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“The three great essentials to achieve anything worthwhile are,
first, hard work; second, stick-to-itiveness; third, common sense.”

Thomas A. Edison





Editors’ Preface

In times of global challenges, such as climate change, the transformation of
mobility, and an ongoing demographic change, production engineering is cru-
cial for the sustainable advancement of our industrial society. The impact of
manufacturing companies on the environment and society is highly dependent
on the equipment and resources employed, the production processes applied,
and the established manufacturing organization. The company’s full potential
for corporate success can only be taken advantage of by optimizing the interac-
tion between humans, operational structures, and technologies. The greatest
attention must be paid to becoming as resource-saving, efficient, and resilient as
possible to operate flexibly in the volatile production environment.

Remaining competitive while balancing the varying and often conflicting priori-
ties of sustainability, complexity, cost, time, and quality requires constant thought,
adaptation, and the development of new manufacturing structures. Thus, there is
an essential need to reduce the complexity of products, manufacturing processes,
and systems. Yet, at the same time, it is also vital to gain a better understanding
and command of these aspects.

The research activities at the Institute for Machine Tools and Industrial Manage-
ment (iwb) aim to continuously improve product development and manufac-
turing planning systems, manufacturing processes, and production facilities. A
company’s organizational, manufacturing, and work structures, as well as the
underlying systems for order processing, are developed under strict consideration
of employee-related requirements and sustainability issues. However, the use
of computer-aided and artificial intelligence-based methods and the necessary
increasing degree of automation must not lead to inflexible and rigid work or-
ganization structures. Thus, questions concerning the optimal integration of
ecological and social aspects in all planning and development processes are of
utmost importance.

The volumes published in this book series reflect and report the results from
the research conducted at iwb. Research areas covered span from the design
and development of manufacturing systems to the application of technologies in
manufacturing and assembly. The management and operation of manufacturing
systems, quality assurance, availability, and autonomy are overarching topics
affecting all areas of our research. In this series, the latest results and insights
from our application-oriented research are published, and it is intended to
improve knowledge transfer between academia and a wide industrial sector.

Rüdiger Daub Gunther Reinhart Michael Zäh
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Chapter 1

Introduction

1.1 Motivation

Globalization, demographic change, emerging technologies, dynamic product
life cycles, and knowledge management are some megatrends that have influ-
enced the producing industry over the last decade and will continue defining
its future development (ABELE and REINHART 2011, p. 10). To overcome these
challenges, ABELE and REINHART (2011, p. 34) identify four target variables that
producing companies must address to remain competitive: manufacturing costs,
speed (innovation, process, and product launch), changeability, and quality. For
the field of quality assurance, SCHMITT et al. (2011) identified furhter challenges
in production metrology1, such as reducing measurement times, enhancing mea-
surement accuracy, facilitating faster commissioning and integration, increasing
adaptability to different measurement tasks, and developing holistic systems that
encompass multiple steps in metrology processes (e.g., planning, acquisition,
processing, and evaluation).

In particular, optical three-dimensional (3D) measurement technologies have
positioned themselves as an attractive asset to address some of the challenges
mentioned above and as a cost-effective driving force to accelerate the digiti-
zation of manufacturing (CATALUCCI et al. 2022; GAO et al. 2015; SCHMITT

et al. 2016). Using optical triangulation techniques, 3D optical sensors can scan
the surface of an object of interest without contact and provide an accurate
discretized 3D representation of it, known as point clouds. These 3D measure-
ments can then further used as input data to perform and support different tasks,
e.g., measurement, monitoring, handling, and navigation (CHEN et al. 2011;
PEUZIN-JUBERT et al. 2021).

Optical 3D sensors have demonstrated their significance as a key resource for
various metrological tasks and within digital production. However, their effective-
ness in more complex production tasks such as large-scale metrology applications
is limited when they are fixed in position. For example, the inspection of common

1According to PFEIFER (2002, p.15), production metrology encompasses all measurement and
testing activities in connection with the industrial development of a process.
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components in the automotive, energy and aerospace sector (e.g., car chassis,
wind turbines, or fuselage of airplanes), require multiple acquisition views that
demand a positional flexibility of up to six degrees of freedom (DoFs) of the
measurements systems (SCHMITT et al. 2016). The demand for more flexible
systems that permit the free positioning of sensors and automation of metrol-
ogy tasks to acquire large-scale objects has driven the industry towards the use
of robot-based optical 3D measuring systems (ROMSs). Such systems utilize a
programmable industrial robot to position a 3D sensor. Figure 1.1 depicts a
simplified representation of a ROMS and its core components.

Industrial Robot 3D Measurement (Point Cloud)

Measurement Volume

3D Sensor
Workpiece

Features

Figure 1.1: Simplified representation of a robot-based optical 3D measuring system (ROMS) and
its fundamental components utilized for automating large-scale metrology tasks. The 3D sensor, an
optical measuring device, is positioned by the robot to acquire multiple 3D measurements (point
clouds) of the workpiece’s surface. The point clouds are used to evaluate the quality of a workpiece
by analyzing the geometric characteristics of features.

The inherent flexibility and automation capabilities offered by robotic manufac-
turing systems have proven effective in addressing some of the pressing issues
that manufacturing industries face, such as quality, productivity, and competi-
tiveness (MÜLLER and KUTZBACH 2019, p. 534). However, their programming
is still considered a resource-intensive and complex activity that counteracts
the benefits of robot-based production systems, especially for producing small
batch sizes or products with a high variability (DIETZ 2019). This characteristic
contradicts the requirement of manufacturing systems demanding “zero setup
times” and minimal human intervention to be cost-effective (ABELE and REIN-
HART 2011, p. 34; PFEIFER and SCHMITT 2010, p. 314). According to a report
by the THE BOSTON CONSULTING GROUP (2015), the system engineering costs
allocated for commissioning and programming robot-based systems correspond
as much as one-third of the total investment costs. Especially programming
ROMS to automate metrology tasks is considered a challenging process due to
the increased system complexity and required multi-domain expertise in robotics,
machine vision, optics, and metrology (CATALUCCI et al. 2022; BATCHELOR 2012,
p. 16)
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The resource-intensive programming of ROMS and the the scarcity of skilled
professionals in high-wage countries are considered limiting factors for their
cost-effective deployment (LITZENBERGER and KUTZBACH 2016, p. 431). The
productivity of production systems can only be increased if they are able to adapt
to changes or new tasks with less effort (HAMMERSTINGL 2020, p. 169; ULRICH

2018, p. 1).

The present thesis addresses these demands by outlining three solution modules
that combine fundamental techniques from the classical robot domain, computer
vision, and machine learning methods to improve the programming of ROMS.
The outcomes of this thesis aim to decrease the programming effort required to
support ROMS. This will benefit two groups: firstly, SMEs that need adaptable
production systems with swift ramp-up times (DIETZ 2019, p. 1); and secondly,
companies heavily reliant on robot-based solutions, such as automotive manu-
facturers. By reducing programming resources, these companies can enhance
their productivity.

Moreover, this thesis strives to establish a formalized understanding of the
knowledge necessary for automating programming of ROMSs. By identifying
knowledge gaps, customized solutions can be devised with consideration of
system constraints. It is crucial for this knowledge to be modeled as generically
as possible to facilitate transferability to comparable applications. Complete
automation liberates operators from repetitive tasks, enabling them to channel
their potential into more innovative endeavors.

1.2 Scope of the Work and Problem Statement

To define the scope of this research, first Subsection 1.2.2 introduces the core
components of a ROMS. Then, an exemplary metrology task is introduced in
Subsection 1.2.2, which will be used as reference throughout this thesis.

Furthermore, Subsection 1.2.3 presents an analysis to estimate the current level of
automation (LoA) of ROMSs and identify the subtasks with the highest potential
for improving the programming of ROMSs.

1.2.1 Robot-Based Optical 3D Measuring Systems

A ROMS is a measuring system consisting of an industrial robot that is used to
position a range sensor for performing metrology tasks (see Figure 1.1). Hereby,
the sensor acquires a point cloud that represents a portion of the surface of
the workpiece. The point cloud is used to measure the individual features of
the workpiece and assess its actual geometric properties (WECKENMANN 2012,
p. 305). The following subsections offer a detailed description of the core
components—robot and sensor.
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1.2.1.1 Industrial Robot

The norm DIN EN ISO 10218-1 (2012) defines an industrial robot as an
automatically controlled, multi-purpose, fixed or movable manipulator that is
freely programmable in three or more axes and is used for automation. Each
robot has a defined number of DoFs which indicates how many independent
motions (up to three translational and three rotational) a robot can perform
within the robot workspace. For example, in the context of ROMSs, six-axis
serial industrial robots are often used to automate large-scale metrology tasks
due to their high flexibility for positioning the sensor up to six DoF within large
workspaces. Subsection A.1.1 provides a description of the definition of the
robot’s workspace and kinematic model.

1.2.1.2 Range Imaging Sensor

The DIN EN ISO 10360-13 (2023) defines a range imaging sensor as a non-
contact surface measuring sensor which collects 3D spatial data from the surface
of an object of interest. According to BESL (1988), a range imaging sensor
represents an enclosed system that combines hardware and software modules
capable of producing a range image of the surface of an object of interest. A
range image refers to the generated point cloud which is the output of the sensor
after triggering a measurement action.

A point cloud represents a collection of 3D points in the Euclidean space, where
each point corresponds to a surface point of the measured part. The computation
of depth information is acquired using different optical measuring principles,
e.g., triangulation, light intensity, or time of flight (BEYERER et al. 2016, p. 229).
Fig. 1.2 depicts a simplified taxonomy and a graphical representation of some
acquisition principles.

A prominent example within the category of triangulation principles is active
range imaging sensors, which consist of at least one camera and one projector.
The projector displays a light pattern at the acquisition scene. Then, the 3D
coordinates of the surface points can be calculated through triangulation in a
reference coordinate system if the corresponding camera image pixels for the
projecting pattern can be estimated (GÜHRING 2002, p.16). On the contrary,
if a pixel cannot be uniquely identified due to improper image saturation, the
corresponding depth information cannot be estimated (LI and KOFMAN 2014;
LIN et al. 2017a). Subsection A.1.2.1 describes the technical rationale behind
acquiring 3D data based on active sensing.

In the last two decades, active sensors have gained popularity within large-scale
metrology applications due to their low investment cost, increasing accuracy,
large measurement volume, and high measurement speeds (KEFERSTEIN and
MARXER 2015, p. 234; ULRICH 2018, p. 7; SANSONI et al. 2009; GÜHRING 2002,
p. 16). For these reasons, this thesis focuses on automating metrology tasks
through the use of active sensors.
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Emitted 
Signal

Reflected 
Signal

Light Source Receiver Camera Camera

Image
Plane

Image
Plane

Baseline 

Time of Flight Stereophotogrammetry Active Projection

Optical 3D Shape Measuring

Time Measurement Intensity Triangulation

Projector Camera

Image
Plane

Baseline

Figure 1.2: Overview of different acquisition principles for range imaging according to BEYERER

et al. (2016, p. 229)

1.2.2 Metrology Task

The DIN EN ISO 9000 (2015) norm defines quality as the degree to which a
set of different characteristics (e.g. physical, sensory, behavior) of a workpiece
fulfills a set of defined requirements. Hence, one of the main tasks of dimensional
metrology tasks is to verify the conformity of geometric inspection features to
certain product specifications, such as size, form, location, and orientation
(PFEIFER 2002, p. 254; HOCKEN 2012, p. 58; WECKENMANN 2012, p. 25).
A feature is defined by its type, position, orientation, and geometric shape.
Descriptors for topology properties include for example the radius of a hole
or the lengths of a square. The ISO 1101 (2017) norm provides a detailed
specification of different geometric characteristics.

Accurately estimating these features is considered a critical step in any manu-
facturing process necessary to evaluate tolerances within the product assembly
and, ultimately, ensure product functionality (SCHMITT et al. 2016; PFEIFER and
SCHMITT 2010, pp.1–2). Traditionally, coordinate measuring machines (CMMs)
are used to determine these properties with a high accuracy based on tactile sam-
pling of a finite set of surface points. However, the high setup effort, costs, and
measurement times associated with CMMs made them cost-ineffective for the
acquisition of large-scale workpieces with multiple inspection features (ULRICH

2018, pp. 2–3; PFEIFER and SCHMITT 2010, p. 315).

The technological advances of 3D optical sensing in terms of accuracy and pro-
cessing speeds, combined with the flexibility of an industrial robot, make ROMSs
a promising technology for automating these tasks. Automated acquisition of
multiple point clouds enables the metrology evaluation of large-scale objects, as
shown in the left side of Fig. 1.3. However, acquiring large surfaces requires
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multiple viewpoints due to the sensor’s field field of view (FOV) limitations
(WECKENMANN 2012, pp. 17–18). In addition, setting the sensor parameters
to acquire valid measurements is considered a resource-intensive process that
requires skilled personnel (CATALUCCI et al. 2022). This makes the program-
ming of ROMSs for feature-based dimensional metrology a challenging and
time-exhaustive task with a high potential for automation.

For these reasons, the present thesis uses a reference dimensional metrology
task to demonstrate the programming complexity of ROMSs and the need for
its automation. The reference metrology task involves the inspection of a sheet
metal car door with over 500 different inspection features (e.g., edges, pockets,
holes, slots, and spheres). Fig. 1.1 visualizes on the right side some of these
exemplary features. Car doors are well-known benchmarking probing objects for
evaluating technologies used within large-scale metrological tasks due to their
size, topological complexity, feature density, and variability (BAUER et al. 2021a;
TEKOUO MOUTCHIHO 2012, p. 124).

The measurement task is completed when all features are acquired with a valid
point cloud quality. In the context of this dissertation, point cloud quality refers to
the local point cloud density around a feature. The point cloud quality is intended
to be used as a metric to represent whether the acquired measurement can be
used to evaluate an individual feature. The point cloud quality is not related to
the accuracy of the sensor and can only be affected by the sensor parameters,
position, or environmental conditions. For instance, the measurement depicted
on the right side of the Fig. 1.3 suggests that while the quality of the point
cloud surrounding certain features is acceptable for evaluation purposes, it is
insufficient for others.

Moreover, it is assumed that the nominal position and orientation of all fea-
tures, sensor imaging properties (e.g., measurement volume, resolution, working
distance), the robot kinematic model are roughly known, and that the measure-
ments are acquired statically.

Good local point cloud quality

Insufficient local point cloud quality

Point clouds acquired
from different viewpoints

Exemplary
point cloud

Figure 1.3: Left: Multiple point clouds acquired from different viewpoints. Right: An exemplary point
cloud with diverse features, exhibiting different local point cloud qualities.
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1.2.3 Level of Automation of ROMS

1.2.3.1 Classification

In the literature, a wide range of taxonomies have been proposed to classify
the LoA of production systems (FROHM et al. 2008; GAMER et al. 2019; VAGIA

et al. 2016). The present thesis follows the framework from FROHM (2008) to
estimate the LoA of ROMSs. The study of FROHM et al. (2008) introduces two
independent categories to estimate the mechanical/physical level of automation
(LoAm) of production systems, at a LoAm and at a cognitive/information level of
automation (LoAi). The mechanical autonomy of a system to interact within its
production environment is measured by the LoAm, which includes the ability to
handle a reference workpiece or position a required work resource. By contrast,
LoAi evaluates the amount of information the system requires from a user to
perform a task. In addition, it also quantifies the cognitive capabilities of the
system to control the target process or generate alarms. Within each category,
FROHM et al. (2008) introduce seven levels of automation, ranging from a
manual process (Level 0) to a fully automated process (Level 7), i.e. autonomous
systems2.

1.2.3.2 Subtasks with the Highest Automation Potential

According to GRANELL et al. (2007), the reference metrology task (see Subsection
1.2.2) is further analyzed and broken down into subtasks to identify those with
the highest automation potential. For this purpose, the steps for performing
a metrology task according to PFEIFER and SCHMITT (2010, pp. 13–16) are
considered: inspection planning, data acquisition, data evaluation, process con-
trol, capability analysis, and monitoring of measurement devices. Among these,
the following tasks were identified as relevant for improving the automation of
ROMSs:

1. Inspection planning: This task considers the definition of the inspec-
tion plan (PFEIFER and SCHMITT 2010, pp. 14–15). According to the
norm DIN 55350 (2021), an inspection plan integrates all necessary
information to perform an inspection task, e.g., feature properties and
characteristics, measuring tolerances, equipment, and measuring strate-
gies. Hence, the inspection plan provides the basis of any inspection order
and must be fully specified beforehand.

2. Data acquisition: Collecting measurement data based on the inspection
plan is the central task of production metrology. To accomplish this task,
it is necessary to consider the capabilities of the measurement equipment
in terms of accuracy and speed, as well as the degree of automation.
(PFEIFER and SCHMITT 2010, p. 15)

2WATSON and SCHEIDT (2005) define autonomous systems as agents that are able to adapt
their behavior during operation to unforeseen events without manual intervention.
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3. Data evaluation: This step is concerned with condensing the acquired
data into static characteristic values (PFEIFER and SCHMITT 2010, p.
15). For example, the acquired data is used to evaluate the nominal’s
workpiece geometry using feature extraction algorithms to quantify the
deviation from the product specifications (PFEIFER and SCHMITT 2010,
pp. 196–197).

In the context of programming metrology tasks using ROMSs, the viewpoint
planning as a part of the measurement strategies within inspection planning, and
parameterizing measurements during data acquisition were identified as highly
time-consuming subtasks that required active expert intervention. These subtasks
were confirmed as time consuming in the study by BAUER et al. (2021a), which
evaluated the economic potential of ROMSs. In addition, workcell calibration, was
recognized as a generic, preparatory task in the context of robot programming
that requires human intervention and therefore has potential for automation.
Figure 1.4 provides a simplified graphical representation of the selected subtasks
and their relationships. These are briefly described below.

1. Workcell calibration: This step addresses the estimation of the position
and orientation of the inspecting workpiece or any other artifact, such
as fixtures within the robot workspace that may collide with the robot
or affect the measurement acquisition. Calibration of the workcell is
a mandatory and primarily manual process which the operator must
perform before executing a programmed routine (BRECHER and WECK

2021, p. 594).

2. Viewpoint planning: This subtask addresses the selection of a sufficient
number of viewpoints (sensor poses) for capturing all features. The liter-
ature poses this task as a multi-objective optimization problem referred
to as the Viewpoint Planning Problem (VPP) (PEUZIN-JUBERT et al. 2021).
The goal for the operator or automation logic is not solely to reduce the
number of viewpoints, but also to fulfill various constraints to ensure that
all features are captured. Estimating valid viewpoints is a complex and
challenging task that requires specialist expertise (CATALUCCI et al. 2022;
GOSPODNETIĆ et al. 2022).

3. Measurement parameterization: The adequate parameterization of the
sensor is a critical requirement to guarantee the 3D sampling of the ob-
ject’s surface when using optical imaging devices. In particular, the proper
setting of the image exposure is a non-trivial task requiring the consid-
eration of diverse influencing factors, e.g., camera parameters, surface
material, the spatial relationship between camera and workpiece, and
external lighting sources (EKSTRAND and ZHANG 2011; ZHANG 2020). For
this reason, selecting a proper exposure time remains a challenging and
time-consuming task performed by experts, which rely on their domain
knowledge and spatial understanding to achieve proper adjustment.
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Further relevant subtasks within metrology applications address the registration
of point clouds and evaluation of the acquired data. However, efforts to address
the challenges in these processes are focused on improving measurement uncer-
tainty, increasing acquisition speeds, and effectively managing large data sets
(BAUER et al. 2021b; CATALUCCI et al. 2022; ULRICH et al. 2015). For these
reasons, these subtasks fall outside the scope of the present dissertation.

Inspection
features and

workcell
kinematic

model
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Figure 1.4: Overview of the identified subtasks with the highest potential for automating metrological
tasks using ROMSs: workcell calibration, viewpoint planning, and measurement parameterization.

1.2.3.3 Current LoA of ROMS

FROHM et al. (2008) categorize industrial robot systems as flexible workstations
that can be reconfigured for different tasks and perform a programmed routine
without human intervention. For this reason, the authors assign such systems
an LoAm of six. This thesis also classifies the mechanical automation level of
ROMSs at the same level assuming that the industrial robot can freely position
the sensor without mechanical human assistance.

