

Acknowledgement

I want to thank all my colleagues at the chair, as well as the administrative staff, Alex, Janine,
Amy, and Ute, for their kindness and invaluable help, and Professor Knoll for his supervision.
I especially want to thank my KI-ASIC project teammates, Tobi, Robin, Nico, and Negin, for
creating a fun and enjoyable work environment all these years. I also greatly appreciate the
scientific and endless discussions with Tobi and Nico, which eventually led to this thesis’s
main contributions. I also want to thank my mentor Leon Larsen for his support at the start
of my research, his guidance was extremely valuable for taking my first steps and finding my
path through. Thanks also to Katrine, Josué, Nico, and Oliver for the feedback and tips on
the dissertation.

Above all else, I want to thank all the friends and family who have supported me all this
time. I would need several pages to describe how each of you has helped me, and even then,
I would be missing words.

¡Os lo agradezco de todo corazón!

Munich, May 10, 2024 Javier López Randulfe

Abstract

Neuromorphic computing is an emerging field that takes inspiration from nature to craft fast
and efficient systems. Contrary to traditional computing, where data is processed in frames
sent periodically to the algorithms, neuromorphic systems are event-based, meaning that
data is represented by events over time that are processed asynchronously. Spiking neural
networks are a typical example of neuromorphic algorithms. In these algorithms, computing
is distributed among multiple nodes called neurons and data is propagated as binary spikes.
These spiking neural networks are accelerated in dedicated neuromorphic chips to achieve
the promised low power and latency. Depending on their scope of application, these chips
range from tiny edge-computing devices to large data centres. They can be based on digi-
tal processors, analogue electronics, or a mix of both. Neuromorphic hardware and spiking
neural networks have grabbed the attention of the automotive industry thanks to their ef-
ficient operation. While research is already devising neuromorphic systems for sensors like
LiDAR or event-based cameras for perception tasks, event-based processing is still unexplored
for automotive radar applications. Frequency-modulated continuous-wave (FMCW) radar is a
low-power sensor crucial for driving tasks like adaptive cruise control or collision avoidance.
They provide a direct measurement of the range and velocity of objects and excel under ad-
verse weather conditions. The temporal and sparse nature of FMCW radar data makes this
sensor an ideal candidate for being processed using neuromorphic systems.

This work explores, for the first time, the application of neuromorphic algorithms for di-
rectly processing raw data from FMCW radar sensors. The main contribution is the design
of a complete signal processing pipeline starting from the radar signal to generate the fre-
quency spectrum. An analogue-to-spike encoder (ASE) circuit encodes the voltages into spikes
without requiring an analogue-to-digital converter, and a spiking neural network replicates
the functionality of the Fourier transform, generating the frequency spectrum with the spikes
of the ASE. The thesis also includes implementing and testing a spiking neural network that
performs the object-detection task on the output of the Fourier transform. High sparsity, i.e.,
low spike density, is paramount for making neuromorphic applications efficient. Contrary
to rate-based neuromorphic algorithms with high spike density, the ASE and the spiking al-
gorithms encode information in the precise timing of spikes. Namely, each data sample is
represented by no more than one spike, resulting in highly sparse algorithms. While the ASE
was implemented as a prototype circuit, the spiking neural networks were implemented in
the digital neuromorphic chips Loihi 2 and SpiNNaker 2. The experiments tested the ASE
using synthetic electric signals obtained in a laboratory and the spiking neural networks
with simulated and actual sensor data from automotive scenarios. Experiments also included
processing the resulting spikes from the ASE with the spiking Fourier transform. Results
show that the neuromorphic pipeline maintains the accuracy of well-established methods like
analogue-to-digital conversion or the Fourier transform and opens the door to accelerating
end-to-end signal processing pipelines employing neuromorphic systems.

v

Zusammenfassung

Neuromorphic Computing ist ein aufstrebender Bereich, der von der Natur inspiriert ist, um
schnelle und effiziente Systeme zu entwickeln. Im Gegensatz zur traditionellen Datenver-
arbeitung, bei der die Daten getaktet in Form von Blöcken an die Algorithmen gesendet
und verarbeitet werden, sind neuromorphe Systeme ereignisbasiert, d. h., die Daten wer-
den durch zeitliche Ereignisse dargestellt, die asynchron verarbeitet werden. Gepulste neu-
ronale Netze sind ein typisches Beispiel für neuromorphe Algorithmen. Bei diesen Algo-
rithmen ist die Datenverarbeitung auf mehrere Knoten, Neuronen genannt, verteilt und die
Daten werden als binäre Pulse übertragen. Diese gepulste neuronale Netze werden auf
speziellen neuromorphen Chips beschleunigt, um den versprochenen geringen Stromver-
brauch und die geringe Latenzzeit zu erreichen. Je nach Anwendungsbereich findet man
diese Chips in kleinen Edge-Computing-Geräten bis hin zu großen Datenzentren. Sie können
auf digitalen Prozessoren, analoger Elektronik oder einer Mischung aus beidem beruhen.
Neuromorphe Hardware und gepulste neuronale Netze haben aufgrund ihrer effizienten
Funktionsweise die Aufmerksamkeit der Automobilindustrie auf sich gezogen. Während die
Forschung bereits an neuromorphe Systeme für Sensoren wie LiDAR oder ereignisbasierte
Bildsensoren für Wahrnehmungsaufgaben arbeitet, ist die ereignisbasierte Verarbeitung für
automobile-Radaranwendungen noch weitestgehend unerforscht. Das frequency-modulated
continuous-wave (FMCW)-Radar ist ein stromsparender Sensor, der für Fahraufgaben wie die
Abstandsregeltempomat oder die Kollisionsvermeidung von entscheidender Bedeutung ist.
Sie ermöglichen eine direkte Messung der Entfernung und Geschwindigkeit von Objekten
und eignen sich hervorragend für den Einsatz unter ungünstigen Wetterbedingungen. Die
zeitliche und spärliche Natur von FMCW-Radardaten macht sie zu einem idealen Kandidaten
für die Verarbeitung mittels neuromorpher Systeme.

In dieser Arbeit wird zum ersten Mal die Anwendung neuromorphen Algorithmen für die
direkte Verarbeitung von Rohdaten von FMCW-Radarsensoren untersucht. Der Hauptbeitrag
ist der Entwurf einer vollständigen Signalverarbeitungspipeline von Radarsignale zur Erzeu-
gung des Frequenzspektrum. Eine analogue-to-spike encoder (ASE)-Schaltung kodiert die
Spannungen in Pulse, ohne dass ein Analog-Digital-Wandler erforderlich ist. Ein gepulstes
neuronales Netz bildet die Funktionalität der Fourier-Transformation, die Erzeugung des Fre-
quenzspektrums, mit den Pulsen des ASE ab. Die Arbeit umfasst auch die Implementierung
und den Test eines gepulsten neuronalen Netzes für die Objekterkennung im Anschluss an die
Fourier-Transformation. Eine hohe Sparsamkeit, d. h. eine niedrige Pulse-Dichte, ist für die
Entwicklung effizienter neuromorpher Anwendungen von zentraler Bedeutung. Im Gegen-
satz zu ratenbasierten neuromorphen Algorithmen mit hoher Pulse-Dichte kodieren der ASE
und die gepulste Algorithmen Informationen im präzisen Zeiten der Pulse. Jedes Daten-
muster wird durch nicht mehr als einen Puls dargestellt. Jeder Datenpunkt wird durch nicht
mehr als einen Puls in der vorgestellten neuromorphen Datenverarbeitungskette dargestellt,
was zu sehr spärlichen Algorithmen führt. Während der ASE als Prototyp-Schaltung im-
plementiert wurde, wurden die gepulste neuronalen Netze in den digitalen neuromorphen
Chips Loihi 2 und SpiNNaker 2 implementiert. In den Experimenten wurde der ASE mit
synthetischen elektrischen Signalen getestet, die in einem Labor erzeugt wurden, und die
gepulste neuronale Netze mit simulierten und tatsächlichen Sensordaten aus Automobil-
szenarien. Darüber hinaus wurde auch die Verarbeitung der aus dem ASE resultierenden
Pulse mit der gepulste Fourier Transformation evaluiert. Die Ergebnisse zeigen, dass die neu-
romorphe Pipeline die Genauigkeit etablierter Methoden wie der Analog-Digital-Wandlung
oder der Fourier-Transformation beibehält und die Tür zur Beschleunigung von End-to-End
Signalverarbeitungspipelines unter Verwendung neuromorpher Systeme öffnet.

Contents

1 Introduction 1
1.1 Background and motivation . 3
1.2 Goal and contribution . 8

2 Radar signal processing 13
2.1 Sensing principles . 13
2.2 Analogue to digital Conversion . 17
2.3 Frequency domain Representation . 18
2.4 Angle of arrival estimation . 24
2.5 Object detection – Constant false-alarm rate . 30
2.6 Clustering . 32

3 Neuromorphic engineering and computing 35
3.1 Biology fundamentals . 35
3.2 Spike encoding in neuromorphic applications . 43
3.3 ANN to SNN conversion . 51
3.4 Frequency domain representation . 55
3.5 Neuromorphic devices . 57

4 Temporal charge before spike neuron model 63
4.1 Working principle . 63
4.2 Neuromorphic computation of the Fourier transform 72
4.3 Conversion of convolutional neural networks . 77

5 Analogue to spike encoder 81
5.1 Working principle . 81
5.2 Electric design . 86

6 Implementation and experiment results 91
6.1 Spiking Fourier transform . 91
6.2 Analogue to spike encoder . 102
6.3 Spiking OS-CFAR . 112
6.4 Discussion . 115

7 Conclusion 121
7.1 Challenges and limitations . 122
7.2 Future work . 123

Bibliography 125

vii

viii Contents

Appendix A Hebbian learning 139
A.1 BCM rule . 140
A.2 Synaptic normalization and Oja rule . 140
A.3 Spiking timing-dependent plasticity (STDP) . 140

Appendix B Leaky integrate-and-fire differential equation 141
B.1 Current-driven LIF neuron . 141
B.2 Solving for a constant input current I0 . 142
B.3 Voltage-driven LIF neuron . 142
B.4 Solving for a constant input voltage U0 . 142

Appendix C Implementation of analogue-to-spike encoder 145
C.1 LIF temporal dynamics . 146
C.2 Discharge resistor for CLI F switch . 146
C.3 Interface with digital acquisition of spikes . 147

Appendix D Conversion with the TCBS neuron model 149

Appendix E Spiking OS-CFAR 151

List of abbreviations

ADAS advanced driver-assistance system

ADC analog-to-digital converter

AI artificial intelligence

ANN artificial neural network

AoA angle of arrival

AP action potential

ASE analogue-to-spike encoder

CA-CFAR cell-averaging CFAR

CFAR constant false alarm rate

DBSCAN density-based spatial clustering of applications with noise

DCNN deep convolutional neural network

DFT discrete Fourier transform

FFT fast Fourier transform

FMCW frequency-modulated continuous-wave

FS few spikes

FT Fourier transform

HH Hodgkin-Huxley

IF intermediate frequency

ISI inter-spike interval

LIF leaky integrate-and-fire

MIMO multiple-input multiple-output

OS-CFAR ordered-statistics CFAR

PE phase encoding

RF resonate-and-fire

RMSE root-mean-square error

ix

x Contents

ROC rank-order code

S-FT spiking Fourier transform

S-OSCFAR spiking OSCFAR

SNN spiking neural network

STDP synaptic timing-dependent plasticity

STFT short-time Fourier transform

TC temporal contrast

TCBS temporal charge before spike

TTFS time to first spike

1
Introduction

Humanity has sought to understand how the brain works since the early stages of history and
has been attempting to apply the knowledge obtained to create intelligent machines. At the
end of the XIX century, the pace of research sharply accelerated. In the natural sciences, the
discoveries fostered by Camilo Golgi and Santiago Ramon y Cajal marked the start of modern
neuroscience and the neuron doctrine. They led to our vast knowledge of how brains acquire,
process, and transmit information [Ram04]. In formal sciences, a group of mathematicians
led by Alan Turing took the first steps in defining the theory of what today we know as
artificial intelligence (AI) [Tur50]. The following decades brought a continuous flow of math-
ematical models and algorithms that increasingly narrowed the gap between the computing
capabilities of machines and biology [Sch22]. The development of artificial neural networks
(ANNs) has particularly shown remarkable growth, from the early steps with the McCulloch-
Pitts neuron model, the perceptron model, the backpropagation algorithm or the application
of the chain rule on artificial neural networks; to the modern algorithms like the long short-
term memory [HS97] or self-attention transformers [Vas+17]. This progress has resulted
in the outstanding performance of today’s deep convolutional neural networks (DCNNs) for
the processing of images [KSH17], or large language models (LLMs) for processing natural
language on a similar level as humans [Rad+18].

All these advances would not have been possible without the fast and steady growth in
the capabilities of computing systems, i.e., the exponential increase in the performance of
processing hardware has been a critical factor for the sharp progress in computer science
and AI. This partially results from what is known as Moore’s law, which predicts a doubling
in the amount of transistors on integrated circuits every two years since the 1970s. More-
over, recent breakthroughs in AI are a consequence of the appearance of new computing
architectures that use highly parallel structures for processing data, graphics processing units
being the most popular of such devices. Despite the considerable improvements in the ac-
curacy and processing speed, AI systems are very limited for edge computing applications
due to their high energy and memory requirements. One of the most illustrative examples is
the significant limitation in achieving the long-standing dream of fully autonomous vehicles
[Lin+18]. This limitation is a showcase of the still enormous gap between technology and
biology in terms of resource optimization, as the human brain has an approximate consump-
tion of 20W , in contrast to supercomputers, which require more than 40,000 times more
power for performing similar computations [Tha+18].

Inspired by the low energy consumption and the remarkable performance of biological
neural circuits, neuromorphic engineering has tried replicating them for decades [Mea90].
Researchers in this field have created novel hardware architectures based on the principles of

1

2 Chapter 1 Introduction

neural systems and offer an alternative to the Von Neumann paradigm. These architectures
are based on an asynchronous grid of independent computing units with a local memory
that emulate neurons’ role in the brain. Their communication is based on binary events
over time called spikes [Mea20]. Although there is an open debate about the requirements
a chip must meet to be considered neuromorphic, many neuromorphic chips that follow
different motivations and computing paradigms are available today. We can find large-scale
chips like the human brain project SpiNNaker, whose initial goal was to simulate brain-sized
neural networks while staying flexible and adapting to different properties and specifications
[Fur+14]; as well as chips oriented at embedded, niche applications that only require a small
number of neurons [Mor+17]; or chips like Intel’s Loihi that target industrial applications by
improving the latency and energy specifications of current solutions [Dav+18]. Regarding
the working principle, neuromorphic systems were initially designed for implementing highly
efficient electronic neural circuits by taking advantage of the sub-threshold properties of
CMOS transistors [Ind21; DMM95]. Newer generations of neuromorphic systems are more
varied and include digital chips that perform arithmetic operations like traditional computers
do [Fur+14; Dav+18]. One last group of chips implements a hybrid approach, combining
the sub-threshold regime for neuronal computations and digital electronics to communicate
between the different neural nodes [Sch+17].

After the initial breakthroughs in neuromorphic hardware architectures and communica-
tion protocols, a new research subfield called neuromorphic computing emerged to fulfil the
need for algorithms that could leverage the benefits of neuromorphic hardware [Ind21]. This
is the purpose of a new generation of ANNs named spiking neural networks (SNNs) [Maa97].
SNNs are formed by parallel computing nodes that process incoming events asynchronously,
store information locally, and react by generating new events or spikes. The main aim of
neuromorphic computing research is to reduce the gap between Engineering and biological
systems and create fast and efficient bio-inspired algorithms [Tha+18]. On the one hand, it
replicates and validates spiking neural models that mimic the behaviour of biological neurons
that help understand how the brain works. On the other hand, it adapts those models so they
can solve Engineering problems with higher accuracy, lower energy consumption, and faster
reaction times than current state-of-the-art algorithms. Research on SNNs includes diverse
tasks such as designing network architectures, information encoding schemes in spikes, dy-
namic models for the neurons, or learning models that adapt the network properties over
time to optimize them for specific tasks. Therefore, neuromorphic computing is highly inter-
disciplinary, influenced by diverse fields like computational neuroscience, cognition, electrical
engineering, computer science, and control theory.

Neuromorphic systems hold significant promise in advancing sensor signal processing
research. Research is increasingly integrating them into signal processing pipelines span-
ning diverse sensor types, offering the potential to notably reduce energy consumption in
pipelines with tight energy requirements [Sch+22]. Event-based processing and informa-
tion encoding into asynchronous event streams make neuromorphic systems well-suited for
processing time-varying inputs that carry highly time-correlated information. Hence, neu-
romorphic computing emerges as a promising tool for signal processing in embedded sys-
tems, with applications for advanced driver-assistance systems (ADASs) standing out due to
their formidable challenges. ADASs’ operation within dynamically changing environments,
resource constraints, dense data streams, real-time processing demands, and the necessity
for high accuracy underscores the crucial role of signal processing. With LiDAR and vision
cameras, radar sensors are critical in providing data necessary for the perception of the en-
vironment to ensure safe and efficient driving. Radar sensors often deal with vast amounts
of real-time data and require efficient processing techniques to extract sparse information
from noisy backgrounds. Neuromorphic computing offers the potential to address these chal-

1.1 Background and motivation 3

lenges by providing energy-efficient, parallel processing capabilities suited for handling the
continuous data stream.

The goal of this work was to explore the application of sparse SNNs for radar signal
processing and design novel time-coded models for performing traditional radar signal pro-
cessing tasks starting at the raw analogue data provided by the sensor’s circuit. Research
mainly dealt with the data encoding techniques and the spiking neuron models, with a mi-
nor focus on network architectures and learning approaches for SNNs. The replaced sig-
nal processing tasks were (i) the analogue-to-digital conversion of sensor signals, (ii) the
frequency-spectrum representation, (iii) object detection, and (iv) object classification, with
a special focus on tasks (i) and (ii). The designed SNNs for tasks (ii) and (iii) were imple-
mented on digital neuromorphic hardware, namely the SpiNNaker 2 chip and Intel’s Loihi,
and the experiments were run on real-world data. The neuron model designed for (i) was
implemented on an ad-hoc electric circuit and tested on artificial data generated at a lab.
Experiments also included merging tasks (i) to (iii) for creating a spiking signal processing
chain for automotive radar data, starting from the analogue signal until obtaining a target
point cloud.

1.1 Background and motivation

While neuromorphic computing is still in the early stages of development and faces challenges
such as limited hardware and software availability, it holds significant promise for impacting
various fields, particularly those that require energy efficiency, fast processing, and adaptabil-
ity. Over the years, the scope has broadened from the initial research replicating the neuronal
structures for sensing the environment [Mea20], to the multiple potential applications of this
technology nowadays [Sch+22]. In 2022, AI, together with data centres and cryptocurren-
cies, consumed around 2% of the global power demand, and the tendency is to double in
2026 [IEA24]. With this motivation, some neuromorphic systems aim to be the basis for new
data centres for energy-efficient AI, Data Analytics, and Process Optimization, thanks to their
lower energy consumption and sustainable approach [Vog+24]. Neuromorphic computing
is also well-suited for cognitive computing research, as it can simulate how human brains
process information and validate biological models [Rho+20]. Furthermore, Neuromorphic
processors are promising for edge-computing applications with energy constraints by lever-
aging neuromorphic computers’ low-power operation and event-driven nature for real-time
processing and play a critical role in developing autonomous systems, including robotics
[Bin+18], drones [Sta+20], and self-driving cars [Via+21], where neuromorphic systems
collect sensor data and replace traditional signal processing algorithms by event-based SNNs
[Zhe+23; Wan+20]. The resulting systems consist of streamlined SNNs that perform tasks
with increasing levels of abstraction, from the input data to meaningful symbols that define
the objects in the sensor’s surroundings. Spike encoding is crucial for making these pipelines
efficient, as the number of spikes directly influences the application’s footprint. The encoding
strategies must be co-designed with the neuron models determining the SNNs dynamics, as
the former defines the message the latter interprets. Rather than striving for direct mimicry
of the human brain, biological principles inspire the design process, so the resulting models
are tailored to meet the computational demands of real-world applications.

4 Chapter 1 Introduction

1.1.1 Efficient spike representation

Spike-based neuromorphic applications require processing and extracting meaningful infor-
mation from spatio-temporal data represented as a series of spike trains. Neuromorphic
solutions encode and process information efficiently using spikes, mimicking biological neu-
ral networks. As neuromorphic hardware architectures become more present, there is a need
for efficient algorithms that can exploit the benefits of these chips. One of the most important
factors for determining the performance of SNNs when they are implemented on neuromor-
phic hardware is the sparsity, which refers to the number of spikes used by the network, i.e.,
the lower spike activity in the network, the less energy it will consume. In the most popular
digital neuromorphic chips, spike sparsity is also inversely proportional to the total latency
of the system [Dav+18; Rho+18; DF21]. For a given population of spiking neurons, we can
think of temporal sparsity and spatial sparsity. The former refers to the number of spikes that
each neuron needs to emit to correctly transmit information, and the latter refers to how
many neurons in the population are active for each input sequence. The sparsity of an SNN
depends on design decisions like the model of the neuron dynamics, the architecture of the
network, and the encoding technique used for mapping information into spikes. Sparsity
inherently depends on the task the SNN is solving: Low-level tasks closer to sensor data gen-
erally take as input very dense data that contains information spread over large data frames
together with redundant data and noise. In contrast, high-level tasks employ pre-processed
data where essential information is concentrated and unimportant data and noise are filtered
out. This is analogous to the brain: senses collect a high density of information processed se-
quentially by multiple neuron layers. Initial layers are very active, and subsequent layers are
more sparse and react to precise patterns, e.g., many spikes from thalamic neurons, where
sensory input is collected, are required to fire single neurons in the layers of the neocortex
they are connected to [BP12; Rho+20].

Literature typically classifies spike encoding techniques into rate encoding or time encoding
[Aug+21b], depending on whether the information is encoded in the rate of spikes or the
precise timing of the spikes. Some sources also include a third type called population encod-
ing, where information is stored in the number of spikes across a population of neurons, i.e.,
along the spatial dimension [DA01]. However, population encoding could also be understood
as a subset of rate encoding [Aug+21b]. Even though there is an open debate in biology
about which technique is used by neurons [Bre15], the supremacy of time encoding from a
computational perspective is evident when analyzing parameters like the system latency and
energy efficiency [Mea20; DF21]. Time-coded SNNs are more sparse; thus, less energy is re-
quired to transmit information across the network. Moreover, since communication requires
fewer spikes, the throughput in the interneuron connections will be higher, and the latency
for conveying information will be lower. The first steps of neuromorphic computing research
mainly focused on rate-based algorithms, as their translation into floating-point operations
is more straightforward to understand [Rue+17]. Their goal was to prove the feasibility of
performing complex tasks with SNNs. However, research in the last years has shifted its focus
towards time encoding methods [Chr+22].

1.1.2 Neuromorphic computing for sensor signal processing

Sensor is a term that refers to any device that responds in a predictive manner to a signal
or stimulus. In the case of natural systems, sensors react to a signal by producing a specific
flux of ions, whereas artificial sensors typically react by producing a flux of electrons. In
[FF10], an artificial sensor is defined as a device that receives a stimulus and responds with an
electrical signal. Based on this definition, the output of a sensor takes the form of voltage,

1.1 Background and motivation 5

current, or electric charge. Besides, the output signal can carry information in properties
like its polarity, frequency, and phase. Literature traditionally classifies sensors from several
perspectives: Depending on the type of excitation (active or passive); the employed refer-
ence system (absolute or relative); the kind of stimulus they measure (acoustic, electric,
chemical, magnetic, optical . . .); their conversion phenomena (photoelectric, thermoelectric,
magnetoelectric . . .); or their field of application (agriculture, space, construction, domestic,
automotive . . .). The study of sensors is vast, and a comprehensive overview is out of the
scope of this thesis. [FF10] offers a detailed overview of the topic for the interested reader.

Sensor signal processing is a field associated with Electrical Engineering and Computer
Science disciplines. It encompasses all techniques used to modify the signals obtained from
sensors to generate meaningful data. Sensor data processing typically involves long pipelines
of chained processing stages in multiple computing platforms. The first stages occur in
high-performance analogue circuits that efficiently process the data in real-time at high
speeds. These components produce a signal compatible with the digital interface of the
sensor through operations like amplification, filtering, level shifting, and impedance match-
ing [FF10]. For sensors formed by more than one channel, a multiplexer usually follows
the conditioning circuit to switch between channels periodically. Alternatively, when sensors
are formed by an array of multiple antennas, the signals from the different channels contain
redundant information that can be combined in a beamforming process. Finally, the output
signal is digitised in an analog-to-digital converter (ADC) and sent to a digital processor that
performs the following processing pipeline stages. Semantics become more relevant there,
so the output data is more meaningful for human interpretation or for creating a final appli-
cation.

One of the main challenges for modern embedded systems is implementing sophisticated
solutions to solve complex problems while keeping a low power consumption. Hence, a
growing amount of research is working toward using neuromorphic hardware for fast and
efficient signal processing pipelines [Aim+22], and it is expected to gain momentum within
the industry in the following years. A market analysis predicted that neuromorphic comput-
ing could represent up to 20% of the AI market share by 2035 [Int21]. The main features
driving this interest are the sparsity, event-based processing, and suitability for processing
data that changes over time. The use of SNNs is especially appealing for applications that are
dominated by some of these features:

• Applications where data is parallel and sparse, like peak clustering, tracking, or infer-
ence of DCNNs.

• Applications highly dominated by temporal dynamics and event-based data, like the
processing of event-based sensors.

• Applications that can operate directly on the raw voltage provided by the sensor, thus
removing the necessity of an ADC.

In some cases, applying SNNs is beneficial only for specific processing stages. For this
reason, some chip designs follow hybrid approaches where the data processing swaps be-
tween neuromorphic and traditional computing approaches throughout the processing flow
[Yan+21]. The suitability of neuromorphic systems for signal processing also depends on the
type of sensor at hand: Whereas some sensors produce dense, frame-based data that is hard
to accelerate on neuromorphic hardware, others provide sparse events or time series that can
be efficiently computed with SNNs. For this reason, research on neuromorphic computing for
signal processing targets niche applications where the nature of the sensor and the demand
for fast and efficient computation justifies its implementation. The perception task for mobile
systems like mobile robots, drones, and ADASs is paradigmatic, as they possess all the afore-
mentioned characteristics, i.e., the sensors onboard produce data that is sparse, redundant,

6 Chapter 1 Introduction

and highly correlated over time. Moreover, safety requirements demand fast reaction times
and high accuracy for calculating the location of obstacles and other vehicles, and the limited
energy available in the batteries requires computing approaches with constrained consump-
tion, as this determines the maximum navigation time. In the car industry, the increasing
push for more intelligent vehicles is bringing the sensing and computing systems onboard,
composed of GPUs, ASICs, and FPGAs, to drain up to 10% of the available energy [Lin+18],
reducing the available mileage. Perception typically takes place through LiDAR, radar, and
vision sensors. Ultrasound sensors are used for tasks like parking assistance and obstacle
detection at low speeds, where close-range detection is essential, so their processing with
neuromorphic hardware is less attractive. A new type of sensing called event-based vision
is getting more attention for replacing or complementing traditional vision cameras due to
their robustness and fast response times, and researchers anticipate a wide use of this sen-
sor for autonomous navigation [Che+20]. Table 1.1 compares the aforementioned sensors
qualitatively.

Event-based vision sensors operate differently from traditional cameras by outputting
asynchronous brightness changes (events) instead of fixed-size frames at a fixed rate. Event-
based cameras provide advantages like low latency (microseconds vs. milliseconds), high
dynamic range (140 dB vs. 60 dB), and no motion blur. Event-based sensors produce a
sequence of events defined by the pixel location and the exact timing of the event. Data is
transmitted using an address-event representation protocol to facilitate efficient communi-
cation to the element processing the events [IH11]. The first event-based sensor was intro-
duced by Mead and Mahowald in 1988 [MM88], and since then, research with this sensing
technology has been fruitful. Tobi Delbruck’s team significantly contributed by developing
the dynamic-vision sensor [LPD08]. Because they generate asynchronous, event-based data,
they are highly compatible with neuromorphic hardware and algorithms. [Che+20] de-
scribes this sensor’s working principle and processing alternatives in detail and reviews the
most prominent algorithms and applications.

LiDAR, which stands for Light Detection and Ranging, is a sensing technology that has
gained momentum in recent years thanks to its fast and accurate sensing of the surrounding
environment [Beh+17]. The working principle of these sensors consists of the emission of
coherent light waves with precise knowledge of their direction and timing and the recording
of the arrival of the reflections generated when the light beams hit a target. The round-trip
delay indicates the distance to the detected target. A beam-steering technique is necessary
to orient the light towards all desired directions to scan the whole area and obtain a 3D
representation of the environment. Alternatively, flash LiDAR sensors scan the whole scene
simultaneously at the cost of reduced light intensity. Recent advances in neuromorphic com-
puting have shown the potential of bio-inspired methods for processing LiDAR data [DA23].
Neuromorphic approaches can be applied to different stages of LiDAR processing chains,
from the raw data formed by the photon arrival times to computing already processed point

Table 1.1: Qualitative comparison of some characteristics of the most relevant sensors for current and future
automotive applications. Robustness refers to a combination of accuracy and lack of clutter.

Sensor Price Data density* Robustness Maturity

Vision Low High Low High
LiDAR High Mid High Mid
Radar Low Low Mid Mid
Event-based vision High Low High Low

* For LiDAR and radar, data density refers to the point cloud generated after processing the raw signal.

1.1 Background and motivation 7

clouds. In [Wan+20], the authors process the temporal pulses obtained from LiDAR sensors
with spiking neural networks to solve an object detection task. The authors in [Sha+20]
introduce the design of a memristive architecture for processing LiDAR signals following an
event-based fashion. The work in [Afs+20] directly encodes the photon time of flight for
3D imaging applications into spikes using an address-event representation, similar to event-
based vision sensors. The resulting event-based method drastically reduces the data rate and
improves the accuracy compared to frame-based alternatives.

Similar to LiDAR, radar technology is based on the emission of electromagnetic waves
and detecting the reflections produced by obstacles in the vicinity [Pat+17]. The core dif-
ference resides in the wavelength of the emitted waves, i.e., whereas LiDAR sensors work in
the infrared spectrum, radars lie in the radio spectrum. Most automotive radar sensors oper-
ate in the 76–81 GHz band and ongoing efforts aim to increase this value to over 100 GHz
[WHM21]. Compared to LiDAR sensors, radars can detect obstacles hidden behind other ob-
jects; achieve long ranges, up to 250m; are more reliable under adverse weather conditions,
like rain, fog, and darkness; and are more affordable. On the downside, they are generally
less robust regarding detection accuracy and range resolution. Radar sensing and processing
is a mature field, as it is more than 100 years old, even though its usage onboard vehicles
started recently thanks to the improvement of the mm-wave technology [Pat+17]. We dis-
tinguish pulsed radar, frequency-modulated radar, or frequency-modulated continuous-wave
(FMCW) radar depending on how the radar wave is modulated over time. The latter is the
strategy used for automotive applications, as it allows for the simultaneous calculation of
the position and speed of targets and is, thus, the primary sensor considered in this thesis.
chapter 2 details the fundamentals of this type of radar sensor and the most common oper-
ations applied to its output. The most prominent usage to date of neuromorphic computing
for FMCW radar has been gesture recognition. This is motivated by the ease of classifying
hand gestures compared to automotive tasks and the availability of public datasets for this
type of task. In [Ger+22], the authors proposed an SNN that learns gestures from binned
radar range-Doppler and range-angle maps. They used the leaky integrate-and-fire (LIF) neu-
ron model and learned the weights using surrogate gradients and backpropagation through
time. The authors in [Stu+21] presented a digital, event-driven chip able to classify ges-
tures draining only 60µW of power. To classify the gestures, they initially trained an ANN
and converted the learnt weights to an SNN based on the LIF neuron model. The work in
[Tsa+21] uses a liquid state machine in combination with a spike representation of input
range-Doppler maps for classifying input hand gestures. All these works show the feasibility
of using neuromorphic computing for processing signals from FMCW radars and motivate
the design of SNNs that can perform more complex tasks such as frequency-spectrum repre-
sentation, multi-object detection, or clustering, which could be accelerated in neuromorphic
hardware for automotive applications.

Although audio sensors are unsuitable for perception tasks in mobility applications, they
are also attractive for neuromorphic research in this area for several reasons. Firstly, they
produce data with temporal patterns similar to radar and LiDAR, so transferring the de-
signed neuromorphic algorithms is possible. Secondly, they pose a more straightforward
challenge than the other sensors, as they work on slower time scales and their applications
require lower precision. These sensors have already been the target of a research competi-
tion organized by Intel to push the development of neuromorphic signal processing solutions
[Tim+23]. The winners proposed a method based on gated spiking neurons that decom-
pose the audio spectrogram into frequency sub-bands, which they then filtered individually.
In [Aug+21a], the authors use resonate-and-fire neurons as a first layer to filter the differ-
ent frequency components in audio signals for later classification of speech commands using
surrogate gradients to differentiate the neuron function. A specially interesting feature of

8 Chapter 1 Introduction

the neuron model they used is the fact that neurons take sensor voltages as input, so the
SNN could be accelerated in hardware without the need of an ADC component. Other works
directly classified speech commands using SNNs trained with supervised [Dom+18] and un-
supervised [DHX18] learning methods.

1.1.3 Radar signal processing and compatibility with neuromorphic HW

Starting from the raw analogue signal produced by the sensor, a radar processing pipeline
contains various operations computed sequentially. Regardless of the final application, radar
pipelines typically consist of the following initial stages:

• Analogue-to-digital-conversion: This is a fundamental operation consisting of translating
analogue values in the continuous domain to discrete, digital values. ADCs are the
components carrying out this operation.

• Frequency spectrum representation: As radar waves carry information in the frequency
components, mapping the signal to its frequency spectrum is crucial. Thanks to its ro-
bustness and computational efficiency, the Fourier transform (FT) is the most extended
algorithm for performing the task.

• Angle of arrival (AoA) estimation: Sensors formed by an array of multiple antennas
allow us to obtain the direction of a target by comparing the relative distance to each
of the antennas. The techniques for performing this task range from analytic geometry
processes based on triangulation to beamforming or computing the FT in the angular
dimension.

• Object detection: This stage determines which radar reflections correspond to actual
objects and discards all data considered background or noise. The output is a point
cloud.

• Clustering: After obtaining a point cloud, a clustering algorithm groups generated
points into blobs that belong to the same object.

After processing the raw signal, higher-level stages compute the output and provide mean-
ingful information such as the objects’ identity, location, and path-tracking.

The temporal nature of radar signals and the increasing demand for efficient and accurate
systems in automotive applications make SNNs an attractive choice for processing the data
from these sensors. However, research to date on applying event-based algorithms to radar
data is limited to gesture recognition. Moreover, none of the SNNs designed for solving this
task take as input the raw signals from the sensors, i.e. they learn the features and classify
gestures using already processed data comprised of the frequency spectrum given by the FT
or object point clouds. Previous work with other sensors shows that SNNs can directly process
sensor raw data, e.g., EEG signals [Sha+21a] or audio signals [Aug+21a]. Such approaches
promise energy gains while yielding high accuracy, inspiring the crafting of similar concepts
for other sensors like, in this case, FMCW radar.

1.2 Goal and contribution

This work aimed to design neuromorphic computing strategies for processing FMCW radar
signals, with the ultimate goal of obtaining end-to-end neuromorphic signal processing

1.2 Goal and contribution 9

pipelines that can operate in real-time and leverage the benefits of event-based computing.
The design approach was modular, so the replacement of each processing stage was handled
independently, following the task distribution shown in section 1.1.3. Nevertheless, the de-
sign of the individual algorithms had a global vision, and the implementation experiments
analysed the interoperability of the algorithms. The compatibility between the processing el-
ements required special care when choosing spike encoding schemes, i.e., an efficient spiking
pipeline must comprise SNNs with matching neural codes.

The main body of this thesis consists of the following two contributions:

• The design of an SNN for replicating the function of the FT. The idea was initially
explored in [Lóp+21] using a rate-based neuron model and was later improved in
[Lóp+22] employing a novel time-based spiking neuron model called temporal charge
before spike (TCBS). The weights of the spiking Fourier transform (S-FT) are mathe-
matically derived from the FT equations, and the SNN is time encoded, i.e., one spike
is enough to represent each data point. The algorithm was implemented and tested
on digital neuromorphic hardware, namely the chips from the Loihi family and the
SpiNNaker 2 chip.

• The replacement of ADCs using an analogue circuit that directly converts the sensor
signals to spikes. The designed analogue-to-spike encoder (ASE) provides time-coded
spikes compatible with the S-FT. The ASE was introduced in [LRK23], where a cir-
cuit prototype was implemented and tested on electric signals produced in a lab. The
experiments included the assessment of the S-FT on the spike trains produced by the
circuit.

This work also includes the following minor contributions:

• The collaboration in the design of a time-based SNN for object detection, called spiking
OSCFAR (S-OSCFAR), presented in [Lóp+21]. Further work reported in [Vog+22]
included a more comprehensive analysis of the S-OSCFAR parameters and its validation
on automotive data.

• The application in [LRK22] of the TCBS neuron model for converting DCNNs to SNNs.
The work tested the neuron model for an image classification task.

• The analysis and review in [Vog+22] of the potential of neuromorphic computing for
its application to FMCW radar sensors.

• The collaboration in [Kai+22] for applying complex-valued neural networks to com-
pute the localization of targets from FMCW radar data.

• The collaboration in [Ree+25] for optimising resonate-and-fire neurons for computing
the precise frequency spectrum of multi-dimensional data.

This work studied the application of SNNs for radar signal processing, prioritising the
development of networks with optimal efficiency, particularly emphasizing sparsity and time-
coding techniques. The research was an integral approach that started with the sensor
analogue signal. The proposed methodologies facilitate substituting ADCs and traditional
frequency-spectrum representations with event-based models. The S-FT method was em-
ployed for frequency spectrum computation, and an ASE was designed to compute a contin-
uous signal into spikes compatible with the S-FT. Follow-up work delved into using resonate-
and-fire neurons. Despite their higher computational demands, these neurons present a

10 Chapter 1 Introduction

promising alternative for directly computing frequency spectra from analogue signals with-
out needing prior conversion into spikes or digital values. The code needed for implementing
the models shown in this thesis is open-source and is available on a public repository1.

This thesis was the result of a collaboration between the Technical University of Munich
(TUM) and industrial and academic partners in the context of the KI-ASIC project2, funded by
the Federal Ministry of Research and Education of Germany (Bundesministerium für Bildung
und Forschung). The KI-ASIC project explored the application of neuromorphic solutions for
automotive radar, including developing neuromorphic hardware architectures, neuromorphic
computing algorithms, and their implementation in real-world driving scenarios. The role of
TUM in the project was to develop neuromorphic algorithms for processing radar signals and
create quantitative benchmarks that show the performance of neuromorphic solutions and
allow their comparison with traditional signal processing chains.

The work summarized here is the first application of neuromorphic computing to the raw
data of radar sensors. The resulting implementation is a proof-of-concept that opens the door
to end-to-end neuromorphic radar pipelines where the sensor signal is directly converted to
events and no ADC is necessary. The algorithms presented here are also the first applications
of SNNs with radar data in open-world scenarios.

1.2.1 Publications

The work introduced in this thesis has been published in the following peer-reviewed contri-
butions:

Journal articles

• Lopez-Randulfe, J., Duswald, T., Bing, Z. and Knoll, A., 2021. Spiking neural network
for fourier transform and object detection for automotive radar. Frontiers in Neuro-
robotics, 15, p.688344. [Lóp+21].

• Lopez-Randulfe, J., Reeb, N., Karimi, N., Liu, C., Gonzalez, H.A., Dietrich, R., Vogginger,
B., Mayr, C. and Knoll, A., 2022. Time-coded spiking fourier transform in neuromorphic
hardware. IEEE Transactions on Computers, 71(11), pp.2792-2802. [Lóp+22].

• Vogginger, B., Kreutz, F., Lopez-Randulfe, J., Liu, C., Dietrich, R., Gonzalez, H.A.,
Scholz, D., Reeb, N., Auge, D., Hille, J. and Arsalan, M., 2022. Automotive radar
processing with spiking neural networks: Concepts and challenges. Frontiers in Neuro-
science, 16, p.851774. [Vog+22].

• Lopez-Randulfe, J., Reeb, N. and Knoll, A., 2023. Integrate-and-fire circuit for con-
verting analog signals to spikes using phase encoding. Neuromorphic Computing and
Engineering, 3(4), p.044002. [LRK23].

• Reeb, N., Lopez-Randulfe, J., Dietrich R. and Knoll, A., 2025. Range and Angle Estima-
tion with Spiking Neural Resonators for FMCW Radar arXiv preprint arXiv:2503.00898
[Ree+25]

1https://github.com/KI-ASIC-TUM
2https://www.elektronikforschung.de/projekte/ki-asic

https://github.com/KI-ASIC-TUM
https://www.elektronikforschung.de/projekte/ki-asic

1.2 Goal and contribution 11

Conference proceedings

• Kaiser, K., Daugalas, J., Lopez-Randulfe, J., Knoll, A., Weigel, R. and Lurz, F., 2022,
September. Complex-Valued Neural Networks for Millimeter Wave FMCW-Radar Angle
Estimations. In 2022 19th European Radar Conference (EuRAD) (pp. 145-148). IEEE.
[Kai+22].

• Lopez-Randulfe, J., Reeb, N. and Knoll, A., 2022. Conversion of ConvNets to Spik-
ing Neural Networks With Less Than One Spike per Neuron. In 2022 Conference on
Cognitive Computational Neuroscience (pp. 553-555). [LRK22].

1.2.2 Acknowledgment of Research Collaborators and Funding

I acknowledge the valuable contributions of the collaborators and co-authors to this work,
whose expertise significantly enriched the development of the methods described in this the-
sis. Nico Reeb, Tobias Duswald, Robin Dietrich, Negin Karimi, Susanne Junghans, Leon
Larsen, and Alexander Lenz provided essential insights for the theoretical modelling and
testing of the introduced solutions. This work also benefited from the insights provided by
colleagues at the Technical University of Dresden and Infineon AG. Additionally, the con-
tributions of students who collaborated on this project, particularly those working on their
master’s theses in collaboration with this research, were instrumental. The work presented
in this thesis was carried out as part of KI-ASIC, a research project funded by the Federal
Ministry of Education and Research of Germany under project number 16ES0995.

1.2.3 Thesis structure

This thesis is structured as follows. chapter 2 describes the working principles of FMCW
radar and the main processing steps in a traditional radar pipeline for detecting targets’
relative position, angle, and velocity. chapter 3 describes the fundamentals of neuromorphic
engineering and computing, and the current state-of-the-art. chapter 4 introduces the TCBS
neuron model and its application as a replacement for the FT and as a tool for converting
DCNNs. chapter 5 introduces an ASE, which was designed for converting analogue signals to
spikes for later use by the TCBS. chapter 6 describes the implementation of the TCBS neuron
model, the ASE, and the S-OSCFAR for processing analogue signals. The implementations
are followed by experiments that validate the different elements for processing radar sensors.
Depending on the experiment, the source of the data was i) obtained from a radar software
simulator, ii) obtained from an electric function generator, or iii) from real radar sensors.
Finally, the work is closed with the concluding remarks in chapter 7.

2
Radar signal processing

Sensor signal processing is a field with a history spanning over a century that deals with the
acquisition, transformation, and representation of sensor data. Sensors are a vital component
of almost every technological system nowadays, and the study and development of sensor
processing pipelines is as old as the electrical engineering discipline itself. Signal processing
has been the subject of steady improvement in terms of accuracy, reliability, and efficiency.
One of the main drivers of this constant improvement has been the sharp evolution of elec-
tronic systems over the last 50 years, thanks to the increasing degree of miniaturization and
computing capability per silicon area, as described by Moore’s law [Lei+20].

Radars are sensors for locating objects in space based on the reflection of electromag-
netic waves. The term is an acronym for radio detection and ranging. Radar technology has
been under development for more than 80 years. The first real-world applications came in
the middle of the XX century and for several decades it was limited to the military field.
With the advent of modern electronics and the growth of interest in embedded systems
in recent decades, the usage of radar sensors for civil applications has been steadily in-
creasing [Win+14; Has+12]. Autonomous driving is one of the fields with the greatest
potential for developing new techniques and architectures for radar sensors, especially for
frequency-modulated continuous-wave (FMCW) radar. Their low price and robustness against
bad weather and lighting conditions make them a great companion for other sensors like
LIDAR and vision cameras [Win+14; Pat+17].

This chapter introduces the working principle of FMCW radar sensors in section 2.1. The
following sections describe the primary operations of radar signal processing pipelines, in-
cluding raw data acquisition, frequency spectrum analysis, target detection, and clustering.

2.1 Sensing principles

FMCW radar sensors emit sequences of electromagnetic waves of increasing frequency, called
chirps, and sense the echoes generated when they hit an object (see fig. 2.1). Chirps are
characterized by their base frequency f0 and the frequency and time differences since the
start and end of the chirp, which we denote as ∆ f and ∆t, respectively. The frequency
difference ∆ f = fmax− fmin is also referred to as the bandwidth of the radar chirp. In general,
we will assume fmin = f0, and we define the ramp of a chirp S as

S =
∆ f
∆t

. (2.1)

13

14 Chapter 2 Radar signal processing

Figure 2.1: Time evolution of the frequency of the emitted signal over several chirps of an FMCW radar.

