec


 =

= .

(2.16)

This process can be understood as the bending of wires of the original tensor. For the row-
convention we introduced earlier, this means grabbing the right leg of the matrix, bending
it clockwise to the left side, and merging the two left-oriented legs to obtain a vector. The
resulting tensor from this procedure is the vector |v⟩ = |M⟩⟩. A natural question to ask at
this point is "What would happen if instead we bend the right wire anti-clockwise?", as shown in

7



2. Theory

Fig. (2.2). Interestingly, this transformation results again in a vector of dimension m · n, but
instead corresponds to the column convention for vectorization!

Figure 2.2.: Vectorization of matrix M using the column-wise convention.

Remark. We can get an intuition on why this process works by looking back to Eqs. (2.7)
and (2.8), and realizing that bending the right wire (corresponding to the column dimension)
clock or anti-clock wise is equivalent to writing |wj⟩ ⊗ |vi⟩ or |vi⟩ ⊗ |wj⟩, respectively.

In addition, we can ask ourselves "What would happen if instead we bend the left wire towards
the right side?". In fact, this transformation results in a different vector known as the dual-vector
⟨v|. For a more detailed description of this duality, known as Penrose wire bending duality, see
Section 2 of [25].

A second illustrative example of the use of this graphical language is the transpose operation.
For a matrix M = ∑i,j mi,j|vi⟩

〈
wj
∣∣, this operation is defined as

MT = ∑
i,j

mi,j|wj⟩⟨vi| . (2.17)

Based on the intuition we just gained from the previous example, we can deduce how the
diagram would look like for this operation. The exact procedure is depicted as




T

=

=

= .

(2.18)

8



2. Theory

In this transformation, we start by bending the left wire of M to the right, and the right wire
to the left. If we then pull the wires to straighten the tensor, we obtain an upside-down version
of our matrix. We can finish by relabeling our tensor as the transpose of the original matrix
MT, resulting in the last equality.

Remark. Notice that in this case, bending both wires in the opposite direction (anti-clockwise)
would result in the same diagram! Many interesting implications and applications stem from
this simple observation. To learn more about equivalence classes in tensor diagrams see section
2 of [25].

Although there is so much more to learn to unveil the full potential of these diagrammatic
representations, we finish this introductory section by highlighting another structure that is
used very often in what follows, namely the creation of multi-partite tensors. We construct
the composite system of two matrices A and B, as A⊗ B, and represent it as the vertical
juxtaposition of their tensor diagrams

= . (2.19)

2.3. Tensor networks and the Lindbladian master equation

Now that we have developed intuition for the building blocks of diagrammatic representations
used in this work, we can delve into the subject matter and apply this knowledge to obtain
useful representations for equations of interest. First, we look back to the Lindblad operator
from Eq. (2.15), or rather to its vectorization which we introduced back in Eq. (2.6) but did
not define. We will now derive each vectorized term using what we have learned about the
tensor diagrammatic language. The Hamiltonian term (commutator) would be represented
by the diagram

Hρ− ρH = − , (2.20)

where we have omitted the prefactors for simplicity, and which we will continue doing for the
following diagrams. We can vectorize each term by grabbing the rightmost leg and bending
it clockwise, just like we did in Eq. (2.16).

9



2. Theory

(H ⊗ 1− 1⊗ HT) |ρ⟩⟩ = −

Ĥ |ρ⟩⟩ =


−



(2.21)

Notice that in the second term we used the relabeling of the upside-down term for H, just
like in Eq. (2.18). This yields the vectorization Ĥ of the commutator term. Similarly, we look
at the anti-commutator term from the dissipative component

L†
k Lkρ + ρL†

k Lk = + .

(2.22)
And its vectorized representation is

(L†
k Lk ⊗ 1 + 1⊗ LT

k L∗k ) |ρ⟩⟩ = +

=

 +

 ,

(2.23)
where we used (L†

k Lk)
T = LT

k L∗k for the second term of the anti-commutator. Then, the
first dissipative term, which we will soon recognize as a quantum channel, has the following
diagram representation:

LkρL†
k = (2.24)

10



2. Theory

with the corresponding vectorization as:

(Lk ⊗ L∗k ) |ρ⟩⟩ = . (2.25)

Putting together Eqs. (2.23) and (2.25) yields the vectorization of a single Lindblad operator
Lk as

D̂k = − 1
2


+


.

(2.26)
Therefore, assembling together Eqs. (2.21) and (2.26) we obtain an expression for the vector-
ization of the Lindbladian operator L,

L̂ = −i(H ⊗ 1− 1⊗ HT) + ∑
k

[
Lk ⊗ L∗k −

1
2
(L†

k Lk ⊗ 1 + 1⊗ LT
k L∗k )

]
= Ĥ+ D̂ .

(2.27)

Notice, however, that the diagrams we introduced correspond to a single instance of all
the jump operators Lk, so in order to obtain the full vectorized diagram associated with D̂
we ought to sum over all of them. Writing out the sum for the anti-commutator term would
result in the following diagram:

(
+ + . . . +

)

+

(
+ + . . . +

)
,

where we assumed there are κ-many jump operators. Fortunately, we can leverage the power
of tensor representations to depict this more efficiently. Similarly of how we create the
rank-three tensors in an MPS representation from an ensemble of matrices (see Section 3.1
of [29]), we can group all the jump operators Lk ∈ Cd×d, d× d dimensional matrices, into a

11
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rank-three tensor with dimensions κ × d× d

Lk
α,β = . (2.28)

The compressed representation can be obtained by summing over index k, i.e. contracting
this index,

+ (2.29)

with the corresponding vectorized representation,

 +

 . (2.30)

By the same token, the sum over all operators in the first term of D̂ is

(2.31)

and its vectorization

. (2.32)

We can then write the diagram for D̂ as

D̂ = ∑
k
D̂k = − 1

2


+


.

(2.33)

12
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2.4. Tensor networks and quantum channels

In the previous sections, we introduced the concept of quantum channels as the CPTP maps
corresponding to the evolution of an open quantum system, i.e. maps with a valid density
operator as their output. In this section, we will review three mathematical representations for
these maps, and employ the diagrammatic techniques we have learned to transform among
them. First, we formally introduce the Kraus [30] or operator-sum [31] representation.

Definition 2.4.1 (Kraus/Operator-sum representation). Kraus’ theorem [30] states that a linear
map Φ ∈ T (H1, H2) is CP if and only if it can be written in the Kraus representation

Φ(ρ) =
K−1

∑
q=0

EqρE†
q , (2.34)

where Eq ∈ L (H1, H2) are the Kraus operators. In addition, we can impose the completeness
relation

K−1

∑
q=0

E†
q Eq ≤ 1 , (2.35)

where the equality corresponds to Φ being TP.

Analogously to the procedure followed in Eqs. (2.28), (2.29), and (2.31), we can group all
the Eq matrices into a rank-three tensor E. The tensor representation of Eq. (2.34) is then

Φ(ρ) = (2.36)

and the completeness relation diagram is

≤ , (2.37)

where we made use of the diagram of the identity operator

1 = ∑
i
|i⟩⟨i| = . (2.38)

Remark. One must not fall for the fallacy of thinking that the number of jump operators Lk, is
the same as the number of Kraus operators Eq. To emphasize this distinction, we write the
total number of operators as κ and K, for the former and the latter, respectively.

We are in particular interested in the case where H1
∼= H2 ∼= Cd, where the maximum

number of Kraus operators needed to specify Φ is d2, and the minimum is 1, corresponding
to a unitary evolution. We observe the implications of this relation later on in § 5.2.

13
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The matrices {Eq} do not uniquely determine Φ, as it will become more evident when
we introduce the other channel representations. All the possible sets of Kraus operators
are related to each other by a unitary transformation [11], and it is in fact this degree of
freedom that we will exploit in our main algorithm! However, a particularly useful instance
of these sets of Kraus operators is the Canonical Kraus representation [25, 32], which satisfies
the orthogonality condition

Tr
[
K†

αKβ

]
= λαδαβ . (2.39)

Remark. Each of the Kraus operators in this unique representation corresponds to the eigen-
vectors of the Choi matrix to be defined in Def. (2.4.3).

The second channel representation was previously introduced in § 2.1 when studying the
solution of the Lindblad equation, Eq. (2.5), namely the superoperator representation.

Definition 2.4.2 (Superoperator representation). The superoperator Λ of a quantum channel
Φ ∈ T (H1, H2) is the linear map arising from the vectorization of Φ(ρ), and is defined as

Λ : H1 ⊗H1 →H2 ⊗H2 : |ρ⟩⟩ → |Φ(ρ)⟩⟩, (2.40)

with the diagrammatic depiction

|Φ(ρ)⟩⟩ = . (2.41)

Expressing our quantum channel through its superoperator representation provides us
with a practical composition method. Given two quantum channels Φ1 and Φ2, giving rise to
the superoperators Λ1 and Λ2, respectively, applying them to the state ρ

Φ2 ◦Φ1(ρ) ≡ Φ2 (Φ1 (ρ)) (2.42)

can be expressed in superoperator form as

|Φ2 ◦Φ1(ρ)⟩⟩ = Λ2 ·Λ1 |ρ⟩⟩ = , (2.43)

where · is the standard matrix multiplication, which can be seamlessly implemented nu-
merically. For the last representation, we will make use of a ubiquitous transformation in
quantum information theory, namely the Choi-Jamiołkowski isomorphism [33, 34], also known as
channel-state duality.

Definition 2.4.3 (Choi representation). The Choi-Jamiołkowski isomorphism defines a corre-
spondence between a linear map Φ ∈ T (H1, H2) and a linear operator C ∈ L (H2 ⊗H1),

14
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which we call the Choi matrix or Choi state. The relation between them can be obtained by
thinking of the map Φ as acting on the first half of the unnormalized Bell-state, |ϕ+⟩ :=
∑i |i⟩ ⊗ |i⟩ ∈H1 ⊗H1, while leaving the second half untouched. The resulting state is

C = (Φ⊗ id)|ϕ+⟩
〈
ϕ+
∣∣ , id ∈ T (H1) (2.44)

= (Φ⊗ id)

(
∑

i
|i⟩ ⊗ |i⟩∑

j
⟨j| ⊗ ⟨j|

)
= ∑

i,j
Φ(|i⟩⟨j|)⊗ |i⟩⟨j| . (2.45)

The Choi-Jamiołkowski isomorphism is analogous to the vectorization transformation, but
instead of mapping linear operators in L (H1, H2) to vectors in H2 ⊗H1, it is the map

T (H1, H2)→ L (H2 ⊗H1) : Φ→ C . (2.46)

Remark. It is worth noting that Eqs. (2.44–2.46) assume a row-wise vectorization, as defined in
Def. (2.1.1). The respective relations for the column-wise vectorization could be obtained by
assuming Φ acts on the second half of the Bell-state, i.e. (id⊗Φ) so that C ∈ L (H1 ⊗H2)

instead.

In order to construct the diagrammatic representation of C we first introduce the (very
fundamental) diagram of the unnormalized Bell-state

|ϕ+⟩ = . (2.47)

To see why this diagram corresponds to the Bell state |ϕ+⟩, we can recall the definition of 1,
Eq. (2.38), and by looking at its vectorization

|1⟩⟩ = ∑
i
|i⟩ ⊗ |i⟩

we obtain the relation
|1⟩⟩ = |ϕ+⟩. (2.48)

Hence, the diagram in Eq. (2.47) is the vectorization of the identity diagram in Eq. (2.38)!
Applying these relations in the definition of C, Eq. (2.44), with the action of Φ depicted
by its Kraus operator representation as shown in Eq. (2.34), we obtain the diagram for the
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Choi-matrix,

=

=

= .

(2.49)

In addition to providing us with a visual representation for C, this diagram shows the
relation between the Kraus and the Choi representation. In order to obtain an expression
for Φ(ρ) in terms of the Choi-matrix, we compare the diagrams in Eqs. (2.36) and (2.49) and
notice that the input legs for the channel correspond to the two bottom legs of C. Hence, we
obtain

Φ(ρ) =

=

= TrH1

[
C(1H2 ⊗ ρT)

]
,

(2.50)

where TrH1 is the partial trace over the subsystem H1, since C ∈ L (H2 ⊗H1). This represen-
tation is well suited to verify certain properties of quantum channels, such as CP.

Theorem 2.4.1 (Choi’s theorem). Given a quantum channel Φ ∈ T (H1, H2) and C its Choi-
matrix representation, Choi’s theorem [33] states

Φ is CP ⇐⇒ C ≥ 0 . (2.51)
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The right-hand side of this equation will be useful during this work as an operational
definition for CP maps together with Def. (2.1.5).

Using the tensor networks that we have developed for each representation, it is straight-
forward to define the relations between each of them. We have already seen how to convert
between the Kraus and the Choi-matrix representations in Eq. (2.49). Now, we can follow a
similar approach to derive the relation between the Kraus and superoperator representation.
If we vectorize Eq. (2.36) and compare it to Eq. (2.41), we obtain

= . (2.52)

We see the right-hand side is equivalent to superoperator in Eq. (2.32) for the Lindbladian
term acting as a quantum channel. We have introduced labels on the tensor legs to make the
relations easier to follow. Labels i and o are the input and output legs of the quantum channel,
respectively, while i∗ and o∗ are their conjugated versions, arising from the vectorization of ρ.
This corresponds to labeling the input ρ and output Φ(ρ) density matrices as:

Φ−→ . (2.53)

To relate the superoperator with the Choi-matrix, we introduce the bipartite row-reshuffling
operation [25].

Definition 2.4.4 (Row-reshuffling). Given a bipartite matrix Λ ∈ L (H1 ⊗H2) the row-
reshuffling transformation Rr is defined as the map

Rr : L (H1 ⊗H2)→ L (H2 ⊗H2, H1 ⊗H1) : Λ→ (Λ)Rr . (2.54)

By writing Λ in its tensor notation, this map can be seen as Λmµ,nν → Λmn,µν, i.e. the exchange
of indices µ↔ n.
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By applying this transformation to our superoperator, we obtain





Rr

=

= .

(2.55)

These transformations allow us to define a useful algorithm to obtain the Kraus operators
of a quantum channel from its superoperator representation, as shown in Alg. (1). In step
two of this algorithm we have used the decomposition of a positive-semidefinite matrix C
into its factors X and X†

C = XX† (2.56)

as given by Def. (2.1.2). This factorization is known as the Cholesky decomposition [35].

Algorithm 1 Superoperator to Kraus
Input: Λ: Quantum channel in superoperator form ∈ T (H1, H2)

Output: {Eq}q: rank-three tensor with each Eq ∈ L (H1, H2), the channel’s Kraus operators
1: C: Choi representation of the channel← Apply row-reshuffling to Λ : ΛRr .
2: X ← Cholesky decompose C.
3: {Eq}q ← Unvectorize and stack columns of X: each column is a

∣∣Eq
〉
⟩. ▷ See Eq. (2.49).

Remark. In Def. (2.4.1), we noted the Kraus representation is not unique, where two equivalent
representations of a channel might even differ in the number of Kraus operators. However,
there is a minimal number of Kraus operators a quantum channel may be represented with
and is known as the Choi rank. The right-hand side of Eq. (2.49) shows the vectorized
Kraus tensor

∣∣Eq
〉
⟩, where the channel index q corresponds to the Choi rank. Hence, this

decomposition yields the minimum number of Kraus operators of the channel. This agrees
with the observation that the columns of the factorization X shown in Eq. (2.56) are the
vectorization of each Kraus operator, meaning they form an orthogonal set.
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2.5. Locally purified tensor network

Due to the limited analytical methods available to describe open quantum systems, numerical
methods play a pivotal role towards our understanding of dissipative dynamics. In this light,
tensor networks variational ansätze [3] arise as an efficient approach capable of describing
several systems of interest, with the Matrix Product States (MPS) [36, 37] as the archetype
class used to study one-dimensional pure states.

On the other hand, one-dimensional mixed states are still a relatively unexplored frontier
by tensor network techniques. A first attempt at this employs the class of Matrix Product
Density Operators (MPDO) [4, 38]. However, locally verifying the positivity of the global
MPDO is NP-hard [39], so that performing local truncations usually destroys the positive
definiteness of the state, yielding numerical instabilities. A second approach uses the so-called
unravelling of the master equation [1, 40] to simulate mixed states by means of MPS methods,
together with stochastic quantum trajectories. This approach comes at the cost of a sampling
overhead with the number of trajectories. In this work, we will leverage a third structure
introduced in [4, 5], known as the Locally Purified Density Operator (LPDO).

Definition 2.5.1 (Locally Purified Density Operator). Given a density matrix ρ, its local
purification operator X satisfies

ρ = XX†, (2.57)

and its variational tensor network representation for N sites is

[X]s1,...,sN
r1,...,rN

= ∑
m1,...,mN−1

A[1]s1,r1
m0,m1 A[2]s2,r2

m1,m2 . . . A[N]sN ,rN
mN−1,mN

= .
(2.58)

We use the following notation for the tensor legs’ dimensions

[n] := {1, 2, . . . , n} , (2.59)

thus, we can write each rank-four tensor {A[l]}N
l=1 as

A[l] =
(

A[l]sl ,rl
ml−1,ml

)
sl∈[d], rl∈[K], ml−1∈[Dl−1], ml∈[Dl ]

, (2.60)

where sl is the physical index, rl is the Kraus or rank index, and ml is the bond index, with
dimensions d, K, and D, respectively. For uniformity, the first and last tensor have bond
dimensions m0 = mN = 1. Notice how the representation of ρ in terms of tensors {A[l]} is
highly non-unique, since in addition to the usual gauge freedom present in MPS along the
bond index, this structure has a gauge freedom along the Kraus index. The latter is employed
in [6] to achieve a mixed normalized form of the A[l] tensors.
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Remark. Notice that Eq. (2.57) is a result of Def. (2.1.2) for the mixed state ρ, so our global
tensor network will be positive by construction. Contrary to Def. (2.1.2), here X is in general
a rectangular matrix X ∈ CdN×KN

, with dN the full Hilbert space dimension of the N-body
system, and its rank(ρ) = KN .