To operate a ROMSs at a LoAm of six, it must be assumed that all necessary
subtasks have been adequately programmed and parameterized in advance (cf.
Subsection 1.2.3.2). Since the level of cognitive automation achieved by current
solutions for the programming of metrology tasks still requires a considerable
amount of manual intervention, this thesis assumes a teaching level of LoAi of
the order of three for current ROMSs.
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1.3 Research Methodology

This section outlines the research methodology used in this thesis. Based on the
findings of the previous section, this research presents first its overall goal and
the necessary research questions (RQs) to achieve it.

1.3.1 Thesis Objective and Research Questions

Robot-based manufacturing systems and optical 3D sensors have been identified
as key technologies to address some of the challenges facing producing compa-
nies, such as, production flexibility, adaptability, and labor shortages. However,
the effort required for their commissioning and programming prevents their
utilization and affects their economic benefits and productivity. For these rea-
sons, this thesis aims to increase the level of automation for the programming of
ROMSs.

This dissertation suggests that the LoA of ROMSs can be increased up to a
supervision stage (LoAi=5) by automating the identified subtasks in Subsection
1.2.3.2. Within this level, the operator acquires a supervising role, where the
system would only demands the user’s attention in case of anomalies (FROHM

et al. 2008). This enhancement offers the potential to elevate the level of
automation in programming ROMSs, thereby augmenting their productivity and
economic feasibility.

To tackle this objective, the current research focuses on the automation of three
subtasks for facilitating the programming effort of metrological applications
using ROMSs. To assess this goal and guide the present research, the following
RQs are introduced:

RQ1 Workcell Calibration: How can the workcell calibration be automated by
using images captured by the optical sensor of ROMSs?

RQ2 Viewpoint Planning: How do viewpoint constraints affect sensor positioning,
and how can the minimum number of viewpoints required to capture all
features be estimated?

RQ3 Exposure Time Optimization: How do image exposure and the spatial corre-
lations between features and the sensor affect the successful acquisition of
3D measurements, and how must these be considered for setting a proper
exposure time?

1.3.2 Research Design and Thesis Structure

In accordance with the classification schema for scientific disciplines as proposed
by ULRICH and HILL (1976), the current study is situated within the domain of
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the real sciences. This domain necessitates a distinction between fundamental
research and applied research. The methodologies employed by RQ1 and RQ3
align with the characteristics of applied research. In contrast, RQ2 demands a
comprehensive and fundamental exploration into the various constraints that
influence sensor positioning. In order to adequately address the knowledge gaps
related to all the research questions, it is necessary to take an interdisciplinary
approach and leverage insights from various fields such as production engineer-
ing, metrology, robotics and computer vision. According to (KUBICEK 1976, p.
13), modeling complex systems requires an iterative heuristic methodology to
gain a holistic understanding of systemic interactions and impacts. Accordingly,
this thesis adheres to an iterative process of empirical observations based on
from simulations, experiments, and data gathering to augment and validate the
acquired knowledge.

In order to effectively acquire the knowledge necessary to address the research
questions at hand, this thesis utilizes the Design Research Methodology (DRM)
introduced by (BLESSING and CHAKRABARTI 2009) for structuring research
projects in applied fields like engineering. The DRM provides the necessary
framework for conducting empirical, iterative research. Therefore, the present
research follows the Development Support research type of the DRM to define
the methods employed within the following fundamental stages, i.e., Research
Classification, Descriptive Study I, Prescriptive Study, and Descriptive Study II
(BLESSING and CHAKRABARTI 2009, p. 61). The research structure suggested by
the DRM provides the inherent outline of this thesis and is summarized in Tab.
1.1.

In the first stage, the Research Classification foresees the definition of research
objectives and questions (see Subsection 1.3.1) based on the description and
assumptions of an exemplary initial situation of the existing problem. The
definition of a reference metrology task in Subsection 1.2 serves this purpose
and enlightens the potential for improving the automation of ROMS. Moreover,
this stage also considers the formulation of some criteria, such as the defined
autonomy levels in Subsection 1.2.3 for evaluating the research outcome.

The next stage, Descriptive Study I, addresses the specification of the problem
based on an exhaustive literature analysis. First, Chapter 2 presents related
research addressing the automation of the identified subtasks. The literature
review within this stage supports the present thesis’s relevance and discusses the
identified research gaps. Moreover, Section A.1 introduces the core components
of ROMSs and the mathematical foundations from the machine learning domain.

The third stage, the Prescriptive Study, comprises the conceptualization and
implementation of three solution modules (SMs) to enhance the programming of
each identified subtask. Since the present dissertation follows a publication-based
structure, the conceptualization and implementation of each SM are summarized
in Chapter 3. A more exhaustive description of the concepts is given in the four
publications PUB1–PUB4, which investigate the formulated RQs as follows:

1. RQ1 is addressed in PUB1: MAGAÑA et al. (2020a), „PoseNetwork: Pipeline
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for the Automated Generation of Synthetic Training Data and CNN for Object
Detection, Segmentation, and Orientation Estimation“.

2. RQ2 is addressed in

• PUB2: MAGAÑA et al. (2023a), „Viewpoint Generation Using Feature-
Based Constrained Spaces for Robot Vision Systems“ and

• PUB3: MAGAÑA et al. (2023b), „Viewpoint Planning for Range Sen-
sors Using Feature Cluster Constrained Spaces for Robot Vision Sys-
tems“.

3. RQ3 is addressed in PUB4: MAGAÑA et al. (2023c), „Exposure Time and
Point Cloud Quality Prediction for Active 3D Imaging Sensors using Gaussian
Processes“

In the last stage, the Descriptive Study II foresees a holistic evaluation of the
technical and economic impact of the outlined solutions. Hence, Chapter 4
summarizes first the technical contributions for automating metrology tasks
using ROMSs, as well as their effectiveness and computational efficiency to ease
their programming effort. Moreover, the economic benefits and limitations of
the proposed solutions are analyzed and compared to a manual programming of
ROMSs. Finally, in the last step of this stage, a summary of the obtained results
and the research outlook regarding the automation of ROMSs is provided in
Chapter 5.

Table 1.1: Overview of the present thesis structure and deliverables aligned to the stages of the
DRM (BLESSING and CHAKRABARTI 2009). The main contributions of the publications PUB1–PUB4
are placed within the prescriptive stage of the research methodology.

Research Stage Deliverable

Research
Classification

- Identification of subtasks with the highest automation
potential for ROMSs (Subsection 1.2)

(Review-Based) - Definition of research objectives (Subsection 1.3.1)

Descriptive Study - Problem understanding (Chapter 2)
(Review-Based) - Identification of research gap and subtasks challenges

(Subsections 2.2.5, 2.3.5, and 2.4.3)

Prescriptive Study - Conceptualization of solution modules
(Comprehensive) (Sections 3.1.1, 3.1.2, and 3.1.3)

- Implementation of solution modules (Subsections 3.2
(PUB1), 3.3 (PUB2), 3.4(PUB3), and 3.5(PUB4))

Descriptive Study II - Holistic technical and economic evaluation (Chapter 4)
(Initial) - Summary and critical review (Chapter 5)



Chapter 2

State of the Art

This section provides a summary of research activities that have presented
solutions for automating or improving the identified subtasks during the pro-
gramming of robot-based optical 3D measuring systems (ROMSs). First, to provide
a comprehensive understanding of the programming methods used for RVS in
manufacturing systems, Subsection 2.1 offers a general overview. The following
Subsections 2.2–2.4 outline the efforts made to automate the individual subtasks
selected for this thesis.

2.1 Robot Programming Methods

The goal of programming robot-based manufacturing systems is to generate a
robot program that consists of a set of robot poses, collision-free trajectories
between poses, and fine-tuned system parameters that ensure the automated
execution of a targeted manufacturing process.

A variety of methods exists that combine different hardware and software solu-
tions to generate robot programs. For most approaches, a distinction is made
between online and offline programming (REINHART et al. 2018, pp. 149–150).
This subsection provides an overview of the main characteristics of some common
online and offline programming methods. A more comprehensive overview and
classification of programming methods is given by BRECHER and WECK (2021,
pp. 589–601) and VOGL (2009, pp. 12–26).

2.1.1 Online Programming

Online programming methods are performed on-site using the physical system
under real process conditions. Hereby, an expert programs the required routine
by positioning the end-effector in the required robot poses and trajectories using
a teach-panel (BRECHER and WECK 2021, p. 590). To ensure process stability,
the operator is also responsible for adjusting process or system parameters, e.g.,
camera parameters, welding parameters, and gripper commands.
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2.1.2 Offline Programming

In contrast, offline programming methods do not require the use of the physical
system to create a robot program. Instead, the robot poses and motions are
written textually in a robot programming language (text-based) or generated
with the help of a kinematic simulation. For instance, text-based programming is
tightly coupled to the robot hardware, and the automation of process is modeled
by a set of control commands (VOGL 2009, p. 21). On the contrary, simulation-
based methods use a visualized kinematic model of the workcell to program
motions that are translated into robot routines. The kinematic model of the
workcell integrates the robot’s kinematic model (see Subsection 1.2.1.1) and
the spatial relationships of all relevant1 physical system components within it
(BRECHER and WECK 2021, p. 597).

Although simulation software tools have shown great potential for reducing
programming effort, a high level of expertise is still required to generate and
validate robot poses and trajectories (PAN et al. 2012; VOGL 2009, p. 22). For
this reason, implicit or task-oriented programming approaches have emerged in
the context of automated programming as an evolution of offline programming
based on kinematic simulations. These methods aim to abstract and formalize
the necessary domain knowledge (e.g., process, workpiece, robot, end-effector)
to generate robot programs. The knowledge is formalized in the form of a logic,
program, or algorithm that ultimately generates a suitable sequence of robot
poses and trajectories. Thus, the robot programmer only needs to specify the
task instead of programming robot joints or poses. (VOGL 2009, p. 24; BRECHER

and WECK 2021, p. 600; TEKOUO MOUTCHIHO 2012, p. 28)

In recent years, task-oriented programming has gained popularity because it in-
creases the flexibility and robustness of programming in manufacturing systems
while reducing the effort and expertise required (BACKHAUS 2016; HAMMERST-
INGL 2020; STENMARK and MALEC 2015; TEKOUO MOUTCHIHO 2012). However,
the proper and exhaustive formalization of domain knowledge remains a chal-
lenging task when developing a programming framework for the automated
generation of robot programs.

2.2 Workcell Calibration

Having an accurate kinematic model of the workcell is an essential requirement
for offline programming approaches that aim to automate the generation of
robot routines (see Subsection 2.1.2). Initially, a preliminary kinematic model
is created from a rough workcell layout or by manually measuring the spatial
relationships between relevant components. The following step involves a cali-
bration process to determine any deviation from the initially estimated position

1In this context, a relevant component refers to any object that could impact the programmed
motion considering the physical system or potentially collide with the robot during its path.
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and orientation of workcell components like workpieces and collision objects
(HÄGELE et al. 2016, p. 1398). First, Subsection 2.2.1 outlines the formal defi-
nition of the problem. Then, the following subsections present three different
measurement techniques addressing this challenge.

2.2.1 Problem Formulation

The goal of the workcell calibration is to estimate the pose of an object from
the workcell, such as the workpiece, relative to a known base coordinate system.
For example, the relative pose pw

0 between the workpiece’s frame at Cw and the
base coordinate C0 is to be estimated. The pose of the workpiece in the world
coordinate system is given by the rigid transformation Tw

0 as follows:

pw
0 := T w

0 . (2.1)

The formulation of the problem is graphically represented in Fig. 2.1.

Cw

p tcp
r := T tcp

r T w
tcp

T j6
r (DH1−6) T tcp

j6Cr

Ctcp

Cpro j Cs

C j6

Range Sensor

C0

pw
0 := T w

0

T r
0

Workpiece

Robot

Figure 2.1: Overview of the kinematic model of a ROMS and the coordinate systems of its core
components: base coordinate system C0, robot Cr , sensor Ctcp , and workpieces Cw. The pose of
the workpiece in the base coordinate system is denoted as follows: pw

0 := T w
0 .

A straightforward approach to estimate the rigid transformation given by Eq. 2.1
is to measure manually the distance between the two frames. However, in the
context of ROMS, the rigid transformation can also be computed automatically
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using the robot kinematic model. Assuming that the robot’s kinematic model
is known, the rigid transformation Ttcp

0 between the base (C0) and the TCP
reference frame can be seamlessly estimated for each robot configuration (see
Subsection A.1.1). For example, assuming that the transformation Tr

0 between
the base coordinate and the robot base is known, using the robot’s kinematic
model from Eq. A.1 and the transformation between sensor and workpiece Ttcp

j6
,

Ttcp
0 is given:

T tcp
0 = T r

0 · T
j6
r (DH1−6) · T

tcp
j6

. (2.2)

Given the rigid transformation Ttcp
w between the TCP and the workpiece, the pose

of the workpiece in the world coordinate system is calculated as follows:

T w
0 = T tcp

0 · T
w
tcp. (2.3)

Since the transformation Ttcp
0 is known, the workpiece calibration can be seam-

lessly automated by calculating the transformation between the sensor’s TCP and
the workpiece Ttcp

w . The following subsections introduce different approaches
for estimating the kinematic relationship between the sensor’s TCP and the
workpiece frame.

2.2.2 Tactile Alignment

Tactile alignment is a common approach for aligning workpieces for machine
tools and robot-based systems. The principle of this method consists of touching a
workpiece’s reference frame from different points with a robot’s known reference
frame, such as the edge of a tactile probe or the end-effector (BRECHER and
WECK 2021, p. 594). Then, by approaching the same frame from different
directions or using different reference frames and repeating the process, the
position and orientation of the workpiece reference frame is estimated using a
system of linear equations. BRECHER and WECK (2021, pp. 594–595) provide an
overview of different strategies specifying different positions and characteristics
used for tactile alignment. Although this approach is considered a standard
alignment method in many applications due to its efficiency and simplicity, it
generally requires an experienced operator to manually position the robot and
avoid collisions.

2.2.3 2D Image based alignment

Identifying an object of interest within an unknown environment and estimating
its position can be achieved through the utilization of 2D images captured by
a camera. The fundamental research of this problem has its foundations in
the face and pedestrian detection using image processing methods (SZELISKI

2022, p. 379; VIOLA and JONES 2001). However, academia and industry have
extended the applicability of these methods to address object detection and pose
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estimation tasks in industrial applications, e.g., bin-picking, quality assurance
(DIRR et al. 2023; HARTL et al. 2021). This section presents a brief overview of
different methods and variations addressing this task. A comprehensive overview
of the latest research on 6D pose estimation can be found in DU et al. (2021),
SHETTY et al. (2021), and ZHU et al. (2022).

Image-Based Object Detection

The initial step to estimate the position of an object is to robustly identify pixel
patterns belonging to an object or its parts. Such patterns are referred to as
keypoint features or interest points (SZELISKI 2022, p. 419). Once such reference
points are selected, they are used to match objects with the same features in
different images, ultimately helping to identify an object (BEYERER et al. 2016,
p. 715).

Therefore, a fundamental problem in object detection is the adequate selection
and synthesis of keypoint features. In the research field of classical image
processing, different studies described mathematically different types of hand-
designed features (e.g., points and patches, edges, curves and contours, straight
lines) to identify image patterns (SZELISKI 2022, pp. 434–440). For example,
object detection techniques based on hand-designed features (e.g., Haar-like
features, scale invariant feature transform (SIFT), and histogram of oriented
gradients (HOG)) have demonstrated solid robustness and accuracy within well-
controlled environments. However, most of these techniques fail to capture mid-
and high-level correlations (e.g., edges, intersections, or objects parts) composed
by multiple features affecting its scaling and generalization performance (DENG

2014, p. 321).

On the contrary, in recent years deep learning models (see Subsection A.1.3.2)
have exhibited a growing capability to tackle two difficult problems linked to
the employment of traditional hand-crafted feature techniques. First, the design
of more informative features for visual tasks can be automated (KRIZHEVSKY

et al. 2017). Second, the architecture of artificial neural networks (ANNs)
(see Subsection A.1.3.2) allows the synthesis of low- and high-level features,
contributing to achieving better performance in terms of accuracy, generalization,
biased data, and scalability (GIRSHICK et al. 2014; KRIZHEVSKY et al. 2017). For
these reasons, the latest studies over the last decade have focused primarily on
developing deep learning models for object detection (LIU et al. 2016; REDMON

et al. 2016; REN et al. 2017) and segmentation2 (BOLYA et al. 2019; HE et al.
2017; PINHEIRO et al. 2015).

2Segmentation refers to the process of dividing an image into regions and calculating a precise
boundary to adjacent pixels so that each segment corresponds to an object or parts of it. (BISHOP

2006, p. 428; SZELISKI 2022, p. 387).
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Pose Estimation

Once an object has been identified in an image, the next step considers the
object’s pose estimation. For instance, BRAUER (2014) and MÜLLER and ARENS

(2010) used hand-designed features and a probabilistic–based approach to esti-
mate the 3D pose of human bodies using person limbs as landmarks. Moreover,
the results of BRAUER (2014, p. 212) demonstrated that the 3D pose of a human
body could be estimated with a mean error up to 20 cm (distance of 2.9 m) using
a camera projection model.

On the contrary, more recent studies have proposed convolutional neural networks
(CNNs) (see Subsection A.1.3.2) to combine object detection and pose estimation.
For example, KENDALL et al. (2015) presented one of the first models for 6D
pose estimation using CNNs. In their study, the authors extend the CNN model
proposed by SZEGEDY et al. (2015) to infer a detected object’s position and
orientation. Their model was evaluated for localization and mapping tasks for
public buildings. The authors showed that their approach outperformed hand-
designed feature detector approaches. Furthermore, KEHL et al. (2017) extended
the object detection model of LIU et al. (2016) to estimate the 2D pose of an
object. In the following step, the 6D pose is inferred based on a comparison of
rendering hypotheses of 6D bounding boxes and a camera projection model to
calculate the depth. Similarly, XIANG et al. (2018) proposed a camera projection
model to estimate the depth of previously detected and segmented objects using
a CNN. The authors introduce a CNN architecture designed for object detection,
segmentation, 2D object center, and rotation regression. However, the regression
of the rotation showed to be sensitive to ambiguities and convergence problems.

Synthetic Datasets for Model Training

Training supervised image-based machine learning (ML) models requires a large
and labeled dataset to achieve reasonable performance. In particular, labeling
images, i.e., estimation of bounding boxes, segmentation masks, and orientation
labels, requires significant effort and expertise (HODAN et al. 2017). Therefore,
some of the revised works using data-based approaches proposed to train their
models using synthetic datasets (KEHL et al. 2017; SUNDERMEYER et al. 2018;
XIANG et al. 2018). For instance, the work of TREMBLAY et al. (2018b) suggests
a series of domain randomization techniques (background images, lighting
conditions, different viewpoints) for generating synthetic datasets and reducing
the training effort without sacrificing performance. The use of such methods has
shown great potential and awakened great interest in recent years, so much so
that even an industrial consortium of different project partners (BMW, NVIDIA,
Microsoft, et al.) created SORDI3, a public synthetic object dataset, optimized
for training and validation of CNNs.

3Synthetic Object Recognition Dataset for Industry. https://sordi.ai/
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2.2.4 Point cloud based alignment

2D imaged-based alignment techniques have shown that the 6D pose of an
object can be robustly estimated from a single image to an accuracy of a few
centimeters (BRACHMANN et al. 2016; HINTERSTOISSER et al. 2013; HODAŇ et al.
2016; ZHU et al. 2022). However, in many cases the alignment accuracy reached
by these approaches is not sufficient. Therefore, many of the studies following
a 2D image based alignment extended their methods to integrate extra depth
information using point clouds to enhance the accuracy of their methods (KEHL

et al. 2017; SUNDERMEYER et al. 2018; XIANG et al. 2018). For this purpose,
local registration algorithms, such as the iterative closest point (ICP) algorithm of
BESL and MCKAY (1992), take over the fine alignment and use the image-based
rough pose estimation as an initial value. By integrating depth-information these
studies demonstrated that the pose estimation accuracy could be considerably
improved.

