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Abstract

The COVID-19 (coronavirus disease) pandemic, which raged worldwide between 2020 and
2023, has shown how seriously pathogens such as SARS-CoV-2 (severe acute respiratory
syndrome coronavirus 2) can affect individuals and humanity as a whole. Simulation-
based risk assessment constituted one approach to fight this crisis. It can give insights
into human-to-human transmission during superspreading events, which governed the
pandemic. However, there is no established model for estimating individual exposure to
SARS-CoV-2. I address this gap by introducing an exposure model for pathogen trans-
mission via inhalation of respiratory aerosols, implementing the model as reusable soft-
ware, and running simulations with this tool. The exposure model describes how persons
experience varying exposure risks while moving through space. It considers inhomoge-
neous pathogen concentrations in unventilated indoor environments. I use individual-
based crowd models to capture human motion and extend them by aerosol clouds, which
carry pathogens from infectious to susceptible persons. The representation of aerosols is
deliberately simplified and matches the precision of the crowd model. I implement the
exposure model as a flexibly adaptable module of an open-source simulation tool that
enables me and others to analyze specific scenarios. Simulations of reenacted COVID-
19 superspreading events help to build trust in the model. Based on this validation, I
predict and compare the exposure risk for various situations where persons pass through
indoor spaces. A global sensitivity analysis for these scenarios reveals that uncertainties
related to the spread of aerosol clouds mainly influence output variability. This result
suggests that future research efforts should be invested in studying the spread of aerosols
to improve further predictions. Finally, I estimate exposure risks for different queuing
situations. Comparing the scenarios indicates that crowd management could reduce ex-
posure risks. Thus, I demonstrate how modeling and simulating pathogen transmission
adds to quantitatively assessing exposure risks.
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Zusammenfassung

Die COVID-19 (Coronavirus-Krankheit) Pandemie, die zwischen 2020 und 2023 weltweit
grassierte, zeigte, wie schwerwiegend sich Pathogene wie SARS-CoV-2 (Severe acute re-
spiratory syndrome coronavirus 2) auf einzelne Personen sowie die gesamte Menschheit
auswirken können. Die simulations-basierte Risikobeurteilung stellte einen Ansatz zur
Bekämpfung der Pandemie dar. Diese kann aufschlussreiche Einblicke in die Mensch zu
Mensch Übertragung bei Superspreading Events, die die Pandemie maßgeblich beein-
flussten, gewähren. Allerdings gibt es kein etabliertes Modell zur Abschätzung der in-
dividuellen Exposition gegenüber SARS-CoV-2. Ich widme mich dieser Forschungslücke
durch Einführung eines Expositionsmodells für die Übertragung von Krankheitserregern
durch Inhalation respiratorischer Aerosole, dessen Implementierung als wiederverwend-
bare Software, sowie Durchführung von Simulationen mit diesem Werkzeug. Das Expo-
sitionsmodell beschreibt, wie Menschen variierenden Expositionsrisiken ausgesetzt sind,
während sie sich im Raum bewegen. Es berücksichtigt inhomogen verteilte Pathogenkon-
zentrationen in ungelüfteten Innenräumen. Ich nutze individuen-basierte Personenstrom-
modelle, um menschliche Bewegung zu erfassen, und erweitere diese um Aerosolwolken,
die Pathogene von infektiösen zu empfänglichen Personen transportieren. Die Darstellung
von Aerosolen ist bewusst vereinfachend und passt zur Detailgenauigkeit des Personen-
strommodells. Ich implementiere das Expositionsmodell als flexibel anpassbares Modul
eines quelloffenen Simulationswerkzeuges, das es mir und anderen ermöglicht, spezifische
Szenarien zu analysieren. Simulationen nachgestellter COVID-19 Superspreading Events
helfen, Vertrauen in das Modell aufzubauen. Basierend auf dieser Validierung prognosti-
ziere und vergleiche ich die Expositionsrisiken in verschiedenen Situationen, in denen Per-
sonen Innenräume passieren. Eine globale Sensitivitätsanalyse für diese Szenarien zeigt,
dass vor allem Unsicherheiten in der Ausbreitung der Aerosolwolken die Variabilität des
Outputs beeinflussen. Dieses Ergebnis legt nahe, dass weitere Forschungsanstrengungen
in die Untersuchung der Ausbreitung von Aerosolen investiert werden sollten, um künftige
Vorhersagen zu verbessern. Zuletzt schätze ich Expositionsrisiken in verschiedenen Warte-
schlangenszenarien ab. Der Szenariovergleich deutet daraufhin, dass Crowd-Management
Expositionsrisiken reduzieren könnte. Auf diese Weise demonstriere ich, wie Modellierung
und Simulation der Übertragung von Krankheitserregern zur quantitativen Bewertung
von Expositionsrisiken beiträgt.
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Plain language summary

The COVID-19 pandemic has shown how seriously the spread of a virus such as SARS-
CoV-2 can affect our daily lives. To overcome the pandemic, it was important to find
out how the virus jumps during so-called superspreading events from one ill person to
many other healthy persons who are gathering in the same place. One can predict and
study this virtually with the aid of mathematical descriptions of the real world. However,
there is no useful description of how SARS-CoV-2 is carried from one person to another.
Therefore, I define simple rules for how ill persons breathe out small particles that can
carry the virus through the air over long periods of time and over long distances in a
room. Other healthy persons can breathe in these particles. There is a high chance
that persons who inhale many particles become ill. I also consider that humans move
around while breathing in and out. Therefore, it can happen that there are more of
these particles in one part of a room than in the other part. With these rules, I study
how many healthy persons would breathe in a large number of the particles in situations
of everyday life, such as going to a restaurant or to a choir practice. I compare my
predictions to actual superspreading events and, thus, show that my rules seem correct.
Then, I predict the risk for situations where people are waiting in a line, for example, in
a supermarket. The results suggest that, on average, people would probably breathe in
fewer particles if they wait in an orderly way. In this manner, I show how mathematical
descriptions can help us separate risky from less risky situations so that we know what
to do in reality.
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1 Introduction

Pathogens are part of everyday life. They are found in the air, soil, water, and, of course,
also in our bodies. Some cause infections with mild consequences, while other infections
can end in death. The human body developed effective mechanisms to protect us against
pathogens. However, sometimes the immune system cannot prevent infection. We be-
come infectious ourselves and possibly pass the disease on to others. Despite substantial
advances in disease prevention and control, infectious diseases regularly have regional to
global socioeconomic repercussions. This problem comes up, for example, with the annual
influenza wave circulating in our workplaces, schools, and other networks. It became dra-
matically apparent in 2020 when the outbreak of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) escalated into the coronavirus disease (COVID-19) pan-
demic. Three years later, the global situation subsided. However, zoonotic outbreaks, as
was the case with COVID-19, appear to become more likely because of several factors:
Climate change and land-use change aggravate the risk of zoonotic spillover [1]; Urban-
ization accelerates disease spread in a population because more and more people are
crowded in one place [2]; Globalization catalyzes disease propagation into different parts
of the world [2]. For these and other reasons, regional or global outbreaks of infectious
diseases will continue to be a concern.

Fortunately, we can prepare ourselves against these threats. Disease prevention and
control strategies, as well as monitoring and forecasting systems, undergo progress. More-
over, the COVID-19 pandemic demonstrated in an unparalleled way how collective scien-
tific efforts can alleviate the situation. Large parts of the scientific community dedicated
their workforce to fighting the global health crisis. Many researchers contributed through
experiment and analysis, while others, particularly computational scientists, promoted
modeling and simulation to predict and analyze fictional scenarios. Modeling and sim-
ulation can give insights into the transmission dynamics within a population and reveal
the driving factors of a pandemic. This information is decisive for taking effective action
against the spread and can support targeted crisis communication, for example, as up-
held by Betz et al. [3]. Once a model has proven useful, it serves as a stepping stone for
future challenges.

1.1 Motivation: on the lack of individual-based disease transmission
models

The ability to tackle public health concerns increases with advancements in epidemi-
ology. Among other things, epidemiology investigates the outbreak and the spread of
infectious diseases in a population [4, p. 852]. In the case of COVID-19, it was found
that the dynamics of the pandemic were strongly determined by superspreading events
[5]. Such events occurred locally, for example, during mass gatherings or daily business,

1



1 Introduction

as visualized in Fig. 1.1. This sketch illustrates what I call an everyday situation. To
clarify this, I use the following definition throughout my dissertation:

Definition: everyday situation

An everyday situation is likely to happen in public spaces to an arbitrary group
of people, for example, persons walking through a corridor or lining up in a queue
and waiting for a particular service.

Understanding how critical such situations are in terms of pathogen transmission was
of utmost importance during the COVID-19 pandemic for making informed decisions.
However, lack of knowledge often impeded tailored actions and, instead, sometimes re-
sulted in bizarre and debatable regulations while parts of the population ignored effective
suggestions.

Figure 1.1: The sketch visualizes a situation of everyday life with a potential risk of pathogen
transmission. Several persons, including one COVID-19 case (red), are queuing
in line, for example, in a supermarket. Susceptible persons (blue) could become
infected by inhaling respiratory aerosols that carry the virus (yellow). Note: own
drawing.

Models that are capable of resolving inter-individual SARS-CoV-2 transmission at this
scale would have been helpful in complementing laboratory and field research. However,
the state of the art offers no such models. There is one class of models, based on the Wells-
Riley equation [6, 7], that focuses on transmission via respiratory particles that persist
in the air. This approach neglects effects, in particular, spatially varying exposure risks
[8] or transmission via fomites and larger respiratory particles that sediment quickly [9].
In addition, the absence of calibration data makes it difficult for this class of models to
calculate infection risks [9], particularly with regard to SARS-CoV-2 [10].

The other type of established small-scale models, such as the one proposed in [11], pur-
sues an individual-based approach to account for transmission in dynamic human crowds.
This concept appears promising, but it typically considers merely short-range transmis-

2



1 Introduction

sion via larger respiratory droplets emitted, for example, when people cough or sneeze.
Long-range transmission via pathogens that remain airborne for a certain time, which
is important for SARS-CoV-2, is not included. Attempts toward combining individual-
based approaches with long-range transmission include random human movement [12],
movement patterns observed for scenarios in specific supermarkets [12, 13], in a certain
hospital [14], and activities defined for a bar scenario [15]. However, random movement
does not reflect real conditions, and the movement patterns used for specific scenarios
are difficult to transfer to arbitrary everyday situations. Taken together, state-of-the-art
models either do not resolve the required level of detail to get insights into inter-personal
transmission, do not model long-range airborne transmission of SARS-CoV-2, or rely on
unique activity schedules and movement patterns.

I am aware of only two recent developments toward long-range transmission in crowds
that offer a basis for simulating realistic human movement in various situations. They
were published around the same time or shortly after my initial proposals [16, 17]. Each
of them focuses on distinct aspects and adopts different modeling approaches. Grignard
et al. [18] extend an established model for crowd dynamics with transmission via prox-
imity, homogeneously distributed airborne pathogens in a room, and fomites. However,
the model introduces a wealth of parameters that are difficult to determine and handle.
Mukherjee and Wadhwa [19] consider airborne transmission in an evacuation scenario
in the presence of semi-analytically defined airflows. The simulated time is relatively
short, which leads to exposure times of a few seconds, while critical exposure to SARS-
CoV-2 is expected to require several minutes of close contact [20]. Increased efforts to
model individual-based airborne transmission in recent years indicate that the problem
of finding a suitable model has not yet been conclusively answered.

Once a mathematical model has been derived, it should also be used adequately. This
means that numerical experiments should take into account uncertainties in the model
parameters and their effect on the output. Many model parameters related to SARS-CoV-
2 transmission are highly uncertain because we know too little to determine true values.
Nonetheless, recently conducted simulation studies often consider only average inputs,
which does not necessarily return reliable results. Understanding the consequences of
possible variations in the model output is indispensable before assessing infection risks.
In addition, investigating the model sensitivity with respect to parameter uncertainties
should precede fine-tuning of a modeling approach, as stated in [21]. For these reasons,
it is vital to scrutinize uncertainties in simulations.

Overall, the state of the art in modeling and simulation at small scales lacks an ap-
proach that represents the transmission characteristics of pathogens such as SARS-CoV-
2. Recent developments attempting to fill this gap neglect uncertainties in the simulation.
Consequently, it is unclear how much one can trust the simulation output and apply it
in the real world.
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1.2 Aims and research questions

The brief overview of modeling approaches demonstrated that there is no suitable model
for simulating SARS-CoV-2 transmission between individuals. Therefore, I address the
following question in this dissertation:

Research question

How can airborne transmission of pathogens such as SARS-CoV-2 be modeled and
simulated?

This question involves sub-aspects

• about the theoretical background, state of the art, and recent developments:

– What are the essential characteristics of SARS-CoV-2 transmission?
– How does the literature from infectious disease modeling operationalize these

mechanisms, and which facets are not adequately represented?
– How should uncertainties about airborne pathogen transmission be addressed in

modeling and simulation?

• about creating and implementing a model:

– How can important aspects of inter-individual transmission of SARS-CoV-2 via
airborne respiratory aerosols be described mathematically?

– How can the mathematical model be implemented efficiently as sustainable soft-
ware in the sense of reusable and verified code?

• about running simulations with the model and their practical relevance:

– How can one reliably predict the exposure risk for everyday situations?
– How can uncertainties in the simulation be quantified?

I seek to answer these questions by adopting an interdisciplinary approach. In this
manner, I join in the call by Fefferman et al. for “a new paradigm for pandemic pre-
paredness wherein interdisciplinary research and close collaboration with public policy
and health practitioners can improve our ability to prevent, detect, and treat pandemics
through tighter integration among domains, rapid and accurate integration, and trans-
lation of science to public policy, outreach and education, and improved venues and
incentives for sustainable and robust interdisciplinary work” [22, p. 1]. On the one hand,
I believe that the combination of and the interchange between disciplines opens up new
perspectives and helps us think outside silos. On the other hand, interdisciplinary re-
search entails a variety of obstacles. Above all, it demands an understanding of distinct
disciplines, their respective methods and mindsets. It also means that one must establish
a shared vocabulary. In this work, the word agent has great potential to confuse. Crowd
researchers refer to virtual persons as agents, whereas, in microbiology, an infectious
agent is a pathogen. I replace agent-based modeling with individual-based modeling, and
individual refers to a single virtual person. Generally, I sometimes use longer descriptions
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1 Introduction

instead of standard terms to avoid other ambiguities or misleading framing. Thus, I aim
to make my research comprehensible for a broad audience.

This goal of accessible research outputs applies not just literally to the terminology
used in this dissertation but also figuratively to my modeling approach. I employ simple
concepts that researchers across various disciplines should be able to understand, use,
and extend to address their own subjects. To that end, I integrate my model into an
established open-source simulation framework designed for research purposes. It offers
interfaces for both developers who know how to modify and extend code and ordinary
users who are content with setting up simulations using a graphical user interface. In
this manner, I seek to foster interdisciplinary approaches in infectious disease modeling.

1.3 Structure of this work

The structure of this work mirrors the modeling cycle depicted in Fig. 1.2. This illustra-
tion deviates slightly from representations such as the simulation pipeline explained in
[23, pp. 1–4] or the description in [24], but the concept remains the same. My first step
is to observe the real world, followed by deriving and implementing a suitable model,
to finally run simulations. This process is iterative and integrates improvements, for
example, if the validation shows that the simulation results are a poor match for reality.

Mathematical
model Algorithm Simulation

program

Prediction

Validation

Software
development

Operationalization Simulation

Discretization

Verification Verification

Real world Virtual world

Figure 1.2: I adopt an iterative modeling approach in this work, starting with observing the
real world.

To clearly set apart what is new in this dissertation, I divide it in two parts: Part
I gives an overview of the findings discovered by others. It introduces the background
knowledge required for deriving a transmission model for SARS-CoV-2 and for using it
appropriately to obtain reliable outputs.

• Chapter 2 summarizes the scientific literature on SARS-CoV-2 transmission. This
substitutes own experimental observations of the real world.
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1 Introduction

• Chapter 3 discusses how state-of-the-art models and recent developments opera-
tionalize these findings.

• Chapter 4 introduces the theory of uncertainty quantification methods.

Part II continues with my own contribution:

• Chapter 5 describes how I translate the findings from Chapter 2 into a mathematical
model that aims to overcome deficiencies of approaches discussed in Chapter 3.

• Chapter 6 documents the implementation of my model and its verification. It also
points out opportunities for extending the simulation tool.

• Chapter 7 is dedicated to validating the model and conducting numerical experi-
ments to predict the exposure risk.

• Chapter 8 improves the reliability of these predictions with the aid of uncertainty
quantification methods.

Finally, Chapter 9 summarizes my dissertation, evaluates the achievements, and pro-
vides an outlook on future directions. Appendix A gives details about the technical
equipment and tools used in this work. The remaining appendices provide additional
explanations and access to supplementary material referenced in the main part.
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Part I

Background, state of the art, and recent
developments
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Modeling and simulation of airborne coronavirus transmission touches on various dis-
ciplines. The most important ones in the context of this work are computer science,
mathematics, and life sciences. Since the art of modeling is in capturing the essence of
the system under investigation, only a small fraction of each discipline is relevant for de-
veloping an adequate model. The following chapters of Part I discuss works by others on
coronavirus transmission, epidemiological modeling, and uncertainty quantification. A
subsection briefly introduces microscopic crowd simulation, as several individual-based
epidemiological models are built on it. The knowledge and the number of scientific
contributions about coronavirus transmission and epidemiological modeling experienced
extraordinary growth from 2020 onward. Therefore, Part I not only contains background
and state-of-the-art literature but also covers recent developments, that is, material pub-
lished during the time of working on this dissertation from 2021 to 2024.

The rapid developments within these years have led to several challenges when review-
ing the literature. Firstly, the continuous growth of knowledge necessitates an iterative
process. Secondly, in addition to keeping track of several disciplines, the large amount
of coronavirus-related contributions requires an efficient selection process. My search
strategy in breadth involved screening databases, such as PubMed,1 Elsevier’s coron-
avirus information center,2 and preprint servers (medRxiv3 and arXiv4). This rather
broad screening was complemented by references mentioned in the podcast Coronavirus-
Update [25], in which two of Germany’s leading virologists, Sandra Ciesek and Christian
Drosten, discussed the latest scientific findings. The Robert Koch-Institut [26] regularly
published updates of an epidemiological bulletin, offering further reading, while Covid
Reference5 delivered summaries of essential research outputs. I also used personalized
recommendations for publications through Research Gate.6 The in-depth search nar-
rowed down the results listed by Scopus7 and Google Scholar.8 Tracking the references
of publications either through the list of references or through CrossRef’s9 cited-by ser-
vice revealed connections between publications.

Facing the extensive efforts of the scientific workforce responding to the outbreak of
the coronavirus disease, I have certainly missed some information despite this intensive
literature review. Considering that research on the coronavirus is ongoing and that
this work takes the coronavirus as an example of any airborne pathogen, simplifying
some developments and preferring systematic review studies over primary sources seems
justified.

1www.pubmed.ncbi.nlm.nih.gov
2www.elsevier.com/connect/coronavirus-information-center
3www.medrxiv.org
4www.arxiv.org
5www.covidreference.com
6www.researchgate.net
7www.scopus.com
8https://scholar.google.de
9www.crossref.org
All URLs accessed on April 2, 2024
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2 Transmission of the severe acute respiratory syndrome
coronavirus 2

On December 31, 2019, the World Health Organization (WHO) received information
about several cases of pneumonia in Wuhan, China. A novel virus responsible for this
illness was identified a few days later [27]. It was named severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [28] and determined to cause the coronavirus disease
(COVID-19) [29]. Within the following weeks, the outbreak rapidly evolved into an epi-
demic, which first affected larger geographical areas. Finally, the disease spread across
the world. In response to this global public health emergency, the WHO [30] declared
COVID-19 as a pandemic on March 11, 2020. Governments advised regulations that
deeply intervened with everyday life, such as lockdowns, stay-at-home orders, and social
distancing. Thus, they tried to contain the spread and prevent healthcare systems from
being overwhelmed. Three years later, as of May 5, 2023, over 764.6 million laboratory-
confirmed cases of COVID-19, including more than 6.9 million deaths, have been reported
to the WHO [31]. However, immunity increased as the number of infections rose and
vaccines became available. This globally alleviated the situation. According to the WHO
Director-General, COVID-19 has reached the status of a permanent health problem and
can no longer be regarded as a so-called public health emergency of international con-
cern [32]. Science significantly contributed to overcoming the crisis by identifying the
root cause, deciphering the virus, figuring out dominant transmission paths, evaluating
the effectiveness of containment strategies, and finally developing effective vaccines. The
following sections cover several of these aspects that are relevant to my research, in-
cluding how the massive mobilization of scientific brainpower has temporarily changed
scientific procedures and how this influences the present work.

2.1 Properties of the virus and how it spreads

This section summarizes the features of SARS-CoV-2 and its transmission modes. The
explanations focus on a few selected aspects, providing a knowledge base sufficiently pro-
found to understand the subsequent chapters about mathematical modeling of infectious
diseases and, particularly, how to translate SARS-CoV-2 transmission into an algorithm.

2.1.1 Fundamental characteristics of SARS-CoV-2 and COVID-19

SARS-CoV-2 is the virus causing COVID-19. It belongs to the species Severe acute respi-
ratory syndrome-related coronavirus1 and is placed within the family Coronaviridae1[28].

1Following the International Code of Virus Classification and Nomenclature, the family and species are
italicized, and the first letter is capitalized, whereas the name of the virus is to be written in standard
script and, unless part of the name is a proper noun, lower case [33].
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2 Transmission of the severe acute respiratory syndrome coronavirus 2

Members of the Coronaviridae are enveloped viruses that use ribonucleic acid (RNA) to
encode their genetic information [34]. The name corona is borrowed from the Latin word
for crown. It originates from the appearance of the virus particle when located outside
of a cell, also called a virion. A spherical morphology with spike proteins projecting from
the surface of the virion (see Fig. 2.1) resembles a solar corona [35]. Coronaviruses affect
many animals [36] and, in certain cases, also humans [37]. The outbreak of COVID-19
is the result of cross-species transmission of an animal coronavirus to humans [28]. This
is the third documented zoonotic emergence of coronaviruses since 2002 leading to se-
vere diseases in humans. While the outbreaks of the severe acute respiratory syndrome
(SARS) in 2002 to 2003 and the Middle East respiratory syndrome (MERS) in 2012
resulted in major epidemics, COVID-19 escalated into a pandemic [38].

Spike

Viral genome (RNA)

Figure 2.1: Schematic representation of the structure of the human coronavirus. Note: own
figure adapted from [39].

The more a virus circulates in a population, the more it can change as a virus constantly
replicates. The replication machinery introduces small changes in the copies, so-called
mutations, and a new variant of the virus evolves when enough mutations accumulate. In
the case of SARS-CoV-2, this led to, for example, altered transmissibility, disease severity,
or other epidemiological or clinical properties in the especially concerning variants Alpha,
Beta, Gamma, Delta, and Omicron. Omicron showed the highest transmissibility among
these [40, 41], while higher morbidity and mortality were found in cases infected with
the Delta variant [42].

Generally, COVID-19 can cause a variety of clinical manifestations. They range from
asymptomatic to severe symptoms, which can end up in multiple organ failure and death
[41]. Da Rosa Mesquita et al. [43] systematically review studies published during the
early phase of the pandemic and find fever and cough to be the most and second most
common symptoms, respectively. Cough is of particular interest because it is connected
to the major transmission pathway through respiratory droplets [43]. Even without
showing symptoms, also pre-symptomatic cases or, despite lower average infectiousness,
asymptomatic cases can infect others [44].
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2 Transmission of the severe acute respiratory syndrome coronavirus 2

However, the infection process is not fully understood. For example, the amount of
viruses required to successfully start an infection is unclear. In general, immunity to
pathogens decreases with increasing age [45]. The human challenge study conducted by
Killingley et al. [46] addresses the immune response in young adults after intranasal ad-
ministration of the virus. A relatively low dose of a wild-type SARS-CoV-2 strain caused
infections in 53% (18) of the participants who had neither been vaccinated nor infected
prior to inoculation. This study does not represent an average population because of
a sampling bias and a small sample size. Furthermore, human challenge trials involve
ethical issues by nature. A review study [47] finds a link between the dose and infection
in humans, but the infectious dose in humans remains uncertain. Karimzadeh et al. [48]
draw a similar conclusion based on an analysis of animal experiments and literature on
the infectious dose in humans for several other viruses. They suggest that SARS-CoV-2
is more contagious than influenza viruses. According to Popa et al. [49], the transmission
bottleneck size, which represents the number of viral particles that start an infection, is,
on average, 103 particles. Martin and Koelle [50] re-examine the data provided by Popa
et al. and argue that the transmission bottleneck is much smaller than the primary inves-
tigation suggests. Overall, the review studies [47, 48] and inconsistent findings in [49, 50]
indicate that there is no consensus on the number of viruses required for infection, which
impedes a quantitative dose-response assessment.

Once an infection has started within an individual, the viral load can reach 109 to 1011

virions during the peak of infection [51]. Infectious virus titers and RNA levels reach their
maximum around the day of symptom onset [52]. Killingley et al. [46] report the highest
concentrations of viral copies in a patient’s nose. SARS-CoV-2 reproduces not only but
very efficiently in the nose, which explains the strong role of shedding via the upper
respiratory tract [53]. It should be noted that the emission rates are highly individual,
vary throughout an infection, and depend on respiratory activity and other factors. Fig.
2.2 exemplary visualizes exhalation rates observed under various conditions. Malik and
Kunze [54] analyze the exhaled breath of two patients over the course of infection. At the
peak of infection, the exhalation rates for normal breathing reached 4.1 · 104 and 2 · 105
RNA copies per hour. Lai et al. [55] collected the exhaled breath aerosol of patients
infected with different variants of SARS-CoV-2. The participants provided 30-minute
breath samples according to a protocol that includes loud speaking, singing, coughing,
and sneezing, as described in [56]. The viral loads ranged from below the limit of detection
(75 RNA copies per sample) to 1.8 · 107 copies per sample. Interestingly, the fraction of
smaller aerosol particles contained higher viral loads than the larger particles. Alsved
et al. [57] document orders of magnitude lower values for individuals infected with Alpha
or pre-Alpha variants. The observed median emission rates reach 70, 110, and 80 RNA
copies per minute for breathing, talking, and singing, respectively. One person produced
7.8 · 103 RNA copies per minute during singing.

These findings indicate that SARS-CoV-2 transmission is closely linked to transmission
via exhalation and inhalation of aerosolized respiratory fluids. The smaller an exhaled
particle, the lower the chance it contains a virion. Obviously, the particle must be larger
than the virion. The size of a SARS-CoV-2 virion ranges from 60 nm to 140 nm with

11
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Figure 2.2: The diagram compares exhalation rates (SARS-CoV-2 RNA copies per minute)
reported for different conditions. Lai et al. [55] distinguish between exhalation
rates attributed to fine (≤ 5 µm) and coarse (> 5 µm) aerosol particles collected for
mixed respiratory activity, including loud speaking, singing, coughing, and sneezing.
Boxes span the range of data. The dashed lines represent median values where
available.

spikes of 9 nm to 12 nm length [58]. Therefore, the minimum diameter of a particle
carrying SARS-CoV-2 is approximately 0.1 µm [59]. Cvitešić Kušan et al. [60] collected
genetic material in different indoor hospital and home care environments where infectious
persons were present. The authors analyzed particle sizes between 0.01 µm to 32 µm and
found RNA copies mostly in particles greater than 0.18 µm. Smaller particles probably
carry only fragmented SARS-CoV-2. Thus, human respiration promotes viral shedding.

In summary, SARS-CoV-2 is an infectious RNA virus that is capable of infecting
and causing severe damage in humans. Neither infective dose nor viral shedding have
conclusively been analyzed, but they could vary in the order of magnitudes. Typical for
respiratory viruses, it is transmitted through exhalation and inhalation. The following
section discusses the transmission modes of SARS-CoV-2 in more detail.

2.1.2 Transmission paths

The term transmission has a variety of connotations. In the context of infectious dis-
eases, it refers to the passing of a pathogen from an infected host to a susceptible indi-
vidual. The mode of transmission is typically linked to the dominant habitat within the
host. For example, respiratory pathogens usually take the airborne route, while intestinal
pathogens are carried by vehicles contaminated with feces [4, p. 855]. Some pathogens
have more than just one transmission path. In such a case, the infectivity may vary de-
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pending on which path the pathogen chooses [61]. For example, infection via respiration
often needs fewer pathogens than ingestion [62, p. 45]. Furthermore, each transmission
path for the same pathogen can also change the degree of damage caused by the disease.
When the probability or severity of infection depends on the transmission path, this can
be described as an anisotropic infection [63].

In the scientific literature and the public discourse, one is often confronted with a tra-
ditional classification of pathogens according to their transmission mechanisms. Fig. 2.3
divides these mechanisms into direct and indirect transmission, as described in [4, p. 856].
Direct transmission occurs without the aid of intermediate hosts or inanimate objects.
This mechanism requires physical contact or droplets emitted through respiratory activ-
ities, for example, coughing or sneezing. Typically, droplets are defined as particles with
an aerodynamic diameter of > 5 µm. It is assumed that these relatively large droplets
reach only a short distance of 1m to 2m [64], hence the terms droplet transmission and
short-range transmission are used as synonyms. Within this range, pathogens contained
by the droplets can directly deposit onto another person’s skin or mucous membranes
and, eventually, enter the body. Smaller respiratory droplets, typically with a size below
5 µm and often termed droplet nuclei, are associated with the direct route but sometimes
also counted among the indirect route. They remain airborne and can carry pathogens
for several minutes to hours over a longer distance [65]. Indirect transmission is facili-
tated by living carriers, so-called vectors, or non-living objects. Non-living objects that
transport viable pathogens are often referred to as fomites or vehicles. Examples of
fomites in daily life are door handles and handrails. Vehicles are usually objects that
affect many individuals, as is the case for water and food [4, p. 856]. Another common
characterization distinguishes contact, droplet, and airborne transmission [65].

The conventional classification of direct and indirect or droplet and airborne transmis-
sion can be misleading. In search of a physically more accurate description, Jones and
Brosseau [66] develop the concept of aerosol transmission. However, this definition has
neither replaced the classical categorization, nor is it being used consequently through-
out the literature. Aerosol transmission is sometimes meant to involve both droplet
and airborne transmission, and sometimes it is used interchangeably only for airborne
transmission [67]. In addition, the threshold size to distinguish between droplets and
airborne respiratory particles is unclear. Typically, it is set to 5 µm, although this seems
an inappropriate mark for the transition between two significantly different aerodynamic
behaviors. Tellier et al. [67] propose 10 µm, while other authors argue for 100 µm instead
[64].

Following the conventional definitions, there is convincing evidence that human-to-
human transmission of SARS-CoV-2 mainly occurs via droplets and airborne respiratory
particles [64, 68–70]. It is important to recognize that there has been a debate about
the relative contributions of each transmission path to the dynamics of the pandemic.
Despite the scientific evidence, the role of airborne transmission had not been recognized
for several months after the outbreak of COVID-19 [68].

One argument for droplet and airborne transmission of SARS-CoV-2 is that other
respiratory viruses, such as its genetically similar forerunner severe acute respiratory
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Figure 2.3: The diagram categorizes pathogen transmission routes according to a commonly
used classification. The highlighted transmission routes dominate the dynamics
of the COVID-19 pandemic. However, there is no clear distinction between large
droplets and fine aerosol particles, which makes the definition of droplet and air-
borne transmission ambiguous.

syndrome coronavirus (SARS-CoV), MERS coronavirus, measles virus, influenza virus,
and many more employ these mechanisms [64]. Analogical reasoning leads to the hy-
pothesis that SARS-CoV-2 exhibits comparable transmission mechanisms. This is also
supported by several studies.

Most importantly, retrospective analyses of local outbreaks of COVID-19 associated
with specific events strongly suggest that airborne transmission represents a dominant
mechanism under certain conditions, particularly in indoor environments with inade-
quate air exchange. The infection patterns observed for two clusters recorded early
in the pandemic, a choir rehearsal in Skagit Valley, Washington, USA [71, 72] and in a
restaurant in Guangzhou, China [72–74], cannot be explained without assuming airborne
transmission. The choir rehearsal and the restaurant setting are just two of a myriad of
superspreading events, some of which are listed in [75]. They shaped the understanding
of the transmission dynamics of the COVID-19 pandemic [76]. A superspreading event,
as defined by Lloyd-Smith et al. [77], is an event where one or more individuals infect
an extraordinarily high number of other persons. It is not an exception that infectious
diseases are transmitted by 20% to 80% of the population [78]. Also, SARS-CoV-2 ex-
hibits heterogeneous transmission dynamics. It is even possible that 10% to 20% infect
80% of the population under certain circumstances [5]. Althouse et al. [5] explore which
conditions facilitate superspreading events and identify closed environments, inadequate
ventilation, crowded areas, and long exposure times as risk factors. Unfiltered and re-
circulated air can also contribute to transmission indoors [75]. These findings indicate
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airborne transmission because larger droplets are not affected by ventilation. For this
reason and since SARS-CoV-2 seems to be transmitted rather indoors than outdoors,
Wang et al. [64] argue that airborne transmission is more dominant than droplets or
fomites.

