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Abstract

Microcontrollers (MCUs) are used for a broad range of applications. The testing of such
MCUs is an essential topic for MCU manufacturers, particularly in safety-critical MCUs. Such
MCUs are used in the automotive industry to operate braking, steering, and airbag systems.
A critical test of the MCU testing process is the performance screening in which the maximum
clock frequency of the MCU is determined under worst-case conditions. Indirect monitors,
like Ring Oscillators (ROs), are used for this performance screening. This work presents
the functional path ROs as an indirect monitoring structure used for performance screening.
A holistic overview of the functional path ROs from the pre-silicon to the post-silicon is
presented.

The implementation of such ROs and the associated advantages in terms of area consump-
tion, leakage, and routing are presented. In addition, advanced implementation methodolo-
gies are proposed to save further routing resources. A considerable framework is suggested to
select promising functional paths based on sensitivity analysis, and the entire implementation
selection flow is validated. In the post-silicon phase, a statistically significant amount of
MCUs that contain the functional path ROs are manufactured and tested. The measured func-
tional path RO frequencies are correlated with the MCU performance using machine learning
approaches and compared with traditional RO structures. The performance screening uses
the implemented RO types, and the results yield is evaluated.
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1. Introduction

Semiconductor electronics are an essential element in today’s digitized world. This has
become common knowledge in 2022 since the U.S. and European governments have released
billions of dollars in subsidies to strengthen and foster the semiconductor ecosystem in
the U.S. [1] and European [2] chips acts. Essential semiconductor devices are integrated
circuits (ICs). ICs are small semiconductor devices that are fundamental components in nearly
everything in life and the economy.

A subgroup of ICs are microcontrollers (MCUs). An MCU is an IC that combines different
systems on one chip; also, the term system-on-chip (SoC) is used. An MCU combines the
processor, memory, input/output (I/O) peripherals, and communication interfaces on a single
chip. The field of applications is enormous. It ranges from tiny household and commercial
applications to high-reliable technologies, like space applications and automotive technology.
Depending on the application, MCUs must meet different quality, power consumption,
performance, and cost requirements. MCUs used in the automotive industry have special
needs regarding quality [3] and reliability [4]. This work focuses on MCUs for automotive
applications; however, the method can be used for every MCU.

1.1. Motivation and Problem Statement

More than 100 of these MCUs are incorporated in modern vehicles [4] and are used in
safety-critical steering and braking systems as well as in advanced driver assistance systems
(ADAS). The MCUs must work under extreme temperature conditions from −40 ◦C up to
150 ◦C. They are exposed to vibrations and harsh conditions. Moreover, the automotive
MCU must ensure to work for up to 15 years [5]. A not correctly working MCU can cause
tremendous damage and risk human lives. Therefore, much effort is invested in testing and
validating automotive MCUs to satisfy quality requirements. The MCU test is essential for
finding defects provoked by the manufacturing process, ensuring proper functionality, and
meeting the required specifications.

The major challenge in testing automotive MCUs is to achieve zero-defect quality [6]. This
means only MCUs, which are error-free, will be delivered to the customer. However, zero-
defect quality is not easy to achieve for large and complex automotive MCUs. Therefore,
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1. Introduction

automotive MCU manufacturers invest much effort in testing all devices to deliver zero-defect
quality.

There are many test stages along the manufacturing process, and modern MCUs have an
extensive DFT infrastructure on board to support and enable the various tests. An essential
test of the MCUs test procedure is performance screening. The performance of an MCU
is the maximum achievable clock frequency at which the device can execute all use cases
under worst-case conditions, denoted as FMAX. Performance screening describes the test in
which FMAX is determined. Therefore, each device shipped to the customer must pass the
performance screening by achieving the performance specified in the data sheet. The timing
of the design in the MCU determines the FMAX.

Since the technology node in MCU is shrinking, the timing variability becomes more
sensitive to manufacturing, environment, and aging. This timing variability is called PVTA
(process, voltage, temperature, aging) variation. The aging component is neglected in this
work since it is an elaborate topic that is out of scope. Thus, Process-Voltage-Temperature
(PVT) variability is addressed in this work. The timing of the MCU and FMAX should be
satisfied regardless of the PVT variability. This makes the performance screening even more
challenging since the FMAX should be guaranteed under worst-case conditions.

Figure 1.1 provides a simplified illustration of the performance in MCU manufacturing. The
performance of manufactured MCUs can be approximated as Gaussian distribution colored
in blue [7]. Thus, many of the devices are well centered around the mean. However, there are
also devices with lower FMAX, the so-called slow tail on the left side of the distribution, and
devices with higher FMAX on the right side, called the fast tail of the distribution. The reason
for this distribution lies in the semiconductor manufacturing process itself. The aim is for
many components within this Gaussian distribution to fulfill the requirement FMAX, which
in turn depends on the design border. This design border is the value that is required as a
design specification. The exact position of the design border depends on many technical as
well as financial factors.

The brute force approach would shift the design border (red) far to the left sides of
the distribution - which means all MCUs are indeed fast. Unfortunately, that does not
work since this would result in an MCU design that is not competitive due to area, design
effort, and economic reasons. The design border in realistic scenarios is much closer to the
distribution and can even cut into this distribution. The performance screening targets testing
the performance near the design border.

However, the performance cannot be measured directly, and the entire multidimensional
PVT space must be considered. In recent years, various methods for determining performance
have been proposed. The methods range from structural tests to system-level-tests and
indirect monitoring structures [8, 9, 10, 11, 12, 13, 14, 15, 16]. Due to the fact that a hundred
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Figure 1.1.: Process window after tightening the limits.

percent accurate determination of the performance is not possible, it is an attempt to predict
the performance as accurately as possible. What remains is an inaccuracy that must be priced
into the performance screening. In order to safeguard the inaccuracy of the screening, a
so-called Guardband (colored orange in Figure 1.1) is used. This margin is added to the
performance screening to meet the high-quality requirements - better performance screening
methods result in higher screening accuracy, and thus less Guardband is required.

In order to determine the performance for the performance screening, indirect monitors
are often used. Such indirect monitor structures are ring oscillators (ROs). The oscillation
frequency of such ROs is measured, and this measured frequency correlates with FMAX.
However, the RO structures usually have a significant area overhead, but in turn, have a high
resolution and are easy and fast to measure [17]. Furthermore, the quality and accuracy of
performance screening depend significantly on the design of such RO structures [18, 19, 20].

The functional path ROs [21] are a subtype of ROs that promise advantages in terms of area
and accuracy since they use functional paths which are already on the design. However, the
functional path ROs need further research on how to implement and control, which paths to
select, and how to establish the functional path RO for performance screening on silicon in a
large automotive MCU. This work is an important contribution to these endeavors.

1.2. Related Work

Determining the performance of modern SoCs is challenging due to their complexity -
especially for large MCUs. Three significant approaches in FMAX testing are widely used and
visualized in Figure 1.2.

One way to test performance is to use structural at-speed test patterns, such as Transition
Delay Fault [22] patterns or Path Delay Fault [23] patterns [8, 9]. However, such at-speed
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Figure 1.2.: Test approaches for FMAX testing.

patterns can only provide a pass or fail categorization of the chip. Performance testing
requires an accurate determination of the numerical performance value.

A straightforward approach is determining the MCU’s performance with a Functional Test
on the automatic test equipment (ATE) [10]. Small critical code blocks as part of the ATE
test program are executed, and the clock frequency is increased until the point of failure [11].
However, ATE systems usually have limited power integrity, making the exact performance
prediction inaccurate [24]. As a result, System-Level Test (SLT) is gaining increasing attention
[12, 13]. In contrast to the functional test on the ATE, the SLT is performed on an application-
like board with software close to the device’s final application. However, several thousand
applications are conceivable. Therefore, all possible applications must be tested under
different voltage and temperature conditions to determine the maximum performance of
every device [24]- which is not an option due to the limited test budget. Thus, SLT is expensive
in terms of test time and handling [25].

The third approach is to use indirect monitoring structures. There are many types of such
indirect methods. However, they all used indirect metrics that allowed them to conclude
performance [26, 27, 28, 29, 30, 31, 21].

Razor FF [26, 27] and In-situ slack monitors [28] are some types of indirect monitoring
structures. Razor FFs are additional FFs that observe specific paths on the design and check
if the timing is met. Also, in-situ slack monitors observe the remaining slack of a specific
path and give an alarm if the slack margin disappears. Both approaches can be used for
performance determination in small circuits where some known paths are timing critical.

However, for large MCUs in state-of-the-art CMOS technology, the timing of a design gets
more complex [32], and it is challenging to define discrete time-critical paths. It may be that
paths, which seem non-critical in the pre-silicon phase may become critical in the post-silicon
phase due to process variations in manufacturing [33]. The degradation mechanism also
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1. Introduction

affects the performance [34]. Thus, it is essential to monitor numerous paths in the design.
Consequently, many Razor FFs and in-situ monitors will add a considerable area – which
should be prevented due to cost reasons.

Another indirect monitoring structure for performance screening is the use of ring oscilla-
tors (ROs). Such ROs are divided into two basic variants - generic ROs and design-dependent
ROs [29]. Generic ROs are made from precisely one kind of standard library cell, e.g., inverters
or AND gates. Design-dependent ROs are synthesized according to the design of the chip.
Several paths of the chip are being selected, synthesized, and designed as ROs. However,
such RO structures occupy much area because all structures need to be placed on the chip; in
contrast, functional path ROs can solve the disadvantage of the area requirement.

Wu et al. [30] proposed the basic concept of functional path ROs. A functional path RO
uses existing paths in the design and creates an RO structure from such paths. In the basic
concept, path ROs are used to test small circuits. Further development of functional path RO
was proposed by Wang et al. [31, 21] - called Path-RO. Here, the main focus is on measuring
specific path delays as precisely as possible, which is only accompanied by high area and
effort.

However, efficient implementation is only one aspect of performance screening with
functional path ROs. There are millions of functional paths on a large MCU, and the path
selection directly affects the quality of performance monitoring. Many previous research was
conducted to characterize timing effects [35, 36, 37, 33] in functional path ROs. Rangan et al.
investigated the design of ROs in terms of PVT sensitivity [38]. Therefore, the accuracy of
the performance screening strongly depends on the sensitivity of the performance monitors
used. [39].

In summary, there is a lack of efficient and automatic implementation of functional path
ROs. The implemented ROs should fit into industrial design flows and use the industrial test
and control infrastructures like the DFT environment. Another open point is selecting the
functional paths to catch the right paths for performance screening. There is also a lack of
measurement data from silicon. Furthermore, last but not least, how good are the functional
path ROs for performance screening?

1.2.1. SMON Benchmark Module in this Work

In order to have a baseline against which the functional path ROs can be compared, an SMON
(Speed MONitor) module is used in this work. This SMON module, utilized as a benchmark,
contains different types of ROs as performance monitors. The structure of the SMON module
originates from [24], but the SMONs have been re-implemented in the newer 28 nm CMOS
technology used for this research to serve as a valid baseline.
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1. Introduction

Inside the SMON module is a mix of generic and design-dependent ROs. The module
is conceptualized as a compact block positioned on the MCU. The various generic ROs
consist of inverter gates, NAND gates, and NOR gates from different cell libraries. The
design-dependent ROs on the SMON module emulate functional paths from the design.
The SMON module is designed to contain up to 255 different ROs. However, to serve as a
benchmark, the SMONs contain 27 ROs that have been used in previous work ([24]).

1.3. Contribution of this Work

The main contribution of this work is in the area of functional path ROs for performance
screening. In particular, the contribution can be settled along the development process of
an MCU from the per-silicon design part through the manufacturing until the post-silicon
evaluation of an MCU in state-of-the-art technology.

Parts of the approaches proposed in this work have been peer-reviewed and published
in official scientific conferences proceedings [40, 41, 42, 43] and workshop proceedings [44,
45, 46, 47, 48]. In addition, parts of this work have been published in the IEEE Transactions
on Very Large Scale Integration (VLSI) Systems in June 2023 [49]. In order to emphasize
the novelty of this work, two patents are published and granted in two different countries.
Another outstanding achievement of this work is that [41] was honored with the Best Paper
Award at the IEEE European Test Symposium (ETS) 2022.

Besides this, there are considerable co-contributions in peer-reviewed conferences [24, 50]
and a publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) [51].

The following listing associates the core contributions with this work’s publications and
related sections in this thesis.

• Automatic and scalable implementation of functional path ROs in large automotive
MCU designs is presented in Section 3.1 of which parts are published in [40, 44, 45].

• The development of advanced implementation methods is presented in Section 3.2,
which emphasizes the so-called self-enabling approach and natural loops. The self-
enabling approach was published in [41], and a DE and US patent [52] was granted.
The natural loop approach was published in [47] and patented in DE (granted) and US
(published) [53].

• A path selection methodology was developed and validated using analog simulation
and sensitivity analysis of the circuitry, this is presented in Section 4, and parts were
published in [42, 46].
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1. Introduction

• Functional path RO results are presented, derived from a large automotive MCU, and
their benefits for performance screening are presented in Part II. Sections of this part
were presented in [42, 43, 48] and [49].

1.4. Outline of this Dissertation

Chapter 2 Part I Part II Chapter 10

Chapter 3 Chapter 4 Chapter 5 Chapter 7 Chapter 8
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Figure 1.3.: Outline of the thesis.

The structure of this thesis is presented in Figure 1.3. Chapter 2 provides the background
knowledge for this work. The industrial development flow of an MCU is recapped, and the
timing and performance challenges are explained. Also, the fundamental testing knowledge
is provided, and the most substantial Machine Learning (ML) approaches are explained.

The subsequent work is then divided into two parts: Part I: pre-silicon and Part II: post-
silicon.

Part I presents the concept and implementation of the functional path ROs in Chapter 3.
Chapter 4 presents the path selection methodology to find the best suitable functional paths
for RO implementation. The pre-silicon verification and validation is explained in Chapter 5,
followed by a comprehensive summary of Part I.

Part II presents the first measurement results and their validation in Chapter 7. Chapter 8
presents the use and results of functional path ROs for performance screening. A summary
in Chapter 9 concludes Part II. The last Chapter – Chapter 10 – in this work concludes the
thesis, including obstacles in an industrial context and further work.
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2. Background

The background section provides an overview of the microcontroller (MCU) development
and timing of digital circuits. Afterward, the testing of modern MCUs is reviewed, especially
the performance screening. Machine learning (ML) use cases in SoC testing and the quality
standards for automotive MCUs are also elaborated. The terms SoC and MCU are used as
synonyms in this work and are not further distinguished.

2.1. Digital MCU Development Flow

In order to get an overview of the phases in which the proposed methods proceed, the
industrial MCU design and test flow are presented. All methods in this work are suitable for
industrial development flows. However, only a condensed overview of the MCU development
flow is presented, as the detailed process is much more extensive [54]. The digital MCU
development flow to develop a prototype MCU is shown in Figure 2.1.

MCU Specification
& Architecture

RTL Design &
Verification

Logic Synthesis Netlist

Scan Insertion

Mod. Netlist
Physical Design &
Place and Route

Design Verifi-
cation, STA,

LEC, DRC-check
ECO-phase

Tape-
out

SoC Manufacturing
Wafer Probe
Frontend Test

Packaging
Final Test -
Backend Test

Prototype
MCU

P
R
E
-
S
il
ic
on

P
O
S
T

-
S
il
ic
on

Iteration

Figure 2.1.: Development flow of a prototype MCU divided into Pre-Silicon and Post-Silicon.

In general, the development process can be divided into the Pre-Silicon (Pre-Si) and Post-
Silicon (Post-Si) phases. The arrival of the first MCU prototype indicates the transition from
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2. Background

Pre-Si to Post-Si. The functional specification has to be defined in the initial phase, and
the architectural chip elements, including all modules and submodules, are defined. The
described functionality is translated into a hardware description language and a synthesizable
register-transfer level (RTL) representation. With a proper RTL representation, the logic
synthesis is started, and the abstracted RTL representation of the functionality is then
translated into a logical gate-level design called netlist. The netlist of a design is a composition
of logic gates and flip-flops (FFs) implementing a particular functionality previously described
in RTL. The RTL representation and the netlist are constantly verified to check the desired
functionality [55].

Once the netlist is verified, it is further modified with the Design for Testability (DfT)
process (e.g., scan insertion), which results in a modified netlist. The DfT process enables
proper testing of the manufactured chips; more details are explained in Section 2.4.1.

The modified netlist is then passed to the physical design. Floorplanning of the design,
including power planning, clock tree synthesis, and place-and-route, is performed. The
physical design is extensively verified and, if necessary, optimized.

An essential step in the design verification is ensuring the design’s timing closure with the
static timing analysis (STA). All setup and hold times must be within the specifications under
all allowed conditions. Plenty of other verification steps are also done, for example, the Logic
Equivalence Check (LEC), Design Rule Check (DRC), IR droop is verified and cross-talk, and
many more checks [55].

If there are issues with the functionality and timing of the design, an engineering change
order (ECO) is usually used to solve the issue. An ECO is a process for fixing any design
problems in a late design stage and is typically one of the last stages in the Pre-Si phase. The
ECO can cause a minor modification in the netlist and the resulting change in the physical
design. This ECO process is executed, and an incremental compilation run is performed. This
means that only the parts of the design that are affected by the ECO process are changed. The
rest of the design remains unchanged. Once the whole design is successfully verified, and
all targets are met, the manufacturing of the MCU design is started, which is known as the
tape-out. This is also the transition from Pre-Si to Post-Si phase.

The manufacturing process of MCUs in advanced complementary metal oxide semiconduc-
tor (CMOS) technology is a complex and elaborating process with plenty of chemical and
physical steps on a silicon wafer. Multiple chips, also denoted as dies, are contained on a
single wafer. After the wafer manufacturing, the MCUs are tested for the first time, called
the front-end (FE) wafer test. The wafer is mounted on a chuck during the front-end (FE)
wafer test. Afterward, the dies are separated by sawing the wafer into bare dies. The bare
die, where the FE test is passed, is assembled in a package. The next step is the burn-in to
detect early fails and ensure high reliability, followed by the final back-end (BE) test. The

9



2. Background

finally produced MCU is extensively characterized, and it is validated, if the functionality is
correct and all requirements are fulfilled. This is the terminus of the prototype development.
If issues are identified, a redesign might be performed, or minor improvements are required.
Finally, the MCU is transferred to mass production [56].

Note that the development process explained is a high-level overview; the entire MCU flow
has much more detail that is neglected in this explanation.

2.2. Timing and Performance of digital Circuits

Modern MCUs consist of numerous architectural components. A large part consists of digital
circuit elements, which is also the focus of this work. Besides that, there are also memories,
analog circuit parts, and various interfaces on modern MCUs. Digital circuits are built on
CMOS combinational and sequential circuit elements. All such circuit elements are part of a
cell library containing CMOS circuit elements (FFs, Inverter, NOR - gates, AND - gates, . . . )
of different sizes, speeds, power, and other factors and denoted as standard cells. All CMOS
elements are built using NMOS and PMOS transistors. The logic synthesis translates the RTL
description into a netlist using such cell libraries.

The synchronous digital design uses edge-triggered FFs as sequential circuit elements. The
FFs are triggered by a synchronous clock signal CLK distributed via the clock tree. Thus,
there can be distinguished between clock paths and data paths. The clock tree distributes the
clock signal over the chip, and data paths care for the chip’s functionality. The data paths
with combinational logic elements are arranged between the clock-triggered FFs. Thus, the
data signal must propagate from the designated launch FF (FF1) through the combinatorial
logic to the desired capture FF (FF2) in each clock cycle, as shown in Figure 2.2.

CLK

D1 Q1

FF1

CLK

D2 Q2

FF2

data in

CLK

Functional Combinatorial Logic

Figure 2.2.: Synchronous combinational logic path with launch and capture FF.

The clock-triggered FFs typically have 3 ports, 2 input ports and 1 output port. The port
D is the input from the data path (data_in), and the port Q is the output for the data path.
The clock signal is connected to the port CLK. Once the CLK port detects a positive edge, the
data is transferred from D to Q.

Thus, the data on D1 in Figure 2.2 is latched from D1 to Q1 with a rising clock edge. The
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2. Background

data then traverses the data path and the data should arrive at D2 before the rising clock
edge and then be latched from D2 to Q2 on another rising clock edge.

However, there is no instantaneous propagation from launch FF to capture FF due to
individual delay time of the combinational logic elements of the data path. The data path
delay is the sum of the delay of the individual library gates and the respective interconnects.
In order to ensure proper functionality of the synchronous circuit, the timing between clock
and circuit is essential. Therefore, certain timing constraints have to be met within the
sequential circuits. Important timing constraints for the FF are the setup and hold time. The
setup time tsetup is the minimal time previous to the positive clock edge in which the data
input requires a stable signal. During the hold time thold, the data input has to remain stable
after the positive clock edge. The relation between the minimum clock period T and the time
constraints can be expressed as [57]

T ≥ tc−q + dPathMAX + tsetup, (2.1)

and the hold time hast to ensure such timing constrains

tc−q + dPathMIN ≥ thold. (2.2)

Here, the clock-to-Q-delay tc−q is the internal propagation delay required by the FFs to
propagate the D to Q on a positive clock edge. For Equation 2.1, the worst-case propagation
delay dPathMAX of the path must be considered. Whereas in Equation 2.2 the best case
consideration dPathMIN of the path is taken into account.

Timing constraints must be met in terms of setup and hold time for a given clock period;
otherwise, timing is violated. A valid timing of the circuit illustrated in Figure 2.2 is shown
in Figure 2.3.

CLK

Data at D2
Data can toggle

Stable

Data can toggle

tsetup thold

sl
a
ck

Figure 2.3.: Timing diagram of a capture FF in a synchronous digital circuit illustrating setup
and hold time and slack.

The slack is also indicated in the Figure 2.3. The slack is the difference between the required
arrival time where the tsetup is met and the actual arrival time. The setup timing is met when

11



2. Background

the slack is positive (greater or equal to 0).
A synchronous MCU design consists of several millions of paths which all have to meet

the timing given the clock period. Thus the performance FMAX (maximum achievable clock
frequency) of an MCU can be expressed as

FMAX =
1
T

. (2.3)

The shorter the clock period T, the higher the performance of an MCU. However, the timing
constraints must be observed under all circumstances. The Process-Voltage-Temperature
(PVT) variation plays an important role here.

2.3. PVT Variations

The Process-Voltage-Temperature (PVT) variation significantly impacts the timing of digital
circuits, and it is becoming more critical in shrinking technology nodes [58, 59]. The digital
circuitry has to ensure error-free working within the specified PVT range. The process
variation is related to the variation in semiconductor manufacturing due to the complex
process steps. The voltage variation impacts the operating voltage of the CMOS transistors,
and the temperature is related to the die temperature, which also has a significant impact. In
this section, PVT variations and their effects are explained. It also presents the methodology
for handling the sources of variation in modern MCUs.

2.3.1. Process Variations

Process variation arises from the variability of process parameters during the complex
manufacturing process of semiconductors. The process variation is caused by the limited
control of such process parameters, which results in variability from the defined design
target [60].

MCUs are manufactured by multiple chemical and mechanical processes based on a silicon
wafer. A sequence of different process steps is executed called photolithography. Masks are
used in the steps to build CMOS transistors on the plain silicon wafer. The hypothetical
number of masks for building an inverter is six; however, the number and complexity of
masks used for large MCUs can be enormous. The process steps, e.g., epitaxy, deposition,
and implantation, are repeated until the MCU is manufactured. The metallization and
interconnects are also part of the manufacturing process. Such parts connect the sources,
drains, and gates accordingly and ensure power distribution [61].

The process variation impacts the film thickness, lateral dimensions, and doping concentra-
tion, resulting in variations in channel length and threshold voltage [62]. This impacts the
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timing of the MCU and, therefore, the performance of each manufactured device [60]. The
impact of the process variation can be classified into inter-die and intra-die variations.

2.3.1.1. Inter-die variation

Inter-die variations are process variations that affect all transistors on a die similarly, e.g., all
transistors’ channel length on a die might be too long related to the specified value. Those
process variations are also called global process variations. The inter-die variation is further
distinguished into lot-to-lot (L2L) variations, wafer-to-wafer (W2W) variations, and die-to-die
(D2D) variations [61].

The wafers are processed in stacks called lots. There might be some maintenance steps from
lot to lot, impacting the process variation. The same is also for W2W variation, which causes
a different timing behavior from wafer to wafer. The D2D variation is visible on the wafer;
e.g., a die on the wafer edge behaves differently from the die in the wafer center, mainly
caused by D2D variations in manufacturing [61]. A wafer signature caused by D2D variation
is shown in Figure 2.4, where the frequency of an RO is plotted for each die on the wafer.

Ring oscillator

frequency

low

high

Figure 2.4.: Wafermap shows the D2D variations from the frequency of an RO.