Although range imaging approaches allow for non-contact and accurate align-
ment, any detection method that relies on depth information still requires the
sensor to be positioned close enough so the object lies within the sensor’s mea-
surement volume (see Section 1.2.1.2). For this reason, range image alignment,
similar to tactile calibration, is also difficult to automate and requires a previous
spatial analysis of the scene. In addition, the robust acquisition of depth informa-
tion using optical sensors is more sensitive to lighting conditions and reflective
material properties (BRACHMANN et al. 2016) (see Subsection 2.4).

2.2.5 Summary and Need for Action

Within this section three different techniques were introduced for estimating the
pose of a reference object, using a tactile probe, a 2D image, or a 3D point cloud.
First, tactile calibration (see Subsection 2.2.2) was identified as a highly accurate
and common approach for programming machine tools and robot-based systems.
Moreover, workcell calibration based on point clouds was also recognized as an
accurate approach used by production systems that incorporate a 3D sensor (see
Subsection 2.2.4).

Although tactile and point cloud calibration techniques are considered highly
accurate and established approaches for calibrating workcells, both require
significant human intervention for programming a routine to prevent collisions
and ensure the quality of the calibration. For this reason, Subsection 2.2.3
presented an overview of approaches that allow object recognition using 2D
images. Image-based calibration allows objects to be roughly detected from
long and safe working distances, making it a viable approach for automating
calibration tasks.

Furthermore, recent research focusing on image-based object detection indicates
that data-driven models, such as CNNs, have established as the current state-of-
the-art approach for solving these tasks (BRACHMANN et al. 2016; KEHL et al.
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2017; KENDALL et al. 2015; SUNDERMEYER et al. 2018; XIANG et al. 2018).
However, to achieve satisfactory performance, the models must first be trained
on large datasets (GOODFELLOW et al. 2016). The generation of such datasets is
still considered a significant resource-intensive task, making use of data-based
approaches impractical for industrial applications.

Despite the well-founded solutions proposed to detect and estimate the pose of
an object of interest based on images, end-to-end solutions have not yet to been
established within the industry or academia. One reason for this discrepancy is
that the efficacy of data-driven models depends heavily on the attributes of the
training datasets (such as their size, quality, and variability) and the limitations
of the particular applications (ZHOU and WU 2011). Furthermore, the current
CNNs architectures require more lightweight designs to reduce the problem
complexity and training effort (ZHU et al. 2022).

2.3 Viewpoint Planning Problem

Having an aligned kinematic model of the workcell, the next step in programming
ROMSs deals with the generation of a viewpoint plan that satisfies the targeted
inspection task. In academia, this generic challenge is commonly known as
the Viewpoint Planning Problem (VPP). Subsection 2.3.1 introduces its formal
definition.

The research in this field varies based on the defined system constraints and
how domain knowledge (such as robotics, optics, metrology) is abstracted and
formalized to address the VPP. Hence, Subsection 2.3.2 provides first an overview
of commonly acknowledged viewpoint constraints that have been taken into
account within the scope of metrological tasks and ROMS. Then, Subsections
2.3.3 and 2.3.4 provide an overview of studies that utilize prior knowledge and
those that do not necessitate to solve the VPP.

The present subsection offers an overview of the related research in the scope of
this thesis, an exhaustive overview of the overall progress, challenges, and further
applications of the VPP is provided by the surveys of CHEN et al. (2011), KRITTER

et al. (2019), MAVRINAC and CHEN (2013), PEUZIN-JUBERT et al. (2021), SCOTT

et al. (2003), and TARABANIS et al. (1995a).

2.3.1 Problem Formulation

The VPP and related work addressing its resolution is better understood by
considering the following minimal problem formulation based on the study of
TARBOX and GOTTSCHLICH (1995):

“What is the minimum number k of viewpoints v required to acquire a given set of
features F?”
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Hence, a metrology task can be considered fulfilled when a viewpoint plan
holding a finite number of k viewpoints guarantees the acquisition of all features
F . In addition, it must be considered that a valid viewpoint must satisfy a defined
set of viewpoint constraints eC .

Although the concept of viewpoints is used in the majority of the related research,
there seems to be no established formal definition of a viewpoint v among
them. Hence, this thesis considers a feature-centered formulation and defines a
viewpoint as being a triple of following elements: a sensor pose ps ∈ SE(3) to
acquire a subset of features G ⊆ F considering a set of viewpoint constraints eC:

v := (ps, G, eC). (2.4)

2.3.2 Viewpoint Constraints

The VPP is still considered an open problem in the automation of various ap-
plications that depend on the computation of valid viewpoints, such as camera
surveillance, scene exploration, object detection, visual servoing, object recon-
struction, image-based inspection, robot calibration, and mobile navigation
(CHEN et al. 2011; PEUZIN-JUBERT et al. 2021). Since viewpoint constraints vary
within applications, some studies dealing with automated inspection (CHEN and
LI 2004; SCOTT 2009; TEKOUO MOUTCHIHO 2012), explicitly defined different
viewpoint constraints to first assess the validity of the generated viewpoints in
the context of feature-based inspection tasks using ROMSs.

The following list presents the definitions of eight viewpoint constraints consid-
ered in this thesis. Some of these constraints have partial overlap with those
addressed in existing literature. Figure 2.2 shows a simplified 2D representation
of some of these constraints.

eC1 Measurement Volume: The working space of range sensors is represented
by their measurement volume. The measurement volume is described
by different sensor parameters, e.g., the horizontal and vertical field of
view (FOV) angles, resolution, focal length (COWAN and KOVESI 1988),
see Subsection A.1.2.2. Therefore, the measurement volume combines
multiple constraints and is regarded as a crucial and restrictive limiting
factor in several applications. This constraint is fulfilled when the targeted
surface of a workpiece lies inside the measurement volume (ABRAMS and
ALLEN 1992).

eC2 Incidence Angle: When selecting the sensor position for detecting a surface
point, additional conditions regarding its orientation must be fulfilled.
For most imaging sensors, a maximum incidence angle that describes the
feature’s normal and the sensor’s optical axis must not exceed a threshold
to ensure the acquisition of the surface. (SCOTT 2002, p. 105; REED 1998,
p. 33)
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Figure 2.2: Simplified 2D graphical representation of some viewpoint constraints. The current
viewpoint is invalid because some constraints (eC ) are not satisfied. For example, the entire geometry
of feature f1 is not completely within the measurement volume (eC1, eC3). The occluding object
prevents feature f2 from being fully illuminated by the projector (eC6, eC7).

eC3 Feature Geometry: In the context of inspection applications, it is important
that all surface points of a feature are robustly acquired with a single mea-
surement (CHEN and LI 2004). Therefore, this constraint is considered
an extension of the first constraint and is satisfied if the entire feature
geometry lies within the measurement volume and can be acquired with
a single viewpoint.

eC4 Kinematic Errors: In the context of real applications, system modeling in-
evitably involves discrepancies between virtual and real-world models
(HIRZINGER et al. 1994; TEKOUO MOUTCHIHO 2012, p. 31). Therefore,
any factor that affects the accuracy of the nominal position of the sensor
and impact the validity of a viewpoint must be considered. Such factors
include kinematic modeling errors of the robot, sensor, and workpiece, or
the positional accuracy of all manipulators (SCOTT 2002, pp. 170–174).

eC5 Sensor Accuracy: Given that the sensor’s accuracy and sampling density
may vary within its measurement volume, it is necessary to consider
this characteristic constraint for the viewpoint planning. For instance,
SCOTT (2009) presented a model for quantifying these variables within
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the sensor’s measurement volume. In addition, PARK et al. (2006) showed
that there may be quality differences of the sensor at different acquisition
planes and proposed a look-up table to represent them. Therefore, a
constraint representing the sensor accuracy must be considered when the
sensor accuracy can be quantified.

eC6 Feature Occlusion: A viewpoint is considered valid if a free line of sight exists
between the sensor and the feature including its whole geometry (see
third constraint). For this reason, a free occlusion constraint must be
regarded to guarantee that no object blocks the sensor’s visibility. (CHEN

and LI 2004; REED 1998)

eC7 Bistatic Sensor: Recalling the bistatic nature of range sensors, two imaging
devices (two cameras or one camera and one projector) are required to
compute a point cloud (SCOTT 2002; TEKOUO MOUTCHIHO 2012). For
this reason, all viewpoint constraints must be fulfilled for all cameras or
projectors of a range sensor at the same time.

eC8 Robot Workspace: Since the sensor is attached to the robot, additional
constraints must be fulfilled to ensure a viewpoint’s validity. A viewpoint
is valid if this is reachable by the robot, i.e., it lies within the robot
workspace (CHEN and LI 2004).

2.3.3 Model-Based Planning

In the context of metrological applications, it is assumed that the workpiece
position and the nominal position and orientation of the features are known.
This enables exploitation of this information for planning more effective view-
points. All techniques, which utilize a priori knowledge about the workpiece for
viewpoint planning fall under the category of model-based approaches (PEUZIN-
JUBERT et al. 2021; SCOTT 2002).

Furthermore, the works following a model-based approach are differentiated
on how the features are modeled and how the components and constraints of
a ROMS are abstracted and formalized to solve the VPP. Most model-based
viewpoint planning methods can broadly divided into synthesis and sampling-
based approaches (TARABANIS et al. 1995b).

Synthesis

Synthesis approaches aim to model viewpoint constraints in the form of con-
tinuous or discrete solution spaces before searching for an optimal viewpoint.
Techniques aiming at characterizing search spaces4 have been proposed since
the first studies dealing with the VPP. Such a formulation has the advantage

4(related terms: viewpoint space, visibility map, visibility matrix, visibility volumes, imaging
space, scannability frustum, configuration space, visual hull, search space)
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of providing a straightforward understanding and spatial interpretation of the
problem.

The first studies that considered the characterization of a continuous solution
space in the Euclidean space R3 can be attributed to the publication of COWAN

and KOVESI (1988). In their work, they introduced a model-based method for
2D sensors, which synthesized analytical relationships to characterize a handful
of constraints geometrically: resolution, focus, field of view, visibility, view
angle. Furthermore, COWAN and BERGMAN (1989) introduced constraints for
placement of a lighting source. Based on the analytical findings provided by the
previous work of COWAN and BERGMAN (1989) and TARABANIS et al. (1995a)
introduced a model-based sensor planning system, which considered occlusion-
free regions. In addition, the authors posed the problem in an optimization
setting using objective functions to find valid viewpoints within the occlusion-
free space that meet imaging constraints. The planning system proposed by
TARABANIS et al. (1995a) was extended by ABRAMS et al. (1999) for its use
with industrial robots and moving objects. Their study addressed the drawbacks
(nonlinearity and convergence guarantee) of the optimization algorithms and
opted to characterize 3D search spaces for the sensor’s resolution, the field of
view, and the robot’s workspace. Although the authors could not synthesize
every constraint in the Euclidean space, they confirmed the benefits of solving
the problem in R3 instead of optimizing equations for finding suitable viewpoints.
Furthermore, in a series of publications REED and ALLEN (2000) and REED

(1998) extended some of the models introduced by TARABANIS et al. (1995a)
and addressed the characterization of a search space in R3 for range sensors,
which integrates imaging, occlusion, and workspace constraints.

Another line of research was followed by the works of TARBOX and GOTTSCHLICH

(1994, 1995) which proposed the synthesis of a discretized search space based
on visibility matrices. These matrices are used to map the visibility between
the solution space spanned by the imaging parameters of the sensor and the
discretized surface of an object. In their works, TARBOX and GOTTSCHLICH pre-
sented different algorithmic variants based on the concept of visibility matrices
to solve the VPP in the context of inspection tasks. Similarly, SCOTT (2002, 2009)
extended the concept of visibility matrices by considering additional constraints,
such as occlusion, sensor accuracy, and variation of incident angles. Moreover,
recent studies demonstrate the benefits of visibility matrices in encoding informa-
tion between the surface of an object and its related viewpoints (GOSPODNETIĆ

et al. 2022; GRONLE and OSTEN 2016; JING et al. 2017; MOSBACH et al. 2021).

In the context of space discretization and feature-driven approaches, the pub-
lications of PITO (1999) and TRUCCO et al. (1997) suggest characterizing the
solution space as a sphere with all viewpoints on its surface. This approach al-
lows to simplify the 6D sensor positioning problem to a 2D optimization problem
with a fixed orientation. Similarly, STÖSSEL et al. (2004) and ELLENRIEDER et al.
(2005a) introduced the concept of visibility maps to encode feature visibility
of a sphere in a matrix. RAFFAELI et al. (2013) and KOUTECKÝ et al. (2016)
considered variations of this approach for their viewpoint planning systems.
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Furthermore, other relevant works that focused on laser scanners, (DERIGENT

et al. 2006; LEE and PARK 2000; TEKOUO MOUTCHIHO 2012), also considered
the synthesization of a search space before searching for feasible solutions.

Sampling-Based

Sampling techniques introduce objective functions to model constraints. The sat-
isfiability of each viewpoint constraint is then evaluated individually by sampling
the search space using metaheuristic optimization algorithms, such as simulated
annealing or evolutionary algorithms (CHEN and LI 2004; ERDEM and SCLAROFF

2006; GLORIEUX et al. 2020; GONZÁLEZ-BANOS 2001; MAVRINAC et al. 2015).
To a certain extent, many studies adopting a synthesis approach also utilize
sampling techniques to evaluate residual constraints on viewpoints that cannot
be synthesized analytically.

2.3.4 Non-Model Based Planning

In contrast, non-model based approaches require no a priori knowledge; the
object’s location and form is unknown to the planning system. In this case,
online exploratory techniques based on the captured data are used to compute
the next viewpoint (KRIEGEL et al. 2015; LAURI et al. 2020). Most of the
strategies proposed focus on reconstruction tasks and address the problem as the
next-best-view planning problem. Recalling the outlined coordinate metrological
task (see Subsection 1.2.2), it is assumed that the features and their location
are known a priori. Hence, related techniques neglecting this information fall
outside the scope of this thesis and are not further discussed.

2.3.5 Summary and Need for Action

An overview of different approaches addressing the VPP, i.e., the computation
of the minimum number of valid viewpoints to complete a vision task were
presented in this section. Although numerous sophisticated solutions have been
proposed to tackle the VPP, their transferability, efficiency, and effectiveness
are often restricted by the limitations of the individual vision systems and the
specific tasks targeted. Based on the literature review, the present thesis did not
find an appropriate approach to solve the VPP for metrology tasks and satisfy
all considered viewpoint constraints considered in Subsection 2.3.2. Specifically,
two pressing issues related to this research gap were identified.

Problem Formulation and Consistent Characterization of Viewpoint Constraints

The first point deals with the appropriate formulation of the VPP itself. On
the one hand, there exists exists a literature trend, which poses the VPP as an



26 2 State of the Art

optimization problem (BEASLEY and CHU 1996; CHEN and LI 2004; ERDEM

and SCLAROFF 2006; GLORIEUX et al. 2020; KABA et al. 2017; MAVRINAC and
CHEN 2013; MITTAL and DAVIS 2007; SCOTT 2009). These studies model each
viewpoint constraint as objective functions. Then, optimal and valid viewpoints
are found using meta-heuristic optimization algorithms, e.g., simulated annealing
or evolutionary algorithms.

On the other hand, another line of work takes a more analytical approach and ini-
tially aims to spatially define viewpoint limitations as solution spaces (KOUTECKÝ

et al. 2016; MOSBACH et al. 2021; SCOTT 2002; TARBOX and GOTTSCHLICH

1994; TEKOUO MOUTCHIHO 2012). In the second step, an optimization algorithm
selects optimal viewpoints within the synthesized solution spaces. Viewpoint
constraints that could not be analytically formalized are individually assessed
using binary functions.

In general, most of the revised works follow different approaches to synthesize
viewpoint constraints. Thus, the adaptability of the solutions and their effective-
ness depend strongly on the fundamental methods used to model these. This
inconsistency has led to the development of rigid, tailor-made solutions, making
their generalization for different use-cases or viewpoint constraints difficult.
Therefore, this thesis considers that a modular formulation of the VPP and a
consistent modeling of the viewpoint constraints are key elements towards more
efficient and generic solutions.

Compensation of Modeling Uncertainties

In the context of industrial applications, a second fundamental pressing issue,
which few researchers addressed, is the consideration of model uncertainties
such as the positioning error of the system or sensor inaccuracies (SCOTT 2002, p.
212; TEKOUO MOUTCHIHO 2012, p. 133). System modeling inevitably involves
discrepancies between virtual and real-world models, especially in dynamically
changing environments. For this reason, some of the first studies dealing with the
VPP, followed an analytical approach and suggested modeling solution spaces to
formalize the spatial influence of different viewpoint constraints (COWAN and
KOVESI 1988; REED 1998; TARABANIS and TSAI 1991; TARBOX and GOTTSCHLICH

1994). Solution spaces can be used to compensate for modeling uncertainties in
real applications (SCOTT 2002; TARBOX and GOTTSCHLICH 1995). For example,
if a selected viewpoint results invalid, an alternative viewpoint is seamlessly
selected from the solution space.

More recent works have continued to assess a viewpoint’s validity using similar
approaches. Some prominent examples are the works of (GOSPODNETIĆ et
al. 2022; GRONLE and OSTEN 2016; JING et al. 2017; KOUTECKÝ et al. 2016;
MOSBACH et al. 2021), who followed the concept of SCOTT (2002) and TARBOX

and GOTTSCHLICH (1995) to discretize the viewpoint space and the object
surface space based on visibility matrices. Although these works have steadily
demonstrated the effectiveness of visibility matrices to solve the VPP, the main
weakness of these approaches is related to the inherently limited storage capacity
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and the computational efficiency and inaccuracy associated with discretizing the
object’s surface and the viewpoint space. In addition, for large-scale metrology
applications that consider large workspaces, discretizing solution spaces could
lead to computationally inefficient solutions. Furthermore, most of these works
reduce the problem dimensionality for sensor positioning using a fixed working
distance, limiting the intrinsic flexibility of ROMS and the overall solution space.

Although the characterization of solution spaces is a sound approach for com-
puting valid viewpoints and addressing modeling uncertainties, the current
research lacks a consistent modeling framework for characterizing all viewpoint
constraints considered in the scope of this thesis. Therefore, the spatial and
explicit characterization of all considered viewpoint constraints is a fundamental
unresolved issue required to tackle the VPP.

2.4 Measurement Parameterization

Measuring the 3D shape of reflective surfaces is a challenging task for optical
metrology researchers due to drastic variations in intensity responses. In the last
two decades, numerous studies have proposed different techniques to parame-
terize sensors and obtain suitable image exposure. The objective is to achieve a
uniform image intensity, preventing over- or under-exposure of pixels.

To understand the complexity of acquiring an adequate image exposure, first, the
problem’s formal definition is outlined in Subsection 2.4.1. Then, the following
subsections present various techniques proposed in the last two decades to
optimize image exposure for active optical range sensors.

2.4.1 Problem Formulation

The image exposure, which is defined as the amount of light that reaches the
camera sensors, determines the intensity of the resulting image and depends
on several influencing factors, e.g., sensor focal length, lens aperture (exposure
time), the light intensity of the projector, the surface reflectivity, external lighting
sources (NAYAR et al. 1991; ELLENRIEDER et al. 2005a; EKSTRAND and ZHANG

2011; ZHANG 2020; GÜHRING 2002; SZELISKI 2022, p. 611). For instance, in
monochrome cameras, the image intensity is commonly quantified as the gray
level of an eight-bit scale [0− 255] ∈ Is, with 0 corresponding to a black pixel
and 255 corresponding to white (GÜHRING 2002, p. 37).

EKSTRAND and ZHANG (2011) proposed a simplified linear model to calculate
the average image intensity I i, j

s for each pixel x i , y j given the sensor’s exposure
time tex p and a camera sensitivity γs:

I i, j
s ∼ tex p · γs · [L i, j

a +ρo · (L i, j
o + L i, j

p )] +σs. (2.5)
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The local average intensity for a surface area corresponding to a set of pixels
depends on the following factors (EKSTRAND and ZHANG 2011):

• the direct ambient light intensity (La) going directly into the sensor,

• the ambient light intensity (Lo) reflected by the object with a surface
reflectivity of ρs,

• the projected light intensity of the active source (Lp) reflected by the
object with a surface reflectivity of ρs, and

• the sensor noise σs.