As angular frequencies are often more convenient, we also define the ramp of the chirp’s
angular frequency

Sω = 2πS . (2.2)

Figure 2.2 shows the schematic of a typical FMCW radar sensor. By comparing the waveform
of the received echoes with the original signal, we can obtain information about the range
and velocity of the objects that provoked the reflections [Jan18; Pat+17]. After combining
the transmit and receive waves in an operation called mixing, we obtain a sinusoidal wave
called intermediate frequency (IF), which has the form

sIF(t) = AIFe− j2π fb t , (2.3)

where AIF is the IF’s amplitude, fb is its frequency, called beat frequency, and j is the complex
unit. From (2.3), we can estimate the range of a detected target as

R=
fbc
2S

, (2.4)

where c is the speed of light. We can also estimate the radial velocity of the target as

v =
λωD

4π fc
, (2.5)

whereωD is the Doppler shift frequency over consecutive chirps, and λ is the base wavelength
of the emitted signal. Therefore, the data is packed in frames formed by several chirps.

Derivation. We define the transmitting wave as

st(t) = Acos (ωt(t)t +φt) = Acos
�

ω0 t + Sω t2 +φt

�

, (2.6)

where A, ω0, and φt are the wave’s amplitude, base angular frequency, and initial phase, respec-
tively. We can analogously define the receiving wave,

sr(t) = Acos (ωr(t)t +φr) = αAcos [(ω0 +ωD)t + Sω(t − td)t +φr] , (2.7)

where α and td are the wave attenuation and the time delay between the transmit and receive
waves; and ωD and φr are the frequency and initial phase of the wave. An electronic component
called mixer combines the emitted and received waves. The output signal of the mixer, sm(t), is
the multiplication of both input signals,

sm(t) =
αA2

2
[cos((ωt +ωr)t + (φt +φr)) + cos((ωt −ωr)t + (φt −φr))] . (2.8)

2.1 Sensing principles 15

A low-pass filter after the mixer gets rid of the high-frequency component (i.e., the first cosine
term) and reduces eq. (2.8) to a sinusoidal signal called IF. Assuming the Doppler frequency shift
is negligible, ωD≪ω0,

sI F (t) =
αA2

2
cos [(Sω td)t +φI F] , (2.9)

where φI F = φt −φr . We can observe that the IF described by (2.9) is a wave with a constant
frequency called beat frequency, fb, defined as

fb = Std . (2.10)

Thus, the beat frequency fb is proportional to the time delay td between the transmitted and
emitted waves [Win+14], which is proportional to the distance R to the object that caused the
reflection,

td =
2R
c

, (2.11)

where c is the speed of light, and the 2 in the numerator stands for the round trip of the wave
back to the receive antenna. From (2.10) and (2.11) we can infer R as

R=
fbc
2S

. (2.12)

If there is a relative velocity v between the radar sensor and the object, the relative phase φI F
between the transmitted and received waves shifts for consecutive chirps changes with an angular
frequency

ωD =
dφI F

d t
, (2.13)

where d t is the difference in the round-trip time for the electromagnetic waves. (2.13) is known
as the Doppler effect or Doppler shift. For solving the relative velocity of the target, let us express
(2.13) in discrete form,

∆φI F =ωD∆t . (2.14)

We calculate the phase shift ∆φI F as a function of the base frequency ω0 of the transmitted
electromagnetic wave

∆φI F =ω0∆t . (2.15)

Combining (2.15) with (2.11), we obtain

∆φI F = 2π f0
2∆R

c
. (2.16)

As the change in R for two consecutive chirps is ∆R= v∆t, and applying the equality c = λ f0 for
electromagnetic waves, we can rewrite (2.16) as

∆φI F =
4πv∆t
λ

. (2.17)

Applying the equality for the Doppler frequency in (2.14), we rewrite (2.17) as

ωD =
4πv
λ

, (2.18)

where the dimensions of ωD are [rad/chirp]. If we use the chirp frequency fc for expressing it in
[rad/s], we can solve the target radial velocity as

v =
ωDλ

4π fc
. (2.19)

□

16 Chapter 2 Radar signal processing

Measurement limitations

The resolution and maximum detectable values for the range and velocity of targets in front
of an FMCW radar are extracted from the equations that define the working principle of the
sensor. The range resolution ∆R of a radar is the minimum distance between two objects that
allows us to distinguish both objects. Assuming that the IF signal is processed with a Fourier
transform (FT), two frequency components f1 and f2 are distinguishable in the frequency
spectrum if

| f1 − f2|>
1
∆t

. (2.20)

∆t, which defines the chirp duration, corresponds as well with the time window used
for generating the frequency spectrum. Combining (2.20) with (2.10), we obtain the range
resolution

∆R=
c

2∆ f
. (2.21)

Equation (2.21) implies that the range resolution of an FMCW radar only depends on the
sensor bandwidth ∆ f . We obtain the maximum range Rmax that the sensor can detect from
(2.4) by replacing fb by the maximum achievable frequency,

Rmax =
fsampc

2S
, (2.22)

where fsamp is the sampling frequency of the analog-to-digital converter (ADC) that converts
the IF signal. The properties of the velocity estimation depend on the chirp layout of the
sensor. Same as for the range, the velocity resolution ∆v depends on the time window used
for measuring, in this case, in the chirp dimension. If a frame has N chirps, the angular
resolution of the velocity is ∆ωv = 2π/N . We then use (2.19) to obtain the radial velocity
resolution,

∆v =
λ

2T f
, (2.23)

where T f = N∆t is the total frame time. Finally, the maximum velocity that the sensor can
measure is

vmax =
λ

4∆t
. (2.24)

In other words, we can increase the velocity range by reducing the chirp time.

Reflection power

When using radar sensors, the power captured at the receiving antenna Prx indicates the
intensity of the signal reflected by an object in the sensor’s field of view. Electromagnetic
waves propagate homogeneously in the 3D space. If the emitting antenna sends a wave with
power Ptx, the power per unit area of the emitted signal at a distance R is

P ′tx =
Ptx

4πR2
. (2.25)

Likewise, (2.25) is applied again when the wave is scattered after hitting a target. Assuming
the distance between the transmit and receive antenna is negligible compared to the distance
to the target, we calculate the power per unit area of the wave when it reaches the receiver
antenna as

P ′rx =
Ptx

4πR2

1
4πR2

. (2.26)

2.2 Analogue to digital Conversion 17

The power effectively absorbed by the receive antenna depends on the effective antenna
aperture Ap, which is the area of the antenna in the direction of the arrival wave. The Ap of
a lossless antenna is calculated as

Ap =
λ2

4π
, (2.27)

where λ is the wavelength of the received electromagnetic signal. Assuming the transmit and
receive antennas have gains Gtx and Grx, and the target has a radar cross-section σ, we obtain
the general radar equation

Prx =
PtxGtxGrxσλ

2

R4(4π)3
. (2.28)

This equation calculates a target reflection’s power for specific antenna parameters and a
specific target set-up.

The radar cross-section σ reflects how easily detecting an object by a radar signal is and
depends on the object’s material, shape, and size. According to the real-world experiments
described in [KPP17], typical σ values for conventional vehicles oscillate between 8 and 25
dBsm, The authors also compared the results with the σ of pedestrians (−5 to 0dBsm) and
bicycles (∼ 10dBsm). The work in [Dee+20] includes a thorough description of pedestrians
RCS. They introduce a mathematical procedure for simulating 3D pedestrians. Typically,
co-polarization components range from −10 to 5 dBsm, and cross-polarization components
tend to be 10 dBsm smaller.

Figure 2.2: Schematic picture of a typical multiple-input multiple-output (MIMO) radar, formed by three transmit
and four receive antennas. The signals sent to the transmit antennas are combined in a mixer with the signals
received from the receive antennas, which results in the IF wave. After digitization, the IF is processed in a digital-
signal processor [Vog+22].

2.2 Analogue to digital Conversion

An ADC is the electric component that converts an analogue voltage signal into a digital time
series. The ADC is the bridge between the analogue and the digital realms, and it is a crucial
stage of sensor signal processing from the energy consumption perspective. ADC design is
a decades-long field that lies in the field of electrical engineering and is sometimes ignored
by computer scientists when designing signal processing algorithms. Energy consumption
is a critical parameter for ADCs, as the operation of these components is not trivial. They
typically drain a large percentage of the energy consumed by low-power sensor applications
[RG19].

18 Chapter 2 Radar signal processing

Theoretical studies have found a fundamental lower boundary for the energy consump-
tion of ADCs per processed sample based on the Neuman-Landauer principle [Mur13; Mur15].
The energy boundary is expressed as

Emin = 8K · T · SNR , (2.29)

where K is the Boltzmann constant, T is the temperature, and SNR is the signal-to-noise
ratio of the ADC. Even though today’s ADCs typically lie two orders of magnitude above
this boundary, authors in [Mur13] argue that this gap will hardly improve due to design
limitations.

The majority of ADC designs nowadays belong to the successive-approximation register
(SAR), delta-sigma (∆−Σ), pipelined, or flash architectures [Mur15]:

• SAR architectures are typically used for low sampling frequencies. Their working prin-
ciple is based on comparing the input voltage with the output of a digital-to-analogue
converter that sequentially approximates the actual value of the input. The input volt-
age is kept stable with a sample and hold (S/H) circuit during the comparison process.
A popular approach for improving the sampling rate fs of SAR ADCs is to implement a
time-interleaved circuit, replicating it M times in parallel with equidistant phase shifts.
Thus, the effective sampling time becomes M/ fs [Rey+19].

• ∆ − Σ architectures are well-known for the high sampling rates they can achieve. A
first circuit (delta ∆) subtracts the previously stored sample from the input voltage
and converts the result into a pulse frequency. A second circuit (sigma Σ) counts the
produced pulses and stores the count in a digital register.

• Pipelined ADCs are typically used for mid-range sampling frequencies, lying between
the SAR and ∆−Σ architectures. This architecture consists of a sequential encoding of
the input voltage using low-bit resolution flash ADCs to generate the most significant
bits at a time. The remaining bits are then passed to the next stage until the desired bit
resolution is achieved.

• Flash ADCs are used for the fastest sampling frequencies, i.e., frequencies higher than
those of the ∆−Σ architecture. Their working principle is the simplest: they create a
voltage ladder from the input voltage and compare the obtained voltages with a series
of reference voltages. The output from these comparators is combined using simple
logic gates that generate the final bit distribution. This simple approach leads to their
fast conversion speeds but also makes them very expensive and limits the output bit
resolution. Adding an S/H circuit at the input is unnecessary for this architecture.

2.3 Frequency domain Representation

Most natural signals are formed by waves with patterns repeated over time. Such waves
carry information in properties like the frequency, amplitude, and relative phaseof those
patterns. Measuring these properties and understanding their meaning is paramount for
many engineering applications. Frequency domain representation consists of the mapping
of periodic waves from a time-based system into a frequency-based system. This allows for
further analysis and processing of the data. When working with digital data, this processing
stage decomposes a time series into the frequencies that dominate the signal.

2.3 Frequency domain Representation 19

An essential characteristic for classifying frequency-based applications is whether they
analyse specific frequencies or the whole spectrum. Applications that analyse a single fre-
quency or a small group of frequencies tend to be more precise and efficient, as more compu-
tational resources are usually available for assessing each frequency. These approaches are
typically based on filters tuned for the desired frequencies.

The most popular technique for mapping signals to their whole frequency spectrum is
the Fourier transform (FT), an integral transform introduced by Joseph Fourier in 1822. The
general expression of the FT algorithm calculates the frequency spectrum of time-varying
signals according to

y(ν) =

∫ ∞

−∞
f (x)e− j2πνx d x , (2.30)

where y(ν) is the Fourier transform of the integrable and continuous function f (x) at the
frequency ν. The FT is a lossless transformation, as the original signal can be recovered by
applying the Fourier inversion formula

f (x) =

∫ ∞

−∞
y(ν)e j2πνx dν . (2.31)

Researchers have provided different versions of the FT over the last decades, aiming to
optimise its computational efficiency and adaptability to dynamically changing data. Alter-
native algorithms like the wavelet transform address some of the caveats of the FT.

2.3.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) is one of the central processing operations applied to
radar data in the digital domain. It is obtained by applying the general FT algorithm (2.30)
to a digitised signal. In automotive radar applications, it is typically applied to at least two
different dimensions, i.e., the range and velocity. Whereas the range-frequency spectrum
is obtained by directly applying the FT to the magnitude of an input chirp, the velocity is
extracted from the phase change in the range frequency components over consecutive chirps.
This phase shift is caused by the Doppler effect, described in more detail in section 2.1.

A discrete version of (2.30) is needed to process the time series obtained after digitising a
sensor signal. Thus, the DFT is the result of applying the general expression (2.30) to discrete
samples,

Yk =
1
N

N−1
∑

n=0

Xne− j2π kn
N , (2.32)

where Yk is the kth bin of the Fourier transform of the discrete-time series X of length N , and
Xn is the nth element of the time series. The division by N normalises the transform with the
number of samples. (2.32) can also be expressed in the trigonometric form

Yk =
1
N

N−1
∑

n=0

Xn

�

cos
�

2π
N

kn
�

− j · sin
�

2π
N

kn
��

. (2.33)

To compute the whole spectrum, we need to evaluate (2.32) N times (k ∈ [0, N − 1]), which
requires N2 multiplication operations and N(N − 1) addition operations. Thus, the computa-
tional complexity of the DFT is O(N2).

The FT generates a complex-valued spectrum with N bins, where (N/2)−1 bins represent
positive frequency values, (N/2)−1 bins represent negative ones, and the remaining two bins

20 Chapter 2 Radar signal processing

represent the DC component. The amplitude of the FT bins is proportional to the energy of
the wave at their corresponding frequency,

Yk =
A2

k

4
, (2.34)

where Ak is the amplitude of the input wave for the kth frequency. The result of the FT is
symmetric for a real input, meaning that the positive and negative parts of the spectrum are
identical and half of the wave’s energy is displayed on each side, i.e., we can discard the last
N/2 bins and reduce (2.34) to

Yk =
A2

k

2
. (2.35)

The half-spectrum is typically arranged so the first bin represents the offset or zero-mode
of the transform, Y0. The lowest frequency that a DFT can detect is the one that translates into
an entire cycle within the sampling window. This frequency defines the frequency resolution
∆ f of the DFT. If the input signal has N equally spaced values sampled with a frequency fs
over a sampling time window of length ∆T , we define ∆ f as

∆ f =
1
∆T

=
fs
N

, (2.36)

which is analogous to (2.21) in section 2.1. The resolution ∆ f relates to the precision in
the estimation of a frequency component. However, for distinguishing two consecutive fre-
quency components, f1 and f2, they need to be at a distance of at least twice the resolution,
| f1 − f2|> 2∆ f . Smaller distances would lead to a homogeneous peak, making it impossible
to distinguish the two peaks. The DFT has (N/2)− 1 frequency bins, and the last bin YN bin
represents the frequency

fN =
fs
N

�

N
2
− 1
�

=
fs
2
−

fs
N

. (2.37)

By combining (2.36) and (2.37), we obtain the maximum frequency that the DFT can map
into the spectrum,

fmax = fN +∆ f =
fs
2

, (2.38)

which corresponds as well to the Nyquist frequency of the sampled signal, i.e., it is impossible
to recover information at frequencies higher than fmax.

The possibility of inverting the FT mapping makes it an ideal choice for generating the
frequency spectrum, processing the signal in the frequency domain, and inverting the result
back to the time domain. The FT algorithm is costly, so its usage should be limited to appli-
cations that provide an actual improvement compared to alternative algorithms in the time
domain.

2.3.2 Fast Fourier transform

The fast Fourier transform (FFT) is a computationally optimized version of the DFT, and prob-
ably the most popular approach for implementing the frequency spectrum analysis. Cooley
and Tukey proposed the first FFT algorithm in 1965 [CT65], and was later considered one
of the most important algorithms of the XX century [DS00]. The FFT is based on a recursive
split of the DFT algorithm into smaller transforms to exploit the symmetry in calculating the
different output bins. This is known as the Danielson-Lanczos lemma, which states that a

2.3 Frequency domain Representation 21

DFT of size N equals the sum of two DFTs of size N/2, one formed by the even points and
the second formed by the odd points,

Yk = Y e
k + tkY o

k , (2.39)

where Y e
k and Y o

k are the DFTs of the even and odd input points, respectively, and tk is a
twiddle factor. The output of the DFT can thus be replicated with linear combinations of
smaller FTs. The intermediate DFTs are connected in pairs with crossed connections to the
following blocks, leading to what is known as the butterfly connectivity structure, which is
represented in fig. 2.3. The connectivity pattern limits the number of input samples N : for a
radix-2 architecture, one of the simplest and most popular, the butterfly blocks are connected
in groups of two inputs. This imposes the input dimensionality as a power of two, N = 2m.
Generalizing, a radix-R FFT requires the input to contain Rm samples.

The simplification of the computation of the FT using the FFT architecture leads to a
computational complexity of

O(N · log N) , (2.40)

which contrasts with the complexity of the original DFT of O(N2).

Derivation. We first calculate from (2.32) the value of the (k+ N)th bin as

Yk+N =
N−1
∑

n=0

Xne− j2π (k+N)n
N

=
N−1
∑

n=0

Xne− j2π kn
N e−i2πn . (2.41)

Analogously, the value of the (k+ N/2)th bin is

Yk+N/2 =
N−1
∑

n=0

Xne− j2π kn
N e−i2π n

2 . (2.42)

As e− j2πn = 1 we obtain the properties

Yk+N = Yk (2.43)

and
Yk+N/2 = −Yk . (2.44)

We now rephrase (2.32) as

Yk =

N
2 −1
∑

n=0

X2ne− j2π k2n
N +

N
2 −1
∑

n=0

X2n+1e− j2π k(2n+1)
N

=

N
2 −1
∑

n=0

X2ne− j2π kn
N/2 + e− j2π k

N

N
2 −1
∑

n=0

X2n+1e− j2π kn
N/2 . (2.45)

The previous expression is the Danielson-Lanczos lemma. It has the form Yk = Y e
k + tkY o

k , where
Y e

k and Y o
k are the smaller DFTs for even and odd indexed samples, respectively, and tk = e− j2πk/N

is called the twiddle factor. We know that the terms Y e
k and Y o

k for k and k + N/2 are identical
thanks to the property in (2.43), and the twiddle factor is negated, tk+N/2 = −tk due to (2.44).

22 Chapter 2 Radar signal processing

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x0

x4

x2

x6

x1

x5

x3

x7

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

t

t

t

t

t

t

t

tt

t

t

t

Figure 2.3: Structure of a radix-2 FFT algorithm for an input with 8 points. The white connection nodes represent
additions, where inputs with a −1 next to them are negated. The white boxes represent the multiplication with the
twiddle factors.

Therefore, we only need to compute the Fourier coefficients for half of the output points. Applying
this simplification, the calculation for the values of (2.45) for k > N/2 yields

Yk+N/2 = EkY e
k − tkY o

k . (2.46)

We obtain the FFT by applying (2.45) m times recursively on the resulting DFTs, where N = 2m.
In the last stage, N/2 DFTs is formed by two multiplications, leading to a total of N computations
(N additions and N multiplications). In the previous stage, we have N/4 DFTs formed by four
multiplications. Generalizing, the computation of a given stage m1 contains N/m1 DFTs with
m1 multiplications and m1 additions each. We obtain the FT iterating back and reconstructing
all m stages, yielding a computational complexity of

O (N ·m) =O(N · log N) . (2.47)

The iteration rule in (2.45) and the structure depicted in fig. 2.3 correspond to a radix-2 butterfly
structure, as each DFT is split into two smaller DFTs. If we instead split each DFT into 4, 8, or
more DFTs, we obtain butterflies with more extensive connectivity, i.e. radix-4 butterfly, radix-8
butterfly, and so on.

□

Table 2.1 summarizes the main parameters and performance indicators for FFT accelera-
tors published recently. The works in [Che+18] and [Guo+14] consist of variable size FFT
hardware accelerator for digital signal processing applications. The accelerator in [Che+18]
is based on matrix transposition and uses a hybrid approach for the twiddle factors, i.e., fac-
tors used several times are stored in look-up tables, and factors used only once are directly
calculated with an algorithm. The chip described in [McK10] computes the FT using a radix-
2 FFT architecture, meant for low-power digital signal processing applications. The twiddle
factors are stored in a look-up table. The work in [Gon+21] is specially designed for radar
processing. It implements a dual-radix FFT architecture, employing radix-4 butterflies for
computing the range FT and radix-2 butterflies for the Doppler and angle FTs.

2.3 Frequency domain Representation 23

Table 2.1: Specifications and performance indicators for state-of-the-art FFT accelerators.

[Guo+14] [McK10] [Che+18] [Gon+21]

Process (nm) 65 90 45 22FDX
Voltage 1 1.3 0.9 0.6
Stream Number 2 2 2 1
Area (mm2) 4.6 - 2.4 0.024
Power (mW) 172.38 38.56 91.3 6.40
Frequency (MHz) 500 100 1000 150
Exec Time (us) 2.81 73.15 1.38 8.8

2.3.3 Sparse Fourier Transform

The motivation of a sparse FT is to drastically reduce the computational complexity of the
FFT in data with few dominant frequencies. For achieving this goal, the sparse FT analyses
only the k most dominant frequency components from the N samples of the input signal, as
opposed to the N bins that are analysed in an FFT [Gil+14]. The most straightforward case is
solving a single-frequency problem. A high-speed approach is to recover the single frequency
by comparing it to consecutive samples. This method has a complexity O(1) but is highly
susceptible to noise. Alternatively, the sparse FT performs a binary search: The N samples
are iteratively divided into several subgroups, and the algorithm searches for the subgroup
to which the frequency belongs, based on angle proximity.

Depending on the value of k, we distinguish two different types of sparse FTs:

• Exactly k-sparse case, when k is the actual number of meaningful objects in the input

• Approximately k-sparse case, when k is just an approximation of the number of objects
in the input

Whereas the computational complexity of the FFT can not beat the limit O(N log N), the
sparse FT promises computational complexities of O(k log N log(N/k)), where k is the number
of frequencies that are to be found. The complexity is reduced to O(k log N) for the exactly
k-sparse case, i.e., when the number of targets is known beforehand. The sparse FT provides
big computational gains when k≪ N . Experiments in [Gil+14] show computational gains for
sparsities lower than 0.1%, i.e., less than one dominating frequency per 1000 input samples.
Sparse FT is an efficient alternative to the FFT for highly sparse data, like GPS synchronization
or big data. This is, however, not the case of FMCW radars, as they generally record scenes
with several targets and sample sizes N ≤ 210. Moreover, the number of dominant frequencies
is generally unknown in perception tasks.

2.3.4 Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a modification of the FT intended to localize the
frequency components in time, i.e., the algorithm generates sequential frequency spectra for
different times to reflect changes in the input over time. To achieve this, we add a window
function w(t −τ) to (2.30) that yields zero outside the local region of interest,

y(ν,τ) =

∫ ∞

−∞
f (x)w(t −τ)e− j2πνx d x . (2.48)

24 Chapter 2 Radar signal processing

This way, we split the input data over time and compute the FT over the different temporal
sectors. The output of (2.48) has one more dimension than the FT for representing time and
can find temporal variations in the input signal structure. The downside of this approach is
a loss in the frequency resolution, as the input signal will now contain fewer samples. Some
authors also call this method windowed-FT [Gra95].

2.3.5 Wavelet Transform

The wavelet transform was conceived as an alternative to the FT for applications involving
non-stationarydata, where features often appear in the form of short transients. For example,
speech data is characterized by irregular, short patterns representing the different consonants
and vowels that we produce. The FT falls short in these cases, as its analysis does not use
a sense of locality [SIA09; Gra95]. Instead, the FT integrates the input signal with periodic
sine waves and detects regular, periodic patterns in the input. In other words, the FT cannot
locate the region in time when an oscillation occurs. The STFT partially solves this issue by
splitting the frequency analysis into different temporal sections and narrowing the spectrum
generation to the selected windows. This comes at the cost of a lower frequency resolution.
Analogous to the FT, the wavelet transform integrates a data series with a continuous func-
tion ψ. However, the mapping of a signal x with the wavelet function ψ occurs over different
scales and locations,

w(s,τw) =

∫ ∞

−∞
x(t)ψ∗
� t −τw

s

�

d t , (2.49)

where s and τw are the scaling factor and time shift, respectively, and (·)∗ is the complex
conjugate operator. Whereas the FT uses periodic sine and cosine functions, ψ is a brief and
irregular oscillation over time. Moreover, it is not limited to a specific function like in the FT,
but to an arbitrarily large set of functions. The choice of the function is application-specific.
Some popular functions are the Morlet wavelet, the Daubechies wavelet, or the Paul wavelet
[Gra95; TC98] Coarse and fine scales are used to find low-and high-frequency patterns,
respectively. The wavelet transform results in a 2D mapping, where one axis belongs to the
scale or frequency of the pattern, and the other axis belongs to its localization in time.

Although automotive scenarios are dynamic and objects in the surroundings are contin-
uously moving, the chirp rate of FMCW radar sensors is several orders of magnitude faster
than the velocity of the targets. This slow pace of change makes the wavelet transform un-
necessary for this application, as its main benefit is not exploited in these scenarios.

2.4 Angle of arrival estimation

Section 2.1 introduced the relationship between the frequency components of the IF signal
and the range and velocity of the targets in front of a radar sensor with a single antenna.
In some cases, sensors comprise multiple-input multiple-output (MIMO) antenna channels,
where several transmit and receive antennas are built together with a specific geometric
layout. Figure 2.2 shows the example of a radar with such layout. This method allows the
transfer of more data in parallel and, in the case of FMCW radar sensors, makes it possible
to retrieve information about the incidence angles of the detected objects relative to the
orientation of the sensor. Thus, for MIMO sensors, a complete spatial localization of the
target includes the estimation of the angle of arrival (AoA), i.e., the target’s orientation,
together with its range and relative speed. The AoA estimation can include the angles with

2.4 Angle of arrival estimation 25

the horizontal and vertical planes, referred to as azimuth and elevation, respectively. This
section describes the most relevant methods for estimating the AoA when using an FMCW
radar sensor. The choice depends on factors such as the required resolution. computational
complexity, or sensor specifications like the number of virtual antennas. For the sake of
simplicity, the section focuses only on the estimation of the azimuth, as the methods for
calculating the elevation are identical, with the added complexity of dealing with one extra
dimension.

A transmit and receive antenna combination in a MIMO sensor results in a virtual antenna
with a signal path defined by a specific incidence phase [Eck+18]. For a sensor with nt x
transmit antennas and nr x receive antennas, the total number of virtual antennas is

L = nt x · nr x . (2.50)

The AoA is calculated by detecting phase changes across the virtual antennas. Some
approaches include superresolution techniques such as MUSIC or maximum likelihood mod-
els [Pat+17]. Looking at the brain, this problem resembles sound localization, which uses
interaural time differences (ITD) for the AoA computation. In biology, highly experienced
echo-locators such as bats employ interaural level differences (ILD) instead, which, in con-
trast to the ITD using their tiny heads, can capture a wide diversity of target cross-sections at
different ranges by sensing pressure differences across their ears. Engineering ITD methods
require the concept of phase locking and delay lines so that specific neurons show a high
firing rate when a particular frequency arrives at a specific AoA [CK90]. The concept has
been proven in neuromorphic hardware with spiking neurons [Pfe+13].

2.4.1 Phase-comparison monopulse

The simplest method for estimating the AoA involves applying the known geometry of the an-
tenna array to infer the angle from the phase shift between antennas. The phase-comparison
monopulse technique is a method that relies on phase information to determine the angle of
arrival of a target. A phase-comparison monopulse radar setuptypically uses two antennas.
Assuming that the distance R to the object (2.4) is much longer than the distance d between
antennas, the incoming wave’s incidence angle Θ will be the same for all antennas. Applying
trigonometry to the MIMO geometric representation in fig. 2.4, the phase difference ∆φ of
the incoming wave between two consecutive antennas is

∆φ = 2π
dsin(Θ)
λ

. (2.51)

By precisely measuring the phase in the antennas, we can apply (2.51) for extracting the
target phase. This method is limited to situations where it is possible to isolate the reflection
from a specific target . In any case, it serves as the basis for more sophisticated methods
like using the FT in the angular dimension or beamforming, detailed in section 2.4.2 and
section 2.4.3.

26 Chapter 2 Radar signal processing

ϴ

d
ϕl ϕl+1

λ

Figure 2.4: Geometry of a wave signal arriving to an array with two antennas. The incidence angle Θ is constant
for all antennas, and the phase shiftφl−φl−1 depends onΘ, the signal wavelength λ, and the distance d between
antennas.

2.4.2 Frequency-based AoA

Instead of extracting the AoA using only the information of two antennas, we can apply the
FT method and generalize (2.51) to assess the relationship between the signal’s AoA and
the incidence phase for an antenna array. The angle-FT can be combined with a range-FT
for generating a range-angle 2D heat map, akin to the one in fig. 2.5, that facilitates the
identification of multiple targets in two dimensions. Assuming a constant distance d between
consecutive antennas, we calculate the phase at the lth virtual antenna as

φ(l) = 2π
ldsin(Θ)
λ

. (2.52)

We can apply this equality to define the incoming signal as

sr(l) = e− j(ωt+φ(l)) = e− jωt e− jφ(l) . (2.53)

At a specific time t, the first term in (2.53) stays constant, and the second term changes
according to the spatial frequency given by (2.52). Note the similarity between (2.53) and
(2.3), where the dependency over time t is replaced by a dependency in the spatial dimen-
sion defined by the antenna position l. In the same way that the FT can be applied in the

2.4 Angle of arrival estimation 27

Figure 2.5: Output of a 2D FFT in the range and angle dimensions for an FMCW radar frame. The range and AoA
magnitudes correspond to the radial and angular directions, respectively.

time dimension, we can apply the FT to extract the frequency spectrum over the antenna di-
mension. Thus, we can find the AoA by extracting the dominant phases and applying (2.52)
afterwards. We can generate the frequency spectrum using the FT defined in (2.32),

Yp =
1
L

L−1
∑

l=0

sr(l)e
− j2π kl

L , (2.54)

where Yp is the pth phase frequency component, and 0≤ p ≤ L−1. Contrary to the range FT,
the output of the angle FT is not symmetric. The first bin, p = 0, corresponds to an AoA Θ = 0,
the following L/2 bins correspond to negative angles, and the last L/2−1 bins correspond to
positive ones. Figure 2.5 depicts an example of a range-angle map of an FMCW radar frame
obtained after applying the FFT to the range and angle dimensions. We obtain the maximum
observable AoA applying (2.51). To distinguish the incidence angles without ambiguity, the
resulting phase must stay in the range ∆φ ∈ [−π,π], leading to

Θmax = sin−1
�

λ

2d

�

. (2.55)

The angle resolution is given by the formula

∆Θ =
λ

Ld · cos(Θ)
, (2.56)

which indicates that the angular resolution is best at Θ = 0 and starts decreasing until reach-
ing Θmax. To avoid aliasing, antennas are generally placed at a distance d = λ/2. Assuming
this equality, (2.56) can be simplified to

∆Θ =
2

L · cos(Θ)
. (2.57)

28 Chapter 2 Radar signal processing

2.4.3 Beamforming

Beamforming is a spatial filtering technique used in applications where signals originate from
multiple sensors or antennas with a specific array-like geometry. The same way temporal
filtering relates to the modification of a signal based on its intensity over time, spatial filtering
relates to the modification of a signal based on its intensity over the space, i.e., The signal is
filtered based on the spatial direction where it originated [VB88].

In beamforming, a processor called beamformer controls the phase and intensity of the
signal at each antenna. Hence, they create constructive and destructive interference on the
final emitted or received signal (see fig. 2.6). In a constructive setup, the signal sent to or
received from a specific direction is enhanced, and the rest of the directions in the angle
spectrum are cancelled or reduced. Analogously, in a destructive setup, the signal from a
specific direction is reduced, and the rest of the directions are maintained.

For a scenario with a MIMO sensor with L antennas, the incoming data comprises L input
signals x l(t), where 1 ≤ l ≤ L. When exposed to a single sinusoidal source with an AoA Θ,
each antenna l will provide a response signal

x l(t) = e j(ωt−∆l (Θ)) , (2.58)

where j is the complex unit and ∆l(Θ) is the phase shift of antenna l for the specific Θ. We
can represent the information arriving from the L channels in the vector form

x (t)=

x1(t)
x2(t)

...
xL(t)

. (2.59)

A beamformer filters the signal by multiplying the data from the L antennas by a weight
vector b(t),

y(t) = b(t) · x (t) , (2.60)

where y(t) is the output of the beamformer at time t. For the simple case where the AoA is
constant over time, the phase difference ∆l of each antenna stays constant. In this case, the
beamformer modifies the signal from each antenna by using fixed vector weights, b(t) = b,
also called the steering vector. The lth element of b is defined as

bl = e jΘb,l , (2.61)

where Θb,l is the phase correction introduced by the lth beamformer channel. Assuming
a constructive beamformer that enhances signals arriving from the direction Θ0, the phase
correction for the lth antenna is ∆l(Θ0), and (2.60) yields

y(t) =
L
∑

l

e∆l (Θ0)e j(ωt+Θ0−∆l (Θ0)) =
L
∑

l

e j(ωt+Θ0) = Le j(ωt+Θ0) . (2.62)

We can observe that the output in (2.62) is the aggregation of all inputs with their phases
aligned for the direction Θ0, resulting in a signal L times more powerful than the individual
inputs.

The applications where the AoA changes over time need an adaptive beamforming that
dynamically modifies the weights based on the conditions of the input signals. In other words,
the beamformer steers the main beam to the optimal direction [KS15]. This adjustment is
performed by feeding the output of the beamformer to an optimization algorithm block that
minimizes an error measurement.

2.4 Angle of arrival estimation 29

B1

B2

BL

l=1

l=2

l=L

ADC

ADC

ADC

...

Beamformer

Figure 2.6: Representation of a beamformer applied to L antennas receiving a wave from a specific source. On
the left, the source object is represented in red and the emitted wave in blue. The wave arrives to the sensor array,
in red, with a direction of arrival Θ relative to the antenna plane. After converting the input signals to digital values
on an ADC, the beamformer multiplies the signal from each antenna l by a beamforming coefficient bl .

An interesting field of application of beamforming is millimetre wave communications
[KS15]. The goal of beamforming in these applications is to enhance the final gain of the
received signal by creating directional communication, which minimizes the path losses due
to obstacles or humidity in the air. A general approach is to start the sensing operation with a
sector-level sweep, where the optimal antenna sectors are selected, followed by a refinement
phase where the phase array is determined and an optional tracking phase for adjusting
channel changes.

Beamformers are also popular in automotive radar applications to reduce interference
from other radar sensors. The beamformer estimates the received signal and minimizes the
intensity of an AoA that increases the error signal [RDP18]. The adaptive algorithm makes
use of an optimization strategy for correcting the received signal, e.g., by using a least mean
squares algorithm [RDP18] or an iterative adaptive algorithm [Eck+18].

One of the most popular adaptive beamforming techniques is Capon. Its working principle
is to adjust the response to noisy input by minimizing the variance of the incoming signals
without introducing distortions to the carried information and maximising the signal-to-noise
ratio of the signal of interest (SOI) [HN98; LSW03]. The input variance R when receiving
information from L uncorrelated sources is

R= σ0a0a∗0

L
∑

l

σl al a
∗
l +Q , (2.63)

where σl and al are the power and steering vector of the lth arriving signal, and the first
index corresponds to the signal we want to optimize. (·)∗ is the conjugate transpose opera-
tion, and Q is the noise matrix. A Capon beamformer adjusts the beamformer coefficients b
by optimizing the expression

min b∗Rb , (2.64)

and satisfying the condition
b∗a0 = 1 . (2.65)

30 Chapter 2 Radar signal processing

From (2.65) and (2.64), it can be derived that the coefficients b0 that maximize the SNR
for the first signal are

b0 =
R−1a0

a∗0R−1a0
. (2.66)

2.5 Object detection – Constant false-alarm rate

In the context of radar signal processing, object detection is the task of segmenting frequency
spectrum data into bins that belong to targets and bins that belong to the background or
noise. Contrary to data from other sensors like cameras, the intensity of radar reflections
and noise decreases with the range, so radar object detection algorithms must adapt to the
characteristics near the regions of interest. The most widely used family of algorithms for
object detection in FMCW radar applications is the constant false alarm rate (CFAR). CFAR al-
gorithms compare each input value with a threshold representing the noise level in its neigh-
bourhood. They consist of a moving window that covers the whole input and determines
whether the central point in the window, also called cell-under-test, belongs to a target. To
do so, the intensity of this cell is compared with a false-alarm threshold, which is obtained as
a function of the intensity of the neighbouring cells [JYB16].

At a given iteration, the sliding window contains the cell under test in the middle, with
a value XC , and an equal number of neighbour cells NN/2 on each side. The NG closest cells
to the cell under test are called guard cells XG. These guard cells are ignored to increase the
algorithm’s robustness, as the intensity of XC can influence their value. Figure 2.7 illustrates
two CFAR algorithms, with the data structure inside the moving window on the left side of
the diagrams. XC is modified by a scaling factor α and compared with the power of the noise
PN , which is obtained from the intensities of the neighbour cells. The CFAR algorithm yields
1 if αXC is larger than PN and 0 otherwise,

OS-CFAR(XC) =

�

1, if αXC > PN

0, otherwise.
(2.67)

The parameterization of CFAR algorithms involves setting the values for α, NG, and NN . This
parametrization depends on the configuration of the radar sensor and the type of scenarios
it will face. Moreover, the computation of the CFAR near the edges of the input map requires
the padding of the data. A common approach is to pad the map with zeroes or the average
intensity.

Depending on how PN is calculated, we distinguish among different CFAR algorithms.
The cell-averaging CFAR (CA-CFAR) computes the threshold as the average value µx inside
the window, i.e., PN is calculated by computing the average of the neighbour cells

PN = µx =

∑NN
n Xn

NN
. (2.68)

Two alternatives to the CA-CFAR are greatest of cell average CFAR and smallest of cell av-
erage CFAR, where a noise estimation is individually computed for the neighbours preceding
the cell under test and the neighbours leading it. The value PN equals the largest or small-
est of the two estimations, depending on the version. These versions show more robustness
towards noise in the edge of the targets [JYB16].

Alternatively, the ordered-statistics CFAR (OS-CFAR) [Roh83] computes the threshold in a
given window as a function of the kth largest value inside it, i.e., PN is calculated by sorting

2.5 Object detection – Constant false-alarm rate 31

the neighbour cells XN =
�

X1, X2...XNN

�

in descending order and selecting the kth value,

PN =maxk{x i , ∀x i ∈ XN} . (2.69)

The tuning of the OS-CFAR includes the selection of k. A typical rule of thumb is to set
k = 3/4NN .

When compared with each other, the CA-CFAR is easier to tune and cheaper to implement,
whereas the OS-CFAR is generally more robust against varying scenarios. The CA-CFAR gives
good results when additive Gaussian distributions approximate the noise in the data well.
The usage of guard cells is more critical for this algorithm, as the high intensities of the
neighbour cells around a target significantly impact the average of PN . For the same reason,
the padding technique must be carefully selected to obtain a good result near the edges. On
the other hand, the OS-CFAR is more robust against noise distributions different than additive
Gaussian noise, e.g. Rayleigh, Weibull, or log-normal [JYB16]. This includes outliers and
artifacts introduced by the sensor electronics. However, the tuning includes an extra term,
the k constant, and it is generally advised to perform a logarithmic conversion to the input
before processing it.

The implementation of CFAR algorithms for multidimensional radar pipelines typically
includes variations of the CA-CFAR and OS-CFAR. For example, combining both by applying
the OS-CFAR to the dimensions with the most complex noise and the CA-CFAR to the other
dimensions.

(a)

(b)

Figure 2.7: Processing flow of the (a) CA-CFAR and (b) OS-CFAR algorithms, with NG = 4 and NN = 6.
The sliding window on the left contains the cell-under-test with a value XC , the neighbour cell with values
XN = (X1, X2...X6), and the guard cells XG , represented in orange, blue, and grey, respectively. The algorithms
fetch the neighbour cells and compute the average value µx and the kth largest value Xk, respectively. In parallel,
XC is modified with the scaling factor α. If the scaled XC is larger than µx or Xk, the algorithm yields 1.

32 Chapter 2 Radar signal processing

2.6 Clustering

Clustering is the process of grouping the point cloud formed by the object-detection algo-
rithm into clusters. A clustering algorithm assigns a single label to each point in the input
map, where points belonging to the same group share the same label. Besides the labels for
the groups, these algorithms typically include a label for the background and another for the
noise. The output of an ideal clustering algorithm consists of a single cluster for each target
in the scene, and the spatial location of the clusters corresponds to the location of the tar-
gets they represent. Clustering algorithms are classified into partitioning algorithms, where
the number of clusters is decided beforehand; and hierarchical algorithms, which organize
clusters in a tree structure with an undetermined number of nodes. Even though the former
offers higher computational and memory efficiency, they are inadequate for automotive radar
processing as these sensors deal with unknown scenarios with a dynamic number of objects
around them.

One of the most popular hierarchical clustering algorithms is density-based spatial clus-
tering of applications with noise (DBSCAN) [Est+96]. DBSCAN is a density-based algorithm,
i.e., it iterates over all points and computes the density around them as the number of neigh-
bouring points, where two points are neighbours if they lie within a distance ε. DBSCAN
considers the points with a density higher than a given threshold min_pts as core points.
All density-reachable core points form a single cluster together with non-core points that are
density-reachable to them. The non-core points that do not belong to a cluster are considered
noise or outliers. algorithm 1 describes the algorithm in more detail. The pseudocode makes
no assumptions about the input size or dimensions, i.e., the point variables are objects with
an integer defining the label and an n-dimensional vector defining its coordinates.

An alternative algorithm for clustering is DENCLUE [HK98]. DENCLUE is a clustering
algorithm with similar complexity to DBSCAN that creates a density map of the input space.
The main difference lies in DENCLUE calculating the density gradient afterwards and per-
forming a hill-climbing procedure for connecting points with a low-gradient path. When
comparing both, DENCLUE shows small benefits in terms of efficiency, but its tuning is more
complicated to generalize for adapting to changing environments.

2.6 Clustering 33

Algorithm 1 DBSCAN algorithm computation

function DBSCAN(X ,ε, min_pts)
n_clusters← 0
detect ions← X = 1
for each point in detect ions do

neighbours← []
_detect ions← detect ions− point ▷ Detections excluding point
for each _point in _detect ions do

if point − _point < ε then
neighbours.add(_point)

end if
end for
if len(neighbours)> min_pts then ▷ Point is a core point

if point.label = −1 then ▷ If unlabeled, create new cluster
n_clusters← n_clusters+ 1
point.label ← n_clusters

end if
for each n_point in neighbours do

n_point.label ← point.label ▷ Label all neighbours together
end for

else
point.label ← 0 ▷ Point is a non-core point

end if
end for

end function

3
Neuromorphic engineering and computing

The fast improvement of silicon performance predicted by Gordon Moore has been antici-
pated to decline over the past 20 years ago, due to the physical limits of the silicon itself. The
massive demand for more powerful and efficient electronic systems by the market and soci-
ety has been forcing the industry and the scientific community to look for alternative ways
of improving the performance of computing systems. This motivation has led to the term
"More-than-Moore", which represents the recent trend of improving computing power by
means that lie outside of Moore’s law. On the one hand, there is an active effort to improve
the computing power from the top, i.e., software, algorithms, and hardware architectures
[Lei+20]. On the other hand, new materials and technologies are emerging for replacing the
bottom, i.e., traditional silicon wafers. This is the case of optics, organic materials, or novel
silicon packaging approaches [Iñi23].

Neuromorphic engineering is an emerging field that is inspired by the brain for creating
more efficient computing systems. Its motivation is dual, as it aims to get more insights on
the working principles of the brain, while using these new findings for creating more effi-
cient computing systems [Mar+20]. Based on the classification above, the main focus of
neuromorphic engineering is to achieve computing improvements from the top, by using ex-
isting semiconductor technologies for developing novel system architectures and computing
paradigms, which are based on the event-based, asynchronous, and highly parallel nature
of the information processing in the brain [Mar+20]. Moreover, neuromorphic engineering
seeks to benefit as well from advances from the bottom with approaches like memristors,
photonics, or spintronic devices [Wan+23].

This chapter overviews the fundamentals of neuromorphic engineering and computing.
The first section underlines the aspects of the brain that have the greatest impact on neu-
romorphic research. It continues with a description of the topics in neuromorphic research
that are more closely related to this thesis. The last sections of this chapter describe the key
technologies for implementing neuromorphic algorithms, focusing on hardware platforms
and silicon neurons. Interested readers can get an extended overview of current research in
neuromorphic engineering and computing in [FBI21], [Chr+22], and [Sch+22].

3.1 Biology fundamentals

Biology is the primary source of inspiration for developing novel neuromorphic systems. Neu-
romorphic hardware is based on the decentralized and asynchronous processing of spikes in

35

36 Chapter 3 Neuromorphic engineering and computing

the brain, and neuromorphic computing algorithms are inspired by the computational mod-
els that describe how neurons’state evolve over time and what are the main factors that
determine their firing [RJP19]. Therefore, understanding how the brain works is crucial for
developing efficient and fast neuromorphic applications.