The same RO is integrated at each die on the wafer. The dies on the wafer edge have a lower
frequency of the RO than those in the center. Thus there is a radial D2D variation visible on
the wafer [60]. Besides such centric radial D2D variation, several other wafer signatures are
present in semiconductor manufacturing, which can also lead to defects on the wafer [63].

2.3.1.2. Intra-die variation

The intra-die variations affect various parts of the chip or transistors differently. They are also
known as local variations or within-die (WID) variations. The WID variations were smaller in
mature nodes than the D2D variations; however, they became more important in nanometer
process nodes [61, 64]. Such WID variations can be categorized into two types: pure random
variation and spatially correlated variations.

Pure random variations are local variations that are, by nature, randomly distributed across
the chip with no recognizable pattern or signature. The main root cause of such variations
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are random dopant fluctuations (RDF) and line edge roughness (LER) [65].
The spatially correlated variations are also known as location-dependent variations. It

shows that the parameter change of one device is correlated with the change of the same
parameter of all other devices on the chip. The magnitude of the correlation between
the parameters varies depending on their physical position on the chip. The main physical
transistor parameters affected by spatially correlated variations are channel length (L), channel
width (W), and oxide thickness (Tox) [60].

2.3.1.3. Interconnects

In addition to process variation in transistors, process variation in interconnects is also an
important factor. The interconnects are wires that are used to connect the transistors, and
they also have a significant contribution to the delay due to their resistance and capacitive
components called RC delay. The process variations affect the line width and spacing, the
metal and dielectric thickness, and the contact resistance. This variation, in turn, affects the
RC delay. Also, long wires have significant resistance that dominates the RC delay of an
interconnect. State-of-the-art MCU do have multiple layers of closely packed interconnects
to cope with the design complexity on the MCU; therefore, the interconnects, and their RC
delay become increasingly important [61].

2.3.2. Voltage Variations

Besides the process variation, the environmental operating conditions, such as voltage and
temperature, significantly impact the timing of the circuitry and, therefore, its performance.
The voltage variation is due to the supply voltage of the transistor. Since the manufactured
nodes are rapidly decreasing, the power delivery network (PDN) and packaging follow at
different paces. The supply voltage variation can be caused outside the chip due to the power
supply and within the chip due to the package and interconnects. State-of-the-art MCUs
operate in the sub-threshold region and are even more sensitive to voltage variation.

Voltage variations are categorized into two main categories: IR drop and current derivative
di/dt noise [66]. The IR drop is also called voltage drop. It is caused mainly by the resistive
components. That can be either off-chip (e.g., contact resistance, imperfect power supply)
or on-chip caused by PDN. The IR drop is independent of the frequency and follows Ohm’s
Law. On the other hand, the parasitic inductance causes the noise of the current derivative.
The switching activity of the transistors has the most significant influence on the noise
of the current derivative. Strong load jumps can cause voltage undershoots or voltage
overshoots [66].

Depending on the root cause of the voltage variation, the duration can be in the nanosecond
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range for high-dynamic events until voltage variations in the microsecond range, depending
on how fast the power supply can compensate for the variation. The voltage deviations
impact the timing of the entire chip. The gate delay time is proportional to the voltage and
follows the formula [67]

tgate ∝
V

(VTH −V)α
. (2.4)

Where V (VDD −VSS) is the supply voltage, VTH is the threshold voltage of the transistor,
and α is a technology-dependent parameter. Thus, if the V is close to the VTH, the voltage
variation does have a major impact on the timing. There is a need to monitor the voltage
precisely and react to occurring voltage variations immediately in designing a robust PDN,
e.g., by using considerable supporting capacities. The tolerable voltage variation often found
in the literature and on product data sheets is ±10 % of V [68, 69, 17, 61].

2.3.3. Temperature Variations

The second environmental condition which has a major impact on the timing behavior is the
temperature. The temperature of the chips can be influenced by the ambient temperature or
thermal hotspots on the chip itself. The ambient temperature depends on whether the chip is
operated in different climatic regions (desert climate or polar regions) or how powerful the
external thermal system (heating or cooling) is at the system level as well as on the application
area (e.g., commercial, military) [61]. Thermal hotspots occur in high-switching active areas
due to the power dissipated by the transistors. This also depends on how effective the thermal
conduction of the chip can dissipate the heat from chip regions. Compared with the voltage
variations, the temperature variations have a higher time constant in the range of milliseconds
to seconds [69].

An increase in temperature elevates the delay of the interconnects due to their parasitic
resistance. The temperature behavior of the gate propagation delay depends on the voltage,
especially if the device is operated in the sub-threshold region due to weak carrier mobility
[70]. This effect is called inverse temperature dependence (IDT). The timing behavior and,
therefore, the performance of a device depends on the dominance of the IDT. If long intercon-
nect delays dominate the timing behavior of a device, the device will most likely be limited at
high temperatures. If logic gates dominate the timing, cold temperatures are worse.

In conclusion, considering PVT variation in MCUs is crucial for reliable device timing and
performance. Much effort is needed to ensure a proper function over the specified operation
window. This includes that all hold and setup constraints are met. In order to achieve this,
the timing behavior for each PVT case must be covered and verified during the design phase
as well as validated in the Post-Si phase.
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2.3.4. Methods to cope with PVT Variation

The PVT variations need to be considered during the design in the Pre-Si and the Post-Si
phase since their timing influence is tremendous. Figure 2.5 comprehensively demonstrates
the influence of the PVT variations with respect to the performance [71].
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Figure 2.5.: Relation between PVT variations and performance.

The most common methodology to cope with the PVT variations in the Pre-Si design phase
is performing corner analysis to investigate the specified PVT space with the help of powerful
electronic design automation (EDA) tools. The Post-Si validation uses corner lots to explore the
process range in manufacturing, and voltage and temperature are environmental components
addressed with the test setup.

2.3.4.1. Corner Analysis in Design Phase

Corner analysis, also known as corner case analysis or process corner analysis, is a technique
used in design to evaluate the timing and performance of integrated circuits under different
operating conditions. It involves simulating the circuit behavior across the PVT range in
so-called corners. Especially, corner analysis aims to assess how the circuit behaves under the
worst-case conditions.

In terms of process corners, the transistor manufacturing processes are clustered into
slow (S), typical (T) (also called nominal), and fast (F). The CMOS technology uses two types
of transistors: the nMOS and pMOS. The two transistor types are treated independently.
That results in the process corners shown in Figure 2.6. The first character corresponds to
the process corner of the nMOS, and the second character to the pMOS - as color-coded in
Figure 2.6 [61].

Besides the transistor process corners, the interconnects are also considered with their
parasitic RC components. The RC components are also simulated as slow, typical, and fast.

The environmental conditions - voltage and temperature - are also considered in the same
way to be S, T, or F. The fast corresponds to high voltage and low temperature and slow
corresponds to low voltage and high temperature, in between such conditions is the typical
case [61]. Due to the IDT, the worst temperature case can change depending on the design,
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Figure 2.6.: Corner cases of a CMOS transistor.

as explained in Section 2.3.3.
In order to ensure a proper function of the design, a multi-corner analysis is required to

ensure the correct timing behavior in each specified corner. The nomenclature of such a
multi-corner is usually expressed in the three design corners (S, T, F) cases. Therefore an
SFTSS corresponds to a slow nMOS, a fast pMOS, a typical RC, slow voltage (min), and slow
temperature (hot). The design must be verified in every corner.

Timing verification using tools like Simulation Program with Integrated Circuit Empha-
sis (SPICE) is not feasible due to the complexity of large designs and limited computing
power [72]. In addition, such tools are primarily intended for analog simulations at the
transistor level. Therefore, a powerful method called static timing analysis (STA) is used to
perform timing verification in digital circuits.

The STA is a method to investigate and verify the timing of the MCU without simulating
the full design. The entire design is analyzed to determine if all timing constraints are met
for every corner. The setup critical timing paths are typically suspected in the slow corners,
whereas the fast corners face hold time violations. The term static refers to the circumstance
that the design is analyzed in a static condition by not taking care of any input or output
data - which is the case in performing a simulation. The STA is performed as one of the last
steps before tape out to ensure the design’s timing closure. EDA tools exist to accomplish an
STA on the design and identify weaknesses. Especially the worst-case corners are focused on
ensuring a robust design [71, 73].

However, the STA using the corner-based approach has limitations. Especially when
WID variation becomes dominant, this can not be handled with the corner-based STA [74,
17]. There are methods like statistical static timing analysis (SSTA) [64] that manage the
WID variations in designs - however, SSTA still needs to be consistently adopted across the
industry [75, 32]. The typical approach to mitigate timing uncertainties caused by WID and
noise is the use of additional margins. Those margins are on top added to the STA results,
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adding pessimism and reducing the risk in the overall timing verification [71].

2.3.4.2. Corner Lots in Post-Silicon

In distinction to Pre-Si verification, the manufactured device must also be validated across
the PVT corners in Post-Si. In order to cover the entire PVT space, corner lot wafers are
manufactured. Such corner lot wafers are special flavors of wafer in which the manufacturing
parameters are reflected. For example, the manufacturing parameters of all nMOS transistors
on the wafer are tweaked to be slow. In contrast, all pMOS transistors in the wafer are
manufactured to be fast - in other words, an SF corner lot wafer. The same parameter changes
can be made for all manufacturing parameters that can be selectively influenced - these can
be transistor parameters as well as interconnect parameters. The amplitude of the deviation
can also be adjusted from the typical value, which is given in sigma steps.

The corner analysis of the environmental parameters voltage and temperature is easier to
cover. The ambient temperature of the chip is adjusted using advanced temperature sources
in the validation set-up. Even when the devices are on the wafer, such wafers are mounted
on a chuck with very high-temperature stability. High-performance, high-precision power
supplies can take over the power supply and allow the entire operating voltage range to be
validated. The PVT validation of a device is part of the product characterization process [76].

2.3.5. Additional Safety Margins

Besides the PVT variation considered with the corner-based analysis, additional safety margins
are required to ensure proper function. There are several reasons why those additional safety
margins are required. Two reasons for additional margins in the timing verification are
explained.

Modern MCUs operate with a clock frequency of several hundred megahertz. In operating
mode with such high frequencies, electromagnetic cross-talk can occur, which impairs the
signal integrity and, thus, the timing behavior. That electromagnetic cross-talk is, in most
cases, an aggressor-victim scenario where the noise and emission of one particular region
affect another region in which the timing error occurs [54].

The second added margin is the safety margin for aging. The MCU manufacturer has
to ensure proper function in the delivery status and at the end of the life of the MCU.
Several aging effects become more important in shrinking technology nodes, such as negative
bias temperature instability (NBTI) and hot carrier injection (HCI), which also affect the
timing behavior of the circuit [34, 77, 78]. The margins required to guardband the aging
over the lifetime depend strongly on the mission profile. In order to ensure a proper
function independent from the mission profile, the added safety margins are intended to
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cover the worst-case scenarios. This leads to the claim that the added safety margins are too
pessimistic [79].

However, the additional safety margins in electromagnetic cross-talk and aging are manda-
tory if the MCU controls safety-critical applications in automotive.

2.4. Testing of MCUs

Since modern MCUs consist of more than hundreds of millions of transistors, the complex
manufacturing process might lead to defects. Due to these defects, the MCUs might not be
working properly. Thus, testing MCUs is essential in detecting such defects and ensuring an
error-free operation. Efficient testing ensures functionality, timing, and performance, making
it crucial for modern electronic devices. Design for Testability (DfT) is an essential method to
enable test. The basic principle of DfT and its infrastructure and approaches are explained in
this section.

2.4.1. Design for Testability (DfT)

DfT is a bunch of approaches used to make testing easier and more effective. DfT is adding
further logic and components to the design to create an infrastructure for the test of the design.
This infrastructure is inserted along the industrial design process, as Figure 2.1 explains with
an important DfT step - the scan insertion.

A common DfT technique is the scan test; this includes scan insertion and scan compression and
utilizing various fault models to detect defects efficiently. The following section (section 2.4.1.1)
will describe this method because of the fundamental importance of this work. Another
common technique in DfT are boundary scan and memory/logic built-in self-test (BIST).
Boundary Scan, or Joint Test Action Group (JTAG), is a technology used to test and debug
MCUs without direct access to their pins. Instead, a standardized interface called JTAG is
used to communicate with the MCUs. BIST is an on-chip test infrastructure to detect defects
without using external test equipment. There are approaches to testing digital logic built-in
self-test (LBIST) and on-board memory built-in self-test (MBIST), and those methods can also
perform in-field tests [55].

2.4.1.1. Scan Test

Scan test is a standard technique used in digital MCUs nowadays. This is a structural test
method to detect defects in the circuit deterministically. In order to realize this, some scan
infrastructure is necessary. This process is called scan insertion.
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Scan Insertion The scan insertion is done in two steps. First, the FFs and latches in the
design are replaced with the so-called scan FFs. The scan FF is built with a multiplexer (MUX)
and an ordinary FF; the scan FF is shown in Figure 2.7.
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Figure 2.7.: Scan FF contains an ordinary FF and a MUX.

Besides the data input port (D) and data output port (Q), and the clock (CLK), the scan
FF has two additional ports: the scan input port (SI, scan_in) and the scan enable port (SE,
scan_en). The scan_en controls whether the latched input data of the internal FF captures
from D input - called functional (or mission) mode- or the data is captured via the scan_in
port - called scan mode.

The second step is the connection of the previously placed scan FF to the so-called scan
chains. The circuitry connectivity after the scan insertion is schematically shown in Figure 2.8
for a small circuit, demonstrating three scan FFs connected in one scan chain.
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Figure 2.8.: Scan insertion replaces three FFs with scan FFs and connects them to a scan chain.

The scan chain is colored in blue and runs from the scan_in through the SI of the first scan
FF. From the Q of the first scan FF, the scan chain is connected to the SI of the next FF; this
interconnection continues in this way. This is repeated until the last output of the scan FF
within the scan chain, which is the scan_out - the output of the scan chain.

Large MCUs contain a large number of scan chains. The scan_en is valid for all scan chains.
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If the MCU is in scan mode (scen_en is high), the scan chains are sequentially loaded with 0
or 1 until all scan FFs have the desired value. After that load phase, the scan_en is switched
off, and one or more functional at-speed pulses occur, called launch and capture. Once this is
done, the scan_en turns on again, and captured values are unloaded from the scan chains.
Such unload values are compared with the expected values. The MCU passes the test if every
captured value equals the expected value. Such scan test procedure is shown in Figure 2.9.
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Figure 2.9.: Scan test procedure with a capture pulse.

The input values are called test/scan vectors or patterns. The scan test is repeated and
consists of thousands of scan patterns. This provides controllability and observability for
every scan FF during the scan test.

Scan Compression The scan chains become more extensive since more sequential scan FFs
are included to cover the entire MCU. This would result in long scan chains and high effort to
load and unload all scan chains with the scan pattern. Scan compression is an efficient method
to reduce the length of the scan chain and subsequently reduce the test time by introducing a
decompressor and compactor. Figure 2.10 shows the scan compression methodology.
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Figure 2.10.: Scan compression allows the parallel loading of scan chains with a decompressor
and compactor through a single pin.

The scan chains are arranged between the decompressor and the compactor. In that way, the
length of the scan chains is reduced. The scan chains are loaded and unloaded at high-speed
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scan_in and scan_out ports. The shift speed of the scan chains remains nearly the same.
However, the overall test time is reduced with this approach.

2.4.2. Fault Models

The test vectors/ scan patterns are not randomly chosen sequences of bits; instead, the test
vectors are associated with fault models. Fault models are a formal abstraction where a fault
is a logic description of the effect when a defect is present in the digital logic circuitry of the
MCU. Dedicated test vectors are calculated using such fault models to test the digital logic
for correct functionality. Such fault models aim to ensure defect-free circuitry after applying
all variants of the dedicated fault model to all gates of the logic circuit. The metric to quantify
the covered defect-free logic is called fault coverage. The fault coverage is calculated for each
fault model, and several fault models are in use.

There are two classes of fault models: static fault models and dynamic fault models. Static
fault models focus on static defects in the circuitry independent of any timing constraint.
Commonly used static fault models are the Stuck-at-Fault model and the Bridging-Fault
model [80, 81]. Such fault models are also used for IDDQ tests. Dynamic fault models, in
turn, consider the circuit’s timing behavior and are executed at speed. Widely used dynamic
fault models are the Transition Fault, Gate Delay Fault, and Path Delay Fault Models. The
Transition Fault model and Gate Delay Fault are aiming localized timing faults within the
logic circuit. The path delay fault model considers the timing behavior of the entire path. The
path delay fault model is used in this work and described in detail in the following.

Path Delay Fault Model The path delay fault model [82] aims to check if the path’s timing
is met within the clock cycle. In order to do this, the path delay fault model is executed at
speed in the capture phase in contrast to the sequence shown in Figure 2.9. Therefore, two
clock pulses are executed during the capture phase; the first is the launch pulse, and the
second is the capture clock pulse. The test sequence is shown in Figure 2.11.
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Figure 2.11.: Scan test using a path delay fault model.

During the shift in phase, the path to be tested is prepared, also known as path sensitization.
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This means that all side inputs of the path need to be on a stable value. In addition, the
side input needs to be on a non-controlling value. Once these requirements are fulfilled and
the path is sensitized, the launch pulse is executed at the launch point; this is a controllable
and observable point in the circuitry - a scan FF. The launched transition is then propagated
through the sensitized path and is captured with the second clock pulse - the capture pulse -
at the capture point, which is usually also a scan FF. The time between launch and capture
clock pulse is at regular operation clock speed. The captured value is then shifted out, and
the actual captured values are compared with expected values. If the expected values equal
the actual values, the path delay test is successful. The path description to be tested must be
provided for every path delay test.

The path delay fault patterns are distinguished in several modes based on sensitization
criteria. The weakest path sensitization is functional sensitizable, which means that the path
propagates the transition during the test, but the side inputs do not need to be stable. The
non-robust mode ensures that the side inputs are only on a stable non-controlling value
during the capture clock pulse. The tightest mode is the robust one, which requires stable
non-controlling values at all side inputs during the launch and capture clock pulse [83, 84].
There is also the additional option of the hazard-free mode, which is even a little stricter than
the robust mode. In this mode, an attempt is made to prevent glitches and reconvergence in
the path [68]. Dependent on the sensitization mode chosen, it becomes more challenging to
calculate a path delay test pattern that fulfills all sensitization requirements.

In addition to the sensitization mode, the clock handling can also be adjusted, the launch-
off-shift (LOS) and launch-off-capture (LOC) mode [85, 86]. The LOC method was implicitly
introduced in Figure 2.11. Such a mode allows a clear distinction between shift and capture -
the shift phase cares for path sensitization, and the two at-speed clock pulses are executed
in the capture phase. Instead, LOS squeezes the launch clock pulse into the end of the
shift phase. Both approaches have their advantages and disadvantages [68]. Due to strict
separation in shift and capture, the LOC will be the essential mode in this work.

There are many constraints in the calculation of scan patterns for large MCUs, so EDA
tools are used, especially the automatic test pattern generation (ATPG).

2.4.2.1. Automatic Test Pattern Generation

ATPG is a methodology to generate test patterns used in the industrial environment by
considering the fault models mentioned in Section 2.4.2. An ATPG tool is a software tool that
generates test patterns for a given MCU design. The ATPG tool requires the netlist of the
design with the already placed scan infrastructure. Based on the fault model determined,
the ATPG tool calculates scan patterns to achieve high fault coverage for a wide range of
potential faults in the circuit. The resulting scan patterns are in an ASCII file format called
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waveform generation logic (WGL) or standard test interface language (STIL). The scan pattern
in WGL/STIL format is required to test an MCU in an industrial test environment using
automatic test equipment (ATE).

2.4.3. Automatic Test Equipment

The automatic test equipment (ATE) is the hardware instrument on which the DUT is mounted
during the test procedure. The ATE provides power to the DUT and applies all test patterns.
The ATE itself is a complex real-time system that can leverage many DfT methodologies.
The scan patterns in WGL format are read into the ATE. Regarding the execution of the
test, the ATE generates the stimuli for the scan_in port and loads the scan chains. The clock
signal is also controlled via the ATE, as well as the comparison of the scan_out values with
the expected values is checked on the ATE. Such MCU testing can be done on the wafer
level where the pads on the die are connected with needles from a probe card to the ATE or
with package MCU which is then mounted on a socket through the ATE. With the ATE, fast,
precise, and automated execution is enabled [87, 55].

2.5. Performance testing

In this section, the performance testing is explained. The performance of an MCU is the
maximal achievable clock frequency of the device under worst case conditions. The perfor-
mance of an MCU is also denoted as FMAX. The approach to test the performance is called
performance screening, in which the FMAX of every device is checked. The term speed binning is
also used for this approach which suggests an instantaneous sorting in categories according
to the speed of the devices.

The performance testing of large modern MCUs is challenging due to the complex design
and PVT variations. Structural dynamic scan patterns (see Section 2.4.1.1 - transition fault
pattern, path delay fault pattern) are not suitable for precise performance testing. This has
two reasons, the scan patterns provide only a pass/fail criterion, and second is not possible
to determine the unique performance limiting paths. Many near-critical timing paths are in
modern MCU designs, resulting in a timing wall. As a result, it is practically impossible to
determine the path that is causing the performance limitation on large MCUs.

Therefore, other approaches are necessary to determine the performance of the chip. The
following sections present two commonly used methods which are central pillars of this
work.

Note that the performance testing does not aim to detect devices with physical defects (e.g.,
shorts, opens); structural scan tests are used for this purpose.
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2. Background

2.5.1. Performance Monitors

One way to determine the performance of a chip is to use indirect performance monitors [26,
27, 28, 29, 30, 31, 21]. Such performance monitors are ring oscillators (ROs). An RO is an
odd number of N inverting logic gates connected serially, forming a closed loop. The basic
structure of an RO using inverter gates is shown in Figure 2.12.

1 2 3 4 N out•

feedback loop

Figure 2.12.: Basic principle of an RO using inverter gates.

Each logic gate in the RO and the interconnects in between add delay to the overall timing
of the RO. A positive or negative edge is launched at the start of the RO once the power
supply is switched on, and the signal propagates through the logic gates in the RO. Due
to the odd number of logic gates and, therefore, the implicit inverting behavior of the RO,
the positive/negative edge becomes inverted at the end of the RO. Then the inverted edge
is propagated through the feedback loop, triggering the next negative/positive edge. This
results in a continuous oscillation where the frequency of the RO is the critical metric that is
measured on the output.

The oscillation frequency f of an RO is expressed as

f =
1

2TRO
, (2.5)

where TRO is the delay time of the RO. TRO is calculated as follows,

TRO = TGate · N + TLoop. (2.6)

TGate is the propagation delay for each of the N gates in the RO, and TLoop is the interconnect
delay. The timing of the gates used in the circuit behaves similarly to those used for the ROs.
This is why such ROs can be used as indirect performance monitors.

In order to utilize ROs for performance testing, more than the basic RO structure shown in
Figure 2.12 is needed. Thus there are various RO designs proposed and analyzed in literature.
A fundamental distinction can be made between the two types of ROs: generic ROs and
design-dependent ROs [29].

Generic ROs consist of a homogeneous logic gate type, e.g., inverter or NAND gate.
Standard gate libraries used in large MCUs designs typically consist of several standard logic
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gates in different driver strengths and further variations in the number of inputs/outputs and
threshold voltages. Building one RO out of each used logic gate in the cell libraries would
result in hundreds of generic ROs. Another way is to leverage the design information of
the chip and build so-called design-dependent ROs. Such ROs aim to mimic the design of
the chip. In order to do this, several methods are used, from straightforward path replicas
to sophisticated synthesis algorithms considering the entire PVT space [38]. In the end, the
performance test’s accuracy and quality highly depend on the sensitivity of the performance
monitors used [39, 88].

Also, the value of N has a significant impact. The visibility of D2D and WID process
variation within an RO depends on the number of logic gates N in the RO. Especially
for smaller technology nodes (<40 nm), the WID variability is only visible with short ROs
containing less than 10 gates. In comparison, the D2D variation is independent of N [88,
89]. Such ROs follow the process variation, usually Gaussian distributed [90]. In addition,
N also affects the oscillation frequency, which is a considerable limitation for the frequency
measuring gear and the resulting accuracy, and each additional gate contributes to the leakage
current, which is also a critical variable in MCU requirements [87].

2.5.2. Functional Testing

Another fundamental approach in performance testing is the execution of functional tests.
A functional test is named due to the fact that the functional test cases are executed on the
MCU. Such functional test cases simulate different workloads or functional test cases of the
MCU to find defects and complement structural testing [10].

The functional test is distinguished into two subgroups. The first method is the traditional
functional testing where small code pieces are uploaded to the MCU on the automatic test
equipment (ATE) and executed. The second method is the system-level test (SLT). The SLT is
a time-consuming test where the MCU is mounted in an application-like board, and several
test cases are executed. Such test cases can be customer application test cases of reusing
verification stimuli [13]. SLTs require lots of test time and are challenging in high volume
production [25].

