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Abstract
Background: Recent advances in computed tomography (CT) technology have
considerably improved the quality of CT images and reduced radiation exposure
in patients. At present, however, there is no generally accepted figure of merit
(FOM) for comparing the dose efficiencies of CT systems.
Purpose: (i) To establish an FOM that characterizes the quality of CT images in
relation to the radiation dose by means of a mathematical model observer and
(ii) to evaluate the new FOM on different CT systems and image reconstruction
algorithms.
Methods: Images of a homogeneous phantom with four low-contrast inserts
were acquired using three different CT systems at three dose levels and a rep-
resentative protocol for CT imaging of low-contrast objects in the abdomen.
The images were reconstructed using filtered-back projection and iterative algo-
rithms. A channelized hotelling observer with difference-of -Gaussian channels
was applied to compute the detectability (d′). This was done for each insert
and each of the considered imaging conditions from square regions of interest
(ROIs) that were (semi-)automatically centered on the inserts. The estimated
detectabilities (d′) were averaged in the first step over the three dose levels
(⟨d′⟩), and subsequently over the four contrast inserts (⟨d′⟩w). All calculation
steps included a dedicated assessment of the related uncertainties following
accepted metrological guidelines.
Results: The determined detectabilities (d′) varied considerably with the con-
trast and diameter of the four inserts, as well as with the radiation doses
and reconstruction algorithms used for image generation (d′ = 1.3–5.5). Thus,
the specification of a single detectability as an FOM is not well suited for
comprehensively characterizing the dose efficiency of a CT system. A more
comprehensive and robust characterization was provided by the averaged
detectabilities ⟨d′⟩ and, in particular, ⟨d′⟩w. Our analysis reveals that the model
observer analysis is very sensitive to the exact position of the ROIs.
Conclusions: The presented automatable software approach yielded with the
weighted detectability ⟨d′⟩w an objective FOM to benchmark different CT sys-
tems and reconstruction algorithms in a robust and reliable manner.An essential
advantage of the proposed model-observer approach is that uncertainties in the
FOM can be provided, which is an indispensable prerequisite for type testing.
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1 INTRODUCTION

Computed tomography (CT) is a common and widely
used imaging technology for the diagnosis and early
detection of diseases, as well as therapy planning and
monitoring.1 The annual number of CT examinations
performed has steadily increased over the past few
years. According to the latest UNSCEAR report,1 the
contribution of CT to the frequency of all X-ray exam-
inations is relatively small (approximately 9.9 %) in
high-income countries, while it provides the largest con-
tribution to the collective effective dose from all X-ray
examinations in these countries (approximately 60%).

Parallel to this development, several hardware and
software innovations, such as tube-current modulation,
low-voltage imaging, spectral shaping, dynamic colli-
mation, photon-counting detectors, and iterative image
reconstruction algorithms, have improved image qual-
ity and/or decreased the radiation dose to patients
per examination.2–5 This corresponds to the optimiza-
tion principle of radiation protection according to which
“doses should […] be kept as low as reasonably achiev-
able,taking into account economic and societal factors.6”

The radiation dose related to a CT scan is character-
ized by the standardized CT dose index (CTDI) and the
dose length product. However, there is no internation-
ally accepted standard for characterizing the quality of
CT images, even though there are some approaches,
such as those by Riederer et al.7 and Brooks and Di
Chiro8 used by the British CT scanner evaluation center
(ImPACT). A key problem in characterizing the qual-
ity of CT images is that the imaging system is neither
linear nor shift invariant. This is because the data pre-
processing steps and image reconstruction operate in a
non-linear way.9 Image-quality metrics,10,11 such as the
signal-to-noise ratio,contrast-to-noise ratio,noise power
spectrum, and modulation transfer function require sys-
tem linearity and shift-invariance. Consequently, the
suitability of these metrics is severely limited.12–15

Alternatively, the diagnostic image quality can be
defined in terms of how well small structures can be
detected in a certain setting.16 This task-based assess-
ment can be performed by either a human or a model
observer. Using this approach, a figure of merit (FOM)
that quantifies the image quality for a specific diagnos-
tic task, imaging system, and observer can be defined.
As human-observer studies, which typically entail the
evaluation of “receiver operating characteristic” (ROC)
curves, are very time consuming17 and costly, mathe-
matical model observers can be employed instead. The
growing interest in the model-observer approach has
been supported by a recent multicenter study18 and
an inter-laboratory comparison.19 As a result, a new

IEC standard20 permits model observers to be used for
acceptance and constancy tests on CT scanners.