Depending on the scope and target of their work, researchers analyse the brain from
different scales. This multiscale brain organisation is typically split into micro-, meso-, and
macro- scales. The microscale spans from genetic and molecular structures to the morphology
and dynamics of individual cells. The mesoscale deals with the connectivity and activity of
microcircuits formed by multiple neurons inside one region. Macroscale research uses en-
semble recordings for creating representations of brain areas and functions that help explain
behaviour and cognition using abstract models [DJ22; HSK19]. Modern research on the
function and structure of neural networks in the brain started with the work from Ramón y
Cajal, who first hypothesized the existence of individual cells, the neurons, that are in charge
of the communication and computing in the brain, and provided detailed drawings of the
connection trees between neurons [Ram04; Chk04].

The design of neuromorphic hardware and computing algorithms is inspired mainly by the
research on the micro- and meso-scales. Namely, in the organization of the biological neurons
in the brain and the computational theory that models their behaviour, that includes the
encoding and decoding of information, the modelling of neuronal dynamics, or the learning
of the synaptic connection weights.

3.1.1 Neuron dynamics

Neurons are cells specialized in processing information and controlling the different mech-
anisms in the body. The anatomical structure of neurons is typically divided into the soma,
which is the body of the neuron and is responsible for centralizing and processing informa-
tion; the dendrites, which collect the information arriving at the cell; and the axon, that prop-
agates information to the cells that are connected to it. The connection between dendrites
and axons typically occurs via small dendritic protrusions called spines [Ram04]. Some re-
searchers believe that the anatomical parts of the neuron play a role in the signal processing,
i.e., dendrites, axons, and spines may perform non-linear operations, frequency-dependent
filters, and compartment filters, respectively [Chk04; HA16].

Neurons process information by modulating the electrical voltage of their membrane. This
electrical modulation happens by altering the chemical composition of the cell via the ex-
change of ions between the cell body and the environment, mainly potassium (K+), sodium
(Na+), and calcium (Ca+2) [MEL03]. The permeability of ions through the neuron mem-
brane is regulated by opening and closing ion gates that allow only specific ions to pass
through. The neuron’s membrane voltage is the main parameter that determines the ion
gates’ state. Some gates are normally open and close when the membrane charges positively,
while others are normally closed and open at high membrane voltages. When the membrane
voltage reaches a certain threshold, a reaction called action potential (AP) originates. The AP
starts with a sudden increase in the electric voltage called depolarization that propagates
through the neuron and is sensed by the connected neurons. Afterwards, the neuron returns
to its resting potential through a stage known as repolarization and a subsequent stage where
the voltage overshoots below the resting potential called hyperpolarization. During the re-
polarization and hyperpolarization, the neuron is in a refractory state and is not sensitive to
new incoming spikes.

The dynamics model of a neuron is the set of equations that describe the evolution of
the neuron’s state over time. The models explaining neuron dynamics are varied, offering
different levels of abstraction depending on the studied properties or phenomena. The au-

3.1 Biology fundamentals 37

I: Detailed compartment models II: Reduced compartmental models IV: Cascade models V: Black-box modelsIII: Single-compartment models

Figure 3.1: The five levels of abstraction for neuron dynamics models. The level of abstraction increases from left
to right. From [Her+06]. Reprinted with permission from AAAS.

thors in [Her+06] classify neuron models on the five different levels of abstraction depicted
in fig. 3.1, ranging from detailed compartmental models that represent neurons with up to
1000 compartments, to black-box models that model the output as a function of the input
regardless of the internal structure. The rest of this section focuses on the third level, single-
compartment models, which ignores the neuron’s morphology, representing it as a point in
space, and focuses entirely on the mathematical description of the spike generation pro-
cess. These models describe how much the membrane potential increases after incoming
spikes, how fast it returns to the resting voltage, which additional factors influence the spike
generation, and which spike pattern will be produced by the neuron after getting excited.
Single-compartment models are typically represented as electric circuits due to the electric
nature of the neuron and the existence of electric components that can reproduce the be-
haviour described by the models. Hence, they inspire neuromorphic systems that aim to
simulate accurate temporal dynamics in a physical system and are simple enough to scale
to large populations of neurons. In general, the choice of a model is a trade-off between its
computational cost and its accuracy and fidelity to biology.

The Hodgkin-Huxley (HH) model was introduced in 1952, and the authors obtained the
Nobel Prize eleven years later thanks to it. This model was a significant breakthrough due
to its insight into understanding how neuron signalling works [Ger+14, Chapter 2.2]. The
model includes a capacitor C that represents the charge of the neuron membrane and several
resistors that represent the inverse of the membrane conductance for the different ions that
the neuron exchanges with the environment (mainly potassium, K, and sodium, Na). One last
resistor models the membrane leak conductance. The ion conductance is explained by ion
channels that allow the flow of specific ions through the membrane. The permeability of the
ion channels varies over time depending on the current state of the membrane. This change
in the permeability explains the shape of the AP. Every time the neuron receives spikes,
its membrane potential temporally increases. While this potential stays below a threshold
voltage, the membrane returns to its resting potential. A depolarisation stage starts if the
threshold is reached, generating the AP. After the AP, there is a sharp decrease of the mem-
brane voltage followed by a refractory period during which the neuron’s membrane is less
sensitive to incoming spikes.

The leaky integrate-and-fire (LIF) model is probably the most used dynamics model for
neuron simulations due to its simplicity and accuracy in describing neuron charging be-
haviour [Lap07; Abb99]. It models the neuron membrane as an R-C electric circuit. Same
as in the HH model, a capacitor represents the membrane charge, which decreases slowly
over time. The main difference with the HH model is that LIF models the flow of ions with
only one resistor, making the model cheap to compute. This simplification does not allow
us to simulate the depolarization and hyperpolarization stages of the AP. To overcome this
limitation, the implementation of the LIF model typically includes a second equation that
forces a trigger of the AP and manually resets the membrane voltage to the resting poten-
tial. A consequence of this limitation is that the LIF model cannot model complex firing
patterns. appendix B includes a formal description of the LIF differential equation, as well as
its solution for some typical cases.

38 Chapter 3 Neuromorphic engineering and computing

There is a plethora of neuron dynamics models besides the two just described. The
FitzHugh-Nagumo model [Fit61] and the Morris-Lecar model [ML81] aim to provide sim-
plified alternatives to the HH model while keeping its basic properties of excitation and prop-
agation. They provide each a two-dimensional equation system for explaining the neuron
membrane charging and the spike generation process. The former is a mathematical work
aimed at simplifying the HH model, while the latter was the result of an empirical analysis
of the dynamics of the Pacific Barnacle neural system. The model proposed by Izhikevich in
[Izh03] is a middle point between the HH and the LIF models. By using two differential equa-
tions, it is able to describe different firing patterns observed in real neurons. The authors in
[BG05] proposed the adaptive exponential integrate-and-fire model, abbreviated AdEx, as an
iteration of the previous model. In this model, a first equation describes the exponential re-
lationship between the neuron activation with the membrane voltage, and a second equation
introduces a dependency of the voltage on an adaptation variable. Izhikevich also proposed
the resonate-and-fire neuron model in [Izh01], where the excitation depends on the presence
of periodic patterns in the input that repeat with a specific resonating frequency.

3.1.2 Neuron connectivity

Synapses are the connections between neurons. The main elements of a synapse are the
pre-synaptic neuron, which emits information, the post-synaptic neuron, which receives infor-
mation, and the gap between them. Spikes generated in the pre-synaptic neuron are trans-
mitted to the post-synaptic neuron through the gap by either transmitting an electrical pulse
(electrical synapse) or by releasing neurotransmitters that stick to the post-synaptic neuron
and allow the flow of ions through its membrane (chemical synapse). Synapses are classified
into excitatory or inhibitory, depending on whether the post-synaptic neuron’s membrane
potential increases or decreases after receiving a spike from the pre-synaptic neuron.

Neuron connections in the brain form complex branching structures that add up to 60%
of the brain matter [Chk04]. The number and dimensions of the connectivity trees vary be-
tween the different neuron classes. A solid hypothesis that explains the shape and density of
the dendritic and axonal trees is the wiring cost optimization, i.e., evolution finds a structure
that provides a desired function by minimizing the wiring cost of the resulting neural network
[Chk04; BS12]. The simulations provided in [Chk04] show that the organization of axons
and dendrites in arbours reduce the connectivity volume compared to point-to-point connec-
tions. The same simulations show that dendritic spines also reduce the size of the branching
network. A complementary hypothesis for the existence of complex dendritic trees suggests
that the distance of a synapse to the neuron body affects neuron activation. According to
this hypothesis, the structure of the dendritic tree can provide complex functionality to neu-
rons. A typical neuron in the neocortex has thousands of inputs, where the majority are distal
(i.e., distant from the soma), and a smaller number are proximal (i.e., close to the soma).
While the latter synapses have a significant influence on the neuron by easily triggering an
AP, and thus define the receptive field, the former have a lesser influence, creating a small
depolarization in the neuron body, and serve as predictors for specific patterns in the input
[HA16].

When analyzing the connectivity pattern of neurons at a mesoscale, it is possible to ob-
serve canonical patterns that emerge across the different regions of the neocortex. The neo-
cortex is organized in columns and layers, and information flows mostly forward and in paral-
lel [Bri20]. Neurons of the same layer are also connected via recurrent connections: neurons
within a cortical column are densely interconnected via horizontal connections, and popula-
tions of different columns are sparsely connected via lateral connections. The information in
the neocortex typically propagates throughout the different layers in the form of feedforward

3.1 Biology fundamentals 39

connections, modeling the world with increasing levels of abstraction and adding new prop-
erties to the detected objects [Bri20]. They integrate input from a subset of the sensory space
and models the prediction of the data for that specific subset [HA16]. The information in
the neocortex also travels from the higher level layers to the lower level layers via backward
connections. Backward connections are weaker, slower, and less efficient than feedforward
connections, so the main hypothesis is that their function is modulatory rather than driving
inference in the brain. Empirical evidence supports their role as a regulator of the timing of
neuronal responses for the feedforward signaling. Other hypothesis also consider that back-
ward connections have a role for attention mechanisms and communicating context to early
layers [Bri20]. Similar to the cortex, the cerebellum is structured in feedforward, excita-
tory pathways. These pathways are combined with recurrent feedback loops that are typical
formed by inhibitory connections. One specific type of recurrent connection is mutual inhibi-
tions across neurons of the same type in the same neural layer. The connectivity is generally
very rich and diverse, which explains the plethora of functions and characteristics that the
brain and cerebellum can perform [DLR21].

The potential connectivity of a neuron with other neurons in its vicinity is 100%, i.e.,
a neuron can potentially connect to all its neighbours. However, the actual connectivity
sparsity for neocortical pyramidal cells oscillates between 0.01 to 0.1, and the mechanism for
modulating the connectivity is the creation and pruning of dendritic spines [Hol+03].

3.1.3 Sensory pathways

One of the richest fields of research in computational neuroscience is the study of the senses
and how the brain processes the data they generate. The efficient processing of the data in
the brain is the result of millions of years of evolution and is due to an efficient combination
of the aspects discussed in the previous sections. Senses transform external stimuli into neu-
ral signals through specialized cells like retinal photoreceptors or cochlear hair cells. These
signals travel through different anatomical areas of the nervous system and follow different
paths until reaching the brain’s neocortex. Sensory nerve fibres typically end in the thala-
mus, where information is then radiated to the 4th layer of different areas in the neocortex
[Rho+20]. In the case of visual input, the processing of information starts in the primary
visual cortex or V1. Neurons in V1 are responsive to specific features of visual stimuli, such
as orientation, direction, and spatial frequency. Information processed in the primary visual
cortex is then sent to higher visual areas in the brain for further analysis and interpretation,
ultimately leading to the perception of visual scenes, objects, and motion [BP12]. The infor-
mation flow follows specific directions through the neocortex to decode features and perform
particular tasks [RJP19]. In the case of the visual paths, it was assumed for many years that
the processing of visual information in the brain was split into two different pathways in the
brain: the dorsal pathway, responsible for the location of visual objects and actions related to
them, and the ventral pathway, responsible for the identification of visual objects. Typically,
these two pathways are understood to answer the ’where’, ’what’, and ’how’ in the visual
scene. In the last years, researchers have found evidence of the existence of a third pathway,
which would be located in the superior temporal sulcus (STS) [PU21]. This third pathway
would be responsible for identifying the dynamic aspects of social interaction. This would
not be limited to body and face movements but would also integrate other sensory informa-
tion, mainly from the auditory cortex. Therefore, this region would perform the audiovisual
integration of speech by integrating dynamic vision information and human voice.

40 Chapter 3 Neuromorphic engineering and computing

3.1.4 Neural code

To transmit information in the brain, neurons encode and decode information as spike trains.
Classic approaches for modelling spikes assume that information is stored in the existence of
an AP, which is an "all-or-none" event, i.e., they are binary events, so the specific amplitude
of the electric pulse is irrelevant as long as a pulse happens [Rie+99]. According to this view,
the axon of a neuron performs an analogue-to-digital encoding, as it encodes the analogue
value of the neuron’s membrane voltage into a digital value, which is the occurrence of a
spike [CH06]. Alternatively, some In vivo experiments refute this hypothesis, as they show
that the shape of the AP varies in terms of the amplitude and width of the pulse [ZD19;
CH06]. One source of the AP shape modulation is the inactivation of voltage-based ion
gates during spike bursts, so consecutive APs decrease in amplitude and increase the spike
width. These mechanisms could explain the increase of short-term synaptic plasticity during
bursting events in the neurons. A second source of AP shape variations is neuromodulation,
i.e., subthreshold membrane modifications via neuromodulators alter the spike shape and
lead to an increase in the synaptic transmission. A last source of AP shape modulation is the
varying density of ion channels across the axonal branch, so the AP transmission is stronger
in different sections of the axon.

An encoding model can be formally defined as the probability of observing a response R
when presenting a stimulus S, p(R|S) [Sta13]. Literature often classifies encoding techniques
according to the nature of this response, based on whether the information is encoded in
the spike rate or in the precise timing of the spikes [DA01, Chapter 1]. For many years, the
former was the de facto technique for modelling spikes [Bia+89; Kay+09; Kim+18]. From
an experimental point of view, popular scanning techniques like magnetic resonance imaging
are designed to record neuron activity over long time windows, rather than measuring the
time of individual spikes. Computationally, the modelling and validation of the neural code
are more straightforward when assuming rate encoding, as real numbers in a frame-based
approach can represent the neuron activity, i.e., a single real number can represent the spike
rate of a neuron or group of neurons. Physiological studies have found evidence over the last
decades of the correlation between spike rates and certain variables encoded in the brain like
the intensity of visual [CF00] and auditive [Pas+12] stimuli, or the force applied by muscles
[Blu+17].

Proponents opposing rate coding argue that it fails to explain the fast speed and high
energy efficiency of information transmission in the brain. A fast encoding paradigm is nec-
essary for matching the reaction speed to certain visual stimuli like the recognition of other
human faces. This would not be possible if neurons throughout the visual pathways had to
integrate spike rates over time [Rie+99; Mar+18]. Temporal encoding approaches repre-
sent information through the spike times. Hence, the precise timing of a spike can define a
variable or internal state. This approach maximizes the energy and time consumed to create
the spike train. Even though early investigations of neural code focused on spike rates, the
temporal component of the neural code was already possible to observe in early experiments
[AM27]. Further experimental data shows that there is a correlation between specific sensed
variables and the spike timing of neurons in the sensory pathways [GM08; BK96; Rei+00;
Bra+12; Kay+09]. This is also the case for the cerebellum, which can react to sensory stim-
uli with very high temporal precision [DLR21]. The classification of time encoding models
depends on the event or signal used as a reference for measuring the spike times. Phase en-
coding (PE) models encode information in the time difference between the spike and a global
reference signal, such as the stimulus onset [GM08] or the phase relative to neural oscilla-
tions [KGV14; Kay+09]. Inter-spike interval (ISI) and temporal contrast (TC) models do not
require a global reference signal, as they encode the information in the time difference of

3.1 Biology fundamentals 41

the consecutive spikes that emanate from the neuron itself. The former encodes an absolute
value in the time difference between consecutive spikes. In contrast, the latter produces a
spike when the relative difference in the stimulus intensity exceeds a certain threshold. Lit-
erature suggests that the encoding type is application-specific, so different regions and layers
in the brain probably use the code that processes information most efficiently. For example,
there is strong evidence that the ganglion cells in the visual system encode the stimulus inten-
sity by using PE, taking as reference the onset produced by the saccades in the retina, which
are fast movements of the eye happening several times per second. The following neural
layers encode information using ISI encoding, i.e., they use the time difference in the spikes
of the ganglion cells for generating structural information like edges and contours. Statistical
analysis shows that the noise in the latency across neurons is positively correlated, showing
that ISI encoding in the ganglion cells is robust to noise [GM08].

Besides using a neural code for transmitting information, the brain is heavily influenced
by the existence of neural oscillations or brainwaves [KGV14; Kay+09]. Neural oscillations
result from aggregating the synchronized and periodic fluctuation of the membrane voltage
of large populations of neurons. These waves serve as an attention mechanism in the sensory
pathways, as the high excitability state corresponds to the times when relevant information
is present in the sensory input. The timing of spikes relative to these oscillations is thus an
effective method of encoding information [Kay+09]. The Dynamic Attending Theory argues
that regular patterns in external stimuli drive the phase shift of brain oscillations to facilitate
the attention toward those patterns [HG18]. Experiments show that the phase of brainwaves
shifts to predict the occurrence of sensory events, so the oscillations are entrained to external
rhythms [KGV14]. In other words, neural oscillations anticipate or predict the existence of
sensory events.

Population code

Neural population coding refers to how groups of neurons work together to encode and pro-
cess information. Research highlights that the interactions and correlations among neurons
influence neural population properties. Correlation coding originates in neuroscience as a
hypothesis stating that neurons in the brain transmit the information as a result of their
synchronized excitation [deC98], i.e., according to this hypothesis, neurons work as coinci-
dence detectors and information is available from the simultaneous spiking of neighbouring
neurons. An alternative hypothesis is that neurons operate independently and are able to
pass forward information without the synchronized intervention of additional neurons, i.e.,
neurons work as integrators of the spikes arriving at all their inputs. This hypothesis does
not deny the existence of correlation in the spiking of different neurons, but it does not see
it as a factor for filtering and selecting information. Another alternative is having neurons
with an intermediate operation mode, i.e., they can achieve excitement with synchronous or
asynchronous input spikes [Rat+13]. The authors in [Rat+13] distinguish synchrony from
rate-modulation, depending on whether the correlation is assessed for spikes taking place in-
side narrow time windows that do not allow more than one spike per neuron, or inside broad
time windows that let evaluate the cross-correlation of the spike rates of the input neurons.

The concept of synchrony is highly related to Hebbian learning. Namely, synaptic timing-
dependent plasticity (STDP) learning methods modulate the weights between neurons based
on the relative time between their spikes, facilitating the connections between neurons that
spike at similar times. This topic is explained in more detail in section 3.1.5.

42 Chapter 3 Neuromorphic engineering and computing

Towards a universal encoding paradigm

As exposed earlier, current hypotheses for explaining the brain’s neural code are typically split
into rate encoding and temporal encoding models. From an information theory perspective,
these two models are not mutually exclusive [BT99]. Dynamic stimuli provoke changes in
the instantaneous spike rate of neurons. At the same time, studies show a high temporal
precision in the timing of the spikes, so every spike matters and temporal code can describe
the stimuli, too. In other words, neurons can respond to stronger stimuli with faster spikes,
which would turn into faster spike rates if the following neurons "listen" to the spike trains
for longer times [Kay+09]. Such a universal code would explain the robustness of neurons to
noise and stochastic patterns inherent to rate coding, as well as the brain’s fast and efficient
reaction time for many signal-processing tasks.

For example, the large dynamic range in the visual cortex in the brain for the perception
of colour seems to be only realizable by using spike rates and long integration windows.
However, the processing of shapes and detection of critical objects and situations, like the
presence of predators or a sudden collision risk, demand a very fast processing chain that
could hardly involve more than a few spikes per neural layer.

3.1.5 Learning

Learning is an optimization process that transforms the structure of neural networks in the
brain to adjust to changing conditions. This change in conditions can be due to new expe-
riences and interactions with the external environment or to internal processes in the brain.
One of the most relevant neuronal mechanisms for learning is synaptic plasticity, i.e., the
modification of the strength of the connections between neurons. An optimization method is
classified as supervised learning when it modifies a neural network during a training stage to
minimize an error between the final output and a target value that is known beforehand. On
the other hand, unsupervised learning refers to methods that optimize the neural networks
without using reference output values to compare with. Their main principle is to group
input consisting of similar patterns active at similar times [DA01, Chapter 8]. Other popu-
lar learning paradigms are semi-supervised learning, a hybrid that uses both supervised and
unsupervised learning, reinforcement learning, based on the existence of rewards that drive
the optimization process, or learning through evolution, where new individuals randomize
their features and best-suited ones propagate over time. Many theories explain from a com-
putational perspective how to achieve synaptic plasticity. Some learning rules are highly
biologically inspired, whereas others take a vague inspiration from biology and focus on op-
timizing a computation problem. For learning rules to be biologically plausible, they need to
follow some fundamental properties:

• Locality: A synapse only has access to information on its vicinity and may only use this
information for updating its weights.

• Saturation: The weight of a synapse has to be limited, otherwise they could grow
towards infinity and the learning process would be unstable.

• Competition: The pre-synaptic neurons connected to a neuron need to compete for its
excitation. In other words, the input weights to a neuron may not converge to the same
value. This property grants the selectivity of the information arriving at the neuron so
that it can filter out irrelevant input.

Hebb’s rule is one of the most accepted theories for learning in the brain. Hebb’s rule con-
jectures that if a pre-synaptic neuron A is connected to a post-synaptic neuron B, when a

3.2 Spike encoding in neuromorphic applications 43

neuron B repeatedly fires after neuron A, the connection from A to B strengthens. This is the
basis of activity-dependent synaptic plasticity, which is believed to be one of the main mech-
anisms behind learning and memory [DA01]. It is also a plausible model for representing
unsupervised learning, as the modification of the neural structures does not require labels
nor a target output to achieve. The rule was later generalized to include as well the weaken-
ing of the connections in case the firing sequence is inverted (B fires before A). The increase
or decrease of the synaptic strength is normally referred as potentiation and depression, re-
spectively. When plasticity persist over time, it is called long-term potentiation or long-term
depression, depending on the sign of the weight change. On the most basic form of Hebb’s
rule, the synaptic weights evolve based on the correlation of the spike rates in the input.

Scientists have proposed alternative learning rules that follow the basic principles of Heb-
bian learning. Oja’s and BCM rules are more evolved versions of Hebb’s rule. The former
normalizes the computation of the input spike rates with the value of the output spike rate so
it learns a principal component of the input data. The latter introduces a moving threshold
that is compared with the input spike rates. This threshold increases or decreases when the
activity is high or low, respectively. STDP is a learning rule that updates the weights based
on the correlation in the precise timing of the pre-synaptic and post-synaptic neurons. Con-
trary to the aforementioned learning rules, STDP assumes that neurons transmit information
on the precise timing of spikes. Its compatibility with time encoding makes it interesting
for engineering problems, and the research on this type of learning is very active in recent
years [SH22; Khe+18]. appendix A contains a mathematical description of all these learning
models.

Experimental data has shown that the learning in the brain is more complex process than
originally thought, including forms of learning other than synaptic plasticity. One example
is intrinsic plasticity, a learning process that involves the change of the electrical properties
of neurons as a response to different activity levels [DLR21]. Moreover, the brain may also
achieve learning by changing its connectivity pattern, by creating and pruning the connec-
tions between neurons [Hol+03].

3.2 Spike encoding in neuromorphic applications

As stated in section 3.1.4, we can define encoding in a general way as the probability of ob-
taining a response R given an input i. Specifically, the neural code responds to the sensed data
as spike trains. The format and dimensionality of the encoded data are application-specific.
Information is represented by N-dimensional real-valued variables, typically in the form of
digital samples or analogue signals. Choosing an adequate spike encoding is crucial for neu-
romorphic applications, as it directly impacts most performance metrics, e.g., sparsity, energy
efficiency, latency, or accuracy. It is also important to distinguish encoding from decoding,
as the latter refers to estimating the original stimuli from spike trains. The term encoding
is often used loosely in literature, and it may refer to different concepts depending on the
authors, field, or specific paper. Therefore, some works focus on phenomenological models
that explain how single neurons encode spikes [HSS16], on filtering models for improving
the performance of a group of neurons based on their correlation or statistical distribution
[deC98], or on decoding models that reconstruct the stimulus encoded by neurons [PKK19].
In general, review papers do not address this aspect and either classify encoding techniques
belonging to one specific group [PKK19], or group together the aforementioned models with-
out putting the focus on the different nature of the models [For+22; Aug+21b]. Prior to
classifying spike encoding, let us first provide a clear definition of what spike encoding is.

44 Chapter 3 Neuromorphic engineering and computing

From a systems perspective, research typically approaches the topic of encoding by an-
swering one of the two following questions:

1. For a given neuron, what is the relationship between its output spike train s(t) and its
input i(t)?

2. For a given population of neurons with NI inputs and NO outputs, what is the relation-
ship between the output spike trains sO(t) = {s1(t), s2(t), . . . , sNO

(t)}, and the received
inputs iI(t) = {i1(t), i2(t), . . . , iNI

(t)}?

Note that the first question answers how an individual neuron encodes input signals into
spikes, which is a direct consequence of the neuron’s dynamics model. For the rest of this
work, let us refer to the computing techniques that address this question as spike encoding.
The second question focuses on how groups of neurons provide collective outputs in response
to an arbitrary number of inputs. The response depends not only on the dynamics of the in-
dividual neurons, but also on the collective response that emerges from the behaviour of all
neurons in a population of neurons. Let us refer to the aggregated result of all these pro-
cesses, collectively addressing the second question, as the neural code. In other words, spike
encoding will refer to the models that encode input signals to spikes, and the neural code
emerges from the global output of multiple encoders according to a population dynamics
model.

Regarding how data is fed to encoders, we can distinguish encoding models that deal with
frames of static data from models that process information from time-varying signals. Neu-
romorphic computing research has extensively studied the former group, as many computer
science solutions (especially those using artificial neural networks (ANNs)) analyse static data
(e.g., image frames), even if they belong to more extensive temporal sequences like video se-
quences. Researchers often propose different methods that convert the structure and param-
eters of the ANNs, encode the digital data frame-wise into spike trains and then feed them
to the converted spiking neural networks (SNNs). These works perform exhaustive measure-
ments of key performance indicators like precision across many data samples. However, the
capacity of the models to work in real-time is usually disregarded, which is a crucial aspect
for deploying SNNs in signal processing applications.

The most common categorization is to split encoding techniques into rate and temporal
encoding techniques, where the former encodes data into the spike count in a time window,
and the latter encodes data into the time of the specific spikes. Some literature includes as
well population encoding as a third category. However, as pointed out in [Aug+21b], popu-
lation encoding is a generalization of rate encoding. Moreover, in the view of some authors
in the domain of neurobiology, rate encoding is a generalization of temporal coding [Bre15;
Rie+99]. Their main point is that neuron dynamics produce single spikes at specific times,
and rate encoding emerges as an integration of these dynamics over time. Based on this
argumentation, this section distinguishes between neural encoders and population dynamics
(see fig. 3.2). The encoders are the point processes that collect data and generate spikes over
time, i.e., this section assumes that encoders always produce time-coded spikes. On the other
hand, population dynamics includes the different processing approaches performed on the
spike trains generated by individual encoders for generating more sophisticated information.
In other words, an encoder circuit implements a dynamics model that produces spikes over
time. The filtering and processing of these spike trains by SNNs may involve the notion of
spike rates, but only as a result of processing the already encoded signal. Population dynam-
ics techniques deal with the integration of information over time (rate coding), increasing
the sparsity (N-of-M coding), combining all spike trains into a main stream of information
(population coding), or finding patterns in the relationship between the different spike trains

3.2 Spike encoding in neuromorphic applications 45

(rank-order coding, correlation coding). The output dimensionality of these approaches de-
pends on the specific process. Typically, it is not bigger than the input dimensionality. A
common goal of population dynamics techniques is to create emergence, i.e., they extract
information that is not possible to obtain from single encoder streams, by combining the data
encoded by each of them.

According to the definition above, for reacting to a time-varying analogue signal, neu-
romorphic solutions can only use temporal encoding. Encoders measure the delay between
spikes and reference points in time. As neurons do not have a notion of absolute time or a
global clock, spike times need to be referenced to local events. From a control perspective,
we define an analogue-to-spike encoder (ASE) as a processing component that takes a time-
varying signal i(t) and produces a spike train as output s(t) by using a transfer function E . In
its simplest form, this process takes the form

s(t) = E(i(t)) . (3.1)

For producing the spike train, some ASEs, need an external reference signal r(t) that provides
a time reference and synchronises the different encoders. Alternatively, they can reference
the spikes to the previous spike generated. Other ASEs also need to store in memory after
spiking the value of a variable x(t) that is later used for generating the following spike. Thus,
we turn (3.1) into the more generic form

s(t) = E(i(t), r(t), x(t)) . (3.2)

Figure 3.2 depicts, on the left the representation of an ASE taking into consideration the
aforementioned signals. Based on this representation, we classify spike encoders into three
large groups: phase encoding (PE), which encodes the input into the spikes using a reference
signal, temporal contrast (TC), which keeps in memory the input of the previous spike for
comparing with the current input, and inter-spike interval (ISI) methods, which generate
spikes based on the input without using a reference signal or storing information in memory.
Table 3.1 summarizes these three types of encoders. Note that this is a simple classification

Figure 3.2: On the left, control diagram of a spike encoder block, that takes an input signal i(t) and produces
and output spike train s(t). The encoder can use an optional reference signal r(t) and an internal state variable
x(t). On the right, diagram of a population of N encoders. The encoders’ outputs are filtered according to certain
population dynamics that result on up to N filtered spike trains sn,F (t).

46 Chapter 3 Neuromorphic engineering and computing

that can be further decomposed, as the described encoding techniques have multiple variants.
Some authors also refer to the methods implemented by ASEs as neural recording techniques
[CI15].

Table 3.1: Classification of analog-to-spike encoders according to their main properties from a systems perspec-
tive.

Reference Memory Polarity

TC NO YES Bipolar
PE YES NO Uni-/Bipolar
ISI NO NO Unipolar

3.2.1 Phase encoding / time to first spike

Techniques using PE assume that neurons transmit information in the timing of their spikes
relative to a global reference signal [Kay+09]. Similar to PE, time to first spike (TTFS) is an
encoding technique that assumes information is stored in the timing of the spikes relative to
a reference point, ts − t0 [BF10; GQH07]. The difference between PE and TTFS lies in the
nature of the reference signal rather than in the working principle, i.e., PE assumes that the
reference is a global periodic wave, and TTFS calculates the spike times relative to the onset
of a stimulus or a reset event that typically affects a population or layer of neurons. The
signal used as reference for PE is typically a periodic wave with a period T , and the spiking
phase αPE is the ratio between the spike time ts and T ,

αPE = 2π
ts

T
, (3.3)

where αPE is expressed in radians. Therefore, ts and αPE take values in the ranges [0, T]
and [0,2π], respectively. In PE techniques, the relationship between the spike phase αPE
and the input to the neuron is inversely proportional. In other words, the higher the input,
the faster a neuron gets excited and spikes. This property facilitates the implementation of
filtering techniques like winner-takes-all, where the most excited neurons in a population
dominate the meaning of the output. For a neuronal sampling resolution of ∆T , a neuron
can distinguish Nsteps = T/∆T encoding steps inside an encoding cycle. Thus, the number of
different combinations NC that a neuron using PE can encode is

NC = 1+ Nsteps . (3.4)

Further iterations of this encoding paradigm map data into more than one spike, where
the combination of all timings encapsulates the information. In other words, the information
is not stored in the number of spikes but in the combination of their occurrence times. For
example, the models introduced in [Kim+18] and [SM21] map scalars to several spikes
where the contribution of each spike follows an exponential relationship with its timing and
all spikes’ contributions are added up. The output spike train in these methods is decoded as

ŷ =
Nsteps
∑

t

z(t)2−(1+αPE) , (3.5)

where ŷ is the decoded output, and z(t) is a binary function representing the spike train, i.e.,
it yields one when a spike takes place at time t, and otherwise it stays zero. section 3.3.2
contains more details on the implementation of the model in [SM21].

3.2 Spike encoding in neuromorphic applications 47

Empirical results with biological recordings show evidence that the encoding modelled by
(3.5) may also be present in the brain [Kay+09]. The number of combinations in models
applying this approach increases from (3.4) to

NC = N2
steps . (3.6)

Some literature uses the term latency encoding for naming PE techniques [Bra+12; GM08;
Khe+18]. However, this term can bring confusion, as other works use latency encoding for
referring to the encoding of information in the delay between consecutive spikes, i.e., ISI
[Aug+21b]. For clarity, the present work avoids using the term latency encoding to describe
any encoding technique.

3.2.2 Temporal contrast

Based on the assumption that sensory cells are sensitive to stimuli that change over time, a TC
encoder cell produces spikes when there is a variation in the magnitude of the stimulus and
stays silent when the input is static over time. To compare the current input with previous
values, the encoder must store a state variable x(t) holding the reference input level in
memory and a parameter ktc that sets the minimum change in the input that triggers a spike.
For encoding positive and negative changes in the input, TC encoders generate a bipolar
output spike train. Hence, a hardware implementation of TC must be able to produce both
positive and negative spikes, and the hardware platform processing the spikes must recognize
this type of encoding as well. There are different alternatives for implementing a TC encoder
depending on how x(t) is handled:

• Threshold-based representation, that compares the absolute change between consecutive
values against a threshold. The threshold is based on the first derivative of the input
signal,

x(t) = f (i(t − 1)) . (3.7)

• Step-forward, which generates spikes when the actual value exceeds a pre-determined
threshold relative to the previous reference value or baseline. This reference value is
increased/decreased by the value of the threshold. Therefore, changes in the value
several times bigger than the threshold would produce several consecutive spikes.

x(t) = const. iff z(t) = 0 , (3.8)

x(t) = f (i(t), x(t − 1)) iff z(t) = 1 . (3.9)

• Moving window, similar to the previous method, but the reference value is calculated as
the average of a certain amount of preceding values.

According to the quantitative results provided in [PKK19], step-forward shows the best
performance among the aforementioned TC methods, measured in terms of root-mean-square
error (RMSE) and signal-to-noise ratio. It performs well against noise and can adapt to
sudden changes in the signal’s input intensity and long plateaus. Its tuning is trivial, as only
the threshold parameter needs to be adjusted. This method fails to adjust to the signal’s
offset, as spikes are referenced to the initial value.

Step-forward is one of the most popular TC techniques for encoding the intensity of event-
based sensors [LPD08; CI15]. The work in [LPD08] has served as a baseline for several
implementations of event-based sensors in the last decade. There, the authors proposed an
analogue circuit that produces positive or negative spike events, ON and OF F , when the

48 Chapter 3 Neuromorphic engineering and computing

input signal Vin exceeds a positive or negative threshold, VON and VOF F , respectively. The
threshold values are updated after every spike event by adding to the input voltage a positive
and negative constant, dON and dOF F , respectively,

ON = 1 iff Vin > VON and (3.10)

VON = Vin + dON , (3.11)

and

OF F = 1 iff Vin < VOF F and (3.12)

VOF F = Vin + dOF F , (3.13)

where dON > 0 and dOF F < 0. Compared to alternative encoding techniques, step-forward
offers reduced time latencies, wide dynamic ranges, and an asynchronous spike generation
that does not require a global reference.

A critical parameter of a TC circuit is the maximum steepness it can detect in the sensor’s
output, i.e., its input gradient sensitivity. Signals with very steep curves will trigger the TC
encoder very fast, and it is paramount that the implementation can produce and process the
spikes.

3.2.3 Inter-spike interval

A neuron using ISI maps the intensity of the input to the time delay between consecutive
spikes. ISI is often associated with bursting, which refers to the generation of multiple consec-
utive spikes after the neuron reaches an excitation stage. The burst frequency is proportional
to the input intensity and inversely proportional to ISI [For+22]. ISI encoders often exhibit
frequency adaptation as well, which relates to the gradual decrease of the spike frequency
after excitation if the input stays constant [LI09; WD08]. The spiking behaviour depends on
the specific dynamics that model the neuron’s behaviour. In general, ISI circuits are based on
dynamics models with two variables, one representing the membrane voltage and the other
the frequency adaptation, like the AdEx model [BG05] or the model from Izhikevich [Izh03].
We can describe the operation of an ISI circuit as

C
dVm

d t
= Iin + Ifb − IL − Ia , (3.14)

where Vm, Iin, and IL are the neuron’s membrane voltage, input current, and the leak cur-
rent, respectively. Ifb is a feedback current that sharply increases when Vm approaches the
switching voltage. Ia is the adaptation current, that slowly increases over time, facilitating
the occurrence of consecutive spikes [LI09]. From eq. (3.14), the first spike is proportional
to the input current, assuming Ia = 0, and the following spike times decrease over time until
the burst is over.

The authors in [Izh+03] argue that some biological neurons possess a spike resonating
frequency, so they achieve maximum excitation when the incoming spikes have a specific ISI.

3.2.4 Population dynamics

In this work, population dynamics refers to the dynamics models applied to the spike trains of
populations of neurons (see fig. 3.2). These models do not focus on the rules for generating
spikes at individual neurons. Instead, they process the spikes of neurons to extract meaning-
ful features from output correlations, remove noise, or increase the population sparsity.

3.2 Spike encoding in neuromorphic applications 49

Rate and population coding

The basic principle of rate coding is that the information transmitted by neurons is stored in
the number of spikes that are sent per time unit, which is why some authors also refer to it
as count rate coding [Aug+21b]. The neural process that computes the spike rate integrates
the received spikes over a certain time window.

The simplest approach for implementing rate code is to map linearly the intensity i(t) of
the stimuli to the rate f (t), i.e., to the number of spikes per time unit,

f (t) = kr i(t) + br , (3.15)

where kr and br are a proportionality and offset constants, respectively. If we apply (3.15) to
time windows of constant length T and a constant resolution ∆T , the total number of time
steps Nsteps is calculated as

Nsteps =
T
∆T

. (3.16)

We can simplify (3.15) by expressing f (t) as the number of spikes per T time units, f̄ = T · f .
The rate f (t) can be easily computed by counting the number of spikes Ns in a time window
of length T ,

f (t) =
Ns

T
. (3.17)

The number of different combinations NC is maximized when the minimum frequency
is set to zero, f̄min = 0, br = 0, and the maximum frequency is one spike per time step,
fmax = Nsteps, which yields

NC = 1+ Nsteps . (3.18)

A drawback of this model is the required waiting time for mapping a single value to a spike
train, as the spikes cannot be decoded until the end of the time window T . In general, the
sparsity S of a network is reduced when using rate code, as this method requires generating
multiple spikes for encoding the input data. Assuming a uniform distribution of data, each
input will be represented on average by Nsteps/2 spikes,

S = Nsteps/2 . (3.19)

The high value of S introduces an overhead for the interneuron communication system, re-
ducing the throughput and incrementing the required resources.

Rather than excluding the encoding methods described in section 3.2, rate code is com-
patible with ISI and TC encoding techniques. Some spike train decoders for ISI and TC
encoders use the concept of a rate code, i.e., computing the rate from those encoders pro-
vides an estimate of the average intensity (ISI) or gradient (TC) over a time window. This is
not the case for PE, where encoders always generate one spike per encoding time window,
and the rate is thus constant regardless of the input intensity.

In [LPD08], the authors a simple way of computing a spike rate out of a TC encoding for
event-based sensors,

f (t) =
TC(t)
θ

, (3.20)

where TC(t) is the instantaneous temporal contrast and θ is the spiking threshold. (3.20) is
agnostic of the spikes’ sign. One option is to compute f (t) as the aggregated difference of
positive and negative spikes, so θ takes positive and negative values depending on the spike
polarity. Another option is to use two rate variables, fON(t) and fOFF(t), that represent the
rate of positive and negative rates, respectively.

50 Chapter 3 Neuromorphic engineering and computing

An alternative for reducing the length T of the integrating time window is to combine
several neurons for encoding the same value, typically known as population coding. For a
population with M neurons with the same firing rate f (t), the total number of combinations
is

NC = (Nsteps + 1)M . (3.21)

An interesting feature of this approach is its compatibility with the stochastic nature observed
in the brain. In engineering applications, this property is useful for processing noisy data. If
neurons in a population have a certain probability p of spiking proportional to the value they
are encoding, the total number of spikes in a time window T will be

f (t, t + T) = p(t) ·M · T , (3.22)

where t and t+T is the time range for counting the spikes, and p is assumed constant during
this period.

Winner-takes-all

In temporal coding schemes, spikes carrying more information happen earlier. Ignoring late
spikes allows neurons to process information faster while keeping most information from the
input spike train. This is the working principle of Winner-takes-all, a technique for focusing
all the attention on the first spike to arrive from a neuron population. This means that the
post-synaptic neuron ignores all of the spikes after the initial one. This technique is helpful
for tasks like peak detection, which focuses on finding the dominant stimulus in an input
sequence. This technique allows as many combinations NC as the number M of spike trains
in the population,

NC = M . (3.23)

The spike sparsity S introduced by winner-takes-all is defined by

S =
1
M

. (3.24)

N-of-M code

N-of-M coding is a generalization of winner-takes-all. Neurons with M input connections listen
to only the first N input spikes, where N < M [Fur+04]. N-of-M coding is a generalization
of the winner-takes-all approach, as the latter would be equivalent to 1-of-M encoding.

To compute N-of-M coding, a computing block needs to count the spikes produced by the
input neuron population and inhibit the transmission of further spikes after the N th spike
arrives. The number of combinations that can be achieved with this technique is given by

NC =
M !

N !(M − N)!
. (3.25)

A shunt circuit that activates after N spikes and bypasses all incoming spikes after activa-
tion can implement this behaviour in a physical implementation [Chr+22, Section 21]. The
sparsity S obtained after applying N-of-M code to a neurons population is calculated as

S =
N
M

. (3.26)

3.3 ANN to SNN conversion 51

Rank-order code

Rank-order code (ROC) assumes that the relative order in which neurons spike in a popu-
lation contains stimulus information. This coding method was introduced in [TG98] as a
possible explanation for the contrast and intensity invariance of the receptive fields in the vi-
sual cortex. Namely, a specific post-synaptic neuron that receives ROC-coded spike trains as
input achieves maximum excitation when the input spikes arrive in one particular order. The
excitation level decreases proportionally with the level of mismatch between the input spike
sequence and the specific sequence the neuron was tuned for. Researchers showed that ROC
can explain the encoding of visual stimuli in the human brain. They simulated the processing
of different stimuli and reconstructed them with a performance around 70% [BF10].

From a computational perspective, a ROC implementation requires a computing block
that reads the incoming spikes and computes the rank function R(t) at time t. R(t) produces
values between 0 and 1 proportional to the number of spikes that have already arrived. The
activation A(t) of post-synaptic neuron uses R(t) for normalizing the arriving spikes according
to the order of occurrence,

A(t) =
M
∑

m

wmR(t)sm(t) , (3.27)

where M is the number of pre-synaptic neurons, sm(t) is the spike train from the mth pre-
synaptic neuron, and the weight vector −→w = {w1, w2 . . . wm} follows a distribution that op-
timizes a specific input sequence. Assuming a linear distribution of −→w and a number of
simulation steps Nsteps larger or equal to the number of inputs, Nsteps ≥ M , the authors in
[TG98] calculate the number of possible combinations as

NC = M ! . (3.28)

If Nsteps < M , it is not possible to encode M different values in the input and the number
of possible combinations is reduced to MC = Nsteps!. As ROC gives an output based on the
combination of all the inputs, this technique does not increase the spike sparsity S of the
network, S = 1.

ROC has some features in common with N-of-M coding. They both work as a filter for
spike trains from populations of neurons that use global-referenced spikes, and they serve
as an attention mechanism that enhances the sensitivity to the first spikes that arrive to the
neuron. Whereas N-of-M coding shifts the attention to the first N spikes in the input sequence,
ROC’s attention decreases proportionally to the number of spikes that have arrived. Contrary
to N-of-M coding, ROC does not increase the temporal spike sparsity, as the number of spikes
coming in and out of the ROC computing block are the same. ROC also eliminates any notion
of the absolute intensity of the information encoded in the arriving spike trains. Thus, ROC
is suitable when the information can be explained on the sequence of arriving stimuli. In
contrast, N-of-M coding works best when the most intense stimuli dominate the information
content [Chr+22, Section 21].

3.3 ANN to SNN conversion

An attractive application for neuromorphic computing is to provide machine learning algo-
rithms that can be accelerated in neuromorphic chips and reduce the footprint of artificial
intelligence (AI) systems. A key challenge is the implementation of learning, because spike
functions do not have a derivative, which is an essential operation for implementing back-
propagation. One possibility is to modify the output function of the neurons to overcome

52 Chapter 3 Neuromorphic engineering and computing

the non-differentiability issue. The model introduced in [SO18], called SLAYER, convolves
the spike output over time with a spike response kernel, resulting in a spike response signal
that can be differentiated. The model assigns errors over the layers but also over the time
iterations. The model has been implemented in CUDA and Loihi. The works in [Mos17]
[Com+20] use the relative time between the first spike and the pre-synaptic spike time as
the output to differentiate with backpropagation. The neuron voltages of the former are cal-
culated according to an integrate-and-fire neuron model, and the latter on an alpha-synaptic
function. Similarly, the work in [KM20] uses backpropagation, assuming that the spike time
represents the output of a ReLU function. It uses an integrate-and-fire neuron model and
encodes data using TTFS.