In contrast to the structural scan test, traditional functional testing and SLT do not have
straightforward coverage metrics, making it difficult to determine the testing quality [13].

In order to use the functional test for performance testing, there is a particular procedure.
The clock frequency (execution frequency) of the DUT is executed at a low frequency in an
infinite loop. Then step by step, the clock frequency is increased. This is continued until the
maximal execution frequency without a failure. Using that approach, the performance of a
device is determined given the particular functional test case [11].
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2.6. Machine Learning in IC Testing

2.6.1. Machine Learning Basics

The term machine learning was introduced by Arthur Samuel in 1959 [91]. machine learning
(ML) describes a subfield of artificial intelligence. ML facilitates computers (machines) to learn
from existing data and predict the outcome of non-seen data without explicitly programming
the computer. ML uses mathematical and statistical methods to identify the provided data’s
patterns, relations, or similarities. The field of ML has been rapidly increasing in the last
decades. Meanwhile, ML-based techniques can be found in numerous applications and
industrial scenarios.

The scope of ML is to find a function f that describes the relation between the input data x
and the output data y: f : x 7→ y. Since the function f is unknown and shall be learned by
ML, the ML calculates an approximation function f̂ using the provided dataset X - f̂ is also
known as the ML model. Thus the input data x and output data y are vectors. Each input
xi is called a feature, and the output yi is called a label. In order to create an ML model, the
provided dataset is split into a training set S and a test set T (or validation set). The training
set is used to train the ML model, which means finding a suitable approximation function
that maps the features of S to the labels. Once the training is done and the ML model exists,
the ML model is validated. The ML model validation feeds unseen features from the test set
T into the ML model, and ŷj is calculated. Then the ŷj and known yj deviation from the test
set is compared. The ML model is scored depending on how well the predicted data and the
known data fit. Scoring metrics are, for example, the mean absolute error (MAE) and the root
mean square error (RMSE).

ML can be divided into different subfields as shown in Figure 2.13. The subfields used in
this work are supervised learning and unsupervised learning.

Machine Learning

Unsupervised Supervised

Clustering Dim. Reduction ClassificationRegression

Figure 2.13.: ML overview of approaches in this work.

Supervised ML is the learning approach in which the features are mapped to the labels,
and the ML model is considered a black box. Such a supervised learning algorithm aims to
calculate a model that maps the input to the output data. Using the trained ML model, it is
possible to predict the outcome of non-seen data using only the input data. The supervised
ML can be categorized into classification and regression [92].
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The classification-based ML classifies the labels into discrete categories or classes. Therefore
the labels should be in a categorial data format. A straightforward example is the classification
into TRUE or FALSE based on the given features. The feature data type does not have to be
categorical.

In contrast, regression-based ML provides continuous numerical values for the output
variable. They are often used to make precise numerical predictions.

Unsupervised ML is applied when only features are available for the training, and the
labels are unknown. Thus it is not supervised by the labels - therefore, unsupervised. This
type of learning intends to find patterns and statistical dependence in the features without
prior knowledge of the outcome. Two often used unsupervised methodologies in ML are
clustering and dimensionality reduction [92].

Clustering describes the process of dividing a dataset with features into groups or clusters
with the same or similar characteristics. The clustering algorithm uses distance-based, density-
based, or hierarchical approaches to cluster the dataset into distinct groups [93, 94, 95].

On the other hand, dimensionality reduction intends to transform (or filter) the features
into a reduced feature set. This should be done by keeping valuable information from the
dataset. An often-used approach in dimensionality reduction is principal component analysis
(PCA) which transforms the feature space into a reduced feature space by considering the
eigenvalues [96].

Dependent on the ML approach, there are different scoring and error metrics explained
once used in the later sections.

2.6.2. Machine Learning in Testing

Modern MCUs have become larger and more complex over recent years. This results in higher
effort in testing to ensure the same or even higher quality. ML has become a well-established
method for making testing more efficient and manageable in the testing of MCUs [97, 98].

However, once ML is applied to real-world problems, it can help and harm. One of the
most crucial things in ML applied to test is the choice of the training set. On the one hand, it
shall identify outliers that are a risk for proper training. On the other hand, the trained ML
model shall be robust and able to generalize. Thus, ML helps to determine devices in pass
and fail and many other areas in testing. This work uses ML to manage the difficult task of
performance screening in automotive MCUs.
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2.7. Automotive Quality

Automotive MCUs means that such MCUs are used in automotive applications that are
often responsible for safety-critical systems. Such functional safety systems can be braking,
steering, airbag systems, and numerous other automotive applications. Also, functional
safety is essential for advanced driver-assistance systems (ADAS) and autonomous vehicles.
The guidelines and standards for electronic components in functional safety automotive
environments are described in ISO 26262 [99]. In addition, there are qualification specifications
and requirements defined in AEC Component Technical Committee [5] agreed upon and
defined by a large automotive community. These guidelines and requirements show how
important it is to deliver high-quality automotive MCUs.

The quality and reliability of automotive MCUs are specified in defective parts per million
(DPPM). In literature, the term PPM and the notation in defective parts per billion (DPPB) can
be found. The critical metric remains the number of defective devices that successfully pass
the test. Here, the devices are related to several ground truths (millions, billions). However,
no severe rule exists for DPPM rates in the automotive industry [100]. Nevertheless, there is a
solid strive to ensure zero defect quality, which means 0 DPPM accepted [101]. One of the
most essential things to ensure zero defect quality is high qualitative testing [100, 102, 6].

The outcome of semiconductor testing is either the device passes all tests, or it fails the
testing (one or more tests). On the other hand, there is the chance that the testing result is
not correct. Either the test indicates that the device is pass whereas the actual device should
fail or vice versa. This circumstance can be visualized in the confusion matrix shown in
Figure 2.14. Such a metric can be used for all classification problems and ML classification.
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True Positive
(TP)

Figure 2.14.: Confusion matrix of a classification problem.

The confusion matrix have four potential outcomes. The true positive (TP) and true negative
(TN) is clear - the test (predicted) result equals the actual state of the device. A false negative
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(FN) that is tested fail but is actually pass will cause yield loss. Yield describes the proportion
between devices tested as non-defective and the total number of tested devices. In order to
make it clear: FN are fault-free devices that are thrown away due to the test result - the yield
decreases. However, concerning automotive quality, the false positive (FP) devices are the
most critical, also known as escapes, and harm the quality. In order to handle and manage
this issue to guarantee automotive quality, the six sigma criterion can be deployed.

2.7.1. The Six Sigma Guardband

The six sigma approach [103, 104] is a quality enhancement methodology and was invented
by Bill Smith in the 1980s. This approach aims to deliver high-quality products with as low
defect rates as possible. This approach is applied to various quality management approaches
to reach the ultimate quality goal. The six sigma approach assumes a Normal Distribution of
the data under investigation. Thus, the mean is the center of the distribution, and one σ is
the average deviation distance from the mean value. 68% of the distribution area is between
± 1σ of the mean value. Therefore, with a ± 6σ range, there are at least 99.99966% in the
distribution area. This corresponds in a statistical term with a defect rate of at least 3.4
defective parts per million (DPPM) - known as the Six Sigma Level [104]. The six sigma level
of 3.4 DPPM assumes that a ± 1.5σ shift of the Normal Distribution around the mean value
is present. The shift margin is considered a batch-to-batch variation (D2D process variation)
of the production concerning the high-quality level. If the process is perfectly centered,
the resulting six sigma approach shows only a theoretical value of two defective parts per
billion [103].

Hence, translating this into the testing environment, a margin of up to six sigma is needed
to ensure automotive quality with minimal DPPM rates. The six sigma approach can be
applied to ensure specific DPPM rates in performance testing, e.g., performance screening.

30



Chapter 2 Part I Part II Chapter 10

Chapter 3 Chapter 4 Chapter 5 Chapter 7 Chapter 8

C
h
ap
te
r
6

C
h
ap
te
r
9

PRE-Silicon POST-Silicon

Background

Information

Functional

Path ROs

Path

Selection

Methodology

Verification

and

Validation

Measurement

and

Validation

Performance

Screening

Conclusion

and Future

WorkT
ap

e
-
ou

t

Outline of Part I.

Part I.

PRE-Silicon

31



3. Functional Path Ring Oscillators

3.1. Basic Concept

The functional path RO approach uses functional combinational logic paths within the MCU.
The functional combinational logic paths run directly from register to register or from memory
to memory and are typically used in the functional application of the MCU. Therefore, the
behavior of the MCU is represented by the functional paths. A functional path in the design
is denoted as pi.

Two significant changes in the circuitry are required to create a functional path RO out
of an ordinary functional path, as shown in Figure 3.1. A multiplexer (MUX) is inserted at
the start point of the combinational logic path, and a feedback loop is inserted connecting the
end point of the path with the start point of the path. An RO requires inverting behavior by
default (see. Section 2.5.1); the same requirements apply to the functional path RO. If the
functional path behaves non-inverting, an inverter can be placed along the feedback loop. The
MUX can be switched between functional mode (0) and oscillation mode (1); the latter can
only be activated for test purposes. The control infrastructure maintains the control pin of
the MUX (enable). Also, the oscillation frequency (observe) for further processing is connected
with the control infrastructure. For further details regarding the control infrastructure, see
Section 3.4.
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• observe
inverting behavior

REG/MEM
REG/MEM

Figure 3.1.: Example of a functional path RO. Adapted from [40] c© IEEE 2021.

However, the path by itself will not oscillate unless all supporting logic into the path is
constrained to propagate the oscillating values along the path. Therefore the functional com-
binational logic path has to be sensitized for a stable oscillation. The sensitization guarantees
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that all side inputs must be on a non-controlling stable value to ensure a stable oscillation of
the functional path RO. A path sensitization with the respective side inputs is described in
Figure 3.2.
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Figure 3.2.: Path sensitization of a functional path RO with the scan architecture. Adapted
from [40] c© IEEE 2021.

When the MUX changes from functional mode to oscillation mode and the path is sensitized,
the functional path RO oscillates by default due to its inverting behavior.

Path sensitization can be accomplished by adding supporting logic to constrain all side
inputs. Such an approach leads to many additional logic gates to the design and, therefore,
much area overhead, which must be prevented in the competitive MCU market. The preferred
solution is to use the existing DfT environment placed by scan insertion. A commercial ATPG
tool is used to compute scan patterns based on an existing scan architecture that supports all
logical assignments.

Commercial ATPG tools support many DfT fault models. Fault models are classified into
static and dynamic fault models. Static fault models, e.g., Stuck-at and IDDQ, can not handle
the sensitization automatically. Each side input of a gate along the path under test (PUT) has
to be constrained with the non-controlling value. Such constraining has to be done manually
in static fault models. Thus, much effort is required, and the ATPG tool has difficulties
handling the constraints, as it has to calculate a scan pattern (e.g., stuck-at), taking into
account all constraints of the side inputs. This, however, is not possible in many cases.

Dynamic fault models can support sensitization. In particular, the ATPG tool can perform
dedicated path sensitization using the path delay fault model. The PUT is passed to the
ATPG tool, and the tool attempts to sensitize the path with a scan pattern in path delay mode.
This eliminates the need for manual handling of boundary conditions. The calculated path
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delay pattern ensures the oscillation of the functional path RO. The ATPG tool in path delay
mode has different levels of sensitization. The robust detection provides the most powerful
path sensitization, independent of a clock event. In addition, the LOC method [85] is needed
to generate the path delay pattern. This is because a fully sequential procedure is required to
sensitize and measure the functional path ROs.

Approaching the sensitization problem with ATPG has the disadvantage of limited path
delay efficiency of commercial ATPG tools, which means that only a limited number of
paths can be sensitized using a suitable robust detection algorithm. Also, the LOC method
reinforces such limitations due to the sequential ATPG algorithm of the ATPG tool in the
LOC method [86]. However, the lack of path delay efficiency is not a significant limitation
for functional path ROs. In large automotive MCUs, many paths can be sensitized with the
ATPG tool in path delay mode.

The path delay fault model using the LOC method has a fixed test procedure, including
clock activity (see Figure 2.11). The resulting path delay scan pattern must be modified in
some way to be suitable for the functional path RO approach. A typical path delay pattern
has three phases, the shift-in phase, the at-speed phase (for the launch and capture pulse), and
the shift-out phase [86]. An additional phase is required when applying such a pattern for the
functional paths ROs. The additional phase is the RO frequency measurement phase, which is
inserted after the shift-in phase. The four phases of the functional path RO pattern are shown
in Figure 3.3.
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Figure 3.3.: The test sequence during the scan test pattern. Adapted from [40] c© IEEE 2021.

The PUT is sensitized during the shift-in phase. At t1 the MUX is switched from functional
mode to oscillation mode, and the functional path RO starts to oscillate by itself. The
oscillation frequency is measured in the measurement phase from t1 to t2. During the
measurement phase, the ATE determines the oscillation frequency of the RO. The frequency
value is stored in the test database for further processing. The at-speed launch and capture
phase is irrelevant to the functionality of the functional path ROs.

The integration of the functional path RO measurement into the context of the ATPG scan
pattern enables a fast measurement. The functional path ROs can then be activated with the
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scan pattern and thus easily implemented in the industrial design flow.
The basic implementation presented above is called Option 0. All functional paths pi that

can be sensitized with a path delay pattern vpi are in the set P. The set P contains n functional
paths, which can be represented in this way: P = {p1, . . . , pn}. All paths in P are eligible for
the Option 0.

However, the main disadvantage of the Option 0 is the routing overhead, especially for
the MUX’s enable signal and the observe signal used to measure the frequency. Both signals
(enable and observe) have to be routed across the MCU for each RO individually. Accordingly,
there will be many routing paths added in a large automotive MCU, especially when the
functional path ROs are spatially distributed across the chip. Therefore, the upcoming section
focuses on advanced implementation concepts to make the functional path ROs more efficient
in terms of implementation.

3.2. Advanced Implementation Concepts

The functional path RO approach saves a lot of chip area compared with conventional RO
approaches and enables a promising monitor structure by utilizing the DfT scan environment.
However, the automotive MCU market is competitive, and every additional gate or routing
line impacts the margin in the subsequent mass production of such MCUs. Therefore, this
section focuses on concepts to implement the functional path ROs more efficiently to (i)
minimize the impact on the functional circuitry and (ii) require as few additional gates and
routing lines as possible. In doing so, the natural properties of the circuit are exploited by an
intelligent combination and selection of functional paths.

3.2.1. Circuitry-Wise Optimization

The functional paths are distributed across the MCU. The idea of circuit-wise optimization is
to find functional paths that inherently cause low routing overhead if they are implemented
as ROs. Each functional path RO runs from the launch FF to the capture FF; both FFs are scan
controlled. In state-of-the-art large MCUs, many such FFs are multi-bit FFs. This means they
have numerous in- and output pins using the same synchronous clock signal. Consequently,
there is a high likelihood that some functional paths share the same FF using different pins.

There are four types of path topologies identified that indicate lower routing effort. The
goal is to find functional paths which share the same FFs. The four types are shown in
Figure 3.4.

The launch / capture FF of a path pi/j is denoted as LFFpi/j / CFFpi/j . The first type, Type 1
(Figure 3.4a) analyzes each path pi. If the LFFpi is equal to the CFFpi , it can be assumed that
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Figure 3.4.: Four path topologies of functional paths.

the path is self-contained, which means that the path is a cycle. In this case, routing for the
feedback loop is not necessary.

Figure 3.4b presents Type 2 the parallel paths, which checks if two paths (pi and pj) share
the same LFFpi and LFFpi . In that case, they can share the feedback loop because only one
RO is activated during functional path RO measurement. Therefore, only one feedback loop
is necessary for path topologies in Type 2. Furthermore, also only one routing line for the
observe signal is needed.

Type 3 (Figure 3.4c) and Type 4 (Figure 3.4d) are less restricted scenarios of Type 2. Instead
of simultaneously checking for the same LFFpi and CFFpi , Type 3 only checks for the same
launch FF, and Type 4 checks for the same capture point. The advantages are that only a
single enable signal or a single observe signal is required.

Each path is investigated regarding similarities of Type 1, 2, 3, 4. As described in Section 3.1
all functional paths must be sensitizable with a path delay pattern. Those functional paths,
which are sensitizable and have the properties from Type 1, 2, 3, 4, are in the subsets
PType1,Type2,Type3,Type4 ⊆ P.

Another way to use topological properties is the concept of Natural Loops. Instead of looking
for common FFs of the functional paths, natural loops look at the course of the paths across
the chip.

3.2.2. Natural Loops

The concept of natural loops is to use two or more functional paths and connect the end-point
of one path to the start-point of the following path to create a functional path RO. The goal
is to identify paths that can be connected with a natural loop in a way that the additional
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routing needed for the feedback loop becomes minimal. Figure 3.5 shows an example of two
natural-looped paths.
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Figure 3.5.: Basic concept of the natural loop approach.

Path pi is used as a forward line, Path pj is in the opposite direction and is used as a return
line. This eliminates the need for a large part of the feedback loop and the signal buffers of
the feedback loop. Thus, paths with long feedback loops are the primary candidates for this
approach. Note that the inverting behavior of the paths within the natural loops must be
ensured by additional inverters or a suitable selection of the paths.

The natural loop functional path RO functionality in Figure 3.5 can be described as follows.
The circuitry is in functional operation mode as long as the MUX switches are OFF (0). Once
the MUXes are switched ON (1) and both paths are sensitized, the oscillation will start
through both paths.

A prerequisite for this concept is that the ATPG tool can sensitize the connected paths with
one path delay pattern. A modern ATPG tool tries to sensitize as many paths as possible with
as few patterns as possible. Thus, one path delay pattern can be used to sensitize many paths.
The patterns used for the natural loop approach must be able to sensitize at least two paths.

All coordinates of each cell are known for the paths which are sensitized by a pattern.
Thus, the start- and end-points of each path are known. Also, the physical length of the path
can be calculated, given those coordinates. The coordinates of the start- and end-point and
the physical path length are fed into an optimization algorithm. Based on the coordinate
and length information, the algorithm decides whether the paths should be combined into a
natural loop or remain independent functional path ROs.

A criterion of the algorithm to select the natural loops is the overall path length and the
expected length of the feedback loop. If both lengths are below a certain threshold value, the
paths are not considered as natural loops. The threshold value needs to be set individually
for an MCU design. Another criterion is the distance from the end-point of one path to the
start-point of another path. If there are paths that run in the opposite direction and have their
start- and end- points nearby, they are excellent candidates for the natural loop approach.
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Paths that have such properties are usually unidirectional buses. These buses run over a long
distance, are in opposite directions and arranged in parallel.

Whereas Section 3.2 focuses on concepts using topological properties of the functional path
to reduce the routing and additional buffers, the following section presents the self-enabling
approach.

3.3. Self Enabling

The self-enabling approach targets reducing the routing of the enable and observe signal lines
for the functional path ROs. The prerequisite of the functional paths for such an approach is
that they have to be in P - which implies the functional paths must be sensitizable with an
appropriate path delay pattern. The implementations of the functional path RO published
so far [40, 31, 21] require a separate enable signal that activates the oscillation. This enable
signal must be generated and routed individually for each RO, which causes considerable
effort, especially when implementing many functional path ROs.

The self-enabling approach eliminates the need for the individual enable signal for the
functional path ROs. The self-enabling approach activates the RO using the appropriate
circuits and DfT methodology. The basic principle of a self-enabling functional path RO is
shown in Figure 3.6, where the select pin of the MUX is connected to the corresponding
launch FF LFFpi of the path pi. Thus, the MUX is activated by the corresponding LFFpi . In
other words, the functional path RO enables itself.
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Figure 3.6.: The basic principle of the self-enabling approach of a functional path RO. Adapted
from [41] c© IEEE 2022.

Each path pi is sensitized with a corresponding path delay scan pattern vpi . When the scan
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pattern vpi is applied, all side inputs of pi are at a stable non-controlling value. Furthermore,
it is assumed that all FFs within the circuit are scan FFs. Consequently, all FFs are controllable
with the DfT scan environment.

The launch FF of path pi is called LFFpi . LFFpi enables the corresponding path pi. An
ATPG tool is used to control LFFpi . In commercial ATPG tools, scan FFs can be restricted to a
specific value {0, 1, X} during the scan pattern generation. Those restrictions are called ATPG
constraints. The ATPG constraints for a specific path pi are cpi . This particular cpi is a tuple of
{0, 1} constraints for all LFFpi that launch paths in P.

The LFFpi of pi must be constrained to 1, while all other launch FFs of the remaining paths
must be constrained to 0. The constraint ensures that only the selected path is activated.

The constraint can be formulated as follows:

cpi := (cpi1
, cpi2

, . . . , cpin
)

with cpij
:=

{
1 if i = j
0 otherwise.

Suppose P consists of n = 100 paths P = {p1, . . . , p100}; when checking self-enabling for a
particular path, e.g., p3, the launch FF LFFp3 must be restricted with ATPG constraint 1. The
other 99 paths

{
pi|pi ∈ P \ {p3}, i = {1, . . . , 100}

}
with the corresponding launch FFs must

be constrained with ATPG constraint 0. Thus, cp3 must look like the following:

cp3 = (0, 0, 1, 0, 0, . . . , 0).

The constraint tuple cp3 is allocated to the ATPG tool before the path delay pattern
generation. The tool attempts to generate a new path delay pattern ṽp3 given the ATPG
constraints. If the tool can generate a suitable scan pattern ṽp3 for the path p3 given cp3 , p3

is included in the new subset P̃ containing all paths that can be used with the self-enabling
approach.

In case the ATPG tool cannot generate a pattern for a path considering the ATPG constraints,
the path is rejected. The check is performed for all paths in P. If a path is rejected, it will
automatically end up in P̂.

The implementation of the basic concept in a large MCU in the automotive design flow
requires a standardized approach. Therefore, a new library gate, the so-called RO-MUX, is
introduced. This is necessary in order to implement all self-enabling functional path ROs
automatically and uniformly. The RO-MUX is shown in Figure 3.7.

The RO-MUX itself has seven ports, an IN and OUT port, a local enable, general enable,
feedback, feedback, and observe port. Included in the RO-MUX are a 2-to-1 MUX, 2 AND
gates and an inverter. Note that the RO-MUX is unbundled into the individual gates after
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Figure 3.7.: The library gate called RO-MUX. Adapted from [49] c© IEEE 2023.

the implementation. This unbundling prevents the generation of new error states in more
complex gates that may be difficult to test from DfT perspective.

The RO-MUX is implemented between the launch FF LFFpi and the first gate of the path pi

to create a functional path RO. The IN port is connected to the LFFpi and the OUT port is
connected to the first gate of pi. If pi itself is inverting, the endpoint of the path is connected
to the feedback port; if not, the feedback port is chosen. The local enable is connected to the
output of LFFpi .

Furthermore, the activation of the functional path ROs during functional mode of the MCU
must be prevented. A general enable signal to unlock the oscillation mode, similar to the scan
enable signal, ensures this. This signal is set by a protected bit and can be further gated in
order to provide freedom from interference, which is necessary for safety-critical applications
[99]. One signal is used for all functional path ROs on the chip.

The AND1 gate inside of the RO-MUX ensures that the RO-MUX is enabled if and only if
local enable and general enable are active. Then, the MUX switches from functional mode (0)
to oscillation mode (1), and the RO oscillates. Parallelly, the AND1 output controls also the
observe signal via the upper input of AND2.

If the MUX is in oscillation mode, the upper input of the AND2 gate is on a non-controlling
value and, therefore, transparent. Thus the oscillation frequency is passed from the feedback
port directly to the observe port. The AND2 prevents the observe signal from uncontrolled
toggling during the functional mode.

The observe signal, on which the frequency of the RO is measured, is spacially compacted
with an XOR-tree. The AND2 in each RO-MUX ensures only one RO toggles during functional
path RO test mode, which also reduces the cross talk and switching activity. The compaction
of the observe signal by an XOR-tree can be seen in Figure 3.8.

The implementation of the XOR tree can easily be done as part of the implementation
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Figure 3.8.: XOR-tree for compacting the observe signals and forwarding it to a GPIO.
Adapted from [49] c© IEEE 2023.

process of the functional path ROs. Thus, the XOR-tree is implemented efficiently and
accurately by the EDA tools as a tailored solution.

Two options are proposed for implementing the concept of self-enabling- Option 1 and
Option 2.

3.3.1. Option 1 - the Direct Self-Enabling

Option 1 is also denoted as direct self-enabling because the local enable signal is connected
to the launch FF of the corresponding path. The enabling of the path is accomplished with
ATPG constraints, and the functional path has to be in set P̃. The detailed implementation of
Option 1, is shown in Figure 3.9.
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Figure 3.9.: Detailed implementation of Option 1. Adapted from [49] c© IEEE 2023.