The primary role of the airborne route derived from superspreading events is in line
with observations of the trend of the pandemic. Zhang et al. [69] compare the number of
recorded COVID-19 cases in epicenters where different transmission mitigation strategies
were implemented. By establishing causality between the mitigation strategies and the
observed trend of infections, the authors derive that airborne transmission is the dom-
inant mode. However, the actual causal strength is difficult to estimate. The fact that
rules for preventing the spread have been declared does not necessarily mean that the
population complies with these rules. Furthermore, other effects, such as anticipation of
mitigation strategies by the population or undetected cases, could distort the results.

Collectively, these studies outline the critical role of mitigation strategies, ambient
conditions, whether one considers indoor or outdoor spaces, and many other factors for
the transmission characteristics of SARS-CoV-2. This complicates the quantification
of the relative contributions of droplet and airborne transmission to the dynamics of
the pandemic. To my knowledge, this has not yet been achieved. Nonetheless, the
arguments above strengthen the hypothesis that droplet and airborne transmission play
a crucial role and that airborne transmission is associated with indoor spaces, while
droplet transmission could prevail outdoors.

The possibility of fomite transmission cannot be excluded because SARS-CoV-2 can
remain viable for days on surfaces under favorable conditions [79, 80]. However, these
studies have been criticized because they presuppose unrealistic conditions [81]. Harvey
et al. [82] conclude from a longitudinal study and quantitative microbial risk assessment
that fomites contribute minimally to community transmission of SARS-CoV-2. Based
on this work and critically reviewing several studies on the stability of SARS-CoV-2 and
SARS-CoV deposited on surfaces, Goldman [83] argues that fomite transmission plays
only a subordinate role and should be treated accordingly with less effort. Referring
to further studies, Mondelli et al. [84] endorse Goldman’s [81] argumentation. Other
transmission media, for example, environmental fecal wastes, wastewater, and water
exposure are less relevant [85].

To conclude this section, a growing body of literature identifies airborne and droplet
transmission as governing transmission mechanisms for the COVID-19 pandemic. The
initial opinion that droplet transmission is the most crucial mechanism has been refuted,
and there are voices advocating airborne transmission instead. The following section
provides the background knowledge on why this transmission pathway is relevant.

2.1.3 The role of aerosols in coronavirus transmission

Respiratory aerosol particles, small and large, contributed to the spread of COVID-19.
This section provides insight into the physics behind transmission via aerosols. For
further reading, I refer to the textbook by Hinds [86], which breaks down aerosol science
in theory and practice in an accessible way.

15



2 Transmission of the severe acute respiratory syndrome coronavirus 2

Prior to delving deeper into the topic, a few physical definitions are necessary to avoid
ambiguities:

• An aerosol is composed of particles suspended in a gas, normally air [86, p. 4].

• The aerosol particles, also referred to as particles in the following, can either be
solid or liquid [86, p. 4]. In the context of this work, they are aqueous droplets.

• An important quantity is the particle size. It influences which law of nature
determines the behavior of the particles and, thus, affects the property of an aerosol
significantly. Particles with diameters ranging from 0.002 µm to over 100 µm are
usually considered aerosol particles [86, p. 8]. Since aerosols are often polydisperse,
consisting of particles with different sizes, they are commonly characterized by a
distribution of diameters.

• The diameter typically represents the aerodynamic diameter, which is the di-
ameter of a spherical particle with a density of 1000 kgm−3 with an equal settling
velocity, that is, the fall velocity of a particle experiencing gravitation in still air,
as the considered particle [86, p. 53].

Aerosol particles are not infectious per se, but they can carry infectious pathogens that
are hazardous to health. Smaller aerosol particles are of particular importance because
they can carry a large fraction of emitted SARS-CoV-2 virions, keep them airborne for
a long period, and may reach areas in the human respiratory system where the virus
leads to severe damage [87]. The three related aspects of aerosol generation, the fate of
aerosols after exhalation, and deposition in the human lungs are covered in the following.

2.1.3.1 Aerosol generation

Besides human respiration, there are many processes that generate pathogen-carrying
aerosols. For example, aerosol particles can be resuspended from surfaces [88] or originate
from medical procedures [89, 90], and there is aerosolization of wastewater when flushing
the toilet [91]. However, these very specific circumstances are beyond the scope of the
present work. The focus is on human respiration.

The physics of aerosol generation in the human respiratory system has not yet been
completely uncovered because it involves complex processes, which can be summarized
as follows: Human airways are covered with a fluid film. In the case of an infectious
person, this film contains virions. Respiratory activities, such as coughing or breathing,
aerosolize parts of the surface film and emit the aerosol particles into the environment.
Morawska et al. [59] describe in depth the physical mechanisms of turbulent aerosolization
and fluid film, filament, or bubble breakage.

The resulting aerosols have varying concentrations and particle size distributions.
These characteristics determine the time certain amounts of pathogen remain airborne
or how quickly they sediment. Over the past decades, several experimental studies, for
example, [92–97] analyzed the size distributions for respiratory events but came to differ-
ent results. Of course, the measurement techniques have changed, as other instruments
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have become available since early investigations by Duguid [92] in 1945. Furthermore,
the experiments were conducted under different conditions and had a specific objective,
making comparisons between the results difficult. Clearly, the experiment setup and
evaluation varied, including the instructions to produce aerosols, the composition of par-
ticipants, and correction of measurements for particle shrinkage. For a detailed review
and synthesis of available data, I refer to the work by Pöhlker et al. [98].

Based on the preprint version of this review [99], Bagheri et al. [97] carefully carry
out a comprehensive experiment with 132 participants, aged between 5 and 80 years, in
a controlled environment. Thus, they avoid many deficiencies of previous studies. As
summarized in Fig. 2.4, vocalization leads to both smaller and larger particles, while
breathing mostly produces particles with diameters below 5 µm. The number concen-
trations2 for particles < 5 µm by respiratory activity decrease in the following order:
shouting, singing, speaking, and breathing. For particles < 5 µm, the concentration in-
creases with age, but the influence of other factors is negligible. One limitation is that the
subjects were healthy [97]. Persons with respiratory infections can produce significantly
more aerosols [100].
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Figure 2.4: The particle size distribution depends on the respiratory activity. Note: own rep-
resentation reproduced from [97], data retrieved from https://aerosol.ds.mpg.
de/en/ on September 5, 2023.

In an experimental setting, breathing may appear as the least crucial respiratory ac-
tivity because it is associated with lower aerosol concentrations. In reality, breathing is
highly relevant for pathogen transmission via aerosols, maybe even the deciding aspect.
Shouting is atypical for everyday situations, talking can sometimes be avoided, and, if
the emitter is symptomatic at all, coughing or sneezing are sporadic respiratory events.
In contrast, breathing is a life-sustaining and continuous process, leading to a throughput

2The number concentration is also referred to as number density. Here, it measures the number of
aerosol particles per unit volume.
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of 10m3 to 25m3 of inhaled and exhaled air per day [86, p. 233]. The amount of shared
indoor air and, hence, the number of inhaled aerosol particles originating from breathing
can be high.

The aerosol number concentration and particle size distributions can act as indicators
for viral load, but the relationship is not linear. It has been demonstrated for the influenza
virus that breathing yields higher pathogen concentrations in the fraction of aerosol
particles < 5 µm [101]. Recent experiments confirm the same for SARS-CoV-2 [57, 102].
More precisely, particles with a size of 0.94 µm to 2.8 µm contain the largest portion of
SARS-CoV-2 RNA, and 90% of the viral RNA is found in particles with a dry size of less
than 4.5 µm. However, accounting for evaporation, the initial diameter could be larger
by a factor of up to five [102]. The next subsection scrutinizes evaporation and other
effects on the persistence of airborne pathogens.

2.1.3.2 Fate of exhaled aerosol particles and their viral load

The fate of environmental contaminants, in the present case airborne pathogens, de-
scribes what happens to substances once they have been released into the environment.
The spatiotemporal spread of respiratory aerosols after exhalation is governed by inter-
dependent physical laws, above all, gravitation, inertia, and evaporation [6, pp. 8–19].
To reduce the complexity, one often considers a single particle of a certain size and ig-
nores that particles within a particle cloud actually have different properties than a single
particle in air. For example, the relative humidity within an exhaled jet can be higher
than in ambient air [103]. Hence, assuming either the ambient relative humidity around
a single particle or the relative humidity of the puff results in different evaporation rates
and settling velocities [104]. Such limitations must be kept in mind when analyzing the
properties of an aerosol.

In general, the motion and evaporation properties of aerosol particles can be summa-
rized as follows: For larger particles, gravity is more dominant than evaporation and vice
versa for smaller particles (see Fig. 2.5). While larger respiratory droplets follow semibal-
listic trajectories and reach the ground within a few seconds, smaller aerosol particles are
caught in the jet of exhaled air. Once the coherence of the jet has broken down, ambient
airflows determine the particle motion [59]. It depends mostly on the ambient conditions
where to draw the line between small and large particles [105]. The medical literature
differentiates between aerosol particles and droplets with diameters smaller and larger
than 5 µm, respectively. However, this classification is misleading because, firstly, the
term droplet suggests that these particles are not aerosol particles, which is not true.
Secondly, the rather arbitrary threshold of 5 µm is ill-suited to capture the continuous
transition of the dominant transport mechanism from smaller to larger particles [65].

Fig. 2.6 underlines the scales on which different physical processes play a role. The
smaller aerosol particles deposit slowly. For instance, a 1 µm particle in still air with
velocity v ≈ 3.5 · 10−5ms−1 would settle roughly vt = 2mm within a time frame of t =
60 s. On such small scales, for example, inside the human lung, thermal diffusion is
relevant [86, p. 150]. However, on the scale of a room, the dynamics of particles are
determined by turbulent dispersion [59]. This means that airflows often disrupt and,
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Figure 2.5: The Wells evaporation falling curve shows qualitatively how evaporation and set-
tling affect aqueous droplets with different diameters. Larger particles settle faster
than they evaporate, whereas smaller particles evaporate before they reach the
ground. Note: own figure adapted from [105].

thus, prolong the settling of airborne particles. Airflows are caused by, for example,
ventilation or humans dissipating thermal energy [106].
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Figure 2.6: The curve shows the terminal settling velocity as a function of particle diameter
for a water droplet settling in still air. The settling velocity results from balancing
drag force and gravitational force (see Eq. 3.21–2 in [86, p. 49]). I calculated
it for standard density spheres at 293K (20 ◦C) and an atmospheric pressure of
101 · 103 Nm−2. Note: own figure.

They also affect the transport of fine aerosol particles in the horizontal direction.
Already exhaling aerosol particles involves air currents, which carry aerosol particles
over moderate distances. Hossain and Faisal [107] simulate a steady state air jet flow
produced by a constantly breathing human. The results show that 1 µm aerosol particles
travel about 0.3m in the horizontal direction. Xie et al. [105] find similar horizontal
displacements for normal breathing. The study includes the impact of varying particle
sizes, emission velocities, mouth-opening sizes, and evaporation under varying ambient
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conditions. Aerosol particles with diameters up to 200 µm are calculated to travel less
than 1m [105]. Kudryashova et al. [87] investigate the propagation of aerosols in an
unventilated environment. They artificially generate aerosols with sizes between 0.5 µm
and 20 µm. Within 3min to 5min, the aerosol concentration levels off at 1.5m distance
around the aerosol generator.

Importantly, evaporation also affects particle transport and sedimentation. Depending
on the ambient conditions, the aqueous part of the particle evaporates until the diameter
reaches stability. The remaining droplet nucleus contains non-volatile substances, such
as mucins or proteins. The equilibrium diameter is, on average, around 1 µm [59]. Such
small diameters are associated with a higher lifetime in the air. The time to reach the
stable size ranges from milliseconds to seconds [108]. However, a high relative humidity
can also lead to the growth of particles through condensation. Larger particle sizes lead
to faster sedimentation [105]. As a consequence of evaporation and condensation, the
particle diameter is a highly dynamic quantity. Therefore, it is difficult to characterize
particles by their diameter [65]. Nevertheless, this quantity is frequently used and often
considered constant for simplicity.

Sedimentation and evaporation have an impact on the amount of viable virus carried by
aerosol particles. Chatterjee et al. [109] demonstrate that there is a correlation between
virus survival time and the lifetime of aerosol particles. Employing a semi-analytical
model, they estimate that the virus is inactivated roughly within 3 h in smaller particles
(< 5 µm). An experiment for particles with the same upper size limit shows a similar
timescale, with virus titer decreasing exponentially at a median half-life of about 1.1 h
[79]. Smither et al. [110] analyze the stability of SARS-CoV-2 in artificial saliva with
particle sizes between 1 µm to 3 µm under different conditions. Depending on the relative
humidity, the half-life reaches values between 30min to 170min. A much shorter half-life
of 5.5min to 7min is determined for number concentrations produced by coughing or
sneezing [111]. Coughing or sneezing also produces larger particles [95]. Since larger
particles sediment faster, a shorter half-life seems reasonable. If ventilation is involved,
the half-life can be much shorter even for smaller particles. An experimental study
demonstrates that the number concentration of aerosols with an average particle size of
5 µm in a ventilated room with a door and window opened can half within 30 s [112]. The
results of these experiments and modeling studies attempting to determine the persistence
of viable SARS-CoV-2 in aerosols must be interpreted carefully. Each survey focuses on
specific conditions that do not directly reflect reality. Deriving an exposure or infection
risk requires even more information about how airborne pathogens enter susceptible
individuals.

2.1.3.3 Respiratory deposition

The final step in the transmission of pathogens via aerosol is the intake of a particle. Large
respiratory droplets, well beyond 100 µm, that follow ballistic trajectories are less affected
by air currents than smaller aerosol particles. Therefore, they enter the respiratory tract
less frequently but rather deposit directly onto mucus membranes, such as the eyes
[65]. In contrast, smaller particles can be inhaled and, thus, reach different regions
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within the respiratory system [86, pp. 233–47]. The fraction of particles that enters the
respiratory system through the nose or mouth compared to the particle concentration
in the environment is defined as the inhalable fraction (see Fig. 2.7). It depends on the
aerodynamic diameter and the flow field of the ambient air [86, p. 246].
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Figure 2.7: The diagram estimates the inhalable fraction and total deposition in the respi-
ration system based on Hinds’s adaption (Eq. 11.1–5 in [86, pp. 244–5]) of the
International Commission on Radiological Protection [113] deposition model. The
inhalable fraction is averaged over all directions of the airflow passing by an inhaling
person. The deposition is fitted to averaged data from males and females as well
as different levels of physical activity. The shaded area indicates the size range of
SARS-CoV-2 virions [58]. Note: own figure.

Once aerosol particles have been inhaled, a part deposits in the respiratory tract or
is exhaled again. Respiratory deposition involves several physical processes, primarily
impaction, settling, and diffusion [86, pp. 235–7]. How distinct these mechanisms are
and, consequently, at which site in the respiratory system pathogens deposit depends
on a multitude of factors. To name a few, the inhaled particle characteristics as well as
the susceptible individual’s anatomy and health status have an impact. It also makes a
difference whether one breathes through the nose or mouth, at a high or low frequency,
and with a longer or shorter pause between inhalation and exhalation. As a consequence,
respiratory particle deposition could vary substantially from person to person [59], and
the overall complexity prohibits an analytical description.

Therefore, the scientific community mostly relies on experimental measurements of
the total deposition. This quantity sums up all fractions of deposition occurring within
the respiratory tract. Regional deposition of a certain fraction of particles is disregarded,
although the dose and entry point of a pathogen determine where the infection is inflamed
and how severe the consequences are [59]. Fig. 2.7 visualizes a general relationship for
the total deposition as a function of the particle diameter. According to this estimate,
more than half of the particles with a size of 2 µm to 100 µm deposit in the airways.
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The region below 0.1 µm is irrelevant because SARS-CoV-2 virions are larger. Particles
between 0.1 µm and 2 µm are least likely to deposit in the airways. This is the size range
mostly produced by normal breathing (see Fig. 2.4). However, this does not necessarily
diminish the role of breathing in SARS-CoV-2 transmission. Particles can grow again
due to condensation when entering the humid environment of human airways. Therefore,
initially small particles may deposit because of an increased size [114]. However, there
is a considerable knowledge gap and further research is required to reliably quantify
respiratory deposition of airborne SARS-CoV-2 [59, 114].

2.2 Reactions to the coronavirus pandemic 2019

The crucial contribution of aerosols to the dynamics of the COVID-19 pandemic was
not always as clear as it appears in retrospect. Several months passed before a large
part of the scientific community and decision-makers gained a reasonably well-founded
idea of the driving factors. In the meantime, governments and the civil population took
action, with regionally differing strategies and vigor, to contain the spread while science
across disciplines tried to answer urgent questions. These reactions influence the focus
and the knowledge base available for the present work. Therefore, they are addressed in
the following subsections.

2.2.1 Transmission mitigation and containment strategies in everyday life

In the public sector, the pandemic triggered containment and mitigation strategies. As
visualized in Fig. 2.8, a major goal was to reduce the rate of new infections to prevent
health care systems from being overwhelmed. An even more rigid strategy aimed at
elimination. In either case, this involved far-reaching measures, which differed from
region to region, were adapted over time, applied to specific subgroups of a population,
and experienced varying compliance. The population sometimes acted responsibly before
authorities had implemented certain measures. The contrary could also be observed
where regulations were consciously or unintentionally violated. This resulted in a clutter
of conditions. These circumstances have severe consequences for the recorded data and
which conclusions can be drawn from them. This also means that such measures must
be included in the models used to predict the spread.

Fig. 2.9 provides an overview of several measures. A prominent example is commonly
known as physical or social distancing. It defines a mutual distance two individuals
should keep. In this work, I prefer the term physical distancing because social distancing
sometimes also refers to a set of interventions, including a reduction of social contacts
one maintains. Physical distancing was imposed in many countries to reduce the trans-
mission risk via larger droplets that could directly fall onto a susceptible person’s mucus
membranes. Depending on the country, the guidelines prescribed 1m to 3m [115]. A
drawback of physical distancing is that it cannot always be maintained because people
may find it difficult to estimate the distance correctly, or compliant behavior is simply
impossible in overly crowded spaces [116]. Some conditions appeared especially critical
due to an extended length of stay in, for example, a waiting room. To reduce the exposure
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Figure 2.8: The goal of containment and mitigation measures is to flatten the curve of infected
persons to a level that does not exceed the capacity of a health care system.

risk, queues were guided so that physical distancing could be maintained. Alternatively,
queues were replaced by a waitlist or ticket system and fixed positions where people
had to wait until they were called. Since such interventions affect human locomotion
behavior, several of them are touched on in the modeling part of this work.

Figure 2.9: Non-exhaustive overview of non-pharmaceutical containment and transmission mit-
igation strategies taken during the COVID-19 pandemic. Some terms have not been
defined definitely. For example, the terms social distancing and physical distancing
are often used interchangeably.

For the sake of completeness, Fig. 2.9 lists additional measures, such as covering nose
and mouth with a mask or contact tracing. Masks filter respiratory aerosols or droplets
and, thus, can reduce the infection risk significantly [117]. Contact tracing aims to break
chains of infection by identifying close contacts and recommending or ordering them to
quarantine themselves. Close contacts are persons with a high risk of infection resulting
from contact with one or more infectious individuals for a given time. The exact definition
varies from country to country and was updated during the course of the pandemic. The
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Robert Koch-Institut [20], Germany’s central scientific institution for safeguarding public
health in the context of the pandemic, devised the following definition:

Definition: close contact

Close contacts are persons who stay in close proximity, less than 1.5m, to a con-
firmed COVID-19 case for over 10min without adequate protection through masks.

Other conditions can also suffice to reach the same exposure risk. Digital contact tracing
frameworks, such as the German Corona-Warn-App [118], typically evaluate the expo-
sure risk based on exposure time and proximity. The effectiveness of wearing masks [117],
contact tracing [119, 120], and other measures [121] has been reviewed manifold. They
are not further investigated in this work. However, their number and impact show how
seriously daily life was restricted throughout the COVID-19 pandemic. This points out
the importance of making measures bearable and not unnecessarily restrictive. To sup-
port informed decisions and tailored actions against the spread, the scientific community
tried to answer open questions.

2.2.2 Impact of the pandemic on scientific research

The COVID-19 pandemic called forth an unprecedented response by the scientific work-
force to various aspects of the same overarching problem. The magnitude of this reaction
manifests itself in the sheer quantity of contributions originating from various fields of
research and published within a short period of time. As a result of a document search
on Scopus that I conducted (see Appendix B for details), Fig. 2.10 provides a simplified
overview of the multidisciplinary interest from many subject areas and an increasing
number of contributions from computer science and mathematics related to modeling
and simulation of respiratory diseases. Of course, these figures do not reflect the full
picture because the search results depend on the database. For example, Scopus ranks
among the largest databases, but it does not index all COVID-19 literature [122]. Fur-
thermore, search terms can change over time, as is the case for SARS-CoV-2, which was
temporarily named novel coronavirus (2019-nCoV) [28]. Therefore, my search may in-
clude irrelevant or exclude relevant contributions, but the figures illustrate three major
challenges influencing this work:

• The vast number of scientific publications makes it impossible to detect and include
all relevant publications on recent developments. Fig. 2.10b shows slightly higher
numbers of annual publications for the years after 2000. This increase in attention
was possibly promoted by outbreaks of respiratory diseases such as SARS or MERS,
influenza waves, and others. The drastic inclination after 2019 is clearly associated
with the outbreak of SARS-CoV-2. The decline since end of 2021 continues until
2023, but the annual output is still higher than before the outbreak.

• The pressure to find solutions to burning questions was high, so research questions
were quickly addressed and findings were published early so that others could ben-
efit. A story of success for accelerated generation and acquisition of knowledge is
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(b) Number of documents published annually in
the subject areas computer science and math-
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Figure 2.10: The diagrams depict the number of documents indexed on Scopus with published
dates before 2024 and matching search terms in article title, abstract, and key-
words. I conducted the search on January 2, 2024.

the rapid development of effective COVID-19 vaccines [123]. Such tendencies of
compressed research activities also become apparent, for example, in the shape of
increasingly cited material that has been published before passing peer review, so-
called preprint content [124]. However, this also raises concerns about the quality
of research [125].

• An interdisciplinary subject affords an understanding of multiple fields of research.
Most of them offer various approaches to answer similar questions in a different
manner. The difficulty is selecting suitable approaches and pairing them. In the
context of COVID-19, interdisciplinary work also implies bridging knowledge gaps
and establishing or renewing shared vocabulary, for example, for transmission via
respiratory aerosols.

My strategy to handle these challenges is, first of all, to acknowledge that, although
COVID-19 literature is technically accessible, an encompassing review of state-of-the-art
and recently gained knowledge exceeds the scope of this dissertation by far. Focusing
on publications that address similar research questions or treat them in a comparable
manner produces some relief, but the remaining publication base is still unmanageable.
Therefore, I prefer review studies over primary sources, at least for the medical and
health-related subtopics. Review studies synthesize several studies at once and can bal-
ance out the imprecision of a single study. They also contextualize outdated findings, for
which reason I conducted a repetitive literature search and attached higher value to the
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latest reviews if available. Some reviews contrast findings from different fields of research
and, thus, provide insight into aspects from relevant disciplines. Finally, I limit the con-
sidered subtopics and tools to selected fields. These are computer science, mathematics,
physics, medicine and health, and their established interdisciplinary combinations, such
as scientific computing.

2.3 Reported data on superspreading events

Now that the consequences of the COVID-19 pandemic for everyday life and the scientific
landscape have been addressed, it is easier to appraise scientific reports and evaluate
where they possibly lack information or contain outdated statements. In the following,
I examine documented data on superspreading events because these events have been
identified as a driving factor for the spread of COVID-19. Moreover, in the absence of
other data, superspreading events are crucial for developing and validating a model.

As introduced in Section 2.1.2, superspreading events are characterized by a sudden
increase of infections [5, 126]. At least one superspreader is responsible for an extraor-
dinarily high secondary attack rate [126]. Typically, the number of secondary infections
ranges between 10 to 102 [127, 128], but there is no definite minimum number of sec-
ondary infections.

Superspreading events have been recorded throughout the pandemic. Majra et al. [75]
provide a non-exhaustive collection of such infection clusters. In their overview, typical
settings of spreading events are worker dormitories, workplaces, schools, hospitals, elderly
care, religious gatherings, and other leisure activities, such as shopping or going to a bar.
I explicate two spreading events among people going to a restaurant and attending a
choir practice. These scenarios provide a basis for the modeling part of this dissertation.
They are particularly interesting because the events occurred in January and March 2020,
respectively. At this time, little was known about SARS-CoV-2, and measures did not
distort the typical behavior and socializing.

The spreading event in a restaurant in Guangzhou, China, was first analyzed by Lu
et al. [73] and, based on their report, reconsidered multiple times. One infectious person
caused nine further infections in three families in a restaurant. The three families stayed
in the restaurant approximately at the same time at three tables next to each other. The
index case’s family shared the space with the other two families for an overlapping time
of 53min and 73min, respectively. During this time, the index case infected at least one
person from the two other families. It cannot be excluded that the remaining members
of each family were infected outside of the restaurant.

The other spreading event took place during a choir rehearsal in Skagit County, Wash-
ington [71, 129]. One among 61 attendees was symptomatic, who was later tested pos-
itive along with 32 other participants. Additional 20 persons were declared probable
cases without being tested. However, some of these could erroneously be identified as
secondary cases, as it happened for one person who was first considered infected with
SARS-CoV-2 but tested negative after symptom onset. Overall, 32 to 52 participants of
the attendees were infected, which results in a secondary attack rate of 53.3% to 86.7%.
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The choir rehearsal took place in two rooms with varying seating orders. However, the
exact arrangement of the seats and the participants’ positions are unknown. They stayed
all in the same room with some seats remaining unoccupied for the first 45min. Then,
the choir was divided, and each group practiced in a separate room for another 45min.
The infectious person was part of the group that stayed in the room where the practice
started. The sectional rehearsal was followed by a break of roughly 10min. During the
final 50min, the practice was conducted in the same setting as the initial session.

Overall, data on superspreading events is available, but the more recently the spreading
event occurred, the more behavioral changes, immunization, and virus variants come into
play. In turn, the earlier the spreading event occurred, the less aware the population and
scientific community were. This could have resulted in recording or providing fewer
details, compromising the trust in the data.

2.4 Summary

Human-to-human transmission of the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) occurs mainly through respiratory aerosols. Aerosol particles cover diam-
eters from 0.002 µm to over 100 µm of which the particles above a size of approximately
0.1 µm can carry viable SARS-CoV-2. The particle size determines the behavior of an
aerosol. Larger aerosol particles typically originate from violent respiratory events, for
instance, coughing. Because of their size, they settle faster than they evaporate. Conse-
quently, transmission via larger aerosol particles is bound to shorter ranges or fomites.
Smaller aerosol particles are produced by any respiratory activity, including breathing.
They remain airborne for several minutes to hours and can spread spatially over longer
distances. Hence, evaporation is a dominant effect, making the size of aerosol particles
highly dynamic. Several researchers argue that the role of smaller aerosol particles is more
critical, which suggests that breathing belongs to the primary transmission mechanisms.
However, the exact relative contribution of small and large particles to the dynamics
of the disease spread has not been analyzed conclusively. Furthermore, many questions
about aerosol generation, the persistence of exhaled aerosols, and their deposition in the
lungs remain unanswered so far, despite collective efforts of the scientific community.

The increased interest across disciplines in SARS-CoV-2 transmission resulted in an
extraordinarily high quantity of related academic publications. It also temporarily accel-
erated the publication process, which may negatively affect the quality. Moreover, fun-
damental findings, such as the notion of the dominant transmission path, have changed
since the emergence of the virus. To cope with these issues, I referred to review studies
where available, treated the literature carefully, and acknowledged uncertainties or limi-
tations. Importantly, large parts of empirical data about SARS-CoV-2 transmission are
biased because containment strategies implemented during the pandemic distorted the
records. Reports of superspreading events often omit relevant information. Laboratory
experiments are usually out of the question for ethical reasons. This strengthens the
need for modeling and simulation as a basis for decision-making.
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Estimating the spread of infectious diseases with the aid of computer simulations requires
a suitable model. This involves finding mathematical formulations of the transmission
mechanisms described in the previous chapter. This chapter presents the state of the art
and recent developments on how these mechanisms are operationalized and simulated.
Infectious disease modeling refers to both inter- and intra-individual spread of infection.
Models that describe transmission from one person to another belong to the category of
epidemiological models. In contrast, models considering an individual’s immune response
or pathogen load are often called within-host models [130, p. 5347]. I provide an overview
of epidemiological models operating on distinct or multiple scales, some combined with
within-host approaches.

Epidemiology is a branch of medical science that deals with the causes, spread, and
consequences of diseases affecting the health of a whole population. Accordingly, epidemi-
ological models provide mathematical descriptions of how an infectious disease outbreak
evolves in a population. These mathematical formulations and the resulting predictions
improve the understanding of the dynamics of spreading diseases and support epidemi-
ologists in identifying effective strategies for infection control. Such models were heavily
used during the COVID-19 pandemic (see Fig. 2.10b) and during previous disease out-
breaks. As with any model, they are built upon simplifying assumptions and are subject
to uncertainties, which delimits their predictive power.

The following sections are structured according to the scale of the epidemiological
models. Among other possible classifications, my definition of large-scale and small-scale
infectious disease models is an attempt to emphasize the setting of the problem and the
purpose of a simulation study. However, the multitude of approaches developed during
the COVID-19 pandemic yields a gradually shifting scope.

I approach the topic top-down, starting with the large-scale perspective. Here, large-
scale means that a model treats populations in a relatively coarse manner, for example,
divided into sub-populations with shared attributes. The observed population is usually
rather large, ranging from global or national to regional levels, and the predictions cover
days to years. The quantities of interest, such as an infection rate, are macroscopic
because they are valid for a whole population or sub-population. Thus, one often pursues
the questions: Which sub-groups contribute significantly to the spread, and where are
epidemic hot spots?

The subsequent considerations zoom into the details of between-host transmission to
finally arrive at finer scales. A finer resolution means that the simulation is restricted
to small populations of two up to a few hundred individuals. This restriction often
occurs because of increasing complexity and computational expense. Proportionately,
the spatial extent of the considered scenarios and the simulated time shrink to the size
of rooms or buildings and a few minutes to hours, respectively. This level of granularity
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allows for reenacting and scrutinizing superspreading events, a driving factor of the spread
of COVID-19. Questions stated in this context direct toward: How does inter-individual
transmission work? The mission is to harness this knowledge to mitigate individual
infection risks. Since many small-scale models, including the one I introduce in the
second part of this dissertation, integrate crowd models, I briefly recall the concept
of microscopic crowd simulation. Finally, I summarize the essential advantages and
disadvantages of each modeling approach.

3.1 Large-scale models

Epidemiological models covered by this section operate on a larger scale and provide
macroscopic information on the spread of an infection within a larger population, for
example, the inhabitants of a region or country struck by an epidemic. This model type
typically aims to predict the proportion of infected individuals or the duration of an
epidemic. It allows us to derive epidemiological key figures. The basic reproduction
number is a well-known example. First mathematical descriptions evolved in the early
20th century and provide the basis for further developments, for example, accounting
for sub-populations, specific social interactions, and mobility patterns. In this section,
I introduce these models, starting with a simple deterministic form and successively
increasing the complexity.

3.1.1 Compartmental models

Compartmental models represent a standard method for tracking the proportion of sus-
ceptible, infectious, and recovered members of a population over time. Their basic con-
cept dates back to the ideas of Hamer [131], Ross [132], Ross and Hudson [133], and
Kermack and McKendrick [134]. In their cornerstone work, Kermack and McKendrick
[134] formulate a deterministic relationship between the compartments of susceptible,
x, infectious, y, and recovered, z, people in a closed, homogeneously mixed population
(N = x+ y + z = const.) over time, t. They assume a constant transmission rate, κ, and
recovery or death rate, l, per time unit to link the compartments through the following
differential equations:1

dx

dt
= −κxy (3.1)

dy

dt
= κxy − ly (3.2)

dz

dt
= ly (3.3)

These basic equations and some of their extensions can be solved analytically [135]. Nu-
merical approaches using various methods, for example, provided by solvers for ordinary
differential equations or partial differential equations, are common [136].

