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Abstract: The Ylvie model is a novel method towards transparent Tunnel Boring Machine (TBM)
data analysis for tunnel construction. The model innovatively applies machine learning to automate
friction loss computation per stroke, enhancing TBM performance prediction in varying geome-
chanical environments. This research considers the complexities of TBM mechanics, focusing on
the Thrust Penetration Gradient (TPG) and shield friction influenced by geological conditions. By
integrating operational data analysis with geological exploration, the Ylvie model transcends tra-
ditional methodologies, allowing for a comprehensible and specific determination of the friction
loss towards more precise penetration rate prediction. The model’s capability is validated through
comparative analysis with established methods, demonstrating its effectiveness even in challenging
hard rock tunneling scenarios. This study marks a significant advancement in TBM performance
analysis, suggesting potential for the expanded application and future integration of additional data
sources for comprehensive rock mass characterization.

Keywords: TBM tunneling; hard rock TBM; shield friction; performance prediction; torque factor;
TBM operational data

1. Introduction

In tunnel construction, accurately predicting the performance of Tunnel Boring Ma-
chines (TBMs) is essential. Due to the complex and often unpredictable nature of the
environment, this task has historically been challenging. Traditional predictive models
from the Colorado School of Mines (CSM), Gehring and NTNU Trondheim (NTNU) often
fall short under varying geological conditions. To improve the accuracy and robustness of
evaluating how TBMs perform in different geological settings, this paper proposes a novel
approach that combines machine learning with geotechnical engineering. The proposed
approach emphasizes the importance of continuous operational data sampling [1–4].

Tunneling records consistently include TBM parameters, such as cutterhead torque
and advance force. These parameters provide an accountable imprint that reflects the
rock mass conditions encountered during tunneling. Bergmeister et al., Reinhold et al.
and Radončić et al. analyzed data using performance parameters like specific energy,
specific penetration and torque ratio. The fluctuation of the advance force during a stroke
influences these performance parameters [5–7]. The mining process heavily relies on the
effective advance force, which is the difference of the applied total thrust minus frictional
components. The interpretation of the frictional components is complex due to the various
influences between the tunnel face and the physical contact of the TBM with the tunnel
walls. The shield friction and backup system movement partially consume the advanced
force. As a result, the parameters’ ability to precisely represent the rock mass conditions at
the tunnel face gets distorted. This phenomenon underlines the need for a more refined
approach to evaluate TBM data, considering the complexities introduced by shield friction
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and its impact on the efficiency of tunneling operations [8,9]. The state of the art reveals that
despite continuously recording relevant TBM parameters, such as cutter head torque and
advance force during tunneling, existing models must adequately account for the complex
interaction between the TBM mechanics and geological conditions. The fluctuation of
the advance force during a stroke significantly influences these performance parameters,
highlighting the need for a more refined approach to evaluating TBM data, mainly shield
friction and its impact on tunneling operations efficiency.

In this context, this paper proposes a novel approach that combines machine learning
with geotechnical engineering to improve accuracy and robustness in evaluating TBM
performance across different geological settings. This new approach, known as the Ylvie
model, combines operational data analysis and geological exploration to help with the
accurate prediction of penetration rates and friction loss estimation. The integration of Arti-
ficial Intelligence (AI) is a transformative step in TBM performance analysis and prediction.
AI-driven algorithms interpret TBM stroke data to unveil previously hidden patterns and
correlations. This approach enables the construction of a dual-purpose predictive model
adept at forecasting TBM tunneling performance and elucidating the geomechanical prop-
erties of the excavated terrain. As the demand for efficient and reliable tunnel construction
increases worldwide, the importance of this research direction becomes more evident. It
sets a new standard for incorporating AI into complex engineering challenges, paving the
way for more precise and efficient TBM operations. This, in turn, contributes to the broader
field of geotechnical engineering.