The implementation in Option 1 requires ATPG constraints. The ATPG constraints are
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assigned prior to pattern generation. Therefore, the ATPG tool must consider these ATPG
constraints for pattern generation, which can lead to limitations. If the ATPG tool has too
many ATPG constraints, it may have difficulty generating enough path delay patterns because
they constrain the ATPG tool too tightly. However, the limitation of the ATPG tool depends
strongly on the DfT environment.

In addition, Option 2 is proposed, which does not have the drawback of the ATPG con-
straints.

3.3.2. Option 2 - the Indirect Self-Enabling

The main advantage is that Option 2 no longer uses the ATPG constraint. For this purpose, the
local enable of the RO-MUX is no longer connected to the corresponding launch FF. However,
a new combinational logic gate called unlock gate is introduced. The output of the unlock gate
controls the local enable signal. The inputs of the unlock gate are connected to surrounding
scan FFs. The general enable signal and all other circuitry functions are treated as in Option 1.
The suitable paths for this option are in P̂ = P \ P̃. An elementary implementation is shown
in Figure 3.10 where the unlock gate contains an AND gate connected to two surrounding
FFs.
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Figure 3.10.: Option 2 - the indirect self-enabling controlled by three surrounding scan FFs.

The scan pattern vpi , which sensitizes pi, is deterministic and the values of all scan FFs
are known for every vpi . If the functional path is sensitized with vpi , all scan FFs on the chip
remain in a steady state since no clock pulse is triggered for the time being. Furthermore,
there exists exactly only one pattern vpi that sensitizes pi, thus, the combination of the
assigned values of all scan FFs is unique.

In order to enable the RO-MUX with the local enable, the output of the unlock gate has to
be 1. In the example from Figure 3.10, the two FFs (FFU1 and FFU2) must have a 1 value, if vpi
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is applied. If FFU1 and FFU2 have a high value, the local enable is high, given that the unlock
gate contains a two input AND gate. The FFU1 and FFU2 are two arbitrary scan FFs that are
near the RO-MUX and have, by default, a high value, if vpi is assigned to the circuit. The
fact that the FFs for unlock gate are selected with the knowledge that all scan FF values are
known allows getting rid of the ATPG constraints. Therefore, the ATPG tool is not restricted
by constraints during the pattern generation. The number of unlock FFs is not limited and
any combination is allowed; only the unlock gate is designed accordingly.

The unlock gate consists of standard logic cells that are adapted to the corresponding use
case for every path pi ∈ P̂. The combinational logic of the unlock gate and its complexity
depend strongly on the design, the scan environment, and the number of ROs to be imple-
mented. In the elementary case (Figure 3.10), the combinational logic within the unlock gate
is an AND gate. However, the combinational logic could be even more complex. Thus, the
level of protection against incidental enablement corresponds directly to the effort spent on
the combinational logic of the unlock gate.

Theoretically, any sensitizable functional path (P) can be implemented in Option 2; however,
Option 2 is much more complex and sophisticated. Thus it is a backup solution, if the ATPG
tool struggles with the constraining for Option 1.

3.4. Control Infrastructure

Efficient implementation of the functional path RO is one factor; the second factor is ensuring
an adequate control infrastructure. The control infrastructure is responsible for enabling
the functional path ROs and forwarding the oscillation frequency to a general purpose
input/output (GPIO) pad or counter structure. Furthermore, the control infrastructure should
be scalable and must handle all implementation options.

There are three options for implementing the functional path RO on the design. Option 0
needs a distinct enable and observe signal (see Section 3.1). Option 1 and Option 2 are
the self-enabling approaches that reduce the routing effort but need ATPG constraints (see
Section 3.3.1), or the unlock gate (see Section 3.3.2). The properties of each option with its
advantages and disadvantages are stated in Table 3.1.

Thus, all options have advantages for different use cases, so the control infrastructure
should be suitable for all three options. Finally, the functional path RO oscillation frequency
is the desired output independent of how the functional path ROs are implemented.

In order to demonstrate the control infrastructure with its functionality, first, a simplistic
solution is presented that allows control of 8 functional path ROs implemented in Option 0.
Such control infrastructure is shown in Figure 3.11.

The control infrastructure in Figure 3.11 consists of a scan-controllable register with three
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Table 3.1.: Properties of Option 0, Option 1, and Option 2.

Traditional enable Self-enable

Option 0 Option 1 Option 2

suitable path set P, P̂ P̃ P, P̂

RO-MUX 7 3 3

local enable signal control infrastructure Launch FF Nearby FFs
general enable signal 7 control infrastructure control infrastructure

observe signal control infrastructure XOR- Tree XOR- Tree

Pro easy to implement reduced routing effort high flexibility
Cons high routing effort ATPG constraints high complexity
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Figure 3.11.: Basic control infrastructure for the functional path ROs with 8 ports.

scan FFs. The scan FFs are connected in series and are part of a scan chain. Therefore, they
can be controlled via the ATPG tool. The three scan FFs are generating a 3-bit binary coding.
Subsequently, the 3-bit binary code of the scan FFs is translated into a one-hot-encoded
selection bus. Thus, the 3-bit binary signal is converted to an 8-one-hot coded selection bus.
The one-hot-encoded selection bus is responsible for enabling the respective MUX of the eight
implemented functional path ROs. The same one-hot-encoded selection bus also maintains
the control infrastructure’s internal MUX, compressing the observe signal with the oscillation
frequency from the selected functional path RO. The selected observe signal is then divided by
a static internal divider stage and forwarded to the GPIO pin. The divider stage is necessary
to divide the oscillation signal to a suitable frequency in which the GPIO can process it.

The third functional path RO is enabled in Figure 3.11. For this, the three scan FFs (FF 1,
FF 2, FF 3) are constrained with the values 0, 1, 0. Thus the third functional path RO is
activated due to the one-hot-encoding. The active ports are colored green in Figure 3.11.
The constraining of the scan FF is accomplished in the path delay pattern generation for
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the respective functional path RO. Thus, the control infrastructure’s information on which
functional path RO is active and maintained is contained in the respective scan pattern.

However, the presented example can facilitate only eight functional path ROs of Option 0.
Therefore a more generalized solution is developed. In order to combine these three options,
a hybrid concept is introduced. This hybrid concept is a control infrastructure that can handle
all options, the traditional implementation (Option 0) as well as the self-enabling approaches
(Option 1 and Option 2). The hybrid control infrastructure is shown in Figure 3.12.
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Figure 3.12.: The control infrastructure for the functional path ROs. Adapted from [49]
c© IEEE 2023.

The hybrid control infrastructure consists of a scan controllable register with k scan FFs and
a one-hot encoded selection bus. This results in 2k one-hot encoded ports. Such ports control
the enable signals for the functional path ROs, in particular for Option 0. In total 2k − 1
enable and observe pins are available to be used for the functional path ROs implemented in
Option 0. The general enable signal for the functional path ROs in Option 1 and Option 2
is generated on the last pin. Moreover, on the respective last observe pin, the root of the
XOR-tree is connected.

Such a hybrid solution of the control unit is a scalable and efficient methodology to combine
the implementation of Options 0, 1 and 2. If only Option 1 (or 2) is needed, k is set to 1, and
the general enable signal and the XOR-tree are connected. An essential advantage is that the
infrastructure is controllable with scan pattern, which means all settings are integrated into
the scan pattern itself, which is very efficient in terms of test time.

The substantial advantage of the scan-controlled infrastructure is that the scan pattern that
sensitizes one particular functional path RO also contains the information for the control
infrastructure. There is no need for additional settings of test structures or a specific test
mode; all that is needed is managed within a scan pattern.
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3.5. Implementation Flow

The concept and technique of functional path ROs have been described in the preceding
sections; this section focuses on implementing such structures on silicon in the industrial
design flow.

The implementation of the functional path ROs in the design is done in two stages. First,
the control infrastructure is implemented, and in the second stage, the functional path ROs
are implemented. The control infrastructure is implemented in the register-transfer level (RTL)
description in the early design phase. The scan-controlled FFs in the control infrastructure
are part of the scan chains. Inserting them later would drastically affect the overall scan
environment, which should be avoided. The enable and observe ports remain open and are
not connected. The wiring of these ports will be done later.

The general requirements for the MCU to be developed are also defined in the early design
phase. This means it is known which area, performance, and time specifications the MCU
should have, and the control infrastructure can be adapted accordingly. The hybrid solution of
the control infrastructure allows, for example, the use of a certain number of functional paths
RO in Option 0 - this is predefined by the number of enable/observe ports. At the same time,
the self-enabling approach allows the implementation of an additional, scalable number of
functional path ROs in Option 1 or 2. Therefore the final number of implementable functional
path ROs is very flexible and independent of the defined size of the control infrastructure.

Example: The control infrastructure consists of 5 scan FFs (32 one-hot encoded ports).
Thus, 31 functional path ROs can be implemented in Option 0, and port number 32 is for the
general enable signal for Option 1 or 2. This allows any scalable number of functional path
ROs to be implemented in Option 1/2.

After the control infrastructure is described in RTL, the industrial design flow of an MCU
continues until a late design phase - here, the second stage of the implementation starts.

The second stage is the implementation of the functional path ROs via an engineering
change order (ECO). Such implementation flow is shown in Figure 3.13.

The ECO implementation process starts in a late design phase after synthesis and place-and-
route have been performed. At this stage, the paths of the design do not change considerably,
which is an essential prerequisite for a smooth implementation process.

A static timing analysis (STA) tool analyzes the netlist and reports functional paths from
the design. Such STA report contains all physical design information (launch FF, capture FF,
all gates, coordinates of all gates, etc.) of the paths with the respective timing information.

The STA path report with all functional paths from the design is then pre-filtered and
pre-processed. In the pre-filtering process, some functional paths that are unsuitable for the
RO implementation are discarded. Such discarded paths are, for example, false paths. These
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Figure 3.13.: Implementation flow of functional path RO. Adapted from [49] c© IEEE 2023.
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are paths that are not valid in functional mode but are included in the STA report. Other
discarded functional paths have, for example, a short delay time. That would lead to a high
oscillation frequency when implemented as RO. The measurement test setup can accurately
measure only a specific frequency window of the oscillation frequency. Thus, all paths of
which RO frequencies are outside the expected measurement window are discarded.

After that, the pre-filtered STA report is pre-processed. The path report is parsed and
key properties of the paths are extracted, called path characteristics. For example, path
characteristics from a path report with physical design data contain physical path length,
cumulative cell driver strength, cell count, and other characteristics that are primarily used in
the selection of the functional paths as ROs in the later implementation process.

The remaining functional paths after pre-filtering are passed to a commercial ATPG tool
which is in path delay mode. The ATPG tool attempts to sensitize each functional path with
a robust path delay pattern. Only a subset of the initially passed path list can be robustly
sensitized. These functional paths then constitute the set P.

The following step is the self-enabling check, which checks the possible implementation of
the functional paths in P. Paths that can be implemented with Option 1 are in the subset P̃,
and paths that can be implemented with Option 0 or Option 2 are in P̂.

However, the self-enabling check can be skipped if Option 0 (or Option 2) is the desired im-
plementation method (dotted line in Figure 3.13). In this case, all paths in P are automatically
assigned to the set P̂.

Afterwards the selection process starts. The path selection process (see Section 4) works
independently of the underlying set - whether P̃ or P̂. Finally, the selected functional paths
and the options (Option 0, 1, or 2) used for the implementation are then provided to the
physical implementation.

An ECO accomplishes the physical implementation, and an incremental compile run creates
the functional path ROs in the netlist. The ECO script needs the start and end points of the
path to create the feedback loop and the MUX or RO-MUX placement and, the option for
implementation. For the implementation in Option 0 (or Option 2), the ports to be used in
the control infrastructure for the observe and enable signal are needed. For implementation
in Option 1, the RO-MUX is placed and connected, and the XOR-tree is built. Option 2 also
requires the information for the unlock gate and its wiring. During the implementation of the
functional path ROs all design guidelines within the EDA tool are considered; for example,
additional signal buffers are placed on long routing lines to ensure a certain slew rate of the
signals.

The entire information is then included in the ECO command script and the incremental
compile run is executed. As a result, the netlist is modified accordingly and the selected
functional path ROs are implemented in the design.
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All ECO commands can be scripted in a tool command language (TCL) sequence to
automate the implementation process. Thanks to this implementation process, the functional
path ROs are placed in the industrial design environment with a push button solution.
However, before the tape-out of the MCU is launched, the implemented ROs must be verified
for their function and the correctness of the implementation, which is explained in Section 5.

Before coming to that, the results of this chapter are shown in the following.

3.6. Results

In order to evaluate the presented methodology of functional path ROs, the functional path
ROs are implemented for this purpose in the context of the development of a new generation
automotive MCU.

This section is divided into four subsections. The first subsection provides some back-
ground information on the automotive MCU test chip. Subsection 3.6.2 presents the general
advantages of functional path ROs in terms of area and leakage. The following subsection
provides a proof of concept for the advanced implementation concepts. The routing benefits
of the self-enabling approach are presented in Subsection 3.6.4.

3.6.1. The Automotive Microcontroller Test Chip

The functional path ROs are implemented on a large automotive MCU in advanced CMOS
technology. In order to cope with the complexity of such a large MCU, the MCU is divided
into several modules with a hierarchical scan infrastructure [105]. Three dedicated modules
were selected as test modules to implement the functional path RO. All modules of the
MCU have their own scan infrastructure. The three selected modules were chosen to be
fundamentally different in their size as well as their functionalities. Some basic information
about the three selected modules can be seen in Table 3.2.

Table 3.2.: Basic information of the MCU modules.

Module Scan FFs Scan chains Area

A 414 803 5247 Large
B 204 565 3072 Medium
C 135 165 1452 Small

The three modules are arranged in descending order according to their area and the size
of the scan environment. Module A is the most extensive module, and Module C is the
smallest. Module A and Module C contain combinatorial logic and have integrated CPUs,
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while Module B has much integrated memory. The shape of the different modules also varies
from oblong rectangular to square, which impacts the routing.

The functional path RO approach is benchmarked against traditional RO structures such as
the SMON module (see Section 1.2.1).

3.6.2. Implementation Benefits

In order to demonstrate the implementation of functional path ROs, two functional paths
were selected from the design and implemented as functional path ROs. In this section,
Option 0 is used to illustrate the basic implementation concept of functional path ROs. One
path (Path a) is a long path with a relatively large number of cells. The cumulative driver
strength is also high. In contrast, Path b is very short, has a small number of cells, and the
driver strength is approximately one-tenth compared with Path a. The path characteristics
are shown in Table 3.3.

Table 3.3.: Path characteristics of Path a and Path b.

Demo Path Cell Count
Cumulative

Driver
Strength

Path
Length

[µm]

a 27 2014 1459
b 12 220 90

The two paths were obtained from the set P̂ after pre-filtering and self-enabling check, as
explained in Section 3.5. The implementation of paths a and b can be seen on the floor plan
in Figure 3.14 and Figure 3.15.

The functional paths are marked in yellow in the floor plans. The MUX is located at the
start point of each path, and the feedback loop (red) connects the end point of the path to the
start point. The enable signal (light red) is routed from the control infrastructure to the MUX
at the start point. The observation signal (red) is also connected to the feedback loop at an
arbitrary location along the feedback loop and forwarded to the control infrastructure.

As can be seen in Figure 3.15, the routing from the functional path to the control in-
frastructure is one major drawback of the Option 0 implementation. Some signal buffers
must be placed for such long routing lines, especially for the enable and observe signals.
The signals buffers can cause a significant amount of cell contribution in modern CMOS
technologies [106].

The timing impact on the functional path due to MUX insertion ranges from 2 % to 3 %
delay increase for all considered functional path ROs. By selecting non-critical timing paths
for RO integration of the functional path, the increased delay has no actual impact. Pre-
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(a) Option 0 (b) Option 1

Figure 3.14.: Implementation on layout based on Path a after ECO. Adapted from [40] c© IEEE
2021.

(a) Option 0 (b) Option 1

Figure 3.15.: Implementation on layout based on Path b after ECO. Adapted from [40] c© IEEE
2021.

filtering in the implementation flow ensures that only those functional paths pass through
the flow for implementation that are within a particular timing window to avoid generating
timing violations by the later MUX insertion. The insertion of buffers on the feedback line
also influences the RO’s absolute oscillation frequency. However, only the relative frequencies
are needed to correlate the RO frequencies with the device performance.

The main advantage of the functional path ROs will be evident when comparing the cell
area saved with functional path RO to conventional on-chip RO structures e.g. the SMON
module (see Section 1.2.1).

The experiment was executed on Module C with a chip area of approximately 1.5 mm2 and
a leakage power consumption of 175 mW.

The impact of the physical implementation via the ECO on the chip is minimal. An addi-
tional MUX has an area impact of 1.2e−6 % in relation to the chip area under consideration.

The area impact of one buffer is 0.37e−6 %. The number of buffers to be placed depends on
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the length of the feedback loop and the connection line to the observe signal. The longer the
signal line, the more buffers must be used to ensure the corresponding transition slew rates.
Path a has a long feedback loop that requires some buffers for transition edge slew rates,
whereas Path b is compact and needs only one buffer for the decoupling from the functional
path. The EDA tool by itself will care for sufficient slew rates and the buffering after ECO
according to the design rules.

The control infrastructure is scalable to the desired number of functional path ROs to be
needed. The estimated area overhead and leakage increase for the considered chip area is
shown in Table 3.4.

Table 3.4.: Estimated area overhead and leakage increase of the control infrastructure.

No of ROs Scan Bits Area [%] Leakage [%]

8 3 1.0e−5 0.18e−5
32 5 3.4e−5 0.63e−5
128 7 13.3e−5 2.4e−5
512 9 52.0e−5 9.5e−5

Assume there are 128 ROs to be implemented. This number is either implemented as
functional path ROs or conventional ROs via an SMON module. Thus the SMON module is
tailored to 128 contained SMONs, and the percentage amount of required area is calculated.
The insertion effort of the MUX for the functional path ROs is also estimated. In addition,
four buffers per functional path RO are inserted by default. This is a practical number based
on trial implementation runs on the design under investigation; some ROs need only one,
some ROs need more buffering, and the central control unit is also considered. The estimated
area and leakage consumption in Module C is shown in Table 3.5.

Table 3.5.: Area overhead and leakage increase of 128 functional path ROs in comparison to
an equal sized SMON module.

RO-Type Area [%] Leakage [%]

Functional Path ROs 0.091 0.39e−3
SMON module 2.4 10.1e−3

Savings 96.2 96.1

Thus, over 96 % of the area and leakage can be saved by implementing functional path ROs
instead of using traditional approaches. Most of this area and leakage advantage is due to the
fact that all the functional cells of the RO are already present in the design. Only the control
infrastructure needs to be added.
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3.6.3. Proof of concept of the Advanced Implementation Concepts

Concerning the advanced implementation methods, a proof of concept is being conducted to
investigate whether and how many paths can be used for the methods from Section 3.2.

3.6.3.1. Path Analysis Approach

The path analysis approach aims to find functional paths that have, by default, benefits if
implemented as functional path ROs. For that, the design is checked to see if any functional
paths can be allocated in four types (see Section 3.2.1).

An STA path report is extracted from each of the three modules of the MCU design and
examined for the included path types, the results of which are shown in Table 3.6.

Table 3.6.: Path analysis analysing the structure of the functional paths.

Module A Module B Module C

Pre-filtered Paths from STA report 27 374 7594 12 687

Type 1 - Self-contained paths 4 13 13
Type 2 - Parallel paths 0 0 0
Type 3 - same launch point 26 774 7425 12 553
Type 4 - same capture point 0 0 0
Independent paths 600 169 134
Unique launch FFs 1863 575 518
Unique capture FFs 27 374 7594 12 687

After ATPG path sensitization

All sensitizable paths (P) 2096 699 3860

Type 1 - Self-contained paths (PType1) 1 0 0
Type 2 - Parallel paths (PType2) 0 0 0
Type 3 - same launch point (PType3) 1970 619 3789
Type 4 - same capture point (PType4) 0 0 0
Independent paths 125 80 71
Unique launch FFs 306 220 193
Unique capture FFs 2096 699 3860

For example, if Module A is considered, most functional paths use multibit FFs, as can
be seen from the number of unique starts FFs of 1863. Thus, a substantial proportion of
paths start with the same launch FFs. However, all paths (27 374) use unique capture FFs. On
the other hand, 600 paths are completely independent, which means those paths that use
neither any shared start FFs nor the capture FFs. The same magnitudes of the number of
paths related to the analyzed path types are also observed after path sensitization with the
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ATPG tool. In the end, 1970 functional path ROs are of Type 3 and can be implemented as
functional path ROs. If the three modules are compared, Type 3 is the only possibility to use
the path analysis. Finally, such an analysis is highly dependent on the actual design.

3.6.3.2. Proof of Concept - Natural Loops

As explained in Section 3.2.2, the natural loops are the second approach of advanced imple-
mentation concepts. Also, a proof of concept is conducted on the three modules for such an
approach.

The same pre-filtered STA report is used as in the section before, and the ATPG tool is used
to sensitize the functional path ROs with a path delay pattern. One path delay pattern can
sensitize multiple functional paths; the results are shown in Table 3.7.

Table 3.7.: ATPG results reveal the number of patterns necessary for path sensitization.

Module Input Paths Sensitizable Paths Patterns

A 27 374 2096 529
B 7594 699 178
C 12 687 3860 1012

The input paths are the paths that are fed to the ATPG tool. The tool can only sensitize
a subset of the paths. The number of sensitizable paths varies from below 10 % to 30 % in
Module C. The number of generated patterns also fluctuates among the modules. Such
numbers depend on the design as well as the scan environment.

Consequently, there are enough patterns that sensitize more than one path. Module A is
chosen for a detailed consideration. Figure 3.16 shows how many paths are sensitized with
one pattern in the three modules.

Accordingly, over 470 patterns can sensitize at least two paths. The same behavior can be
seen in Module B and Module C.
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Figure 3.16.: Sensitizable paths per pattern for three modules.
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In Figure 3.17a, two paths that are promising candidates for the natural loop approach
are shown on the design in Module A. The paths run in opposite directions and can be
implemented as a natural loop functional path RO. Figure 3.17b reveals how many paths are
sensitizable with a particular pattern in Module B and how the paths are spatially distributed
over the whole module.
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Figure 3.17.: Candidates for natural loops.

The focus of this section was to provide a proof of concept; the actual savings and routing
are strongly dependent on where and which functional paths are chosen. Therefore, no
attempt was made to quantify the methodology with exact numbers, as these are limited to
the present design and cannot be generalized.

The following section presents the results of the self-enabling approach.

3.6.4. Routing Benefits of the Self-enabling Approach

The advantage in terms of routing reduction is investigated among the three modules in
this section. For that, the implementation in Option 0 (basic concept) and Option 1 (direct
self-enabling) are compared. In addition, an estimation is given for a feasibility study for
implementing Option 2.
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3.6.4.1. Self-enabling Option 1

First, the self-enabling check is applied to determine how many paths are suitable for
implementation in Option 1 - which requires ATPG constraints. Second, routing reduction
estimation is performed to compare the implementations of Options 0 and 1.

An STA report is requested in a late design stage from each of the three modules. Then, the
implementation flow starts and determines how many paths can be implemented in Option 0
and Option 1. The results are shown in Table 3.8.

Table 3.8.: Number of paths suitable for functional path RO implementation.

Set
Module A Module B Module C

Count Percent Count Percent Count Percent

STA Input 27 374 100 % 7594 100 % 12 687 100 %
P 2096 7.66 % 699 9.20 % 3850 30.35 %
P̃ 1362 4.98 % 698 9.19 % 3284 25.88 %
P̂ 734 2.68 % 1 0.01 % 566 4.46 %

The first row indicates the number of functional paths from the STA. After the pre-filtering
and the ATPG tool run in path delay mode, a subset of the functional paths can be sensitized.
In the modules A and B, the ATPG tool can sensitize less than 10 %, while in Module C,
the ATPG tool can sensitize over 30 %. However, for large automotive MCUs, there are still
enough paths left for RO implementation. The last two lines in Table 3.8 show the subset of
functional paths that are suitable for the self-enabling approach (P̃) and those that are only
suitable for implementation in Option 0 (P̂ ). It can be observed that a large number of the
paths in P are also suitable for the self-enabling approach. This shows that Option 1 is a
feasible implementation approach for large MCUs.

The number of paths in the subset for Option 1 basically depends on how the ATPG tool
can handle the constraints; this, in turn, depends strongly on the DfT scan environment, the
chip size, and the scan compression used. For the automotive MCU under investigation,
Option 1 is the means of choice for routing critical modules.

The reduction in routing is then estimated to quantify the benefits between Option 0 and
Option 1 in terms of routing. For estimating the routing effort, the Manhattan Distance is
used, which is the sum of the absolute distance of the Cartesian coordinates. This distance is
assumed to correspond to the worst-case scenario for routing.