1Another common notation, but originally not used in [134], replaces the transmission rate by the rate
of new infections an infectious person causes, β = κN .
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With dy
dt > 0, we obtain an essential epidemiological parameter:

R0 =
κN

l
. (3.4)

It is termed the basic reproduction number and describes the average number of sec-
ondary cases infected by an index patient in a completely susceptible population (x ≈ N).
If R0 > 1, an epidemic will occur, as visualized in Fig. 3.1. The effective reproductive
number applies to a partly immune population. It is defined as

Re = R0
x

N
=

κx

l
. (3.5)

The reproduction number is employed, often in an adapted version for specific condi-
tions, to compare the infection risk in certain scenarios or to evaluate the effectiveness
of measures against the spread of COVID-19.
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Figure 3.1: The SIR model (Eq. 3.1-3.3) yields the number of susceptible (x(0) = 999), in-
fectious (y(0) = 1), and recovered (z(0) = 0) persons for κ = 0.0002 d−1 and
l = 0.02 d−1.

Despite the informative value of the reproduction number, it should be noted that, in
its general form, it represents an average quantity. Therefore, it has limited validity when
the infection spread is examined for a small population at the level of individuals. Fig.
3.2 compares two chains of infection in which every member of the population (red and
gray) infects two other persons on average. The average value is an appropriate measure
for the condition in Fig. 3.2a, but it can be an oversimplification of the conditions in Fig.
3.2b, where only 8 individuals (20%) are responsible for 40 infections (80%).

The classic susceptible-infected-removed (SIR) model can be extended with additional
compartments and connections between them as they best characterize the spreading
disease’s properties and serve the model’s purpose [137]. There is practically no limit to
introducing further compartments and sub-populations. For example, the latent period
of a disease is typically represented by an exposed state [137]. The population is divided
into age groups to capture age-dependent characteristics of a spreading disease [137].
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(a) No variability in the number of new infections
caused by individuals.

(b) Significant variability the in number of new in-
fections caused by individuals.

Figure 3.2: The problem with the reproductive number: The same reproductive number de-
scribes the two scenarios of a disease outbreak differently well. All stick figures
represent infected individuals among which only the red ones infect others.

A spatial component and specific contact patterns can be used to discard the strong
assumption of homogeneous mixing within the population. Such refinements are steps
toward network or other individual-based approaches. For a detailed mapping of the SIR
model to complex networks, I refer to [138].

3.1.2 Network models

Network models in epidemiology are often used to determine macroscopic quantities
such as infection rates in certain sub-populations or specific regions. To obtain such
information, a network represents individuals or entities as nodes and their connections
as edges (see Fig. 3.3).

If each node corresponds to a single individual (Fig. 3.3a), the first task is to decide
which nodes should be linked. Retrieving data for an actual population, for example,
through contact tracing, is complicated and can raise data protection issues. Once the
nodes have been connected, one must define how these connections represent transmis-
sion. In the simplest case, an edge is regarded as existent or non-existent. A more complex
method introduces weights depending on the strength of the connection [139]. In sim-
ulations of airborne disease transmission, the edges embody social interactions. These
contact patterns are temporally heterogeneous, which can be analyzed with temporal
networks [140]. Such epidemiological network models simulating the spread of airborne
diseases are presented, for example, for smallpox [141] or for COVID-19 outbreaks on a
cruise ship [142] and at workplaces [143].

An alternative approach accounts for mobility patterns and, for this purpose, defines
nodes as locations that can be occupied by multiple individuals at the same time (see
Fig. 3.3b). Edges connecting two locations allow individuals to commute between them
[140]. Already before the outbreak of COVID-19, many network models, such as the ones
published in [144, 145], have been developed to unravel the spatial component of disease
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(a) Individuals (nodes) connected through social
interactions (edges).

(b) Entities (nodes) connected through paths
(edges) along which individuals (small dots)
can reach other entities.

Figure 3.3: The schematically illustrated network models define nodes as (a) individuals or (b)
entities. The latter can contain more than one individual. Depending on the scale
of the model, these entities stand for, for example, rooms, whole buildings, or larger
units. In both models, red dots indicate infectious individuals.

transmission in an increasingly globalized world. More recent contributions addressing
the spread of COVID-19 on different scales can be found, for instance, in [146–149].
While Chinazzi et al. [146] use a global model that spans approximately 200 countries
and territories, Chang et al. [147] and Kühn et al. [148] analyze the spread on a national
level. They connect multiple SIR-like models for sub-populations of a country through a
graph. The simulations in [147] rely on mobility data for metropolitan areas in the United
States. Kühn et al. [148] use their high-performance software MEmilio [150] to predict
the course of the COVID-19 pandemic in Germany, taking into account demographic
data. The simulations confirm superspreading events as driving factors. However, the
models are not capable of resolving heterogeneity in the transmission below the level of
a sub-population where spreading events occur [147, 148]. In a similar manner, Müller
et al. [149] collate real mobility data and census data to schedule activities of a syn-
thetic population within the metropolitan area of Berlin, Germany. Their work is based
on large-scale traffic simulations with the Multi-Agent Transport Simulation (MATSim)
tool [151]. The epidemiological feature of the simulation framework is defined by an ex-
ponential dose-response model that describes an individual’s infection probability, given
that contact with an infectious person is established at that node. With this type of
model, one typically predicts the number of persons that become infected, hospitalized,
and require intensive care. This provides a basis for calculating, for example, the repro-
duction number per sub-group or activity type.

The above models have some limitations. Above all, calibrating them is difficult be-
cause they depend on a multitude of input parameters. Thus, considerable uncertainties
percolate through the simulation. These uncertainties need to be treated adequately, for
example, with Monte Carlo simulations to obtain reliable results. This quickly becomes

32



3 Mathematical modeling of infectious diseases

computationally expensive for large populations. The literature often does not report
the computational resources required. For example, Müller et al. [149] only state that
their model is computationally demanding. This could be the reason for a relatively small
sample size of eight repeated and averaged simulation runs. Furthermore, quantities such
as the reproduction number per sub-group or activity type represent average numbers
and do not reveal information about the infection process for a specific situation. On the
level of unique everyday situations, small-scale approaches come into play to solve this
problem.

3.2 Small-scale models

This section addresses models for between-host disease transmission, acting on local
scales. In this context, the population is fairly small, typically with numbers in the order
of magnitude of persons working in an office, using a specific vehicle of public transporta-
tion services, going to a restaurant, or any other store. Because of the small population
size, it is possible to attribute distinct properties to each individual. The model output
and the drawn conclusions are usually valid for the one scenario that has been simulated.
Transferring them to similar scenarios can be improper. A common purpose of between-
host models is to better understand the physical transport phenomenon of pathogens
passing from an infectious to a susceptible person. Based on that, one can calculate each
individual’s exposure or infection risk, the total exposure time, the number of exposed
and infected individuals, or a reproductive number for that scenario. These quantities
facilitate evaluations and comparisons of how critical the simulated situations are.

The following subsections distinguish between approaches that assume homogeneous
and inhomogeneous exposure. In contrast to the large-scale perspective, the term (in)ho-
mogeneity now does not refer to (in)homogeneous mingling of individuals. Instead,
(in)homogeneity determines whether the pathogen is assumed to be uniformly distributed
across the considered space. This section closes with a brief excursus about microscopic
crowd models because they constitute the foundation of several recently developed disease
transmission models, including my work.

3.2.1 Homogeneous exposure risk

Probably the most prominent model type that assumes homogeneous exposure to air-
borne contaminants in closed environments is based on the Wells-Riley equation [6, 7].
This model can be approached as follows (for example, see [152]): We revisit the idea of
the compartmental SIR model and consider I infectious persons entering a room with S
susceptible persons. The infectious persons release airborne pathogens, which instanta-
neously and evenly disperse across the room. After time t, all individuals leave the room.
Rewriting Eq. 3.1 and adding the number of persons exposed to airborne pathogens, E,
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with an incubation rate, α, yields

dS

dt
= −κ(t)SI (3.6)

dE

dt
= κ(t)SI − αE. (3.7)

The change in the number of infected and recovered persons can be omitted because
the considered time interval, τ , is much shorter than it takes an exposed person to
become infectious (ατ ≪ 1) or an infectious person to recover. Therefore, the term αE
is negligible, and the number of infectious persons, I, remains constant. The transmission
rate, κ, is now time-dependent since the pathogen concentration in a well-mixed room
changes when the infectious person enters. Substituting κ(t) with dt̂ = κ(t)dt and using
the conditions S(0) = N − I and N = S(t) + E(t) + I delivers the solutions

S(t) = (N − I)e−q(t) (3.8)

E(t) = (N − I)(1− e−q(t)), (3.9)

where q(t) = It̂ = I
∫ t
0 κdt denotes the infection quanta per time produced by the

infectious individuals.
Originally, Wells [6, pp. 140–4] proposed the concept of quantum of infection. Ac-

cording to his definition, a quantum equals the amount of pathogen that leads to a
chance of infection in 1− e−1 = 63.2% of the susceptibles [6, p. 140]. Based on these
considerations, Riley et al. [7] formulate the probability of infection by

P = 1− e−Ir with r =
qpt

Q
. (3.10)

This equation takes into account the rate of quanta released per infector, q, the volume of
air ventilated by the susceptible persons, p, and steady-state room ventilation at rate Q.
The sum of the individual probabilities of infection for all susceptible persons resulting
from independent exposure in n environments returns the number of new cases

C =
S∑

i=1

1− e−(I1r1+I2r2+...+Inrn), (3.11)

known as the Wells-Riley equation, which is equivalent to Eq. 3.9 for n = 1.2

It should be noted that Wells-Riley-like models implicitly evaluate both inter-individual
transmission and pathogen-host interaction. As explained in [62, pp. 269–71], this can
be separated into the processes of exposure and dose-response. More precisely, the expo-
nential dose-response relationship formulated in Eq. 3.10 is composed of the probability
of ingesting a certain amount of pathogens, P1, and the probability that the ingested
pathogens cause an infection, P2. That is, an individual ingests j pathogens from an

2In the literature, one often finds the following version of the Wells-Riley equation: C = S(1−e−Iqpt/AV ),
with A denoting the air exchanges per hour and V indicating the room volume [153].
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exposure in volume V with mean pathogen density µ̄. Hence, the expected average dose
d equals µ̄V . For randomly distributed pathogens at low densities, the probability of
ingestion is characterized by the Poisson distribution:

P1(j | d) =
dj

j!
e−d (3.12)

The subsequent process of k ingested pathogens surviving to initiate infection with in-
dependent and identical probability λ is often defined by the binomial distribution:

P2(k | j) = j!

k!(j − k!)
(1− λ)j−kλk (3.13)

An alternative, biologically plausible dose-response model represents P2 by the beta
distribution or its approximations [62, pp. 272–4]. Depending on the pathogen and
host susceptibility, this can but does not necessarily provide better estimates than the
exponential dose-response model [10]. Given that infection occurs when at least kmin = 1
pathogens survive, the joint probability of P1 and P2 returns the probability of infection:3

PI(d) =

∞∑
k=kmin

∞∑
j=k

P1(j | d)P2(k | j) = 1− e−λd. (3.14)

This formula is equivalent to Eq. 3.10, but other than the Wells-Riley approach, this
generalized denotation is not limited to airborne pathogen transmission. More complex
dose-response models that consider, for example, variable host sensitivity are presented
in [62].

The Wells-Riley model has been refined in various ways to soften some strong assump-
tions that it entails. For more details, I refer to the reviews [9, 153], which examine
further developments of the Wells-Riley model. Among these improvements are, for ex-
ample, changing quanta levels over time [154], terms incorporating respiratory protection
[9, 155, 156], and declining pathogen concentrations through air cleaning [156], aerosol
deposition, or shrinking pathogen viability [9].

In the context of the COVID-19 pandemic, these improved models were heavily used.
They provided the basis for deriving quanta emission rates or estimating the infection
risk associated with certain situations, for example, a superspreading event during a
choir rehearsal [71]. Another study analyzes generalized scenarios of several customers
entering different types of indoor environments, such as retail stores or service providers
[157]. The scenario comparison in [157] emphasizes that proper ventilation combined
with reduced occupancy levels achieved by obliging customers to queue outside the store
can significantly reduce the infection risk. Note that these publications and typically
also other studies that use the Wells-Riley approach focus on mathematical modeling
and investigating the model output. The underlying implementation or details about the
simulation set-up are often not discussed.

3kmin is not equivalent to the minimal infectious dose. If kmin > 1, one obtains a threshold model
[62, pp. 270–6], which relies on the biologically implausible assumption that pathogens take effect
collectively as a group [9].
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Despite improvements of the exponential Wells-Riley equation, several limitations still
need to be addressed. Fully validated dose-response models for human-to-human trans-
mission of SARS-CoV-2 are currently not available. One reason is the lack of experimen-
tal data [10]. When it comes to airborne transmission of respiratory diseases in general,
the knowledge gap related to respiratory deposition is responsible for the constrained pre-
dictive power of the model. As explained in Chapter 2, respiratory deposition of aerosol
particles represents a considerable source of uncertainty. Nevertheless, the deposition
is not explicitly incorporated in the model [59]. Additionally, the Wells-Riley equation
ignores inter-individual variance in host susceptibility.

Finally, an evident and recognized limitation of the Wells-Riley model is the assump-
tion of an instantaneously well-mixed room. This assumption is grounded in the obser-
vation that airflows, driven naturally or by mechanical ventilation, act particularly on
smaller aerosol particles. These flows are turbulent, and turbulence tends to accelerate
the homogenization of airborne particles in indoor spaces [158]. The well-mixed theory
implies that the degree of exposure is equal for all individuals. Depending on the airflow
conditions and room geometry, this can constitute a major simplification [159]. Salinas
et al. [158] show that the well-mixed condition can underestimate a susceptible person’s
exposure for distances smaller than 5m to an infector and vice versa. Presumably, no
reasonable ventilation rate would produce entirely mixed air [158]. Indoor settings with
significant spatiotemporal differences in the pathogen concentration exist beyond doubt.
Otherwise, several COVID-19 infection clusters would seem unlikely [70]. To address this
problem of inhomogeneously distributed pathogen concentrations, Martinez et al. [160]
consider rooms with distinct quanta levels and introduce virtual persons with individual
schedules of activities in different rooms. Other recent developments focusing on airborne
transmission of SARS-CoV-2 depart from the well-mixed condition and resolve spatial
variations, for example, by means of rules determining pathogen levels within a grid of
homogeneously mixed cells [161], a semi-analytic description [159], or a Lagrangian and
Eulerian specification of the flow field [162].

In summary, many models estimate infection rates for specific daily-life situations
based on the Wells-Riley equation. The Wells-Riley equation assumes that airborne
pathogen loads are distributed homogeneously in a room, and it estimates the proba-
bility of infection as a negative exponential function of the inhaled dose. However, in
the case of SARS-CoV-2 transmission, there is a considerable lack of data and plausi-
ble dose-response models, which complicates or even prohibits calibrating such a model.
Furthermore, Wells-Riley-like models can be a reasonable simplification for some scenar-
ios, typically for airborne transmission in ventilated indoor environments. Nevertheless,
they do not provide insight into the mingling or interaction between individuals and the
respective transmission characteristics. Such a level of detail requires that the homo-
geneous assumption is discarded and spatial variations in pathogen concentrations are
taken into account.
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3.2.2 Inhomogeneous exposure risk

A growing body of literature recognizes inhomogeneous transmission characteristics in
crowds of moving people. Since the transmission mechanism is resolved spatially in these
models, it also makes sense to take a closer look at the virtual persons’ positions. Many
daily-life situations are rather dynamic in the sense that people move around. There-
fore, this model type often considers both pathogen transmission and human movement.
This section focuses on the former, that is, how transmission under the inhomogeneous
assumption is cast into a mathematical description. For a few reasons, the section is
much more extensive than other passages in this state-of-the-art chapter. Firstly, none
of the subsequently examined approaches has been fully established yet. Secondly, no
far-reaching review is available on this subject matter. And thirdly, my own work be-
longs to this model category, as will become apparent in Part II. Therefore, I investigated
how inter-host transmission has previously been modeled under the inhomogeneous as-
sumption and what the respective strengths and weaknesses of such methods are. This
involved identifying key variables related to disease transmission models, proposing a
suitable classification, and discussing the underlying concepts and several seminal works.

3.2.2.1 Review method

I conducted a systematic and a targeted literature review. Following the method in
[163], I aimed at aggregating important literature and reducing the likelihood of bias.
An exhaustive systematic review exceeds the scope of this dissertation because of the
large database of COVID-19 literature. Consequently, as with any review, my search
process may have failed to identify relevant articles. To iron out gaps in the systematic
approach, I decided to include the results of a targeted review.

The analysis consisted of collecting, extracting, and categorizing bibliographic data
retrieved from Scopus. I chose Scopus because it belongs to one of the largest abstract
databases for publications, meeting the requirement for peer review quality. The search
encompassed the following steps (see Appendix C for more details):

(1) Searching relevant literature, for example, following a pyramid scheme to gain an
understanding of the subject and to identify terms commonly used;

(2) Synthesizing frequently used keywords and defining search strings; Deciding on
exclusion criteria for screening the search results;

(3) Conducting the document search on Scopus;

(4) Collating search results found through the targeted review and step (3);

(5) Removing duplicates; Applying inclusion and exclusion criteria within a two-step
screening process (title and abstract screening followed by a full-text review);

(6) Data extraction, appraisal, and reporting;
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Note that the targeted review in step (4) essentially comprised checking the reference
lists of documents obtained in step (3) or collecting publications found through step (1).
Admittedly, such a procedure can distort the results, but a bias appears less problematic
here since the data appraisal focused on the general modeling approach presented in
a publication and not on quantitative data. Most publications found in this manner
escaped the systematic search because of the same criterion. They did not fit the search
string that limits the results to literature associated with the relevant transmission paths
(see number S4 in Table C.1). In a different context, such a constraint of a systematic
literature review has been admitted, for example, by Templeton et al. [164] although
experienced scientists were involved in defining the search terms.

The screening process included 125 publications, 124 without duplicates, retrieved from
Scopus, of which 32 met all inclusion requirements. The targeted review delivered 20
additional contributions. The final stage of the synthesis was to categorize the literature
according to the underlying models for disease transmission.

3.2.2.2 Overview of common modeling concepts

I identified four categories of how disease transmission is operationalized. Exposure or
infection risk is evaluated based on

a) the proximity to infectious individuals (see Fig. 3.4a),

b) a medium of pathogen transmission such as aerosols (see Fig. 3.4b),

c) a combination of the proximity and transmission medium approach, and

d) other means that belong to none of these categories.

The majority of the analyzed publications (n = 30, 57.7%), particularly those issued
before the outbreak of COVID-19, adopt the proximity-based approach. That is, the
transmission is expressed as a function of the mutual distance, d, between infectious and
susceptible individuals. Typically, a cut-off distance of de = 1m to 2m, in a few cases
even 3.5m or more, determines the minimum proximity required for an increase in expo-
sure, sometimes in combination with a threshold for the minimum exposure time, te, this
distance is maintained. This concept of proximity is equivalent to the one well-known
from mobile applications developed for digital contact tracing during the COVID-19
pandemic, for example, the German Corona-Warn-App [118]. Most of these models pre-
dominantly address short-range transmission via larger respiratory particles. However,
not all authors explicitly state this limited scope in their works.

Models classified by exposure to transmission media such as aerosols or fomites (n = 10,
19.2%) evaluate the susceptible persons’ exposure to the prevailing contamination around
their current position. The contamination originates from infectious individuals releasing
pathogens in a continuous or discrete manner while moving through a virtual space. Such
operationalizations generally attempt to describe transmission via fomites or smaller
respiratory particles. Some models consider the spatial extent of pathogen concentrations
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Figure 3.4: My classification of small-scale models for assessing inhomogeneous exposure risks
in indoor spaces: The models are typically based on the proximity between in-
fectious (red) and susceptible (blue) individuals (a). Alternatively, the models
interpose a medium of transmission between the emitter and receiver (b). These
two basic concepts are sometimes complemented with additional features, such as
a transmission probability or an exposure time.

to be constant for fomite and airborne transmission, whereas others account for aerosol
propagation in unventilated or ventilated environments.

A few publications (n = 7, 13.5%) combine the concepts of proximity and transmission
media. The remaining contributions (n = 5, 9.6%) could not be attributed definitely to
one of the above categories. The complete list of reviewed scientific contributions and
their respective classifications, descriptions of the analyzed scenarios, and the quantities
of interest are presented in Table C.2. I now discuss several of the listed works that
exemplify the above categories and, in my view, have promoted the development of this
model type through their novel ideas.

3.2.2.3 Examples of modeling exposure via proximity

One of the first extensions of a microscopic crowd model by a disease transmission model
was proposed by Johansson and Goscé [11] in 2012. The authors simulate the spread of a
fictitious disease in a dense crowd, assuming that the disease has a certain probability of
jumping from an infectious to a susceptible person if the two individuals are in physical
contact. Infected persons become immediately infectious themselves. Such a setting is
unrealistic mainly because it neglects the latent period. Nonetheless, this contribution
has put the coupling of crowd dynamics and epidemiological modeling up for discussion,
opening up a new perspective on preventing the spread of communicable diseases at mass
events.
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A few years later, Namilae et al. [167] added a temporal component to the proximity-
based approach. They specify the number of inter-individual contacts to identify prefer-
ential airplane boarding strategies in light of potential disease transmission. A contact
is recognized when a minimum distance is maintained for a particular time. In addition,
smaller and larger contact distances are associated with distinct modes of transmission.
Nonetheless, the model remains relatively coarse and does not account for larger droplets
following a certain direction after exhalation.

More recently, Garcia et al. [180] refined the proximity-based approach for short-range
transmission. They derive the transmission rate from computational and experimental
studies as a function of the time an infectious and a susceptible person spend together,
their distance, and their respective head orientations. Applying this model to pedestrian
tracking data allows the authors to compare the predicted infection rates for different
daily-life situations. The transmission function is enhanced in [191] such that ambient
airflows can be incorporated into the risk assessment. The results of computational fluid
dynamics (CFD) simulations for various flow conditions are transferred to coarse maps
of pathogen concentrations around an infector. In this manner, the model accounts for
transmission risks weighted by radial and angular coordinates, but it still belongs to
the proximity-based approaches because the maps are linked to a pedestrian’s position.
Nicolas and Mendez [209] demonstrate how to couple the maps with crowd models. The
transmission maps are publicly available and can, in principle, be transferred to other
scenarios. Unfortunately, the model is yet in a prototypical stage and does not capture
long-range transmission.

The general concept of proximity-based approaches had already been established by
the time of the outbreak of the COVID-19 pandemic. However, the transmission charac-
teristics of SARS-CoV-2 made clear that including solely the distance and contact time
between an infectious and a susceptible individual may not be enough for all diseases.
An infectious person can exhale pathogens carried by respiratory particles that remain
airborne for extended periods. Therefore, others entering a contaminated area poten-
tially become infected even if the infectious person has already left the considered space.
Nonetheless, a large fraction of models developed recently after the outbreak maintain
the concept of proximity.

3.2.2.4 Examples of modeling exposure via a transmission medium

Evaluating exposure to infectious particles lingering in the air can be achieved by in-
troducing a transmission medium, such as aerosols. Many models ignore the impact of
ventilation and air currents on the transmission medium, only some sophisticated models
include this effect.

Transmission medium in unventilated spaces: Vuorinen et al. [12] were among
the first to propose a model with a transmission medium shortly after the outbreak of
COVID-19. At the time of writing this dissertation, their article ranks among the most
cited compared to other contributions discussed in this section. The authors discuss sev-
eral modeling techniques, one of which extends a crowd model by a disease transmission

40



3 Mathematical modeling of infectious diseases

model. In this manner, they simulate virtual persons moving across a generic space and
in a fictitious supermarket. Infectious persons release pathogens into the environment,
while susceptible persons continuously take in a fraction of the pathogen concentration
at their current position. Emitted pathogens instantaneously distribute within a volume
of 1m3. After that, the dispersion of the pathogen concentration is approximated by the
diffusion equation in the horizontal plane. Here, the diffusion equation serves as a surro-
gate for dispersion. It actually captures the average movement of, in the Brownian sense,
randomly moving airborne particles. In the two-dimensional (2D) case, spatiotemporal
changes in the pathogen concentration, u, are described by

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
+Rs, (3.15)

where D denotes the diffusivity or diffusion coefficient, and Rs represents source or sink
terms. A term for convection or advection, ∇ (vu), would be added on the right side
of Eq. 3.15 [210, pp. 51–3]. Thus, one could account for the velocity field v the aerosol
particles are moving with. However, the contributions I included in the literature review
typically neglect this effect. Vuorinen et al. [12] solve the partial differential equation
(Eq. 3.15) with the aid of a finite difference method. They define the sink term as
Rs = −u

τ = − u
100 s , which translates into an exponential decay of the viral load with a

half time of ln (2) τ ≈ 69 s. A source term accounts for infectious individuals who con-
stantly or sporadically release aerosols around their position. The diffusivity is assumed
to be orders of magnitude higher than valid for ordinary diffusion to obtain a discernible
spatiotemporal spread of exhaled pathogen concentrations. The diffusion constant is set
to D = 0.05m2 s−1 [12], although values in the order of 10−11m2 s−1 or even 10−12m2 s−1

would be appropriate for the diffusion of aerosolized particles with diameters between
0.1 µm and 10 µm [86, p. 153]. This disagreement is motivated by the fact that Vuorinen
et al. [12] and developers of similar models [15, 194, 199] divert the diffusion equation
from its intended purpose and capture the dominant transport phenomenon of aerosol
dispersion instead. Dispersion acts on entirely different scales than diffusion. The au-
thors do not justify the exact value. Only Kanté et al. [199] and Duives et al. [194] cite a
value calculated in another study [211] but without explaining how they bridge the gap
between their and the referenced model. Using the diffusion equation may be reasonable
if the spatial resolution of aerosol concentrations is only roughly examined. This limi-
tation is often not stated explicitly. Therefore, users unfamiliar with the subject, in the
worst case policymakers for whom such models are often developed, might trust a model
with a fine spatial discretization of the diffusion too much and derive bold or wrong
conclusions. In addition, a high spatial resolution of the diffusion conflicts with the over-
all granularity of the model. It easily exceeds the precision of the simulated process of
generating a particle cloud, including its geometry and position, not to mention aspects
such as neglected aerosol propagation in the vertical dimension. Another disadvantage
results from increased computational effort. Employing the diffusion equation requires a
temporal discretization. The numerical solving scheme limits the time step size and, thus,
can adversely affect the computation time. I intentionally choose a simpler transmission
model to match the level of granularity of the crowd model [16, 17, 212, 213].
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Transmission medium affected by airflows: Mukherjee and Wadhwa [19] aim at
incorporating ventilation. They manually define a flow field in a 2D model of a building
with several rooms. Thus, a semi-analytic description of airflow patterns enables them
to represent a directed spread of respiratory aerosols, ignoring Newton’s law of motion
applied to fluids.

The motion of Newtonian fluids, which is a simplified model for liquids such as air, is
mathematically described by the Navier-Stokes equations. Although exact solutions to
the Navier-Stokes equations exist for some specific cases, real-world applications usually
require numerical approximations with the aid of CFD simulations. Treating such mod-
eling techniques in depth exceeds the scope of this dissertation. Therefore, I refer the
interested reader to [214] for an introduction to computational methods for fluid dynam-
ics. This matter is not trivial, and coupling the Navier-Stokes equations with a crowd
model holds additional challenges. For example, the 2D crowd model must be extended
by a dimension to fit the three-dimensional (3D) flow problem. Further, each virtual
person embodies a moving boundary acting on the flow, and both models’ discretization
must be aligned.

Such couplings are known from related research areas, for example, fire and evacuation
dynamics. The tool Fire Dynamics Simulator, which implements a CFD model of fire-
driven fluid flow, was temporarily extended by a module for crowd evacuation dynamics
[215]. The fact that this extension has been given up reflects how difficult it is to build and
maintain a coupling of two complex and computationally expensive models.4 A similar
type of model is designed for evacuation simulations in the context of chemical attacks
or bioterrorism [216]. Although such contributions appear promising at first glance, they
cannot readily be transferred to the problem at hand. One decisive difference concerns
the properties of the sources of contaminants.

Löhner and Antil [195] develop a disease transmission model to fill this gap. They
combine a crowd model with CFD simulations of airborne particle transport. The mo-
tion of air is described by the incompressible Navier-Stokes equations (partial differential
equations), with buoyancy expressed through the Boussinesq approximation. The spatial
discretization of the flow uses linear finite elements. A system of ordinary differential
equations defines the interaction between the airflow field and respiratory particles. The
movement of virtual persons introduces an additional system of ordinary differential
equations and immersed boundary conditions in the flow field. These different problems
are coupled bi-directionally with sequential time stepping and solved with various inte-
gration schemes. Based on this, several everyday scenarios are analyzed in [195–197].
Unfortunately, the high resolution of this modeling technique comes at prohibitive com-
putational expenses, a generally acknowledged drawback [217]. For example, a simulation
of transmission between passengers moving through a passage of a train station requires
approximately eight hours of computing time on 210 cores for a simulated time of two
minutes [197]. I argue that the simulation would have to cover at least 10min to 20min

4The evacuation dynamics module has been removed from the Fire Dynamics Simulator with the pull
request https://github.com/firemodels/fds/pull/10089 (accessed on April 2, 2024) for increas-
ingly challenging maintenance issues.

42

https://github.com/firemodels/fds/pull/10089


3 Mathematical modeling of infectious diseases

to find critical exposure levels to airborne SARS-CoV-2 in a realistic scenario of disease
transmission via airborne respiratory particles. Hence, the computational effort would
increase five or ten-fold. It would further rise by orders of magnitude if the aim were to
adequately quantify uncertainties in the simulation input and output. As a consequence,
this task quickly becomes unfeasible.

Modeling and simulation of aerosol dispersion without moving persons: Some
transmission models use CFD simulations but with static instead of moving persons. Re-
spective simulation studies often concentrate on exhalation of respiratory droplets, parti-
cle transport, and evaporation processes. For detailed insights into how the fluid dynam-
ics community regards SARS-CoV-2 transmission, I refer to the reviews by Sheikhnejad
et al. [218] and Sedighi et al. [217]. Here, I focus on the travel distances of exhaled
particles because this information backs my simulation studies in Part II.

Xie et al. [105] predict the horizontal travel distances of a respiratory droplet for vary-
ing conditions. Aerosol particles with diameters up to 200 µm emitted through normal
breathing are carried less than 1m. Another study concludes that 1 µm aerosol particles
travel about 0.3m given that a steady state air jet flow forms through constant breath-
ing [107]. Vuorinen et al. [12] consider a less isolated setting and run CFD simulations
of a coughing person in a large room with ventilation. They concede that ventilation
in indoor environments leads to turbulent conditions and, hence, substantial variance
in the realizations of the aerosol spread. Such uncertainties become more relevant the
more realistic the scenario is, for instance, in a reenacted choir practice scenario [219].
The study demonstrates how thermal plumes caused by the singers and radiators in the
room influence turbulent flow patterns. Aerosol dispersion differs notably depending on
whether buoyancy is considered.

These findings emphasize that there are limits to how far CFD simulations can be
taken. They serve well to scrutinize controlled small-scale scenarios, for example, a sin-
gle exhalation or airborne transmission between two persons positioned face to face. The
closer the scenario is to realistic daily-life situations, the more uncertainties must be
treated. This, in turn, involves repetitive simulations and conflicts with limited compu-
tational resources.

3.2.2.5 Further common aspects

Apart from the above discussion of the basic concepts of modeling inter-individual trans-
mission, I identified further aspects that are treated similarly in the reviewed publications
(Table C.2).

Modeling the individual degree of exposure: The model output, particularly in
the transmission medium models, is the individual exposure defined as the inhaled dose
measured in number of particles. This quantity is typically the accumulated product of
an average pulmonary ventilation rate and the number density of aerosol or pathogen
particles. Additionally, some contributions include masks with varying filter efficiency,
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Ef , simply by multiplying the shedding or intake rate with the term (1− Ef ) [178, 188,
194]. If the filter efficiency is considered to be equal for the whole population and does
not affect aerosol propagation, the simulation result is only scaled linearly.

Based on the individual degree of exposure, several models (see Table C.2, marked with
S or E → I) employ a dose-response relationship to estimate the number of infected. In
some cases, the dose-response is realized merely by a threshold exposure above which any
person is considered infected, although this does not reflect reality. A more sophisticated
approach relying on an exponential function, as with any Wells-Riley-like model, leads to
problems with the calibration and validation because data is scarce. As a consequence,
obtaining reliable estimates for absolute infection risks is difficult, if not impossible.
Contrarily, evaluating individual exposure levels for several scenarios and ranking the
respective exposure levels appears practicable and less controversial.

