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Maize plant detection using
UAV-based RGB imaging
and YOLOv5
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1Precision Agriculture Lab, School of Life Sciences, Technical University of Munich,
Freising, Germany, 2Mechatronics Research Group, University of Nigeria, Nsukka, Nigeria
In recent years, computer vision (CV) has made enormous progress and is

providing great possibilities in analyzing images for object detection,

especially with the application of machine learning (ML). Unmanned Aerial

Vehicle (UAV) based high-resolution images allow to apply CV and ML

methods for the detection of plants or their organs of interest. Thus, this

study presents a practical workflow based on the You Only Look Once

version 5 (YOLOv5) and UAV images to detect maize plants for counting their

numbers in contrasting development stages, including the application of a

semi-auto-labeling method based on the Segment Anything Model (SAM) to

reduce the burden of labeling. Results showed that the trained model

achieved a mean average precision (mAP@0.5) of 0.828 and 0.863 for the

3-leaf stage and 7-leaf stage, respectively. YOLOv5 achieved the best

performance under the conditions of overgrown weeds, leaf occlusion,

and blurry images, suggesting that YOLOv5 plays a practical role in

obtaining excellent performance under realistic field conditions.

Furthermore, introducing image-rotation augmentation and low noise

weight enhanced model accuracy, with an increase of 0.024 and 0.016

mAP@0.5, respectively, compared to the original model of the 3-leaf stage.

This work provides a practical reference for applying lightweight ML and deep

learning methods to UAV images for automated object detection and

characterization of plant growth under realistic environments.
KEYWORDS

crop scouting, deep learning, plant detection model, UAV remote sensing,
YOLOv5 application
1 Introduction

Maize is one of the most cultivated crops in the world and plays a vital role in food,

fodder, and biomass fuel. Achieving high yield and quality in maize cultivation requires

plant counting at early, mid, and late stages for various management strategies, including

supplementary planting, pest management, and yield forecasting (Wang et al., 2023).
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Breeders examine the germination rate of new varieties in the field

environment before selling them to the farmers to guarantee the

quality of the seeds. Typically, germination rate is determined by

manually counting plants in randomly selected blocks (Carciochi

et al., 2019), which leads to a large uncertainty when counting plants

manually due to the often large spatial variability (Rodrıǵuez-Lizana

et al., 2023). Furthermore, this method is time-consuming and

therefore costly. Thus, it is necessary to develop a computer vision

(CV) based approach for automatic counting of plants in the field.

The rapid advancements in CV and AI have led to efficient and

accurate object detection and counting methods. For example, field

robots and Unmanned Aerial Vehicles (UAVs) integrated with

plant detection models are powerful tools for achieving automatic

and accurate plant counting. However, field robots are only suitable

for low-growing crops, such as the strawberry detection system of

harvesting robot based on deep learning developed by Zhang et al.

(2022). Furthermore, field robots encounter difficulty in movement

in areas of high crop density, potentially leading to crop damage

(Fountas et al., 2020). Given maize’s taller stature, UAVs are the

preferred sensor carriers for its detection. With the rapid

development of UAVs, UAV-based remote sensing has been

widely used in precision agriculture, such as disease detection,

growth monitoring, yield estimation, and weed management

(Tsouros et al., 2019). Since UAVs can obtain high-resolution

images and overcome the influence of cloud occlusion due to

their low flight altitude, UAVs show enormous potential in

collecting high-throughput phenotypic data.

Classical CV algorithms for object detection employ concrete-

feature-based methods, mainly collecting features by manually

integrating color, geometric, and texture features, and using non-

neural methods for analysis (Rashed and Popescu, 2023). Valente

et al. (2020) combined Vegetation Index (VI)-based vegetation

classification with a plant average area filter to achieve plant

counting, and showed that, in the experiment with a plant count

of 170,000, the error rate was 42.5%. Such a high rate of errors

indicates that traditional CV image processing techniques may not

be able to overcome difficulties such as leaf occlusion and weed

interference in plant counting (Shi et al., 2023). Recently, due to the

continuous advancement and extensive use of deep learning, some

abstract-feature-based methods have demonstrated excellent

performance in detecting plants in complex field environments.

Zhu et al. (2022) developed a wheat spike detection algorithm based

on convolutional neural network (CNN) and transformer,

achieving an average precision at a confidence threshold of 0.5 of

88.3%. Representative algorithms include CNNs and the You Only

Look Once (YOLO) series of object detection models (Redmon

et al., 2016). YOLO’s object detection mechanism is characterized

by dividing images into a grid system, where each cell detects

objects within it, enabling efficient and single-pass object detection.

