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Abstract

Interacting multi-particle systems are of paramount importance in and beyond ap-
plied mathematics, with far-reaching impact across a variety of scientific disciplines.
This dissertation lays mathematical foundations for the numerical analysis of such
systems in the setting of nonconvex nonsmooth optimization, itself a topic of fun-
damental interest throughout science and engineering. While systems of interacting
particles are, due to their tremendous empirical success, broad spectrum of appli-
cability, and ease of handling, widely used in practice, their rigorous theoretical
analysis largely remained elusive. Given the necessity for capable, reliable, and
robust algorithms that come with informative and solid convergence guarantees,
a mathematical analysis framework for these methods is indispensable. We cover
algorithms for classical global optimization problems in high dimensions as well
as saddle point or so-called minimax problems. Our established analytical frame-
work is flexible and versatile enough to be adapted to an even broader class of
numerical methods. Furthermore, we discover a surprising, yet largely unexplored
and unexploited link between the derivative-free and the gradient-based world in
optimization.
The central observations and core contributions of this dissertation build upon the-
oretical insights obtained by taking a mean-field perspective, which, by alleviating
original complexities of the problem, allows us to understand, unveil, and distill the
internal mechanisms responsible for empirically observed successes. These findings,
moreover, enable us to go beyond the investigated large particle regime and infer
properties of the associated interacting multi-agent systems of practical interest.



Zusammenfassung

Interagierende Mehrteilchensysteme sind von herausragender Bedeutung in und jen-
seits der angewandten Mathematik, mit weitreichendem Einfluss auf eine Vielzahl
von wissenschaftlichen Disziplinen.
Diese Dissertation legt mathematische Grundlagen für die numerische Analyse sol-
cher Systeme im Rahmen der nichtkonvexen, nichtglatten Optimierung, einem The-
ma von fundamentaler Bedeutung in Wissenschaft und Technik. Obwohl Systeme
von interagierenden Teilchen aufgrund ihrer enormen empirischen Erfolge, breiten
Anwendbarkeit und einfachen Handhabe in der Praxis weit verbreitet sind, blieb ihre
gründliche theoretische Analyse weitgehend aus. Angesichts der Notwendigkeit von
leistungsfähigen, zuverlässigen und robusten Algorithmen mit aussagekräftigen und
soliden Konvergenzgarantien ist ein mathematischer Rahmen für die Analyse jener
Methoden unerlässlich. Wir behandeln Algorithmen für klassische globale hoch-
dimensionale Optimierungsprobleme sowie Sattelpunkt- oder sogenannte Minimax-
Probleme. Das von uns etablierte analytische Gerüst ist flexibel und vielseitig genug,
um auf eine noch breitere Klasse numerischer Methoden angewandt zu werden. Dar-
über hinaus entdecken wir eine überraschende, bisher weitgehend unerforschte und
ungenutzte Verbindung zwischen der ableitungsfreien und der gradientenbasierten
Welt in der Optimierung.
Die zentralen Beobachtungen und Hauptbeiträge dieser Dissertation bauen auf theo-
retischen Erkenntnissen auf, die durch eine sogenannte Mittelfeldperspektive gewon-
nen werden, welche uns durch Abschwächung der ursprünglichen Komplexitäten des
Problems ermöglicht, die internen Mechanismen, welche für empirisch beobachtete
Erfolge verantwortlich sind, zu verstehen, enthüllen und herauszuarbeiten. Diese Er-
kenntnisse ermöglichen darüber hinaus, über das untersuchte Regime vieler Teilchen
hinauszugehen und Eigenschaften der zugehörigen interagierenden Mehrteilchensy-
steme von praktischem Interesse abzuleiten.
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Preface

This dissertation is structured into two intertwined parts. Part I provides an exposition
of the topics and results discussed in more depth and presented in greater detail in
the publications and preprints [CBO-I; CBO-II; CBO-III; CBO-IV; CBX; CBO&GD;
PSO; CBO-SP], which are collected and reprinted as Papers P1 to P8 in Part II of this
document.

Part I: Exposition

Chapter 1: Introduction

Chapters 2 to 4: Consensus-Based Optimization (CBO):
On Convergence, Variants and a Surprising Connection to
Stochastic Gradient Descent

Chapter 5: Particle Swarm Optimization (PSO)

Chapter 6: Approaching Saddle Point Problems with CBO

Chapter 7: Conclusions

Part II: Papers

—

Papers P1 to P5
and

Paper P6

Paper P7

Paper P8

—

Outline of the exposition. After highlighting the relevance of systems of interacting
particles in both classical scenarios and the latest trends in optimization and artificial
intelligence, we accentuate in Chapter 1 the analytical power of mean-field perspec-
tives when it comes to gaining a mathematical understanding of empirically observed
phenomena.

In the core part of this dissertation, we lay mathematical foundations for the numerical
analysis of interacting multi-particle systems for nonconvex nonsmooth optimization in
high dimensions. While several of the central observations and main results of this work
build upon theoretical insights obtained by taking a mean-field perspective, in many
cases, these findings allow us to go beyond the investigated mean-field limits and infer
properties of the associated multi-agent systems of practical interest. Actually, as we will
see along the way, our journey will take us not just beyond the mean-field perspective,
but also beyond interacting multi-particle methods and beyond optimization.

Chapter 2 of this exposition is dedicated to the introduction of consensus-based op-
timization (CBO), a multi-particle metaheuristic derivative-free optimization method,
which was originally proposed in [Pin+17]. A swarm of agents is employed to explore the
domain and to form consensus about the location of the global minimizer by iteratively

xi



Preface

computing a weighted average of all particles’ positions, called consensus point, and con-
secutively evolving the swarm by each agent taking a step towards the consensus point
while being subject to random noise featuring exploration. We discuss the motivations
behind the design of the algorithm and provide an overview of its most relevant variants,
applications and available code [CBX].

By summarizing the main contributions of [CBO-I; CBO-II] in the first section of
Chapter 3, we present a versatile and flexible analysis framework for establishing global
convergence guarantees for CBO methods. Our proof philosophy is as follows. Instead
of directly investigating the microscopic particle system associated with the numerical
algorithm, we first study the convergence behavior on the level of the continuous-time
macroscopic agent density through the mean-field limit associated with the particle-
based dynamics. By quantifying the convergence of the microscopic system to this mean-
field limit as the number of employed particles grows in a second step, we eventually
obtain a holistic convergence proof of the implementable CBO algorithm in form of a
probabilistic global convergence result. The therewith developed framework has served
as a template for proving the convergence of several variants and adaptations of CBO
methods since then. By giving a brief overview of [CBO-III] and [CBO-IV] in the
remaining sections of this chapter, two such variants of CBO are sketched together with
their convergence analysis.

In the subsequent Chapter 4, leaving aside the mean-field analysis point of view for a
moment, we shed light on the behavior of the CBO algorithm from a di�erent angle by
outlining the contributions of [CBO&GD]. By studying the trajectory of the consensus
point of CBO, we observe that CBO exhibits a stochastic gradient descent-like behavior,
which motivates the interpretation of CBO as a stochastic relaxation of gradient descent
with a problem-tailored stochastic perturbation. The fundamental value of such link
between CBO and stochastic gradient descent lies in the formerly established fact that
CBO is provably globally convergent to global minimizers. Namely, on the one side, we
o�er a novel explanation for the success of stochastic relaxations of gradient descent and
provide a novel analytical perspective on the theoretical understanding of gradient-based
learning algorithms, while, on the other side and contrary to the conventional wisdom
for which zero-order methods ought to be ine�cient or not to possess generalization
abilities, we unveil an intrinsic gradient descent nature of such heuristics.

Returning to the mean-field analysis perspective from before but going beyond CBO,
we turn in Chapter 5 towards the renowned particle swarm optimization method (PSO),
which originated in the works [KE95; Ken97] and partially inspired the design of CBO.
After concisely describing PSO, we summarize the work [PSO], where the convergence
behavior of PSO to global minimizers is investigated under certain conditions of well-
preparation of the hyperparameters and the initial datum by following the aforemen-
tioned philosophy and employing similar proof techniques.

Equipped with such a flexible analytical toolbox, we leave behind the quest of solving
optimization problems and present in Chapter 6 consensus-based optimization for saddle
point problems (CBO-SP) by providing an overview of the paper [CBO-SP], where CBO-
SP is proposed, proven to converge to global Nash equilibria, and verified experimentally.

Chapter 7 wraps up the exposition of this dissertation.
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Exposition
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Chapter 1
Introduction

Systems of interacting agents or particles appear in a wide variety of scientific disci-
plines. They describe the physical movements in huge systems of atoms and molecules
in molecular dynamics [KP90; HD18], the celestial motion [New87; BC61] of planets,
stars, comets, and galaxies in astronomy, the collective behavior of large groups of
people [CPT11; Alb+16], vehicles [CGP05; GP06; TK13], or animals [PE99; Cou+05;
Sum10] in tra�c flow or nature, the formation and dynamics of opinions [HK02; AO11]
among humans in politics or among an obscure mixture of humans, institutions, and bots
on social media, as well as the decentralized and distributed training [Dea+12; Ver+21;
Kai+21] of nowadays large-scale machine learning models through a variety of digital
devices ranging from pocket-size edge devices over servers to powerful compute clusters.
In these scenarios, the particle interpretation arises naturally from real-world scenarios,
and the systems are considered, modeled, and analyzed out of practical interest.

While the interaction rules can be seemingly simple, surprisingly plain and elegant
in many cases, they fascinatingly enable the emergence of complex and often intelligent
behavior, phenomena known as self-organization and swarm intelligence [Lor63; Man63;
Bak96; VZ12]. For instance, a quartet of four fundamental forces, gravity, the weak force,
electromagnetism, and the strong force, governs our universe and describes every physical
interaction, from the creation of planets, solar systems, and galaxies, to the composition
of matter at the level of quarks. On a cellular level, during biological ontogenesis, that
is the development of an organism, embryonic cells exhibit coordinated behavior leading
to the formation of spatio-temporal patterns [Isa12], thus the creation of life. In nature,
all sorts of animals commit to flocking, herding, schooling, and milling behavior [Rey87],
with one of the most startling examples being the herding of hundreds of thousands
of gnus, zebras, and gazelles from the southern Serengeti in Tanzania to the lush green
grasses of the Masai Mara in Kenya during the great migration. This list could be further
expanded with several astonishing examples from all facets of nature, yet we conclude it
here and refer the interested reader to the aforementioned books and references therein.

These intriguing capabilities, where individuals as a whole are more capable than
they were on their own, have drawn researchers’ attention toward specifically designing
interacting multi-particle systems for a variety of purposes in di�erent disciplines. In
applied mathematics in particular, particle-based optimization algorithms [Hol75; KE95;
Ken97; BFM97; Fog00; DB05; Yan14; Pin+17; Car+21; LTZ22; TZ24] look back on a
long and successful history of being recognized as capable, reliable, and robust methods
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Chapter 1. Introduction

that empirically achieve state-of-the-art performances on challenging global optimization
problems, where the hardness is articulated through nonconvexity, nonsmoothness, and
high dimensionality. Notable examples include evolution strategies [Sch95; SR95], evolu-
tionary programming methods [BFM97; Fog00], genetic algorithms [Hol75], and particle
swarm optimization (PSO) [KE95; Ken97]. Together with well-known optimiziation
methods such as random search [Ras63], the Nelder-Mead simplex heuristic [NM65],
the Metropolis-Hastings algorithm [Has70], and simulated annealing [AK89], such algo-
rithms belong to the broad class of heuristics and metaheuristics [BR03; Bia+09; Tal09;
Yan13; GP19]. Characteristically, these methods orchestrate an interplay between local
improvement procedures and global strategies, combine deterministic and stochastic pro-
cesses, leverage information exchange between multiple agents, to eventually design an
e�cient yet e�ective procedure for reliably and robustly searching the parameter space
of an, in general, complicated objective function in search of a globally optimal solution.

With this philosophy and conceptual approach, the class of metaheuristics distin-
guishes itself substantially from and stands out against the classical paradigm prevalent
in optimization [GMW20; Noc92; CST97; Fle01; BV04; NW06] by going beyond locality
and focusing on a global exploration of the energy landscape, and consecutively, through
communication, exploiting the gathered information. This contrasts algorithms such as
gradient descent, the heavy ball method [Pol64; AGR00], Newton’s method and quasi-
Newton methods [Bro67], or trust region methods [CGT00]. They either rely on local
information about the objective function obtained through the evaluation of gradients or
Hessians at the current iterate and consecutively invoke line search strategies to ensure
a descent property, or directly restrain the search for a new iterate to a local neigh-
borhood of the current iterate, the trusted region. Instead of being bound to converge
locally as the formerly mentioned methods, metaheuristics aim at breaking these locality
confinements by coupling stochasticity with the explorative power of a swarm of inter-
acting particles and by featuring communication between the particles. Also stochastic
variations of the aforementioned classical optimization algorithms, including stochastic
gradient descent (SGD), AdaGrad [DHS11], RMSProp, and Adam [KB15], strive to be-
come more capable of overcoming energy barriers of nonconvex functions by deploying
randomness [Erm75; RT96; DM17; Chi22; ERY22], yet, with exploration through mul-
tiple agents in a swarm and communication between those being absent, they lack a key
crucial and critical feature of many of the previously mentioned metaheuristics.

Despite the tremendous empirical success, broad spectrum of applicability, and wide-
spread use of metaheuristics in practice throughout science and engineering, many of
them, due to their inherent complexity and intricacies, lack proper mathematical foun-
dations that could rigorously prove their robust convergence to global minimizers with
explicit and quantitative rates under suitable assumptions. However, given the signifi-
cance of solving complicated global optimization problems reliably and robustly through-
out science and engineering, while having informative and solid convergence guarantees
at disposal, this optimization paradigm is of substantial contemporary interest [Pin+17;
Car+21; BBP22; LTZ22; TZ24], both from a practical and theoretical point of view.

The aforementioned di�culties, which arise when investigating stochastic systems
with a large number of interacting particles, are attributed to three core and charac-
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teristic features of metaheuristic methods. Firstly, a generally intricate dynamics and
a nontrivial working principle of the algorithm. Secondly, the involved stochasticity.
And lastly, but most crucially, a large number of particles paired with their interact-
ing nature. To tackle such challenges, over the last decades, with origins in statistical
mechanics [Bol77; Gib60], mean-field techniques have emerged as a powerful analytical
tool and become a prominent and fruitful theoretical avenue when investigating large
multi-particle systems. Examples include mean-field optimization [Orl85], the mean-field
analysis of interacting particle systems in nature, sociology, and engineering [CCH14],
mean-field games [LL07], mean-field optimal control [FS14; EHL19] as well as mean-field
reinforcement learning [Yan+18]. Recently, an interpretation of neural networks as in-
teracting particle systems with neurons being regarded as particles has allowed to gain
a better understanding of the training process of wide shallow neural networks [RV18;
RV22; MMN18; MMM19; CB18; SS20b; SS20a; FF22] as well as other architectures
including deep networks [AOY19; SS22; Chi+22; NP23], ResNets [Din+22] and recur-
rent networks [LSS23]. In transformers [Vas+17], modeling tokens as particles [Lu+19;
Dut+21] has paved the way for an analogy between the emergence of clusters in parti-
cle systems and next-token prediction [Ges+23b; Ges+23a] with the mean-field regime
being natural in the setting of long-context understanding in the self-attention dynamics.

Contributions. In view of the thus far demonstrated paramount importance of in-
teracting multi-particle systems in and beyond applied mathematics, paired with their
far-reaching impact across a variety of scientific disciplines, we lay in this dissertation
mathematical foundations for the numerical analysis of such systems in the setting of
nonconvex nonsmooth optimization.

Based on the publications listed at the end of the foregoing preface, we present a
mathematical analysis framework, that allows to derive rigorous quantitative estimates
about the finite-time behavior for such numerical algorithms with explicit rates of con-
vergence. This is of crucial interest and importance, and indispensable to warrant their
applicability in particular in security-, privacy-, and fairness-sensitive applications. We
cover algorithms for classical nonconvex global optimization problems in high dimensions
as well as nonconvex-nonconcave saddle point or so-called minimax problems. Neverthe-
less, our established analytical techniques are flexible and versatile enough to be adapted
and extended to an even broader class of methods.

Attributed to the di�culties of investigating large stochastic systems of interacting
particles, the central observations and core contributions of this dissertation build upon
theoretical insights obtained by taking a mean-field perspective, which, by alleviating
original complexities of the problem, allows us to understand, unveil, and distill the inter-
nal mechanisms responsible for empirically observed successes. These findings, moreover,
enable us to go beyond the investigated large particle regime and infer properties of the
associated numerical algorithms of practical interest.

Furthermore, by viewing the interacting particle systems from a di�erent angle, we
discover a surprising, yet largely unexplored and unexploited link between the derivative-
free and the gradient-based world in optimization.
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Chapter 2
Consensus-Based Optimization

This chapter provides a gentle introduction to and overview of the field of consensus-
based optimization (CBO), which is about a class of multi-agent metaheuristic derivative-
free optimization methods with origins in the work [Pin+17]. In Section 2.1, we describe
the algorithm, explain its working principles, and elaborate on the motivations behind
its design. The subsequent Section 2.2 contains a survey of the most relevant variants
and applications of CBO, demonstrating, in particular, the versatility and flexibility of
the method. The chapter is wrapped up by Section 2.3, where we survey available code
for CBO.

2.1. The Dynamics of Consensus-Based Optimization1

For the purpose of finding the global minimizer x
ú of a potentially nonconvex, non-

smooth, and high-dimensional objective function E : Rd æ R, i.e., solving the uncon-
strained optimization problem

x
ú œ arg min

xœRd
E(x), (2.1)

CBO methods employ a finite number of particles X
1
, . . . , X

N to explore the domain
and to form a consensus about the location of the minimizer x

ú as time passes. In
the spirit of metaheuristics [BFM97; BR03], the dynamics of the agents X

1
, . . . , X

N of
CBO are governed by two terms. A deterministic drift term drags each particle towards
a weighted average of all agents’ positions, referred to as the consensus point. Particles
with a comparably low objective value, i.e., a presumably good position, are attributed a
high weight in this average, whereas agents with a large objective value and, therefore, a
worse position are assigned a lower weight and thus have less influence on the location of
the consensus point. With this, the best position in the swarm is approximated, which
serves as a proxy for the global minimizer x

ú given the currently available information.
The second term is stochastic in nature and randomly di�uses agents, thereby featuring
the exploration of the energy landscape of the cost E . The scaling of the noise is such
that particles far from the consensus point, by being subject to larger noise, are able to
explore larger regions of the domain, whereas agents in its proximity are a�ected by less
1In this section, we follow [CBO-I, Section 1], [CBO-II, Section 1], and [CBO-IV, Section 1].

7



Chapter 2. CBO

Figure 2.1: A visualization of the CBO dynamics (2.2) in the anisotropic di�usion set-
ting (2.5). Particles X

1
, . . . , X

N explore the energy landscape of the objective E (the
underlying function is the Rastrigin function) in search of the global minimizer x

ú (green
star). At time step k, the agents are located at positions X

1
k≠1, . . . , X

N
k≠1 (yellow dots).

The consensus point x
E
–(‚flN

k≠1) (orange dot) is then computed as a weighted (visualized
through color opacity of the particles) average of those positions. The dynamics of each
agent (depicted exemplarily for just two agents) is governed by two terms. A consensus
drift term (blue arrow) drags the respective particle towards the consensus point. A
stochastic noise term (visualized by several green arrows depicting several possible real-
izations) injects randomness into the dynamics featuring the explorative nature of the
algorithm.

noise and search the landscape of the objective function just locally. Before continuing
with a more formal description of the method, a visualization of the dynamics is provided
in Figure 2.1.

Given a finite time horizon T > 0 and a time discretization 0 < �t < · · · < K�t = T

of [0, T ] with a suitable discrete time step size �t > 0, we denote the position of the ith
agent at time step k by X

i
k œ Rd and the empirical measure of all agents at time step

k by ‚flN
k := 1

N

qN
i=1 ”Xi

k
. For user-specified parameters –, ⁄, ‡ > 0, the time-discrete

evolution of the ith particle is given by the iterative update rule

X
i
k = X

i
k≠1 ≠ �t⁄

1
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
2

+ ‡D

1
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
2

B
i
k, (2.2)

where
!
(Bi

k)k=1,...,K
"

i=1,...,N are independent, identically distributed Gaussian random
vectors in Rd with zero mean and covariance matrix �t Id. The system is complemented
with independent initial data (Xi

0)i=1,...,N , distributed according to a common initial
law fl0 œ P(Rd). As mentioned in the informal description above, the updates in the
evolution (2.2) consist of two terms, respectively. The first of which is the consensus drift,
a deterministic drift towards the consensus point x

E
–(‚flN

k≠1), which is computed on the
basis of the positions of the agents at time step k≠1 and defined for a measure Í œ P(Rd)
according to

x
E
–(Í) :=

⁄
x

Ê
E
–(x)

ÎÊE
–ÎL1(Í)

dÍ(x), with Ê
E
–(•) := exp(≠–E(•)). (2.3)
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2.1. The Dynamics of CBO

That is, in the setting of the empirical measure ‚flN
k≠1 and thus in the case of finitely

many particles, we have x
E
–(‚flN

k≠1) =
qN

i=1 X
i
k≠1Ê

E
–(Xi

k≠1)/
qN

j=1 Ê
E
–(Xj

k≠1), being the
weighted average of the agents’ positions at time step k ≠1. The choice of the weights in
(2.3) is inspired by the Gibbs measure [Gib60], which has its origins in the Boltzmann
distribution [Bol77] from statistical mechanics. The parameter – can, therefore, be
interpreted as an inverse temperature. Mathematically, it is founded on the well-known
Laplace principle [Hwa80; Mil06; DZ98], a classical result from large deviations theory,
which states that, for any absolutely continuous probability distribution Í œ P(Rd), we
have

lim
–æŒ

3
≠ 1

–
log

3⁄
Ê

E
–(x) dÍ(x)

44
= inf

xœsupp(Í)
E(x). (2.4)

This justifies the interpretation of the consensus point x
E
–(‚flN

k≠1) as an approximation
of arg mini=1,...,N E(Xi

k≠1), which improves as – æ Œ, provided the minimizer uniquely
exists. The second term in (2.2), stochastic in nature, encodes the di�usion mecha-
nism of the method. It injects randomness into the dynamics, thereby featuring the
explorative character of the algorithm. The two classically employed di�usion types are
isotropic [Pin+17; Car+18; CBO-I] and anisotropic [Car+21; CBO-II] di�usion with

D(•) =
I

Î•Î2 Id, for isotropic di�usion,
diag (•), for anisotropic di�usion,

(2.5)

where diag : Rd æ Rd◊d denotes the matrix-valued operator mapping a vector onto a di-
agonal matrix with the vector as its diagonal. Intuitively, scaling by

..X
i
k≠1 ≠ x

E
–(‚flN

k≠1)
..

2
or diag

!
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
"
, respectively, encourages agents far from the consensus point

to explore larger regions of the domain, whereas particles close to the consensus point try
to enhance their position only locally. The scaling is furthermore essential to eventually
deactivate the di�usive and explorative nature of the dynamics and to achieve consensus
among the individual agents. Compared to isotropic di�usion, the coordinate-dependent
scaling of anisotropic noise has proven to be more suitable for high-dimensional opti-
mization problems [Car+21; CBO-II].

Motivation and inspiration.2 The conceptual design of CBO is inspired and in-
fluenced by the renowned and well-known particle swarm optimization method (PSO)
[KE95; Ken97]. In contrast to it, however, CBO was designed by the authors of [Pin+17]
specifically and carefully to be amenable to a rigorous mathematical convergence anal-
ysis, which will be the focus of Chapter 3. It is worth mentioning, though, that the
analytical techniques developed for and the insights gained from CBO can be trans-
ferred to suitable formulations of PSO, as we discuss in more detail in Chapter 5.

Like CBO, PSO methods follow a population-based paradigm to globally solve prob-
lems of the form (2.1). As per the description and derivations of [GP21], each particle
in PSO is represented by a triplet (XPSO,i

, Y
PSO,i

, V
PSO,i) œ Rd ◊Rd ◊Rd, i = 1, . . . , N ,

consisting of a position, a personal (historical) best position, and a velocity, respectively.
2In this paragraph, we follow [GP21, Section 2].
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Chapter 2. CBO

With user-specified parameters c1, c2 > 0, the iterative update rule of the original PSO
method reads

X
PSO,i
k = X

PSO,i
k≠1 + �tV

PSO,i
k ,

V
PSO,i

k = V
PSO,i

k≠1 ≠ �tc1D

1
X

PSO,i
k≠1 ≠ Y

PSO,i
k≠1

2
R

i
1,k ≠ �tc2D

1
X

PSO,i
k≠1 ≠ y

PSO
k≠1

2
R

i
2,k,

(2.6)
where

!
(Ri

1,k)k=1,...,K
"

i=1,...,N and
!
(Ri

2,k)k=1,...,K
"

i=1,...,N are independent, identically
distributed random vectors in Rd with entries sampled uniformly from [0, 1]. Y

PSO,i
k≠1

denotes the personal (historical) best position of the ith agent, which it has seen up to
time step k ≠ 1, explaining why it is also referred to as the memory of the associated
particle X

PSO,i. More formally, we set Y
PSO,i

0 = X
PSO,i
0 and

Y
PSO,i

k≠1 =
I

X
PSO,i
k≠1 , if E(XPSO,i

k≠1 ) < E(Y PSO,i
k≠2 ),

Y
PSO,i

k≠2 , else,
(2.7)

for k Ø 2. It is easy to observe that Y
PSO,i

k≠1 = arg min¸=0,...,k≠1 E(XPSO,i
¸ ), where the

position with the smallest index ¸ is chosen in case the objective attains the same value
at multiple positions X

PSO,i
¸ , ¸ = 0, . . . , k ≠ 1. The quantity y

PSO
k≠1 , on the other hand,

denotes the global best position of the swarm and is defined as

y
PSO
k≠1 = arg min

Ó
E(Y PSO,1

k≠1 ), . . . , E(Y PSO,N
k≠1 ), E(yPSO

k≠2 )
Ô

. (2.8)

In order to draw analogies to CBO, notice, that (2.6) can be reformulated equivalently
as

X
PSO,i
k = X

PSO,i
k≠1 + �tV

PSO,i
k ,

V
PSO,i

k = V
PSO,i

k≠1 ≠ �t
c1
2

1
X

PSO,i
k≠1 ≠ Y

PSO,i
k≠1

2
≠ �t

c2
2

1
X

PSO,i
k≠1 ≠ y

PSO
k≠1

2

≠ �t
c1
2 D

1
X

PSO,i
k≠1 ≠ Y

PSO,i
k≠1

2
ÂRi

1,k ≠ �t
c2
2 D

1
X

PSO,i
k≠1 ≠ y

PSO
k≠1

2
ÂRi

2,k,

(2.9)
where

!
( ÂRi

1,k)k=1,...,K
"

i=1,...,N and
!
( ÂRi

2,k)k=1,...,K
"

i=1,...,N are now independent, identi-
cally distributed random vectors with entries sampled uniformly from [≠1/2, 1/2], i.e.,
they in particular have zero mean.

Leaving aside the personal (historical) best positions of the particles for the moment,
allowing to tune the deterministic and stochastic terms separately, changing the ran-
dom vectors ÂRi

1,k and ÂRi
2,k to Gaussian random vectors, and regarding the consensus

point (2.3) of CBO as an approximation of the global best position y
PSO
k≠1 , the PSO dy-

namics (2.9) resembles a second-order version of CBO. In fact, for the modified PSO
optimizer proposed in [SE98], which introduces an inertia weight in the velocity update,
this is made rigorous in [GP21; CHQ22] by proving that CBO can be derived from PSO
in the zero-inertia limit.

Besides the rather apparent relation between CBO and PSO, the authors of [BP23]
connect yet another class of metaheuristics, namely genetic algorithms, to CBO, see also
[AFT23].
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2.2. Variants and Applications of CBO

2.2. Variants and Applications of Consensus-Based
Optimization3

Without claiming to exhaustively cover the full literature of the field of CBO, let us
provide in what follows a brief overview of the most important variants and applications
of CBO.

CBO with deactivatable consensus drift. The original version of CBO, put forth
by the authors of [Pin+17], di�ers slightly from (2.2) by including an additional univari-
ate function H : R æ [0, 1] in the drift term which, e.g., by setting H(z) ¥ zØ0, can be
used to deactivate the consensus drift for those agents, whose position w.r.t. the objective
function E is better than the one of the consensus point, i.e., if E(Xi

k≠1) < E
!
x

E
–(‚flN

k≠1)
"
.

More rigorously, their iterative update rule reads

X
i
k = X

i
k≠1 ≠ �t⁄

1
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
2

H

1
E(Xi

k≠1) ≠ E
1
x

E
–(‚flN

k≠1)
22

+ ‡D

1
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
2

B
i
k.

(2.10)

In the setting of isotropic di�usion, the simplified scheme with H © 1 is analyzed4

mathematically in [Pin+17; Car+18], while in [CBO-I] we investigate both models,
H © 1 as well as H ”© 1 satisfying H(z) = 1 whenever z Ø 0. The anisotropic di�usion
model is studied in [Car+21] and [CBO-II] for H © 1, see also Section 3.1. The theory
of the latter can be extended to the case H ”© 1 analogously to [CBO-I].

The works [HJK20; HJK21] directly investigate the time-discrete system (2.10), also
for the case H © 1, i.e., (2.2), but provided that the same random vector is used for all
agents in the noise term, i.e., (Bi

k)k=1,...,K = (Bk)k=1,...,K for all i = 1, . . . , N . Such a
choice, however, leads to a less explorative dynamics.

CBO with drift to best particle instead of weighted mean. The authors of
[BHW24] replace in the discrete scheme (2.2) the weighted mean x

E
–(‚flN

k≠1) as defined
in (2.3) with its limit for – æ Œ, i.e., arg mini=1,...,N E(Xi

k≠1). This goes back to the
original implementation of the globally best position of the swarm in PSO, cf. (2.8).

CBO with truncated noise. In the work [CBO-III], which we explore in more detail
in Section 3.2, we propose a variant of CBO that incorporates truncated noise in place
of the classical noise term in order to enhance the well-behavedness of the statistics of
the law of the dynamics. This yields improved convergence performance, allowing, in
particular, for wider flexibility in choosing the noise parameter ‡ of the method, which,
in turn, enables a more e�ective exploration of the energy landscape.
3In this section, we follow and extend [CBO-IV, Section 1, Paragraph 1].
4To be precise, [Pin+17; Car+18] as well as [Car+21; CBO-II] investigate the with (2.2) or (2.10) as-
sociated time-continuous dynamics from a mean-field perspective. Only, [CBO-I] provides a global
convergence statement about the implementable schemes (2.2) and (2.10). This is the topic of Sec-
tion 3.1. The results of [CBO-I], however, can be adapted straightforwardly to the anisotropic noise
setting of [CBO-II] as done in Section 3.1.
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Chapter 2. CBO

CBO driven by jump-di�usion processes. With the aim of improving the ex-
plorative capabilities of the CBO dynamics as well, the paper [KST23] suggests and
investigates the usage of discretized jump-di�usion processes in addition to the standard
di�usion prevalent in CBO.

CBO with memory e�ects. Taking inspiration from the personal (historical) best
features of particles, which are typical in the literature of PSO and which we described
at the end of the preceding section, the authors of [GP21; TW20] proposed two di�erent
models for including such mechanisms in the CBO dynamics in order to increase the
capabilities of the model. In [CBO-IV], which we elaborate on in Section 3.3, we study
the convergence behavior of the CBO variant introduced in [GP21]. Also [BGP23]
investigates, both theoretically and numerically, the advantages of memory mechanisms
in this model, integrating further a random selection strategy to the dynamics, which
leads to increased e�ciency of the implementation.

CBO leveraging gradient information. For objective functions E that have C1

regularity, the work [CBO-IV], which we investigate more closely in Section 3.3, extends
the standard CBO dynamics (2.2) by appending a local gradient drift term for each
particle. This allows to benefit from e�cient local gradient improvements while retaining
the capability of CBO to detect the basins of attraction of global minimizers of nonconvex
objectives.

Ideologically similarly, the authors of [STW23] propose the exploitation of on-the-fly
extracted higher-order di�erential information through inferred gradients based on point
evaluations of the objective function during the CBO dynamics.

CBO with momentum. Taking inspiration from the advantages of stochastic gra-
dient descent with momentum or Adam [KB15] over plain stochastic gradient descent,
[KB15] presents a variant of CBO, called Adam-CBO, which brings adaptive momentum
estimation to CBO.

Constrained CBO. In order to solve general constrained optimization problems with
CBO, the works [CTV23; BHP23b] recast the constrained problem into a penalized (un-
constrained) problem in order to be able to apply CBO in form of (2.2) to the modulated
objective function which now includes a contribution from the constraint. While this
does not explicitly constrain the dynamics to the feasible set, the particles are attracted
towards the feasible set by means of the penalization term incorporated in the objec-
tive. In order to reinforce this behavior, [CTV23] introduces an additional relaxation
drift towards the constraint manifold, which is determined in their case through equal-
ity and inequality constraints. The authors of [BHP23b], on the other hand, consider
general feasible sets with merely a boundary of zero measure. Moreover, in order to
employ exact penalization, they develop an iterative strategy that successively updates
the penalization parameter depending on the violation of the constraints.

12



2.2. Variants and Applications of CBO

The work [Bae+22] follows a di�erent strategy to take care of possible constraints by
proposing a predictor-corrector-type CBO method, which projects the particles at the
end of each time step onto the feasible set. For this purpose, the feasible set is required
to be convex.

CBO on compact hypersurfaces. In contrast to the two first-mentioned papers
in the preceding paragraph, the line of works [For+20; For+21; For+22] explicitly con-
strains the CBO dynamics to the feasible set by designing the method in a way such that
it intrinsically remains in the respective set. This is done for hypersurfaces �, including,
for instance, the sphere and the torus.5 For instance, for the sphere Sd≠1, the authors
propose the iterative scheme

ÂXi
k = X

i
k≠1 + �t⁄PXi

k≠1

1
x

E
–(‚flN

k≠1)
2

+ ‡D

1
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
2

PXi
k≠1

!
B

i
k

"
+ noise correction term,

X
i
k = PSd≠1

1
ÂXi

k

2
,

(2.11)

where the operators PSd≠1 and Px, respectively, denote the projections onto the sphere
Sd≠1 and its tangent space TxSd≠1 at x œ Sd≠1, i.e., Px = Id ≠xx

T . Notice, that the
deterministic drift term in the first line of (2.11) mimics the consensus drift term since
PXi

k≠1

!
X

i
k≠1

"
= 0 and thus PXi

k≠1

!
x

E
–(‚flN

k≠1)
"

= ≠PXi
k≠1

!
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
"

[Kim+20] considers the special case of constrained optimization problems over the
Stiefel manifold.

CBO on graphs. The thesis [Vli20] investigates an adaptation of CBO to a di�erent
topology, namely graphs G = (V, E). This requires to ensure that the employed particles
move over the fixed set of vertices V by using only the edges E of the graph. To this end,
while the consensus point is computed in the familiar fashion, the stochasticity of the
standard CBO method is converted into a probability distribution over the neighborhood
of each particle and determines the likelihood of which edge is taken by the particle in
the next step.

Polarized CBO. Turning back to unconstrained optimization problems, one often
encounters objective functions with several global minimizers. With the standard CBO
dynamics being designed to reach consensus in the limit at a unique point, a modification
is necessary to make CBO capable of detecting multiple global minimizers in parallel.
To this end, the authors of [BWR22] propose to polarize the standard CBO dynamics
by replacing the common consensus point with one weighted mean per particle, which
5While devising a CBO method which is intrinsic to certain hypersurfaces is of interest, one central
contribution of [For+20; For+21; For+22] was to provide the first-ever holistic convergence proof of
any CBO method to global minimizers by proving a mean-field approximation result and thus being
able to obtain a convergence statement beyond the mean-field limit. Although the authors heavily use
the fact of being constrained to a compact set, some of the techniques developed there, made possible
the work [CBO-I], which we discuss in Section 3.1.
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attributes more weight to nearby particles. This is realized by introducing a localization
kernel k : Rd ◊ Rd æ R+

0 in the computation of the weighted mean, taking inspiration
from bounded confidence models of opinion dynamics [Def+00; HK02; For+05; GGL12].
A suitably localized weighted mean is given by

x
E
–,k(Í, x) :=

⁄
z

k(x, z) Ê
E
–(z)

Îk(• , z) ÊE
–(•)ÎL1(Í)

dÍ(z), with Ê
E
–(•) := exp(≠–E(•)) (2.12)

and, for instance, with the finite range interaction kernel k(x, z) = Îx≠zÎ2ÆŸ(x, z) or a
Gaussian kernel k(x, z) = exp

!
≠ Îx ≠ zÎ2

2 /(2Ÿ
2)

"
, where Ÿ is referred to as confidence

level. The time-discrete evolution of the ith particle is now given by the iterative update
rule

X
i
k = X

i
k≠1 ≠ �t⁄

1
X

i
k≠1 ≠ x

E
–,k(‚flN

k≠1, X
i
k≠1)

2
+ ‡D

1
X

i
k≠1 ≠ x

E
–,k(‚flN

k≠1, X
i
k≠1)

2
B

i
k,

(2.13)
which makes the dynamics of the ith particle depend mainly on spatially close particles
due to the computation of the weighted mean in (2.12). This polarizes the optimiza-
tion dynamics, featuring the clustering capability of the polarized CBO method and
permitting the finding of multiple global minimizers at the same time.