Furthermore, the studies of EKSTRAND and ZHANG (2011), FENG et al. (2014),
and ZHANG (2020) assume that in the context of active sensing, the projector’s
light is generally more dominant than the ambient light and the resulting light
reflected by the object. Therefore, in such cases the ambient light can be
neglected yielding the simplification of Eq. 2.5:

I i, j
s ∼ tex p · γs ·ρ · Lp +σs. (2.6)

The model of EKSTRAND and ZHANG (2011) showed to be a valid approximation
for static measurement configurations, which considered a constant working
distance to the surface and a constant incidence angle between the lighting
direction and the surface normal. However, these conditions do not fully hold
for applications with specular objects requiring a dynamic sensor positioning.

In contrast to ideal diffuse objects, which reflect light uniformly in all directions
(Lambertian reflection), specular objects scatter light depending on the incoming
light direction (SZELISKI 2022, p. 80; GÜHRING 2002, pp. 80–82), see Fig. 2.3.
For this reason, Eq. 2.6 must be extended for dynamic configurations by taking
into the account the distance to the image plane zs and the incidence angle φs
(GÜHRING 2002, p. 81; COWAN and MODAYUR 1993):

I i, j
s ∼ tex p · γs ·ρ ·

1
z2

s

· cos(φs) · Lp +σs. (2.7)

(a) (b) (c)

Figure 2.3: Reflection models depending on the incidence angle φs and surface reflectivity: a) ideal
diffuse, b) directional diffuse, and c) ideal specular according to (GÜHRING 2002, p. 80)



2.4 Measurement Parameterization 29

The parameters of Eq. 2.7, such as the exposure time, projected light intensity,
angle of incidence, and sensor distance, can be adjusted to control the image in-
tensity range and obtain an appropriate exposure. In the subsequent subsections,
various approaches are presented that aim to achieve optimal image intensity by
modifying or controlling these parameters.

2.4.2 Approaches for Measurement Optimization

Spray Coating

A common method to achieve uniform image exposure is to mat the surface
of the target by applying an anti-reflective material such as chalk or titanium
(PALOUSEK et al. 2015). The aim of this procedure is to modify the acquisition
surface properties making it more diffuse. This ensures that the reflected light
by the object is distributed more homogeneously and is independent of the light
source direction, as shown in Fig. 2.3a. Although this technique is still considered
very effective in preventing overexposure of the camera image, this approach
also has drawbacks, e.g., not all workpieces can be coated, the process usually
requires manual pre- and post-processing steps (coating and cleaning), and the
measurement accuracy is affected by the powder thickness and its distribution
homogeneity (PALOUSEK et al. 2015; SHI et al. 2006).

High Dynamic Range

High dynamic range (HDR) techniques are considered a state-of-the-art approach
for optimizing image exposure established within many commercial and indus-
trial optical sensor systems (SZELISKI 2022, p. 609; BEYERER et al. 2016, p.
213). The core idea consist of merging multiple images acquired with different
exposures to optimize the intensity of individual pixels or patches. Producing
a series of images with multiple light intensities can be achieved mainly in two
ways: camera exposure control and projector fringe pattern modulation (LIN

et al. 2017b).

For example, ZHANG and YAU (2009) study utilizes an HDR method to create
a pixel-by-pixel image by selecting the best illuminated pixels from a set of
fringe images captured with varied exposure times. Moreover, FENG et al. (2014)
suggested an empirical approach to analyze first the exposure of individual
image regions using an initial exposure. Based on these findings, in the second
step, multiple exposure times are then calculated and the corresponding images
are merged to obtain an ideal exposure. Furthermore, SONG et al. (2017) in-
vestigated the acquisition of specular objects and proposed a pixel-wise fusion
algorithm to combine different images taken with different exposure times. More
recently, ZHENG et al. (2019) used a color camera for producing different inten-
sities with a single fringe projection. The study proposes a HDR method, which
fuses the images of the three camera channels (red, green, and blue) to generate



30 2 State of the Art

a well-exposed image. Although all of these works showed promising results for
obtaining high-density point clouds in applications with a high dynamic range
of surface reflectivity, the number and selection of exposure times were chosen
empirically and their estimation was not discussed further.

Besides camera exposure control, there is an alternative research line that utilizes
fringe pattern modulation to obtain different images with a high range of inten-
sity levels. For example, JIANG et al. (2012) and SKOCAJ and LEONARDIS (2000)
select empirically projector intensities to acquire multiple images with different
intensities and fused them to obtain an optimized HDR image. WADDINGTON

and KOFMAN (2010, 2014b) proposed a technique to adjust the projecting fringe
pattern based on the maximum input gray level (MIGL) of the fringe images
before reaching the image saturation. This value is estimated empirically before-
hand and depends on the working distance of the sensor. In a later publication,
WADDINGTON and KOFMAN (2014a) showed how this approach is used to gen-
erate composite HDR images with an optimized global exposure. Furthermore,
LI and KOFMAN (2014) followed a similar approach, however, their study con-
centrated on estimating the MIGL locally for individual regions of an image.
Moreover, ZHAO et al. (2014) addressed the disadvantages of methods using
projectors in terms of time efficiency. By integrating more LED chips and using a
modulation control of the light, the authors demonstrated that the acquisition
speed can be significantly increased.

In the context of active range sensing, HDR techniques have been demonstrated
to be suitable for surface measurement of non-diffuse objects. More detailed
insight into the various HDR approaches and their applications are given in the
review papers of FENG et al. (2018) and LIN et al. (2017a).

Multiple Cameras

Taking into account the advantages of HDR methods, an alternative way consid-
ered by other studies to obtain a high range of image intensities is to consider
redundant measurement configurations comprising multiple cameras. In contrast
to HDR techniques, multiple images can be acquired simultaneously, reducing
the time required to acquire each image. LIU et al. (2011) proposed a dual-
camera vision system, where the depth information of a surface point can be
calculated from any of both cameras. Their study shows that by combining a
multiple exposure method with a technique to merge the fringe images from both
cameras, a better quality of the point cloud is obtained. A dual-camera setup
was also proposed by FENG et al. (2017). The authors showed that saturated
pixels from one camera can be compensated by the second camera at a different
angle. The proposed system showed to be effective for compensating over- and
underexposure areas with shiny surfaces.
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Analytical Modeling

Another way of optimizing the exposure of an image is to address this problem
from an analytical perspective. For instance, ELLENRIEDER et al. (2005b) and
KOUTECKÝ et al. (2016) proposed an offline viewpoint planning system that
estimates an adequate sensor’s exposure time to acquire the surface of specu-
lar objects based on the sensor position and the reflectance simulation model
framework of NAYAR et al. (1991). The study of KOUTECKÝ et al. (2016) presents
a comprehensive validation using industrial metal sheets, where the resulting
point cloud of the acquired surface area could be estimated with a deviation
range between 13 % to 26 %.

In addition, the studies of EKSTRAND and ZHANG (2011) and ZHANG (2020)
introduced an autoexposure technique considering a linear approximation of
the image intensity based on Eq. 2.6. EKSTRAND and ZHANG (2011) proposed
to pre-analyse a series of fringe images acquired with different exposure times
to determine a globally optimized exposure time. ZHANG (2020) enhanced
this technique by using only a single image and extended the framework for
computing multiple exposure times that can be applied to HDR-based methods.
Both studies show that the approximated linear model is valid and provides
satisfactory results for static environments with a fixed sensor position and
orientation.

Sensor Modifications

Another area of research focuses on improving image exposure through addi-
tional modifications of the sensor. GUPTA et al. (2011) studied the influence of
fringe patterns on the image intensity of individual pixels. Their work suggested
an alternative set of modified fringe patterns to compensate for some global
illumination effects, e.g., inter-reflections or diffusion. BABAIE et al. (2015)
adjust recursively pixel intensities of projected fringe patterns by a feedback
control loop, which analyses the current image intensities. Similarly, LIN et al.
(2017b) investigated an optimized projecting pattern based on a preliminary
analysis of multiple fringe images generated with different gray-level intensities.
Moreover, FENG et al. (2014) and SALAHIEH et al. (2014) showed that linear
polarizers are effective in avoiding over-saturation of images.

Surface Reconstruction

Another approach to deal with reflections is to first identify the areas where
specular reflections occur, and in the next step apply a region-filling method to
reconstruct overly saturated pixels as proposed by SUN et al. (2017). However,
reconstruction techniques are not suitable for accurately evaluating the acquired
surface in quality control tasks, as they tend to distort the measurement.
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2.4.3 Summary and Need for Action

Obtaining an adequate camera exposure is critical to ensuring robust and reliable
sampling of an object’s surface. Managing the camera exposure effectively,
particularly for high-reflective surfaces, is a well-known challenge for optical
range imaging sensors. This section provided an overview of different approaches
to addressing this problem.

One of the most common and pragmatic methods to counteract inhomogeneous
camera exposure with high-reflective materials is to matte-coat the surface object
(cf. Subsection 2.4.2). However, this process is difficult to automate and the
measurement accuracy may be affected by the coating (PALOUSEK et al. 2015;
SHI et al. 2006). Furthermore, Subsection 2.4.2 provided an overview of HDR
techniques that combine multiple images to produce a well-exposed image. Al-
though HDR techniques have proven to be robust solutions, the usability of
such methods is impractical for end users using commercial or industrial active
systems if the vendor does not integrate this functionality. Commercial sensors
typically do not allow for the necessary hardware or software modifications to
automate this process. The majority of approaches focus on solving the prob-
lem using multiple empirically selected exposures. However, the fundamental
problem of selecting an optimal exposure time falls on a second plane remaining
unaddressed ZHANG (2020).

For this reason, ZHANG (2020) proposed a global exposure time optimization
using a single captured stripe image and an approximated linear model of the
exposure time and the image intensity. Although EKSTRAND and ZHANG (2011)
and ZHANG (2020) extensively validated the validity and effectiveness of the
linear approximation, they assumed a static measurement configuration. This
configuration is limiting and insufficient for dynamic sensor positioning applica-
tions that use an ROMS and consider different acquisition depths and incidence
angles. Furthermore, in real applications, a nonlinear response between the light
source and the pixel intensity value at the sensor is to be expected (SZELISKI

2022, p. 611).

Furthermore, ELLENRIEDER et al. (2005a) and KOUTECKÝ et al. (2016) used
analytical methods for estimating valid exposure times using the reflectance
simulation model framework of NAYAR et al. (1991) and a 3D surface model
of the probing object. Although KOUTECKÝ et al. (2016) demonstrated that the
object’s surface could be predicted with a deviation up to 26 %, the achieved
performance suggests that the process could not be fully automated.

Moreover, in recent years, academia and industry have approached this problem
from a different perspective by designing range sensors with more than one cam-
era (FENG et al. 2017; LIU et al. 2011). However, similar to HDR techniques, this
approach only partially solves the problem, as sensor positioning and exposure
time selection remain open issues. In addition, merging images from different
cameras increases the system’s complexity.

Although several well-founded solutions for optimizing the camera exposure of
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active 3D sensors have been proposed in academia and industry, the literature
review undertaken for this thesis did not identify an effective approach that
focuses on targeted and effective optimization of features within an image
without modifying the hardware or software of the vision system. A local
optimization has the potential to improve the effective acquisition of features
and aim at the full automation of the measurement parameterization process.
Therefore, achieving the highest measurement quality requires a comprehensive
approach that considers the spatial relationships between the camera and the
features.





Chapter 3

Solution Modules

The present chapter introduces the conceptualization of the solution modules to
enhance the programming of robot-based optical 3D measuring systems (ROMSs)
for performing metrology tasks. First, Section 3.1 introduces the overall concept
of the present thesis and conceptualization of the solution modules. Then,
Sections 3.1.1–3.1.3 present a summary of the implementation of the solution
modules which is given by the PUBs1–4.

3.1 Overall Concept

The present research proposes a sensor planning system to increase the level
of automation (LoA) of metrology tasks using ROMS. Fig. 3.1 depicts the main
components of such a sensor planning system according to TARABANIS et al.
(1995a) and the placement of this thesis’s publications.

The proposed sensor planning system can be categorized as a hybrid-programming
system. Although offline programming approaches have shown significant ad-
vantages for simplifying the creation of robot programs (cf. Subsection 2.1.2),
there are rarely applications where a robot program created offline does not
require a re-parameterization on site under real conditions (VOGL 2009, p. 20;
BRECHER and WECK 2021, p. 596). This applies to metrology tasks that involve
optical sensors. For this reason, this research focuses on metrology tasks utilizing
optical sensors and proposes a hybrid approach that combines offline and online
programming methods. Solution modules one and three are categorized as
online methods as they incorporate techniques requiring the physical system.
On the other hand, the second solution module utilizes a model of the ROMS to
calculate viewpoints without requiring the physical system.

The subsequent subsections present an individual analysis of each solution mod-
ule, which takes into account the conceptualization and necessary deliverables
to address the stated research questions (RQs).
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Figure 3.1: Overview of the solution modules of the present research being part of a sensor
planning system as proposed by TARABANIS et al. (1995a)

3.1.1 Workcell Calibration

The first solution module deals with the calibration of the workcell kinematic
model, i.e., the estimation of the pose of any workcell object (e.g., workpieces,
fixtures) in a common coordinate system. In practice, this process is usually
done manually. This subtask has the potential to be fully automated based on
an optical alignment using the images of the ROMS’s sensor. To conceptualize a
solution to address this shortcoming, RQ1 was proposed.�



�
	RQ1: How can the workcell calibration be automated by using images captured

by the optical sensor of ROMSs?

3.1.1.1 Conceptualization of an Image-Based Workpiece Alignment

To address the posed RQ1, this thesis proposes an optical calibration of the
workcell using a single camera image captured by the optical sensor of a ROMS
from a safe distance. Based on the findings of the reviewed works, the present
research argues that the sensor images, which provide a 2D representation of
the scene, can be used to detect the workpiece inside the workcell and estimate
its pose, thus solving the problem stated in Subsection 2.2.1. By estimating the
workpiece’s relative pose to the sensor (see Eq. 2.3), the workpiece’s absolute
pose can finally be calculated using the robot’s kinematic model.
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The design of a calibration strategy that combines different image processing
methods promises to increase the LoA of the workcell calibration process. The
following sub-modules have been identified as challenging tasks that need to be
the focus of research to outline such a strategy.

Modular pose estimation strategy This thesis poses the estimation of an
object from a single camera image as a multi-stage problem consisting of the
following subproblems: object detection and segmentation, position estimation,
and orientation estimation. The present research proposes a holistic strategy
that combines different data-based and classical image processing methods to
address the individual subproblems of the pose estimate problem. For example,
convolutional neural networks (CNNs) (see Subsection A.1.3.2) have the potential
to solve complex vision tasks such as object detection based on images within
unknown environments. However, these models usually require large datasets
to optimize multiple hyperparameters and achieve satisfactory performance.
Therefore, a strategy which combines different image processing methods is to
be outlined as a first step. For example, a straightforward camera projection
model1 can be applied to determine the location of an identified object in an
image (BRAUER 2014, pp. 193–195), as opposed to a more sophisticated data-
based approach.

Industrial compliant dataset generation Data-based models require a large
dataset to train the models and ensure their performance. This requirement often
conflicts with and hinders the use of data-based approaches within industrial
applications. Therefore, a user-friendly and resource-effective solution to address
this challenge is to be outlined within this solution module.

In the context of the digitization of production, it has become a common practice
to have 3D computer-aided design (CAD) models of at least the key components
and resources (e.g., workpieces, assemblies, fixtures) required for end-product
manufacturing. This thesis proposes to exploit these 3D models to create syn-
thetic datasets. Synthetic datasets can be generated using rendering2 tools to
synthesize photorealistic images that can be used for data-based model training
(TREMBLAY et al. 2018a; ZHANG et al. 2017). The purpose of conceptualizing
such a strategy is to assist end-users in minimizing the effort required to produce
high-quality datasets, while simultaneously automating the entire process.

1A camera projection model refers to a simplified linear model commonly used to model a real
imaging device. A standard model used in academia and industry is the pinhole camera model. The
pinhole camera is defined by a set of intrinsic parameters that model the imaging characteristics
(e.g., camera focal lengths, camera center coordinates, scaling factor) and the extrinsic parameters
that represent the camera pose within the world coordinate system. (BEYERER et al. 2016, p. 103)

2Rendering refers to the process of synthesizing a digital image from a 3D scene (MOHAM-
MADIKAJI 2019, p. 65).
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3.1.1.2 Solution Module Deliverable

The expected deliverable for this solution module is summarized as follows:

Methodology for estimating the pose of an object of interest using a single
image.

3.1.2 Viewpoint Planning

Based on an inspection plan and the calibrated kinematic model of the workcell,
the second solution module addresses the computation of all the necessary
viewpoints to acquire all features considering a set of constraints. The following
RQ formalizes the problem and guides the conceptualization of this solution
module:�



�
	RQ2: How do viewpoint constraints affect sensor positioning, and how can the

minimum number of viewpoints required to capture all features be estimated?

3.1.2.1 Conceptualization of a Viewpoint Planning Strategy based on Solution
Spaces

To address the identified challenges associated with the Viewpoint Planning Prob-
lem (VPP) and both subquestions of RQ2, the present thesis proposes first to
modularize the VPP into two subproblems, the Viewpoint Generation Problem
(VGP) and the Set Covering Problem (SCP). The VGP deals only with the com-
putation of valid viewpoints to acquire a single feature considering different
viewpoint constraints. On the contrary, the SCP focuses on finding the minimum
number of viewpoints necessary to acquire all features. This thesis considers that
a well-formulated multi-stage solution has the greatest potential for reducing
the overall complexity of the VPP and provides the opportunity to outline more
generic and effective solutions for each subproblem. The subproblems and the
approaches chosen to address both subproblems are explained in more detail
below.

Explicit Characterization of Viewpoint Constraints as feature-based con-
strained spaces (C-spaces) To formulate a generic and consistent approach
for answering the first subquestion of RQ2 and addressing the VGP, this thesis
proposes that any viewpoint constraint that affects the positioning of the sensor
to capture a single feature is spatially modeled as a continuous solution space
ideally in the special Euclidean SE(3). Therefore, the present research introduces
the concept of C-spaces to denote such spaces. An abstract representation of
individual C-spaces for different features is depicted on the left side of Fig. 3.2.
In addition, the same graphic illustrates the intrinsic advantage of C-spaces for
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dealing with modeling uncertainties. If the validity of a selected viewpoint is
compromised, an alternative viewpoint can be seamlessly selected within the
C-space. In addition, if all viewpoint constraints can be modeled as C-spaces, they
can be combined with each other to span another solution space that guarantees
the satisfaction of multiple constraints.

Viewpoint Planning Strategy based on feature-cluster constrained spaces
(GC-spaces) The present research assumes that if there exists a C-space for
each feature, multiple spaces can be merged into a common GC-spaces for acquir-
ing a group of features. The design of a holistic strategy that finds a potential
group of features that can be acquired together with a common GC-space is
the focus of the second subquestion of RQ2 and the basis for solving the SCP.
A simplified representation of the problem and the proposed solution using a
GC-space is shown on the right side of Fig. 3.2.

Viewpoint Planning Problem (VPP)

Viewpoint Generation Problem (VGP) Set Covering Problem (SCP)

C-Space
for f1

C-Space
for f2

f1

GC-Space
for f1 and f2

f1

f2 f2

Figure 3.2: Modularization of the VPP and simplified representation of its subproblems, the VGP
and the SCP. The VGP is solved based on C-spaces, which characterize the solution space
to acquire one feature while fulfilling different viewpoint constraints. The SCP is solved using
GC -spaces, which span a solution space for capturing multiple features and simultaneously fulfill all
viewpoint constraints.