YOLO is known for its small model size and fast calculation speed

(Bochkovskiy et al., 2020). YOLO is fast because it only needs one

forward propagation to pass through the neural network to make

predictions, and it only detects each object once (Srivastava et al.,

2021). Given the advantages, the YOLO algorithm has been applied

in a range of object detection applications requiring both simplicity

and efficiency, particularly for plant detection tasks. For example,
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urban plantation tree detection with high-resolution remote sensing

imagery based on YOLOv4-Lite (Zheng and Wu, 2022), real-time

strawberry detection based on YOLOv4 (Zhang et al., 2022), crop

diseases detection based on YOLOv5 (Zhao et al., 2023), and wheat

spike detection in UAV images based on YOLOv5 (Zhao et al.,

2021). Recently, variant versions of YOLOv5, notably the nano (n)

and small (s) versions, referred to as YOLOv5n and YOLOv5s,

respectively, have become attractive, considering the real-time

performance requirements of YOLOv5 applied to UAVs or field

robots. Nnadozie et al. (2023) compared the real-time performance

of YOLOv5n and YOLOv5s on an NVDIA Jetson AGX Orin

embedded GPU, finding that YOLOv5s and YOLOv5n achieved

mAP@0.5scores of 0.924 and 0.904, respectively, under the

conditions of image size of 640 x 480 and batch size of 8. As

expected, the improvement in accuracy of YOLOv5s resulted in a

loss of speed by 5FPS. However, this detection speed is still

acceptable for the flight speed of UAVs, allowing UAVs to

perform real-time detection. Li et al. (2022) also tested the

YOLOv5s, m, l, and x models on 960 x 540 maize images, with

mAP values of 87.65%, 90.24%, 91.02%, and 92.15%, respectively

(Li et al., 2022). The average detection speeds were 54.9FPS,

49.3FPS, 44.6FPS, and 39.1FPS, while the model sizes were

14.1MB, 40.8MB, 89.2MB, and 166MB respectively (Li et al.,

2022). Considering the future application of the model on UAVs,

which requires accuracy, speed, and lightweight, this research will

focus on investigating the YOLOv5s model for plant detection.

In the field of maize detection, many DL-based methods have

also emerged. Kitano et al. (2019) used the U-Net of the CNN

architecture to segment the green vegetation from the field, and

then used the canopy area of a single maize plant for screening to

realize the counting of maize. While such method often fails to

distinguish between weeds of similar shape and size, and performed

poorly when leaf occlusion existed, YOLOv5 has better

performance in these two aspects (Li et al., 2022). Efforts have

also been made to apply YOLOv4 and YOLOv5 to reduce the

impact of weeds on maize counting (Mota-Delfin et al., 2022),

though the mAP was only 77.6%; this indicates that there still room

for improvement in the application of YOLOv5 for maize plant

counting. So far, research on the application of YOLOv5 in different

environments and phenological stages is still limited, such as

research on leaf occlusion, weed interference, and phenotypic

differences of plants in different growth periods. In addition,

traditional model training requires extensive manual annotation

for data labels, which is a complex and tedious task (Han et al.,

2022). Exploring new annotation methods would be critical to fully

realizing the potential of UAV imagery in field crop research.

Segment Anything Model (SAM) is a segmentation model trained

with over 1 billion masks from 11 million images (Kirillov et al.,

2023), its performance rivals that of fully-supervised models, which

can be used for object detection and achieve semi-automatic

annotation without further training. Collectively, research is still

needed to investigate how the SAM data augmentation can be used

in combination with YOLOv5 to improve object detection model

and its application in plant counting.

Data augmentation is used to enhance the training data set’s size

and quality, allowing to develop better object detection models
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(Shorten and Khoshgoftaar, 2019). There are two types of data

augmentation methods. The first type is single image processing,

including image rotation, flipping, zooming, clipping, color

transformation, Gaussian noise adding, and many more (Wang

and Song, 2020). This method can significantly increase the

quantity of training data but cannot generate complex training

background beyond the original data. This will limit the model’s

performance in predicting new data sets. Another type of data

augmentation method is based on multiple image processing, which

includes mixing up and mosaicking of images and therefore creates

new artificial training data, and can specially improve the detection

of small objects (Solawetz, 2020). These data augmentation

algorithms enlarge the number of features of the data set and

improve the model performance when combined with each other

(Hao and Zhili, 2020). Smaller objects are less well detected than

larger objects because the detectors usually extract features through

aggregating pixels in convolutional layers (Li and Wu, 2022).

Smaller objects result in fewer features leading to a worse

prediction. Although the same problem occurs in the YOLO

series, YOLOv5 took advantage of mosaic to overcome this

problem to some extent (Redmon et al., 2016). Mosaic data

augmentation combines training images in specific ratios, which

allows for the model to learn how to identify objects at a smaller

scale than average. It is also helpful in model training to

significantly reduce the need for a large mini-batch size (Solawetz,

2020). In this context, it is interesting to know whether, by retaining

the original data augmentation of the model, added processes of

rotating and blurring images can further improve model accuracy.