Another option for training neural networks in neuromorphic chips is to use an alterna-
tive learning paradigm. There is an increasing amount of research exploring unsupervised
learning methods, as they can reduce the dependence on massive datasets and the obscurity
of the models. One of the most popular unsupervised algorithms for SNNs is STDP [SH21;
Khe+18]. STDP involves strengthening a neuron’s connections when the corresponding in-
puts’ spikes precede an output spike and weakening them when the inputs’ spikes follow the
output spike. The temporal nature of this learning mechanism makes it attractive for obtain-
ing efficient neuromorphic applications that can learn temporal patterns and adapt to new
data in real time [Lob+20].

Finally, an effective approach for achieving learning with neuromorphic systems is the
conversion of ANNs to SNNs. The idea is to learn the network parameters using a classical
approach on traditional computing platforms and then map the parameters to an SNN with
analogous architecture. In other words, ANN to SNN conversion consists of an offline training
stage and a latter inference in a neuromorphic chip [RJP19]. These methods became very
popular thanks to their high accuracy results, similar to state-of-the-art ANN results. For
many years, the most common approach was mapping real numbers to spike rates [Die+16;
HE16; Rue+17; Sen+19]. These methods achieve state-of-the-art accuracy on well-known
datasets like MNIST, CIFAR-10 or ImageNet. Moreover, implementing the mapping to spikes
is straightforward. However, they require significant inference times per frame, yielding high
simulation times and undesired power requirements. Last years have transitioned towards
time-based encoding methods for converting ANNs [RL18; SM21].

3.3.1 Rate-based conversion

Converting ANNs to SNNs with spike rates is a reliable approach for the event-based imple-
mentation of ANNs’s inference. Even though they are not practical due to the high number
of spikes they require, which leads to a high power consumption [Dav+18; Dav+21], their
understanding is desirable for advancing towards more efficient time-based approaches. The
work from [Rue+17] was one of the first widely used models for converting ANNs to SNNs,
thanks also to its public availability in an open-source library1. It is based on the principle
that the spike rate of a neuron is directly proportional to the real number it encodes.

The forward pass of a deep convolutional neural network (DCNN) is defined by the ac-
tivation function of the neurons, ai = fi(x), where x i is the weighted input to the neuron,
calculated as

x i =
∑

j

wi ja j + bi , (3.29)

where wi j is the synaptic weight between neurons i and j, and b and bi is the bias constant of
neuron i. Let us assume that neurons use a ReLU activation function, which generally serves

1https://snntoolbox.readthedocs.io/

https://snntoolbox.readthedocs.io/

3.3 ANN to SNN conversion 53

as the de facto activation for most networks,

f (x) = ReLU(x) =max{0, x} . (3.30)

The conversion method in [Rue+17] uses an integrate-and-fire neuron model without a
leak. The output of a neuron is defined by a spike function Θ(t), which is a binary function
that yields one when there is a spike and zero otherwise. Neurons have an internal state
represented by a membrane voltage u(t), updated according to

u(t) = u(t − 1) + i(t) , (3.31)

where i(t) is the input current to the neuron. The current depends on the input spikes present
at the specific time step,

i(t) =
∑

j

w̄i jΘ j(t) + b̄i , (3.32)

where w̄i j and b̄i are the synaptic weights and bias for the spiking neuron. A neuron spikes
when its membrane voltage crosses the value of a constant called threshold voltage uth,

Θi(t) =

�

1 , if u(t)> uth

0 , otherwise
(3.33)

When a spike occurs, the neuron’s voltage is reset and starts charging again according to
(3.31) and (3.32). The authors scale the neuron parameters w̄i j and b̄i in (3.32) with the
threshold voltage of the neuron,

w̄i j = uthwi j (3.34)

and
b̄i = uth bi . (3.35)

By the end of the simulation time, each neuron will have spiked Ns times, which can be
averaged over the number of time steps for obtaining the spike rate ri. The spike rate of
a neuron is proportional to the activation of its ANN counterpart, ri ∝ x i, together with a
residual error that can be minimised by increasing the number of simulation steps. Note that
the number of simulation timesteps limits the spike rate, so the dynamic range is considerably
smaller than the original ReLU function. This is depicted in fig. 3.3.

The authors discussed two strategies for the reset operation: reset to zero and reset by
subtraction. The former sets u(t) = 0 after a spike, whereas the latter performs the subtraction
u(t) = u(t)−uth. They concluded that the reset by subtraction provides better results, as reset
to zero always discards a residual value in u(t) after crossing the threshold. They also used
analogue data for the input layer of the networks by mapping the real numbers to input
currents to the neurons according to

i(t) = uth

�

∑

i

wi x i + b

�

. (3.36)

The authors applied their conversion technique to the MNIST, CIFAR-10, and ImageNet
datasets, yielding accuracies close to the original ANNs. For MNIST they provide an im-
plementation on the SpiNNaker chip with the LeNet architecture. They used the VGG-16
architecture for the ImageNet dataset.

Other approaches include the work from Hunsberger and Eliasmith, who proposed an al-
ternative method for converting ANNs into SNNs by using a LIF neuron model and softening
the neuron response function [HE16]. The core idea of this work is to replace the rectified
linear nonlinearity with a modified LIF nonlinearity, which results in a conversion method

54 Chapter 3 Neuromorphic engineering and computing

that requires fewer spikes than the work in [Rue+17]. The authors tested the SNN on multi-
ple datasets, including MNIST, CIFAR-10, and ImageNet. They also implemented their work
in the Loihi chip. The authors in [Sen+19] provide another rate-based conversion model
that effectively processes the CIFAR-10 and ImageNet datasets, improving previous conver-
sion results. The model, named Spike-Norm, is based on the independent balancing of the
threshold voltage of each neuron based on the maximum value the ReLU function can yield,
so the output dynamic range can be optimized (see fig. 3.3). In [Die+16], the authors pro-
vide a means of converting recurrent ANNs, taking advantage of time delays in the synaptic
connections. They implemented their work on the True North chip, where the weights learnt
in the original network had to be discretized to a 4-bit resolution.

3.3.2 Few spikes model

The authors in [SM21] introduced the few spikes (FS) neuron model for converting ANNs
to SNNs with a focus on temporal sparsity. The neuron uses a temporal encoding technique
that maps real numbers to N spikes, 0 ≤ N ≤ Nsteps, where Nsteps = const. is the length of the
encoding time window. The neuron’s membrane voltage u(t) is updated on every time step t
according to

u(t) = u(t − 1)− h(t − 1)Θ(t − 1) , (3.37)

where Θ(t) is the spike output of the neuron, and h(t) is the reset value that is subtracted
from the membrane voltage when a spike takes place. The neuron produces spikes when the
membrane voltage is larger than a threshold variable uth,

Θ(t) =

�

1, u(t)− uth(t)> 0

0, otherwise
. (3.38)

Thus, the simulation needs to run for Nsteps and record all spikes for decoding the output of
a neuron. The initial value for the membrane voltage is the input of the neuron, u(0) = x .
Algorithm 2 shows the logic of an algorithm that implements the FS neuron with a ReLU
activation function.

The authors propose a two-stage approach for converting multi-layer networks, where
a neuron reads the spikes from the previous layer on the first stage and generates spikes
according to (3.37) and (3.38) during the second stage. We can calculate an estimate of the
activation value of the neuron, ŷ, according to the spike train that the neuron generates,

ŷ =
Nsteps
∑

t

d(t)Θ(t) , (3.39)

0 x

0

ReLU(x)

0 x

0

rmax

r(x)

Figure 3.3: Output range of a standard ReLU function on the left, and a spiking integrate-and-fire neuron on the
right. The spike rate is bound to the range [0, rmax], which is orders of magnitude smaller than the range provided
by floating point precision.

3.4 Frequency domain representation 55

Algorithm 2 Encoding stage of FS neuron simulation for the ReLU activation function

u(0)← x
uth(0)← 2Nsteps

h(0)← 2Nsteps

N ← n
for t = 1 : Nsteps do

T (t)← α2Nsteps−t

h(t)← α2Nsteps−t

u(t)← u(t − 1)− h(t − 1)z(t − 1)
if u(t)− uth(t)> 0 then

z(t)← 1
else

z(t)← 0
end if

end for

where d(t) is the decoding function. Algorithm 3 describes the logic for decoding the spikes
from a neuron that replicates the ReLU activation function. The authors optimized the
functions uth(t), h(t), and d(t) for different activation functions using the backpropagation
through time learning technique. They assigned larger weights to the loss in the regions
that containing the most information and provided examples for the Sigmoid and SiLU ac-
tivation functions. For the ReLU activation function, they use an analytical approach and
fix uth(t) = h(t) = d(t) = α2K−t , where α defines the maximum input value that can be
converted. This parameter set leads to the decoding function described in Algorithm 3.

Algorithm 3 Decoding stage of FS neuron simulation for the ReLU activation function
a← 0
for t = 0 : Nsteps do

d(t)← α2Nsteps−t

a← a+ z(t)d(t)
end for
x ← w · a

The FS model is lossless, as no information is disregarded, and highly efficient due to
its sparse nature. The authors converted large ANN architectures in the experiments, like
EfficientNet and ResNet-50, on the CIFAR-10 and ImageNet datasets. The authors do not
provide a replacement for the max pooling operation; instead, they use average pooling. The
work does not include an implementation in neuromorphic hardware, so the actual efficiency
of the algorithm was not evaluated.

3.4 Frequency domain representation

Computing the frequency spectrum is a cornerstone in many signal processing chains, as in-
formation often resides in the frequency components of the signals. Current signal processing
techniques for generating the frequency spectrum are robust and well established, being the
Fourier transform (FT) the most representative algorithm (see section 2.3). Although there
is little research into neuromorphic techniques for generating and analyzing the frequency
spectrum, there is an increasing interest in developing such techniques [Vog+22]. The repre-

56 Chapter 3 Neuromorphic engineering and computing

sentation in the frequency domain and its posterior analysis is a specialized task that biology
employs in the auditory pathway. Most information in auditive signals is stored in the differ-
ent properties of the overlapping acoustic that propagate through the auditive senses. This
is especially critical in the case of animals that heavily rely on this source of information,
such as bats [MS03]. In humans, the frequency components in the sound are separated via
the mechanical structure of the cochlea, where increasingly small receptive nerves react to
increasingly high sound frequencies.

The frequency domain representation typically occurs at the start of the signal processing
pipelines, so it is often computed on the sensor’s raw signal. One approach for implementing
neuromorphic applications in the frequency space is filtering specific frequencies in the signal.
The work in [Jim+16] introduces a spike-based approach for decomposing audio signals into
the main frequency components. Another option is using learning techniques to identify rele-
vant frequencies for a specific task [Ben+23]. Alternatively, some authors have explored the
resonate-and-fire (RF) model introduced in [Izh01], where the neurons’ excitation depends
on the frequencies present in the input signal [Aug+21a; Orc+21; Leh+23].

Resonate and fire neuron

In the neuron model introduced in [Izh01], a resonating frequency defines each neuron and
resonates when the input contains a component with this frequency. Formally, a complex
internal state z(t) ∈ C defines a resonating neuron,

z(t) = u(t) + j · i(t) . (3.40)

u(t) and i(t) represent a voltage and current variables, and j represents the imaginary unit.
Analogous to the LIF model, the RF neuron is a single-compartment with an internal state
variable affected by an input signal x(t),

δz(t)
d t

= (γ− j ·ω0)z(t) + x(t) , (3.41)

where γ and ω0 are the neuron’s dampening constant and resonating frequency, respectively.
In the absence of input, the state’s magnitude decays over time for γ < 1, and oscillates
indefinitely with the same amplitude for γ = 1. We can also express (3.41) as a set of two
differential equations that define the evolution of u(t) and i(t), respectively,

δu(t)
d t

= γu(t)−ω0i(t) + x(t)

δi(t)
d t

= γi(t)−ω0u(t)
, (3.42)

where we assume x(t) ∈ (R). Note that the nature of the input in (3.42) is a continuous
signal over time. In the original work [Izh01], this signal is treated as the weighted sum of
N spike trains,

x(t) =
N
∑

i

wiδ(t − t i) , (3.43)

where δ(·) is the Dirac function, and t i is the spike time of the ith input. If x(t) contains a
periodic component with a frequency close to ω0, the neuron enters a resonating behaviour,
and the magnitude of its state increases continuously. When the input frequency differs from
ω0, the dampening prevails, and the magnitude decays over time, regardless of the input sig-
nal’s amplitude. In other words, an RF neuron detects signals containing specific frequency
components. Employing several RF neurons with a broad range of resonating frequencies

3.5 Neuromorphic devices 57

allows us to reconstruct the input’s frequency spectrum [Aug+21a]. The spiking behaviour
of the RF model is introduced artificially, the same as with the LIF model. Izhikevich pro-
posed generating spikes when the imaginary component of the neuron surpasses a constant
threshold voltage [Izh01]. However, this approach cannot be scaled to signals with frequency
components with varied intensities, i.e., the threshold is tuned to a specific intensity range, so
high thresholds hide frequencies with small intensities, and low thresholds are over-sensitive
to clutter. The work in [Aug+21a] proposes an alternative where the threshold evolves ex-
ponentially, adjusting to a broader resonance range.

The neuron’s model in (3.41) can also be expressed in a discrete form, as indicated in
[Orc+21], so it can be simulated in a digital processor,

z[t] = γe jω0∆tz[t − 1] + x[t] , (3.44)

where ∆t is the simulation time step.
Compared to SNNs with learnt weights, RF neurons offer the advantage of operating

directly on analogue signals. Moreover, RF neurons solve the spectrum representation prob-
lem analytically, which is crucial for obtaining reliable systems that provide deterministic
responses.

3.5 Neuromorphic devices

Neuromorphic devices are a key component in neuromorphic computing, as they provide a
platform to accelerate SNNs efficiently. They are designed to mimic the structures of neurons
and synapses in the brain and perform event-based, asynchronous computations. Developing
neuromorphic devices is a research endeavour that goes hand in hand with designing and
implementing new neuromorphic algorithms, as they depend on each other [Mar+20] for
providing efficient and accurate brain-inspired computing. In the broadest sense, neuromor-
phic devices range from traditional hardware architectures like FPGAs and graphic-processing
units to dedicated digital neuromorphic chips and devices based on new technologies like
spintronics, memristors or photonics [Chr+22]. For a device to be considered neuromorphic,
its architecture and computing paradigm should possess most of the following properties:

1. Massively parallel: The computation is distributed among multiple nodes that perform
computations independently from each other.

2. In-memory computing: Each node has a local memory that is not shared with other
nodes, opposite to Von Neumann architectures, where devices contain a processing
unit and a memory block that is shared by all processing threads.

3. Event-based: Nodes react and process data when data is available. This contrasts with
traditional processing, where data is processed in a time-based fashion, i.e., a periodic
clock signal forces the processes to operate regardless of the existence of new data in
the input.

4. Asynchronous: The computing nodes do not operate simultaneously or with the same
time scales. This property is closely associated with the previous one, as the nodes react
asynchronously to events as they arrive.

Some works have estimated the energy consumption of SNNs and compared them to
that of ANNs. These measurements are theoretical and hardware-agnostic. In [PAR20], the
authors compare the number of multiply-accumulate operations and accumulate operations

58 Chapter 3 Neuromorphic engineering and computing

needed for transmitting spikes in SNNs and ANNs, respectively. In [DF21], the authors study
the efficiency of SNNs from an electronics perspective, analyzing the required components
for performing the operations.

This section broadly describes the most popular digital neuromorphic devices. [Chr+22]
contains a more detailed overview of state-of-the-art devices and materials for accelerating
neuromorphic algorithms.

3.5.1 Digital neuromorphic hardware

Despite the high research value of novel materials, their availability is very limited. Further-
more, the number of neurons they can implement is constrained to a few hundred nodes.
Thus, research on SNNs usually employs CMOS-based devices for testing and validating the
networks. These digital chips vary in size, efficiency, and versatility, and their intended ap-
plications range from small niche embedded processing to the execution of brain-sized sim-
ulations in large computing clusters. Table 3.2 depicts a comparison of the specifications
of some popular digital neuromorphic chips, including the semiconductor process size, the
number of neurons and synapses a chip can host, the area of the chip, and the efficiency
in terms of giga-synaptic operations per watt unit. [Bas+22] offers a detailed overview of
state-of-the-art SNN accelerators.

SpiNNaker, which stands for spiking neural network architecture, was initially developed
by the University of Manchester and mainly funded by the Human Brain Project. The SpiN-
Naker architecture is based on a grid of SpiNNaker chips, each consisting of 18 ARM968
processor nodes operating at 200 MHz, using fixed-point arithmetic, equipped with 96 KB of
internal data memory, and connected to 128 MB of external SDRAM. Each chip is connected
to its six neighbouring chips using a communications network-on-chip [Fur+14]. Whereas
the processing nodes inside the cores update synchronously, the chips do not share a global
clock and operate asynchronously. The SpiNNaker project’s main challenge was the simu-
lation of very large SNNs at a biological time scale (1 ms [Van+18]) using a number of
synaptic connections analogous to the brain cortex, i.e., around 104 synaptic inputs per neu-
ron [KF16]. SpiNNaker allowed for emulating large numbers of complex neural processes in
parallel efficiently [Van+18; Rho+20]. SpiNNaker was one of the first multi-core neuromor-
phic chips, and the first one to achieve the simulation of large brain areas (>10k neurons) at
brain timescales.

The Technical University of Dresden continued the SpiNNaker project to design and man-
ufacture the SpiNNaker 2 chip [MHF19]. Conceived to bridge the gap between realistic brain
models and AI, SpiNNaker 2 aims to create synergy between these two research domains. To
do so, the newer chip version includes a dedicated machine-learning accelerator that enables
hybrid applications that combine spiking and non-spiking algorithms. Besides the machine-
learning accelerator, each chip includes 153 cores with 19MB of on-chip SRAM. The authors
aim to build a single machine with 10 million cores, leading to the possibility of simulating
over 5 billion neural units.

Loihi is a 14nm, 60 mm2 digital neuromorphic chip developed by Intel [Dav+18]. Same
as SpiNNaker, Loihi is a multi-core, digital neuromorphic chip. Each chip contains 128 cores
that work asynchronously and communicate spikes via a mesh structure, where a network-
on-chip routes the spike messages. At the end of each step update, all cores send a barrier
message and wait for the rest of the cores to reach the same state. The Loihi 2 chip is
the second generation of this family, offering improved performance [Orc+21] and more
versatility. With Loihi 2, Intel shipped an open-source software library named Lava, intended
to serve as a cross-platform neuromorphic algorithms development tool. Loihi’s software
stack is prepared by default for implementing on a high-level Python interface the current-

3.5 Neuromorphic devices 59

Table 3.2: Comparison of the main specifications of popular digital and mixed-signal neuromorphic chips. Data
obtained from [Bas+22].

Chip name
Process
(nm)

Neurons Synapses
Area

(mm2)
Efficiency

(GSOPS/W)

SpiNNaker 130 18k 18M 88.4 0.033
Loihi 14 128k 256M 60 42.4*
TrueNorth 28 1M 128M 413 400
Tianjic 28 39k 9.75M 14.4 649
DYNAPs 180 1k 64k 38.6 33.3
ODIN 28 256 64k 0.086 78.7
BrainscaleS 65 512 128k 27.9 1280
Braindrop 28 4k 16M 0.65 2630
ROLLS 180 256 128k 44 13000*

* The power consumption reported for Loihi and ROLLS only considers the energy needed by the cores for
computing synaptic operations, excluding stating energy and neuron updates.

based LIF neuron model

u̇i(t) = −
1
τu

ui(t) + Ii(t)− θiσi(t) , (3.45)

where θi is the firing threshold and the current Ii(t) is obtained according to

Ii(t) =
∑

j

wi j(αuδ j)(t) + bi , (3.46)

where wi j is the synaptic weight, δ j(t) is the Dirac function, αu(t) is a synaptic filter impulse
response, and b j is a constant bias. Implementing more complex neuron models is done by
directly coding the microcode that runs on the neural cores.

TrueNorth, designed by IBM and disclosed in 2014, was one of the first multi-core dig-
ital chips [Mer+14]. It features 4096 cores, each containing 256 million synapses and 1
million digital neurons. The chip works at a low 1 KHz clock frequency and employs a
big die area, which leads to a very high efficiency and allows the implementation of many
neurons inside (see table 3.2). Although not meant for running neuromorphic algorithms,
it is worth mentioning IBM’s NorthPole chip, introduced in 2023, which builds upon the
TrueNorth technology [Mod+23]. Rather than being aimed at accelerating SNNs, North-
Pole is highly specialized in matrix multiplications with fixed-point precision and takes fea-
tures from neuromorphic computing for running the inference of DCNNs with state-of-the-art
energy efficiency, thanks to its massive computational parallelism, small-footprint weights
(8-, 4-, and 1-bit integers), no branching (i.e., no conditional ifs in the execution), and on-
chip memory.

Tianjic is a fully digital neuromorphic chip developed at Tsinghua University that allows
the acceleration of both ANNs and SNNs [Den+20]. It comprises a 156-core grid with highly
configurable neural nodes that allow the implementation of almost 40k neurons. The authors
reported an impressive energy efficiency, yielding 649 GSOPS/W.

DYNAPs is a family of chips developed by SynSense in close collaboration with the ETH
Zürich. The name stands for Dynamic Neuromorphic Asynchronous Processors. It is a 180 nm
hybrid chip [Mor+17], meaning the neural units compute their internal state using analogue
dynamics, and the spike communication happens via digital logic. Each chip consists of 1024

60 Chapter 3 Neuromorphic engineering and computing

neurons distributed over 4 individually configurable neural cores, connected by a hierarchical
routing grid.

BrainScaleS and its follow-up BrainScaleS-2 are a mixed-signal, single-core neuromor-
phic architectures developed at the University of Heidelberg [Sch+17; Göl+21]. Analogue
circuits implement the logic of the neurons and synapses, and the communication between
the different components is carried out digitally based on event-based protocols. The chip
itself is named HICANN, and a BrainScaleS-2 system comprises 384 HICANN chips on a sin-
gle wafer, with a capacity of 512 neurons per chip. HICANN chips are clustered in groups of
8, sharing an FPGA responsible for the spike communication. The maximum capacity of the
wafer is around 200k neurons and 43m synapses.

ODIN is a tiny digital chip specialized in online learning for embedded systems and pro-
vides with small energy consumption figures [Fre+18]. A crossbar architecture implements
the synaptic connections, and the spike communication is handled by address-event buses.
The chip can implement up to 256 neurons and 64k synaptic connections with a weight
resolution of 3 bits.

Braindrop is a mixed-signal neuromorphic chip that works in the subthreshold domain to
compute the neuron’s internal state [Nec+18]. It can host up to 4096 neurons connected by
16 million synaptic connections with 8-bit synaptic weights. The energy per synaptic spike
operation is as low as 0.381 pJ and offers the best ratio of synapses per chip’s surface from
all the analysed chips in [Bas+22].

ROLLS, developed at the ETH Zürich, is another mixed-signal, single-core neuromorphic
chip. [Qia+15]. It is tailored for real-time operations at biologically plausible timescales
while maintaining low power consumption. Consuming 0.077 pJ per synaptic event, this
chip yields the best energy efficiency among the analysed chips.

3.5.2 Silicon neurons

The chips introduced in section 3.5.1 contain circuit architecture designs for implementing
several neurons in parallel, ranging from hundreds to millions. Most are reconfigurable and
flexible regarding their application, input dimensions and synaptic connectivity patterns. Ad-
ditionally, they use digital communication protocols for transmitting and receiving spikes.
Alternatively, many embedded applications are better suited for ad-hoc circuits with ana-
logue interfaces that compute spikes online from the raw signals of sensors. These circuits
consist of single-channel electric designs that replicate the function of biological sensing cells
and can be implemented efficiently as integrated circuits; hence, they will be called silicon
neurons for the rest of this chapter. These circuits fulfil the task of encoding analogue sig-
nals to spikes [Zha+17], which was the original goal of neuromorphic Engineering [Chr+22,
chapter 10]. Multiple silicon neurons can be assembled together to form multi-node hybrid
chips like the ones introduced in section 3.5.1. There is a high diversity of silicon neurons
due to the wide variety of dynamic models [Ind+11; Chi+14]. They typically work on the
sub-threshold region of MOSFETs, also called the weak-inversion region, and most of them
contain a capacitor that charges and discharges depending on the input to the circuit, which
can be modelled as a voltage or a current. Depending on the complexity, silicon neurons
replicate simple integrate-and-fire models [Van01] or more complex models like the Morris-
Lecar model [Sou+17] and the adaptive exponential integrate-and-fire model [LI09]. Most
of these models show an inverse relationship between the input and the spike time. This
turns into a logarithmic or hyperbolic mapping from input to spike times. Most of the appli-
cations of silicon LIF neurons encode information into spike bursts using ISI [Rot+22] and
decoding the spike rate afterwards.

3.5 Neuromorphic devices 61

[WD08] introduces a circuit for a bursting neuron with a slow variable that modulates
the leak current, inspired by the neuron model from Izhikevich [Izh+03]. The circuit can
produce spike trains of 200 Hz with an efficiency of 900 pJ per spike. [LI09] presents a
conductance-based ISI circuit with adaptation and refractory period, compatible with the
address-event representation. The work in [Rot+22] uses a voltage-controlled oscillator for
generating spikes at a rate proportional to the voltage input. They realize the oscillator using
an RC circuit together with a MOSFET transistor, where the resistive element is voltage-
controlled, enabling a hysteresis effect. In [Zha+17], the authors thoroughly described
different neural encoders and designed an analogue circuit based on nMOS transistors for
obtaining an ISI encoder. Their implementation did not rely on operational amplifiers, and
they carried comprehensive results that showed considerable robustness and error tolerance.
The work in [CI15] implements a TC encoder for neural recording based on the principle of a
delta-modulation analog-to-digital converter (ADC) [Tan+13]. The circuit produces positive
and negative pulses compatible with the address-event representation depending on whether
the input increases or decreases over a threshold. In [Sou+17], the authors introduce a
silicon neuron that faithfully implements the Morris-Lecar neuron model, focusing on mini-
mizing the power consumption and the circuit’s size thanks to ultra-low capacitance values,
down to 4 fF. Besides the original circuit, the authors provide a simplified circuit that opti-
mizes the performance at the cost of less biological accuracy. The simplified circuit occupies
35µm2 and yields spike bursting behaviours up to 26 kHz and a consumption of 105 pW,
resulting in an energy of 4 fJ per spike including the DC power.

3.5.3 Alternative technologies

Most neuromorphic devices are implemented with traditional CMOS technology with archi-
tectures that enable the asynchronous and parallel nature of neuromorphic computing algo-
rithms. However, research has also explored novel materials such as magnetic alloys, organic
materials, phase-change memory devices, and 2D materials; or circuits formed by memris-
tors, optical processors, spin-torque nano-oscillators, and quantum processors. [Chr+22]
offers an overview of the trends with these alternative technologies and the outlook for the
following years.

Memristors are passive analogue devices composed of successive layers of electrodes and
insulators. Memristive devices comprise a large grid of such components, where each ele-
ment works as a memory and computing element, i.e., memristors implement in-memory
computing. Their state persists in the absence of voltage, which makes them ideal for pro-
viding non-volatile memory. Memristors can provide binary values or continuous voltages
within a given range. When combining memristors with digital processors, their input needs
to be interfaced with an ADC, and their output with a DAC [Bao+22]. This is one of the main
limitations of memristors, as it considerably degrades the energy and latency performance.

Spintronic memory devices use nanoscale magnetization dynamics to implement non-
volatile memory devices. The working principle of these devices is the generation of magnetic
oscillations in the presence of an input current. The oscillations are then converted into a
voltage across a magneto-resistance [Tor+17]. The output voltage and the input current
follow a non-linear relationship of the form

Vout∝
p

Iin − I0 , (3.47)

where I0 is a threshold constant, below which the voltage remains zero. The value of Vout
depends too on the previous state of the device, granting it the memory property. Thus, spin-
torque nano-oscillators can emulate the functionality of neurons. This technology has signif-
icant potential in neuromorphic engineering due to its low energy consumption, reliability

62 Chapter 3 Neuromorphic engineering and computing

and area requirements [Wan+23]. The authors in [Wan+23] report an energy consumption
of 486 fJ per spike and a firing rate up to 17 MHz. In [Tor+17], authors use spintronic os-
cillators for replicating neuron reservoirs and learning the task of speech digit recognition,
yielding a competitive accuracy. The scalability of spintronics has yet to be proven by creating
experiments beyond toy examples and offering high accuracy for real-world scenarios.

Optical processors implement what is known as photonic computing methods by com-
municating information using photons as carriers of information. Compared to electronic
implementations, the main advantages are their high throughput, high degree of paralleliza-
tion, low power consumption and high speed during information transport [Chr+22, chapter
13]. The research on the application of photonics for AI has increased considerably in the last
decade due to the demand for alternatives to traditional semiconductor technology. Optical
processors are suitable for transmitting massively parallel data for the multiply-accumulate
operations in ANNs, thanks to wavelength-division multiplexing, where multiple optical carri-
ers can be transmitted on a single fibre by using different wavelengths. The weighting of the
synaptic lanes is implemented within the amplification and attenuation circuits that multiplex
the signals. Research in photonics has provided mechanisms for implementing the spiking be-
haviour in SNNs [Sha+21b]. For example, the work in [Rob+20] shows the implementation
of a LIF neuron with multiple weighted inputs based on a vertical-cavitysSurface-emitting
Laser, a standard and cheap technology for implementing photonic systems. The system is
tested for integrating and coincidence detection tasks, with a pulse duration of 100 ns.

4
Temporal charge before spike neuron model

Signal processing has been a fruitful field for several decades, providing many efficient algo-
rithms that can process data from different sources and generate solutions for a broad range
of tasks. Many signal-processing algorithms use matrix multiplications to compute their out-
put, and optimising this operation is paramount for achieving efficient processing pipelines.
In recent years, neuromorphic computing has focused on applications that go beyond under-
standing the brain, and solve computational problems such as constraint satisfaction, graph
algorithms, or partial differential equations [Aim+22]. This chapter introduces and describes
in detail the temporal charge before spike (TCBS) neuron model, one of the main contribu-
tions of this thesis. The initial goal of the TCBS was computing the Fourier transform (FT)
[Lóp+22]. Besides its application as a replacement for the FT, the TCBS model also serves
as a tool for converting deep convolutional neural networks (DCNNs) to spiking neural net-
works (SNNs) [LRK22]. Section 4.3 describes the general approach for converting DCNNs
and appendix D shows results on the task of digitclassification.

4.1 Working principle

The TCBS neuron model is a variation of the leaky integrate-and-fire (LIF) for converting to
the spiking domain matrix-vector multiplications of the form

y =W T x , (4.1)

where x ∈ RN , y ∈ RM , and W ∈ RN×M are the input vector, the output vector, and the
coefficients matrix, respectively. A spiking version of (4.1) needs to replace the input and
output vectors by binary spike trains unrolled over time, sin(t) and sout(t), where s(t) ∈ {0,1},

sout(t)= Ŵ T sin(t) . (4.2)

As the aim of the TCBS is to improve the efficiency of sensor processing on neuromorphic
hardware, the design had two priorities in mind:

1. To perform a lossless conversion so the output of the original matrix multiplication per-
sists. This means that the output spikes shall hold a mathematical relationship with
the expected output in the original operation and that the original data can be recon-
structed after the mapping to spikes.

2. The spike density needs to be as sparse as possible for granting an energy-efficient
computation. For this reason, the TCBS uses time coding.

63

64 Chapter 4 Temporal charge before spike neuron model

4.1.1 Information encoding

The TCBS neuron model is based on temporal spikes, i.e., the information travelling across
the synaptic connections is stored in the precise spike times using phase encoding (PE) (see
section 3.2). The TCBS neuron model does not perform a conversion from analogue values to
spikes. Instead, the neuron’s inputs and output are spike trains. Namely, the model assumes
that the information is encoded into the delay of the arriving spikes,

t = tmin + (tmax − tmin) ·
xmax − x

xmax − xmin
, (4.3)

where the original data x is converted from the range [xmin, xmax] to a spike time t in the
range [tmin, tmax]. Figure 4.1 shows the mapping described in (4.3).

xmin xmax

tmin

tmax

Phase encoding

Figure 4.1: Conversion from an analogue value x in the range [xmin, xmax] to a spike time t in the range
[tmin, tmax] by using phase encoding.

For simplicity, let us assume that the spike times start at tmin = 0. Let us also denote as γ
the relationship between tmax and the input data range

γ=
tmax

xmax − xmin
. (4.4)

Thus, we can simplify 4.3 to
t = γ(xmax − x) . (4.5)

The resolution of the mapping in (4.3) depends on the number of time steps used for
generating the spikes. As this number is generally lower than the size of the data type used
for representing x , the encoding leads to a decrease in the data resolution. The minimum
observable difference in the input ∆x is determined by

∆x =
xmax − xmin

tmax
·∆t , (4.6)

where ∆t is the time step resolution of spike the output. ∆x is considerably smaller than
the original resolution of the data, as the number of time steps stays in the range 101 – 102,
which is several orders of magnitude of resolution often used on digital signal processors.

4.1 Working principle 65

An important property of (4.5) is that high values of x are mapped into small spike times
t, and vice versa. This property simplifies the computation of certain algorithms, like winner-
takes-all algorithms or max pooling operations, where only the value of the most dominant
inputs is relevant. These algorithms filter out low input values and propagate to the output
high values.

Encoding negative values
The introduced encoding implements a negative linear mapping from original values x to

spike times t trough the whole range [xmin, xmax]. This mapping is based on the intuition that
the higher x is, the more information it carries. However, this statement does not hold when
working with input ranges that include negative values, i.e., if xmin < 0. On the negative
spectrum, x typically carries more information the lower its value is. Hence, the mapping
(4.3) has to be modified so early spikes represent negative values with high information as
well.

Two alternative methods are proposed for encoding negative values (see fig. 4.2):

1. polar encoding, where negative spikes represent negative values.

2. discontinuous encoding, where spike times smaller and larger than tmax/2 represent
positive and negative values, respectively.

For implementing polar encoding, the spikes are represented not only by the spike time
t, but also by the polarity p ∈ {−1,1}. Assuming xmax = −xmin, the spike times for polar
encoding are calculated as

t = tmin + (tmax − tmin) ·
xmax − |x |

xmax
, (4.7)

where |x | denotes the absolute value of x . The polarity of the spike is based on the sign of x ,

p =

�

1, if x > 0

−1, ifx < 0
. (4.8)

The corner case x = 0 can be mapped to a spike at tmax with positive polarity, i.e., turning
the condition for the first half of (4.8) to x ≥ 0. A more meaningful option is to not generate
a spike in this situation, as in most problems, x = 0 does not carry any information. This
approach is more efficient and keeps the mapping of the positive and negative values sym-
metric. However, careful design is required when the encoding is implemented in dedicated
neuromorphic hardware.

For discontinuous encoding, (4.3) is split into two segments. The positive values of x are
mapped to the range [0, tmax/2], and the negative values of x are mapped to [tmax/2, tmax].
Assuming xmax = −xmin, discontinuous encoding is modelled as

t =

tmin + thalf ·
xmax − |x |

xmax
, if x > 0

(tmin + thalf) + thalf ·
xmax − |x |

xmax
, if x < 0

, (4.9)

where thalf = tmax/2. Same as for polar encoding, x = 0 can either be mapped to tmax, or it
can be ignored.

Discontinuous encoding has the advantage that it can be easily implemented in neuro-
morphic hardware, as it does not require an extra variable for representing polarity. The
main disadvantage is that for the same time range, the resolution of discontinuous encoding
is half than that of polar encoding.

66 Chapter 4 Temporal charge before spike neuron model

tmin tmax

−xmax

0

xmax

(a)

tmin tmax

(b)

tmin tmax

(c)

Figure 4.2: The three schemes proposed for converting real values to spike times using latency encoding. From
left to right: (a) the default scheme, (b) discontinuous encoding, and (c) polar encoding, where the red plot repre-
sents negative spikes.

4.1.2 Silent and spiking stages

The TCBS neuron model is inspired by the work from Rueckauer and Liu [RL18]. In this
work, the authors propose a neuron model that only requires one spike per input, translating
into a charge of the neuron membrane potential. Assuming that the neuron is simulated
on discrete time steps, the membrane potential of neuron i on time step t depends on the
spike times of every pre-synaptic neuron j that have spiked before t (t j < t), also called
causal neurons and represented by Γ<i . The change of the membrane voltage between two
consecutive time steps is given by

∆ui =∆t
∑

j∈Γ<i

wi j , (4.10)

where ∆t is the simulation time step. In other words, the instantaneous rate of change of
the membrane potential is equal to the sum of the weights from the pre-synaptic neurons
that have already spiked. The work in [RL18] includes two spiking mechanisms for the
model described by (4.10). The first mechanism consists of a fixed threshold that triggers a
spike when u(t) reaches it, and the second estimates the missing input by setting a dynamic
threshold that decreases with each arriving spike. The main drawback of this model is that
it cannot transform the membrane potential into output spikes without losing information.
For a fixed threshold, the input spikes that would have arrived after the neuron reaches the
threshold are not considered for computing the output. Moreover, due to the wide range of
input-weight combinations, there are specific input patterns that do not bring the membrane
voltage to a value higher than the threshold, not generating a spike and hence making these
values go unnoticed. The second method relies on a likelihood method that attempts to
estimate the missing information based on the weights of the missing input without any
knowledge of the input’s magnitude.

Instead, the TCBS introduces a lossless spiking mechanism, splitting the neuron’s princi-
pal operation into two stages over time, as shown in fig. 4.3. The neuron accumulates the
information from all input spikes during the first stage, called silent stage. During the second
stage, called spiking stage, the neuron maps the stored information into a single output spike.
The neuron is time-based, and its spike time is deterministic and based on the information
from all inputs.

4.1 Working principle 67

Silent stage:
The neuron i receives input spikes during this stage, and its membrane voltage ui(t) gets

charged accordingly. Moreover, the neuron cannot produce output spikes during this stage.
The contribution to the membrane voltage of a spike from the jth connection is proportional
to the synaptic weight wi j in the same way as in (4.10), i.e., the neuron gets charged from
the spike time t j until the end of the silent stage, at time ts. Hence, the final contribution
to the membrane voltage will be proportional to ts − t j times the value of the jth synaptic
weight and thus proportional to the output of the original vector-matrix multiplication,

ui(ts)∝ yi . (4.11)

Generalizing for a neuron i with several input connections, we define the membrane voltage
at time t as

ui(t) =
∑

j∈Γ<
wi j(t − t j) + oi , (4.12)

where Γ< is the set of neurons that have spiked before time t, also called causal neurons, and
oi is an offset constant used for correcting shifts in the neuron.

The voltage at the end of the silent stage is computed from (4.12) for t = ts. Using the
mapping for the temporal encoding (4.4) on (4.12), for tmax = ts, the voltage results in

ui(ts) =
∑

j

�

γWi j x j +Wi j ts − γxmaxWi j

�

. (4.13)

Using (4.1) and collecting the second and third terms of the sum under a constant β , we can
simplify (4.13) as

ui(ts) = γyi + β , (4.14)

where β is calculated as
β = −γxmin

∑

j

wi j . (4.15)

Equation (4.14) indicates that the membrane voltage at time ts is equivalent to the orig-
inal output y after applying a scaling γ and a shift β , which are constants defined by the
hyperparameters of the SNN. To preserve the proportionality with the original multiplication
(4.11), we must set the neuron’s offset constant to oi = −β/ts. We can observe that the offset
is zero when xmin = 0 and non-zero for all other cases.

Derivation. For obtaining the value of β in (4.15), we expand (4.13) and combine it with (4.1)

ui(ts) = γyi + (ts − γxmax)
∑

j

wi j . (4.16)

Then, we solve the value of ts on the second term using (4.4), which results in

ui(ts) = γyi − [γ(xmax − xmin)− γxmax]
∑

j

wi j . (4.17)

Simplifying, we obtain
ui(ts) = γyi − γxmin

∑

j

wi j . (4.18)

We obtain the value of β from the second term in the last equation and express ui(ts) as in
(4.14).

□

68 Chapter 4 Temporal charge before spike neuron model

Figure 4.3: On top, representation of a TCBS neuron with three synaptic inputs and one synaptic output. The
neuron receives one spike over time from each input, respectively, and generates one single output spike. At the
bottom, a plot of the membrane voltage of the TCBS neuron. During the charging stage, the neuron collects input
spikes and charges its membrane voltage. During the spiking stage, the neuron transforms the membrane voltage
into a precise spike over time. ©2022 IEEE

Spiking stage:
During this stage, the neuron’s membrane potential is charged until it reaches the mem-

brane threshold uth and produces a spike. The charging is modelled in a way that the spike
time of the neuron is inversely proportional to the membrane voltage at the start of this stage
and follows the same encoding as for the input (4.3). To achieve this behaviour, the time of
the output spike needs to take the form

t i = tmin + (tmax − tmin)
ymax − y

ymax − ymin
, (4.19)

where ymax and ymin are the maximum and minimum values that the output y can take.
Equation (4.19) is analogous to (4.3), hence the output spike follows the same encoding
principle as the input. We obtain the spike time described in (4.19) by charging the neuron
with a constant current Iext

ui(t + 1) = ui(t) + Iext . (4.20)

The membrane voltage at a time t is obtained as

ui(t) = ui(ts) + Iext(t − ts) , (4.21)

which can be simplified to
ui(t) = ui(ts) + Iext t (4.22)

if we assume ts = 0. To calculate the spike time t i, we apply (4.21) for a membrane voltage
u(t i) = uth,

t i = ts +
uth − ui(ts)

Iext
. (4.23)

The values of the parameters Iext and uth are determined based on the voltage range at
the end of the silent stage u(ts) ∈ [umin, umax], and the number of simulation steps. If the ratio
uth/Iext is not large enough, small values of u(ts) will not yield a spike, as shown in fig. 4.4.
The membrane threshold uth is fixed so that the maximum possible input yields a spike at the
start of the spiking stage ts. A naive approach for computing uth is to fix it to the theoretical

4.1 Working principle 69

maximum voltage at the end of the silent stage

uth =max
t=ts
{u(t)}=
∑

w∈W+

wts , (4.24)

where W+ is the subset of positive weights. Equation (4.24) is obtained after making two
assumptions: (1) all positive inputs will take the maximum possible value, which is mapped
to a spike time t(xmax) = 0, and (2) all negative inputs will take the minimum possible value
t(xmin) = ts, so they do not contribute to the final value. As this situation is highly unlikely,
the value uth can instead be adjusted to a lower value depending on the nature of the data
it will receive,

uth = αth max
t=ts
{u(t)} , (4.25)

where αth is a coefficient for scaling down the threshold.
The value Iext needs to fulfil the boundary condition that the minimum membrane voltage

at the end of the silent stage umin =min{ui(ts)} produces a spike at the end of the simulation
time tT . This results in

Iext =
uth − umin

tT − ts
. (4.26)

The relationship between the spike time t i and the original output yi is obtained from
(4.23) by computing the values Iext and uth using the mapping in (4.14) for umax and umin.
The spike time results in

t i = ts + (tT − ts)
ymax − yi

ymax − ymin
, (4.27)

which is an instance of (4.19) for the specific case of tmin = ts and tmax = tT .

Derivation. The spike time of the neuron is obtained by combining (4.23) and (4.12), which
results in

t i = ts +
uth − β

Iext
−
γ

Iext
yi . (4.28)

Using the mapping (4.14), the limits of ui(ts) are

umax = γymax + β (4.29)

and
umin = γymin + β . (4.30)

Now, we expand Iext using (4.26), and we replace uth with the equality uth = umax. Then (4.28)
results in

t i = ts +
γymax + β − (γyi + β)
γymax + β − (γymin + β)

tT − ts

. (4.31)

Equation (4.31) can be simplified to

t i = ts +
ymax − yi

ymax − ymin

tT − ts

. (4.32)

By rearranging the fractions, we can turn (4.32) into (4.27).
□

70 Chapter 4 Temporal charge before spike neuron model

Figure 4.4: Evolution of the membrane potential of 3 different TCBS neurons. The first neuron charges to a low
voltage and produces a late spike, the second charges to a voltage that lies beneath the effective range, and the
third charges to a high voltage that produces a fast spike.

4.1.3 Multi-layer structure

Section 4.1 describes the working principle of the TCBS when we have a single neuron with
multiple inputs. The neuron enables the computation of vector-matrix multiplications where
information is carried on time-coded spikes. Often, signal processing algorithms are struc-
tured in recursive operations, where the multiplication output is chained to further multipli-
cations. For example, DCNNs are organized in multiple layers of neurons, where the depth is
up to tens of layers. Efficient computations of the FT also split the algorithm into consecutive
layers, resulting in butterfly structures (see section 2.3).

Let us then generalize the TCBS neuron model for an architecture composed of several
neural nodes structured in a multi-layer architecture. For a correct function of an SNN com-
posed of TCBS neurons, the simulation of the silent stage of each layer overlaps with the
spiking stage of the previous layer,

(tT − ts)
l) = (ts − t0)

l−1) , (4.33)

where the superscript (·)l) denotes the layer l to which the times within the parenthesis refer
to. Therefore, it is possible to implement SNNs with an indefinite number of layers if the
requirement in (4.33) is met. This results in a highly sparse SNN over time, as an SNN with
L layers will have a total of L + 1 processing stages. For a given input vector, each layer will
only be active during two stages (see fig. 4.5).