Modeling and simulating everyday situations – typical case studies: Almost
every publication listed in Table C.2 presents not only a disease transmission model but
also a case study for a specific scenario. These scenarios are usually either relatively
featureless or tailored to a specific situation in everyday life. In featureless scenarios, a
virtual crowd moves across an unspecified rectangular area. This is often paired with
an unrealistic parameter set for human movement, sometimes assuming even random
movement. The knowledge gained from such simulations can, therefore, only be of a
general nature. Furthermore, such scenarios fail to exhaust the potential of employing
crowd models to mimic realistic everyday situations.

In contrast, the specific scenarios represent clear-cut circumstances. This starts with
determining the pathogen to be considered. If SARS-CoV-2 is not the subject, it is
influenza virus, SARS-CoV, or Ebola virus [167–172]. In case of SARS-CoV-2, the setting
is occasionally outdoors [11, 165, 180, 182, 183, 191, 192] but largely indoors. As discussed
in Section 2.1.2, outdoor situations are relevant for short-range transmission via larger
respiratory particles, while long-range transmission through smaller respiratory particles
is associated with indoor scenarios. The difficulty is to clarify which particle sizes are
small and which are large. This is often defined only qualitatively. Most indoor scenarios
concentrate on situations with potentially high infection risks. That is, people are present
for at least several minutes, and crowd densities are relatively high. This explains partly
why simulations often target activities in restaurants or bars and at workplaces such
as offices, universities, or construction sites. Also, settings in retail stores or public
transport are frequently analyzed. Simulations of pedestrians arriving at an airport gate
or boarding and deboarding an airplane receive exceptional attention [167–171, 175, 185,
186, 188, 196, 203, 205–208].

The specific scenarios sometimes boil down to basic movement patterns, such as people
forming a line or moving in the opposite direction. Ying and O’Clery [181] locate the
highest exposure times in a supermarket near the checkout, where customers usually
queue. This is a plausible reason, giving many authors reason for simulating queues in
various settings [13, 17, 170–172, 180, 197, 213]. Derjany et al. [172] find that queue
formation considerably influences the infection risk. Garcia et al. [180] identify a linear
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queue with physical distancing as least critical compared to denser configurations with a
winding queue and small distances between the rows. However, this estimate is based on
transmission via proximity and, therefore, somewhat obvious because the linear queue
exhibits the lowest density and contact times.

Utilization of crowd models: The studies in my review typically employ estab-
lished locomotion models to mimic human movement. In principle, any crowd model
can be extended by a module for disease transmission. Most authors use an adaptation
of the so-called social force model (SFM). Alternatively, the movement is determined
by real data, so virtual persons follow trajectories extracted from pedestrian tracking
data [165, 180, 191]. Few authors define the movement through a cellular automa-
ton [13, 205–208], and, surprisingly, some set up new, non-validated rules or random
movement [12, 187, 190, 198–202], although sophisticated and scientifically approved al-
ternatives exist. Developing a new model and simulation framework is prone to errors.
Therefore, I argue that corroborated and advanced models should be preferred, espe-
cially since validated and verified open-source software is already available. For example,
the frameworks Vadere [220] or JuPedSim [221] offer state-of-the-art crowd models. The
following excursus introduces the theoretical background of such models very briefly.

3.2.3 Excursus: microscopic crowd models

Several crowd models have been developed over the last decades to study human move-
ment in various environments and, ultimately, to improve the safety and comfort of
crowds in traffic situations. Important approaches and their classification have often
been reviewed, for example, in [222–224]. Therefore, I cover solely the basics of so-called
microscopic crowd models.

Here, the term microscopic means that virtual persons are regarded as individuals.
The spatial and temporal resolution is in the order of centimeters and a few hundred
milliseconds, respectively [224]. Note that this resolution usually does not go beyond an
individual’s position or velocity. Nonetheless, a few disease transmission models evaluate
exposure as a function of the head orientation [14, 204, 209]. Presumably, such infor-
mation can be obtained from the pedestrians’ heading direction. However, the heading
direction is not a standard model output [225]. In addition, these submicroscopic details
have yet to be validated and verified.

Hoogendoorn and Bovy [226] propose to split pedestrian behavior into three layers one
of which is denoted as the operational level. It captures a pedestrian’s interaction with the
environment while walking, as visualized for four microscopic locomotion models in Fig.
3.5. A microscopic approach characterizes pedestrian movement usually by information
about the individual positions and states, for example, the velocities, over time.

The class of force- or acceleration-based models (see Fig. 3.5a) treats these quantities
in a continuous manner. In 1975, Hirai and Tarui [227] made an attempt to characterize
the evacuation of a crowd through forces. Helbing and Molnár [228] introduced the social
force model (SFM) twenty years later. Their seminal work has been adapted in various
ways, for instance, in [229–236]. Generally, each pedestrian is treated as pointlike mass,
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(a) Acceleration-based (b) Velocity-based (c) Position-based,
discrete space

(d) Position-based,
continuous space

Figure 3.5: Comparison of microscopic crowd models: Virtual persons (blue dots) enter the
simulation through a source (green) and navigate around obstacles (gray) to reach
the target (orange). The paths they choose (blue trajectories) in (a) to (d) depend
on the variable chosen to characterize human locomotion and on how interactions
between pedestrians are modeled. Note: own figures created with Vadere [220]; see
Appendix E (DS3) for simulation files.

obeying Newton’s laws of motion. Attracting and repulsive forces act on the mass and,
thus, accelerate or decelerate a pedestrian. These social forces are rooted in Lewin’s [237]
theory of social fields, which govern behavioral changes. The respective mathematical
formulation is a set of second order ordinary differential equations. Chraibi et al. [238] at-
test force-based models the ability to reproduce collective phenomena observed in human
crowds. However, the differential equations can provoke unrealistic oscillating trajecto-
ries and overlapping pedestrians mostly because of inertia [232, 238–240]. These artifacts
could impede accurate modeling of locomotion patterns such as physical distancing [225].

Velocity-based models (see Fig. 3.5b) eliminate this problem related to inertia. They
directly alter the direction of motion as a function of a pedestrian’s environment. This
function aims at avoiding collisions. To that end, it typically takes into account the
distance to neighboring pedestrians and their velocity. The resulting ordinary differential
equations are of first order. Discretization can lead to oscillating trajectories under
certain conditions, but more sophisticated models circumvent such limitations [222].

In contrast to the continuous approaches, cellular automata models (see Fig. 3.5c)
discretize pedestrian movement. The space is divided into grid cells. A pedestrian’s step
from the currently occupied cell to a free cell is determined at discrete times by prede-
fined rules. Differential equations are not involved, which is why such models are also
referred to as zeroth order models [222]. Gipps and Marksjö [241] present the first cellular
automaton for human movement. Burstedde et al. [242] improve the cellular automaton
for crowd dynamics. They employ a floor field to define areas of attraction, such as a
preferred path around obstacles or crowded places. This idea has been integrated also
in other microscopic crowd models to find the direction of motion [243–245]. A common
approach represents the floor field by the solution to the Eikonal equation. Figuratively,
this yields the shortest path perpendicular to an advancing wave front [245]. The concept
of cellular automata is easy to grasp and computationally cheap. However, its capabili-
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ties of reproducing realistic movement patterns are limited, and artifacts are a common
issue although the original model has been improved multiple times [223, p. 34].

The optimal steps model (OSM), proposed by Seitz and Köster [246] and enhanced
in [244], adopts the decision-based approach of the cellular automaton but permits mo-
tion in a continuous space (see Fig. 3.5d). The temporal discretization adheres to an
event-driven update scheme. I favor the OSM as a basis for my transmission model be-
cause of the following and other reasons detailed in Part II. One important advantage is
that natural trajectories are obtained simply by optimizing a utility instead of solving
differential equations. The event-driven design lends itself to modeling disease transmis-
sion because it aligns inherently with respiratory events such as coughing or breathing.
Furthermore, the OSM explicitly parametrizes the concepts of intimate and personal
space. Consequently, tuning the model to capture physical distancing is straightfor-
ward, as demonstrated for scenarios of a bottleneck [247] and a queue [17, 213]. This is
particularly relevant for modeling crowds in times of the COVID-19 pandemic. These
adaptations rely on the assumption that all persons maintain the same average distance.
An informed calibration recognizing experimental and empirical data requires more in-
vestigations such as the ones in [248, 249]. However, these uncertainties appear bearable
in comparison to other unknowns arising with epidemiological extensions of microscopic
crowd models.

3.3 Approaches toward modeling and simulating infectious disease
spread at a glance

The preceding sections separately discussed each approach toward infectious disease mod-
eling. Their variety makes it difficult to keep track of the different scopes and resulting
tradeoffs. Therefore, I give an overview of typical properties in Table 3.1.

This comparison illustrates a typical conflict of objectives: An increasing degree of de-
tail ensures a more realistic representation of reality while complexity and computational
effort rise as well. Nonetheless, one can assume that individual-based exposure models
usually exhibit moderate computing times because they operate on much smaller scales
in time and space than the large-scale network models.

Each of the categories listed in Table 3.1 comprises many different approaches and
probably even more different algorithms and implementations. However, only a few
studies disclose the underlying discretization, solving scheme, and program code in de-
tail. Program code is often created and maintained separately for each study or by each
research group. However, at least some contributions employ established development
environments or simulation frameworks for individual-based modeling and extend them
by mechanisms for pathogen transmission. Among these are, for example, the devel-
opment environment NetLogo [250], the established simulation tools MATSim [151] for
transport simulation at large scales and JuPedSim [221] or Vadere [220] for microscopic
crowd simulation at local levels.
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Table 3.1: The comparison highlights typical scopes, employed methods, and advantages (+)
and disadvantages (−) of four model types for disease or pathogen transmission.

Sec. 3.1.1: SIR-like compartmental models predict the spread of a disease typi-
cally within larger, homogeneously mixing populations based on differential equations.
+ Simple to implement and solve
+ Extensible to arbitrary compartments
+ Low computational effort

− Strong assumption: homogeneously
mixed population

− No insights on small populations

Sec. 3.1.2: Epidemiological network models predict the spread of a disease within
small to large, heterogeneously mixing populations with the aid of a rule- or equation-
based model for disease transmission and progression.
+ Higher resolution of spreading dynamics

compared to SIR-like models
− Realistic networks are difficult to obtain

and can be computationally demanding
− Complex calibration and validation

Sec. 3.2.1: Wells-Riley-like models predict the probability of infection or number
of secondary infections for transmission via inhalation in homogeneously contaminated
indoor spaces with ventilation rates based on an exponential probability distribution.
+ Applicable for risk assessment of every-

day situations
+ Low computational effort

− Restricted to airborne aerosol particles
− Limited calibration data (SARS-CoV-2)

Sec. 3.2.2: Individual-based exposure models predict the individual degree of
exposure (or infection probability), considering individual movement patterns, with the
aid of a rule- or equation-based model for pathogen (or disease) transmission.
+ Applicable for risk assessment of every-

day situations
+ Simulation results easy to convey to a

broad audience
± Moderate computational effort (unless

aerosol spread is modeled in detail)

− Modeling human movement is complex,
but validated models and open-source
software exist

− Limited calibration data (SARS-CoV-2)

One limitation concerns all models that require or produce information about individu-
als’ exposure and infection states. In case of SARS-CoV-2, they all suffer from insufficient
empirical data. This problem can partly be handled by quantifying uncertainties. Once
the most influential parameters are known, one can tailor the data collection accordingly
to gain more knowledge and make simulations more reliable.

3.4 Summary

A substantial goal of mathematical modeling of infectious diseases is to predict the spread
of a disease in a population. Large-scale approaches such as SIR-like systems of differ-
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ential equations or individual-based network models capture problem settings on global
to national or urban levels. These dimensions are suitable for estimating the course of a
pandemic, but they are not intended to gain insights into local outbreaks. The latter is
crucial to counteract epidemic or pandemic diseases with transmission dynamics driven
by local infection clusters, for example, COVID-19 superspreading events.

In contrast to the large-scale models, small-scale models such as Wells-Riley-like mod-
els estimate the infection risk for local scenarios. This risk assessment relies on an
exponential probability distribution. The Wells-Riley equation and its adaptations as-
sume well-mixed pathogen concentrations in indoor environments. This assumption is
justified for many situations of airborne transmission in rooms with sufficient air mix-
ing. However, there are conditions for which airborne pathogen concentrations are better
characterized as inhomogeneous. In these cases, it is necessary to differentiate between
areas with elevated exposure risks and lower exposure risks.

The COVID-19 pandemic intensified the efforts to develop models built on the inho-
mogeneous assumption. A relatively fine resolution of transmission requires that also the
movement of individuals is captured, at best, by established microscopic crowd models.
These crowd models can be extended by a component for estimating the exposure or,
provided that an accurate dose-response relationship can be determined, the infection
risk. Such extensions essentially express transmission as a function of the proximity to
an infectious person or via a transmission medium, that is, contaminated aerosols or sur-
faces. Proximity-based approaches fail to capture transmission via aerosols that remain
airborne for a prolonged period. A susceptible person can become exposed to airborne
pathogens, although not standing near an infectious host. There is a need to address
this shortcoming of state-of-the-art models.

Recent developments that are based on a transmission medium seek to remedy this
deficiency by explicitly modeling aerosols. In the model, aerosols are often considered to
decay exponentially, to spread in the radial direction over time, or to be influenced by
airflows. When considering such aspects, it is important to find an appropriate level of
granularity to match the crowd model, available knowledge about parameter values, and
computational resources. Above all, high-fidelity computational fluid dynamics (CFD)
models yield a fine resolution of the transmission medium affected by airflow. However,
they entail a multitude of variables, and solving the underlying differential equations
results in extraordinary computational costs. Individual-based transmission models that
use simpler equations or rules to characterize pathogen spread produce similar informa-
tion while requiring less information and computing time. Thus, they allow a broad spec-
trum of users to reenact airborne pathogen transmission in specific everyday situations.
Furthermore, the models’ parsimony facilitates adequate quantification of uncertainties,
which are omnipresent in infectious disease modeling, especially regarding SARS-CoV-2
transmission.
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The preceding chapters revealed that there are many sources of uncertainty in experimen-
tal observations and modeling of disease transmission. Stochastic simulators represent
an important example of how uncertainties get into simulations by incorporating the
randomness of a system. Independent of whether models are deterministic or stochas-
tic, they approximate real systems as they are built on simplifying assumptions. This
can cause discrepancies between calculated and true values. Errors and uncertainties
propagate through the model and diminish the robustness of simulations, especially if
small deviations in the input result in large changes in the output. In the words of Neil
Ferguson, a renowned mathematical epidemiologist, this emphasizes that “models are not
crystal balls” [251, p. 317]. Quantifying uncertainties and analyzing the model sensitivity
regarding the input are essential aspects of scientific computing to improve the credibility
of predictions [252, p. 12]. Nonetheless, they are often ignored. Funk et al. [253] state
that it is uncommon in infectious disease modeling to properly analyze uncertainties.
Gödel et al. [254] encounter similar conditions in the field of crowd dynamics.

Neglecting uncertainties means that many simulation studies rely on estimates for
a single point in the parameter space. Two major advantages of point estimates are
that they require comparatively little effort, and it is easier to communicate compressed
information to decision-makers. However, they can give a wrong sense of certainty. It
may seem natural that average input values lead to average results and lower or upper
bounds of a possible input yield minimum or maximum outputs, respectively. These
presumptions do not apply generally, as can be concluded from the following example I
adapted from [62, p. 326]. Fig. 4.1 visualizes uncertain inputs and outputs of a model.
The mathematical formulation is assumed to be unknown or inaccessible, and the input
parameters are independent. The model output in Fig. 4.1b shows that point estimates
can be misleading since using single average or extreme values as input (p5, p50, or p95)
does not return the actual average output or extreme values of possible outcomes.

Fortunately, there are techniques for putting vague results of a single simulation run on
a firmer footing. As an example, they allow us to assess the model output, also termed
quantity of interest, statistically by a confidence interval. In addition to quantifying the
probability of output values, investigating the model sensitivity is often helpful. That
is, one identifies the input parameters with substantial impact on the output to gain
a better understanding of the model or to improve the respective input uncertainty in
a subsequent step. This chapter describes how to obtain such quantitative information
with the aid of uncertainty quantification methods.

It starts with a definition and classification of uncertainties, followed by an introduction
to metrics of model sensitivity and forward propagation. I briefly discuss how case
studies in infectious disease modeling approach the task of uncertainty quantification.
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Figure 4.1: The uncertainties in the input parameters to a model, f (x1, x2) =
x1

x2
, are charac-

terized by a normal distribution (x1) and log-normal distribution (x2). The model
output in (b) shows that estimates for the points p5, p50, and p95 yield different
results than all possible parameter combinations. Error bars represent the 5th and
95th percentile around the median (circle).

An overview of relevant uncertainty quantification tools and frameworks completes this
chapter.

4.1 Definition and types of uncertainty

One way of approaching the concept of uncertainty is to categorize it into two types. A
common taxonomy differentiates between aleatoric and epistemic uncertainty. Aleatoric
uncertainty, derived from the Latin word alea, refers to uncertainty arising from the
randomness of the observed system. This type of uncertainty cannot be reduced, unless
the nature of the system is altered. In contrast, epistemic uncertainty, coming from
Greek epistēmē and translated as knowledge, occurs because of a lack of knowledge.
This deficiency is clearly an attribute of the observer and can be reduced by collecting
information [255, p. 4].

A mathematical description of uncertainties often utilizes probability distributions, as
in Fig. 4.1. In these terms, probabilistic simulators incorporate aleatory uncertainty by
drawing randomly from a distribution with an uncertain outcome. Epistemic uncertainty
would imply, for example, that it is unclear which distribution describes a parameter
best. Epistemic uncertainty can be classified into further subcategories of model form
and parametric uncertainty [255, p. 4].

The model form is always uncertain to some extent because discrepancies between the
model and the observed system are inevitable. For instance, a model excludes variables,
such as the variability of airborne pathogen concentrations in indoor settings. Such delib-
erate decisions are necessary to reduce the complexity of the problem. The consequences
of such differences between model and reality often become apparent when the model is
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validated against a ground truth. Deviations of the computed value from the true value
are typically recognized as errors [256]. There remains doubt about the correctness of
the model for the codomain where true values are not available.

Parametric uncertainty entails doubts about the values chosen for specific model pa-
rameters [255, p. 4]. It often originates from insufficiently accurate measurements. This
is a major source of uncertainty in the context of modeling SARS-CoV-2 transmission on
local scales. For this reason, I focus on quantifying parametric uncertainty and its effect
on the simulation result.

Regardless of what exactly causes epistemic uncertainties, accumulating more knowl-
edge is usually costly. Therefore, it is advisable to first identify areas where small actions
lead to major improvements. Probability theory offers several useful methods to carry
out this task.

4.2 Uncertainty quantification methods

There is a variety of uncertainty quantification methods available for different problems.
Two classical categories are forward and inverse problems. Forward propagation refers to
the practice of pushing uncertainties, for example, originating from poor knowledge about
parameter values through the considered system. The resulting variability in the quantity
of interest is typically quantified by summary statistics or a probability density function.
Such uncertainty analyses are crucial to evaluate the likelihood of specific predictions.
Additionally, one can put the input and output uncertainty into relation and derive the
model sensitivity. Sensitivity analysis is sometimes classified separately alongside forward
and inverse problems. In accordance with [255], I regard sensitivity analysis as one aspect
of forward uncertainty problems. In contrast to forward propagation, inverse techniques
aim to infer the input parameters upon the condition that the model returns a specific
output. Inverse methods are only helpful if the model is generally understood and the
database is qualitatively and quantitatively adequate. This does not apply to the use case
of this dissertation because data for modeling SARS-CoV-2 transmission is insufficient.
Instead, I focus on forward problems, more precisely, sensitivity and uncertainty analysis.

4.2.1 Global sensitivity analysis with the Sobol’ method

Sensitivity analysis aims to quantify the impact of variations in the model input on the
quantity of interest. An important goal is called factor fixing. That is, one excludes
negligible sources of uncertainty and, thus, reduces the size of the problem. In contrast,
having identified the most influential parameters allows us to reduce the output uncer-
tainty effectively if a true value can be determined for the parameters with the highest
priority. I refer to [257, pp. 49–56] for more details about settings of sensitivity analyses.

A common classification of sensitivity analysis distinguishes between local and global
methods. Local methods assess the effect of small perturbations around a reference
value. The one-factor-at-a-time method is a popular local screening method. As the
name suggests, only one parameter is varied at once to observe changes in the output.
However, this does not reveal interactions between variables, which are often considerable.
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This limitation does not apply to global methods. They come into play if the aim is to
analyze the impact of parameter interactions or to consider the whole range of input
uncertainty [258, pp. 303–4].

Global methods are further classified as screening-, regression-, or variance-based meth-
ods. Screening-based techniques, with the Morris method [259] as a prominent example,
can return a ranking of the parameter importance. This ranking does not reveal the
quantitative differences in the impact of different parameters [258, p. 331]. Regression
methods, such as partial correlation coefficients, are suitable for linear models. They can
also produce meaningful results for nonlinear models if rank transformation is applied, for
example, by partial rank correlation coefficients. However, rank transformation fails to
linearize the problem in case of nonmonotonic models [260]. In contrast, variance-based
methods are model-free. This means they deliver accurate sensitivity measures regard-
less of whether the model is nonlinear or nonmonotonic [258, p. 328]. They treat the
output variability as a sum of the variance caused by the input parameters. Therefore,
they are also called analysis of variance (ANOVA) techniques. I employ an established
variance-based method, namely sensitivity indices introduced by Sobol’ [261] as cited in
[263]. Well-tested implementations of this technique are already available.

Adopting the notation in [264], Sobol’ indices are defined as follows. Consider the
square-integrable function

y = f (x) , (4.1)

which is defined in the n-dimensional unit hypercube In. The function describes a
nonlinear model with input x = (x1, . . . , xn) and scalar output y. Partitioning f (x)
into a set of orthogonal functions yields the respective ANOVA representation with 2n

summands:1

f (x) = f0 +

n∑
s=1

n∑
i1<...<is

fi1...is (xis , . . . , xis)

= f0 +
∑
i

fi (xi) +
∑
i<j

fij (xi, xj) + . . .+ f12...n (x1, x2, . . . , xn)

(4.2)

The constant f0 quantifies the mean output, f0 = E [y]. First-order terms fi (xi) are
equivalent to the contributions by each parameter xi, whereas the multivariate functions
fi1...is (xi1 , . . . , xis) are related to interactions of s = 2, . . . , n parameters [258, p. 289].

The total variance D of the model output is calculated by squaring Eq. 4.2 and inte-
grating from 0 to 1 over In. Similarly as in Eq. 4.2, the variance can be decomposed into
the sum of partial variances Di1...is [264]:

D = V [y] =

∫
In

f2 (x) dx− f2
0 =

n∑
s=1

n∑
i1<...<is

Di1...is

=
∑
i

Di +
∑
i<j

Dij + . . .+D12...n

(4.3)

1The expression
∑
i<j

is often used in this context. Here and in the following, it denotes
n∑

i=1

n∑
j=i+1

.

53



4 Uncertainty quantification

Dividing Eq. 4.3 on both sides by the total variance D delivers Sobol’ indices of first (Si),
second (Sij), and higher orders (Si1...is):∑

i

Di

D︸︷︷︸
=Si

+
∑
i<j

Dij

D︸︷︷︸
=Sij

+ . . .+
D12...n

D︸ ︷︷ ︸
=S12...n

= 1 (4.4)

For high-dimensional parameter spaces, that is, large n, the number of summands in
Eq. 4.2-4.4 becomes impractical. This motivates, firstly, to truncate the exact model
representation in Eq. 4.2 after the bivariate functions:

f (x) ≈ f0 +
∑
i

fi (xi) +
∑
i<j

fij (xi, xj) (4.5)

Second-order approximations are usually sufficiently accurate [258, p. 289]. Secondly,
it appears useful to bundle the information in a so-called total sensitivity index. The
total sensitivity index incorporates all partial variances where parameter xi plays a role.
Hence, we have

STi = Si +
∑
j

Sij +
∑
j<k

Sijk + . . .+ S12...n, (4.6)

potentially approximated by the truncated representation as in Eq. 4.5 [258, p. 324].
In practice, the sensitivity indices are usually estimated, for example, with the aid of

sampling-based techniques. Efficient algorithms to conduct this task are already available
and described in Section 4.4.

4.2.2 Uncertainty analysis with the Monte Carlo method

The goal of uncertainty analysis, in the following also referred to as forward propagation,
is to investigate and quantify the uncertainty in the model response and, thus, to increase
the reliability of associated interpretations. The literature offers a variety of methods
for uncertainty analysis. Which one is suitable typically depends on the requirements
regarding the level of accuracy and on available computational resources. According to
Smith [258, pp. 187–97] and Xiu [265, pp. 3–4], a common categorization distinguishes
between:

✗ Direct evaluation methods construct the mean and variance of the response
directly from statistical moments of the input parameters. Hence, they do not
return the density of the model response. They are limited to models with linear
parameter dependence [258, pp. 188–91]. Because of this restriction, they cannot
be applied to my pathogen transmission model.

✗ Perturbation methods approximate the model response of nonlinearly param-
eterized models by Taylor series. In practice, the expansion is often truncated at
the second order because higher orders are expensive to determine. It produces
satisfactory results only for small input and output uncertainties [265, pp. 3, 55–6].
Given the large uncertainties in modeling SARS-CoV-2 transmission, perturbation
methods seem ineligible for my purposes.
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✓ Sampling-based techniques, with the Monte Carlo method being a popular ex-
ample, are often the method of choice for nonlinear problems. They are intuitive
and require only three simple steps: One merely has to create random inputs fit-
ting the joint probability distribution of the parameter space, evaluate the model
for these realizations, and describe the respective output statistically. Estimates
for statistical moments converge to the true values as the number of realizations,
N , approaches infinity. The convergence is independent of the dimension of the
parameter space, but the expected value converges slowly at rate 1√

N
. More sophis-

ticated sampling schemes such as the Latin hypercube sampling or quasi-random
sequences (for example, the Sobol’ sequence [266]) accelerate the convergence of
the Monte Carlo method. My model is computationally cheap enough for these
techniques to be feasible. Therefore, I use this forward propagation technique.

◦ Spectral representations can circumvent the problem of computationally de-
manding models. They essentially employ polynomial expansions as surrogate
models from which one can determine the output uncertainty. However, this raises
the question of how to construct the surrogate such that the discrepancy to the
original model is acceptable [258, pp. 207–37]. I avoid methods that introduce
additional uncertainties.

Weighing the advantages and limitations of these approaches, I select the Monte Carlo
method. This is a common choice for similar use cases, as shown in the next section.

4.3 How uncertainties are commonly treated in simulations of
SARS-CoV-2 transmission

While uncertainty quantification methods are established practice in some fields of re-
search, they find their way only gradually into infectious disease modeling, particularly
in individual-based simulations of SARS-CoV-2 transmission. In this section, I discuss
a representative selection of publications that attempt to examine the model sensitivity
and uncertainty. In this manner, I complement my literature review about models for
inhomogeneous exposure risks (see Section 3.2.2).

Adopting a straightforward approach, Kanté et al. [199] quantify the output uncer-
tainty of a stochastic model based on repetitive simulations. Unfortunately, they do not
state the number of repetitions. Hence, the statistical summary remains vague. The
authors also investigate the changes in the model output with a one-at-a-time analysis,
where one experiment comprises several simulations with a single parameter being varied.
They run separate experiments for a few parameters, such as the diffusion rate for aerosol
propagation, to compare their effect on the infection risk. Salmenjoki et al. [15] use the
same method to analyze the isolated impact of different parameters on the number of
persons with a critical degree of exposure. Both studies [15, 199] yield qualitatively plau-
sible results. For example, increased pathogen emission and slower decay of the airborne
pathogen load result in higher infection risks [15], whereas masks or social distancing can
reduce the infection risk [199]. However, the studies exhibit methodological limitations.
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Comparing the influence of multiple parameters with one-at-a-time experiments can be
rather confusing, and the method is not capable of detecting the impact of interacting
parameters on the output.

Qiao et al. [192] use a factorial design in which they vary five parameters simultane-
ously. They examine workers on a construction site and their compliance with regulations
on face covering, physical distancing, vaccination, ventilation, and isolation. Thus, they
aim to identify effective control strategies. According to the authors, their model is yet in
the state of a proof of concept. Furthermore, the samples generated from the parameter
space are sparse. Consequently, there is still uncertainty about the outcomes in between
the sampled parameter values. Optimal or just good enough combinations of measures
against transmission could easily be overlooked.

A similar methodology is pursued in [183] and [185] to vary three and two parameters,
respectively. In [183], each of the parameter combinations is evaluated 200 times in a
Monte Carlo setting to account for randomness in the model and to obtain robust mean
values for the overall exposure. However, the spread of the output data is not reported.
Namilae et al. [185] compute partial rank correlation coefficients in addition to their
factorial experiment to estimate the sensitivity of the output with respect to the two
parameters.

D’Orazio et al. [178, 179] conduct thorough sensitivity analyses with the aid of Sobol’
indices. This method requires many simulation runs, in the considered contributions
several ten thousand [178, 179]. In [179], two consecutive analyses reduce the computa-
tional effort. The first analysis is to sort out barely or non-influential parameters, and
the second one is to refine the analysis only for influential ones. In either paper, the
authors assume that the parameters follow a uniform distribution, which is often seen as
a reasonable choice if further information is not available. The sensitivity analyses show
explainable trends for the respective scenarios.

Such case studies demonstrate how uncertainty quantification can improve our under-
standing of a model and support the reliability of simulations. Most publications report
reasonable results, but they are barely comparable. They depend much on the scope
of the underlying model, on which parameters are investigated, and on the respective
parameter ranges. Regarding the choice of the method, Sobol’ indices seem promising.
Also Monte Carlo simulations can be useful for quantifying uncertainties in the model
output resulting from lack of knowledge or the model’s inherent randomness. This is
in accordance with analyses conducted for microscopic crowd simulation without disease
transmission [254, 267].

4.4 Tools and frameworks

Software for uncertainty quantification is already available in programming languages
such as C/C++ and Python. It is usually advisable to employ established, well-tested
software instead of implementing an algorithm from scratch. To name a few generic
frameworks, Dakota [268] provides a flexible and extendable toolbox in C++ for opti-
mization, sensitivity analysis, calibration, and other objectives. OpenTURNS [269] is
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a platform for uncertainty quantification by probabilistic methods. The Python library
chaospy [270] delivers routines for uncertainty and sensitivity analysis based on spectral
representations and advanced Monte Carlo methods, while SALib [271, 272] specializes
on sensitivity analysis. For further reading about mature uncertainty quantification soft-
ware, I refer to [258, 270, 273, 274]. In Chapter 8, I conduct numerical experiments with
two open-source Python libraries, SALib and chaospy.

Some uncertainty quantification frameworks have been developed for specific applica-
tions, including the crowd simulation software Vadere. Tools tailored to Vadere seem a
reasonable choice since I use it in the context of this dissertation. Above all, Gödel’s
[267] uncertainty quantification framework provides routines for Bayesian inversion, for-
ward propagation, and sensitivity analysis. It is partly based on features of SALib and
chaospy. Unfortunately, it has not been maintained actively, nor has it been developed
further since its release, so the dependencies on SALib are not up-to-date. Another
tool, the EMAworkbench [275], embeds some SALib functions and offers a connector to
Vadere, but there are open questions2 about how such a connector can be integrated
sustainably as a feature of the EMAworkbench. Also, some output formats are not sup-
ported. Therefore, it is economical for me to use SALib and chaospy directly. In the
following, I explain essential functions used for my numerical experiments in Section 8.

4.4.1 Sobol’ sensitivity analysis with SALib

The Python library SALib provides several routines for global sensitivity analysis, in-
cluding algorithms for computing Sobol’ indices. The library is decoupled from the
computational model. Therefore, the workflow consists of (1) defining the uncertain pa-
rameter space, (2) generating the model input with a sample function, (3) evaluating
the model, and (4) applying a function to analyze the outcome. Functions for steps (2)
and (4) are implemented in separate modules. The following details refer to SALib 1.4.5.

The sample function3

SALib . sample . s a l t e l l i . sample ( . . . )

generates a Sobol’ sequence for Sobol’ sensitivity analysis based on Saltelli’s [276] im-
provement of the approach developed in [261, 263]. Suppose, we consider a problem with
d uncertain parameters and a desired sample size, N . The aim is to determine total and
first order sensitivity indices. Constructing the sequence comprises the following steps:

1. Generate a base sample 2N × d-matrix with random numbers matching the input
distributions. It is recommended to use the Sobol’ sequence.

2. Partition this matrix into matrix A, which contains the first N rows, and matrix
B, which contains the rows N + 1 to 2N .