Therefore, the objectives of this study were: (1) to train a

lightweight, fast, and precise maize detection model based on

YOLOv5s and UAV images; (2) to verify the robustness of the

YOLOv5 model in environments with dense weeds at the 3-leaf

stage and leaf occlusion at the 7-leaf stage; (3) to improve the
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model’s accuracy by merging a low-noise image dataset, and

applying random rotation data augmentation; and (4) to propose

a semi-automatic labeling process based on SAM to reduce the time

and cost of manual labeling.
2 Materials and methods

2.1 Trial description and UAV
images acquisition

The field experiment with maize plants was conducted in 2021

at the Dürnast Research Station of the Technical University of

Munich in Germany (11.64323 E, 48.39749 N, Figure 1). Maize

seeds were sown at the end of April with a density of 330 seeds m-2.

A randomized complete block design with four replicates was used

for the experiments. Plots consisted of 12 rows (1.5 m x 10 m).

The maize images were captured on the 11th (3-leaf stage) and

the 24th (7-leaf stage) of June 2021, respectively. The UAV images of

maize were taken by DJI P4 RTK (DJI, Shenzhen, China). The flight

height was 12 m above ground level, and the flight speed was set to

2 m s-1. The ground sampling distance (GSD) is 0.33 cm/pixel. The

images’ original size is 41075 x 37136 pixels, with an RGB color

space of 24-bit depth, focal length of 8.8 mm and exposure time of

1/500 s, and the JPG format.
2.2 Image annotation

LabelImg (Tzutalin, 2015) is an image annotation tool

developed based on Python (CWI, Netherlands). It can

conveniently generate annotation files in YOLO format, which

consists of object categories, the x-coordinate of the center point,
FIGURE 1

Study site and the workflow of maize plant detection.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1274813
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2023.1274813
the y-coordinate of the center point, the width ratio, and the height

ratio. In LabelImg, a rectangle is drawn around the object of interest

to create an annotation. The semi-automatic annotation process

involves downloading the SAM model, adjusting the size range

parameters of the mask, using SAM to detect the targets and

generate annotations, and finally adjusting the label sizes and

removing incorrect annotations in LabelImg. In this study we

used the ViT-L SAM model. The parameter settings of the model

can be seen in Table 1. SAM works by inputting images into the

system, a grid of points is sampled over the image, SAM is applied

to these points to generate initial masks, the quality of these masks is

assessed using criteria like Intersection over Union (IOU) and

stability scores, low-quality or duplicate masks are filtered out

based on the assessment, additionally, a mask area filter is used to

reduce the error masks, the final process concludes with the output

of high-quality masks for the images and calculate the masks’

coordinates in YOLO format. Three datasets were used in this

study, the 3l_origin dataset contains blurry images with a lot of

weeds, while in the 3l_nonoise dataset, the images are clearer with

almost no weeds. However, in the 7_origin dataset, severe leaf

occlusion is present. Each dataset contains 200 512*512 pixels

images that were cropped from the Orthomosaic. These datasets
Frontiers in Plant Science 04
are annotated through SAM and manual ly ad justed

through LabelImg.
2.3 Model training workflow

The workflow consists of image acquisition, data preprocessing,

annotation generation, annotation adjustment, network training,

and model testing (Figure 1). In the first step, we performed

preprocessing of the images, including image filtering and

cropping, to improve the efficiency of the model training. The

images were labeled by SAM automatically for model training,

using LabelImg to adjust annotations (Figure 2). Within LabelImg,

incorrect SAM-generated labels were manually removed, and

further adjustments were made to inappropriate annotations.

Regarding the non-detected maize, rectangles were used to bind

them and labeled them as “maize”. Subsequently, 200 annotated

images were allocated as 70% for training, 20% for validation, and

10% for testing. We trained an original model (3l_origin and

7l_origin) with training and validation images. Considering that

the images acquired by the UAV have different orientations, we

applied a random rotation data augmentation of 90 degrees based

on the original images; this augmentation rotated the image

randomly between 0 and 90 degrees before the mosaic

augmentation was applied. Following this, a model was trained

with rotation augmentation (3l_90d and 7l_90d) and was used as

pre-training weights to train the original dataset model

(3l_origin_90d and 7l_origin_90d), to evaluate the impact of

image rotation on model accuracy, in comparison with the

original model. In addition, a nearly weed-free 3-leaf stage dataset

(3l_nonoise) was created, and investigated the impact of

i n co rpo r a t i n g th i s da t a s e t on th e o r i g i n a l mode l

(3l_origin_nonoise). Descriptions of all models in this study can

be found in Table 2. The performance of YOLOv5 was tested in the

case of severe leaf occlusion as well. The model training was

performed on Google Colab equipped with a graphics processing

unit (GPU) of Tesla K80 and 11441MiB memory. Training and

validation data were fed into the YOLOv5s network to generate a

model with a batch size of 9 and 400 epochs. Inference tests were

subsequently conducted on the test dataset.
2.4 Model performance evaluation

The performance of the models was tested on the validation set.