In [Brü21], where this concept is referred to as CBO with finite range interaction,
a similar direction is pursued to enable clustering in the CBO dynamics and thereby
making the method capable of finding multiple global minimizers.

However, both works lack a rigorous mathematical analysis in a general nonconvex
setting. Such analysis is conducted by the authors of [FS24], where the associated un-
derlying degenerate nonlinear nonlocal Fokker-Planck equation is analyzed by adopting
the techniques of [CBO-I] to the more involved setting of polarized CBO. This requires
the use of a kernel k, which allows for an adaptive scaling.

CBO for multi-objective optimization problems. The line of works [BHP22;
BHP23a; Bor23] brings CBO to the problem class of multi-objective optimizations
[Jah04; HM79; Péé17; Eic21], where several functions are optimized simultaneously
with the aim of finding an optimal solution set, known as the Pareto front. The au-
thor’s approach is founded on a scalarization strategy which reduces the multi-objective
problem to an infinite number of single-objective scalar sub-problems. By devising the in-
teracting particle in a way that each particle optimizes a di�erent of these parametrized
sub-problems while still communicating to exchange information about the objective
functions, the entire Pareto front can be approximated with a single run of the algo-
rithm. To ensure that the particles are well-distributed over the computed front, CBO
is coupled with a binary repulsive dynamics in the parameter space.

A di�erent strategy is pursued in [KST24], where a multi-swarm CBO algorithm is
employed with each swarm solving one of the scalarized problems. Again, to allow for a
diverse approximation of the front, the swarms interact through adaptive scalarization
weights.
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2.2. Variants and Applications of CBO

CBO for distributed training and federated learning. In many applications of
modern machine learning and computer science in general, distributed training or dis-
tributed optimization [RN04; Yan+19] is of considerable practical interest. To make the
training process scalable or because of the natural architecture of the task, both work-
load and data are shared across several devices, making communication between them
crucial and critical. In federated learning [McM+17; Kai+21] scenarios, the training
procedure is moreover subject to data privacy considerations and characterized by data
heterogeneity.

To formalize this problem type, let us consider N agents or devices with positions X
i

representing the parameters of the neural network each agent wants to train. While
each agent has access only to its private data, captured by its own loss function Ei, it
would like to benefit from the information and the data of others, if they are relevant
to the particular agent. For instance, in the specific instance of clustered federated
learning [Gho+20; SMS21], an unknown group structure is assumed to underly the
individuals possessing the computational resources and training data. More formally, in
the case of › groups, we assume that the objective function Ei of each agent is of the
form Ei = ÂEj + ni for some j œ {1, . . . , ›}. Here, ÂEj can be regarded as the loss of the
jth group and ni models the deviation of the ith agent’s loss from the one of the group.
With ni being typically small, individuals belonging to the same group are thus assumed
to have similar objectives. Despite the individual agents being oblivious to their group
membership, each group eventually intends to collaboratively train a di�erent model.

In the more idealized setting, where ni = 0 for all agents, the authors of [Car+23] pro-
pose a consensus-type optimizer, dubbed FedCBO, which is provably capable of training
machine learning models in the data privacy-sensitive setting of federated learning with
heterogeneity in the data as captured by the existence of multiple groups. FedCBO
achieves this by devising an interacting particle system, oblivious to group membership,
where each individual, after receiving the models from the other devices, computes the
consensus point w.r.t. its private loss function and then runs the dynamics

X
i
k = X

i
k≠1 ≠ �t⁄

1
X

i
k≠1 ≠ x

Ei
– (‚flN

k≠1)
2

+ ‡D

1
X

i
k≠1 ≠ x

Ei
– (‚flN

k≠1)
2

B
i
k. (2.14)

With this, agents or devices from the same group, thus having the same or, in the
non-idealized setting, similar loss functions benefit from the models of each other when
computing the consensus point, while models from di�erent groups are typically filtered
by being attributed less weight due to a significant di�erence in the loss functions. To
speed up the training and limit communication, individuals train their models locally
with gradient steps between two communication rounds, i.e., the iterative update rule
(2.14) is appended by a local gradient as suggested in [CBO-IV].

Consensus-based sampling. Attributed to a remarkable connection between sam-
pling and the field of optimization [Che23], succinctly captured by the motto “sampling
is optimization in the space of measures” [Wib18], and mathematically founded on the
seminal work [JKO98], a sampling analog of CBO is natural to be introduced. By mod-
ifying the di�usion term of CBO to include a weighted sample covariance preventing the
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collapse of the particle ensemble to full consensus, [Car+22] proposes consensus-based
sampling (CBS), which is designed to converge to a Gaussian approximation of the
distribution 1

Z exp(≠E) with Z denoting the normalization factor [GS90; RC04; Liu01].
CBS can be utilized to generate approximate samples from a given target distribution by
running the interacting particle system. It can, moreover, be employed in optimization
mode to solve problems of the form (2.1).

In analogy to the aforementioned polarized CBO variant, the authors of [BWR22] fur-
thermore devise a CBS variant, which allows sampling from distributions with multiple
modes.

CBO for saddle-point problems and multiplayer games. As we briefly address in
Chapter 6, a CBO-type algorithm, called CBO-SP, has been developed for saddle point
problems [Nas50; BGL05] in [CBO-SP]. It employs a group of interacting particles,
which perform a minimization over one variable and a maximization over the other.

The work [CHQ23] extends this paradigm to multiplayer games. Both methods reli-
ably identify global Nash equilibria for nonconvex problems.

Applications of CBO. In the collection of formerly referenced works, CBO has
demonstrated to be a valuable and versatile method for a wide scope of applications
reaching from phase retrieval, robust subspace detection, compressed sensing, or im-
age segmentation problems in signal processing [For+21; For+22; CBO-IV; BGP23] to
the training of neural networks for image classification in machine learning [Car+21;
CBO-II; CBO-IV; BGP23; PSO], even in the data privacy-sensitive setting of federated
learning [Car+23]. It has been furthermore employed to solve a wide range of linear and
non-linear ordinary di�erential equations [Nik22], to approximate low-frequency func-
tions in the presence of high-frequency noise and to the task of solving PDEs with low-
regularity solutions [CJL22], in asset allocation in finance [Bae+22], for oligopoly games
with several goods in economics [CHQ23], optimal actuator and control design [Kal+24],
rare event estimation in uncertainty quantification [APU23], or to simulate chemical re-
actions [BH23] by coupling CBO with model predictive control strategies.

2.3. Code for Consensus-Based Optimization6

MATLAB implementations of CBO and some of its variants [CBO-I; CBO-II; CBO-
III; CBO-IV] can be found in the GitHub repository CBOGlobalConvergenceAnalysis
as well as the repositories of the cited references, including in particular AM-CBO for
CBO for multi-objective optimization [BHP22; BHP23a; Bor23] and KV-CBO for CBO
on compact hypersurfaces [For+20; For+21; For+22]. Code for CBO for saddle-point
problems [CBO-SP] can be found in CBOSaddlePoints. The repository PSOAnalysis
provides code for PSO [PSO].

With the packages CBXpy and CBX.jl we provide unified Python and Julia imple-
mentations of several consensus-based interacting particle methods [CBX]. They o�er a
6In this section, we follow [CBX].
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2.3. Code for CBO

lightweight, easy-to-understand, -use and -extend implementation of CBO together with
several of its variants, including CBO with mini-batch ideas [Car+21; CBO-II], CBO
with restart [Car+21; CBO-II], a cooling strategy of the parameters [For+21; CBO-
II], polarized CBO [BWR22], CBO with memory e�ects [GP21; CBO-IV], PSO [GP21;
Gra+23; PSO], CBS [Car+22], and more to come. The defined structures and hierar-
chies in the code ensure a usage experience similar to optimizer classes in scikit-opt
and PyTorch [Pas+19]. Numerous utilities, like performance evaluation or plotting
routines tailored to CBO methods are provided. The code of these packages builds
upon the repositories polarcbo, where polarized CBO [BWR22] is implemented, as well
as cbo-in-python, and Consensus.jl, respectively. FedCBO moreover implements Fed-
CBO from [Car+23]. CBO-multiplayer provides Python code for CBO for multiplayer
games [CHQ23].
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Chapter 3
Global Convergence of
Consensus-Based Optimization
and its Variants

In this chapter, we turn towards the first core contribution of this dissertation, the
global convergence analysis of CBO methods. After outlining in Section 3.1 the philos-
ophy behind our analysis strategy, which takes at its heart a mean-field perspective, we
revisit and provide in the first part of Section 3.1.1 an overview of the works [Pin+17;
Car+18; Car+21], where the idea of investigating the mean-field limit of CBO to un-
derstand the algorithm’s convergence and optimization behavior was first suggested and
pursued. By establishing consensus formation of the mean-field limit of CBO, and con-
secutively showing that the found consensus lies close to a global minimizer provided
certain well-preparedness conditions, the authors obtain the macroscopic convergence of
CBO to global minimizers of the objective function under the aforementioned locality
assumptions. Thereafter, we motivate and present the analytical framework put forth
in our papers [CBO-I; CBO-II]. While it is in a similar spirit as the preceding works,
in particular, with a convergence analysis of the mean-field limit of CBO being a key
aspect, it di�ers considerably in several aspects, which we elaborate on in more detail in
Sections 3.1.1 to 3.1.3. First of all, in the second part of Section 3.1.1 we present a novel
technique for proving global convergence to the minimizer in mean-field law, which is
valid for a rich class of objective functions and is based on the analysis of the Wasserstein-
2 distance between the law of the mean-field CBO dynamics and a Dirac measure located
at the global minimizer of the objective function as well as a quantitative nonasymptotic
Laplace principle. This unveils, in particular, that CBO performs a convexification of a
large class of optimization problems as the number of optimizing agents goes to infinity.
In order to leverage the result about convergence in mean-field law, Section 3.1.2 estab-
lishes a probabilistic mean-field approximation that quantifies how well the microscopic
interacting particle system approximates the macroscopic mean-field limit as the num-
ber of employed particles grows. Combining the statements of the two former sections
in Section 3.1.3 allows us to obtain probabilistic global convergence guarantees of the
numerical CBO method (2.2). The chapter proceeds with Sections 3.2 and 3.3, where we
cover the works [CBO-III] and [CBO-IV], which provide global convergence results for
two variants of CBO, namely CBO with truncated noise and CBO with memory e�ects
and gradient information, by following the formerly established framework. With this,
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Chapter 3. Global Convergence of CBO and its Variants

we highlight the versatility and flexibility of our framework, which has been adopted by
several other research groups for some of the CBO variants mentioned in Section 2.2.

3.1. A Global Convergence Analysis Framework for
Consensus-Based Optimization7

Analyzing directly the interacting particle system (2.2), i.e., investigating CBO on its
microscopic scale, poses a challenging endeavor, for one thing due to the nonlinearity of
the dynamics, its stochasticity, and a possibly large dimensionality d of the problem, but
in particular as a consequence of the typically large number of particles N paired with
their interacting nature. This introduces correlations between the individual stochastic
processes that represent the involved agents, and requires the whole system to be consid-
ered and analyzed in its entirety, which may be intractable, both computationally and
mathematically, due to the complexity. Analysis attempts in this direction have been
undertaken in [HJK20; HJK21], however, under a substantially restrictive assumption
on the model, namely that all particles use at each time step the identical random vec-
tor B

i
k, i.e., (Bi

k)k=1,...,K = (Bk)k=1,...,K for all i = 1, . . . , N . Such choice, however, leads
to a significantly less explorative and less capable dynamics.

The analytical di�culties mentioned at the beginning of this section hold identically
for the continuous-time version of (2.2), which we investigate in place of its discrete-time
counterpart in most of the parts of this dissertation out of analytical convenience. It is
given by the system of stochastic di�erential equations (SDEs), expressed in Itô’s form
as8

dX
i
t = ≠⁄

1
X

i
t ≠ x

E
–(‚flN

t )
2

dt + ‡D

1
X

i
t ≠ x

E
–(‚flN

t )
2

dB
i
t, (3.1)

where
!
(Bi

t)tØ0
"

i=1,...,N are independent standard Brownian motions in Rd. As custom
from before, the system is complemented with the independent initial data (Xi

0)i=1,...,N ,
distributed according to a common initial law fl0 œ P(Rd). Moreover, the consensus
point x

E
–, which is now computed instantaneously from the particles’ positons, is defined

as in (2.3) and the measure ‚flN
t denotes the empirical measure of the system (3.1), i.e.,

‚flN
t = 1

N

qN
i=1 ”Xi

t
. Equation (2.2) originates from a simple Euler-Maruyama time dis-

cretization9 [KP92; Pla99; Hig01] of (3.1), with standard approximation results being
available in the literature. However, let us remark, that the ideas and techniques pre-
sented in the following sections and giving an overview of the works [CBO-I; CBO-II]
can be transferred also to the discrete-time setting. In fact, the thesis [Bor24] pursues
this direction in great detail.

7In this section, we follow and extend [CBO-I, Section 1] and [CBO-II, Sections 1 and 2] integrating
parts of [CBO-IV, Section 2].

8Notice here, that we slightly abuse notations by using the same notation Xi
• for both (2.2) and (3.1).

However, it will be clear from the context, to what we refer.
9The Euler-Maruyama method, being an extension of the explicit Euler method from ordinary to stochas-
tic di�erential equations, is just one possible time discretization scheme. For alternatives see [KP92;
Pla99; Hig01].
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3.1. A Global Convergence Analysis Framework for CBO

With the microscopic systems (2.2) and (3.1) being intricate to analyze, the authors
of [Pin+17] have proposed to resort to investigating a macroscopic description of the
dynamics. Instead of trying to capture and describe the trajectories of all particles indi-
vidually, a statistical description in terms of a single particle distribution is sought. This
concept is reminiscent of classical approaches in statistical mechanics [Bol77], where one
is interested in the physical properties of the system as a whole rather than the behavior
of its components. In the original example of thermodynamics, for instance, the number
of electrons, atoms, molecules, or other constituents is enormous, making it impossible
to utilize the knowledge about their atomic interaction principles to simulate or ana-
lyze the respective particle system as a whole and to then infer properties about typical
macroscopic quantities of interest, like pressure, volume, and temperature. However, in
most cases, the microscopically present complexities are not necessary to be captured in
order to describe macroscopic phenomena.

The intuitive rationale is as follows. In a system with a vast number of particles or
agents, one expects that, for any particle, the individual influence of any other particle
disperses, resulting in an averaged influence of the ensemble rather than an interacting
nature of the system. Heuristically, as the number of particles tends to infinity, they
are expected to become statistically independent and behave the same, encouraging the
description of the macroscopic dynamics in the large-particle limit in a statistical or
probabilistic way. For CBO, the dynamics of such typical particle can be captured by
the self-consistent SDE10

dXt = ≠⁄

1
Xt ≠ x

E
–(flt)

2
dt + ‡D

1
Xt ≠ x

E
–(flt)

2
dBt, (3.2)

where the statistical influence of the ensemble is embodied through flt = Law(Xt), i.e.,
the statistical behavior of the typical particle itself. The SDE is complemented by the
initial condition X0 ≥ fl0 œ P(Rd). An application of Itô’s formula shows that the
measure fl œ C([0, T ], P(Rd)) with fl(t) = flt = Law(Xt) satisfies the nonlinear nonlocal11

Fokker-Planck equation

ˆtflt = ⁄div
11

x ≠ x
E
–(flt)

2
flt

2
+ ‡

2

2

dÿ

k=1
ˆkk

3
D

1
x ≠ x

E
–(flt)

22

kk
flt

4
(3.3)

in a weak sense (see Definition 3.1). This yields the desired macroscopic description of
the CBO dynamics through a particle distribution fl in terms of a partial di�erential
equation (PDE).

Definition 3.1 (Weak solution, [CBO-II, Definition 1]). Let fl0 œ P(Rd), T > 0.
We say fl œ C([0, T ], P(Rd)) satisfies the Fokker-Planck equation (3.3) with initial
condition fl0 in the weak sense in the time interval [0, T ], if for all „ œ CŒ

c (Rd) and all

10This self-consistent SDE is sometimes also referred to as mono-particle process.
11Both nonlinearity and nonlocality of the PDE are consequences of the definition of the consensus

point (2.3).
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t œ (0, T ) it holds

d

dt

⁄
„(x) dflt(x) = ≠ ⁄

⁄ dÿ

k=1
(x ≠ x

E
–(flt))kˆk„(x) dflt(x)

+ ‡
2

2

⁄ dÿ

k=1
D

1
x ≠ x

E
–(flt)

22

kk
ˆ

2
kk„(x) dflt(x)

(3.4)

and limtæ0 flt = fl0 pointwise.

Founded on the aforementioned philosophy, we coined in [CBO-I; CBO-II] the notion
of convergence in mean-field law, given as in Definition 3.2.

Definition 3.2 (Convergence in mean-field law, [CBO-I, Definition 1]). Let
F, G : P(Rd) ¢Rd æ Rd be two functions and consider for i = 1, . . . , N the interacting
system of SDEs expressed in Itô’s form as

dX
i
t = F

1
‚flN

t , X
i
t

2
dt + G

1
‚flN

t , X
i
t

2
dB

i
t, where ‚flN

t = 1
N

qN
i=1 ”Xi

t
, and X

i
0 ≥ fl0.

(3.5)

We say that this SDE system converges in mean-field law to a point Âx œ Rd if all
solutions of the self-consistent SDE

dXt = F

1
flt, Xt

2
dt + G

1
flt, Xt

2
dBt, where flt = Law(Xt), and X0 ≥ fl0, (3.6)

satisfy limtæŒ Wp (flt, ”x̃) = 0 for some Wasserstein-p distance Wp, p Ø 1.

Colloquially speaking, an interacting multi-particle system is said to converge in mean-
field law, if the associated mean-field dynamics converges.

A closer look reveals, that the self-consistent dynamics (3.6) is derived from its in-
teracting counterpart (3.5) by merely replacing the empirical measure ‚flN

t with its own
law flt. In the setting of CBO, (3.6) corresponds to (3.2) and (3.5) to (3.1). While
this derivation of the mean-field CBO dynamics (3.2) and thus (3.3) from (3.1) is in
the spirit of the formerly elaborated on philosophy, it is purely formal. However, the
so-called mean-field approximation, i.e., the question of how well the mean-field dynam-
ics fl is approximated by ‚flN w.r.t. the number of particles N has been made rigorous
through several works as outlined in detail in Section 3.1.2.

Such results substantiate and legitimate the analysis of the mean-field CBO dynam-
ics (3.2) and (3.3) in lieu of the interacting particle system (3.1), thereby justifying the
notion of convergence in mean-field law as defined in Definition 3.2. This is the focus of
Section 3.1.1. Yet, after having gained insights into the behavior of the CBO dynamics
on a macroscopic level, the mean-field approximation results presented in Section 3.1.2
allow to transfer the results to the microscopic regime as done in Section 3.1.3. Together
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3.1. A Global Convergence Analysis Framework for CBO

with classical results of numerical approximation of SDEs [Pla99], eventually, conver-
gence guarantees for the implementable CBO scheme (2.2) are obtained in Section 3.1.3

The following tableau provides an overview of the structure of the remaining section
and points to the central statements and technical tools.

Global convergence of CBO methods to the global minimizer
(Section 3.1.3, in particular Theorem 3.19)

Global convergence
in mean-field law

(Section 3.1.1,
i.p. Theorem 3.6)

Probabilistic mean-field
approximation
(Section 3.1.2,

i.p. Proposition 3.16)

Numerical
approximation

of SDEs
([Pla99; KP92])

Time-evolution
inequalities for V

(Lemmas 3.10 and 3.11)

Quantitative Laplace
principle

(Proposition 3.12)

A lower bound for
mass around x

ú

(Proposition 3.13)

Probabilistic
moment bounds
(Lemma 3.15)

Probabilistic stability
estimate for x

E
–

(Lemma 3.17)

Probabilistic sampling
estimate for x

E
–

(Lemma 3.18)

Before continuing with the details about the mathematical convergence analysis, let us
mention that under Assumption 3.3 the interacting particle system (3.1) as well as the
mean-field dynamics (3.2) and (3.3) are well-posed in the sense of Hadamard [Had02],
i.e., their respective solutions exist and are unique, see Theorem 3.4.

Assumption 3.3. Throughout we are interested in objective functions E œ C(Rd) with
E > ≠Œ, for which

W1 there exist constants C1, C2 > 0 such that
--E(x) ≠ E(xÕ)

-- Æ C1(1 + ÎxÎ2 + Îx
ÕÎ2)Îx ≠ x

ÕÎ2, for all x, x
Õ œ Rd

, (3.7)
E(x) ≠ E Æ C2(1 + ÎxÎ2

2), for all x œ Rd
, (3.8)

W2 either E := supxœRd E(x) < Œ, or there exist constants C3, C4 > 0 such that

E(x) ≠ E Ø C3 ÎxÎ2
2 , for all ÎxÎ2 Ø C4. (3.9)
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W1 requires that E is locally Lipschitz-continuous with the Lipschitz constant being
allowed to have linear growth. This entails in particular that the objective has at most
quadratic growth at infinity as formulated explicitly in (3.8). Let us further remark that
some papers assume |E(x) ≠ E(xÕ)| Æ C1(ÎxÎ2 + Îx

ÕÎ2)Îx ≠ x
ÕÎ2 instead of (3.7), which

is an unnecessary restriction since all theoretical considerations hold without technical
di�culties immediately also for (3.7). A slightly more general set of assumptions is
considered in [GHV23, Sections 2.2 and 4]. W2, on the other hand, assumes that E also
has at least quadratic growth in the farfield, i.e., overall it grows quadratically far away
from x

ú. Alternatively, E may be bounded from above. Since the objective function E
can be usually modified for the purpose of analysis outside a su�ciently large region,
these growth conditions are not really restrictive.

Under these assumptions, we have the following statement.

Theorem 3.4 (Well-posedness of CBO). Let E œ C(Rd) satisfy W1–W2. Let T > 0
and fl0 œ P4(Rd). Then the following well-posedness statements hold.

(i) For each N œ N, there exits a unique strong solution
!
(Xi

t)tœ[0,T ]
"

i=1,...,N of the
system of SDEs (3.1).

(ii) There exists a unique nonlinear process X œ C([0, T ],Rd) satisfying (3.2) in
the strong sense. The with X associated law fl = Law(X) has regularity
fl œ C([0, T ], P4(Rd)) and is a weak solution to the Fokker-Planck equation (3.3).

The proof follows verbatim the ones for the case of isotropic di�usion in (2.5), for which
we refer the reader to [Car+18, Section 2] and [Car+18, Section 3].

We now turn to the global convergence analysis of CBO methods. Motivated by the
former argumentation, let us start with investigating the mean-field perspective (3.2)
and (3.3), respectively. The results are presented in the setting of anisotropic noise in
(2.5), i.e., we first report on the paper [Car+21], before extending the work [CBO-II],
where only the mean-field analysis for anisotropic CBO has been conducted. For CBO
with isotropic di�usion analogous statements can be found in [Car+18] and [CBO-I],
respectively.

3.1.1. Global Convergence in Mean-Field Law
For our first aim of investigating the global convergence behavior of CBO to a mini-
mizer x

ú of the objective function E on the mean-field level, i.e., establishing for a weak
solution fl œ C([0, T ], P(Rd)) to (3.3) the convergence

flt Ô ”xú as t æ Œ (3.10)

in some sense, two analytical frameworks are available in the literature. On the one
side, the authors of [Car+18; Car+21] suggest a two-part approach, which first es-
tablishes consensus formation of the measure flt in time by showing that the variance
Var (flt) converges to 0 as t æ 0, provided the initial distribution fl0 satisfies certain
well-preparedness assumptions. Consecutively, by suitable choices of the parameters of
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3.1. A Global Convergence Analysis Framework for CBO

the dynamics, in particular a large value for –, it is ensured that the expectation E(flt)
converges to a point Âx in the proximity of the global minimizer x

ú. On the other hand, in
our works [CBO-I; CBO-II] we put forward a holistic analytical approach by investigat-
ing the time-evolution of the Wasserstein-2 distance W

2
2 (flt, ”xú) and proving that it can

be made as small as desired for suitable choices of the parameters and if the dynamics
runs su�ciently long.

A Variance-Based Convergence Analysis12

Successful applications of CBO methods underlie the premise that the particle density
flt converges to a Dirac delta ”x̃ for some point Âx close to x

ú. The analyses in [Car+18;
Car+21] prove this under certain assumptions by first showing that flt converges to a
Dirac delta around some Âx œ Rd and then concluding Âx ¥ x

ú in a subsequent step.
For the first step of the analysis, the variance Var (flt) := 1

2
s

Îx ≠ E(flt)Î2
2 dflt(x),

where E(flt) :=
s

x dflt(x), is shown to decay exponentially fast in time under a well-
preparedness assumption about the initial condition fl0. More precisely, in [Car+21,
Appendix A] the authors use Itô’s lemma to derive for the time-evolution of Var (flt) the
expression

d

dt
Var (flt) = ≠

!
2⁄ ≠ ‡

2"
Var (flt) + ‡

2

2

...E(flt) ≠ x
E
–(flt)

...
2

2
. (3.11)

For parameter choices 2⁄ > ‡
2, the first term in (3.11) is negative and one could al-

most apply Grönwall’s inequality to obtain the asserted exponential decay of Var (flt).
However, the second term in (3.11) is source of concern and the main di�culty is to con-
trol the distance ÎE(flt) ≠ x

E
–(flt)Î2 between the mean and the consensus point, i.e., the

weighted mean. For – æ 0 the weight function Ê
E
–(•) = exp(≠–E(•)) associated with

x
E
–(flt) converges to 1 pointwise and consequently x

E
–(flt) æ E(flt). However, the second

proof step, explained below, reveals that the crucial regime is – ∫ 1. In this case x
E
–(flt)

can be arbitrarily far from E(flt) if we do not dispose of additional knowledge about the
probability measure flt. To restrict the set of probability measures flt that need to be con-
sidered when bounding ÎE(flt) ≠ x

E
–(flt)Î2, the authors of [Car+18; Car+21] compromise

to assume that the initial distribution fl0 satisfies the well-preparedness assumptions

µ1 := 2⁄ ≠ ‡
2 ≠ 2‡

2
e

≠–E
..ÊE

–

..
L1(fl0)

> 0 and µ2 := (2⁄ + ‡
2) –e

≠2–E
C5

µ1
..ÊE

–

..2
L1(fl0)

Var (fl0) Æ 3
8 ,

(3.12)
where C5 = max

!
Îmaxi |ˆiiE|ÎŒ, Î‡(Ò2E)ÎŒ

"
. Since flt evolves from fl0 according to

the Fokker-Planck equation (3.3), these conditions restrict flt and allow for bounding
ÎE(flt) ≠ x

E
–(flt)Î2 by a suitable multiple of Var (flt). The exponential decay of Var (flt)

then follows from (3.11) after applying Grönwall’s inequality, see [Car+21, Theorem 3.2].
Furthermore, the conditions in (3.12) also allow for proving convergence of E(flt) to a
stationary point Âx œ Rd, see [Car+21, Theorem 3.2].

Given convergence to a Dirac at Âx, in a second step it is shown E(Âx) ¥ E(xú). In
order to prove this approximation, one first deduces that for any Á > 0, there exists
12In this section, we follow [CBO-I, Section 2.1] adapted to the setting of anisotropic noise [CBO-II].
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– ∫ 1 such that for all t Ø 0 it holds ≠ 1
– log

!
ÎÊ

E
–ÎL1(flt)

"
Æ ≠ 1

– log
!
ÎÊ

E
–ÎL1(fl0)

"
+ Á

2 .
This involves deriving a lower bound for the evolution d

dtÎÊ
E
–Î2

L1(flt) for su�ciently large
– > 0 as done in [Car+21, Lemma A.1], which is then combined with the formerly
proven exponentially decaying variance, see [Car+21, Proof of Theorem 3.2]. Then, by
recognizing that the Laplace principle (2.4) implies the existence of some – ∫ 1 with

≠ 1
–

log
1
ÎÊ

E
–ÎL1(fl0)

2
≠ E <

Á

2 , (3.13)

and by establishing the convergence ÎÊ
E
–ÎL1(flt) æ exp(≠–E(Âx)) as t æ Œ, one obtains

the desired result E(Âx) ≠ E < Á in the limit t æ Œ, see [Car+21, Proof of Theorem 3.2].
The gap E(Âx) ≠ E can be tightened by increasing –, but it is impossible to establish an
explicit relation – = –(Á) due to the use of the asymptotic Laplace principle (2.4).

This proof sketch unveils a tension on the role of the parameter –. Namely, the
second step requires large – = –(Á) to achieve E(Âx) ≠ E < Á. In fact, –(Á) may grow
uncontrollably as we decrease the accuracy Á. The first step, however, requires the well-
preparedness conditions in (3.12) to hold, which, in the most optimistic case, where
‡ = 0, imply

Var (fl0) Æ 3µ1
8C5–

3⁄
exp

!
≠ –(E(x) ≠ E)

"
dfl0(x)

42
. (3.14)

Therefore, fl0 needs to be increasingly concentrated as – increases, and should ideally
be supported on sets where E(x) ¥ E . Designing such distribution fl0 in practice seems
impossible in the absence of a good initial guess for x

ú. In particular, we cannot expect
(3.14) to hold for generic choices such as a uniform distribution on a compact set.

Let us conclude this review by remarking that the works [HJK20; HJK21] conduct
a similarly flavored analysis for the discrete-time microscopic system (2.2), with some
di�erences in the details. They first show an exponentially decaying variance under mild
assumptions about ⁄ and ‡, but provided that the same Brownian motion is used for
all agents, i.e., (Bi

k)k=1,...,K = (Bk)k=1,...,K for all i = 1, . . . , N . Such a choice leads to a
considerably less explorative dynamics, but it simplifies the consensus formation analysis.
For proving E(Âx) ¥ E , however, the authors again require an initial configuration fl0
that satisfies a technical concentration condition like (3.13), see for instance [HJK21,
Remark 3.1].

A Wasserstein Distance-Based Convergence Analysis13

The variance-based analysis approach described in the previous section has two draw-
backs. Firstly, the analysis seems motivated by the technical expectation that the vari-
ance must vanish if the CBO method reaches any consensus, which does not shed light
on the internal CBO mechanisms that lead to a successful minimization of the objec-
tive E . Secondly, well-preparedness conditions such as (3.14), which severely restrict the
initial configuration fl0, are undesirable because they suggest that CBO methods are
only successful if we have an informative initial guess about the location of the global
13In this section, we follow [CBO-I, Section 2.2] adapted to the setting of anisotropic noise [CBO-II].
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3.1. A Global Convergence Analysis Framework for CBO

minimizer x
ú, which gives the results a certain locality flavor. To remedy these issues,

let us now sketch and motivate the analytical framework proposed in our works [CBO-I;
CBO-II].

By averaging out the randomness associated with di�erent realizations of Brownian
motion paths, the macroscopic continuous-time dynamics (3.2) becomes

d

dt
E

Ë
Xt

--X0
È

= ≠⁄E
Ë1

Xt ≠ x
E
–(flt)

2---X0
È

= ≠⁄E
Ë1

Xt ≠ x
ú
2---X0

È
+ ⁄

1
x

E
–(flt) ≠ x

ú
2
.

(3.15)

Under the assumption that the objective E is locally Lipschitz continuous and satisfies
a coercivity condition with parameters ÷ > 0 and ‹ œ (0, Œ) of the form

Îx ≠ x
úÎŒ Æ 1

÷

!
E(x) ≠ E(xú)

"‹ = 1
÷

!
E(x) ≠ E

"‹
, for all x œ Rd

, (3.16)

the last term in (3.15) can be made arbitrarily small for a su�ciently large parameter –

i.e., x
E
–(flt) ¥ x

ú, by a quantitative version of the Laplace principle, see Proposition 3.12.
In this case, the average dynamics of Xt is well-approximated by

d

dt
E

Ë
Xt

--X0
È

¥ ≠⁄E
Ë1

Xt ≠ x
ú
2---X0

È
, (3.17)

which corresponds to the gradient flow of x ‘æ Îx ≠ x
úÎ2

2 with rate 2⁄. In other words,
each individual agent essentially performs in the mean-field limit a gradient descent of
x ‘æ Îx ≠ x

úÎ2
2 on average over all realizations of Brownian motion paths. Figure 3.1b

visualizes this phenomenon for three isolated agents on the Rastrigin function in two
dimensions, which is depicted in Figure 3.1a.

Inspired by this observation, our proof strategy is to show that CBO methods minimize
the functional V : P(Rd) æ RØ0, given by

V(flt) := 1
2

⁄
Îx ≠ x

úÎ2
2 dflt(x). (3.18)

Note that this functional essentially coincides with the Wasserstein-2 distance to a Dirac
delta ”xú located at the global minimizer x

ú of E . In formulas, W
2
2 (flt, ”xú) = 2V(flt).

Therefore, V(flt) æ 0 implies that flt converges weakly to ”xú , see [AGS08, Chapter 7],
giving consensus formation as a byproduct. The latter can be seen when noticing that
V(flt) majorizes Var (flt) because z ‘æ 1

2
s

Îx ≠ zÎ2
2 dflt(x) is minimized by the expectation

E(flt).
This approach does not su�er a tension on the parameter – like the variance-based

analysis framework from the previous section. For the functional V(flt) we establish in
Lemma 3.10 an evolution inequality of the form

d

dt
V(flt) Æ ≠

!
2⁄ ≠ ‡

2"
V(flt) +

Ô
2
!
⁄ + ‡

2"Ò
V(flt)

...x
E
–(flt) ≠ x

ú
...

2

+ ‡
2

2

...x
E
–(flt) ≠ x

ú
...

2

2
,

(3.19)
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(a) The highly nonconvex Rastrigin function
in two dimensions as objective function E
and an exemplary initialization for one run
of the experiment.

(b) CBO performs a canonical convexifica-
tion in the mean-field limit.
Individual agents follow, on average, the
gradient flow of the map x ‘æ Îx ≠ x

úÎ2
2,

which is independent of the underlying en-
ergy landscape of E .

Figure 3.1: An illustration of the internal mechanisms of CBO. We perform 100 runs of
the CBO algorithm (2.2), with parameters �t = 0.01, – = 1015, ⁄ = 1 and ‡ = 0.1,
and N = 32000 agents initialized according to fl0 = N

!
(8, 8), 20

"
. In addition, we add

three individual agents with starting locations (≠2, 4), (≠1.5, ≠1.5) and (4.5, 1.5) to the
set of agents in each run as shown in (a), and depict each of their 100 trajectories as
well as their mean trajectory in yellow color in (b). With the (mean) trajectories being
rather straight lines, we observe that the individual agents take a straight path from
their initial positions to the global minimizer x

ú (green star), in particular, disregard
the local landscape of the objective function E . The trajectories of the individual agents
become more concentrated as the overall number of agents N grows and for smaller
values of the di�usion parameter ‡.

where it remains to control the term Îx
E
–(flt) ≠ x

úÎ2. However, in comparison to bound-
ing Îx

E
–(flt) ≠ E(flt)Î2 as was necessary for (3.11) in the variance-based analysis, this is

a much easier and more natural task. Under the inverse continuity condition (3.16), the
Laplace principle (2.4) asserts Îx

E
–(flt) ≠ x

úÎ2 æ 0 as – æ Œ. Quantitatively, for an
arbitrary probability measure Í, we can even establish

...x
E
–(Í) ≠ x

ú
...

2
Æ

Ô
d(2Lr)‹

÷
+

Ô
d exp (≠–Lr)
Í(BŒ

r (xú))

⁄
Îx ≠ x

úÎ2 dÍ(x) (3.20)

as follows from Proposition 3.12 in the setting of (3.16) and assuming that E is L-
Lipschitz in a ball of radius r > 0 around x

ú. A similar result holds under the more gen-
eral version of the inverse continuity condition A2 in Assumption 3.5. Therefore, choos-
ing a small radius r > 0 and large – > 0 accordingly allows for controlling Îx

E
–(flt) ≠ x

úÎ2
and we do not su�er any of the drawbacks raised in the previous section related to large
choices of –. In particular, analogously to the more detailed proof for the isotropic noise
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3.1. A Global Convergence Analysis Framework for CBO

case in [CBO-I, Section 4.4], which holds mutatis mutandis in the anisotropic setting
as we describe after Theorem 3.6, we can find, for a given accuracy Á œ (0, V(fl0)), a
threshold –0(Á, Ë, E) such that for – > –0 it holds

d

dt
V(flt) Æ ≠(1 ≠ Ë)

!
2⁄ ≠ ‡

2"
V(flt) (3.21)

for all t œ (0, T–), where T– denotes the time when the functional V first achieves the
desired accuracy Á, i.e., V(flT–) = Á. T– may depend on –. This requires that the prob-
ability mass w.r.t. the measure flt of arbitrarily small ¸

Œ-balls B
Œ
r (xú) around x

ú does
not vanish. Provided that x

ú œ supp(fl0), Proposition 3.13 ensures the latter for a finite
time horizon by devising an estimate of the form flt(BŒ

r (xú)) & fl0(BŒ
r/2(xú)) exp(≠qt),

i.e., the initial mass fl0(BŒ
r/2(xú)) > 0 can decay at most at an exponential rate for any

r > 0, but remains strictly positive in any finite time window [0, T–]. A key requirement
to this result is an active di�usion term, i.e., ‡ > 0, which counteracts the deterministic
movement of the drift term by inducing randomness. On the other hand, with simi-
lar arguments and in analogy to (3.19) and (3.21), we can derive with Lemma 3.11 an
evolution inequality for the functional V(flt) of the form

d

dt
V(flt) Ø ≠

!
2⁄ ≠ ‡

2"
V(flt) ≠

Ô
2
!
⁄ + ‡

2"Ò
V(flt)

...x
E
–(flt) ≠ x

ú
...