3.1.2.2 Solution Module Deliverable

Having decomposed the problem, the expected deliverable for this solution
module is summarized below.
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Viewpoint planning framework for computing valid viewpoints that ensure
the acquisition of multiple inspection features and can compensate for model
uncertainties. All valid viewpoints satisfy all viewpoint constraints (see
Subsection 2.3.2).

Followed by the proposed modularization of the problem, two publications were
published to address the individual subproblems of the VPP and answer the
subquestions of RQ2.

3.1.3 Measurement Parameterization

Automating the sensor parameterization process to achieve a dense, high-quality
point cloud is essential for minimizing the manual labor involved in this task.
Therefore, the following RQ3 was posed to guide the conceptualization of a
solution to this challenge.�
�

�
�

RQ3: How do image exposure and the spatial correlations between features and
the sensor affect the successful acquisition of a point cloud, and how must these
be considered for setting a proper exposure time?

3.1.3.1 Conceptualization of Data-Based Models for Prediction the Camera’s Expo-
sure Time and the Point Cloud Quality

Selecting an appropriate exposure time remains a time-consuming manual task,
resulting in low LoA in optical imaging sensing applications and an open chal-
lenge in advanced 3D metrology tasks (CATALUCCI et al. 2022; ZHANG et al.
2021). Especially within large-scale metrology applications, camera exposure
optimization is even more challenging when an inhomogeneous image intensity
can be expected. For instance, this situation could arise in the acquisition of
materials with a significant degree of specular reflection (see Subsection 2.4.1)
and a complex geometry, such as car doors. Fig. 3.3 shows such an exemplary
case and demonstrates that a single exposure time would not be sufficient to cap-
ture all features of a car door at once. It also shows that the spatial relationship
between the features and the sensor must be considered to achieve an adequate
image exposure.

To achieve an appropriate image exposure, a range of factors that affect scene
illumination must be taken into account, such as focal length, working distance,
and projector light intensity (see Subsection 2.4.1). This multi-dimensional
problem demands a comprehensive spatial understanding of the captured scene
to ensure optimal exposure time selection. For this reason, an operator is
still required to manually adjust the camera exposure in complex large-scale
coordinate metrology applications. Motivated by the idea that an expert can
effectively parameterize the camera exposure time where other approaches fail,
the present research assumes that a solution that emulates the operator behavior
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has the greatest potential to address RQ3. Therefore, as a first step, the following
generic behavior of the operator can be assumed. (MAGAÑA et al. 2023c)

• Observation (image exposure): Given an initial exposure time, the opera-
tor observes the local image exposure of the features to be captured.

• Action (exposure time and spatial relations): Based on the observed image
exposure, the operator adjusts the exposure time taking into account the
spatial relationships between the sensor and the features. Then, the
expert triggers the measurement.

• Assessment (point cloud): The operator evaluates the measurement based
on the resulting point cloud. The previous steps are repeated if the re-
quired point cloud quality is not achieved around the features of interest.

features undetected
features

2D Camera Image 3D Point Cloud

Figure 3.3: 2D camera image of a structured light sensor and the corresponding 3D point cloud of
a car door measurement. The 2D images exemplify the qualitative illumination of the scene. The
red pixels indicate an over saturation of the camera impeding the acquisition of the surface points
around the features of interest. (modified figure from MAGAÑA et al. (2023c))

3.1.3.2 Solution Module Deliverable

The present thesis outlines the following deliverable that will allow to improve
the LoA of automation of the sensor exposure time parameterization.

A methodology that uses the sensor camera image exposure and the spatial
relationships between sensor and surface to predict the expected measure-
ment quality of a point cloud and estimate an appropriate exposure time.
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3.2 Implementation – 1. Publication

PUB1

MAGAÑA et al. 2020a:
„PoseNetwork: Pipeline for the Automated Generation of Synthetic Training
Data and CNN for Object Detection, Segmentation, and Orientation
Estimation“

MAGAÑA, WU, BAUER, and REINHART 2020

An end-to-end methodology for detecting and estimating the pose of an object of
interest using a single camera image was introduced in PUB1. Fig. 3.4 depicts an
overview of the proposed concept.

The publication first outlines a generic pipeline for automated dataset generation
using a 3D CAD of the object of interest. The data generation pipeline consists of
the following sub-steps:

• generation of synthetic images from multiple viewpoints

• image augmentation using variation of background and object position

• automated generation of annotations for image classification, segmenta-
tion, position, and orientation estimation

The designed pipeline demonstrated that the automated generation of such
datasets can be achieved while ensuring their consistency using synthetic data.
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Figure 3.4: Concept proposed by MAGAÑA et al. (2020a) for training a pose estimation model
based on a synthetic dataset generated using a 3D model.

Moreover, the publication proposes a multi-stage methodology comprising dif-
ferent image processing steps for estimating the pose of an object. The first
module uses the CNN model proposed by HE et al. (2017) and REN et al. (2017)
for detecting and segmenting objects. In a second step, MAGAÑA et al. (2020a)
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introduce two independent sub-modules for estimating the position and orienta-
tion of the object based on the segmented image. The first sub-module object’s
employs the segmented image and applies the linear pinhole model for imaging
cameras to approximate the object’s position. The second module proposes a
CNN architecture for estimating the object’s orientation following a classification
model. The architecture consists of three independent branches that allow the
prediction of the orientation angle for each rotation axis. This architectural
modularity allows the model to be trained and tuned individually for each axis
and a defined orientation range.

The complete methodology was evaluated using an industrial ROMS for detecting
a workpiece and estimating its relative position within its workspace. The
evaluation results are more comprehensively discussed in Subsection 4.1.1. The
scientific contributions of PUB1 are summarized as follows:

1. End-to-End methodology for 6D pose estimation and automated dataset
generation using 3D solid models

2. Pipeline for automated synthetic dataset generation

3. Modular multi-stage methodology for object detection, segmentation, and
pose estimation

The author’s contribution to PUB1 is summarized in Tab. 3.1.

Table 3.1: Author’s contribution to the publication MAGAÑA et al. (2020a)

Conceptual
Design

Analysis and
Evaluation

Manuscript
Drafting

Data Collection
and Software
Development

70% 70% 80% 50%

3.3 Implementation – 2. Publication

PUB2

MAGAÑA et al. 2023a:
„Viewpoint Generation Using Feature-Based Constrained Spaces for Robot
Vision Systems“

MAGAÑA, DIRR, BAUER, and REINHART 2023

The publication of MAGAÑA et al. (2023a) addresses the VGP and demonstrates
that this challenge can be handled as a purely geometric problem. First, the
study introduces generic domain models for all core components of a ROMS to
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promote the generalization of the outlined solutions. Then, the paper introduces
a new mathematical formulation of the VGP based on C-spaces. Based on these
foundations, PUB2 shows that all viewpoint constraints from Subsection 2.3.2
can be analytically modeled and represented as 3D manifolds using different
trigonometric approaches. For example, based on a geometric model of the sensor
measurement volume, the pose of a feature, and a fixed sensor orientation, a
core C-space is synthesized based on linear algebra. Using this core C-space, the
rest of the viewpoint constraints are then characterized using various techniques
such as linear algebra, trigonometry, geometric analysis, and constructive solid
geometry (CSG) Boolean operations.

In addition, PUB2 shows that by using a consistent approach to model any
viewpoint constraint multiple C-spaces can be seamlessly combined. For example,
the left image of Fig. 3.5 shows an occlusion-free C-space (blue mesh) that
integrates multiple constraints. The camera image and point clouds in Fig. 3.5
demonstrate that the feature and its entire geometry are within the measurement
volume and can be captured despite the occluding object from a viewpoint with
the C-space. Furthermore, a real ROMS integrating two different sensors was
used to validate the proposed viewpoint planning framework.

Occlusion
C-Space for
feature f1

Verification
viewpoint v1

Measurement
Volume

Feature f1

Occlusion-free
C-Space for feature f1

Occlusion
Object

Rendered camera im-
age for verification
viewpoint v1

Rendered point cloud
(green) for verification
viewpoint
v1

Figure 3.5: Left: Characterization of occlusion-free C-space (blue mesh) for the acquisition of
feature f1. The occlusion C-space (red wire-frame) represents the invalid solution space, which will
prevent the valid acquisition of the whole feature. Right: Camera image and point cloud renderings
for verifying viewpoint v1 at the edge of the occlusion-free C-spaces. (modified figure from MAGAÑA

et al. (2023a))

This paper introduces the fundamental concepts of a generic framework that
includes novel and efficient formulations to consistently characterize viewpoint
constraints as C-spaces. The key contributions of this scientific report are sum-
marized as follows:

• Mathematical, model-based, and modular framework for formulating the
VGP using C-spaces and generic domain models
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• Explicit formulation of up to nine viewpoint constraints in the Euclidean
space using linear algebra, trigonometry, geometric analysis, and CSG
Boolean operations

• Design of an academic reference scenario for benchmarking and further
development

Tab. 3.2. summarizes the contribution of the thesis’s author to PUB2.

Table 3.2: Author’s contribution to the publication MAGAÑA et al. (2023a)

Conceptual
Design

Analysis and
Evaluation

Manuscript
Drafting

Data Collection
and Software
Development

85% 85% 80% 90%

3.4 Implementation – 3. Publication

PUB3

MAGAÑA et al. 2023b:
„Viewpoint Planning for Range Sensors Using Feature Cluster
Constrained Spaces for Robot Vision Systems“
MAGAÑA, VLAEYEN, HAITJEMA, BAUER, SCHMUCKER, and REINHART 2023

While PUB2 deals with the computation of valid viewpoints for acquiring a single
feature, PUB3 focuses on the second subquestion of RQ2 and introduces a holistic
viewpoint planning strategy for the acquisition of multiple features, providing a
solution for the SCP and the overall VPP.

MAGAÑA et al. (2023b) introduce two core modules to solve the VPP. In the
first step, based on the foundations of C-spaces the concept of GC-spaces is
formally defined. Thus, a GC-spaces represents a solution space, where any
viewpoint within it is valid for capturing a group of features while satisfying all
individual viewpoint constraints. PUB3 shows that GC-spaces can be represented
analogously as 3D manifolds and can be computed seamlessly by intersecting in-
dividual C-spaces. Fig. 3.6 depicts the simplified characterization of two C-spaces
for capturing two groups of features. Moreover, the exemplary viewpoints at the
edge of the respective GC-space demonstrate that the features including their
geometry lie within the measurement volumes.

In the second step, a multi-stage viewpoint plan strategy aligned with the concept
of GC-spaces is introduced to solve the SCP. The strategy considers a method for
identifying potential groups of features that can be acquired together, a strategy
for efficient characterization of GC-spaces, and a method for selecting viewpoints
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Figure 3.6: Simplified representation of two GC-spaces to acquire the group of features
{ f1, f3} ∈ G1 and { f2, f4} ∈ G2. The viewpoints v1 and v2 within the GC-spaces demonstrate
that the respective features including their geometry lie within the measurement volume (modified
figure from MAGAÑA et al. 2023b).

within the GC-spaces. The applicability and potential of the approach proposed
are evaluated for automating dimensional metrology tasks using two different
industrial measurement systems with different range sensors and manipulators.
The results are discussed in Subsection 4.1.2.

The most relevant contributions of PUB3 are given as follows:

• Mathematical, generic and modularized formulation of the VPP to ease
the transferability and promote the adaptability of the presented solutions
with different ROMS and tasks.

• Characterization of GC-spaces as 3D manifolds based on C-spaces, hence,
inheriting some of their intrinsic advantages:

– analytical, model-based, and closed-form solutions,

– simple characterization based on CSG Boolean techniques,

– infinite solutions for compensation of model uncertainties.

• Generic and modular viewpoint planning strategy that can be adapted to
diverse vision tasks, ROMS, and viewpoint constraints.

The contribution to PUB3 by the author of this dissertation is in Tab. 3.3.
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Table 3.3: Author’s contribution to the publication MAGAÑA et al. (2023b)

Conceptual
Design

Analysis and
Evaluation

Manuscript
Drafting

Data Collection
and Software
Development

90% 70% 70% 80%

3.5 Implementation – 4. Publication

PUB4

MAGAÑA et al. 2023c:
„Exposure Time and Point Cloud Quality Prediction for Active 3D Imaging
Sensors using Gaussian Processes“

MAGAÑA, SCHNEIDER, BENKER, ALTMANN, BAUER, and REINHART 2023

MAGAÑA et al. (2023c) address the challenge of estimating the exposure time
and predicting the expected point cloud quality for active range sensor systems.
To automate the parameterization of the sensor’s exposure time, the following
two submodules were conceptualized to replicate the expert approach.

1. Quality Estimation: The first module focuses on the design of a prediction
model to estimate the local point cloud quality around a feature using
the local image light intensity and the spatial relationships between the
sensor and the features.

2. Exposure Time Estimation: Assuming that the expected point cloud quality
around a feature can be estimated using the quality estimation module,
this module’s goal is to determine the appropriate exposure time by
considering the nominal local image intensity and the spatial relationships
between the sensor and the features.

In the context of PUB4 two data-based models were outlined to reproduce
the required behavior of these submodules. Fig. 3.7 provides a graphical
representation of the proposed models.

As a first step, generic model inputs and outputs were designed to model the
camera image exposure, the point cloud quality, and the spatial system state.
For example, the output variable pnorm was designed as a normalized metric
to quantify the point cloud quality based on the number of points around a
feature. The output metric takes into account feature geometry, acquisition
depth, and camera resolution. Similarly the input variable iavg was designed to
characterize a local, feature-based image average intensity. In addition, positional
and rotational inputs were introduced to model the spatial relationships between
the sensor and the features.
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Figure 3.7: Methodology comprising two data-based models for predicting the measurement quality
and for determining a valid exposure time for capturing two features. The upper workflow emulates
the expert evaluation to determine the quality of point clouds around selected features. In contrast,
the lower model depicts the action of an expert takes to select a proper exposure time based on the
existing lighting conditions. (modified figure from MAGAÑA et al. (2023c))

In a second step, an incremental kernel design of the Gaussian processes (GPs)
(see Subsection A.1.3.3) was followed to gradually increase the complexity of
the models and ensure a proper selection of the required model inputs. The
analysis systematically demonstrated that incorporating spatial relationships and
nonlinear correlations significantly enhances the predictive performance of both
models.

Finally, a GP regression model was outlined to predict the point cloud quality
around a feature using the local camera image intensity and the 3D position
between the sensor and a feature. Furthermore, a GP regression model was
proposed to estimate the required exposure time for a given nominal image
intensity and the 5D pose of a feature. The data for training and evaluation of
both models were collected using an industrial structured light sensor (SLS) and
a car door with different surface finishes.

The evaluation of the first model showed that the quality of the point cloud
around a feature can be predicted with an RMSE3 of 10 %. Moreover, the assess-
ment of the second model showed that the exposure time could be predicted
with an RMSE of 13 ms using an adjustment range of 1 ms to 350 ms. In addition,
an exhaustive evaluation analyzed the performance of both models considering
different scene lighting, a different active range sensor using stereo imaging,
and different surface finishes. A more detailed discussion of the evaluation is
presented in Subsection 4.1.3.

3The RMSE is a common metric used to evaluate regression models when predicting numerical
values. The RMSE provides a quantification of how far the residuals, i.e., the difference between
predicted and observed values, are on average from zero. (KUHN and JOHNSON 2013, p. 95)
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The main contributions of the publication are summarized as follows:

• Synthesization of generic inputs and output variables for characterizing
the point cloud quality, imaging, and spatial system state for active range
image sensor systems.

• 4D GP generic kernel to predict the point cloud quality (number of points)
around a feature given a local image intensity and its relative position
(3D) to the sensor.

• 6D GP generic kernel to estimate the required exposure time for a feature’s
nominal local image intensity considering its relative position (3D) and
rotation (2D) to the sensor.

Tab. 3.4. gives an overview of the author’s contribution to PUB4.

Table 3.4: Author’s contribution to the publication MAGAÑA et al. (2023c)

Conceptual
Design

Analysis and
Evaluation

Manuscript
Drafting

Data Collection
and Software
Development

80% 70% 70% 70%





Chapter 4

Evaluation

This chapter summarizes in its first section the technical achievements of the
proposed solution modules evaluated using an industrial robot-based optical 3D
measuring system (ROMS) and a reference metrological task. Then, Section 4.2
presents an analysis of the economic viability of the overall approach.

4.1 Technical Evaluation

This section analyzes first the technical validity for each solution module in
Subsections 4.1.1–4.1.3. Then, Subsection 4.1.4 provides an overall assessment
of all solution modules in relation to the objective of this dissertation. The
description of the technical experimental setup is given in A.3.1.

4.1.1 Workcell Calibration

The proposed methodology introduced by MAGAÑA et al. (2020a) was evaluated
using the camera of the structured light sensor (SLS) to estimate the relative pose
between the car door and the sensor using a single shot monochromatic image.

First, a 3D computer-aided design (CAD) model of the car door was used to auto-
matically generate a dataset of 21,600 images. The synthetic dataset combined
different randomization techniques such as different backgrounds, viewpoints,
and scale factors. All convolutional neural network (CNN) models were trained
exclusively with the generated synthetic dataset and using pre-trained models
for image classification.

The performance and accuracy of the proposed models were assessed based on a
comprehensive design of experiments considering 65 different camera images
taken from different sensor poses and different rotations of the car door. The final
evaluation showed that the object and segmentation models were able to detect
the real car door in all cases and estimate its position with a standard deviation
of 25 mm and up to 3.8◦ for the orientation. An overview of two exemplary input
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images and output results for the different stages of the methodology is shown
in Fig 4.1.

Taking into account the requirements outlined in Section 3.1, an assessment of
the technical implementation is conducted. The strategy for generating synthetic
datasets is highly generalizable, as it can be used with any 3D mesh model of
an object. Furthermore, the automated process for generating datasets demon-
strated a significant reduction in the time and expertise required to produce a
high-quality dataset within a few hours, thereby enhancing the usability of the
proposed data-driven approach.

Image segmentation
output

Pose
prediction

Input images and
ground truth

PoseNetwork

Pitch: 27 °, Yaw: -30 °
Distance: 1480 mm

Pitch: 28 °, Yaw: -29 °
Distance: 1541 mm

Pitch: 18 °, Yaw: 0 °
Distance: 1200 mm

Pitch: 18 °, Yaw: 4 °
Distance: 1195 mm

Figure 4.1: Evaluation overview: Prediction of a car door’s orientation (yaw and pitch angles) and
distance based on a grayscale image. (excerpt from MAGAÑA et al. 2020a)

4.1.1.1 Fulfillment of the Research Question and Solution Module Deliverable

The publication of MAGAÑA et al. (2020a) proposes a methodology for addressing
RQ1 that allows an automated workcell alignment using single camera images
obtained by the optical sensor of the ROMS. In addition, the proposed method-
ology addresses two challenging problems identified in Subsection 3.1.1 when
executing an image-based alignment utilizing data-based models. These prob-
lems include an industrial-compliant approach for automatic dataset generation
and an end-to-end methodology for pose estimation.

4.1.1.2 Limitations and Future Work

The proposed methodology showed potential for full automation of workcell
alignment in the experimental setup of this thesis. However, future research
should include a more comprehensive analysis of other objects, different scenes,
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and benchmarking with other models. Moreover, further efforts should be dedi-
cated to enhancing the dataset pipeline by integrating other image augmentation
features such as lighting conditions, pixel augmentation (intensity, contrast,
saturation), and image occlusion. The extension of such characteristics should
increase the robustness and accuracy of the model predictions.

Moreover, the design of a holistic automatic calibration strategy was beyond the
scope of this work. The full automation of this task requires the integration of
additional modules. Future research should outline a path-planning strategy
that allows the collision-free acquisition of multiple images in a safe space. In
addition, a multi-stage calibration combining a coarse image-based calibration
with a fine point cloud calibration would improve the overall accuracy of the
approach (see Subsection 2.2.3). Finally, the models need to be extended to
enable multi-object detection.

4.1.2 Viewpoint Planning

Based on the methods proposed by PUB2 and PUB3, a viewpoint planning frame-
work was developed to generate automated viewpoints for the industrial ROMS
presented in Subsection A.3.1. To evaluate the viewpoint planning framework,
15 different inspection tasks with up to 673 features were outlined in PUB3. The
tasks included combinations of multiple features from the inside and outside of
the door as well as different viewpoint constraints.