A model prediction can be classified into four prediction cases, i)

true positive (TP), ii) false positive (FP), ii) true negative (TN), and

iv) false negative (FN) (Bochkovskiy et al., 2020). TP means the

model detected the ground truth; FP represents that the model

detected the incorrect object; FN represents undetected maize, and

TN refers to objects of other categories correctly predicted by the

model, because there is only one category; no other categories

would be detected, TN is irrelevant in this work. Intersection over

Union (IoU) is the ratio of intersection and union of the prediction

box and ground truth box. It determines the prediction case and

evaluates the distance between the predicted box and the target box
TABLE 1 Parameter settings of SAM model.

Name 3-leaf stage 3-leaf stage
with
low noise

7-leaf stage

Points
per side

32 32 32

Points
per batch

64 64 64

Pred
iou thresh

0.75 0.75 0.70

Stability
score thresh

0.90 0.60 0.70

Stability
score offset

1.0 1.0 1.0

Box
nms thresh

0.3 0.3 0.3

Crop n layers 0 0 0

Crop
nms thresh

0.7 0.7 0.7

Crop
overlap ratio

512/1500 512/1500 512/1500

Crop n points
downscale
factor

1 1 1

Point grids None None None

Min mask
region area

40000 40000 40000

Output mode Binary mask Binary mask Binary mask

Mask
area filter

500 - 1500 200 - 1000 1500 - 5000
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(Zhang et al., 2022). An IoU of greater than 0.5 corresponds to TP,

otherwise, to FN.

Precision (P) and recall (R) are defined as:

P =  
TP

FP + TP

R =  
TP

FN + TP
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where P is the proportion of true positives in the detected maize.

R is the ratio of the number of correctly detected maize to the total

number of maize plants in the data set. P and R are usually

negatively correlated. Therefore, the average precision (AP) was

introduced to indicate the detection accuracy. AP refers to the

average precision of the maize detection in the recall range of 0 to 1

(Zhao et al., 2021). A higher AP means a higher accuracy of the

network. Following is the formula:

AP =  
Z 1

0
P(R)dR

While mean average precision is the average AP of each class.

The following is the formula:

mAP =  
1
N

Z 1

0
P(R)dR

Since there is only one class of detection objects in this study,

AP is equal to mAP. In YOLOv5, mAP@0.5 and mAP@0.5:0.95 are

two model evaluation indicators, meaning that when the IoU

threshold is 0.5, the area under the smoothed P-R curve is

calculated by integration as the final AP value, while mAP@

0.5:0.95 refers to the average mAP of IoU from 0.5 to 0.95.

The Loss function consists of two components: the object loss

(obj_loss) and the bounding box loss (box_loss). Object loss is used

to supervise whether an object is present in the grid. Bounding box

loss measures the difference between the predicted bounding box

and the ground truth bounding box, which helps ensure that the

model can accurately locate the object.
3 Results

3.1 UAV images and image annotation

The images in the 3-leaf stage contained different sizes and

shapes of weeds (Figure 3A), which might be similar to maize

seedlings in their occurrence, and were used to distinguish between
TABLE 2 The description of the models.

Model
name

Description

3l_origin This model was trained from the 3-leaf stage data set; there
was no rotation data augmentation and low-noise images.

3l_90d This model was trained from the 3-leaf stage data set, but
the training set used 90-degree rotation data augmentation,
with each image being randomly rotated within the range
of 0 to 90 degrees.

3l_origin_90d This model used the 3l_90d model as the pre-training
weight and was trained from the 3-leaf stage data set, there
was no rotation data augmentation and low-noise images.

3l_nonoise This model was trained from a new low-noise 3l-stage data
set. The images in this data set have higher definitions and
fewer weeds.

3l_origin_nonoise This model used the 3l_nonoise model as the pre-training
weight and was trained from the 3-leaf stage data set, there
was no rotation data augmentation and low-noise images.

7l_origin This model was trained from the 7-leaf stage data set with
no rotation data augmentation and low-noise images.

7l_90d This model was trained from the 7-leaf stage data set, but
the training set used 90-degree rotation data augmentation,
with each image being randomly rotated within the range
of 0 to 90 degrees.