The construction of the LPDO representation from a general MPDO is studied in [5].
However, if we start with a pure state represented by an MPS —as will be the case in this
work— to obtain the LPDO representation all we need is to add on each site l an extra index
rl with dimension K = 1 [41]. Werner et al. [6] described a practical algorithm that we will
employ to simulate the Markovian dynamics of one-dimensional open quantum systems in
the LPDO structure. Similar to the Time Evolving Block Decimation (TEBD) [42] scheme, for
a small time-step τ, this algorithm splits the superoperator eτL̂ from Eq. (2.6) into several
Trotter-Suzuki layers [43] made up of mutually commuting terms from the coherent Ĥ and
dissipative D̂ components of L̂, see Eq. (2.27). As a point of comparison, Alg. (2) outlines the
scheme followed when the Hamiltonian terms act on nearest-neighbors and the couplings Lk
act on single sites.

Algorithm 2 LPDO Dynamics: Single-site Couplings
Input:
X: purification operator in LPDO form, L̂: vectorized Lindblad operator
τ: final evolution time
Output: Xτ : evolved purification operator in LPDO form

1: eτĤo/2eτĤe/2eτD̂eτĤe/2eτĤo/2 ← Use second-order Trotter to approximate eτL̂.
2: Use TEBD to perform coherent dynamics for Ĥo and Ĥe layers. ▷ See Fig. (2.3a)
3: Update each A[l]: contract two-site tensors from TEBD with local A[l].
4: Use SVD to recover purified tensors and to compress along bond index.
5: for l ← 1 to N do
6: Use eτD̂ =

⊗
l eτD̂[l]

for dissipative layer. ▷ Each D̂[l] is defined as in Eq. (2.27).
7: Find the single-site Kraus tensor E[l]

q from eτD̂[l]
using Alg. (1).

8: Contract E[l]
q with A[l]: merge the Kraus leg rl with the channel index q. ▷ See

Fig. (2.3b)
9: Use SVD to compress along Kraus index.

10: end for
11: Repeat steps 2-4.

The approximation arising from this second-order scheme is

eτL̂ = eτĤo/2eτĤe/2eτD̂eτĤe/2eτĤo/2 + O(τ3) , (2.61)

where Ĥo and Ĥe are the odd and even terms of Ĥ. As discussed in [6], these coherent layers
can be implemented with the usual nearest-neighbor TEBD for Hamiltonian evolution, shown
in Fig. (2.3a). Contracting e−iτH[l,l+1]

with A[l] and A[l+1] increases the bond dimension D
of index ml . On the other hand, the action of the local Kraus tensor E[l]

q arising from the
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dissipative layer D̂[l] increases the Kraus dimension K of rl after merging it with the channel
rank index q. The latter can be understood by looking at the action of a local Kraus channel
acting on a mixed state ρ in its LPDO form

Φ(ρ) = ∑
q

E[l]
q ρE[l]†

q = , (2.62)

where the diagram shows the case when l = 2. The action of E[l]
q on the purification X

is shown in Fig. (2.3b), resulting in the increase of the Kraus dimension of A[l]. Both the
increase in ml and rl can be taken care of via a SVD-based compressing scheme along the
corresponding dimension [6]. However, due to the local nature of this truncation, it cannot
prevent the exponential growth of the Kraus dimensions in the LPDO structure [44, 45].

(a) (b)

Figure 2.3.: Markovian time evolution of the LPDO for a four-site mixed state. Panel (a) shows
the coherent evolution, where the tensors correspond to the Ĥo and Ĥe layers
trotterized from Eq. (2.61) in a TEBD-like manner. Panel (b) shows the contraction
of a local Kraus channel, resulting in the increase of the Kraus dimension of A[l].

A main advantage this scheme provides is the ability to track the Frobenius norm error
introduced at every compression step and due to the Trotter approximation. Appendix D
of [6] provides an explicit bound for the trace norm error introduced on the whole mixed
state ρ. We now shift our focus to the main case of interest in this work, i.e. where both the
Hamiltonian H[l,l+1] and jump operators L[l,l+1] act non-trivially only on nearest-neighbors.
Therefore, the Lindblad superoperator acting on all N sites can be written as

L̂ =
N

∑
l=1
L̂[l,l+1] , (2.63)
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and we use periodic boundary conditions (PBC) such that for l = N we get L̂[N,1], similarly to
Fig. (2.3a). Each L̂[l,l+1] is a d2N × d2N superoperator acting on the whole system, but only
non-trivially on sites l and l + 1, and takes the form shown in Eq. (2.27). From Lemma 4
in [6], the Trotter-Suzuki approximation for the Markovian dynamics for nearest-neighbors
couplings is

eτL̂ = eτL̂o/2eτL̂e eτL̂o/2 + O(τ3) , (2.64)

with the odd and even terms made up of mutually commuting terms

L̂o := ∑
l
L̂[2l−1,2l] and L̂e := ∑

l
L̂[2l,2l+1], (2.65)

which allows us to write the exponentials as

eτL̂o = ∏
l

eτL̂[2l−1,2l]
and eτL̂e = ∏

l
eτL̂[2l,2l+1]

. (2.66)

By concentrating on the dissipative terms and employing Eq. (2.33) to define the d4 × d4

two-local dissipative superoperators D̂[2l−1,2l] and D̂[2l,2l+1] for the odd and even layers,
respectively, we obtain the following expressions

eτL̂o =
⊗

l

eτD̂[2l−1,2l]
and eτL̂e =

⊗
l

eτD̂[2l,2l+1]
. (2.67)

See § 3.1 for an in-detail treatment of this expression. The scheme for the Markovian dynamics
under nearest-neighbor Lindblad is then outlined in Alg. (3). We take advantage of Eq. (2.67)
to focus on the two-local superoperators acting on odd and even sites

eτD̂[2l−1,2l]
and eτD̂[2l,2l+1]

, ∀l ∈ [1, N/2]. (2.68)

Contrary to the single-site channels from Alg. (2), the Kraus tensor E[l,l+1]
q obtained from

these superoperators acts on two sites at a time,

E[l,l+1]
q =

(
E
[l,l+1] sout

l ,sout
l+1

q, sin
l ,sin

l+1

)q∈[k]

sout
l ,sout

l+1,sin
l ,sin

l+1∈[d]
= . (2.69)

So, its contraction increases the dimensions of more than one index of X at a time, namely m,
rl , and rl+1. To preserve the purified structure, we follow the procedure shown in Fig. (2.4) to
split the tensor E[l,l+1]

q into E[l]
q1,m and E[l+1]

q2,m [6], so that

E
[l,l+1] sout

l ,sout
l+1

q, sin
l ,sin

l+1
=

D′

∑
m=1

E[l]sout
l ,sin

l
q1,m · E

[l+1]sout
l+1,sin

l+1
q2,m = , (2.70)
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(a) (b) (c)

Figure 2.4.: Markovian dynamics of a four-site mixed state in LPDO form. Panel (a) shows
the Kraus tensor E being contracted with sites two and three of X. Panel (b)
outlines the application of a unitary U on the Kraus rank q, in order to minimize
the resulting Kraus bond dimension m. Finally, panel (c) shows the contraction of
the single-site Kraus channels, hence conserving the locally purified structure.

with the individual Kraus ranks q1 ∈ [k1] and q2 ∈ [k2] satisfying k = k1 · k2.
In addition, as outlined in Appendix C of [6], Fig. (2.4b) shows the intermediate optimization

of the rank distribution q → q1, q2 and the minimization of the resulting Kraus bond m by
leveraging the unitary gauge freedom with respect to the channel rank q, which we also
discussed when introducing the Kraus channel representation in Def. (2.4.1).

2.6. A brief detour on multivariate calculus

We now introduce some basic definitions from multivariate calculus that will come in handy
to understand the generalized concepts defined on Manifolds in § 2.7. Here, we follow
majorly the definitions presented in Appendix A.5 of [8].

Definition 2.6.1 (Directional derivative). The directional derivative of a real-valued function
f : Rn → R at a point x ∈ Rn along a vector v ∈ Rn is given by

D f (x)[v] = ∇v f (x) := lim
h→0

f (x + hv)− f (x)
h

. (2.71)

It generalizes the idea of a partial derivative, which corresponds to the case where v points
along one of the coordinate axis. The directional derivative can be thought as the rate of
change of f when we "move" in direction of v at x. If f is differentiable at x, then for any unit
vector v we have

∇v f (x) = ⟨∇ f (x), v⟩ , (2.72)

where ∇ f (x) is the gradient of f at x.

Definition 2.6.2 (Gradient). The gradient of a real valued function f : Rn → R at a point
x ∈ Rn is the vector field, i.e. a vector-valued function, depicted as a "field of arrows", one
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Algorithm 3 LPDO Dynamics: Nearest-neighbor Couplings
Input:
X: purification operator in LPDO form, L̂: Lindblad operator vectorized
τ: final time of evolution
Output: Xτ : evolved purification operator in LPDO form

1: eτL̂o/2eτL̂e eτL̂o/2 ← Use second-order Trotter to approximate eτL̂.
2: for l ← 1 to N/2 do
3: Calculate eτD̂[2l−1,2l]/2 numerically.
4: Find the two-site Kraus tensor E[2l−1,2l]

q from eτD̂[2l,2l+1]/2 using Alg. (1).

5: Find the optimal unitary along q minimizing m, such that E[2l−1,2l]
q splits into E[2l−1]

q1,m

and E[2l]
q2,m.

6: Contract E[2l−1]
q1,m with A[2l−1] and E[2l]

q2,m with A[2l]:
7: merge the Kraus bond m with the tensor bond m2l−1, and
8: the Kraus legs r2l−1 and r2l with the channel indices q1 and q2, respectively.
9: end for

10: Repeat step 2 to 6 for even sites with eτD̂[2l,2l+1]
.

11: Repeat step 2 to 6 for odd sites.

assigned to every point of the space. Expressed in a coordinate system this is

∇ f (x) =


∂ f
∂x1

(x)
...

∂ f
∂xn

(x)

 , (2.73)

such that ∇ f (x) : Rn → Rn. The direction of ∇ f (x) is the direction of the fastest increase of
f from x, and its magnitude is the rate of increase.

Definition 2.6.3 (Hessian). The square matrix containing all the second-order partial deriva-
tives of a real-valued function f : Rn → R is known as the Hessian Matrix,

H f = H( f ) =



∂2 f
∂x2

1

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
· · · ∂2 f

∂x2∂xn

...
...

. . .
...

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

· · · ∂2 f
∂x2

n

 . (2.74)

Notice that this is a matrix-valued function. We can evaluate this object at x ∈ Rn, such that
H f : Rn → Rn×n : x → H f (x). We can then think of H f (x) as the linear map

H f (x) : Rn → Rn : v→ H f (x) · v . (2.75)

The i-th column of H f (x) tells us how the basis vectors ei ∈ Rn transform under this matrix

H f (x)i = H f (x)ei . (2.76)
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In other words, we can reveal the i-th column of H f (x) by multiplying it with the i-th basis
vector. By using the Jacobian J applied to the gradient of f , we can write the Hessian as
H f (x) = J(∇ f (x))T.

Definition 2.6.4 (Jacobian). The generalization of the gradient for a vector field f : Rn → Rm

is known as the Jacobian, and its m× n matrix representation evaluated at x ∈ Rn is

Df(x) = Jf(x) = J(f(x)) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

...
. . .

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) · · · ∂fm
∂xn

(x) ,

 (2.77)

where fi and xi are the i-th component of f and x, respectively. By looking at each fi as a
real-valued function, we can write the Jacobian as

J f (x) =


∇Tf1

∇Tf2
...

∇Tfm

 = ∇f(x)T , (2.78)

where the latter equality is slight abuse of notation of the differential operator ∇. Notice how
the basis vector ei transforms under the Jacobian: ∂f

∂xi
(x) = Jf(x)ei. Finally, the best linear

approximation of f(y) in the neighborhood of x is the map ϕ : y→ f(x) + Jf(x)(y− x).

We can then use these operators in the local Taylor expansion of f as

f (x + ∆x) = f (x) +∇ f (x)T∆x +
1
2

∆xT H f (x)∆x +O(∆x3) . (2.79)

In the next three sections, we will develop the equivalent components on manifolds to
define an equivalent expression to Eq. (2.79). Another "classical" definition that will be
generalized in § 2.7 is the idea of a linear or vector space [46].

Definition 2.6.5 (Linear space). A linear or vector space E is a set over the reals equipped
with (and closed under) vector addition and scalar multiplication by real numbers. A prime
example is the space of column vectors of length d, denoted as Rd. However, contrary to
what the name suggests, a vector space can also be a set of matrices, such as the set of n× p
real matrices (and its linear subspaces), labeled as Rn×p. This last example will be of special
interest for us.

The dimension d of a linear space E is determined by the number of basis elements {ei}i∈[d],
such that every element x ∈ E can be written as linear combinations of these

x = ∑
i

aiei . (2.80)
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To construct a basis for the linear space Rn×p, we look at the vectorization of an element
x ∈ Rn×p

x → vec(x) . (2.81)

Then, analogous to Rd, the basis vectors are obtained from the so-called unit matrices Ei,j

{Eij}n,p =

{
1 at (n, p) = (i, j)

0 elsewhere
, (2.82)

such that an element x ∈ Rn×p can be written in terms of these as

vec(x) = ∑
i,j

ai,jvec
(
Ei,j
)

. (2.83)

From these relations, we can infer the linear space Rn×p has dimension np.
In particular, if we endow a vector space E with an inner product ⟨., .⟩, we obtain a Euclidean

space.

Definition 2.6.6 (Euclidean space). The Euclidean space is a finite dimensional vector space
endowed with an inner product ⟨., .⟩ : E × E → R. In other words, it is a finite-dimensional
real Hilbert space. The standard inner product on linear spaces of matrices such as Rn×p is
the Euclidean inner product [46]

⟨x1, x2⟩e := vec(x1)
Tvec(x2) = tr

(
xT

1 x2

)
, (2.84)

where x1, x2 ∈ Rn×p.

This inner product induces a norm on E known as the Frobenius norm.

Definition 2.6.7 (Frobenius Norm). The Euclidean inner product ⟨., .⟩e shown in Eq. (2.84)
induces a norm on E known as the Frobenius norm ∥.∥ F and is defined as

∥x∥ 2
F = tr

(
xTx

)
= ∑

i,j
(xi,j)

2 . (2.85)

Hereafter, we will omit the subscript F and assume the norm to be the Frobenius norm unless
stated otherwise.

2.7. A hitchhiker’s guide to manifolds and tangent spaces

Optimization methods are techniques used to find the best solution to a problem from a set of
feasible solutions by minimizing or maximizing an objective function. These methods play a
crucial role in various fields, including engineering, machine learning, and quantum science.
Across the different branches of the latter, some prime examples that have benefited from
optimization techniques (often involving tensor networks methods) include: ground state
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finding [47], describing quantum phase transitions [48], quantum state [49] and quantum
process tomography [50].

However, more often than not, we cannot naively apply optimization techniques to find the
best solution. Instead, we must take into account a set of constraints that reduce the feasible
solution space, and force us to modify the methods defined in the Euclidean space.

An approach to constrained optimization is the use of Riemannian optimization methods,
being particularly suitable for quantum mechanics as many constraints appearing there can
be cast into Riemannian manifolds [51]. This is exactly the approach we intend to follow
in this work by casting our problem into the Stiefel manifold (to be defined in Def. (2.7.7)).
This section does not attempt to be a rigorous review of differential geometry, but rather to
provide the basic tools needed to navigate through the main optimization problem we will
introduce in this work, focusing on the intuition, i.e. we intend to show the why and how we
formulate and tackle the problem. Let us begin!

Roughly, our goal can be understood as trying to solve a problem of the form

min
x∈M

f (x) (2.86)

whereM is a manifold and the real-valued map f : M→ R is known as the cost function.
Therefore, let us start by answering "What is a Manifold?".

Definition 2.7.1 (Manifold). A d-dimensional real manifold or d-manifoldM is [8]

• a set covered by suitable coordinate "patches" called charts (see Def. (2.7.3)) that allow us
to identify subsets ofM with open subsets of Rd, the d-dimensional Euclidean space.

• We then say that each point of a manifold has a neighborhood that is homeomorphic to
Rd (see Def. (2.7.2)).

• Intuitively, we can think of a manifold as a space such that at every point it locally
looks like a flat Euclidean space.

• Examples of manifolds of interest include the manifold of unitary matrices in Rn×n and
the manifold of isometries in Rn×p. The latter is also known as the Stiefel manifold.