2

Ø ≠(1 + Ë/2)
!
2⁄ ≠ ‡

2"
V(flt)

(3.22)

for all t œ (0, T–). Grönwall’s inequality now implies for all t œ [0, T–] the upper and
lower bound

V(flt) Æ V(fl0) exp
1
≠(1 ≠ Ë)

!
2⁄ ≠ ‡

2"
t

2
, (3.23)

V(flt) Ø V(fl0) exp
1
≠(1 + Ë/2)

!
2⁄ ≠ ‡

2"
t

2
, (3.24)

i.e., V(flt) decays at least exponentially fast (with rate (1 ≠ Ë)(2⁄ ≠ ‡
2)), and at most

exponentially fast (with rate (1 + Ë/2)(2⁄ ≠ ‡
2)). With the true decay behavior of V(flt)

being sandwiched between these decay rates and after recalling the definition of T–, we
can infer that

1 ≠ Ë

(1 + Ë/2) T
ú = 1

(1 + Ë/2)(2⁄ ≠ ‡2) log
3V(fl0)

Á

4
Æ T– = T

ú
, (3.25)

where T
ú := 1

(1≠Ë)(2⁄≠‡2) log (V(fl0)/Á) is as in (3.28) below.
Following this intuition and the associated proof sketch, let us now present the main

result about global convergence of anisotropic CBO in mean-field law for objective func-
tions satisfying the following.

Assumption 3.5. Throughout we are interested in objectives E œ C(Rd), for which

A1 there exists x
ú œ Rd such that E(xú) = infxœRd E(x) =: E ,
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Chapter 3. Global Convergence of CBO and its Variants

A2 there exist EŒ, R0, ÷ > 0, and ‹ œ (0, Œ) such that

Îx ≠ x
úÎŒ Æ (E(x) ≠ E)‹

/÷, for all x œ B
Œ
R0(xú), (3.26)

E(x) ≠ E > EŒ, for all x œ
!
B

Œ
R0(xú)

"c
. (3.27)

A1 just states that the continuous objective E attains its infimum E at some x
ú œ Rd.

A2 should be interpreted as a tractability condition of the landscape of E around x
ú

and in the farfield. The first part, Equation (3.26), describes the local coercivity of
E , which implies that there is a unique minimizer x

ú on B
Œ
R0(xú) and that E grows

like x ‘æ Îx ≠ x
úÎ1/‹

Œ . This condition is also known as the inverse continuity condition
from [For+21], as the quadratic growth condition in the case ‹ = 1/2 from [Ani00;
NNG19], as the Hölderian error bound condition in the case ‹ œ (0, 1] [Bol+17], or as
the 1/‹-conditioning property from [GRV23, Definition 3.1]. In [NNG19, Theorem 4]
and [KNS16, Theorem 2] many equivalent or stronger conditions are identified to imply
Equation (3.26) globally on Rd. Furthermore, in [XLY17; For+21], (3.26) is shown to
hold globally for objectives related to various machine learning problems. The second
part of A2, Equation (3.27), describes the behavior of E in the farfield and prevents
E(x) ¥ E for some x œ Rd far away from x

ú. We introduce it for the purpose of covering
functions that tend to a constant just above EŒ as ÎxÎŒ æ Œ, because such functions
do not satisfy the growth condition (3.26) globally. Together with (3.26) it implies the
uniqueness of the global minimizer x

ú on the whole Rd. However, whenever (3.26) holds
globally, we take R0 = Œ, i.e., B

Œ
R0(xú) = Rd and (3.27) is void.

Under these assumptions, we have the following statement, which is an improvement
of [CBO-II, Theorem 2].

Theorem 3.6 (CBO converges globally in mean-field law, cf. [CBO-I, The-
orem 12]). Let E œ C(Rd) satisfy A1–A2. Moreover, let fl0 œ P4(Rd) be such that
x

ú œ supp(fl0). Define V(flt) as given in (3.18). Provided that V(fl0) > 0, fix any
Á œ (0, V(fl0)) and Ë œ (0, 1), choose parameters ⁄, ‡ > 0 with 2⁄ > ‡

2, and define the
time horizon

T
ú := 1

(1 ≠ Ë)
!
2⁄ ≠ ‡2" log

3V(fl0)
Á

4
. (3.28)

Then there exists –0 > 0, depending (among problem dependent quantities) on Á and
Ë, such that for all – > –0, if fl œ C([0, T

ú], P4(Rd)) is a weak solution to the Fokker-
Planck equation (3.3) on the time interval [0, T

ú] with initial condition fl0, we have

V(flT ) = Á with T œ
5 1 ≠ Ë

(1 + Ë/2) T
ú
, T

ú
6

. (3.29)

Furthermore, on the time interval [0, T ], V(flt) decays exponentially fast. More pre-
cisely, for all t œ [0, T ], it holds

W
2
2 (flt, ”xú) = 2V(flt) Æ 2V(fl0) exp

1
≠(1 ≠ Ë)

!
2⁄ ≠ ‡

2"
t

2
(3.30)
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as well as

W
2
2 (flt, ”xú) = 2V(flt) Ø 2V(fl0) exp

1
≠(1 + Ë/2)

!
2⁄ ≠ ‡

2"
t

2
. (3.31)

Before presenting the proof of Theorem 3.6, let us provide some remarks about di�erent
facets of the result. Afterwards, we give some auxiliary results for the proof, which may
be of independent interest.

Remark 3.7. The statement of Theorem 3.6 is valid for any fl œ C([0, T
ú], P4(Rd))

weakly solving the Fokker-Planck equation (3.3) with initial datum fl0. Su�cient condi-
tions for the existence of such fl are provided by the assumptions W1–W2 of Theorem 3.4.

Remark 3.8 (Convergence rate (2⁄ ≠ ‡
2), cf. [CBO-I, Section 3.2]). Lower

and upper bounds on the rate of convergence of V(flt) are (1 ≠ Ë)(2⁄ ≠ ‡
2) and

(1 + Ë/2)(2⁄ ≠ ‡
2), see (3.30) and (3.31), respectively, which can be made arbitrar-

ily close to the numerically observed rate (2⁄ ≠ ‡
2), see, e.g., [CBO-II, Figure 1(b)], at

the cost of taking – æ Œ to allow for Ë æ 0. The condition 2⁄ > ‡
2 is necessary, both

in theory and practice, to avoid overwhelming the dynamics by the random exploration
term.

Remark 3.9 (Initial configuration fl0, cf. [CBO-I, Section 3.2]). The assumption
x

ú œ supp(fl0) about the initial configuration fl0 is not really a restriction, as it would
anyhow hold immediately for flt for any t > 0 in view of the di�usive character of the
mean-field dynamics (3.3), see Remark 3.14. Additionally, as we clarify in Section 3.1.2,
this condition does neither mean nor require that, for finite particle approximations,
some particle needs to be in the vicinity of the minimizer x

ú at time t = 0. It is actually
su�cient that the empirical measure ‚flN

t weakly approximates the law flt uniformly in
time. We rigorously explain this mechanism in Section 3.1.3.

A comment on the pivotal role of the parameter –, is postponed to Remark 3.20 in
Section 3.1.3.

Lemma 3.10 (Time-evolution of V, [CBO-II, Lemma 1]). Let E : Rd æ R and
fix –, ⁄, ‡ > 0. Moreover, let T > 0 and let fl œ C([0, T ], P4(Rd)) be a weak solution to
the Fokker-Planck equation (3.3). Then the functional V(flt) satisfies

d

dt
V(flt) Æ ≠

1
2⁄ ≠ ‡

2
2

V(flt) +
Ô

2
1
⁄ + ‡

2
2 Ò

V(flt)
...x

E
–(flt) ≠ x

ú
...

2

+ ‡
2

2

...x
E
–(flt) ≠ x

ú
...

2

2
.

(3.32)

The proof of Lemma 3.10 is presented in [CBO-II, Lemma 1], see also [CBO-I, Lemma 17]
for a more detailed proof in the isotropic case.
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Lemma 3.11 (Time-evolution of V). Under the assumptions of Lemma 3.10, the
functional V(flt) satisfies

d

dt
V(flt) Ø ≠

1
2⁄ ≠ ‡

2
2

V(flt) ≠
Ô

2
1
⁄ + ‡

2
2 Ò

V(flt)
...x

E
–(flt) ≠ x

ú
...

2
. (3.33)

The proof of Lemma 3.11 follows analogously to the one of [CBO-I, Lemma 18] in the
isotropic case.

In order to apply Grönwall’s inequality to (3.32) and (3.33), we need to control the
term

..x
E
–(flt) ≠ x

ú..
2, which is the task of the following result.

Proposition 3.12 (Quantitative Laplace principle, [CBO-II, Proposition 1]).
Let E = 0, Í œ P(Rd) and fix – > 0. For any r > 0 we define Er := supxœBŒ

r (xú) E(x).
Then, under the inverse continuity property A2, for any r œ (0, R0] and q > 0 such
that q + Er Æ EŒ, we have

...x
E
–(Í) ≠ x

ú
...

2
Æ

Ô
d(q + Er)‹

÷
+

Ô
d exp(≠–q)

Í(BŒ
r (xú))

⁄
Îx ≠ x

úÎ2 dÍ(x). (3.34)

The proof of Proposition 3.12 is presented in [CBO-II, Section 3.3].
To apply Proposition 3.12 in the proof of Theorem 3.6, we require a lower bound for

the probability mass of flt(BŒ
r (xú)), where r > 0 is a small radius. This is achieved by

defining a mollifier „r : Rd æ R according to

„r(x) :=

Y
_]

_[

rd
k=1 exp

3
1 ≠ r2

r2≠(x≠xú)2
k

4
, if Îx ≠ x

úÎŒ < r,

0, else.
(3.35)

Since flt(BŒ
r (xú)) Ø

s
„r(x) dflt(x), the desired lower bound can be obtained by studying

the evolution of the right-hand side.

Proposition 3.13 (A lower bound for the probability mass around x
ú, [CBO-

II, Proposition 2]). Let T > 0, r > 0, and fix parameters –, ⁄, ‡ > 0. Assume fl œ
C([0, T ], P(Rd)) weakly solves the Fokker-Planck equation (3.3) with initial condition
fl0 œ P(Rd) and for t œ [0, T ]. Then, for all t œ [0, T ] we have

flt (BŒ
r (xú)) = flt

1Ó
x œ Rd : Îx ≠ x

úÎŒ Æ r

Ô2

Ø
3⁄

„r(x) dfl0(x)
4

exp (≠qt)
(3.36)

with

q := 2d max
I

⁄(cr + B
Ô

c)
(1 ≠ c)2r

+ ‡
2(cr

2 + B
2)(2c + 1)

(1 ≠ c)4r2 ,
2⁄

2

(2c ≠ 1)‡2

J

, (3.37)

for any B < Œ with suptœ[0,T ]
..x

E
–(flt) ≠ x

ú..
Œ Æ B and for any c œ (1/2, 1) satisfying

(1 ≠ c)2 Æ (2c ≠ 1)c.
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The proof of Proposition 3.13 is presented in [CBO-II, Section 3.4].

Remark 3.14 (Necessity of the di�usion ‡, cf. [CBO-I, Remark 23]). Proposi-
tion 3.13 demonstrates the crucial role of positive ‡ in the stochastic terms in (2.2) and
(3.1), or the di�usion in the macroscopic models (3.2) and (3.3) for our analysis. ‡ > 0 is
required in (3.37) to warrant a finite decay rate q < Œ. Thanks to (3.36), this, in turn,
guarantees mass around the minimizer x

ú, ensuring the applicability of the quantitative
Laplace principle in Proposition 3.12 at every point in time t œ [0, T ]. Intuitively, we can
understand the measure fl as having a deterministic component, which evolves according
to the drift term in the Fokker-Planck equation (3.3) and whose associated mass may
leave B

Œ
r (xú) in finite time, convolved with an exponentially decaying kernel from the

di�usion term. This convolution ensures that the mass leaves at most exponentially fast,
leading to the lower bound. The statement does not hold in general for the case ‡ = 0.

We now have the necessary technical tools to provide the proof of Theorem 3.6.

Proof of Theorem 3.6. If V(fl0) = 0, there is nothing to be shown since in this case
fl0 = ”xú . Thus, let V(fl0) > 0 in what follows.

W.l.o.g. we may assume E = 0. Let us first choose the parameter – such that

– > –0 := 1
qÁ

A

log
A

2d+1
2dV(fl0)

c (Ë, ⁄, ‡)
Ô

Á

B

+ q

(1 ≠ Ë) (2⁄ ≠ ‡2) log
3V(fl0)

Á

4

≠ log fl0
!
B

Œ
rÁ/2(xú)

"
B

,

(3.38)

where we introduce the definitions

c (Ë, ⁄, ‡) := min

Y
]

[
Ë

2

!
2⁄ ≠ ‡

2"
Ô

2 (⁄ + ‡2)
,

Û

Ë
(2⁄ ≠ ‡2)

‡2

Z
^

\ (3.39)

as well as

qÁ := 1
2 min

Y
]

[

A

÷
c (Ë, ⁄, ‡)

Ô
Á

2
Ô

d

B1/‹

, EŒ

Z
^

\ and rÁ := max
sœ[0,R0]

I

max
xœBŒ

s (xú)
E(x) Æ qÁ

J

.

(3.40)
Moreover, q is as defined in (3.37) with B = c(Ë, ⁄, ‡)


V(fl0) and with r = rÁ. We

remark that, by construction, qÁ > 0 and rÁ Æ R0. Furthermore, recalling the notation
Er = supxœBŒ

r (xú) E(x) from Proposition 3.12, we have qÁ + ErÁ Æ 2qÁ Æ EŒ as a conse-
quence of the definition of rÁ. Since qÁ > 0, the continuity of E ensures that there exists
sqÁ > 0 such that E(x) Æ qÁ for all x œ B

Œ
sqÁ

(xú), thus yielding also rÁ > 0.
Let us now define the time horizon T– Ø 0, which may depend on –, by

T– := sup
Ó

t Ø 0 : V(fltÕ) > Á and
...x

E
–(fltÕ) ≠ x

ú
...

2
< C(tÕ) for all t

Õ œ [0, t]
Ô

(3.41)

with C(t) := c(Ë, ⁄, ‡)


V(flt). Notice for later use that C(0) = B.
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Our aim now is to show V(flT–) = Á with T– œ
# 1≠Ë

(1+Ë/2) T
ú
, T

ú$
and that we have at

least exponential decay of V(flt) until time T–, i.e., until accuracy Á is reached.
First, however, we ensure that T– > 0. With the mapping t ‘æ V(flt) being contin-

uous as a consequence of the regularity fl œ C([0, T ], P4(Rd)) established in [CBO-II,
Theorem 1] and t ‘æ Îx

E
–(flt) ≠ x

úÎ2 being continuous due to [Car+18, Lemma 3.2]
and fl œ C([0, T ], P4(Rd)), T– > 0 follows from the definition, since V(fl0) > Á and
Îx

E
–(fl0) ≠ x

úÎ2 < C(0). While the former is immediate by assumption, applying Propo-
sition 3.12 with qÁ and rÁ gives the latter since

...x
E
–(fl0) ≠ x

ú
...

2
Æ

Ô
d (qÁ + ErÁ)‹

÷
+

Ô
d exp (≠–qÁ)
fl0(BŒ

rÁ
(xú))

⁄
Îx ≠ x

úÎ2 dfl0(x)

Æ c (Ë, ⁄, ‡)
Ô

Á

2 +
Ô

d exp (≠–qÁ)
fl0(BŒ

rÁ
(xú))

Ò
2V(fl0)

Æ c (Ë, ⁄, ‡)
Ô

Á

< c (Ë, ⁄, ‡)
Ò

V(fl0) = C(0),

(3.42)

where the inequality in the next-to-last line holds by the choice of – in (3.38).
Next, we show that the functional V(flt) decays essentially exponentially fast in time.

More precisely, we prove that, up to time T–, V(flt) decays
(i) at least exponentially fast (with rate (1 ≠ Ë)

!
2⁄ ≠ ‡

2"
), and

(ii) at most exponentially fast (with rate (1 + Ë/2)
!
2⁄ ≠ ‡

2"
).

To obtain (i), recall that Lemma 3.10 provides an upper bound on d
dtV(flt) given by

d

dt
V(flt) Æ ≠

!
2⁄ ≠ ‡

2"
V(flt) +

Ô
2
!
⁄ + ‡

2"Ò
V(flt)

...x
E
–(flt) ≠ x

ú
...

2

+ ‡
2

2

...x
E
–(flt) ≠ x

ú
...

2

2
.

(3.43)

Combining this with the definition of T– in (3.41) we have by construction

d

dt
V(flt) Æ ≠(1 ≠ Ë)

!
2⁄ ≠ ‡

2"
V(flt), for all t œ (0, T–). (3.44)

For (ii), on the other hand, by using Lemma 3.11 we can derive a lower bound on d
dtV(flt)

of the form
d

dt
V(flt) Ø ≠

!
2⁄ ≠ ‡

2"
V(flt) ≠

Ô
2
!
⁄ + ‡

2"Ò
V(flt)

...x
E
–(flt) ≠ x

ú
...

2

Ø ≠(1 + Ë/2)
!
2⁄ ≠ ‡

2"
V(flt), for all t œ (0, T–),

where the second inequality again exploits the definition of T–. Grönwall’s inequality
now implies for all t œ [0, T–] the upper and lower bound

V(flt) Æ V(fl0) exp
1
≠(1 ≠ Ë)

!
2⁄ ≠ ‡

2"
t

2
, (3.45)

V(flt) Ø V(fl0) exp
1
≠(1 + Ë/2)

!
2⁄ ≠ ‡

2"
t

2
, (3.46)
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thereby proving (i) and (ii). We further note that the definition of T– in (3.41) together
with the definition of C(t) and (3.45) permits to control

max
tœ[0,T–]

...x
E
–(flt) ≠ x

ú
...

2
Æ max

tœ[0,T–]
C(t) Æ C(0). (3.47)

To conclude, it remains to prove that V(flT–) = Á with T– œ
# 1≠Ë

(1+Ë/2) T
ú
, T

ú$
. For this

we distinguish the following three cases.
Case T– Ø T

ú: We can use the definition of T
ú in (3.28) and the time-evolution bound

of V(flt) in (3.45) to conclude that V(flT ú) Æ Á. Hence, by definition of T– in (3.41)
together with the continuity of V(flt), we find V(flT–) = Á with T– = T

ú.
Case T– < T

ú and V(flT–) Æ Á: By continuity of V(flt), it holds for T– as defined in
(3.41), V(flT–) = Á. Thus, Á = V(flT–) Ø V(fl0) exp

!
≠(1 + Ë/2)

!
2⁄ ≠ ‡

2"
T–

"
by (3.46),

which can be reordered as
1 ≠ Ë

(1 + Ë/2) T
ú = 1

(1 + Ë/2) (2⁄ ≠ ‡2) log
3V(fl0)

Á

4
Æ T– < T

ú
. (3.48)

Case T– < T
ú and V(flT–) > Á: We shall show that this case can never occur by

verifying that Îx
E
–(flT–) ≠ x

úÎ2 < C(T–) due to the choice of – in (3.38). In fact, fulfilling
simultaneously both V(flT–) > Á and Îx

E
–(flT–) ≠ x

úÎ2 < C(T–) would contradict the
definition of T– in (3.41) itself. To this end, by applying again Proposition 3.12 with qÁ

and rÁ, and recalling that Á < V(flT–), we get
...x

E
–(flT–) ≠ x

ú
...

2
Æ

Ô
d (qÁ + ErÁ)‹

÷
+

Ô
d exp (≠–qÁ)

flT–

!
BŒ

rÁ
(xú)

"
⁄

Îx ≠ x
úÎ2 dflT–(x)

<
c (Ë, ⁄, ‡)


V(flT–)

2 +
Ô

d exp (≠–qÁ)
flT–

!
BŒ

rÁ
(xú)

"
Ò

2V(flT–).
(3.49)

Since, thanks to (3.47), we have the bound maxtœ[0,T–] Îx
E
–(flt) ≠ x

úÎ2 Æ B for B = C(0),
which is in particular independent of –, Proposition 3.13 guarantees that there exists a
q > 0 not depending on – (but depending on B and rÁ) with

flT–

!
B

Œ
rÁ

(xú)
"

Ø
3⁄

„rÁ(x) dfl0(x)
4

exp(≠qT–)

Ø 1
2d

fl0
!
B

Œ
rÁ/2(xú)

"
exp(≠qT

ú) > 0,

where we used x
ú œ supp(fl0) for bounding the initial mass fl0 and the fact that „r (as

defined in (3.35)) is bounded from below on B
Œ
r/2(xú) by 1/2d. With this we can continue

the chain of inequalities in (3.49) to obtain
...x

E
–(flT–)≠x

ú
...

2
<

c (Ë, ⁄, ‡)


V(flT–)
2 + 2d

Ô
d exp (≠–qÁ)

fl0
!
B

Œ
rÁ/2(xú)

"
exp(≠qT ú)

Ò
2V(flT–)

Æ c (Ë, ⁄, ‡)
Ò

V(flT–) = C(T–),
(3.50)

where the first inequality in the last line holds by the choice of – in (3.38). This
establishes the desired contradiction, again as consequence of the continuity of the map-
pings t ‘æ V(flt) and t ‘æ Îx

E
–(flt) ≠ x

úÎ2.
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3.1.2. Mean-Field Approximation14

By investigating the CBO dynamics in the preceding Section 3.1.1 from a mean-field
perspective, we unveiled the surprising phenomenon that, for a rich class of objective
functions E , the mean-field CBO dynamics (3.3) performs a generic convexification of
general nonconvex problems. This insight reveals that the hardness of any global opti-
mization problem is necessarily encoded in the rate of the mean-field approximation as
N æ Œ. In consideration of the central significance of such result with regards to the
overall computational complexity of the numerical CBO scheme (2.2), this necessitates
a quantitative result about the convergence of the interacting particle system (3.1) to
the corresponding mean-field limit (3.2) and (3.3) in terms of the number of employed
particles N .

As described intuitively but colloquially in the introduction of Section 3.1, we expect
that the individual agents of the interacting particle system (3.1) become statistically
independent with their number N tending to infinity, due to their mutual influence on
each other decreasing. More formally, as N æ Œ, we expect that the random empirical
measure ‚flN of the interacting particle system (3.1) converges in law to the deterministic
distribution fl of the mean-field dynamics (3.2) almost everywhere, i.e.,

‚flN
t Ô flt as N æ Œ (3.51)

for almost every t Ø 0, see, e.g., [CD22a; CD22b] or [JW17] for extensive reviews on the
topic of mean-field limits and approximation results for interacting particle systems.

The classical way to establish such mean-field approximation, proposed in the sem-
inal work [McK67] and later extended and popularized by the author of [Szn91], is to
prove propagation of chaos15 by means of the coupling method [CD22a, Section 4.1].
By exploiting the SDE representation of the interacting particle system, thus requir-
ing regularity of the microscopic system and typically well-posedness of the mean-field
limit, this argument leads to quantitative mean-field approximation results w.r.t. the
number of particles N . We elaborate on these ideas in what follows. Before that, how-
ever, let us mention that qualitative propagation of chaos statements can be obtained
for wider classes of interacting particle systems through stochastic tightness and com-
pactness methods [CD22a, Section 4.2], see, e.g., [Szn84; GM97] for two such exemplary
settings. Again non-quantitative, but strong, yet abstract results going beyond but
comprising propagation of chaos can be furthermore obtained with techniques related to
large deviations [CD22a, Section 4.4] and [CD22b, Section 5.4].
14In this section, we follow [CBO-I, Remark 2] as well as [CBO-I, Section 3.3] adapted to the setting of

anisotropic noise [CBO-II].
15In the sense of [Kac56; McK67], a distribution ‚ÍN that is invariant under perturbations is called Í-

chaotic, if for any k Æ N any k-marginal of ‚ÍN converges weakly to the product measure Í¢k as
N æ Œ. An interacting particle system described through its random empirical measure ‚flN is said
to have the propagation of chaos property if chaos propagates through the system in time despite
the interacting nature of the system. I.e., propagation of chaos holds if ‚flN

0 being fl0-chaotic implies
that, at any time t > 0, ‚flN

t is flt-chaotic for a suitable fl. Colloquially speaking, if the particles are
initialized i.i.d. at t = 0, thus being chaotic, they are not independent at any time point t > 0 anymore
due to their interactions. However, in the large particle limit N æ Œ, the independence property is
recovered.
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3.1. A Global Convergence Analysis Framework for CBO

Back to the coupling method, the most popular and at the same time simplest choice
is the synchronous coupling [JW17, Section 3.1] and [CD22a, Section 4.1.2]. To the inter-
acting particle dynamics, denoted by (Xi)i=1,...,N and described by the SDE system (3.1)
endowed with initial data (Xi

0)i=1,...,N distributed i.i.d. according to fl0 œ P(Rd) and
driven by the Brownian motions

!
(Bi

t)tØ0
"

i=1,...,N , we couple the non-interacting system
of N independent copies of the self-consistent SDE (3.2), i.e.,

dX
i
t = ≠⁄

1
X

i
t ≠ x

E
–(flt)

2
dt + ‡D

1
X

i
t ≠ x

E
–(flt)

2
dB

i
t (3.52)

with X
i
0 = X

i
0 for i = 1, . . . , N . It is straightforward to notice that, due to the indepen-

dence of the Brownian motions
!
(Bi

t)tØ0
"

i=1,...,N , the processes (Xi)i=1,...,N are indeed
independent copies of (3.2) with Law(Xi

t) = flt for each i = 1, . . . , N . Such system
is coupled to (3.1) exclusively through the shared initial data (Xi

0)i=1,...,N as well as
Brownian motion paths

!
(Bi

t)tØ0
"

i=1,...,N .
Pursuing a stability-like estimate between the interacting particle system (Xi)i=1,...,N

and its non-interacting counterpart (Xi)i=1,...,N , see, e.g., McKean’s or Sznitman’s proof
of McKean’s theorem [CD22b, Theorem 3.1], we seek to derive either a pointwise estimate
of the form

max
i=1,...,N

sup
tœ[0,T ]

E
..X

i
t ≠ X

i
t

..2
2 Æ CN

≠1
, (3.53)

or the stronger pathwise result

max
i=1,...,N

E sup
tœ[0,T ]

..X
i
t ≠ X

i
t

..2
2 Æ CN

≠1
, (3.54)

where in either case the constant C is independent of N . Despite the simplicity of
the synchronous coupling, it typically yields in (3.53) or (3.54) a favorable convergence
rate w.r.t. the number of particles N for any finite time horizon T > 0, see [CD22b,
Theorems 3.1 and 3.3], however, typically su�ers, due to a standard Grönwall argument,
from an exponential dependence of the constant C on the time horizon T .

Due to a lack of global Lipschitz continuity of the drift and di�usion terms in (3.1)
and (3.2), respectively, which impedes the application of McKean’s theorem [CD22b,
Theorem 3.1], the mean-field approximation of CBO as in (3.53) or (3.54) has been left
as a di�cult and open problem in [Car+18, Remark 3.3]. However, since then, several
works, which we outline in what follows, have shed light on this issue, see also [CBO-
I, Remark 2] and [GHV23, Section 1.3]. While the works [For+20; CBO-I; KST23;
CBO-III; GHV23] described in (ii)–(vi) below rely on the afore-described synchronous
coupling method and target a quantitative propagation of chaos result, the work [HQ22]
summarized in (i) derives a qualitative statement through the stochastic tightness and
compactness method.

(i) The authors of [HQ22] employ a tightness and compactness argument in the path
space. In a first step, they show that the sequence {‚flN }NØ2 of C([0, T ], P(Rd))-
valued random variables, denoting the empirical random particle measure as-
sociated with the microscopic CBO dynamics (3.1), is tight. This permits to
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Chapter 3. Global Convergence of CBO and its Variants

employ Prokhorov’s theorem to obtain, up to a subsequence, some limiting ran-
dom measure. Consecutively, to identify this limit, they verify that it weakly
satisfies the macroscopic Fokker-Planck equation (3.3), which is deterministic,
hence showing that the limiting measure is actually deterministic. With this
they show that, as N æ Œ, ‚flN converges in law to the deterministic particle
distribution fl œ C([0, T ], P(Rd)), which satisfies the mean-field PDE (3.3). As
mentioned before, this convergence is unfortunately only qualitative and does not
allow to obtain an informative quantitative convergence rate with respect to the
number of particles N . However, it closed the mean-field limit gap qualitatively.

(ii) A desired quantitative result has been established for the first time in [For+20,
Theorem 3.1 and Remark 3.1] for the CBO variant of the microscopic system
(2.11), which is constrained to compact hypersurfaces �. By pursuing the cou-
pling method using a synchronous coupling and exploiting the inherent com-
pactness of the dynamics due to its confinement to �, which implies the global
Lipschitz continuity of the consensus point, the authors derive the weak conver-
gence of the continuous-time analog of the variant (2.11) to the corresponding
mean-field limit in the sense that for all „ œ C1

b (Rd) it holds

sup
tœ[0,T ]

E
5---È‚flN

t , „Í ≠ Èflt, „Í
---
2
6

Æ C

N
Î„Î2

C1(Rd) . (3.55)

The obtained convergence rate reads CN
≠1/2 with C depending in particular on

C– := exp
A

–

A

sup
xœ�

E(x) ≠ inf
xœ�

E(x)
B

T

B

. (3.56)

(iii) However, this left open the question about a quantitative mean-field approxi-
mation result for the dynamics (3.1) on the plane, to which we provided a first
answer in [CBO-I, Section 3.3] by proving that pointwise propagation of chaos
holds with the favorable convergence rate N

≠1/2 in the number of particles N on
a set of high probability. Using the coupling method via a synchronous coupling
and leveraging the techniques from (ii) as well as the boundedness of moments
established in [Car+18, Lemma 3.4], we establish in Proposition 3.16 a result
about a quantitative mean-field approximation of the form (3.53) on a restricted
set of bounded processes. For this set, on which the drift and di�usion terms are
globally Lipschitz, we derive in Lemma 3.15 an estimate of its probability. Com-
bining theses two statements yields propagation of chaos with high probability.
The details and technical steps are outlined in the remainder of this section.

(iv) In the work [KST23], the coupling method is combined with the use of stopping
times, introduced to handle the lack of global Lipschitz continuity of the dy-
namics. This allows to derive a quantitative pointwise mean-field approximation
result. While the authors’ statement [KST23, Theorem 4.2] is non-probabilistic,
the obtained convergence rate scales as log(log(N))≠1/2 in the number of parti-
cles, which is suboptimal.
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3.1. A Global Convergence Analysis Framework for CBO

(v) For the CBO variant (3.108) with truncated noise, which we investigate in [CBO-
III] and describe concisely in Section 3.2, we obtain in Proposition 3.24 a non-
probabilistic pointwise mean-field approximation result of the form (3.53) with
favorable rate N

≠1/2 by using a synchronous coupling. This result relies on
the fact that the truncation in the noise term allows for a su�cient amount of
boundedness, which in turn yields sub-Gaussianity of the coupled system, see
Lemma 3.22.

(vi) A more refined and detailed analysis compared to the ones mentioned in (iii) and
(iv) is presented in the work [GHV23], which extends [Ger23]. The authors of
[GHV23] derive a pathwise mean-field approximation result of the form (3.54)
using the coupling method with a synchronous coupling, see [GHV23, Theo-
rem 2.6]. Sznitman’s classical argument for the proof of McKean’s theorem is
adapted with the intention of allowing coe�cients that are not globally Lipschitz
continuous. The key novelties include an improved stability estimate for the
consensus point [Car+18, Lemmas 3.1 and 3.2], see [GHV23, Corollary 3.3] in
comparison to Lemma 3.17, as well as relying on results from the statistics litera-
ture [DL09, Theorem 1] to obtain a sampling estimate, see [GHV23, Lemma 3.7]
in comparison to Lemma 3.18. The only slightly stronger assumption required
w.r.t. prior work is the higher moment bound fl0 œ P6(Rd) on the initial measure.
[GHV23] additionally proves the mean-field approximation for CBS [Car+22].

Although the work [GHV23] summarized in (vi) closes the question about a mean-field
approximation for the CBO dynamics (3.1), it should be emphasized once more that the
constant in (3.54) depends in all described cases exponentially on the time horizon T . To
remedy this and to obtain uniform-in-time estimates [Dur+20], more involved coupling
strategies and di�erent metrics are necessary.

In what follows, however, let us present in more detail the mean-field approximation
result (iii), which we put forward in [CBO-I, Section 3.3], however, by adapting it to the
setting of anisotropic noise. For this purpose, let us introduce the common probability
space (�, F ,P) over which all considered stochastic processes get their realizations, and
define a subset �M of � of suitably bounded processes according to

�M :=
I

Ê œ � : sup
tœ[0,T ]

1
N

Nÿ

i=1
max

Ó..X
i
t(Ê)

..4
2,

..X
i
t(Ê)

..4
2

Ô
Æ M

J

. (3.57)

Throughout this section, M > 0 denotes a constant which we shall adjust at the end of
the proof of Theorem 3.19. Before stating the mean-field approximation result, Propo-
sition 3.16, let us estimate the measure of the set �M in Lemma 3.15.

Lemma 3.15 (Moment bounds for CBO, cf. [CBO-I, Lemma 15]). Let E œ
C(Rd) satisfy W1–W2. Let T > 0, fl0 œ P4(Rd) and let N œ N be fixed. Moreover, let!
(Xi

t)tØ0
"

i=1,...,N denote the strong solution to system (3.1) and let
!
(Xi

t)tØ0
"

i=1,...,N be
N independent copies of the strong solution to the mean-field dynamics (3.2). Then,
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for any M > 0 we have

P (�M ) = P
A

sup
tœ[0,T ]

1
N

Nÿ

i=1
max

Ó..X
i
t

..4
2,

..X
i
t

..4
2

Ô
Æ M

B

Ø 1 ≠ 2K

M
, (3.58)

where K = K(⁄, ‡, d, T, b1, b2) is a constant, which is in particular independent of N .
For the constants b1 and b2 we have

b1 = 0 and b2 = e
–(E≠E) (3.59)

in case the first condition of W2 holds and

b1 = C
2
4 + b2 and b2 = 2C2

C3

3
1 + 1

–C3

1
C

2
4

4
(3.60)

in case of the second condition of W2, see also [Car+18, Lemma 3.3].

Proof. By combining the ideas of [Car+18, Lemma 3.4] with a Doob-like inequality, we
derive a bound for E suptœ[0,T ]

1
N

qN
i=1 max

)..X
i
t

..4
2,

..X
i
t

..4
2
*
, which ensures that ‚flN

t , fl
N
t œ

P4(Rd) with high probability. Here, fl
N denotes the empirical measure associated with

the processes (Xi)i=1,...,N .
By employing the inequality (z + z

Õ)q Æ 2q≠1(zq + z
Õq), q Ø 1 we note that

...X
i
t

...
2p

2
Æ 22p≠1

...X
i
0

...
2p

2
+ 22(2p≠1)

⁄
2p

....
⁄ t

0

1
X

i
· ≠ x

E
–(‚flN

· )
2

d·

....
2p

2

+ 22(2p≠1)
‡

2p
....
⁄ t

0
D

1
X

i
· ≠ x

E
–(‚flN

· )
2

dB
i
·

....
2p

2

(3.61)

for all i = 1, . . . , N . Taking first the supremum over t œ [0, T ] and consecutively the
expectation on both sides of the former inequality yields

E sup
tœ[0,T ]

...X
i
t

...
2p

2
Æ 22p≠1E

...X
i
0

...
2p

2
+ 22(2p≠1)

⁄
2pE sup

tœ[0,T ]

....
⁄ t

0

1
X

i
· ≠ x

E
–(‚flN

· )
2

d·

....
2p

2

+ 22(2p≠1)
‡

2pE sup
tœ[0,T ]

....
⁄ t

0
D

1
X

i
· ≠ x

E
–(‚flN

· )
2

dB
i
·

....
2p

2
.

(3.62)

The second term on the right-hand side of (3.62) can be further bounded by

E sup
tœ[0,T ]

....
⁄ t

0

1
X

i
· ≠ x

E
–(‚flN

· )
2

d·

....
2p

2
Æ max{1, T

2p≠1}E sup
tœ[0,T ]

⁄ t

0

...X
i
· ≠ x

E
–(‚flN

· )
...

2p

2
d·

Æ max{1, T
2p≠1}E

⁄ T

0

...X
i
· ≠ x

E
–(‚flN

· )
...

2p

2
d·

(3.63)
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as a consequence of Jensen’s inequality. For the third term on the right-hand side
of (3.62) we first note that the expression

s t
0 D

!
X

i
· ≠x

E
–(‚flN

· )
"

dB
i
· is a martingale. This is

due to [Øks03, Corollary 3.2.6] since its expected quadratic variation is finite as required
by [Øks03, Definition 3.1.4]. The latter immediately follows from the regularity estab-
lished in [Car+18, Lemma 3.4]. Therefore we can apply the Burkholder-Davis-Gundy
inequality [RY99, Chapter IV, Theorem 4.1], which gives for a generic constant C2p the
bound

E sup
tœ[0,T ]

....
⁄ t

0
D

1
X

i
· ≠ x

E
–(‚flN

· )
2

dB
i
·

....
2p

2
Æ C2p sup

tœ[0,T ]
E

3⁄ t

0

...X
i
· ≠ x

E
–(‚flN

· )
...

2

2
d·

4p

Æ C2p max{1, T
p≠1}E

⁄ T

0

...X
i
· ≠ x

E
–(‚flN

· )
...