7l_origin_90d This model used the 7l_90d model as the pre-training
weight and was trained from the 7-leaf stage data set, there
was no rotation data augmentation and low-noise images.
FIGURE 2

Image annotations: Generated by SAM (A) and adjusted manually by LabelImg (B). The red rectangle represents maize seedlings, the blue circle
represents erroneous identification by SAM, and the orange circle represents missed maize seedlings by SAM.
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maize seedlings and weeds by YOLOv5. Figure 3B shows that there

were almost no weeds in the images of the 3-leaf stage with low

noise and minimal plant overlapping. The maize leaves in the 7-leaf

stage were highly overlapping (Figure 3C), leading to difficulty in

identifying each maize plant even by eyes. Thus, the images from

the 7-leaf stage were used to test the detection ability of YOLOv5

under non-optimal conditions. Figure 2A displays the image

annotations at the 3-leaf stage, which were generated by the SAM.

Figure 2B demonstrates the manually adjusted results. SAM was

used to annotate 140 images in each dataset and the inference speed

reached 0.267 FPS. Table 3 presents the inference results of SAM in

three datasets. In the dataset of 3-leaf stage, there were a total of

1321 Ground Truth annotations. SAM generated 2992 annotations,

out of which 1008 were correctly labeled as TP, 313 were labeled as

FN and needed to be added, and 1671 were labeled as FP and

needed to be removed. In the dataset of 3-leaf stage with low noise,

there were a total of 2626 Ground Truth annotations. SAM

generated 3781 annotations, out of which 2190 were correctly

labeled as TP, 436 were labeled as FN and needed to be added,

and 1165 were labeled as FP and needed to be removed. In the 7-leaf

stage, there were a total of 1625 Ground Truth annotations. SAM

correctly labeled 933 plants as TP, 692 plants were labeled as FN

and needed to be added, and 1275 were labeled as FP and needed to

be removed. Overall, 14.9% of the target annotations generated by
Frontiers in Plant Science 06
SAM needed to be added, and 42.5% of the annotations needed to

be removed.
3.2 Performance of different models

3.2.1 Performance of training model
Figure 4 shows the trend changes of object loss (A) and the

bounding box loss (B), Precision (C), Recall (D), mAP@0.5(E), and

mAP@0.5: 0.95 (F). These metrics increased with the iterations of

epochs and began to plateau after reaching 130 epochs. During

these 400 epochs, the best model was retained and further evaluated.

Table 4 and Figure 5 show the final training performance of the

model. The mAP@0.5of all models exceeded 0.75. When the models

of the 3-leaf stage and 7-leaf stage were trained in this study, the leaf

stage-specific models did not detect some maize of specific

orientations. To understand the influence of rotation, the model

at 90-degree angles was tested. The mAP@0.5of 3l_origin is 0.828,

the lowest for 3l_90d is 0.772, and the highest for 3l_origin_90d was

0.833 (Table 4). In the models for the 7-leaf stage, the mAP@0.5 of

7l_origin was 0.863, the weakest for 7l_90d was 0.756, and the

highest for 7l_origin_90d was 0.876. The rotation data

augmentation improved the mAP@0.5 of the model by 2.4% at

the 3-leaf stage and by 1.3% at the 7-leaf stage. Due to the presence

of weeds and ambiguity in the original data set at the 3-leaf stage,

many ambiguous labels were generated. We suspect that these labels

might lead to an underestimation of the model’s ability, and thus,

the 3l_nonoise model was trained on a low-noise data set, achieving

a mAP@0.5 of 0.939. To explore whether low-noise weights can

help the model work better under the influence of weeds and

ambiguity, the 3l_origin_nonoise model was trained to achieve a

mAP@0.5 of 0.852, which increased the mAP@0.5 of the model by

1.6% at the 3-leaf stage. Overall, rotation-based data augmentation

showed more significant improvement than the low-noise data

augmentation at the 3-leaf stage.

3.2.2 Inference performance
Figure 6 shows examples of using the 3-leaf stage model to

predict a new dataset. Figure 6A presents the performance of the 3-

leaf stage model without rotation in identifying maize in normal

conditions; all 14 maize plants were detected without any incorrect

results. Figure 6B shows the performance under overgrown weeds
FIGURE 3

Acquired UAV Images: 3-leaf stage (A), 3-leaf stage with low noise (B), and 7-leaf stage (C).
TABLE 3 SAM inference results.

Results 3-leaf stage 3-leaf stage
with low noise

7-leaf stage

Ground
truth

1321 2626 1625

True
positive

1008 2190 933

False
negative

313 436 692

False
positive

1671 1165 1275

Total
detected

2992 3781 2890

Precision 37.6% 65.3% 42.3%

Recall 76.3% 83.4% 57.4%
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B

C D

E F

A

FIGURE 4

Model evaluation metrics: the object loss (A), the bounding box loss (B), the Precision (C), the Recall (D), the mAP@0.5 (E), and the mAP@0.5:0.95
(F). The thin line represents raw data, while the thick curve represents the results after local weighted regression scatter smoothing.
TABLE 4 The best training performance of the model.