Definition 2.7.2 (Homeomorphism). A space is homeomorphic to another space if [52]

• there exists a bijective, continuous function f between them, so that its inverse f−1 is
also continuous.

• Intuitively, this means that we can smoothly transform one into the other without any
cutting or gluing. The archetype example is a donut and a mug, since we can smoothly
transform one into the other, we say "a donut is homeomorphic to a mug" or they "look
alike topologically".

Definition 2.7.3 (Chart). Let the chart φ ≡ (U , φ) be the homeomorphism mapping elements
from a subset U ofM onto an open subset of Rd, such that

φ(x) ∈ Rd, x ∈ U (2.87)
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are the coordinates of x in the chart (U , φ) [8]. This allows to transform a function f : U → R

into f ◦ φ−1 : Rd → R. A (non-unique) collection of charts coveringM is called an atlas.

We will focus on special kinds of manifolds called linear manifolds [8].

Definition 2.7.4 (Linear manifold). A linear manifoldM is

• a subset of a vector space E , as defined in Def. (2.6.5), that is also closed under addition
and scalar multiplication.

• Every vector space E is a linear manifold by definition.

In order to arrive at a numerical algorithm, we will focus on representing our problems in
terms of matrix manifolds, and in particular embedded submanifolds of Rn×p. As discussed
in Def. (2.6.5), the set Rn×p of n× p real matrices is a vector space, and therefore a linear
manifold.

As we will see in Chapter 3, our cost function will take as input not one, but many
isometries. Therefore, we need to introduce the concept of product of manifolds.

Definition 2.7.5 (Product manifold). Given two manifoldsM1 andM2 of dimensions d1 and
d2, respectively, the setM1 ×M2 is the set of pairs (x1, x2) with x1 ∈ M1 and x2 ∈ M2. Let
(U1, φ1) and (U2, φ2) be charts of M1 and M2, respectively. Then, a chart for the setM1×M2

is

φ1 × φ2 : U1 ×U2 → R
d1
1 ×R

d2
2 : (x1, x2) 7→ (φ1(x1), φ2(x2)) . (2.88)

These charts form an atlas covering the setM1 ×M2, giving rise to the product manifold of
M1 andM2.

As aforesaid, in this work, we aim to focus on embedded submanifolds of the manifold Rn×p.

Definition 2.7.6 (Submanifold). Roughly speaking, N is an embedded submanifold ofM if
[8]

• it is a subset N ⊂M,

• it is itself a manifold,

• and its topology coincides with the subspace topology induced (inherited) from M,
thereby removing the freedom to choose a differentiable structure on N ..

Intuitively, we can think of an embedded submanifold as a surface smoothly embedded in a
higher dimensional space. The manifoldM is known as the ambient space or embedding space
of N . For the case whenM is Rn×p, N is called a matrix submanifold. [8].

As it will become evident when we formulate our optimization problem, a particular matrix
manifold of interest is the Stiefel manifold.
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Definition 2.7.7 (Stiefel manifold). The real Stiefel manifold is the set

St(n, p) = {X ∈ Rn×p : XTX = 1p}, p ≤ n, (2.89)

i.e. the set of "tall" real isometries or orthonormal matrices. This is an embedded manifold of
Rn×p, inheriting its topology.

Remark. To emphasize an element is part of the Stiefel manifold, we will label them as
X ∈ St(n, p), contrary to the lowercase x ∈ M for a general manifoldM.

In order to define the concept of gradient of a function acting on a manifold, we need to
generalize the idea of the Euclidean directional derivative from Eq. (2.71). To this end, we
introduce the tangent space.

Definition 2.7.8 (Tangent space). For a d-manifold M, the tangent space TxM is a d-
dimensional vector space with its origin at x, i.e. the point of tangency [53]. Intuitively, the
tangent space TxM can be thought of as the plane tangent toM at x. Fig. (2.5a) depicts the
relation between them, along with its orthogonal complement known as the normal space, see
Eq. (2.116). It is useful to think of these spaces in the context of a sphere, where the tangent
space is perpendicular to the radii and the normal space is radial.

Normal

Tangent

Manifold

(a)

Tangent vector

(b)

Figure 2.5.: Panel (a) shows an abstract manifold, together with the tangent and normal
spaces. Panel (b) shows a curve γ(t) on the manifold and the tangent vector to it
in the tangent space.

Every element of the tangent space TxM is known as a tangent vector.

Definition 2.7.9 (Tangent vector). A rigorous definition of a tangent vector ξx ∈ TxM at the
point x ∈ M, is given in [8] as the mapping

ξx : F(M)→ R : f → ξx f = γ̇(0) f :=
d f (γ(t))

dt

∣∣∣
t=0

, (2.90)

for all f ∈ F(M), where F(M) denotes the set of smooth real-valued functions defined on
x ∈ M, and

γ : R→M : t→ γ(t) (2.91)
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is a curve inM such that γ(0) = x. We also write

ξx f = D f (x)[γ′(0)] , (2.92)

which expresses the action of the tangent vector on a function as a derivation D, satisfying
Leibniz’s law [54]. Intuitively, the tangent vector is a vector in the tangent space perpendicular
to the curve γ with its foot at x, see Fig. (2.5b). We say "γ realizes the tangent vector ξx". Since
γ′(0) does not depend on the curve γ realizing ξx, we can write a canonical linear one-to-one
correspondence [8]

ξx → γ′(0) . (2.93)

The set of all tangent vectors toM is known as the tangent bundle

TM :=
⋃

x∈M
TxM . (2.94)

Remark. If the manifold M is an embedded submanifold of E , we can define the canonical
identification of the tangent space as

TxM≃ E . (2.95)

As we will see in § 2.9, this will be a cornerstone element in our algorithm formulation as it
allows us to approximate a a manifoldM by a linear space around x [46].

Using Eq. (2.93), we can characterize the tangent vectors Z in the tangent space of the Stiefel
Manifold TX St(n, p). To do so, we choose a curve γ(t) = X(t) ∈ St(n, p) with γ(0) = X.
Then, if we differentiate X(t)TX(t) = 1p we get

ẊT(t)X(t) + XT(t)Ẋ(t) = 0 , (2.96)

such that at t = 0 (at the tangent point) setting Z = Ẋ(0) results in

TX St(n, p) = {Z ∈ Rn×p : ZTX + XTZ = 0} , (2.97)

i.e. XTZ is skew-symmetric [53].

Remark. Similarly to the naming of the elements X ∈ St(n, p), the tangent vectors of the
tangent space TXSt(n, p) will be denoted by Z, contrary to ηx, ξx which are used in the context
of a general manifoldM.

In Def. (2.6.2), we defined a vector field on a Euclidean space, analogously, here we define
the vector field on a manifold.

Definition 2.7.10 (Vector field). The vector field ξ is a smooth function fromM to the tangent
bundle TM that assigns a tangent vector ξx ∈ TxM to each point x ∈ M, i.e.

ξ : M→ TM : x → ξx . (2.98)

We will use the following notation

η(x) := ηx, ∀η ∈ X(M) . (2.99)
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where X is the set of smooth vector fields onM. Similarly to the euclidean case, ifM is a
submanifold of a vector space, the vector field can be thought of as a "collection of arrows",
one on each point inM. An alternative definition for the vector field ξ appears by looking at
the linear map Dξ that it gives rise to (a derivation)

Dξ : F→ F : f → ξ( f ) := ξ f . (2.100)

This is a map from smooth functions to smooth functions, with ξ( f g) = ξ( f )g + f ξ(g) for
any f , g ∈ F. Some sort of intuition comes when realizing that ξ maps points x to vectors ξx,
and vectors ξx map functions f to real numbers. The action of ξ on a function f at a point x
is [8]

Dξ( f )(x) = (ξ f )(x) := ξx( f ). (2.101)

We can get an intuition on why a vector field ξ can be seen as a derivation by writing it in
terms of its local coordinates xi given by the chart (U , ϕ) (see Eq. (2.87)) for U ∈ Rn [55]

ξ =
n

∑
i=1

ai
∂

∂xi
, (2.102)

for some functions ai : U → R. This means the map in Eq. (2.98) can be written as

ξ(x) =
n

∑
i=1

ai(x)
∂

∂xi

∣∣∣
x

, (2.103)

and the map in Eq. (2.100) is

ξ f =
n

∑
i=1

ai
∂ f
∂xi

. (2.104)

The set of smooth vector fields onM is labeled as X(M) [8].

To close this section, let us look at two linear manifoldsM and N , a smooth map between
them F : M → N , and a tangent vector ξx at x ∈ M. By using Eq. (2.95), we define the
differential or tangent map as [8]

DF(x)[ξx] = lim
t→0

F(x + tξx)− F(x)
t

, (2.105)

where DF(x)[ξx] is a tangent vector to N at F(x). This shows how the notion of a tangent
vector allows us to generalize the concept of a directional derivative on a Manifold. Given a
differentiable function F :M→ N , and a vector field ξ onM, we define the map

DF[ξ] :M→ TN : x 7→ DF(x)[ξx] , (2.106)

such that for a real function f onM we have

D f [ξ] = ξ f . (2.107)
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2.8. Riemannian manifolds: main ingredients

By endowing the tangent spaces of a manifold with a smoothly varying inner product we
obtain what is known as a Riemannian manifold.

Definition 2.8.1 (Inner product). The inner product is a bilinear symmetric positive definite
form, i.e. a homogeneous polynomial or a polynomial whose terms have all the same degree [8].
If the inner product varies smoothly with x ∈ M, it defines an inner product on the tangent
space TxM, inducing a Riemannian metric onM and an associated Riemannian distance. The
following notations are used interchangeably in literature to denote an inner product between
ξx and ηx in TxM:

g(ξx, ηx) = gx(ξx, ηx) = ⟨ξx, ηx⟩ = ⟨ξx, ηx⟩x . (2.108)

From its definition, the inner product is positive for every non-zero element ξx. The inner
product ⟨., .⟩x induces a norm in the tangent space

∥ξx∥x :=
√
⟨ξx, ξx⟩x . (2.109)

This provides us with a notion of length in TxM, and, as we will see in Eq. (2.114), it allows
us to define a normalized direction of the steepest increase of a function f :M→ R.

A submanifold M of a Riemannian manifold M has an embedded Riemannian metric g
induced by the metric g ofM,

gx(ξ, η) = gx(ξ, η), ξ, η ∈ Tx M , (2.110)

which makesM a Riemannian manifold, or Riemannian submanifold ofM. If the manifold
M is embedded in a Euclidean space E with the Euclidean inner product ⟨., .⟩e from Eq. (2.84),
the inner product between two vectors ξx, ηx ∈ TxM is [56]

g(ξx, ηx) = tr{ξT
x Gxηx} = ⟨ξx, Gxηx⟩e , (2.111)

where the symmetric, positive definite matrix Gx is the matrix representation of g at x. The

(i, j) element of Gx is given by gi,j

∣∣∣
x

with

gi,j := g(Ei, Ej) , (2.112)

where Ei and Ej are coordinate vector fields [8], i.e. the equivalent of basis vectors in the tangent
space, cf. Eq. (2.82).

Definition 2.8.2 (Riemannian manifold). A Riemannian manifold M is the tuple (M, g)
where g is the Riemannian metric. As we saw in Eq. (2.84) the Euclidean space is a particular
case of a Riemannian manifold.

The generalization of the gradient defined in Eq. (2.73) for a function f defined on a
Riemannian manifoldM is the Riemannian gradient [8].
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Definition 2.8.3 (Riemannian gradient). The Riemannian gradient of a function f :M→ R

is the unique element grad f (x) ∈ TxM satisfying

⟨grad f (x), ξ⟩x = D f (x)[ξ], ∀ξ ∈ TxM . (2.113)

where D f (x)[ξ] is the differential of f as defined in Eq. (2.106). It is worth highlighting that
the gradient depends on the choice of metric but the differential does not [46]. Compared
to the Euclidean definition in Eq. (2.73), the inner product ⟨., .⟩x used in this definition in
general need not be the Euclidean inner product, but any smoothly varying inner product as
defined in Def. (2.8.1). Two properties of the Riemannian gradient of a function f :M→ R

at x ∈ M that will be leveraged in our optimization algorithm are:

• Its direction is the normalized direction of the steepest increase of f ,

grad f (x)
∥grad f (x)∥x

= arg max
ξx∈TxM:∥ξx∥=1

D f (x)[ξx] (2.114)

where D f (x)[ξx] is defined as in Eq. (2.105).

• Its norm is the steepest slope of f ,

∥grad f (x)∥ = D f (x)
[

grad f (x)
∥grad f (x)∥x

]
. (2.115)

Remark. We will use the notation grad instead of ∇ for the gradient within the context of
manifolds. This will help to avoid confusions with the to-be-defined affine connection in
Def. (2.8.7).

Using the metric g we can define the normal space of a manifold.

Definition 2.8.4 (Normal space). The normal space at x ∈ M is the orthogonal complement of
the tangent space TxM embedded in TxM, given by

NxM = {N ∈ Rn×p : gx(N, ξx) = 0 , ∀ξx ∈ TxM}. (2.116)

We can then write any tangent vector η ∈ TxM in terms of the tangent and normal space as

η = πT,g(η) + πN,g(η), (2.117)

where πT,g and πN,g are the orthogonal projections onto the tangent and normal spaces of
M, respectively. The subscript g in the projections π indicates that these in general depend
on the Riemannian metric g, while the explicit x dependence was omitted for simplicity.

Using the matrix representation described in Eq. (2.111) for g, together with the projection
πT,g onto the tangent space TxM of a manifoldM embedded in the Euclidean space E , the
Riemannian gradient can be evaluated as [56]

grad f (x) = πT,g(G−1
x grad f (x)) , (2.118)

33



2. Theory

where grad f (x) is the ambient gradient of f , and here it coincides with the Euclidean
gradient defined in Eq. (2.73). In the case of the Stiefel manifold St(n, p), a natural choice
for the Riemannian metric comes from its embedding space, i.e. the Euclidean metric from
Eq. (2.84). Under this choice, given a point X ∈ St(n, p), the Riemannian gradient is of the
form [8]

grad f (X) = πT,X(grad f (X)) , (2.119)

where πT,X is the (metric independent) tangent space projector

πT,X(ξ) = (I − XXT)ξ + Xskew(XTξ) , (2.120)

with
skew(A) :=

1
2
(A− AT) . (2.121)

We will see in § 4.5 that this gradient is not unique, and as shown in Eq. (2.118), it depends
on the choice of the metric.

Optimization methods in the Euclidean space like the ubiquitous gradient descent algorithm
[57] are instances of line search methods based on the update formula

xk+1 = xk + tkηk , (2.122)

where ηk is the search direction and tk is the step size. Unfortunately, this scheme cannot be
applied naively to a function f :M→ R, since in general ηk is not a tangent vector toM and
does not take the metric g into account; in addition, the scheme would take the xk+1 out of
the manifold. The former issue can be solved by looking at the definition of the Riemannian
gradient Def. (2.8.3), and defining the search direction as

η := − grad f (x). (2.123)

However, moving in this direction in the Euclidean sense would still take a point out of the
manifold. Therefore, we need to generalize this concept for the Riemannian geometry. This
can be achieved through the exponential map at x ∈ M

Expx : TxM→M : η → Expxη = γ(1, x, η) , (2.124)

where γ is a geodesic [8, 51].

Definition 2.8.5 (Geodesic). The concept of a straight line in the Euclidean space Rn is
generalized to a manifold by the geodesic curve γ(t). For every point x ∈ M with the tangent
vector η ∈ TxM, the geodesic γ(t, x, η) satisfies

• γ(0) = x,

• γ̇(0) = η.

Nevertheless, computing the exponential map is highly computationally expensive, and in
many cases, might turn out to be more difficult than the original Riemannian optimization
problem. For this reason, we instead look at retractions.
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Figure 2.6.: Riemannian manifold M, showing a tangent space at a point x, with tangent
vector η ∈ TxM, and the retraction point Rx(η).

Definition 2.8.6 (Retraction). The idea of moving along a tangent vector η ∈ TxM while
staying in a manifold M is realized up to first-order [58] by the smooth retraction map
Rx : TxM→M satisfying

1. Rx(0x) = x, with 0x the zero element of TxM ,

2. DRx(0x) = idTxM, where idTxM is the identity mapping in the tangent space.

The second condition is known as the local rigidity condition, which can be understood as the
preservation of the gradients at x. As a result, for every tangent vector η ∈ TxM, moving
along a curve

γη : t→ Rx(tη, γ̇η(0) = η (2.125)

can be thought of as moving along η while staying in the manifoldM. The retraction at x
along η is depicted in Fig. (2.6), where we see the procedure as:

1. Start at a point x ∈ M.

2. Move along η to the point x + η ∈ TxM.

3. Project back to the manifoldM using Rx.

For a real-valued function f defined on a Riemannian manifoldM, the pullback of f through
the retraction Rx in the neighborhood of x ∈ M is the real-valued function acting on the
tangent space TxM

f̂x := f ◦ Rx : TxM→ R . (2.126)

Using the local rigidity condition from Def. (2.8.6) and the canonical identification in Eq. (2.95)
yields

grad f̂x(0x) = grad f (x) . (2.127)

For the Stiefel manifold St(n, p), a projection-based retraction RX based on the polar
decomposition is given in [8] as

RX(η) = (X + η)(Ip + ηTη)−1/2 , (2.128)
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where (A)−1/2 can be implemented through the eigenvalue decomposition of A. As we
will discuss in § 4.6, there exist alternative retractions for the Stiefel manifold, and some of
them are preffered due to their numerical stability. We now introduce the last main ingredient
of this section, the affine connections [8].