2p

2
d·.

(3.64)

Here, the latter step is again due to Jensen’s inequality. The right-hand sides of (3.63)
and (3.64) can be further bounded since

E
⁄ T

0

...X
i
· ≠ x

E
–(‚flN

· )
...

2p

2
d· Æ 22p≠1E

⁄ T

0

3...X
i
·

...
2p

2
+

...x
E
–(‚flN

· )
...

2p

2

4
d·

Æ 22p≠1E
⁄ T

0

3...X
i
·

...
2p

2
+ 2p≠1

3
b

p
1 + b

p
2

⁄
ÎxÎ2p

2 d‚flN
· (x)

44
d·,

(3.65)

where in the last step we made use of [Car+18, Lemma 3.3], which shows that
...x

E
–(‚flN

· )
...

2

2
Æ

⁄
ÎxÎ2

2
Ê

E
–(x)

ÎÊE
–ÎL1(‚flN

t )
d‚flN

· (x) Æ b1 + b2

⁄
ÎxÎ2

2 d‚flN
· (x), (3.66)

with b1 = 0 and b2 = e
–(E≠E) in the case that E is bounded, and

b1 = C
2
4 + b2 and b2 = 2C2

C3

3
1 + 1

–C3

1
C

2
4

4
(3.67)

in the case that E satisfies the coercivity assumption (3.9). Inserting the upper bounds
(3.63) and (3.64) together with the estimate (3.65) into (3.62) yields

E sup
tœ[0,T ]

...X
i
t

...
2p

2
Æ C

A

1 + E
...X

i
0

...
2p

2
+ E

⁄ T

0

...X
i
·

...
2p

2
+

⁄
ÎxÎ2p

2 d‚flN
· (x) d·

B

(3.68)

with a constant C = C(p, ⁄, ‡, T, b1, b2). Averaging (3.68) over i allows to bound

E sup
tœ[0,T ]

⁄
ÎxÎ2p

2 d‚flN
t (x) Æ C

A

1 + E
⁄

ÎxÎ2p
2 d‚flN

0 (x) + 2
⁄ T

0
E

⁄
ÎxÎ2p

2 d‚flN
· (x) d·

B

Æ C

A

1 + E
⁄

ÎxÎ2p
2 d‚flN

0 (x) + 2
⁄ T

0
E sup

· Õœ[0,· ]

⁄
ÎxÎ2p

2 d‚flN
· Õ (x) d·

B

,

(3.69)
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which ensures that E suptœ[0,T ]
s

ÎxÎ2p
2 d‚flN

t (x) is bounded independently of N by Grön-
wall’s inequality provided fl0 œ P2p(Rd). Since this holds by the assumption fl0 œ P4(Rd)
for p = 2, there exists a constant K = K(⁄, ‡, T, b1, b2), in particular independently of
N , such that E suptœ[0,T ]

s
ÎxÎ4

2 d‚flN
t (x) Æ K.

Following analogous arguments for X
i
t allows to derive

E sup
tœ[0,T ]

...X
i
t

...
2p

2
Æ C

A

1 + E
...X

i
0

...
2p

2
+ E

⁄ T

0

...X
i
·

...
2p

2
+

⁄
ÎxÎ2p

2 dfl· (x) d·

B

(3.70)

in place of (3.68). Noticing that
s

ÎxÎ2p
2 dfl· (x) = E

..X
i
·

..2p
2 for all · œ [0, T ] and averag-

ing the latter over i directly permits to prove E suptœ[0,T ]
s

ÎxÎ2p
2 dflt(x) Æ K by applying

Grönwall’s inequality, again provided that fl0 œ P2p(Rd). With this being the case for
p = 2 and by choosing K su�ciently large for either estimate, the statement follows
from a union bound and Markov’s inequality. More precisely,

P
A

sup
tœ[0,T ]

1
N

Nÿ

i=1
max

;...X
i
t

...
4

2
,

...X
i
t

...
4

2

<
> M

B

Æ P
A

sup
tœ[0,T ]

1
N

Nÿ

i=1

...X
i
t

...
4

2
> M

B

+ P
A

sup
tœ[0,T ]

1
N

Nÿ

i=1

...X
i
t

...
4

2
> M

B

Æ
E suptœ[0,T ]

1
N

qN
i=1

..X
i
t

..4
2

M
+

E suptœ[0,T ]
1
N

qN
i=1

..X
i
t

..4
2

M

Æ 2 K

M
,

(3.71)

which concludes the proof.

Lemma 3.15 proves that the processes are bounded with high probability uniformly
in time. Therefore, by restricting the analysis to �M , we can obtain the following
quantitative mean-field approximation result by employing the coupling method [CD22a;
CD22b] using a synchronous coupling between the stochastic processes X

i and X
i, see,

e.g., [CD22b, Section 4.1.2].

Proposition 3.16 (Probabilistic mean-field approximation of CBO, cf.
[CBO-I, Proposition 16]). Let E œ C(Rd) satisfy W1–W2. Let T > 0, fl0 œ P4(Rd)
and let N œ N be fixed. Moreover, let

!
(Xi

t)tØ0
"

i=1,...,N denote the strong solution to
system (3.1) and let

!
(Xi

t)tØ0
"

i=1,...,N be N independent copies of the strong solution
to the mean-field dynamics (3.2). If (Xi

t)tØ0 and (Xi
t)tØ0 share the initial data as well

as the Brownian motion paths (Bi
t)tØ0 for all i = 1, . . . , N , then we have

max
i=1,...,N

sup
tœ[0,T ]

E
5...X

i
t ≠ X

i
t

...
2

2

-- �M

6
Æ CMFAN

≠1 (3.72)

with CMFA = CMFA(–, ⁄, ‡, T, C1, C2, M, K, M2, b1, b2), where K is as in Lemma 3.15
and M2 denotes a second-order moment bound of fl.
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Before providing the proof of Proposition 3.16 we require two auxiliary results. For this
we define the cuto� function IM according to

IM (t) =

Y
]

[
1, if 1

N

qN
i=1 max

Ó..X
i
·

..4
2,

..X
i
·

..4
2

Ô
Æ M, for all · œ [0, t],

0, else,

(3.73)

which is adapted to the natural filtration and has the property IM (t) = IM (t)IM (·) for
all · œ [0, t].

Lemma 3.17 (Stability estimate for the consensus point, [CBO-I,
Lemma 25]). Let IM be as defined in (3.73). Then, under Assumption 3.3, it holds

...x
E
–(‚flN

· ) ≠ x
E
–(flN

· )
...

2

2
IM (·) Æ C

1
N

Nÿ

i=1

...X
i
· ≠ X

i
·

...
2

2
IM (·) (3.74)

for a constant C = C(–, C1, C2, M).

Proof. The proof follows the steps taken in [Car+18, Lemmas 3.1 and 3.2].
Let us first note that by exploiting that the quantity 1

N

qN
i=1

..X
i
·

..4
2 is bounded uniformly

by M due to the multiplication with IM (·), we obtain with Jensen’s inequality that

e
≠–E

IM (·)
1
N

qN
i=1 ÊE

–(Xi
· )

Æ IM (·)
exp

!
≠–

1
N

qN
i=1(E(Xi

· ) ≠ E)
"

Æ IM (·)
exp

!
≠–C2

1
N

qN
i=1(1+ÎXi

· Î2
2)

"

Æ exp
!
–C2(1+

Ô
M)

"
=: cM ,

(3.75)

where, in the second inequality, we used the assumption (3.8) on E . An analogous
statement can be obtained for the processes X

i
· .

For the norm of the di�erence between x
E
–(‚flN

· ) and x
E
–(flN

· ) we have the decomposition

...x
E
–(‚flN

· ) ≠ x
E
–(flN

· )
...

2
IM (·) =

.....

qN
i=1 X

i
· Ê

E
–(Xi

· )
qN

j=1 ÊE
–(Xj

· )
≠

qN
i=1 X

i
· Ê

E
–(Xi

· )
qN

j=1 ÊE
–(Xj

· )

.....
2

IM (·)

Æ (ÎT1Î2 + ÎT2Î2 + ÎT3Î2) IM (·),
(3.76)

where the terms T1, T2 and T3 are obtained by inserting mixed terms with respect to X
i
·

and X
i
· . They are defined implicitly below and their norm is bounded as follows. For
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the first term T1 we have

ÎT1Î2 IM (·) =
.....

1
N

Nÿ

i=1

1
X

i
· ≠ X

i
·

2
Ê

E
–(Xi

· )
1
N

qN
j=1 ÊE

–(Xj
· )

.....
2

IM (·)

Æ 1
N

Nÿ

i=1

...X
i
· ≠ X

i
·

...
2

-----
Ê

E
–(Xi

· )
1
N

qN
j=1 ÊE

–(Xj
· )

----- IM (·)

Æ
-----

e
≠–E

IM (·)
1
N

qN
j=1 ÊE

–(Xj
· )

-----
1
N

Nÿ

i=1

...X
i
· ≠ X

i
·

...
2

IM (·)

Æ cM

ı̂ıÙ 1
N

Nÿ

i=1

...Xi
· ≠ Xi

·

...
2

2
IM (·),

(3.77)

where we made use of (3.75) and Cauchy-Schwarz inequality in the last step. For the
second term T2, by using the assumption (3.7) on E in the third line and by following
similar steps, we obtain

ÎT2Î2 IM (·) =
.....

1
N

Nÿ

i=1

1
Ê

E
–(Xi

· ) ≠ Ê
E
–(Xi

· )
2

X
i
·

1
N

qN
j=1 ÊE

–(Xj
· )

IM (·)
.....

2

IM (·)

Æ 1
N

Nÿ

i=1

---ÊE
–(Xi

· ) ≠ Ê
E
–(Xi

· )
---

.....
X

i
·

1
N

qN
j=1 ÊE

–(Xj
· )

.....
2

IM (·)

Æ –C1e
≠–E 1

N

Nÿ

i=1

1...X
i
·

...
2

+
...X

i
·

...
2

2 ...X
i
· ≠ X

i
·

...
2

·

...X
i
·

...
2

1
N

qN
j=1 ÊE

–(Xj
· )

IM (·)

Æ 3
2–C1

-----
e

≠–E
IM (·)

1
N

qN
j=1 ÊE

–(Xj
· )

-----
1
N

Nÿ

i=1

3...X
i
·

...
2

2
+

...X
i
·

...
2

2

4 ...X
i
· ≠ X

i
·

...
2

IM (·)

Æ 3
2–C1cM

ı̂ıÙ 1
N

Nÿ

i=1

3
ÎXi

· Î4
2 +

...Xi
·

...
4

2

4
IM (·)

·
ı̂ıÙ 1

N

Nÿ

i=1

...Xi
· ≠ Xi

·

...
2

2
IM (·)

Æ 3–C1cM M
1
2

ı̂ıÙ 1
N

Nÿ

i=1

...Xi
· ≠ Xi

·

...
2

2
IM (·).

(3.78)
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Analogously, for the third term T3, we get

ÎT3Î2 IM (·) =
.....

qN
i=1 X

i
· Ê

E
–(Xi

· )
qN

j=1 ÊE
–(Xj

· )
≠
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i
· Ê
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· )
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· )
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· Ê
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1
N

qN
j=1 ÊE

–(Xj
· )
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1
N
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–(Xj
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IM (·)

Æ –C1e
≠2–E 1

N

Nÿ
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·
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2

+
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j
·
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2 ...X
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· ≠ X

j
·
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i
·
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2

IM (·)
1

1
N

qN
j=1 ÊE

–(Xj
· )

2 1
1
N
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–(Xj
· )

2

Æ –C1c
2
M M

1
4

1
N

Nÿ

i=1

1...X
i
·

...
2

+
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i
·

...
2

2 ...X
i
· ≠ X

i
·

...
2

IM (·)

Æ
Ô
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2
M M

1
4

ı̂ıÙ 1
N

Nÿ

j=1

1..X
j
·
..2

2 +
..X

j
·
..2

2

2
IM (·)

·
ı̂ıÙ 1

N

Nÿ

j=1

..X
j
· ≠ X

j
·
..2

2IM (·)
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2
M M

1
2

ı̂ıÙ 1
N

Nÿ
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..X
j
· ≠ X

j
·
..2

2IM (·).

(3.79)

By inserting the three individual bounds (3.77), (3.78) and (3.79) into (3.76) and taking
the squares of both sides, we obtain the upper bound from the statement.

Lemma 3.18 (Sampling estimate for the consensus point, [CBO-I,
Lemma 26]). Let fl0 œ P2(Rd) and let IM be as defined in (3.73). Then, under
Assumption 3.3, it holds

sup
·œ[0,T ]

E
...x

E
–(flN

· ) ≠ x
E
–(fl· )

...
2

2
IM (·) Æ CN

≠1 (3.80)

for a constant C = C(–, C2, M, M2, b1, b2), where M2 denotes the second-order mo-
ment bound of fl and where b1 and b2 are the problem-dependent constants specified
in (3.67).

Proof. The proof follows the steps taken in [For+20, Lemma 3.1].
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By inserting a mixed term, we can bound the norm of the di�erence between x
E
–(flN

· )
and x

E
–(fl· ) by

...x
E
–(flN

· ) ≠ x
E
–(fl· )

...
2

IM (·) =
.....

Nÿ

i=1
X

i
·

Ê
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–(Xi

· )
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–(Xj

· )
≠
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–(x)

ÎÊE
–ÎL1(fl· )

dfl· (x)
.....

2

IM (·)

Æ (ÎT1Î2 + ÎT2Î2) IM (·),
(3.81)

where the terms T1 and T2 are defined implicitly and bounded in what follows. By
utilizing the bound (3.75), for the first term T1, we get

ÎT1Î2 IM (·) =
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Nÿ

i=1
X

i
·

Ê
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–(Xi

· )
qN

j=1 ÊE
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Ê
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1
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i
· Ê

E
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· ) ≠
⁄
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E
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.....
2

.

(3.82)

Similarly, for the second term we have
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.....

⁄
x

Ê
E
–(x)

1
N

qN
j=1 ÊE

–(Xj
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–(fl· )
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1
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Nÿ

j=1
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E
–(Xj

· ) ≠
...Ê

E
–

...
L1(fl· )
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Æ cM e
–E
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1
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j=1
Ê

E
–(Xj
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Ê
E
–(x) dfl· (x)

------
,

(3.83)

where the last step uses that by Jensen’s inequality and [Car+18, Lemma 3.3] it holds
...x

E
–(fl· )

...
2

2
Æ

⁄
ÎxÎ2

2
Ê

E
–(x)

ÎÊE
–ÎL1(fl· )

dfl· (x) Æ b1 + b2

⁄
ÎxÎ2

2 dfl· (x) Æ b1 + b2M2 (3.84)

with constants b1 and b2 as specified in (3.67) and M2 denoting a bound on the second-
order moment of fl, which exists according to the regularity of fl established in [CBO-II,
Theorem 1] as a consequence of the initial regularity fl0 œ P2(Rd). In order to further
bound (3.82) and (3.83), respectively, let us introduce the random variables

Z
i
· = X

i
· Ê

E
–(Xi

· ) ≠
⁄

xÊ
E
–(x) dfl· (x) (3.85)

and
z

i
· = Ê

E
–(Xi

· ) ≠
⁄

Ê
E
–(x) dfl· (x), (3.86)
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which have zero expectation, i.e., EZ
i
· = 0 and Ez

i
· = 0. Moreover, we observe that

1
N

Nÿ

i=1
X

i
· Ê

E
–(Xi

· ) ≠
⁄

xÊ
E
–(x) dfl· (x) = 1

N

Nÿ

i=1
Z

i
· (3.87)

and

1
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Nÿ

i=1
Ê

E
–(Xj

· ) ≠
⁄

Ê
E
–(x) dfl· (x) = 1

N

Nÿ

i=1
z

i
· , (3.88)

respectively. Moreover, due to the independence of the X
i
· ’s the Z

i
· ’s are independent

and thus satisfy EZ
i
· Z

j
· = 0 for i ”= j. Using this we can rewrite

E
.....

1
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2
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·
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2
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N
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...Z
1
·

...
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2

Æ 4e
≠2–EM2

1
N
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(3.89)

where the inequality in the last step is due to the estimate

E
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1
·

...
2

2
Æ 2E

...X
1
· Ê

E
–(X1

· )
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2

2
+ 2
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–(x) dfl· (x)
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E
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1
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2
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Æ 4e
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Following analogous arguments and noting that

E
---z1

·

---
2

Æ 2E
---ÊE

–(X1
· )

---
2

+ 2
----
⁄

Ê
E
–(x) dfl· (x)
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2

Æ 4e
≠2–E

(3.91)

yields the inequality

E
-----

1
N

Nÿ

i=1
Ê

E
–(Xi

· ) ≠
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Ê
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–(x) dfl· (x)
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2

= 1
N

E
---z1

·
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2

Æ 4e
≠2–E 1

N
.

(3.92)

The statement now follows by combining the two individual bounds (3.89) and (3.92)
with (3.81) after taking the square and expectation there.
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We now have the necessary technical tools at hand to provide the proof of Proposi-
tion 3.16.

Proof of Proposition 3.16. By exploiting the boundedness of the dynamics established
in Lemma 3.15 through a cuto� technique, we can follow the steps taken in [For+20,
Theorem 3.1].
Let us again define the cuto� function IM as in (3.73). This allows us to obtain for
E

..X
i
t ≠ X

i
t

..2
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4
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(3.93)

where we used in the first step that the processes X
i
· and X

i
· share the Brownian motion

paths, and in the second step both Itô isometry and Jensen’s inequality. Noting further
that the processes also share the initial data, we are left with

E
...X

i
t ≠X

i
t

...
2

2
IM (t) Æ 8

1
⁄

2
T +‡

2
2 ⁄ t
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(3.94)

where it remains to control EÎx
E
–(‚flN

· ) ≠ x
E
–(fl· )Î2

2IM (·). By means of Lemmas 3.17
and 3.18 below we have the bound
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2
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(3.95)

for a constant C = C(–, C1, C2, M, M2, b1, b2). After integrating the bound (3.95)
into (3.94) and taking the maximum over i we are left with

max
i=1,...,N

E
...X

i
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i
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...
2

2
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⁄ t
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where C depends additionally on ⁄, ‡ and T , i.e., C = C(–, ⁄, ‡, T, C1, C2, M, M2, b1, b2).
The second part of the statement now follows from an application of Grönwall’s inequal-
ity and by noting that �M Æ IM (t) pointwise and for all t œ [0, T ].

3.1.3. Global Convergence in Probability: On Holistic Global
Convergence Guarantees16

A combination of the results of the former two sections about the convergence in mean-
field law, Theorem 3.6 from Section 3.1.1 and the quantitative mean-field approximation,
Proposition 3.16 from Section 3.1.2, together with classical results of numerical approx-
imation of SDEs [Pla99], allows us to obtain a probabilistic statement about the global
convergence of CBO.

Theorem 3.19 (CBO converges globally, cf. [CBO-I, Theorem 13]). Fix
Átotal > 0 and ” œ (0, 1/2). Then, under the assumptions of Theorem 3.6 and Proposi-
tion 3.16, and with K := T/�t, where T is as in (3.29) and for suitable �t > 0, the
iterations

!
(Xi

k)k=1,...,K
"

i=1,...,N generated by the numerical scheme (2.2) converge in
probability to x

ú. More precisely, the empirical mean of the final iterations fulfills the
quantitative error estimate

.....
1
N

Nÿ

i=1
X

i
K ≠ x

ú
.....

2

2
Æ Átotal (3.97)

with probability larger than

1 ≠
1
” + Á

≠1
total

!
6CNA(�t)2m + 3CMFAN

≠1 + 12Á
"2

. (3.98)

Here, m denotes the order of accuracy of the numerical scheme (for the Euler-Maruyama
scheme m = 1/2) and Á is the error from Theorem 3.6. Moreover, besides problem-
dependent constants, CNA > 0 depends linearly on the dimension d and the number
of particles N , exponentially on the time horizon T , and on ”

≠1; CMFA > 0 depends
exponentially on the parameters –, ⁄ and ‡, on T , and on ”

≠1.

Proof. We have the error decomposition17
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i
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T

V + 3
1 ≠ ”

E
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1
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i
T ú ≠ x

ú
.....

2

2
,

(3.99)

16In this section, we follow [CBO-I, Section 3.3] adapted to the setting of anisotropic noise [CBO-II].
17Let us remind the reader of the slight abuse of notations mentioned in footnote8 by using the same

notation Xi
• for solutions to (2.2) as well as (3.1).
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Chapter 3. Global Convergence of CBO and its Variants

which divides the overall error into an approximation error of the numerical scheme, the
mean-field approximation error and the optimization error in the mean-field limit. The
first term on the right-hand side of (3.99) can be estimated by applying classical results
about the convergence of numerical schemes for SDEs [Pla99] yielding
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.....

1
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Nÿ

i=1

1
X

i
K ≠ X

i
T ú

2.....
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2

----- �M

T

V Æ CNA(�t)2m
. (3.100)

The second term can be bounded by using precisely the quantitative mean-field approx-
imation in form of Proposition 3.16, which establishes
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T ú ≠ X

i
T ú

2.....

2

2

----- �M
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≠1

. (3.101)

For the third term Theorem 3.6 gives after an application of Jensen’s inequality
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2
Æ 2V(flT ú) Æ 2Á. (3.102)

Combining these individual bounds with (3.99) allows to obtain the error estimate
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V Æ 6CNA(�t)2m + 3CMFAN
≠1 + 12Á. (3.103)

Let us now denote by K
N
Átotal µ � the set, where (3.97) does not hold. Then we can

estimate

P
1
K

N
Átotal

2
= P

1
K

N
Átotal fl �M

2
+ P

1
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Átotal fl �c

M

2
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-- �M
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P (�M ) + P (�c

M )
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-- �M

2
+ 2K

M

Æ Á
≠1
total

1
6CNA(�t)2m + 3CMFAN

≠1 + 12Á

2
+ ”,

where in the last step we employ the conditional version of Markov’s inequality to-
gether with (3.103) to bound the first term. For the second it su�ces to choose the M

from (3.58) large enough.

Let us conclude this section about a review of our works [CBO-I; CBO-II] with some
pivotal remarks related to the hardness of nonconvex optimization problems and how
they are encoded in CBO.

Remark 3.20 (Weight/temperature parameter –, cf. [CBO-I, Section 3.3]). As
a consequence of Theorem 3.6, the hardness of any optimization problem is necessar-
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3.1. A Global Convergence Analysis Framework for CBO

ily encoded in the mean-field approximation, or, more precisely, in the way how the
empirical measure ‚flN of the finite particle dynamics (3.1) is used to approximate the
mean-field limit (3.3). Proposition 3.16 addresses precisely this question, ensuring that,
with arbitrarily high probability, the finite particle dynamics (3.1) keeps close to the
mean-field dynamics (3.2). Since the rate of this convergence is of favorable order N

≠1/2

in the number of particles N , the hardness of the problem is fully captured by the con-
stant CMFA in (3.72), which does not depend explicitly on the dimension d. Therefore,
the mean-field approximation is, in general, not a�ected by the curse of dimensionality.
Nevertheless, as our assumptions on the objective function E do not exclude the class
of NP-hard problems, it cannot be expected that CBO solves any problem, howsoever
hard, with polynomial complexity.
This is reflected by the exponential dependence of CMFA on the parameter – and its
possibly worst-case linear dependence on the dimension d, as we discuss in what follows.
However, several numerical experiments [Car+21; For+21; For+22; CBO-II; CBO-IV;
BGP23; Car+23] in high dimensions confirm that in typical applications CBO and its
variants perform comparably to state-of-the-art methods without the necessity of an
exponentially large amount of particles. As mentioned before, characterizing –0 in more
detail is crucial in view of the mean-field approximation result, Proposition 3.16. We did
not precisely specify –0 in Theorem 3.6 since it seems challenging to provide informa-
tive bounds in all generality. Following [CBO-I, Remark 24], however, we can devise an
informal derivation for objectives E that are locally L-Lipschitz continuous on a neigh-
borhood B

Œ
R (xú) of the global minimizer x

ú and satisfy the coercivity condition (3.26) of
A2 globally for ‹ = 1/2. For a parameter-dependent constant c = c(Ë, ⁄, ‡), we obtain

– > –0 = ≠8d

c2÷2Á
log

3
c

2d+1
Ô

2d
fl0

1
B

Œ
min{R, c2÷2Á/(8dL)}(xú)

24
(3.104)

provided that the probability mass t ‘æ flt
!
B

Œ
min{R, c2÷2Á/(8dL)}(xú)

"
is minimized at time

t = 0. The latter assumption is motivated by numerical observations of typical successful
CBO runs, where the particle density around the global minimizer tends to be minimized
initially and steadily increases over time.
We notice the dependency of –0 in (3.104) on the ambient dimension d, if we do not
impose any additional structural assumption on E , which might allow to replace the
ambient dimension d by some notion of intrinsic dimensionality dintrinsic π d.

Remark 3.21 (Computational complexity of CBO, cf. [CBO-I, Re-
mark 14]). To achieve an accuracy of Átotal as in Estimate (3.97) with probabil-
ity of at least (1 ≠ 2”), the implementable CBO scheme (2.2) has to be run using
N Ø 9CMFA/(”Átotal) agents and with time step size �t Æ 2m


”Átotal/(18CNA) for

K Ø 1
(1 ≠ Ë)

!
2⁄ ≠ ‡2"

1
�t

log
336V(fl0)

”Átotal

4
(3.105)
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iterations. Here, the parameter dependence of CNA and CMFA is as described in Theo-
rem 3.19. The computational complexity (counted in terms of the number of evaluations
of the objective E) of the CBO method is therefore given by O(KN).
When working in the setting of large-scale applications arising, for instance, in machine
learning and signal processing (therefore, with E being expensive to compute), several
considerations allow to reduce the overall runtime of the algorithm (2.2) and thereby
make the method feasible and more competitive. First of all, it may be recommendable
to leverage that the evaluations of the objective function E for each of the N particles
can be performed in parallel. Furthermore, random mini-batch sampling ideas as pro-
posed in [Car+21; CBO-II] may be employed when evaluating the objective function
and/or computing the consensus point. I.e., at each time step, E is evaluated only on
a random subset of the available data, and x

E
– is computed only from a subset of the

N particles. Besides immediately reducing the computational and communication com-
plexity of CBO methods, such ideas motivate communication-e�cient parallelization of
the algorithm by evolving disjoint subsets of particles independently for some time with
separate consensus points, before aligning the dynamics through a global communication
step. This, however, is so far largely unexplored, both from a theoretical and practical
point of view. Lastly, taking inspiration from genetic algorithms, a variance-based par-
ticle reduction technique as suggested in [For+21] may be used to reduce the number of
optimizing agents (and therefore the required evaluations of E) during the algorithm in
case concentration of the particles is observed.
For a more in-depth discussion of topics related to the computational complexity of CBO
and, in particular, on how to reduce the computational cost of CBO, we refer, amongst
others, to [CBO-I, Remark 14], [CBO-II, Section 4], [Car+21, Sections 2 and 4], and
[For+21, Section 2]. For implementational aspects, we refer to [CBX].

3.2. Global Convergence of Consensus-Based Optimization
with Truncated Noise18

Computations of higher-order moments, conducted analogously to the ones required for
the proof of Lemma 3.15, suggest that these moments of the standard CBO dynam-
ics (2.2) as well as of its continuous-time form (3.1) and mean-field limit (3.2) are not
well-behaved and might exhibit characteristics of heavy tails. In order to enhance the
well-behavedness of the statistics of the law of the dynamics, we explore in [CBO-III] a
variant of CBO, which incorporates truncated noise.

Given a finite time horizon T > 0 and a time discretization 0 < �t < · · · < K�t = T

of [0, T ] with a suitable discrete time step size �t > 0, we denote the position of the
ith agent at time step k again19 by X

i
k œ Rd and the empirical measure of all agents

at time step k by ‚flN
k := 1

N

qN
i=1 ”Xi

k
. For user-specified parameters –, ⁄, ‡ > 0 as well

18In this section, we follow [CBO-III].
19Throughout this section, but limited to it, we denote by ((Xi

k)k=1,...,K)i=1,...,N , ((Xi
t)tØ0)i=1,...,N ,

(Xt)tØ0, (‚flN
k )k=1,...,K , and (flt)tØ0 the quantities of CBO with truncated noise (3.106), (3.108), and

(3.109) instead of standard CBO (2.2), (3.1), and (3.2).
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3.2. Global Convergence of CBO with Truncated Noise

as xb œ Rd and R, M > 0, the time-discrete evolution of the ith particle in CBO with
truncated noise is given by the iterative update rule

X
i
k = X

i
k≠1 ≠ �t⁄

1
X

i
k≠1 ≠ Pxb,R

1
x

E
–(‚flN

k≠1)
22

+ ‡

1
D

1
X

i
k≠1 ≠ x

E
–(‚flN

k≠1)
2

· M

2
B

i
k,

(3.106)
where Pxb,R is the projection onto BR(xb) defined as

Pxb,R(x) :=

Y
]

[
x, if Îx ≠ xbÎ2 Æ R,

xb + R
x≠xb

Îx≠xbÎ2
, if Îx ≠ xbÎ2 > R.

(3.107)

As a crucial assumption in this section, we assume that the map Pxb,R depends on R

and xb in such way that x
ú œ BR(xb). Moreover, D is as described in (2.5) and, in the

anisotropic case, · acts elementwise and takes the absolute value of the left-hand side.
The associated continuous-time analog reads

dX
i
t = ≠⁄

1
X

i
t ≠ Pxb,R

1
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E
–(‚flN

t )
22

dt + ‡

1
D

1
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i
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E
–(‚flN

t )
2

· M

2
dB

i
t. (3.108)

For the global convergence analysis of (3.106) and (3.108), respectively, we follow the
framework of [CBO-I; CBO-II], which we outlined in detail in the preceding Section 3.1.
In particular, convergence to a global minimizer is first studied from a mean-field per-
spective, i.e., by analyzing the mono-particle process

dXt = ≠⁄

1
Xt ≠ Pxb,R

1
x

E
–(flt)

22
dt + ‡

1
D

1
Xt ≠ x

E
–(flt)

2
· M

2
dBt. (3.109)

By introducing this additional truncations in the CBO dynamics, we achieve that, in
contrast to the original version, higher-order moments of the law of the dynamics can be
e�ectively bounded. For an intuitive sketch highlighting the e�ects of the truncation, we
refer to [CBO-III, Section 1]. More formally, however, it holds the following key result
of [CBO-III].

Lemma 3.22 (Sub-Gaussianity of the mean-field dynamics, [CBO-III,
Lemma 8]). Let R and M be finite such that R Ø Îxb ≠ x

úÎ2. For any Â > 0,
let N satisfy N Ø (4‡

2
M

2)/(⁄Â
2). Moreover, let

!
(Xi

t)tØ0
"

i=1,...,N denote N indepen-
dent copies of the strong solution to the mean-field dynamics (3.109). Then, provided
that E exp

! qN
i=1

..X
i
0 ≠ x

ú..2
2/(NÂ

2)
"

< Œ, it holds

CÂ := sup
tœ[0,T ]

E exp
A

1
NÂ2

Nÿ

i=1

...X
i
t ≠ x

ú
...

2

2

B

< Œ, (3.110)

where CÂ = CÂ(Â, ⁄, ‡, d, R, M, T ).

The proof of Lemma 3.22 is presented in [CBO-III, Section 3.2.1].
The sub-Gaussianity of Xt follows from Lemma 3.22 by noticing that the statement

can be applied in the setting N = 1 when choosing Â su�ciently large.
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Chapter 3. Global Convergence of CBO and its Variants

As a consequence thereof and constituting the central contribution of [CBO-III], this
variant exhibits enhanced convergence performance. On the one side, this is reflected
from a practical point of view in [CBO-III, Figure 1, Section 4] and from a theoretical
one in Theorem 3.25 by allowing for a wider flexibility in choosing the noise parameter of
the method. In the case of anisotropic noise, instead of having the requirement 2⁄ > ‡

2,
we need ⁄ Ø 2‡

2 or ‡
2
M

2 = O(‘), where the latter allows for a trade-o� between ‡ and
M . On the other side, and more significantly, when adopting the analytical framework of
[CBO-I] the gained regularity allows to establish a non-probabilistic mean-field approx-
imation, see Proposition 3.24. This, in turn, enables us to prove global convergence in
expectation rather than probability for the proposed CBO variant requiring only minimal
assumptions on the objective function and on the initialization, see Theorem 3.25.

Let us now present the main result about global convergence of CBO with truncated
noise for objective functions satisfying in addition to Assumption 3.5 the following.

Assumption 3.23. In this section, we are interested in objectives E œ C(Rd), for which
additionally

T1 there exist constants –, Lu > 0 such that for any – Ø – it holds

Lu := sup
xœRd

Îx exp (≠–(E(x) ≠ E))Î2 < Œ, (3.111)

T2 there exist constants “ œ [0, 1] and ÂC1, ÂC2 > 0 such that
--E(x) ≠ E(xÕ)

-- Æ ÂC1
!

Îx ≠ x
úÎ“

2 +
..x

Õ ≠ x
ú..“

2
" ..x ≠ x

Õ..
2 , for all x, x

Õ œ Rd
,

(3.112)
E(x) ≠ E Æ ÂC2

!
1 + Îx ≠ x

úÎ1+“
2

"
, for all x œ Rd

. (3.113)

T1 requires a certain growth of the function E . T2 sets controllable bounds on the
local Lipschitz constant of E and on the growth of E , which is required to be at most
quadratic. A similar requirement appears also in Assumption 3.3, but a quadratic lower
bound was also imposed.

Under these assumptions, we first have the formerly addressed non-probabilistic mean-
field approximation result, which improves [CBO-I, Proposition 16] and Proposition 3.16
by being non-probabilistic. Of course, let us emphasize that this required the modifica-
tion of the standard CBO dynamics by introducing truncated noise.

Proposition 3.24 (Mean-field approximation of CBO with truncated noise,
cf. [CBO-III, Proposition 7]). Let E œ C(Rd) satisfy A1–A2 as well as T1–T2. More-
over, let R and M be finite such that R Ø Îxb ≠ x

úÎ2 and let N Ø (16– ÂC2‡
2
M

2)/⁄.
Let T > 0, fl0 œ P4(Rd) and let N œ N be fixed. Moreover, let

!
(Xi

t)tØ0
"

i=1,...,N denote
the strong solution to system (3.108) and let

!
(Xi

t)tØ0
"

i=1,...,N be N independent copies
of the strong solution to the mean-field dynamics (3.109). If (Xi

t)tØ0 and (Xi
t)tØ0 share

the initial data as well as the Brownian motion paths (Bi
t)tØ0 for all i = 1, . . . , N , then
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we have
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2
Æ CMFAN
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with CMFA = CMFA(–, ⁄, ‡, d, T, ‹, ÷, ÂC1, ÂC2, Lu, R, xb, x
ú
, M).

The proof of Proposition 3.24 is presented in [CBO-III, Section 3.2.1].
Combining this statement with a convergence result about the mean-field dynam-

ics (3.109) as derived in [CBO-III, Section 3.2.2], yields the main result of [CBO-III]
about global convergence of CBO with truncated noise in expectation. Notice that
convergence in expectation is stronger than convergence in probability, i.e., implies the
latter.

Theorem 3.25 (CBO with truncated noise converges globally, cf. [CBO-III,
Theorem 3]). Let E œ C(Rd) satisfy A1–A2 as well as T1–T2. Moreover, let fl0 œ
P4(Rd) be such that x

ú œ supp(fl0). Define V(flt) as given in (3.18). Provided that
V(fl0) > 0, fix any Á œ (0, V(fl0)), let R œ

!
Îxb ≠ x

úÎ2 +


‘/2, Œ
"

and M œ (0, Œ).
Choose parameters ⁄, ‡ > 0 with ⁄ Ø 2‡

2 or ‡
2
M

2 = O(‘), and define the time horizon

T
ú := 1

⁄
log

3V(fl0)
Á

4
. (3.115)

Then with K := T
ú
/�t for suitable �t > 0 and by choosing – su�ciently large and

N Ø (16– ÂC2‡
2
M

2)/⁄, the iterations
!
(Xi

k)k=1,...,K
"

i=1,...,N generated by the numerical
scheme (3.106) converge in expectation to x

ú. More precisely, the empirical mean of
the final iterations fulfills
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. CNA(�t)2m + CMFAN

≠1 + ‘ (3.116)

up to a generic constant. Here, m denotes the order of accuracy of the numerical scheme
(for the Euler-Maruyama scheme m = 1/2). Moreover, besides problem-dependent
constants and parameters of the method, CNA > 0 depends linearly on the dimension d

and the number of particles N , and exponentially on the time horizon T
ú; CMFA > 0

depends exponentially on the parameters –, ⁄ and ‡, and on T
ú.

The proof of Theorem 3.25 is presented in [CBO-III, Section 3.2].