Treatment Obj_loss Box_loss Precision Recall mAP@0.5 mAP@0.5:0.95

3l_origin 0.073 0.050 0.780 0.801 0.828 0.333

3l_90d 0.087 0.050 0.737 0.751 0.772 0.259

3l_origin_90d 0.070 0.045 0.794 0.830 0.852 0.334

3l_nonoise 0.092 0.044 0.939 0.938 0.973 0.488

3l_origin_nonoise 0.074 0.048 0.778 0.833 0.844 0.347

7l_origin 0.111 0.047 0.813 0.808 0.863 0.340

7l_90d 0.127 0.047 0.736 0.745 0.756 0.222

7l_origin_90d 0.111 0.050 0.809 0.833 0.876 0.346
F
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conditions; most maize plants were detected, and 4 maize plants

were missed because of weeds clustering. Figure 6C is the

performance of the 90-degree rotation model, 11 out of 14 maize

seedlings were detected, and one incomplete maize seedling located

at the edge of the image was also detected. Figure 6D is the original

3-leaf stage model trained based on the pre-training weight of the

90-degree rotation model; this means that the data set used in this

model was entirely identical to that used in the original model,

thereby allowing a fairer assessment of the impact of rotational data

augmentation. Figure 6E is trained by a low-noise data set.

Figure 6F is trained based on the pre-training weight of the low-

noise model.

Figure 7 shows the confusion matrix of each model. Comparing

the confusion matrices of the 3l_origin model (Figure 7A) with the

3l_origin_90d model (Figure 7C), there was a slight decrease in TP,

a slight increase in FN, and a significant reduction in FP. In the

7l_origin_90d model, there was a slight increase in TP, a slight

increase in FP, and a significant decrease in FN.

Table 5 shows the inference speed of all models. The inference

speed of all models exceeds 150FPS, which is more than 500 times
Frontiers in Plant Science 08
the inference speed of SAM, with the size of the YOLOv5s being

only 13.7MB.
4 Discussion

4.1 The influence of weeds and
leaf occlusion

In this study, plant detection results varied significantly between

the two growth stages, influenced by differing weed densities. In the

3-leaf stage of a low weed density, the model demonstrated a

relatively good performance in maize detection. However, the

weed was sometimes mistakenly detected as maize plants – false

positive (FP). On the one hand, this misdetection might be caused

by the fact that the shape and color characteristics of weeds in such

a relatively young growth stage are very similar to those of maize

seedlings, and most models are based on the shape and color

characteristics to detect the maize plants. On the other hand,

models trained with the low resolution of UAV images could
B

A

FIGURE 5

Comparison of the final performance of the models: Comparison of accuracy, including mAP, Precision, and Recall (A) and comparison of loss (B).
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have further weakened the characteristic differences between weeds

and maize, resulting in false positive cases. Besides, there was still a

proportion of maize seedlings that were ignored by the model,

mainly due to the clustering of weeds (Figures 3A, 6B). Similarly,

Casuccio and Kotze (2022) used YOLOv5 and high-resolution RGB

images to evaluate the planting quality of maize showed the same

problem that also existed in their research, and about 40% of the

missed detections were caused by the occlusion of adjacent weeds.

Additionally, as a result of the high flying altitude of the UAV, the

relatively large GSD (0.33 cm) added to the influence of weed and

leaf occlusion, i.e., resulting in blurry images, which leads to the

omission of maize seedlings in the detection. The same issue also

exists in other models. Velumani et al. (2021) reported that based

on Faster-RCNN at a lower image resolution (larger ground

sampling distance), the trained model showed more FP cases and

lower average precision of only 0.64. In this research, due to the

limitations of the UAV image resolution, the influence of weeds,

and the mutual occlusion of plants, the annotation of the target

plants could be more accurate. Therefore, selecting IoU of 0.5 is

more suitable for evaluating the models in this study.

Although there was severe leaf occlusion in the 7-leaf stage, the

model also performed relatively well in maize detection (Figure 8).

The 7-leaf stage maize detection model yielded more FN cases in

plant detection (Figures 7F–H). This might be associated with leaf

occlusion because, in this growth stage, there is a significant

difference in appearance between weeds and maize, resulting in

fewer FP cases, i.e., weeds detected as plants. Nevertheless, severe
Frontiers in Plant Science 09
leaf occlusion makes it challenging to collect training data and leads

to rough annotation quality and model errors, eventually increasing

FN cases. To address the problems of dense objects and complex

background noise, Liu et al. (2023) proposed Feature Enhancement

Block (FEBlock) and Self-Characteristic Expansion Plate (SCEP).