3. Compose matrices Ci as copies of B but with column i = 1, . . . , d taken from A.

2Questions see https://github.com/quaquel/EMAworkbench/pull/145#issuecomment-1175965854,
accessed on April 2, 2024

3Since version 1.4.6, the function is replaced by SALib.sample.sobol.sample(. . . ).
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The implementation in SALib incorporates further improvements of these steps. The
first points of the Sobol’ sequence exhibit repeated values [277]. Owen [278] recommends
to drop the first Nskip ≥ N points to enhance the uniformity of samples. Furthermore,
the number of samples N and the number of skipped samples Nskip ideally adopt values
of a power of 2.

The rows of A, B, and Ci represent the parameter combinations to be evaluated.
Hence, we have to run the model (2 + d)N times in total, resulting in a major computa-
tional problem if the model is expensive. Therefore, it is useful to parallelize the model
evaluation. Once the simulations have been completed, we obtain the respective output
vectors yA, yB, and yCi . Vector yAB denotes the output of matrices A and B, that is,
yAB = [ yA

yB ].
Then, we can use

SALib . ana lyze . sobo l . ana lyze ( . . . )

to determine the sensitivity indices. The function delivers numerical estimates for the
first order sensitivity indices in Eq. 4.7 according to the best practice described in [279]:

Si ≈
1
N

∑N
j=1 yBj

(
yCj − yAj

)
1
2N

∑2N
j=1

(
yABj − yAB

)2 . (4.7)

Analogously, it calculates the total sensitivity index (Eq. 4.8) as defined in [279, 280]:

STi ≈
1
2

1
N

∑N
j=1

(
yAj − yCj

)2
1
2N

∑2N
j=1

(
yABj − yAB

)2 . (4.8)

I refer to [258, p. 325] for a detailed mapping of the expansion denotation (Eq. 4.4 and
Eq. 4.6) and the corresponding expectation and variance interpretation on which the
numerical estimators Eq. 4.7 and Eq. 4.8 are based.

If required, the function also determines second order sensitivity indices and a boot-
strap confidence interval for each sensitivity index. The bootstrap confidence interval
indicates an estimate of accuracy at a given confidence level for the considered sensi-
tivity index. Its computation essentially relies on calculating the sensitivity index for a
number of resamples. The exact construction using the moment method is explained in
[276, 281].

4.4.2 Monte Carlo sampling with chaospy

The Python toolbox chaospy offers high-level implementations for uncertainty quantifi-
cation based on spectral representations and Monte Carlo techniques. Its interface allows
for fast prototyping, one reason why I employ it for uncertainty analysis in Chapter 8.
My simulation studies only require a function for classical Monte Carlo sampling, yet
the toolbox offers more sophisticated algorithms. The content of this section refers to
chaospy 4.3.10.

The workflow is similar as with SALib. The first step is to define the uncertain param-
eter space as a joint distribution, followed by generating the model input with a sample
function. The function
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chaospy . d i s t r i b u t i o n s . D i s t r i bu t i on . sample ( . . . )

creates by default (pseudo-)random samples for a given sample size. If the sample size is
large and a model evaluation is expensive, one can adopt more efficient sampling schemes
and exploit parallelism. The remaining steps are straightforward. One simply evaluates
the model, collects the output, and summarizes it statistically.

4.5 Summary

Numerical experiments are often rife with uncertainties. These uncertainties originate
either from the inherent randomness of the analyzed system or lack of knowledge, for
example, about the true value of an input parameter. They can severely impact the
reliability of simulations, as variability in the input parameters propagates through the
model and causes variability in the output. Evaluating merely average values can give a
wrong sense of certainty, leading to inaccurate interpretations. Instead, one should con-
sider the whole range of possible inputs and outputs, typically in the form of probability
distributions or statistical moments.

There is a variety of methods that support uncertainty quantification in different prob-
lem settings. Forward problems, where the effects on the output are to be determined for
given causes of uncertainty in the input, can be addressed with sensitivity analysis and
forward propagation techniques. This chapter provided a brief overview of methods, of
which two were explained in more detail: variance-based sensitivity analysis with Sobol’
indices and sampling-based uncertainty analysis with Monte Carlo experiments.

Sobol’ indices represent a global measure of how sensitive the quantity of interest
reacts to changes in the input. They detect the isolated impact of parameters and
interaction effects between multiple parameters on the quantity of interest. Furthermore,
the Sobol’ method is capable of quantifying the parameter importance for arbitrary
nonlinear relationships between input and output.

Monte Carlo experiments are often conducted to quantify the variability in the output
data for given input uncertainties. Although classical Monte Carlo sampling exhibits
slow convergence rates, it is the method of choice for many applications because it is
straightforward, approaches the true value with increasing sample size, and is suited for
nonlinear models.

For uncertainty quantification in practice, one can choose among several mature open-
source toolboxes. The Python packages SALib and chaospy are generic and offer tools
and interfaces easy-to-use for sensitivity analysis, forward propagation, and other tasks.

Although theory and software are available, quantifying uncertainties has yet to be
established as a standard procedure in infectious disease modeling. Particularly, in sim-
ulations of individual-based SARS-CoV-2 transmission, uncertainties are often neglected
despite various unknowns. Among those studies that employ uncertainty quantifica-
tion methods, many exhibit methodological limitations. Nevertheless, a few exceptions
demonstrate how global sensitivity analysis and sampling-based uncertainty analysis can
improve the reliability of the simulation results.
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Part II

Modeling and simulating airborne transmission of
SARS-CoV-2
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Part I of this dissertation introduced basics about transmission of SARS-CoV-2, models
for pathogen transmission, and methods of uncertainty quantification. Individual-based
transmission models for respiratory diseases traditionally focus on short-range trans-
mission via larger respiratory droplets. Models for long-range transmission via smaller
airborne respiratory particles, as is the case for SARS-CoV-2, have only recently been
developed. In particular, approaches that account for human locomotion and airborne
pathogen transmission are yet in a development stage.

Therefore, Part II addresses the overarching question:

Research question

How can airborne transmission of pathogens such as SARS-CoV-2 be modeled and
simulated?

The following chapters approach the research question as described by the modeling
cycle in Fig. 1.2. In Chapter 5, I operationalize the previous observations on SARS-CoV-
2 transmission and, thus, derive a mathematical formulation. Here, I seek to develop a
model that a broad audience can comprehend. Furthermore, it should be transferable to
pathogens that spread in a similar way as SARS-CoV-2. The discretized version of my
mathematical description is cast into an algorithm. Chapter 6 covers how I incorporate
this algorithm as an extension of the simulation program Vadere and how I verify the
implementation accordingly. In Chapter 7, I simulate everyday situations such as persons
waiting in a line and predict the individual exposure risk. Additionally, I reenact two
superspreading events and compare simulation results with recorded data to validate the
model. Since quantifying uncertainties in my simulations is complex, I dedicate an extra
chapter to this task. The case studies demonstrate the capabilities of my model, how to
apply it in practice, and how to interpret respective simulation results in a meaningful
manner.
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5 Operationalization: from the real world to an
individual-based exposure model

“Never posit pluralities without necessity.”
Attributed to William of Ockham [282]

Operationalization characterizes a method of turning non-quantifiable or not directly
measurable concepts into observable data or phenomena. In the case of SARS-CoV-2
transmission, the concept of an infected person could be operationalized by indicators
such as a degree of exposure. However, this is only helpful to a limited extent because,
under ordinary conditions, we cannot directly count the number of viable virus a person
inhales. We need to exploit other phenomena to infer exposure or infection risks. This
chapter addresses the challenge of determining a mathematical, quantitative description
of the mechanisms involved in the transmission process. In other words, I seek to answer
the question:

Research question

How can important aspects of inter-individual transmission of SARS-CoV-2 via
airborne respiratory aerosols be described mathematically?

It is neither necessary nor possible to perfectly model the real world. Instead, I adopt
Occam’s razor, also called principle of parsimony,1 to set apart relevant from non-relevant
details.

Before diving into the details, I briefly recap the motivation for the level at which I
look at SARS-CoV-2 transmission. As laid out in Part I, the dynamics of the COVID-19
pandemic was driven by superpreading events. Superspreading events usually occur at
local scales, that is, at indoor gatherings of maybe a dozen to a few hundred persons. One
or several highly infectious persons cause many secondary cases. Resolving the level of
individual events or specific indoor settings enables us to gain insights into the character-
istics of between-host transmission. Here, microscopic crowd simulation comes in handy
because it supplies us with ready-made approaches for simulating crowd movement in
everyday situations. We can take models such as the optimal steps model [244, 246] as
a foundation and extend it by a module for exposure risk assessment and, if applicable,
one for dose-response relationships.

Choosing a microscopic crowd model as foundation entails important concomitants for
modeling pathogen transmission. First and foremost, the resolution of the new feature
should reasonably fit the level of granularity of the crowd model. Second, the model

1Occam’s razor refers to a popular principle stated by William of Ockham that gives preference to
simplicity [282].
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should be compatible with any established microscopic crowd model to allow for flexible
adaptations. Third, the model should be comprehensible for a broad audience if it targets
similar user groups and purposes as the underlying crowd model. Crowd simulations are
frequently conducted by researchers and safety engineers to convey risk assessments to
decision-makers. The interdisciplinary task of estimating an exposure risk demands re-
searchers with related backgrounds to be capable of setting the model into operation and
generating meaningful and understandable outputs. Other, more general requirements
independent of microscopic crowd simulation concern the objectivity. I attempt to ex-
clude personal biases by drawing upon generally accepted knowledge about pathogen
transmission.

The content of this chapter is partitioned into two sections. This structure aligns with
the subsequent processes of exposure and dose-response. Exposure refers to between-
host transmission of pathogens, while dose-response refers to the individual within-host
immune response to a certain dose taken in. I focus on the former, the exposure. Since the
dose-response relationship is unknown for SARS-CoV-2, I propose a simple placeholder.

In the following, I largely cover ideas that I formulated in the modeling section in my
publication [17] and that I developed further in [213]. I am the main author of theses two
peer-reviewed publications. Marion Gödel, Gerta Köster, and Gesine Hofinger supported
me as co-authors of the article [17]. Gerta Köster and Hans-Joachim Bungartz helped
me prepare and publish the follow-up study [213].

5.1 Exposure model

I propose two exposure models. One captures transmission via respiratory aerosols and,
hence, belongs to the class of recently emerging transmission medium models. Addition-
ally, I describe a simple alternative that adopts the state-of-the-art approach of trans-
mission via proximity.

Both models have in common that each individual possesses a health status. Simi-
larly to compartmental models, I characterize an individual as susceptible or infectious.
Susceptible persons are healthy. Their initial exposure is zero, but they can take in and
accumulate pathogens from the surrounding such that their degree of exposure increases
accordingly. The exposure represents a rather theoretical number, which can either be
interpreted as inhaled aerosol particles or pathogen particles. Infectious individuals con-
tinuously emit pathogens via aerosols.

5.1.1 Exposure model based on transmission via aerosols

The exposure model based on transmission via aerosols incorporates two core concepts:
first, shedding and intake defined by a respiratory cycle; second, the idea of an aerosol
cloud as a transmission medium, carrying pathogens from one to another person. The
corresponding model parameters can be adapted flexibly to pathogens that are transmit-
ted via airborne respiratory particles. In the following, I focus on SARS-CoV-2.
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5.1.1.1 Shedding and intake of pathogens through breathing

Shedding and intake of SARS-CoV-2 is linked to respiratory activity. Normal breathing
is particularly relevant because it is an inevitable, life-sustaining process that results in
aerosols remaining airborne for at least several seconds and, thus, contributes significantly
to SARS-CoV-2 transmission. Therefore, I focus on breathing, but the basic idea can
be transferred or extended to other respiratory activities that also produce fine aerosol
particles. For speaking or coughing, one would probably adapt the emission frequency
and incorporate larger aerosol particles following ballistic trajectories.

To capture normal breathing, I assume that each person has a respiratory cycle, which
starts at an individual time but always spans the same duration. Inspiration is immedi-
ately followed by an equally long period of expiration, as visualized in Fig. 5.1. Hence,
any person’s respiratory activity is described by the respiratory frequency, f , and the
respective period, T = f−1. This simplifies the actual physiology, yet to a reasonable
extent. The simplification well matches the level of detail of human locomotion in macro-
scopic crowd models. Infectious persons emit pathogens bound to aerosols during the
expiration time. That is, infectious persons generate an aerosol cloud2 every time they
breathe out (see Fig. 5.2).

Figure 5.1: The spirometric volume-time curve illustrates schematically how I approximate in-
spiration and expiration of a single respiratory cycle with period T . The amplitude
equals the tidal volume, VT .

Susceptible persons take in pathogens or aerosol particles during the inspiration time,
given that they are currently located within the bounds of at least one aerosol cloud.
The number of inhaled particles per inspiration, NP, in, equals the tidal volume times the
particle number concentration in the surrounding:

NP, in = CP VT (1− Ef ) = CP Ra (5.1)

CP is the cumulative number concentration of particles from superimposed aerosol clouds
at the susceptible persons’ locations. The tidal volume, VT , is defined as the volume in-
haled and exhaled with every breath [283]. Eq. 5.1 additionally accounts for masks,

2The term aerosol cloud is inspired by other publications in the field, for example, [111, p. 1]. Aerosol
science considers a cloud to exhibit definite boundaries, confining high aerosol concentrations from
clean areas [86, p. 379].
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which reduce the intake rate by a filtration efficiency Ef . I summarize the tidal volume
and the filtration efficiency as absorption rate, Ra, in m3 per inhalation. Note that respi-
ratory deposition is not modeled in detail since the particle size distribution is unknown.
Furthermore, I neglect that respiratory deposition removes particles from the air.

5.1.1.2 Aerosol clouds

Aerosol clouds are defined as follows. Fig. 5.2 visualizes an aerosol cloud as a disk in
the horizontal layer at the height of the individuals’ heads. This illustration matches
the standard 2D perspective of crowd models. The actual extent of the modeled cloud
is spherical with radius r and volume V = 4

3r
3π. The cloud shapes during the whole

expiration time. Therefore, I place it in the middle between the positions p1 and p2
where the infectious person starts and stops exhaling, respectively. The initial shape of
the cloud is independent of the walking speed, although it may seem reasonable to use,
for example, an ellipsoid for fast walking persons. In this case, the distance walked during
the expiration time could be larger than the predefined diameter of the cloud. However, I
do not add more complex shapes because, firstly, this would exceed the knowledge about
the actual formation of aerosol clouds emitted by moving persons. Secondly, it would
not be compatible with other simplifications, such as uniform body heights. Thirdly,
the exact contour has little impact since a single cloud contributes only marginally to
the cumulative individual exposure, as will become apparent in the simulation studies in
Chapters 7 and 8.

Figure 5.2: An infectious person (red) moves from left to right (dotted line) and exhales an
aerosol cloud (yellow disk). The expiration time starts at p1 and stops at p2. The
aerosol cloud is centered at the midpoint of line segment p1 to p2. Its radius r is
predefined and does not depend on the movement. Note: own figure adapted from
[17, p. 6].

The initial radius r0, which denotes the radius at the moment when the cloud is
generated, is equal for all clouds. Subsequently, the cloud grows linearly over time, t, as
defined by a dispersion factor, D:

r (t) = r0 +D t (5.2)
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This simple description of aerosol propagation is based on an experiment and a mod-
eling study described in [87]. Kudryashova et al. [87] recognize (1) a phase of scatter
immediately after exhalation, followed by (2) a phase of diffusion. In the second phase,
the dominant process is, however, not molecular diffusion but dispersion. Therefore,
they employ an atypically large diffusion coefficient to be able to describe this transport
phenomenon mathematically. As discussed in Section 3.2.2, diffusion is negligible on
the scale of my model, while convective conditions are unknown for the situations that
I analyze. Therefore, I focus on scenarios with stagnant air, as can be found more or
less in indoor environments without ventilation, and describe phase (1) by instantaneous
generation of an aerosol cloud. Phase (2) is approximated by linear growth over time
(Eq. 5.2). Since ventilation is not considered, the cloud remains always at its initial
position.

Further, I assume that the aerosol particles scatter homogeneously within the cloud.
Hence, the number concentration in a single cloud is defined by

CP =
NP

V
, (5.3)

with the current pathogen load, NP , and volume, V . The concentration adds up where
multiple clouds superimpose. Airborne pathogens are gradually inactivated or removed
from the air because aerosol particles evaporate, are carried to higher air levels, or sedi-
ment with time. I summarize these effects and assume an exponential decay

NP (t) = NP, out exp

(
− ln (2) t

t1/2

)
, (5.4)

where NP, out denotes the particles released per breath. If masks need to be considered,
NP, out is multiplied by the respective mask permeability, similarly as in Eq. 5.1. NP, out

is constant. I do not include inter-individual differences in the exhalation rate because
my simulation studies treat scenarios with only a single superspreader. Furthermore,
the simulate time scales are small enough such that intra-individual variability during
the course of an infection can be neglected as well. t1/2 defines the half-life, that is, the
time required for the pathogen load, NP , to fall to one half of its current value. Once
an aerosol cloud reaches less than 1% of its initial pathogen concentration, I consider it
negligible.

I am aware that the above description of aerosol generation and propagation is simple,
while real physics of particle clouds are complex. In the eyes of an aerosol researcher,
it may appear even simplistic. And yet, I argue that this level of detail is justified for
my problem. It attempts to bridge the gap between the established Wells-Riley model,
which assumes instantaneously well-mixed air, and models that account for air currents
and resolve phenomena of particle transport. Section 3.2.2 underlines the advantages
and disadvantages of these two directions. On the one hand, the homogeneous assump-
tion is not well suited for estimating individual exposure risks in rooms with little air
mixing. On the other hand, high-fidelity models focus on aspects of particle transport
but ignore uncertainties related to aerosol generation, particle size distributions, or res-
piratory deposition. Numerical experiments conducted with these models are valid for
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specific conditions, but they can hardly be generalized. Therefore, such a model would
not necessarily provide more useful and accurate solutions than my model.

5.1.1.3 Model parameters for SARS-CoV-2 transmission

The model for shedding, intake, and aerosol propagation has several parameters. They
are summarized in Table 5.1. The respective explanation corresponds to the details given
in the appendix of my simulation study [213].

Table 5.1: The table provides an overview of model parameters and respective values or ranges.

Parameter Short description Symbol Value / range Unit

Respiratory
cycle period

Time between two subsequent inspirations T 3 s

Absorption rate Volume of contaminated air taken in with each
breath; equivalent to tidal volume per inhala-
tion if masks are not considered (filtration ef-
ficiency Ef = 0; see Eq. 5.1)

Ra 5 · 10−4 m3

inhalation

Initial pathogen
load

Hypothetical number of pathogens contained
in an aerosol cloud at the instant it is produced
(see Eq. 5.4)

NP, out 103 particles

Half-life Time required for the pathogen load of an
aerosol cloud to fall to one half of its initial
value (see Eq. 5.4)

t1/2
[
6 · 102, 104

]
s

Initial radius Radius determining the spherical extent of an
aerosol cloud at the instant it is produced (see
Eq. 5.2)

r0 [0.5, 1.5] m

Dispersion factor Factor determining unidirectional growth of
an aerosol cloud over time (see Eq. 5.2)

D
[
0, 6 · 10−3

]
ms−1

The respiratory cycle period, T , approximates the average respiratory rate observed
in physically active adults of f = T−1 = 19min−1 [284]. This conforms roughly with
the upper limit of the respiratory rate for an adult at rest, which ranges from 7min−1 to
20min−1 [285, p. 23].

The absorption rate, Ra, is equal to the tidal volume per inhalation if masks are not
considered. The tidal volume in healthy, young adults is typically assumed to be in the
order of 0.5L [285, p. 24]. Here, the exact value is not crucial because the parameter
only scales the individual exposure. One could also normalize this parameter to 1, but
I argue that values close to measured quantities make it easier to interpret the model
setup and results.

This applies in a similar manner to the initial pathogen load, NP, out, as long as the
exposure is not interpreted in absolute terms. The chosen value is somewhat arbitrary
but stays in the regime of plausible particles numbers observed for SARS-CoV-2 trans-
mission. As discussed in Section 2.1.1 and shown in Fig. 2.2, RNA emission rates of
102 copies to clearly over 104 copies per minute are realistic. With approximately 20
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5 Operationalization: from the real world to an individual-based exposure model

breaths per minute, NP, out = 103 copies per exhalation seems a reasonable choice for a
highly infectious person.

The half-life of aerosol clouds, t1/2, quantifies the time-dependent reduction in the
pathogen load due to sedimentation or rise of aerosol particles and deactivation of
pathogens. Section 2.1.3 reports a wide range for the persistence of airborne SARS-
CoV-2 or aerosol particles, often depending on the ambient conditions and particle size
distributions. An analytic analysis estimates half-lives of 5.5min to 7min for aerosol
particles expelled through coughing and speaking [111]. However, breathing leads to
smaller particle sizes (see Fig. 2.4). Smaller aerosol particles remain airborne for longer
periods [100]. Therefore, I propose a half-life of about 10min (6 · 102 s) as lower limit.
The upper limit is given by the stability of airborne SARS-CoV-2. In an experimental
setting, the median half-life of viable virus reaches 1.1 h [79]. Another study that takes
varying ambient conditions into account derives half-lives of 30min to 177min [110]. I
use the order of magnitude of the highest value, 104 s, as an upper bound.

The parameter initial radius, r0, quantifies the primary phase of scatter when an
aerosol cloud is generated. I derive the range of possible values from numerical experi-
ments. As calculated in a computational fluid dynamics study of a constantly breathing
person, 1 µm aerosol particles are displaced about 0.3m horizontally from the source
[107]. Another study accounts for evaporation under several ambient conditions and par-
ticles with different sizes and exhalation speeds. Particles with sizes < 200 µm exhaled
through breathing are predicted to travel horizontally less than 1m [105]. These two
predictions refer to conditions where the exhaling person stands still. Including normal
walking behavior, slightly higher initial radii can be expected. Consequently, I set a range
of 0.5m to 1.5m. The upper limit conforms with an experiment where aerosol particles
of sizes between 0.5 µm and 20 µm are generated artificially. Within a few minutes, the
concentration levels off at 1.5m from the source [87]. Since the modeled phase of initial
scatter is much shorter than the observed period in the experiment, my upper boundary
seems appropriate.

The dispersion factor, D, determines the spatiotemporal spread of an aerosol cloud. I
define a range of 0 to 6 ·10−3ms−1. The lower limit describes the case that the size of the
aerosol cloud remains constant. The upper limit is the result of an order-of-magnitude
estimate, attempting to answer the question of how far fine airborne particles travel in an
unventilated room within a simulated period of 30min (1800 s). Horizontal displacements
of 1m to 10m seem possible for this time frame, as can be concluded from simulations
of a poorly ventilated restaurant [74] and a Large Eddy Simulation of aerosol spread
during a choir rehearsal [219]. Transferring this to my aerosol model, the dispersion
factor remains below 10m

1800 s ≈ 6 · 10−3ms−1. An order of magnitude larger distances of
102m appear unrealistic in view of the analysis by Kudryashova et al. [87]. They disclose
that it would take aerosol particles in still air more than 5min to cover the area 2m
around the source.
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5.1.2 Transmission model based on the concept of proximity

The proximity-based approach belongs to the state of the art, unlike the new model
described previously. I briefly present one version of how pathogen transmission is de-
termined by two persons’ mutual distance. The simulations in Chapters 7 and 8 do not
make use of this model because it is not well suited for capturing long-range transmission.
Nonetheless, I broach it here to emphasize that there are even coarser approaches at-
tempting to represent pathogen transmission and that my work is not about the ultimate
precision in infectious disease modeling but the feasibility of prediction. In addition, the
proximity-based model serves as an example in Chapter 6 to clarify how other developers
can incorporate alternative approaches into the simulation program.

In the simplest version of the model, any susceptible person becomes exposed when
approaching an infectious host so that their distance falls below a defined threshold, for
example, 1m. For a threshold distance of (almost) 0m, one could speak of transmission
via physical contact as defined in [11]. The susceptible person’s exposure is either 0%
(false) or 100% (true). More graduated versions could include an exposure time that
needs to pass before close proximity leads to exposure or adopt a stochastic approach
with probability distributions determining a chance of exposure. Additionally, the degree
of exposure could map to any number in [0, ∞[ instead of {0, 1} or {false, true}. The
consequences of a particular exposure, meaning whether someone becomes ill or stays
healthy, are defined separately by a dose-response relationship.

5.2 Dose-response model

The dose- or exposure-response model represents the intra-individual response to a spe-
cific dose of pathogens taken in. The relationship is commonly defined by a dose-response
curve. The response depends on many factors, including the transmission route. Impor-
tantly, as described in Section 2.1, it makes a difference where inhaled SARS-CoV-2
enters the human body and which organs it attacks. In view of the largely unknown
biological processes, modeling the immune response and the course of an infection with
various possible endpoints from infection to death exceeds the scope of this dissertation.
Even focusing solely on early processes and estimating an average infection risk is impon-
derable. Essential quantities, such as the median infective dose in humans, are unclear
(see Section 2.1.1). Therefore, I define a substitute that should be replaced when reliable
data and biologically plausible dose-response models are available. At this point, I refer
to Chapter 8 in the book by Haas et al. [62] and the discussion in [286], which outline
important aspects plausible dose-response models should reflect.

My placeholder model requires an additional health status termed infected. The in-
fected state complements the previously introduced statuses susceptible and infectious.
Note that characterizing someone as infected does not inform about whether that person
can infect others. That is, the health statuses infected and infectious are not equivalent.
Mathematically, I define the infected state in a deterministic way, either as non-infected
or infected, which translates into the set {0, 1}. Alternatively, one could adopt a stochas-
tic approach and specify it as a probability of infection in the range of [0, 1].
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I employ a threshold to determine whether a person remains uninfected or becomes
infected. Any person with an exposure exceeding this threshold exposure is considered
infected. Other recent works, such as in [111, 184, 198], represent the dose-response
for SARS-CoV-2 in a similar manner, although thresholds generally do not apply to
pathogens [286]. I implement it merely as a placeholder and conduct risk assessments by
comparing the exposure occurring in a series of scenarios.

5.3 Summary

In this chapter, I introduced a mathematical description of SARS-CoV-2 transmission
via fine respiratory aerosols. My mathematical model targets local scales of between-
host transmission in unventilated indoor situations with two to a few hundred moving
persons. Human locomotion is captured by established microscopic crowd models, such
as the optimal steps model. In accordance with the level of granularity of the crowd
model, transmission of COVID-19 is expressed by two separate processes: exposure and
dose-response.

My exposure model is based on transmission via aerosols emitted and taken in through
normal breathing. Infectious persons exhale a fixed amount of pathogens with every res-
piratory cycle into the environment. The exhaled breath is represented by aerosol clouds.
Susceptible persons inhale a fraction of the airborne pathogens from their surrounding
if they are located within one or more overlapping aerosol clouds. These aerosol clouds
are modeled as spheres with a predefined radius. They remain stationary at the posi-
tion where they have been generated, and they can increase over time depending on a
dispersion factor. In this manner, the model is able to realize spatiotemporal aerosol
propagation accelerated by dispersion. The pathogen load in each cloud distributes
instantaneously and homogeneously. It decays exponentially and, hence, has a half-life.
The exponential decay mirrors removal of aerosol particles from the height of the persons’
heads through sedimentation or time-dependent deactivation of pathogens. Values cho-
sen for the model parameters match SARS-CoV-2 transmission via respiratory aerosols.
The parameters can be adapted flexibly if the model is to be applied to pathogens that
spread in a similar way. This mathematical description of SARS-CoV-2 transmission is
parsimonious. Its simplicity holds limitations, above all, a rough description of aerosol
propagation and pathogen concentrations that should not be interpreted in absolute
numbers. Nonetheless, the relatively coarse degree of detail is on purpose to match the
underlying crowd model. In addition, I introduced a component to describe the infection
process of exposed individuals. Until dose-response relationships are attainable for SARS-
CoV-2, I use a threshold to indicate infection as placeholder for a biologically plausible
relationship. These decisions and all other simplifications avoid giving the impression of
false accuracy in the presence of considerable knowledge gaps.
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“Before software can be reusable it first has to be usable.”
Attributed to Ralph Johnson1

The next steps in the modeling cycle are to translate the previously derived model into
an algorithm and then to cast this algorithm into a simulation program. An algorithm is
a sequence of discretized instructions. Once it has been implemented, we can finally exe-
cute computations. The implementation is ideally clean, what experienced programmers
interpret as “elegant and efficient” [288, p. 7] or “simple and direct” [288, p. 8].

Such definitions apply in particular to software developed to support research purposes.
Writing and using research software is a fundamental part of scientific practice across
disciplines, as it underpins knowledge gain. Although the quality of research software
is crucial, many scientists adopt a relatively informal approach toward software devel-
opment and maintenance. This originates from insufficient training, little credit paid to
developers, or the absence of funding for adequate software engineering [289]. Instead,
research software should actually fulfill specific requirements. Barker et al. [290] advo-
cate for applying the principle of findable, accessible, interoperable, and reusable (FAIR)
code to make numerical experiments reproducible and sustainable.

Concerning my use case, such considerations raise the question:

Research question

How can the mathematical model be implemented efficiently as sustainable soft-
ware in the sense of reusable and verified code?

Since little is achieved when everyone creates reusable software but no one re-uses other
software, I avoid re-inventing the wheel and build on an established open-source sim-
ulation program for microscopic crowd simulation. I choose Vadere [220] because it
essentially meets the FAIR criteria and, thus, allows me to create a module for pathogen
transmission that also conforms with the FAIR principle as much as possible. My choice
is also driven by the fact that I am a member of Vadere’s internal development team.
This decision is not a manifestation of the Not Invented Here syndrome, but I regard it
as an advantage to be familiar with the simulation program. It enables me to extend
the code faster and better than other freely available crowd simulation tools such as
JuPedSim [221].

In the following sections, I document the implementation of my mathematical model as
research software. First, I summarize the requirements associated with choosing Vadere
and other important prerequisites for developing research software. Then, I explain the

1Ralph Johnson organized the first conference on patterns and co-authored the seminal textbook “Design
Patterns: Elements of Reusable Object-Oriented Software” [287].
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design and the realization of the requirements, including the code verification. This chap-
ter reflects in large parts my ideas presented at the conference on Traffic and Granular
Flow 2022 [212]. Gerta Köster co-authored this contribution.

6.1 Requirements specification

In software engineering, requirements determine the software’s functional and non-functional
properties that stakeholders can expect [291, pp. 455–6]. In the following, I focus on non-
functional requirements, while functional requirements are implicitly formulated by the
model description in Chapter 5. The stakeholder of my software is, in a broader sense,
the scientific community. In a narrower sense, it refers to potential users, scientists from
disciplines involved in the problem, for example, physicians, public health researchers, or
computer scientists. They should be able to extend the software and to review, repro-
duce, interpret, or generate new simulation results. This implies several non-functional
requirements, which apply generally to research software:

• Findable: Potential users or machines should be able to find the software and
identify different versions of it [290]. Vadere including my extension is findable
through search engines or direct access to the accompanying research articles [17,
220], the project website,2 or the source code repository.3 The latter provides the
complete development history and version identifiers.

• Accessible: Stakeholders should be able to access the software [290]. This allows
them to develop it further or to run simulations and, eventually, reproduce my
numerical experiments. Open-access is the preferred policy since my research is not
subject to security issues or other constraints that would necessitate authorization.
Therefore, the Vadere code repository including my extension is publicly available.

• Interoperable: The software should be interoperable and, hence, capable of ex-
changing data or interacting with other software [290]. Chapter 8 delivers an ex-
cellent example of how Vadere’s interoperability enables me to exploit external
packages for sensitivity analysis and forward propagation.

• Reusable: The software must be executable and reusable [290]. This implies that
third parties can comprehend it, alter, extend, or integrate it into other software
projects. Richards [292] confirms Vadere’s usability in general. The reusability
of my transmission module is supported by the fact that researchers working for
health authorities found the software shortly after its first release and are using it
to assess the transmission risk during the boarding process of airplanes.4

2www.vadere.org, accessed on April 2, 2024
3https://gitlab.lrz.de/vadere/vadere, accessed on April 2, 2024
4Researchers working for the U.S. Federal Aviation Administration’s Civil Aerospace Medical Institute,

National Research Council Canada, Boeing Company, and Movement Strategies Ltd. contacted me
in 2022. Since then, I have technically supported the research consortium simulating pathogen
transmission with Vadere (Greenhaw, R., personal correspondence with S. Rahn via e-mail, March
20, 2024).
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In addition, there are more specific requirements that I must comply with when im-
plementing my model extension. Vadere is written in the programming language Java
[220]. As a matter of course, I adopt the language and the object-oriented programming
paradigm. The following concrete requirements are concomitant with Vadere:

• Modular: Vadere is based on the model-view-controller pattern and, thus, adheres
to a principle known as separation of concerns [220]. This results in a clean ar-
chitecture and facilitates altering, extending, or managing a component without
affecting another.

• Flexible: Vadere uses human-readable input files [220]. This enables end users
without a software engineering background to customize simulations to their needs.
Following this approach, also the module for transmission of pathogens should be
flexible and adaptable in a simple manner without interfering with the source code.