2. Determination of the Friction Force

The Thrust Penetration Gradient (TPG) represents the nonlinear energy demand for
the mining process of TBMs. This concept, initially developed by Wild and Weh et al.
and adopted by Wilfing, Erharter et al. and Wannenmacher, focuses on understanding
the interaction between related mechanical aspects and geotechnical conditions [10–12].
Wilfing simplified Weh et al. and Wild’s approach by skipping the lower trust plateau,
instead implementing a linear slope for the remaining thrust increase as the torque grows
non-linearly. Wilfing attributed the lower thrust plateau to subcritical penetration, which
does not affect the mining process. Wilfing acknowledged that there is a 3 mm/rev trigger,
regardless of the skewness of the TPG in relation to the geological conditions [10,11,13].
Penetration tests are performed during the start-up of a stroke to adjust parameters like
contact pressure or cutterhead rotational speed based on the rock conditions at the site.
Results allow tunneling performance prediction and the enhancement or adjustment of
existing models. Additionally, the results can be utilized for predicting tunneling per-
formance and improving or adapting existing models. TBM automatically records the
TPGs and compares them with given rock properties. To ensure transferability to other
projects, the geological prerequisites for penetration tests are, in addition to a face that is as
homogeneous, good condition of the discs. Accordingly, a high-quality recording of the
rock and rock mass conditions at the face and the tunnel lining is essential [14,15]. TPG
plots, as demonstrated in Figure 1, can be employed to showcase the boreability of a specific
rock mass using TBMs. At low penetration rates, the thrust force (TF) increases with a
superlinear rate. In this range, low penetration rates result in relatively high TF, referred to
as subcritical penetration [10]. The energy demand for rock fragmentation necessitates a
non-linear TF increase. Gehring characterized the initial loading phase by the formation of
a grinding powder in the cutter’s kerf [3]. In contrast, beyond the subcritical penetration
rate, an additional stress field forms in the surrounding rock, which additionally causes
cracks perpendicular to the compressive stress when the tensile strength is reached. Rock
chips break out when cracks overlap, causing chipping. The start–stop tests consist of four
sections, starting with a cleared stroke. This involves first driving the machine back a short
distance from the face and then driving it up “empty”—this relates to the estimation of the
static friction [14].
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Figure 1. Compilation of the penetration tests carried out on the Koralm Basetunnel for various UCS
values and fracturing classes (modified after Wilfing (2016)) [12].

However, the disadvantage of this method is that during such an empty stroke, only
the friction of the gauge cutter and shield is measured. During the actual advance, however,
the entire cutterhead is mobilized. Gong also showed that the forces between advancing
and retracting the machine during the empty stroke differ by a factor of approximately
10 [16]. In addition, the most significant disadvantage of the start–stop tests is that they
can also only be carried out selectively during downtimes. The TBM data evaluation
comprehensively analyzes the recorded parameters and theoretically determined values.
Key indicators among these are the precise penetration rates as outlined by Bergmeister et
al. and Reinhold et al. and theoretical torque calculations. The front thrust cylinders of the
TBM are significantly impacted by shield friction, which depends on the rock mass quality,
the amount of fines in the invert, and the weight and contact area of the cutterhead [5,6].