The aim of our investigation was to continue the
aforementioned developments in model observers to
establish an FOM that characterizes the quality of CT
images in relation to the radiation dose, thus making it
possible for use in type testing of CT systems.Type test-
ing is usually performed on a few specimens of a device
model at the manufacturer’s site as part of the tech-
nical specifications of the model series. The approach
presented in this paper is based on the detectability12

of low-contrast objects within a homogeneous phan-
tom and is tested at three different CT scanners. To
meet the practical requirements of a type-testing pro-
cedure, the development was accompanied by a group
of experts in the field, including representatives of the
authorities in the field of medical radiation protection
and manufacturers.

2 THEORY

2.1 Description of the task-based
model observer

The quality of CT images can be quantified using task-
based quality assessments, where tasks can refer to
the reading and interpretation of suspicious structures
by either a human or a mathematical observer. A rather
simple task is the detection of a lesion, which can be
formulated as a binary classification (present/absent)
and further limited to the case of a “signal known
exactly” and “background known exactly” situation, fol-
lowing the convention of Barrett et al.16 This study deals
with this setting only. A review of task-based measures
for an image-quality assessment was conducted by
Barrett et al.16

In general, a scalar observer-response variable z
derived from an image vector f of length n, where n is
the number of image pixels, is generated by

z = w (f ) + 𝜖, (1)

where the scalar function w(f ) is the response to the
image f , and 𝜖 is the internal noise contribution to
the observer response.21 This response is based on a
mathematical model commonly referred to as a model
observer.16,22 The different proposed model observers
vary in their choice of the functional form for w(f ) and a
probability distribution for 𝜖. Internal noise can be used
to tune the performance of model observers to that
of human observers.21,23 In the present study, internal
noise was not considered because the model observer
was intended to perform optimally.24,25
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Image f is classified as belonging to class 1 (signal-
present) if z exceeds a chosen threshold value 𝛿, and
as belonging to class 0 (signal-absent) otherwise as
follows:

z ≥ 𝛿 → f ∈ class 1(z1),

z < 𝛿 → f ∈ class 0(z0).
(2)

Typically, a few hundred images were used, both with
and without a test signal. If the resulting distributions of
z1 and z0 are independent and normally distributed,26,27

a detectability index d′ can be defined by the first-
and second-order statistics of the observer response
variables:

d′ =
𝜇z1

− 𝜇z0√
0.5 ⋅

(
𝜎2

z1
+ 𝜎2

z0

) . (3)

In this equation,𝜇zi
and 𝜎2

zi
are the mean and variance

of the corresponding distributions.16,26 d′ represents a
measure of the separation between the centers of the
distributions z1 and z0, relative to their average variance.

In the special case of a function (w) being linear in its
argument (linear-model observer), Equation (1) can be
written as:

z = wT f + 𝜖, (4)

where w represents a vector of weights, commonly
termed an observer template.

2.2 The hotelling observer

The ideal linear classifier is the Hotelling observer
(HO), which was introduced by Smith and Barrett28 and
Fiete et al.29 and named after the statistician, Harold
Hotelling.30 Template wHO of this observer depends on
the mean image and covariance matrices of the two
object classes considered (1 and 0). The classifier is
ideal because it maximizes the detectability d′ defined
in Equation (3). We let 𝜇f1 be the mean signal-present
image of all N1 images of class 1, and 𝜇f0 be the
mean signal-absent image of all N0 images of class 0.
The average covariance (Vf ) can be defined using the
covariances of both classes (Vfi ) as follows:

Vf =
Vf1 + Vf0

2
. (5)

The corresponding observer template is

wHO = V−1
f (𝜇f1 − 𝜇f0 ), (6)

and the observer response is

zHO = wT
HO f =

(
𝜇f1 − 𝜇f0

)T
V−1

f f . (7)

The multiplication of image f by V−1
f “decorrelates”

the noise in the image.31 If the covariances for the two
classes of images do not differ considerably (small-
signal approximation), an estimate V̂f of the covariance
matrix can be used32:

V̂f =
1

N0 + N1 − 2

[ N0∑
k=1

(
𝜇f0 − f0,k

) (
𝜇f0 − f0,k

)T

+

N1∑
l=1

(
𝜇f1 − f1,l

) (
𝜇f1 − f1,l

)T
]
. (8)