• Verified: The code should be verified, which means it has been reviewed carefully
and appropriately represents the mathematical model [252, p. 146]. Otherwise,
the software and numerical experiments cannot be trusted. An accessible quality
report contributes to making this step transparent. The Vadere development team
has agreed on keeping the percentage of tested lines of code at around 24% [220].
For our research software, this constitutes an acceptable compromise between flex-
ible enhancements, careful testing, and a limited development budget. Software
extensions should generally maintain this coverage.

The following sections document how I realize these requirements. I explain how to
approach these criteria, focusing on the aspects of reusable software, most importantly,
extensible, modular, flexible, and verified code. In this way, I aim to advance new
approaches in research areas such as infectious disease modeling and mass gathering
health.

6.2 Embedding the exposure model in Vadere

Extending Vadere by a disease transmission module essentially means that I combine
three models:

1. a microscopic crowd model describing human movement by individual trajectories,

2. the exposure model presented in Section 5.1, and

3. the dose-response model provisionally defined in Section 5.2.

Fig. 6.1 visualizes how these three components are linked. They are not mutually depen-
dent since the exposure model requires only the output of the locomotion model, while
the dose-response model relies on the calculated exposure level.

In Vadere, the locomotion model or any additionally defined sub-model is updated by
a while-loop (see Fig. 6.2). I add the exposure and dose-response model as sub-models to
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Trajectories

Crowd model

Health status
(exposure)

Dose-response model

Infection
status

Exposure model

A

A
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A

Figure 6.1: The schematic illustration shows the links between microscopic crowd models in
Vadere, the new sub-models, and their outputs. Note: own figure adapted from
[212, p. 241].

the simulation loop such that they are called and updated independently of other models
in every step of the simulation. Consequently, one can combine my extensions with any
other locomotion model.

Vadere offers an interface for new (sub)models. The diagram in Fig. 6.3 shows that
two separate abstract classes implement this interface and reflect the distinct processes
of between-host transmission and dose-response. Abstract classes generalize common be-
haviors of their subclasses and, thus, improve reusable, extensible, and flexible structures.
The abstract classes exist to be inherited by the concrete classes AirTransmissionMod-
el, ProximityExposureModel, and ThresholdResponseModel. These can be instanti-
ated and contain the logic as mathematically formulated in Section 5.1 and Section 5.2,
respectively. I include the ProximityExposureModel mainly to demonstrate that the
structure can easily be extended. This additional example may help developers without
a background in computer science to implement alternative sub-models. Other important
classes not included in Fig. 6.3 relate to each person’s health status and infection status.
They are incorporated as wrapper classes in the class Pedestrian. Attributes are stored
separately from the definition of the model to comply with Vadere’s design pattern.

A design pattern represents an abstract, generally applicable solution to recurring
design problems. It increases the flexibility and re-usability of an object-oriented software
architecture [287]. Vadere exploits the so-called model-view-controller design pattern
[220]. As shown in Fig. 6.4, I adopt this pattern and break my code up into three
main components: Importantly, the meaning of the term model now shifts compared to
previous notations. In the context of the design pattern, it refers to data that describes
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Start simulation

Yes

Simulation time 
less than end time?

No

Stop simulation

Increase simulation time

Update models and sub-models

Figure 6.2: A simulation in Vadere is updated by a while-loop. Note: own figure adapted from
[17, p. 9].

the present simulation state, whereas the controller is equivalent to what modelers usually
understand as a model. That is, the controller contains the rules and instructions I define
to capture disease transmission. The view component is responsible for the graphical
representation of the data model. It also provides the entry point for users to interact
with the simulation program and to alter the attributes of the simulation. I define
these attributes as accessible parameters in the model component. This allows users to
flexibly tailor the controller behavior to their use case without altering the code. For
example, the default parameter set for the AirTransmissionModel corresponds to the
definition in Section 5.1.1. Reducing the values for the initial pathogen load or half-
life of aerosol clouds might suffice to adapt the controller to influenza viruses or other
less contagious pathogens than SARS-CoV-2. As an overall result of adhering to the
model-view-controller design pattern, I obtain a clean architecture with classes grouped
in packages, leaving other parts of the code unchanged.

This separation of concerns entails another benefit, as it breaks up the code into
frontend and backend. It enables me to adjust my testing strategy according to separate
requirements for the frontend and the backend. The primary purpose of the frontend is
to visualize the simulation state. For this reason, it is sufficient to correct visible errors.
In contrast, the backend delivers numeric simulation results, which build the basis for
further analyses and interpretations. Consequently, the related parts of the software
must be tested more carefully to avoid erroneous conclusions.

6.3 Software verification

Verification is a crucial step in the modeling cycle as it improves the reliability of a simula-
tion program. The aim is to ascertain whether the algorithm and software appropriately

75



6 Integrating the exposure model into Vadere

<<Class>>
ProximityExposureModel

<<Interface>>
Model<<Class>>

OptimalStepsModel

<<Class>>
SocialForceModel

<<AbstractBaseClass>>
AbstractDoseResponseModel

<<Class>>
AirTransmissionModel

<<Class>>
ThresholdResponseModel<<AbstractBaseClass>>

AbstractExposureModel

Figure 6.3: The diagram contains essential classes corresponding to the mathematical models
for exposure and dose-response (blue) and how I integrate them into the existing
structure (black) of Vadere. Note: own figure adapted from [212, p. 242].

represent the mathematical model [23, pp. 14–5]. Deviations of the numerical approxi-
mation from the exact solution seem less critical for my use case. The exposure model is
coarse, so errors introduced by the discretization appear comparatively small. Therefore,
I focus on software verification and report on the software engineering practices that I
utilize to minimize the amount of errors in the code.

Prominent techniques for quality assurance include static and dynamic analysis [252,
pp. 154–9]: Static analysis, for example, by reviewing and compiling the code, does
not involve running the program. In contrast, dynamic analysis requires the code to
be executed, as is done within the scope of unit, component, or system testing. Code
review or code inspection and testing cannot replace each other but are typically applied
in combination [293, pp. 230–2]. Furthermore, while tests are well-suited for detecting
errors in the code, they cannot prove the absence of errors [294].

My development strategy toward a simulation program without critical errors encom-
passes static and dynamic analyses. The static analysis mainly consists of code inspection
by other Vadere developers and by a research project partner, who transferred the func-
tionality of my simulation program to a commercial crowd simulation framework named
crowd:it [295]. A more formal approach to improving code quality involves testing at
different levels. I implemented unit tests at the level of methods and object classes such
that the percentage of tested lines of my contributions complies with the line coverage
of 24% in all Vadere modules, excluding the view component. The lines of core classes,
such as the AirTransmissionModel, are covered at 95%.5 Thus, I achieve the verification
requirement. The unit tests are complemented by integration tests, which execute the
whole simulation program for specified scenarios and check whether changes to the code
cause errors in a simulation. The continuous integration pipeline of the software project
automatically triggers these tests. It also enforces a standard process for contributing

5Coverage report for Vadere 2.1: https://gitlab.lrz.de/vadere/vadere/-/jobs/3867471, accessed
on April 2, 2024
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Figure 6.4: The package diagram shows how the components of the exposure model interact.
The classes associated with the dose-response model (grayed) adopt the same pat-
tern. Note that, for simplicity, interface or class names used here do not exactly
match the code. Note: own figure adapted from [212, p. 244] and [220, p. 21].

to and deploying new releases of Vadere. The whole development process, including the
commit history, is laid open to allow others to retrace certain developments and to re-
produce the results of an earlier version. As a side effect, the version control system also
makes specific releases findable and accessible.

6.4 Summary

This chapter presented how I integrated the previously developed mathematical models
for exposure and dose-response into an established tool for microscopic crowd simula-
tion. As a first step, I adopted the criteria of findable, accessible, interoperable, and
reusable software that my simulation program should meet. In compliance with these
requirements, I selected an established research software for crowd simulation, Vadere,
as a foundation for my extension. This choice imposed further specifications regarding
the design and testing of my extensions. In addition, I focused on creating a flexible and
modular tool.

To this end, I integrated the exposure model and dose-response model as sub-models
into the existing structure of Vadere. Above all, the new feature adopts the model-view-
controller design pattern, resulting in a modular architecture. The most important part of
my model for pathogen transmission via aerosol clouds, corresponding to the description
in Section 5.1.1, is embodied in the class AirTransmissionModel as part of the controller
in the model-view-controller pattern. Corresponding attributes are accessible as input
parameters, enabling end users to adapt the controller behavior flexibly without altering
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the code. In addition, I incorporated the provisionally defined models for transmission
via proximity and dose-response into the software to demonstrate how others can quickly
and easily attach alternative transmission models to Vadere.

Quality assurance is an essential step in the development phase of reliable software. My
code verification mainly comprised code inspection, unit tests, and integration tests ac-
cording to standard techniques in software engineering. A continuous integration pipeline
supported building, testing, and deploying changes to the software project. In addition,
making the code repository public increased transparency and reproducibility. As a re-
sult, I equipped Vadere with a reusable and tested module for pathogen transmission in
dynamic crowds that can expedite the maturation of infectious disease modeling.
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“All models are wrong but some are useful.”
George Box [296, p. 202]

Now that we have a simulation tool, we can conduct numerical experiments in a vir-
tual world. The aim is to simulate what-if scenarios of pathogen transmission in human
crowds. Here, a decisive advantage of simulations comes into play: Virtual experiments
do not run into ethical problems. However, the underlying model and resulting outputs
can deviate from reality. In a sense, they are always wrong, but the modeler must be
concerned only about the essential aspects [297]. If the modeler finds a crucial devia-
tion, the model might not be suitable. For example, a significant discrepancy between
the numbers of secondary infections recorded for a superspreading event and high-risk
exposure levels observed in the respective simulation would be problematic. Comparing
empirical and simulated data is an essential step toward model validation. Thus, one can
check whether the model reflects reality reasonably well, given that available empirical
data is trustworthy and its level of uncertainty is acceptable [252, pp. 371–2]. However,
according to Popper [298, pp. 17–20], it is impossible to conclusively confirm the validity
of a scientific statement. Instead, one needs to test the statement through falsification. In
my case, this means that if the output does not match empirical data adequately, I must
reject the model. If the model passes the test, this step of model validation builds trust.
It paves the way for predicting transmission risks in situations for which we currently
have no information or experience. Therefore, I now examine the questions:

Research questions

How can one reliably predict the exposure risk for everyday situations?

• How can one validate the model to ensure realistic and meaningful simulation
outputs?

• Which relevant scenarios can be simulated with the individual-based exposure
model?

To address them, I compare the simulation output and field data of two superspread-
ing events. Then, I systematically select everyday situations of particular relevance and
predict the respective exposure risks. Uncertainties are crucial when making such predic-
tions, but this is a more complicated matter. Therefore, I quantify uncertainties and also
discuss the simulation results separately in Chapter 8. My modeling paper [17] and pa-
rameter study [213] partly cover the simulation results presented here. Since the scientific
knowledge about SARS-CoV-2 transmission has grown and my model has undergone an
iterative development process between the time of writing the two articles, I now present
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an updated version of the validation in [17]. The settings and parameter choices for the
renewed validation align with the ones used in [213].

7.1 Validation through reenacting superspreading events

Validating my model through empirical measurements poses a challenge. Most impor-
tantly, as explained in the Chapters 2 and 3, all individual-based transmission models for
SARS-CoV-2 suffer from insufficient data. Available data sets are typically associated
with superspreading events. The disclosed information is often incomplete, for example,
due to privacy concerns or because it was unclear which information would be neces-
sary for retrospective analyses. Furthermore, behavioral changes in the population or
measures taken during the pandemic affected the transmission dynamics and resulted
in biased data. Reconstructions of superspreading events typically rely on surveys and,
therefore, involve many uncontrollable variables, not to mention differing standards and
lack of truthfulness when reporting official statistics. Finally, these statistics only state
the number of secondary cases but not the respective exposure levels, prohibiting direct
comparisons of simulated and empirically observed data.

The following approach helps me to overcome these obstacles. I reenact two super-
spreading events first inspected by Lu et al. [73] and Hamner et al. [129]. These infection
clusters occurred during the early phase of the pandemic when mitigation strategies had
little or no impact on social gatherings. The reports cannot guarantee that the index pa-
tients are responsible for all infections, but it seems likely for the majority of secondary
cases. Although particularly the description in [129] is limited for data protection is-
sues, the details given suffice to simulate the two situations. In the absence of a widely
accepted dose-response model, I consider any virtual person as potentially infected or
exposed at high risk if the exposure reaches the same level as in a benchmark scenario
of a close contact. This allows me to compare the model output and the empirical data.

The simulations of the benchmark scenario and the superspreading event rely on the
same parameter settings. In the modeling study [17], we analyze only one combination of
possible input values. As more knowledge has become available in the meantime, I now
use three parameter sets (see Table 7.1) that agree with the settings used in the follow-
up study [213]. The updated simulation output is available in Appendix E (DS4). One
parameter set consists of the arithmetic mean values of the parameter ranges defined in
Table 5.1. The other parameter combinations lead to the maximum aerosol concentration
in an aerosol cloud and the maximum spatial spread of an aerosol cloud. Hence, I
obtain one moderate sample and two extreme cases. Compared to the parameter set
avg. of sample intervals, I expect max. aerosol concentration to cause higher individual
exposure levels but fewer affected persons. Max. aerosol spread should produce lower
individual exposure levels but higher numbers of exposed persons. The analysis of these
three parameter combinations is sufficient for now. Chapter 8 discusses the uncertain
parameter space in depth.
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7.1.1 Benchmark scenario: a close contact leading to high-risk exposure

The close contact scenario that I first introduced in the modeling paper [17] serves as a
benchmark scenario to compute a high-risk exposure. High-risk exposure occurs when
an infectious person and a susceptible person stand less than 1.5m apart for over 10min.
During the COVID-19 pandemic, such a situation was commonly associated with a high
chance of infection for persons without adequate protection through masks or antibodies
(see Section 2.2.1). The simulation result for the parameter sets from Table 7.1 is shown
in Fig. 7.1. In the remainder of this work, I use the reference values for exposure of
Eavg ≈ 9·102, Econc ≈ 2·104, and Espread ≈ 2.2·102 particles to quantitatively distinguish
critical from less critical situations.
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Figure 7.1: The close contact scenario yields different reference exposure levels Eavg, Econc,
and Espread for the parameter sets from Table 7.1 avg. of sample intervals, max.
aerosol concentration, and max. aerosol spread , respectively. These exposure levels
vary in the order of magnitudes. Note: own figure adapted from [213, p. 5].

Table 7.1: The parameter sets represent special cases within the bounds of the parameter ranges
defined in Table 5.1. Parameter set 1) corresponds to the average of the parameter
intervals, while the parameter combinations 2) and 3) lead to the maximum aerosol
concentration in an aerosol cloud and the maximum spatial spread, respectively.

Parameter Parameter sets Unit

1) Avg. of sample
intervals

2) Max. aerosol
concentration

3) Max. aerosol
spread

Half-life 5.3 · 103 104 104 s

Initial radius 1.0 0.5 1.5 m

Dispersion factor 3 · 10−3 0 6 · 10−3 ms−1
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7.1.2 Restaurant scenario: COVID-19 outbreak in a restaurant setting

The first validation scenario represents a relatively small superspreading event in a restau-
rant in Guangzhou, China, in January 2020. Lu et al. [73] report that three groups of
people with (A) five persons, including the index case, (B) three persons, and (C) two
persons had lunch at neighboring tables. Group A stayed with group B in the same
room for 53min and with group C for 73min. All members of the three groups tested
positive for SARS-CoV-2 in the days after the event. The index patient infected at least
one person from the other two groups during the restaurant stay, while the secondary
cases from group A could also have been infected outside the restaurant. It cannot be
excluded that one secondary case in group B and in group C started a chain of infections
among the groups in the subsequent days. The setting with all three groups is shown
in Fig. 7.2. Lu et al. [73] mention that air conditioning might have affected the trans-
mission dynamics. However, possible airflow patterns and boundary conditions are not
quantified and remain speculative. Keeping in mind that airflow is ignored, I argue that
at least one of the members of groups A, B, and C should be considerably exposed in my
simulation. If none of the parameter sets produces an outcome matching this condition,
the model should be rejected for the respective setting.

B A C

Figure 7.2: In the restaurant scenario, members of three families A, B, and C occupy adjacent
tables (gray). The seating chart follows the description in [73]. Secondary cases are
depicted in blue, the index case is depicted in red. Note: own figure adapted from
[17, p. 14].

Fig. 7.3 summarizes the simulation results. The parameter sets avg. of sample intervals
and max. aerosol spread yield high-risk exposure in all members of groups A and B. This
is a first argument in favor of model validity. The members of group C experience
lower exposure because they sit further away from the infectious person. Nonetheless,
parameter set max. aerosol spread causes one and almost a second high-risk exposure in
group C. For the avg. of sample intervals, the highest exposure in group C is roughly a
third of the high-risk exposure. It is not implausible that an infection starts even if the
exposure remains at this level. As expected, the parameter set max. aerosol concentration
leads to far higher exposure than the other two parameter combinations but also in much
fewer persons, more precisely only in one member of group A. All other persons are
not exposed. Consequently, this extreme case does not reflect the situation adequately.
Overall, the model roughly reproduces the COVID-19 outbreak among the three families,
except for the max. aerosol concentration parameter combination.

82



7 Virtual world: simulating everyday situations

A B C
101

102

103

104

In
d

iv
id

u
al

ex
p

o
su

re
in

p
ar

ti
cl

es
Avg. of sample intervals

A B C

Persons clustered by group membership

101

103

105

Max. aerosol concentration

A B C
101

102

103

Max. aerosol spread

Figure 7.3: The bar charts summarize the individuals’ exposure occurring in the restaurant
scenario for the three parameter sets from Table 7.1. The (dotted) horizontal lines
correspond to (33% of) the reference exposure observed in the close contact scenario
(see Fig. 7.1).

7.1.3 Choir scenario: superspreading event during a choir rehearsal

The second validation scenario is more dynamic and involves more secondary infections
than the restaurant scenario. I consider a superspreading event that occurred during a
choir rehearsal in Skagit County, Washington, in March 2020. Hamner et al. [129] found
that 33 attendees of that choir practice tested positive for SARS-CoV-2 and additional
20 attendees became ill. However, it is not sure that all 20 ill persons were infected with
COVID-19 because they were not tested. One person first classified as a probable case
tested negative for SARS-CoV-2. In sum, the report lists one index case, 32 confirmed
secondary cases, and 20 probable cases.

According to the schedule stated by Miller et al. [71], the singers practiced in groups
in two rooms, a large one and a smaller one:

P1) All participants practiced in the large room for 45min. Several seats between the
singers remained empty.

P2) The singers split into two groups of about equal size for 45min. One group moved
to the small room. The other group, including the index case, remained in the
large room, occupying approximately half of the initially used space.

P3) The split session was followed by a break of 10min, where the choir members
mingled. Some, including the infectious person, used the restroom.

P4) The final session with all the singers in the large room took another 50min. The
seating chart was the same as during the initial session P1).

In the simulation, I slightly adapt the disclosed schedule to reduce the effort of setting
up and evaluating the scenario. The simulated practice session P4) takes 45min instead
of 50min. I also neglect the relatively short phases of distributing and stacking up chairs
before and after the practice, so the chairs are already present before the rehearsal starts.
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The chairs are arranged as described in [71], while I design the floor plan to fit the purpose
of a choir practice. The actual floor plan is not available. The scenario is depicted in
Fig. 7.4.

Entry / exit Large room Small room

Restroom

Figure 7.4: The simulation setup for the choir practice is based on a description in [71]. In
the large room, 120 chairs (small squares) are arranged in two stages. Within one
stage, the center-to-center distance between the chairs is 1.4m and 0.75m to the
front/back and sides, respectively. The arrangement in the small room is similar.
Large, hatched squares represent spots where smaller groups of virtual persons
mingle randomly during the break. Virtual persons enter the simulation through
the sources (green squares) and leave it through the final target (orange rectangle).
The overall size of the scenario is approximately 28m × 12m. Note: own figure
adapted from [17, p. 15].

To protect the participants’ privacy, neither Hamner et al. [129] nor Miller et al.
[71] provide a seating chart. This information would be important because the singers’
positions affect the individuals’ exposure. To address this uncertainty, I repeat the
simulation n = 100 times with altered seating charts. This means that the sequence of
chairs a person occupies changes randomly between two simulations, but the positions
of the chairs stay the same. These sequences take into account that the index case
stays in the large room during the split session and uses the restroom during the break.
Furthermore, the occupancy levels of the blocks in the large room are relatively balanced,
as stated in [71]. Fig. 7.5 visualizes several time steps of one of the simulations.

Similarly to the analysis of the restaurant scenario, I conduct numerical experiments
for the three parameter sets from Table 7.1 and compare the outcome to the empirical
measurements. To that end, I run the set of n = 100 repeated simulations for each
parameter combination and summarize the output in the histograms in Fig. 7.6.

Most simulations for the parameter sets avg. of sample intervals and max. aerosol
spread yield the same order of magnitude of high-risk exposure levels as confirmed sec-
ondary cases. If we consider a lower exposure level of approximately a third of the
high-risk exposure, the distribution slightly shifts toward the right, matching the num-
ber of confirmed and probable cases even better. It is plausible that the simulation yields
fewer persons with high-risk exposure than the actual number of confirmed cases. Three
effects mentioned in Chapter 2 are neglected in the model. Firstly, singing typically re-
sults in higher pathogen emission rates, whereas the reference scenario of a close contact
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(a) Seating chart for the initial session P1) (b) Seating chart for the split session P2)

(c) Persons mingling during the break P3) (d) Seating chart for the final session P4)

Figure 7.5: The figures show a fictitious seating chart the virtual persons (susceptible – blue,
infectious – red) follow during the four phases of the choir rehearsal. The scenario
is the same as in Fig. 7.4, but only the relevant details are displayed. Note: own
figures created with Vadere [220].

relates to breathing. Secondly, short-range transmission during the break is not included
in the model. Thirdly, the model considers a population with an average susceptibil-
ity, which might not apply to the choir members who attended the rehearsal. There is
no information about the singers’ health condition. However, a median age of 69 years
among the attendees [129] suggests that high-risk exposure could occur already at lower
levels because older people are generally less immune (see Section 2.1.1). As expected,
the parameter set max. aerosol concentration leads to fewer individuals reaching high-
risk exposure, but the overall number of exposed persons does not compare well with
the number of confirmed cases. Even assuming lower exposure levels does not change
this picture. Therefore, this parameter set represents an extreme case, and input values
beyond this mark should not be used for standard situations. In general, the other two
parameter sets return plausible results and, therefore, support the validity of my model.

7.2 Predicting exposure risks for selected everyday situations

In this section, I select specific everyday situations and predict the risk of pathogen
transmission. These analyses largely correspond to a part of the results section in my
parameter study [213], including the simulation data supplemented in Appendix E (DS5).
Some of the simulated scenarios include measures against SARS-CoV-2 transmission, but
it is not my primary goal to determine which measure would have been the most suitable
to stop the COVID-19 pandemic. I demonstrate the capabilities of my simulation tool
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Figure 7.6: The histograms summarize exposure occurring in repeated simulations of the choir
scenario for the three parameter sets from Table 7.1. Each parameter set is sim-
ulated n = 100 times with the virtual persons occupying seats in a randomized
sequence. The counts indicate the number of simulations with the respective num-
ber of persons exceeding the high-risk reference exposure (colored) or 33% of the
reference exposure (gray) from the close contact scenario. The vertical dotted line
corresponds to the 32 empirically confirmed secondary cases.

and how it should be used to identify exposure risks systematically with the aid of
quantitative comparisons.

To identify relevant use cases for the simulation studies, I apply several criteria an
everyday situation should satisfy. Above all, I concentrate on indoor environments with
poor ventilation. Otherwise, high pathogen concentrations are unlikely to occur. For the
same reason, the time a person spends in the considered environment should cover at
least 10min. I assume this is the minimum time to elapse until problematic pathogen
concentrations can be exhaled or inhaled through aerosols. Furthermore, the analyzed
scenarios involve just the right amount of crowd movement. The crowd is neither sta-
tionary nor too agile because motionless scenarios do not require a crowd model to solve
the problem, whereas highly dynamic scenarios typically lead to comparatively low ex-
posure risks. Instead, the virtual persons change their positions from time to time as
it happens, for example, when lining up in a queue. Here, I benefit from the optimal
steps model because it can capture human locomotion in various environments even in
the case of atypical movement patterns, such as physical distancing. Transmission while
queuing in front of a supermarket checkout or during the check-in and boarding process
at an airport are realistic settings. Majra et al. [75] find that two reported superspreading
events related to air travel primarily occurred before the flight. This gives me a reason to
examine such scenarios more closely. In addition, I analyze a relatively dynamic scenario
where pedestrians move along an indoor corridor, for example, through the concourse of
an airport from one gate to another.
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7.2.1 Queuing scenarios: crowd passing a service unit

Motivated by the criteria described above, I now define specific situations in which several
people are waiting to be served one after the other at a service station. The settings could,
for example, resemble the check-in area at an airport or walk-in centers of transport,
health, or other public services. While the floor plan of the building and the queue
formation vary, the scenarios all share that the waiting crowd consists of 21 persons. One
person is infectious and steps in after the first ten persons have entered the simulation.
The inter-arrival time is set to 10 s. The time required to attend to one person at the
service unit, referred to as service time, is 90 s. Hence, the total simulation time until the
last person leaves the environment is slightly more than half an hour. The assumptions
about the arrival and service process are reasonable as long as I am only interested in
average values for a queue that has not been further specified. If I aimed to determine the
transmission risk in the waiting room of the walk-in clinic in 123 Main Street, Anytown,
USA, on a typical Monday morning, it would be necessary to examine the parameters of
the queuing system and their distributions in detail. As this is not the case, I continue
with exemplary yet simplifying assumptions. This also avoids additional stochastic effects
in the model and, thus, reduces the number of model evaluations required to reach
convergence of the expected transmission risk.

7.2.1.1 Self-organized queue

Two basic queuing scenarios are depicted in Fig. 7.7. The individuals’ behavior solely
depends on accepted social norms, while specific queue management strategies are not
implemented. The different queue formations reflect cultural variation. For example,
Sweden and the United States are categorized as high-queuing countries, whereas lining
up tends to be less common in Mainland China or Switzerland. However, such gener-
alizations should be made with caution [299]. Being aware that my terminology may
be sociologically imprecise, I describe the queue in Fig. 7.7a as cooperative because the
crowd commonly agrees upon the first-come-first-served principle. In contrast, cutting
the line is allowed in Fig. 7.7b. I call this a competitive queue because such behavior is
linked to the principle of the right of the stronger [300]. Using Vadere’s optimal steps
model, the competitive behavior corresponds to the default simulation settings. The co-
operative queue can be achieved with a dynamic navigation field that takes into account
high densities in crowds in such a way that virtual people move toward crowded areas
[301].
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(a) Cooperative self-organized queue (b) Competitive self-organized queue

Figure 7.7: The snapshots of two simulations demonstrate how the waiting crowd (susceptible
– blue, infectious – red) forms a self-organized queue in front of a service unit
(orange rectangle). Queue management strategies are not explicitly applied. Note:
own figures adapted from [213, p. 3].

7.2.1.2 Single-file queue

A simple strategy to manage the queue according to the first-come-first-served principle
is to install barriers. This usually prevents cutting and, in the case of a narrow aisle,
results in a single-file queue (see Fig. 7.8). Typical use cases for queue barrier systems
include reception or check-in areas, exhibitions, and various other events. They often
wind across the available space. However, I simulate a straight line to exclude an addi-
tional parameter, the breadth of the queuing system, that could affect the individuals’
exposure. Furthermore, it is easier for the locomotion models in Vadere to capture phys-
ical distancing in a straight line. The distancing conditions in Fig. 7.8a are relatively
normal, while the simulation visualized in Fig. 7.8b accounts for physical distancing of
about 1.5m.

(a) Single-file queue without physical distancing

(b) Single-file queue with approximately 1.5m physical distancing

Figure 7.8: The snapshots of two simulations visualize several people (susceptible – blue, infec-
tious – red) waiting in single-file queues in front of a service unit (orange rectangle).
Note: own figures adapted from [213, p. 3].

I determine the physical distance through a parameter that incorporates the theory of
personal space into the optimal steps model (pedPotentialPersonalSpaceWidth) [244].
The parameter does not directly translate into a physical distance but alters the under-
lying utility. In my scenarios, the default value of 0.5 (dimensionless) corresponds to the
standard conditions (Fig. 7.8a) and 1.5 to physical distancing (Fig. 7.8b). Fig. 7.9 shows
the respective center-to-center distances between two neighboring individuals and the
resulting time average. I repeat the simulation n = 10 times for the same parameter set
but varying sequences of random numbers used in the simulation, which are determined
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by the so-called simulation seed. The results confirm that the seed has little influence on
the physical distance. The time average of the repeated simulations is a good approx-
imation for either distancing scenario. The exact average values are 0.87m for normal
circumstances and 1.51m for physical distancing conditions.
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Figure 7.9: The diagram shows inter-individual distances for two conditions in the single-file
queue. A thin line represents the average distance between all neighboring persons
waiting in the queue. Peaks in these time series are not artifacts but occur every
time a person passes the service unit and the other persons successively move up.
The more persons are still in the queue, the longer-lasting and lower the peaks.
Thick lines build the arithmetic mean of the n = 10 repeated simulations (thin
lines). Dashed black lines depict the respective time average. Note: own figure
adapted from [213, p. 4].

7.2.1.3 Seating scenario with fixed queuing positions

My first simulation study [17] reveals that a single-file queue can cause critical exposure
levels in the persons following the infectious person. Introducing a waitlist or ticket
system helps to reduce the exposure because it prevents queuing persons from waiting
in the trace of aerosol clouds exhaled by the index case. To that end, each person is
allocated a fixed position in the waiting room upon arrival and stays there until the
previous persons have passed the service unit. Typical examples of such a setting are
waiting areas at an airport or in healthcare facilities.

In the parameter study in [213], I analyze the effect of such queue management strate-
gies on exposure risks. I define two scenarios with seats arranged in one row and two
scenarios with three rows (block layout) (see Fig. 7.10). For comparability, either lay-
out is simulated with lateral center-to-center spacing between the chairs of 0.85m and
1.50m. This corresponds roughly to the normal and physical distancing conditions in the
single-file queue, respectively. In reality, many waiting rooms use the available area to
full capacity. Consequently, there is often little space between the chairs. Furthermore,
people tend to keep a comfortable distance from occupied seats if they are allowed to
decide where they would like to wait [302]. However, my setting is particularly plausible
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for times of the COVID-19-19 pandemic. At the same time, I would like to emphasize
that these scenarios do not represent an actual situation. Their primary purpose is to
demonstrate Vadere’s capability of reenacting specific everyday situations and movement
patterns.

(a) Line layout

(b) Line layout with physical distancing

(c) Block layout (d) Block layout with physical distancing

Figure 7.10: The snapshots of four simulations visualize several people (susceptible – blue,
infectious – red) waiting in a waiting room with seating (orange squares) until it
is their turn to be served at the service unit (filled orange square). Intermediate
targets (hatched orange rectangles) ensure that the individuals take the right path
toward their seats. The seats are occupied (row-wise) from right to left. In (c)
and (d), the first arriving person approaches the chair in the upper right corner.
Note: own figures adapted from [213, p. 4].

7.2.2 Corridor scenario: counter flow in an indoor corridor

Lastly, I model a situation with crowd dynamics that differs from those in the queuing
scenarios. The setting is a long indoor walkway, such as a concourse connecting an airport
terminal building with a departure gate. Travelers walk in both directions. A detail of
such a counterflow scenario is depicted in Fig. 7.11. Since the pedestrians are constantly
in motion, exhaled aerosol clouds cannot accumulate and inhaled pathogen doses should
be low. Consequently, I expect minor exposure levels even if a susceptible person directly
follows the infectious person.
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Figure 7.11: The snapshot of a simulation shows several people (susceptible – blue, infectious
– red) walking along an indoor corridor in both directions. The corridor has a
length of 150m. Note: own figure adapted from [213, p. 4].

7.2.3 Simulation results

This section summarizes the model output for the queuing scenarios and the corridor
scenarios. Similarly, as for the model validation, I run simulations for the parameter
combinations avg. of sample intervals, max. aerosol concentration, and max. aerosol
spread defined in Table 7.1. Again, I expect the highest exposure levels for the max.
aerosol concentration parameter set, whereas the conditions for the max. aerosol spread
should lead to the highest number of exposed persons. A comparison of the individuals’
exposure with the benchmark scenario of a close contact helps me to determine whether
critical exposure occurs.