Definition 2.8.7 (Affine connection). An affine connection ∇ on a manifoldM is a mapping

∇ : X×X→ X : (η, ξ)→ ∇ηξ , (2.129)

We say the vector field ∇ηξ is the covariant derivative of ξ with respect to η for the affine
connection ∇. For the case whenM = Rn, ∇ becomes the canonical (Euclidean) connection
giving rise to the classical directional derivative

(∇ηξ)x = lim
t→0

ξx+tηx − ξx

t
, (2.130)

for ξx, ηx ∈ TxM and ξ, η ∈ X(M), cf. Eq. (2.71). All affine connections ∇ satisfy:

• linearity in η,

• linearity in ξ,

• and Leibniz’s law (see Section 5.2 in [8] for details).

Intuitively, ∇ on a manifold allows us to differentiate a vector field ξ along another vector
field η, i.e. it is the directional derivative of a vector field. This is in general not possible since
the tangent vectors in Eq. (2.130) belong to different spaces. The operator ∇ is exactly what
provides this connection between different tangent spaces of a manifold.

In a Riemannian manifold the main connection of interest is known as the Levi-Civita
or Riemannian connection, due to its symmetry and invariance of the metric properties (see
Section 5.3.2 of [8]).

Given the decomposition of a vector ξx ∈ TxM from Eq. (2.117), whereM is the embedded
ambient Riemannian manifold of the Riemannian submanifoldM, and let ∇ and ∇ be the
Riemannian connections ofM andM, by proposition 5.3.2 of [8] we get the relation

∇ηx ξ = πT,g
(
∇ηx ξ

)
, (2.131)

for all ηx ∈ TxM and ξ ∈ X(M). The ambient Riemannian connection ∇ is given in Theorem
3.1 of [56] as

∇ηx ξ := Dξ(x)[ηx] + G−1
x K(ηx, ξ) (2.132)

in terms of the Christoffel metric term K ∈ M

K(η, ξ) :=
1
2
[(DGx[η])ξ + (DGx[ξ])η −X (η, ξ)] . (2.133)

The cross term X (η, ξ) ∈ M in this expression is a bilinear form acting on a pair of vector
fields (η, ξ) such that for any vector field ξ0

⟨X (η, ξ), ξ0⟩x̂ = ⟨η, (DGx[ξ0])ξ⟩x̂ , (2.134)
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with ⟨., .⟩x̂ the metric ofM. WhenM is the Euclidean space Rn×p andM inherits the constant
Euclidean metric, Eq. (2.132) simplifies to

∇ηx ξ = (Dξ(x)[ηx]) . (2.135)

Thus, using the projection in Eq. (2.120), the Riemannian connection for X ∈ St(n, p) with the
embedded Euclidean metric is given for ηx ∈ TX St(n, p) and ξ ∈ X(St(n, p)) as

∇ηX ξ = πT,X (Dξ(X)[ηX]) , (2.136)

i.e. an orthogonal projection onto the tangent space applied on the classical directional
derivative from Eq. (2.71) [8].

Recall from Def. (2.6.3) the definition of the Hessian matrix in Rn. For an abstract Euclidean
space E it is useful to think of the Hessian at x as a linear map: H : E → E , given in the
orthonormal basis (ei)i=1,...,n of E by

Hess f (x)[z] := ∑
ij

∂2
ij f̂ (x1, . . . , xn)zjei , (2.137)

where z = ∑j zjej and f̂ (x1, . . . , xn) = f (x1e1 + . . . xnen). Generalizing this concept to a
Riemannian manifold, we get the Riemannian Hessian [8].

Definition 2.8.8 (Riemannian Hessian). The Riemannian Hessian of a function f defined on a
Riemannian manifoldM at a point x ∈ M is the linear mapping Hess f (x) : TxM→ TxM
given by

Hess f (x)[ξx] = ∇ξx grad f (x) , (2.138)

for all tangent vectors ξx ∈ TxM, with ∇ the Riemannian connection from Eq. (2.131) and
grad the Riemannian gradient from Eq. (2.118). The Riemannian Hessian is symmetric under
the Riemannian metric ⟨., .⟩x

⟨Hess f (x)[ξ], η⟩x = ⟨ξ, Hess f (x)[η]⟩x , (2.139)

for all vector fields ξ, η ∈ X(M).

Remark. Similar as for the gradient, we will use the notation Hess instead of H for the Hessian
operator within the context of manifolds to make a distinction from the Rn case.

2.9. Trust-region optimization on Riemannian manifolds

In the previous sections, we developed the ingredients from Riemannian optimization that
will come in handy for our main optimization algorithm applied to the Stiefel manifold
St(n, p). Here, we will discuss the precise algorithm employed in this work, together with a
rationale for its use.

In works like the one from Brieger et al. [59], the Newton algorithm [8] was used to optimize
a cost function defined on St(n, p). Here, instead, we employ the trust-region algorithm, as
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done in [60] for the unitary manifold, as it combines the local superlinear rate of convergence
(i.e. faster than linear) of the Newton method with global convergence properties. Further,
the trust-region algorithm provides a decrease in the computational cost, since it avoids the
expensive inverse Hessian computation present in Newton-like methods. It is beneficial to
think of this algorithm as selecting the next point xk+1 as the critical point, i.e. points x∗ where
grad f (x∗) = 0, of the quadratic model corresponding to the second-order Taylor expansion of
f (xk). This is an alternative viewpoint of the line search iteration described in Eq. (2.122).

Definition 2.9.1 (Models). A model mx of a real-valued function f on a manifoldM around
x ∈ M is a function defined on the neighborhood of x such that

1. mx is a "good enough" approximation of f around x, where the quality of the model is
defined in terms of the distance between f (y) and mx(y), as shown in Eq. (2.140).

2. mx has a "simple" form that makes it suitable for optimization algorithms. Often, like in
this work, this means we choose mx to be a quadratic model, as several algorithms are
available to minimize a quadratic function under trust-region constraints [8].

For q > 0, a model mx is of order q if there exists a neighborhood U around x and a constant
c > 0 satisfying

| f (y)−mx(y)| ≤ c (dist(x, y))q+1 , ∀y ∈ U , (2.140)

where dist(x, y) is the distance induced by the Riemannian metric. For a retraction Rx onM,
we get

| f (y)−mx(y)| ≤ c∥R−1
x (y)∥ q+1

, ∀y ∈ U . (2.141)

As we did in Eq. (2.126), we can define the pullback of f through the retraction Rx as the
map from TxM to R

f̂x = f ◦ Rx .

Then, we define m̂x as the order-q Taylor expansion of f̂x around the origin element 0x in the
tangent space TxM. Pushing m̂x forward through Rx we get the order-q model of f around x

mx = m̂x ◦ R−1
x . (2.142)

Using what we learned in § 2.8, we can define the first-order model using

m̂x(ξ) = f (x) + ⟨grad f (x), ξ⟩+ 1
2
⟨Hess f (x)[ξ], ξ⟩, ξ ∈ TxM , (2.143)

where grad and Hess are the Riemannian gradient and Hessian, respectively. Compare this
equation with the Euclidean equivalent in Eq. (2.79). Due to the local rigidity condition of Rx

we get grad f (x) = grad f̂x(0x). Since, as we saw in Def. (2.8.6), the retraction used in this
work is only of first order, we have Hess f (x) ̸= Hess f̂x(0x). Nevertheless, any critical point
x∗ of f satisfies

Hess f (x∗) = Hess f̂x∗(0x∗) . (2.144)

With this in mind, we can now define the trust-region method on a Riemannian manifold [8].
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Definition 2.9.2 (Trust-region algorithm). Given a Riemannian manifold (M, g) with retrac-
tion R, a real-valued function f onM, and a current optimization iterate xk ∈ M, we map
the optimization problem onto the tangent space with the pullback

f̂xk : TxkM→ R : ξ → f (Rxk(ξ)). (2.145)

The trust-region subproblem solved by the inner iteration is

min
η∈TxkM

m̂xk(η) = f (xk) + ⟨grad f (xk), η⟩xk +
1
2
⟨Hk[η], η⟩xk , ⟨η, η⟩xk ≤ ∆2 , (2.146)

where ∆ is known as the trust-region radius, Hk can in general be any symmetric linear operator
on TxkM, and ⟨., .⟩xk is the inner product of the tangent space at xk from Eq. (2.108). However,
in order to achieve superlinear convergence we want Hk ≈ Hess f (xk). In this work, we will
choose Hk = Hess f (xk). The inner iteration must be an algorithm defined on TxM, which in
our case is a linear subspace of Rn×p. Once we obtain an approximate solution ηk, we propose
a candidate for the next iterate Rxk(ηk). To assess the quality of the model mxk , and hence
determine whether to accept the candidate and adapt the radius, we define the quotient

ρk =
f (xk)− f (Rxk(ηk))

m̂xk(0xk)− m̂xk(ηk)
=

f̂xk(0xk)− f̂xk(ηk)

m̂xk(0xk)− m̂xk(ηk)
. (2.147)

Based on the value of ρk we identify the following cases:

• If ρk ≪ 1, the model is very inaccurate: we reject Rxk(ηk) and reduce ∆.

• If ρk is small but not as drastically: we accept Rxk(ηk) but reduce ∆.

• If ρk ≈ 1, the model and function have a good agreement: we accept Rxk(ηk) and
increase ∆.

• If ρk ≫ 1, the model is inaccurate, but (luckily) the cost function is decreasing: in this
case, we can try our luck and increase ∆ to hope for further decrease in f .

Finally, in this work, we will choose to solve the trust-region subproblem approximately by
means of a computationally light algorithm known as the conjugate-gradient (CG) method, see
7.3.2 of [8] for details. This algorithm is based on improving upon the Cauchy Point.

Definition 2.9.3 (Cauchy Point). The Cauchy point is the solution ηC
k of the one-dimensional

problem
ηC

k = arg min
η
{m̂xk(η) : η = −τ grad f (xk), τ > 0, ∥η∥ ≤ ∆k} , (2.148)

assuming grad f (xk) ̸= 0. The Cauchy decrease is

m̂xk(0)− m̂xk(η
C
k ) . (2.149)
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Using the conjugate-gradient method, we can achieve a decrease in the Riemannian sub-
problem of at least the Cauchy decrease. Further, if Hk > 0, given enough iterations, we can
estimate the minimizer

ηN
k = (Hk)

−1 grad f (xk) (2.150)

of the subproblem, provided this lies within ∆. A main advantage of the CG algorithm is its
inverse-free nature, as it does not require the computation of H−1

k , but only of the product of
Hk with a tangent vector.
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In the previous chapter, we learned about open quantum systems, quantum channels, their
representation in terms of tensor networks, and optimization techniques on matrix manifolds,
focusing on the Stiefel manifold. Here, we will use these concepts to formulate precisely the
problem addressed in this work.

In § 2.5, we saw how to describe a mixed state as a Locally Purified Density Operator (LPDO)
tensor network ansatz. In particular, we saw how to simulate the dissipative dynamics
of nearest-neighbor Lindblad operators, for which Alg. (3) yields the second-order Trotter
approximation shown in Eq. (2.64)

eτL̂ = eτL̂o/2eτL̂e eτL̂o/2 + O(τ3) .

However, finding higher-order Trotter approximations for Markovian dynamics remains an
open problem [6]. This challenge arises from the semigroup property of Lindblad super-
operators since, contrary to the unitary evolution, the negative coefficients in higher-order
Trotter splittings [7, 61, 62] would result in non-physical maps. In this work, we aim to
address this limitation by leveraging the gauge freedom of quantum channels described in
§ 2.5, along with the Riemannian optimization methods on the Stiefel manifold we studied in
§ 2.8. Our objective is to achieve a better approximation error for the dissipative dynamics of
nearest-neighbor Lindbladians while maintaining the second-order Trotter structure of the
layers, shown in Eq. (2.64).

3.1. From global to local superoperators

With this goal in mind, let us look in detail at the form of the odd eτL̂o and even eτL̂e layers in
the above splitting for a quantum system with N sites. Each superoperator L̂[l,l+1] ∈ Cd2N×d2N

in Eq. (2.63) is of the form described in Eq. (2.27),

L̂[l,l+1] = −i(H[l,l+1] ⊗ 1⊗N − 1⊗N ⊗ H[l,l+1]T)

+ ∑
k

[
L[l,l+1]

k ⊗ L[l,l+1]∗
k − 1

2

(
L[l,l+1]†

k L[l,l+1]
k ⊗ 1⊗N + 1⊗N ⊗ L[l,l+1]T

k L[l,l+1]∗
k

)]
, (3.1)

where 1⊗N is a dN × dN identity matrix. While the final form of the tensor would be the
same with the coherent terms, in this work, we focus on the dissipative dynamics. Therefore,
the Hamiltonian terms will be omitted from here onwards in our formulation. The jump
operators L[l,l+1]

k in Eq. (3.1) are a special case of the ones we saw in Eq. (2.27), as they are
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defined on a Hilbert space of dimension dN , while acting non-trivially only on two sites at a
time: l and l + 1. Namely, they are of the form

L[l,l+1]
k = 1⊗l−1 ⊗ Lk ⊗ 1⊗N−1−l , Lk ∈ Cd2×d2

, (3.2)

for l ∈ [1, N − 1], while for l = N, we use periodic boundary conditions (PBC) to define

L[N,1]
k = L1

k ⊗ 1⊗N−2 ⊗ LN
k , Lk = LN

k ⊗ L1
k ∈ Cd2×d2

. (3.3)

The diagram representation of the boundary operator showing the PBC is

L[N,1]
k = . (3.4)

Using Eqs. (3.1) and (3.2) we can rewrite each L̂[l,l+1] as

L̂[l,l+1] = ∑
k

[ (
1⊗l−1 ⊗ Lk ⊗ 1⊗N−1−l

)
⊗
(

1⊗l−1 ⊗ L∗k ⊗ 1⊗N−1−l
)

−
(

1⊗l−1 ⊗ L†
k Lk ⊗ 1⊗N−1−l

)
⊗ 1⊗N

2
− 1⊗N

2
⊗
(

1⊗l−1 ⊗ LT
k L∗k ⊗ 1⊗N−1−l

) ]
, (3.5)

and the tensor representation for the k-th operator is

− 1
2



+



.

(3.6)
In this diagram, we recognize the non-identity terms as the vectorization of the k-th dissipative
term D̂[l,l+1]

k , as introduced in Eq. (2.26). Contrary to the single-site scenario, the components
of this operator in a multi-site system are spread apart (see global vectorization in Eq. (3.15)).
This difference invites us to define its components as

Dk[l,l+1]
1 = Lk +

1√
2
(L†

k Lk + 1) , (3.7)

Dk[l,l+1]∗
2 = L∗k +

1√
2
(1 + LT

k L∗k ) . (3.8)
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Further, we can stack each of the terms in Dk[l,l+1]
1 and Dk[l,l+1]∗

2 into two rank-three tensors
Dk[l,l+1]

1,j and Dk[l,l+1]∗
2,j to arrive at the expression

D̂[l,l+1]
k = ∑

j
Dk[l,l+1]

1,j ⊗Dk[l,l+1]∗
2,j . (3.9)

By summing over all k we obtain

D̂[l,l+1] = ∑
k
D̂[l,l+1]

k = ∑
j,k
Dk[l,l+1]

1,j ⊗Dk[l,l+1]∗
2,j , (3.10)

with the tensor diagram representation

= . (3.11)

This relation helps us rewrite L̂[l,l+1] as a tensor product of the form

L̂[l,l+1] = ∑
j,k

1⊗l−1 ⊗Dk[l,l+1]
1,j ⊗ 1⊗N−1−l ⊗ 1⊗l−1 ⊗Dk[l,l+1]∗

2,j ⊗ 1⊗N−1−l

= .

(3.12)

We can then take advantage of the following relation for the exponential of a non-interacting
tensor product sum

e(A⊗1)+(1⊗B) = eA⊗1 · e1⊗B = (eA ⊗ 1) · (1⊗ eB) = eA ⊗ eB (3.13)

to derive an expression for the odd eτL̂o and even eτL̂e layers. Namely, using Eqs. (3.10), (3.12),
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and (3.13) we can depict the tensor diagrams for N = 4 as

eτL̂o = and eτL̂e = , (3.14)

where the single thicker leg going from eτD1 to eτD2 is the channel index q shown in Eq. (2.69).
We have used Eq. (3.4) for the PBC in eτL̂e , i.e. the term acting on sites 4 and 1 is shown as
having half the operator on each site. A reshuffle of the legs, which we call global-to-local
transformation, allows us to bring D[l,l+1]

1 and D[l,l+1]∗
2 next to each other (see Def. (3.1.1)).

This yields the expression shown in Eq. (2.67)

eτL̂o,L =
⊗

l

eτD̂[2l−1,2l]
and eτL̂e,L =

⊗
l

eτD̂[2l,2l+1]
,

where we have added the L subscript to emphasize that these superoperators come from a
localized version of the original Lo and Le.