2.3 The channelized hotelling observer

The channelized hotelling observer (CHO) approxi-
mates the performance of an ideal linear observer
(HO) and enables an objective image-quality assess-
ment linked to the task of lesion detection. The details
are described in the works by Abbey33 and Abbey and
Bochud.34

Myers and Barrett35 introduced a channel mechanism
for HO that reduces dimensionality and the subsequent
computational burden. The channels are organized in a
channel matrix U of size n × 𝜈, where n is the number
of image pixels, and 𝜈 is the number of channels. The
image, covariance, and observer response can then be
channelized as follows:

f̃ = UT f, (9)

Ṽf = UT Vf U, (10)

zCHO =
(
𝜇f̃1 − 𝜇f̃0

)T
Ṽ−1

f f̃ . (11)

The tilde symbol (∼) denotes the channelized ver-
sions of the image vectors and covariance matrix,
which are reduced to length 𝜈 and size 𝜈 × 𝜈,
respectively.

Following Wunderlich,36 we used 𝜈 = 10 channels
in this study. Therefore, the size of the covariance
matrix (V) was reduced to 10 × 10. Radially symmet-
ric channels have been proposed to detect circular
image structures (e.g., test structures in a phantom).
In this study, we chose difference-of -Gaussian (DoG)
channels:

Uj (x, y) = 2𝜋𝜎2
j

(
Q2 exp

(
−2𝜋2Q2𝜎2

j ⋅
(
x2 + y2

))
−exp

(
−2𝜋2𝜎2

j ⋅
(
x2 + y2

)))
. (12)

The x- and y-coordinates are given as multiples of the
pixel size. The parameters 𝜎j (𝜎j = 𝜎0 𝛼

j; 𝜎0 = 0.005;
𝛼 = 1.4) and Q = 1.67 were used as reported by
Abbey and Barrett.21 The overlapping (non-orthogonal)
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channels were implemented with normalization using
the Frobenius norm, which are presented in the toolbox
by Wunderlich.36

2.4 Calculation of an FOM
characterizing the dose efficiency of CT
systems

For meaningful characterization of CT-image quality, it
is appropriate to determine the detectability of small,
low-contrast structures in relation to the radiation dose.
For this purpose, several rods with different contrast
levels (c) and diameters (D) inserted into a phantom
are frequently imaged at different dose levels (𝛾i , i =
1, … , I). Based on the acquired images, an FOM can
be computed to describe the dose efficiency of the
CT system. The starting point of the following consid-
erations is the well-established detectability d′ used in
many publications.9,32,37–39 We followed the approach
used by Wunderlich36,39 to estimate the performance of
the infinitely-trained CHO. The concept presented in the
present study is applicable to any number of rods and
dose levels.

The d′ values calculated for the different rods
(j = 1, … , J) imaged at different dose levels (𝛾i , i =
1, … , I) were averaged by approximating the integral
over the considered 𝛾i values using the trapezoidal rule:

⟨
d′
⟩

j
=

∫
𝛾I
𝛾1

d′ (𝛾) d𝛾

∫
𝛾I
𝛾1

d𝛾

≈
1

2 (𝛾I − 𝛾1)

I∑
i = 2

(
d′i,j + d′i−1,j

)
(𝛾i − 𝛾i−1)

=
1

2 (𝛾I − 𝛾1)

I∑
i = 1

𝜅i ⋅ d′i,j , (13)

where 𝜅1 = 𝛾2 − 𝛾1,… , 𝜅i = 𝛾i+1 − 𝛾i−1(i = 2,… , I − 1),
… , 𝜅I = 𝛾I − 𝛾I−1 are the dose weights for the corre-
sponding values of d′i . In the final step, the weighted
mean over all contrast rods ⟨d′⟩w is calculated as
follows:

⟨
d′
⟩

w
=

J∑
j=1

𝜆j
⟨

d′
⟩

j
. (14)

The weights 𝜆j are given by the diameters (Dj) and
contrasts (cj) of the rods as follows:

𝜆j =

(
Dj ⋅ cj

)−1

∑J
k=1 (Dk ⋅ ck)−1

. (15)

This definition is based on the approximately linear
dependency of the detectability d′ on the diameter and
contrast of the rods. Hernandez-Giron et al.40 showed a
linear increase of d′ with object size; a simulation study
(by M.A.) confirmed the linear dependence of d′ on the
contrast. The weights defined in Equation (15) are a
sufficiently good approximation to the real situation to
balance the effect of the different inserts and to avoid
the dominance of the easily detectable inserts.