The viewpoint plans for the 15 inspection tasks were computed following the
strategy outlined in PUB3. Fig. 4.2a shows the computed feature-cluster con-
strained spaces (GC-spaces) for acquiring 50 circular features of the car door.
To quantify the performance of the planning results, measurability and compu-
tational efficiency metrics were introduced. The measurability metric, which
evaluates how many features could be captured, showed that the computed
viewpoint plans achieved an average measurability index over 95 % for all tasks.
Furthermore, the evaluation of the computational efficiency demonstrated that
viewpoint plans requiring the acquisition of 673 features could be calculated
within 5.3 min and with a measurability index over 97 %. The detailed results of
each inspection scenario are presented in PUB3.

The evaluation of PUB2 and PUB3 demonstrated that spanning an infinite solu-
tion space is a powerful technique for explicitly solving the Viewpoint Planning
Problem (VPP) within complex multi-feature scenarios involving modeling un-
certainties. In addition, the framework proved to be hardware-agnostic as long
as the domain models of manipulators, sensors, and workpieces can be mod-
eled considering the assumptions and guidelines outlined in MAGAÑA et al.
(2023a,b). For example, besides SLSs, the concept of feature-based constrained
spaces (C-spaces) and GC-spaces could be evaluated by different range sensors
with varying principles of acquisition, a stereo sensor in PUB2 and a laser scanner
in PUB3. Fig. 4.2b depicts the GC-spaces for capturing the surface of 3D cylinder
features with a laser scanner.
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GC-Spaces for
features f1, f2, f3

Cylinder Features
f1, f2, f3

GC-Spaces for all circle features
of the validation door

(a) (b)

Figure 4.2: a) Representation of the ten characterized GC -spaces for acquiring 50 circle features
of the car door using the SLS Zeiss Comet Pro AE. Approximate door and fixture dimensions in mm
(length, width, height): 1200×500×1600. b) Representation of three characterized GC -spaces for
acquiring three 3D cylinder features using a laser scanner. Approximate probing object dimensions
in mm (length, width, height): 120× 60× 34. (modified from MAGAÑA et al. 2023b).

4.1.2.1 Fulfillment of the Research Question and Solution Module Deliverable

PUB2 and PUB3 followed a geometric approach to solve the VPP and introduced
the fundamental components of a holistic viewpoint planning framework to
tackle complex coordinate metrological tasks comprising multiple features with a
ROMS. PUB2 focused on answering the first subquestion of RQ2 and investigated
the influence of viewpoint constraints geometrically up to in 6D. Moreover,
PUB2 outlined a modular framework for consistently characterizing all viewpoint
constraints considered within the scope of the present thesis, see Subsection
2.3.2. Based on C-spaces, and considering an adequate formulation of the overall
VPP, PUB3 introduced a viewpoint planning strategy for computing a sufficient
number of points that answers the second subquestion of RQ2.

4.1.2.2 Limitations and Future Work

The framework developed in this solution module effectively addressed the
overall objective of this research. However, it is important to note that replicating
this framework will require a significant effort for system integration tasks and
comprehensive modeling of the domain components of ROMSs. For simpler tasks
which require few constraints and features, this thesis recommends conducting
a thorough analysis of the task to evaluate the use of alternative techniques.
Examples of such techniques include those proposed by CHEN and LI (2004),
GLORIEUX et al. (2020), KABA et al. (2017), and MITTAL and DAVIS (2007). The
economic analysis of Section 4.2 provides an evaluation of the needed resources
for replication, serving as a useful starting point to assess the proposed solution.
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Moreover, the evaluation of PUB3 highlighted that some sensor poses were not
able to capture all required features. Empirical measurements showed that
the main cause of the failed measurements could be attributed to modeling
uncertainties of the workcell kinematic model and manufacturing tolerances of
the fixture. Some of the failed measurements could be corrected by selecting an
alternative sensor pose within the corresponding GC-spaces. This characteristic
embodies the intrinsic advantages of C-spaces for compensating uncertainties
without recomputing a new viewpoint plan. However, due to the technical
limitations of the considered experimental setup, online adaptation could not
be directly integrated into the implemented solution. For this reason, future
implementations aiming at full automation should consider a technical module
that allows the online adaptation of viewpoints.

In addition, future research should focus on the integration of additional con-
straints. For example, the characterization of overlapping constraints aligned
to the concept of C-spaces would help to ensure that an overlapping area be-
tween adjacent measurements can be satisfied. Integrating such constraints is
particularly interesting for other vision tasks aiming at a full digitization and
for techniques based on adjacent point cloud registration, such as BAUER et al.
(2021b). In general, the results of the modeling approach should encourage
the geometrical characterization of constraints that influence the planning of
viewpoints. Such constraints may include, for example, sensor illumination,
cycle times, or energy efficiency.

4.1.3 Sensor Parameterization

Selecting an adequate exposure time for an active range sensor system is a
challenging task when an inhomogeneous light distribution caused by the light
source and surface topology is present (see Fig. 3.3). To address this problem,
PUB4 proposed a data-based approach using two Gaussian process (GP) regres-
sion models to predict the quality of a measurement and to predict the exposure
time of a measurement given a nominal image intensity and spatial inputs. In
this context, PUB4 considered the development and evaluation of the outlined
models using the ROMS presented in Subsection A.3.1.

First a 1D GP regression model was trained to demonstrate the prediction
performance that is obtained using only the local image intensity iavg . The
results of this model indicated that the point cloud quality can be estimated
with an RMSE about 20 % and an R21 of 78 %. By integrating spatial inputs
that model the relative position between the sensor and the features, the RMSE
of the point cloud quality could be improved up to 10 % and an R2 of 93 %. A
visualization of the model’s mean prediction in the x-y plane, considering two
light intensities and three different working distance positions, is depicted in

1The coefficient of determination R2 is a statistical measure used in the evaluation of regression
models to quantify the proportion of the information in the data that can be explained by the model
using the model residuals as the basis for its calculation, i.e, the difference between observed and
the prediction values. (KUHN and JOHNSON 2013, pp. 95–96; BACKHAUS et al. 2016, p. 72)
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Fig. 4.3. These trends further confirm the motivation of this thesis, showing the
nonlinear nature of the problem and the existence of local minima for the point
cloud quality at different positions considering different image exposures. In
addition, on the right of Fig. 4.4 the predictions of the quality model around
different features is visualized.
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Figure 4.3: Discretized visualization of the mean prediction µ(pnorm) in the x f
tcp and y f

tcp axes

using the 4D GP quality regression model at three different depths z f
tcp = [−150,0,150]mm

(left, middle, right) for two different light intensities iavg = [75,125] (top, bottom) with a sensor

orientation of w f
tcp = p f

tcp = r f
tcp = 0◦ for the SLS Zeiss Comet Pro AE. The graphs demonstrate

that the point cloud density around a feature depends on the image intensity but also on the 3D
relative position between a feature and the sensor. The trends confirm the nonlinear correlation
between the point cloud quality, the image light intensity, and the spatial variables. (modified from
MAGAÑA et al. 2023c)

Similarly, a 1D GP model was trained for predicting the exposure time using just
the local image intensity around a feature. As expected, the prediction of this
model showed to be ineffective. The estimated exposure time for achieving a
desired image exposure had an RMSE about 75 ms and an R2 of 7 % considering
the setting range of the SLS 1 ms to 350 ms. By increasing the model complexity
considering the relative position of the features to the sensor, the accuracy could
be increased up to 33 ms. Finally, the best model performance was obtained
by integrating positional and rotational inputs reaching an RMSE of 13 ms with
an R2 = 97%. A graphical representation of the performance of the models is
depicted in Fig. 4.4. The predicted exposure times are displayed on the left side,
while the predicted point cloud quality values for different features are shown
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on the right.

Both models were evaluated under different lighting conditions and car door
surface finishes to assess their robustness. The findings showed that there was
no significant variation in performance between both models when tested under
different lighting configurations. These results confirmed the assumption of this
thesis and previous findings, regarding the projector’s intensity dominance over
external light sources (EKSTRAND and ZHANG 2011; ZHANG 2020). Furthermore,
the quality prediction model showed similar performance for features with
different surface finishes. However, the exposure time prediction model showed
a higher sensitivity to the surface finish, resulting in a poorer performance of the
model with an RMSE of 21 ms. These results were expected since the model did
not account for an input variable that characterizes the reflective properties of
the door material.

In the context of generalization, the designed inputs/outputs and GP kernels,
showed a high transferability, which proved to be equally effective for an alterna-
tive active range sensor using a stereo vision principle and a projector. Moreover,
both models proved to be computationally efficient, given that the computation
of 636 values corresponded to 0.6 s.
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Figure 4.4: Performance overview of the GP models for five different features using the local
average intensity (iavg ) and spatial relationships to the sensor. a) Comparison of the predicted
exposure times tex p using the GP for exposure time prediction for a exposure time with a ground
truth (GT) of 27 ms. b) Comparison of the predicted point cloud density using the GP quality model
with different GT values. (modified from MAGAÑA et al. 2023c)

4.1.3.1 Fulfillment of the Research Question and Solution Module Deliverable

PUB4 introduced a data-based approach consisting of two GP models to char-
acterize the correlations between the camera exposure time, the point cloud
density, the image light intensity, and the spatial relations of the acquisition scene.
The models outlined in this solution module fulfill the defined deliverable of
estimating the required exposure time to acquire dense point clouds around any
arbitrary feature of a workpiece. Furthermore, the models of PUB4 addressed
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RQ3 and demonstrate the presence of nonlinear correlations between the inputs
and outputs of the models (see Fig. 4.3). The key findings showed that the
spatial relationships between the sensor and the surface must be taken into
account to guarantee a robust acquisition of the object surface and an adequate
parameterization of the sensor exposure time.

4.1.3.2 Limitations and Future Work

When utilizing data-driven approaches, a large dataset is necessary to obtain
an adequate performance of the trained models. The automation capabilities
of an ROMS can considerably reduce the effort required for data collection.
Moreover, PUB4 demonstrated that the GP models can be trained with a few
spatially well-distributed observations (approximately 1500, as stated by MA-
GAÑA et al. 2023c). However, it is essential to consider the availability of time
and expertise necessary for data collection and post-processing tasks when in-
tegrating data-driven methods. Therefore, future work should explore transfer
learning techniques to reduce the effort of data collection and model retraining
(TIGHINEANU et al. 2021).

The models underwent thorough evaluation and demonstrated potential for
transferability to other features, diverse surface finishes, lighting conditions, and
alternative active sensors. Nevertheless, it is crucial to acknowledge that their
performance is initially restricted to the measurement setup considered in this
thesis. For this reason, future research should consider a wider range of materials
with different reflectance properties and diverse lighting conditions to investigate
the robustness and validity of the models and the proposed inputs. To ensure
replicability, the suggested models serve as a strong foundation. Nonetheless, it
is crucial to carefully design the model and adapt it to the relevant system.

Finally, automating the selection of an appropriate exposure time based on a
point cloud quality threshold requires a holistic strategy combining both models,
which remains an open question beyond the scope of this work. This strategy
should incorporate multi-objective optimization to obtain a global exposure time
for acquiring multiple features simultaneously. Additionally, modeling the spatial
correlations found within PUB4 as additional viewpoint constraints presents a
promising challenge. By modeling the found spatial correlations aligned to the
viewpoint planning framework of PUB2 and PUB3, measurement quality and
exposure time constraints could be directly considered in the offline viewpoint
planning.

4.1.4 Discussion

An integral technical evaluation regarding the overall improvement for program-
ing ROMS to automate metrological tasks is assessed with this subsection.

The outlined approaches effectively addressed the identified challenges for each
solution module. The obtained results demonstrated that the overall level of
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automation (LoA) was increased to a cognitive/information level of automation
(LoAi) in the order of five, i.e., supervision. According to FROHM et al. (2008),
this level demands a reduced intervention of the operator mostly in case of
anomalies.

For instance, the methodology for image-based workcell alignment presented
in PUB1 (see Subsection 4.1.1) showed to be a promising calibration strategy
ordered at a LoAi=5. Using the outlined methods the workpiece could be
identified using a camera image and its relative pose to the sensor could be
estimated with a mean standard deviation up to 25 mm from a safe working
distance of 1500 mm. These insights suggest that by extending the calibration
strategy with the proposed enhancements (see Subsection 4.1.1.2), the robot
could autonomously use the sensor’s camera to estimate the pose of any artifact
within the workcell.

In addition, the viewpoint planning framework (see Subsection 4.1.2) demon-
strated that the programming effort for many inspection tasks could be signif-
icantly reduced to a level where no human intervention is required. However,
the evaluation of PUB3 also showed that some inspection features could not be
acquired for all planned viewpoints (see Subsection 4.1.2.2). In some cases the
manual selection of alternative viewpoints within the C-space was sufficient to
find a valid solution. As the scope of this thesis was limited to the implemen-
tation of the solutions and not a complete system integration, the automated
viewpoint selection was not integrated into the control software of the AIBox.
Therefore, a holistic evaluation could not be performed. For this reason, the
present work categorizes the overall achieved level of automation of the view-
point planning framework as LoAi=5, which would require human attention to
correct individual failed viewpoints.

For the last solution module, the evaluation of the data-based models within
PUB4 showed a high accuracy with an R2 above 90 % for predicting the point
cloud quality of a measurement and estimating the corresponding required expo-
sure time. These insights show that the proposed models have great potential to
fully automate exposure time parameterization. However, the remaining model
uncertainty shows that the proposed models and inputs do not fully characterize
all the influencing factors that affect the exposure time setting and the point
cloud quality. Thus, it is imaginable that a user will still be required to correct
some outliers. For this reason, the cognitive LoAi of the current solution is
ordered also at a level of five.

The overall LoA of the ROMS could not be evaluated holistically due to the
limited integration of the proposed solution modules. Nevertheless, the empiri-
cal evaluation of the solution modules showed their potential to automate the
programming of the individual subtasks. Based on these insights and the results
obtained from all publications, the overall cognitive LoA of ROMSs for automat-
ing coordinate metrology tasks was substantially improved by minimizing the
human intervention up to a supervision level of five. Furthermore, addressing the
outstanding concerns for each solution module could increase the LoAi to seven,
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indicating that the system could solve these metrological tasks autonomously.

4.2 Economic Evaluation

This section presents an economic analysis to demonstrate the benefits of the
dissertation. First, Subsection 4.2.1 introduces an analysis for calculating the
programming saving time-effort to automate metrology tasks. Based on these
findings, Subsection 4.2.2 outlines the monetary benefits of the solutions taking
into account economic methods.

4.2.1 Programming Saving Effort

This section introduces an exemplary calculation of the programming effort
saved for each solution module using the outlined example from Subsection
1.2.2.

First, based on the evaluation results of PUB1, the workpiece alignment using a
single camera image required an average of 15 s for each prediction. Therefore,
an approximated time effort of

Tali gn ≈ 1.5min

is considered realistic for calibrating a workpiece. The estimated time effort
includes moving the robot to a safe position (60 s), capturing a camera image
(15 s), and estimating the workpiece pose (15 s). Moreover, the computational
efficiency of the viewpoint planning framework was evaluated in PUB3. As a
result, the computation time of a viewpoint plan for the reference metrology task
comprising 636 features corresponded to

Tvp = 5.3 min.

Finally, for the sensor optimization solution module, it is assumed that each
GP model must be run at least one time for each feature. The computation
time for 636 predictions was estimated at 0.6 s for each model. In addition, the
processing time for extracting the required inputs was estimated at 0.4 s for each
feature. Therefore, the total time required to compute a valid exposure time for
all measurements corresponds to

Tpar = 2 · 0.6 s+ 636 · 0.4 s= 256 s= 4.3 min.

Based on this analysis, the total computational effort for all solution modules
corresponds to the sum of all calculated times

Taut = Tali gn + Tvp + Tpar ≈ 11min.
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A direct comparison with alternative approaches is not possible because the
viewpoint planning problem lacks the design of benchmark scenarios. However,
it is worth noting that the programming effort required for the approach proposed
in this thesis can be compared to the empirical study conducted by BAUER et al.
(2021a). In their paper, an online survey was completed by 27 experts who
estimated an average time of 13.6 h to perform a similar inspection task using a
ROMS as the one evaluated in this dissertation. The total estimated time took
into account all activities related to the execution of the task, i.e., preparation,
programming, measurement execution, data evaluation and post-processing.
Since BAUER et al. (2021a) did not offer a detailed assessment of the individual
processing times, this thesis conducted a separate analysis of their survey to
breakdown the average time required for the programming of the ROMS. The
following total programming effort was estimated:

Tre f = 450min≈ (7.5 h). (4.1)

This programming time does not include an explicit separation between on-
line and offline programming. Moreover, it is consistent with the empirical
experiments conducted in this thesis. Therefore, the effort estimation derived
from BAUER et al. (2021a) is considered a valid reference metric within this
dissertation.

Taking into account that the the full automation of the tasks of was not achieved
for either the viewpoint planning (95 % planning effectiveness) or the sensor
parameterization (90 % model fitness), it is assumed that a minimal human
intervention may still be necessary to correct up to 10% of the planned view-
points and predicted exposure times. The total programming effort can then
be corrected using the reference time from Eq. 4.1 and assuming that the time
effort is proportional to the number of features. Therefore, a more realistic
computation is given for a semi-automatized programming process as follows:

Tsemi−aut = Taut + 10% · Tre f ≈ 56 min.

Although this effort is five times larger than the first estimation, it still represents
a considerably programming saving factor given as follows:

psaving = 1−
Tsemi−aut

Tre f
= 87.6 %. (4.2)

In addition, it must be noted that the estimated computation times in this sub-
section provide a rough estimate of the programming time required to solve
the individual problems. For example, the individual estimation of the workcell
calibration effort was not considered in the estimation of the reference pro-
gramming time tref. According to empirical experiments, the programming time
for workpiece calibration corresponds to 10 min to 15 min. Therefore, a higher
saving programming factor should be expected when considering this effort in
the calculation of psaving .

Furthermore, this analysis assumes that all solution modules have been fully
integrated into the proprietary software of the ROMS and that the corresponding
models have been previously implemented, trained, and parameterized.
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4.2.2 Discussion

The most notorious economic benefit of the results of this thesis is given im-
plicitly by the reduction of the programming effort. However, to outline the
real economic effort to develop and integrate the outlined solution modules,
a comprehensive analysis is presented in Subsection A.3.2. First, a detailed
breakdown of the investment costs (A.3.2.1) showed that nearly 80 % of the
costs must be allocated to software development for implementing the solution
modules. Then, based on the calculated programming savings from Subsection
4.2.1, a payback period of approximately two years can be expected considering
96 measurement tasks (see Subsection A.3.2.2) or after the inspection of 118,228
features (see Subsection A.3.2.3).

Although these numbers may seem high for end-users who require a large num-
ber of probes, it is important to note that they are typical in quality inspection
departments of automotive manufacturers. Therefore, for end-users with a
high number of measuring tasks, implementing the proposed modules can be
profitable. Furthermore, a system integrator can also capitalize on the eco-
nomic advantages by developing a solution based on the outlined modules and
providing a comprehensive end-to-end solution to their clients.

The economic assessment of this section has shown that improving the program-
ming of ROMS using the proposed solutions is not only technically beneficial, but
also profitable. It is important to emphasize that the economic analysis presented
in this subsection is intended to provide a rough estimate of the magnitude of
the costs associated with the proposed approach. Therefore, for a more accurate
estimate of the economic benefits, a more comprehensive evaluation should
consider dynamic methods with variable costs per year and qualitative and quan-
titative metrics, e.g., increase in productivity, utilization of the framework with
other machines, quality assurance, relief of employees from repetitive tasks. If
such effects can be accurately quantified, the cost-benefit ratio for improving the
programming of ROMS is expected to be achieved early.