Let us look in detail at the global-to-local transformation. The standard ordering of the legs
like the one in L̂[l,l+1] is based on the global vectorization of the N-sites density matrix

ρ = −−−−→
Global

|ρ⟩⟩ = = .

(3.15)
In other words, we have sites [1, . . . , N] followed by their conjugated counterpart [1∗, . . . , N∗],
as shown in Eq. (3.6). On the other hand, Eq. (2.67) is based on a local vectorization where every
two sites [l, l + 1] are followed by their conjugate versions [l∗, l + 1∗]. The local vectorization
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of the density matrix looks like

ρ = −−−−→
Local

|ρ⟩⟩ = . (3.16)

We can formally define this transformation as follows.

Definition 3.1.1 (Global-to-local). Given a multi-partite superoperator ΛG ∈ L (H1⊗H2 . . .⊗
HN ⊗H1∗ ⊗H2∗ ⊗ . . .⊗HN∗), the global-to-local transformation GL is defined as the map

GL : L (H1 ⊗H2 . . .⊗HN ⊗H1∗ ⊗H2∗ ⊗ . . .⊗HN∗)→
L (H1 ⊗H2 ⊗H1∗ ⊗H2∗ . . .⊗HN−1 ⊗HN ⊗HN−1∗ ⊗HN∗)

: ΛG → ΛL = (ΛG)
GL .

(3.17)

Applying this transformation to our superoperator Λ is depicted as



GL

= . (3.18)

The inverse map follows trivially, and we call it the local-to-global transformation

LG : ΛL → ΛG = (ΛL)
LG . (3.19)

Remark. Notice that the localized version of the superoperator arising from the global-to-
local operation is defined in this way because the operators Lk act on two sites. A similar
construction would be obtained if instead each operator acted on m sites. In this case, we
would have sites [l, . . . , l + m− 1] followed by their conjugated version [l∗, . . . , l + m− 1∗].

The local vectorization is the natural ordering that arises from the tensor product in
Eq. (2.67) where each local superoperator looks like

eτD̂[l,l+1]
= . (3.20)
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Therefore, if we tensor these operators across all sites we obtain the alternating pattern of
the legs we see in Eq. (3.16). For N = 4 the localized odd layer diagram is

eτL̂o,L = . (3.21)

The even layer follows a similar pattern by taking care of the PBC. Using the local-to-global
map LG we obtain the relation



LG

= . (3.22)

3.2. From superoperators to isometries

Now that we have transformed our expressions to focus on the local superoperators eτD̂[l,l+1]

we can reformulate these to fit into a Riemannian optimization scheme. As anticipated in
§ 2.8 we will cast these operators into the Stiefel manifold St(n, p). The first thing to notice
is the relation between these superoperators and their Kraus representation. To do so, we
employ Eq. (2.52),

= , (3.23)
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with the Kraus tensor from Eq. (2.69)

E[l,l+1]
q = = , (3.24)

where for the second equality we have joined the legs on each side into a single row sout
l,l+1 ∈ [d2]

and column sin
l,l+1 ∈ [d2] index. If we now merge the Kraus rank index q with the row

dimension sout
l,l+1, i.e. we stack the Kraus operators {Eq}q∈[k] along their row dimension, we

obtain a (kd2)× d2 matrix X[l,l+1]

→ X[l,l+1] = . (3.25)

In this formulation, the trace-preserving condition of the Kraus channel from Eq. (2.35) can
be expressed as

1 = X[l,l+1]†X[l,l+1] = . (3.26)

We recognize this relation for X[l,l+1] as the definition of the Stiefel manifold in Def. (2.7.7)! If
we set n = kd2 and p = d2, we arrive at

X[l,l+1] ∈ St(n, p). (3.27)

The procedure to transform an isometry X[l,l+1] into its superoperator representation
eτD̂[l,l+1]

is shown in Alg. (4). We will label the whole isometry-superoperator transformation
as SP, and define the map

SP : St(n, p)→ T (H1, H2) : X → Λ = (X)SP . (3.28)

The inverse map ST follows immediately as

ST : T (H1, H2)→ St(n, p) : Λ→ X = (Λ)ST . (3.29)

The inverse algorithm to convert a superoperator into an isometry builds on top of Alg. (1)
and is shown in Alg. (5).
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Algorithm 4 Stiefel to Superoperator

Input: X: Isometry matrix ∈ St(n, p) associated to a quantum channel with n = kd2 and
p = d2

Output: Λ: Superoperator representation of channel ∈ T (H1, H2) of dimension d4 × d4

Require: n ≥ p
1: Esin

sout,q ← Reshape isometry X into a rank-three tensor of dimensions d2 × k× d2.
2: Eq

sout,sin ← Transpose indices of Esin
sout,q.

3: C ← Contract ∑q Eq
sout,sin Eq†

sout,sin to get the Choi matrix using Eq. (2.49).
4: Λ← Apply row-reshuffling from Def. (2.4.4) to C.

Algorithm 5 Superoperator to Stiefel

Input: Λ: Quantum channel in superoperator form ∈ T (H1, H2) of dimension d4 × d4

Output: X: Isometry matrix ∈ St(n, p)
1: Esin

sout,q: rank-three tensor of dimensions d2 × k× d2 ← Use Alg. (1) to obtain the Kraus
tensor from Λ.

2: X: a matrix of dimensions kd2 × d2 with X†X = 1← Merge Kraus index q with sout.
3: Define dimensions n = kd2 and p = d2, such that n ≥ p.

3.3. Defining the cost function: approximation error

Now that our operators belong to the Stiefel manifold, we can construct a real-valued cost
function f on this manifold, i.e.

f : St(n, p)→ R .

To this end, we look at the difference between the approximation given by the right-hand
side of Eq. (2.64) and the full superoperator in the left-hand side. In particular, we use the
computationally relevant Frobenius norm from Eq. (2.85)

∥eτL̂ − eτL̂
approx∥ . (3.30)

It is customary to divide the time evolution up to a final time τ into smaller time steps of
size ∆t, such that

τ = n · ∆t , (3.31)

with n ∈ N the number of time steps. If we use the second-order Trotter splitting from
Eq. (2.64) for each ∆t, instead of the full time τ, we arrive at the following pattern for the
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approximate superoperators

eτL̂
approx = (3.32)

= (3.33)

where the blue blocks correspond to the terms with half-time steps while the red blocks
correspond to the full steps, i.e. the layers with ∆t/2 and ∆t in the exponent, respectively.
The diagram in Eq. (3.33) is the result of merging the half-time steps in Eq. (3.32), and m is
the number of layers in the final splitting

m = 3n− (n− 1) = 2n + 1 . (3.34)

We see the final form of the splitting with n time steps showcases the same odd-even structure
from Eq. (2.64). However, due to this new partition structure, the approximation error in
terms of ∆t becomes

eτL̂ = eτL̂
approx +O(∆t2) . (3.35)

Notice how the approximation error is now of second-order, contrary to the third-order of
Eq. (2.64). The decrease in the order of the scheme is due to the composition of n time steps,
where each of them introduces an error scaling as O(∆t3), so that

nO(∆t3) =
τ

∆t
O(∆t3) = O(∆t2) . (3.36)

Alternatively, using the relations between ∆t, n and m in Eqs. (3.31) and (3.34), we can express
the error scaling in terms of these other parameters

O(∆t2) = O(n−2) = O(m−2) . (3.37)

Finally, in order to arrive at the final expression of the cost function, we lay out the
assumptions used:

49



3. Problem Formulation

• To achieve translational symmetry, we assume the operators D̂[l,l+1] are the same for all
l ∈ [1, N].

• We use the splitting for n time steps to simulate the evolution up to time τ with m
distinct layers. We choose all the layers to be different, contrary to the repeating structure
from the original Trotter splitting, to increase the degrees of freedom of the optimization,
in hopes of achieving a higher expressivity.

• As mentioned in § 3.1, we focus on the dissipative dynamics, omitting the Hamiltonian
terms of the Lindblad superoperator L.

• We restrict our optimization to the real Stiefel manifold to avoid problems with non-
holomorphic functions defined on complex manifolds.

As explained in Def. (2.4.2), composing superoperators is achieved through the usual matrix
multiplication, for which we overload the symbol ·. Then, by labeling the isometry on the
α-th layer as Xα, we can express the cost function as

∥eτL̂ −
m

∏
α

(
(Xα)

SP
)LG
∥ , (3.38)

where SP is the isometry-superoperator map from Eq. (3.28) and LG is the local-to-global
transformation we introduced in Eq. (3.19). We can define the vector of isometries

X := (X1, . . . , Xm) , (3.39)

and with it the superoperator S(X) ∈ Rd2N×d2N
acting on the full system, so the cost function

takes the form
f (X) = ∥eτL̂ − S(X)∥ . (3.40)

We will also refer to this cost function as the approximation error of the dissipative dynamics.
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Dynamics

Now that we have developed the background theory and used it to formulate a real-valued
cost function defined on the Stiefel manifold, it is time to tackle the optimization problem.
We start this section by outlining the algorithm we implement to this end, shown in Alg. (6),
followed by an in-detail explanation of each of its components. Let us dive in!

Algorithm 6 A Riemannian Approach to Lindbladian Dynamics
Input:
Lk: List of Lindblad operators acting on nearest-neighbors
τ: Final time of Lindblad dissipative evolution
n: Number of time steps for Trotter splitting
N: Number of sites in the LPDO structure
d: Physical dimension per site in the LPDO
R: Desired rank of Kraus tensor acting on nearest-neighbors in the LPDO tensors
I: Number of iterations for trust-region optimization
Output:
fβ: Cost function history, evaluated after every iteration β of the optimization
X̃: List of isometries minimizing approximation error after I iterations
Require: All Lk ∈ Rd2×d2

1: eτL̂ ← Create reference superoperator from {Lk}k and Eq. (2.63). ▷ Assume translational
symmetry for all N sites.

2: {Λα}α ← Create m = 2n + 1 superoperators using the Trotter splitting from Eq. (2.64)
and the decomposition in Eq. (3.33).

3: X0 ← Generate ansatz of isometries from superoperators {Λα}α.
4: f (Xβ, eτL̂)← Define cost function taking as input the exact superoperator eτL̂ and list of

isometries Xβ.
5: grad f ← Define Riemannian gradient from cost function.
6: RX(Z)← Define retraction from tangent space to Stiefel manifold.
7: Hess f ← Define Riemannian Hessian from cost function and Riemannian gradient.
8: for β← 0 to I −1 do
9: Xβ+1 ← Perform an iteration of the trust-region algorithm with the conjugate gradient

10: algorithm as inner iteration using f , grad f , Hess f , RX, and Xβ.
11: end for

The entirety of this work has been implemented in Python [63] and can be found open-
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sourced on GitHub as a package called OpenTN [64]. As a backend for manipulating the
tensors and performing operations on them, we have used NumPy [65] and JAX [66]. The
latter has also been utilized due to its automatic differentiation capabilities, as we will elaborate
on the following sections.

4.1. Creating the ansatz: compressed factorization

As for many other gradient-based optimization algorithms, the initial optimization point, i.e.
the ansatz, can play an important role in the number of iterations needed in the optimization
scheme. Sometimes, it can even determine whether the algorithm reaches a local minimum
or not. In this work, we choose to start at the even-odd splitting given by the second-order
Trotter from Eq. (2.64). We have seen that for n time steps this ansatz results in m layers made
up of local superoperators

Λα ∈ Rd4×d4
, ∀α ∈ [m] . (4.1)

The creation of this local ansatz of superoperators is implemented within our codebase using
the function get_general_trotter_local_ansatz .

1 from opentn.optimization import get_general_trotter_local_ansatz
2 # Lk is a list of Lindbladian operators acting on each pair of neighboring sites
3 superop_list = get_general_trotter_local_ansatz(lindbladians=Lk, tau=tau, n=n)

We can then convert each superoperator into its isometry representation using Alg. (5)
through the ST map, which builds on top of the superoperator-Kraus transformation from
Alg. (1). In the latter, a crucial step is the Cholesky decomposition of the Choi matrix as
shown in Eq. (2.56), and in particular, the degree of freedom present in the choice of the
Kraus rank dimension R used in the factorization

CR =
R

∑
q=1

E q
sout,sin(E q

sout,sin)
† , (4.2)

with sout, sin ∈ d2, and CR the rank-R approximation of C. The obvious choice is to set
R = rank(C) so that CR = C. We call this the natural Choi rank of the channel. However, we
can arbitrarily increase this number up to Rmax = d4 or decrease it down to Rmin = 1. The
former choice’s advantage is that it improves the expressivity of each layer by increasing the
number of parameters at the cost of increasing the complexity of the optimization. On the
other hand, the latter choice decreases the parameter space of the optimization, decreasing
its computational cost at the expense of a lower maximum possible accuracy. This second
strategy can be used as well to control the growth of the Kraus dimension in the LPDO
structure, where the indices rl get contracted with the channel index q of dimension R, as
shown in Eq. (2.58). In practice, we achieve the Cholesky factorization through the truncated
SVD decomposition

CR = VDV† = V
√

D
√

DV† = V ′V ′† , (4.3)

where V and V ′ are d4×R isometries, D is a R×R diagonal matrix, and
√

D is its element-wise
square root. The SVD scheme is preferred in this work over the direct Cholesky decomposition
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implemented in NumPy , as the latter suffers from numerical instabilities when the Choi matrix
has negative eigenvalues that are zero up to numerical precision. We implement this procedure
through the function factorize_psd_truncated .

1 from opentn.transformations import factorize_psd_truncated
2 # C is any PSD operator and x its Cholesky factor
3 x = factorize_psd_truncated(C, rank=R)

Once we choose a rank R, we apply the ST transformation on the list of superoperators
{Λα}α∈[m] to obtain a list of isometries

X0 := (X0
1 , . . . , X0

m), Xα ∈ Rn×p, ∀α ∈ [m] , (4.4)

where we have defined n = Rd2 and p = d2. The superscript 0 indicates that this corresponds
to the zero-th iteration of the optimization scheme. This step is implemented in our code by
the super2ortho function.

1 from opentn.transformations import super2ortho
2 # iterate over the m superoperators
3 x_list = [super2ortho(superop, rank=R) for superop in superop_list]

4.2. Parametrizing the tangent space

Remark. As previously done in § 2.7, we will employ the symbols Z, W to label tangent vectors
of the tangent space TXSt(n, p), contrary to ηx, ξx which were used in the context of a general
manifoldM.

As briefly mentioned in § 2.8, the choice of the Riemannian metric, inducing an inner
product on the tangent space, determines the form of the Riemannian elements. Thus,
it might have an impact in the performance of the optimization algorithm. Therefore, in
this section, we discuss the use of different tangent space metrics. To this end, let us
start by following the procedure outlined in [67] to derive parametrized definitions for the
tangent and normal spaces of the Stiefel manifold that will come in handy both for the metric
discussions and the numerical implementations. We start by looking at the projection operator
π : Rn×p → St(n, p). This operation acts on an arbitrary rank-p matrix Y ∈ Rn×p and projects
it onto the closest point on St(n, p)

π(Y) = arg min
X∈St(n,p)

∥Y− X∥ 2 , (4.5)

where ∥.∥ is the Frobenius norm induced by the Euclidean inner product from Eq. (2.84).
Let us now look at the perturbed point π(X + ϵY), for X ∈ St(n, p), Y ∈ Rn×p, and ϵ ∈ R a
scalar. Since the Stiefel manifold does not fill the entire Rn×p space, there are some directions
Y that satisfy

π(X + ϵY) = X +O(ϵ2) . (4.6)

In other words, moving in the direction of Y does not take π(X + ϵY) away from X. Looking
at Fig. (2.5a), we recognize the collection of such directions Y as the normal space! Using this
practical definition, the tangent space can be defined as the orthogonal complement of the
normal space.
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Remark. For the orthogonality condition we use again the Euclidean inner product ⟨., .⟩e
inducing the Frobenius norm.

Now, to find the concrete parametrization of these spaces, let us first define the col-
umn orthogonal complement of the isometry X ∈ St(n, p) as X⊥ ∈ Rn×(n−p), satisfying
[XX⊥]T[XX⊥] = 1n, such that

XTX⊥ = Op×(n−p) (4.7)

XT
⊥X = O(n−p)×p (4.8)

XT
⊥X⊥ = 1n−p (4.9)

XXT + X⊥XT
⊥ = 1n , (4.10)

where 1n is the n× n identity matrix and On×m is the n×m matrix with zero in all its elements.
The side-by-side stacking of matrices [AB] is a block-matrix yielding a row vector with two
matrix elements (A, B). Analogously, the column vector [AB]T arises from the vertical stacking
of the matrices. We can use these relations to define the decomposition of an arbitrary matrix
Y ∈ Rn×p

Y = XA + X⊥B + XC (4.11)

in terms of a skew-symmetric matrix A ∈ Rp×p, a symmetric matrix C ∈ Rp×p, and an
arbitrary matrix B ∈ R(n−p)×p. We provide a proof for this decomposition in App. (A.1). This
important decomposition is used in Lemma 8 of [67] to prove the relation

π(X + tY) = X + t(XA + X⊥B) +O(t2) . (4.12)

It is then straightforward to see that using Y = XC we get π(X + tXC) = X +O(t2), and
for a small enough |t| > 0, this yields

π(X + tXC) = X . (4.13)

We recognize this expression as the definition of the normal space we presented in Eq. (4.6),
so we can provide an alternative parametrized definition for the normal space of the Stiefel
manifold.