3.3. Global Convergence of Consensus-Based Optimization
with Memory E�ects and Gradient Information20

Taking inspiration from the typically more intricate dynamics of interacting multi-
particle systems employed for optimization in practical applications, we wrap up this
20In this section, we follow [CBO-IV].
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chapter with a more elaborate variant of the standard CBO dynamics (2.2) proposed and
analyzed in [CBO-IV]. It exhibits two additional features, namely memory e�ects and
gradient information. While the purpose of the latter is self-explanatory by permitting
each particle of the algorithm to exploit local information about the energy landscape
through gradients, the former mechanisms equip the particles with a memory of their
historical positions. More precisely, realizing their implementation as suggested in the
work [GP21], we introduce21 for each particle X

i an additional state variable Y
i, which

stores the historical best position of the respective particle X
i. Consequently, an indi-

vidual particle is described by the tuple (Xi
, Y

i). An alternative realization of memory
mechanisms, which, however, might require substantially di�erent analysis techniques,
is proposed by the authors of [TW20]. Both additional information, memory e�ects as
well as gradient information, are exploited in the CBO dynamics through drift terms,
i.e., in addition to the standard consensus drift, each particle experiences a drift to its
personal historical best position as well as in the direction of the local gradient. To fur-
ther enhance the exploration capabilities of the method and to allow for a mathematical
analysis, the new drift terms are also accompanied by associated noise terms. Moreover,
the consensus point is no longer computed from the instantaneous positions X

i, but
the historical best positions Y

i. We, therefore, denote it by y
E
–. Let us now make the

description of this variant more rigorous.
Given a finite time horizon T > 0 and a time discretization 0 < �t < · · · < K�t = T

of [0, T ] with a suitable discrete time step size �t > 0, we denote the position of the
ith agent at time step k by X

i
k œ Rd, its historical best position stored in the particle’s

memory as Y
i

k œ Rd, and the empirical measure of all agents’ historical best positions
at time step k by ‚flN

Y,k := 1
N

qN
i=1 ”Y i

k
. For user-specified parameters –, —, ◊, Ÿ, ⁄1, ‡1 > 0

and ⁄2, ⁄3, ‡2, ‡3 Ø 0, the time-discrete evolution of the ith particle in CBO with memory
e�ects and gradient information is given by the iterative update rule

X
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1
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E
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2
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2,i
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≠ �t⁄3ÒE(Xi
k≠1) + ‡3D
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ÒE(Xi
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2

B
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(3.117a)

Y
i

k = Y
i

k≠1 + �tŸ

1
X

i
k ≠ Y

i
k≠1

2
S

—,◊
1
X

i
k, Y

i
k≠1

2
, (3.117b)

where
!
(Bm,i

k )k=1,...,K
"

i=1,...,N are independent, identically distributed Gaussian random
vectors in Rd with zero mean and covariance matrix �t Id for m œ {1, 2, 3}. The sys-
tem is complemented with independent initial data (Xi

0, Y
i

0 )i=1,...,N , typically such that
X

i
0 = Y

i
0 for all i = 1, . . . , N . In addition to the terms familiar from standard CBO in

the first line of (3.117a), the first term in the second line of (3.117a) is the drift towards
the historical best position of the respective particle. In contrast to the global nature
of the consensus drift, which incorporates information from all N particles, this term
21Throughout this section, but limited to it, we denote by ((Xi

k)k=1,...,K)i=1,...,N , and (flt)tØ0 the quan-
tities of CBO with memory e�ects and gradient information (3.117a), and (3.119) instead of standard
CBO (2.2), and (3.3).
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depends only on the past of the specific particle i. To store such information about
the history of each particle [GP21], the additional state variable Y

i evolves according to
(3.117b), where

S
—,◊(x, y) = 1

2
!
1 + ◊ + tanh

!
— (E(y) ≠ E(x))

""
(3.118)

is chosen to approximate the Heaviside function H(x, y) = E(x)<E(y) as ◊ æ 0 and
— æ Œ. Y

i
k can therefore be regarded as the memory of the ith particle, i.e., as the

location of the in-time best-seen position of X
i up to time step k. This can be understood

when noticing that with parameter choices Ÿ = 1/�t, ◊ = 0 and — ∫ 1 in (3.117b) it
holds Y

i
k = X

i
k if E(Xi

k) < E(Y i
k≠1) and Y

i
k = Y

i
k≠1 else. The first term in the third line

of (3.117a) is the drift in the direction of the negative gradient of E , which is a local and
instantaneous contribution. Eventually, the remaining two terms are noise terms, which
are associated with the formerly described memory and gradient drifts.

The central theoretical contribution of [CBO-IV] is the global convergence analysis of
(3.117) from a mean-field perspective following the framework put forward in [CBO-I;
CBO-II] and as done in Section 3.1.1 for the standard CBO dynamics (2.2). In analogy
to the derivations there, we find that the macroscopic continuous-time description of
(3.117) is given by the measure fl œ C([0, T ], P(Rd ◊ Rd)) which satisfies the nonlinear
nonlocal Fokker-Planck equation

ˆtflt = divx

11
⁄1

1
x ≠ y

E
–(flY,t)

2
+ ⁄2(x ≠ y) + ⁄3ÒE(x)

2
flt

2

+ divy

11
Ÿ(y ≠ x)S—,◊(x, y)

2
flt

2

+ 1
2

dÿ

k=1
ˆ

2
xkxk

33
‡

2
1D

1
x ≠ y

E
–(flY,t)

22

kk
+ ‡

2
2D (x ≠ y)2

kk + ‡
2
3D (ÒE(x))2

kk

4
flt

4

(3.119)

in a weak sense (see [CBO-IV, Definition 1]). Analyzing (3.119) in place of (3.117)
typically permits to employ more powerful technical tools, which result in stronger
statements about the long-time behavior of the average agent density fl. This analy-
sis approach is rigorously justified by the mean-field approximation, i.e., the fact that
the empirical particle measure ‚flN

t := 1
N

qN
i=1 ”(Xi

t ,Y i
t ) converges in some sense to the

mean-field law flt as the number of particles N tends to infinity, see Section 3.1.2 for
more information. While a quantitative result about the mean-field approximation of
this variant is left for future considerations, qualitatively, the convergence can be shown
by following [Hua21], see in particular [Hua21, Remark 3.2].

This justifies the analysis of the dynamics on the macroscopic level (3.119) to gain
insights into its behavior. Let us, therefore, present the main result about global con-
vergence of CBO with memory e�ects and gradient information in mean-field law for
objective functions satisfying in addition to Assumption 3.5 the following.

Assumption 3.26. In this section and for the case of an additional gradient drift
component, i.e., if ⁄3 ”= 0, we additionally require that E œ C1(Rd) and that
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G1 there exist CÒE > 0 such that

ÎÒE(x)Î2 Æ CÒE Îx ≠ x
úÎ2 , for all x œ Rd

. (3.120)

In case of an additional gradient drift term in the dynamics, i.e., ⁄3 ”= 0, the objective
naturally needs to be continuously di�erentiable. Furthermore, G1 imposes that the
gradient ÒE grows at most linearly. This is a significantly weaker assumption compared
to typical smoothness assumptions about E in the optimization literature (in particular
in the analysis of stochastic gradient descent), where Lipschitz-continuity of the gradient
of E is required [MB11].

Under these assumptions, we have the following statement about global convergence
of CBO with memory e�ects and gradient information in mean-field law.

Theorem 3.27 (CBO with memory and gradient converges globally in mean-
field law, [CBO-IV, Theorem 2.5]). Let E œ C(Rd) satisfy A1–A2. Furthermore, in
the case of an active gradient drift, i.e., if ⁄3 ”= 0, let E œ C1(Rd) obey in addition G1.
Moreover, let fl0 œ P4(Rd ◊Rd) be such that (xú

, x
ú) œ supp(fl0). Define the functional

V(flt) := 1
2

⁄⁄ 1
Îx ≠ x

úÎ2
2 + Îy ≠ xÎ2

2

2
dflt(x, y), (3.121)

and the rates

‰1 := min
Ó

⁄1 ≠ ⁄2 ≠ 3⁄3CÒE ≠ 2‡
2
1 ≠ 2‡

2
3C

2
ÒE , 2Ÿ◊ + ⁄2 ≠ ⁄1 ≠ ⁄3CÒE ≠ 2‡

2
2

Ô
,

(3.122a)

‰2 := max
Ó

3⁄1 + ⁄2 + 3⁄3CÒE ≠ 2‡
2
1 + 2‡

2
3C

2
ÒE , 2Ÿ◊ + 3⁄2 + ⁄1 + ⁄3CÒE ≠ 2‡

2
2

Ô
,

(3.122b)

which we assume to be strictly positive through a su�cient choice of the parameters
of the CBO dynamics. Provided that V(fl0) > 0, fix any Á œ (0, V(fl0)), Ë œ (0, 1) and
define the time horizon

T
ú := 1

(1 ≠ Ë)‰1
log

3V(fl0)
Á

4
. (3.123)

Then there exists –0 > 0, depending (among problem dependent quantities) also on Á

and Ë, such that for all – > –0, if fl œ C([0, T
ú], P4(Rd ◊ Rd)) is a weak solution to the

Fokker-Planck equation (3.119) on the time interval [0, T
ú] with initial condition fl0,

we have
V(flT ) = Á with T œ

5 (1 ≠ Ë)‰1
(1 + Ë/2)‰2

T
ú
, T

ú
6

. (3.124)

Furthermore, on the time interval [0, T ], V(flt) decays at least exponentially fast. More
precisely, for all t œ [0, T ] it holds

W
2
2 (flt, ”(xú,xú)) Æ 6V(flt) Æ 6V(fl0) exp (≠(1 ≠ Ë)‰1t) . (3.125)
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3.3. Global Convergence of CBO with Memory E�ects and Gradient Information

The proof of Theorem 3.27 presented in [CBO-IV, Section 3] reveals how to leverage
further, in other applications advantageous, forces in the dynamics while still being
amenable to theory and allowing for provable global convergence within the framework
of [CBO-I; CBO-II].

The benefit of the herein investigated CBO variant exploiting memory e�ects and
gradient information is demonstrated in [CBO-IV, Figure 1, Section 4] for a benchmark
problem in optimization as well as for certain applications coming from machine learning
and signal processing.
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Chapter 4

Interpreting Consensus-Based
Optimization as a Stochastic
Relaxation of Gradient Descent

Leaving aside for the moment the mean-field analysis perspective taken in the rest of this
dissertation, we discuss in this chapter the second core insight about the optimization
behavior of CBO addressed in this thesis. It is concerned with the observation that,
despite solely relying on evaluations of the objective, through communication of the
particles, CBO exhibits a stochastic gradient descent (GD)-like behavior. This is revealed
when studying the trajectory of the consensus point of the method and sheds light on
the CBO algorithm (2.2) from a di�erent angle. In Section 4.1 we give an overview
of the main contributions of [CBO&GD], which are about the interpretation of CBO
as a stochastic relaxation of GD with a problem-tailored stochastic perturbation. The
theoretical results are corroborated by instructive numerical illustrations. The proof
idea of establishing such a bridge between a metaheuristic black-box and derivative-
free optimization algorithms on the one hand and a gradient-based learning method
on the other is sketched in Section 4.2, where we in particular introduce the consensus
hopping (CH) scheme, which connects CBO with GD. With the results of Chapter 3
about the provable global convergence capabilities of CBO in mind, the fundamental
value of such link between CBO and stochastic GD lies in o�ering, on the one side, a
novel explanation for the success of stochastic relaxations of GD and providing a novel
point of view on the theoretical understanding of gradient-based learning algorithms,
while, on the other side, unveiling an intrinsic GD nature of such heuristics.

4.1. Consensus-Based Optimization Exhibits a Stochastic
Gradient Descent-Like Behavior22

An insightful theoretical understanding of the behavior of CBO methods is to be gained
by tracing the dynamics of the consensus point x

E
– of the CBO algorithm (2.2). To this

end, let us introduce the CBO scheme as the iterates (xCBO
k )k=0,...,K defined according

22In this section, we follow [CBO&GD, Sections 1 and 4].
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to

x
CBO
k = x

E
–(‚flN

k ), with ‚flN
k = 1

N

Nÿ

i=1
”Xi

k
,

x
CBO
0 = x0 ≥ fl0,

(4.1)

where we recall that the positions X
i
k of the particles are given by the iterative update

rule (2.2).
Constituting the main contribution of the work [CBO&GD] is the novel observa-

tion as well as theoretical and experimental justification that the iterates of the CBO
scheme (4.1), i.e., the trajectory of the consensus point x

E
–, follow, with high probabil-

ity, the path of a stochastically perturbed GD with the stochastic perturbation being
problem-tailored. We make this rigorous in Theorem 4.2 and demonstrate it numerically
in Figure 4.1 below.

To the best of our knowledge, this is the first attempt of its kind to interconnect
the derivative-free with the gradient-based world in optimization. An in spirit similar
observation has been made recently in [Par24], where the Langevin dynamics [GH86;
CHS87] is recovered in a suitable scaling limit from simulated annealing [KGV83; Kir84;
AK89] by using tools from linear kinetic theory.

Let us now present the main findings of [CBO&GD]. The class of objective functions
considered in our theoretical results below satisfies in addition to Assumption 3.3 and
A1 from Assumption 3.5 the following.

Assumption 4.1. In this chapter, we additionally require that E œ C1(Rd) and that
the objective is

G1 semi-convex (�-convex for some � œ R), i.e., E( • ) ≠ �
2 Î • Î2

2 is convex,

G2 L-smooth, i.e.,
..ÒE(x) ≠ ÒE(xÕ)

..
2 Æ L

..x ≠ x
Õ..

2 , for all x, x
Õ œ Rd

. (4.2)

G1 requires the objective E to be semi-convex with parameter � œ R. For � > 0, �-
convexity is stronger than convexity (strong convexity with parameter �). For � < 0,
semi-convexity is weaker, i.e., potentially nonconvex functions E are included in the
definition. The class of semi-convex functions is typical in the literature of gradient flows,
since their general theory extends from the convex to this more general setting [San17].
One particular property, which we shall exploit in this work, is that for such functions the
time discretization of a gradient flow, potentially for a small step size, defined through an
iterated scheme, called minimizing movement scheme [De 93], is well-defined. However,
while semi-convexity is useful to ensure the well-posedness of gradient flows, it is not
su�cient to obtain convergence to global minimizers. Other properties such as the
Polyak-£ojasiewicz (PL) condition [KNS16], which requires that for some µ > 0 it holds
ÎÒE(x)Î2

2 /2 Ø µ(E(x) ≠ E) for all x œ Rd, or the log-Sobolev inequalities governing the
flow of the Langevin dynamics [CB18] may be necessary. Concerning the PL condition,
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4.1. CBO Exhibits a Stochastic Gradient Descent-Like Behavior

(a) A noisy Canyon function with a valley
shaped as a third degree polynomial in two
dimensions as objective function E .

(b) CBO can be interpreted as a stochastic
relaxation of GD.
The CBO scheme (4.1) (sampled over sev-
eral runs) follows on average the valley of
E while passing over local minima.

Figure 4.1: An illustration of the intuition that the CBO scheme (4.1) can be regarded
as a stochastic derivative-free (zero-order) relaxation of GD. To find the global mini-
mizer x

ú (green star) of the nonconvex objective function E depicted in (a), we run the
CBO algorithm (2.2) for K = 250 iterations with parameters �t = 0.01, – = 100, ⁄ = 1
and ‡ = 1.6, and N = 200 particles, initialized i.i.d. according to fl0 = N

!
(8, 8), 0.5 Id

"
.

This experiment is performed 50 times. For each run we depict in (b) the positions
of the consensus points computed during the CBO algorithm (2.2), i.e., the iterates of
the CBO scheme (4.1) for k = 1, . . . , K. The color of the individual points corresponds
to time, i.e., iterates at the beginning of the scheme are plotted in blue, whereas later
iterates are colored orange. We observe that, after starting close to the initial position,
the trajectories of the consensus points follow the path of the valley leading to the global
minimizer x

ú, until it is reached. In particular, unlike GD (cf. [CBO&GD, Figure 2b]),
the scheme (4.1) has the capability of jumping over locally deeper passages. Such de-
sirable behavior is observed also for the Langevin dynamics (see Figure [CBO&GD,
Figure 2c]), which can be regarded as a stochastic (noisy) version of GD.

notice that it does not imply that there is a unique solution, but it implies that every
stationary point is a global minimum. G2 assumes smoothness of the objective function E
by requiring the gradient ÒE to be L-Lipschitz continuous. In the realm of machine
learning, in particular, when using gradient-based methods for optimization, this is a
quite standard assumption, as it assures that the gradient information is informative
within a region around where the gradient is evaluated. In particular, as proved in
[Pol63], under the assumptions of L-smoothness and the PL-condition, one obtains global
linear convergence of GD. More precisely, for the GD iteration xk = xk≠1 + 1

LÒE(xk≠1)
it holds E(xk) ≠ E Æ (1 ≠ µ

L)k (E(x0) ≠ E), see [KNS16, Theorem 1].
Under these assumptions, we have the following statement.
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Chapter 4. Interpreting CBO as a Stochastic Relaxation of Gradient Descent

Theorem 4.2 (CBO is a stochastic relaxation of GD, [CBO&GD, Theo-
rem 1]). Let E œ C1(Rd) satisfy W1–W2, A1, and G1–G2. Then, for · > 0 (satisfying
· < 1/(≠2�) if � < 0) and with parameters –, ⁄, ‡, �t > 0 such that – & 1

· d log d, the
iterates (xCBO

k )k=0,...,K of the CBO scheme (4.1) follow a stochastically perturbed GD,
i.e., they obey

x
CBO
k = x

CBO
k≠1 ≠ ·ÒE(xCBO

k≠1 ) + gk, (4.3)

where gk is stochastic noise fulfilling, with high probability, the quantitative estimate

ÎgkÎ2 = O
3

|⁄ ≠ 1/�t| + ‡

Ô
�t +

Ò
·/– + N

≠1/2
4

+ O(·) (4.4)

for each k = 1, . . . , K.

The proof of Theorem 4.2 is presented in [CBO&GD, Section 4.1 as well as Section 4.2
and Appendices C–E].

Let us conclude this section about a review of the contributions of our work [CBO&GD]
with some remarks regarding the interpretation of the result.

Remark 4.3 (Interpretation of Theorem 4.2, [CBO&GD, Discussion after
Theorem 1]). The statement of Theorem 4.2 has to be read with a twofold inter-
pretation. First, in view of the capability of CBO to converge to global minimizers for
rich classes of nonsmooth and nonconvex objective functions (see [CBO-I, Theorem 13]
and Theorem 3.19), Theorem 4.2 states that there exist stochastic relaxations of GD that
are provably able to robustly and reliably overcome energy barriers and reach deep levels
of nonconvex functions. Such relaxations may even be derivative-free and do not require
smoothness of the objective, as is the case with CBO. Second, and conversely, against the
common wisdom that derivative-free optimization heuristics search the domain mainly by
random exploration and therefore ought to be ine�cient, we provide evidence that such
heuristics in fact work successfully in finding benign optima [Duc+15; NS17; Che+17;
Nik+22; Chi+23; ERY24; HWO23], precisely because they can be interpreted as suitable
stochastic relaxations of gradient-based methods.
The interpretation of the CBO scheme (4.1) as a stochastic relaxation of GD is substan-
tiated visually, analytically and numerically as follows. While the trajectories of (4.1)
are to be seen in Figure 4.1b, we depict for comparison in [CBO&GD, Figure 2c] the
discretized dynamics of the annealed Langevin dynamics [CHS87; RT96; DM17],

dXt = ≠ÒE(Xt) dt +


2—
≠1
t dBt. (4.5)

Both stochastic methods are capable of global minimization while overcoming energy
barriers and escaping local minima. For analyses of the (annealed) Langevin dynamics
we refer the reader to [GM91; Már97; Pel98] as well as the more recent works [Xu+18;
Chi22]. The stochastic perturbations gk in (4.3) are meaningful and not generic as
they obey precise scalings thanks to the established estimate in (4.4). In particular,
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4.1. CBO Exhibits a Stochastic Gradient Descent-Like Behavior

as reflected by the first term of the bound on the error ÎgkÎ2, they become tighter as
soon as the discrete CBO time step size �t π 1, the drift parameter ⁄ ¥ 1/�t, the
noise parameter ‡ becomes smaller, the weight parameter – is su�ciently large, and the
number of employed particles N becomes larger. This behavior is confirmed numerically
in Figure 4.2 below by measuring the closeness between the trajectories of the CBO
scheme (4.1) and GD. More precisely, better approximation is achieved for the values of
⁄ closer to 1/�t (compare lines with di�erent colors but same line style, and notice that
smaller error can be obtained for larger ⁄), larger choices of N (compare di�erent line
styles within a color), and ‡ as small as possible (each line decreases as ‡ decreases).
For fixed ⁄ and N , however, ‡ needs to be su�ciently large (in particular in case of a
fixed number of iterates K) to allow the CBO scheme (4.1) to iteratively explore the
energy landscape within the time horizon. As visible from Figure 4.2, a larger number
of particles N is needed to pass to smaller ‡ and thus better approximation. Regarding
the second term of the bound on the error ÎgkÎ2, we conjecture a potential amelioration
of the estimate by refining the quantitative Laplace principle, Proposition 3.12 or [CBO-
I, Proposition 21], involved in the proof of [CBO&GD, Proposition 7], which would
allow to remove the order O(·) dependence of the bound. Yet, as it stands, this term
is about a deterministic bounded perturbation of the gradient, which is possibly of
smaller magnitude than the gradient. Such bounded perturbation alone does not allow
to overcome local energy barriers in general (just think of a local minimizer, around
which the magnitude of gradients grows faster than the displacement: any movement
from the minimizer ought necessarily to get reverted). Hence, it is the stochastic part
of the perturbation that enables the convergence to global minimizers. In fact, for a
moderate time step size �t > 0, a drift parameter ⁄ > 0 relatively small compared
to 1/�t, a non-insignificant noise parameter ‡ > 0, a moderate value of the weight
parameter – > 0 and a modest number N of particles, CBO is factually a stochastic
relaxation of GD with strong noise.
Apart from gaining primarily theoretical insights from this link, let us conclude this
remark by mentioning a further, more practical aspect of establishing such a connection.
In several real-world applications, including various machine learning settings, using
gradients may be undesirable or even not feasible. This can be due to the black-box
nature or nonsmoothness of the objective, memory limitations constraining the use of
automatic di�erentiation, a substantial presence of spurious local minima, or the fact that
gradients carry relevant information about data, which one may wish to keep private. In
machine learning, in specific, the problems of hyperparameter tuning [Ber+11; RT18],
convex bandits [Aga+11; Sha17], reinforcement learning [SB98], the training of sparse
and pruned neural networks [Hoe+21], and federated learning [SS15; McM+17] stimulate
interest in methods alternative to gradient-based ones. In such situations, if one still
wishes to rely on a GD-like optimization behavior, Theorem 4.2 suggests the use of CBO,
which will be both reliable and e�cient.23

23Needlessly to be said, but if gradients are available and cheap to compute, methods which exploit this
information are expected to be more e�cient and competitive. However, incorporating a gradient drift
into CBO is possible and may bear advantages of theoretical and practical nature [CBO-IV; STW23;
Car+23].
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Figure 4.2: Numerical analysis of the approximation error between the trajectories of the
CBO scheme (4.1) and GD, i.e., the stochastic noise gk in (4.3). In the setting of the
Canyon function E from Figure 4.1a but without a local minimum in the valley,24 we
measure the distance between the two trajectories and plot the resulting approximation
error for di�erent values of ⁄ (di�erent colors), ‡ (horizontal axis), and N (di�erent line
styles). The other parameters of the CBO scheme (4.1) are K = 1000, �t = 0.1 and
– = 1016 with the remaining setting being as in Figure 4.1b. The results validate the
theoretical bound on ÎgkÎ2 of Theorem 4.2.

4.2. From Consensus-Based Optimization to Consensus
Hopping to Gradient Descent25

In order to intuitively grasp how to establish a connection between the CBO scheme (4.1),
which captures the flow of the derivative-free CBO dynamics (2.2), and GD, we provide
in this section a brief overview of the proof idea for Theorem 4.2. To this end, the CH
scheme is introduced in (4.6) below, which acts as the pillar of the bridge between CBO
and GD.

It may moreover constitute a numerical method of independent interest, both from a
practical and theoretical perspective. In fact, its resemblance to the covariance matrix
adaptation evolution strategy (CMA-ES) [HO96; HO01; Han06; Oll+17] beckons further
investigations. Particularly also in view of the latter being an instantiation of the natural
evolution strategy (NES) [Wie+08; Wie+14; Sun+09], see, e.g., [Gla+10; Aki+10].

From CBO to CH. Let us envision the movement of the particles during the CBO
dynamics (2.2). At every time step k, after having computed x

E
–(‚flN

k≠1), each particle
moves a �t⁄ fraction of its distance towards this consensus point, before being perturbed
by stochastic noise. As we let ⁄ æ 1/�t, the particles’ velocities increase, until, in the
case ⁄ = 1/�t, each of them hops within the �t-time window directly to the previously
24Otherwise, GD will necessarily get stuck in this local minimum located in the valley.
25In this section, we follow [CBO&GD, Section 4].
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computed consensus point, followed by a random fluctuation. Put di�erently, we are
left with a numerical scheme, which, at time step k, samples N particles around the
old iterate in order to subsequently compute as new iterate the consensus point (2.3)
of the empirical measure of the samples. Such algorithm is precisely a Monte Carlo
approximation of the CH scheme with iterates (xCH

k )k=0,...,K defined by

x
CH
k = x

E
–(µk), with µk = N

1
x

CH
k≠1, Â‡2 Id

2
,

x
CH
0 = x0.

(4.6)

In words, at time step k = 1, . . . , K, the new CH iterate is computed as the consensus
point (2.3) w.r.t. a Gaussian distribution with covariance matrix Â‡2 Id centered at the
old iterate. [CBO&GD, Theorem 6] makes this intuition rigorous by quantifying the
approximation quality between the CBO and the CH scheme in terms of the parameters
of the two schemes. Sample trajectories of the CH scheme are depicted in [CBO&GD,
Figure 2a].

From CH to GD. With the sampling measure µk assigning (in particular for small
Â‡) most mass to the region close to the old iterate, the CH scheme (4.6) improves at
every time step k its objective function value while staying near the previous iterate.
A conceptually analogous behavior to such localized sampling can be achieved through
penalizing the length of the step taken at time step k. This gives rise to an implicit
version of the CH scheme with iterates (ÂxCH

k )k=0,...,K given as

ÂxCH
k = arg min

xœRd

ÂEk(x), with ÂEk(x) := 1
2·

...x
CH
k≠1 ≠ x

...
2

2
+ E(x),

ÂxCH
0 = x0.

(4.7)

Actually, the modulated objective ÂEk defined in (4.7) naturally appears when writing
out the expression of x

E
–(µk) from (4.6) using that µk is a Gaussian. This creates a link

between the sampling width Â‡ and the step size · . The fact that the parameter · can
be seen as the step size of (4.7) becomes apparent when observing that the optimality
condition of the k-th iterate of (4.7) reads ÂxCH

k = x
CH
k≠1 ≠ ·ÒE(ÂxCH

k ), which is an im-
plicit gradient step. [CBO&GD, Proposition 7] estimates the discrepancy between x

CH
k

and ÂxCH
k employing the quantitative Laplace principle, see Proposition 3.12 or [CBO-I,

Proposition 21].
Let us conclude this discussion by remarking that the scheme (4.7) itself is not self-

consistent but requires the computation of the iterates of the CH scheme (4.6). For this
reason, we introduce the minimizing movement scheme (MMS) [De 93] as the iterates
(xMMS

k )k=0,...,K given according to

x
MMS
k = arg min

xœRd
Ek(x), with Ek(x) := 1

2·

...x
MMS
k≠1 ≠ x

...
2

2
+ E(x),

x
MMS
0 = x0,

(4.8)

which is known to be the discrete-time implicit Euler of the gradient flow dynamics
d
dtx(t) = ≠ÒE(x(t)), see, e.g., [San17].
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Chapter 5
Particle Swarm Optimization

The next core contribution of this dissertation, which we present in this chapter, is con-
cerned with a convergence analysis of the renowned and widely-used PSO method [KE95;
Ken97]. The method is popular among practitioners and recognized as an e�cient
and practicable black box algorithm for tackling complex optimization problems of the
form (2.1) [WTL18]. As sketched at the end of Section 2.1 by following [GP21], PSO
was not only the source of inspiration for the design of CBO but is rigorously related
to the CBO methods discussed so far and can be regarded as a second-order variant of
CBO that includes velocity and momentum [CHQ22]. In Section 5.1, we briefly recall
the formulation of PSO used for our convergence analysis, which is then the focus of Sec-
tion 5.2, where we give an overview of the theoretical results of [PSO]. By transferring
the lessons and techniques learned from CBO to PSO, we investigate the convergence
behavior of PSO to global minimizers under certain conditions of well-preparation of the
hyperparameters of the method and the initial datum. This analysis employs the tech-
nique of [Car+18; Car+21]. An analysis in the framework of [CBO-I; CBO-II; CBO-IV]
is subject of ongoing work.

5.1. The Dynamics of Particle Swarm Optimization26

As alluded to at the end of Section 2.1 as well as at the beginning of Section 3.3, the
dynamics of CBO given in (2.2) is, as intended by the authors of [Pin+17], kept simple
and idealized compared to the ones of classical PSO methods [KE95; Ken97; SE98]
or other related particle-based optimization algorithms [DB05; Pha+06; Fil+08]. The
intricate working principles of these methods, namely, impede a rigorous study of their
convergence behavior. What concerns the PSO dynamics, while the matter of consensus
formation is well-studied, see, e.g., [CK02; OM98; YY15], only few theoretical statements
regarding the properties of the found consensus are available. Besides the stochasticity
and the usage of memory mechanisms of the method, the phenomenon of premature
convergence observed for the basic PSO algorithm [van07; vdBE10] leads to a large
number of variations and hard-to-analyze features of the method, thereby complicating
the derivation of global convergence guarantees. For instance, a modified PSO version,
so-called guaranteed convergence PSO was proposed in [vdBE10], which, however, also
26In this section, we follow [PSO, Section 1].
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only allows to prove convergence to local optima. In order to obtain therefrom a global
search algorithm, the authors suggested adding purely stochastic particles to the swarm,
which trivially makes the method capable of detecting a global minimizer but entails a
computational time that coincides with the time required to examine every location in
the search space, yielding an infeasible optimizer. Other works consider certain notions of
weak convergence [BMW18] or provide probabilistic guarantees of finding locally optimal
solutions [SW15]. Yet, a complete global numerical analysis of PSO was still lacking until
our work [PSO]. For further references see, e.g., [Wit11; PSL11; ZWJ15] and the papers
cited therein.

By casting the classical formulation of the PSO dynamics into a form that resem-
bles the dynamics of CBO, see the description in the last paragraph of Section 2.1 for
more details, the authors of [GP21] have paved the way for a rigorous mathematical
convergence analysis of PSO. As we elaborated on in detail in Chapter 3, our approach
leverages the analytical framework centered around the mean-field perspective. More
precisely, adapting and transferring the technical analysis of [Car+18; Car+21] to the
setting of PSO and thereby deriving convergence guarantees for PSO to global minimiz-
ers that are new to the literature of PSO, constitutes the central advancements made
in [PSO]. Before presenting these results in the subsequent section, let us provide and
explain the formulation of the PSO dynamics used for our analysis.

PSO with memory e�ects. Each individual particle of the swarm is described by
a triplet (Xi

, Y
i
, V

i),27 consisting of the position X
i, the historical best position Y

i,
as well as the velocity V

i of the respective particle. While the memory mechanisms
captured by the state variable Y

i are analogous to the ones of CBO with memory e�ects
as thematized in Section 3.3, the second-order nature of the dynamics, i.e., the presence
of the velocity V

i, is unique and characteristic of PSO. Let us now make the description
of PSO as formulated in [GP21] more rigorous.

Given a finite time horizon T > 0 and a time discretization 0 < �t < · · · < K�t = T

of [0, T ] with a suitable discrete time step size �t > 0, we denote the position and
velocity of the ith agent at time step k by X

i
k œ Rd and V

i
k œ Rd, respectively, its

historical best position stored in the particle’s memory as Y
i

k œ Rd, and the empirical
measure of all agents’ historical best positions at time step k by ‚flN

Y,k := 1
N

qN
i=1 ”Y i

k
.

For user-specified parameters –, —, ◊, Ÿ, “, m, ⁄1, ‡1 > 0 and ⁄2, ‡2 Ø 0, the time-discrete
evolution of the ith particle in the formulation of PSO with memory e�ects is given by
the iterative update rule

X
i
k = X

i
k≠1 + �tV

i
k≠1, (5.1a)

Y
i

k = Y
i

k≠1 + �tŸ

1
X

i
k ≠ Y

i
k≠1

2
S

—,◊
1
X

i
k, Y

i
k≠1

2
, (5.1b)

m V
i

k = m V
i

k≠1 ≠ �t“V
i

k≠1 + �t⁄1
1
Y

i
k ≠ X

i
k

2
+ �t⁄2

1
y

E
–(‚flN

Y,k) ≠ X
i
k

2

+ ‡1D

1
Y

i
k ≠ X

i
k

2
B

1,i
k + ‡2D

1
y

E
–(‚flN

Y,k) ≠ X
i
k

2
B

2,i
k ,

(5.1c)

27Throughout this chapter, but limited to it, we denote by ((Xi
k)k=1,...,K)i=1,...,N etc. the quantities of

PSO (5.1) instead of standard CBO (2.2) or some of its variants.
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5.1. The Dynamics of PSO

where
!
(Bm,i

k )k=1,...,K
"

i=1,...,N are independent, identically distributed Gaussian random
vectors in Rd with zero mean and covariance matrix �t Id for m œ {1, 2}. The system
is complemented with independent initial data (Xi

0, V
i

0 , Y
i

0 )i=1,...,N , typically such that
X

i
0 = Y

i
0 for all i = 1, . . . , N . The operator S

—,◊ specifying the implementation of the
historical best position Y

i is defined as in (3.118) in Section 3.3.
While the latter four terms in the update rule for the velocity V

i in (5.1c) are familiar
to the reader since Section 3.3 and correspond to acceleration in the direction of the
personal historical best of each particle as well as acceleration in the direction of the
global consensus point y

E
– computed on basis of the historical best positions of the

particles, the first update in (5.1c) models friction with a coe�cient commonly chosen
as “ = 1 ≠ m Ø 0, where m > 0 denotes the inertia weight.

The associated continuous-time mean-field dynamics of (5.1) is captured by the de-
terministic agent distribution f œ C([0, T ], P(Rd ◊ Rd ◊ Rd)), which weakly satisfies the
nonlinear nonlocal Vlasov-Fokker-Planck equation

ˆtft + v · Òxft + Òy ·
1
Ÿ(x ≠ y)S—,◊(x, y)ft

2

= Òv ·
A

“

m
vft + ⁄1

m
(x ≠ y) ft + ⁄2

m

1
x ≠ y

E
–(flY,t)

2
ft

+
A

‡
2
1

2m2
!
D (x ≠ y)

"2 + ‡
2
2

2m2

1
D

1
x ≠ y

E
–(flY,t)

222
B

Òvft

B

,

(5.2)

where the marginal law flY,t is given by flY (t, •) =
ss

Rd◊Rd df(t, x, • , v).

PSO without memory e�ects. A reduced version of the PSO dynamics (5.1), which
does not involve memory mechanisms and where each individual particle of the swarm
is consequently described only by a tuple (Xi

, V
i), is given by28

X
i
k = X

i
k≠1 + �tV

i
k≠1, (5.3a)

m V
i

k = m V
i

k≠1 ≠ �t“V
i

k≠1 + �t⁄

1
y

E
–(‚flN

X,k) ≠ X
i
k

2
+ ‡D

1
y

E
–(‚flN

X,k) ≠ X
i
k

2
B

2,i
k ,

(5.3b)

where ‚flN
X,k denotes the empirical measure of all agents’ positions at time step k, i.e.,

‚flN
X,k := 1

N

qN
i=1 ”Xi

k
. The associated continuous-time macroscopic description of (5.3) is

captured by the deterministic agent distribution f œ C([0, T ], P(Rd ◊Rd)), which weakly
satisfies the nonlinear nonlocal Vlasov-Fokker-Planck equation

ˆtft + v · Òxft = Òv ·
A

“

m
vft + ⁄

m

1
x ≠ y

E
–(flX,t)

2
ft + ‡

2

2m2

1
D

1
x ≠ y

E
–(flX,t)

222
Òvft

B

,

(5.4)

where the marginal law flX,t is given by flX(t, •) =
s
Rd df(t, • , v).

28Notice here, that we slightly abuse notations by not distinguishing in the notation between PSO with
and without memory e�ects. However, it will be clear from the context, to what we refer.
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Chapter 5. PSO

5.2. Convergence of Particle Swarm Optimization to
Global Minimizers29

The theoretical contributions of [PSO] are concerned with the convergence of PSO with
and without memory e�ects to global minimizers of the objective function E , as we
survey in what follows. Since we follow the analytical framework put forward by the
authors of [Car+18; Car+21], which we addressed in the first paragraph of Section 3.1.1,
we require a di�erent set of assumptions.

Namely, we consider functions that satisfy in addition to Assumption 3.3 and A1 from
Assumption 3.5 the following.

Assumption 5.1. In this section, we additionally require that E œ C2(Rd) and that

B1
..Ò2E

..
Œ Æ CÒ2E for some constant CÒ2E > 0, where Î•ÎŒ denotes the L

Œ-
norm on C(Rd),

B2 there exist ÷ > 0 and ‹ œ (0, Œ) such that for any x œ Rd there exists a global
minimizer x

ú of E (which may depend on x) such that

Îx ≠ x
úÎ2 Æ 1

÷
(E(x) ≠ E)‹

. (5.5)

B1 is an additional regularity assumption about the function E , which requires in par-
ticular that the objective is twice continuously di�erentiable. B2, on the other hand,
is an inverse continuity property of the type A2, however, with a crucial di�erence in
the details, which distinguishes the two main analytical frameworks described in Sec-
tion 3.1.1 from one another. Unlike A2, B2 does neither require nor imply the uniqueness
of the global minimizer x

ú, but explicitly allows objective functions which have multiple
global minimizers of identical quality, i.e., objective value E . For this reason, the conver-
gence guarantees of this section are about convergence to global minimizers rather than
global convergence to the global minimizer as are the ones in Chapter 3. In particular,
the results presented in what follows must require restrictions about the initialization.
An analysis in the framework of [CBO-I; CBO-II; CBO-IV] yielding global convergence
guarantees for the class of objective functions familiar from Assumptions 3.3 and 3.5 is
subject of ongoing work.