Shield friction, reflecting the contact area between the shield and the surrounding rock
mass, plays a pivotal role in the TBM operations. High friction values, resulting from low
rock mass strength or blockages in the annular gap by rock fragments, can substantially
influence both the applied TF and the force per cutter. Given that specific project settings
and machine types result in different friction values, it is imperative to consider these
boundary conditions for a meaningful comparison of prediction models as emphasized
by Wilfing [10]. The bandwidth of reported shield friction ranges from 1 up to about
85 percent without transparent allocation to project settings, indicating the shortcomings
of current methods for accurately measuring and predicting shield friction [12,17]. The
measured TF often needs to reflect the actual force at the cutters due to rock excavation,
influenced by factors like friction losses, rigidity, and the force’s center of gravity position
at the cutterhead. Notably, Türtscher observes that under high initial stress conditions, the
effective feed force can be reduced by up to 50 percent. The volatility of various friction
loss values highlights the need for a more reliable method of determining friction losses, as
the current practice of using idle strokes during penetration tests has shown considerable
variation in results, questioning its reliability [18]. Erharter et al.’ s study on hard rock TBM
tunneling further emphasizes the complexity of assessing shield friction effectively. Their
research, which involved specialized shear tests with steel and rock specimens, reveals
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significant variances in friction coefficients across different lithologies and challenges the
expected benefits of using bentonite lubrication. This study highlights the difficulty of
accurately assessing shield friction in real-time tunneling conditions as observed by Gong
et al. during a series of retracting and pushing tests in a tunnel in Singapore [8,16]. The
present paper introduces the Ylvie model, a novel approach to determining friction losses in
TBM operations to address these challenges. This model aims to refine the understanding
and prediction of shield friction by integrating automated methodologies and insights
from the studies above. This model’s detailed procedure and implications are explained
in greater detail in Section 3. Determining the frictional force (FF) in TBM operations is
a multifaceted challenge influenced by various geological, geotechnical, mechanical, and
operational factors [19]. In his analysis of frictional losses in TBMs, Türtscher provided a
nuanced understanding of the discrepancy between the installed advance force and the
effective force exerted on the cutterhead. According to Türtscher, loss ranges between
10 and 25 percent are not uncommon. The lower end of this spectrum, 10 percent, is
typically associated with Gripper TBMs, while the higher end, 25 percent, is more common
in shielded TBMs. However, Türtscher emphasizes that these Figures do not account for
geological–geotechnical factors such as rock strength. He notes that including these factors
can escalate the frictional losses to as much as 50 percent. This significant increase under-
lines the importance of considering machine type and geological conditions in evaluating
TBM performance and efficiency [18]. Türtscher’s insights highlight the complexities in
estimating frictional losses in TBMs, underscoring the need for a comprehensive approach
that considers the diverse range of variables influencing TBM operation [18].

Wild’s methodology for quantifying friction losses in TBMs is based on the principle ideas
of Weh et al. [11] and thus involves a detailed comparison of the contact forces directed along
the propulsion path, with the torque measured on a stroke-by-stroke basis. A prototypical
illustration of this method is depicted in Figure 2 and can be characterized as follows [13]:

- Within a certain range, the torque remains constant, denoted by a red marker in the Figure.
- A sharp increase in torque is observed beyond a specific threshold.
- Up to a torque level of approximately 1 MN×m, this increase is largely linear, indicated

by a green marker.
- Beyond this point, the rate of increase intensifies, reaching a steeper gradient until an

upper limit is attained as marked in blue.

The critical task is identifying the intersection between the constant torque section (red)
and the linearly increasing range (green). This intersection represents the force necessary to
initiate propulsion, overcoming the FF. The mean value of the constant section is calculated
and then set equal to the regression function derived from the linearly increasing data
points. Following the methodology proposed by Wild, the data are accurately processed
to eliminate any outliers, and a comprehensive analysis is conducted, taking into account
both the standard deviations of the mean values and the regression curve, to arrive at an
accurate and reliable error margin. For the inclined access tunnel of the Nant de Drance
HPP excavated by hard rock with a Gripper-TBM, Wild’s analysis yielded an average
friction loss of about 45 percent [13].

In 2021, Heikal et al. introduced an innovative parameter grounded in empirical
data recorded from the Brenner Base Tunnel’s exploratory segment between Ahrental
and Pfons. This parameter, known as the “theoretical advance force” FN,theo, is derived
from a retroactive analysis of TBM operational data. The so-called tangential force Ftang is
calculated based on the torque measured at the cutterhead, the idle torque stroke, and the
aggregate of disk cutter radii divided by the total number of cutters as demonstrated in
Equation (1) [20]:

Ftang = (T − T0) ·
no.c

∑
i=1

(ri) (1)
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where:

• Ftang: Tangential force, also known as rolling force.
• T: Measured torque at the cutterhead.
• T0: Additional torque.
• no.c: Number of cutters.
• ri: Distance to the center of the cutterhead.
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Figure 2. Determination of the friction force according to Wild [13].