Definition 4.2.1 (Normal space - revisited). Given an element X ∈ St(n, p) of the Stiefel
manifold, the normal space NXSt(n, p) at X is

NxSt(n, p) = {N ∈ Rn×p : N = XC, C ∈ Rp×p, C = CT} . (4.14)

This is an equivalent but more explicit definition than the one given in Eq. (2.116).

Inspired by Eq. (4.12), we can infer the form of the tangent space vectors to be XA + X⊥B,
which yields the parametrized definition of the tangent space.

Definition 4.2.2 (Tangent space - revisited). Given an element X ∈ St(n, p) of the Stiefel
manifold, the tangent space TXSt(n, p) at X is

TXSt(n, p) = {Z ∈ Rn×p : Z = XA + X⊥B, A ∈ Rp×p, A + AT = 0, B ∈ R(n−p)×p} . (4.15)
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If we compare Eqs. (2.97) and (4.15), we realize the product XTZ in the former is exactly the
skew-symmetric matrix A of the latter, for Z ∈ TXSt(n, p).

It is straightforward to verify that XA + X⊥B is orthogonal to XC under the Euclidean
inner product

⟨XA + X⊥B, XC⟩e = tr{(XA + X⊥B)TXC} = 0 , (4.16)

where we used tr
(

ATC
)
= 0. This relation helps reconcile the parametrized definition of the

tangent space with the original description from Def. (2.7.8). From the revisited definitions of
the tangent and normal space we can easily verify that at X ∈ St(n, p)

πT,X(Y) = (I − XXT)Y + Xskew(XTY)

is the projection of an arbitrary matrix Y ∈ Rn×p onto the tangent space, as introduced in
Eq. (2.120). The first term comes from using Eq. (4.10) to obtain X⊥XT

⊥ = (I − XXT) followed
by the orthogonal condition in Eq. (4.8)

(I − XXT)Y = X⊥XT
⊥Y = X⊥B . (4.17)

The second term uses Eq. (4.7) to obtain XTY = A + C, followed by the skew operator to pick
the skew-symmetric factor A

skew(XTY) = A , (4.18)

which we multiply by X to get XA. Similarly, we derive the projection onto the normal space

πN,X(Y) = X sym(XTY) =
X
2
(YTX + XTY) , (4.19)

that picks the symmetric factor
sym(XTY) = C , (4.20)

and multiplies it by X, yielding the parametrization in Eq. (4.14). We can simplify Eq. (2.120)
to obtain a relation between πN,X and πT,X

πT,X(Y) = Y− X
2
(YTX + XTY)

= Y− πN,X(Y) .
(4.21)

We recognize this relation as a reordering of the terms in Eq. (2.117). Our implementation
uses the previously introduced factorized_psd_truncated function to compute X⊥.

1 from opentn.transformations import factorize_psd_truncated
2 # Projection onto the column space of X
3 P_x = x @ x.T
4 # Projection onto the orthogonal column space of X
5 P_x_comp = np.eye(n) - P_x
6 # Factorize P_x_comp = x_perp @ x_perp.T
7 x_perp = factorize_psd_truncated(P_x_comp, rank=n-p)

As a byproduct of the parametrized formulation, we can easily verify the degrees of
freedom of TXSt(n, p) to be

np− p(p + 1)
2

=
p(p− 1)

2
+ p(n− p) . (4.22)
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The arbitrary matrix B contributes all its p(n− p) parameters, while the skew-symmetric
matrix A is completely defined by its

1 + 2 + . . . + (p− 1) =
p(p− 1)

2

upper diagonal elements. We realize the left-hand side of Eq. (4.22) are the degrees of freedom
of the normal space subtracted from the full space dimension np, confirming the relation in
Eq. (2.117). A function returning the tuple (Aparams, Bparams) with the parameters of A and B
from a tangent vector Z is implemented in our codebase as parametrization_from_tangent .

1 from opentn.stiefel import parametrization_from_tangent
2 parametrization_from_tangent(x:np.ndarray, z:np.ndarray, stack:bool=False, vectorized:bool=False)

4.3. Choosing a Riemannian metric

Let us employ the parametrization and dimension counting tools we have just described in
the discussion of the Riemannian metric choice. The Euclidean metric ⟨., .⟩e we have used
thus far seems like the natural choice for a submanifold of the Euclidean space, and it is in
fact the straightforward choice to define concepts like orthogonality in Eq. (4.16). However, it
turns out this inner product does not weight the degrees of freedom of the Stiefel tangent
space equally. To see this, let us look at the Euclidean inner product of Z ∈ TXSt(n, p)

⟨Z, Z⟩e = tr AT A + tr BTB (4.23)

= 2 ∑
i<j

a2
ij + ∑

i,j
b2

ij , (4.24)

where we have summed only over the upper diagonal for A, in agreement with Eq. (4.22).
We can see from this equation that the Euclidean metric counts the degrees of freedom of A
twice as much as the ones for B. As shown in [53], an alternative metric is the canonical metric
defined for Z, W ∈ TXSt(n, p) as

⟨Z, W⟩c = tr
{

ZT(1− 1
2

XXT)W
}

. (4.25)

Using this metric, the independent coordinates of A and B are weighted equally at every
X ∈ St(n, p)

⟨Z, Z⟩c =
1
2

tr AT A + tr BTB (4.26)

= ∑
i<j

a2
ij + ∑

i,j
b2

ij . (4.27)

Back in Def. (2.8.1), we introduced the concept of an inner product as a bilinear positive
form g with a matrix representation GX at an element X of a manifold. Since the Stiefel
manifold is embedded in the Euclidean space, the inner product induced on each tangent
space TXSt(n, p) is given by Eq. (2.111)
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⟨Z, GXW⟩e = tr
(

ZTGXW
)

.

So far we have studied the Euclidean and canonical metric. However, it turns out these are
not the only inner products that induce a Riemannian metric on the Stiefel manifold. In [56],
a general formulation for the action of the ambient metric GX at X ∈ St(n, p) is given by

GXZ = α0(1− XXT)Z + α1XXTZ . (4.28)

For α0, α1 > 0, this metric induces an inner product in TXSt(n, p) using the relation in
Eq. (2.110), and hence it induces a Riemannian metric in St(n, p). The inverse matrix is

G−1
X Z =

1
α0

(1− XXT)Z +
1
α1

XXTZ. (4.29)

Using Eq. (2.111), we conclude the metrics described thus far are special cases of the general
formulation in Eq. (4.28):

• Euclidean metric (α0 = α1 = 1): G[1,1]
X = 1

• Canonical metric (α0 = 1, α1 = 1/2): G[1,1/2]
X = 1− 1

2 XXT

As anticipated, the specific form of the gradient depends on the metric of choice. Using
Eqs. (2.120) and (4.29) we can rewrite the Riemannian gradient expression in Eq. (2.118) as

grad f (x) = πT

(
G−1 grad f (x)

)
=

grad f (x)
α0

+
α−1

1 − 2α−1
0

2
XXT grad f (x)− X grad f (x)TX

2α1
.

(4.30)

Given a real-valued function and a list of isometries x_list , we implement this equation
in our codebase in gradient_stiefel_general .

1 from opentn.stiefel import gradient_stiefel_general
2 gradient_stiefel_general(function:callable, x_list:list[np.ndarray], alpha_0:float, alpha_1:float)

As shown in Eq. (2.131), the metric choice also affects the Riemannian connection, and
with it, the Riemannian Hessian calculation. We can use Eq. (4.28) to obtain the cross-term in
Eq. (2.133) for a point X ∈ St(n, p) and tangent vectors Z, W ∈ TXSt(n, p)

X (Z, W) = (α1 − α0)(ZWT + WZT)X . (4.31)

Then, using Eqs. (2.131–2.133), the general connection for the Stiefel manifold is given by [56]

∇ZW = DW[Z] +
1
2

X(WTZ + ZTW) +
α0 − α1

α0
(1− XXT)(WZT + ZWT)X . (4.32)

This relation is implemented in our work through the function
1 from opentn.stiefel import riemannian_connection
2 riemannian_connection(D_nu:np.ndarray, nu:np.ndarray, eta:np.ndarray, x:np.ndarray, alpha_0:float=1, alpha_1:float=1)

Remark. In the previous section § 4.2, we studied the projection onto the tangent and normal
spaces. While these projections are metric-independent for the Stiefel manifold, this is in
general not the case for every manifold [56].
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4.4. Product of isometry manifolds

In Eq. (3.40), we established the main cost function we seek to minimize in this work, namely

f (X) = ∥eτL̂ − S(X)∥ .

Since this function depends on m isometries, its domain is not a single Stiefel manifold, but
rather a product manifold: St(n1, p1) × St(n2, p2) . . . × St(nm, pm) (see Def. (2.7.5)). We will
assume all the individual manifolds are of the same dimensions, and label the Cartesian
product as St(n, p)×m. We can then define the cost function f as the map acting on this
product manifold

f : St(n, p)×m → R : f (X)→ ∥eτL̂ − S(X)∥ , (4.33)

with X ∈ St(n, p)×m. The tangent space of a product manifold is in general the Cartesian
product of the individual tangent spaces, but for our finite dimensional tensors it reduces
to the direct sum of them [68]. We will see what this means in practice for our Riemannian
gradient, Hessian and retraction.

4.5. Building the Riemannian gradient

A central element for the trust-region method used in Alg. (6) is the Riemannian gradient
of the function f from Eq. (4.33). As mentioned in § 4.5, the tangent space of the product
manifold is the direct sum of the individual tangent spaces. In practice, this means we
can treat the tangent vectors Z, living on the tangent space TX St(n, p) at X ∈ St(n, p), as
independent of the rest and concatenate them to obtain Z ∈ TX St(n, p)×m. Based on the
arguments developed in § 4.3, in this work, we will employ the equitative canonical metric.
Consequently, the Riemannian gradient for every X ∈ X takes the form

grad f (X) = grad f (x) + X grad f (x)TX . (4.34)

In this equation, the ambient gradient grad f (X) is equal to the Euclidean gradient, so we can
use Def. (2.6.2) to compute it. As aforementioned, to obtain grad f (X) ∈ TX St(n, p)×m, we
will concatenate the m individual Riemannian gradients, in other words, we will stack them.
In our implementation, we make use of the automatic differentiation capabilities of JAX to
this end.

1 import jax.numpy as jnp
2 from opentn.import frobenius_norm
3 # cost function
4 f_stiefel = lambda x_list: frobenius_norm(model_stiefel_local(x_list, N, d), exp_Lvec)
5 # list with Euclidean gradients of length m
6 grads_ambient = jax.grad(f_stiefel)(x_list)
7 grads_ambient_stacked = jnp.stack(grads_ambient)
8 print(grads_ambient_stacked.shape)
9 >> (m, n, p)

In this code snippet, we have defined model_stiefel_local as the function that takes a list
of local Stiefel matrices, transforms them onto superoperator layers, and composes them.
By using jnp.stack we assume a vertical stacking, although this need not be the case, as
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long as we stick to a convention. After using the ambient gradients together with Eq. (4.34)
to obtain the Riemannian gradients, a further intermediate step is the parametrization of the
tangent vectors. As we saw in Eq. (4.22), the tangent spaces TX St(n, p) are parametrized by

p(p− 1)
2

+ p(n− p) =
p(n− 1)

2

degrees of freedom. Therefore, we can store and manipulate mp(n− 1)/2 parameters, instead
of mnp. To achieve this, we use Eqs. (4.17) and (4.18) to obtain A and B for each grad f (X),
respectively, retrieving the p(p− 1)/2 upper triangular elements of A and stacking them on
top of all p(n− p) elements of B. For convenience, we reshape all the stacked parametrized
gradients into a vector of length mp(n− 1)/2. We can obtain this vector with the previously
introduced parametrization_from_tangent as follows.

1 from opentn.stiefel import parametrization_from_tangent
2 parametrization_from_tangent(x, z, stack=True, vectorized=True)

We encapsulate the whole process into the function gradient_stiefel_vec which we
convert into a lambda function grad_stiefel that calculates the parametrized vector given
a list of isometries x_list .

1 from opentn.stiefel import gradient_stiefel_vec
2 # convert this into a lambda function that takes only the list x
3 grad_stiefel = lambda x_list: gradient_stiefel_vec(x_list, f_stiefel, metric=’canonical’)
4 riemannian_gradient_vector = grad_stiefel(x_list)
5 print(riemannian_gradient_vector.shape)
6 >> (m p(n-1)/2, )

4.6. An appropriate retraction

Back in Def. (2.8.6) we introduced another of the cornerstone concepts we employ in our
optimization algorithm: the retraction RX. This is used within the trust-region algorithm
to define the first-order model in Eq. (2.143) and to generate the next candidate at the
β-th step in the optimization algorithm Xβ+1 = RXβ(Z), with Z the solution of the inner
iteration in Eq. (2.146). As discussed in § 4.4, the tangent space TXSt(n, p)×m of the product
manifold St(n, p)×m results from the direct sum of the individual tangent spaces. Therefore,
to implement a retraction from Z ∈ TXSt(n, p)×m onto X ∈ St(n, p)×m, all we need is to apply
the retraction to each pair (Xα ∈ X, Zα ∈ Z) individually. The first-order retraction for the
Stiefel manifold used in this work is the canonical generalized polar decomposition introduced in
[69] for any rectangular matrix M ∈ Rn×p

M = XC , (4.35)

in terms of X ∈ Rn×p an isometry and C ∈ Rp×p a positive semidefinite matrix. The
calculation of the isometry factor X was discussed in Eq. (2.128). However, an alternative
calculation was introduced in [69] that avoids explicitly computing any inverse matrix, thus
improving the stability of the procedure. Given the SVD decomposition of M,
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M = UDVT ,

the isometry factor X is
X = U 1n,p VT , (4.36)

with 1n,p the first p columns of the n× n identity matrix. In our code, we use the implementa-
tion given by SciPy [70] to compute the general polar decomposition. For (Xα ∈ X, Zα ∈ Z)
we define the following function corresponding to the retraction RXα(Zα):

1 from scipy.linalg import polar
2 def polar_decomposition_rectangular(X:np.ndarray, Z:np.ndarray):
3 """
4 Retraction based on canonical polar decomposition of scipy
5 """
6 return polar(X+Z)[0]

Since, the tangent vectors within the trust-region method are parametrized and reshaped
into a vector as discussed in § 4.5, the input to polar_decomposition_rectangular needs
to be pre-processed as follows:

1. Divide the input vector Zparam of mp(n− 1)/2 parameters into m batches.

2. Following the order by which these were stacked, each batch is further split into p(p−
1)/2 and p(n− p) parameters from where Aα and Bα are reconstructed, respectively.

3. Finally, we obtain
Zα = Xα Aα + Xα⊥Bα.

Steps (1) and (2) are implemented in parametrizations_from_vector while step (3) is
implemented in tangent_from_parametrization . The retraction is then applied to each pair
RXα(Zα), and the full procedure is encapsulated in the following function.

1 from opentn.stiefel import parametrizations_from_vector, tangent_from_parametrization
2 def retract_stiefel(x_list:list[np.ndarray], zvec_param:np.ndarray):
3 """
4 Retraction of parametrized tangent vectors to Stiefel manifold
5 """
6 # get a list of tuples (A_{\alpha}, B_{\alpha}) for each \alpha in [1, m]
7 params_list = parametrizations_from_vector(zvec_param, shapes=[op.shape for op in x_list])
8 # compute tangent vector z_\alpha from its parametrization (A_{\alpha}, B_{\alpha})
9 z_list = [tangent_from_parametrization(x, *params) for x, params in zip(x_list, params_list)]

10 return [polar_decomposition_rectangular(x, z) for x,z in zip(x_list, z_list)]

4.7. Building the Riemannian Hessian

The last missing piece in our optimization algorithm is the calculation of the Riemannian
Hessian. As we saw in Eq. (2.143), this linear mapping from TXSt(n, p) to TXSt(n, p) allows
us to define a second-order approximation of the cost function f , hence, being a fundamental
element of the trust-region algorithm. In Eq. (2.138), we defined the Riemannian Hessian-
vector product for Z ∈ TXSt(n, p) as

Hess f (X)[Z] = ∇Z grad f (X) .
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We have also discussed the general form of the Riemannian connection of the Stiefel manifold
in Eq. (4.32), which for the canonical metric G[1,1/2]

X becomes

∇ZW = DW[Z] +
1
2

X(WTZ + ZTW) +
1
2
(1− XXT)(WZT + ZWT)X .

Together with Eq. (2.138), we obtain the relation

Hess f (X)[Z] = D grad f (X)[Z] +
1
2

X(grad f (X)TZ + ZT grad f (X))

+
1
2
(1− XXT)(grad f (X)ZT + Z grad f (X)T)X . (4.37)

In order to compute the full Riemannian Hessian Hess f (X), we take inspiration from
Eq. (2.76), where each column of the Euclidean Hessian H f (x)k is revealed by the Hessian-
vector product with the basis vectors ek ∈ Rn

H f (x)k = H f (x)ek .