Under the aforementioned assumptions, we have the following statements about con-
vergence of PSO with and without memory e�ects to global minimizers.

5.2.1. Convergence of Particle Swarm Optimization with Memory
E�ects to Global Minimizers30

In the case of the PSO dynamics with memory e�ects, we obtain convergence of the with
(5.1) associated continuous-time mean-field dynamics as follows.
29In this section, we follow [PSO, Sections 2 to 4].
30In this section, we follow [PSO, Section 3].
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5.2. Convergence of PSO to Global Minimizers

Theorem 5.2 (PSO with memory e�ects converges to global minimizers in
the mean-field sense, [PSO, Theorem 4]). Let E œ C2(Rd) satisfy W1–W2, A1,
and B1. Let (Xt, Yt, Vt)tØ0 denote a solution to the with the continuous-time variant
of (5.1) associated self-consistent mean-field SDE according to Definition 3.2 (see also
[PSO, Equation (1.8)]). Moreover, let us assume the well-preparation of the parameters
together with the initial datum X0, Y0 and V0 in the sense that

P1 µ1 > 0 with

µ1 := (⁄1 + 2⁄2)“
(2m)2 ≠

A
9⁄

2
2

“m
+ 3‡

2
2

m2 + 3⁄1“

4m2

B
12e

≠–E

E exp(≠–E(Y0))
, (5.6)

P2 µ2 > 0 with

µ2 := (⁄1 + ⁄2)“
m2 + Ÿ◊

A
3⁄1
m

+ “
2

m2

B

≠ 8Ÿ
2
“

m
≠ ⁄

2
2“

2m2⁄1
≠ 3‡

2
1

2m2

≠
A

9⁄
2
2

“m
+ 3‡

2
2

m2

B

≠
A

9⁄
2
2

“m
+ 3‡

2
2

m2 + 3⁄1“

(2m)2

B
24e

≠–E

E exp(≠–E(Y0))
,

(5.7)

P3 it holds
A

–Ÿm

⁄1‰

1
CÒ2E + 2–

2
2

+
24C

2
Ò2EŸ

–‰3

B
E[H(0)]

E exp(≠–(E(Y0) ≠ E))

+ 6Ÿ

–‰

E
..ÒE(X0)

..2
2

E exp(≠–(E(Y0) ≠ E))
<

3
32 ,

(5.8)

where
‰ := 2

5
min{“/(2m), µ1, µ2}1

(“/(2m))2 + 1 + 3⁄1/m + 2(“/m)2
2 . (5.9)

Define the random variable

H(t) :=
3

“

2m

42 ...Xt ≠ EXt

...
2

2
+ 3

2

...Vt

...
2

2
+ 1

2

A
3⁄1
m

+ “
2

m2

B ...Xt ≠ Yt

...
2

2

+ “

2m

e
Xt ≠ EXt, Vt

f
+ “

m

e
Xt ≠ Yt, Vt

f
.

(5.10)

Then E[H(t)] converges exponentially fast with rate ‰ to 0 as t æ Œ. Moreover, there
exists some Âx, which may depend on – and f0, such that EXt æ Âx and y

E
–(flY,t) æ Âx

exponentially fast with rate ‰/2 as t æ Œ. Eventually, for any given accuracy Á > 0,
there exists –0 > 0, which may depend on the dimension d, such that for all – > –0,
Âx satisfies E(Âx) ≠ E Æ Á. If E additionally satisfies B2, we have ÎÂx ≠ x

úÎ2 Æ Á
‹
/÷.

The proof of Theorem 5.2 is presented in [PSO, Section 3].

73



Chapter 5. PSO

5.2.2. Convergence of Particle Swarm Optimization without Memory
E�ects to Global Minimizers31

In the case of the PSO dynamics without memory e�ects, we obtain an analogous state-
ment for the with (5.3) associated continuous-time mean-field dynamics.

Theorem 5.3 (PSO without memory e�ects converges to global minimizers
in the mean-field sense, [PSO, Theorem 2]). Let E œ C2(Rd) satisfy W1–W2,
A1, and B1. Let (Xt, Vt)tØ0 denote a solution to the with the continuous-time variant
of (5.3) associated self-consistent mean-field SDE according to Definition 3.2 (see also
[PSO, Equation (2.3)]). Moreover, let us assume the well-preparation of the parameters
together with the initial datum X0 and V0 in the sense that

P1 µ > 0 with

µ := ⁄“

2m2 ≠
A

2⁄
2

“m
+ ‡

2

m2

B
4e

≠–E

E exp(≠–E(X0))
, (5.11)

P2 it holds

m–

2“

1
E

e
exp(≠–E(X0))ÒE(X0), V0

f2

+
E exp(≠–E(X0))

+ –CÒ2E
‰(“/m ≠ ‰)

3
1 + 8m⁄

“2

4 E[H(0)]
1
E exp(≠–(E(X0) ≠ E))

22 <
3
16 ,

(5.12)

with x+ = max{x, 0} for x œ R denoting the positive part and where

‰ := 2
3

min{“/m, µ}1
(“/(2m))2 + 1

2 . (5.13)

Define the random variable

H(t) :=
3

“

2m

42 ...Xt ≠ EXt

...
2

+
...Vt

...
2

+ “

2m

e
Xt ≠ EXt, Vt

f
. (5.14)

Then E[H(t)] converges exponentially fast with rate ‰ to 0 as t æ Œ. Moreover, there
exists some Âx, which may depend on – and f0, such that EXt æ Âx and x

E
–(flX,t) æ Âx

exponentially fast with rate ‰/2 as t æ Œ. Eventually, for any given accuracy Á > 0,
there exists –0 > 0, which may depend on the dimension d, such that for all – > –0,
Âx satisfies E(Âx) ≠ E Æ Á. If E additionally satisfies B2, we have ÎÂx ≠ x

úÎ2 Æ Á
‹
/÷.

The proof of Theorem 5.3 is presented in [PSO, Section 2].
Without the presence of memory mechanisms, we can derive for the continuous-time

dynamics of (5.3) (see also [PSO, Equation (2.1)]) a quantitative result about the mean-
field approximation for PSO in the style of Section 3.1.2. This enables us to obtain
31In this section, we follow [PSO, Sections 2 and 4].
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a holistic convergence statement for the numerical PSO method similar to the one of
Section 3.1.3 for CBO. More precisely we have the following.

Theorem 5.4 (PSO without memory e�ects converges to global minimizers,
[PSO, Theorem 6]). Let ‘total > 0 and ” œ (0, 1/2). Then, under the assumptions
of Theorem 5.3, and with K := T/�t, where T = O

!
log(ÂÁ≠1)/‰

"
with ÂÁ bounding

the approximation error
..EXT ≠ Âx

.. thanks to Theorem 5.3 and for suitable �t > 0, it
holds for the discretized PSO dynamics (5.3) that

.....
1
N

Nÿ

i=1
X

i
K ≠ x

ú
.....

2

2
Æ ‘total (5.15)

with probability larger than

1 ≠
1
” + ‘

≠1
total(CNA(�t)m + CMFAN

≠1 + CLLNN
≠1 + ÂÁ + Á

2‹
/÷

2)
2

. (5.16)

Here, m denotes the order of accuracy of the used discretization scheme (for the Euler-
Maruyama scheme m = 1/2). Moreover, besides problem-dependent factors and the
parameters of the method, the dependence of the constants is as follows. CNA depends
linearly on d and N , and exponentially on T . CMFA depends exponentially on –, T

and ”
≠1. CLLN depends on the moment bound from [PSO, Theorem 1]. Lastly, Á is

chosen according to Theorem 5.3.

The proof of Theorem 5.4 is presented in [PSO, Section 4].
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Chapter 6
Consensus-Based Optimization
for Saddle Point Problems

In this final chapter before the conclusions, we showcase the last core contribution of
this dissertation, for which we go beyond the task of solving optimization problems
and, instead, turn towards tackling saddle point problems, i.e., finding global Nash
equilibria. To this end, we present in Section 6.1 a novel multi-particle metaheuristic
derivative-free algorithm, consensus-based optimization for saddle point problems (CBO-
SP), which we proposed in [CBO-SP] and which takes inspiration from the CBO method
for optimization. It employs two groups of interacting particles, one of which performs a
minimization over one variable while the other performs a maximization over the other
variable. The two groups constantly exchange information through a suitably weighted
average. This paradigm permits a passage to the mean-field limit and, as we sketch in
Section 6.2, makes the method amenable to theoretical analysis by allowing to obtain
convergence guarantees under reasonable assumptions about the initialization and the
objective function.

6.1. The Dynamics of Consensus-Based Optimization for
Saddle Point Problems32

Optimization problems where the goal is to find the best possible objective value for the
worst-case scenario, so-called saddle point or minimax optimization problems are of the
form

min
xœRd1

max
yœRd2

E(x, y) (6.1)

and attract a large amount of attention across several fields in applied mathematics and
beyond. This includes classical applications in game theory [vNM07], economics [Mye91],
engineering and signal processing [Goh+09; LDL13; Cha+20], but also cutting-edge
topics in machine learning such as the training of GANs [Goo+20], adversarial train-
ing [Mad+18b], and fair machine learning [Mad+18a]. In most of the applications of
recent interest, the payo� function E is nonconvex-nonconcave, making the problem of
finding a global equilibrium in the sense of Definition 6.1 in general NP-hard [MK87]
and the available toolset and theories very limited, see, e.g., the review paper [Raz+20].
32In this section, we follow [CBO-SP, Section 1].
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Chapter 6. CBO for Saddle Point Problems

A well-known notion of optimality originating from game theory is the one of Nash
equilibria (also referred to as saddle points) [Nas50], where neither of the players has
anything to gain by changing only its own strategy.

Definition 6.1. A point (xú
, y

ú) œ Rd1 ◊Rd2 is called Nash equilibrium or saddle point
of a function E if it holds

E(xú
, y) Æ E(xú

, y
ú) Æ E(x, y

ú) for all (x, y) œ Rd1 ◊ Rd2 (6.2)

or, equivalently, if

min
xœRd1

max
yœRd2

E(x, y) = E(xú
, y

ú) = max
yœRd2

min
xœRd1

E(x, y). (6.3)

To keep the notation concise we write Eú for E(xú
, y

ú) in what follows.

Constituting the core contribution of our work [CBO-SP], we propose a novel zero-
order consensus-based optimization method for finding the global Nash equilibrium
(xú

, y
ú) of a smooth objective function E : Rd1 ◊ Rd2 æ R, which is designed to be

amenable to a rigorous theoretical convergence analysis, missing so far in the literature on
population-based methods for minimax problems [SK02; KHdS04; LPV02]. In contrast
to gradient descent-ascent-like algorithms such as [Bub15; Haz16; Nou+19; Raz+20;
Com+24], CBO-SP is derivative-free. Taking inspiration from CBO for optimization, it
employs two sets of particles X

1
, . . . , X

N1 and Y
1
, . . . , Y

N2 , one for minimization, the
other for maximization, with the aim of exploring the domain and forming a consensus
about the location of the saddle point (xú

, y
ú). More formally, the strategy is as follows.

Given a finite time horizon T > 0 and a time discretization 0 < �t < · · · < K�t = T

of [0, T ] with a suitable discrete time step size �t > 0, we denote the position of the
respective ith agent at time step k by X

i
k œ Rd1 and Y

i
k œ Rd2 , and their associated em-

pirical measures by ‚flN1
X,k and ‚flN2

Y,k. For user-specified parameters –, —, ⁄1, ‡1, ⁄2, ‡2 > 0,
the time-discrete evolution of CBO-SP is given by the iterative update rule

X
i
k = X

i
k≠1 ≠ ⁄1�t

1
X

i
k≠1 ≠ x

E,Y
– (‚flN1

X,k≠1)
2

+ ‡1D

1
X

i
k≠1 ≠ x

E,Y
– (‚flN1

X,k≠1)
2

B
X,i
k , (6.4a)

Y
i

k = Y
i

k≠1 ≠ ⁄2�t

1
Y

i
k≠1 ≠ y

E,X
— (‚flN2

Y,k≠1)
2

+ ‡2D

1
Y

i
k≠1 ≠ y

E,X
— (‚flN2

Y,k≠1)
2

B
Y,i
k , (6.4b)

where
!
(BX,i

k )k=1,...,K
"

i=1,...,N1 and
!
(BY,i

k )k=1,...,K
"

i=1,...,N2 are independent, identically
distributed Gaussian random vectors in Rd1 and Rd2 , respectively, with zero mean and
covariance matrix �t Id. The consensus point is computed as

x
E,Y
– (‚flN1

X,k) =
⁄

x
Ê

E
–

!
x,

s
y d‚flN2

Y,k(y)
"

..ÊE
–

!
• ,

s
y d‚flN2

Y,k(y)
"..

L1(‚flN1
X,k)

d‚flN1
X,k(x), (6.5a)

y
E,X
— (‚flN2

Y,k) =
⁄

y
Ê

E
≠—

! s
x d‚flN1

X,k+1(x), y
"

..Ê
E
≠—

! s
x d‚flN1

X,k+1(x), •
"..

L1(‚flN2
Y,k)

d‚flN2
Y,k(y). (6.5b)
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6.2. Convergence of CBO for Saddle Point Problems to Saddle Points

The associated continuous-time mean-field dynamics of (6.4), which is the basis for the
analytical considerations discussed in the subsequent section, is captured by the deter-
ministic agent distribution fl œ C([0, T ], P(Rd1+d2)), which weakly satisfies the nonlinear
nonlocal Fokker-Planck equation

ˆtflt = ⁄1divx

11
x ≠ x

E,Y
– (flX

t )
2

flt

2
+ ⁄2divy

11
y ≠ y

E,X
— (flY

t )
2

flt

2

+ ‡
2
1

2

d1ÿ

k=1
ˆ

2
xkxk

31
x ≠ x

E,Y
– (flX

t )
22

k
flt

4
+ ‡

2
2

2

d2ÿ

k=1
ˆ

2
ykyk

1
(y ≠ y

E,X
— (flY

t ))2
kflt

2 (6.6)

with marginal laws flX,t and flY,t given by flX(t, •) =
s
Rd2 dfl(t, • , y) and flY (t, •) =s

Rd1 dfl(t, x, •), respectively.

6.2. Convergence of Consensus-Based Optimization for
Saddle Point Problems to Saddle Points33

Besides proposing the CBO-SP algorithm (6.4) in [CBO-SP], we provide a mathemat-
ical perspective on its behavior by taking the familiar mean-field point of view, i.e.,
investigating the associated mean-field dynamics (6.6).

For this, we consider functions that satisfy the following.
Assumption 6.2. Throughout this section we are interested in objective functions
E œ C2(Rd1+d2), for which

S1 there exist two functions E œ C1(Rd2) and E œ C1(Rd1) such that

E(y) Æ E(x, y) Æ E(x) for all (x, y) œ Rd1+d2 . (6.7)

The functions E and E shall, for a constant CÒE > 0, satisfy ÎÒE(y)Î2 Æ CÒE
for all y œ Rd2 and ÎÒE(x)Î2 Æ CÒE for all x œ Rd1 .

S2 there exists a constant C1 > 0 such that it holds
--E(x, y) ≠ E(xÕ

, y
Õ)

-- Æ C1
1
1 +

..x
..

2 +
..x

Õ..
2 +

..y
..

2 +
..y

Õ..
2

2

·
!..x ≠ x

Õ..
2 +

..y ≠ y
Õ..

2
" (6.8)

for all (x, y), (xÕ
, y

Õ) œ Rd1+d2 and s œ [0, 1].

S3 there exists a constant C2 > 0 obeying

E(x, y) ≠ E(y + sy
Õ) Æ C2

!
1 + ÎxÎ2

2 + ÎyÎ2
2 + Îy

ÕÎ2
2
"
, (6.9a)

and

E(x + sx
Õ) ≠ E(x, y) Æ C2

!
1 + ÎxÎ2

2 + Îx
ÕÎ2

2 + ÎyÎ2
2

"
(6.9b)

for all (x, y), (xÕ
, y

Õ) œ Rd1+d2 and s œ [0, 1].

33In this section, we follow [CBO-SP, Section 3].
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S4 there exists a constant CÒE > 0 such that

max
I

sup
(x,y)œRd1 ◊Rd2

ÎÒxE(x, y)Î2 , sup
(x,y)œRd1 ◊Rd2

ÎÒyE(x, y)Î2

J

Æ CÒE ,

(6.10)

and a constant CÒ2E > 0 such that

max
;

max
k=1,...,d1

...ˆ
2
xkxk

E
...

Œ
, max

k=1,...,d2

...ˆ
2
ykyk

E
...

Œ
,

...fl
!
Ò2

xE
"...

Œ
,

...fl
!
Ò2

yE
"...

Œ

<
Æ CÒ2E ,

(6.11)

where Î•ÎŒ denotes the L
Œ-norm on C(Rd1+d2) and fl denotes the spectral

radius.

S5 there exist constants ‘0, ÷, ‹ > 0 such that for each (x, y) œ Rd1+d2 satisfying
Eú ≠ E(xú

, y) Æ ‘0 and E(x, y
ú) ≠ Eú Æ ‘0 for some saddle point (xú

, y
ú) of E ,

we have

Îx ≠ x
úÎ2 Æ 1

÷

!
|E(x, y

ú) ≠ Eú|
"‹ and Îy ≠ y

úÎ2 Æ 1
÷

!
|E(xú

, y) ≠ Eú)|
"‹

.

(6.12)

S1–S3 are boundedness and growth conditions on E , which are in particular su�cient to
ensure the well-posedness of the continuous-time version of (6.4) as well as its associated
mean-field dynamics (6.6), see, e.g., [CBO-SP, Section 2]. S4 comprises mere technical
regularity assumptions in terms of the first and second derivatives. In particular, it
requires that the gradients as well as second-order derivatives of E are uniformly bounded,
which is, however, necessary only for theoretical analysis of the long-term behavior of
the algorithm. As a purely zero-order derivative-free method, our CBO-SP algorithm
requires in practice only point-wise evaluations of E . S5, on the other hand, should be
regarded as a tractability condition on the landscape of the objective function E . It
imposes coercivity of E around saddle points, which relates the distance from (xú

, y
ú)

with the value of the objective function.
Under these assumptions, we have the following consensus and convergence statements

for CBO-SP provided certain well-preparedness conditions about the initialization and
the parameters of the method are met as indicated in the statement.

Theorem 6.3 (CBO-SP converges to saddle points in the mean-field sense,
[CBO-SP, Theorem 11]). Let E œ C2(Rd1+d2) satisfy S1–S4. Let (Xt, Yt)tØ0 denote
a solution to the with the continuous-time variant of (6.4) associated self-consistent
mean-field SDE according to Definition 3.2 (see also [CBO-SP, Equation (3)]). Define
the functionals

VarX(t) = E
...Xt ≠ EXt

...
2

2
and VarY (t) = E

...Yt ≠ EYt

...
2

2
. (6.13)
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6.2. Convergence of CBO for Saddle Point Problems to Saddle Points

Then the following statements hold.

(1) Under the assumption of well-preparedness of the initial datum (X0, Y0) and the
parameters –, —, ⁄1, ⁄2, ‡1 and ‡2 in the sense of [CBO-SP, Definition 10, P1–
P3], VarX and VarY converge exponentially fast to 0 as t æ Œ. More precisely,
for rates µ1, µ2 > 0 defined as in [CBO-SP, Definition 10, P1], it holds

VarX(t) + VarY (t) Æ VarX(0)e≠µ1t + VarY (0)e≠µ2t
. (6.14)

Moreover, there exists some (Âx, Ây) depending in particular on – and — such that,
as t æ Œ,

!
EXt,EYt

"
æ (Âx, Ây) and

1
x

E,Y
– (flX,t), y

E,X
— (flY,t)

2
æ (Âx, Ây). (6.15)

(2) For any given accuracy Á > 0, there exist some –0, —0 > 0 such that for all
– Ø –0 and — Ø —0 the point (Âx, Ây) from (1) (which may depend on – and —)
satisfies

|E(Âx, Ây) ≠ Eú| Æ Á as well as Eú ≠ E(xú
, Ây) Æ Á and E(Âx, y

ú) ≠ Eú Æ Á

(6.16)
provided that the well-preparedness assumptions [CBO-SP, Definition 10, P1–
P4] hold for such – and — together with the initial datum (X0, Y0).

(3) If E additionally satisfies S4 with respect to (Âx, Ây) from (2) with Á Æ ‘0, i.e.,
there exists some saddle point (xú

, y
ú) depending on (Âx, Ây) such that ÎÂx ≠ x

úÎ2 Æ
(|E(Âx, y

ú) ≠ Eú|)‹
/÷ and ÎÂy ≠ y

úÎ2 Æ (|E(xú
, Ây) ≠ Eú|)‹

/÷, then we have

..(Âx, Ây) ≠ (xú
, y

ú)
..

2 Æ 2
÷

Á
‹ (6.17)

provided that the well-preparedness assumptions [CBO-SP, Definition 10, P1–
P4] hold for su�ciently large – and — together with the initial datum (X0, Y0).

The proof of Theorem 6.3 is presented in [CBO-SP, Section 4].
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Chapter 7
Conclusions

This dissertation laid mathematical foundations for the numerical analysis of interact-
ing multi-particle systems in the setting of nonconvex nonsmooth optimization in high
dimensions.

It is based on the publications listed at the end of the preface.
Interacting multi-particle methods are part of the vast class of heuristics and meta-
heuristics, which comprise evolution strategies, evolutionary programming methods, ge-
netic algorithms, PSO, random search, the Nelder-Mead simplex heuristic, the Metro-
polis-Hastings algorithm, simulated annealing, and many more well-known and well-
established methods. In contrast to the classical optimization paradigm, which relies
on and mostly exploits local information about the objective function (examples being
gradient descent-like, Newton-like, or trust region methods), many metaheuristics inter-
twine local improvement procedures and deterministic decisions with global strategies
and stochastic processes, and employ a system of interacting particles to explore the
parameter space and to consecutively exploit the gathered information through commu-
nication, with the overall goal to design an e�cient yet e�ective procedure for reliably
and robustly finding globally optimal solutions.

Despite their tremendous empirical success, broad spectrum of applicability, ease of
handling, and wide use in practice, their rigorous theoretical analysis has largely re-
mained elusive. This is mostly attributed to the inherent complexity and intricacies
of the particle system arising from the nonlinear and nontrivial working principles and
interaction rules underlying the algorithm, the prevalent stochasticity, and a possibly
large number of involved agents, in particular in the case of hard nonconvex and high-
dimensional problems.

However, given the necessity of capable, reliable, and robust algorithms that come
with informative and solid convergence guarantees, a mathematical analysis framework
for these methods that allows to derive rigorous quantitative estimates about the finite-
time behavior of the algorithms with explicit rates of convergence, is of crucial interest
and indispensable to warrant their applicability in particular in security-, privacy-, and
fairness-sensitive applications. To close this gap, we covered in this dissertation algo-
rithms designed for classical global optimization problems as well as saddle point or
so-called minimax optimization problems. Tasks of either type are of fundamental inter-
est throughout science and engineering, including most recent developments in machine
learning and artificial intelligence. We further established a surprising and interesting,
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Chapter 7. Conclusions

yet, so far, largely unexplored and unexploited link between the derivative-free and the
gradient-based world in optimization.

Mathematical foundations of interacting multi-particle methods. Due to the
aforementioned inherent complexity and intricacies of large systems of interacting parti-
cles, a mean-field perspective is taken at the heart of our analysis, which, as we elaborated
on in the introduction, has become a prominent and fruitful theoretical avenue. In this
vein, the central observations and core contributions of this dissertation are connected
to and rest on insights gained in the infinite particle regime. With original complexi-
ties of the objective function being provably alleviated on this level and the hardness
of the original optimization problem having disappeared, this point of view enabled
us to understand, unveil, and distill those key internal mechanisms of the investigated
purpose-driven interacting particle systems that are centrally and crucially responsible
for the, in a wide variety of applications, empirically observed successes. However, in
order to infer properties of practical interest about the associated implemented multi-
agent algorithms, we went beyond the investigated mean-field descriptions by providing
quantitative mean-field approximation results. This yielded holistic convergence proofs
in form of probabilistic global convergence guarantees for the interacting particle systems
under investigation. While we focused in this dissertation on the CBO and PSO algo-
rithms as well as some of their variants, the general analytical framework is flexible and
versatile enough to be adapted and extended to a wider class of numerical algorithms,
as is demonstrated convincingly by the recent literature in this field.

A link between the derivative-free and gradient-based worlds in optimiza-
tion. By viewing CBO from a di�erent angle, we paved the way for a completely novel
analytical approach to theoretically investigate gradient-based learning algorithms that
are considered one of the cornerstones of the astounding successes of machine learning.
Forging such an unexpected, yet, surprising and intriguing link between these two, up
to now, rather separated worlds in optimization, will enable us to drive forward our
theoretical understanding of both gradient-based learning methods and metaheuristic
black-box optimization algorithms. We further widen the scope of applications of meth-
ods which — in one way or another, be it explicitly or implicitly — estimate and exploit
gradients. In particular, we believe these insights to bear the potential for designing
e�cient and reliable training methods which behave like first-order methods while not
relying on the ability of computing gradients.

A word on the future. Plenty of exciting and relevant research directions that revolve
around the topic of interacting multi-particle systems for optimization are left for further
investigations.

First of all, the general mathematical framework with a mean-field perspective at its
heart, which we thematized in this dissertation, beckons to be applied to other classical,
recent, and yet-to-be-designed heuristics and metaheuristics.
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On this note, a taxonomy for metaheuristics, in general, requires a closer study to
determine the relationships among them in a broader fashion.

Secondly, while PSO is well-established across several communities in academia and
industry, CBO and its variants still have to prove themselves competitive in the relevant
benchmark tests of interest in order to be appealing to these communities. For this, in
particular, parallel implementations that further improve the computational complexity
and e�ciency are of crucial importance.

From a theoretical perspective, a better understanding of the hyperparameters of the
method, in particular the parameter – and its relationship with the intrinsic hardness of
the optimization problem, is of fundamental interest. This will give deeper insights into
the question, for which classes of objective functions CBO, PSO, and related methods,
as well as metaheuristics in general, are e�ective and e�cient.

Moreover, this might inspire the design of di�usions that are less agnostic to and
rather adaptive w.r.t. the objective function E , leading to a more capable scheme in case
of ill-conditioned problems.

Thirdly, suitable variations of CBO may be worth to be introduced for robust, bilevel,
stochastic, and infinite-dimensional optimizations.
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Paper Summary of [CBO-I]34

In the paper “Consensus-Based Optimization Methods Converge Globally,” we give the
first holistic global convergence proof of CBO methods (2.2) and (2.10) with isotropic
noise in (2.5) on the plane, thereby providing a novel analytical framework.

CBO, as proposed in [Pin+17], is a multi-agent metaheuristic derivative-free opti-
mization method that can globally minimize nonconvex nonsmooth functions, i.e., solve
problems of the form (2.1). Its design follows the guiding principles of metaheuristic
algorithms, in particular particle swarm optimization [KE95; Ken97] and simulated an-
nealing [AK89]. But, it is of much simpler nature in order to be amenable to theoretical
analysis using ideas from statistical mechanics by taking a mean-field perspective and
gaining an understanding of the macroscopic behavior of the dynamics [Car+18].

Based on an experimentally supported intuition, see [CBO-I, Figure 1], that, on aver-
age, CBO performs a gradient descent of the squared Euclidean distance to the global
minimizer, we devise in [CBO-I] a novel technique for proving the convergence to the
global minimizer in mean-field law for a rich class of objective functions [CBO-I, The-
orem 3.7]. The result unveils internal mechanisms of CBO that are responsible for the
success of the method. In particular, we prove that CBO performs a convexification of
a very large class of optimization problems as the number of optimizing agents goes
to infinity. Furthermore, we improve prior analyses by requiring minimal assumptions
about the initialization of the method and by covering objectives that are merely locally
Lipschitz continuous. As a core component of this analysis, we establish a quantitative
nonasymptotic Laplace principle [CBO-I, Proposition 4.5], which may be of independent
interest. From the result of CBO convergence in mean-field law, it becomes apparent
that the hardness of any global optimization problem is necessarily encoded in the rate
of the mean-field approximation, for which we provide a novel probabilistic quantitative
estimate [CBO-I, Proposition 3.11]. The combination of the former results about the
convergence in mean-field law and the quantitative mean-field approximation together
with classical results of numerical approximation of SDEs allows to obtain probabilistic
global convergence guarantees of the numerical CBO method [CBO-I, Theorem 3.8].

KR’s Contributions. Building upon ideas of MF to design and investigate a suitable
Lyapunov functional for CBO, all authors collaborated on working out the technical de-
tails for proving the global convergence of the mean-field dynamics of CBO to a global
minimizer, in particular, eventually identifying the Wasserstein-2 distance to be the cor-
rect quantity to study. TK wrote a first draft of the paper, together with KR, which
was then refined by all authors. KR conducted the numerical experiments. At a later
stage, KR developed and added the results about the mean-field approximation of CBO,
consulting regularly with MF. This finally allowed to obtain a holistic convergence proof
of the numerical CBO method in form of probabilistic global convergence guarantees.
KR rewrote large parts of the paper, which was then proofread and refined by MF.

34In this section, we follow [CBO-I, Abstract].
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Abstract

In this paper we study consensus-based optimization (CBO), which is a multi-agent meta-
heuristic derivative-free optimization method that can globally minimize nonconvex non-
smooth functions and is amenable to theoretical analysis. Based on an experimentally
supported intuition that, on average, CBO performs a gradient descent of the squared
Euclidean distance to the global minimizer, we devise a novel technique for proving the
convergence to the global minimizer in mean-field law for a rich class of objective functions.
The result unveils internal mechanisms of CBO that are responsible for the success of the
method. In particular, we prove that CBO performs a convexification of a large class of
optimization problems as the number of optimizing agents goes to infinity. Furthermore, we
improve prior analyses by requiring mild assumptions about the initialization of the method
and by covering objectives that are merely locally Lipschitz continuous. As a core component
of this analysis, we establish a quantitative nonasymptotic Laplace principle, which may be
of independent interest. From the result of CBO convergence in mean-field law, it becomes
apparent that the hardness of any global optimization problem is necessarily encoded in the
rate of the mean-field approximation, for which we provide a novel probabilistic quantitative
estimate. The combination of these results allows to obtain probabilistic global convergence
guarantees of the numerical CBO method.

Keywords: global optimization, derivative-free optimization, nonsmoothness, nonconvexity, metaheuris-

tics, consensus-based optimization, mean-field limit, Fokker-Planck equations

AMS subject classifications: 65K10, 90C26, 90C56, 35Q90, 35Q84

1 Introduction

A long-standing problem in applied mathematics is the global minimization of a potentially
nonconvex nonsmooth cost function E : Rd

→ R and the search for an associated globally

∗Email: massimo.fornasier@ma.tum.de
†Email: timo@simula.no
‡Email: konstantin.riedl@ma.tum.de
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minimizing argument v→. Throughout, we assume the unique existence of the minimizer v→ and
denote its associated minimal value by

E := E(v→) = inf
v↑Rd

E(v).

The objective E is supposed to be locally Lipschitz continuous and to satisfy a tractability
condition of the form ↑v ↓ v

→
↑2 ↔ (E(v)↓ E)ω/ω in a neighborhood of v→, see Assumption A2

for the details. While computing E or v→ are in general NP-hard problems under such conditions,
several instances arising in real-world scenarios can, at least empirically, be solved within
reasonable accuracy and moderate computational time. In the present work we are concerned
with the class of derivative-free optimization algorithms, i.e., methods that are based exclusively
on the evaluation of the objective function E . Amongst them and achieving the state of the art
on challenging problems such as the Traveling Salesman Problem, are so-called metaheuristics
[1, 4, 5, 42, 55]. Metaheuristics orchestrate an interaction between local improvement procedures
and global strategies, and combine deterministic and random decisions, to create a process
capable of escaping from local optima and performing a robust search of the solution space.
Examples include Random Search [54], Evolutionary Programming [24], the Metropolis-Hastings
algorithm [33], Genetic Algorithms [35], Particle Swarm Optimization [42], and Simulated
Annealing [1]. Despite their tremendous empirical success and widespread use in practice,
many metaheuristics, due to their complexity, lack a proper mathematical foundation that
could prove robust convergence to global minimizers under suitable assumptions. Nevertheless,
for some of them, such as Random Search or Simulated Annealing, there exist probabilistic
guarantees for global convergence, see, e.g., [36,62]. While transferring some of the ideas of [62]
to Particle Swarm Optimization allows to establish guaranteed convergence to global minima,
the proof argument uses a computational time coinciding with the time necessary to examine
every location in the search space [65].

Recently, the authors of [10, 52] have introduced consensus-based optimization (CBO)
methods, which follow the guiding principles of metaheuristic algorithms, but are of much
simpler nature and more amenable to theoretical analysis. Inspired by consensus dynamics and
opinion formation, CBO methods use a finite number of agents V 1

, . . . , V
N , which are formally

stochastic processes, to explore the domain and to form a global consensus about the location
of the minimizer v→ as time passes. The dynamics of the agents V 1

, . . . , V
N are governed by

two competing terms. A drift term drags each agent towards an instantaneous consensus point,
denoted by vε, which is computed as a weighted average of all agents’ positions and serves as a
momentaneous proxy for the global minimizer v→. This term may be deactivated individually
for an agent if its position improves upon the consensus point through modulating the drift by a
function H approximating the Heaviside function. The second term is stochastic and randomly
di!uses agents according to a scaled Brownian motion in Rd, featuring the exploration of the
energy landscape of the cost E . Ideally, as result of the described drift-di!usion mechanism,
the agents eventually achieve a near optimal global consensus, in the sense that the associated
empirical measure

ε̂
N

t :=
1

N

N∑

i=1

ϑ
V

i
t

(1)

converges to a Dirac delta ϑṽ at some ṽ ↗ Rd close to v
→.

Let us now provide a formal description of the method. Given a time horizon T > 0 and a
time discretization t0 = 0 < ”t < · · · < K”t = T of [0, T ], we denote the location of agent i at
time k”t by V

i

k!t
, k = 0, . . . ,K. For user-specified parameters ϖ,ϱ,ς > 0, the time-discrete

2



evolution of the i-th agent is defined by the update rule

V
i

(k+1)!t
↓ V

i

k!t
=↓”tϱ

(
V

i

k!t
↓ vε(ε̂

N

k!t
)
)
H
(
E(V i

k!t
)↓ E

(
vε(ε̂

N

k!t
)
))

+ ς
∥∥V i

k!t
↓ vε(ε̂

N

k!t
)
∥∥
2
B

i

k!t
,

(2)

V
i

0 ↘ ε0 for all i = 1, . . . , N, (3)

where ((Bi

k!t
)k=0,...,K↓1)i=1,...,N are independent, identically distributed Gaussian random

vectors in Rd with zero mean and covariance matrix ”tIdd. The system is complemented
with independent initial data (V i

0 )i=1,...,N , distributed according to a common initial law ε0.
Equation (2) originates from a simple Euler-Maruyama time discretization [34,53] of the system
of stochastic di!erential equations (SDEs)

dV
i

t = ↓ϱ
(
V

i

t ↓ vε(ε̂
N

t )
)
H
(
E(V i

t )↓ E
(
vε(ε̂

N

t )
))

dt+ ς
∥∥V i

t ↓ vε(ε̂
N

t )
∥∥
2
dB

i

t, (4)

V
i

0 ↘ ε0 for all i = 1, . . . , N, (5)

where ((Bi
t)t↔0)i=1,...,N are now independent standard Brownian motions in Rd. As mentioned

in the informal description above, the updates in the evolutions (2) and (4) consist of two terms,
respectively. The first term is the drift towards the momentaneous consensus vε(ε̂Nt ), which is
defined by

vε(ε̂
N

t ) :=

∫
v

φε(v)

↑φε↑L1(ϑ̂Nt )

dε̂
N

t (v), with φε(v) := exp(↓ϖE(v)). (6)

Definition (6) is motivated by the well-known Laplace principle [21,49,52], which states that,
for any absolutely continuous probability distribution ↼ on Rd, we have

lim
ε↗↘

(
↓
1

ϖ
log

(∫
φε(v) d↼(v)

))
= inf

v↑supp(ϖ)
E(v). (7)

Alternatively, we can also interpret (6) as an approximation of argmini=1,...,N E(V i
t ), which im-

proves as ϖ → ≃, provided the minimizer uniquely exists. The univariate functionH : R → [0, 1]
appearing in the first term of (2) and (4) can be used to deactivate the drift term for agents
V

i
t , whose objective is better than the one of the momentaneous consensus, i.e., for which

E(V i
t ) < E(vε(ε̂Nt )), by setting H(x) ⇐ x↔0. The most frequently studied choice however is

H ⇒ 1. The second term in (2) and (4) encodes the di!usion or exploration mechanism of the
algorithm. Intuitively, scaling by ↑V

i
t ↓ vε(ε̂Nt )↑2 encourages agents far from the consensus

point to explore larger regions, whereas agents close to the consensus point try to enhance their
position only locally. Furthermore, the scaling is essential to eventually deactivate the Brownian
motion and to achieve consensus among the individual agents.