There are eight paths selected from each of the three modules. The functional paths are
chosen from the subsets P̃ and implemented in Option 0 and Option 1. All paths are selected
to be spatially distributed over each module. The schematic floorplans of the implementation
in Option 0 are shown in Figure 3.18. The same functional paths are implemented in Option 1
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in Figure 3.19

(a) Module A (b) Module B (c) Module C

Figure 3.18.: Routing visualization of 8 sample paths implemented in Option 0.

In Figure 3.18 the enable and observe signals of the functional path ROs are routed to the
respective control infrastructure. Each of the signals is routed individually. In contrast, the
self-enabling approach Option 1 is used in Figure 3.19. As a result, the control signal becomes
obsolete. In order to provide a fair comparison of the routing overhead, the XOR tree is also
summarized at the control infrastructure. In this example, routing can be reduced by close to
70 % in Module A and C and over 77 % in Module B.

Routing reduction was simulated for all three modules with a larger number of functional
path ROs in Option 1 compared with Option 0. The paths were chosen to ensure spatially
distribution on the chip. The results are shown in Table 3.9.

Table 3.9.: Routing reduction of the RO implementation for Option 1.

Impl.
ROs

Module A
Reduction

[%]

Module B
Reduction

[%]

Module C
Reduction

[%]

8 69.67 77.55 69.25
50 77.52 85.98 79.39

100 78.20 87.43 80.47
150 79.49 88.19 79.46

The routing reduction is more than 70 % across modules, in some cases even up to 80 %.
Module B achieves the best results. The chip shape has a non-negligible influence in the
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(a) Module A (b) Module B (c) Module C

Figure 3.19.: Routing visualization of 8 sample paths implemented in Option 1.

analysis. Particularly in Module C, which had a stretched rectangular shape, the routing
reduction declines again (1 percent point) in the case of 150 implemented paths. It is assumed
that modern EDA tools can further reduce the routing overhead by optimizing the XOR tree
for the observe signal.

The general enable signal was neglected in the previous routing simulation in Table 3.9.
In order to estimate the routing overhead of the general enable signal, the dimensions of
respective modules were considered. The general enable signal must expand over the entire
module if all ROs are distributed over the entire module. This is simulated by calculating
the diagonal of each module and adding three factors (1x, 1.5x, 2x) to the original routing
reduction. For each factor, a separate calculation is done to see the impact of the general
enable signal. The resulting overall routing reduction and the deviation from the previous
estimate are shown in Table 3.10.

For a few implemented functional paths ROs (for example, 8 ROs), the general enable
signal has a non-negligible influence. This is true for all three factors, especially for the
twofold factor of the diagonal. However, if a more significant number of functional path
ROs are implemented, the influence becomes negligible and is around one percent for 150
implemented ROs. Thus, the general enable signal is negligible for a high number of ROs,
indicating the method’s scalability.

As a result of the routing reduction due to the self-enabling approach, the cell utilization
can be increased, thus reducing the overall area of the chip. In addition, a large part of the
signal buffers required for long routing distances can be eliminated, saving area and leakage.
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Table 3.10.: Routing reduction of the RO implementation for Option 1 including the general
enable signal.

Impl. ROs
1x diagonal 1.5x diagonal 2x diagonal

Mod. A Mod. B Mod. C Mod. A Mod. B Mod. C Mod. A Mod. B Mod. C

8 52.13 67.63 51.41 43.54 62.74 42.45 34.95 57.84 33.48
50 74.83 84.14 76.93 73.49 83.22 75.70 72.15 82.30 74.47

100 76.95 86.48 79.36 76.32 86.01 78.80 75.70 85.54 78.25
150 78.70 87.57 78.78 78.30 87.26 78.43 77.91 86.95 78.09

deviation deviation deviation

8 17.18 9.79 17.92 25.77 14.69 26.88 34.36 19.59 35.85
50 2.69 1.84 2.46 4.03 2.76 3.69 5.37 3.68 4.92

100 1.25 0.95 1.11 1.87 1.42 1.67 2.50 1.90 2.22
150 0.79 0.62 0.69 1.19 0.93 1.03 1.59 1.24 1.38

Nevertheless, quantifiable numbers are difficult to determine, as this depends heavily on the
design.

This section has revealed how powerful the self-enabling approach is using Option 1. Due
to the high number of paths that can be implemented in Option 1, the implementation of
Option 2 is obsolete for this large MCU. However, a short investigation is done for Option 2.

3.6.4.2. Self-enabling Option 2

The previous section has shown that P̃ contains relatively few paths (only one in Module B)
compared with P̂ (see Table 3.8). Therefore this experiment is conducted to subset P. If
Option 2 is implemented, the unlock gate is placed and connected to nearby scan FFs. The
design is analyzed to clarify how many scan FFs are nearby the launch point of the functional
path. The amount of functional paths with a scan FF closer to 10µm is shown in Table 3.11.

Table 3.11.: Paths with nearby FFs per module.

Module A Module B Module C

P 2096 699 3860
≥ 10µm 1396 684 3458
< 10µm 700 15 402

10µm w.r.t. diag. 0.22 0.28 0.40

Exactly 700 functional paths in Module A have FFs closer than 10µm from the respective
launch point. However, in Module B there are only 15 paths that have very close scan FFs
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around them. The 10µm is about 0.2 % - 0.4 % percent of the module diameter. Thus, it shows
up also here that already, with three considered modules, no generally valid statement can
be made concerning the general advantage of an option concerning another implementation
option. Option 2 is feasible since adjacent FFs can be found, but as far as the actual routing
savings are concerned, no statement can be made. As a general rule for the three modules of
the large automotive MCU, Option 1 is the preferred solution, and Option 0 is suggested as a
backup.
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4. Path Selection Methodology

4.1. Selection Flow

This chapter deals with the selection of functional paths and introduces a methodology that
uses physical design data in order to determine functional paths for performance screening.

An essential step in the implementation of the functional path RO is the selection of
the appropriate paths that contribute to the performance prediction. This path selection is
independent of the implementation option (Option 0, 1, or 2), since only the functional path
itself is important. Path selection aims to find paths that represent the performance of the
entire chip by trying to select a diverse set of paths on the MCU. The physical-aware path
selection approach is suitable for any implementation concept and is revealed in Figure 4.1.
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Figure 4.1.: Physical-aware functional path selection flow.

Path selection is independent of whether it is performed on the set P (for Option 0), P̃ (for
Option 1) or set P̂ (for Option 2). Therefore, assume that the set P is a set of m sensitizable
functional paths P = {p1, . . . , pm} that could be a set from P, P̃, or P̂. For each of the
functional paths in P some characteristics chi are extracted during the preprocessing. The
characteristics can be described by an l-dimensional vector chi = (chi1, chi2, . . . , chil)

ᵀ where
chij denotes the value of the j-th characteristic of the path pi.

Characteristics extracted from a physical design data path report include, for example, cell
count (chi1), accumulated cell driver strength (chi2), physical path length (chi3), and other
characteristics (chi4, . . . , chil). Characteristics are defined using the designers’ knowledge
and previously published research [36, 37, 38, 88, 17].
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The cell count (characteristic chi1) is the number of individual cells within the path. The cell
count is calculated as follows

chi1 =
n

∑
k=1

1gk∈pi (4.1)

where gk represents the logic cell of the the design.
This characteristic is beneficial to cope with process variations. The process variation,

in general, can be divided into die-to-die (D2D) and within-die (WID) variations (see Sec-
tion 2.3.1). Whereas the D2D variation affects all die transistors, identically, the WID variation
affects each transistor individually. Paths with low cell count are more sensitive to WID varia-
tion, whereas paths with high cell count balance the WID variation and are more sensitive
to D2D variation [88]. Thus, both cases are needed to cope with the process variation in
detail. In modern CMOS technologies, the WID becomes more prominent than in mature
technologies [17].

The accumulated cell driver strength chi2 is the sum of the strengths of each cell on the path,
and can be expressed as

chi2 =
n

∑
k=1

Pgk∈pi . (4.2)

Each logic cell has a certain driver strength Pgk . The driver strength depends mainly on the
load to be driven by the cell, i.e. how many other logic cells are being supplied by the output
of the driving cell, which is also called fan-out. The higher the driver strength is, the more
fan-out the cell has.

Considering multiple driver strengths is advantageous to monitor nonlinearities within
the cell characteristics. Only some operating conditions are characterized in the cell char-
acterization of the standard cell library. If an operating condition is needed between the
characterized conditions, the cell behavior is interpolated based on the available data. Thus,
potential nonlinearities are not captured. Considering paths with different driver strengths
can thus reveal behaviors that are not evident in the characterization [37].

The physical path length chi3 is the sum of the Euclidean distance from cell to cell within the
path. The STA report contains all the coordinates of the cells along the path; therefore, the
distance can be calculated as follows

chi3 =
n

∑
k=1

dgk∈pi . (4.3)

The dgk represents the Euclidean distance between two cells of the path. However, the
calculated Euclidean distance does not exactly match the length of the routing lines on the
chip. Nevertheless, this approach is well suited for path selection, as a mixture of short,

62



4. Path Selection Methodology

medium, and long paths should be covered. In addition, the cell coordinates and path length
can be used to cover a reasonable spatially distribution of observed paths on the chip and to
detect process variations.

The resulting matrix looks as follows
p1 =̂ ch11 ch12 . . . ch1l

p2 =̂ ch21 ch22 . . . ch2l
... =̂

...
...

. . .
...

pm =̂ chm1 chm2 . . . chml .
In order to reduce the complexity and merge similar paths, the functional paths are

clustered into so-called buckets according to the chosen path characteristics. Each functional
path is assigned to a particular bucket. In total, there are N buckets B = {B1, . . . , BN}.

There are several algorithms for this unsupervised clustering problem. The K-means
algorithm is used, which is a distance-based unsupervised methodology [93]. The algorithm
aims to group paths with similar path characteristics. This is a multivariant optimization
problem.

The number of buckets is determined with the elbow criterion [94]. The K-means algorithm
starts with only one bucket, and the within-cluster-sum-of-squares (WCSS) is calculated as
a measure of within-cluster variance. In the case of N=1, the WCSS is the highest. The
algorithm run is repeated by increasing the number of buckets, and the WCSS starts to
decrease. The relation between the WCSS and the number of buckets results in a graph with
an elbow shape. From a certain number of buckets, the WCSS drop is no longer as steep as
before - such a point is called the elbow point. The number of buckets at this elbow point is
the K-means clustering best choice.

Other cluster algorithms can also work fine, e.g., the density-based DBSCAN [95]; that
depends mainly on the dataset and the algorithm’s settings. For the distance-based clus-
tering (e.g. K-means), it is essential to standardize the characteristics set previous to the
clustering [107].

Each bucket contains paths that appear similar according to the specified characteristics.
The main target of the cluster approach is not to have sharp disjunct buckets, which would
be impossible due to the high correlation among the characteristics. The intention is instead
to cluster structurally different paths; therefore, the specific choice of a particular algorithm
(distance-based, density-based, or hierarchical-based) to perform the clustering has only a
minor influence on the results.

The final selection of paths to be implemented as ROs in the design is made after clustering.
There are three different ways of handling this.

One way is to randomly pick a path from each of the N buckets and select a final subset
for the implementation. Such an approach is straightforward, and a subset of paths has, by
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default, a diverse mixture of path types because the paths are out of the different buckets.
The second way of selecting the final subset is a more sophisticated approach that involves

the coordinates of the paths. This ensures that the ROs are spatially distributed, in addition
to being from different buckets. For example, some paths from the same bucket are picked,
but the paths are spatially distributed across the chip.

The third way takes a step back to clustering. The results of the elbow method are ignored,
and the number of buckets is chosen according to how many functional path ROs are to be
implemented. If it is known in advance that 32 ROs are to be implemented, for example, the
number of buckets for clustering is also set to 32.

The final selection approach depends on the buckets’ granularity and the number of
functional path ROs to be implemented. Finally, the selected paths are then handed to the
ECO flow, and the functional path ROs are implemented on the netlist.

4.2. Results

The path selection is executed on each of the three modules. The used set of the functional
paths to demonstrate the path selection and clustering is P̃.

The characteristics are already extracted during the pre-processing. There are 10 charac-
teristics extracted from each path. Thus, the matrix of Module A has the dimensionality of
10× 1362, because the set contains 1362 paths (see Table 3.8).

On each of the three modules, the K-means cluster algorithm is started to group the paths in
individual buckets. In order to determine the suitable number of buckets, the elbow method
is used. The results are shown in Figure 4.2.
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Figure 4.2.: Elbow plots of the three modules.

The elbow diagrams show how the WCSS behaves as the number of buckets increases. The
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sweet spot is marked in the diagrams with the dashed line, as the recommended number of
buckets for clustering should be chosen. Coincidentally, in all three modules, the number
derived from the graph is 8. Thus, N is set to 8, and K-means clustering is performed on
every module.

The functional paths of each module are grouped into 8 buckets. The number of functional
paths per bucket varies a lot, as shown in Table 4.1.

Table 4.1.: Number of paths per bucket after the K-means clustering.

Bucket
Module A Module B Module C

Count % Count % Count %

0 386 28.3 186 26.7 949 29.0
1 179 13.1 148 21.2 615 18.8
2 160 11.7 95 13.6 549 16.7
3 153 11.2 81 11.6 546 16.6
4 149 10.9 73 10.3 184 5.6
5 117 8.6 46 6.6 182 5.5
6 111 8.1 35 5.0 160 4.8
7 107 7.9 34 4.9 99 3.0

total 1362 100 698 100 3284 100

The three modules’ largest buckets contain almost 30 % of the respective functional paths.
In contrast, some buckets contain just 3 % of the respective paths, for example, in Module C.

In order to present the contribution of the characteristics, (chi1), (chi2), and (chi3) are plotted
for the different buckets in Module B. The plots are shown in Figure 4.3.
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Figure 4.3.: Violin plots presenting the distribution of paths on Module B according to the
defined path characteristics.
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The violin diagrams show that the individual buckets differ. On the X-axis, the 8 buckets
are plotted. In Figure 4.3a, the number of cells in the different 8 buckets is plotted on the
Y-axis, and the length of the path is plotted in Figure 4.3b. In Figure 4.3c the accumulated
driver strength is plotted on the Y-axis. Looking at buckets 2 and 3, both have nearly identical
cell counts. Bucket 2, however, contains very short paths, while bucket 3 contains long paths
also with respect to the driver strength; the two buckets differ significantly. Such differences
can be observed for all characteristics.

From each of the buckets, the final paths can be selected and implemented as ROs via the
ECO. There are three selection methods proposed in the previous section.

4.2.1. The final Selection for the Test Chip

The presented selection flow is part of the overall implementation flow, as shown in Figure 3.13.
Up to 8 functional path ROs shall be implemented on the three Modules. Option 0 is chosen
as the implementation option. The implementation flow is started, and the path selection is
executed. The final selected - and implemented - functional paths are shown in Table 4.2.

The implemented functional path ROs show a large diversity regarding the defined char-
acteristics. The 22 functional path ROs are implemented in the design, and the MCU is
fabricated.

The entire process is fully automated and has a low turn-around time. Less than 24 h
elapse from the generation of STA reports to the incremental compilation run. Thus, a smooth
design process can be guaranteed, and the tape-out is not delayed.
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Table 4.2.: Final selected functional path to be implemented as an RO.

RO Module Bucket Cell Count
Driver

Strength
Path Length

[µm]

0 A A-3 16 560 1145
1 A A-7 9 315 478
2 A A-5 26 1322 1383
3 A A-3 20 898 900
4 A A-6 12 527 1007
5 A A-0 35 1759 844
6 A A-1 19 627 467
7 A A-4 30 989 345

8 B B-3 20 2030 2726
9 B B-0 19 1089 905
10 B B-2 26 2970 3847
11 B B-3 21 2320 3749
12 B B-7 9 140 142
13 B B-1 20 1200 846
14 B B-6 20 510 565

15 C C-3 19 468 301
16 C C-2 9 470 1280
17 C C-0 11 307 475
18 C C-5 27 1965 1251
19 C C-6 10 370 348
20 C C-7 16 318 147
21 C C-1 31 2620 1062
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5. PRE-Silicon Verification and Validation

This section presents the last steps in the Pre-Silicon part. The functional path ROs are
selected and implemented via an ECO. Figure 5.1 presents an overview of this section and at
which point in time the described methodology fits in the MCU development flow.
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Figure 5.1.: Overview of the Section Pre-Silicon verification and validation.

5.1. PRE-Silicon Verification of the Functional Path ROs

The flow described below is one way of verifying the functional paths. Still, it is also possible
to create a different verification flow compatible with the given design flow.

The ECO is executed in an incremental compilation run and the functional path ROs have
been implemented in the design. This compilation run results in a new netlist that contains
the ECO changes. This new netlist must be verified to ensure that the compile run does
not affect the functionality of the entire MCU. In addition, it is necessary to check that the
functional path ROs are implemented and working correctly.

The Logic Equivalence Check (LEC) is used to check the functionality of the MCU. The LEC
compares the given netlist with the RTL representation of the Golden Reference, the latest RTL
design. The netlist must be logically equivalent to the Golden Reference RTL design throughout
the physical design flow. A successful LEC is essential for the incremental compilation runs
associated with ECOs performed late in the design phase [55]. A successful LEC ensures that
the implemented functional path ROs do not influence the functionality of the MCU.

Once the LEC is successful, the verification of the functional path ROs starts. The imple-
mented functional path ROs are checked by gate-level timing simulation. For such gate-level
simulation, the netlist after incremental compile run is needed, and the functional path RO
path delay patterns vpi are required for the simulation. The netlist must contain the timing
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information for the oscillation to work properly; otherwise, no oscillation occurs because the
feedback loop is a short circuit. One such netlist format is the back-annotated standard delay
format (SDF). That SDF file allows accurate timing simulation.

The test sequence of a functional path RO with the respective modified path delay pattern
is shown schematically in Figure 3.3. The gate-level simulation with the SDF file and the
functional path RO pattern follows this test sequence. In the measurement phase, the actual
oscillation frequency occurs due to the timing back-annotation of the SDF File. Thus, the
simulation has two aspects: (i) the functional behavior of the functional path ROs is verified,
and (ii) the expected oscillation frequency is simulated and stored as initial silicon limits for
production test.

5.1.1. Functional Verification

Figure 5.2 shows a section of the gate-level simulation. The end of the shift-in phase and the
start of the measurement phase are shown.

Figure 5.2.: Digital simulation snapshot at the beginning of the oscillation. Adapted from [49]
c© IEEE 2023.

At the beginning of the simulation window shown, all signals are stationary, the shift-in
phase is completed, and the functional path RO is sensitized. The upper signal shows the
enable signal that triggers the oscillation. Below that is the observe signal, which is stabilized
to allow the RO to oscillate once activated. The next signal shows the GPIO pin as measured
by the ATE. The scan enable is on a high state since the MCU is in the shift-in phase. The
clock signal is shown for the sake of completeness.

At time t1, the measurement phase begins, and oscillation is activated. The scan enable
is deactivated, and the enable signal switches the MUX instantaneously to the oscillation
mode. Thus, the observe signal follows the oscillation frequency of the functional path RO.
A divider is inserted between the observe signal and the signal from the GPIO. Thus, the
divided oscillation signal is received at the GPIO pin. The first few oscillation periods cannot
be used to determine the oscillation frequency due to the initial random state of the divider
and transient effects. At t1, the divider has an instantaneous high state, and the first pulses
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Figure 5.3.: Digital simulation sequence with 6 functional path ROs.

are absorbed until the divider’s shift register operates properly. However, such transient
effects can be masked, and the frequency at the GPIO pin is measured after a few hundred
nanoseconds. The oscillation itself is independent of any clock event.

Verifying each functional path RO by an individual simulation run is inefficient. Therefore,
the functional path RO patterns are merged into one large pattern. That large pattern is
used for the verification and in the production test. The functional path ROs are sequentially
activated and measured. A snapshot of the gate-level simulation is shown in Figure 5.3,
where six functional path ROs are sequentially activated.

The first six signals are the enable signals for the functional path ROs; below them are the
observe signals. The GPIO pin, the scan enable, and the clock signal are unique to the chip
and are therefore used for all functional path ROs.

In the simulation run, the six functional path ROs are activated sequentially. The simulation
starts with the shift-in phase to sensitize the first functional path RO. The clock signal has
high activity in the shift-in phase; thus, all scan-FFs are loaded with the respective values.
Then the oscillation starts, and the frequency is measured. At the end of the oscillation,
two small clock pulses can be seen. These clock pulses are the launch and capture at-speed
pulses from the path delay pattern. After the at-speed pulses, the shift-out phase starts.
Since the individual patterns are merged, the first pattern’s end is the start of the second
pattern. Thus after the shift-out phase, there is a smooth transition into the shift-in phase of
the second pattern. After the shift-in phase of the second pattern, the second functional path
RO oscillates and is measured. This procedure is continued until all functional path ROs are
tested. The verification is successful when all functional path ROs inserted via the ECO have
been tested and oscillated. Thus, the functional path ROs are correctly implemented, and the
design is released for tape-out.

5.1.2. Test-limit Extraction

As mentioned, the gate-level simulation has an additional benefit. The measured oscillation
frequencies of the functional path ROs within the simulation run are stored for the production
test. Thus, the stored simulation values act as the first test limits for the production.
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Figure 5.4.: Limits from the digital simulation using the worst and best case SDF.

In order to be more accurate, there is more than one SDF file. This is because the timing of
the MCU depends on the PVT conditions. There is one SDF file for each PVT condition. Thus,
each simulation run with the different SDF files gives a different result because the timing
behavior in each PVT condition is different. The worst-case PVT (PVTworst) and best-case
PVT (PVTbest) conditions are used to determine the lower f lower

pi
and upper f upper

pi test limits
for each functional path RO. The best case represents a fast MCU under the best voltage and
temperature conditions, resulting in the highest achievable oscillation frequency. Slow MCUs
under the worst voltage and temperature conditions result in a low oscillation frequency.
Two simulation runs are started with two different SDF files - the worst-case and best-case
conditions, and the oscillation frequencies are stored as lower and upper test limits; the
results are shown in Figure 5.4.

The 22 implemented functional path ROs are plotted on the X-axis, and the simulated
frequencies f upper

pi and f lower
pi

for each RO are plotted on the Y-axis. The expected frequency
range varies from 10 MHz at f lower

p10
up to 110 MHz at f upper

p20 . The lower f lower
pi

and upper f upper
pi

bounds are considered during performance measurement on silicon.

5.2. SI Bring-up Preparation

5.2.1. Changes previous to Tape-out

As described in Section 2.1, where the overall digital MCU development flow is explained,
the ECO phase is the last opportunity for changes in the design. Parallel to the functional
path RO implementation in the ECO phase, there are plenty of checks and last-minute fixes
during this phase - especially for large designs. For example, timing fixes, design rule checks,
and IR issues are fixed [54].
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In productive design flow, such ECO runs are grouped and executed together, and some
iteration ECO runs are needed if some parts of a design need special treatment. Such large
automotive MCUs are developed with a large team of engineers where everyone is responsible
for only a tiny design part or issue. Therefore, as a matter of fact, implementing the functional
path ROs as the very last step before tape-out is difficult. As a result, the design might change
at the last minute when the functional path RO implementation is already done.

In order to check the influence of implementing the functional path ROs before the tape out
of the MCU, the associated changes are reviewed. The functional path ROs are implemented
in the ECO phase, where also other ECOs are executed. Therefore, the extracted path
characteristics are compared pre- and post-tape-out. The clustering and path selection were
executed based on the path characteristics of the pre-tape-out databases. The post-tape-out
data represents the actual state of the chip, including changes made to the design in the late
ECOs.

The logical composition of the gates in the path was protected after implementation, so
everything remained the same in the basic logical composition of the path; otherwise, it might
not be possible to sensitize the path. However, it is allowed to insert buffers, make cell swaps
(concerning driver strength and transistor type), or make other optimizations that do not
change the logical behavior.

The graphical representation of 3 path characteristics is shown in Figure 5.5, and Table 5.1
shows the mean and median deviation values of overall selected paths from pre- to post-tape-
out.

Table 5.1.: Deviation of the implemented functional path ROs pre- and post-tape-out.

Cell count chi1 Path length chi2 Driver strength chi3

Mean 2.22 % 2.68 % 6.48 %
Median 0.00 % 0.18 % 4.45 %

Only a minor impact can be seen regarding cell count in Figure 5.5a and path length in
Figure 5.5b. Also, the mean and median average values indicate that there are only minor
deviations. The slightly higher mean value also indicates some dominant paths (e.g., RO 20 in
Figure 5.5a) because the mean value is more outlier sensitive than the median value. Impact
due to driver strength (Figure 5.5c) is slightly higher. Increasing driver strength indicates
that timing issues have been fixed in the ECO runs. Either buffers have been inserted with
contributions now to the driver strength of the path, or logic cells have been replaced by cells
with a higher strength that can drive higher loads.

However, complete destruction of the paths pre- and post-tape-out cannot be observed -
even for the other characteristics. The original path selection is kept after all further ECOs are
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Figure 5.5.: Path characteristic pre- and post-tape-out.

performed. A negligible deviation can also be seen in the individual buckets.