Here, we will follow a similar approach. We generalized the concept of a basis vector on
Rn with the coordinate vector fields or elementary tangent directions on the tangent space of
a matrix manifold, introduced in Eq. (2.112). Using the canonical metric, the elementary
tangent directions are [67]

EA
ij = X(Eij − Eji), Eij, Eji ∈ Rp×p , (4.38)

EB
ij = X⊥Eij, Eij ∈ R(n−p)×p , (4.39)

where Eij is the unit matrix from Eq. (2.82) and is defined for appropriate (i, j) index values.
We notice Eq. (4.38) corresponds to the antisymmetric component XA of the tangent vectors,
so (i, j) should traverse the p(p− 1)/2 upper diagonal elements. On the other hand, Eq. (4.39)
corresponds to the arbitrary component X⊥B, so the indices (i, j) traverse all p(n− p) values.
We define the flattened index idx ∈ [p(n− p)/2], and the corresponding elementary direction
E[idx], such that

E[idx] ∈
{

EA
ij if idx ≤ p(p−1)

2

EB
ij else

. (4.40)

The corresponding python function is
1 from opentn.stiefel import get_elementary_tangent_direction
2 get_elementary_tangent_direction(idx:int, x:np.ndarray)

Thus, for a single isometry X, we obtain the relation

Hess f (X)idx = Hess f (X)[E[idx]] . (4.41)

The classical directional derivative D grad f (X)[Z] of the vector valued function grad f (X)

is implemented through the Jacobian-vector product discussed in Def. (2.6.4). Once again,
we take advantage of the automatic differentiation capabilities of JAX , and in particular we
employ the forward-mode differentiation function jvp [71].
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1 from opentn.stiefel import gradient_stiefel_general
2 import jax
3 grad_function = lambda x_list: gradient_stiefel_general(x_list, f_stiefel, alpha_0=1, alpha_1=0.5)
4 # tangents is a list of m tangent vectors, one for each x in x_list
5 gradx, Dgradx_z = jax.jvp(grad_function, (x_list,), (tangents,))

Besides returning D grad f (X)[Z], this function also returns the evaluation of grad f (X)

needed in Eq. (4.37).

Remark. We can think of the computation of D grad f (X)[Z] as differentiating the function
grad f , resulting in another function D grad f , which then takes two inputs (X, Z) and maps
them onto the vector D grad f (X)[Z].

In order to accommodate this procedure to the product manifold structure, we compute the
(idx, α) element of the Riemannian Hessian Hess f (X) using the tangent directions constructed
as the m-length list

tangents =
[
On×p, . . . , E[idx], . . . , On×p

]
, (4.42)

where the only non-zero matrix is the α-th element E[idx]. Then, each of the resulting el-
ements in Dgradx_z is projected using the Riemannian connection in Eq. (4.32) to obtain
the corresponding tangent vector in TXSt(n, p). We use parametrization_from_tangent
to extract and store the parametrization on Hess f (X)idx,α. To obtain the full Riemannian
Hessian, we repeat the process for all α ∈ [m] and idx ∈ [p(n− 1)/2], and reshape the Rie-
mannian Hessian into a mp(n− 1)/2×mp(n− 1)/2 dimensional matrix. The full procedure
is implemented in the function riemannian_hessian_vec and we convert it into a lambda
function hessian_stiefel that calculates the Hessian given a list of isometries x_list .

1 from opentn.stiefel import riemannian_hessian_vec
2 hessian_stiefel = lambda x_list: riemannian_hessian_vec(x_list, f_stiefel, metric=’canonical’)
3 hessian_stiefel_matrix = hessian_stiefel(x_list)
4 print(hessian_stiefel_matrix.shape)
5 >> (mp(n-1)/2, mp(n-1)/2)

4.8. Optimization algorithm: trust-region

We have now put together all the building blocks we need for our optimization algorithm —
namely the cost function f_stiefel , the retraction operator retract_stiefel , the gradient
grad_stiefel , the Hessian hessian_stiefel , and the initial guess x_list . All that is left

to do is to make use of these elements within the trust-region algorithm, together with the
conjugate gradient as inner iteration, as discussed in § 2.9. We have wrapped the whole
procedure into a single function riemannian_trust_region_optimize .

1 from opentn.trust_region_rcopt import riemannian_trust_region_optimize
2 x_list_opt, f_opt, radius_opt = riemannian_trust_region_optimize(
3 cost_function = f_stiefel,
4 retraction = retract_stiefel,
5 gradient = grad_stiefel,
6 hessian = hessian_stiefel,
7 ansatz = x_list,
8 iter_num = I
9 radius_init = None

10 )
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This returns:

• x_list_opt : the isometry history, i.e. a list of lists of isometries used at every iteration.
The β-th element in the outer list corresponds to Xβ for β ∈ [I], with I the number of
iterations in the optimization.

• f_opt : the optimization history, i.e. the cost function evaluated after every iteration β.

• radius_opt is the last trust-region radius ∆ used in the optimization.

The last value X̃ := x_list_opt[-1] is the list of isometries optimizing our Stiefel-valued
cost function after I iterations. These isometries can now be used to simulate the dissipative
dynamics of an LPDO tensor network as explained in Alg. (3) or, together with radius_opt ,
they can be used to start the optimization anew to try to further minimize the cost function.
In the next section, we will see this algorithm in action!
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In this chapter, we study the performance of the Riemannian Approach to Lindbladian Dynamics
scheme introduced in Alg. (6). As a testbed, we focus on two models of nearest-neighbor
dissipative interactions. Namely, at all neighboring sites [l, l + 1] of an N-sites quantum
system we consider the Lindblad operators given by the models

1. Kitaev wire:

L1 =

√
γ

4
(a† ⊗ 1 + 1⊗ a) , (5.1)

where a† and a are the two-level quantum harmonic oscillator creation and annihilation
operators, respectively, and 1 is the 2× 2 identity matrix, as introduced in [9].

2. Pseudo Sparse Pauli-Lindblad (PSPL):

Lk =
√

γ(Pk −Qk), k ∈ [κ] , (5.2)

where Pk, Qk are elements of the Pauli-2 group, such that the total number of Lindblad
operators κ ≪ 42 − 1, i.e. the Lindblad terms are sparse. Compared to the original
sparse Pauli-Lindblad model introduced in [10], here we have the difference of two
Pauli operators instead of a single Pauli. In particular, in this work, we choose to use
two Lindblad operators with weight-one Pauli terms

L1 =
√

γ(X⊗ 1− 1⊗ X) ,

L2 =
√

γ(Z⊗ 1− 1⊗ Z) .
(5.3)

For both models, the prefactor γ corresponds to the noise strength, which we normalize to
γ = 1 over all simulations. Instead, we vary the final evolution time τ over the experiments,
since this is equivalent to increasing the noise strength, so we can verify the validity of our
results across different noise regimes. We have implicitly assumed the local Hilbert space
dimension to be d = 2, i.e. we work with a system of qubits. We perform the simulations
using the first non-trivial even number of sites N = 4 yielding an effective Hilbert space
dimension d2N = 28, as this keeps the computation tractable. In the following sections, we test
our algorithm under the two aforementioned noise models, while exploring the influence of
different simulation parameters and the meta-parameters we introduced in Chapter 4. Further,
we compare the performance of our algorithm against the second-order Trotter splitting [6]
and a structure-preserving scheme of arbitrary order introduced in [72]. To end this chapter,
we leverage the translational invariance and PBC assumed in our ansatz to test the optimized
isometries when embedding them into larger systems.
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5.1. The importance of a good parametrization

In § 4.2, we discussed how to parametrize the tangent spaces of the Stiefel manifold. And
later in § 4.3, we used these ideas to derive expressions that showcase the influence of the
Riemannian metric in the calculation of the gradient and Hessian. We now explore how the
choice of the metric affects the performance of the Riemannian optimization in practice.
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Figure 5.1.: Optimization of cost function for 20 iterations under the Kitaev model for N = 4
sites, evolution time of τ = 0.5 and n = 4 time steps. Comparison of three
different combinations of metric G and elementary tangent directions Ei,j (see
text), with the dark blue curve showing the choice used in this work.

To this end, we will carry our optimization scheme for three different combinations of
metric and elementary tangent directions:

• Euclidean metric G[1,1] and a suboptimal elementary tangent direction πT(Eij), i.e. the
unit matrix Eij projected onto the tangent space.

• Euclidean metric G[1,1] and the elementary tangent directions (EA
ij , EB

ij) introduced in
Eqs. (4.38) and (4.39).

• Canonical metric G[1,1/2] and elementary tangent directions (EA
ij , EB

ij).

Fig. (5.1) shows the value of the cost function f (Xβ) for 20 iterations under the Kitaev
model with n = 4 time steps and evolution time of τ = 0.5. This comparison reaffirms the
choice of the canonical metric for the Riemannian metric of the Stiefel manifold, as it clearly
outperforms the optimization using the Euclidean counterpart. This difference, as argued in
§ 4.3, can be attributed to the correct weight assigned by the canonical metric to each degree
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of freedom parametrizing the tangent space vectors. On the contrary, the Euclidean metric
assigns twice as much weight to the antisymmetric components, as shown in Eq. (4.24). In
addition, the under-performance of the elementary directions πT(Eij), shown by the turquoise
curve, confirms the importance of choosing properly how to traverse the tangent space when
creating the Riemannian Hessian using Eq. (4.41). In Fig. (5.1), we also see that using this
elementary direction results in a fast convergence to a suboptimal local minimum.

3 6 9 12 15 18
Iteration

7.50

7.75

8.00

8.25

8.50

8.75

9.00

Co
st

 Fu
nc

tio
n 

Va
lu

e

×10 4 Kitaev: = 0.5, n = 1
G[1, 1] + T(Eij)
G[1, 1] + (EA

ij , EB
ij )

G[1, 1/2] + (EA
ij , EB

ij )

(a) Kitaev

3 6 9 12 15 18
Iteration

0.2

0.4

0.6

0.8

1.0

Co
st

 Fu
nc

tio
n 

Va
lu

e

×10 2 PSPL: = 0.5, n = 4
G[1, 1] + T(Eij)
G[1, 1] + (EA

ij , EB
ij )

G[1, 1/2] + (EA
ij , EB

ij )
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Figure 5.2.: Optimization of cost function for 20 iterations and final evolution time τ = 0.5. (a)
Shows the optimization for the Kitaev model with one time step. (b) Shows the
optimization for the PSPL model with n = 4 time steps. In this panel, the curve
with πT(Eij) is only shown for 10 time steps as it reaches a saddle point early on.

However, it turns out the canonical metric is not always the obvious choice, as shown in
Fig. (5.2). The plot in Fig. (5.2a) shows the optimization of the cost function under the Kitaev
model and final evolution time τ = 0.5 with a single time step n = 1, while Fig. (5.2b), uses
the same final time, under the PSPL model with n = 4 time steps. Contrary to the results
from Fig. (5.1), the comparisons in Fig. (5.2a) show that the Euclidean and canonical metrics
yield very similar results when using the same elementary tangent directions. Moreover, at
some intervals of the iterations, the Euclidean metric even outperforms the canonical metric,
as shown in Fig. (5.2b).

5.2. Rank up

Another fundamental element in our optimization scheme was introduced in § 4.1: the rank
R of the ansatz. This quantity arises in the Cholesky decomposition from Eq. (4.2) and
determines the column dimension of the Stiefel manifold p = Rd2. In this section, we will
examine the conjectures presented in § 4.1, regarding the impact of the ansatz’s rank on the
performance of the Riemannian algorithm. To this end, we carry out the optimization scheme
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under the Kitaev and PSPL noise models, while choosing the ansatz’s rank R as

R ∈ {1, . . . , RC , . . . , d4} , (5.4)

where RC = rank(C) is the natural Choi rank, as introduced in Eq. (4.2).
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Figure 5.3.: Riemannian optimization with PSPL Lindblad model for a final time of τ = 1 and
n = 1 time steps. The four curves correspond to the use of different ranks for the
ansatz. The gray dashed line marks the value of the Trotter splitting error.

We start by using Alg. (1) to transform the local superoperator arising from the PSPL
Lindblad operators in Eq. (5.3), to obtain the natural Choi rank of the channel

RPSPL
C = 10 .

In other words, the PSPL quantum channel can be described exactly with 10 Kraus operators.
We then perform the Riemannian optimization for a final time of τ = 1 with n = 1 time steps
and visualize the optimization trajectory in Fig. (5.3) using four different ranks

R ∈ {2, 5, 10, 16} .

As expected, this comparison illustrates how the algorithm’s performance improves with
increasing rank. The highest ranks R ∈ {10, 16} start the optimization at the Trotter splitting
value, marked by the gray dashed line, and exhibit a continuous decrease with the iterations.
Due to the increased parameter space, the optimization with R = 16 attains the lowest cost
function value out of all. However, a more surprising result is yielded by the curve with
R = 5 < RPSPL

C . Since this ansatz corresponds to a compressed representation of the channel,
it initially performs worse than the higher rank approximations, as we expected. Yet, after
30 iterations it already reaches the Trotter splitting value, and after 100 iterations, the cost
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function sees an improvement of nearly one order of magnitude with respect to the Trotter
splitting and two orders of magnitude with respect to its ansatz value. This demonstrates
that using this compressed representation not only enables a decrease in the approximation
error of the dissipative dynamics but also helps control the exponential increase in the Kraus
dimensions of the LPDO tensors after each dissipative step. This alleviates the computational
cost associated with the noisy evolution of the LPDO structure that we discussed in § 2.5.

The other end of the spectrum is shown by the turquoise curve with R = 2, where the
optimization yields a considerably less drastic improvement. To understand this behavior, we
can look at the Choi rank of the superoperator acting on all N sites arising from the rank-R
ansatz, SR(X). As explained in detail in App. (A.2), the Choi rank of SR(X) is upper bounded
by

RN := rank
{(
SR(X)

)Rr
}
≤ R2m . (5.5)

This bound reaffirms our choice of not using R = 1, as this would result in a single Kraus
operator for the full superoperator. To make this expression more tangible, we calculate
numerically the Choi rank of the exact full superoperator eτL̂ and compare it to the rank of
SR(X) for each of the ansatz ranks in our simulation.

R RN Ropt
N

Exact 28 -

2 53 53

5 28 28

10 28 28

16 28 28

Table 5.1.: Comparison of full Choi ranks for different approximations using the PSPL model
before and after optimization.

Table (5.1) shows both the initial rank RN and the rank after the optimization Ropt
N . From

this, we observe that unlike the higher-rank approximations, the rank-two ansatz reaches
only ≈ 1/4 of the full rank of eτL̂, even after the attempt to optimize it. This result agrees
with Eq. (5.5), and provides an explanation for the limited performance shown in Fig. (5.3).

Contrary to what we initially expected based on Fig. (5.3), increasing the rank of the ansätze
does not always lead to considerably better results. An example of this is the simulation
under the Kitaev model shown in Fig. (5.4). For this computation, we use τ = 0.5, n = 4,
and choose R from {2, 4, 8, 16}. A first thing to notice is the natural Choi rank, which for this
model is

RKitaev
C = 2 .

For this reason, all the ansätze in this simulation start at the Trotter splitting value. While
we notice a consistent decrease in the cost function for all the curves in Fig. (5.4), it is also
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Figure 5.4.: Riemannian optimization with Kitaev Lindblad model for a final time of τ = 0.5
and n = 4 time steps. The four curves correspond to the use of different ranks
for the ansatz. The inset shows a zoom-in version of the last 10 iterations to
emphasize the difference between the ansätze.

noteworthy that all of them reach a plateau at only 40 iterations, and none of them manage to
attain a cost function lower than 30% of the original value. Analogously to the computation
for the PSPL model, we calculate the Choi rank of SR(X) before and after the optimization,
and show the results in Table (5.2).

R RN Ropt
N

Exact 45 -

2 45 117

4 45 205

8 45 94

16 45 202

Table 5.2.: Comparison of full Choi ranks for different approximations using the Kitaev model
before and after optimization.

This comparison highlights a couple of things. First, the exact superoperator can be
represented by a relatively low rank, RN = 45, which is already achieved by all SR(X) even
before the optimization. This can serve as an explanation for the low approximation error at
which we start the optimization scheme, hence making it harder to improve upon. Second,
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in an attempt to improve on this approximation, the rank of all the ansätze Ropt
N increases

considerably. This would result in a rapid increase of the Kraus dimensions of the LPDO
structure, without necessarily achieving a substantial decrease in the approximation error of
the dissipative dynamics.

5.3. Expressivity vs. iterations

In the previous section, we carried out the Riemannian optimization using n = 1 and n = 4
as the number of time steps for the PSPL and Kitaev models, respectively. However, an
important question to ask when working with iterative optimization methods is "How many
iterations do we need for the algorithm to converge to a minimum?". In this section, we will try
to address this question, by looking at the behavior of the cost function when increasing
the number of time steps. This dependence is of particular interest to us, as the degrees of
freedom in the optimization grow linearly with the number of time steps n, i.e. the number
of time steps increases the expressivity.
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Figure 5.5.: Normalized approximation error as a function of the number of iterations for the
Kitaev model, with τ = 1 and R = 2, while varying the number of time steps n.