2.5 Uncertainty analysis

Careful calculation of uncertainties is critical for defin-
ing proper acceptance conditions when a threshold is
specified for a type-testing procedure. If not stated oth-
erwise,expanded uncertainties giving a confidence level
of approximately 95 % (coverage factor of 1.96) are
reported in the present paper. The estimation of the
uncertainty of ⟨d′⟩w requires an assessment of the
uncertainties of its components 𝜆 and ⟨d′⟩, and thus
also of the uncertainty of d′. For simplicity, the fol-
lowing presentation specifically refers to four contrast
rods and three dose levels, which correspond to the
measurements described below, following the order of
calculation. Adaptations to other experimental setups
are possible.

The uncertainties of the d′ values are given by Wun-
derlich’s exact confidence intervals for CHO.39 However,
these confidence intervals are not symmetric around
the point estimate for d′, making it difficult to per-
form subsequent uncertainty calculations according to
the “Guide to the Expression of Uncertainty in Mea-
surement” (GUM).41 Therefore, we derived a symmetric
standard uncertainty for d′ based on the larger part of
the confidence interval.

The uncertainty of ⟨d′⟩ obtained by following the GUM
recommendations is as follows:

u2 (⟨d′⟩j) =
3∑

i = 1

||||||
𝜕
⟨

d′
⟩

j

𝜕d′i,j

||||||
2

⋅ u2
i

(
d′i,j

)

+

3∑
i = 1

||||||
𝜕
⟨

d′
⟩

j

𝜕𝛾i

||||||
2

⋅ u2
i (𝛾i)

+2 ⋅
3∑

i = 1

𝜕
⟨

d′
⟩

j

𝜕d′i,j

𝜕
⟨

d′
⟩

j

𝜕𝛾i
⋅ cov

(
𝛾i , d′i,j

)
,

(16)

where the covariances cov(𝛾i , d′k,j) for i ≠ k are
neglected because the detectability in one acquisition
does not depend on the dose applied in another.
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The detectability d′ is proportional to the dose 𝛾

and therefore, the correlation coefficient 𝜌d′,𝛾 ≈ 1. The
covariances for i = k can then be approximated by

cov
(
𝛾i , d′i,j

)
≈
√

var (𝛾i) ⋅

√
var

(
d′i,j

)
= u (𝛾i) ⋅ u

(
d′i,j

)
.

(17)

Subsequently, we derive the variance of the mean,
including the non-vanishing covariances:

u2
(⟨d′⟩j

)
≈

3∑
i = 1

𝜅2
i ⋅ u2

(
d′

i,j

)
+
(
𝜅2

3 ⋅ u2 (𝛾1) + 𝜅2
2 ⋅ u2 (𝛾2) + 𝜅2

1 ⋅ u2 (𝛾3)
)

⋅

(
d′

3,j − d′
1,j

𝛾3 − 𝛾1

)2

+ 2
(
𝜅1𝜅3 ⋅ u

(
d′

1,j

)
⋅ u (𝛾1)

−𝜅2
2 ⋅ u

(
d′

2,j

)
⋅ u (𝛾2)

+ 𝜅1𝜅3 ⋅ u
(

d′
3,j

)
⋅ u (𝛾3)

)
⋅

(
d′

3,j − d′
1,j

𝛾3 − 𝛾1

)
. (18)

The uncertainty of ⟨d′⟩w can be obtained analogously
to that of ⟨d′⟩j following GUM41; however, the uncertain-
ties of the weights (𝜆j) are highly correlated,as is evident
from their definition in Equation (15). We decided to use
the Monte Carlo method according to Supplement 1 of
GUM42 to estimate the uncertainty of ⟨d′⟩w based on
Equations (13) and (14). A probability-density function
needs to be assigned to each input quantity (⟨d′⟩j , Dj ,
and cj), which was performed according to Supplement
1 of GUM.42 The assumption of a rectangular distri-
bution or truncated normal distribution (i.e., excluding
unrealistic zero or negative values) for Dj and cj had
no relevant impact on the results. The results obtained
using the rectangular distribution are presented herein.
A normal distribution with variance u2(⟨d′⟩j) (as given
in Equation (18)) is assigned to the input quantity ⟨d′⟩j .
We used 106 histories, as this is expected to produce a
95% confidence interval correct for one or two signifi-
cant digits.42 The standard deviation of the distribution
of ⟨d′⟩w from the Monte Carlo simulation was used as
an estimation of the uncertainty of ⟨d′⟩w.