For an SNN with L layers, the total processing time τT for generating an output spike
train from an input vector will be

τT = t0 +
L
∑

l

(tT − tS)
l) , (4.34)

4.1 Working principle 71

where t0 is the simulation time for the input spike train. If all layers have the same stage
simulation time (ts− t0)l) = (tT − ts)l), (4.34) yields τT = (L+1)τl , where τl is the simulation
time per stage. Another property of the TCBS SNN is that, for sequential data, it is possible
to feed an input vector before the output for the previous input vector is generated. Namely,
the shortest input period TT is given by the slowest stage in the network,

TT = 2 ·max
l
{(t t − tS)

l)} . (4.35)

In case that all layers have the same stage simulation time, (4.35) yields TT = 2 · τl . Im-
plementing a single-layer SNN does not require correcting the scaling in the output spike
in (4.27), as it can be applied after the decoding. However, a multi-layer architecture must
account for this and scale the spike times back to the original range. This can be achieved by
applying to the synaptic weights a scale based on the parameters of the pre-synaptic neuron.

I

V1

S1

V2

S2

Figure 4.5: Representation of the voltages and spikes of a two-layer TCBS network over time. The spike times
in the input layer (red) overlap with the silent stage of the first layer. The remaining layers’ silent stages overlap
with the preceding layers’ spiking stage. Each layer stays idle outside its silent and spiking stage. In general, the
density of spikes diminishes with the depth of the network. ©2022 IEEE

72 Chapter 4 Temporal charge before spike neuron model

4.1.4 Computational cost

The TCBS model uses (4.12) to update every neuron’s membrane potential on each time step
of the silent stage. Implementing this model implies going on every time step over the weights
of all causal neurons (i.e., neurons that have already spiked). Alternatively, the variable Iext
can accumulate the weights of all causal neurons and thus avoid the redundant summation
in (4.12), as well as avoiding to store the identities of the causal neurons at time t, leading
to

Iext(t) = Iext(t − 1) +
∑

j

wi jsin(t) , (4.36)

where sin(t) is the spike input at time t. After updating the current in (4.36), the membrane
potential is reduced to the simple sum

ui(t + 1) = ui(t) + Iext(t) . (4.37)

During the spiking stage, Iext is constant and each time step needs only to compute the
addition in (4.37). The model represented by (4.36) and (4.37) is a current-based LIF neuron
model, which is supported by digital chips like SpiNNaker and Loihi. For 2T time steps split
evenly between the silent and spiking stages, and n̄s input spikes, the total number of addition
operations per post-synaptic neuron for the silent stage is na1 = T + ns, and na2 = T for the
spiking stage, yielding a total number of addition operations

na = 2T + ns . (4.38)

4.2 Neuromorphic computation of the Fourier transform

The supremacy of the FT for the frequency spectrum analysis is unquestionable, and there
is no evidence that a learning algorithm could beat it. However, we can take advantage of
the event-based, parallel architecture of neuromorphic hardware and spiking neuron mod-
els to replicate the functionality of the FT. While offering equivalent output, neuromorphic
implementations can provide a fast, low-energy alternative to the FT.

Some works in recent years proposed spiking networks for doing a partial or full anal-
ysis of the frequency spectrum of temporal signals. In [Jim+16], the authors explored the
usage of SNNs for extracting specific frequencies from silicon cochleas, i.e., neuromorphic
implementations of the cochlea that output spikes [CLS07]. Another alternative is to use
resonate-and-fire (RF) neurons [Izh01].

Alternatively, the TCBS neuron model can solve the FT algorithm. The FT trigonometric
form (2.33) is a linear mapping of the input data of the form

Y =WF · X , (4.39)

where WF is the matrix containing the Fourier coefficients. Thus, the TCBS model can be
used for a lossless computation of the FT, i.e., the spiking times in (4.27) are proportional to
the output in (4.39), given that the weights are replaced by WF and the input X is converted
to spikes using (4.4).

As the output of the Fourier transform are complex values, the output layer of the spik-
ing Fourier transform (S-FT) is split into neurons representing the real components and the
imaginary components of the K frequency bins. Thus, (4.39) can be rewritten as the algebraic
linear system

Re
�

Y (N)
�

Im
�

Y (N)
�

=

WRe WIm

−WIm WRe

Re
�

Y (N−1)
�T

Im
�

Y (N−1)
�T

 , (4.40)

4.2 Neuromorphic computation of the Fourier transform 73

which can be implemented as a neural layer with 2 × L neurons, where half represent the
real values of the DFT and the other half represent the imaginary values, and WRe and WIm
are the weights derived from (2.33). Therefore, the input of the S-FT (4.39) is computed in
parallel with the real and imaginary Fourier coefficients.

0 20 40 60 80 100 120
Range (m)

Standard FT

0 20 40 60 80 100 120
Range (m)

Spiking FT

Figure 4.6: Example of computing the range FT on a sample chirp from simulated radar data using (a) a software-
based fast Fourier transform (FFT), and (b) the S-FT.

table 4.1 shows the summary of parameters for an S-FT length of N = 512 bins. Note
that the output dimension is 2N , as bins are split into real and imaginary components, each
represented by one neuron. fig. 4.6 depicts an example of a frequency spectrum generated
with the S-FT, and a standard fast Fourier transform (FFT) for reference.

Table 4.1: Parameters for a time-coded S-FT solving a 1D FT of length 512.

Parameter Value

Nº of neurons 210

Nº of synapses 220

Nº of input spikes 29

Nº of output spikes 210

Variables per neuron 2(u, Iext)

L2 norm of the FT

Whereas the computation of the FT yields a result in complex coordinates, some processing
pipelines demand the calculation of the output’s modulus and phase. The modulus F of the
FT spectrum is defined as

F = ∥Y∥2 =
Æ

Re(Y)2 + Im(Y)2 . (4.41)

If the application needs the exact value of the modulus, the operation in (4.41) has to be
computed using an arithmetic logic unit. Some neuromorphic chips like SpiNnaker 2 provide
the logic onboard for computing arithmetic operations. Alternatively, the power and root

74 Chapter 4 Temporal charge before spike neuron model

operations can be simplified by turning (4.41) to a logarithmic scale and assuming that the
logarithm of a sum equals the max of its elements,

log(F) =
1
2

log(Re2 + Im2)≈
1
2
·max{2 · log(Re), 2 · log(Im)}

⇒ log(F)≈ max{log(Re), log(Im)} .
(4.42)

The previous computation can be implemented if the neuron model produces spikes
whose timing indicates the logarithm of the real and imaginary parts, respectively,

t iRe = log(Re)

t i Im = log(Im) .
(4.43)

4.2.1 Computation of N-Dimensional FT

The introduced model can be adapted for computing an FT with multiple dimensions, as in
the case of the range-Doppler map of a radar frame. The output of the 1st layer of the S-FT
produces spikes within the range [0,1], whereas the FT values F they represent are in the
range [−Fmax , Fmax]. Thus, the conversion from the ith FT value Fi to its corresponding spike
time t i is

t i = 1−
Fi + Fmax

Fmax − (−Fmax)
=

Fmax − Fi

2Fmax
. (4.44)

To obtain an FT with several dimensions, the output each transform is fed to the FT function
N times. For example, to obtain the 2nd dimension of a 2D FT, we compute

F2)
j =

L−1
∑

l=0

F1)
k · [Cl − i · Sl] , (4.45)

where the input vector F1) has L components, Cl and Sl are the cosine and sine terms of the
lth element, and i is the complex operator. We can also express (4.45) in matricial form,

F2) = F1)

WRe

−WIm

 . (4.46)

To obtain equivalent FT values for input spike times that follow the rule in (4.44), (4.44)
and (4.45) are combined:

F2)
j =

L−1
∑

k=0

Fmax(1− 2t i) · [Ck − i · Sk]

= −2Fmax

L−1
∑

k=0

t i · [Ck − i · Sk] + Fmax

L−1
∑

k=0

·[Ck − i · Sk] .

(4.47)

We can rearrange the previous equation as a linear combination of the input spike times
t i with the L different cosine and sine terms over the chirp dimension, plus a constant value.
This can be rewritten in algebraic form as

4.2 Neuromorphic computation of the Fourier transform 75

�

F2)
�

= t

−2FmaxWRe

2FmaxWIm

+

FmaxWRe

−FmaxWIm

 . (4.48)

Thus, the second dimension of the FT can be directly calculated from the spike times of the
S-FT’s first layer. As the computations of the FT’s first and second dimensions are identical,
a two-layer S-FT can be used for computing a two-dimensional FT. The spike times of the
second layer hold the relationship defined in (4.44) with the 2D FT,

t2)
i =

F2)
max − F2)

i

2F2)
max

. (4.49)

where t2)
i and F2)

i are the second layer’s ith neuron’s in the spike time and its corresponding
FT output, and F2)

max is the maximum value of the FT in the second layer.
Figure 4.7 shows the result of computing the range-Doppler map of a sample radar frame

with a 2D S-FT architecture.
The method proposed above can also be applied to generate range-angle maps. Contrary

to the range-Doppler map, the range-angle map simultaneously generates data from different
channels. Thus, the range-angle map can either be calculated by computing one FT after the
other, as in (4.46), or by combining both in a single pass,

Y =
N−1
∑

n=0

C−1
∑

c=0

Xnc[Cn − i · Sn][Cc − i · Sc] . (4.50)

As the operations are identical as for the 1D FT, we can create a single-layer SNN that repli-
cates the functionality of the range-angle map by combining the 2 FTs into the single linear
equation defined in (4.50)

Figure 4.7: Example of computing the range-Doppler FT with the S-FT on a frame from simulated radar data. The
frame contains three targets, at distances R= {0, 9,100} m and velocities v = {0, 2,14} m/s, respectively.

76 Chapter 4 Temporal charge before spike neuron model

4.2.2 Computation of the fast Fourier transform

As described in section 2.3, the FFT is an efficient algorithm for implementing the FT by
splitting the computation into smaller sums that can then be combined to obtain the same
result as the discrete Fourier transform (DFT). Thus, the FFT is formed by consecutive layers
where the summations and multiplications that lead to the final result are intertwined into a
butterfly structure. In other words, the FFT rephrases the linear mapping (4.39) into

Y =WF1
·WF2

. . . WFL
· X , (4.51)

where L is the number of FFT layers.
By applying the principle of the TCBS model described in section 4.1.3, we can design

an SNN that computes the FFT by chaining L layers connected by weights with the FFT
coefficients.

Table 4.2: Comparison of different attributes of the TCBS when computing the DFT and the FFT

Parameter S-FFT S-DFT

Nº layers log4(N) 1

Nº neurons 2N · log4(N) 2N

Nº spike ops. 8 · 2N · log4(N) + 2N N · 2N + 2N

T f 2τl 2τl

τ f τl · (log4(N) + 1) 2τl

4.2.3 Compatibility with pre-processing algorithms

The computation of the FT with a time-coded SNN is an important step for achieving energy
and time-efficient neuromorphic signal processing pipelines. To fully integrate the S-FT on
neuromorphic hardware, it is crucial to apply the algorithms preceding the FT in the pipeline
using compatible implementations. One of the most relevant processing stages prior to the
FT when using multiple-input multiple-output (MIMO) sensors is beamforming, due to its high
complexity and impact on the final result. Section 2.4.3 describes this operation and some
popular versions. From a data processing perspective, adding a beamformer to a pipeline has
two main implications:

1. The data arriving from each antenna is modified with the beamformer coefficients.
Then the data from all antennas is fused and finally processed by the FT algorithm.

2. An adaptive beamformer calculates dynamically its coefficients by taking the input data
and performing an optimization solution on it.

The first point is independent of which specific beamforming algorithm is chosen for
optimizing the coefficients. When using a beamformer, the input data is linearly modified
according to (2.60). If the output of the beamforming stage is fed to an FT, the final output
can be calculated by combining (2.60) with (4.39) applying the Hadamard product of both
weight matrices,

Y (t) = (WB(t)⊙WF) · X (t) , (4.52)

where WB(t) are the beamforming coefficients and WF are the FT coefficients. In the case of
non-adaptive beamforming, the coefficients stay constant over time, WB(t) = WB. The feasi-
bility of the second point depends entirely on the chosen optimisation approach. Moreover,

4.3 Conversion of convolutional neural networks 77

fixed beamformers have pre-calculated coefficients that need not be dynamically updated, so
their implementation is trivial.

Another algorithm often used before the FT is the windowing function. This function
modifies the input with fixed weights linearly for removing ripples in the FT due to artifacts at
the start and end of the sampling period. As a window function consists of a linear mapping of
the input data, it can be integrated into the S-FT in the same fashion as with the beamforming

Y (t) = (WW ⊙WF) · X (t) , (4.53)

where WW are the windowing coefficients.
(4.52) and (4.53) are compatible with the TCBS neuron model, as a single weight matrix

can be obtained by multiplying WF , WW , and WB. Thus, the window and beamforming func-
tions can be integrated into the S-FT by modifying the input weights, so the weights applied
in the update of the neuron during the charging stage, defined in (4.20), can be expressed as

W =WF ⊙WW ⊙WB . (4.54)

The weights obtained in (4.54) assume they are constant parameters. For the case of adap-
tive beamforming or online learning mechanisms, they have to be updated on each time step
accordingly. The online modification of synaptic weights is a feature that not all neuromor-
phic chips possess, so the implementation of adaptive beamforming depends on the features
of the specific neuromorphic chip.

4.3 Conversion of convolutional neural networks

Conversion is the process of learning the architecture and synaptic weights of neural net-
works using traditional machine learning methods prior to applying the learnt parameters
to an SNN with the same structure. Conversion techniques aim at keeping the high accu-
racies obtained by traditional artificial neural networks (ANNs) while considerably reducing
their energy footprint thanks to the sparse, event-based nature of neuromorphic systems.
One of the most relevant aspects for improving the performance of neuromorphic hardware
and providing gains in energy consumption is using as few spikes as possible during infer-
ence. Davidson and Furber found out in 2021 that 1.6 spikes per neuron are the theoretical
threshold below which SNNs improve the performance of their ANN counterparts when using
digital neuromorphic chips [DF21].

A potential application of the TCBS model introduced in this chapter is to convert DCNNs
to the spiking domain. One benefit of the TCBS model is its temporal sparsity, as only one
spike is necessary for representing a real number. Contrary to other temporal conversion
techniques [RL18], TCBS-based conversion is lossless, as output spike times are mathemat-
ically equivalent to the output of the original analogue neuron, i.e., all inputs and their
corresponding weights are computed in the spike-generation process. This statement holds
as long as neurons’ voltages remain below the threshold voltage during the silent stage. After
this point, the neuron saturates, resulting in a dynamic range similar to rate-based conversion
approaches (see fig. 3.3). Moreover, the model exploits properties of DCNNs for enhancing
spatial sparsity, such as rectified activation functions, pooling operations, or convolutions.
These operations contribute to activating a reduced number of neurons in the network.

78 Chapter 4 Temporal charge before spike neuron model

Rectified linear unit

The rectified linear unit, or ReLU, is a nonlinear activation function that returns 0 if it receives
any negative input and outputs the input directly if it is positive. It is the most commonly
used activation function in ANNs due to its simplicity, efficiency, and performance. We can
formally describe the ReLU as

y(a) =

�

a, a > 0

0, otherwise
. (4.55)

Assuming xmin = 0, the TCBS model can replicate the behaviour of ReLU by constraining
the output spike to occur only if the voltage at t = ts is positive. This is achieved by setting
umin = 0 in (4.26), which yields

Iext =
uth

tT − ts
. (4.56)

Therefore, all voltages that are smaller than zero at the end of the silent stage will not suffice
to reach the threshold voltage during the silent stage and, hence, will not spike. This way,
the ReLU activation function becomes a technique for increasing the spatial sparsity, as the
neurons with a negative activation will stay silent.

Moreover, when applying the condition xmin = 0 to (4.15), the coefficient β is reduced to
zero.

Pooling

Pooling techniques are used in DCNNs for dimensionality reduction by splitting the data
into small regions of interest and reducing each region to a value representing its members.
One popular approach is average pooling, where the average value of the region’s members
replaces each neighbourhood,

yi =
1
N

NN
∑

n

xn , (4.57)

where NN is the number of neighbours in each region of interest. Alternatively, max pooling
reduces the output to the most dominant component in each region of interest by applying a
max operation,

yi = max
n∈NN
{xn} . (4.58)

Generally, max pooling is preferred over average pooling as it yields better results for
DCNN, and state-of-the-art ANNs based on the ReLU activation function apply this pooling
method. Rate encoding conversion methods cannot convert the max pooling to a spiking
version. They typically do post-processing of the spike rates for computing the max value
[Rue+17] or implement instead average pooling [HE16]. Implementing max pooling using
a time-coded conversion technique like TCBS is simpler than for rate-coded SNNs. As spike
times represent the actual magnitude of the neuron output, the pooling operation can be
obtained by using a winner-takes-all approach, i.e., a pooling neuron spikes as soon as an
input spike arrives,

o(t) = 1, if i(t)n = 1,∀n ∈ NP , (4.59)

where o(t) and i(t)n are the output and input spike trains, respectively, and NP is the number
of neurons on each pooling region of interest. To avoid further input spikes triggering the
output, the pooling neurons go into a refractory state until the next data frame is sent.

4.3 Conversion of convolutional neural networks 79

Batch normalization

Batch normalization is a technique used to standardize the inputs to a network, either applied
to the activations of a prior layer or directly to the inputs. Whereas normalization is applied
dynamically during training, during inference, it uses a moving average of the mean and
standard deviation of the batches seen during training. After calculating the activation of a
neuron, we normalize it according to

āi = γ
ai −µp
σ2 + ε

+ β , (4.60)

where mu and si gma are the batch’s mean and standard deviation, and γ and β are scaling
and shift factors. These parameters can be directly applied to the weights and bias of the
network, resulting in

w̄i j = γ
wi j

p
σ2 + ε

(4.61)

and

b̄i = γ
bi −µp
σ2 + ε

+ β . (4.62)

As the parameters obtained through batch normalization can be directly applied to the
weights and bias using (4.61) and (4.62), the normalization can be easily applied to the
converted SNN as well.

5
Analogue to spike encoder

The temporal charge before spike (TCBS) model introduced in chapter 4 computes the fre-
quency spectrum of a signal by taking as input time-coded spikes that represent the signal’s
amplitude over time. This means the signal needs to be transformed from analogue voltages
to spikes. The simplest approach to implement this mapping is to use an analog-to-digital
converter (ADC), typically present in all sensor chips. After digitizing the signal, the sensor
time series would be stored in memory before being converted to time-coded spikes using
a dedicated software routine. This pipeline can be optimized if a dedicated circuit directly
converts the incoming sensor voltage signal into spikes. Implementing this encoder cir-
cuitwould eliminate the delays and energy costs associated with the ADC, memory storage,
and conversion software (see fig. 5.1).

This chapter describes the design of an analogue-to-spike encoder (ASE) for converting
analogue signals into time-coded spikes to compute the frequency spectrum with the spiking
Fourier transform (S-FT) on a digital neuromorphic chip.

5.1 Working principle

The ideal behaviour of the encoding circuit is to provide time-coded spikes that follow the
linear mapping in (4.3), which consists of a membrane voltage that charges linearly over
time. Due to its simplicity and low consumption, the designed ASE circuit is based on the
leaky integrate-and-fire (LIF) neuron model, which implements a biologically inspired loga-
rithmic mapping between input stimuli and output spike times. The circuit is single-input,
single-output, i.e., the sensor voltage is fed to the input channel, and the output is formed by
the resulting spike train. The ASE samples the input signal by integrating the sensor current I
during the sampling time TS, defined by a sampling clock CLKS provided by the sensor circuit,
where the sampling rate is fs = 1/TS. Assuming small changes in the current I during the
sampling time, the circuit gets charged following the general LIF equation

u(t) = IR
�

1− et/τm
�

, (5.1)

where R and τm are the resistor and time constant of the LIF model, respectively. Alterna-
tively, if a voltage signal V (t) drives the input, which is the case of sensors like automotive
radar, we can express the membrane voltage as

u(t) = V (t)(1− e−t/τm) (5.2)

81

82 Chapter 5 Analogue to spike encoder

Figure 5.1: Top: Main blocks for computing the FFT of a radar analogue signal. Middle: Simple approach for
replacing the FFT by the S-FT. Bottom: Final system diagram after implementing the analogue-to-spike encoder.

The reader can refer to appendix B for details on how to derive (5.1) and (5.2).
Figure 5.4 shows the temporal dynamics of the model. For a given sample, the charging

process defined in (5.2) starts at t = t0, and the output spike occurs at t = ts when the
membrane voltage u(t) reaches the threshold voltage uth. At that point, the spike output
digital signal, SPK, is set to 1, and the circuit enters a refractory state until the end of the
sampling period t0 + TS. We assume that the input is a voltage source whose dynamics are
much slower than the sampling time TS. Thus, we can apply the relationship I = VS/R, where
VS is the voltage V (t) for t0 < t < t0+TS. The spike time ts is obtained by replacing u(ts) = uth
in (5.1), which yields

ts = −τm ln

�

�

�

�

1−
uth

VS

�

�

�

�

, (5.3)

which defines the dynamics of the ASE. The main features of this model are:

• The spiking time of the ASE is inversely proportional to the voltage fed to the encoder.

• The output ts follows a logarithmic function that can be approximated by a hyperbolic
function for uth <<< VS.

• From the previous point, the parameter uth determines the likelihood of the ASE with a
hyperbolic mapping of the voltages into spike times.

• The parameter τm defines the time scale of the output spike times.

The working principle of the Fourier transform assumes constant time intervals between
samples. To replicate its functionality with the ASE and the S-FT, the refractory state of the
ASE after each spike must maintain a regular sampling rate.

5.1 Working principle 83

3.0 3.5 4.0 4.5 5.0
VS (V)

0.0

0.2

0.4

0.6
t s

 (n
s)

ASE mapping uth = 0.1 V
= 1 ns
= 5 ns
= 10 ns
= 20 ns

3.0 3.5 4.0 4.5 5.0
VS (V)

0

2

4

6

8

t s
 (n

s)

ASE mapping uth = 1 V
= 1 ns
= 5 ns
= 10 ns
= 20 ns

3.0 3.5 4.0 4.5 5.0
VS (V)

0

5

10

15

20

t s
 (n

s)

ASE mapping uth = 2 V
= 1 ns
= 5 ns
= 10 ns
= 20 ns

Figure 5.2: Mapping of voltages to spike times with the introduced ASE for different values of uth and τm. The
used voltage range was [3, 5]V .

5.1.1 Parameter tuning

The design of the ASE involves carefully tuning its parameters, namely τm and uth, and
defining appropriate time ranges for the equivalent linear encoder. One of the goals of this
tuning process is to achieve optimal linearity in the mapping between the input and output
of the ASE. In other words, to make the ASE model (5.3) closely resemble the linear mapping
in (4.3). An additional goal of the tuning process is to maximize the output dynamic range
of the encoder so the resolution is maximal for the chosen tmax. Figure 5.2 shows how τm
and uth affect the mapping of voltages to spike times.

Linearity error

Let us call f (VS) and g(VS) the ASE logarithmic function and the S-FT linear encoding function
given by (5.3) and (4.3), respectively. We call linearity error ϵL the difference between both
functions for the given voltage range ∆VS = [VSmin, VSmax]. If we express this error as a
mean absolute difference, and assuming f (VS) and g(VS) are continuous functions, ϵL can be
calculated as an integral over the input range

ϵL =
1
∆VS

∫ VSmax

VSmin

| f (VS)− g(VS)|dVS . (5.4)

In discrete form, (5.4) can be expressed as

ϵL =

∑

VS
| f (VS)− g(VS)|

∆VS
. (5.5)

We normalize the result with the modulus of the middle value for the input voltage, so the
result is agnostic of the voltage magnitude across experiments,

ϵ̃L =
εL

|VSmax| − |VSmin|

2

. (5.6)

Assessing linearity with Taylor series

The encoding dynamics in (5.3) are modelled as a logarithmic relationship between the spike
time ts and the input voltage VS. We can simplify the model by expanding (5.3) using Taylor
series about VS = V0, which yields

ts = −τlog(1−
uth

V0
) +

∞
∑

n>0

τ
((uth − V0)−n − (−V0)−n)(VS − V0)n)

n
. (5.7)

84 Chapter 5 Analogue to spike encoder

When using the first polynomial, (5.7) converges to the linear expression

ts = −τlog(1−
uth

V0
) +τ

uth

V0(uth − V0)
(VS − V0) +O2 , (5.8)

where O2 is the error of the first polynomial expansion. Thus, (5.8) converges to a linear
function for small values of O2, which can be achieved by fulfilling the condition

|
uth

VS
|<< 1 . (5.9)

In other words, the ASE model shows a linear behaviour when the values of uth are very small
compared to the input voltage VS.

Time efficiency

Let us define the dynamic range tspk of the output of the ASE as the difference between the
maximum and minimum spiking times, tmax and tmin respectively,

tspk = tmax − tmin . (5.10)

For a given working time range t0 to tmax, we define the time efficiency of the ASE as the
amount of the time range that is effectively used for encoding input into spikes

µt =
tspk

tspk + twait
, (5.11)

where twait is the time needed for charging the ASE when input takes its maximum value
VSmax, which yields the fastest spike time tmin,

twait = tmin − t0 . (5.12)

Assuming t0 = 0, we can combine (5.11) with (5.10), which results in the expression

µt =
tmax − tmin

tmax
. (5.13)

For the condition uth/VS << 1, if we apply Taylor series (5.8) for calculating tmin and tmax
we find that the dynamic range depends only on the input voltage range

µt ≈
VSmax − VSmin

VSmax
. (5.14)

For larger values of uth, the time efficiency increases proportionally with the ratio uth/VSmin.
Thus, once the voltage limits are fixed, the only way of improving τt is by increasing uth.

Encoding loss optimization

By combining the linearity error εL and the time efficiency µt , we create a loss term LASE for
optimizing the parameter tuning,

LASE = αϵL + βµt , (5.15)

where α and β are the relative weights given to εL and µt , respectively. Tuning the ASE pa-
rameters will consist in finding the values of [uth,τ, tmin, tmax] that minimize LASE. Depending

5.1 Working principle 85

tmin tmax

Time

uth

U(t) twait tspk

Figure 5.3: Voltage membrane curves for VS = VSmin and VSmax. Each curve has a spike time of ts = tmax and
tmin, respectively. These limit values for the spike times define the dynamic range tspk, as well as the waiting time
twait.

on the nature of the experiments, we can fix some of these parameters beforehand. For ex-
ample, in an implemented circuit, τm is usually fixed, as it depends on the LIF capacitor and
resistor. On the other hand, the threshold voltage is easier to adjust. The search of values for
tmin and tmax is constrained to values near the maximum and minimum spike times obtained
for the logarithmic ASE at the limits of the input range, tASEmin and tASEmax,

tmin = tASEmin · kt 1 ,

tmax = tASEmax · kt 2 ,
(5.16)

where kt 1 and kt 2 are the scaling factors for the minimum and maximum spiking times,
respectively. From (4.3), the value of tmin serves as an offset to the linear mapping, whereas
tmax is used for fixing the slope of the curve. We can perform the minimization of LASE with
an optimization algorithm. Section 6.2 shows detailed results for this optimization problem
with a differential evolution algorithm.

The following steps are a strategy for applying the optimization algorithm for a given
voltage encoding problem:

1. Fix the range of the input voltage [VSmin, VSmax].

2. Select τ range based on the desired time magnitudes, e.g., ns,µs, ms.

3. Fix the bounds of kt 1 and kt 2 for adjusting tmin and tmax, respectively.

4. Obtain [uth,τ, tmin, tmax] by applying the chosen optimization algorithm the minimiza-
tion of L(·).

5. Chose τ̂≈ τ with the available electronic components.

6. Recalculate [uth, tmin, tmax] for τ̂.

86 Chapter 5 Analogue to spike encoder

5.1.2 Integration on a neuromorphic pipeline

Figure 5.4 shows the block diagram of the general application of the ASE. Conceptually,
the ASE is a block that generates spikes as a function of the sensor voltage V (t) during the
sampling period. The spikes are then sent to neuromorphic hardware, which will process the
spikes for an application-specific purpose. If the neuromorphic hardware is a digital chip, the
spike train is translated into a digital signal SPK formed by binary pulses. The clock signal
CLKS defines the sampling time ∆t. This signal can be provided by the sensor itself (as in
fig. 5.4), by the neuromorphic hardware, or by an external clock. If the ASE is connected to
a digital chip, both components require a communication interface with a synchronization
neural clock CLKN . The neuromorphic chip will typically provide this interface, determining
the maximum error in estimating the spike time. Assuming negligible transmission delays,
the spike time error εt is the difference between the spike time ts and the actual time of the
estimated spike time t̂s

εt = bts − ts . (5.17)

The maximum error is the period TN of the neural clock CLKN . Moreover, the ASE generates
the flag Sre f r , which indicates a refractory state in the encoder. At the start of the refractory
period, the ASE voltage u(t) drops to zero and stays unaffected by the input voltage until the
end of this period. Figure 5.4 shows the temporal dynamics of the digital signals generated
by the ASE in relationship with the reference clocks and the sensor voltage.

5.2 Electric design

Figure 5.5 contains an electric diagram of the implementation of the ASE. The encoder in-
tegrates the sensor voltage V (t) over time using an R–C circuit replicating the LIF neuron
model dynamics in (5.2). The values of the resistor RLI F and capacitor CLI F are chosen based
on the ranges of the input voltage and for mapping all possible spike times during the sam-
pling. The output voltage u(t) of the LIF integrator is connected to a comparator C1 that
changes to a HIGH state or digital 1 when u(t) is higher than the threshold voltage uth. The
synchronization of C1 with the digital chip is done with the D-type flip-flop A1, which is set to
HIGH with the output of C1 via the preset signal PRE. On the next rising edge of the neural
clock CLKN after PRE = 1, the spike signal SPK is set to 1, and the digital chip reads the
spike, responding with the onset of the reset of A1. The HIGH state of C1 triggers as well
the refractory period by setting the flag Srefr = 1 with a second D-type flip-flop A2, which
triggers two switches: the first switch opens the connection between the sensor and the LIF
integrator, and the second switch discharges the capacitor CLI F . The reset of Srefr takes place
on the rising edge of the sampling clock CLKS, which marks the start of a new sample. The
proposed circuit design assumes that the sensor voltage V (t) will be able to produce a spike
for every sampling time, i.e., the threshold uth will always be reached during the sampling
period TS.

The comparator C1 requires two auxiliary components: A voltage divider Rdiv that pro-
vides the desired uth, and a pull-up resistor Rpull that enables the HIGH state once the thresh-
old is crossed. The existence of Rpull depends on the specific model used for implementing C1.
Moreover, C1 needs to be in a LOW state for generating the spike flag SPK, as PRE works with
negated logic. The boundaries of the voltage threshold uth are [0, Vcc] due to the properties
of the comparator C1. The sensor voltage V (t) cannot take values below zero, as it would
force the input of C1 below its working range. These limits can be easily adjusted by shifting
the source and sink of C1 below the minimum possible value of V (t), e.g., by not having a
common ground between the sensor and C1.

5.2 Electric design 87

t0 ts

CLKn
S

u(t)
uth

SPK
1

0

CLKn+1
S

CLKN

t

1

0
ts

1

0

Srefr

refractory period

spike

LIF

encoder
Sensor

CLKS

v(t)

SPK Neuromorphic

HW

CLKN

Figure 5.4: Top: Block diagram of the LIF-based ASE circuit and its peripherals. Bottom: Plot over time of the
voltage u(t), refractory period flag Sre f r , and spike output SPK of the ASE for one cycle of the sensor sampling
clock C LKS , as well as the sampling clock of the neuromorphic device C LKN . The sampling time for the nth

sample starts at t0, and a spike is generated at ts when the voltage reaches the threshold value uth. The circuit
stays in refractory state until the following clock cycle CLKn+1

S starts.

5.2.1 Energy estimations

As one of the main motivations of the ASE is to minimize the consumed energy, it is paramount
to obtain an estimation of the power dissipation of the proposed circuit. In the remainder
of this subsection, the methods used to estimate the power dissipation of each component
are explained. The method differs for each component, as in some cases the information
can be obtained from the component datasheet, in other cases the most suitable approach is
to estimate the dissipation using circuits theory, and in other cases a calculation via SPICE
simulation is the best option. These estimations assume that the losses due to the wiring and
coupling effects are negligible. Table 5.1 summarises the power dissipated by each compo-
nent and their energy consumption per sample.

The energy consumption detailed in this section is an estimation based on models of ideal
components, assuming no losses in the wiring. A more precise energy profile of the ASE
requires an optimized implementation using ad-hoc comparator and flip-flop circuits and a
specific integrated circuit design, which is out of this thesis’ scope. The interested reader may
check optimized biological circuits, which can yield a consumption in the order of f J per
spike [Sou+17].

88 Chapter 5 Analogue to spike encoder

V(t)

Vcc
uth

SPK

CLKN CLKS
Srefr

Srefr

RLIF

CLIF

+

-

C1

Srefr

u(t)

D Q

A1 A2
PRE

D Q
PRE

Vcc

RDIV

Vcc

Rpull

Figure 5.5: Schematic of the designed ASE circuit. The sensor is represented by a variable voltage V (t) and
a very high impedance. The dynamics of the ASE are determined by the resistor RLI F and the capacitor CLI F .
The comparator C1 checks the crossing over the threshold voltage uth of the ASE voltage u(t). The output of
C1 triggers the digital spike SPK on the flip-flop A1. The following rising edge on the neuromorphic clock C LKN
resets the encoder output voltage. The flip flop A2 forces a refractory period from the appearance of a spike SPK
until the next rising edge on the sampling clock C LKS .

Flip-flops

The calculation for the RS flip-flops is based on the dynamic power-dissipation capacitance
Cpd provided in the corresponding datasheet. We can calculate the dynamic energy consump-
tion per switching operation according to [Sar97]. Adding the dissipation due to static power
consumption we obtain

ERS = Cpd V 2
cc + Vcc Icc T , (5.18)

where Vcc is the supply voltage of the circuit, Icc is the leakage current, and T is the sampling
period. For the selected flip-flop, the SN74HCS72, Cpd = 10pF and Icc = 0.1µA. The losses
due to leakage currents are negligible for the high sampling frequencies of the circuit, as T is
very small.

Comparator

The comparator is a circuit based on an operational amplifier laid out in an open loop. The-
oretically, the op-amp has very high impedance, thus the power dissipation in the input is
negligible. The power dissipation in the output is due to two factors: The quiescent current
Iq that flows from one power input to the other, and the output current Io that flows outside
of the amplifier, sometimes referred to as sink current. Thus, the total dissipated power PC in
the comparator is calculated as

Pcomp = Iq(V
+
cc − V−cc) + Io(V

+
cc − Vo) , (5.19)

where Vo is the output voltage. Although in an ideal case the voltage difference (V+cc − Vo) is
zero, the actual value is non-zero and is typically provided by the manufacturer. From circuits
theory, the total dissipated energy Ecomp for one sample is

Ecomp = PcompT . (5.20)

For the MAX951 ultra-low power comparator, the quiescent current is Iq = 7µA (called supply
current), (V+cc − Vo) = 0.4V , Io = −1.8mA(low out) OR 2.0mA(high out). It is relevant to note
that manufacturers often do not focus on creating precise dissipation measurements. Thus,
a real implementation of the component is necessary to have a clear value of the dissipated
power.

5.2 Electric design 89

Table 5.1: Energy consumption per sample and dissipated power for each of the components of the ASE, for a
constant input voltage V (t) = 2.5V , supply voltage of V+cc − V−cc = 10V , and a sampling rate fs = 300kHz.

Component nJ/sample mW Ratio(%) Ref.

CLIF 5.3e− 4 1.6e− 4 0.01 1nF

RLIF 0.07 0.02 2.20 50kΩ

C1 2.6 0.8 82.02 MAX951

A1 0.25 0.075 7.89 SN74HCS72

A2 0.25 0.075 7.89 SN74HCS72

Switches 3.4e− 5 10e− 6 <0.01 ADG719

TOTAL 3.17 0.97

Resistor

The power dissipated by the resistor can be calculated using Joule’s law, i.e., P = IV . The
charging of the capacitor dominates the voltage difference at the resistor until the spike
happens. We assume that Vm = 2/3Vth for an average spiking time of ts = T/2. After the
spike, the switch closes and the resistor dissipates the whole voltage provided by the source.
We can then calculate the energy dissipated by the resistor as

ER =
V 2

in

Rin
T/2+

1/3V 2
in

Rin
T/2=

4V 2
in

3Rin
T/2 . (5.21)

The dissipation that happens after the spike can be easily avoided by adding a switch
connected to the supply that opens during the refractory period. For this layout, the second
term in (5.21) becomes zero and the energy dissipated takes the form

ER =
T V 2

in

6Rin
. (5.22)

From (5.22), we can observe that the energy dissipation follows a quadratic relationship with
the input voltage. Therefore, reducing the voltage range is the most effective approach for
minimising the energy consumption of the circuit.

6
Implementation and experiment results

The preceding chapters introduced the two main contributions of this work: the temporal
charge before spike (TCBS) neuron model and the analogue-to-spike encoder (ASE). These in-
novations can replace the Fourier transform (FT) and analog-to-digital converter (ADC) stages
in a radar signal processing pipeline. Minor contributions also include the replacement of
the ordered-statistics CFAR (OS-CFAR) algorithm with a sparse spiking neural network (SNN)
for object detection and the application of the TCBS model for the conversion of deep convo-
lutional neural networks (DCNNs). This chapter deals with implementing these models and
their assessment in various experiments. The spiking Fourier transform (S-FT) and the spik-
ing OSCFAR (S-OSCFAR) implementations were executed on neuromorphic hardware, while
the ASE was implemented on a prototype board controlled by a dsPIC microcontroller. The
implementations were evaluated independently using data from real-world automotive sce-
narios and electric signals generated in the laboratory, respectively. The evaluation of the
TCBS for conversion of DCNNs is detailed in appendix D.

The primary objective of the experiments was to validate the potential of the proposed
algorithms and neuron models as substitutes for traditional frequency-modulated continuous-
wave (FMCW) radar signal processing techniques. The results showcase the errors these
SNNs introduced across various scenarios and parameter configurations. Additionally, the
experiments evaluated the performance of these models in terms of energy consumption and
time latency. It is essential to note that the limited energy measurement capabilities of the
employed neuromorphic boards by the time the experiments were run constrained the as-
sessment of the energy consumption. Hence, the energy profiling was limited to estimations.

6.1 Spiking Fourier transform

This section describes the implementation of the neuron model introduced in chapter 4 and
presents the outcomes of the experiments conducted to validate its performance. The S-FT
was realized on neuromorphic hardware and tested in automotive radar scenarios. The main
purpose of the experiments was to validate the applicability of the S-FT as a potential replace-
ment for the fast Fourier transform (FFT). This involved ensuring its output exhibits minimal
errors compared to an ideal FT.

The first experiment ran the S-FT on data obtained from an automotive radar simulator
provided by Infineon AG. This tool offers more control over the experiment, facilitating the
assessment of the algorithm’s performance in aspects like sensitivity to noise or compatibil-
ity with a target detection algorithm. Complete knowledge of target locations allows the

91

92 Chapter 6 Implementation and experiment results

measurement of the accuracy of target detection pipelines based on the S-FT. Namely, the
OS-CFAR and density-based spatial clustering of applications with noise (DBSCAN) algorithms
were applied to the output of the S-FT, and a detection score was assigned to the final output.
The detection accuracy was compared with the output of the same algorithms applied to the
FFT, which made it possible to analyse the real impact of the error in the frequency spectrum
on the entire processing pipeline.

A second set of experiments ran the S-FT on five real-world scenarios sensed with an
FMCW radar sensor. These experiments let us analyse whether the performance of the S-FT
drops in realistic scenarios. The lack of information about the true output limits the scope of
this experiment to the analysis of error metrics regarding an ideal FT, as there is no available
information about the location of the targets in the scene. In other words, the experiment
does not evaluate the accuracy of object detection tasks. It only assesses the deviation of the
S-FT compared with an ideal FT for real-world data.

6.1.1 S-FT Implementation

The various implementations of the S-FT share a common operational principle tailored to
specific platforms. The neuron model employed, the TCBS, is an adaptation of the leaky
integrate-and-fire (LIF) model with two different behaviours, called silent and spiking stages
(see section 4.1). The change from one to the other occurs at the end of the silent stage, i.e.,
at t = ts. The threshold voltage uth that determines when spikes occur is calculated as

uth = 0.25αth

N
∑

n

w0n ts , (6.1)

where w0n represents the nth coefficient of the zero-mode FT bin, and ts is the number of
timesteps in the charging stage. The reduction coefficient αth falls within the [0,1] range and
is determined empirically. Even though the theoretical maximum power of the S-FT leads
at ts to a voltage maxt=ts

u(t) = uth,αth=1, this value is never reached when using real-world
data. To adjust to the reduced working range, αth lowers the maximum value of u(ts) that
can be identified, and beyond this value, all voltages are truncated. Its tuning is a trade-off
between resolution and sensitivity to high bin intensities. A lower value of uth corresponds to
a higher output resolution and a narrower dynamic range. However, very low values of uth
truncate FT bins with high intensities. Assuming the silent and spiking stages have the same
duration, the value of the offset current for the spiking stage is determined as

Iext =
2uth

ts
, (6.2)

which is the current necessary to provoke a spike at t = tmax for u(ts) = umin. For the
special case of the S-FT, the minimum voltage is set to umin = −uth, as the output of an FT is
symmetric around zero.

Traditional processor

The initial implementation of the S-FT was conducted on a conventional processor. This
choice of platform offered the advantage of greater flexibility in parameter modification and
the exploration of various features without the overhead of adapting to the architecture of a
neuromorphic chip. To facilitate the study of the S-FT’s nature, this implementation aimed to
closely emulate the behaviour of neuromorphic implementations.

6.1 Spiking Fourier transform 93

The PC implementation was coded in Python using the NumPy library directly. The main
motivation was to have a versatile and easy-to-modify implementation. Hence, higher-level
libraries like Brian2 or NEST were discarded. The S-FT was implemented as a class that took
the input encoded as spike times and iteratively updated its state for the number of time
steps, similar to how a digital neuromorphic chip would do it. The class returns spike times
as output, as well as the value of the neurons’ voltages for debugging purposes.

Loihi

The implementation of the S-FT in Loihi is based on the current-based LIF neuron model,
which is the basic model implemented in the Loihi core. The voltage u of a given neuron
changes stepwise according to

u[t] = u[t − 1] + i[t]∆t − (1−αlif)u[t − 1] , (6.3)

where i, ∆t, and αlif are the current, simulation step time, and the decay rate, respectively.
The neuron’s current is obtained from the N input spike trains to the neuron,

i[t] = i[t − 1]
N
∑

j=0

w js j[t] + b , (6.4)

where s j[t] defines the spike train of the jth input, and b is the bias function of the neuron.
The model defined by (6.3) and (6.4) was modified to implement the S-FT neuron model.

The TCBS neuron was implemented as a standalone model based on the current-based LIF.
Implementing the silent stage is trivial, as the only modification it requires is a decay set to
αlif = 0. Implementing the spiking stage requires two changes at the end of the silent stage
(t = ts):

1. The contribution from the inputs needs to be inhibited from this point, by setting
i[ts] = 0 and blocking the arrival of further spikes.

2. The neuron’s bias has to be fixed to the value Iext, which is determined using (6.2).

The model was developed in the NxSDK library from Intel Labs for the Loihi 1 board. The
library has a higher-level layer where versions of the most popular neuron models can be
created. On top of this, a sequential neural interfacing process (SNIP) was programmed to
change between the two working stages. SNIPs interact with the neuron compartments for,
among other tasks, changing between operation phases [Dav+21]. For the Loihi 2 board,
the model was developed with the Lava framework. The TCBS was implemented as a new
class that inherits its core functionality from the class that implements the basic LIF neuron
model. The transition between stages was implemented using a microcontroller code (ucode)
script that takes two new parameters, t_half and charging_bias. When the simulation reaches
t_half, the current is fixed to the value of charging_bias.

SpiNNaker 2

The S-FT was implemented in the SpiNNaker 2 board based on the native LIF model. The
model includes the parameter T_silent, which determines the behaviour change from the
silent to the spiking stage. For simulation times t < T_silent, the neuron is charged according
to

�

u[t] = u[t − 1] + Isyn[t]

Isyn[t] = Isyn[t − 1] + I[t]
, (6.5)

94 Chapter 6 Implementation and experiment results

where u[t], Isyn[t], and I[t] are the membrane voltage, neuron synaptic current and input at
time step t, respectively. A neuron that follows (6.5) accumulates all inputs that took place
at previous time steps and modifies the membrane voltage v based on a linear combination
of those inputs. For simulation times t ≥ T_silent, the neuron is charged according to

u[t] = u[t − 1] + Ioffset[t] , (6.6)

where Ioffset[t] = Iext is the offset current of the spiking stage and is determined using (6.2).
During this stage, the input information stored in Isyn is ignored. (6.1) determines the thresh-
old voltage value. After generating a spike, the neuron starts a long refractory period that
prevents the occurrence of further spikes.