The cutting angle (α) is estimated using the penetration depth and the radius of the
disc cutter as specified in Equation (2) (compare Figure 3):

α = cos−1
[

RDC − p
RDC

]
(2)

where:

• α: Cutting angle;
• RDC: Radius of the cutter;
• p: Penetration depth.

Following this, the normal force (Fn) is ascertained as per Equation (3):

Fn = Ftang ·
[
tan

(α

2

)]−1
(3)

where:

• Fn: Normal force.

Finally, the theoretical contact pressure is deduced from the number of cutters as
outlined in Equation (4):

FN,theo = no.c · Fn (4)

where:

• FN,theo: Theoretical advance force.
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Figure 3. Left: Theoretical cutterhead torque MCH,th. Right: Relationship between Fnormal, dpenetration,
rcutter, and Ftangential (modified after Radončić et al. [7] and Heikal et al. [20]).

Friction losses are then quantified as the variance between the originally measured
TF and the theoretical advance force (FN,theo). Nonetheless, this methodology necessitates
the determination of the idle torque stroke (T0), a parameter for which no established
method exists. Given its significant dependency on the encountered geological conditions,
an automated and precise determination of friction losses remains a complex challenge [20].
Erharter et al. [8] conducted an in-depth analysis of shield friction in TBM operations in
hard rock conditions, utilizing theoretical insights and experimental as well as operational
data. It included specialized shear tests to determine the friction coefficients in different
lithologies and examines the influence of bentonite lubrication. The authors adopted the
approach of Heikal et al. [20] in their operational data analysis, using TBM data from the
Ulriken tunnel project to estimate shield friction. This comprehensive approach highlights
the complexity of accurately assessing shield friction, emphasizing its critical role in TBM
performance and efficiency in tunnel construction projects [8].

While existing studies, such as those by Wild [13], Weh et al. [11], and Wilfing [10],
have laid a foundational understanding of TPG and its implications for TBM performance,
a critical gap remains in the precise and automated calculation of friction losses during TBM
operation. This gap is particularly pronounced in the context of varying geological condi-
tions and their complex interplay with TBM mechanics. The studies by Erharter et al. [8]
and Heikal et al. [20] have advanced the field by incorporating empirical data and theoreti-
cal frameworks to estimate shield friction and advance forces. However, these approaches
often require manual adjustments and are limited by their reliance on static parameters,
which may not fully capture the dynamic nature of TBM operations. The Ylvie model pre-
sented in this paper aims to address these gaps by introducing an automated, data-driven
approach to friction loss calculation. This model leverages machine learning algorithms to
analyze TBM stroke data, providing a more nuanced understanding of FF and their impact
on TBM performance. The Ylvie model novelty lies in its ability to dynamically adjust to
operational data, offering a more accurate and real-time analysis of friction losses. This is
particularly relevant for challenging hard rock tunneling scenarios, where traditional mod-
els often fall short. By bridging these identified knowledge gaps, the Ylvie model not only
improves the state of the art in TBM data analysis but also holds significant implications
for the broader field of tunnel construction. Its application has the potential to enhance
the precision of TBM performance predictions, thereby contributing to more efficient and
cost-effective tunneling operations. The relevance of this research is underscored by the
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growing global demand for reliable tunnel construction methods, making the Ylvie model
a timely and valuable contribution to the field.

3. The Ylvie Model

Therefore, this paper presents for the first time the innovative Ylvie model, an ad-
vancement in TBM data analysis primarily developed by Schlicke in 2022 and further
refined within this paper. This model significantly progresses from earlier methodologies
by automating the calculation of friction losses on a stroke-by-stroke basis, a critical im-
provement over Wild’s application. Notably, the model determines the idle torque for each
stroke, an enhancement over the generalized assumptions required in previous models [21].