4.3 Overall Discussion and Reflection

Programming valid measurement routines for ROMSs is a complex task that
still relies on manual intervention. In Section 1.2, the most challenging tasks
that require expert input, including workcell calibration, viewpoint planning,
and sensor parameterization. These tasks are complex and repetitive, requiring
skilled personnel. Automating these tasks requires a thorough understanding
of the system relationships and external factors, such as lighting conditions and
design uncertainties. It also requires the development of technical solutions that
end-users can apply in real-world scenarios. This thesis addresses each of these
identified solution modules individually by formalizing the implicit and explicit
knowledge required to automate them.
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Calibrating workcells for robot-based systems is a crucial task for any production
system. It often requires manual intervention to prevent collisions, which is
why skilled operators are typically tasked with the job. A vision system capable
of detecting objects is necessary for this task. The latest research, discussed in
Subsection 2.2, shows that solutions based on artificial neural networks (ANNs)
can detect these objects. However, an end-to-end solution that can detect and
estimate the pose of an object is needed. For this reason, this thesis proposed a
strategy comprising multiple ANNs to estimate the 6D pose of an object based
on a sensor image. Moreover, this research revealed that ANNs can be trained
effectively using synthetic datasets only, without the need for collecting and
labeling large amounts of real-world data.

The second module, which focused on viewpoint planning, aimed to address the
challenge of modeling the solution space and constraints for positioning sensors.
While current state-of-the-art solutions (as discussed in Subsection 2.3) rely on
heuristic algorithms that perform well, they have limitations when dealing with
uncertainties. Therefore, this thesis proposed to use trigonometric and geometric
methods to model all viewpoint constraints, both explicit and implicit, in order to
formalize expert knowledge. By explicitly modeling all constraints, the solution
space of a viewpoint could be modeled and uncertainties could be considered.
This approach demonstrated that viewpoint planning can be solved effectively
on the basis of solution spaces and that the task can be fully automated.

The last module dealt with the parameterization of sensors, which has been a
persistent issue when it comes to utilizing optical systems. Specifically, projectors
used in active systems have shown that spatial properties, material reflection
properties, and projector intensity, among other factors, must be taken into
account. Additionally, the non-linear relationships involved in this problem
make it challenging to model analytically. Subsection 2.4 summarized different
solutions available, but these require user intervention or system modifications,
which can be impractical in a production context. To address this issue, this thesis
introduced data-driven models that were trained using past measurements, as
well as the lighting conditions and spatial relationships of the measurement setup.
The results of this research showed that these models were able to formalize
user skills by taking into account spatial and imaging understanding of the setup,
which enabled an effective and automated parameterization process.

The presented solutions have demonstrated the possibility of formalizing missing
knowledge, leading to the automation of individual tasks. This automation
enables experts to focus on more creative endeavors, without the burden of
programming repetitive tasks for ROMSs. Although these solutions address the
challenges associated with automating programming, it is important to note that
significant effort is required to implement and configure the necessary modules.
However, once this initial investment is made, the solutions are both technically
advantageous and economically feasible.





Chapter 5

Conclusion

5.1 Summary

Over the past three decades, robot-based systems have emerged as a key tech-
nology for tackling some of the challenges current production confronts, such
as customized manufacturing, shorter cycle times, and flexibility. Especially in
the field of quality assurance, robot-based optical 3D measuring systems (ROMSs),
composed of an industrial robot and an optical range sensor, have the potential
to automate complex inspection processes requiring vision capabilities (e.g.,
dimensional metrology, surface reconstruction, surface quality inspection) and
enhance the productivity of these tasks. However, programming ROMS is still
considered a challenging and resource-intensive task demanding extensive do-
main knowledge from robotics, optics, metrology, and computer vision. For these
reasons, this thesis addressed some of the most pressing concerns regarding
the automation of ROMS. Within four publications three independent solution
modules were outlined to enhance the level of automation (LoA) of the system.
This was achieved by improving the programming of the following subtasks:
workcell calibration, viewpoint planning, and sensor parameterization.

The workcell calibration deals with the identification and pose estimation of any
relevant object within the robot workspace that may affect the programming
of the ROMS. For this subtask, a multi-stage strategy was outlined in PUB1
that integrates multiple convolutional neural network (CNN) models to identify
and estimate the pose of an object based on a single camera image captured
by the sensor of the ROMS. Additionally, a pipeline was proposed to automate
this process by using synthetic data generated from CAD models, in order to
mitigate the burdens of generating a training dataset. The CNN models were fully
trained on synthetic datasets, demonstrating the potential to fully automate this
laborious task while maintaining a good performance. The evaluation showed
that the proposed strategy was able to autonomously identify a workpiece within
the robot’s workspace and estimate its pose with an accuracy of 25 mm. These
results show the potential of such a strategy to eliminate any manual intervention
during the workcell calibration process and increase the LoA of this task.
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The second module dealt with the computation of a sufficient number of view-
points to capture a set of inspection features of an object, taking into account
various system constraints, such as sensor imaging parameters, occlusion, feature
geometry, robot workspace, and model uncertainties. Due to its complexity, this
task is often programmed manually by an expert. To address this challenge and
increase the LoA of the viewpoint planning task, the present research suggest
modularizing the problem into two stages. The first step, as detailed in PUB2,
involves the analytical formulation of the overall problem and the use of solution
spaces to characterize viewpoint constraints. PUB2 showed that nine constraints
can be explicitly modeled using geometric and trigonometric relations. The
second subproblem is addressed by PUB3, which introduces a strategy for com-
puting an adequate number of viewpoints to perform an inspection task based on
the proposed geometric modeling approach. A comprehensive evaluation of the
viewpoint planning framework showed that valid viewpoints could be automati-
cally found for different inspection tasks with different constraints, range sensor
types, and workpieces. The findings of PUB2 and PUB3 indicate a significant
increase in the LoA of this subtask and a high degree of generalizability for the
framework developed.

The last solution module focused on the automatic parameterization of the
camera’s exposure time for active sensors to ensure the successful acquisition of
point clouds with highly reflective surfaces. Sensor parameterization is complex
nonlinear problem, which is particularly challenging due to the inhomogeneous
illumination of the target surface caused by factors such as the asymmetric
configuration of the light source, sensor position, and workpiece surface topology.
To address this task, PUB4 outlined two machine learning (ML) models. The first
model predicts the quality of measurements, while the second model estimates a
valid exposure time. The modeling and evaluation of the models demonstrated
that to properly estimate the quality and exposure time of the point cloud, it
is essential to model to consider the spatial relationships between the sensor
and features. Furthermore, the models demonstrated significant transferability
between various surface finishes, illumination conditions, and active range
sensors. The findings from PUB4 illustrate that an appropriate exposure time
can be determined automatically, effectively decreasing the necessary manual
labor for this task.

In conclusion, Chapter 4 presented an integral technical and economic assess-
ment of all solution modules. The outcomes of the evaluation demonstrate a
considerable improvement in the overall programming automation of ROMS.
The analysis indicates that the proposed modules could enhance the system’s
productivity by lowering the programming effort by up to 88 % compared to
a manual reference scenario. Additionally, a conservative cost-benefit analysis
shows that the current solution modules are economically viable once the pro-
gramming of viewpoint plans to measure the equivalent of 237 doors with 500
features is taken into account.
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5.2 Outlook

The limitations and technical aspects of the individual solution modules were
discussed in Subsections 4.1.1.2, 4.1.2.2, and 4.1.3.2. In the context of a more
holistic evaluation, the full integration of all solution modules was beyond the
scope of this thesis. The orchestration of all modules remains an open issue and
a prerequisite for achieving the complete autonomy of ROMSs. Towards this
goal, this thesis considers three research directions that remain to be addressed:
hardware-independent integration, knowledge management, and validation of
autonomous programs within industrial applications.

The use of hardware agnostic solutions is a common problem in the development
of industrial automation software, which has motivated associations composed
of end users and system vendors to work on open communication protocols, do-
main models, and exchange formats for modeling production processes and field
devices, e.g., Asset Administration Shell, OPC-UA Foundation, AutomationML. Al-
though some of these information models and communication technologies have
gained acceptance in individual industries and regions, standards for the pro-
duction and metrology have not been established in either industry or academia
(SCHMITT et al. 2016; MÜLLER and KUTZBACH 2019, p. 521). Additionally,
current research shows that concepts for modeling and programming field de-
vices and manufacturing processes to increase the flexibility and productivity
of production systems are still the focus of ongoing investigations (BAUER et al.
2019a; HAMMERSTINGL 2020; HEUSS et al. 2022). Therefore, future work aiming
at using or enhancing the present solution modules should review the current
research and standardization of communication protocols and domain models.
This is necessary to develop a software framework that can effortlessly integrate
into hardware-agnostic production. A first step towards the unified integration of
all modules and knowledge management for ROMSs was investigated in MAGAÑA

et al. (2020b). The publication proposed a knowledge base to centralize and
formalize domain knowledge at different levels of abstraction for programming
ROMSs. Although the results of MAGAÑA et al. (2020b) provided the basis for a
hardware-agnostic implementation of some modules of this thesis, the domain
models proposed by the authors still need to be aligned with a standard or
industry specification.

On an organizational level, another pressing issue related to the automatic
creation of programs generated by artificial intelligence (AI) is their evaluation
considering different aspects such as safety, robustness, traceability, among
others (HOFFMANN et al. 2021). Although AI driven solutions have shown great
potential to solve some of the open problems addressed within this thesis, it
should be recalled that some of the algorithms outlined rely on heuristic and
stochastic methods. Therefore, there is a possibility that the results of the applied
methods may not be deterministic, and their traceability can be compromised.
Hence, further research must delve into how the suggested AI-based solution
modules can be assessed or expanded to assure an easy application in industrial
settings.
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Furthermore, enhancing the LoA of production systems would ultimately aid in
tackling some of the worldwide challenges that are impacting manufacturing,
including demographic shifts, reshoring production, and constantly evolving
product life cycles. However, the short-term impact on critical global trends
remains to be analyzed. To this end, the goals set by the Agenda for Sustainable
Development adopted by the United Nations (UNITED NATIONS 2022) could
be used to guide the development of more sustainable and resource-efficient
production systems. For example, in the context of this thesis, the automation of
the sensor parameterization would significantly reduce the use of the sensor and
improve its energy consumption. Furthermore, the viewpoint planning could
be extended to integrate energy constraints and optimize the robot path plan.
Therefore, a well-founded analysis to measure the system’s energy consumption
remains to be investigated considering appropriate methodologies, for example
LIEBL (2020). Based on such an analysis, the benefits of automation could be
transparently outlined, and concrete actions to improve the energy efficiency of
the ROMS could be further derived.

Finally, the results of this work should stimulate future work to evaluate the
transferability of the solution modules to similar non- or industrial tasks, such
as vision-based robot self-calibration (LUX-GRUENBERG 2020), bin-picking appli-
cations (DIRR et al. 2023), robot-assisted surgery (SU et al. 2021), navigation
(DUFEK et al. 2021), among others. The solution modules proposed in this thesis
provide a stepping stone for researchers and decision-makers to automate similar
tasks and be a helpful aid in evaluating their cost-benefit ratio.
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Appendix A

Appendix

A.1 Fundamentals

A.1.1 Robot Kinematic Model

The workspace of a six-axis industrial robot is considered to be a subset of the
special Euclidean1 Wr ⊆ SE(3). This topological space comprises all reachable
poses2 by the robot, thus p r ∈Wr . The nominal poses and joint configurations
of a robot can be calculated, if its kinematic model is known. The robot’s
kinematic model is described by its DH parameters. The DH parameters refer
to a set of four parameters (link length and twist and joint offset and angle)
that describe the geometric relationships between two consecutive joints of a
serial kinematic chain. The DH parameters are used to describe a homogeneous
transformation matrix that combines translational and rotational transformation
matrices. (HESSE and MALISA 2016, pp. 204–208; WALDRON and SCHMIEDELER

2016, pp. 26–27)

The robot pose for a set of DH parameters is given by successively multiplying
the homogeneous transformation matrices of all joints. The robot pose is usually
given as the transformation between the robot’s last (here sixth) joint C j6 and
the robot base Cr as follows:

p j6
r := T j6

r = T j1
r (DH1) · ... · T

j6
j5
(DH6). (A.1)

Additionally, the robot pose can be given as the homogeneous transformation
between the robot base and another reference coordinate system such as the
tool center point (TCP) of the end-effector Ctcp. Assuming that the rigid transfor-
mation between the last joint and the reference coordinate system of the TCP,

1The special Euclidean SE(3) = R3 × SO(3) models the product space resulting from the Eu-
clidean space in R3 and the rotation space denoted as the special orthogonal SO(3) ⊂ R3x3

(WALDRON and SCHMIEDELER 2016, p. 20).
2The pose of a rigid body p ∈ SE(3), which is an element of the special Euclidean, is fully

defined by a translational component t ∈ R3 and a rotational component given by a rotation
matrix R ∈ R3x3.
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denoted as Ttcp
j6

, is known, the TCP pose is given as follows:

p tcp
r := T tcp

r = T j6
r · T

tcp
j6

. (A.2)

Since the joint angles are a subset of the DH parameters, the resulting TCP
pose of a nominal joint configuration is seamlessly computed using Eq. A.2.
This mathematical calculation, known as forward kinematic transformation, is
performed very efficiently as it mainly relies on the multiplication of matrices.
In contrast, determining the joint angles for a given sensor position is known
as the inverse kinematic problem and requires solving nonlinear equations. A
more comprehensive derivation of the robot kinematic, forward, and inverse
kinematic models is given by WALDRON and SCHMIEDELER (2016, pp. 28–31).

A.1.2 Range Sensor

A.1.2.1 Active Projection

Active range imaging sensors such as structured light sensors (SLSs) consist of at
least one camera and a digital projector (see the right graphic of Fig. 1.2). The
acquisition principle of depth information is based on active triangulation3, which
assumes that a surface point being represented by a camera image pixel can be
matched to a projected point of the light source. In this case, the active source
unit projects an encoded sequence of at least three different fringe patterns (e.g.,
binary values, gray or color values) onto the object surface. For each projection,
the camera captures one image at a time. In a next step, the correspondences
between projected patterns and image pixels are found using different decoding
techniques depending on the projected pattern. (BEYERER et al. 2016, pp. 263–
268) Figure A.1 illustrates some of these steps showing a simplified decoding
process for a 1D binary projected pattern.

A.1.2.2 Measurement Volume

The measurement volume describes the workspace in which the sensor can
measure at standstill in compliance with the specifications provided by the
manufacturer (DIN EN ISO 10360-13 2023) . This workspace is described by
a set of different sensor imaging parameters, such as the depth of field ds and
the horizontal and vertical field of view (FOV) angles θ x

s and ψy
s (COWAN and

KOVESI 1988; TARABANIS et al. 1995a). In addition, some sensor manufacturers
provide the dimensions and locations of the near hnear

s , middle hmiddle
s , and

far h f ar
s viewing planes. The measurement volume can be straightforwardly

3Triangulation refers to a method of measuring distances using trigonometric principles to
measure planar triangles BEYERER et al. (2016, p. 255). A triangle can be defined by two angles
and the length of one side, known as the baseline. Using this information, other geometric
relationships, such as the distance between a surface point and the camera, can be estimated
through trigonometric calculations.
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calculated based on the kinematic relationships of the sensor and the imaging
parameters. Figure A.2 visualizes the geometrical relationships and frustum
shape of the measurement volume.

Active Projection Pattern Decoding 
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Figure A.1: Simplified acquisition principle in 2D of structured light sensors for range imaging to
decode pixel information from a coded projected pattern (BEYERER et al. 2016, pp. 264–265)
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Figure A.2: Detailed kinematic and imaging model of the sensor in the x -z plane. The measurement
volume is spanned by the imaging parameters of the sensor (ds, hnear

s , h f ar
s ,θ x

s ).
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A.1.3 Machine Learning

Machine learning (ML) is understood as a set of methods that can automatically
learn patterns from empirical data and then use the inferred correlations to
predict unknown events or make decisions under uncertainty (MURPHY 2012,
p.1). MITCHELL (1997, p. 2) introduced a widely quoted definition to describe
this type of algorithms:

“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience
E.”

This subsection presents the basics of machine learning to provide a general
understanding of the mathematical foundations of some of the solution mod-
ules proposed in this work. Moreover, the current thesis proposes the use of
two different supervised learning methods, artificial neural network (ANN) and
Gaussian processes (GPs), to improve the automation of different subtasks for
programming robot-based optical 3D measuring systems (ROMSs). The mathe-
matical foundations of these models are more comprehensibly described in the
following subsections.

A.1.3.1 Supervised Learning

According to the learning mechanism, machine learning algorithms are classified
into the following three main categories depending on what kind of experience E
they are allowed to have during the learning stage: supervised learning, unsuper-
vised learning, and reinforcement learning (MURPHY 2012, p. 2; GOODFELLOW

et al. 2016, p. 104).

Supervised learning refers to the process of learning input-output mappings from
an empirical dataset (RASMUSSEN and WILLIAMS 2006, p.1). Since the input
and output data must be labeled in advance, supervised models tend to perform
better than unsupervised and reinforcement learning models. For this reason,
supervised learning remains one of the most widely used forms of machine
learning in real applications (MURPHY 2022, p.1; CHOLLET 2018, p. 94).

Supervised learning methods are further categorized between classification and
regression problems depending on the type of task T and the output variable’s
characteristics. For example, in the context of production tasks, classification
algorithms can be used to identify different objects in an image for bin-picking
tasks or estimate the wear condition of a workpiece or a machine for predictive
maintenance. On the contrary, regression algorithms are employed to predict
continuous output values. This model type is particularly helpful, e.g., for the
optimization of process parameters, time to failures analyses, or prediction
of product demand. Further industrial applications examples are provided by
WEBER and SEEBERG (2020).
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A.1.3.2 Artificial Neural Networks

The elementary component of ANNs is given by an artificial neuron, which
represents a mathematical function based on a biological neuron model. A
neuron is given a set of n inputs {x0, . . . , xn}, which are weighted using a set
of factors denoted as {w0, . . . , wn}. In the next step, all weighted inputs are
summed and given to an activation function g (e.g., sigmoid, step, sign, linear)
to compute an output y. The output of an artificial neuron is calculated as
follows:

y = g

�

n
∑

i=0

x iwi

�

(A.3)

In general, the function g can be arbitrarily chosen to express any complex
correlations between the inputs and outputs of a model. Fig. A.3a depicts a
simplified representation of a neuron and its components.

The performance of neuron-based approaches is not attributed to the complexity
of their functions, but to their architecture. An ANN can be built from one or
multiple layers of interconnected neurons with simple functions to solve complex
problems (LÄMMEL and CLEVE 2012, p. 192). The inputs, outputs, and topology
structure of the neuron layers define the characteristics and architecture of an
ANN. The simplest form of ANNs are feed-forward neural networks. Information
flows in one direction and each neuron from a neuron layer is connected to all
neurons in the successive layer (BASLER 2021, p. 15). Due to this characteristic,
feed-forward networks are commonly denoted as fully connected networks. The
structure of such a network comprising an input layer, two neuron layers, and
an output layer is illustrated in Fig. A.3b.

Inputs OutputWeights Neuron

(a) Artificial neuron model

Input Layer Output LayerHidden Layers

Artificial
neuron

(b) Feed-forward Neural Network

Figure A.3: Simplified representation of an artificial neuron (a) and the architecture of a feed-
forward neural network (b) composed by multiple artificial neurons

Before using an ANN for inference, the model parameters (e.g., weights, function
hyperparameters) must be selected appropriately in advance. The iterative
adjustment of these model hyperparameters using a training dataset is referred
to as the learning process (CHOLLET 2018, p. 10). This process is categorized as
an optimization problem, which seeks to minimize the prediction errors using
a loss function to increase the model’s performance P (BAUER and WARSCHAT

2021, p. 59). To this end, the model is trained based on an experience E that
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is represented by a dataset, D = {(x j , y j)| j = 1, . . . , m}, with m observations of
labeled input-output pairs (MURPHY 2022, p. 2).

Deep neural networks

Deep neural networks (DNNs) are a subcategory of ANNs that consist of a complex
model structure with multiple hidden layers. The hidden layers may have a
different number of neurons and are successively interconnected with each other.
This kind of structure facilitates finer and more flexible filtering of relevant
information of the raw data at different abstraction levels for solving more
complex problems. CHOLLET (2018, p. 10) defines deep learning as a multistage
process to learn data representations.