6.1.2 Experimental results

The experiments with the S-FT assessed its performance in different scenarios and how its
output compared with that of a standard FFT. Initial experiments were performed on sim-
ulated data with the knowledge of the true values of the recorded scenarios. Knowing the
number of targets in the scene and their exact positions is paramount for evaluating target
detection tasks and calculating the actual precision of the processing pipeline. Further ex-
periments were conducted on real data from street scenarios with an FMCW radar. These
scenarios lack knowledge of the actual position of the targets, and their purpose was to val-
idate the behaviour of the S-FT in real-world scenarios by comparing its output with that of
an FFT accelerator.

Experiments on simulated data

The first batch of experiments for the S-FT was conducted on simulated data for an FMCW
radar sensor obtained from a library developed by Infineon AG. The dataset was split into four
sets, the first two belonging to scenarios containing a car and the last two containing a pedes-
trian. Moreover, half of the scenarios for each target type were simulated under low-noise
conditions, and half were simulated under high noise. Thus, the dataset was comprised of
the car_lownoise, car_highnoise, pedestrian_lownoise, and pedestrian_highnoise subsets. Each
subset comprises 200 scenes containing one target each, adding up to 800 scenes. The noisy
scenes included several sources of noise: analog front-end noise, thermal noise, phase noise,
and ADC non-linearities, saturation, and noise.

Table 6.1 shows the main specifications of the radar for the simulated scenarios. The
range resolution and maximum range were calculated using (2.21) and (2.22), yielding
∆R= 0.25 m and Rmax = 126.4 m, respectively. The car targets were simulated at incre-
mental distances in the range [2.8,113.8] m, with a radar cross-section σcar = 15dBsm for all
scenes. The pedestrian targets were simulated at distances in the range [1.6, 63.2] m, with
σped = 0 dBsm for the low-noise scenes, and σped = 5 dBsm for the noisy scenes. The radar
cross-section had to be increased in the pedestrian_highnoise subset, otherwise, the target
could not be distinguished from the noise.

Table 6.1: Specifications of the radar used in the simulated scenarios. N is the number of samples in a chirp.

Parameter Value
f0 76 GHz
∆ f 607.7 MHz
∆T 40.96µs
N 512

6.1 Spiking Fourier transform 95

0 20 40 60 80 100 120

Range (m)

FFT

0 20 40 60 80 100 120

Range (m)

S-FT

0 25 50 75 100 125 150 175 200

Timesteps

S-FT voltages

Figure 6.1: Computation of a chirp from the car_highnoise subset with the FFT (top) and the S-FT (middle). The
orange markers show the cluster obtained after applying an OS-CFAR and DBSCAN algorithms to the output of
the frequency spectrums. The bottom plot shows the evolution of the membrane voltage of the different neurons
of the S-FT for the whole simulation, where the starting voltage is u(t = 0) = 0 V for all neurons. The dashed
gray line at timestep 100 indicates the change from the silent stage to the spiking stage.

The generated dataset contained the raw data of the radar and the labels with the real
distance of the targets in the scenes. Two different pipelines processed the data: a standard
pipeline and a spiking pipeline. Both pipelines included a pre-processing stage with a Hann
window and a mean-shift operation. The standard pipeline computed the FFT using the
NumPy library, and the spiking pipeline encoded the data into spikes and computed the S-FT.
The spiking pipeline was run for different numbers of simulation steps and was compared
with the FFT output by computing the root-mean-square error (RMSE),

E =

√

√

√

∑NFT−1
n=0 (ŷ − y)2

NFT
, (6.7)

where NFT, ŷ, and y represent the number of bins in the frequency spectrum, the estimated
output, and the ground-truth output, respectively. The offset bins and the negative sides of
the frequency spectrums were ignored before computing (6.7), which reduced the size of the
FTs to

NFT =
N
2
− noffset , (6.8)

where noffset is the number of offset bins that are ignored in the post-processing of the
frequency spectrum. The offset level of the input signal, which holds no information about
the targets, dominates these bins. It is produced by the reflections of the sensor casing and
the car bumper, as well as by the bias introduced by the thermal noise in the sensor. The
results shown in this section were obtained for noffset = 12. To make results comparable, the

96 Chapter 6 Implementation and experiment results

100 200

S-FT timesteps

0.1
0.2
0.3
0.4
0.5
0.6
0.7

pedestrian lownoise

(a)

100 200

S-FT timesteps

0.1
0.2
0.3
0.4
0.5
0.6
0.7

pedestrian highnoise

(b)

100 200

S-FT timesteps

0.1
0.2
0.3
0.4
0.5
0.6
0.7

car lownoise

(c)

100 200

S-FT timesteps

0.1
0.2
0.3
0.4
0.5
0.6
0.7

car highnoise

(d)

Figure 6.2: Boxplots of the RMSE between the S-FT and the FFT for different SNN simulation times ts for the
scenarios simulated with the library from Infineon AG. From left to right, the plots depict the results of the pedes-
trian_lownoise, pedestrian_highnoise car_lownoise, and car_highnoise subsets. The distribution outliers are not
represented in the plots.

output of the S-FT and FFT were mapped to the same scale by normalizing them between
zero and one. The experiments pipeline solved a target detection task to assess whether
the errors obtained in the S-FT propagate forward on a signal processing pipeline. Namely,
the standard and spiking pipelines included object detection and clustering algorithms after
the FT. In the case of the spiking pipeline, the output spike train of the S-FT was decoded
to real numbers before feeding the data to the detection algorithm. Object detection was
implemented using an OS-CFAR algorithm with a window size of 32 cells, 4 guard cells, a
scaling constant α= 0.4, and an ordered-statistics k = 6. The clustering of the detected peaks
was performed using a DBSCAN algorithm tuned with min_pts = 2 and ε = 3. Chapter 2
includes a description of both algorithms. Figure 6.1 depicts the result of computing one chirp
with the S-FT for 100 timesteps per SNN stage, and the cluster labels obtained after applying
the OS-CFAR and DBSCAN to the resulting spectrum. The plot also includes the result of the
FFT for comparison and the evolution of the membrane voltage values during the simulation.
The main difference between the S-FT and the FFT is that the relative intensities of the low-
power S-FT bins are higher than those of the equivalent FFT bins. This is due to the saturation
of the membrane voltage of the S-FT neurons that represent those bins, which happens when
the voltage reaches the threshold value uth before the end of the silent stage. This increases
the intensity of low-power bins w.r.t that of the saturated bins. This phenomenon can be
observed in the voltages’ plot in fig. 6.1, where one neuron saturates positively and a second
neuron saturates negatively at timestep t ≈ 40. This particularity of the S-FT can be avoided
by increasing uth to a higher value so the voltage does not saturate during the silent stage.
Even though this effect increases the final error, it benefits the frequency spectrum, allowing
distinguishing targets with lower intensities. Note that the spectrum plots show the absolute
value of the FT bins, assuming the spike timestep equivalent to a null intensity |F | = 0 is at
t = tT · 0.75.

Figure 6.2 shows the boxplots of the RMSE between the S-FT and the FFT for the four
different simulated subsets, for ts ∈ [30, 300] simulation steps. The RMSE diminishes in all
cases with a higher number of simulation steps, following an exponential decay pattern and
stabilizing after 100 timesteps. The variation of the RMSE in terms of standard variation and
number of outliers improves with the number of simulation steps as well. This improvement
is steeper for the low-noise scenarios, pointing towards the difficulty of the S-FT of replicating
bins without targets nor noise, i.e., with values close to zero. The differences between the
car and pedestrian scenarios are small, reflecting that the intensity of the reflected target
does not have an influence in the performance of the S-FT. This is specially the case of the
pedestrian_lownoise subset, where the configurations with few simulation steps yield unstable
results, with a high standard deviation and a considerable number of outliers with high
RMSE.

6.1 Spiking Fourier transform 97

100 200

S-FT timesteps

0.4
0.5
0.6
0.7
0.8
0.9
1.0

pedestrian lownoise

Precision

Recall

(a)

100 200

S-FT timesteps

0.4
0.5
0.6
0.7
0.8
0.9
1.0

pedestrian highnoise

Precision

Recall

(b)

100 200

S-FT timesteps

0.4
0.5
0.6
0.7
0.8
0.9
1.0

pedestrian highnoise

Precision

Recall

(c)

100 200

S-FT timesteps

0.4
0.5
0.6
0.7
0.8
0.9
1.0

car highnoise

Precision

Recall

(d)

Figure 6.3: Performance of the S-FT and the FFT for different SNN simulation times ts for the scenarios simulated
with the library from Infineon AG. The measurements include the precision and the recall, in blue and red, respec-
tively. The dotted lines indicate the performance of both metrics for the FFT. From left to right, the plots depict the
results of the pedestrian_lownoise, pedestrian_highnoise car_lownoise, and car_highnoise subsets.

To evaluate if a labelled cluster corresponds to any of the targets in the scene, the post-
processing of the pipeline assessed if the distance of any point pi in the cluster to the target
is smaller than a tolerance, d < tol, where d = |pi − ptarget|. All the experiments used tol = 2,
i.e., clusters could not deviate more than one bin to be evaluated as correctly labelled. The
analysis of the pipeline accuracy included the measurement of the precision and the recall of
the labelled clusters, defined as

precision=
T P

T P + F P
(6.9)

and

recall=
T P

T P + FN
, (6.10)

where T P, F P, and FN are the true positives, false positives, and false negatives, respectively.
Figure 6.3 shows the accuracy results for the four different subsets, where the number

of simulation steps varies in the same way as in the previous experiment. The solid lines
in the plots show the performance of the S-FT and its variation for different values in the
number of simulation steps. The dashed lines show the performance of the FFT used as a
reference. As expected, the plots show a similar performance for the S-FT and the FFT. This
similarity also holds for the different number of simulation steps, except for ts < 100 for the
pedestrian_lownoise subset. The precision of the S-FT tends to be better than that of the FFT,
although both values converge for high values of ts. This is probably because false-positive
clusters typically occur when noise is labelled as a target, and noise is generally too low to
be labelled when an FT with low quantization resolution is used, which is the case of the
S-FT. When comparing the results in fig. 6.2 and fig. 6.3, we can see that even when the S-FT
has higher errors with respect to the FFT, the performance of the object detection pipelines
is analogous. As the error introduced by the S-FT is due to quantization shifts, the relative
intensity of the peaks w.r.t their neighbours generally stays the same.

Validation on real data

The remainder of this section validates the S-FT by applying it to radar data obtained from
real-world scenarios and comparing its performance with the output of an FFT accelerator.
Contrary to the previous experiment, the data from this experiment does not contain labels
with the location of the targets in the scene, so the evaluation was limited to the error be-
tween the spiking and non-spiking FT. This experiment aimed to validate the performance on
a few scenarios posing different challenges for the FT processing, as collecting a large dataset
on real scenarios was out of the scope of this experiment.

98 Chapter 6 Implementation and experiment results

100 200
Nº simulation steps

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

RMSE over different sim times

Figure 6.4: Average error of the S-FT for the five scenarios considered, computed using (6.7). The plots show
the error as a function of the number of simulation steps and for three different FFT bin size configurations,
N ∈ [64, 256,1024]. ©2022 IEEE

The validation experiment of the S-FT took place on five different street scenarios:

1. One target close to the sensor, and a second target far from it.

2. A weak target in front of the sensor.

3. Two targets close to each other.

4. Multiple targets in front of the sensor.

5. A target moving in front of the sensor.

The first four scenarios were one-dimensional, i.e., they collected data in the range dimen-
sion. On the other hand, the last scenario was two-dimensional, i.e., the output of its fre-
quency spectrum was a range-Doppler map. The experiment assessed the output of the S-FT
implemented on the Loihi 1 board using the RMSE as metric (6.7). The measurements used
the output obtained from a software-based FFT as a reference, i.e., from the implementation
in the NumPy Python library. The S-FT ran on a physical Loihi boardand processed in a batch
fashion, i.e., before the execution of the algorithm, a batch of data was converted into spike
times, and it was processed by the S-FT in Loihi afterwards. Figure 6.4 shows the change
in the performance of the algorithm when varying two different parameters: The simulation
length ts and the FT bin size N .

The results in fig. 6.4 show that the error of the S-FT decreases exponentially with the
simulation length regardless of the number of bins in the generated frequency spectrum.
This is the expected behaviour, aligning with the results in fig. 6.2. The simulation time ts
of the silent stage directly impacts the quantization of the frequency intensities, whereas the
reference FFT always uses the same resolution of 64 bits. The invariance of the performance
of the S-FT w.r.t the bin size is also expected, as a smaller N leads to a loss in the bin resolution
of both the S-FT and FFT outputs, but not in the intensity resolution, i.e., the frequency

6.1 Spiking Fourier transform 99

0 100 200 300 400 500
1

0

1

y

Real

0 100 200 300 400 500
1

0

1

y

Imaginary

0 100 200 300 400 500
Bin Nº

0.0

0.5

1.0

y

Magnitude

Scenario 1

(a)

0 100 200 300 400 500
1

0

1

y

Real

0 100 200 300 400 500
1

0

1

y

Imaginary

0 100 200 300 400 500
Bin Nº

0.0

0.5

1.0

y

Magnitude

Scenario 2

(b)

0 100 200 300 400 500
1

0

1

y

Real

0 100 200 300 400 500
1

0

1

y

Imaginary

0 100 200 300 400 500
Bin Nº

0.0

0.5

1.0

y

Magnitude

Scenario 3

(c)

0 100 200 300 400 500
1

0

1

y

Real

0 100 200 300 400 500
1

0

1

y

Imaginary

0 100 200 300 400 500
Bin Nº

0.0

0.5

1.0

y

Magnitude

Scenario 4

(d)

Figure 6.5: Output of an FFT accelerator (in blue) and the S-FT (in red) for the four static scenarios described
in section 6.1.2. The plots include the real and imaginary components of the FT, as well as its absolute value.
©2022 IEEE

resolution is determined by (2.36), which only depends on N and thus is the same for the
FFT and the S-FT.

The experiments also compared the error of the frequency spectrum generated by the
S-FT to that of an FFT accelerator. The S-FT was simulated for 256 simulation steps, and
the generated spectra contained 256 frequency bins each. Table 6.2 shows the average error
for the different scenarios. The table shows the performance for a discrete Fourier transform
(DFT) and an FFT spiking architectures, and the output of the FFT accelerator. Figure 6.5
and fig. 6.6 depict the output of the S-FT and the FFT accelerator for the aforementioned
four static scenarios and for the 2D dynamic scenario, respectively. We observe that the S-FT
provides a similar output pattern as the accelerator and that the S-FT plots do not show
artifacts. When inspecting the quantitative results in table 6.2, we see larger errors for the
S-FT, most likely due to quantization errors because of the smaller intensity resolution for
the S-FT. Otherwise, we would expect anomalies in fig. 6.5. We also observe that the errors
of the S-FFT architecture are similar to those of the S-DFT. This result suggests that the error
generated in one layer does not accumulate and that a multi-layer structure does not lead to
higher errors. The result of the 2D scene depicted in fig. 6.6 is analogous to the results for
the static scenes and does not pose any particular challenges for the S-FT. In this case, the
S-FT is applied to two consecutive layers to compute the range and Doppler dimensions.

Performance in neuromorphic hardware

To test the feasibility of accelerating the S-FT in neuromorphic hardware, the SNN was im-
plemented on two different families of neuromorphic chips: Loihi and SpiNNaker. Both are
digital chips, so the results should be analogous to simulations of the S-FT on a PC. Due to
the limitations in the number of cores in the SpiNNaker 2 prototype board, these experiments

Table 6.2: RMSE of the discrete Fourier transform (DFT) and FFT architectures of the S-FT network, as well as
an FFT accelerator used for comparison, on the four static scenarios introduced in section 6.1.2.

Architecture S1 S2 S3 S4
S-DFT 0.004 0.041 0.009 0.030
S-FFT 0.006 0.026 0.007 0.028

Accelerator 0.0005 0.0005 0.0005 0.0005

100 Chapter 6 Implementation and experiment results

c

a

d

bb

Figure 6.6: Output of an FFT accelerator (in blue) and the S-FT (in red) for the last scenario described in sec-
tion 6.1.2. The plot on the left shows the result for all range bins for a specific velocity bin, and the plot at the
bottom shows the result for all velocity bins for a specific range bin. ©2022 IEEE

ran the S-FT for a size of 256 input samples, as opposed to the 512 input size used in previous
simulations in Loihi and PC. Figure 6.7 shows the error distribution when running the S-FT
in Loihi 2 and SpiNNaker 2 chips, together with the error of the corresponding simulation in
NumPy.

The results show that the three simulations hold a low error with similar deviations.
This is especially the case for the SpiNNaker 2 experiment, as it yields a result identical to
the simulation in NumPy, hinting the SpiNNaker 2 board can act as a signal processor with
predictable behaviour. This predictability enables the simulation of SNNs in a traditional
processor prior to deploying the neuromorphic chip for ease of development and debugging,
speeding up the implementation time. The result of the Loihi 2 experiment shows a drift in
the error, indicating that it may introduce some artifacts during the simulation.

Besides the accuracy of the S-FT for performing the frequency spectrum analysis, the
knowledge of the resources it will consume is paramount. Table 6.3 summarizes the energy
and time performance of the S-FT for an implementation in the Loihi 1 chip. The values
in the table are an estimation based on the equations provided in [Dav+18]. Namely, the
energy consumed Eloihi is calculated as

Eloihi = nspikes · 23.6pJ+ nsteps · nneurons · 52pJ , (6.11)

where nspikes, nsteps, and nneurons are the number of spikes, simulation steps and instantiated
neurons for the SNN simulation. The execution time Texec is calculated as

Texec = nspikes · 3.5ns+ nsteps · nneurons · 8.4ns . (6.12)

6.1 Spiking Fourier transform 101

Loihi 2 SpiNNaker 2 NumPy

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
M

S
E

Figure 6.7: Distribution of the S-FT error when simulating it in the Loihi 2 board, the SpiNNaker board, and with
NumPy library, for 30 scenarios simulated with the library from Infineon AG. Each S-FT was run for ts = 100
timesteps, N = 256 samples, and the results ignored the first 12 bins of the spectrum. The distribution outliers
are not represented in the plots.

The value of nspikes in (6.11) and (6.12) refer to the total number of spike operations
during the simulation, where a spike operation is the spike event between a source neuron
and a destination neuron. This means that for each spike a neuron i emits, the number of
spike operations equals the number of destination neurons connected to it,

nspikes i =
nsteps
∑

t=0

si(t)nout , (6.13)

where nout is the number of post-synaptic neurons connected to neuron i. Texec defines the
total time for processing a chirp and obtaining the spikes that define its frequency spectrum.
Another important temporal metric is the chirp rate τchirp, which is the rate at which new
chirps can be fed to the network. For multi-layer SNNs, these two values differ, as a new chirp
can be sent to the SNN once the first layer has processed the previous one and before the final
result has been obtained. This value depends on the latency Texec and the total number of
layers.

102 Chapter 6 Implementation and experiment results

The current versions of Lava Library and Loihi 2 software stack include tools for measuring
the energy consumed by an SNN simulation. However, this only works for native neuron
models and specific simulations, so an accurate measurement of these parameters is not yet
possible. Future versions of the software will likely enable this feature. Nevertheless, the
values for Loihi 2 should exceed those of its first version, with improvements of at least 10×
for the execution times1. The situation is similar for the SpiNNaker family: Researchers have
already provided estimates of the simulation times for the SpiNNaker 1 board [Rho+18],
and current research aims to provide measurement for the energy and time consumed in the
SpiNNaker 2 board.

Table 6.3: Estimated performance indicators for the S-FT when processing a chirp with 1024 samples and 75
steps per simulation stage on a Loihi 1 chip. From top to bottom, the parameters refer to the number of neurons
in the S-FT, number of spike events, energy consumed, execution time for one chirp, chirp input rate, and drained
power.

Parameter S-DFT S-FFT

nneurons 2048 10240

nspikes (×103) 2100 84

E(µJ) 65.5 49.9

Texec(µs) 77.6 315

τchirp(µs) 77.6 105

P (mW) 844 158

6.2 Analogue to spike encoder

This section covers the implementation and the experimental results of the ASE described in
chapter 5. The implementation includes the electric circuit setup and the programming of the
microcontroller that collected the spikes generated by the ASE. The first set of experiments
assessed the encoding performance of the ASE for a given range of input values. These
experiments analysed the impact of the different parameters on the performance of the ASE.
Further experiments evaluated the ASE in a signal processing pipeline where the output
of the ASE was used by a digital neuromorphic chip that computes the S-FT. In the latter
case, the accuracy of the pipeline not only depends on the encoding performance but also
on the compatibility of the encoded spikes with the following SNNs. Thus, the experiment
compared the S-FT results with those of a standard digital pipeline that computes the FFT of
an equivalent time series.

6.2.1 ASE implementation

After designing the encoder and establishing the behaviour of its input and output signals,
a physical prototype of the ASE was constructed and tested with actual electric signals. The
prototype was controlled by a microprocessor, which emulated the role of a digital neuro-
morphic chip that reads and processes the ASE spikes. Therefore, the programming of the
microprocessor was also part of the implementation of the ASE prototype.

1https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

6.2 Analogue to spike encoder 103

Circuit construction

The construction of the ASE took place on a prototype board. Its main purpose was to validate
the functionality of the ASE and to provide an estimation of the error produced by the ASE
encoding when dealing with real signals. The chosen electric components had through-hole
pins, and the auxiliary dsPIC microcontroller was mounted on the same board. As the con-
sumption on a breadboard circuit is not comparable to that of a highly optimized VLSI circuit,
the drained energy was not measured. Figure 6.8 shows a picture of the mounted prototype.
Decoupling capacitors protected the different ASE components, and a potentiometer allowed
the threshold voltage tuning. The communication between the microcontroller and the ASE
consisted of two separate wires, carrying the spike events and the reset signal, respectively.
The microcontroller communicated the collected spike times via UART protocol.

The supply voltage of the circuit was 5 V, and the input signals were on the range [1,5] V.
A constant voltage power supply provided flat input voltages for testing the encoding perfor-
mance of the ASE. Experiments assessed the performance of the ASE together with the S-FT
by connecting the circuit to a function generator that provided sinusoidal electric signals.
Appendix C contains a summary with the specific components used for constructing the ASE,
and fig. C.1 shows a picture of the lab setup containing the ASE, the function generator, and
an oscilloscope for validating the input signals.

Figure 6.8: Prototype board for testing the ASE. The red board on the left contains the dsPIC33 microcontroller
that collected the spikes and sent them via UART to an external PC. The microcontroller collected spike events
and sent a reset signal to the ASE (green and blue wires, respectively). The dsPIC and the ASE had a common
supply of 5 V connected to the red and green banana sockets. The circuit processed analog signals connected to
the resistor pin on the left. The potentiometer provided the threshold voltage uth of the ASE.

104 Chapter 6 Implementation and experiment results

dsPIC microcontroller for data acquisition

The implementation of the ASE included not only constructing the circuit but also the pro-
gramming of a microcontroller for interfacing the circuit. The function of the microcontroller
can be split into the following tasks:

• Provide a clock signal CLKS with period TS that serves as a reference for data sampling.

• Generate an internal clock signal CLKN that defines the time step resolution TN of the
spike times.

• Assess the presence of a spike event in the ASE on every time step and store the spike
time ts.

• Reset the spike event signal SPK after registering it.

• Reset the refractory period signal Srefr at the end of each sample period, TS, by setting
an output signal RST to 1.

• Send the recorded spike times after collecting N samples.

Figure 6.9 contains two flow charts that describe the routine programmed on the dsPIC33
microcontroller. The main routine waits for an external new sample request, enabling the
timer T1 afterwards with a period equivalent to the spike sampling time TN and locking itself
until the flag DONE is set. The T1 interrupt routine repeats the sampling N times, where N is
the number of samples in a chirp. Thus, T1 runs N cycles and collects one spike time per cycle,
storing them on the spikes array. Each cycle runs for a number of steps equal to the STEPS
constant and records the step number at which the SPK flag is triggered. After receiving the
spike, the flag RST, which is connected to the output pin that resets the ASE circuit, is set.
The value in STEPS is fixed according to the configuration of the microcontroller and the
sampling time TN . At the end of each sample, the flag RST is deactivated. After collecting the
N spike times, the timer is deactivated and the DONE flag is set, which commands the main
routine to start the data sending via UART for post-processing. This is done by iterating N
times over the spikes array and sending one spike time per iteration.

6.2.2 Experiment results

The experiments on the ASE prototype focused on validating the functionality of the circuit.
The experiments analysis based the performance of the ASE on two metrics. The first metric
is the error between the target output y(x) and the estimated output ŷ(x) for a given input
signal x ,

ϵ =

∫ xmax

xmin

|y(x)− ŷ(x)|d x , (6.14)

where xmin and xmax are the limits of x . In the simplest case, ŷ is the result of decoding the
spikes of the ASE for reconstructing the original input signal, i.e., y(x) = x . In more complex
cases ŷ is the result of processing the spikes of the ASE with a given function F , i.e., y = F(x).
The second metric is the time ratio µT between the time range tspk that can be used by the
ASE for generating a spike, and the fastest reaction time twait of the ASE, i.e., the time it
needs for encoding the highest possible input.

µT =
tmax − tmin

tmin
=

tspk

twait
, (6.15)

6.2 Analogue to spike encoder 105

INIT

No

YesNew
Sample?

UART_Tx(spikes[sample_n])

Start Timer
(T1_ON = 1)

No DONE == 1?

sample_n ++

No

Yes

sample_n == N?

sample_n = 0

Main routine

(a)

INIT

No

YesSPK &&
t_spk==0?

count ++

RST = 1
t_spk = count

Yes

Nocount == STEPS?

count = 0
t_spk = 0

sample_n ++

RST = 0
spikes[sample_n] = t_spk

Yes

Nosample_n == N?

Deactivate Timer
(T1_ON = 0)

END

DONE = 1
sample_n = 0

Sampling (T1 Interrupt)

(b)

Figure 6.9: Flow charts of the dsPIC microcontroller routine for collecting spikes from the ASE and sending them
via UART. Rounded rectangle blocks represent the start and end of the routines, rectangles with sharp edges
represent instruction blocks, and diamonds represent conditional evaluations. Symbols in capital letters represent
global boolean flags (DONE, T1_ON), constants (STEPS, N) and I/O signals (SPK, RST). Symbols on small letters
represent local variables. (a) depicts the chart of the main routine, that checks for new sample requests and starts
the sampling timer T1. After collecting N samples, the routine sends them via UART. (b) depicts the chart of the
sampling routine, that is run when the T1 interrupt is triggered, i.e., after a time equivalent to the spike sampling
period TN . Every cycle increases the step count, checks if there is a spike event SPK present, and sends the reset
signal RST to the ASE. The microcontroller repeats this process until N spikes are sampled.

106 Chapter 6 Implementation and experiment results

where tmin and tmax are the limits of the ASE spike times. The existence of twait is due to the
physical constraints of the ASE, as the capacitor needs to charge before generating a spike.
As the optimization of the ASE parameters aims to maximize µT and minimize ϵ, we rephrase
the generic loss function in (5.15) as

L= αϵ −µT , (6.16)

where α is the weight of the error w.r.t the time ratio. Therefore, the main criteria for tuning
the ASE is to minimize the loss L.

The testing of the ASE was split into three use cases. The first use case assumed that
the processor using the generated spikes is an ideal decoder, i.e., it extracts the information
from the spike times using the inverse of the ASE’s encoding function. The second use case
assumed that the processor decodes the spike times using a linear decoder. The relevance of
this scenario arises from the fact that the S-FT network employs integrate-and-fire neurons
without a leak, so the combination of the ASE and the S-FT needs to minimise the errors in the
encoding functions mismatch. Finally, the third use case implements the Fourier transform on
the obtained spikes using the S-FT. By implementing the second and third cases separately, we
can clearly understand the error introduced using different encoding functions and whether
that error translates into an error in the resulting frequency spectrum.

Scenario 1: Ideal decoder

The first batch of experiments used constant voltage signals as input to the ASE and collected
the resulting spike times of the ASE. The experiment assessed the encoding error by using an
ideal decoder for reconstructing the original signal. Thus, for a constant input voltage uin,
the ASE provided spike times ts according to the encoding function f , and an ideal decoder
provided estimates of the input signal ûin by applying the inverse of the encoding function
f −1,

uin
f
−→ ts

f −1

−−→ ûin . (6.17)

As the choice of τm does not have an impact in L, the constraints of the physical system
determined its value, e.g., working on a time range compatible with the microcontroller’s
maximum sampling rate and using choosing sensible electronic components for a breadboard
environment. Thus, the ASE’s time constant had a fixed value of τm = 3 ms for all the
experiments. For assessing the error of the ASE, we can adapt (6.14) to a discrete scenario,
so we define the total encoding-decoding error as the difference between the input signal uin
and the reconstructed signal ûin for the whole input range [umin, umax],

ϵu =
M
∑

m

|uin, m − ûin, m| , (6.18)

where uin, m is the mth sample of uin, which is sampled M times at regular intervals between
umin and umax. Let us also define the error in the spike times in a similar way,

ϵts
=

M
∑

m

|ts − t̂s| , (6.19)

where t̂s is the recorded spike time from the ASE, and ts is the ideal spike time that would
take place if the ASE had an infinite output resolution. i.e., if the sampling period TN was
infinitely small, TN ≈ 0.

Part of the error is due to the accumulation of random noise sources that are hard to
predict and quantify, e.g., environment interferences, imperfections on the different compo-
nents, or coupling behaviours throughout the circuit. The most notable effect of this noise

6.2 Analogue to spike encoder 107

are fluctuations in the membrane voltage, u(t) +ψu, that leads to an error on the spike time
ψt . We can formally define this error as

ts +ψt = −τ ln
�

1−
uth −ψu

uin

�

. (6.20)

Another portion of the error is due to the quantization error when converting analogue
voltages into discrete spike times. This error is systematic, as it only depends on the parame-
ters of the ASE. Assuming an ideal behaviour of the circuit, the quantization error δtq when
converting a voltage uin into a spike time can be modelled as

δtq =
TN

2
, (6.21)

where TN is the neural sampling period for the spike times. (6.21) leads to an error δuq in
the decoded signal. The hyperbolic nature of the encoding function makes the impact of the
quantization error larger for smaller values of uin, due to the larger ratio between uin for two
consecutive spike time bins. The combination of (6.20) and (6.21) yield

t̂s = ts +δtq +ψt , (6.22)

that leads to the decoded signal

ûin =
uth

1− (1− uth±Nu
uin
)e−δtq/τ

. (6.23)

Figure 6.10 shows the decoding error when feeding to the ASE constant voltage signals
in the range [1,5] V for different threshold voltages uth. The plots depict the errors for the
estimated signal ûin and for the resulting spike times t̂s. The spike time errors disregard
the quantization error, as the ideal spike time ts already takes into account the granularity
of the spike times. Thus, the bottom plots offer a picture of the random noise ψu for the
different values of the input range. The noise is larger for smaller values of uin This is due to
the hyperbolic nature of the ASE charging, because when the membrane voltage of the ASE
reaches uth the charging slope decreases, and hence small oscillations in u(t) lead to larger
differences in the spike time. The plots of the total decoding error ϵu depict the impact of
the random noise ψt together with the quantization error δtq. Moreover, the light blue plots
show the theoretical average quantization error for the different values of uin. The effect of
δtq becomes larger for big values of uin, and an initial conclusion when comparing the top
and bottom plots is that the quantization error has a larger impact on the total decoding
error. Table 6.4 shows the values of the different metrics for evaluating the decoding.

Figure 6.12a shows the result of decoding the spike times of the ASE with an ideal decoder
for four different values of uth. The results are in line with the error shown in fig. 6.10, as
they are larger for big values of uin. In any case, the error stays small relative to the input
voltage. On the other hand, the time ratio µT increases for larger values of uth. Therefore,
the optimal solution for this scenario would be to choose the maximum possible value for the
threshold voltage, uth = 0.9 V.

108 Chapter 6 Implementation and experiment results

0.1

0.2

ε u
uth = 0.1 V

δuq εu

uth = 0.5 V

δuq εu

uth = 0.75 V

δuq εu

uth = 0.9 V

δuq εu

1 3 5

Uin [V]

1

2

3

ε t
s

1 3 5

Uin [V]

1 3 5

Uin [V]

1 3 5

Uin [V]

Figure 6.10: Decoding error of the ASE for input signals in the range [1,5] V. The top plots show the total
decoding error ϵu together with the theoretical quantization error δuq (see (6.21)), in dark blue and light blue,
respectively. The bottom plots show the error in the spike times. From left to right, the plots show the results of the
experiment for uth values of 0.1,0.5, 0.75, and 0.9 V, respectively [LRK23].

Table 6.4: Quantitative results when decoding ASE results with ideal decoder, using α= 100

uth = 0.1 V uth = 0.5 V uth = 0.75 V uth = 0.9 V

ϵu 0.03 0.05 0.06 0.06
µT 4.15 5.4 7.6 9.9
L -1.15 -0.4 -1.6 -3.3

Scenario 2: Linear decoder

A second batch of experiments decoded the same spike times from the previous experiment
with a linear decoding function g−1 with tunable parameters tlin, min and tlin, max,

uin
f
−→ ts

g−1

−−→ ûin . (6.24)

Contrary to the experiments in the first scenario, this scenario does not assume an ideal de-
coding, so the decoding function is an approximation of the encoding. To obtain a good map-
ping, a differential evolution optimizer2 performed the tuning of the linear decoding function
by setting the time limits of the linear function g. They were tuned using the parameters k1
and k2,

tlin, min = tmin(1+ k1) , (6.25)

and
tlin, max = tmax(1+ k2) . (6.26)

As the spike times are positive real values, k1 and k2 are limited to the range [−1,∞]. Based
on this limitation, the boundaries during the optimization process were set to k1, k2 ∈ [−1,2].
To penalize large errors, the fitting process used the RMSE metric (6.7) for measuring the
error, ϵ = E, where the reference value is the original signal uin and the estimate is the linear
decoding g−1(f (uin)).

As the goal of the experiments was to fit a linear function to the ASE model, the experi-
ments used fixed values for the ASE parameters (uth and τm). Therefore, the time ratio µT
was constant for each experiment and the loss function (6.16) became

L′ = E . (6.27)
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html

6.2 Analogue to spike encoder 109

0.0

0.5

1.0

t s
/t

m
a
x

umin = 1, uth = 0.1 umin = 1, uth = 0.75 umin = 2, uth = 0.1 umin = 2, uth = 0.75

1 3 5

Uin [V]

−2

0

2

ε

µ = 4.17
E = 0.16

1 3 5

Uin [V]

µ = 7.46
E = 0.23

2.0 3.5 5.0

Uin [V]

µ = 1.52
E = 0.06

2.0 3.5 5.0

Uin [V]

µ = 1.87
E = 0.07

Linear decoder ASE

Figure 6.11: On top, the comparison between the output of the ASE and the fitted linear decoder g−1(ts) for
uth ∈ [0.1,0.75] V and umin ∈ [1, 2] V. At the bottom, the error of the decoded voltages, ûin − uin for each
encoded voltage. The optimizer tuned the parameters assuming the ideal behaviour of the ASE, i.e., ψu = 0
[LRK23].

The Taylor expansion introduced in chapter 5 showed that the linear error of the encoding
function is proportional to the ratio uth/umin. Therefore, the experiments also evaluated
the impact of umin. Namely, they included four different parameter setups of the ASE that
combined two values of uth with two values of umin. Figure 6.11 shows on top the encoding
and decoding curves of these four parameter setups in dark blue and light blue, respectively.
The bottom plots show the distribution of the decoding error ϵ over the input voltage range
for each setup. Moreover, fig. 6.12b shows the decoding of the ASE spike times when using
an optimized linear decoder for the aforementioned combinations of uth and umin.

The results show that the choice of umin has a big impact both in the error and in the time
ratio. High values of umin lead to lower errors as well as lower time ratios, so the chosen
setup needs to be a compromise between both indicators. In other words, the choice of the
ASE parameters is application-specific, as it depends on the admissible error in the decoding
and the latency requirements.

The plots also show that the error distribution is not random. In fact, the decoding error
tends to be larger near the range limits and in the middle of the encoding range. This
characteristic could be exploited, and the optimizer could use criteria based on data heuristics
to obtain better results, i.e., instead of using the absolute error in (6.27), the optimizer could
use an error vector weighted with the density of information throughout the input range
spectrum and transform (6.18) into

ϵh =

∫ xmax

xmin

wh(x)|y(x)− ŷ(x)|d x , (6.28)

where wh(x) is a heuristics coefficient that depends on the data distribution.

110 Chapter 6 Implementation and experiment results

(a) (b)

Figure 6.12: Result of decoding the spike times provided by the ASE when (a) using an ideal decoder, i.e.,
ûin = f −1(ts), and (b) a linear decoder fitted with a differential evolution optimizer. The red line represents the
target result and serves as a reference. The first experiment includes four results for uth ∈ [0.1,0.5, 0.75,0.9]
V, respectively; and the second experiment includes results for the four combinations of uth ∈ [0.1,0.75] V and
umin ∈ [1, 2] V [LRK23].

Scenario 3: Fourier transform of ASE output

The third scenario sent the spikes from the ASE to the digital neuromorphic chip SpiNNaker
2 for computing the S-FT algorithm introduced in section 4.2. The experiments employed
a function generator for producing a sinusoidal wave. Hence, the input to the ASE was a
time-varying voltage signal uin(t) modeled according to

uin(t) = Asin 2πνt + B , (6.29)

where A, ν, and B are the amplitude, frequency, and offset of the sinusoidal wave, respec-
tively. Following the same notation as in the previous two experiments, in this case scenario,
the ASE maps the input voltage uin to spike times ts, and after that a spiking algorithm As
transforms the spike times into the output variable ŷ,

uin
f
−→ ts 7→ As(ts)

g−1

−−→ ŷ , (6.30)

where As assumes that the input spike times are encoded with the function g. For assessing
the performance of the whole pipeline in (6.30), the error function compares the estimated
output ŷ with the ideal output y obtained when using the non-spiking algorithm A on the
analog input, y = A(uin). For the specific case of the Fourier transform, the algorithm takes
the amplitude of a signal over time and provides the frequency spectrum of the signal during
a time window of width TM . Its discrete form takes as input a time series of the signal
formed by M samples and generates a frequency spectrum with M bins, where M/2 bins
belong to the negative spectrum, and M/2 bins belong to the positive spectrum. For the
given specifications, the input signal needs to be discretized with a sampling period TS

TS =
TM

M
. (6.31)

Section 2.3 provides a more detailed description of the algorithm. The S-FT implementation
assumes that the amplitude of the input signal is represented by spike times. For obtaining a
spike train resolution of N time steps per spike, the neural sampling period TN needs to be

TN =
TS

N
. (6.32)

The value of the neural sampling period TN is a parameter of the digital chip that collects
the spikes of the ASE, which in the case of these experiments was the dsPIC microcontroller.
Hence, the limit value of this parameter is determined by the specifications of the digital chip.

6.2 Analogue to spike encoder 111

0 20 40 60 80
1

3

5
U
in

[V
]

Ideal decoding

0 20 40 60 80

Linear decoding

0 500 1000 1500

‖F‖
S-FT

0 20 40

t [ms]

1

3

5

U
in

[V
]

0 20 40

t [ms]

0 900 1800 2700

ν [Hz]

‖F‖

Figure 6.13: Result of applying the S-FT to the output of the ASE to sinusoidal waves with with frequency ν= 500
Hz and amplitudes of 4 V (top) and 3 V (bottom). The left column shows the result of decoding the obtained spikes
with an ideal decoder f −1. The middle column shows the result of decoding the spikes with a linear decoder g−1.
The S-FT was implemented on the SpiNNaker 2 board [LRK23].

The focus of the experiment was to minimize the error, so the maximization of the time
ratio µT was a secondary target. Based on the results from the previous experiment, the
threshold voltage was fixed to the value of uth = 0.1 V, and the time constant stayed un-
altered, τm = 3 ms, so the results between experiments are comparable. To assess the
impact of the ratio umin/uth, the experiments included a batch of signals with a wide volt-
age range, uin ∈ [1,5] V, and a narrow voltage range, uin ∈ [2,5] V. These ranges were
achieved by setting the wave parameters to A = 2, B = 3 for the wide voltage range, and
A= 1.5, B = 3.5 for the narrow voltage range. The experiments included runs for input fre-
quencies of ν= {25, 50,75, 100,250,500, 750,1000} Hz. The dsPIC microcontroller sampled
the ASE spikes with a resolution of 100 time steps per spike window. Equation (5.3) yields
the maximum spike time tmax that the ASE can produce for uin = umin. Assuming TS ≈ tmax,
the neural step resolution TN of the dsPIC is set using (6.32), TN = tmax/100. The sampling
parameters for the wide input range were tmax = 320µs and TN = 3.2µs. For the narrow input
range, they were tmax = 155µs and TN = 1.55µs.

Figure 6.13 shows the result of computing the S-FT on the spikes produced by the ASE for
an input voltage frequency of 500 Hz. The top and bottom rows of the figure show the results
for wide and narrow voltage ranges, respectively. The difference in the output range of the
frequency spectrum is due to the different values for the sampling time TS, which is larger
for the wide input range. The left and middle plots show the result of obtaining ûin using
an ideal decoder and a linear decoder. The reconstruction with the ideal decoder shows
a sinusoidal wave with minor sampling artifacts. The signal reconstructed with the linear
decoder shows more significant artifacts, especially for the wide input range. Moreover, the
decoding introduces a compression of the signal for low values of uin and an expansion for
high values of uin. This is due to the hyperbolic nature of the ASE, as the spike resolution
increases with uin. This phenomenon is reflected in the S-FT result as a second harmonic in
the frequency spectrum, most notably when using a wide input range. Although undesired,
this effect could be mitigated by attenuating the bins corresponding to the harmonics of the
main signals, as the intensity of the artifact can be easily calculated analytically. Moreover, the

112 Chapter 6 Implementation and experiment results

25 100 1000

ν [Hz]

0.00

0.02

0.04

E

Uin = [2, 5]V

Uin = [1, 5]V

Figure 6.14: Error of the S-FT using as input the output spikes of the ASE. The experiment was performed on
analogue signals with frequencies ν= {25,50, 75,100, 250,500, 750,1000}, and the computed error metric
was the root mean squared error (6.7). The plots show the measured error for wide and narrow input voltage
ranges in light blue and dark blue, respectively [LRK23].

experiments used clean data obtained from a function generator. If the ASE model encodes
sensor data, the harmonics lie below the sensor’s noise level.

Figure 6.14 shows the total error of the S-FT for different input signal frequencies when
using a narrow and wide input range. As expected, the error for the wide input range is larger
for most cases, and the error seems to show exponential growth. This pattern reverses for
the wide input range after ν = 500 Hz. The decrease in the error after this point is due to
the fact that the second harmonic in the frequency spectrum caused by the aforementioned
hyperbolic distortion of the data lays outside of the frequency range of the S-FT for ν > 500
Hz when using the setup for a wide input range. As the sampling frequency of the narrow
input range is faster, the frequency limit for the S-FT is larger as well and the second harmonic
is still present for the larger frequencies used in the experiment.

6.3 Spiking OS-CFAR

Section 2.5 introduced the concept of object detection in the context of radar signal pro-
cessing, together with two popular variants of constant false alarm rate (CFAR) algorithms:
the cell-averaging CFAR (CA-CFAR) and the OS-CFAR. This thesis has as a minor contribution
a spiking version of the OS-CFAR. The S-OSCFAR algorithm is based on a winner-takes-all
topology, where input neurons compete to determine the output spike train. The algorithm
is described in appendix E. This section describes the implementation of the S-OSCFAR al-
gorithm and the experiments that validated it, including the necessary preprocessing steps,
the adjustment and encoding of input data into spikes, and the actual implementation in the
neuromorphic chip SpiNNaker 2.

6.3.1 Implementation

The validation of the S-OSCFAR was performed through an implementation on a general-
purpose processor, followed by further experiments that ported the algorithm to the SpiNNaker 2
board. From a computational perspective, the differences between both implementations are
the maximum resolution that can be achieved for the synaptic weights and the maximum size
of the input data.

6.3 Spiking OS-CFAR 113

The S-OSCFAR was implemented on the SpiNNaker 2 using a lightweight integrate-and-
fire model, i.e., the implementation does not make use of delays, voltage decay over time, or
short-term memory in the synapse, and the synaptic weights take two possible values: k for
the cell-under-test and −1 for the neighbour cells. The weights had a 4-bit resolution for a
1D application with 10 neighbour cells. The implementation of the S-OSCFAR assumes the
input to be an N-dimensional latency-encoded spike train, where the spike time of the ith
input represents the intensity of the corresponding value in the original form. The encoding
equation is a version of (4.3) with tmin = xmin = 0,

t i = tmax
xmax − x i

xmax
, (6.33)

where t i and x i takes values in the ranges [0, tmax] and [0, xmax], respectively. The membrane
voltage u(t) of the cell-under-test evolves according to integrate-and-fire dynamics,

u(t) = u(t − 1) +
∑

wiΘ(t i) . (6.34)

It is important to note that the neuron described in (6.34) does not use an input current value
and the decay constant is zero. This means that the influence of an input spike in the neuron
is constant from the moment it occurs, hence only the specific order of the input spikes affects
the output spike train.