This method could potentially improve our model accuracy for

plant detection, which should be investigated in future work.
4.2 Improvement of model performance
via augmentation

When the models of the 3-leaf stage and 7-leaf stage were

trained in this study, some maize plants of certain orientations were

not detected by the leaf stage-specific models with the application of

rotation augmentation. The model with rotation data augmentation

as pre-training weight was indeed able to detect some previously

ignored targets, while it failed to detect some targets (Figures 6A,

D). Thus, the rotation-augmented model increased the probability

of correctly detecting the previously misidentified and undetected

maize plants. In the 3l_origin_90d model, the significant decrease in

FP might be due to the further intensified training of the model

targeted for maize with different leaf orientations after the rotation,

while the slight reduction of TP and a slight increase in FN may be

due to the increased robustness of the model. With the changes in

FP, TP, and FN, both Precision and Recall have been improved,

resulting in a 2.4% increase in the mAP@0.5 of this model. The
FIGURE 6

Practical performance of the 3-leaf stage model: origin model (A), origin model in overgrown weeds conditions (B); 90-degree rotation model in
normal conditions (C), origin model with a pre-training weight of 90-degree rotation model (D) low noise model in normal conditions (E), and origin
model with a pre-training weight of low noise model (F).
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reason for the lowest mAP of 3l_90d is that the images in this

dataset are cropped from a large-sized UAV image, resulting in a

slight overfitting of the 3l_origin model. In contrast, in the 3l_90d

model, the training set images were rotated while the validation set

images were not, making it not meaningful to compare the two

models. Therefore, the 3l_90d model was used as pre-training

weights, and then the 3l_origin_90d model was trained on the

same training set. In the 7l_origin_90d model, the increase in TP

and decrease in FN might be attributed to the enhanced diversity of

maize features in the model through rotation data augmentation,

resulting in the detection of some previously omitted maize plants.

Unfortunately, the FP of this model has increased, which might be
Frontiers in Plant Science 10
due to the overlapping maize leaves and rotation augmentation

could have caused the model to misjudge some overlapping leaves

as maize. Another explanation would be that the model could have

correctly detected corn, but the label was missing. Although there is

a slight decrease in precision, there was a significant increase in

recall, resulting in a 1.3% improvement in mAP@0.5 of this model.

Li et al. (2022) also developed a maize plant detection model

based on YOLOv5. To improve the accuracy of YOLOv5, they

focused on adjusting the model structure. In their work, the channel

attention mechanism (SENet) was integrated into YOLOv5, and

increased mAP by 1.21%. Therefore, it is worth noting that further

work should investigate the extent to which different data
B

C D

E F

G H

A

FIGURE 7

Confusion Matrix: 3l_origin (A), 3l_90d (B), 3l_origin_90d (C), 3l_nonoise (D), 3l_origin_nonoise (E), 7l_origin (F), and 7l_90d (G). 7l_origin_90d (H).
The rows represent the prediction results, the columns represent the ground truth, and the number in the grid is the number of objects.
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augmentation and model structure adjustment methods can

improve the accuracy of the plant detection model.
4.3 The challenge of labeling

Labeling was also challenging in this study, since the maize

plants could not be distinguished from weed plants in the 3-leaf

stage, especially those growing in the sowing row. In this stage,

maize and weed were quite similar in their shapes and sizes, making

the labeling - drawing a bounding box around an entire individual

plant without including too much surrounding space,

often impossible.

Usually, the weed plants between sowing rows could be easily

detected. Weeds between rows usually have more surrounding space

and less leaf occlusion, which is easily distinguishable. In contrast,

some weed plants grow in the same clusters as maize plants, making

them difficult to be labeled. In the 7-leaf stage, leaf occlusions between

plants were quite severe. Therefore, counting the maize plants visually

on the images is almost impossible. To improve the quality of

labeling, labelers are advised to revise ambiguous annotations based

on the actual situation in the field. Alternatively, obtaining a small

GSD is recommended by using a higher pixel resolution camera or

lowering the flight altitude. This would allow us to see more detail,

thus improving the labeling and model training.
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It is a common understanding that labeling is more time-

consuming compared to model training. Based on SAM, a semi-

auto-labeling method was proposed to help us reduce the labeling

work in this study. Although most maize seedlings were accurately

annotated, there were still some omissions and invalid annotations.

Those omissions were mainly due to the inability of SAM to identify

overlapping maize seedlings, which might have not yet fully developed

the significant characteristics of an individual plant being learned by

the model and thus ignored by the model (Figure 2A). Those invalid

labels are also expected, because SAM will recognize all kinds of

objects in the image. In this study, the background of maize is mainly

soil, and some soil blocks were recognized by SAM. Although we only

applied a size filter to filter some invalid annotations, adding a color

filter probably can further reduce invalid annotations.