Due to the large number of weights between layers and neurons that compose a
DNN, these models require a high number of observations to be trained. For this
reason, training DNNs is often considered a computationally expensive process
that demands a large amount of training data for optimizing all model hyper-
parameters. However, due to the advancements in computational power and
decreasing costs in the recent years, DNNs have demonstrated to be valuable
and efficient in tackling a wide range of challenging problems (e.g., image clas-
sification, character recognition, natural language processing) within diverse
applications fields such as neuroscience, pharmaceutical, manufacturing, logis-
tics, and transportation, among others (CHOLLET 2018, p. 94; GOODFELLOW

et al. 2016, pp. 23–26).

Convolutional neural networks

Convolutional neural networks (CNNs) represent a special variant of DNNs. The
origins of CNNs architectures are traced back to the studies of HUBEL and WIESEL

(1959), which investigated the biological vision system of cats (GOODFELLOW

et al. 2016, pp. 365–372). Using a similar functionality and structure to a
biological vision system, CNNs can extract and interpret patterns from 2D images
at low and high abstraction levels. Three types of layers are fundamentally used
to accomplish this: convolutional, pooling, and fully-connected.

The function and structure of CNNs is better understood by explaining the
inference procedure based on the example of an image classification task to
detect an object within an image. A simplified architecture of a CNN for object
detection application is depicted in Fig. A.4. The main operations are explained
as follows.

In the first step, the input image is represented by a 2D matrix, where each matrix
element holds the intensity value of each image pixel. This matrix corresponds
to the model’s input layer.

In the next stage, feature learning, the image is filtered using multiple convolution
operations to detect diverse low-level features4, e.g., edges, lines, and corners

4In this subsection, the term feature refers to the part or pattern of an image that helps its
identification. The term is not to be confused with inspection features within the context of
metrological tasks.
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Feature Learning Classification

car

bicycle

Input Image PoolingConvolutional PoolingConvolutional Fully-Connected Network

Figure A.4: Exemplary architecture and simplified outputs for the different layers of a CNN for
image classification tasks based on BASLER (2021, p. 161) and MURPHY (2022, p. 472))

(GOODFELLOW et al. 2016, pp. 5–6). During this step, one kernel5 is multiplied
and shifted through the whole image to produce a feature map (CHOLLET 2018,
pp. 122–123). In the following step, the feature map is downsampled using a
pooling layer to obtain generalized and translation-invariant features (MURPHY

2022, p. 471). Generally, the architecture of CNNs comprises multiple pairs of
convolutional and pooling layers to synthesize more complex features. The set
of convolutional and pooling layers is known as the feature learning or detection
component of CNNs (BASLER 2021, p. 161). The main task of this collection of
layers is ultimately to convert image patches into numerical values so that the
following layers of the neural network can extract relevant patterns from them.

In the last step, fully connected layers are used to interconnect the extracted
features and ultimately detect, at a higher level of abstraction, a specific class of
objects in an image. Due to their architecture, CNNs have found its prophecy
to solve vision tasks efficiently, e.g., object identification, classification, and
segmentation (BASLER 2021, p. 59).

A.1.3.3 Gaussian Processes

This subsection briefly summarizes the mathematical foundations and general
characteristics of GPs.

Definition

A GP is a stochastic process, i.e., a collection of random variables over a temporal
or spatial domain, in which each finite subset has a common Gaussian distribution
(RASMUSSEN and WILLIAMS 2006, p. 13).

A GP is formally defined by its mean function m(x) and a kernel denoted as
k(x,x′) which models the covariance between two different input vectors x

5In the context of image processing, kernels (related terms: filters, mask, convolution kernel)
are matrices, mostly quadratic, used to filter information of an image.
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and x′:

m(x) = E[ f (x)], (A.4)

k
�

x,x′
�

= E
�

( f (x)−m(x))( f (x′)−m(x′))
�

, (A.5)

If a function f (x ) follows a GP, this is given as:

f (x)∼ GP
�

m(x), k
�

x,x′
��

, (A.6)

where the symbol ∼ denotes that f (x ) follows a Gaussian distribution.

Kernel Design

In contrast to ANNs, GPs can be classified as memory-based procedures that
make predictions based on similarity. Such procedures assume that observations
with similar inputs will likely have similar target values. In the context of GPs, it
is the kernel k (x,x′), which models the correlation between two inputs x and
x′. This property is considered one of the main strengths of kernel methods, as
it allows the kernel to be designed based on prior knowledge and assumptions
about the unknown function f (x ). For this reason, the choice or design of an
appropriate kernel is of great importance, as it significantly determines how the
random variables correlate with each other and ultimately affect the model’s
predictive performance. (BISHOP 2006, pp. 291–292; RASMUSSEN and WILLIAMS

2006, p. 79)

For example, the covariance between a pair of random variables x,x′ ∈ X can be
computed using the squared exponential kernel (SE) (DUVENAUD 2014, p. 2):

cov( f (x), f (x′)) = kSE

�

x,x′
�

= σ2 exp

�

−
(x− x′)2

2ℓ2

�

, (A.7)

where ℓ and σ represent hyperparameters to be learned during the training
phase of the model. A list of other kernels is given by RASMUSSEN and WILLIAMS

(2006, pp. 81–87).

Gaussian Process Regression

Assuming a historic dataset D = {(xi , yi)}
n
i=1 with n input and target value pairs

(xi , yi), the following linear regression model is given

yi = f (xi) + ε, ε∼N
�

0,σ2
ε

�

, (A.8)

where ε denotes an additive independent distributed Gaussian noise with a zero
mean and variance σ2

ε.

The unknown function f is assumed to follow a GP. Hence, any subset of noisy
observations y = (y1, . . . , yn)⊤ at the training input locations X = (x 1, . . . , x n)⊤

follows a joint Gaussian distribution, which is expressed as follows:

y∼N (0, cov(y )), with

cov(y) = K(X , X ) +σ2
n I , (A.9)
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b) exponential kernel with five observations
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c) SE kernel with three observations
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Figure A.5: Overview of different GPs, where the true function, y = x sin(2π x), (solid line in
green) is reconstructed using noisy observations (dots in green) by a GP regression model (dashed
line in blue) including its double standard deviation (blue area). The graphs on the top show GPs
with different kernels and the graphs on the bottom with a different number of observations.

where I denotes a unity matrix of size n×n and K (X , X ) is a matrix of covariances.
The covariance matrix elements are computed using a valid kernel6, such as the
SE kernel from Eq. A.7. Analogously, the prediction values for an unknown set
of function values can be inferred based on the Bayes’ Theorem for conditional
distributions (see RASMUSSEN and WILLIAMS 2006, p. 16, pp. 200–201).

Fig. A.5 illustrates the key characteristics of GPs and significance of kernel
design. An exemplary GP regression model, following a sinus function, is trained
using two different kernels and a different number of observations. Fig. A.5a
shows a SE kernel that has a smoother trend and a more accurate approximation
than the exponential kernel in Fig. A.5b, although both kernels approximate all
observations similarly well. Furthermore, Figures A.5c and A.5d demonstrate the
influence of the number of training observations on prediction performance and
confidence. The trends show that the integration of additional training points
results in an improvement of both indicators.

6A valid kernel is defined to be symmetric if k (x,x′) = k (x′,x). Furthermore, the covariance
matrix must be positive semidefinite for all possible vectors, i.e., their eigenvalues are non-negative.
(RASMUSSEN and WILLIAMS 2006, p. 80).
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Moreover, the advantages of GP are visualized in all figures. First, all models
show high flexibility to approximate nonlinearities, and useful predictions can
be obtained with few data. Second, due to the stochastic nature of GPs, any
prediction is automatically associated with an uncertainty. All trends in Fig.
A.5 illustrate this behavior, showing the double standard deviation of the mean
prediction and how the uncertainty increases within areas without training data.
This characteristic is of great advantage in industrial applications, as it also
allows for evaluating the prediction’s reliability and the derivation of diverse
actions.

A.2 Solution Modules

A.2.1 Requirements

Similar to the related research (CHEN and LI 2004; SCOTT 2002; TEKOUO

MOUTCHIHO 2012), the following general requirements were considered in the
present thesis as guidelines for the design and evaluation of the implemented
technical solutions according to the ISO/IEC 25010 (2011):

1. Portability: The proposed approaches should be abstracted and gener-
alized at the highest possible level. Model development should strive
for a hardware-agnostic implementation, generalization to analogous
applications, and the promotion of scalability.

2. Performance efficiency: The methods and techniques used should strive
for a low algorithmic complexity to increase the overall computational
efficiency of the solution modules.

3. Security: Due to traceability and safety issues within industrial applica-
tions deterministic approaches should be prioritized. Therefore, explicit,
analytical, and linear models should be preferred whenever possible over
heuristics.

4. Maintainability. The approaches and models should consider a modular
structure and not affect other modules.

5. Usability: The parameters required to implement the models and ap-
proaches should be easily accessible to end-users. The proposed solution
modules should strive a minimal parameterization.

The given order does not consider any prioritization of the requirements. In
addition, these requirements are used to evaluate characteristics of the proposed
solutions in Chapter 4.
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A.3 Evaluation

A.3.1 Experimental Setup

This subsection introduces an overview of the hardware and software used to
implement and evaluate the solution modules.

A.3.1.1 Reference ROMS

The industrial ROMS, ZEISS AIBox from the Carl Zeiss Optotechnik GmbH, was
utilized as the reference system for implementing and evaluating all solution
modules of the present thesis. The AIBox is an industrial robot-based 3D mea-
surement cell comprising a SLS range sensor, a six-axis industrial robot, and a
rotation table for fixing the inspecting workpiece. Fig. A.6 provides an overview
of the core elements of the AIBox, which are further described below.

Manipulator:
Six-axis industrial

robot

Structured light
sensor: ZEISS
Comet PRO AE

Probing object:
car door

Active stereo sensor:
Roboception rcvisard_65 and

RandomDot projector

Figure A.6: Overview of the core components of the inspection AIBox extended by an active stereo
system. (modified from MAGAÑA et al. (2023c))

A.3.1.2 Range Sensors

The ZEISS Comet PRO AE consists of a monochrome camera and a blue-light
digital fringe projector. The camera includes a high-pass filter to minimize the
impact of external lighting sources, allowing for the perception of blue light
from the projector. In addition, the range sensor includes a photogrammetric
camera that can be used for global image registration. The SLS can be used for
different metrological tasks, e.g., coordinate metrology, digitization, and reverse
engineering.
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The sensor is controlled by the proprietary ZEISS colin3D software. In addition,
the system integrates the proprietary software, ZEISS Visio7, which is used for
the offline and online programming of the robot.

To evaluate the transferability of the solution modules with other range sensors,
a stereo sensor (rc_visard 65) and a dot projector from Roboception were attached
to the SLS.

A.3.1.3 Manipulators

A six-axis industrial robot (Fanuc M20ia) is used to position the sensor. Due to
the limited workspace of the industrial robot, a rotary table is utilized to enable
the rotation of workpieces and obtain measurements from all sides.

A.3.1.4 Workpiece and Features

To evaluate the applicability of the solutions presented in this thesis in an
industrial context, a car door with 636 features was used as a probing object.
The nominal position, orientation, and geometric dimensions of all features are
known. In addition, the car door has different surface finishes on the inside and
outside. The car door is mounted on the rotary table, but its relative pose to the
robot base is initially unknown.

A.3.1.5 Software Architecture

All solution modules (SMs) were implemented as independent components using
different programming languages and software frameworks. To integrate the de-
veloped modules with the proprietary software of the AIBox, different interfaces
were developed. Fig. A.7 gives an overview of the reference architecture and the
developed interfaces. A comprehensive overview of the implementation of the
solution modules can be found in the corresponding publications.

A short overview of the most relevant software components is given below:

SM1: The synthetic pipeline was developed using the rendering engine from
Unity (UNITY TECHNOLOGIES 2022) and a CAD model of the car door. In
addition, the proposed CNN classification model for the orientation esti-
mation was implemented in Keras (CHOLLET et al. 2015) and TensorFlow
(TENSORFLOW DEVELOPERS 2023).

SM2: The backbone of the framework was developed using the Robot Operating
System (ROS) (QUIGLEY et al. 2009). The framework was built using
a knowledge-based service-oriented architecture design. The concept
and architecture are described in MAGAÑA et al. (2019, 2020b). The
offline computed viewpoint plans were transferred to the AIBox using an
extensible markup language (XML) file defined by the proprietary software
ZEISS Visio7.
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SM4: The GP regression models were implemented in Python using the GPy
library (GPY 2012). Moreover, two pipelines were implemented to auto-
mate the measurement acquisition and the post-processing of the acquired
images and point clouds.

Sensor Planning System

Zeiss AIBox

SM4: Sensor Exposure  
Optimization

Comet Pro AE 2D
images and point clouds

rc visard 65 2D images
and point clouds

Fanuc M20ia
Controller 

Zeiss Comet PRO  
AE Sensor 

Zeiss  
colin3D 

Zeiss  
Visio7 

Roboception

rc_visard 65 

Roboception  
ROS Interface 

SM2: Viewpoint  
Planning 

SM1: Pose  
Estimation 

XML

reads

Sensor Control and Data Acquisition 

Roboception  
Interface 

Zeiss  
Interface 

ROS MSG/SRV

reads

writes

C# API

writes

Figure A.7: Overview of the reference architecture and SMs. Top: Components developed within
the scope of this thesis. Bottom left: Components of the Zeiss AIBox. Bottom right: Components of
the Roboception rc_visard.

In addition, a handful of open source computer vision libraries were used through
all solution modules, for camera calibration, image, and 3D mesh processing
tasks (BRADSKI 2000; DAWSON-HAGGERTY ET AL. 2022; ZHOU et al. 2018; ZHOU

et al. 2016).

A.3.2 Economic Analysis

This section presents two statistical economic methods to analyze the economic
benefits of the outlined solution of this thesis: a payback period analysis in
Subsection A.3.2.2 and a break-even analysis in Subsection A.3.2.3. Before, a
general cost analysis described in Subsection A.3.2.1 is introduced.
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A.3.2.1 Costs Overview

In the first step, the investment costs and depreciation costs are estimated. Table
A.1 provides an overview of these costs considering the following assumptions.

1. Solution Modules Software Development Costs (ci,dev): Since the de-
veloped software tools are not publicly available, it is assumed that all
software tools must be developed from scratch. The monetary cost for
each module was calculated with an hourly wage rate7 of cop,h = 60 C/h.
The estimated development effort was calculated considering the exper-
tise of a software engineer with a background in robotics, computer vision,
and machine learning.

2. Initial Dataset Generation Costs (ci,data): Taking into account that the
ML models from PUB1 and PUB4 require an individual dataset for each
workpiece, the effort for creating an initial dataset must be considered.
Since PUB1 introduced a fully automated pipeline for generating syn-
thetic datasets, a minimum effort of 10 h is considered to build an initial
database consisting of different objects. On the contrary, an effort of 50 h
was estimated to acquire an initial dataset that can be used to train the
models proposed in PUB4.

3. Total investment (ci): The total investment costs is the sum of all costs
ci = ci,dev + ci,data + ci,other , where ci,other refers to additional fix costs, e.g.,
a workstation for model training, system integration, and planning costs.

4. Annual depreciation: A rough depreciation analysis is performed con-
sidering a six-year useful life8. In addition, assuming that all solutions
are built on top of an existing production system and that the operating
capacity over a year is the same, only the relative additional costs are
considered (VOEGELE and SOMMER 2012, p. 346). For this reason, the
operational machine costs are not included in the calculations.

5. Static methods: The analyses are carried out on the basis of static methods,
which consider the costs and revenues to be constant over the period of
use of an investment (VOEGELE and SOMMER 2012, p. 364).

A.3.2.2 Payback Period Analysis

To estimate the payback period of the proposed solutions, first the programming
costs are calculated over one year for a reference system without them. Con-
sidering the reference programming effort Tre f = 7.5 h (see Eq. 4.1), this thesis
assumes that a ROMS is capable of carrying out two reference inspection tasks

7The hourly wage rate was calculated from the employer’s perspective considering an average
monthly salary of a senior software engineer of 9600C with a 40-hour week.

8The useful life is given in the depreciation table for the mechanical engineering industry (IV D
2-S 1551-470/01) of the German Federal Ministry of Finance.
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per week and an average of eight per month. The yearly average programming
effort, taking into account 96 inspection tasks per annum and an annual machine
utilization of 80 % is equivalent to

pre f ,a = 0.8 · 96/a · 7.5h= 576h/a

with operator programming costs in the order of

cop,a = cop,h · pre f ,a = 34.6kC/a.

The potential programming saving effort is then calculated based on the esti-
mated technical efficiency evaluation, which corresponded to psaving = 87.6%
(see Eq. 4.2), as follows

psav,a = psaving · pre f ,a = 504.6h/a.

The annual operating cost of manual programming translates into a savings in
the order of

csav,a = cop,h · psav,a = 30.3kC/a.

The expected payback period is calculated considering the total investment and
yearly revenues of the system (VOEGELE and SOMMER 2012, p. 357). Taking
into account the cost savings for manual programming, the depreciation of the
system, and approximated operative costs of 4kC/a (e.g., workstation operation
costs, technical support), the payback period is calculated as follows:

P =
ci

csav,a + cdep,a − cother,a
= 2.2a

Under the assumptions considered in this subsection, it is concluded that the
outlined approach is economically feasible after approximately two years.

A.3.2.3 Break-even Analysis

An additional economic evaluation driven by a cost comparison per feature is in-
troduced to shed light on the potential of the approach from another perspective,
i.e. rationalization investments. This type of investment evaluates whether an
existing system should be replaced by a new approach in order to reduce costs
or improve quality (LÜCK 2004, p. 171; VOEGELE and SOMMER 2012, p. 345).

Assuming a linear programming effort per feature and the programming planning
effort Tre f , the manual operating cost for programming a feature ( f ) for the
reference scenario is

c f
re f = Tre f ·

cop,h·
500 f

= 7.5 h ·
60 C/h
500 f

= 0.9 C/ f

and for the approach of this thesis:

c f
semi−aut = (1− psaving) · c

f
re f = 0.11 C/ f .
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The break-even point is calculated using a static analysis of the incremental costs
of the proposed solutions, which corresponds to the total investment. In the most
conservative scenario, it is anticipated that there will be no revenue. Moreover,
it is assumed that the depreciation costs should cover the annual expenses of the
proposed solutions, which are given for the assumed numbers in Tab. A.1, i.e.,
cdep,a > cother,a. The break-even number of features is calculated with the given
formula (VOEGELE and SOMMER 2012, pp. 347–348):

nbreak =
ci

c f
re f − c f

semi−aut

= 118, 228 f .

According to the break-even analysis, an economic benefit is expected after
programming the inspection of 118,228 features or 237 inspection orders with
the complexity of a car door with 500 features.
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Table A.1: Overview of costs for economic evaluation

Investment

Software Development per solution module (SM)
SM1: Dataset Pipeline (160 h) 9.6 kC
SM1: ML Models (160 h) 9.6 kC
SM2: Viewpoint Planning Framework (500 h) 30 kC
SM3: Dataset Pipeline (160 h) 9.6 kC
SM3: ML Models (160 h) 9.6 kC

ci,dev

∑

Total (1140 h) 68.4 kC

Dataset Generation
SM1: Dataset generation (10 h) 0.5 kC
SM3: Dataset generation (50 h) 3.0 kC

ci,data

∑

Total (60 h) 3.5 kC

ci,other Other 25.0 kC

ci

∑

Total investment 93.4 kC

Annual Depreciation

Utilization period 6 a
cdep,a Linear depreciation 15.6 kC/a

Programming Costs

cop,h Operator programming cost per hour 60 C/h

Annual costs reference metrology task

pre f ,a Programming hours per year 576 h/a
cop,a Operator programming costs per year 34.6 kC/a

Annual costs reference metrology task with
semi-automatized programming

psaving Saving programming effort factor 87.6 %
csav,a Saved operator programming costs per year 30.3 kC/a

cother,a Operative costs per year 4 kC/a

Cost-benefits

P Payback period 2.2 a
nbreak Break-even number of inspecting features 118,228
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