6.3.2 Experiment results

Contrary to the ASE and S-FT, the S-OSCFAR employs data that is already preprocessed,
so there is a larger availability of standard datasets for testing it. Namely, the validation
experiments used data from the CARRADA dataset [Oua+21], which consists of 256x64
range-Doppler maps from a 77 GHz FMCW radar with 4 GHz bandwidth, i.e., data already
processed with an FT. The samples correspond to driving scenarios under different weather
conditions, and they come together with data from LiDAR and camera sensors, and the scenes
are partially labelled.

The experiments ran the S-OSCFAR for a total of 1000 randomly selected scenes and
compared its results with those of a standard OS-CFAR. The accuracy of the algorithm was
evaluated in terms of precision (6.9) and recall (6.10), taking as reference the output of the
standard form of the algorithm. Moreover, the experiments compared the performance with
the spiking CA-CFAR introduced in [Vog+22]. Both SNNs were simulated in software by
mimicking the execution on a digital neuromorphic chip. A first batch of experiments tested
the S-OSCFAR on input directly converted to spikes using (6.33). A second batch modified
the input by applying the logarithmic conversion

xdB = 20 · log10 x . (6.35)

This change improves the resolution of the input for small intensities and helps the detec-
tion of low-amplitude targets. In this batch, the intensities of the neighbour cells were also
modified by adding a small delay

t ′xN
= t xN

+∆τ , (6.36)

where
∆τ=

∆t
2

, (6.37)

being ∆t the time step resolution of the simulation, i.e., the spike time of the neighbour cells
had a delay equivalent to half the resolution of the simulation time step. This modification

114 Chapter 6 Implementation and experiment results

improves the mislabeling due to rounding errors when assigning the real spiking times t i to
discrete time steps.

Figure 6.15 compares the spiking CA-CFAR with the two versions of the S-OSCFAR for
different numbers of simulation steps in terms of sensitivity and precision. Even though
the basic version of the OS-CFAR shows perfect precision, this comes at the cost of lower
sensitivity, i.e., all detected targets are correct, but not all targets are detected. The best
results are obtained for the S-OSCFAR when converting the input to a logarithmic scale and
adding a small delay to the neighbour cells. The figure shows that the performance for the
latter approach is the same as the conventional OS-CFAR when using simulations with more
than 100 steps. The spiking CA-CFAR reaches a performance on par with its counterpart too,
but it requires a larger number of time steps to achieve such performance. Moreover, when
the target is to minimize the employed resources, the S-OSCFAR outperforms the spiking CA-
CFAR, as performance indicators for the former are over 90% for simulations with 10 time
steps. Figure 6.16 shows the result of the spiking CA-CFAR and OS-CFAR for a specific frame
from the CARRADA dataset.

The validation of the S-OSCFAR included the testing on the data produced in the KI-ASIC
project, which consisted of real driving scenarios. As the algorithm does not require training,
the validation was done on a small subset of the dataset. Figure 6.17 shows an example of

0 500 1000

0.8

0.9

1.0

CA-CFAR

0 500 1000

timesteps

0.8

0.9

1.0

OS-CFAR

Sensitivity

Precision

0 500 1000

0.8

0.9

1.0

OS-CFARdB

Figure 6.15: Performance of the spiking versions of the CA-CFAR (left) and OS-CFAR (middle and right), in
terms of sensitivity and precision. The right plot corresponds to the evaluation of the S-OSCFAR when its input is
previously converted to a logarithmic scale and the spikes to the neighbour cells arrive with a delay ∆τ=∆t/2.

10 0 10
0

2

4

6

8

10

12

ra
n
g
e
 [

m
]

A RD map

10 0 10

rel. velocity [m/s]

0

2

4

6

8

10

12

B OS-CFAR (250 time steps)

10 0 10
0

2

4

6

8

10

12

C CA-CFAR (250 time steps)

true positive

false negative

false positive

Figure 6.16: Result of processing the range-Doppler map on the left, which corresponds to a scene from the
CARRADA dataset, with the S-OSCFAR (middle) and CA-CFAR (right), employing 250 simulation steps for each
algorithm. The X and Y axis of the plot represent the range and Doppler dimensions. The true positive, false
negative, and false positive detections are depicted in green, yellow, and red, respectively [Vog+22].

6.4 Discussion 115

the processing pipeline on radar data, including the FFT and the OS-CFAR results The main
purpose of this experiment was to test the implementation of the SNN on a SpiNNaker 2
board and deploy it in a real-world environment. A DSP pre-processed the signals from the
sensor by computing an FFT. The SpiNNaker 2 board converted the FFT values to spike times
and computed the OS-CFAR on those values.

Figure 6.17: Sample result of the image object dectection, FFT and the OS-CFAR on one scenario from the
KI-ASIC dataset.

6.4 Discussion

This thesis introduces SNN algorithms and an ASE circuit for processing FMCW radar data.
The experiments were conducted on synthetic and real data with increasing noise levels
and target occlusion. All blocks use latency-encoded spikes, so the data format across the
generated pipeline remains consistent and does not generate incompatibilities.

116 Chapter 6 Implementation and experiment results

Spiking Fourier transform

Section 6.1 describes the implementation and experiments on the S-FT. The architecture and
parameters of the SNN are mathematically derived from the FT algorithm, so the expected
output coincides with that of a standard FT. Moreover, contrary to black-box models, the
absence of learning algorithms makes the algorithm predictable, so errors can be easily anal-
ysed and tracked. The experiments ran the S-FT and compared it with a software-based FFT,
resulting in frequency spectra with high similarity. The obtained errors are partly due to the
low precision of the data types used for the weights and the internal state of the neuron,
and mainly to the number of simulation steps, as this value determines the output dynamic
range. For example, the experiments depicted in fig. 6.5 correspond to an S-FT simulated
for a spiking stage with 256 steps, i.e., the output can take 256 different values; whereas the
reference FFT has 64-bit precision and thus a much larger dynamic range. Remarkably, this
big difference in the output range does not lead to substantial errors in the frequency spectra.
Moreover, this error barely propagates further in the post-processing of the S-FT in terms of
a loss in the accuracy of the full pipeline, e.g., in the precision of an object detection task,
such as in fig. 6.3. This behaviour is expected, as most of the information in the frequency
spectrum of an FMCW radar signal is stored in the value of the dominant frequencies, not in
the precise intensities of such frequencies. The intensities in a radar frequency spectrum fluc-
tuate over time and are not a reliable source of information. When analyzing the frequency
range of the S-FT, we observe that it is identical to the FFT used for comparison, because the
number of frequencies only depends on the number of neurons used to implement the S-FT.

Besides the number of simulation steps, tuning the S-FT also involves setting a value for
uth. A high value decreases the sensitivity to low-intensity frequencies, and a low value caps
the maximum intensity a frequency component can yield. Even though a careful study of
the sensor and the environment it will scan would lead to a better-suited value for uth, we
can make a well-educated guess without prior knowledge of the problem due to the nature
of the FT, as it is a bounded function, i.e., there is a range of values it cannot reach in
real-world problems (see section 6.1.1). Moreover, capping high intensities is generally not
a problem when generating a frequency spectrum, as it can improve the sensitivity to low-
intensity frequencies (see fig. 6.1). The experiments with the S-FT not only tested the SNN
with a single-layer, but also multidimensional architectures, like the SNN used for computing
a range-Doppler map (fig. 6.6) and the SNN used for computing a radix-4 FFT architecture
(fig. 6.3). The corresponding results do not show a noticeable difference in the error intro-
duced by multi-layer structures.

The implementation of the S-FT was performed on boards from the Loihi and SpiNNaker
families. Figure 6.7 shows a comparison in the performance of the SNN in the Loihi 2 and
SpiNNaker 2 boards. Whereas the results of the SpiNNaker 2 implementation are identical
to the simulation made on a PC, the results with Loihi 2 show a deviation from the reference.
Even though this deviation is noticeable relative to the magnitude of the error, it is small in
absolute terms. At the point of writing this document, it was not possible to determine the
source of this misalignment, so a future study should find the reason and, if possible, improve
the implementation. It is also important to note that the size of the S-FT was limited by the
number of cores available in the chips. The state of the software libraries for the SpiNNaker
2 and Loihi 2 boards did not allow conducting a detailed measurement of the energy con-
sumption for the S-FT implementations. Instead, table 6.3 offers energy and time estimations
based on the study in [Dav+18] for the Loihi 1 chip. These energy and latency footprints
of the S-FT are worse than the conventional FFT accelerators summarized in table 2.1. The
close resemblance of the S-FT to the original FT, together with having a predictable output,
makes it a potential candidate for computing the FT more efficiently and processing FMCW
radar signals with neuromorphic hardware. The suitability of such implementation would

6.4 Discussion 117

depend on the final footprint of the system and its compatibility with the rest of the process-
ing chain. The early stage in the development of neuromorphic hardware technology leaves
a big margin for improvement to achieve a competitive performance.

Analogue-to-spike encoder

The successful experiments with the S-FT motivated the design of the ASE introduced in
chapter 5 as a means of overcoming the need for an ADC and having a circuit that could
directly convert analogue signals to spikes compatible with the S-FT. Section 6.2 covers the
implementation steps for the ASE, including the elaboration of the circuit prototype and the
programming of the microcontroller used to collect the circuit’s output. The circuit was tested
on different electric signals obtained in an electronics lab. The conducted experiments let us
assess the behaviour of the circuit and its feasibility for use as a replacement for an ADC.

The experiments were split into three batches aimed at evaluating the encoding accuracy
at different voltage levels, the encoding accuracy when using a linear decoder, and the FT
performance when running the S-FT afterward. The first two experiments yielded low en-
coding error, which led to a correct reconstruction of the original signal. The last experiment
showed that the ASE is compatible with the S-FT: The output spikes of the ASE were directly
fed to a Loihi 2 chip with any further modification, and the chip was able to compute the S-FT
with the provided data, as shown in fig. 6.13. The S-FT plots also show artifacts introduced
due to the mismatch in the signal encoding between the ASE and the S-FT. This mismatch
is inherent to the nature of the two models. A straightforward strategy for minimizing this
phenomenon is to tune the circuit so that the ratio uth/umin is as small as possible. However,
this strategy has limitations, as the values for uth and umin have physical boundaries, and
increasing umin leads to a worse dynamic range and latency response in the ASE. A second
strategy is to predict where the artifacts will occur and denoise the resulting signal accord-
ingly. Although feasible, this approach would require additional processing and would add
computational burden to the pipeline. A third alternative would be to modify either the S-FT
or the ASE models so the encoding of signals into spikes is the same for both. One interest-
ing approach in this regard would be to use an ASE based on a voltage-to-rate encoder that
linearly maps voltages into an instantaneous spike rate. Thus, the measurement of the inter-
spike interval (ISI) would reflect the input value at any time, and the model would resemble
the encoding in the S-FT. The resulting ASE would resemble the initial stage of a ∆−Σ ADC
architecture, namely the ∆ circuit.

The ASE transforms analogue signals into a single stream of spikes, where each spike rep-
resents the value of the signal during a specific sampling time. For N samples, the input layer
of the S-FT SNN introduced in section 4.2 is formed by N neurons, where each neuron has N
input synapses, from which the nth input synapse provides one spike containing information
about the nth sample. The original design of the S-FT assumes that data from the N input
samples arrives in parallel, after the sampling and digitisation that takes place at the ADC.
Thus, the interface of the ASE to the S-FT needs to multiplex the spikes provided by the ASE
over time and combine each spike with its corresponding weight.

Object detection and pipeline ensemble

The final set of experiments, described in section 6.3, assessed the performance of the
S-OSCFAR. As phase-encoded spikes representing higher values arrive earlier , applying a
method based on ordered statistics comes naturally for the output of the S-FT. Thus, the S-
OSCFAR can be easily implemented on a digital neuromorphic chip, with a connection grid
and weight magnitudes considerably simpler than those of the S-FT. The SNN was tested
on automotive data, and the results showed an accuracy equivalent to that of a standard

118 Chapter 6 Implementation and experiment results

OS-CFAR (see fig. 2.7). When analyzing these results together with the full-pipeline results
for the S-FT in fig. 6.3, we observe that both algorithms yield an accuracy similar to the
equivalent conventional pipelines. Moreover, when performing a qualitative evaluation of
the results of a specific scene, like the one in fig. 6.16, we can observe that the missed detec-
tions tend to correspond to outlier points or weak reflections that are typically disregarded
when running a clustering algorithm.

The results described in this chapter for the ASE, along with the S-FT and the S-OSCFAR,
open the door to the creation of end-to-end neuromorphic pipelines for processing FMCW
radar data. Altogether, the experiments show that the three stages are compatible with each
other and that they yield results similar to their original counterparts. To evaluate whether
the proposed models are a competitive alternative, further research in neuromorphic hard-
ware should enable real-time processing of the spikes generated by the ASE by creating a
low-level interface that can read and process the spike train. Moreover, the ASE needs to be
integrated into a more efficient physical form that allows for smaller components and thus
faster latencies. The energy and latency measurements on such final assembly would be cru-
cial to determine the real potential of the ASE together with the S-FT. One current limitation
of the interface between the S-FT and the S-OSCFAR is the need for switching from the polar
dimensions of the S-FT to the absolute values typically employed by CFAR algorithms. More-
over, the magnitude values would have to be mapped to a logarithmic scale for optimizing
the performance of the S-OSCFAR. The best solution would be to develop an intermediate
stage that performs these two operations on the spikes arriving from the S-FT. Such hybrid
computation is possible in chips like Loihi 2 or SpiNNaker 2, as they are actually prepared
for combining spiking operations with conventional floating point arithmetic.

The application of a logarithmic transform to the input of the S-OSCFAR is particularly in-
teresting because of its similarity to the way biological systems apply scaling maps to stimuli
to enhance the dynamic range. For instance, retinal cells in the human eye provide a loga-
rithmic response Ψ to retinal illumination I , following the equation Ψ = k log(I/I0), known
as Fechner law, where k is a proportionality constant and I0 is the neural noise level under
dark light conditions. The auditory system applies a similar form of logarithmic compression
through the hair cells in the cochlea, which convert sound vibrations into electrical signals.
The effect of this scaling can be observed in fig. 6.15, which shows how switching to a loga-
rithmic mapping of the input significantly improves the S-OSCFAR accuracy. In contrast, the
output of the S-FT follows a linear relationship with the input signal. Applying a logarithmic
transformation requires an arithmetic unit to perform the operation. Achieving an intrin-
sic logarithmic response requires modifying the neuron model. The adaptive photoreceptor
circuit in event-based sensors may serve as inspiration for this redesign [LPD08].

The primary motivation of this work was to contribute to the development of an end-to-
end neuromorphic pipeline that takes sensor voltage as input and provides a high-end output
such as target clusters or object labels. To reach that end, the proposed processing elements
would have to be deployed in the same system to process data in real-time. Figure 6.18
represents how data would be transmitted for such system across the different processing
elements over the time dimension for a signal chirp: The ASE encodes voltage data in real-
time into a spike train split into N identical time intervals. The spikes are buffered and
processed in parallel by an S-FT with N input channels, resulting in N spikes representing
the frequency spectrum. Finally, the S-OSCFAR produces a spike for the bins where a peak
is detected, staying silent otherwise. When this work was conducted, these blocks could not
be implemented together, as neuromorphic chips were limited in size and lacked interfaces
for acquiring low-level signals and processing them in real-time, i.e., a single-bit port for
collecting the spikes generated by the ASE. Figure 6.18 shows a snapshot of how a final
implementation with all introduced processing stages would look. One attractive property of

6.4 Discussion 119

V i
n

Raw data

Encoded data

Ne
ur

on
 N

º

Buffered spikes

V m

S-FT voltage

Ne
ur

on
 N

º

S-FT spikes

0 50 100 150 200 250 300
time

CFAR spikes

Figure 6.18: Simulation of the different stages of the spiking pipeline for FMCW radar. On top is the sensor’s raw
data for one chirp with 512 samples. The second plot represents the output of the ASE after feeding the sensor
voltage. The third plot shows the spikes generated by the ASE after being buffered and forwarded in a parallel
fashion. The fourth and fifth plots show the evolution of the S-FT’s membrane voltage and spike output, respec-
tively. The fifth plot shows the output spike train of the S-OSCFAR. The S-FT and S-OSCFAR plots are shown for
a single CFAR window with one CUT and 20 neighbour cells, represented in orange and blue, respectively.

this pipeline is the structure in independent layers and the sequential processing of arriving
data, which is a generalization of the multi-layer architecture property of the S-FT described
in section 4.1.3. An important implication is that after a pipeline stage computes data from
one chirp, it can start computing data from the next chirp before the following pipeline stages
finish their task with previous chirps. The pipeline is not limited to the described algorithms,
and it could be modified so it can provide a more sophisticated output, including tasks like
clustering, classification, detection of the angle-of-arrival, etc. The study of these algorithms
and their compatibility with the introduced SNNs is outside the scope of this dissertation.

The neuromorphic pipeline shown in fig. 6.18 is showcased for FMCW radar data and the
experiments for the different stages ran with data from simulated or real radar sensors, or
electric signals with a similar nature. In any case, the application of the algorithms presented
in this work is not limited to the radar case, as they can be adapted to different sensors
and input signals. The specific algorithms and architectures used are entirely dependent on
the signal-processing problem at hand. For some sensors, like FMCW lidar, the transfer of
the algorithms would require adjusting to the data acquisition rates and signal intensities.
Moreover, the same sensor may require a different tuning of the algorithms, depending on
the specific tasks to be solved, the number of dimensions that are relevant to the problem,
and the characteristics of the scenarios that will be sensed.

7
Conclusion

Sensor signal processing is an appealing application area for neuromorphic computing. Many
sensors generate raw data in the form of electric currents, where information is encoded in
their changes over time. Moreover, data often arrives from multiple channels, requiring
parallel processing. As these applications are frequently implemented in embedded or au-
tonomous systems with limited energy resources, optimising their efficiency is crucial. Neu-
romorphic computing algorithms provide competitive solutions by taking advantage of the
parallel, asynchronous, and low-power characteristics of neuromorphic hardware. Automo-
tive radar is an appealing sensor for processing with neuromorphic algorithms, due to the
highly parallel and temporal nature of its data, as well as the significant need to reduce the
energy footprint in automotive systems.

This work introduces an end-to-end neuromorphic computing pipeline for processing the
raw signal of frequency-modulated continuous-wave (FMCW) radar sensors. The components
designed within this pipeline address the crucial tasks of analogue-to-digital conversion,
frequency-domain representation, and object detection, representing data with the precise
times of spikes. The analogue-to-spike encoder (ASE) replaces the analogue-to-digital con-
version by encoding analogue signals into a stream of spikes, where each spike corresponds
to the voltage intensity during the equivalent sampling time. The spiking Fourier transform
(S-FT) loads in parallel time-encoded spikes representing entire radar frames and computes
their frequency spectrum into time-encoded spikes. For object detection, the spiking OSCFAR
(S-OSCFAR) segments data from the S-FT using a winner-takes-all neuron model, where
arriving spikes compete for being selected as targets based on their occurrence times. All
elements were implemented in hardware and tested with actual data, i.e., the ASE was im-
plemented as an analogue circuit, and the rest of the pipeline was formed by spiking neural
networks (SNNs) that were implemented in the digital neuromorphic chips SpiNNaker 2 and
Loihi 2. The experiments assessed the performance of these components under varying lev-
els of difficulty using synthetic data and electric signals generated in the lab. Results showed
accuracy comparable to well-established methods. A final batch of experiments validated the
performance on data recorded on a sensor used on real-driving scenarios.

The scope of the presented methods is not limited to radar sensors: the ubiquity of the
Fourier transform and the similar computing principle of FMCW radar with other sensors
facilitate the migration of this work to other processing chains like LiDAR and audio sensors,
or medical imaging signals like electrocardiograms. Moreover, the temporal charge before
spike (TCBS) neuron model for computing the S-FT also serves as a lossless time-based model
for converting deep convolutional neural networks (DCNNs) to SNNs and accelerating the
inference in neuromorphic hardware (see appendix D).

121

122 Chapter 7 Conclusion

This work pioneers processing FMCW radar sensors with neuromorphic computing meth-
ods, aiming to spark the design of novel event-based circuits and algorithms that can accel-
erate edge applications with small footprints and low latencies. The S-FT proves, for the
first time, that the frequency spectrum can be generated using an SNN and sets a reference
point for future research on frequency domain representation using neuromorphic comput-
ing. Additionally, the experiments with the ASE show that the signal processing with the S-FT
does not require an analog-to-digital converter (ADC). Instead, this dedicated component can
directly switch from the analogue to the spiking realms. This work also contributes to es-
tablishing time-based spike encoding as a solid alternative to rate encoding representations,
which is crucial for unleashing the full potential of neuromorphic hardware. Finally, one key
aspect of these methods is that they do not use any learning or optimisation technique, so
their behaviour is deterministic and do not pose the inherent risk in machine learning meth-
ods due to the lack of knowledge on the learnt models. This characteristic is paramount for
safety-critical applications where the operation cannot rely on black-box models that yield
performances within a probability range and cannot predict the scenarios where they will
fail.

The impact of this work is threefold: it shows it is possible to compute the frequency-
domain representation using spikes, provides an end-to-end neuromorphic processing chain
for FMCW for the first time, and stimulates the application of sparse, time-coded SNNs. The
introduced models and implementations are not end products but proofs of concept that aim
to encourage researchers to optimise neuromorphic systems further to provide a greener and
more efficient means of processing the ever-increasing amount of data generated by more
intelligent and widespread applications.

7.1 Challenges and limitations

Implementing the ASE and the S-FT presented several limitations, mainly due to constraints
imposed by the hardware. The specifications of the neuromorphic chips determined the
precision of the weights and the maximum size of the S-FT, which in turn limited testing to
one SNN at a time, i.e., the S-FT and S-OSCFAR were compiled separately, with the output
of the S-FT recorded and used as input of the S-OSCFAR. Furthermore, the chips’ interfaces
lack ports for directly interfacing low-level signals, requiring the S-FT to be executed in a
batch fashion. In practice, this meant that the input spikes were pre-recorded and sent offline
from a host PC to the SNN via a high-level ethernet interface, preventing real-time testing of
the pipeline. Another limitation was the missing capability of conducting an energy profiling
of the SNNs with the current chip versions. These limitations are not unique to this work
but a recurring gap in the literature. Neuromorphic research often focuses on detailed, in-
lab studies of small-scale scenarios that are not realistic or easily transferable to real world
applications, or in proof-of-concept examples where accuracy and performance cannot be
carefully evaluated. Regarding the ASE, even though circuit simulations show a potential
improvement in energy consumption compared to that of ADCs, the prototyping nature of
the lab experiments does not clarify whether this component can replace an ADC for the high
sampling frequencies that radar chips require.

From a computational perspective, an essential limitation was the accuracy of the mea-
surements. The resolution of the ASE and the S-FT is determined by the time-step precision
of the implementation. In contrast with the floating point precision of traditional ADCs and
Fourier transform (FT) accelerators, the neuron models encode the information at the pre-
cise timing of the spikes. Even though experiments show that this drastic reduction in the
resolution does not impact key performance indicators like precision and recall, future im-

7.2 Future work 123

plementations of these models must carefully evaluate these metrics under realistic scenarios
that address the challenges of the application at hand. One potential alternative would be
implementing the computation of the S-FT neurons using analogue circuits that do not rely
on discrete time steps. In such an approach, the resolution limits would be determined by
the sampling capacities of the communications interface with the following processes. The
presented models aim to improve the time and energy performance of the signal processing
pipeline at the cost of small accuracy losses. Even though these losses are negligible for many
applications, tasks requiring precise measurements should not rely on these methods in their
current state. Although the experimental results show an accuracy up to standard for pro-
cessing radar signals, the lack of a full picture in terms of energy consumption and computing
latency makes it difficult to state whether the proposed neuromorphic pipeline can improve
the performance of traditional signal processing approaches.

7.2 Future work

While this work demonstrates the feasibility of radar signal processing using neuromorphic
computing approaches, future research should focus on refining some aspects and clarify-
ing open questions. The current research does not provide a definitive answer to whether
neuromorphic computing can beat traditional approaches in radar signal processing. The
conducted experiments took place on general-purpose digital neuromorphic chips, which
offer a suitable platform for the prototyping and validation of the algorithms’ accuracy. How-
ever, to measure the actual impact in terms of energy performance and time efficiency it is
crucial to implement a precise and detailed benchmark to evaluate the capabilities of neuro-
morphic systems against traditional signal processing methods. Moreover, a comprehensive
evaluation should also include the analysis of a full-pipeline implementation instead of the
evaluation of isolated blocks. This benchmarking should also focus on the assessment under
real-conditions, by performing test-driving scenarios and assessing real-time performance
and robustness towards interferences and outliers present on real-world, unconstrained ex-
periments.

Regarding the computational paradigm, while the current research focused on spiking
neurons, the best solution for a full radar pipeline is not necessarily fully spiking. Future
research should explore hybrid approaches that combine the benefits of spiking and neural
dynamics with the flexibility and robustness of some traditional signal processing operations
with floating point arithmetic. A clear example is the benefit of applying a logarithmic con-
version to the output spikes of the S-FT before feeding them to the S-OSCFAR, as shown in
fig. 6.15. Neuromorphic digital chips like SpiNNaker and Loihi offer the flexibility to imple-
ment such hybrid systems by incorporating non-spiking operations between neural blocks.
Furthermore, while proposed algorithms replicate existing solutions using spikes, a future
iteration of this work should exploit neural dynamics for yielding faster and more efficient
solutions. The work in [Ree+25] explores this line of research by employing the resonate-
and-fire (RF) model from Izhikevich [Izh01] for obtaining early estimations of the frequency
spectrum. In the proposed network, each neuron is sensitive to a specific frequency and gets
excited before the full frame is processed. Moreover, the RF neuron model has the advantage
that it can be directly applied to voltage signals, so the conversion to spikes happens naturally
within the neuron circuit. Additionally, these neural dynamics can be leveraged for extract-
ing other important information, such as the angle of arrival angle of arrival (AoA) of radar
signals, offering an alternative to the beamforming operation. Alternatively, further work on
the S-FT should focus on increasing the sparsity of the model by limiting the neurons that

124 Chapter 7 Conclusion

can produce spikes within a single frame, similar to the concept of sparse Fourier transforms
(See section 2.3). A similar result could be obtained using a winner-takes-all approach where
only the first neurons to get excited are allowed to spike, or making the neurons’ threshold
adaptive over time. The TCBS neuron model could also be applied for mapping algorithms
other than the FT, such as the wavelet transform.

Regarding the ASE, future work should modify the encoder to map voltages to spikes
employing a spiking rule that is fully compatible with the S-FT, so to avoid the artifacts in
the frequency spectrum due to the mismatch between the encoder and the S-FT model. A
promising approach would be the removal of the leak from the neuron using a frequency-to-
spike converter similar to the sigma stage in sigma-delta ADCs. Additionally, future research
should design and implement the ASE as an integrated circuit, with the final goal of achieving
very-large-scale integration. Such an implementation would make possible to fully evaluate
its potential in comparison to using conventional ADCs.

Finally, the scope of future work should also focus on the following stages in the process-
ing pipeline and extend beyond radar signal processing. The development of alternatives for
computing higher-level tasks such as clustering, tracking, and classification is fundamental
for obtaining full neuromorphic pipelines that can offer a competitive alternative to tradi-
tional signal processing pipelines. While radar systems have been the focus of this research,
neuromorphic approaches have also shown potential for processing data from other types
of sensors such as event-based cameras and LiDAR. Combining data from multiple sensor
modalities using neuromorphic architectures could result in a robust and efficient alternative
to sensor fusion.

Bibliography

[Abb99] Abbott, L. F. “Lapicque’s introduction of the integrate-and-fire model neuron
(1907)”. In: Brain research bulletin 50.5-6 (1999), pp. 303–304.

[AM27] Adrian, E. D. and Matthews, R. “The action of light on the eye: Part I. The
discharge of impulses in the optic nerve and its relation to the electric changes
in the retina”. In: The Journal of Physiology 63.4 (1927), p. 378.

[Afs+20] Afshar, S., Hamilton, T. J., Davis, L., Van Schaik, A., and Delic, D. “Event-based
processing of single photon avalanche diode sensors”. In: IEEE Sensors Journal
20.14 (2020), pp. 7677–7691.

[Aim+22] Aimone, J., Date, P., Fonseca-Guerra, G., Hamilton, K., Henke, K., Kay, B.,
Kenyon, G., Kulkarni, S., Mniszewski, S., Parsa, M., et al. “A review of non-
cognitive applications for neuromorphic computing”. In: Neuromorphic Com-
puting and Engineering (2022).

[Aug+21a] Auge, D., Hille, J., Kreutz, F., Mueller, E., and Knoll, A. “End-to-end spiking
neural network for speech recognition using resonating input neurons”. In: In-
ternational Conference on Artificial Neural Networks. Springer. 2021, pp. 245–
256.

[Aug+21b] Auge, D., Hille, J., Mueller, E., and Knoll, A. “A survey of encoding techniques
for signal processing in spiking neural networks”. In: Neural Processing Letters
53.6 (2021), pp. 4693–4710.

[BK96] Bair, W. and Koch, C. “Temporal Precision of Spike Trains in Extrastriate Cor-
tex of the Behaving Macaque Monkey”. In: Neural Computation 8.6 (1996),
pp. 1185–1202. ISSN: 0899-7667. DOI: 10.1162/neco.1996.8.6.1185.

[Bao+22] Bao, H., Zhou, H., Li, J., Pei, H., Tian, J., Yang, L., Ren, S., Tong, S., Li, Y., He, Y.,
et al. “Toward memristive in-memory computing: principles and applications”.
In: Frontiers of Optoelectronics 15.1 (2022), p. 23.

[BP12] Barth, A. L. and Poulet, J. F. “Experimental evidence for sparse firing in the
neocortex”. In: Trends in neurosciences 35.6 (2012), pp. 345–355.

[Bas+22] Basu, A., Deng, L., Frenkel, C., and Zhang, X. “Spiking neural network inte-
grated circuits: A review of trends and future directions”. In: 2022 IEEE Custom
Integrated Circuits Conference (CICC). IEEE. 2022, pp. 1–8.

[Beh+17] Behroozpour, B., Sandborn, P. A., Wu, M. C., and Boser, B. E. “Lidar system
architectures and circuits”. In: IEEE Communications Magazine 55.10 (2017),
pp. 135–142.

[Ben+23] Bensimon, M., Hadad, Y., Ben-Shimol, Y., and Greenberg, S. “Time-Frequency
Analysis for Feature Extraction Using Spiking Neural Network”. In: (2023).

[BF10] Bhattacharya, B. S. and Furber, S. B. “Biologically inspired means for rank-
order encoding images: A quantitative analysis”. In: IEEE transactions on neural
networks 21.7 (2010), pp. 1087–1099.

125

https://doi.org/10.1162/neco.1996.8.6.1185

126 Bibliography

[Bia+89] Bialek, W., Rieke, F., Steveninck, R. van, and Warland, D. “Reading a neural
code”. In: Advances in neural information processing systems 2 (1989).

[Bin+18] Bing, Z., Meschede, C., Röhrbein, F., Huang, K., and Knoll, A. C. “A survey
of robotics control based on learning-inspired spiking neural networks”. In:
Frontiers in neurorobotics 12 (2018), p. 35.

[Blu+17] Blum, K. P., Lamotte D’Incamps, B., Zytnicki, D., and Ting, L. H. “Force encoding
in muscle spindles during stretch of passive muscle”. In: PLoS computational
biology 13.9 (2017), e1005767.

[BT99] Borst, A. and Theunissen, F. E. “Information theory and neural coding”. In:
Nature neuroscience 2.11 (1999), pp. 947–957.

[Bra+12] Brasselet, R., Panzeri, S., Logothetis, N. K., and Kayser, C. “Neurons with Stereo-
typed and Rapid Responses Provide a Reference Frame for Relative Tempo-
ral Coding in Primate Auditory Cortex”. In: The Journal of Neuroscience 32.9
(2012), pp. 2998–3008. ISSN: 0270-6474. DOI: 10.1523/jneurosci.5435-11.
2012.

[Bre15] Brette, R. “Philosophy of the spike: rate-based vs. spike-based theories of the
brain”. In: Frontiers in systems neuroscience 9 (2015), p. 151.

[BG05] Brette, R. and Gerstner, W. “Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity”. In: Journal of neurophysiology
94.5 (2005), pp. 3637–3642.

[Bri20] Briggs, F. “Role of feedback connections in central visual processing”. In: An-
nual review of vision science 6 (2020), pp. 313–334.

[BS12] Bullmore, E. and Sporns, O. “The economy of brain network organization”. In:
Nature reviews neuroscience 13.5 (2012), pp. 336–349.

[CF00] Carandini, M. and Ferster, D. “Membrane potential and firing rate in cat primary
visual cortex”. In: Journal of Neuroscience 20.1 (2000), pp. 470–484.

[CK90] Carr, C. and Konishi, M. “A circuit for detection of interaural time differences
in the brain stem of the barn owl”. In: Journal of Neuroscience 10.10 (1990),
pp. 3227–3246.

[CLS07] Chan, V., Liu, S.-C., and Schaik, A. van. “AER EAR: A matched silicon cochlea
pair with address event representation interface”. In: IEEE Transactions on Cir-
cuits and Systems I: Regular Papers 54.1 (2007), pp. 48–59.

[Che+20] Chen, G., Cao, H., Conradt, J., Tang, H., Rohrbein, F., and Knoll, A. “Event-
based neuromorphic vision for autonomous driving: A paradigm shift for bio-
inspired visual sensing and perception”. In: IEEE Signal Processing Magazine
37.4 (2020), pp. 34–49.

[Che+18] Chen, X., Lei, Y., Lu, Z., and Chen, S. “A variable-size FFT hardware acceler-
ator based on matrix transposition”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 26.10 (2018), pp. 1953–1966.

[Chi+14] Chicca, E., Stefanini, F., Bartolozzi, C., and Indiveri, G. “Neuromorphic elec-
tronic circuits for building autonomous cognitive systems”. In: Proceedings of
the IEEE 102.9 (2014), pp. 1367–1388.

[Chk04] Chklovskii, D. B. “Synaptic connectivity and neuronal morphology: two sides
of the same coin”. In: Neuron 43.5 (2004), pp. 609–617.

https://doi.org/10.1523/jneurosci.5435-11.2012
https://doi.org/10.1523/jneurosci.5435-11.2012

Bibliography 127

[Chr+22] Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo,
M., Redaelli, A., Slesazeck, S., Mikolajick, T., Spiga, S., Menzel, S., et al. “2022
roadmap on neuromorphic computing and engineering”. In: Neuromorphic Com-
puting and Engineering 2.2 (2022), p. 022501.

[CH06] Clark, B. and Häusser, M. “Neural coding: hybrid analog and digital signalling
in axons”. In: Current biology 16.15 (2006), R585–R588.

[Com+20] Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and
Alakuijala, J. “Temporal coding in spiking neural networks with alpha synap-
tic function”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 8529–8533.

[CT65] Cooley, J. W. and Tukey, J. W. “An algorithm for the machine calculation of
complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–
301.

[CI15] Corradi, F. and Indiveri, G. “A neuromorphic event-based neural recording sys-
tem for smart brain-machine-interfaces”. In: IEEE transactions on biomedical
circuits and systems 9.5 (2015), pp. 699–709.

[DJ22] D’Angelo, E. and Jirsa, V. “The quest for multiscale brain modeling”. In: Trends
in neurosciences (2022).

[DF21] Davidson, S. and Furber, S. B. “Comparison of artificial and spiking neural net-
works on digital hardware”. In: Frontiers in Neuroscience 15 (2021), p. 651141.

[Dav+18] Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., Dimou,
G., Joshi, P., Imam, N., Jain, S., et al. “Loihi: A neuromorphic manycore pro-
cessor with on-chip learning”. In: IEEE Micro 38.1 (2018), pp. 82–99.

[Dav+21] Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P.,
Plank, P., and Risbud, S. R. “Advancing neuromorphic computing with loihi:
A survey of results and outlook”. In: Proceedings of the IEEE 109.5 (2021),
pp. 911–934.

[DA01] Dayan, P. and Abbott, L. F. Theoretical neuroscience: computational and mathe-
matical modeling of neural systems. Computational Neuroscience Series, 2001.

[DLR21] De Zeeuw, C. I., Lisberger, S. G., and Raymond, J. L. “Diversity and dynamism
in the cerebellum”. In: Nature neuroscience 24.2 (2021), pp. 160–167.

[deC98] deCharms, R. C. “Information coding in the cortex by independent or coordi-
nated populations”. In: Proceedings of the National Academy of Sciences 95.26
(1998), pp. 15166–15168.

[Dee+20] Deep, Y., Held, P., Ram, S. S., Steinhauser, D., Gupta, A., Gruson, F., Koch, A.,
and Roy, A. “Radar cross-sections of pedestrians at automotive radar frequen-
cies using ray tracing and point scatterer modelling”. In: IET Radar, Sonar &
Navigation 14.6 (2020), pp. 833–844.

[DA23] Delic, D. and Afshar, S. “Neuromorphic Computing for Compact LiDAR Sys-
tems”. In: More-than-Moore Devices and Integration for Semiconductors. Springer,
2023, pp. 191–240.

[Den+20] Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., Wu, Y., Yang, Z., Zou,
Z., Pei, J., et al. “Tianjic: A unified and scalable chip bridging spike-based and
continuous neural computation”. In: IEEE Journal of Solid-State Circuits 55.8
(2020), pp. 2228–2246.

128 Bibliography

[Die+16] Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. “Conversion
of artificial recurrent neural networks to spiking neural networks for low-power
neuromorphic hardware”. In: 2016 IEEE International Conference on Rebooting
Computing (ICRC). IEEE. 2016, pp. 1–8.

[Dom+18] Dominguez-Morales, J. P., Liu, Q., James, R., Gutierrez-Galan, D., Jimenez-
Fernandez, A., Davidson, S., and Furber, S. “Deep spiking neural network model
for time-variant signals classification: a real-time speech recognition approach”.
In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE. 2018,
pp. 1–8.

[DHX18] Dong, M., Huang, X., and Xu, B. “Unsupervised speech recognition through
spike-timing-dependent plasticity in a convolutional spiking neural network”.
In: PloS one 13.11 (2018), e0204596.

[DS00] Dongarra, J. and Sullivan, F. “Guest Editors Introduction to the top 10 algo-
rithms”. In: Computing in Science & Engineering 2.01 (2000), pp. 22–23.

[DMM95] Douglas, R., Mahowald, M., and Mead, C. “Neuromorphic analogue VLSI”. In:
Annual review of neuroscience 18.1 (1995), pp. 255–281.

[Eck+18] Eckhardt, J. M., Joram, N., Figueroa, A., Lindner, B., and Ellinger, F. “FMCW
multiple-input multiple-output radar with iterative adaptive beamforming”. In:
IET Radar, Sonar & Navigation 12.11 (2018), pp. 1187–1195.

[Est+96] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. “A density-based algorithm for
discovering clusters in large spatial databases with noise”. In: kdd. Vol. 96. 34.
1996, pp. 226–231.

[Fit61] FitzHugh, R. “Impulses and physiological states in theoretical models of nerve
membrane”. In: Biophysical journal 1.6 (1961), pp. 445–466.

[For+22] Forno, E., Fra, V., Pignari, R., Macii, E., and Urgese, G. “Spike encoding tech-
niques for IoT time-varying signals benchmarked on a neuromorphic classifica-
tion task”. In: Frontiers in Neuroscience 16 (2022), p. 999029.

[FF10] Fraden, J. and Fraden, J. Handbook of modern sensors: physics, designs, and
applications. Vol. 3. Springer, 2010.

[FBI21] Frenkel, C., Bol, D., and Indiveri, G. “Bottom-Up and Top-Down Neural Process-
ing Systems Design: Neuromorphic Intelligence as the Convergence of Natural
and Artificial Intelligence”. In: arXiv preprint arXiv:2106.01288 (2021).

[Fre+18] Frenkel, C., Lefebvre, M., Legat, J.-D., and Bol, D. “A 0.086-mm2 12.7-pJ/SOP
64k-synapse 256-neuron online-learning digital spiking neuromorphic proces-
sor in 28-nm CMOS”. In: IEEE transactions on biomedical circuits and systems
13.1 (2018), pp. 145–158.

[Fur+04] Furber, S. B., Bainbridge, W. J., Cumpstey, J. M., and Temple, S. “Sparse dis-
tributed memory using N-of-M codes”. In: Neural Networks 17.10 (2004), pp. 1437–
1451.

[Fur+14] Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. “The spinnaker project”.
In: Proceedings of the IEEE 102.5 (2014), pp. 652–665.

[Ger+22] Gerhards, P., Kreutz, F., Knobloch, K., and Mayr, C. G. “Radar-Based Gesture
Recognition with Spiking Neural Networks”. In: 2022 7th International Confer-
ence on Frontiers of Signal Processing (ICFSP). IEEE. 2022, pp. 40–44.

Bibliography 129

[Ger+14] Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. Neuronal Dynamics -
From Single Neurons to Networks and Models of Cognition. Cambridge: Cam-
bridge University Press, 2014. ISBN: 978-1-107-63519-7.

[Gil+14] Gilbert, A. C., Indyk, P., Iwen, M., and Schmidt, L. “Recent developments in
the sparse Fourier transform: A compressed Fourier transform for big data”. In:
IEEE Signal Processing Magazine 31.5 (2014), pp. 91–100.

[GM08] Gollisch, T. and Meister, M. “Rapid neural coding in the retina with relative
spike latencies”. In: science 319.5866 (2008), pp. 1108–1111.

[Göl+21] Göltz, J., Kriener, L., Sabado, V., and Petrovici, M. A. “Fast and Energy-efficient
deep Neuromorphic Learning”. In: Brain-inspired Computing (2021), p. 17.

[Gon+21] Gonzalez, H. A., Kelber, F., Stolba, M., Liu, C., Vogginger, B., Hänzsche, S.,
Scholze, S., Höppner, S., and Mayr, C. “Ultra-high compression of twiddle fac-
tor ROMs in multi-core DSP for FMCW radars”. In: 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE. 2021, pp. 1–5.

[Gra95] Graps, A. “An introduction to wavelets”. In: IEEE computational science and
engineering 2.2 (1995), pp. 50–61.

[Guo+14] Guo, L., Tang, Y., Lei, Y., Dou, Y., and Zhou, J. “Transpose-free variable-size FFT
accelerator based on-chip SRAM”. In: IEICE Electronics Express 11.15 (2014),
pp. 20140171–20140171.

[GQH07] Guo, X., Qi, X., and Harris, J. G. “A time-to-first-spike CMOS image sensor”. In:
IEEE Sensors Journal 7.8 (2007), pp. 1165–1175.

[HG18] Haegens, S. and Golumbic, E. Z. “Rhythmic facilitation of sensory processing:
A critical review”. In: Neuroscience & Biobehavioral Reviews 86 (2018), pp. 150–
165.

[Has+12] Hasch, J., Topak, E., Schnabel, R., Zwick, T., Weigel, R., and Waldschmidt,
C. “Millimeter-wave technology for automotive radar sensors in the 77 GHz
frequency band”. In: IEEE Transactions on Microwave Theory and Techniques
60.3 (2012), pp. 845–860.

[HN98] Hawkes, M. and Nehorai, A. “Acoustic vector-sensor beamforming and Capon
direction estimation”. In: IEEE transactions on signal processing 46.9 (1998),
pp. 2291–2304.

[HA16] Hawkins, J. and Ahmad, S. “Why neurons have thousands of synapses, a theory
of sequence memory in neocortex”. In: Frontiers in neural circuits (2016), p. 23.

[Her+06] Herz, A. V., Gollisch, T., Machens, C. K., and Jaeger, D. “Modeling single-neuron
dynamics and computations: a balance of detail and abstraction”. In: science
314.5796 (2006), pp. 80–85.

[HSK19] Heuvel, M. P. van den, Scholtens, L. H., and Kahn, R. S. “Multiscale neuro-
science of psychiatric disorders”. In: Biological Psychiatry 86.7 (2019), pp. 512–
522.

[HK98] Hinneburg, A. and Keim, D. A. “An efficient approach to clustering in large
multimedia databases with noise”. In: Knowledge Discovery and Datamining
(KDD’98). 1998, pp. 58–65.

[HS97] Hochreiter, S. and Schmidhuber, J. “Long short-term memory”. In: Neural com-
putation 9.8 (1997), pp. 1735–1780.

130 Bibliography

[Hol+03] Holmgren, C., Harkany, T., Svennenfors, B., and Zilberter, Y. “Pyramidal cell
communication within local networks in layer 2/3 of rat neocortex”. In: The
Journal of physiology 551.1 (2003), pp. 139–153.

[HSS16] Horne, C. D., Sumner, C. J., and Seeber, B. U. “A phenomenological model of
the electrically stimulated auditory nerve fiber: temporal and biphasic response
properties”. In: Frontiers in computational neuroscience 10 (2016), p. 8.

[HE16] Hunsberger, E. and Eliasmith, C. “Training spiking deep networks for neuro-
morphic hardware”. In: arXiv preprint arXiv:1611.05141 (2016).

[IEA24] IEA. “Electricity 2024”. In: (2024).

[Ind21] Indiveri, G. “Introducing ‘neuromorphic computing and engineering’”. In: Neu-
romorphic Computing and Engineering 1.1 (2021), p. 010401.

[IH11] Indiveri, G. and Horiuchi, T. K. Frontiers in neuromorphic engineering. 2011.

[Ind+11] Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Schaik, A. v., Etienne-Cummings,
R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., et al. “Neuromor-
phic silicon neuron circuits”. In: Frontiers in neuroscience 5 (2011), p. 73.