A straightforward question may arise, despite SAM’s ability to

detect objects accurately, it’s a large model demanding substantial

hardware resources, is slower in speed, and is challenging to adapt

to complex field environments. Our goal for applications here was

to train a lightweight model that can be applied to UAVs and field

robots, and to propose the process of refining the rough large model

into a delicate light model. However, substantial effort is still

necessary to refine the annotations. Therefore, future work should

continue to find out more efficient image labeling methods.
4.4 Future work

Model improvement in the future may consider multiple

aspects. First, the number of training images should be increased

to improve the model. Although only 200 images in this study were

used to train the model, the model already showed considerable

performance. Training should also incorporate images from diverse

field conditions, including different crop varieties, soil backgrounds,

and lighting conditions. To obtain the best data augmentation

parameters for maize detection, it may be possible to use the

hyperparameter evolution of YOLOv5 in the future. Furthermore,

future work may also consider modifying the structure of YOLOv5

by adding a downsampling or up-sampling layer, changing the

activation function, or trying other detection scales to better fit the

maize plant detection (Zhao et al., 2021).
FIGURE 8

Practical performance of the 7-leaf stage model: origin model (A), 90-degree rotation model (B), and origin model with a pre-training weight of 90-
degree rotation model (C). The red rectangle represents the models’ predicted results, while the orange circle represents the maize plants that were
missed by the model.
TABLE 5 Model inference speed.

Models Speed (FPS)

3l_origin 154

3l_90d 159

3l_origin_90d 152

3l_nonoise 154

3l_origin_nonoise 167

7l_origin 154

7l_90d 154

7l_origin_90d 156
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Previous comparisons of YOLOv5 with 15 other advanced

UAV-compatible models revealed its superior speed, albeit with a

slight accuracy trade-off (Zhan et al. (2022). Compared with the

most accurate DPNet-ensemble model (Du et al., 2019), YOLOv5

improves the detection speed by eight times at 9.02% AP loss. These

indicate that YOLOv5 has great potential in practical applications

for being deployed on drones and field robots.
5 Conclusions

We proposed a maize plant detection method using semi-

automatic annotation with SAM and YOLOv5 for analyzing

UAV-based RGB images. With the data sets at 3-leaf and 7-leaf

stages, models were separately trained to detect most maize plants

under weed occurrence and leaf occlusion conditions. The model

trained for the 3-leaf and 7-leaf stages reached an mAP@0.5 of

82.8% and 86.3%, respectively. Our study suggests that YOLOv5

based plant detection model shows the potential to be adaptable to

various growth stages of maize plants. In addition, applying

rotation-based data augmentation and low noise weight could

improve robustness under realistic field conditions. The YOLOv5-

based maize detection model shows promise for deployment on

UAVs and other IoT devices for real-time plant monitoring.
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E., and Olguıń-Rojas, J. C. (2022). Detection and counting of corn plants in the
presence of weeds with convolutional neural networks. Remote Sens. 14, 4892.
doi: 10.3390/rs14194892
frontiersin.org

https://doi.org/10.48550/ARXIV.2004.10934
https://doi.org/10.48550/ARXIV.2004.10934
https://doi.org/10.2134/agronj2018.10.0635
https://doi.org/10.5194/agile-giss-3-28-2022
https://doi.org/10.1109/ICCVW.2019.00030
https://doi.org/10.1109/ICCVW.2019.00030
https://doi.org/10.3390/s20092672
https://doi.org/10.1016/j.media.2022.102481
https://doi.org/10.1016/j.media.2022.102481
https://doi.org/10.3390/electronics11111673
https://doi.org/10.3389/fpls.2022.1030962
https://doi.org/10.1109/ACCESS.2023.3241005
https://doi.org/10.3390/rs14194892
https://doi.org/10.3389/fpls.2023.1274813
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2023.1274813
Nnadozie, E. C., Iloanusi, O. N., Ani, O. A., and Yu, K. (2023). Detecting cassava
plants under different field conditions using UAV-based RGB images and deep learning
models. Remote Sens. 15, 2322. doi: 10.3390/rs15092322

Rashed, B. M., and Popescu, N. (2023). Performance investigation for medical image
evaluation and diagnosis using machine-learning and deep-learning techniques.
Computation 11, 63. doi: 10.3390/computation11030063

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
unified, real-time object detection, in: 2016 IEEE conference on computer vision and
pattern recognition (CVPR). Presented at 2016 IEEE Conf. Comput. Vision Pattern
Recognition (CVPR) pp, 779–788. doi: 10.1109/CVPR.2016.91
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