3.1. TBM Data Recording and Pre-Processing

The Ylvie model processes numerous parameters recorded by TBMs, crucial for the
detailed analysis of friction losses. These parameters include the following:

• TBM Station Position [m];
• Date and Time of Recording [yyyy:mm:dd] and [hh:mm:ss];
• Stroke Number [-];
• Penetration Rate [mm/rev];
• Measured Thrust Force (TF) [kN];
• Torque at the Drilling Head [MN×m];
• Drilling Head Speed [rpm].

The model converts the vast volumes of raw data into an efficient ’.parquet’ format,
processing the data for subsequent analysis, which includes outlier removal and normaliza-
tion to ensure data quality [22].

3.2. Computational Methodology for Friction Loss Analysis

The Ylvie model employs a sophisticated computational methodology: [21]

1. Idle Torque Calculation: Aligning with Wild’s approach to the TPG, the Ylvie model
segments each TBM stroke, starting with analyzing the idle torque phase. This
process focuses on identifying phases where the torque levels remain constant despite
increasing TF, indicative of the idle stroke. The period where the cutter head is not
engaged in an active operation relates to the baseline torque [13]. The Ylvie model
employs advanced machine learning algorithms to precisely identify these phases,
even in conditions of poor data quality. This process utilizes a sophisticated, iterative
approach similar to curve-fitting algorithms. The model effectively identifies the idle
torque phase as follows:

(a) The model begins with a data cleaning phase, initially excluding all instances
where either the penetration value or the TF is zero, indicating machine inac-
tivity. It further refines the dataset by eliminating outliers, employing z-scores
for outlier detection, given the data’s normal distribution. Data points with
z-scores above three are removed, ensuring the analysis focuses solely on
meaningful instances with positive TF, thereby enhancing the results’ accuracy
and relevance.

(b) For a series of strokes denoted by j, the model defines an iterative process for each
stroke with iterations indexed by i, setting the step interval i to a constant value of
five. In each iteration i for stroke j, an initial TF threshold TFstart,i,j is determined
from the maximum value in the TF vector TFj. The dataset is then iteratively
analyzed from TFstart,i,j down to 0, reducing the threshold in predefined step sizes.
In every iteration i and stroke j, the dataset is segmented into subsets Si,j based
on the TF range [0, TFstart,i,j]. A linear relationship between TF (x) and torque
(y) is assumed within each subset Si,j, modeled by f (x) = ci,jx + di,j, where ci,j
and di,j represent the slope and intercept, respectively. This methodical approach
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facilitates a thorough analysis across all strokes, identifying linear relationships
within each segmented TF data subset.

(c) In the curve fitting phase, parameters c and d are optimized within defined,
physically based constraints to ensure the derived values are feasible and ap-
plicable. The parameter d is restricted to positive values but capped below the
maximum allowable torque for a stroke, represented as Torquemax,j, mirroring
the system’s physical constraints. This ensures d signifies a baseline torque
within the system’s operational limits. The parameter c, defining the slope
between TF and torque, is confined to a range that eliminates negative val-
ues and includes an upper limit to mitigate excessive torque sensitivity to TF
changes, with 0 < c < cmax. These constraints ensure the curve fitting yields
realistic and actionable insights aligned with the system’s physical properties
and operational conditions.

(d) The threshold TFstart,i,j is dynamically adjusted contingent upon the slope c’s
sign and the adequacy of data points under the current threshold. Should c
manifest as positive or the dataset beneath the current threshold be deemed
sufficient, TFstart,i,j is diminished to enhance the granularity of the analysis.
In contrast, if c turns negative or the dataset becomes scant, TFstart,i,j is incre-
mented. This iterative calibration continues until a stable mean torque value,
denoted as τidle,j, is determined, epitomizing the idle torque characteristic of
the TBM stroke. This τidle,j corresponds to “Phase 1” as depicted in Figure 4,
representing the initial phase of the TBM operation where the cutterhead is
not engaged in excavation.

(e) Upon the completion of the analysis, for strokes identified with data of insuffi-
cient quality that hinder accurate idle torque estimation, the model adopts in-
terpolation techniques. It draws on idle torque readings from adjacent strokes,
whether preceding or following. This approach ensures the maintenance of
continuity and consistency in the idle torque dataset, thereby strengthening
the overall robustness of the friction loss analysis.