5.2.2. Simulation with Functional Patterns

A part of the MCU development flow is the IR drop analysis. Static and Dynamic IR drop
is investigated to verify the MCU’s power delivery network (PDN) and ensure uniform
distribution of VDD and VSS on the chip. A tool such as Ansys RedHawk-SC [108] is used
for such investigations and is equipped with a graphical interface that shows the switching
activities and the IR drop on the floor plan. Therefore, it would be of interest to know whether
the selected and implemented functional path ROs are located in areas of significant IR drop.
For example, Wang et al. [21] had reported an IR drop that affected the functional path RO
results of the chip. The authors reported a static IR drop of more than 10 %.

In contrast, the static IR drop of the MCU design in this work is minimal due to the
excellent connection to the power grid and the high power integrity of the package. Therefore
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the simulated static IR drop can be neglected.
However, the dynamic IR drop strongly depends on the use case and is simulated with

some use cases. Two use cases and the dynamic IR drop and toggling activity can be seen in
Figure 5.6.
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(d) Toggle rate test pattern.

Figure 5.6.: Ansys RedHawk-SC simulation on Module A including the visualization of the
implemented functional path ROs.

Figure 5.6a shows the dynamic IR drop on Module A in a highly active time domain of
a functional customer-oriented test pattern, and in Figure 5.6c, the corresponding toggle
activity during the simulated time domain is shown. A toggling activity can be seen across
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the module, whereas the dynamic IR drop occurs only in the module’s upper region. At least
one of the functional path ROs was implemented in the region with some dynamic IR drop.
However, if a different customer use case is simulated, the dynamic IR drop may change and
occur at other locations on the chip. Therefore, harvesting all regions in detail with functional
path ROs in advance in functional use cases is challenging. However, the IR drop that occurs
in the design is in the low single-digit percentage range, which is not worth mentioning for a
robust design.

On the other hand, in Figure 5.6b and Figure 5.6d, one of the most aggressive test patterns
is simulated. The toggling activity covers a wide area, and a dynamic voltage drop occurs in
the module. The functional path ROs are implemented in the areas with higher IR drop and
the areas with lower IR drop. Here, too, the IR drop is in the single-digit percentage range.

The simulation showed an IR drop, but it is not noticeable (static) or very small (dynamic).
In order to monitor possible weak areas in the design concerning the PDN, it is good to have
as many functional path ROs as possible and distributed over a wide area.

5.3. PRE- Silicon Validation and Improvement

In this section, the Pre-Silicon validation is done based on analog simulations, focusing on
validating and improving the path selection flow. Section 4.1 describes the path selection flow
as a heuristic flow with a low turn-around time that fits perfectly into the industrial design
flow. However, path selection must be validated, and a heuristic is an imperfect process that
strives to improve. The time between the tape-out and the first silicon usually takes weeks to
months. Thus, this Pre-Si validation flow is proposed to get early feedback from the selection
flow. Then, there is no need to wait until the first silicon is available.

The validation of the selection flow can be done either by simulating the paths or with the
measurements on silicon. As mentioned, if the measurement approach on silicon is chosen,
there is a certain amount of downtime until the sample measurements are available for a
statistically relevant basis. In addition, many corner lots and measurement conditions are
required to cover the entire PVT range, which is difficult to reach in the tightly scheduled
engineering phase and with limited resources. The standard test program usually covers only
some discrete voltage or temperature conditions, for example, and not a continuous sweep of
the whole range. Therefore, the simulation-based approach is favorable in that case. Thus,
we can validate the physical design-based path selection and improve the selection flow for
future derivatives and redesigns in the same technology.
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5.3.1. Model Generation

After tape-out, the design is fixed and will not be changed. At this point, model generation
begins. Model generation is used to create the most accurate circuit representation possible
in a simulatable SPICE (Simulation Program with Integrated Circuit Emphasis) [72] model.

The MCU design contains various gates and components, all of which have a unique
designation. The designation of all components is equal to the designation in the STA path
report used in Section 3.5 and Section 4.1. The model extraction extracts only the components
from the design that are part of the functional path STA report. The goal of the extraction is to
obtain a simulatable analog SPICE model from the functional path RO, including the parasitic
elements that act on the functional path RO in the chip. Three components are necessary
to start the model extraction. One is the chip design representation, including the parasitic
components, the so-called standard parasitic exchange format (SPEF) file; second, the path
information file containing all functional path ROs; and third, the standard cell library file
containing the description of the gates used in the design. The process of the model extraction
can be seen in Figure 5.7.

SPEF-File

Path List

Libraries

Model

Extractor

SPICE

Models

Figure 5.7.: SPICE Model extractor with data in- and output. Adapted from [42] c© IEEE 2022.

The SPEF file contains the parasitic resistance and capacitance, which must be considered
to mimic the exact behavior of the functional path ROs on the chip. All functional paths are
listed in the path information file, which are implemented as functional path ROs. The path
information file also contains the gates in the feedback loop. In some cases, an inverter is
placed to ensure the path’s inversion, or some buffers are added during the implementation
to provide a reasonable slew rate of the oscillating signal. In addition, the path list can
also contain sensitizable functional paths without the RO implementation. The library file
has comprehensive information of all gates in the design, including the boolean function,
characterization data, and the analog transistor model. These three files are passed to the
model extractor, and the output are analog SPICE models of the input path lists. Exactly one
SPICE model is created per entry in the path list. The side inputs of the path are terminated
with the non-controlling value, so the extracted path is sensitized by default. The parasitic
elements are also included in the SPICE models.
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As mentioned, the path list can contain either functional path ROs or sensitizable functional
paths. The model extractor recognizes the difference and decides what kind of SPICE model to
be extracted. Figure 5.8 shows a sketch of the SPICE model after extraction from a functional
path (5.8a) and from a functional path RO (5.8b).
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Figure 5.8.: Two alternatives of the extracted analog SPICE models. Adapted from [42] c© IEEE
2022.

The generation of the SPICE model from the SPEF file ensures realistic behavior, since the
paths on the chip are exposed to parasitic effects. Therefore, the extracted SPICE models are
very close to reality.

The extracted SPICE models are used to investigate the sensitivities of the functional path
ROs. Thus, the heuristic path selection process is validated with the sensitivity analysis of
the SPICE models. A second use case of the SPICE models is to perform model-hardware
correlation once the silicon arrives from manufacturing which is not further investigated.

5.3.2. Sensitivity Analysis of the Functional path ROs

The extracted SPICE models are analyzed with respect to their sensitivity under different
PVT conditions. The resulting output parameters are the delay time dpi of a path or the
frequency fpi of the functional path RO. The delay time of the sensitizable functional paths
(Figure 5.8a) is further distinguished for the falling (d f all

pi ) and rising (drise
pi

) edge. In the case of
a functional path RO (Figure 5.8b), the oscillation frequency is additionally determined, which
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results from the superposition of the rising and falling case fpi =
1

d f all
pi +drise

pi

. Sensitivity analysis

investigates the sensitivity of such delay/frequency values at different PVT conditions. Thus,
it can be indicated which paths react particularly sensitively to certain PVT parameters.

The investigation of PVT conditions is divided into the individual process, voltage, and
temperature components and considered separately. Thus, a path’s delay/frequency sensitivi-
ties are determined by varying one of the three separate components (P – V – T) and keeping
everything else the same.

The voltage and temperature sensitivity of the SPICE models are investigated with a
transient analysis. Here, the voltage and temperature conditions are varied in discrete steps
over the specified operating range provided in the datasheet of the MCU. Thus a sensitivity
around the nominal operating point can be calculated in terms of voltage and temperature
sensitivities of the functional path ROs. Such analysis does not consider local dynamic
voltage droops or temperature effects of gates within the analyzed path. However, these
simplifications are sufficient to give a general order of magnitude of the sensitivity of the
analyzed paths. The investigation of IR drop was shown in Section 5.2.2.

The voltage and temperature analysis is done with the transient analysis on a SPICE
simulator; the process sensitivity is analyzed with the MunEDA WiCkeDTM Tool Suite
[109]. The WiCkeD tool performs the sensitivity of the process parameters with the SPICE
simulation in the background. The WiCkeD tool investigates all design parameters (geometry
of transistors and passive elements) under a given statistical process variation and mismatch
based on the provided voltage and temperature condition [110]. The sensitivity of the output
parameters (delay/frequency) is analyzed, given the global process variation of the design
parameters. The sensitivities of the output parameters are given for each simulated functional
path RO. A sensitivity analysis with respect to process parameters using the WiCkeD tool
consumes less set-up effort and simulation time than an extensive Monte-Carlo simulation.

The sensitivity analysis described above with respect to the PVT conditions provides an
initial indication of how good the path selection flow is. In addition, the sensitivity analysis
of the functional paths can be used to improve the selection flow further.

5.3.3. Improvement of the Heuristic Selection

The heuristic process of selecting paths based on physical design data, explained in Section 4.1,
may result in some functional paths that are sensitive to specific parameters not being selected
as functional path ROs. This deficiency in path selection is that the defined characteristics do
not adequately cover specific parameters that affect performance.

The analysis focuses on the process parameters in functional paths (see Figure 5.8a). The
aim is to find lacking process parameter sensitivities and try to define an additional or
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improved selection characteristic. However, the process parameters consist of a large number
of individual parameters. Some individual process parameters dominate the sensitivity
analysis of a functional path. Different individual process parameters may be dominant if
other functional path ROs are considered.

Thus a bunch of randomly selected sensitizable functional paths is fed into the model
extractor, and SPICE models are generated, as in Figure 5.8a. The resulting SPICE models
are analyzed for their delay sensitivity concerning the process parameters. Assuming that
this sensitivity analysis results in certain path types with a very high sensitivity to precisely
one or more process parameters, they can be analyzed with respect to the physical design
characteristics and new selection features can be defined. In this way, new features can be
added to the path selection process, and the heuristic selection process can be continuously
improved.

5.3.4. PRE- Silicon Validation Results

In order to show the quality of the path selection process for the 22 implemented functional
path ROs, the SPICE models are extracted using the methodology proposed in Section 5.3.1.
Thus, 22 SPICE models of the functional path ROs (see Figure 5.8) are generated, and the PVT
sensitivities are investigated to validate the selection process based on physical design data.

The voltage and temperature sensitivities of the selected paths are calculated. The normal-
ized sensitivity of voltage and temperature with respect to the RO frequency fpi is shown in
Figure 5.9. The normalization defines the lowest occurring sensitivity of a path as 0 % and
the highest sensitivity as 100 %.
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Figure 5.9.: Voltage and temperature sensitivity of the functional path ROs. Adapted from
[42] c© IEEE 2022.

Some paths are more sensitive to voltage, others to temperature. It is noticeable that ROs
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with a long functional path length are more susceptible to temperature (see RO 10 & 11).
Thus, the path selection process finds a very heterogeneous set of ROs that differ in their
sensitivity to the voltage and temperature parameters, which is the goal.

The selected functional path ROs are also investigated regarding their sensitivities in terms
of process parameters. The technology used has almost 100 individual process parameters;
their change will be analyzed for frequency sensitivity. Figure 5.10 shows that all process
parameters are covered with the selected 22 functional path ROs.
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Figure 5.10.: Variance of the frequency sensitivity with respect to the individual process
parameters of all selected functional paths ROs. Adapted from [42] c© IEEE 2022.

All individual process parameters are listed on the X-axis, and the variance of the sensitivity
to frequency is shown on the Y-axis. A distinction can be made between positive frequency
changes and negative frequency changes. Some paths react with a positive frequency change
to certain parameters, others with a negative one. The absolute value is shown in blue and
results from the sum of the positive and negative frequency change.

By looking at each functional path RO individually, some paths are sensitive to the process
parameter as a whole, and others are not. The variance of the frequency sensitivity of the
selected functional paths ROs with respect to all process parameters is shown in Figure 5.11.
The portions of the individual process parameters have been cumulated.

Thus, some paths are more sensitive to the process than others. By combining the results,
the heuristic path selection process finds paths with different frequency sensitivities with
respect to the whole PVT conditions, which was also the intention of the methodology. Note
that the absolute frequency change varies significantly within PVT conditions. Much of
the frequency change occurs due to the variation of voltage and temperature - voltage, in
particular, has an enormous impact. The effects of process parameters on frequency sensitivity
are the smallest over the entire PVT range. Therefore, the oscillation frequency must be
measured with high precision to resolve the sensitivity of all PVT parameters.
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Figure 5.11.: Variance of the frequency sensitivity of the selected functionalpaths ROs with
respect to all process parameters. Adapted from [42] c© IEEE 2022.

5.3.4.1. Results on Improving the Heuristic Selection

In order to verify the assumption made in Section 5.3.3, thirty randomly selected functional
paths of the design are also selected, and SPICE models are generated using the model
extractor. The SPICE models are then analyzed regarding their sensitivity to the process
parameters to find paths that are even more sensitive to specific parameters and thus improve
the heuristic approach.

The number of paths, in this case, is limited to thirty to illustrate the methodology; in
reality, many more paths are examined in this way. Figure 5.12 shows that some paths have a
significant variance and, thus, a considerable sensitivity in process parameter change.

Figure 5.12.: Variance of the delay sensitivity of the randomly selected sensitizable functional
paths with respect to all process parameters. Adapted from [42] c© IEEE 2022.
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The majority of the paths have low sensitivity because they were randomly selected, but a
few paths are very sensitive (Path No. 9 & No. 27). Such sensitive functional paths will be
further investigated to determine if additional features for the physical design data-based
path selection can be derived. For example, if a particular cell topology is very sensitive, the
physical design data-based path selection can be optimized to consider these cell topologies
in the selection as well. In this way, the heuristic path selection is improved with this feedback
and is ready for future derivations and designs.
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This part explains and illustrates the Pre-Silicon activities to implement, select, and validate
functional path ROs. For this purpose, the most essential segments are divided into three
chapters.

Chapter 3 presents the basic concept of the functional path RO, including the implementa-
tion methods and related infrastructure. The basic implementation of functional path ROs is
presented and illustrated by two functional paths that are implemented as ROs. It is shown
that functional path ROs have an advantage in terms of area and leakage current of over 96 %
compared with traditional RO structures for 128 implemented ROs. A proof-of-concept is
conducted concerning the advanced implementation concepts. In particular, two concepts
are proposed on how to select functional paths to ensure efficient implementation. It is
examined whether sufficient paths can be sensitized with a single pattern for the natural
loops approach - which is the case. The novel concept of self-enabling functional path ROs
is presented, and a feasibility study is conducted. The use of the self-enabling approach
can save more than 70 % of routing resources and, in some cases, even up to 80 % for the
investigated MCU. Furthermore, two options are proposed for self-enabling: Option 1 and
Option 2. Option 1, also labeled direct self-enabling, uses ATPG constraints of the launch FF
of the path itself. Option 2 (indirect self-enabling) utilizes nearby launch FF and an unlock
gate for enabling. A scan-controlled control infrastructure is introduced. Due to its hybrid
properties, the control infrastructure can utilize the basic concept of functional path ROs and
the self-enabling functional path ROs. The main advantage is that the sensitization of the
functional path and the settings of the control infrastructure are maintained with a single
scan pattern. The entire implementation flow of the functional path RO is compatible with
standard implementation flows used in the industry.

The path selection methodology is presented in Chapter 4. The chapter presents a clustering-
based selection flow to select a representative subset of functional paths on the design for
an RO implementation. 22 functional paths are selected in the MCU under investigation
and implemented as ROs. The path selection flow provides a very low turnaround time and
sorts the paths into buckets. The paths in the buckets have similar properties concerning the
defined path characteristics.

The last chapter in the Pre-Silicon part describes the Pre-Si verification and validation of
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functional path ROs. The implemented functional path ROs are verified for their functionality
via simulation. A side benefit of timing-aware simulation-based verification is an early
estimation of the oscillation frequency of the implemented functional path. This is used for a
first test-limit setting. Also, the circumstance is analyzed in that the ECO implementation of
the functional path ROs is combined with additional last-minute chances before the tape-out.
The results show no significant changes in the functional path selection. Also, a first analysis
of the PDN stability of the regions with functional path ROs is conducted. The path selection
flow is validated via sensitivity analysis of the functional path ROs. A methodology is
presented to extract analog SPICE models from the design and analyze them regarding PVT
sensitivity. This also allows a continuous improvement of the path selection process. The
sensitivity analysis shows that the implemented 22 functional path ROs are more diverse
than those not using the path selection process.
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Part II of the thesis is dedicated to the Post-Silicon phase. Once the first silicon arrives from
the manufacturing and assembly, the MCU is tested, validated, and characterized in depth.
The number of produced devices in the early engineering phase is small compared with later
mass production. Before ramping to volume production, the devices are extensively tested
and analyzed to find design weaknesses and test the specified functionality. The devices in
the engineering phase are also manufactured as corner lots to have a considerable spread in
the process parameters. An essential part of this phase is the performance characterization
and development of an efficient performance screening strategy for the high-volume phase.

What also changes is the abstraction level. The MCU at the top-level is now considered
instead of any chip partitions such as Module A, B, or C. In addition to the three modules
considered, the MCU consists of further modules that are all merged to top-level design
and then manufactured into a uniform MCU. The functional path ROs do not aim to detect
defects in the devices for which conventional structural test methods are responsible. Instead,
the goal is to determine performance by considering only the frequencies of the functional
path ROs.

In this thesis, 22 functional path ROs are implemented on each of the MCUs. The functional
path ROs must be measured and validated to determine if they are working as expected,
which will be explained in Section 7. The section is basically looking for the RO frequencies
themselves.

The Section 8 will describe the methodology of performance characterization and the
development of a machine learning (ML) based performance screening. The main research
question in this section is how the functional path ROs perform on the performance screening.
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7. Measurement and Validation of the
Functional Path RO

7.1. Functional Path RO Measurement Results

The functional path ROs are measured on automatic test equipment (ATE) load-board using a
digital probe card extension that taps the frequency of the functional path ROs on the GPIOs
of the packaged device. The measurement sequence is explained in Section 3.1. During the
shift-in of the scan pattern, the functional path ROs are sensitized. When the functional
path RO is enabled - enable signal is high - the ATE receives a handshake signal, and the
digital probe card is activated. As soon as the frequency measurement is completed and
the measured frequency is within the expected range, the procedure is continued with the
subsequent functional path RO measurement. If a frequency is outside the expected range,
the root cause of the discrepancy must be identified, which can be very broad.

The measurement of the functional path ROs should be at a stable voltage and temper-
ature condition to have a high reproducibility of the measurements. In order to check the
reproducibility, the 22 functional path ROs are repetitively measured on the same device. A
repetition of 100 times the measurement procedure is shown in Figure 7.1. The measured
frequencies of each RO are normalized since the frequencies of the ROs are in different ranges.
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Figure 7.1.: Repetitive measurement of the functional path ROs on a normalized scale.
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The repetitive measurements show only a few outliers in some of the ROs. Except for these
rare occurring outliers, the measurements show a stable distribution around the mean.

In order to quantify the reproducibility, the coefficient of variation (CV) is calculated. The
CV is a dimensionless number that reflects the relative accuracy of a measurement [111].
The CV is calculated with the standard deviation ratio to the measurements’ mean and is
expressed as a percentage value. The target is to have a CV close to 0 % that indicates perfect
reproducibility of the measurement. The calculated CV is shown in Figure 7.2.
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Figure 7.2.: Coefficient of variation of 100 repetitive measurements.

The overall CV is below 0.08 %, which indicates the high repeatability of the functional
path RO measurement. The experiments are executed on two packaged devices, and the
CV is in the same range in both measured devices. Thus the functional path ROs can be
measured with high reproducibility using the GPIOs and the ATE.

In order to compare the measured frequency range with the expected frequency range, a
statistically relevant amount of devices is measured. The measured RO frequencies are then
compared with the test limits determined in the Pre-Si phase. Section 5.1.2 determined an
upper f upper

pi and lower f lower
pi

test limit for each RO. Ideally, all measured RO frequencies are
within the determined test limits.

The test limits of the functional path ROs are compared among 3858 devices from 25 wafers
to see if the measured RO frequencies are in the expected range. The results are shown in
Figure 7.3.

All measured functional path ROs are within the pre-determined test limits. Therefore, the
functional path RO frequencies on silicon correspond to the values specified in Section 5.1.2.
Thus, the functional path ROs all work within the verified frequencies.

The functional path ROs deliver promising reproducibility and expected frequency range
results. However, checking the voltage at the chip is also essential since the functional path
RO measurement requires stable voltage conditions. At-speed test patterns, such as the path
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Figure 7.3.: Measurement data from 3858 devices of 25 wafers and the simulated test limits.

delay pattern, can significantly impact the overall power supply stability and cause voltage
droops [17]. This is especially true during changes in the circuitry mode, e.g., from the shift-in
phase (long clock cycles ) to the capture phase (short at-speed clock pulse) [112]. Those abrupt
transient events can cause voltage droop, which is hazardous to measurement where a stable
voltage condition is needed. In order to investigate the voltage stability in the functional path
RO measurement, the voltage of the MCU is sensed and observed with a scope.

The voltage is observed at the load board of the test head, where the DUT is mounted on
the test socket. The transition of the shift-in phase to the measurement phase is observed
where the MUX of the respective functional path RO is enabled. The snapshot of the scope is
shown in Figure 7.4.

Figure 7.4.: Voltage drop measurements.

The three traces in the snapshot are CH1 (yellow), the supply voltage measured in the
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sense pins of the MCU; CH2 (turquoise), the trigger signal, which is the enable signal of the
MUX; and CH3 (magenta), the GPIO pin oscillation signal of the RO. The critical trace is
the yellow signal which does not reveal any droop in the presented transition phase. That
confirms the Pre-Si dynamic voltage droop simulation in Section 5.2.2, where only a little
voltage droop is expected at the MCU level during transient events. Thus it can be eliminated
that any significant transient effects in the supply voltage are happening in the transitional
period of the phases in the functional path RO measurement.

The functional path ROs’ frequencies can also visualize the die-to-die gradient over the
wafers. One functional path RO is selected, and the frequency is observed for all dies on a
wafer. Such an approach makes the D2D process variation visible and can be used to track
process stability or other manufacturing issues. A visualization of the D2D process variation
based on a functional path RO frequency is shown in Figure 7.5.
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Figure 7.5.: Wafermap of the frequency distribution of an functional path RO.

The observed RO frequency can be abstracted as a donut shape, which is one of the possible
shapes that can be observed in wafer maps [63]. This is only one example of a dedicated
use case in which the functional path RO frequencies can help to improve and monitor the
manufacturing process.
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8. Performance Screening Using Functional
Path RO

8.1. Method and Data Set for the Performance Screening

The main goal of the functional path ROs is to use such structures as performance monitors
for performance screening. The performance screening is part of the MCU test process, which
is shown in Figure 8.1. Each device has to pass the performance screening for a successful
final back-end (BE) test. The functional path RO measurement is part of the front-end (FE)
and BE tests. Therefore for each manufactured device, the functional path RO data is obtained.
Also, the SMON module is measured. Based on the obtained RO data, the performance
screening is done as part of the final BE test using the RO data as monitors. The device can
be shipped if the performance screening and the final test are passed.

Manufacturing
Wafer Probe

FE Test

Packaging

Burn-in

Final Test

BE
Shipping

Performance Screen.

RO meas. RO meas.

FMAX Char-

acterization

Figure 8.1.: Test flow of an MCU including the performance screening.

However, the performance screening is a challenging process. The performance screening
shall be done by only considering the RO measurement data. Therefore, the RO measurement
data is used as input for the performance screening, and the output is the pass / fail decision.
In order to initialize the performance screening, a set of golden devices is obtained for an
elaborate FMAX characterization used as the ground truth. Such characterization is a high-
effort and time-consuming process executed on these golden devices. In the first part of this
section, the FMAX characterization is explained; afterward, the data set and principles for the
performance screening are described.
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8.1.1. FMAX Characterization

As stated previously, the performance determination of an MCU is challenging. No mea-
surement gear can measure the precise performance of a particular device in a one-shot
measurement, as in voltage or current measurement. This is because the performance of the
MCU depends on many conditions. e.g., use-case, PVT conditions, and many more. However,
to have an initial reference set to correlate the RO data with the device performance, a set of
golden devices is deeply analyzed with a FMAX characterization. The FMAX characterization
determines the performance of a device with an elaborate process that is similar to a system-
level test (SLT). The SLT initially tests the devices to find defects. In the FMAX characterization,
the SLT setup is used to determine the performance of a device in a particular condition for a
particular use case.

The outcome of the FMAX characterization is the maximum achievable clock frequency
Fmax

Ti for a given functional test pattern Ti (i ∈ N). The Fmax
Ti is the highest frequency

at which the functional test pattern is executed under a predefined condition (voltage,
temperature) without errors.