Careful calculation of these uncertainties is critical for
defining proper acceptance conditions with respect to a
given threshold. For a possible type test involving just
a lower threshold for ⟨d′⟩w, the 90 % coverage interval
is calculated from the standard uncertainty according to
accepted guidelines.43,44 Thus, the probability that the
estimate is outside the acceptance interval is 5 % if the
lower boundary of the 90 % coverage interval is greater

TABLE 1 Diameter and contrast (with 95% confidence intervals)
of the four small-contrast rods of the MITA-body phantom

Contrast rods D (mm) c (HU)

1 3.0 ± 0.1 14.0 ± 0.5

2 5.0 ± 0.1 7.0 ± 0.5

3 7.0 ± 0.2 5.0 ± 0.5

4 10.0 ± 0.2 3.0 ± 0.5

than or equal to the tolerance limit.43,45 The criterion for
acceptance would then be that the lower limit of the
90 % coverage interval is at least equal to or above the
acceptance threshold.

The dose levels 𝛾 used to compute the dose efficiency⟨d′⟩w are given by the weighted CT dose index (CTDIw)
that is displayed at every CT scanner. It is based on
dose measurements on the respective system using a
pencil-type ionization chamber to measure the dose at
different positions in the standard CT dosimetry phan-
tom for all available tube voltages and a standardized
scan protocol. These scanner-specific dose values are
then adjusted to other CT protocols (by means of the
tube current,pitch,etc.) The International Atomic Energy
Agency quantified the uncertainty of CTDIw values to be
7.2%.46 In our study, the uncertainty was assumed to be
8%.

3 MATERIALS AND METHODS

3.1 Test phantom and CT imaging

To test the practicability of the proposed measure-
ment protocol and computation of the FOM, CT images
of the Medical Imaging Technology Alliance (MITA)
body phantom (CCT189; The Phantom Lab, Salem,
NY, USA) were acquired (Figure 1). This phantom was
developed for low-contrast object detection to assess
the dose-reduction potential of iterative reconstruction
algorithms.47 It consists of a homogeneous cylinder with
a diameter of 20 cm and an axial length of 20 cm, con-
taining two sets of contrast rods with lengths of 4 cm
(smaller rods) and 1 cm (larger rods). Each small con-
trast rod had a corresponding larger rod with the same
density and contrast intended for reliably measuring the
contrast. The image analysis focused on the smaller
rods, as listed in Table 1. The phantom was equipped
with an additional ring-shaped attenuator (CTP 653-20;
The Phantom Lab) with an outer diameter of 32 cm
and axial length of 20 cm to better approximate the
dimensions of a reference adult, thus realizing realistic
attenuation conditions for the abdominal protocol. The
phantom was attached to a wooden box with two hooks
(Figure 1a). This ensured that the orientation of the
phantom was always comparable and that the contrast
rods had a constant angular orientation.
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F IGURE 1 (a) Medical Imaging Technology Alliance (MITA) body phantom (dark) with a 32 cm-diameter attenuator (opaque) on the patient
table. (b) Computed tomography (CT) image acquired at a very high dose level (weighted CT dose index (CTDIw): 87 mGy) for illustration. (c)
Schematic illustration of the MITA-body phantom. Solid squares correspond to regions of interest (ROIs) with contrast objects, and dotted
squares correspond to ROIs without contrast objects (noise).

Measurements were performed using three single-
source CT systems from different manufacturers. They
represent different technical levels and generations and
are subsequently referred to as “CT 1” (64 detector
rows),“CT 2”(128 detector rows),and “CT 3”(64 detector
rows).Two different phantom specimens were used:one
was imaged on “CT 2”and the other on “CT 1”and “CT 3.”
The algorithms used for image reconstruction are classi-
fied into three groups: traditional filtered-back projection
(FBP), hybrid/statistical iterative reconstruction (H/SIR),
and full/partial/advanced model-based iterative recon-
struction (MBIR), following the convention of Greffier
et al.48

The standardized protocol used for CT measure-
ments simulates the examination of low-contrast objects
in the abdomen (e.g., liver metastases) with a high res-
olution. The acquisition and reconstruction settings are
presented in Table 2. The small differences between
the acquisition parameters used for the three devices
were due to the technical constraints.Scanning was per-
formed for all three CTDIw values. For each dose level,
200 phantom scans were obtained. Image data were
evaluated from two adjacent slices (5 mm apart; referred
to as slice “1”and “2”) of the same CT scan of the phan-
tom. Although the data were acquired in the axial rather
than spiral mode, there is some correlation of the noise
pattern of the two reconstructed CT datasets. Never-
theless, the use of these pseudo-independent datasets
allows a rudimentary assessment of reproducibility.