By adjusting to variations in data quality and employing interpolation when necessary,
the Ylvie model ensures that its analysis remains robust and reflective of actual
operational conditions, even in the face of data inconsistencies.

2. Frictional Force Calculation: The analysis progresses by approximating the active
boring phase, denoted as “Phase 2” in Figure 4, subsequent to determining the idle
torque τidle,j. This phase is characterized by a non-linear relationship between TF and
torque, indicating engagement with the material. Data redistribution is an important
step in the analysis, designed to neutralize the impact of the time factor. This is
essential because “Phase 1” and “Phase 2” of the TBM operation are notably brief
compared to “Phase 3” (compare Figure 4). The latter phase typically generates a
disproportionately larger number of data points, which could potentially skew the
approximation of “Phase 2”. To address this, the dataset is segmented based on TF
intervals, initiated at TFstart,i,j and incremented by a fixed interval length ∆. For each
interval, the mean torque value is calculated, thus redistributing the data to achieve a
more balanced representation that accurately reflects the behavior during the active
boring phase. This process selectively excludes data points where torque is below
τidle,j. A quadratic function gj(x) = a · x2

j is subsequently fitted to this refined dataset
to encapsulate the nonlinear increase in torque as a function of TF, characteristic of
“Phase 2”. The FF, TFFF, is then calculated by solving the equation gj(x)− τidle,j = 0.
This equation seeks the TF value xj at which the active boring phase’s torque (gj(x))
equals the previously established idle torque (τidle,j).

3. TPG generation: For the construction of the matrix illustrated in Section 4.2 and
Figure 5, characterizing strokes based on TPGs, the original stroke data are adjusted
by subtracting the calculated FF. This shift from torque to penetration analysis essen-
tially aims at approximating “Phase 3”, facilitating the generation of TPGs (compare
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Figure 4). To achieve an optimal fit to the equation h(x) = ax2 + bx, a second round
of data redistribution is performed, similar to the procedure described earlier. This
step ensures a balanced dataset, crucial for accurately approximating the data points
corresponding to this phase.
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Figure 4. Exemplary stroke before (left) and after (right) reduction in friction according to the Ylvie model.

4. Applications
4.1. Torque Factor

In this section, the applicability of the Ylvie model for calculating the torque factor as
defined by Radončić et al. [7] is investigated:

Radončić et al. provide a relationship between the torque factor f and the system
behavior for hard rock shield drives. According to Radončić et al., a torque factor between
0.7 and 0.9 reflects stable ground conditions. If the value falls below this range, increased
shield friction is present. In cases where the value exceeds 1.0, fractured material in front
of the cutterhead and a potentially higher degree of filling of the cutterhead may cause
augmented friction [7].

For the theoretical cutterhead torque calculation, the normal force FN is determined
first. See Equation (5):

Fn =
Thrust − 3500

77
(5)

where:

Fn = normal force;
Thrust = measured thrust force;
3500 = friction force measured with push tests;
77 = number of cutters.

Subsequently, the cutting angle α is determined analogously to Equation (2). The
tangential force FTang is then determined as follows:

Ftang = Fn ·
[
tan

(α

2

)]
(6)

where:

Ftang = tangential force.

Therefore, the total torque of the cutterhead is the sum of the products of the tangential
forces and their respective lever arms on the cutterhead:

MCH,th =
77

∑
i=1

(Ftang,i · ri) + M0 (7)
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where:

MCH,th = theoretical cutterhead torque;
M0 = torque caused by inner friction.

Finally, the parameter f can now be determined as follows:

f =
MCH,real

MCH,th
(8)

where:

MCH,real = measured cutterhead torque.

The ÖNorm B2203-2 recently adopted the torque ratio—with a fixed FF and idle
torque—to delineate regular excavation and additional support measures [23].