Each golden device is packaged and mounted on an SLT board for FMAX characterization.
The SLT board has a high-precision radio frequency (RF) socket with low resistance and the
lowest possible parasitics. In addition, the SLT board has high power integrity and built-in
energy storage capacity to prevent voltage drop during testing. During characterization,
the temperature and voltage of the MCU can be precisely controlled and are continuously
sampled by on-chip voltage and temperature sensors.

The DUT is placed on the SLT board in the RF socket with a semiconductor test handling
system to improve the repeatability of the measurement process. The voltage and temperature
are set to defined voltage Vcrit and temperature Tcrit conditions. The MCU is programmed
with the firmware when the voltage and temperature conditions reach the defined steady-state
values. The MCU’s clock frequency can also be controlled with the SLT setup. Then the
functional pattern Ti is uploaded and launched in an infinite loop on the MCU. The MCU
starts executing the functional pattern at a low frequency. The frequency is slowly increased
in each loop until the functional pattern fails. The process is repeated several times to ensure
that the failure frequency of the MCU remains at the same value. The last working frequency
prior to the MCU failure frequency is considered and stored as Fmax

Ti of the functional pattern
Ti. The measurement of Fmax is performed with several functional patterns [24].

The applied functional patterns in the FMAX characterization show a wide variety in
stressing different design units of the MCU. The functional patterns are designed with the
intention that no customer application fails at a lower frequency than a functional pattern.
Therefore, some patterns are designed to exhaust the maximum power of the MCU as
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specified in the data sheet. These patterns result in high-load jumps and create massive cross-
talk between functional blocks. Other functional patterns stress specific design parts, such as
dedicated data bus lines or repetitively executing a specific instruction. Thus, all functional
patterns attempt to force the MCU to its power limit. However, some Fmax uncertainty
remains in the characterization, caused by (i) the diversity of possible customer applications,
(ii) measurement uncertainty and (iii) defective devices.

i): An automotive MCU is intended for a large number of applications. Thus there are
thousands of use cases, and each application puts more strain on some parts of the MCU
than on others. Therefore, the applied functional pattern stresses the MCU over the specified
operating range and ensures a robust MCU in each customer application. However, in order
to avoid omitting customer use cases and to avoid the applied functional patterns stressing
some areas, a guardband is needed in performance screening that covers these contingencies.

ii): Some measurement uncertainties also affect the FMAX characterization process. The
characterization is performed under worst-case operating conditions in terms of voltage (Vcrit)
and temperature (Tcrit) at the limits of the specified operating window. Even minor deviations
of the voltage and temperature conditions affect the measurement result. In addition, small
mechanical vibrations cause a change in the base resistance, or statistical noise changes the
result. Another consequence is that error messages of the FMAX measurement software are
due to contact problems during the measurement. Some GPIO pads are also activated in
the functional pattern; errors can occur in the presence of a contact problem. Since the
measurement process is automated, the setup has appropriate error handling so that errors
that occur do not interrupt the characterization. If an error occurs in an FMAX test pattern,
the characterization of the device continues, and the specific error-prone test is marked with
a not-a-number value. These errors are rare but are worth mentioning. Therefore, many
hard-to-predict factors influence the FMAX characterization during acquisition, so careful
attention must be paid to any measurement uncertainties and errors when processing the
measurement data.

iii): Another cause of discrepancies in the FMAX characterization are physical defects in the
golden devices (e.g., shorts, opens). Those defective devices are usually detected within the
productive test flow with stuck-at, transition, or path-delay tests. However, at the point in time
when the golden devices are obtained from the production test flow, the production test is not
technically mature because the entire product is still in the engineering phase. Consequently,
a small fraction of golden devices exhibits a defect. These devices must be removed since
the performance screening does not target defective devices. Therefore, it is essential to
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have defect-free golden devices for FMAX characterization since the characterization is the
benchmark for the whole performance screening process, and defective devices significantly
disturb the screening process.

Outlier detection is used to address the three effects mentioned in the FMAX characterization.
Outlier detection aims to filter out devices that deviate from the wafer median. It is assumed
that the effects mentioned above cause such deviating components. The FMAX characterization
for each test is considered on its own, and devices deviating more than N times the standard
deviation from the wafer median are discarded. An example of outlier detection is shown in
Figure 8.2.
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Figure 8.2.: FMAX characterization results from a wafter after the SLT.

The boxplot shows the distribution of a wafer with 109 FMAX-characterized devices for ten
functional test cases. The ± 3 sigma border is shown as a red triangle for each distribution.
In T9 a device deviates from the wafer median by more than three sigma. Accordingly, such
devices are discarded in the overall FMAX characterization even if they are inconspicuous in
the other test cases. However, one device is slightly below the whiskers in T7 but within the
defined sigma border of the test case. This device is not discarded according to the defined
rule.

8.1.2. The Data Set for Performance Screening

The data set used for the performance screening can be distinguished into two groups:
the unlabeled data set and the labeled data set. In order to understand the nomenclature, the
terms feature and label (explained in Section 2.6) are assigned to the context of performance
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screening. The features - that are the input data in machine learning (ML) problems - are the
RO frequency data. So each measured RO acts as one feature. The labels - that are the output
data in ML problems - are the FMAX of a particular device. Each device that undergoes the
FMAX characterization has multiple labels Fmax

Ti for the different test cases Ti.
Thus, a manufactured device that has passed the production test flow from Figure 8.1 is,

by default, an unlabeled device. The set of golden devices which are FMAX characterized are
denoted as labeled devices.

The schematic structure of the two data sets is shown in Figure 8.3. The unlabeled data
set contains the chip ID, which is the unique identification number for each manufactured
chip, and the RO data from all measured ROs during production. The labeled data set also
contains the FMAX values from the FMAX characterization. The labeled data set is the ground
truth to set up and model the performance process.

In the later production, there are only unlabeled devices available. In order to define the
performance screening process, which is done in the next section, the labeled data set is used.

Unlabeled Dataset Labeled Dataset

Chip ID RO Frequencies

Manufacturing Production Test

Chip ID RO Frequencies FMAX

Manufacturing Production Test FMAX Ch.

Figure 8.3.: Data set structure from unlabeled and labeled devices.

8.1.3. The Principle Concept for Performance Screening

The main objective of the performance screening is to assess if a device meets the specified
performance requirements. The frequency of the RO structures as indirect performance
monitors provide the input for this judgment: Functional path ROs and SMONs. Thus the
quality of the performance screening depends strongly on the RO structures. The process is
visualized in Figure 8.4.

The RO frequencies are passed into the performance screening process, and the process
decides whether the device passes or fails. The performance screening process, at first glance,
can be approximated as a classification problem - numerical input data (RO frequencies) is
used to classify the device as pass or fail. The classification problem also has a significant
disadvantage: having a fixed pass/fail border. The entire performance screening model has a
fixed border on which all devices are classified. If the border changes slightly, e.g. due to

95



8. Performance Screening Using Functional Path RO

RO

frequencies

Performance

Screening

Process

Output
Pass / Fail

based on FMAX

Figure 8.4.: Performance screening process basics.

a change in data sheet performance requirements, the entire model is invalid and must be
revised if the requirements change. Therefore, the model can be formulated as a regression
problem. The numerical RO frequencies are fed into the performance screening regression
model, and a numerical FMAX is predicted for the device. That approach has a significant
advantage: a model valid over the whole FMAX range.

The classification and regression are classical supervised ML problems. Therefore ML is
used to build and train a model for the performance screening. For this training, the labeled
data set is used. Once the model is trained, it can be deployed for performance screening
based only on the RO frequencies on unlabeled data. The process for training and evaluating
the ML model with the labeled and deploying the ML model on unlabeled data is shown in
Figure 8.5.
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Figure 8.5.: Performance screening process learning and deploying.

Train and Evaluate the Model: The initial data set for the training is the labeled set of
golden devices with their features (RO frequencies) and the labels from the FMAX charac-
terization. The labeled data set is preprocessed before being fed into the ML algorithm of
the performance screening. The preprocessing steps and obtained analysis will be further
explained in Section 8.2. After this, the performance screening flow is defined, and the
algorithm is developed, trained, and validated; Section 8.3 describes this process.
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Deploy the Model: Once the model is trained and the performance verification process is
defined, the model can be applied to unlabeled data, in other words, in the production test.
This makes the resource-intensive FMAX characterization obsolete by using only the features
for the performance screening. The more accurate the performance screening is, the better it
is for automotive quality and yield gain. The utilization of the model and the quality and
yield impact will be described in Section 8.4.

8.2. Preprocessing of the Data Set

The input data for preprocessing must be labeled devices (see Figure 8.3). The data set
is checked for consistency and plausibility, for example, for missing entries or negative
numbers. The FMAX characterization (see Section 8.1.1) includes outlier filtering, so there is a
very low probability that such outliers are still present in the labeled data set. The features
(RO frequencies) must be within the predefined upper and lower frequency limits of the
production test flow (see Section 5.1.2).

Once the data set has passed these checks, the dimensionality reduction starts as the second
part of the data preprocessing. This process aims to reduce the complexity of the feature set
from a sample feature space, as explained in Section 2.6. The feature selection is performed in
this work with the Correlation coefficient to get an indication of the behavior of the features
among themself as well as to the labels. The data set with the functional path ROs as features
competes with the SMONs as features. The aim is to identify which input features perform
better and which ROs have a high correlation with the labels.

In contrast, the feature reduction transforms the input feature set into a new feature space
using, for example, principal component analysis (PCA). PCA decomposes the input feature
into its principal components [96]. Thus, it analyzes how many different pieces of information
are contained in a data set and how these can be mapped into their principal components
without information loss, if possible. The more diverse the data set is, the more principal
components are needed to represent the data set. This method is used to investigate which
data set contains more information density.

The dimensionality reduction approaches used in this paper aim to compare the two feature
sets, the functional path ROs versus the SMONs, to clarify how good the functional path ROs
are as performance monitors.

8.3. Performance Screening Flow

The high-quality preprocessed data set is applied as input data for the performance screening
process. The data set contains either the functional path ROs as features or the SMONs as
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features. Two fundamentally different classes of ML are used for performance screening: clas-
sification and regression. Within the two classes, different algorithms are utilized. However,
since there are many algorithms with as many different complexities, this work will focus
on a few commonly used algorithms.The main focus is on which ROs are better suited for
performance screening - with a particular emphasis on the functional path ROs.

In order to get a first overview of the two approaches, namely the classification and the
regression approach, Table 8.1 compares the two approaches.

Table 8.1.: Differences and similarities between the classification approach and the regression
approach.

Metric Classification Regression

Input Data Labeled data set Labeled data set
Output Model Pass/Fail Classifier Numerical Regression
Encoding Binary NO
Applying FTH Beginning End
Train/Test Split YES YES
Cross Validation YES YES
Helper Function Feature Selection NO
Average Complexity Low Medium
Ease of use High Medium
Screening Quality Medium High
Automotive Quality Difficult Guardbanding

The main difference is that the classification approach generates a model for a pass/fail
decision given a dedicated threshold frequency FTH at which the performance pass/fail
border is set. In contrast, the regression approach provides a predicted numerical device
performance, and the dedicated performance threshold value is applied afterward for a
pass/fail decision. The regression model can reach automotive quality requirements using a
guard banding technique. The two approaches are explained in the following two subsections.
The approaches are independent of which kind of ROs are used.

Notation: In order to simplify the domain-specific problem into standard ML notation, the
following notation is used:

• Set of labeled devices → X

• Set of unlabeled devices → U

• Features (RO frequencies) of a device j → xj

• Measured Label (FMAX characterization) of a device j → yj
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• Predicted Label (from ML Model) of a device j → ŷj

Specification: The following performance screening aims to use the input vector xi (RO
frequencies) to predict one label yi in contrast to the work in [51], where a multilabel perfor-
mance screening is developed. Thus, one model is generated for one functional test pattern.
That way, the relation between the input features and the functional test cases from the FMAX

characterization is more visible.

8.3.1. Performance Screening using Classification

The classification-based performance screening trains a function f that classifies the devices
in pass (1) or fail (0), given a dedicated target frequency FTH . The labeled data set X is binary
coded in the first step to transform the numeric value into a binary value depending on FTH.
For each device j in X, an encoded label y∗j is generated according to

y∗j :=

{
1 if yj ≥ FTH

0 otherwise.

The set X is then partitioned into a training set S and test set T, where X = S ∪T and
S∩T = ∅. The training set is used to train the model. Once this is done, the test set is used
to validate the model and derive critical metrics, e.g., error and model quality. A reasonable
split ratio of the initial set into training and test set is 2/3 to 4/5 [113]. The test set should
contain at least 30 samples to make an adequate statistical statement concerning error and
prediction quality [114]. Such a training/test split approach is called Hold-Out.

The set S is used to train the model. Depending on the used algorithm, S needs normaliza-
tion or standardization. Two common classification algorithms are trained with the set S: the
logistic regression and the random forest [115].

Logistic regression is a linear binary classification model categorizing the devices into pass
or fail. In order to do that, logistic regression utilizes a linear regression and applies the
outcome of the regression model to the so-called sigmoid function. The sigmoid function
employs the linear regression outcome, providing a probability value between 0 and 1 [113].
The higher the sigmoid function value, the higher the probability that the current device is
classified as pass and vice versa. The model aims to find a hyperplane according to which
the devices are classified as pass or fail; that is, the model’s outcome.

The logistic regression model fLR is trained with the set S and evaluated with the set T. In
order to measure how well the models perform, key metrics such as accuracy and F1 Score
are used.

In contrast to the logistic regression, a more advanced model is also applied for the
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classification problem: the random forest. The random forest is a decision tree-based classifier.
It is established on the Bagging [116] and uses a randomized feature selection to build
multiple uncorrelated decision trees, which are combined in the random forest model [117].
The ease of implementation, low computational effort, and good generalization [117] make
the random forest a good-fitting model for performance screening.

The random forest model fRF is trained with the set S and evaluated with the set T. In
addition to the accuracy and F1 Score to evaluate the model, the trained random forest model
also provides a feature importance ranking. Such ranking indicated which ROs are more
critical for the model.

Depending on the features used (functional path ROs or SMONs), the trained classification
models provide different results, which in turn indicate how well the features are suited for
performance screening.

This classification model-based performance screening is always tailored to the determined
FTH. If the FTH changes, the entire model must be retrained and replaced. In contrast,
regression-based performance screening works differently.

Scoring metrics for Classification: The scoring metrics for the classification-based perfor-
mance screening are the accuracy and F1 score. The metrics are calculated using the trained
model applied to the evaluation set T.

The accuracy is based on the nomenclature used in the confusion metrics (see Figure 2.14).
This allows a specific device to be classified into four categories based on the actual device
and the result of the prediction model:

• TP: the actual device is pass, and the model predicts the device as pass

• TN: the actual device is fail, and the model predicts the device as fail

• FP: the actual device is fail, and the model predicts the device as pass⇒ Quality issue

• FN: the actual device is pass, and the model predicts the device as fail⇒ Yield loss

The accuracy of a model is calculated with the formula [92]

Accuracy =
True positives + True negatives

True positives + True negatives + False positives + False negatives
(8.1)

applied to the devices in T. Such an accuracy metric represents the ratio between cor-
rectly predicted devices and the population. However, the accuracy does not provide a fair
comparison if the data set is unbalanced [118]. In an unbalanced data set, the proportion of
passing and failing devices is unequal, which is usually the case in performance screening
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since the slow tail of the distribution is screened. Therefore a second metrics is introduced:
the Matthews correlation coefficient (MCC).

The MCC can be calculated as follows [118]:

MCC =
TP · TN − FP · FN√

(TP− FP) · (TP + FN) · (TN + FP) · (TN + FN)
(8.2)

The MCC is a more recent evaluation score, especially for binary classification problems,
as in the present work. Thus the MCC is a suitable metric that also considers the prediction
accuracy in the corner cases [118].

8.3.2. Performance Screening using Regression

In contrast to the previously explained classification approach, the regression approach
behaves differently. A regression model is used that does not require any threshold level
previous to the training; also, the binary coding is not applicable anymore. The trained
regression model is valid for the entire FMAX range of the set X. The threshold level FTH

is applied afterward to the model outcome. This approach aims for a one-fits-all solution
independent of the targeted threshold.

The regression model f : x 7→ ŷj uses the numerical values of the features xi (RO frequen-
cies) and predicts a numerical FMAX for a particular label ŷj. Exactly one model is trained on
one FMAX characterization test Ti. In order to train the regression model, the same train/test
split approach is used as in Section 8.3.1.

The set X is split into a training set S and test set T. S is used to train the regression model
and T is used for validating the model. Whether normalization or standardization of the data
must be performed depends on the model algorithm used. The regression algorithm provides
the numerical FMAX in contrast to the classification model, where only a pass/fail decision is
the model’s outcome. That numerical outcome made the regression approach more suitable
for performance screening because a slight change in the threshold level FTH does not require
retraining of the model.

In this work, three regression models are used, which are fundamentally different in their
underlying algorithms: RidgeCV, PCA Regression, and Random Forest Regression.

The RidgeCV regression fRidge combines a built-in K-Fold cross-validation, which is ben-
eficial in overfitting, especially in small data sets and Ridge Regression. The built-in K-Fold
cross-validation divides the training set into K equal parts. Then the training uses K-1 parts,
and the built-in test uses the remaining part of the training set. This procedure is repeated
until all K parts are used for the built-in test. Such cross-validation in training provides
a more robust model concerning overfitting and generalization. The Ridge regression is a
model based on the linear least squares function. It is a more advanced model that efficiently
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implements collinearity in the multiple linear regression context [119].
The Principal Component Regression fPCR combines the PCA and linear regression tech-

niques [120]. The PCA transforms the given feature set into a new, reduced one. The
dimensionality of the new feature set is determined in the PCR settings of the algorithm. The
resulting new feature set is then passed to a linear regression algorithm.

Furthermore, the Random Forest Regression fRFr is an extension for the Random forest
classifier. The RFR deals with numerical values and deploys averaging and multiple decision
trees to serve as a regression model [115]. Such an algorithm is different from the two models
proposed before - which are based on a linear least square approach - the RFR is a tree-based
approach.

Scoring metrics for Regression: The regression models have slightly different scoring
metrics compared with the classification approach. The two widely used metrics are the mean
absolute error (MAE) and the root mean square error (RMSE), calculated as follows [92]:

MAE =
∑n |ŷ− y|

N

RMSE =

√
∑n (ŷ− y)2

N
,

(8.3)

where N is the number of devices in the test set T. The RMSE is less sensitive to a few outliers
but is a more sensitive error metric than the MAE [92].

In order to compare the error metric across the different test cases and to previous research,
the metrics are normalized as follows:

nMAE =
MAE

mean(y)

nRMSE =
RMSE

mean(y)
.

(8.4)

The above error metrics may not correctly reflect the prediction accuracy of the regression
model in some cases, so an additional metric is used: the coefficient of determination, also
known as the R2 score [121].

R2 = 1− ∑n (y− ŷ)2

∑n (y−mean(y))2 (8.5)

The regression model makes a good prediction if the R2 score is between 0 and 1. In such
cases, the R2 score can also be considered identical to the percentage of correctness obtained
by the regression [121].

As a result, the scoring metrics are used to evaluate the regression models and the prediction
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accuracy using the labeled data set X with the different feature sets - the functional path ROs
and the SMONs. The resulting prediction value ŷj is then compared with the target frequency
value FTH. If ŷj ≥ FTH, the device is pass; otherwise, the device is fail.

However, to ensure automotive quality (see Section 2.7), a guardband is needed for the
performance screening with the regression approach.

Guardband for Regression to ensure automotive Quality: The guardband was introduced
in [24] and denoted as guardband G. The guardband intends to ensure automotive quality
by considering the accuracy of the trained regression model. In other words, the guardband
is the value by which the target frequency must be increased to ensure that no more than a
certain false positives are in production.

The guardband is calculated with the residual error (e = ŷj − yj) considering the test set T,
with yj being the measurements and ŷj being the predicted values. The resulting distribution
of the residual error is assumed to be approximately Gaussian distributed, and the mean(µe)
and standard deviation (σe) are computed. The guardband is considering the six-sigma
approach and is defined as:

G = µe + 6σe (8.6)

G is reported in the experiments as a percentage of the target threshold frequency FTH.
Involving the inverse normal distribution, it can be seen that the calculated guardband

corresponds with a defective level of below 0.001 ppm. For example, to reach a defect level of
0.1 ppm, a 5.2σe in Equation 8.6 is required. Nevertheless, the calculated guardband is valid
on the utilized test set; deploying G for the production screening requires statistical methods
like bootstrapping to have confidence. However, no such methods are used in this work, and
Equation 8.6 is utilized for the calculation.

The screening frequency in automotive quality grade FSCREEN is calculated with

FSCREEN = FTH + G. (8.7)

Such screening frequency ensures that the screening quality is following the six-sigma
approach. Equation 8.7 suggests that the model’s accuracy impacts the later screening
frequency since G is one crucial part. The target is to reduce this guardband by a very
accurate performance screening as much as possible - either using the functional path ROs or
the SMONs.

As shown in Figure 8.5, the previously explained training and evaluation steps are per-
formed on the labeled devices. Once the trained model is accomplished, it is used on
unlabeled devices U, as they will also occur in later production.
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8.4. Deploy the Performance Screening

The RO frequencies xj of the unlabeled devices U are provided to the trained model
(classification-based or regression-based). The trained model provides a pass/fail deci-
sion for the classification-based approach for each device. The regression model provides
a numerical frequency, and the pass/fail decision is then made on the FTH - or for automo-
tive grade screening on FSCREEN . This approach makes the extensive FMAX characterization
obsolete, since only the RO frequencies are used.

Error metrics like those proposed for the training are not usable for unlabeled devices,
since the device has no reference label (FMAX). The metric used for unlabeled devices is yield.
The yield is calculated with

yield =
Total number o f non− de f ective devices
Total number o f manu f actured devices

. (8.8)

The yield describes the ratio between the non-defective devices and the total number of
manufactured devices. The goal is to have a product with a yield close to 100 %. The yield
is, therefore, a measure of the entire manufacturing process. In this work, however, only the
yield attributable to performance screening is reported. Thus, the non-defective devices in
Equation 8.8 are those devices that pass the performance screening.

8.5. Results of the Performance Screening

This section reports the performance screening results using the classification and regression
approaches. Both approaches are performed using the functional path ROs versus the SMONs.
The key objective is to analyse how well the implemented functional path ROs perform using
them as performance monitors.

The large automotive MCU proposed in Part I is manufactured using a 28 nm CMOS
technology. The MCU contains 22 functional path ROs and an SMON module (Section 1.2.1)
containing 27 SMONs. This section’s results slightly deviate from those published in [42] and
[49] due to a larger and more mature data set in this work.

This section is divided into four parts:

• Section 8.5.1: The data set that is used for the analysis.

• Section 8.5.2: Results of performance screening using the classification approach.

• Section 8.5.3: Results of performance screening using the regression approach.

• Section 8.5.4: The applied performance screening on unlabeled data.
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8.5.1. The data set

The data set used for the results consists of the labeled data set X and unlabeled data set U.
X consists of 1923 golden devices which are derived from different wafers. Such wafers come
from multiple corner lots. Thus a large process variety is covered.

All golden devices X undergo the production test flow shown in Figure 8.1 until the final
test. Afterwards, the devices are passed to the FMAX characterization. In each device, 10 SLT
test cases (T0− T9) are performed, and their maximum achievable clock frequency Fmax

Ti is
stored. All Fmax values are normalized in this work so that the design’s target frequency Fmax

equals 100 %. All SLTs are performed with the worst-case voltage Vcrit and temperature Tcrit

conditions. The results of the T0 to T9 are shown in Figure 8.6.
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Figure 8.6.: Violin plot of the 10 SLT test cases of the FMAX characterization.

The violin plot shows that all SLTs are in the same frequency region. However, T0 and T8
are performing slightly worse than the other SLTs. Thus T0 and T8 are defined as the most
critical test cases. The data is already outlier filtered in Figure 8.6; thus, the SLT test case
might have fewer devices as initially passed through the test. The number of devices in the
different test cases after filtering is shown in Table 8.2.

Table 8.2.: Number of devices after the filtering in the SLT.

SLT T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Devices 1824 1817 1738 1686 1796 1737 1779 1782 1809 1814

In order to evaluate the relation between the SLTs and the ROs, the Pearson correlation
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coefficient (PCC) is calculated for all SLTs with the 22 functional path ROs to see the 1-
to-1 correlation between the features and labels as well as the labels and features among
themselves. The results are shown in Figure 8.7.
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Figure 8.7.: Correlation heatmap between functional path ROs and SLTs.

The labels among themself are presenting a high correlation (upper left section in Figure 8.7).
The correlation heatmap shows two significant subgroups within the SLTs with a very high
correlation. T0, T4, and T8 belong to one subgroup; the remaining SLTs belong to the other
subgroup. The correlation of the functional path ROs varies more. Especially RO10 and RO11
show a different behavior than the other ROs. The correlation of the functional path ROs
concerning the SLT is the most critical metric. In order to obtain and create a high-quality ML
model, the ROs must correlate as well as possible with the SLTs. Especially RO0 and T0 show
a PCC of more than 92 %.