CBO methods have been considered and analyzed in several recent papers [8, 10–12,16, 25–
28,40,43,64], even for optimization problems in high-dimensional and non-Euclidean settings,
and using more sophisticated rules for the parameter choices ϖ and ς inspired by Simulated
Annealing [11,26]. Moreover, several variants of the dynamics have been proposed, such as ones
integrating memory mechanisms [57, 64] or others using jump-di!usion processes [40]. To make
the method feasible and competitive for large-scale applications, in particular, for problems
arising in machine learning, random mini-batch sampling techniques have been employed when
evaluating the objective function or computing the consensus point. This significantly reduces
the computational and communication complexity of CBO methods [11, 28] and further enables
the parallelization of the algorithm by evolving disjoint subsets of particles independently
for some time with separate consensus points, before aligning the dynamics through a global
communication step. However, despite bearing interesting questions concerning the trade-o!
between parallel e#ciency and performance when it comes to the relevance of communication

3



between the individual agents, this is a so far largely unexplored area for CBO. As an example
for the applicability of CBO to such high-dimensional problems, we refer to [11,28,57] where the
method is used for training a shallow and a convolutional neural network for image classification
of the MNIST database of handwritten digits [44], to the recent paper [13] where CBO is used in
the setting of clustered federated learning, to [57] where a compressed sensing problem is solved,
or to the line of works [25–27] where (2) and (4) are adapted to the sphere Sd↓1 achieving near
state-of-the-art performance on a phase retrieval, a robust subspace detection problem and
when robustly computing eigenfaces. Recently, also general constrained optimization problems
have been tackled by CBO through the use of penalization techniques, which allow to cast the
constrained problem into an unconstrained optimization task [8, 12].

As initially mentioned, CBO methods are motivated by the urge to develop a class of
metaheuristic algorithms with provable guarantees, while preserving their capabilities of escaping
local minima through global optimization mechanisms. The main theoretical interest focuses on
understanding when consensus formation of ε̂Nt → ϑṽ occurs, and on quantitatively bounding
the associated errors E(ṽ)↓ E and ↑ṽ ↓ v

→
↑2. A theoretical analysis of the dynamics can either

be done on the microscopic systems (2) or (4), as for instance in [31,32], or, as in [10,52], by
analyzing the macroscopic behavior of the agent density through a mean-field limit associated
with the particle-based dynamics (4), given, for initial data V0 ↘ ε0, by

dVt = ↓ϱ
(
Vt ↓ vε(εt)

)
H
(
E(Vt)↓ E(vε(εt))

)
dt+ ς

∥∥Vt ↓ vε(εt)
∥∥
2
dBt, (8)

where εt = Law(Vt). The weak convergence of the microscopic system (4) to the mean-field
limit (8), or, more precisely, of the empirical measure ε̂

N
t to εt as N → ≃, has been shown

recently in [37], see also Remark 2 for additional details. This legitimates to analyze (8) in
lieu of (4). The measure ε ↗ C([0, T ],P(Rd)) with εt = ε(t) = Law(Vt) satisfies the nonlinear
nonlocal Fokker-Planck equation

↽tεt = ϱdiv
(
(v ↓ vε(εt))H(E(v)↓ E(vε(εt))) εt

)
+

ς
2

2
”
(
↑v ↓ vε(εt)↑

2
2 εt

)
(9)

in a weak sense (see Definition 5). Leveraging this partial di!erential equation (PDE), the
authors of [10, 52] analyze the large time behavior of the particle density t ⇑→ εt instead of
the microscopic systems (2) and (4). Studying the mean-field limit (8) or (9) allows for agile
deterministic calculus tools and typically leads to stronger theoretical results, which characterize
the average agent behavior through the evolution of ε. This analysis perspective is justified by
the mean-field approximation, which quantifies the convergence of the microscopic system (4) to
the mean-field limit (8) as the number of agents grows. We discuss results about the mean-field
approximation in Remark 2 and make it rigorous in Proposition 16. Hence, in view of its validity
and as already done in the preceding works [10,52], in the first part of the paper we concentrate
on establishing convergence in mean-field law for (4), as defined in Definition 1 below. That is,
we analyze the mean-field dynamics (8) and (9) in place of the interacting particle system (4).
Afterwards, by combining the mean-field approximation with convergence in mean-field law, we
close the paper with a global convergence result for the numerical method (2).

Definition 1 (Convergence in mean-field law). Let F,G : P(Rd)⇓ Rd
→ Rd be two functions

and consider for i = 1, . . . , N the SDEs expressed in Itô’s form as

dV
i
t = F

(
ε̂
N
t , V

i
t

)
dt+G

(
ε̂
N
t , V

i
t

)
dB

i
t, where ε̂

N
t = 1

N

∑
N

i=1 ϑV i
t
, and V

i

0 ↘ ε0.

We say that this SDE system converges in mean-field law to ṽ ↗ Rd if all solutions of

dVt = F
(
εt, Vt

)
dt+G

(
εt, Vt

)
dBt, where εt = Law(Vt), and V0 ↘ ε0,

satisfy limt↗↘Wp (εt, ϑṽ) = 0 for some Wasserstein-p distance Wp, p ⇔ 1.
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Colloquially speaking, an interacting multi-particle system is said to converge in mean-field
law, if the associated mean-field dynamics converges.

Remark 2 (Mean-field approximation). The definition of convergence in mean-field law as
given in Definition 1 is justified as follows: As the number of agents N in the interacting particle
system (4) tends to infinity, one expects that, for any particle V i, the individual influence of any
other particle disperses. This results in an averaged influence of the ensemble rather than an
interacting nature of the system, and allows to describe the dynamics in the large-particle limit
by the law ε of the mono-particle process (8). This phenomenon is known as the mean-field
approximation. More formally, as N → ≃, we expect the empirical measure ε̂

N
t to converge in

law to εt for almost every t, see [39, Definition 1]. The classical way to establish such mean-field
approximation is to prove, by means of the coupling method, propagation of chaos [47, 63], as
implied for instance by

max
i=1,...,N

sup
t↑[0,T ]

E
∥∥V i

t ↓ V
i

t

∥∥2
2
↔ CN

↓1
, (10)

where V
i denote N i.i.d. copies of the mean-field dynamics (8), which are coupled to the

processes V i by choosing the same initial conditions as well as Brownian motion paths, see, e.g.,
the recent review [14,15]. Despite being of fundamental numerical interest (since when combined
with the convergence in mean-field law it allows to establish convergence of the interacting
particle system itself), a quantitative result about the mean-field approximation of CBO as
in (10) has been left as a di#cult and open problem in [10, Remark 3.3] due to a lack of global
Lipschitz continuity of the drift and di!usion terms, which impedes the application of McKean’s
theorem [15, Theorem 3.1].

However, the present work as well as three recent works, which we outline in what follows,
are shedding light on this issue. By employing a compactness argument in the path space,
the authors of [37] show that the empirical random particle measure ε̂

N associated with
the dynamics (4) converges in distribution to the deterministic particle distribution ε ↗

C([0, T ],P(Rd)) satisfying (9). In particular, their result is valid for unbounded functions E

considered also in our work. While this does not allow for obtaining a quantitative convergence
rate with respect to the number of particles N as in (10), it closes the mean-field limit gap
qualitatively. A desired quantitative result has been established recently in [25, Theorem 3.1 and
Remark 3.1] for a variant of the microscopic system (4) supported on a compact hypersurface $.
In [25] the weak convergence of the variant of (4) to the corresponding mean-field limit is
established in the sense that for all ⇀ ↗ C

1
b
(Rd) it holds

sup
t↑[0,T ]

E
[∣∣↖ε̂Nt ,⇀↙ ↓ ↖εt,⇀↙

∣∣2
]
↔

C

N
↑⇀↑

2
C1(Rd) → 0 as N → ≃.

The obtained convergence rate reads CN
↓1 with C depending in particular on

Cε := exp
(
ϖ
(
supv↑” E(v)↓ infv↑” E(v)

))
.

Their proof is based on the aforementioned coupling method and, by exploiting the inherent
compactness of the dynamics due to its confinement to $, allows to derive a bound of the
form (10). Leveraging the techniques from [25] and the boundedness of moments established
in [10, Lemma 3.4], we provide in Proposition 16 below a result of the form (10) on the
plane Rd which holds with high probability. A more refined analysis conducted recently by
the authors of [29], which adapts Sznitman’s classical argument for the proof of McKean’s
theorem with the intention of allowing for coe#cients which are not globally Lipschitz, even
yields a non-probabilistic mean-field approximation of the form (10) in the pathwise sense,
requiring in comparison merely a higher moment bound ε0 ↗ P6(Rd) of the initial measure, see
[29, Theorem 2.6].
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(a) The Rastrigin function E and an exemplary
initialization for one run of the experiment

(b) Individual agents follow, on average, the
gradient flow of the map v ⇑→ ↑v ↓ v

→
↑
2
2.

Figure 1: An illustration of the internal mechanisms of CBO. We perform 100 runs of the CBO
algorithm (2)–(3), with parameters ”t = 0.01, ϖ = 1015, ϱ = 1 and ς = 0.1, and N = 32000
agents initialized according to ε0 = N

(
(8, 8), 20

)
. In addition, we add three individual agents

with starting locations (↓2, 4), (↓1.5,↓1.5) and (4.5, 1.5) to the set of agents in each run as
shown in (a), and depict each of their 100 trajectories as well as their mean trajectory in yellow
color in (b). With the (mean) trajectories being rather straight lines, we observe that the
individual agents take a straight path from their initial positions to the global minimizer v→

and, in particular, disregard the local landscape of the objective function E . The trajectories of
the individual agents become more concentrated as the overall number of agents N grows.

Such quantitative mean-field approximation results substantiate the focus of the first part
of this work on the analysis of the macroscopic mean-field dynamics (8) and (9). Nevertheless,
as a consequence thereof, we return to the analysis of the numerical scheme (2) and its global
convergence in Section 3.3.

Contributions. In view of the versatility, simplicity, and e#ciency of CBO methods, a
theoretical understanding of the finite particle-based system (4) and the mean-field limit (8) is
of great interest. In this work, we unveil the surprising phenomenon that, in the mean-field limit,
for a rich class of objectives E , the individual agents of the CBO dynamics follow the gradient
flow associated with the function v ⇑→ ↑v ↓ v

→
↑
2
2, on average over all realizations of Brownian

motion paths, see Figure 1. Interestingly, this gradient flow is independent of the underlying
energy landscape of E . In other words, CBO performs a canonical convexification of a large
class of optimization problems as the number of optimizing agents N goes to infinity. Based
on these observations and justified by the mean-field approximation, first of all we develop a
novel proof framework for showing the convergence of the CBO dynamics in mean-field law
to the global minimizer v→ for a rich class of objectives. While previous analyses in [10,31,32]
required restrictive concentration conditions about the initial measure ε0 and C

2 regularity
of the objective, we derive results that are valid under mild assumptions about ε0 and local
Lipschitz continuity of E . We explain the key di!erences of this work with respect to previous
work in detail in Section 2 and further showcase the benefits of the proposed analysis by a
numerical example. These findings reveal that the hardness of any global optimization problem
is necessarily encoded in the rate of the mean-field approximation as N → ≃. Secondly, in
consideration of its central significance with regards to the computational complexity of the
numerical scheme (2) we establish a novel probabilistic quantitative result about the convergence
of the interacting particle system (4) to the corresponding mean-field limit (9), which is a result
of independent interest. By combining these two results, the convergence in mean-field law on
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the one hand, and the quantitative mean-field approximation on the other, we provide the first,
and so far unique, holistic convergence proof of CBO on the plane, enabling to quantify the
optimization capability of the numerical CBO algorithm (2) in terms of the used parameters.
The utilized proof technique may be used as a blueprint for proving global convergence for
other recent adaptations of the CBO dynamics, see, e.g., [8, 11, 26–28, 40], as well as other
metaheuristics such as the renowned Particle Swarm Optimization, which is related to CBO
through a zero-inertia limit, see, e.g., [20, 30, 38]. While the present paper has foundational and
theoretical nature and aims at completely clarifying the convergence of the numerical scheme
(2) with a detailed analysis, we do not include extensive numerical experiments. For numerical
evidence that CBO does solve di#cult optimizations also in high dimensions without necessarily
incurring in the curse of dimensionality, the reader may want to consult previous work such as
[11, 13,16,26–28,57].

Remark 3. Employing stochasticity and leveraging collaboration between multiple agents
to empirically and provably achieve global convergence of numerical algorithms and to avoid
convergence to local minima, is not just of particular relevance when it comes to the e#ciency
and success of zero-order methods, but also an emerging paradigm in the field of gradient-based
optimization, see, e.g., [18, 22, 46]. Recent work [58] even suggests a connection between the
worlds of derivative-free and gradient-based methods. Similar guiding principles are present also
in sampling methods, such as Langevin sampling [17,18,23,59] or Stein Variational Gradient
Descent [45], which are designed to generate samples from an unknown target distribution.

A promising way to gain a theoretical understanding of the behavior of these classes of
algorithms is by taking a mean-field perspective, i.e., by analyzing the dynamics, as the number of
particles goes to infinity, through an associated PDE. This typically involves Polyak-%Lojasiewicz-
like conditions [41] or certain families of log-Sobolev inequalities [18] on the objective function E ,
which are more restrictive than the assumptions under which the statements of this work hold.
For a recent analysis of the mean-field Langevin dynamics we refer to [18] and references therein.

Lately and conceptually similar to the convexification of a highly nonconvex problem
observed in this work, taking a mean-field perspective has allowed the authors of [19, 48, 60, 61]
to explain the generalization capabilities of over-parameterized neural networks. By leveraging
that the mean-field description (w.r.t. the number of neurons) of the SGD learning dynamics is
captured by a nonlinear PDE, which admits a gradient flow structure on

(
P2(Rd),W2

)
, these

works show that original complexities of the loss landscape are alleviated. Together with a
quantification of the fluctuations of the empirical neuron distribution around this mean-field
limit (i.e., a mean-field approximation), convergence results are derived for SGD for su#ciently
large networks with optimal generalization error. These results, however, are structurally
di!erent from the ones obtained in this paper for CBO. In particular, the individual particles in
[19,48,60,61] are associated with the di!erent neurons of a two-layer or deep neural network and
the objective function is a specific empirical risk, which itself is subject to the mean-field limit
and gains convexity as the number of neurons tends to infinity. In contrast, in our setting each
particle itself is a competitor for minimization of a general fixed nonconvex objective function E

and the convexification of the problem emerges from the CBO dynamics when its mean-field
limit behavior is studied. For this reason, the two resulting mean-field limits are di!erent.

Let us further point out that, as far as the community could understand up to now, the
Fokker-Planck equation (9) describing the mean-field behavior of CBO cannot be understood
as a gradient flow of any energy on

(
P2(Rd),W2

)
. Yet, and perhaps surprisingly, the analysis

of our present paper shows that the Wasserstein-2 distance from the global minimizer is the
correct Lyapunov functional to be analyzed.
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1.1 Organization

In Section 2 we first discuss state-of-the-art global convergence results for CBO methods with a
detailed account of the utilized proof technique, including potential weaknesses. The second
part of Section 2 then motivates an alternative proof strategy and explains how it can remedy
the weaknesses of prior proofs under minimalistic assumptions. In Section 3 we first provide
additional details about the well-posedness of the macroscopic SDE (8), respectively, the Fokker-
Planck equation (9), before presenting and discussing the main result about the convergence of
the dynamics (8) and (9) to the global minimizer in mean-field law. In order to demonstrate the
relevance of such statement in establishing a holistic convergence guarantee for the numerical
scheme (2), we conclude the section with a probabilistic quantitative result about the mean-field
approximation. Sections 4 and 5 comprise the proof details of the convergence result in mean-
field law and the result about the mean-field approximation, respectively. Section 6 concludes
the paper.

1.2 Notation

Euclidean balls are denoted as Br(u) := {v ↗ Rd :↑v ↓ u↑2 ↔ r}. For the space of continuous
functions f : X → Y we write C(X,Y ), with X ∝ Rn and a suitable topological space
Y . For an open set X ∝ Rn and for Y = Rm the spaces C

k
c (X,Y ) and C

k

b
(X,Y ) contain

functions f ↗ C(X,Y ) that are k-times continuously di!erentiable and have compact support or
are bounded, respectively. We omit Y in the real-valued case. The operators ′ and ” denote
the gradient and Laplace operator of a function on Rd. The main objects of study are laws of
stochastic processes, ε ↗ C([0, T ],P(Rd)), where the set P(Rd) contains all Borel probability
measures over Rd. With εt ↗ P(Rd) we refer to a snapshot of such law at time t. In case we refer
to some fixed distribution, we write ↼. Measures ↼ ↗ P(Rd) with finite p-th moment

∫
↑v↑

p

2 d↼(v)
are collected in Pp(Rd). For any 1 ↔ p < ≃, Wp denotes the Wasserstein-p distance between
two Borel probability measures ↼1, ↼2 ↗ Pp(Rd), see, e.g., [2]. E(↼) denotes the expectation of a
probability measure ↼.

2 Blueprints for the analysis of CBO methods

In this section we provide intuitive descriptions of two approaches to the analysis of the
convergence of CBO methods to global minimizers. We first recall [10], and related works
[31, 32], which prove convergence as a consequence of a monotonous decay of the variance of εt
and by employing the asymptotic Laplace principle (7). This proof strategy incurs a restrictive
condition about the parameters ϖ,ϱ,ς and the initial configuration ε0, which implies that a
small optimization gap E(ṽ)↓ E(v→) can only be achieved for initial configurations ε0 already
well-concentrated near the optimizer v→. We then motivate an alternative proof idea to remedy
this weakness based on the intuition that εt monotonically minimizes the squared Euclidean
distance to the global minimizer v→.

2.1 State of the art: variance-based convergence analysis

We now recall the blueprint proof strategy from [10], which has been adapted in other works,
e.g., [26, 31, 32], to prove consensus formation and convergence to the global minimum.

A successful application of the CBO framework underlies the premise that the induced
particle density εt converges to a Dirac delta ϑṽ for some ṽ close to v

→. The analysis in [10]
proves this under certain assumptions by first showing that εt converges to a Dirac delta
around some ṽ ↗ Rd and then concluding ṽ ⇐ v

→ in a subsequent step. Regarding the first
step, the authors of [10] study the variance of εt, defined as Var (εt) :=

1
2

∫
↑v ↓ E(εt)↑22 dεt(v),
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where E(εt) :=
∫
v dεt(v), and show that Var (εt) decays exponentially fast in t under a well-

preparedness assumption about the initial condition ε0. More precisely, in [10, Section 4.1] the
authors use Itô’s lemma to derive for the time-evolution of Var (εt) the expression

d

dt
Var (εt) = ↓

(
2ϱ↓ dς

2
)
Var (εt) +

dς
2

2
↑E(εt)↓ vε(εt)↑

2
2 . (11)

For parameter choices 2ϱ > dς
2, the first term in (11) is negative and one could almost apply

Grönwall’s inequality to obtain the asserted exponential decay of Var (εt). However, the second
term can be problematic and the main di#culty is to control the distance ↑E(εt)↓ vε(εt)↑2
between the mean and the weighted mean. For ϖ → 0 the weight function φε(v) = exp(↓ϖE(v))
associated with vε(εt) converges to 1 pointwise and consequently vε(εt) → E(εt). However,
the second proof step, explained below, reveals that the crucial regime is ϖ ∞ 1. In this case
vε(εt) can be arbitrarily far from E(εt) if we do not dispose of additional knowledge about the
probability measure εt. To restrict the set of probability measures εt that need to be considered
when bounding ↑E(εt)↓ vε(εt)↑2, the authors of [10] compromise to assume that the initial
distribution ε0 satisfies the well-preparedness assumptions

ϖe
↓2εE(ς2 + 2ϱ) < 3/8 and 2ϱ ↑φε↑

2
L1(ϑ0)

↓Var (ε0)↓ 2dς2
↑φε↑L1(ϑ0)

e
↓εE

⇔ 0. (12)

Since εt evolves from ε0 according to the Fokker-Planck equation (9), these conditions restrict
εt and allow for bounding ↑E(εt)↓ vε(εt)↑2 by a suitable multiple of Var (εt). The exponential
decay of Var (εt) then follows from (11) after applying Grönwall’s inequality, see [10, Theorem 4.1].
Furthermore, the conditions in (12) also allow for proving convergence of εt to a stationary
Dirac delta at ṽ ↗ Rd.

Given convergence to a Dirac at ṽ, in a second step it is shown E(ṽ) ⇐ E(v→). In order to
prove this approximation, one first deduces that for any ⇁ > 0, there exists ϖ ∞ 1 such that for
all t ⇔ 0 it holds ↓ 1

ε
log

(
↑φε↑L1(ϑt)

)
↔ ↓

1
ε
log

(
↑φε↑L1(ϑ0)

)
+ ϱ

2 . This involves deriving a lower

bound for the evolution d

dt
↑φε↑L1(ϑt) for su#ciently large ϖ > 0 as done in [10, Lemma 4.1],

which is then combined with the formerly proven exponentially decaying variance, see [10, Proof
of Theorem 4.2]. Then, by recognizing that the Laplace principle (7) implies the existence of
some ϖ ∞ 1 with

↓
1

ϖ
log

(
↑φε↑L1(ϑ0)

)
↓ E <

⇁

2
, (13)

and by establishing the convergence ↑φε↑L1(ϑt) → exp(↓ϖE(ṽ)) as t → ≃, one obtains the
desired result E(ṽ)↓ E < ⇁ in the limit t → ≃, see [10, Lemma 4.2]. The gap E(ṽ)↓ E can be
tightened by increasing ϖ, but it is impossible to establish an explicit relation ϖ = ϖ(⇁) due to
the use of the asymptotic Laplace principle.

This proof sketch unveils a tension on the role of the parameter ϖ. Namely, the second step
requires large ϖ = ϖ(⇁) to achieve E(ṽ)↓ E < ⇁. In fact, ϖ(⇁) may grow uncontrollably as we
decrease the accuracy ⇁. The first step, however, requires the conditions in (12) which, in the
most optimistic case, where ς = 0, imply

Var (ε0) ↔
3

8ϖ

(∫
exp

(
↓ ϖ(E(v)↓ E)

)
dε0(v)

)2

. (14)

Therefore, ε0 needs to be increasingly concentrated as ϖ increases, and should ideally be
supported on sets where E(v) ⇐ E . Designing such distribution ε0 in practice seems impossible
in the absence of a good initial guess for v→. In particular, we cannot expect (14) to hold for
generic choices such as a uniform distribution on a compact set.

We add that the works [31, 32] conduct a similarly flavored analysis for the fully time-
discretized microscopic system (2), with some di!erences in the details. They first show an
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exponentially decaying variance under mild assumptions about ϱ and ς, but provided that
the same Brownian motion is used for all agents, i.e., (Bi

k!t
)k=1,...,K = (Bk!t)k=1,...,K for

all i = 1, . . . , N . Such a choice leads to a less explorative dynamics, but it simplifies the
consensus formation analysis. For proving E(ṽ) ⇐ E however, the authors again require an initial
configuration ε0 that satisfies a technical concentration condition like (13), see for instance
[32, Remark 3.1].

2.2 Alternative approach: CBO minimizes the squared distance to v→

The approach described in the previous section might suggest that CBO only converges locally,
which is in fact not what is observed in practice. Instead, global optimization is actually
expected. To remedy the locality requirements of the variance-based analysis, let us now sketch
and motivate an alternative proof idea. By averaging out the randomness associated with
di!erent realizations of Brownian motion paths, the macroscopic time-continuous SDE (8), in
the case H ⇒ 1, becomes

d

dt
E
[
Vt

∣∣V0

= ↓ϱE

[(
Vt ↓ vε(εt)

)∣∣V0

= ↓ϱE

[(
Vt ↓ v

→)∣∣V0

+ ϱ (vε(εt)↓ v

→). (15)

Furthermore, if E is locally Lipschitz continuous and satisfies the coercivity condition

↑v ↓ v
→
↑2 ↔

1

ω

(
E(v)↓ E(v→)

)
ω
=

1

ω

(
E(v)↓ E

)
ω
, for all v ↗ Rd

, (16)

and for some ω > 0 and ν ↗ (0,≃), the second term on the right-hand side of (15) can be made
arbitrarily small for su#ciently large ϖ, i.e., vε(εt) ⇐ v

→ (more details follow below). In this
case, the average dynamics of Vt is well-approximated by

d

dt
E
[
Vt|V0


⇐ ↓ϱE

[(
Vt ↓ v

→)
|V0


, (17)

which corresponds to the gradient flow of v ⇑→ ↑v ↓ v
→
↑
2
2 with rate 2ϱ. In other words, each

individual agent essentially performs a gradient-descent of v ⇑→ ↑v ↓ v
→
↑
2
2 on average over all

realizations of Brownian motion paths. Figure 1b visualizes this phenomenon for three isolated
agents on the Rastrigin function in two dimensions.

Inspired by this observation, our proof strategy is to show that CBO methods successively
minimize the energy functional V : P(Rd) → R↔0, given by

V(εt) :=
1

2

∫
↑v ↓ v

→
↑
2
2 dεt(v). (18)

Note that this functional essentially coincides with the Wasserstein distance in the sense that
W

2
2 (εt, ϑv→) = 2V(εt). Therefore V(εt) → 0 in particular implies that εt converges weakly to

ϑv→ , see [2, Chapter 7].
This novel approach does not su!er a tension on the parameter ϖ like the variance-based

analysis from the previous section. Roughly speaking (see Lemma 17 for details), V(εt) follows
an evolution similar to (11), with Var (εt) being replaced by V(εt). However, we can now bound∫
↑v ↓ vε(εt)↑22 dεt(v) ↔ 4V(εt) + 2↑vε(εt)↓ v

→
↑
2
2, so that it just remains to control the second

term. In comparison to bounding ↑vε(εt)↓ E(εt)↑22 in terms of Var (εt) for the variance-based
analysis, this requires to bound ↑vε(εt)↓ v

→
↑
2
2 in terms of V(εt). Fortunately, this is a much

easier task: the Laplace principle generally asserts ↑vε(εt)↓ v
→
↑2 → 0 under (16) as ϖ → ≃

and we can even establish (see Proposition 21 for details) the quantitative estimate

↑vε(↼)↓ v
→
↑2 ↔

(2Lr)ω

ω
+

exp (↓ϖLr)

↼(Br(v→))

∫
↑v ↓ v

→
↑2 d↼(v)

10



for an arbitrary probability measure ↼ and assuming that E is L-Lipschitz in a ball of radius r > 0.
This allows to estimate ↑vε(εt)↓ v

→
↑
2
2 in terms of V(εt) as desired.

Finally, we note that V(εt) majorizes Var (εt) because u ⇑→
1
2

∫
↑v ↓ u↑

2
2 dεt(v) is minimized

by the expectation E(εt). This relation may be a source of concern, as it shows that proving
V(εt) → 0 implies Var (εt) → 0. We emphasize however that this does not imply a majorization
for the corresponding time derivatives. In fact, Example 4 suggests that V(εt) can decay
exponentially while Var (εt) increases initially.

Example 4. We consider the Rastrigin function E(v) = v
2 + 2.5(1 ↓ cos(2πv)) with global

minimum at v→ = 0 and various local minima, see Figure 2a. For di!erent initial configurations
ε0 = N (µ, 0.8) with µ ↗ {1, 2, 3, 4}, we evolve the discretized system (2) using N = 320000
agents, discrete time step size ”t = 0.01 and parameters ϖ = 1015 (i.e., the consensus point is the
argmin of the agents), ϱ = 1 and ς = 0.5. By considering di!erent means from µ = 1 to µ = 4,
we push the global minimizer v→ into the tails of the initial configuration ε0. Figure 2b shows
that the decreasing initial probability mass around v

→ eventually causes the variance Var(ε̂Nt )
(dashed lines) to increase in the beginning of the dynamics. In contrast, V(ε̂Nt ) always decays
exponentially fast with convergence speed (2ϱ↓ dς

2), independently of the initial condition ε0.
From a theoretical perspective, this means proving global convergence using a variance-based
analysis as in Section 2.1 must require assumptions about ε0 such as Condition (14), whereas
using V(εt) does not su!er from this issue. The convergence speed (2ϱ↓ dς

2) coincides with
the result in Theorem 12.

(a) The Rastrigin function and the
map v ⇑→ ↑v ↓ v

→
↑
2
2

(b) Evolution of the variance Var(ε̂Nt ) and V(ε̂Nt ) for
di!erent initial conditions ε0

Figure 2: (a) The Rastrigin function as objective function E and the squared Euclidean distance
from v

→. (b) The evolution of the variance Var(ε̂Nt ) and the functional V(ε̂Nt ) for di!erent
initial conditions ε0 = N (µ, 0.8) with µ ↗ {1, 2, 3, 4}. The measure ε̂

N
t is the empirical agent

density that is evolved using (2) with N = 320000 agents, discrete time step size ”t = 0.01 and
parameters ϖ = 1015, ϱ = 1 and ς = 0.5. As we move the mean of the initial configuration ε0

away from the global optimizer v
→ = 0, and thereby push v

→ into the tails of ε0, Var(ε̂Nt )
increases in the starting phase of the dynamics. V(ε̂Nt ) on the other hand always decreases
exponentially at a rate (2ϱ↓ dς

2), independently of the initial condition ε0.

3 Global convergence of consensus-based optimization

In the first part of this section we recite and extend well-posedness results about the nonlinear
macroscopic SDE (8), respectively, the associated Fokker-Planck equation (9). At the beginning
of the second part we introduce the class of studied objective functions, which is followed by the

11



presentation of the main result about the convergence of the dynamics (8) and (9) to the global
minimizer in mean-field law. In the final part we then highlight the relevance of this result by
presenting a holistic convergence proof of the numerical scheme (2) to the global minimizer.
This combines the latter statement with a probabilistic quantitative result about the mean-field
approximation.

3.1 Definition of weak solutions and well-posedness

We begin by rigorously defining weak solutions of the Fokker-Planck equation (9).

Definition 5. Let ε0 ↗ P(Rd), T > 0. We say ε ↗ C([0, T ],P(Rd)) satisfies the Fokker-Planck
equation (9) with initial condition ε0 in the weak sense in the time interval [0, T ], if we have
for all ⇀ ↗ C

↘
c (Rd) and all t ↗ (0, T )

d

dt

∫
⇀(v) dεt(v) =↓ ϱ

∫
H(E(v)↓ E(vε(εt))) ↖v ↓ vε(εt),′⇀(v)↙ dεt(v)

+
ς
2

2

∫
↑v ↓ vε(εt)↑

2
2”⇀(v) dεt(v)

(19)

and limt↗0 εt = ε0 pointwise.

If the cuto! function H in the dynamics (8) is inactive, i.e., satisfies H ⇒ 1, the authors of
[10] prove the following well-posedness result.

Theorem 6 ([10, Theorems 3.1, 3.2]). Let T > 0, ε0 ↗ P4(Rd). Let H ⇒ 1 and consider
E : Rd

→ R with E > ↓≃, which, for constants C1, C2 > 0, satisfies

|E(v)↓ E(w)| ↔ C1(↑v↑2 + ↑w↑2) ↑v ↓ w↑2 , for all v, w ↗ Rd
, (20)

E(v)↓ E ↔ C2(1 + ↑v↑
2
2), for all v ↗ Rd

. (21)

If in addition, either supv↑Rd E(v) < ≃, or E satisfies for some constants C3, C4 > 0

E(v)↓ E ⇔ C3 ↑v↑
2
2 , for all ↑v↑2 ⇔ C4, (22)

then there exists a unique nonlinear process V ↗ C([0, T ],Rd) satisfying (8) in the strong sense.
The associated law ε = Law(V ) has regularity ε ↗ C([0, T ],P4(Rd)) and is a weak solution to
the Fokker-Planck equation (9).

Remark 7. The regularity ε ↗ C([0, T ],P4(Rd)) stated in Theorem 6, and also obtained in
Theorem 8 below, is a consequence of the regularity of the initial condition ε0 ↗ P4(Rd).
Despite not indicated explicitly in [10, Theorems 3.1, 3.2], it follows from their proofs. In
particular, it allows for extending the test function space C

↘
c (Rd) in Definition 5. Namely, if

ε ↗ C([0, T ],P4(Rd)) solves (9) in the weak sense, Identity (19) holds for all ⇀ ↗ C
2(Rd) with

(i) supv↑Rd |”⇀(v)| < ≃, and (ii) ↑′⇀(v)↑2 ↔ C(1 + ↑v↑2) for some C > 0 and for all v ↗ Rd.
We denote the corresponding function space by C

2
→(Rd).

Under minor modifications of the proof for Theorem 6, we can extend the existence of
solutions to an active Lipschitz-continuous cuto! function H.

Theorem 8. Let H ∈⇒ 1 be LH-Lipschitz continuous. Then, under the assumptions of Theorem 6,
there exists a nonlinear process V ↗ C([0, T ],Rd) satisfying (8) in the strong sense. The
associated law ε = Law(V ) has regularity ε ↗ C([0, T ],P4(Rd)) and is a weak solution to the
Fokker-Planck equation (9).

12



3.2 Global convergence in mean-field law

We now present the main result about global convergence in mean-field law for objectives
satisfying the following.

Definition 9 (Assumptions). Throughout we are interested in objective functions E ↗ C(Rd),
for which

A1 there exists v
→
↗ Rd such that E(v→) = infv↑Rd E(v) =: E, and

A2 there exist E↘, R0, ω > 0, and ν ↗ (0,≃) such that

↑v ↓ v
→
↑2 ↔ (E(v)↓ E)ω/ω for all v ↗ BR0(v

→), (23)

E(v)↓ E > E↘ for all v ↗
(
BR0(v

→)
)
c
. (24)

Furthermore, for the case H ∈⇒ 1, we additionally require that E fulfills a local Lipschitz
continuity-like condition, i.e.,

A3 there exist LE > 0 and ▷ ⇔ 0 such that

E(v)↓ E ↔ LE(1 + ↑v ↓ v
→
↑
ς

2) ↑v ↓ v
→
↑2 for all v ↗ Rd

. (25)

Remark 10. The analyses in [10] and related works require E ↗ C
2(Rd) and an additional

boundedness assumptions on the Laplacian ”E . We relax these regularity requirements and
use the conditions in Definition 9 on E instead.

Assumption A1 just states that the continuous objective E attains its infimum E at some
v
→
↗ Rd. The continuity itself can be further relaxed at the cost of additional technical details

because it is only required in a small neighborhood of v→.
Assumption A2 should be interpreted as a tractability condition of the landscape of E around

v
→ and in the farfield. The first part, Equation (23), describes the local coercivity of E , which

implies that there is a unique minimizer v→ on BR0(v
→) and that E grows like v ⇑→ ↑v ↓ v

→
↑
1/ω
2 .

This condition is also known as the inverse continuity condition from [26], as a quadratic growth
condition in the case ν = 1/2 from [3,50], or as the Hölderian error bound condition in the case
ν ↗ (0, 1] [6]. In [50, Theorem 4] and [41, Theorem 2] many equivalent or stronger conditions
are identified to imply Equation (23) globally on Rd. Furthermore, in [26, 66], (23) is shown to
hold globally for objectives related to various machine learning problems. The second part of
A2, Equation (24), describes the behavior of E in the farfield and prevents E(v) ⇐ E for some
v ↗ Rd far away from v

→. We introduce it for the purpose of covering functions that tend to a
constant just above E↘ as ↑v↑2→≃, because such functions do not satisfy the growth condition
(23) globally. However, whenever (23) holds globally, we take R0 = ≃, i.e., BR0(v

→) = Rd and
(24) is void. We also note that (23) and (24) imply the uniqueness of the global minimizer v→

on Rd.
Finally, to cover the active cuto! case H ∈⇒ 1, we additionally require A3. The condition is

weaker than local Lipschitz-continuity on any compact ball around v
→, with Lipschitz constant

growing with the size of the ball.

Example 11. A prototypical objective function that satisfies the assumptions in Definition 9
is the Rastrigin function, which we already discussed in Example 4, see also Figures 1a and 2a.
In particular, it satisfies (23) globally with ν = 1/2.

We are now ready to state the main result. The proof is deferred to Section 4.
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Theorem 12. Let E ↗ C(Rd) satisfy A1–A2. Moreover, let ε0 ↗ P4(Rd) be such that v→ ↗

supp(ε0). Define V(εt) as given in (18). Fix any ⇁ ↗ (0,V(ε0)) and ◁ ↗ (0, 1), choose parameters
ϱ,ς > 0 with 2ϱ > dς

2, and define the time horizon

T
→ :=

1

(1↓ ◁)
(
2ϱ↓ dς2

) log
(
V(ε0)

⇁

)
. (26)

Then there exists ϖ0 > 0, depending (among problem dependent quantities) on ⇁ and ◁, such
that for all ϖ > ϖ0, if ε ↗ C([0, T →],P4(Rd)) is a weak solution to the Fokker-Planck equation (9)
on the time interval [0, T →] with initial condition ε0, we have

V(εT ) = ⇁ with T ↗


1↓ ◁

(1 + ◁/2)
T
→
, T

→

. (27)

Furthermore, on the time interval [0, T ], V(εt) decays at least exponentially fast. More precisely,
for all t ↗ [0, T ], it holds

W
2
2 (εt, ϑv→) = 2V(εt) ↔ 2V(ε0) exp

(
↓(1↓ ◁)

(
2ϱ↓ dς

2
)
t
)
. (28)

If E additionally satisfies A3, the same conclusion holds for any H : Rd
→ [0, 1] that satisfies

H(x) = 1 whenever x ⇔ 0.