Fig. 7.12 visualizes the individuals’ exposure observed in the queuing scenarios. The
collection of subcharts presents the results column-wise for the scenarios and row-wise
for the parameter sets. For example, the upper left chart, which displays the results
for the self-organized cooperative queue simulated with the parameter set avg. of sample
intervals, unveils that seven individuals exceed the reference exposure of the close contact
scenario. If the persons wait in single-file or at fixed positions determined by seating,
only two persons experience a high-risk exposure. In the case of physical distancing,
the number of persons with high-risk exposure is even zero. The results for the other
two parameter sets max. aerosol concentration and max. aerosol spread show a similar
trend. Consequently, it appears reasonable to rank the scenarios according to the number
persons with high-risk exposure or the total exposure. Counting only the number of
persons with high-risk exposure could give the impression that the physical distancing
scenarios of a single-file queue or seating arranged in a line are least critical, whereas
the self-organized queues are the most risky situations. However, Fig. 7.12 only provides
information about three of many possible outcomes. An average ranking could look
different but remains unknown. Therefore, it is vital to consider the uncertainty of the
whole parameter space. Chapter 8 delivers a thorough analysis and discussion of the
simulation outcome.

In contrast to the queuing scenarios, the corridor scenario leads to much lower ex-
posure for all three parameter combinations. The maximum exposure reached in the
simulation remains well below 1% of the close contact exposure.1 The primary cause

1The maximum possible exposure for the most critical parameter set max. aerosol concentration
can also be estimated by the equation l

T v
Ra CP0 ≤ 102 particles = 0.5%Econc, with a corridor
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Figure 7.12: The bar charts compare the individuals’ exposure obtained for the queuing sce-
narios defined in Section 7.2.1. Each subdiagram corresponds to the results of one
queuing pattern and one parameter combination. The simulation results for the
self-organized queue are averaged over n = 10 repeated simulations with different
seeds (random numbers). Physical distancing is only considered in the single-file
queue and seating scenarios. The individuals’ exposure is sorted in descending
order to increase comparability. The dotted lines indicate a high-risk exposure as
observed in the close contact scenario. Note: own figure adapted from [213, p. 6].

for such exposure levels is the marginal pathogen concentration associated with aerosol
clouds that do not accumulate. In addition, the virtual persons pass the corridor quickly.
Thus, simulations can show comprehensibly that the exposure risk is negligible in such a
situation. In the context of the COVID-19 pandemic or future pandemics, this quantita-
tive comparison of scenarios could be a relief for people who feel unsafe in public spaces
or help decision-makers who need to devise effective regulations against pathogen trans-
mission. Since the preliminary analysis reveals, as expected, that the corridor scenario
is not critical, I scrutinize solely the uncertainty and sensitivity of the queuing scenarios
in Chapter 8.

length l = 150m, respiratory cycle period T = 3 s, minimum walking speed v ≥ 0.5m s−1, absorp-
tion rate Ra = 5 · 10−4 m3 per inhalation, and the initial particle concentration of an aerosol cloud
CP0 = 3

4

NP, out

π r30
= 3

4
103 particles
π 0.53 m3 . Exponential decay is neglected here because the susceptible person

immediately follows the infectious person.
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7.3 Summary

This chapter assessed simulations of pathogen transmission via inhalation of airborne
aerosol particles in unventilated indoor environments. To that end, I used Vadere’s
optimal steps model combined with the new feature for transmission via aerosol clouds.
In the absence of a biologically plausible dose-response model for SARS-CoV-2, the model
returns a person’s degree of exposure, which can be interpreted likewise as a theoretical
number of inhaled aerosol particles or RNA copies. I simulated a close contact situation
to estimate an exposure associated with a high risk of infection. This value served as a
reference value for subsequent simulations and helped me to contextualize and interpret
respective model outcomes.

My numerical experiments involved three parameter combinations, which I selected
from possible ranges defined in Chapter 5. They represent the mean values of the pa-
rameter ranges (avg. of sample intervals) and two edge cases leading to the maximum
aerosol concentration within an aerosol cloud (max. aerosol concentration) or its maxi-
mum spatial spread (max. aerosol spread).

I validated the model for these parameter sets by reenacting two superspreading events
and comparing the output with empirical measurements. This comparison showed plau-
sible results for the conditions avg. of sample intervals and max. aerosol spread , which
builds trust in the model. The parameter set max. aerosol concentration should be
regarded as an unlikely extreme case for the analyzed scenarios.

Encouraged by the model validation, I predicted the exposure risk for pedestrians
lining up in a queue or passing an indoor corridor. In summary, the simulations showed
that the corridor scenario appears uncritical, while most queuing scenarios involve high-
risk exposure. More precisely, the results indicated that the queuing behavior affects the
exposure risk. I found considerably higher individual exposure and more exposure levels
reaching high-risk in the analyzed self-organized queues than in the queues managed
with specific strategies. Accounting for parameter uncertainty is crucial to improve the
reliability of these simulations. The next chapter examines the uncertainty in the model
input and output in detail.
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8 Quantifying uncertainties in predictions of the exposure
model

The previous chapter showed that the model output for the degree of exposure can vary
in the order of magnitudes depending on the chosen input parameters. Although research
on SARS-CoV-2 has progressed, several parameters remain unknown or at least uncertain
and diminish the reliability of simulation outcomes. As discussed in Chapter 4, there are
mathematical methods to quantify uncertainties. However, uncertainty quantification
is not considered as a standard in epidemiological simulations. I aim to bring these
fields together and, thus, to increase the reliability and informative value of my previous
simulations.

There are several ways to approach uncertainties in simulations. I focus on global
sensitivity analysis and forward propagation. It would not make sense to apply inverse
methods because they require data that are not available. By running a sensitivity anal-
ysis and an uncertainty analysis, I predominantly seek to answer the following questions
and their respective implications for reality:

Research questions

How can uncertainties in the simulation be quantified?

• Sensitivity analysis: How can uncertain input parameters be prioritized regard-
ing their impact on the output?

• Uncertainty analysis: How can one quantitatively determine the effect of input
uncertainties on individual exposure levels and the number of exposed persons
in a scenario?

Appropriately targeting these questions demands a large number of model evaluations.
Unlike in Chapter 7, this task exceeds the resources of an ordinary computer if the
computing time is to remain below acceptable limits. Consequently, I also describe how
I tackle this computational problem.

This chapter is structured as follows: First, I briefly recapitulate the relevant un-
certainty quantification methods and explain which tools I use to conduct my numerical
experiments. Then, I determine and discuss the model sensitivity and output uncertainty.
I covered these analyses in my parameter study [213], yet with fewer details about the
tooling. Gerta Köster and Hans-Joachim Bungartz co-authored this publication.

8.1 Methods for sensitivity analysis and forward propagation

I adopt a methodology as schematically shown in Fig. 8.1. Instead of considering merely
point estimates, I characterize input uncertainties by probability distributions and prop-
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8 Quantifying uncertainties in predictions of the exposure model

agate them through the model. Putting the variability of the output in relation to the
input uncertainty delivers the model’s sensitivity. Thus, I distinguish influential from
non-influential model parameters. In addition, a statistical analysis of variations in the
output improves the reliability of the simulations.

Individual-based exposure model
(treated as a black box)

Chapter 7
Chapter 8

Uncertain input
parameters

Output

Figure 8.1: The illustration schematically compares the approaches pursued in Chapter 7 and
this chapter. While I previously evaluated point estimates, I now consider the whole
parameter space. This means I feed probability distributions into the model to
obtain a complete picture of the output uncertainty. The uncertainty quantification
methods I use treat the model as a black box. Note: own figure adapted from [213,
p. 2].

For sensitivity analysis, I employ a global method to capture the impact of parameters
completely. More precisely, I choose the Sobol’ method (see Section 4.2.1) because it is
applicable to nonlinear nonmonotonic models without interfering with the program code
of the model. It returns total sensitivity indices, ST i, which quantify the sensitivity of the
model output with respect to the uncertainty of the i-th parameter and interaction effects
between the i-th parameter and other parameter uncertainties. First order sensitivity
indices, Si, describe the isolated impact of parameter i. Since my numerical experiments
yield similar first order and total indices, I focus on the total sensitivity. Another benefit
of the Sobol’ method is that several toolboxes already offer ready-to-use implementations.
I use SALib [271, 272], version 1.4.5. Section 4.4.1 describes the two relevant functions
for generating samples and estimating sensitivity indices.

My uncertainty analysis comprises (pseudo-)random Monte Carlo simulations and a
statistical summary of the output. Alternative approaches, such as perturbation methods
or spectral representations, are usually less computationally demanding. However, they
lead to model form uncertainties and, therefore, methodological constraints [258, pp. 187–
8]. I generate (pseudo-)random Monte Carlo samples with the Python library chaospy
[270], version 4.3.10. Section 4.4.2 provides details about the sampling function.
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8.2 Materials: tools, infrastructure, and model settings

Both sensitivity analysis and uncertainty analysis constitute a computationally expensive
problem. The Python toolbox suqc,1 initially developed by Lehmberg [303], helps me
reduce the computing time through parallelization. Thus, I can exploit multiple cores
for better performance. I execute the simulations described in the following sections on
a virtual machine hosted on a Linux server with two processors (Intel® Xeon® Silver
Processor 4114, equipped with 10 cores, 20 threads, 2.2GHz processor frequency, x86-
64 architecture) providing 40 threads in total and a random-access memory (RAM) of
57.5GiB. The respective computing times for a numerical experiment range from several
minutes to about two days.

My numerical experiments are based on Vadere 2.2. I connect Vadere and the packages
sucq, SALib, and chaospy through a new Python package, which I name vadere-infection-
model-uq (vimuq).2 This repository provides a structure for conducting numerical exper-
iments tailored to the infection module in Vadere. In addition, it contains all simulation
studies, that is, the definitions required to run a sensitivity or uncertainty analysis for a
particular scenario. The simulation data is stored separately and available in Appendix
E (DS6). Thus, others can access and reproduce the numerical experiments. The work-
flow for conducting a new experiment consists of two separate steps: generating and
evaluating samples and then analyzing the model output. Further details are given in
the repository, including instructions about how to install the vimuq project.

To avoid errors in the code, I inspect the important parts such that unit tests cover
63% of the lines. Complementary integration tests ensure that a whole numerical ex-
periment runs without throwing errors. Furthermore, I run my implementation for a
frequently employed test case called the Ishigami function [304]. The function is non-
linear and nonmonotonic. I replace Vadere temporarily with this function and calculate
sensitivity indices to verify that my framework returns the expected results. The con-
tinuous integration pipeline of the vimuq project executes the above routines with every
update of the GitLab repository. Thus, I maintain the level of code quality throughout
the development process.

I scrutinize the model input and output using the above set of methods and tools. The
model itself is treated as a black box. This means, the uncertainty quantification methods
only know about the input and outputs, but they do not require access to the underlying
implementations or algorithms. The models under investigation are the queuing scenarios
introduced in Section 7.2.1. More precisely, I reconsider the self-organized competitive
queue, the single-file queue, and the seating scenarios with fixed queuing positions. I
only leave out the cooperative queue, which is much the same as the competitive queue.

The model input is linked to the same parameters as in the previous chapter. I still
regard the parameters half-life, initial radius, and dispersion factor as uncertain inputs,
but they are now tied together mathematically through a joint probability distribution.
I assume all three parameters are independent and uniformly distributed within their

1www.gitlab.lrz.de/vadere/suq-controller, commit 3b0988ba, accessed on April 2, 2024
2www.gitlab.lrz.de/vadere/infection-model-uq, accessed on April 2, 2024
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uncertain ranges. The uniform distribution is an initial guess, as there is not enough
trustworthy data available to suggest other shapes of distributions. This choice should
be adapted when there is sufficient evidence about the true distribution of the parameters.
As a result, I obtain the parameter space listed in Table 8.1.

Table 8.1: My uncertainty quantification experiments analyze the impact of the listed param-
eter uncertainties. The uncertainties are represented by uniform distributions with
bounds corresponding to the parameter ranges defined in Table 5.1. I use the log-
uniform distribution of the half-life for one numerical experiment to confirm that it
yields a similar sensitivity as the uniform distribution in linear space.

Parameter / random variable X Distribution of X Unit

Half-life X ∼ U
(
6 · 102, 104

)
s

Half-life (logarithmic space) log10 (X) ∼ U
(
log10

(
6 · 102

)
, log10

(
104

))
s

Initial radius X ∼ U (0.5, 1.5) m

Dispersion factor X ∼ U
(
0, 6 · 10−3

)
ms−1

The parameter half-life ranges over two orders of magnitude, so a log-uniform distribu-
tion could be more appropriate than the uniform distribution in linear space. Therefore,
I also try out one numerical experiment with the half-life following a base-10 logarith-
mic uniform distribution. As shown in the next section, the shape of the distribution
has almost no influence. The results for the uniform distribution and the log-uniform
distribution are similar for the analyzed scenario. I argue that this applies also to the
other scenarios because they are closely related. Consequently, I run all other numerical
experiments only with the uniform distribution in linear space because it is easier to
understand and delivers roughly the same information. In contrast to the half-life, using
log-uniform distributions for the parameters initial radius and dispersion factor would
be inadequate. The interval bounds of these two parameters are less than a factor of ten
apart or include zero, which cannot be converted to logarithmic scales.

The model output remains the same as in the previous chapter: I evaluate the pathogen
or aerosol particles each individual takes in. In addition, I analyze the average exposure
among those who become exposed, the number of exposed persons (exposure E > 0),
and the maximum exposure.

8.3 Sobol’ sensitivity analysis for factor prioritization

In this section, I present the results of the global sensitivity analysis that I conducted in
[213] to quantify the effect of input variability in the model parameters on the variability
of the output. Information about parameter importance fosters a better understanding
of the model and reveals where one can effectively improve the reliability of simula-
tions. High sensitivity regarding a specific model parameter can indicate how to control
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pathogen transmission effectively. In the following, I demonstrate how I achieve reliable
results for the sensitivity indices. Then, I discuss and interpret the results.

8.3.1 Simulation set-up for a reliable sensitivity analysis

It is essential to confirm that the estimates for the model sensitivity are correct before
one can discuss them in detail. To that end, I check whether the sample size achieves
appropriately converged results. Convergence depends on several factors, including the
sampling technique. I use Saltelli’s extension of the Sobol’ sequence (see Section 4.4.1
for details) to generate samples from the 3D (dimension d = 3) parameter space. The
respective sample points must be chosen carefully to increase performance compared to
classical Monte Carlo sampling. Owen [278] proposes that the base sample size N be a
power of two and to skip the first Nskip ≥ N points. Following this recommendation, I
find N = 212 to yield accurate results for the single-file queue. I determine this sample
size by step-wise doubling N = 2k for k = 4, 5, . . . , 12 and evaluating the difference in the
resulting total and first order sensitivity indices, ∆S = |S(Nk)− S(Nk+1)|. The absolute
difference suffices since the sensitivity indices range in the interval [0, 1]. As k increases,
the difference ∆S shrinks and finally drops to a level I deem acceptable (< 0.01 for most
quantities of interest). Thus, I assess that N = 212 yields satisfactory convergence for
the single-file queue. I assume this estimate also holds for the other scenarios because
they are similar. In sum, computing total and first order sensitivity indices requires
N(d+ 2) = 20 480 sample points for each scenario.

Importantly, these convergence estimates apply to the model’s deterministic form but
not generally to a stochastic set-up. As mentioned in Chapter 7, simulations with Vadere
usually rely on sequences of (pseudo-)random numbers. Each sequence is associated with
a so-called seed. Keeping the seed fixed for repeated simulations of the same scenario and
parameter set leads to exactly the same simulation result. Otherwise, mainly the spawn-
ing process of virtual persons and pathfinding algorithm introduce randomness. This
alters the virtual persons’ trajectories and, consequently, their exposure in simulations
repeated with different seeds. A single simulation represents only one possible realiza-
tion, and one needs several realizations to get a meaningful average output. This leads
to the questions of (1) how to post-process the simulation output of repeated realizations
and (2) which number of repetitions, n, is adequate.

Fig. 8.2 visualizes how I post-process the output in three steps: averaging the output,
calculating additional quantities of interest from the individual exposure levels delivered
by the exposure model, and determining the model sensitivity. Options A – D in Fig.
8.2 indicate in which order these three operations are executed. The results discussed in
the next sections are produced as follows. In the case of the competitive queue, I average
the sensitivity indices determined for each repetition (option C). This order is necessary
to keep data points apart that should not be mixed prior to calculating sensitivities.
For example, it avoids averaging exposure levels that belong to different persons, as the
crowd does not adhere to the first-come-first-served principle. For all other scenarios, I
first average the output and then calculate the sensitivity indices (option A). Considering
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Figure 8.2: The chart shows four methods of post-processing the simulation output. The model
returns the individual exposure as a primary quantity of interest. Options A – D
indicate in which order I calculate secondary quantities from the primary output,
average the results, and compute the total (STi) and first order (Si) sensitivity. I
use options A and D for the single-file queue (with n = 3 repetitions) and C and
D for the competitive queue (n = 10). All other scenarios (n = 1) are processed
according to A, the method with the fewest computational operations.

the sensitivity indices for each repetition separately (option D) is only relevant in the next
paragraph, where I confirm that my choice of the number of repetitions, n, is adequate.
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A conclusive answer to question (2), relating to the number of required repetitions,
would require considerable computational effort. I adopt a simplified approach. I argue,
the more confined the virtual persons’ movement is, the less influential the stochastic
effects of the pathfinding algorithm. Consequently, the queuing scenarios with queue
management are likely to reproduce similar individual exposure levels independent of
the seed. In contrast, free movement in the self-organized competitive queue can lead
to significantly different exposure. Therefore, I make an initial guess and check the
differences occurring in n = 10 repeated simulations of the competitive queue. Fig. 8.3a
shows the total sensitivity indices calculated for each repetition (option D from Fig. 8.2).
For now, it is enough to understand that the curves are roughly the same, so the repeated
simulations lead to comparable sensitivities. An interpretation of the sensitivity indices
follows in the next section. The similarity between the curves supports my argument
that, for the competitive queue, considering the average of n = 10 repetitions should
suffice to obtain reliable information about the sensitivity. I apply the same procedure
to the single-file queue, yet with only n = 3 repetitions because I expect less randomness
in the model. Indeed, Fig. 8.3b demonstrates that even a single simulation should yield
reliable sensitivities since the three curves almost overlap. The other scenarios involve
even less randomness because of the fixed waiting positions. Therefore, I argue that
analyzing only one simulation (n = 1) in these cases is reasonable. Note that Fig. 8.3
displays only the total sensitivity indices for the individuals’ exposure in the queue. The
other quantities of interest also produce similar results for each repetition. This finding
holds likewise for the first order sensitivity indices.
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Figure 8.3: The charts compare the results of sensitivity analyses repeated with different seeds.
They demonstrate that the model stochasticity affects the sensitivity indices only
slightly. Each curve represents one repetition (shades of blue). The displayed data
set stands exemplary for all quantities of interest and total or first order sensitivity
indices. Here, it shows the total sensitivity index calculated for the individuals’
exposure and each parameter. Note: own figures adapted from [213, p. 12].
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8.3.2 Identifying influential and non-influential parameters

Having ensured an appropriate set-up for the sensitivity analysis, I now present and
discuss the resulting sensitivity indices. The aim is to quantify the impact of the three
uncertain input parameters on quantities of interest and, thus, to distinguish influential
from non-influential parameters. The impact depends on the quantity of interest. This
section reviews four quantities of interest separately, starting with the sensitivity of
the individuals’ exposure. After that, I analyze the average exposure among exposed
persons, the number of exposed persons, and the maximum exposure in a scenario. To
further reduce the complexity of the numerical experiments, I concentrate on the queuing
scenarios without physical distancing and treat physical distancing in a separate section.
Moreover, I primarily discuss the results of the total sensitivity. A total sensitivity index
describes the impact of an uncertain parameter and its interactions with other uncertain
parameters on the model output. The first order sensitivity indices, which include only
the isolated impact of uncertain parameters, are similar to the total sensitivity in my
numerical experiments. I cover them briefly at the end of this section.

The total sensitivity of the individuals’ exposure observed in a scenario varies between
the virtual persons, as can be concluded from Fig. 8.4. The quantities of interest dif-
fer slightly between Fig. 8.4a and Fig. 8.4b. I consider ranked exposure levels in Fig.
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Figure 8.4: The figures show the total sensitivity indices of the individuals’ exposure concerning
the three uncertain parameters half-life, initial radius, and dispersion factor . The
sensitivity index of the infectious person is undefined because the respective expo-
sure is always zero. It corresponds to rank 21 in (a) and to position 10 in (b). The
bootstrap confidence intervals (shaded areas) are computed from 100 re-samples at
a 95% confidence level. Note: own figures adapted from [213, p. 7].
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8.4a and exposure levels sorted by position in the queue in Fig. 8.4b. This distinction
accounts for the fact that the scenarios analyzed in Fig. 8.4a do not allow for mapping
the sensitivity indices to certain persons or queuing positions. In contrast, the queues
described in Fig. 8.4b are organized in a straight line so that each person can be as-
sociated with a particular sensitivity index. While the parameter half-life is generally
of minor importance, the impact of the parameters initial radius and dispersion factor
depends on the position in the queue. The charts indicate that the initial radius rises in
importance for susceptible persons who follow the infectious person, while the dispersion
factor declines with increasing distance to the infectious person. Taking a look at each
sensitivity index separately makes this connection more apparent.

First, I explain the sensitivity of the self-organized competitive queue in Fig. 8.4a.
The opposing trend of the parameters initial radius and dispersion factor results from
the following circumstances: Individuals grouping closely around the infectious person
experience, on average, the highest exposure. The further away they stand, the lower
their exposure. These exposure levels correspond to approximately the first half of the
ranks. Persons at distances larger than the initial radius of an aerosol cloud only become
exposed as the cloud expands or when they walk into clouds. Accordingly, the importance
of the initial radius declines and the dispersion factor becomes more influential. This
relationship flips approximately after rank 11, so the impact of the initial radius increases,
and that of the dispersion factor falls steeply. This is mainly a consequence of aerosol
clouds dissolving before the persons at the rear of the queue reach the contaminated
area. Rank 19, attributed to the person who passes the service unit second, shows
an unexpectedly high sensitivity regarding the dispersion factor . When averaging the
Sobol’ index computed from multiple repetitions, it is subject to instabilities. The root
cause is that only parameter combinations with large values for the initial radius and
the dispersion factor cause exposure in this position, but many samples lead not to
exposure. Consequently, the total variance in the output is smaller than 1, which results
in overestimation as the partial variance is normalized by the total variance. Ranks
20 and 21 are not defined because the respective exposure is zero. The individuals
corresponding to rank 20 leave the scenario before passing an aerosol cloud, and rank 21
belongs to the infectious person.

Fig. 8.4b shows the sensitivity observed for the single-file queue and the seating scenario
with a line layout. Since the 21 pedestrians wait in the same order throughout all
simulations, it is valid to calculate a sensitivity index by person or position in the queue.
The first six (seating, line layout) to eight (single-file queue) persons are not exposed.
Hence, their sensitivity indices are not defined. For the remaining positions, the impact
of the initial radius and the dispersion factor have opposite tendencies in both scenarios.
Generally, the influence of the initial radius decreases with increasing distance to the
infectious person (position 11) to the front and to the back. In contrast, the dispersion
factor becomes more important the larger the distance. The reasons for this trend are the
same as detailed for the competitive queue. Persons near the infectious person undergo
relatively high exposure, which is determined by the initial radius. The exposure of
persons further apart predominantly depends on whether aerosol clouds maintain high
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concentrations as they expand slowly or whether the clouds dilute quickly. Looking
closer at the sensitivity of the seating scenario reveals several peaks. Most importantly,
the peaks at position 14 in the initial radius and the dispersion factor arise from different
places where exposure occurs. Depending on the parameter combination, the respective
individual experiences medium to high exposure at the seating position or relatively low
exposure at the service unit. This is reflected in an increased sensitivity. The peaking
sensitivity of the initial radius at position seven in the seating scenario occurs for a
similar reason. The initial radius is either large enough to cause exposure or too small,
so the seventh person remains unexposed.

The total sensitivity indices for the seating scenario with the block layout (see Fig.
8.4a) are difficult to assign to individuals or positions. The data set does not show an
explicit tendency, as for the other scenarios. It is included in the chart for the sake
of completeness. The average exposure and the number of exposed persons give more
insights into this scenario.

The total sensitivity indices for the average exposure among the exposed persons and
the number of exposed persons are visualized in Fig. 8.5. These quantities of interest
give an overall impression of how risky a situation can be. Note that they both consider
a person exposed whose degree of exposure is larger than 0. One could also use another
threshold instead of 0, but this would raise the issue of how to choose the threshold and
what this threshold should stand for. The reference values calculated for the close contact
scenario do not help here because they refer to a specific parameter combination, whereas
the sensitivity analysis relies on intervals for the three uncertain parameters. Fig. 8.5a
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Figure 8.5: The figures show the total sensitivity indices of the quantity of interest concerning
the three uncertain parameters half-life, initial radius, and dispersion factor . The
bootstrap confidence intervals (error bars) are computed from 100 re-samples at a
95% confidence level. Note: own figures adapted from [213, p. 8].
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shows that the sensitivity of the average exposure is roughly the same in all four scenarios.
The initial radius is less important than the dispersion factor . Compared to that, the
influence of the initial radius and the dispersion factor on the number of exposed persons
varies between the scenarios (see Fig. 8.5b). Interestingly, the initial radius is much more
influential than the dispersion factor for the competitive queue and the single-file queue.
In the case of the seating scenarios, the relation between the importance of the initial
radius and the dispersion factor is the opposite. This change in the sensitivities reflects
the two distinct queuing patterns of successively moving up versus occupying stationary
positions. The continuously moving queues are more responsive to uncertainties in the
initial radius because the extent of the aerosol clouds determines whether persons ahead
of the index case become exposed. Moreover, people at the end of the line regularly move
forward and, therefore, reach contaminated areas earlier than in the seating scenarios. In
the seating scenarios, persons at the rear of the queue evade exposure if the aerosol clouds
vanish before they walk through them. Whether the scenario is cleared from aerosols
after a certain time depends primarily on the dispersion factor .

The maximum exposure (see Fig. D.1a in Appendix D) is influenced by the initial
radius and dispersion factor to approximately the same extent, regardless of the scenario.
The total sensitivity indices of these two parameters are about 0.5, while the half-life has
no impact.

So far, I have only addressed the total sensitivity. The first order sensitivity, which
evaluates the isolated influence of a parameter, leads to the same parameter ranking (see
Fig. D.1b, D.2, and D.3 in Appendix D). That is, the half-life is non-influential, whereas
the other two parameters have varying importance depending on the considered quantity
of interest. The first order sensitivity indices are slightly smaller than the total sensitivity
indices. Hence, interaction effects between the parameters initial radius and dispersion
factor play a role, yet mainly to a limited extent. Interactions with the half-life are
negligible because the total sensitivities of this parameter are already close to zero.

8.3.3 Sensitivity for a log-uniform distribution of the parameter half-life

The previous analyses with a uniform distribution representing the input uncertainty of
the half-life show that this parameter has almost no impact on the exposure. However,
this could change if one assumes a different input distribution. Above all, a log-uniform
distribution could be a better choice for the input uncertainty because the half-life adopts
values across two orders of magnitude (see Table 8.1). A log-uniform distribution of
the half-life implies that the common logarithm of the half-life is distributed uniformly
as per U

(
log10

(
6 · 102

)
, log10

(
104

))
in s. As a consequence, the region closer to the

lower bound of the uncertain interval is weighted more strongly compared to a uniform
distribution in linear space. The other two parameter uncertainties remain unchanged.

I examine the sensitivity of this adapted parameter space for the single-file queue
and compare the results to the setting with a uniform distribution of the half-life. Fig.
8.6 shows the sensitivities for the individuals’ exposure and the average exposure. The
results are generally the same. The impact of the half-life on the individual exposure
levels increases minimally toward the end of the queue, which means the half-life becomes
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more important the longer a person stays in the scenario. This is reasonable because a
shorter half-life contributes to faster decay of aerosol concentrations and, thus, reduces
the exposure more than it is the case for a uniformly distributed half-life. Nonetheless, the
effect of right-skewed input samples is negligible for all quantities of interest. It would
become significant if the lower bound of the uncertain interval included even shorter
times. However, while such a parameter choice may be applicable to other respiratory
diseases, it would not be justified for COVID-19 in view of the current knowledge. For this
reason, I continue with a uniformly distributed half-life, which is easier to comprehend.
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Figure 8.6: The figures compare the total sensitivity indices for the single-file queue with the
parameter half-life following a uniform distribution or a log-uniform distribution.
The bootstrap confidence intervals (shaded areas / error bars) are computed from
100 re-samples at a 95% confidence level.

8.3.4 Impact of physical distancing on the sensitivity

The sensitivity analysis also includes scenarios with physical distancing of approximately
1.5m. Compared to normal conditions, physical distancing prolongs the time between
when the infectious person exhales an aerosol cloud and when a susceptible person inhales
the particles. Consequently, the aerosol concentration decreases more, and the exposure
levels are slightly lower. Interestingly, this produces only small changes in the sensitivity.
Fig. 8.7b shows that the trends of the total sensitivity indices essentially remain the
same. In the seating scenario with a block layout (Fig. 8.7a), sensitivity indices per rank
of exposure seem volatile and different from the normal distancing conditions. However,
the general region of the sensitivity is the same. In addition, the sensitivity of the average
exposure is similar (see Fig. D.4 in Appendix D). These unchanged sensitivities indicate
that physical distancing does not affect the transmission dynamics in these queuing
scenarios, which is plausible as long as one only models long-range transmission. If short-
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range transmission via larger aerosol particles were included in the model, the sensitivity
should be clearly different between scenarios with and without physical distancing.
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Figure 8.7: The figures compare the total sensitivity indices for the scenarios without physical
distancing (shades of blue) and with physical distancing (shades of orange). The
bootstrap confidence intervals (shaded areas) are computed from 100 re-samples at
a 95% confidence level. Note: own figures adapted from [213, p. 13].

8.3.5 Implications of the sensitivity analysis

The sensitivity indices presented above have several implications. I discuss the meaning
of sensitivity with respect to modeling and simulation. Then, I approach the sensitivity
indices from a practitioner’s viewpoint and interpret their consequences for real life.

Most importantly, neither of the distributions of the parameter half-life has a relevant
impact on the exposure in the scenarios under consideration. For this reason, it makes
no difference whether or not the half-life is treated as uncertain. One can use a point
estimate instead of an interval and, thus, reduce the parameter space and number of
model evaluations. I suggest the mean value of either the uniform distribution or the
log-uniform distribution.

In contrast to the half-life, the uncertainty introduced by the parameters initial radius
and dispersion factor are influential. Both parameters describe distinct aspects of aerosol
spread over time. Whether the initial radius is more important than the dispersion factor
or vice versa is linked to the queuing strategy and the observed output. Therefore, both
parameters constitute a starting point for effectively improving the aerosol model and
reducing related uncertainties. Since the spatiotemporal propagation of aerosol clouds
within a room considerably influences the output and the sensitivity indices, it would be
reasonable to incorporate airflow into the model. For example, this could be estimated
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empirically by learning aerosol dynamics from image data. Alternatively, one could use
generalized maps of pathogen concentration around a source derived from CFD simula-
tions as recently proposed by Nicolas and Mendez [209]. Seeing the potential of more
detailed approaches on the one hand, I underline the advantage of parsimonious mod-
els on the other hand. Too complex modeling techniques prohibit thorough sensitivity
analyses.

Finally, choosing a global method for sensitivity analysis appears appropriate since
interaction effects between the parameter uncertainties play a role. A local method
could not detect these effects.

If we shift the viewpoint from modeling and simulation toward real life, the sensitivity
analysis holds the following implications: Above all, the strong impact of the initial ra-
dius and the dispersion factor is plausible as it suggests that one can actively influence
the propagation of respiratory aerosols. Measures that dilute indoor aerosol concentra-
tions, such as ventilation, appear effective. This is in line with scientific investigations
on transmission mitigation strategies for SARS-CoV-2 [305] and common practices or
recommendations promoted during the COVID-19 pandemic. If ventilation is combined
with adequate air exchange, one can achieve a much shorter half-life than assumed in my
numerical experiments. The experiment with the half-life following a log-uniform distri-
bution gives a first indication that the output would react more sensitively to shorter
half-lives.

The simulations of queues with physical distancing produce sensitivity indices relatively
similar to the queues without physical distancing. This does not mean that physical dis-
tancing is not effective. It indicates that the model behaves similarly, which is reasonable
as long as the model only includes long-range transmission via airborne particles.

When transferring the sensitivity indices to the real world, the reader should bear the
model assumptions in mind. For example, the ceiling and the floor confine the aerosol
spread in reality, whereas the aerosol clouds in the model expand unhindered in three
dimensions. Consequently, the sensitivity index could overestimate the impact of the
dispersion factor on actual transmission dynamics. This applies similarly to other model
simplifications.