The Ylvie model can calculate the torque during idle strokes on a stroke-by-stroke
basis. By ÖNorm B2203-2 regulations, it is imperative to establish the idle stroke torque
before initiating any tunneling process. This requirement is mandatory to ensure com-
pliance with safety standards and optimal performance. The required torque fluctuates
significantly across a project, challenging the idea of a fixed idle stroke torque as shown in
the study by Erharter et al. Hence, a dynamic approach like the Ylvie model is proposed for
more accurate and adaptable torque factor determination in tunnel construction, ensuring
compliance with industry standards and enhancing operational efficiency [8,23].

4.2. Enhanced TPG Matrix Analysis through the Ylvie Model

The Ylvie model’s application in constructing a matrix for Thrust Penetration Gradient
analysis introduces a revolutionary approach to tunneling performance prediction, particu-
larly in hard rock environments. This matrix, grounded in empirical data from the specific
tunnel project investigated in this paper, clusters TPGs based on geological conditions
to form a structured system of performance curves. Each cluster within the matrix is de-
fined by a combination of geotechnical parameters—rock strength (Uniaxial Compressive
Strength (UCS)) and the rock mass condition, representing rock mass conditions as either
’with minor defects’ (trace lengths less than 2/3 of the perimeter) or ‘with significant defects’
(trace lengths more than 2/3 of the perimeter). The rock strength is segmented into 50 MPa
intervals, categorized as per the Hoek–Brown classification. Integrating these geological
characteristics with TBM operational parameters, specifically, penetration rates in mm/rev
and Ylvie-adjusted TF in kN/cm², forms the backbone of this matrix [24,25].

One of the matrix’s most innovative applications is its ability to retroactively deduce
geological conditions from TBM operational data in areas where direct geological measure-
ments are unavailable. This feature is precious because of the model’s capacity to handle
non-linear relationships within the data, a capability not present in previous models. The
matrix thereby serves as a powerful tool for identifying geological characteristics in tunnel
sections that were not directly mapped, allowing for a more comprehensive understanding
of the interaction of the TBM with the terrain. Further, the matrix offers predictive capabil-
ities for TBM penetration rates, adding a predictive dimension to the analysis. Aligning
clusters with specific TBM operational patterns allows for an anticipatory approach in
tunneling projects, where strategies can be adapted based on the expected geological con-
ditions. What distinguishes the Ylvie model’s matrix is its unique capability to translate
complex, non-linear TBM operational data into meaningful geological insights. This aspect
of the model is especially crucial, as it provides unprecedented precision in understanding
and predicting the TBM performance in varied geological settings. The strategic importance
of this model lies in its ability to fill the gaps in geological knowledge through an advanced
analysis of operational data, making it a groundbreaking tool in tunneling and geotechnical
engineering. The Ylvie method was recently integrated by Wannenmacher and Schlicke for
the analyses of a TBM project in Scandinavia.
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Figure 5 shows the relation of TPG with rock mass sub-classes and UCS classes. The TPG
flattens with increasing rock strength and decreasing mass fracturing progression. However,
there are additional geomechanical characteristics and processes that also influence the TPG,
causing a specific scatter and distribution within the different types of rock masses.
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Figure 5. Correlation between Uniaxial Compressive Strength (UCS) and rock mass conditions,
categorized into rock mass with minor defects (trace lengths less than 2/3 of the perimeter) and rock
mass with significant defects (trace lengths more than 2/3 of the perimeter). The selection of UCS
tests for TBM Penetration Rate analyses is based on the methodology of Wannenmacher et al. [26].

5. Model Validation and Comparative Analysis
5.1. Friction Force

The Ylvie model’s validation process involved a direct comparison with another
established model, specifically the one proposed by Heikal et al., known for its focus on the
theoretical advance force. This comparative analysis was crucial in verifying the accuracy
and reliability of the Ylvie model, particularly in the context of friction loss estimation.
Remarkably, both models yielded nearly identical results in their assessments of a tunnel
project. Heikal et al.’s [20] model estimated average friction losses at around 39 percent,
while the Ylvie model’s estimates hovered around 41 percent. These closely aligned results
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are graphically represented, substantiating the effectiveness of the Ylvie model in accurately
determining friction losses. This alignment validates the Ylvie model and underscores its
potential as a reliable tool in TBM performance analysis and tunnel construction projects.