3.2 Software implementations and
image analysis

Two separate implementations of the task-based
observer were developed, one in MATLAB (R2020a;

The MathWorks Inc., Natick, USA) by the German
National Metrology Institute (Physikalisch-Technische
Bundesanstalt, PTB) and one in Python (Version 3.6.8,
Python Software Foundation, https://www.python.org/)
by the Federal Office for Radiation Protection (Bun-
desamt für Strahlenschutz, BfS). These are referred
to as implementations A and B. The significance
of differences in the central tendency between the
implementations was tested by the Wilcoxon signed
rank test that does not require assuming normality
and equal variance. Statistical analysis was performed
using SigmaPlot (Version 13.0; Systat Software GmbH,
Erkrath, Germany). A p value of 0.05 was used as
threshold for significance.

Eight regions of interest (ROIs) were defined on
each image: four centered on small contrast rods (solid
squares in Figure 1), and four in homogeneous regions
(dotted squares in Figure 1). The square ROIs had a
size of 64 × 64 pixels. In total, 200 signal-present and
200 signal-absent ROIs were analyzed for each CTDIw
value, contrast rod, and slice position.

To define the square ROIs required for the model
observer analyses,we used the following approaches:In
the first step,the average of the 200 CT images acquired
from a slice at the highest dose level was computed.The
second step differed in how approximate positions of the
four rods were derived from this image: Semi-automatic
(implementation A) by manually selecting the four rods
or fully automatic (implementation B) by segmenting the
outer contour of the phantom (and thus its center) and
then defining the position of the rods based on the man-
ufacturer’s specification of the used MITA phantom. In
the third step,circular templates with the nominal diame-
ters of the rods were separately placed at the position of
the approximatively determined ROIs and then exactly
matched by a cross-correlation approach to the rods

https://www.python.org/
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TABLE 2 Protocol settings for data acquisition and image reconstruction

CT system CT 1 CT 2 CT 3

Parameter Setting/value

Data acquisition

Protocol Abdomen (adults) Abdomen (adults) Abdomen (adults)

Scan mode Axial Axial Axial

Collimation (mm) 64 × 0.625 128 × 0.6 64 × 0.625

Rotation time (s) 0.5 0.5 0.5

Tube voltage (kV) 120 120 120

Beam filter Defaulta Defaulta Defaulta

CTDIw (mGy) 2.0, 4.8, 12.0 1.7, 3.8, 10.1 1.8, 4.5, 10.8

Image reconstruction

Reconstructed slice thickness (mm) 5 5 5

Convolution kernel Defaulta Defaulta Defaulta

Reconstruction field of view (mm) 250 250 250

Reconstruction algorithm FBP and H/SIRb FBP and MBIRb FBP, H/SIRb and MBIRb

Matrix size 512 × 512 512 × 512 512 × 512
aRoutine body protocols.
bMaximum value/strength available in clinical practice.

visualized on the average CT image. The center coor-
dinates of the matched templates were used in the final
step to place the square ROIs as shown in Figure 1(c).

ROIs were defined only on the images acquired at
the highest dose level and were then transferred to
that acquired at lower doses. The signal-absent ROIs
were positioned on the same images in homogeneous
regions between the rods at the same distance from the
phantom center using a 45◦ rotation.13

To test the effects of the two algorithms used for
ROI selection and of the different implementations of
the same model observer on the computed FOM sepa-
rately, the ROIs from implementation A were additionally
used to estimate the FOM using implementation B of the
model observer.

4 RESULTS

The distances from the center of the MITA phantom
to the center of the rods varied by up to 6% (5 mm)
compared to the nominal distance, as declared by the
manufacturer. As both implementations (A and B) do
not utilize a fixed template of the whole phantom, but
rather localize each rod individually, they were both able
to detect the actual positions of the rods.