Figure 8.8 presents the correlation heatmap of the SMONs concerning the SLTs. The SMONs
also achieve a PCC in the range of 91 % by looking at T0. The overall correlation of the
SMONs with the SLTs is lower than the results with the functional path ROs. Some SMONs
share the same structure seen in their high correlation between themselves (e.g., SMON19 to
SMON24).

The minimum, median, and maximum PCCs are determined from Figure 8.7 and Figure 8.8
and shown in Table 8.3.
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Figure 8.8.: Correlation heatmap between the SMONs and SLTs.

Table 8.3.: PCC comparison between functional path ROs and SMONs.

Label
functional path ROs SMONs

Min Median Max Min Median Max

T0 70.0% 88.3% 92.0% 63.4% 68.5% 91.1%
T1 65.6% 74.4% 80.4% 59.5% 71.8% 77.9%
T2 65.7% 74.0% 80.0% 59.4% 72.0% 77.9%
T3 66.5% 74.3% 79.9% 59.6% 69.9% 77.0%
T4 69.4% 85.7% 89.5% 65.6% 70.6% 89.0%
T5 66.2% 75.1% 81.2% 60.3% 71.0% 77.3%
T6 66.6% 75.0% 81.6% 60.2% 75.0% 80.7%
T7 66.6% 74.6% 80.4% 60.1% 71.9% 78.0%
T8 69.4% 85.9% 89.9% 63.0% 78.2% 89.1%
T9 63.8% 72.4% 78.7% 57.5% 71.6% 77.8%

The minimum, median and maximum PCCs of the functional path ROs are higher in all SLT
than the SMONs. The functional path ROs exceed the SMONs if only the PCC is considered.
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8.5.2. Classification-based Performance Screening

The classification-based performance screening is trained with the labeled data set X using a
dedicated frequency FTH . The FTH is normalized to 100 %. The classification model is trained
with the functional path ROs as features and the SMONs as features, respectively. For each
SLT test case, a separate model is trained and evaluated. The results using the functional path
ROs are presented in Table 8.4.

Table 8.4.: Results of the classification-based ML models using functional path ROs.

Label
Logistic Reg. Random Forest

TP TN FP FN ACC MCC TP TN FP FN ACC MCC

T0 336 50 47 23 84.65% 0.50 342 80 17 17 92.54% 0.78
T1 435 2 14 4 96.04% 0.19 438 5 11 1 97.36% 0.50
T2 420 5 9 1 97.70% 0.53 419 5 9 2 97.47% 0.49
T3 402 4 12 4 96.21% 0.34 405 4 12 1 96.92% 0.44
T4 376 24 36 13 89.09% 0.45 380 41 19 9 93.76% 0.71
T5 412 3 18 2 95.40% 0.28 411 10 11 3 96.78% 0.59
T6 430 1 14 0 96.85% 0.25 427 4 11 3 96.85% 0.38
T7 420 2 21 3 94.62% 0.17 421 4 19 2 95.29% 0.32
T8 361 35 44 13 87.42% 0.50 362 61 18 12 93.38% 0.76
T9 436 2 13 3 96.48% 0.22 435 2 13 4 96.26% 0.19

The calculated accuracy in the SLT cases ranges between 84.65 % and 97.70 % deploying
the logistic regression and between 92.54 % and 97.47 % for the random forest. The accuracy
in T0, T4, and T8 is significantly lower than in the other SLTs.

The MCC also has a substantial deviation. However, the random forest model has a higher
MCC score than the logistic regression, which also applies to the comparison of the accuracy
of the two models. Therefore, the random forest is the preferable model in nearly all SLTs.

The results using the SMONs as features are presented in Table 8.5.
There is no significant difference compared with the functional path ROs. In some test

cases, the SMONs perform better; in other test cases, the functional path ROs are better.
Therefore a third run uses the combined features set (functional path ROs and SMONs).

The results are shown in Table 8.6.
Also, in this case, the accuracy and MCC depend on the SLT. There is a slight benefit, e.g.,

in T0, with respect to both scoring metrics. The MCC overall shows slightly higher results in
the combined data set.

The functional path ROs and the SMONs provide good accuracy in the performance
screening using the classification-based approach. The classification-based screening provides
a satisfactory result to get a first estimation of the accuracy achieved in the performance
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Table 8.5.: Results of the classification-based ML models using SMONs.

Label
Logistic Reg. Random Forest

TP TN FP FN ACC MCC TP TN FP FN ACC MCC

T0 330 62 35 29 85.96% 0.57 338 78 19 21 91.23% 0.74
T1 434 5 11 5 96.48% 0.37 436 7 9 3 97.36% 0.54
T2 418 2 12 3 96.55% 0.22 419 2 12 2 96.78% 0.25
T3 403 1 15 3 95.73% 0.11 404 6 10 2 97.16% 0.52
T4 363 31 29 26 87.75% 0.46 380 44 16 9 94.43% 0.75
T5 408 8 13 6 95.63% 0.45 412 11 10 2 97.24% 0.65
T6 427 7 8 3 97.53% 0.56 427 9 6 3 97.98% 0.66
T7 421 5 18 2 95.52% 0.38 421 3 20 2 95.07% 0.26
T8 362 64 15 12 91.39% 0.68 362 64 15 12 94.04% 0.79
T9 436 6 9 3 97.36% 0.50 436 5 10 3 97.14% 0.44

Table 8.6.: Results of the classification-based ML models using the combined data set.

Label
Logistic Reg. Random Forest

TP TN FP FN ACC MCC TP TN FP FN ACC MCC

T0 334 72 25 25 89.04% 0.67 340 81 16 19 92.23% 0.77
T1 436 5 11 3 96.92% 0.42 438 7 9 1 97.80% 0.61
T2 415 3 11 6 96.09% 0.25 420 3 11 1 97.24% 0.39
T3 400 4 12 6 95.73% 0.30 406 5 11 0 97.39% 0.55
T4 361 38 22 28 88.86% 0.54 378 41 19 11 93.32% 0.70
T5 409 8 13 5 95.86% 0.46 413 11 10 1 97.47% 0.68
T6 429 5 10 1 97.53% 0.52 428 7 8 2 97.75% 0.59
T7 420 6 17 3 95.52% 0.40 422 5 18 1 95.74% 0.41
T8 363 56 23 11 92.49% 0.73 365 64 15 9 94.70% 0.81
T9 433 5 10 6 96.48% 0.37 436 3 12 3 96.70% 0.30

screening. The classification-based accuracy of the approach is also strongly dependent on
the SLT used.

8.5.3. Regression-based Performance Screening

The regression-based performance screening is utilized for the labeled data set X. In contrast
to the classification-based approach, the regression model provides a numerical performance
value which is the precise performance value of the SLTs. Three different ML models are
separately trained on the data set. A scatter plot shows the predicted performance value
vs. the measured performance value from the labeled devices. The scatter plot using the
functional path ROs as features and the RidgeCV regression is shown in Figure 8.9 employing

109



8. Performance Screening Using Functional Path RO

SLT T0.

95 100 105 110 115

Measured Frequency in %

95

100

105

110

P
re

d
ic

te
d

F
re

q
u

en
cy

in
%

Training

Test

Pred. = Meas.

Figure 8.9.: Measured vs. predicted performance for T0.

The solid line within the scatter plot represents the ideal line where the model’s predicted
frequency equals the FMAX characterization’s measured frequency. Each dot represents one
device in the scatter plot; the red devices belong to the training set S, and the blue to the
validation set T. The nRMSE of this scatter plot is 1.68 %.

The results of the different ML models using the functional path ROs and the SMONs are
presented in Table 8.7 and Table 8.8.

Table 8.7.: Prediction accuracy on the functional path ROs.

Label
RidgeCV PCA Reg. Rand. For.

nMAE nRMSE R2 G nMAE nRMSE R2 G nMAE nRMSE R2 G

T0 1.34% 1.68% 85.3% 10.5% 1.42% 1.80% 82.9% 11.3% 1.36% 1.71% 84.7% 10.8%
T1 1.66% 2.04% 64.7% 13.0% 1.67% 2.06% 64.9% 12.9% 1.71% 2.15% 61.6% 13.6%
T2 1.63% 2.03% 66.9% 13.0% 1.68% 2.08% 65.7% 13.3% 1.80% 2.22% 61.1% 14.2%
T3 1.65% 2.09% 68.0% 13.5% 1.67% 2.12% 67.7% 13.5% 1.79% 2.26% 63.3% 14.3%
T4 1.41% 1.77% 78.7% 11.2% 1.45% 1.83% 77.2% 11.6% 1.44% 1.77% 78.4% 11.1%
T5 1.50% 1.87% 67.9% 12.0% 1.55% 1.95% 65.6% 12.2% 1.60% 2.01% 63.4% 12.6%
T6 1.61% 2.00% 67.6% 12.8% 1.63% 2.04% 67.0% 13.0% 1.68% 2.12% 64.2% 13.5%
T7 1.55% 1.97% 65.5% 12.7% 1.62% 2.06% 63.1% 12.9% 1.74% 2.20% 58.5% 13.5%
T8 1.34% 1.68% 85.4% 10.7% 1.34% 1.69% 85.3% 10.7% 1.34% 1.69% 85.3% 10.4%
T9 1.66% 2.06% 66.2% 13.2% 1.73% 2.12% 64.4% 13.6% 1.78% 2.19% 62.3% 13.8%

Regression models for both feature sets provide the lowest error in T0, T4, and T8; in such
SLTs, the classification approaches (see Section 8.5.2) performed worst. Comparing the results
of the functional path ROs with the SMONs, it can be seen that the SMONs provide a lower
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Table 8.8.: Prediction accuracy on the SMONs.

Label
RidgeCV PCA Reg. Rand. For.

nMAE nRMSE R2 G nMAE nRMSE R2 G nMAE nRMSE R2 G

T0 1.32% 1.68% 85.4% 10.3% 1.41% 1.78% 83.4% 11.1% 1.38% 1.76% 83.9% 11.1%
T1 1.32% 1.68% 76.0% 10.7% 1.36% 1.73% 74.9% 10.9% 1.53% 1.92% 69.5% 12.1%
T2 1.44% 1.80% 74.0% 11.4% 1.46% 1.85% 72.6% 11.9% 1.63% 2.05% 66.6% 13.2%
T3 1.39% 1.78% 76.7% 11.4% 1.44% 1.85% 75.3% 11.8% 1.69% 2.15% 67.1% 13.6%
T4 1.37% 1.73% 79.5% 10.9% 1.40% 1.76% 78.9% 11.1% 1.43% 1.79% 78.0% 11.3%
T5 1.29% 1.61% 76.3% 10.0% 1.32% 1.65% 75.3% 10.3% 1.45% 1.81% 70.3% 11.5%
T6 1.37% 1.71% 76.5% 10.9% 1.39% 1.74% 75.7% 11.1% 1.53% 1.94% 70.2% 12.3%
T7 1.41% 1.75% 72.6% 11.2% 1.42% 1.76% 73.0% 11.0% 1.61% 2.06% 63.5% 12.8%
T8 1.37% 1.69% 85.1% 10.7% 1.40% 1.71% 84.8% 10.9% 1.39% 1.73% 84.6% 10.7%
T9 1.39% 1.71% 76.5% 10.9% 1.42% 1.76% 75.2% 11.4% 1.62% 1.99% 68.8% 12.7%

error in nearly all SLTs. However, in SLT T8, the functional path ROs show a lower error.
Also, a third run is performed with the combined data set in the regression-based screening.

The results of the combined feature set are shown in Table 8.9.

Table 8.9.: Prediction Accuracy on the Combined data set.

Label
RidgeCV PCA Reg. Rand. For.

nMAE nRMSE R2 G nMAE nRMSE R2 G nMAE nRMSE R2 G

T0 1.25% 1.58% 87.0% 9.7% 1.38% 1.74% 84.1% 10.9% 1.32% 1.67% 85.5% 10.6%
T1 1.29% 1.63% 77.5% 10.4% 1.41% 1.77% 73.9% 11.1% 1.52% 1.93% 69.1% 12.1%
T2 1.33% 1.68% 77.3% 10.7% 1.46% 1.84% 73.1% 11.8% 1.62% 2.03% 67.4% 13.0%
T3 1.30% 1.68% 79.2% 10.8% 1.43% 1.85% 75.5% 11.7% 1.65% 2.12% 67.9% 13.4%
T4 1.28% 1.62% 82.1% 10.2% 1.39% 1.74% 79.3% 11.0% 1.39% 1.71% 79.8% 10.8%
T5 1.21% 1.50% 79.3% 9.4% 1.34% 1.69% 74.1% 10.6% 1.47% 1.84% 69.4% 11.6%
T6 1.25% 1.55% 80.6% 9.9% 1.40% 1.77% 75.1% 11.3% 1.47% 1.89% 71.7% 12.0%
T7 1.31% 1.64% 76.1% 10.5% 1.40% 1.78% 72.4% 11.1% 1.55% 2.02% 65.0% 12.4%
T8 1.27% 1.58% 87.0% 10.0% 1.30% 1.63% 86.3% 10.3% 1.34% 1.66% 85.9% 10.2%
T9 1.27% 1.60% 79.6% 10.1% 1.46% 1.81% 74.1% 11.6% 1.59% 1.98% 69.2% 12.5%

In all SLTs, the nMAE and nRMSE are lowered compared with the separate feature set.
The regression models can utilize the benefits of the functional path ROs and the SMONs
to reduce the error further and minimize the screening guardband. The comparison of the
screening guardband needed is presented in Figure 8.10. Also, the screening guardband can
be reduced by using the combined features set in all SLTs.

A characteristic of the random forest algorithm is the built-in feature importance ranking
based on the mean decrease in impurity. That provides an overview of the features’ im-
portance in the trained ML model. In order to get an overview of the contributions and
importance of the ROs, the cumulated mean decrease in impurity is calculated for all SLTs
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Figure 8.10.: Guardband comparison using the RidgeCV regression.

and shown in Figure 8.11. The combined feature set from Table 8.9 is used in this analysis.
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Figure 8.11.: Cumulated RO importance.

The cumulated mean decrease in impurity reveals that some dedicated ROs (RO0, RO2,
SMON3, and SMON8) have substantial importance in predicting some SLTs.

The regression-based results suggest that the functional path ROs provide good perfor-
mance screening results; however, the SMONs in most SLTs give a more satisfactory result. A
reasonable performance screening can be made with both types of ROs, which meet the auto-
motive quality requirements. Performance screening with the highest accuracy is achieved by
combining the two sets of ROs. Thus, the functional path ROs are one central pillar in the
performance screening flow.
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8.5.4. Applied Performance Screening on unlabeled Data

This section deploys the developed ML models using the regression-based approach to
unlabeled data U. Then the yield is calculated based on the performance screening results.
This analysis is only done for the regression-based performance screening using the RidgeCV
since the calculated guardband is investigated to achieve automotive quality.

Each manufactured device is, by default, an unlabeled device since the RO measurements
are part of the test program. However, the unlabeled devices are produced in the engineering
phase, in which the process is less stable than in the later high-volume production. There-
fore, this estimation and analysis do not represent the later production screening from the
yield perspective. Also, FTH and the resulting FSCREEN are theoretically selected. In this
experimental performance screening, six lots that have been manufactured under similar
process conditions are selected. Thus, the selected devices have a first approximation of
natural process variation as found in later production. U contains 13 565 devices from the 6
production lots.

The functional path RO frequencies of the unlabeled devices are then passed to the pre-
trained ML model, and the performance of each device is predicted. The results of using the
functional path ROs and T0 are shown in Figure 8.12 for the RidgeCV algorithm.
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Figure 8.12.: Guardband comparison RidgeCV regression for T0.

The dotted line is the defined FTH for which the performance screening is set. The colored
vertical lines divide the resulting distribution into pass and fail. The different colors are the
resulting FSCREEN for the different feature sets: the functional path ROs, the SMONs, and the
combined feature set. All devices on the left side of this screening border are fail, and the pass
devices are on the right. In particular, the screening frequency using the combined feature
caused a significant shift left of the border - since the prediction does have a higher accuracy.
This can also be seen in the calculated performance yield. The performance-related yield is
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calculated for the unlabeled devices in all SLTs. The FSCREEN is calculated using Equation 8.7,
and the yield is calculated using Equation 8.8. The results are shown in Table 8.10.

Table 8.10.: FSCREEN and yield estimation for performance screening.

Label
FSCREEN Yield Yield Gain (Combined

vs. SMONs) (Pct. Points)Fpath SMON Combined Fpath SMON Combined

T0 110.5% 110.3% 109.7% 25.4% 26.0% 28.6% 2.6
T1 113.0% 110.7% 110.4% 20.4% 31.9% 34.4% 2.5
T2 113.0% 111.4% 110.7% 21.4% 31.1% 34.8% 3.7
T3 113.5% 111.4% 110.8% 20.0% 31.3% 34.7% 3.4
T4 111.2% 110.9% 110.2% 24.5% 26.2% 29.3% 3.1
T5 112.0% 110.0% 109.4% 24.3% 34.2% 37.6% 3.4
T6 112.8% 110.9% 109.9% 21.9% 33.2% 37.9% 4.7
T7 112.7% 111.2% 110.5% 19.5% 28.0% 32.7% 4.7
T8 110.7% 110.7% 110.0% 27.7% 27.7% 30.4% 2.7
T9 113.2% 110.9% 110.1% 19.2% 31.8% 36.1% 4.3

The ML model accuracy and the resulting FSCREEN are in the same range for T0, T4, and T8
using the functional path ROs and the SMONs, as highlighted in the previous section. In the
other SLTs, the SMONs provide a better prediction and, therefore, a lower FSCREEN , resulting
in a higher yield. The right column in Table 8.10 shows the yield gain of the combined data
set compared with the SMONs. Thus, the positive effect of the functional path ROs on the
yield becomes evident here. For every SLT, a yield gain of 2.5 up to 4.7 percentage point is
achieved by using the combined data set. Thus the functional path ROs act as a supporting
structure to make the performance screening more accurate and help to increase the yield.
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The Post-Silicon part presents the activities once the manufactured MCU contains the imple-
mented functional path ROs. Chapter 7 presents how the functional path ROs are measured
and validates the quality of the measurements. The results show that the functional path ROs
are accurately measured with a high reproducibility on the ATE.

Chapter 8 elaborates on using the functional path RO as a performance monitor. The basics
of performance screening and the data set needed for that are discussed. ML is used to
determine the performance of an MCU based on indirect monitors such as functional path ROs.
In particular, two approaches are presented: the classification-based performance screening
and the regression-based performance screening. For both approaches, the functional path
ROs are used for performance screening, and in order to compare the functional path RO
results with a benchmark, the SMON module is used in the same manner for performance
screening. The combined dataset is used in the third use case, which means functional path
RO and the SMON module. Also, several algorithms are used in the ML. The results of
classification-based performance screening show good accuracy in performance screening
with all data sets used. In some test cases, the functional path ROs are better; in others, the
SMONs. Whereas with the regression-based approach, the results change. First of all, both
structures (functional path ROs and SMONs) provide good accuracy in performance screening.
However, the SMONs show slightly better results then the functional path ROs in most test
cases. The significant advantage is the combined data set. The combination of functional
path ROs and SMONs in performance screening improved the accuracy of performance
screening in all test cases, resulting in a lower screening guardband. The impact of the
reduced screening guardband is evaluated on a more considerable amount of production data,
and the resulting yield is shown. Using the functional path ROs as supporting monitors in
the combined data set reduces the yield loss by 2.5 up to 4.7 percentage points. This indicates
the significant advantage of the functional path ROs as performance monitors especially by
combining them with dedicated SMONs.

However, it should be mentioned here that only 22 functional path ROs were used in this
analysis; the number of implemented ROs can be increased due to the scalable implementa-
tion.

115



10. Conclusion

10.1. Summary of Key Contributions

The automotive Microcontrollers (MCUs) have high-quality requirements. This is the reason
for the extensive testing of such MCUs, and one crucial test is the performance screening.
The performance screening is a challenging task and requires effort. A well-established and
accurate methodology uses indirect performance monitors, namely the Ring oscillators (ROs).
However, the accuracy of the performance screening depends strongly on the structure of
such ROs. Furthermore, traditional ROs add a significant area and leakage overhead to the
design. In this work, the functional path ROs are presented, which are on-chip integrated
monitors for performance screening. This work is divided into two main parts: Part I - the
Pre-Silicon part, and Part II - the Post-Silicon part.

Part I presents the implementation of functional path ROs, including methodologies to
improve the functional path ROs regarding routing and efficiency. The main contributions of
this work in that part are:

• The scalable implementation of the functional path RO in an industrial design, which
leads up to 96 % savings in terms of leakage and area compared to the traditional RO
structures.

• Two advanced implementation methods to reduce the implementation effort: the concept
of natural loops and the Best Paper Award- winning concept of self-enabling.

• The self-enabling approach which leads to a significant reduction in routing effort.

• The path selection flow selects promising functional paths for RO implementation with
minimal turnaround time and compatibility with industrial design flows.

• The path selection flow is validated through analog simulation and sensitivity analysis
to continuously improve the path selection flow in the specified PVT space.

In Part II, the implemented functional path ROs on silicon are measured and validated.
Ultimately, their frequencies are used for the performance screening. The main contributions
of this work in that part are:
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• The measured functional path RO frequencies have high quality and repeatability and
meet the expected pre-silicon simulation results.

• The measured frequencies are used for the ML-based performance screening that
provides a high accuracy.

• The ML problem is modeled as a classification problem and regression problem, and
the accuracy using the functional path ROs is discussed.

• The performance screening accuracy can be significantly improved by combining the
functional path ROs with the SMONs.

Finally, the functional path ROs can compete with the traditional SMONs in terms of
prediction accuracy in all test cases. The Functional path ROs are considerably more efficient
than traditional SMONs, particularly regarding leakage, area consumption, and routing
effort. Combining a few dedicated SMONs and functional path ROs provides outstanding
performance monitors for highly accurate screening. Thus, the functional path ROs contribute
to producing more sustainable and economical MCUs.

10.2. Obstacles in an Industrial Context

In addition to the many advantages of functional path ROs, such structures can lead to
obstacles in the industrial environment that should be mentioned.

The ECO implementation of the functional path ROs can lead to an obstacle - however,
it is only applicable in the industrial context. Ideally, the MCU design passes through the
design flow step by step, the ECO phase fixes all issues, and the functional path ROs are
implemented. In reality, there is a time to market pressure, which accelerates the design
flow. Thus, the timeline becomes tighter in the ECO phase - one of the last steps before
tape-out. The tight timeline results in the optimized ECO phase, and the functional path RO
implementation is executed with some other ECO steps in parallel. The impact is shown in
Section 5.2.1, which has not had a significant impact in the test case in this thesis. However,
that could be changed in other designs. Therefore, carefully planning the functional path RO
implementation via ECO is necessary.

Another potential obstacle is the circumstance of the path delay fault model for path
sensitization. In this work, there were no barriers due to a large automobile MCU with an
extensive DfT environment. However, this might change in other designs. In this work, many
functional paths can be sensitized using a commercial ATPG tool in path delay fault mode.
The number of sensitizable paths and the used scan environment are crucial for this path
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sensitization. Therefore, the functional path RO approach may have limited applicability for
designs with few sensitizable paths.

10.3. Future Work

The thesis delivers a proof of concept for implementing and using functional path ROs. Even
the 22 implemented functional path ROs improve the performance screening and increase the
yield. Future MCUs products shall have several hundreds of functional path ROs, including
the self-enabling mechanism and all architectural and conceptional methodologies presented
in this work. In addition, the path selection process shall be continually improved with
the sensitivity-based approach proposed in Section 5.3. With such improvements, a further
decrease in the screening guardband is possible.

As mentioned in Section 10.2, the sensitization using commercial ATPG tools in path
delay fault mode can lead to obstacles. In order to overcome this obstacle, a particular path
sensitization mode for functional path ROs is meaningful. That additional mode will not be
forced to ensure path sensitization during clock events since the oscillation of the functional
path ROs is clock-independent. With such ATPG mode in place, more functional paths can be
enabled for the RO implementation.

The ATE is used to sensitize and measure the functional path ROs. Such utilization allows
the measurement of functional path ROs in the initial production state on ATE. An in-field
usage of the functional path ROs can be enabled by using a deterministic scan pattern on-chip.
Methods to do this are proposed in [122]. Using such an approach, path sensitization and
in-field measurement of the functional path RO frequencies is possible using an on-chip
counter. Such an approach can enable functional path RO for predictive maintenance and
lifecycle monitoring.

In the end, functional path ROs are promising and efficient structures for performance
screening, and they are even more powerful by utilizing ML approaches. The further work
proposal indicates the potential of functional path ROs, either for more advanced performance
screening or emerging applications for in-field usage.
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