Figure 6 illustrates the nuanced differentiation between the “actual measured TF”
and the “calculated TF according to Ylvie/Heikal”. The disparity between these values
encapsulates the friction force that is meticulously subtracted in both models to yield a more
refined estimate of the effective TF exerted on the cutterhead. This distinction is crucial; it
highlights the Ylvie model’s unique capability to autonomously determine the torque at
idle stroke on a stroke-by-stroke basis, offering a more granular and precise analysis of each
stroke during TBM operation. This feature significantly enhances the model’s precision in
estimating friction losses and operational dynamics, further validating the Ylvie model as a
reliable tool for TBM performance analysis in tunnel construction projects.
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Figure 6. Comparison of Thrust per Cutter values calculated using the model proposed by Heikal et al. [20]
and the Ylvie model approach introduced in this paper, with the actual measured values [21].

5.2. Penetration Prediction

In a compelling demonstration of its capabilities, the Ylvie model was applied to
predict penetration rates in a tunnel project using data not initially included in the model’s
matrix. This evaluation was compared to well-established models from CSM, Gehring, and
actual tunnel data in a benchmark test. Figure 7 illustrates this comparison.

The evaluation revealed that the Ylvie model outperformed the established Gehring
and CSM models, which tended to underestimate penetration rates, particularly in hard
rock conditions (>200 MPa) where Gehring’s model lacks data. The Ylvie model’s enhanced
accuracy in penetration prediction is a testament to its sophisticated approach, integrating
refined TBM operational data with geological insights. This example underlines the model’s
potential as a powerful tool for more accurate and reliable TBM performance predictions in
diverse tunneling environments.



Geotechnics 2024, 4 206

0 1000 1500 2000 2500750 1250 1750 2250
Chainage [m]

0.0

2.0

4.0

6.0

8.0

10.0
Actual measured Penetration Rate
Calculated Penetration Rate acc. to Gehring
Calculated Penetration Rate acc. to CSM
Calculated Penetration Rate acc. to Ylvie

Pe
ne

tr
at
io
n
Ra

te
[m

m
/r
ev
]

Figure 7. Comparison of penetration rate values calculated using the CSM model, Gehring model,
and the matrix approach introduced in this paper, which is based on the Ylvie model, with the actual
penetration measurements. The penetration rate consistently corresponds to the Thrust per Cutter as
detailed in Figure 6 [21].

6. Discussion

The Ylvie model represents a significant advancement in TBM data analysis, par-
ticularly in automating the computation of torque at idle stroke and friction losses on
a per-stroke basis, using AI-driven iterative processes. This aligns with the analytical
approaches of Heikal et al. [20], demonstrating considerable accuracy and reliability and
underscoring the potential of integrating Big Data analytics with geological and technical
data for enhanced performance predictions. The model’s novel matrix framework offers a
unique method for retrospective geological condition assessment based on TBM operational
data, contributing to more informed decision-making in tunnel construction projects.

6.1. Limitations

Despite these advancements, the model’s applicability is currently limited to hard
rock tunneling scenarios using Gripper TBMs, highlighting a need for further data and
evaluations to extend its utility across a broader range of tunneling conditions. This limita-
tion underscores the importance of developing more refined methodologies to distinguish
between shield friction and face conditions, which may include integrating shield pres-
sure data for a more comprehensive analysis. Addressing these challenges is essential for
broadening the model’s applicability and enhancing its utility in tunneling operations.

6.2. Future Research

Future research should focus on expanding the model’s versatility to accommodate
various TBM types and geological settings, enriching the model to consider other critical
aspects of TBM operation, such as cutter wear and maintenance, and enhancing the model’s
predictive capabilities for a more holistic view of TBM performance. This work represents
a crucial step in TBM performance analysis, setting the stage for future enhancements in
machine-learning applications for rock mass characterization and tunneling optimization.
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