Figure 2 shows representative axial CT images of the
MITA-body phantom to illustrate the different noise tex-
tures yielded by three reconstruction algorithms (FBP,
H/SIR, and MBIR). As an example, d′ values are plotted
in Figure 3 for measurements performed at “CT 3” as a
function of the applied dose (CTDIw) for the four con-

trast rods and three different reconstruction algorithms
(FBP, H/SIR, and MBIR). Despite the appreciable vari-
ation of the d′ values (1.3−5.5), the systematic effect
of the dose and reconstruction algorithm was clearly
visible. Whereas image reconstruction with the FBP
and H/SIR algorithms yielded almost identical results,
the MBIR algorithm substantially increased detectabil-
ity. Because detectability d′ depends on various factors,
it is not well suited as an FOM for comparing CT sys-
tems with respect to their dose efficiency. As Figures 4
and 5 demonstrate, a more comprehensive and robust
characterization is obtained when the detectabilities
are averaged over the different dose levels ⟨d′⟩j (cf.
Equation (13)), and finally, over the four rods ⟨d′⟩w (cf.
Equation (14)).

The relative differences between the results obtained
using both implementations were up to 24% for d′, 7.1%
for ⟨d′⟩, and 2.4% for ⟨d′⟩w. The difference between
the ROI positions from implementation A and B are up
to four pixels for the signal-present ROIs (mean: 0.8
pixels). When identical ROIs were used (in this case,
the ROIs obtained by implementation A), the results
obtained by both implementations of the model observer
were nearly identical,with relative deviations of less than
0.1% for d′, 0.03% for ⟨d′⟩, and 0.02% for ⟨d′⟩w, which
underlines the relevance of the ROI definitions.

As mentioned in Section 3.1,CT images from pseudo-
independent slices (“1” and “2”) were separately ana-
lyzed (the results from the second dataset (slice “2”) are
not included in the figures for reasons of clarity). The
analysis of both datasets (“1”and “2”) yielded compara-
ble results, with a mean difference of 0.45 % (−35% to
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F IGURE 2 Axial image of the MITA-body phantom reconstructed with the (a) traditional filtered-back projection (FBP), (b) hybrid/statistical
iterative reconstruction (H/SIR), and (c) full/partial/advanced model-based iterative reconstruction (MBIR) algorithms from raw data acquired on
“CT 3” (CTDIw: 11 mGy) demonstrating the different noise textures. Note that the low-contrast inserts are barely visible in these low-dose
images. Nevertheless, the model observer was able to calculate the detectability of the inserts.

F IGURE 3 Detectabilities d′ computed from CT images reconstructed with the (a) FBP, (b) H/SIR, and (c) MBIR algorithms from raw data
acquired at “CT 3” at different dose levels. d′ values for the four contrast rods are plotted as symbols, and the error bars represent a confidence
level of 95%.

32%) for d′, 0.64% (−17% to 13%) for ⟨d′⟩, and 0.81%
(−0.15% to 1.9%) for ⟨d′⟩w.

5 DISCUSSION

The presented measurement and data analysis proce-
dures enable robust and reliable assessment of the
quality of CT images with low-contrast structures in
relation to the radiation dose applied for their acquisi-
tion. All computational steps included an assessment
of the related uncertainties by adapting the concepts

presented by Wunderlich39 and the Joint Committee
for Guides in Metrology.41,42 The quantity ⟨d′⟩w is well
suited not only for quantifying the effect of different
reconstruction algorithms, but also for the characteri-
zation of the dose efficiency of CT systems, and can
thus lay the foundation for possible standardized type
testing procedures.CHO without internal noise is appro-
priate for technical image-quality assessment because
it approximates HO (which is the ideal linear observer).

The time required for the proposed methodology was
acceptable for a type testing procedure. With some
experience, data acquisition can be performed in less
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F IGURE 4 Mean detectabilities ⟨d′⟩ computed according to Equation (13) from CT images of the MITA phantom acquired from three
different CT systems at three dose levels (cf. Table 2). Image reconstruction was performed using the FBP, H/SIR, and MBIR algorithms.
Statistical image analysis was performed using implementations A (open symbols) and B (filled symbols). The diameters/contrasts of the four
rods were (a) 3 mm/14 HU, (b) 5 mm/7 HU, (c) 7 mm/5 HU, and (d) 10 mm/3 HU. Error bars indicate the 95% coverage interval. Differences
between implementations A and B were statistically significant for (b), (c), and (d). It should be noted that ⟨d′⟩ depends on both the diameter and
contrast of the rods.