[Iñi23] Iñiguez, B. “Flexible and Printed Electronics”. In: More-than-Moore Devices and
Integration for Semiconductors. Springer, 2023, pp. 105–125.

[Int21] Intelligence, Y. “Neuromorphic Computing and Sensing 2021”. In: (2021).

[Izh01] Izhikevich, E. M. “Resonate-and-fire neurons”. In: Neural networks 14.6-7 (2001),
pp. 883–894.

[Izh03] Izhikevich, E. M. “Simple model of spiking neurons”. In: IEEE Transactions on
neural networks 14.6 (2003), pp. 1569–1572.

[Izh+03] Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C. “Bursts
as a unit of neural information: selective communication via resonance”. In:
Trends in neurosciences 26.3 (2003), pp. 161–167.

[JYB16] Jalil, A., Yousaf, H., and Baig, M. I. “Analysis of CFAR techniques”. In: 2016 13th
International Bhurban Conference on Applied Sciences and Technology (IBCAST).
IEEE. 2016, pp. 654–659.

[Jan18] Jankiraman, M. FMCW radar design. Artech House, 2018.

[Jim+16] Jiménez-Fernández, A., Cerezuela-Escudero, E., Miró-Amarante, L., Domínguez-
Morales, M. J., Asís Gómez-Rodríguez, F. de, Linares-Barranco, A., and Jiménez-
Moreno, G. “A binaural neuromorphic auditory sensor for FPGA: A spike signal
processing approach”. In: IEEE transactions on neural networks and learning
systems 28.4 (2016), pp. 804–818.

[Kai+22] Kaiser, K., Daugalas, J., López-Randulfe, J., Knoll, A., Weigel, R., and Lurz,
F. “Complex-Valued Neural Networks for Millimeter Wave FMCW-Radar Angle
Estimations”. In: 2022 19th European Radar Conference (EuRAD). IEEE. 2022,
pp. 145–148.

[KPP17] Kamel, E. B., Peden, A., and Pajusco, P. “RCS modeling and measurements for
automotive radar applications in the W band”. In: 2017 11th European Confer-
ence on Antennas and Propagation (EUCAP). IEEE. 2017, pp. 2445–2449.

[Kay+09] Kayser, C., Montemurro, M. A., Logothetis, N. K., and Panzeri, S. “Spike-phase
coding boosts and stabilizes information carried by spatial and temporal spike
patterns”. In: Neuron 61.4 (2009), pp. 597–608.

Bibliography 131

[Khe+18] Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. “STDP-
based spiking deep convolutional neural networks for object recognition”. In:
Neural Networks 99 (2018), pp. 56–67.

[KM20] Kheradpisheh, S. R. and Masquelier, T. “Temporal backpropagation for spiking
neural networks with one spike per neuron”. In: International Journal of Neural
Systems 30.06 (2020), p. 2050027.

[Kim+18] Kim, J., Kim, H., Huh, S., Lee, J., and Choi, K. “Deep neural networks with
weighted spikes”. In: Neurocomputing 311 (2018), pp. 373–386.

[KF16] Knight, J. C. and Furber, S. B. “Synapse-centric mapping of cortical models
to the SpiNNaker neuromorphic architecture”. In: Frontiers in neuroscience 10
(2016), p. 213660.

[KGV14] Kösem, A., Gramfort, A., and Van Wassenhove, V. “Encoding of event timing in
the phase of neural oscillations”. In: Neuroimage 92 (2014), pp. 274–284.

[KSH17] Krizhevsky, A., Sutskever, I., and Hinton, G. E. “Imagenet classification with
deep convolutional neural networks”. In: Communications of the ACM 60.6
(2017), pp. 84–90.

[KS15] Kutty, S. and Sen, D. “Beamforming for millimeter wave communications: An
inclusive survey”. In: IEEE communications surveys & tutorials 18.2 (2015),
pp. 949–973.

[Lap07] Lapicque, L. “Recherches quantitatives sur l’excitation electrique des nerfs”. In:
J Physiol Paris 9 (1907), pp. 620–635.

[Leh+23] Lehmann, H. M., Hille, J., Grassmann, C., and Issakov, V. “Direct Signal Encod-
ing with Analog Resonate-and-Fire Neurons”. In: IEEE Access (2023).

[Lei+20] Leiserson, C. E., Thompson, N. C., Emer, J. S., Kuszmaul, B. C., Lampson, B. W.,
Sanchez, D., and Schardl, T. B. “There’s plenty of room at the Top: What will
drive computer performance after Moore’s law?” In: Science 368.6495 (2020),
eaam9744.

[LSW03] Li, J., Stoica, P., and Wang, Z. “On robust Capon beamforming and diagonal
loading”. In: IEEE transactions on signal processing 51.7 (2003), pp. 1702–1715.

[LPD08] Lichtsteiner, P., Posch, C., and Delbruck, T. “A 128× 128 120 dB 15 µs Latency
Asynchronous Temporal Contrast Vision Sensor”. In: IEEE journal of solid-state
circuits 43.2 (2008), pp. 566–576.

[Lin+18] Lin, S.-C., Zhang, Y., Hsu, C.-H., Skach, M., Haque, M. E., Tang, L., and Mars,
J. “The architectural implications of autonomous driving: Constraints and ac-
celeration”. In: Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. 2018,
pp. 751–766.

[LI09] Livi, P. and Indiveri, G. “A current-mode conductance-based silicon neuron for
address-event neuromorphic systems”. In: 2009 IEEE international symposium
on circuits and systems. IEEE. 2009, pp. 2898–2901.

[Lob+20] Lobo, J. L., Del Ser, J., Bifet, A., and Kasabov, N. “Spiking neural networks
and online learning: An overview and perspectives”. In: Neural Networks 121
(2020), pp. 88–100.

[LRK22] Lopez-Randulfe, J., Reeb, N., and Knoll, A. “Conversion of ConvNets to Spiking
Neural Networks With Less Than One Spike per Neuron”. In: 2022 Conference
on Cognitive Computational Neuroscience. 2022, pp. 553–555.

132 Bibliography

[LRK23] Lopez-Randulfe, J., Reeb, N., and Knoll, A. “Integrate-and-fire circuit for con-
verting analog signals to spikes using phase encoding”. In: Neuromorphic Com-
puting and Engineering 3.4 (2023), p. 044002.

[Lóp+21] López-Randulfe, J., Duswald, T., Bing, Z., and Knoll, A. “Spiking neural net-
work for fourier transform and object detection for automotive radar”. In: Fron-
tiers in Neurorobotics 15 (2021), p. 69.

[Lóp+22] López-Randulfe, J., Reeb, N., Karimi, N., Liu, C., Gonzalez, H., Dietrich, R.,
Vogginger, B., Mayr, C., and Knoll, A. “Time-Coded Spiking Fourier Transform
in Neuromorphic Hardware”. In: IEEE Transactions on Computers (2022).

[Maa97] Maass, W. “Networks of spiking neurons: the third generation of neural net-
work models”. In: Neural networks 10.9 (1997), pp. 1659–1671.

[Mar+20] Marković, D., Mizrahi, A., Querlioz, D., and Grollier, J. “Physics for neuromor-
phic computing”. In: Nature Reviews Physics 2.9 (2020), pp. 499–510.

[Mar+18] Martin, J. G., Davis, C. E., Riesenhuber, M., and Thorpe, S. J. “Zapping 500
faces in less than 100 seconds: evidence for extremely fast and sustained con-
tinuous visual search”. In: Scientific reports 8.1 (2018), pp. 1–12.

[MEL03] Mathie, A., E. Kennard, L., and L. Veale, E. “Neuronal ion channels and their
sensitivity to extremely low frequency weak electric field effects”. In: Radiation
Protection Dosimetry 106.4 (2003), pp. 311–315.

[MHF19] Mayr, C., Hoeppner, S., and Furber, S. “Spinnaker 2: A 10 million core pro-
cessor system for brain simulation and machine learning”. In: arXiv preprint
arXiv:1911.02385 (2019).

[McK10] McKeown, M. “FFT Implementation on the TMS320VC5505, TMS320C5505,
and TMS320C5515 DSPs”. In: Texas Instruments Incorporated, White Paper SPRABB6B
(2010).

[Mea90] Mead, C. “Neuromorphic electronic systems”. In: Proceedings of the IEEE 78.10
(1990), pp. 1629–1636.

[Mea20] Mead, C. “How we created neuromorphic engineering”. In: Nature Electronics
3.7 (2020), pp. 434–435.

[MM88] Mead, C. A. and Mahowald, M. A. “A silicon model of early visual processing”.
In: Neural networks 1.1 (1988), pp. 91–97.

[Mer+14] Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., Jackson, B. L., Imam, N., Guo, C., Nakamura, Y., et al. “A million spiking-
neuron integrated circuit with a scalable communication network and inter-
face”. In: Science 345.6197 (2014), pp. 668–673.

[Mod+23] Modha, D. S., Akopyan, F., Andreopoulos, A., Appuswamy, R., Arthur, J. V.,
Cassidy, A. S., Datta, P., DeBole, M. V., Esser, S. K., Otero, C. O., et al. “Neu-
ral inference at the frontier of energy, space, and time”. In: Science 382.6668
(2023), pp. 329–335.

[Mor+17] Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. “A scalable multicore ar-
chitecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (DYNAPs)”. In: IEEE transactions on biomedical cir-
cuits and systems 12.1 (2017), pp. 106–122.

[ML81] Morris, C. and Lecar, H. “Voltage oscillations in the barnacle giant muscle fiber”.
In: Biophysical journal 35.1 (1981), pp. 193–213.

Bibliography 133

[MS03] Moss, C. F. and Sinha, S. R. “Neurobiology of echolocation in bats”. In: Current
opinion in Neurobiology 13.6 (2003), pp. 751–758.

[Mos17] Mostafa, H. “Supervised learning based on temporal coding in spiking neural
networks”. In: IEEE transactions on neural networks and learning systems 29.7
(2017), pp. 3227–3235.

[Mur13] Murmann, B. “Energy limits in A/D converters”. In: 2013 IEEE Faible Tension
Faible Consommation (2013), pp. 1–4.

[Mur15] Murmann, B. “The race for the extra decibel: A brief review of current ADC
performance trajectories”. In: IEEE Solid-State Circuits Magazine 7.3 (2015),
pp. 58–66.

[Nec+18] Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A. R.,
Eliasmith, C., Manohar, R., and Boahen, K. “Braindrop: A mixed-signal neu-
romorphic architecture with a dynamical systems-based programming model”.
In: Proceedings of the IEEE 107.1 (2018), pp. 144–164.

[Orc+21] Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B., Sommer,
F. T., and Davies, M. “Efficient neuromorphic signal processing with loihi 2”. In:
2021 IEEE Workshop on Signal Processing Systems (SiPS). IEEE. 2021, pp. 254–
259.

[Oua+21] Ouaknine, A., Newson, A., Rebut, J., Tupin, F., and Pérez, P. “Carrada dataset:
Camera and automotive radar with range-angle-doppler annotations”. In: 2020
25th International Conference on Pattern Recognition (ICPR). IEEE. 2021, pp. 5068–
5075.

[PAR20] Panda, P., Aketi, S. A., and Roy, K. “Toward scalable, efficient, and accurate
deep spiking neural networks with backward residual connections, stochastic
softmax, and hybridization”. In: Frontiers in Neuroscience 14 (2020), p. 653.

[Pas+12] Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S. A., Crone,
N. E., Knight, R. T., and Chang, E. F. “Reconstructing speech from human au-
ditory cortex”. In: PLoS biology 10.1 (2012), e1001251.

[Pat+17] Patole, S. M., Torlak, M., Wang, D., and Ali, M. “Automotive radars: A review of
signal processing techniques”. In: IEEE Signal Processing Magazine 34.2 (2017),
pp. 22–35.

[PKK19] Petro, B., Kasabov, N., and Kiss, R. M. “Selection and optimization of temporal
spike encoding methods for spiking neural networks”. In: IEEE transactions on
neural networks and learning systems 31.2 (2019), pp. 358–370.

[Pfe+13] Pfeil, T., Scherzer, A.-C., Schemmel, J., and Meier, K. “Neuromorphic learning
towards nano second precision”. In: The 2013 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2013, pp. 1–5.

[PU21] Pitcher, D. and Ungerleider, L. G. “Evidence for a third visual pathway spe-
cialized for social perception”. In: Trends in Cognitive Sciences 25.2 (2021),
pp. 100–110.

[Qia+15] Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,
D., and Indiveri, G. “A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128K synapses”. In: Frontiers in neuro-
science 9 (2015), p. 141.

[Rad+18] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. “Improving lan-
guage understanding by generative pre-training”. In: (2018).

134 Bibliography

[RDP18] Rameez, M., Dahl, M., and Pettersson, M. I. “Adaptive digital beamforming for
interference suppression in automotive FMCW radars”. In: 2018 IEEE Radar
Conference (RadarConf18). IEEE. 2018, pp. 0252–0256.

[Ram04] Ramón y Cajal, S. Textura del sistema nervioso del hombre y de los vertebrados:
estudios sobre el plan estructural y composición histológica de los centros nerviosos
adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimien-
tos. Vol. 2. N. Moya, 1904.

[Rat+13] Ratté, S., Hong, S., De Schutter, E., and Prescott, S. A. “Impact of neuronal
properties on network coding: roles of spike initiation dynamics and robust
synchrony transfer”. In: Neuron 78.5 (2013), pp. 758–772.

[Ree+25] Reeb, N., Lopez-Randulfe, J., Dietrich, R., and Knoll, A. C. “Range and Angle
Estimation with Spiking Neural Resonators for FMCW Radar”. In: arXiv preprint
arXiv:2503.00898 (2025).

[Rei+00] Reich, D. S., Mechler, F., Purpura, K. P., and Victor, J. D. “Interspike Intervals,
Receptive Fields, and Information Encoding in Primary Visual Cortex”. In: The
Journal of Neuroscience 20.5 (2000), pp. 1964–1974. ISSN: 0270-6474. DOI:
10.1523/jneurosci.20-05-01964.2000.

[RG19] Reverter, F. and Gasulla, M. “Experimental characterization of the energy con-
sumption of ADC embedded into microcontrollers operating in low power”. In:
2019 IEEE International Instrumentation and Measurement Technology Confer-
ence (I2MTC). IEEE. 2019, pp. 1–5.

[Rey+19] Reyes, B. T., Biolato, L., Galetto, A. C., Passetti, L., Solis, F., and Hueda, M. R.
“An energy-efficient hierarchical architecture for time-interleaved SAR ADC”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 66.6 (2019),
pp. 2064–2076.

[Rho+18] Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait,
A., Lester, D. R., Mikaitis, M., Plana, L. A., Rowley, A. G., et al. “sPyNNaker: a
software package for running PyNN simulations on SpiNNaker”. In: Frontiers
in neuroscience 12 (2018), p. 816.

[Rho+20] Rhodes, O., Peres, L., Rowley, A. G., Gait, A., Plana, L. A., Brenninkmeijer,
C., and Furber, S. B. “Real-time cortical simulation on neuromorphic hard-
ware”. In: Philosophical Transactions of the Royal Society A 378.2164 (2020),
p. 20190160.

[Rie+99] Rieke, F., Warland, D., Van Steveninck, R. d. R., and Bialek, W. Spikes: exploring
the neural code. MIT press, 1999.

[Rob+20] Robertson, J., Hejda, M., Bueno, J., and Hurtado, A. “Ultrafast optical integra-
tion and pattern classification for neuromorphic photonics based on spiking
VCSEL neurons”. In: Scientific reports 10.1 (2020), p. 6098.

[Roh83] Rohling, H. “Radar CFAR Thresholding in Clutter and Multiple Target Situ-
ations”. In: IEEE Transactions on Aerospace and Electronic Systems AES-19.4
(1983), pp. 608–621. DOI: 10.1109/TAES.1983.309350.

[Rot+22] Roth, F., Bidoul, N., Rosca, T., Dörpinghaus, M., Flandre, D., Ionescu, A. M.,
and Fettweis, G. “Spike-based sensing and communication for highly energy-
efficient sensor edge nodes”. In: 2022 2nd IEEE International Symposium on
Joint Communications & Sensing (JC&S). IEEE. 2022, pp. 1–6.

[RJP19] Roy, K., Jaiswal, A., and Panda, P. “Towards spike-based machine intelligence
with neuromorphic computing”. In: Nature 575.7784 (2019), pp. 607–617.

https://doi.org/10.1523/jneurosci.20-05-01964.2000
https://doi.org/10.1109/TAES.1983.309350

Bibliography 135

[RL18] Rueckauer, B. and Liu, S.-C. “Conversion of analog to spiking neural networks
using sparse temporal coding”. In: 2018 IEEE International Symposium on Cir-
cuits and Systems (ISCAS). IEEE. 2018, pp. 1–5.

[Rue+17] Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. “Conversion of
continuous-valued deep networks to efficient event-driven networks for image
classification”. In: Frontiers in neuroscience 11 (2017), p. 682.

[Sar97] Sarwar, A. “Cmos power consumption and cpd calculation”. In: Proceeding: De-
sign Considerations for Logic Products (1997).

[SH21] Schmidgall, S. and Hays, J. “Stable Lifelong Learning: Spiking neurons as a so-
lution to instability in plastic neural networks”. In: arXiv preprint arXiv:2111.04113
(2021).

[SH22] Schmidgall, S. and Hays, J. “Stable lifelong learning: Spiking neurons as a solu-
tion to instability in plastic neural networks”. In: Proceedings of the 2022 Annual
Neuro-Inspired Computational Elements Conference. 2022, pp. 1–7.

[Sch22] Schmidhuber, J. “Annotated History of Modern AI and Deep Learning”. In: arXiv
preprint arXiv:2212.11279 (2022).

[Sch+17] Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Guettler, M., Hartel, A., Hartmann,
S., Husmann, D., Husmann, K., Jeltsch, S., et al. “Neuromorphic hardware in
the loop: Training a deep spiking network on the brainscales wafer-scale sys-
tem”. In: 2017 international joint conference on neural networks (IJCNN). IEEE.
2017, pp. 2227–2234.

[Sch+22] Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P., Kay, B., et al. “Oppor-
tunities for neuromorphic computing algorithms and applications”. In: Nature
Computational Science 2.1 (2022), pp. 10–19.

[Sen+19] Sengupta, A., Ye, Y., Wang, R., and Roy, K. “Going deeper in spiking neural net-
works: VGG and residual architectures”. In: Frontiers in neuroscience 13 (2019),
p. 425055.

[Sha+21a] Sharifshazileh, M., Burelo, K., Sarnthein, J., and Indiveri, G. “An electronic neu-
romorphic system for real-time detection of high frequency oscillations (HFO)
in intracranial EEG”. In: Nature communications 12.1 (2021), p. 3095.

[Sha+21b] Shastri, B. J., Tait, A. N., Ferreira de Lima, T., Pernice, W. H., Bhaskaran, H.,
Wright, C. D., and Prucnal, P. R. “Photonics for artificial intelligence and neu-
romorphic computing”. In: Nature Photonics 15.2 (2021), pp. 102–114.

[Sha+20] Shawkat, M. S. A., Sayyarparaju, S., McFarlane, N., and Rose, G. S. “Single
photon avalanche diode based vision sensor with on-chip memristive spiking
neuromorphic processing”. In: 2020 IEEE 63rd International Midwest Sympo-
sium on Circuits and Systems (MWSCAS). IEEE. 2020, pp. 377–380.

[SO18] Shrestha, S. B. and Orchard, G. “Slayer: Spike layer error reassignment in time”.
In: Advances in neural information processing systems 31 (2018).

[SIA09] Sifuzzaman, M., Islam, M. R., and Ali, M. Z. “Application of wavelet transform
and its advantages compared to Fourier transform”. In: Vidyasagar University
Journal of Physical Sciences 13 (2009), pp. 121–134.

[Sou+17] Sourikopoulos, I., Hedayat, S., Loyez, C., Danneville, F., Hoel, V., Mercier, E.,
and Cappy, A. “A 4-fJ/spike artificial neuron in 65 nm CMOS technology”. In:
Frontiers in neuroscience 11 (2017), p. 247370.

136 Bibliography

[Sta+20] Stagsted, R., Vitale, A., Binz, J., Bonde Larsen, L., Sandamirskaya, Y., et al.
“Towards neuromorphic control: A spiking neural network based PID controller
for UAV”. In: RSS. 2020.

[Sta13] Stanley, G. B. “Reading and writing the neural code”. In: Nature neuroscience
16.3 (2013), pp. 259–263.

[SM21] Stöckl, C. and Maass, W. “Optimized spiking neurons can classify images with
high accuracy through temporal coding with two spikes”. In: Nature Machine
Intelligence 3.3 (2021), pp. 230–238.

[Stu+21] Stuijt, J., Sifalakis, M., Yousefzadeh, A., and Corradi, F. “µBrain: An event-
driven and fully synthesizable architecture for spiking neural networks”. In:
Frontiers in neuroscience 15 (2021), p. 664208.

[Tan+13] Tang, W., Osman, A., Kim, D., Goldstein, B., Huang, C., Martini, B., Pieribone,
V. A., and Culurciello, E. “Continuous time level crossing sampling ADC for
bio-potential recording systems”. In: IEEE Transactions on Circuits and Systems
I: Regular Papers 60.6 (2013), pp. 1407–1418.

[Tha+18] Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,
Schemmel, J., Wang, R., Chicca, E., Olson Hasler, J., et al. “Large-scale neuro-
morphic spiking array processors: A quest to mimic the brain”. In: Frontiers in
neuroscience 12 (2018), p. 891.

[TG98] Thorpe, S. and Gautrais, J. “Rank order coding”. In: Computational Neuro-
science: Trends in Research, 1998. Springer, 1998, pp. 113–118.

[Tim+23] Timcheck, J., Shrestha, S. B., Rubin, D. B. D., Kupryjanow, A., Orchard, G.,
Pindor, L., Shea, T., and Davies, M. “The intel neuromorphic DNS challenge”.
In: Neuromorphic Computing and Engineering 3.3 (2023), p. 034005.

[Tor+17] Torrejon, J., Riou, M., Araujo, F. A., Tsunegi, S., Khalsa, G., Querlioz, D., Bor-
tolotti, P., Cros, V., Yakushiji, K., Fukushima, A., et al. “Neuromorphic comput-
ing with nanoscale spintronic oscillators”. In: Nature 547.7664 (2017), pp. 428–
431.

[TC98] Torrence, C. and Compo, G. P. “A practical guide to wavelet analysis”. In: Bul-
letin of the American Meteorological society 79.1 (1998), pp. 61–78.

[Tsa+21] Tsang, I. J., Corradi, F., Sifalakis, M., Van Leekwijck, W., and Latre, S. “Radar-
based hand gesture recognition using spiking neural networks”. In: Electronics
10.12 (2021), p. 1405.

[Tur50] Turing, A. “Machines informatiques et intelligence”. In: Mind 49 (1950), pp. 433–
460.

[Van+18] Van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., Lester, D. R., Diesmann, M., and Furber, S. B. “Performance comparison
of the digital neuromorphic hardware SpiNNaker and the neural network sim-
ulation software NEST for a full-scale cortical microcircuit model”. In: Frontiers
in neuroscience 12 (2018), p. 309524.

[Van01] Van Schaik, A. “Building blocks for electronic spiking neural networks”. In:
Neural networks 14.6-7 (2001), pp. 617–628.

[VB88] Van Veen, B. D. and Buckley, K. M. “Beamforming: A versatile approach to
spatial filtering”. In: IEEE assp magazine 5.2 (1988), pp. 4–24.

Bibliography 137

[Vas+17] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[Via+21] Viale, A., Marchisio, A., Martina, M., Masera, G., and Shafique, M. “Carsnn: An
efficient spiking neural network for event-based autonomous cars on the loihi
neuromorphic research processor”. In: 2021 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2021, pp. 1–10.

[Vog+22] Vogginger, B., Kreutz, F., López-Randulfe, J., Liu, C., Dietrich, R., Gonzalez,
H. A., Scholz, D., Reeb, N., Auge, D., Hille, J., et al. “Automotive Radar Pro-
cessing With Spiking Neural Networks: Concepts and Challenges”. In: Frontiers
in neuroscience 16 (2022).

[Vog+24] Vogginger, B., Rostami, A., Jain, V., Arfa, S., Hantsch, A., Kappel, D., Schäfer,
M., Faltings, U., Gonzalez, H. A., Liu, C., et al. “Neuromorphic hardware for
sustainable AI data centers”. In: arXiv preprint arXiv:2402.02521 (2024).

[WHM21] Waldschmidt, C., Hasch, J., and Menzel, W. “Automotive radar—From first ef-
forts to future systems”. In: IEEE Journal of Microwaves 1.1 (2021), pp. 135–
148.

[Wan+23] Wang, D., Tang, R., Lin, H., Liu, L., Xu, N., Sun, Y., Zhao, X., Wang, Z., Wang,
D., Mai, Z., et al. “Spintronic leaky-integrate-fire spiking neurons with self-reset
and winner-takes-all for neuromorphic computing”. In: Nature Communications
14.1 (2023), p. 1068.

[Wan+20] Wang, W., Zhou, S., Li, J., Li, X., Yuan, J., and Jin, Z. “Temporal pulses driven
spiking neural network for fast object recognition in autonomous driving”. In:
arXiv preprint arXiv:2001.09220 (2020).

[WD08] Wijekoon, J. H. and Dudek, P. “Compact silicon neuron circuit with spiking and
bursting behaviour”. In: Neural Networks 21.2-3 (2008), pp. 524–534.

[Win+14] Winner, H., Hakuli, S., Lotz, F., and Singer, C. Handbook of driver assistance
systems. Springer International Publishing, 2014.

[Yan+21] Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Höppner, S., Kelber,
F., Eliasmith, C., Furber, S., and Mayr, C. “Comparing Loihi with a SpiNNaker
2 prototype on low-latency keyword spotting and adaptive robotic control”. In:
Neuromorphic Computing and Engineering 1.1 (2021), p. 014002.

[ZD19] Zbili, M. and Debanne, D. “Past and future of analog-digital modulation of
synaptic transmission”. In: Frontiers in cellular neuroscience 13 (2019), p. 160.

[Zha+17] Zhao, C., Yi, Y., Li, J., Fu, X., and Liu, L. “Interspike-interval-based analog spike-
time-dependent encoder for neuromorphic processors”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 25.8 (2017), pp. 2193–2205.

[Zhe+23] Zheng, K., Qian, K., Woodford, T., and Zhang, X. “NeuroRadar: A Neuromor-
phic Radar Sensor for Low-Power IoT Systems”. In: (2023).

A
Hebbian learning

For a pre-synaptic neuron and a post-synaptic neuron with firing rates ub and v, respectively,
we can model the firing dynamics of the post-synaptic neuron as

v =
Nu
∑

b=1

wb · ub , (A.1)

where Nu is the amount of pre-synaptic neurons, and wb is the synaptic weight between the
bth pre-synaptic neuron and the post-synaptic neuron.

The simplest Hebb rule takes the form of

τw
dw
d t
= vu , (A.2)

where τw is a time constant for regulating the rate of change of the synaptic weights.
We can replace v in (A.2) by using (A.1), and obtain the so called correlation-based plas-

ticity rule

τw
dw
d t
=Qw , (A.3)

where Q is the input correlation matrix. Equation eq. (A.3) only works if the weights matrix
is initialized to a non-zero matrix. If we average over several input patterns, Q is calculated
as

Q = 〈u, u〉 . (A.4)

The previous form of the Hebb rule introduces LTP. To obtain LTD, we introduce a threshold
term in the equation that can either be applied to u or to v. In the first case, (A.2) takes the
form of

τw
dw
d t
= v(u − θu) , (A.5)

where θu is the threshold applied to the pre-synaptic firing rate. A suitable choice for θu is
the average firing rate of u. If this is the case, the equation takes the form of

τw
dw
d t
= vC , (A.6)

where C is the covariance matrix of the input. Therefore, (A.6) is called covariance rule and
C can be calculated as

C = 〈(u − 〈u〉)(u − 〈u〉)〉 . (A.7)

139

140 Appendix A Hebbian learning

A.1 BCM rule

It stands for Bienenstock, Cooper, and Munro, the authors that in 1982 proposed this synaptic
rule.

τw
dw
d t
= vu(v − θv) . (A.8)

The main difference with the covariance rule (A.6) is that the term θv is not fixed. By
allowing the threshold to vary with certain constraints, the equation becomes stable and
does not grow to infinity. The critical condition for reaching stability is that the threshold
grows faster than v. One option is as follows,

τθ
dθv

d t
= v2 − θv , (A.9)

where τθ is the time constant of the rate of change of θv. This value is typically bigger than
τw. (A.9) is a version of the BCM rule that uses a sliding window. Besides being stable,
this rule also introduces competition between the different pre-synaptic variables i.e. when
weights of specific inputs increase, the post-synaptic neuron increases its firing rate, and
therefore increases the threshold θv, reducing the increase of the weights from the other
pre-synaptic neurons.

A.2 Synaptic normalization and Oja rule

A different alternative for achieving a stable Hebb rule is to normalize the synaptic weights
i.e. bound the weights values. If the weights can only take positive values, the normalization
is typically implemented by limited the total weights sum. In case they can take negative
values as well, the squared sum is a more adequate option. Moreover, the normalization may
be applied all the time, or dynamically at the end of the learning process.

One approach for implementing synaptic normalization is to by subtraction. Namely, the
weights evolution is constrained by the sum of all the input weights. It can represented as

τw
dw
d t
= vu −

v(nu)n
Nu

, (A.10)

where Nu is the total amount of pre-synaptic neurons, and n is a unit vector of size Nu. This
rule subtracts from every weight the same amount, based on the total sum of all weights.
Therefore, it is non-local and therefore biologically non-plausible.

Oja rule is known as a multiplicative normalization rule, since it imposes a constraint on
the sum of the squares of the weights. This rule can be expressed as

τw
dw
d t
= vu −αv2w , (A.11)

where α is a positive constant. Contrary to (A.10) , Oja rule only uses local synaptic informa-
tion.

A.3 Spiking timing-dependent plasticity (STDP)

The usage of specific spike times for adapting the weights of the synapses is perhaps the most
popular version of Hebbian learning. This type of learning is called STDP, and many works
have recently adapted this rule for different applications and scopes [SH21; Khe+18].

B
Leaky integrate-and-fire differential equation

This appendix introduces two versions of the leaky integrate-and-fire (LIF) neuron model,
one driven by an input current and another one driven by a voltage source. fig. B.1 contain
the diagrams of the equivalent circuits for both models. The following sections describe how
to reach the differential equations for both models, and solve them for the specific case of a
constant input signal during the integration period.

B.1 Current-driven LIF neuron

The LIF neuron is typically represented by an electric circuit with an input current I(t) that
feeds two parallel branches, one containing the capacitance C and the second formed by
a resistance R. Moreover, a voltage source represents the resting potential urest. fig. B.1a
depicts a diagram for the equivalent electric circuit. The total input current is split according
to

I(t) = IC + IR , (B.1)

where IC and IR are the currents circulating through C and R, respectively. The current IC is
solved by applying the general differential equation of a capacitor,

IC(t) =
duC

d t
C , (B.2)

where C and uC are the capacitor’s capacitance and potential difference, respectively. The
current IR is calculated by using Ohm’s law,

IR =
u− urest

R
, (B.3)

where u and urest are the membrane and resting potentials, respectively. By using the equality
u= uC +urest and combining the three previous equations, we obtain the ordinary differential
equation

duC

d t
RC = RI(t)− uC . (B.4)

From now on, we will denote the product RC as the membrane time constant τm. We rear-
range (B.4) to separate the variables t and uC ,

duC

RI(t)− uC
=

d t
τm

. (B.5)

141

142 Appendix B Leaky integrate-and-fire differential equation

B.2 Solving for a constant input current I0

We solve now (B.5) for the case of a constant input current I(t) = I0 and assuming u(0) = urest.
We integrate both sides of the equation

∫

du
I0R− uC

=
1
τm

∫

d t . (B.6)

Integrating for t ∈ [0, t] and uC ∈ [0, uC ,t] yields

− ln
� I0R− uC ,t

I0R

�

=
t
τm
+ k1 . (B.7)

With the contour condition uC ,t = 0 if t = 0, then k1 = 0. Applying the transformation
uc = u− urest, we obtain

− ln
�

I0R+ urest − u
I0R

�

= −
t
τm

. (B.8)

Finally, we solve the ODE by applying exponentials for removing the logarithms, that yields

u= urest + I0R(1− et/τm) . (B.9)

B.3 Voltage-driven LIF neuron

The previous section describes a neuron model that assumes the information provided to the
neuron arrives in the form of a time-varying current. Alternatively, we can model the LIF
neuron as a circuit that receives information in the form of a time-varying voltage signal.
We do that by placing the resistor and the capacitor in series, so the membrane potential is
represented by the voltage of the node between the two components,

uin(t) = uC + uR + urest , (B.10)

where uC and uR is the potential difference in the capacitor and the resistor, respectively, and
we can obtain their values using (B.2) and (B.3), respectively. fig. B.1b depicts a diagram of
the equivalent electric circuit As the current passing through the capacitor and the resistor is
the same, IC = IR, we can turn (B.10) in

duC

d t
C =

uin(t)− urest − uC

R
. (B.11)

Same as for the current-based model, we can replace τm = RC and separate the variables t
and u,

duC

uin(t)− urest − uC
=

d t
τm

. (B.12)

B.4 Solving for a constant input voltage U0

We can simplify the ODE in section B.3 by assuming that the input voltage stays constant for
the integration time, uin(t) = U0. This is a reasonable assumption if the neuron dynamics are
faster than the input voltage dynamics. The integration of both sides of (B.12) yields

∫

du
U0 − urest − uC

=
1
τm

∫

d t . (B.13)

B.4 Solving for a constant input voltage U0 143

Iin(t) RLIFCLIF

u(t)

Urest

(a)

Uin(t)

Urest

+

-

RLIF

CLIF

u(t)

(b)

Figure B.1: Equivalent electric diagrams for the leaky integrate-and-fire neuron model. (a) represents a current-
based LIF, and (b) represents a voltage-based LIF.

Integrating for t ∈ [0, t] and uC ∈ [0, uC ,t] yields

− ln
�U0 − urest − uC ,t

U0 − urest

�

=
t
τm
+ k2 . (B.14)

If we assume uC ,t = 0 for t = 0, then k2 = 0. Applying the transformation uC = u− urest, we
can then solve the ODE as

u(t) = U0(1− e−t/τm) + ureste
−t/τm . (B.15)

C
Implementation of analogue-to-spike encoder

A prototype of the analogue-to-spike encoder introduced in 5 was implemented for validating
the properties of the circuit. section 6.2 contains a summary of the experiment results and
their corresponding discussion. This section covers details of the implementation that are
necessary for replicating the experiments, as well as the formal proof for the choice of certain
components.

Table C.1 contains a list of the specific components that were used for implementing
the circuit, together with their corresponding reference. The choice of the components was
made based on the availability in the market and suitability for easy and fast deployment
on a prototype board. All active components of the circuit were protected with decoupling
capacitors of value Cdec = 100nF . The table does not include auxiliary components necessary
for implementing the circuit, such as wires, pin headers, or bread-boards. The experiments
also required external equipment for generating the input signals, namely a DC voltage supply
and a signal generator.

fig. C.1 Shows the ASE prototype on the bottom, connected to a function generator that
provided sinusoidal signals as input. The experiments employed signals with frequencies in
the range [25Hz, 1kHz]. The oscilloscope on top validated the frequencies of the input signal.
A UART connection between the microcontroller and a PC allowed to store the spike times
after the experiments.

Table C.1: List of the commercial components used for implementing the ASE described in 5, together with their
magnitude, reference, retailer, and retailer reference.

Component Mag. Reference Retailer Ret. ref.

CLIF 100nF RS 181-4752 RS 263-3034

RLIF 30kΩ LR1F30K RS 683-5580

Rdiv 10kΩ RK09K1130A0H RS 263-3034

Rpull−up 30kΩ LR1F30K RS 148-843

Cdec 100nF RS 181-4752 RS 181-4752

Comparator - LP339N Mouser 595-LP339N

D flip-flop - SN74HC74NE4 Mouser 595-SN74HC74NE4

Analog switch - MAX317CPA Mouser 700-MAX317CPA

Microc. board - EV88G73A Mouser 579-EV88G73A

145

146 Appendix C Implementation of analogue-to-spike encoder

Figure C.1: Lab setup for sampling sinusoidal wave signals with the ASE. On top, an oscilloscope for validating
the input signals. In the middle, the function generator that provided the wave signals. At the bottom, the ASE
prototype board.

C.1 LIF temporal dynamics

Equation (5.1) yields the time constant τm of the ASE by fixing u(t) = umin and t = tmax to
the limits imposed by the electronic components. For the values of CLI F and RLI F indicated
in table C.1, τm = 100nF× 30kΩ= 3 ms. The spike time of the ASE is obtained with (5.3).

C.2 Discharge resistor for CLI F switch

When the membrane voltage of the encoder reaches the threshold voltage uth, the circuit
enters a reset phase. This includes the activation of the switch that discharges the encoder
capacitor CLI F . In order to avoid the destruction of the two components involved (the ca-
pacitor and the switch), it is necessary to include a resistor that absorbs the energy of the
capacitor. On the other hand, the discharge resistance needs to be as low as possible, in
order to minimize the discharge time for the capacitor.

When the switch activates, the discharge takes place through a simple R− C circuit with
an initial voltage Vth. During discharge time, the circuit follows the R− C dynamics

C
du
d t
=

u(t)
RS

, (C.1)

where C = CLI F is the capacitance of the capacitor, and RS is the value of the discharge

C.3 Interface with digital acquisition of spikes 147

resistor. The initial condition for the membrane voltage is u0 = uth, and the voltage at time t
is obtained by solving (C.1), which yields

u(t) = et/τu0 , (C.2)

where τ= RSCLI F is the time constant of the capacitor. The instantaneous current circulating
through RS is given by Ohm’s law,

I(t) =
u(t)
RS

. (C.3)

The peak current through the circuit takes place at t = t0, when the voltage takes the maxi-
mum value u0 = uth. For the chosen analog switch, MAX317, RL is given by its ON resistance,
which is RON = 20Ω. In absence of additional resistors, and using a security coefficient α= 2,
the peak current would thus be IMAX = α ·uth/RON = 2 ·0.5/20= 50mA. This value lays below
the peak current Ipeak = 100mA that the switch can tolerate. Therefore, the design does not
need to include an additional protection resistor.

C.3 Interface with digital acquisition of spikes

The spikes generated by the circuit need to be collected and stored so they can be processed
by a neuromorphic chip. In the prototype implementation a microcontroller was used for this
purpose, namely the EV88G73A developer board from Microchip.

The main functionalities of the microcontroller are the following:

1. Generate the sampling clock signal C LKS at a fixed rate

2. Listen to the SPK digital input and generate an interrupt when a HI level is detected

3. Record the time when SPK takes place

4. Send the reset flag C LKN to the circuit when SPK = HI

5. Send the collected spike times to the main controller of the experiment for a posterior
analysis of the data

D
Conversion with the TCBS neuron model

The temporal charge before spike (TCBS) neuron model described in chapter 4 can be applied
to the conversion of artificial neural networks (ANNs) to time-coded spiking neural networks
(SNNs) for the inference stage. The neuron model’s temporal nature and linear behaviour
permit an easy conversion of crucial operations like max pooling or the ReLU activation
function. A LeNet deep convolutional neural network (DCNN) was trained for digit classifi-
cation with the MNIST dataset to test the model. Specifically, the network comprised two
convolutional layers with 32 kernels each, and two dense layers with 100 and 10 neurons,
respectively (see fig. D.1). The network was trained using a dropout of 0.2 and applying data
augmentation to the dataset using rotations, translations, and shifts to the original images.

Figure D.1: LeNet architecture used for classifying digits from the MNIST dataset. After training, the network was
converted to an SNN using the TCBS neuron model

The converted SNN was simulated with input data converted to time-coded spikes, ac-
cording to the time to first spike (TTFS) encoding defined by (4.3). All neurons on each layer
were run in parallel with the same times for their silent and spiking stages, which were ref-
erenced to the start of the silent stage, i.e., tmin = t0 = 0. Moreover, all neurons run for the
same number of time steps tmax, which was a tunable parameter. A second parameter was
the membrane voltage uth. Even though it is possible to calculate a theoretical maximum
value for uth based on the synaptic weights of each neuron, such value is never reached when
working with actual data, as it is randomly distributed across the input spectrum and the
addition of all inputs is far from the theoretical maximum. Thus, experiments assessed the
impact of both tmax and uth on the SNN error. fig. D.2 depicts the root-mean-square error
(RMSE) of all neurons in the SNN when compared to the real number they should represent.

149

150 Appendix D Conversion with the TCBS neuron model

Table D.1: Comparison of the inference results for a LeNet DCNN architecture for the MNIST dataset with the
results of the same network converted to SNN using the TCBS model.

FLOPs synaptic ops. Acc.

ANN 14316496 - 99.56
SNN - 1015015 99.44

table D.1 compares the original ANN with the converted network for the optimal param-
eters from fig. D.2. We can observe that the accuracy after conversion drops 0.12%, while
the number of synaptic operations is considerably smaller than that of floating point opera-
tions in the ANN. This is due to two reasons: Firstly, whereas computing the input data in an
ANN requires multiplication and addition for calculating y = W T x , SNNs only requires the
addition of the weights due to the binary nature of spikes. Secondly, SNNs do not need to
compute zero values in the vector-matrix multiplication, so all outputs that the ReLU function
turns to zero are ignored. This resulted in the converted SNN emitting, on average, 0.142
spikes per neuron.

Figure D.2: Error of the converted LeNet DCNN to an SNN when varying the number of simulation steps and the
membrane voltage.

E
Spiking OS-CFAR

The spiking OSCFAR (S-OSCFAR) is based on a winner-takes-all topology, where input neu-
rons compete to determine the output spiking behaviour. Namely, the neuron takes latency-
encoded spikes representing the neighbour values XN and the CUT value XC , connected with
synaptic weights wN = −1 and wC = k, respectively. This architecture is represented in the
left side of Fig. E.1.

For generating each input spike train Si, the corresponding input value X i is mapped to a
single spike time t i by using latency encoding (4.5), i.e., t i = t(X i). In the special case of the
CUT value, the spike time is computed after modifying XC with the scaling factor α

tC = t(αXC) . (E.1)

On each simulation step, the S-OSCFAR neuron iterates over the CUT value and the N
neighbour cells, increasing the membrane voltage u when a spike is present

u(t + 1) = u(t) +
∑

i∈N+1

Si(t)wi . (E.2)

The update rule (E.2) corresponds to that of an integrate and fire neuron without leak cur-
rent. This means that the membrane voltage u accumulates all the information that arrived
in previous simulation steps and the information stays unaltered over time.

When the membrane voltage u(t) reaches the threshold voltage uth = 1, the neuron gen-
erates a spike O(t) = 1

O(t) =

�

1, if u(t)> uth

0, otherwise
(E.3)

After generating a spike, the membrane voltage is reset, and the neuron stays in a refractory
state until the end of the simulation. The introduced neuron model establishes a competition
between the CUT value XC and the neighbour values XN , as XC will generate a spike if it
arrives before k neighbour cell spikes. The neuron behaviour is depicted in Figure E.1 for a
window with six neighbour cells.

Object detection algorithms in radar pipelines are typically applied after the Fourier trans-
form to filter background and noise from the actual objects in the scene.

151

152 Appendix E Spiking OS-CFAR

Figure E.1: On the left, a diagram of an S-OSCFAR neuron taking as input the spike trains from 6 neighbour cells
and the CUT value, represented in blue and orange, respectively. The values on top of the connections represent
the synaptic weights. On the right, a plot of the membrane potential of the neuron and a scatter plot of the input
spikes at the top and at the bottom, respectively. Neighbour cell spikes are represented in blue, and the CUT
spike is represented in orange. The neuron starts at a resting potential u(0) = 0 and has a threshold potential of
uth = 1. After generating a spike, the neuron stays in a refractory state.

	Introduction
	Background and motivation
	Goal and contribution

	Radar signal processing
	Sensing principles
	Analogue to digital Conversion
	Frequency domain Representation
	Angle of arrival estimation
	Object detection – Constant false-alarm rate
	Clustering

	Neuromorphic engineering and computing
	Biology fundamentals
	Spike encoding in neuromorphic applications
	ANN to SNN conversion
	Frequency domain representation
	Neuromorphic devices

	Temporal charge before spike neuron model
	Working principle
	Neuromorphic computation of the Fourier transform
	Conversion of convolutional neural networks

	Analogue to spike encoder
	Working principle
	Electric design

	Implementation and experiment results
	Spiking Fourier transform
	Analogue to spike encoder
	Spiking OS-CFAR
	Discussion

	Conclusion
	Challenges and limitations
	Future work

	Bibliography
	Appendix Hebbian learning
	BCM rule
	Synaptic normalization and Oja rule
	Spiking timing-dependent plasticity (STDP)

	Appendix Leaky integrate-and-fire differential equation
	Current-driven LIF neuron
	Solving for a constant input current I0
	Voltage-driven LIF neuron
	Solving for a constant input voltage U0

	Appendix Implementation of analogue-to-spike encoder
	LIF temporal dynamics
	Discharge resistor for CLIF switch
	Interface with digital acquisition of spikes

	Appendix Conversion with the TCBS neuron model
	Appendix Spiking OS-CFAR