To conclude, the sensitivity analysis returns plausible results and, thus, supports the
validity of my model. Furthermore, it fosters a better understanding of the model. Since
the analysis identifies the initial radius and the dispersion factor as influential, enhancing
the knowledge base and the model for indoor aerosol propagation could effectively reduce
the uncertainty in individual exposure levels. Better understanding would help to plan
effective measures to mitigate infection risks.

8.4 Monte Carlo forward propagation to quantify exposure

In this section, I present the forward propagation that I carried out in [213] to quantify
the variability in the output data for the given input uncertainties. The forward propa-
gation complements the findings of the sensitivity analysis and allows me to draw reliable

107



8 Quantifying uncertainties in predictions of the exposure model

conclusions. In the following, I define the simulation settings, explain the outcomes, and
discuss the implications.

8.4.1 Simulation set-up for converged summary statistics

Similarly, as for the sensitivity analysis, I verify that the results of the forward propa-
gation approximate the true value well. As explained in Section 8.3.1, this requires a
sufficiently large sample size, N . In addition, I need to choose an appropriate number of
repetitions, n, of Monte Carlo experiments with different seeds.

I determine the required sample size, N , by running a Monte Carlo simulation exem-
plary for the single-file queue. Bicher et al. [306] criticize that many simulation studies
inadequately treat the convergence of Monte Carlo estimates. The authors emphasize the
importance of applying stopping rules for simulations. Being aware of the advantage of
such criteria, I adopt a visual approach because basic stopping rules can over- or under-
estimate the necessary sample size in case of skewed outputs. I run a Monte Carlo simu-
lation with an initial guess of N = 103 samples. With the given computational resources,
the computing time is about 10min and, hence, acceptable. Subsequently, I compare the
empirical distributions resulting from subsets with N = 102 and N = 103 samples (see
Fig. D.5). The deviation between the empirical distributions is small. Therefore, I deem
the output of N = 103 samples representative.

In a similar manner, I determine the number of required repetitions, n. Based on the
experience from the sensitivity analysis (see Section 8.3.1), I define n = 10 for the com-
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Figure 8.8: The figure shows median exposure levels obtained for repeated Monte Carlo simu-
lations. The quantity of interest is the rank of exposure in descending order. The
Monte Carlo experiment for the competitive queue is repeated n = 10 times, and
that of the single-file queue n = 3 times. Note: own figure adapted from [213, p. 12]

petitive queue, n = 3 for the single-file queue, and n = 1 for the seating scenarios. Fig.
8.8 visualizes variable median values obtained for the repeated and separately evaluated
(analogous to option D in Fig. 8.2) Monte Carlo simulations. Here, the median is a better
measure of central tendency than the mean because the data is skewed. The different
seeds cause variation in the median values of the Monte Carlo simulations. However, the
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average of n = 10 repetitions for the competitive queue (processed analogously to option
C in Fig. 8.2) and n = 3 repetitions for the single-file queue (processed analogously to
option A in Fig. 8.2) should return representative results.

8.4.2 Statistical properties of the output uncertainties

With the simulation set-up defined above, I conduct the Monte Carlo simulations and
describe the output statistically. Fig. 8.9 summarizes the results for the scenarios without
physical distancing. Most importantly, the comparison to the median exposure obtained
for the close contact scenario shows that all scenarios lead to high-risk exposure. Further-
more, the competitive queue causes the most and the highest individual exposure levels.
These mainly occur because the waiting people are standing close together. Overall,
more persons become exposed simultaneously and for a longer period.

When examining the average exposure (see Fig. 8.9c), one finds lower values in the
seating scenarios than in the single-file queue. However, the maximum exposure (see Fig.
8.9d) yields a different picture. Here, the seating scenarios cause slightly higher exposure
levels than the single-file queue.

The exposure resolved for each individual (see Fig. 8.9a and Fig. 8.9b) provide more
details. The individual exposure levels are characterized by the median to account for
the skewness of the data. In particular, Fig. 8.9b demonstrates which persons are most
affected in the single-file queue or the seating scenario with the line layout. The general
trend of declining exposure in the persons succeeding the infections person is reasonable.
The more a person stands toward the end of the queue, the lower the pathogen concen-
tration. Surprisingly, in the seating scenario with the line layout, the person in front
of the infectious one experiences higher exposure than the person behind. This occurs
in my model because virtual persons find their waiting position not always exactly in
the middle of the chair, as is sometimes also the case in reality. The distance between
person number 10 and the infectious person is shorter than between person number 12
and the infectious person. Consequently, person number 10 is more often located within
the initial radius of an aerosol cloud than person number 12. On the one hand, this
detail confirms the sensitivity of the exposure at this position with respect to the param-
eter half-life. On the other hand, it demonstrates that one should not over-interpret the
median values.

In addition to the median, Fig. 8.9a and Fig. 8.9b also depict the interquartile ranges.
The interquartile range is a robust measure of spread in the data while resisting outliers.
Here, it marks the highest uncertainty in the output of the competitive queue. The
single-file queue varies slightly less, whereas the seating scenarios are generally the least
uncertain. The considerable uncertainty in the exposure of the competitive queue mainly
stems from uncontrolled conditions where the infectious person is located within the
crowd. The uncertainty shrinks considerably if the queue is guided by barriers or fixed
waiting positions.
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Self-organized competitive
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Figure 8.9: The figures summarize the output uncertainty of four quantities of interest as a re-
sult of evaluating N = 103 (pseudo-)random Monte Carlo samples. The individual
exposure levels in (a) and (b) are described by the median (line) and the interquar-
tile range (shaded area). The exposure for the infectious person at rank 21 in (a) or
position 10 in (b) is undefined. The distributions in (c) and (d) are represented by
Kernel Density Estimators. The dotted lines correspond to the median exposure of
the close contact scenario. Note: own figures adapted from [213, p. 10].

8.4.3 Impact of physical distancing on the exposure risk

I now also take into account physical distancing. The results are shown in Fig. 8.10.
Compared to the scenarios without physical distancing, the median values in Fig. 8.10a
and Fig. 8.10b show the same trend. However, the median exposure drops to a lower
level below the median reference exposure of a close contact. The uncertainty in the
individuals’ exposure shrinks slightly. The distributions of the average exposure (Fig.
8.10c) and the maximum exposure (Fig. 8.10d) peak at lower values and indicate smaller
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variations in the data. Overall, the seating scenario with a line layout results in the
fewest and lowest exposure levels.
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Figure 8.10: The figures compare the output uncertainty of queuing scenarios without physical
distancing (shades of blue) and with physical distancing (shades of orange). The
individual exposure levels in (a) and (b) are described by the median (line) and
the interquartile range (shaded area). The distributions in (c) and (d) are repre-
sented by Kernel Density Estimators. The dotted lines correspond to the median
exposure of the close contact scenario. Note: own figure adapted from [213, p. 14].

8.4.4 Implications of the uncertainty analysis

The above findings of the Monte Carlo experiments have implications. Keeping in mind
that my simulations focus on long-range transmission via airborne particles, they shed
light on the following aspects of SARS-CoV-2 transmission:

First of all, the forward propagation results support the hypothesis stated in Chapter
7 that the queuing behavior influences the exposure risk. They demonstrate that the

111



8 Quantifying uncertainties in predictions of the exposure model

self-organized queue represents the most critical case concerning the average exposure,
the maximum exposure, and the number of exposed persons. The other queues guided
by explicit queue management clearly show fewer and lower exposure levels. Among
these actively managed queues, the seating scenarios, on average, show slightly better
results than the single-file queue. While such fine differences may be scenario-specific,
I generally conclude that crowd management can reduce the exposure risk. Physical
distancing may contribute to this. However, the reduction seems to be linked tighter to
the queuing pattern. Hence, the simulations are generally in line with the transmission
mitigation strategy of explicitly organizing queues during the COVID-19 pandemic.

The Monte Carlo experiments also highlight the importance of taking uncertainties
into account. Reliable simulation results and their interpretation inevitably require in-
formation about the output variability. The interquartile ranges, used as a measure
of statistical dispersion, are narrow in most cases. Thus, the ranking of the scenarios
becomes much more trustworthy than the initial guess based on point estimates.

Moreover, the uncertainty analysis complements the Sobol’ sensitivity analysis. It of-
fers a quantitative description of the exposure and, thus, enables us to better understand
the sensitivity. Importantly, the uncertainty analysis puts the sensitivities obtained sep-
arately for each scenario in context. The outputs obtained from the competitive queue
and the single-file queue vary more than those of the seating scenarios. This means that
the competitive queue and the single-file queue react more sensitively to the same input
variations than the other two scenarios. Hence, the queuing pattern is a third influen-
tial parameter besides the initial radius and the dispersion factor . This would become
apparent immediately if the queuing strategy were included in the uncertain parameter
space. However, the differences between the scenarios are challenging to characterize in
terms of a parameter.

8.5 Summary

I conducted a global sensitivity analysis with the Sobol’ method and forward propagation
experiments based on Monte Carlo simulations. The aim was to quantify the effect of
uncertainties in model parameters on the exposure of individuals in different scenarios. I
analyzed the parameters related to the decay and spatiotemporal propagation of aerosol
clouds (half-life, initial radius, and dispersion factor). The scenarios, first introduced
in Chapter 7, represent situations where one infectious person and several susceptible
persons form a self-organized queue or follow an actively managed queue to pass a service
unit.

The sensitivity analysis showed that the parameters determining the spatiotemporal
propagation of the aerosol clouds dominate the variability in the output. Consequently,
improving the knowledge base to reduce the input uncertainty or refining the model with
respect to aerosol propagation would effectively improve the reliability of the simulation.
Regarding practical application, the high sensitivity indicates that measures accelerating
the dilution of aerosols are effective. The remaining uncertain parameter related to the
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decay of the airborne pathogen load has no significant influence and, therefore, could be
fixed in future simulations.

The Monte Carlo simulations revealed that queue management positively impacts the
exposure risk. Average exposure levels and variability in the individuals’ exposure de-
creased substantially in the actively managed queues. Physical distancing added to this,
but the effect of queue management was larger. Seeing that the model merely focuses
on transmission via smaller aerosol particles, this appears reasonable and supports the
application of tailored actions against airborne pathogen transmission.

Overall, the sensitivity analysis and the forward propagation returned plausible trends
and, thus, support the model’s validity. They showed exemplary how to generate trust-
worthy outputs in the presence of large parameter uncertainties. Importantly, quantifying
uncertainties is possible because my model is parsimonious. Uncertainty quantification
methods, even more efficient ones, quickly become infeasible for computationally demand-
ing models. This emphasizes the advantage of more straightforward modeling approaches
given the various unknowns related to airborne transmission of pathogens, particularly
SARS-CoV-2.

113



9 Summary, conclusion, and future directions

This chapter summarizes the key research findings, evaluates my achievements, and ad-
dresses their limitations. Finally, I suggest directions for further research.

9.1 Findings summary

This dissertation investigated the overarching question: How can airborne transmission of
pathogens such as SARS-CoV-2 be modeled and simulated? The objective was to derive
a mathematical model for airborne pathogen transmission between individuals and to
translate it into a simulation program that researchers from different disciplines can use
for and adapt to their own research. To demonstrate the validity of the model and how
one can obtain reliable results despite input uncertainties, I reenacted superspreading
events and predicted individual exposure risks of people gathering indoors.

Developing and using such a model requires interdisciplinary knowledge. Therefore,
Part I of this work provided the essential background about SARS-CoV-2 transmission,
current approaches to modeling inter-individual transmission, and mathematical methods
designed to improve the reliability of simulations suffering from uncertainties. I sought
to answer the following sub-questions:

What are the essential characteristics of SARS-CoV-2 transmission? In Chapter 2, I
contextualized inconsistent findings in the literature about the spread of the virus and ex-
tracted that it is mainly transmitted via inhalation of respiratory aerosols. As a dominant
transmission mechanism, breathing produces primarily smaller respiratory aerosol parti-
cles. In indoor spaces without adequate ventilation, these remain airborne long enough
to cause infection in individuals that are not in close proximity to the infectious source.
However, despite extensive efforts of the scientific community, many parameters remain
uncertain. Above all, a biologically plausible dose-response relationship describing the
infection probability in relation to the dose taken in has not yet been established.

How does the literature from infectious disease modeling operationalize these mecha-
nisms, and which facets are not adequately represented? Chapter 3 reviewed modeling
approaches adopted at global to local scales. At the local scale, between-host trans-
mission models typically assume either a homogeneously mixed pathogen concentration
within a room or inhomogeneous conditions. State-of-the-art models define transmission
as a function of the proximity to the infectious person. However, this fails to capture
long-range transmission of airborne pathogens. Motivated by the outbreak of the COVID-
19 pandemic in 2020, the concept of a transmission medium, such as aerosol particles,
emerged in recent developments. First attempts pursuing this direction struggled with
finding an adequate level of granularity between the model aspects of transmission and
crowd dynamics. At the time of writing this dissertation, they are still in a development
stage, so none of these has been established. I addressed this scientific gap.
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How should uncertainties about airborne pathogen transmission be addressed in model-
ing and simulation? Chapter 4 introduced mathematical methods for quantifying uncer-
tainties and, thus, for improving the reliability of simulation outcomes. Currently, there
are only few simulation studies of individual-based SARS-CoV-2 transmission that treat
uncertainties in the model parameters. For my own simulations carried out in the second
part of this work, I identified the following two methods as relevant: Global sensitivity
analysis based on the Sobol’ method to quantify the importance of uncertain model input
parameters and Monte Carlo simulations to quantify output uncertainties.

Based on this background knowledge, Part II continued with my own contribution of
developing a model and running simulations. This content is partly covered by the initial
proposal of my model in [17], a brief description of the software [212], and a parameter
study conducted in [213]. My dissertation tied these previous works together and updated
the simulations presented in [17]. I pursued the following concrete questions:

How can important aspects of inter-individual transmission of SARS-CoV-2 via air-
borne respiratory aerosols be described mathematically? As detailed in Chapter 5, the
first step was to model transmission in unventilated indoor environments. My formu-
lation integrates respiratory activity into an individual-based model for human motion,
a so-called microscopic crowd model. This enabled me to define pathogen transmission
among virtual persons moving around in arbitrarily designed rooms or buildings. In-
fectious persons exhale pathogens bound to aerosol clouds, whereas susceptible persons
accumulate pathogens inhaled from these aerosol clouds. The aerosol clouds increase spa-
tially with time in all directions. Airflows caused, for example, by ventilation or humans
dissipating thermal energy are not explicitly modeled. Deactivation and sedimentation
of viral load is represented by an exponential decay. I deliberately chose such a coarse
definition to obtain a compatible level of detail between crowd model and transmission
model.

How can the mathematical model be implemented efficiently as sustainable software
in the sense of reusable and verified code? Chapter 6 presented my implementation of
the model as a simulation program. I integrated the model into Vadere, an established
open-source simulation framework for crowd dynamics, using a modular architecture with
clearly separated components. I created flexibly adaptable code through parametrization
and achieved a suitable level of verification through automated testing. Thus, I ensured
that the extension is reusable and reliable. By implementing an additional model for
exposure via proximity, I also demonstrated that my model can easily be extended or
replaced by alternative approaches.

How can one reliably predict the exposure risk for everyday situations? In Chapter 7,
I described how to predict and compare the exposure risk occurring in several indoor
situations. To that end, I simulated a situation of a close contact between an infectious
person and a susceptible person, which is commonly associated with a high risk of in-
fection. Hence, I obtained a reference value for high-risk exposure. This reference value
allowed me to evaluate the relative criticality of other scenarios despite the absence of
a dose-response model for infection risk assessment. Reenacting two COVID-19 super-
spreading events that occurred in a restaurant and during a choir rehearsal showed that

115



9 Summary, conclusion, and future directions

the model produces plausible results. Hence, these simulations helped to build trust in
the model. In addition, I compared the exposure risk between several settings where
people wait in the same room for a given time and a situation where they walk along an
indoor corridor. The waiting people experienced substantially higher exposure than the
ones in the corridor scenario. The simulations were influenced by considerable variations
in the input parameters, which called for quantifying uncertainties to obtain reliable
results.

How can uncertainties in the simulation be quantified? I quantified the output uncer-
tainty in Chapter 8 through sensitivity analysis and forward propagation. I found that
uncertainties concerning the spatiotemporal spread of aerosol clouds have a large impact
on the individuals’ exposure. This means reducing these uncertainties would effectively
improve the reliability of the simulation. In contrast, variability in the parameter related
to the decay of the pathogen load barely influenced the exposure. Therefore, this param-
eter can be fixed in the future. Comparing the exposure levels associated with different
movement patterns demonstrated that crowd dynamics also affect the exposure. More
precisely, the results showed that enforcing a single-file queue or establishing a ticket
system reduced the exposure risks compared to unorganized queuing. Thus, I delivered
a blueprint how users of my model can estimate exposure risks and identify effective
transmission mitigation strategies.

9.2 Conclusion

My work contributes to closing the research gap of modeling airborne SARS-CoV-2 trans-
mission between individuals in indoor spaces. This is important to better understand
the exposure risks in specific situations of daily life, for example, public transportation
where people pass through a waiting area or a corridor. Simulating and comparing such
scenarios complements state-of-the-art risk assessments. In particular, it reveals indi-
vidual exposure levels instead of an average risk. The most important aspects of my
contribution comprise:

• A model with a suitable resolution of the transmission mechanisms, taking into
account airborne pathogen spread and human movement;

• An open-source simulation tool that enables me and others to analyze specific use
cases;

• Exemplary risk assessments conducted with this tool and insights into the criticality
of specific scenarios and their implications.

Achieving this entailed, above all, the challenge of combining the involved disciplines
at a suitable level of granularity. Each of the research areas offers sophisticated ap-
proaches to solve sub-problems, such as describing aerosol generation and propagation
or human movement. Respiratory aerosols do not instantaneously distribute homoge-
neously within enclosed spaces after being exhaled. Therefore, a person’s exposure to
airborne pathogens depends on the position of both the pathogens as well as the person.

116



9 Summary, conclusion, and future directions

Consequently, it is important to consider that we humans interact with our environment
and move around. I used a tested and validated microscopic crowd model to capture
human locomotion in 2D. Since my exposure model should match this level of detail,
I represented exhalation of aerosols, persistence of airborne pathogens, and their respi-
ratory deposition in a simple manner. The model can and should be refined step-wise
when more knowledge becomes available in the future. Compared to high-fidelity airflow
models that include moving persons, my representation of aerosol propagation is inten-
tionally coarse and, consequently, computationally parsimonious. This allowed me to run
numerous simulations and, thus, to obtain outputs not just for one specific but various
conditions. Moreover, a less complex model is comprehensible for a broader audience
and supports interdisciplinary research.

To foster such collective efforts, I implemented my model according to state-of-the-art
criteria for research software. The simulation tool represents another important accom-
plishment in my work. The corresponding implementation is integrated into an open-
source crowd simulator. I ensured and demonstrated in an exemplary way that my new
feature offers adequate and easy-to-use interfaces for alternative modeling approaches.
Thus, others can use or extend the tool as needed. Importantly, the manageable amount
of six parameters related to the exposure model offers uncomplicated and already wide-
ranging adaptations, for example, to similar diseases. The underlying crowd model adds
additional flexibility, which I used to simulate various indoor scenarios.

I conducted exemplary numerical experiments with this tool. Since the empirical data
that is currently available does not suffice to estimate the dose-response, calculating infec-
tion risks was not possible. Instead, I compared the exposure occurring in the scenarios
to obtain a relative ranking of the criticality. As with any simulation of SARS-CoV-2
transmission, there are several unknowns. Therefore, I applied uncertainty quantifica-
tion methods and improved the reliability of my simulations in the presence of variations
in the input. Here, the parsimony of my model came in handy because such methods
quickly become infeasible for computationally demanding models. My simulation studies
showed that quantifying uncertainties is inevitable to obtain trustworthy and meaningful
results.

It should be noted that these simulation results have limitations. The uncertainty
quantification indicated that the spatiotemporal spread of aerosols has a strong impact on
the individuals’ exposure. Acquiring further knowledge to reduce the input uncertainty
and refining the model in this regard could effectively improve the reliability. However,
one should keep the resolution of the crowd model and the transmission model balanced
when introducing more detailed effects, such as ventilation. Furthermore, this work
focused on SARS-CoV-2 transmission via inhalation of airborne particles. If the aim is
to transfer the model to other diseases, it could be necessary to include transmission via
fomites or respiratory particles that follow ballistic trajectories.

Despite these limitations, my findings can be applied to real-world scenarios. The
simulation framework I extended is capable of reenacting various everyday situations. In
principle, this enables anyone to assess the exposure risk for specific use cases. Indeed, I
am in contact with external users who are testing the model in the context of airplane
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boarding. My own exemplary simulation studies illustrated in an accessible way that
critical situations are likely to occur if an infectious person stays in place for a certain
time. In contrast, passing or walking normally behind a COVID-19 case results in low
exposure to airborne pathogens. Such information could relief fears and support practi-
tioners in taking informed decisions. The simulations showcased that appropriate crowd
management can effectively reduce the exposure risk. Overall, I successfully modeled
and simulated between-host transmission of SARS-CoV-2 in dynamic crowds.

9.3 Future directions

One of the main limitations of my model is that, while the virtual persons can breathe,
they cannot yet speak, sneeze, or cough. To capture such expiratory events, one needs
to account for transmission via larger aerosol particles that follow ballistic trajectories.
When considering particle diameters below 5 µm, speaking produces a similar particle
size distribution as breathing (see Fig. 2.4). Therefore, the smaller particles expelled
through speaking can be captured by aerosol clouds as described in Chapter 5 (see Fig.
5.2). However, the particle size distribution for speaking peaks also at diameters of
around 50 µm. To capture this second mode, one can introduce a transmission medium,
complementing the aerosol clouds. Encouraged by the approach in [191], I propose to use
a circular sector oriented in the heading direction of a person to represent the emission
of larger aerosol particles (see Fig. 9.1). I implemented a first draft of this concept
in the Vadere class Droplets, so others can test the prototype.1 The pathogen load,
frequency of occurrence, persistence, central angle, and radius of the segment remain
to be determined. Depending on the chosen parameter values, this reflects different
respiratory events. In a further step, one could account for shielding effects, exhalation
and inhalation at different heights, and the head orientation of the inhaling person. Such
a concept would match the level of granularity of the current transmission model.

Figure 9.1: Draft of a transmission model accounting for larger aerosol particles: An infectious
person (red) moves from left to right (dotted line) and emits larger respiratory
aerosol particles that follow a ballistic trajectory. The larger particles reach the
area covered by the circular sector (yellow) with central angle αS and radius rS .
Other persons standing inside that area would become exposed.

1https://gitlab.lrz.de/vadere/vadere, commit 8d6fb02a, accessed on April 2, 2024
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The sensitivity analysis in Chapter 8 indicated that parameter uncertainties related to
the spread of aerosol clouds have a high impact on the output uncertainty. Consequently,
it seems advisable to refine the representation of aerosol clouds and to collect more data
to reduce the uncertainty of the associated input parameters. For example, one could
learn aerosol propagation from image data. This also might enable us to improve the
underlying model for aerosol generation and spread.

Finally, since validation is a difficult task in modeling SARS-CoV-2 transmission, I
propose to investigate the number of inhaled particles experimentally to obtain a ground
truth. According to aerosol researchers I and the Vadere development team consulted,
one could artificially generate labeled aerosols and let a person, equipped with a inhalable
aerosol sampler, pass the aerosol. The sampler would reveal the number of particles that
deposit in the lungs. This would help us to compare simulated to actual exposure levels
and, hence, to improve the validation.

There are promising opportunities for further developments. I hope that my work fos-
ters interdisciplinary research, contributes to aerosols being acknowledged as essential for
transmission of certain pathogens, and adds to the maturation of small-scale approaches
in infectious disease modeling.
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A Infrastructure

My research relied on different resources and software packages. Most of them are open
source or free. I owe thanks to the developers of these excellent tools. Table A.1 summa-
rizes the software I used. Besides that, I would like to thank the authors of the template
for this document.1

Table A.1: Overview of software that I primarily used for this dissertation.

Software Version Link

draw.io 15.4.0 https://www.diagrams.net/

Git 2.31.1 https://www.git-scm.com/

Inkscape 1.2.1 https://inkscape.org/

IntelliJ IDEA 2023.1.4 https://www.jetbrains.com/idea/

JabRef 5.11 https://www.jabref.org/

OpenJDK Java 17.0.2 https://jdk.java.net/

pdfTeX 3.141592653-2.6-1.40.24 https://www.latex-project.org/

PyCharm 2021.1.2 https://www.jetbrains.com/pycharm/

Python 3.8.2 https://www.python.org/

Texmaker 5.0.4 https://www.xm1math.net/texmaker/

1https://github.com/TUM-LIS/tum-dissertation-latex, commit 4329227, accessed on May 12, 2022
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B Literature search: multidisciplinary interest in COVID-19

The document search in Section 2.2.2 was conducted on Scopus on January 2, 2024. The
exact queries used for the document search were:

• For the number of documents by subject (see Fig. 2.10a):

TITLE−ABS−KEY ( { sars−cov−2} ) OR TITLE−ABS−KEY ( { covid −19} )

• For the number of documents by year (see Fig. 2.10b, search term *respiratory*
and *disease* ):

TITLE−ABS−KEY ( ∗ s imulat ∗ OR ∗model∗ ) AND TITLE−ABS−KEY ( ∗
r e s p i r a t o r y ∗ AND ∗ d i s e a s e ∗ ) ) AND ( LIMIT−TO ( SUBJAREA , "
COMP" ) OR LIMIT−TO ( SUBJAREA , "MATH" )

• For the number of documents by year (see Fig. 2.10b, search term {sars-cov-2}):

TITLE−ABS−KEY ( ∗ s imulat ∗ OR ∗model∗ ) AND TITLE−ABS−KEY ( { sars−
cov−2} ) ) AND ( LIMIT−TO ( SUBJAREA , "COMP" ) OR LIMIT−TO (
SUBJAREA , "MATH" )

The search is case-insensitive and applies boolean operators. The asterisk represents a
wildcard character. Curly braces force matching for exact phrases including punctuation.
The data sets are listed in Appendix E (DS1). Acronyms used in the results are spelled
out in Table B.1.

Table B.1: Acronyms used to summarize research areas in the document search

Acronym Meaning

MEDI Medicine

SOCI Social Sciences

COMP Computer Science

BIOC Biochemistry, Genetics and Molecular Biology

ENGI Engineering

IMMU Immunology and Microbiology

ENVI Environmental Science

BUSI Business, Management and Accounting

PSYC Psychology
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C Literature search: modeling of infectious diseases

The systematic review of literature on mathematical modeling of infectious diseases in
Section 3.2.2 is based on a document search on Scopus. The exact query used for the
document search was:

TITLE−ABS−KEY ( model∗ OR simulat ∗ ) AND TITLE−ABS−KEY ( pede s t r i an
OR crowd OR "agent based" ) AND TITLE−ABS−KEY ( transmi ∗ OR spread
∗ ) AND TITLE−ABS−KEY ( d i s e a s e OR v i ru s OR v i r a l OR pathogen OR
i n f e c t i o ∗ ) AND TITLE−ABS−KEY ( a i r OR a i rborne OR ae r o s o l OR
drop l e t OR "∗ d i r e c t ∗ transmi ∗" OR " contact t ransmi s s i on " ) ) AND
PUBYEAR < 2024 AND ( LIMIT−TO ( PUBSTAGE , " f i n a l " ) ) AND ( LIMIT
−TO ( DOCTYPE , "ch" ) OR LIMIT−TO ( DOCTYPE , "cp" ) OR LIMIT−TO
( DOCTYPE , " ar " ) ) AND ( LIMIT−TO ( LANGUAGE , " Engl i sh " ) ) AND
( EXCLUDE ( EXACTKEYWORD , "Nonhuman" )

The purpose of this query was to determine the search range to be within agent-based
models for transmission of respiratory diseases, for example, COVID-19. Table C.1 breaks
down this specification. Note that strings such as COVID-19 and SARS-CoV-2 are
too restrictive as conjunct values because they exclude literature published before the
pandemic. As disjunct values, they are too broad because such keywords were frequently
used after the outbreak. The search results are limited to articles, book chapters, or
conference papers that have been published as of November 10, 2023, and are written
in English. Furthermore, contributions labeled with nonhuman disease transmission are
excluded. The raw data set is listed in Appendix E (DS1).

Table C.1: Search strings used in Scopus document search and their respective purpose.

No. Specified search range Search strings (row-wise conjunct)

S1 Field of modeling and simula-
tion

model* or simulat*

S2 Agent-based models pedestrian or crowd or "agent based"

S3 Infectious disease modeling (transmi* or spread*) and
(disease or virus or viral or pathogen or infectio*)

S4 Transmission paths associated
with COVID-19 and similarly
spreading diseases

air or airborne or aerosol or droplet or "*direct*
transmi*" or "contact transmission"
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C Literature search: modeling of infectious diseases

The data set was further processed through manual selection during screening titles
and abstracts followed by a full text review. Publications were excluded given that at
least one of the following conditions was met:

• A description of or reference to the underlying model is missing.
• Human movement is not captured by an agent-based crowd dynamics model or

trajectory data.
• The crowd model does not operate on a microscopic scale.
• The model does not target disease transmission.
• The model is designed for diseases that are transmitted other than via smaller or

larger respiratory particles. Considering merely fomite transmission is not suffi-
cient.

• The model does not refer to human-to-human transmission.
• The publication is accessible neither through open access or through my institu-

tional log-in.
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C Literature search: modeling of infectious diseases
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D Uncertainty quantification

Self-organized competitive
queue

Single-file queue Seating, line layout Seating, block layout
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(a) Total sensitivity
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(b) First order sensitivity

Figure D.1: The figures show the sensitivity indices of the maximum exposure occurring in a
scenario with respect to the three uncertain parameters half-life, initial radius, and
dispersion factor . The bootstrap confidence intervals (error bars) are computed
from 100 re-samples at a 95% confidence level.
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D Uncertainty quantification

Self-organized competitive
queue

Single-file queue Seating, line layout Seating, block layout
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(a) Quantity of interest: individual exposure
ranked in descending order
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(b) Quantity of interest: individual exposure
sorted by queuing position in ascending order

Figure D.2: The figures show the first order sensitivity indices of the individual exposure levels
with respect to the three uncertain parameters half-life, initial radius, and disper-
sion factor . The sensitivity index of the infectious person is undefined because the
respective exposure is always zero. It corresponds to rank 21 in (a) and to position
10 in (b). The bootstrap confidence intervals (shaded areas) are computed from
100 re-samples at a 95% confidence level.
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D Uncertainty quantification

Self-organized competitive
queue

Single-file queue Seating, line layout Seating, block layout
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(a) Quantity of interest: average degree of expo-
sure among the exposed persons
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(b) Quantity of interest: number of exposed per-
sons

Figure D.3: The figures show the first order sensitivity indices of the quantity of interest with
respect to the three uncertain parameters half-life, initial radius, and dispersion
factor . The bootstrap confidence intervals (error bars) are computed from 100
re-samples at a 95% confidence level.
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Single-file queue, distancing
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(a) Quantity of interest: average degree of expo-
sure among the exposed persons
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(b) Quantity of interest: number of exposed per-
sons

Figure D.4: The figures compare the total sensitivity indices for the scenarios without physical
distancing (shades of blue) and with physical distancing (shades of orange). The
bootstrap confidence intervals (error bars) are computed from 100 re-samples at a
95% confidence level. Note: own figures adapted from [213, p. 13].
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Figure D.5: The figure compares the result of Monte Carlo simulations with sample sizes of
N = 102 and N = 103. The empirical distributions correspond to the ranks of
individual exposure levels in the single-file queue obtained for a single repetition
of the Monte Carlo experiment. The distributions for the ranks 12 to 20 are all
the same because the respective exposure in the scenario is zero.
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E Supplementary material

The supplementary material comprises data sets used in this dissertation. The files are
hosted and archived in repositories managed by the European Organization For Nuclear
Research and OpenAIRE [307].

DS1 Results of the literature search conducted in Section 2.2.2 / Appendix B:
https://doi.org/10.5281/zenodo.10850095

DS2 Results of the literature search conducted in Section 3.2.2 / Appendix C:
https://doi.org/10.5281/zenodo.10850219

DS3 Simulation data required for the comparison of crowd models in Section 3.2.3:
https://doi.org/10.5281/zenodo.10845930

DS4 Simulation data of the validation experiments in Section 7.1:
https://doi.org/10.5281/zenodo.10846045

DS5 Simulation data of the simulations analyzed in Section 7.2 and in my parameter
study [213]:
https://doi.org/10.5281/zenodo.10846072

DS6 Simulation data of the uncertainty quantification experiments described in Chapter
8 and in my parameter study [213]:
https://doi.org/10.5281/zenodo.10854747
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