F IGURE 5 Weighted detectabilities ⟨d′⟩w computed according to Equation (14) from CT images acquired from the MITA phantom using
three different CT systems and four dose levels (cf. Table 2). Statistical image analysis was performed with implementations A (open symbols)
and B (filled symbols). Error bars indicate the 95 % coverage interval. Differences between implementations A and B were not statistically
significant.
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than 2 h. The time demand for image sorting, process-
ing, and analysis can be reduced using in-house made
or available software (e.g., Hernandez-Giron et al.,40

Wunderlich,36 or the tools developed in the present
study) to automate otherwise time-consuming steps.

When evaluating identical ROIs, the results obtained
using the two implementations of the model observer
showed excellent agreement. However, even slight inac-
curacies in the definition of the ROIs can substantially
affect the estimated FOM, as revealed by the different
results obtained by the two implementations (A and B)
utilized in the present study. Neither method used for
ROI definition was affected by inter-phantom variabil-
ities caused by manufacturing tolerances in the radial
distance of the contrast rods.

We also checked our implementations of the model
observer by applying it to a dataset used in an interna-
tional intercomparison exercise.19 For this intercompari-
son, Ba et al. acquired CT images of a homogeneous
phantom with a diameter of 20 cm at a CTDIw of
15 mGy, and added virtual lesions with diameters of 6,
8, and 10 mm and a contrast of approximately 4 HU
to the images. All study participants received the same
image set with signal-present and signal-absent ROIs
and used the CHO observer with DoG channels, as
proposed by Abbey and Barrett.21 By analyzing these
ROIs using our software, we achieved d′ values of 4.64,
5.81, and 7.56 for the three lesions. This corresponds
very well to the median values of 4.71, 5.93, and 7.76
reported by Ba et al. The variations between the partic-
ipants in the intercomparison were less than 5%, 16%,
and 18% for the three lesions. Although the measure-
ment conditions in the present study do not exactly
match those of Ba et al. (lower dose levels and larger
phantom size in our study), it can be concluded that the
magnitude of the reported variations between our two
implementations of less than 0.1% is much smaller than
that in the intercomparison.

In combination with the specified scan protocol, the
proposed FOM ⟨d′⟩w is well suited for use as a dose-
efficiency index, enabling the benchmarking of different
CT scanners and reconstruction algorithms. For type
testing, an acceptance threshold or tolerance limit for⟨d′⟩w must be defined (Section 2.5). The acceptance
condition is satisfied if the lower bound of the 90% confi-
dence interval of the determined weighted detectability,⟨d′⟩w, equals or exceeds this threshold.

To define a reasonable threshold for type testing, an
extensive measurement campaign involving various CT
systems from different manufacturers is planned. This
campaign will also allow us to identify possible prob-
lems and limitations of the implemented model observer
and software. Part of this study will be a robustness
check with several repeated measurements using the
same CT system as well as measurements for differ-
ent systems of the same CT type to assess intra- and
inter-system variabilities. Moreover, we will investigate in

an upcoming study the effect of variations in the con-
trast of the four rods in the MITA phantom, as well as
the use of more challenging phantoms, such as the
MITA-head phantom (CCT191; The Phantom Lab). The
aim is to establish a robust and reliable model-observer
approach that can be defined as part of mandatory type
testing by CT manufacturers.

However, it must be noted that the proposed approach
for benchmarking CT systems is based on images
of a standardized but simple phantom. In this regard,
a problem could arise when innovative reconstruction
algorithms, especially those using deep-learning algo-
rithms, are used that might “learn” the structure of the
phantom that is regularly used for quality assurance,
and thus yield an unrealistically high dose-efficiency
index. To address this challenge, it is essential to pre-
cisely specify quality assurance protocols for image
reconstruction and post-processing.

6 CONCLUSION

The presented automatable software approach yields
an objective FOM and is thus a good candidate
for robust and reliable benchmarking of different CT
systems and reconstruction algorithms. An essential
advantage of the proposed model observer is that FOM
uncertainties can be provided,which is an indispensable
prerequisite for type testing. However, it is not only nec-
essary to standardize the model observer,but also to use
largely automated and standardized image-processing
software.In particular, this applies to the geometrical def-
inition of the ROIs containing the contrast objects, such
that inaccuracies in this processing step can be reduced.
Using the presented and evaluated model observer
and post-processing tools for quality assurance, cum-
bersome ROC analyses with human observers, which
are affected by high inter-individual variations, can be
replaced by an objective and automated approach.
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