First, we look at the optimization with the Kitaev model, using τ = 1 and R = 2 (its natural
Choi rank), and vary the number of time steps n. In order to compare the decrease in the cost
function for each value of n, we look at the normalized cost function trajectory

fNorm(Xβ) =
f (Xβ)

f (X0)
. (5.6)

The results shown in Fig. (5.5) provide insight to answer the question we posed at the
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beginning of this section. First, we notice that by increasing the number of time steps, thus
increasing the expressivity, we can achieve a lower relative approximation error. We also
observe that all the curves converge after less than 30 iterations. The curve with n = 1 shows
the least improvement, as it reaches a plateau after only 5 iterations. While the curves for
n = 3, 4, 5 all converge around the same point, surprisingly, the optimization using n = 2
takes the longest to settle.
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Figure 5.6.: Normalized approximation error as a function of the number of iterations for the
PSPL model, with τ = 1 and R = 10, while varying the number of time steps n.

We repeat an analogous simulation using the PSPL model, τ = 1, and R = 10. Compared
to the Kitaev scenario, the trajectories in Fig. (5.6) show that only the optimization using the
lowest number of time steps n = 1 converges under 100 iterations. Even after decreasing
the cost function over an order of magnitude, the curves for n = 3 and n = 4 still depict a
steep descent towards the final iterations. We can attribute this behavior to the big parameter
space induced by the high rank value R = 10, compared to the Kitaev rank R = 2, causing
an increase in the complexity of the optimization. Similarly, we observe how the red curve
corresponding to n = 4 has the worse performance up to the 60-th iteration, due to the
increase in the parameter space, thus necessitating more iterations to find a minimum.

5.4. Riemannian to the test

Now that we have developed an understanding of how the input parameters in Alg. (6) affect
the performance of the optimization, let us test our algorithm against other known schemes.

As shown in Eq. (3.35), the Trotter splitting of the dissipative dynamics using n time steps
yields an error that scales with O(∆t2). To compare the scaling of the approximation error
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Figure 5.7.: Comparison of the error scaling between the Trotter splitting and Riemannian
optimization using the PSPL noise model, final time of τ = 1, and ansatz rank of
R = 10. The red horizontal line is used to emphasize the number of time steps
needed by the Trotter splitting to achieve the same accuracy as the Riemannian
optimized method.

achieved by our method, we perform the Riemannian optimization using the PSPL model,
for a final time of τ = 1, ansatz rank R = 10, and plot it against the number of time steps
n. We use the relation in Eq. (3.37) to plot a curve following the second-order scaling along
the Riemannian trajectory. The results in Fig. (5.7) highlight the significant improvement
attained by our optimization scheme, decreasing the error for every n by more than one
order of magnitude, compared to the Trotter splitting. For instance, as emphasized by the
red horizontal line, the Trotter splitting would need n ≈ 27 to achieve the same accuracy
obtained by only n = 4 using our method. For the higher number of time steps n = 3 and
n = 4, it might appear as though the order of the scheme increases. However, since its
trajectory remains parallel to the second-order curve, we realize it is actually the prefactor
that improves, without changing the second-order scaling. We attribute this behavior to the
increased expressivity of the ansatz, since the curve with n = 4 corresponds to m = 9 layers
of isometries, with mp(n− 1)/2 = 702 degrees of freedom we can optimize over, compared
to the 234 parameters available in the optimization using n = 1.

Next, we benchmark the performance of our algorithm against the structure-preserving
(SP) scheme introduced by Y. Cao and J. Lu in [72]. There, the authors introduce a family
of unnormalized CP schemes of arbitrary order. To achieve a fair comparison against the
SP methods, we use the normalized version of the schemes and compute the composite
superoperator up to fourth order, due to the computational cost of higher-order schemes. To
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Figure 5.8.: Average error as a function of the number of time steps for different CPTP
methods under the PSPL noise model, final time of τ = 1, and ansatz rank of
R = 10. We use the normalized version of the structure-preserving schemes of
order 1, 2, 3, and 4.

this end, we compute the average error as

E
(
∥eτL̂(ρ0)− Sn(ρ0)∥

)
, (5.7)

where Sn is the superoperator from n time steps of either the normalized SP schemes, the
Trotter splitting, or our Riemannian algorithm. The expectation value is taken over 500
randomly generated density matrices ρ0. Once again, we run our simulations using the
PSPL model, with a final time of τ = 1 and ansatz rank of R = 10. The results in Fig. (5.8)
showcase that while the structure-preserving schemes are capable of reaching approximations
of arbitrarily high order, the error prefactor is larger than those for the Trotter and Riemannian
methods. Moreover, the error order of these methods is only observed for higher number of
time steps. Both of these behaviors are expected and explained in detail in [72].

To end this section, we repeat the above comparison using the Kitaev model, final evolution
time τ = 1, and ansatz rank R = 2. In Fig. (5.9a), we compare the Riemannian optimization
against the Trotter splitting. From this, we observe how the Riemannian curve has an initial
steep descent, corresponding to an approximation order higher than two. After n = 3, the
decrease of the cost function stabilizes and accurately follows the second-order curve. As
already demonstrated in previous sections, the improvement of the Riemannian optimization
in this setting is not as significant as for the PSPL model. This is emphasized by Fig. (5.9b),
where we compare the Riemannian optimization against the aforementioned SP schemes.
We observe that the three SP schemes employed also suffer from a high error prefactor, as
previously discussed. However, due to the higher approximation order, the order-three SP
scheme quickly catches up, and for values of n close to 10 it attains an improvement of orders
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Figure 5.9.: Benchmark of the Riemannian optimization scheme against the Trotter and
structure-preserving schemes under the Kitaev model, with τ = 1, and R = 2,
plotted against increasing number of time steps. Panel (a) showcases the approxi-
mation order of the Riemannian and Trotter schemes. In panel (b), we use the
normalized version of the structure-preserving schemes of order 1, 2, and 3.

of magnitude compared to the Trotter splitting. For additional insight into the comparison
between the superoperators achieved by each scheme, in App. (A.3), we compare the Choi
ranks RN for each of the approximation methods discussed in this section using both noise
models.

5.5. Increasing the system size

In § 3.3, we discussed the assumptions we made when defining our cost function, one of
which was the translational invariance of our ansatz. Additionally, we assumed all odd layers
to follow periodic boundary conditions, as shown in Eq. (3.33). Due to these assumptions,
although we performed the optimizations for systems of size N = 4, it is possible to employ
the optimized isometries within larger systems. In this section, we will use the optimized
layers from N = 4 and verify how well they approximate the dissipative dynamics of a system
of N = 6 sites with an effective dimension of d2N = 212.

For this comparison, we use the optimized isometries obtained in § 5.4 under the Kitaev
and PSPL models, using τ = 1 and their natural ranks R = 2 and R = 10, respectively.
Fig. (5.10) shows the approximation error against the number of time steps n for the original
N = 4 and the increased size N = 6. First, in Fig. (5.10a) we examine the Kitaev model
comparison, from which we observe a mirroring behavior between the dissipative evolution
of both system sizes. In other words, although the Trotter error increases with system size, so
does the Riemannian error, yielding very similar curves. This behavior is emphasized by the
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Figure 5.10.: Comparison of the cost function from Trotter and Riemannian schemes against
the number of time steps n, with evolution time τ = 1, for system sizes N = 4
and N = 6. The layers for the Riemannian scheme with N = 6 use the same
isometries obtained with N = 4. Panel (a) shows the comparison for the Kitaev
model with R = 2, while panel (b) shows the comparison using the PSPL model
with R = 10.

relative error between the Trotter and the Riemannian cost function values

frelative(X̃) =
fRiemannian(X̃)

fTrotter(X̃)
, (5.8)

shown in Fig. (5.11a) for the Kitaev model. The results of the relative error plot are two-fold.
First, it shows that the error achieved by the optimized isometries used within a bigger
system faithfully follows the original approximation curve. Second, and more surprisingly, it
shows that relative to the Trotter error, the Riemannian optimized isometries under the Kitaev
noise work better for bigger systems. Similarly, Fig. (5.10b) shows the comparison using the
PSPL model, yielding somewhat different results. In this, we observe how the Trotter and
Riemannian errors are lower for the bigger system, being particularly true for the former
scheme. However, for both methods, we observe that as the number of time steps increases,
the slope of the error decreases for N = 6. From this, we can infer that for higher n, the
error for the system with N = 4 may be lower. Due to this behavior, the relative error for the
bigger system is worse than for the smaller one, as illustrated by Fig. (5.11b). Nevertheless,
the trajectory for both system sizes follows a similar trend, indicating an improvement of
orders of magnitude regardless of the system size.
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In this work, we have formulated the approximation error of the nearest-neighbor Lindbladian
dynamics as an optimization problem defined on the Stiefel manifold. To this end, we have
delved into the intricacies of the dissipative dynamics within the LPDO ansatz and devised
transformations that allowed us to focus on the two-site Kraus channels. To find a solution to
our optimization problem, we have employed the trust-region algorithm with the conjugate
gradient as the inner iteration, requiring us to arrive at appropriate formulations for the
Riemannian gradient, Riemannian Hessian, and retraction.

In our numerical experiments, we have studied the influence of the input parameters on
the performance of the Riemannian algorithm. We have started by testing different choices of
metrics and parametrizations for the Hessian construction. The results have shown that the
canonical metric, weighting all degrees of freedom equally, performs in most cases at least as
well as the embedded Euclidean metric. In some instances, it can even outperform the latter
metric significantly, vouching for its use when working on the Stiefel manifold.

Furthermore, our simulations have also demonstrated the impact of the ansatz rank, which
we have seen to vary based on the nature of the noise models. For instance, for noise channels
with low natural Choi rank, like the Kitaev model with R = 2, the increase in rank, along with
its associated computational cost, yields minimal benefit. On the other hand, noise channels
with higher Choi rank, like the PSPL model with R = 10, showcase a direct correlation
between the increase in the rank and a better approximation error. This allows us to trade
computation time for accuracy. Interestingly, these simulations have also shown us that it
is possible to use a compressed representation of the original quantum channel, and still
achieve an improvement in the cost function of almost an order of magnitude compared to
standard methods. This would allow us to alleviate the cost incurred by the increase of the
Kraus indices of the LPDO structure after every dissipative step.

In addition, we have analyzed the behavior of the optimization trajectory when increasing
the number of time steps, and hence the expressivity of the ansatz. The results have, once
again, demonstrated a dependence on the noise model under study, with the high-rank
channel necessitating considerably more iterations to converge, even for a low number
of time steps, e.g. n = 2. This difference translates directly into the performance of the
Riemannian algorithm. For the high-rank channel, the Riemannian algorithm has significantly
outperformed the second-order Trotter and higher-order structure-preserving schemes by
orders of magnitude. Conversely, the Riemannian algorithm used with the lower-rank channel
has achieved a less significant improvement compared to the Trotter scheme and has been
outperformed by the structure-preserving schemes of order higher than two. It is, however,
worth highlighting that even in scenarios where the structure-preserving schemes outperform
the Trotter and Riemannian approximations, they cannot be implemented directly on the

77



6. Conclusion and Outlook

LPDO ansatz, as they do not preserve the local structure of the tensors.
Furthermore, we have leveraged the translational invariance and periodic boundary condi-

tions inherent in our ansatz to test the approximation error yielded by isometries optimized
in smaller systems when embedding them into larger systems. The results have shown good
agreement among the curves of different system sizes. While the exact behavior varies based
on the noise model, the overall trend demonstrates an improvement by the Riemannian
approach over the Trotter splitting. This result is particularly valuable as it allows us to
achieve an improvement in the dissipative evolution error of larger system sizes by optimiz-
ing computationally tractable systems. This is especially relevant as the dimension of the
Lindblad superoperators grows as d2N with the system size N.

These results have demonstrated that, under the correct noise models, our algorithm can
improve both the approximation error of dissipative dynamics and the computational cost
of each time step in the LPDO structure. A potential area for improvement is the wall
time needed by our algorithm, with the most computationally expensive step being the
construction of the Riemannian Hessian. To address this, we can implement a more efficient
Hessian-vector product computation that does not need to construct the full Hessian. We leave
this task for future work. Conversely, one might argue that the wall time of our algorithm
should not be considered a strict constraint. This is especially true for a time-independent
noise model, where our scheme can be seen as a single pre-processing step, entailing a
non-scaling overhead.

It remains an open task to study the effect of the specific ansatz in the optimization
algorithm, as discussed in [60], since this might influence the complexity of the optimization
landscape, and therefore, affect the convergence point and speed. A similar open issue is
to develop a rigorous mathematical understanding of the dependence of the algorithm’s
performance on the properties of the noise model. In this light, studying other physically
meaningful noise models with high rank would provide further insight.

Our numerical implementation of the Riemannian gradient and Hessian is based on an
automatic differentiation software framework, providing us great flexibility when defining the
cost function. Therefore, generalizing the ansatz to a non-translational invariant ansatz would
be relatively straightforward. Finally, a further generalization of this work could encompass
the extension to the complex Stiefel manifold. This would require a recounting of the tangent
space dimensions, and the correct formulation of the non-holomorphic complex derivatives,
as outlined in [71].
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In this appendix, we include detailed calculations and proofs that were not explicitly given in
any of the references, and that would be too lengthy to include in the main explanation.

A.1. Decomposition of an arbitrary element of Rn×p

In [67], the decomposition of an arbitrary matrix Y ∈ Rn×p as shown in Eq. (4.11) is essential
for deriving the tangent and normal space projectors. However, the proof for this decom-
position is not provided there. Therefore, we will present a proof of this decomposition
here.

Lemma: Given X ∈ St(n, p), and X⊥ such that [XX⊥]T[XX⊥] = 1n, an arbitrary matrix
Y ∈ Rn×p can be decomposed as

Y = XA + X⊥B + XC ,

in terms of a skew-symmetric matrix A ∈ Rp×p, a symmetric matrix C ∈ Rp×p, and an
arbitrary matrix B ∈ R(n−p)×p.

Proof. An arbitrary square matrix M ∈ Rp×p can be written as the sum [73]

M = skew(M) + sym(M) = A + C , (A.1)

with A = skew(M) defined in Eq. (2.121) and

C = sym(M) =
1
2
(M + MT) . (A.2)

We can then look at a matrix Y′ ∈ Rn×p and block partition it as a column vector of the form

Y′ =
(

M
B

)
,

with M ∈ Rp×p and an arbitrary matrix B ∈ R(n−p)×p. Then, we can decompose it using
Eq. (A.1)

Y′ =
(

1p

O(n−p)×p

)
A +

(
1p

O(n−p)×p

)
C +

(
Op

1n−p

)
B .

Finally, by multiplying the row vector (X, X⊥) from the left, which is a comformable partition
yielding well-defined operations [74], we obtain

(X, X⊥)Y′ = (X, X⊥)
[(

1p

O(n−p)×p

)
A +

(
1p

O(n−p)×p

)
C +

(
Op

1n−p

)
B
]

Y = XA + X⊥B + XC ,
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where we have defined Y := (X, X⊥)Y′ to finish the proof.

A.2. Rank of Kraus channels

Here, we derive an expression for the Rank RN of the Kraus channel E acting on all N sites
of an open quantum system in its LPDO form in terms of the ranks of the nearest-neighbor
Kraus channels. First, we look at the action of each layer of local Kraus channels on the LPDO
structure. For N = 4, the diagram representation is

= . (A.3)

We notice that the single Kraus channel acting on all sites is obtained by merging the
individual channel indices, hence, multiplying their ranks

rank(E[1,2] ⊗ E[3,4]) = rank(E[1,2]) rank(E[3,4]) . (A.4)

Generalizing for any N, yields the expression

rank

(
N/2⊗
l=1

E[l,l+1]

)
=

N/2

∏
l=1

rank(E[l,l+1]) . (A.5)

Next, we compose the m = 2n + 1 layers of Kraus channels coming from a splitting using n
time steps

= . (A.6)

At this point, we might be tempted to assume the total Kraus rank is obtained by multiplying
the rank of each layer. However, it turns out this is only an upper bound of the actual value

RN := rank(E) ≤
m

∏
α=1

rank(Eα) . (A.7)

In this work, we assume all two-local Kraus channels in layer α are the same, and thus have
the same rank, i.e. they are translational invariant. Further, we choose the rank of our ansatz
homogeneously across all layers, so if we let the ansatz rank be R, Eq. (A.7) becomes

RN = rank(E) ≤ R
mN

2 . (A.8)
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A.3. Comparison of ranks for different approximation schemes

In this section, we present additional data demonstrating the increase in the Choi rank RN

of the superoperator acting on all N = 4 sites as the number of time steps n increases. We
provide a comparison of the ranks obtained using the Trotter, Riemannian, and SP schemes,
which were introduced in § 5.4. The comparison for the Kitaev model with τ = 1 and R = 2
is shown in Table (A.1).

n Trotter Riemannian SP 1st order SP 2nd order SP 3rd order

1 36 46 5 19 29

2 45 68 19 45 45

3 45 87 45 45 45

4 45 130 45 45 45

5 45 160 45 45 45

Table A.1.: Comparison of full Choi ranks for different approximation schemes using the
Kitaev model for increasing number of time steps.

Analogously, in Table (A.2), we show the comparison of the ranks when using the PSPL
model with τ = 1 and R = 10.

n Trotter Riemannian SP 1st order SP 2nd order SP 3rd order SP 4th order

1 256 256 7 38 96 190

2 256 256 38 241 256 256

3 256 256 145 256 256 256

4 256 256 241 256 256 256

5 256 - 256 256 256 256

Table A.2.: Comparison of full Choi ranks for different approximation schemes using the
PSPL model for increasing number of time steps.
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