The assumption v
→
↗ supp(ε0) about the initial configuration ε0 is not really a restriction,

as it would anyhow hold immediately for εt for any t > 0 in view of the di!usive character of
the dynamics (9), see Remark 23. Additionally, as we clarify in the next section, this condition
does neither mean nor require that, for finite particle approximations, some particle needs to
be in the vicinity of the minimizer v→ at time t = 0. It is actually su#cient that the empirical
measure ε̂

N
t weakly approximates the law εt uniformly in time. We rigorously explain this

mechanism in Section 3.3.
A lower bound on the rate of convergence in (28) is (1↓ ◁)(2ϱ↓ dς

2), which can be made
arbitrarily close to the numerically observed rate (2ϱ↓ dς

2) (see, e.g., Figure 2b) at the cost
of taking ϖ → ≃ to allow for ◁ → 0. The condition 2ϱ > dς

2 is necessary, both in theory
and practice, to avoid overwhelming the dynamics by the random exploration term. The
dependency on d can be eased by replacing the isotropic Brownian motion in the dynamics with
an anisotropic one [11,28].

3.3 Global convergence in probability

To stress the relevance of the main result of this paper, Theorem 12, we now show how
Estimate (28) plays a fundamental role in establishing a quantitative convergence result for the
numerical scheme (2) to the global minimizer v→. By paying the price of having a probabilistic
statement about the convergence of CBO as in Theorem 13, we gain provable polynomial
complexity. For simplicity, we present the results of this section for the case of an inactive cuto!
function, i.e., H ⇒ 1.

Theorem 13. Fix ⇁total > 0 and ϑ ↗ (0, 1/2). Then, under the assumptions of Theorem 12 and
Proposition 16, and with K := T/”t, where T is as in (27), the iterations ((V i

k!t
)k=0,...,K)i=1,...,N

generated by the numerical scheme (2) converge in probability to v
→. More precisely, the empirical

mean of the final iterations fulfills

∥∥∥∥∥
1

N

N∑

i=1

V
i

K!t ↓ v
→

∥∥∥∥∥

2

2

↔ ⇁total (29)

with probability larger than 1↓
(
ϑ + ⇁

↓1
total(6CNA(”t)2m + 3CMFAN

↓1 + 12⇁)
)
. Here, m denotes

the order of accuracy of the numerical scheme (for the Euler-Maruyama scheme m = 1/2)
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and ⇁ is the error from Theorem 12. Moreover, besides problem-dependent constants, CNA > 0
depends linearly on the dimension d and the number of particles N , exponentially on the time
horizon T , and on ϑ

↓1; CMFA > 0 depends exponentially on the parameters ϖ, ϱ and ς, on T ,
and on ϑ

↓1.

Let us briefly discuss in the following remark the computational complexity of the numerical
scheme (2) together with some implementational aspects which allow to reduce the overall
runtime of the algorithm in practice.

Remark 14 (Computational complexity). To achieve Estimate (29) with probability of at least
(1↓ 2ϑ), the implementable CBO scheme (2) has to be run using N ⇔ 9CMFA/(ϑ⇁total) agents
and with time step size ”t ↔

2m

ϑ⇁total/(18CNA) for

K ⇔
1

(1↓ ◁)
(
2ϱ↓ dς2

) 1

”t
log

(
36V(ε0)

ϑ⇁total

)

iterations. Here, the parameter dependence of CNA and CMFA is as described in Theorem 13.
The computational complexity (counted in terms of the number of evaluations of the objective E)
of the CBO method is therefore given by O(KN).

When working in the setting of large-scale applications arising, for instance, in machine
learning and signal processing (therefore, with E being expensive to compute), several consider-
ations allow to reduce the overall runtime of the algorithm (2) and thereby make the method
feasible and more competitive. First of all, it may be recommendable to leverage that the
evaluations of the objective function E for each of the N particles can be performed in parallel.
Furthermore, random mini-batch sampling ideas as proposed in [11, 28] may be employed when
evaluating the objective function and/or computing the consensus point. I.e., at each time step,
E is evaluated only on a random subset of the available data, and vε is computed only from a
subset of the N particles. Besides immediately reducing the computational and communication
complexity of CBO methods, such ideas motivate communication-e#cient parallelization of the
algorithm by evolving disjoint subsets of particles independently for some time with separate
consensus points, before aligning the dynamics through a global communication step. This,
however, is so far largely unexplored, both from a theoretical and practical point of view. Lastly,
taking inspiration from genetic algorithms, a variance-based particle reduction technique as
suggested in [26] may be used to reduce the number of optimizing agents (and therefore the
required evaluations of E) during the algorithm in case concentration of the particles is observed.

The proof of Theorem 13, which we report below, combines our main result about the
convergence in mean-field law, a quantitative mean-field approximation and classical results of
numerical approximation of SDEs. To this end, we establish in what follows the result about
the quantitative mean-field approximation on a restricted set of bounded processes. For this
purpose, let us introduce the common probability space (&,F ,P) over which all considered
stochastic processes get their realizations, and define a subset &M of & of suitably bounded
processes according to

&M :=

φ ↗ & : supt↑[0,T ]

1
N

∑
N

i=1max
∥∥V i

t (φ)
∥∥4
2
,
∥∥V i

t (φ)
∥∥4
2


↔ M


.

Throughout this section, M > 0 denotes a constant which we shall adjust at the end of the
proof of Theorem 13. Before stating the mean-field approximation result, Proposition 16, let us
estimate the measure of the set &M in Lemma 15. The proofs of both statements are deferred
to Section 5.

Lemma 15. Let T > 0, ε0 ↗ P4(Rd) and let N ↗ N be fixed. Moreover, let ((V i
t )t↔0)i=1,...,N

denote the strong solution to system (4) and let ((V i
t )t↔0)i=1,...,N be N independent copies of
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the strong solution to the mean-field dynamics (8). Then, under the assumptions of Theorem 6,
for any M > 0 we have

P (&M ) = P


sup
t↑[0,T ]

1

N

N∑

i=1

max
∥∥V i

t

∥∥4
2
,
∥∥V i

t

∥∥4
2


↔ M


⇔ 1↓

2K

M
, (30)

where K = K(ϱ,ς, d, T, b1, b2) is a constant, which is in particular independent of N . Here, b1
and b2 denote the problem-dependent constants from [10, Lemma 3.3].

Lemma 15 proves that the processes are bounded with high probability uniformly in time.
Therefore, by restricting the analysis to &M , we can obtain the following quantitative mean-
field approximation result by proving pointwise propoagation of chaos through the coupling
method [14,15] using a synchronous coupling between the stochastic processes V i and V

i, see,
e.g., [14, Section 4.1.2].

Proposition 16. Let T > 0, ε0 ↗ P4(Rd) and let N ↗ N be fixed. Moreover, let ((V i
t )t↔0)i=1,...,N

denote the strong solution to system (4) and let ((V i
t )t↔0)i=1,...,N be N independent copies of

the strong solution to the mean-field dynamics (8). Further consider valid the assumptions
of Theorem 6. If (V i

t )t↔0 and (V i
t )t↔0 share the initial data as well as the Brownian motion

paths (Bi
t)t↔0 for all i = 1, . . . , N , then we have

max
i=1,...,N

sup
t↑[0,T ]

E
[
↑V

i

t ↓ V
i

t ↑
2
2

∣∣&M


↔ CMFAN

↓1 (31)

with CMFA = CMFA(ϖ,ϱ,ς, T, C1, C2,M,K,M2, b1, b2), where K is as in Lemma 15 and M2

denotes a second-order moment bound of ε.

A quantitative mean-field approximation was left as an open problem in [10, Remark 3.2]
due to a lack of global Lipschitz continuity of the SDE coe#cients and approached since then
in several steps, see Remark 2. While the restriction to bounded processes, which reflects the
typical behavior in view of Lemma 15, already allows to obtain an estimate of the type (31),
which is su#cient to prove convergence in probability in what follows, the recent work [29]
improves (31) by firstly showing a non-probabilistic mean-field approximation, i.e., removing the
necessity of conditioning on the set &M as done in (31), and secondly by obtaining a pathwise
estimate, see [29, Theorem 2.6]. Hence, in the light of [29], the role of the constant M can be
regarded as merely an auxiliary technical tool.

Equipped with Lemma 15 and Proposition 16, we are now able to prove Theorem 13.

Proof of Theorem 13. We have the error decomposition

E




∥∥∥∥∥
1

N

N∑

i=1

V
i

K!t ↓ v
→

∥∥∥∥∥

2

2

∣∣∣∣∣ &M



 ↔ 3 E




∥∥∥∥∥
1

N

N∑

i=1

(
V

i

K!t ↓ V
i

T

)
∥∥∥∥∥

2

2

∣∣∣∣∣ &M





  
≃CNA(!t)2m by applying classical convergence

results for numerical schemes for SDEs [53]

+ 3 E




∥∥∥∥∥
1

N

N∑

i=1

(
V

i

T ↓ V
i

T

)
∥∥∥∥∥

2

2

∣∣∣∣∣ &M





  
≃CMFAN

↑1 using the quantitative mean-field
approximation in form of Proposition 16

+
3

1↓ ϑ
E
∥∥∥∥∥
1

N

N∑

i=1

V
i

T ↓ v
→

∥∥∥∥∥

2

2  
≃E↑V 1

T↓v
→↑

2

2
≃2V(ϑT )≃2ϱ

by means of Theorem 12

↔ 6CNA(”t)2m + 3CMFAN
↓1 + 12⇁

(32)

dividing the overall error into an approximation error of the numerical scheme, the mean-field
approximation error and the optimization error in the mean-field limit.

16



Denoting now by K
N
ϱtotal

∝ & the set, where (29) does not hold, we can estimate

P
(
K

N

ϱtotal

)
= P

(
K

N

ϱtotal
∋ &M

)
+ P

(
K

N

ϱtotal
∋ &c

M

)
↔ P

(
K

N

ϱtotal

∣∣&M

)
P (&M ) + P (&c

M )

↔ ⇁
↓1
total

(
6CNA(”t)2m + 3CMFAN

↓1 + 12⇁
)
+ ϑ,

where in the last step we employ Markov’s inequality together with (32) to bound the first term.
For the second it su#ces to choose the M from (30) large enough.

As a consequence of Theorem 12, the hardness of any optimization problem is necessarily
encoded in the mean-field approximation. Proposition 16 addresses precisely this question,
ensuring that, with arbitrarily high probability, the finite particle dynamics (4) keeps close to
the mean-field dynamics (8). Since the rate of this convergence is of order N↓1/2 in the number
of particles N , the hardness of the problem is fully captured by the constant CMFA in (31),
which does not depend explicitly on the dimension d. Therefore, the mean-field approximation
is, in general, not a!ected by the curse of dimensionality. Nevertheless, as our assumptions on
the objective function E do not exclude the class of NP-hard problems, it cannot be expected
that CBO solves any problem, howsoever hard, with polynomial complexity. This is reflected
by the exponential dependence of CMFA on the parameter ϖ and its possibly worst-case linear
dependence on the dimension d, as we discuss in what follows. However, several numerical
experiments [11,26–28] in high dimensions confirm that in typical applications CBO performs
comparably to state-of-the-art methods without the necessity of an exponentially large amount
of particles. As mentioned before, characterizing ϖ0 in more detail is crucial in view of the
mean-field approximation result, Proposition 16. We did not precisely specify ϖ0 in Theorem 12
since it seems challenging to provide informative bounds in all generality. In Remark 24, however,
we devise an informal derivation in the case H ⇒ 1 for objectives E that are locally L-Lipschitz
continuous on some ball BR(v→) and satisfy the coercivity condition (23) globally for ν = 1/2.
For a parameter-dependent constant c = c(◁,ϱ,ς), we obtain

ϖ > ϖ0 =
↓8

c2ω2⇁
log

(
c

2
△
2
ε0

(
Bmin{R, c2φ2ϱ/(8L)}(v

→)
))

(33)

provided that the probability mass t ⇑→ εt

(
Bc2φ2ϱ/(8L)(v

→)
)
is minimized at time t = 0. The

latter assumption is motivated by numerical observations of typical successful CBO runs, where
the particle density around the global minimizer tends to be minimized initially and steadily
increases over time. We note that the argument of the log in (33) may induce a dependence of ϖ0

on the ambient dimension d, if we do not dispose of an informative initial configuration ε0. For
instance, if ε0 is measure-theoretically equivalent to the Lebesgue measure on a compact set in
Rd, we have ϖ0 ↗ O(d log(⇁)/⇁) as d, 1/⇁ → ≃ by (33). If we interpreted ε0 as the uncertainty
about the location of the global minimizer v→, we could thus consider low-uncertainty regimes,
where ε0 actually concentrates around v

→ and ϖ0 may be dimension-free, or a high-uncertainty
regime, where ε0 does not concentrate and ϖ0 may depend on d.

4 Proof details for Section 3.2

In this section we provide the proof details for the global convergence result of CBO in mean-field
law, Theorem 12. Sections 4.1–4.3 provide auxiliary results, which might be of independent
interest. In Section 4.4 we complete the proof of Theorem 12. Throughout we assume E = 0,
which is w.l.o.g. since a constant o!set to E does not change the CBO dynamics.

4.1 Evolution of the mean-field limit

We now derive evolution inequalities of the energy functional V(εt) for the cases H ⇒ 1 and
H ∈⇒ 1, respectively.
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Lemma 17. Let E : Rd
→ R, H ⇒ 1, and fix ϖ,ϱ,ς > 0. Moreover, let T > 0 and let

ε ↗ C([0, T ],P4(Rd)) be a weak solution to the Fokker-Planck equation (9). Then the functional
V(εt) satisfies

d

dt
V(εt) ↔↓

(
2ϱ↓ dς

2
)
V(εt) +

△
2
(
ϱ+ dς

2
)

V(εt) ↑vε(εt)↓ v
→
↑2

+
dς

2

2
↑vε(εt)↓ v

→
↑
2
2 .

(34)

Proof. We note that the function ⇀(v) = 1/2↑v ↓ v
→
↑
2
2 is in C

2
→(Rd) and recall that ε satisfies

the weak solution identity (19) for all test functions in C
2
→(Rd), see Remark 7. By applying (19)

with ⇀ as above, we obtain for the evolution of V(εt)

d

dt
V(εt) = ↓ϱ

∫
↖v ↓ v

→
, v ↓ vε(εt)↙ dεt(v)

  
=:T1

+
dς

2

2

∫
↑v ↓ vε(εt)↑

2
2 dεt(v)

  
=:T2

,

where we used ′⇀(v) = v ↓ v
→ and ”⇀(v) = d. Expanding the right-hand side of the scalar

product in the integrand of T1 by subtracting and adding v
→ yields

T1 = ↓ϱ

∫
↖v ↓ v

→
, v ↓ v

→
↙ dεt(v) + ϱ

∫
(v ↓ v

→) dεt(v), vε(εt)↓ v
→


↔ ↓2ϱV(εt) + ϱ ↑E(εt)↓ v
→
↑2 ↑vε(εt)↓ v

→
↑2

with Cauchy-Schwarz inequality being used in the last step. Similarly, again by subtracting and
adding v

→, for the term T2 we have with Cauchy-Schwarz inequality

T2 ↔ dς
2

(
V(εt) +

∫
↑v ↓ v

→
↑2 dεt(v) ↑vε(εt)↓ v

→
↑2 +

1

2
↑vε(εt)↓ v

→
↑
2
2

)
. (35)

The result now follows by noting that ↑E(εt)↓ v
→
↑2 ↔

∫
↑v ↓ v

→
↑2 dεt(v) ↔


2V(εt) as a

consequence of Jensen’s inequality.

Lemma 18. Under the assumptions of Lemma 17, the functional V(εt) satisfies

d

dt
V(εt) ⇔ ↓

(
2ϱ↓ dς

2
)
V(εt)↓

△
2
(
ϱ+ dς

2
)

V(εt) ↑vε(εt)↓ v
→
↑2 . (36)

Proof. By following the lines of the proof of Lemma 17 and noticing that it holds

∫
(v ↓ v

→) dεt(v), vε(εt)↓ v
→


⇔ ↓↑E(εt)↓ v
→
↑2 ↑vε(εt)↓ v

→
↑2

by Cauchy-Schwarz inequality and ↑vε(εt)↓ v
→
↑
2
2 ⇔ 0, the lower bound is immediate.

Lemma 19. Let E ↗ C(Rd) satisfy A1–A3 and w.l.o.g. assume E = 0. Let H : Rd
→ [0, 1]

be such that H(x) = 1 whenever x ⇔ 0 and fix ϖ,ϱ,ς > 0. Moreover, let T > 0 and let
ε ↗ C([0, T ],P4(Rd)) be a weak solution to the Fokker-Planck equation (9). Then, provided
maxt↑[0,T ] E(vε(εt)) ↔ E↘, the functional V(εt) satisfies

d

dt
V(εt) ↔↓

(
2ϱ↓ dς

2
)
V(εt) +

△
2
(
ϱ+ dς

2
)

V(εt) ↑vε(εt)↓ v
→
↑2

+
ϱ

ω2

(
LE (1 + ↑vε(εt)↓ v

→
↑
ς

2) ↑vε(εt)↓ v
→
↑2

)2ω
+

dς
2

2
↑vε(εt)↓ v

→
↑
2
2 .

18



Proof. Let us write H→(v) := H(E(v)↓ E(vε(εt))). Taking ⇀(v) = 1/2↑v ↓ v
→
↑
2
2 as test function

in (19) as in the proof of Lemma 17 yields for the evolution of V(εt)

d

dt
V(εt) = ↓ϱ

∫
H

→(v)↖v ↓ v
→
, v ↓ vε(εt)↙ dεt(v)

  
=:T̃1

+
dς

2

2

∫
↑v ↓ vε(εt)↑

2
2 dεt(v). (37)

For the second term on the right-hand side, we proceed as in Equation (35). The term T̃1 on
the other hand can be rewritten as

T̃1 = ↓2ϱV(εt)↓ ϱ

∫
H

→(v)↖v ↓ v
→
, v

→
↓ vε(εt)↙ dεt(v)

+ ϱ

∫
(1↓H

→(v)) ↑v ↓ v
→
↑
2
2 dεt(v).

(38)

Let us now bound the latter two terms individually. For the second term in (38), noting that
0 ↔ H

→
↔ 1, Cauchy-Schwarz inequality and Jensen’s inequality give

↓ϱ

∫
H

→(v)↖v ↓ v
→
, v

→
↓ vε(εt)↙ dεt(v) ↔ ϱ


2V(εt) ↑vε(εt)↓ v

→
↑2 .

For the third term in (38), let us first note that (1↓H
→(v)) ∈= 0 implies H→(v) ∈= 1 and thus

E(v) < E(vε(εt)). Furthermore, E(vε(εt)) ↔ E↘ implies v ↗ BR0(v
→) by the second part of A2.

By the first part of A2 and 0 ↔ 1↓H
→
↔ 1, we therefore have

ϱ

∫
(1↓H

→(v)) ↑v ↓ v
→
↑
2
2 dεt(v) ↔ ϱ

∫
(1↓H

→(v))

ω2
E(v)2ω dεt(v) ↔

ϱ

ω2
E(vε(εt))

2ω

↔
ϱ

ω2

(
LE (1 + ↑vε(εt)↓ v

→
↑
ς

2) ↑vε(εt)↓ v
→
↑2

)2ω
,

where the last step used A3. Employing the last two inequalities in (38) and inserting the result
together with (35) into (37), gives the result.

Lemma 20. Under the assumptions of Lemma 19, the functional V(εt) satisfies

d

dt
V(εt) ⇔↓

(
2ϱ↓ dς

2
)
V(εt)↓

△
2
(
ϱ+ dς

2
)

V(εt) ↑vε(εt)↓ v
→
↑2 .

(39)

Proof. Analogously to the proof of Lemma 18, by following the lines of the proof of Lemma 19
and noticing that for T̃1 it holds

↓

∫
H

→(v)↖v ↓ v
→
, v

→
↓ vε(εt)↙ dεt(v) ⇔ ↓↑E(εt)↓ v

→
↑2 ↑vε(εt)↓ v

→
↑2

as well as
∫
(1↓H

→(v)) ↑v ↓ v
→
↑
2
2 dεt(v) ⇔ 0 as a consequence of 0 ↔ H

→
↔ 1, the lower bound

is immediate.

4.2 Quantitative Laplace principle

The Laplace principle (7) asserts that ↓ log(↑φε↑L1(ϖ))/ϖ → E as ϖ → ≃ as long as the global
minimizer v→ is in the support of ↼. However, it cannot be used to characterize the proximity of
vε(↼) to the global minimizer v→ in general. For instance, if E had two minimizers with similar
objective value E , and half of the probability mass of ↼ concentrates around each associated
location, vε(↼) is located halfway on the line that connects the two minimizing locations. The
inverse continuity property A2, by design, excludes such cases, so that we can refine the Laplace
principle under A2 in the following sense.
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Proposition 21. Let ↼ ↗ P(Rd) and fix ϖ > 0. For any r > 0 define Er := supv↑Br(v→) E(v).
Then, under the inverse continuity property A2 and assuming w.l.o.g. E = 0, for any r ↗ (0, R0]
and q > 0 such that q + Er ↔ E↘, we have

↑vε(↼)↓ v
→
↑2 ↔

(q + Er)ω

ω
+

exp(↓ϖq)

↼(Br(v→))

∫
↑v ↓ v

→
↑2 d↼(v).

Proof. For any a > 0 it holds ↑φε↑L1(ϖ) ⇔ a↼({v : exp(↓ϖE(v)) ⇔ a}) due to Markov’s
inequality. By choosing a = exp(↓ϖEr) and noting that

↼


v ↗ Rd : exp(↓ϖE(v)) ⇔ exp(↓ϖEr)


= ↼


v ↗ Rd : E(v) ↔ Er


⇔ ↼(Br(v

→)),

we get ↑φε↑L1(ϖ)
⇔ exp(↓ϖEr)↼(Br(v→)). Now let r̃ ⇔ r > 0. Using the definition of the

consensus point vε(↼) =
∫
vφε(v)/↑φε↑L1(ϖ) d↼(v) we can decompose

↑vε(↼)↓v
→
↑2 ↔

∫

Br̃(v→)
↑v↓v

→
↑2

φε(v)

↑φε↑L1(ϖ)

d↼(v) +

∫

(Br̃(v→))
c
↑v↓v

→
↑2

φε(v)

↑φε↑L1(ϖ)

d↼(v).

The first term is bounded by r̃ since ↑v ↓ v
→
↑2 ↔ r̃ for all v ↗ Br̃(v

→). For the second term we
use ↑φε↑L1(ϖ)

⇔ exp(↓ϖEr)↼(Br(v→)) from above to get

∫

(Br̃(v→))
c
↑v↓v

→
↑2

φε(v)

↑φε↑L1(ϖ)

d↼(v)↔
1

exp(↓ϖEr)↼(Br(v→))

∫

(Br̃(v→))c
↑v↓v

→
↑2 φε(v) d↼(v)

↔
exp

(
↓ϖ

(
infv↑(Br̃(v→))c E(v)↓Er

))

↼(Br(v→))

∫
↑v↓v

→
↑2 d↼(v).

Thus, for any r̃ ⇔ r > 0 we obtain

↑vε(↼)↓ v
→
↑2 ↔ r̃ +

exp
(
↓ϖ

(
infv↑(Br̃(v→))c E(v)↓ Er

))

↼(Br(v→))

∫
↑v ↓ v

→
↑2 d↼(v). (40)

Let us now choose r̃ = (q+Er)ω/ω. This choice satisfies r̃ ↔ E
ω
↘/ω by the assumption q+Er ↔ E↘,

and furthermore r̃ ⇔ r, since A2 with E = 0 and r ↔ R0 implies

r̃ =
(q + Er)ω

ω
⇔

E
ω
r

ω
=


supv↑Br(v→) E(v)


ω

ω
⇔ sup

v↑Br(v→)
↑v ↓ v

→
↑2 = r.

Thus, using again A2 with E = 0, it holds

inf
v↑(Br̃(v→))c

E(v)↓ Er ⇔ min
{
E↘, (ωr̃)1/ω

}
↓ Er = (ωr̃)1/ω ↓ Er = q.

Inserting this and the definition of r̃ into (40), we obtain the result.

4.3 A lower bound for the probability mass around v→

In this section we bound the probability mass εt(Br(v→)) for an arbitrary small radius r > 0
from below. By defining a smooth mollifier ⇀r : Rd

→ [0, 1] with supp⇀r = Br(v→) according to

⇀r(v) :=





exp


1↓ r

2

r2↓⇐v↓v→⇐22


, if ↑v ↓ v

→
↑2 < r,

0, else,
(41)

it holds εt(Br(v→))⇔
∫
⇀r(v) dεt(v). From there, the evolution of the right-hand side can be

studied by using the weak solution property of ε as in Definition 5.
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Proposition 22. Let H : R → [0, 1] be arbitrary, T > 0, r > 0, and fix parameters ϖ,ϱ,ς > 0.
Assume ε ↗ C([0, T ],P(Rd)) weakly solves the Fokker-Planck equation (9) in the sense of
Definition 5 with initial condition ε0 ↗ P(Rd) and for t ↗ [0, T ]. Then, for all t ↗ [0, T ] we have

εt (Br(v
→)) ⇔

(∫
⇀r(v) dε0(v)

)
exp (↓pt) , where (42)

p := max

{
2ϱ(

△
cr +B)

△
c

(1↓ c)2r
+

2ς2(cr2 +B
2)(2c+ d)

(1↓ c)4r2
,

4ϱ2

(2c↓ 1)ς2

}
(43)

for any B < ≃ with supt↑[0,T ] ↑vε(εt)↓ v
→
↑2 ↔ B and for any c ↗ (1/2, 1) satisfying

(2c↓ 1)c ⇔ d(1↓ c)2. (44)

Remark 23. In case the reader may have wondered about the crucial role of the stochastic
terms in (2) and (4), or the di!usion in the macroscopic models (8) and (9), Proposition 22
precisely explains where positive di!usion ς > 0 is actually used to ensure mass around the
minimizer v→ (compare Proposition 21).

Proof of Proposition 22. By definition of the mollifier ⇀r in (41) we have 0 ↔ ⇀r(v) ↔ 1 and
supp(⇀r) = Br(v→). This implies

εt (Br(v
→)) = εt


v ↗ Rd : ↑v ↓ v

→
↑2 ↔ r


⇔

∫
⇀r(v) dεt(v). (45)

Our strategy is to derive a lower bound for the right-hand side of this inequality. Using the
weak solution property of ε and the fact that ⇀r ↗ C

↘
c (Rd), we obtain

d

dt

∫
⇀r(v) dεt(v) =

∫
(T1(v) + T2(v)) dεt(v) (46)

with T1(v) := ↓ϱH
→(v)↖v↓vε(εt),′⇀r(v)↙ and T2(v) :=

↼
2

2 ↑v ↓ vε(εt)↑
2
2”⇀r(v), and where we

abbreviate H→(v) := H(E(v)↓ E(vε(εt))) to keep the notation concise. We now aim for showing
T1(v) + T2(v) ⇔ ↓p⇀r(v) uniformly on Rd for p > 0 as given in (43) in the statement. Since the
mollifier ⇀r and its first and second derivatives vanish outside of &r := {v ↗ Rd : ↑v ↓ v

→
↑2 < r}

we can restrict our attention to the open ball &r. To achieve the lower bound over &r, we
introduce the subsets K1 :=

{
v ↗ Rd : ↑v ↓ v

→
↑2 >

△
cr
}
and

K2 :=

{
v ↗ Rd : ↓ϱH

→(v)↖v ↓ vε(εt), v ↓ v
→
↙


r
2
↓ ↑v ↓ v

→
↑
2
2

2

> c̃r
2ς

2

2
↑v ↓ vε(εt)↑

2
2 ↑v ↓ v

→
↑
2
2

}
,

where c adheres to (44), and c̃ := 2c ↓ 1 ↗ (0, 1). We now decompose &r according to
&r = (Kc

1 ∋ &r)▽ (K1 ∋K
c

2 ∋ &r)▽ (K1 ∋K2 ∋ &r), which is illustrated in Figure 3 for di!erent
positions of vε(εt) and values of ς.
In the following we treat each of these three subsets separately.
Subset Kc

1∋&r: We have ↑v ↓ v
→
↑2 ↔

△
cr for each v ↗ K

c

1, which can be used to independently
derive lower bounds for both T1 and T2. Recalling the expression for ⇀r from (41), for T1 we
get by using Cauchy-Schwarz inequality and H

→
↔ 1

T1(v) = ↓ϱH
→(v)↖v ↓ vε(εt),′⇀r(v)↙ = ↓ϱH

→(v)

〈
v ↓ vε(εt),

↓2r2(v ↓ v
→)⇀r(v)

r2 ↓ ↑v ↓ v→↑22

2

〉

⇔ ↓2r2ϱ
↑v ↓ vε(εt)↑2 ↑v ↓ v

→
↑2

r2 ↓ ↑v ↓ v→↑22

2 ⇀r(v) ⇔ ↓
2ϱ(

△
cr +B)

△
c

(1↓ c)2r
⇀r(v) =: ↓p1⇀r(v),
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(a) Decomposition for
vω(εt) ↗ &r and ς = 0.2

(b) Decomposition for
vω(εt) ∈↗ &r and ς = 0.2

(c) Decomposition for
vω(εt) ∈↗ &r and ς = 1

Figure 3: Visualization of the decomposition of &r for di!erent positions of vε(εt) and values
of ς in the setting H ⇒ 1. In the proof of Proposition 22 we limit the rate of the mass loss
induced by both consensus drift and noise term for the set Kc

1 ∋ &r, which is colored blue. On
the set K1 ∋K

c

2 ∋ &r, inked orange, the noise term counterbalances any potential mass loss
induced by the drift, while on the gray set K1 ∋K2 ∋ &r mass can be lost at an exponential
rate ↓4ϱ2

/((2c↓ 1)ς2).

where the last bound is due to ↑v ↓ vε(εt)↑2 ↔ ↑v ↓ v
→
↑2+↑v

→
↓ vε(εt)↑2 ↔

△
cr+B. Similarly,

by computing ”⇀r and inserting it, for T2 we obtain

T2(v)=ς
2
r
2
↑v ↓ vε(εt)↑

2
2

2

2 ↑v ↓ v

→
↑
2
2↓r

2

↑v ↓ v

→
↑
2
2↓d


r
2
↓ ↑v ↓ v

→
↑
2
2

2


r2 ↓ ↑v ↓ v→↑22

4 ⇀r(v)

⇔ ↓
2ς2(cr2 +B

2)(2c+ d)

(1↓ c)4r2
⇀r(v) =: ↓p2⇀r(v),

where we used ↑v ↓ vε(εt)↑
2
2 ↔ 2

(
↑v ↓ v

→
↑
2
2 + ↑v

→
↓ vε(εt)↑

2
2

)
↔ 2(cr2 +B

2).
Subset K1 ∋K

c

2 ∋ &r: By the definition of K1 and K2 we have ↑v ↓ v
→
↑2 >

△
cr and

↓ϱH
→(v)↖v↓vε(εt), v↓v

→
↙


r
2
↓↑v↓v

→
↑
2
2

2
↔ c̃r

2ς
2

2
↑v↓vε(εt)↑

2
2 ↑v ↓ v

→
↑
2
2 . (47)

Our goal now is to show T1(v) + T2(v) ⇔ 0 for all v in this subset. We first compute

T1(v) + T2(v)

2r2⇀r(v)
= ϱH

→(v)
↖v ↓ vε(εt), v ↓ v

→
↙


r
2
↓ ↑v ↓ v

→
↑
2
2

2


r2 ↓ ↑v ↓ v→↑22

4

+
ς
2

2
↑v ↓ vε(εt)↑

2
2

2

2 ↑v ↓ v

→
↑
2
2 ↓ r

2

↑v ↓ v

→
↑
2
2 ↓ d


r
2
↓ ↑v ↓ v

→
↑
2
2

2


r2 ↓ ↑v ↓ v→↑22

4 .

Therefore we have T1(v) + T2(v) ⇔ 0 whenever we can show

(
↓ϱH

→(v)↖v ↓ vε(εt), v ↓ v
→
↙+

dς
2

2
↑v ↓ vε(εt)↑

2
2

)
r
2
↓ ↑v ↓ v

→
↑
2
2

2

↔ ς
2
↑v ↓ vε(εt)↑

2
2


2 ↑v ↓ v

→
↑
2
2 ↓ r

2

↑v ↓ v

→
↑
2
2 .

(48)

Now note that the first summand on the left-hand side in (48) can be upper bounded by means
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of Condition (47) and by using the relation c̃ = 2c↓ 1. More precisely,

↓ ϱH
→(v)↖v ↓ vε(εt), v ↓ v

→
↙


r
2
↓ ↑v ↓ v

→
↑
2
2

2
↔ c̃r

2ς
2

2
↑v ↓ vε(εt)↑

2
2 ↑v ↓ v

→
↑
2
2

= (2c↓ 1)r2
ς
2

2
↑v ↓ vε(εt)↑

2
2 ↑v ↓ v

→
↑
2
2 ↔


2 ↑v ↓ v

→
↑
2
2 ↓ r

2

ς
2

2
↑v ↓ vε(εt)↑

2
2 ↑v ↓ v

→
↑
2
2 ,

where the last inequality follows since v ↗ K1. For the second term on the left-hand side in (48)
we can use d(1↓ c)2 ↔ (2c↓ 1)c as per (44), to get

dς
2

2
↑v ↓ vε(εt)↑

2
2


r
2
↓ ↑v ↓ v

→
↑
2
2

2
↔

dς
2

2
↑v ↓ vε(εt)↑

2
2 (1↓ c)2r4

↔
ς
2

2
↑v ↓ vε(εt)↑

2
2 (2c↓ 1)r2cr2 ↔

ς
2

2
↑v ↓ vε(εt)↑

2
2


2 ↑v ↓ v

→
↑
2
2 ↓ r

2

↑v ↓ v

→
↑
2
2 .

Hence, (48) holds and we have T1(v) + T2(v) ⇔ 0 uniformly on this subset.
Subset K1 ∋K2 ∋ &r: On this subset, we have ↑v ↓ v

→
↑2 >

△
cr and

↓ϱH
→(v)↖v ↓ vε(εt), v ↓ v

→
↙


r
2
↓ ↑v ↓ v

→
↑
2
2

2
> c̃r

2ς
2

2
↑v ↓ vε(εt)↑

2
2 ↑v ↓ v

→
↑
2
2 . (49)

We first note that T1(v) = 0 whenever ς2
↑v ↓ vε(εt)↑22 = 0, provided that ς > 0, so nothing

needs to be done for the point v = vε(εt). On the other hand, if ς2
↑v ↓ vε(εt)↑22 > 0, we can

use H
→
↔ 1, two applications of Cauchy-Schwarz inequalities, and Condition (49) to get

H
→(v) ↖v ↓ vε(εt), v ↓ v

→
↙


r2 ↓ ↑v ↓ v→↑22

2 ⇔
↓↑v ↓ vε(εt)↑2 ↑v ↓ v

→
↑2

r2 ↓ ↑v ↓ v→↑22

2

>
2ϱH→(v)↖v ↓ vε(εt), v ↓ v

→
↙

c̃r2ς2 ↑v ↓ vε(εt)↑2 ↑v ↓ v→↑2
⇔ ↓

2ϱ

c̃r2ς2
.

Using this, T1 can be bounded from below by

T1(v) = 2ϱr2H→(v)

〈
v ↓ vε(εt),

v ↓ v
→


r2 ↓ ↑v ↓ v→↑22

2⇀r(v)

〉
⇔ ↓

4ϱ2

c̃ς2
⇀r(v) =: ↓p3⇀r(v),

where we made use of the relation c̃ = 2c ↓ 1 in the last step. For T2, we note that the
nonnegativity of ς2

↑v ↓ vε(εt)↑2 implies T2(v) ⇔ 0, whenever

2

2 ↑v ↓ v

→
↑
2
2 ↓ r

2

↑v ↓ v

→
↑
2
2 ⇔ d


r
2
↓ ↑v ↓ v

→
↑
2
2

2
.

This is satisfied for all v with ↑v ↓ v
→
↑2 ⇔

△
cr, provided c satisfies 2(2c↓ 1)c ⇔ (1↓ c)2d as

implied by (44).
Concluding the proof: Using the evolution of ⇀r as in (46), we now get

d

dt

∫
⇀r(v) dεt(v) =

∫

K1⇒Kc
2⇒#r

(T1(v) + T2(v))  
↔0

dεt(v)

+

∫

K1⇒K2⇒#r

(T1(v) + T2(v))  
↔↓p3↽r(v)

dεt(v) +

∫

K
c
1⇒#r

(T1(v) + T2(v))  
↔↓(p1+p2)↽r(v)

dεt(v)

⇔↓max {p1 + p2, p3}

∫
⇀r(v) dεt(v) = ↓p

∫
⇀r(v) dεt(v)

An application of Grönwall’s inequality gives
∫
⇀r(v) dεt(v)⇔

∫
⇀r(v) dε0(v) exp(↓pt), which

concludes the proof after recalling (45).
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4.4 Proof of Theorem 12

We now have all necessary tools at hand to present a detailed proof of the global convergence
result in mean-field law. We separately prove the cases of an inactive and active cuto! function,
i.e., H ⇒ 1 and H ∈⇒ 1, respectively.

Proof of Theorem 12 when H ⇒ 1. W.l.o.g. we may assume E = 0. Let us first choose the
parameter ϖ such that

ϖ > ϖ0 :=
1

qϱ


log


4

2V(ε0)

c (◁,ϱ,ς)
△
⇁


+

p

(1↓ ◁) (2ϱ↓ dς2)
log

(
V(ε0)

⇁

)

↓ log ε0
(
Brω/2(v

→)
)

,

(50)

where we introduce the definitions

c (◁,ϱ,ς) := min

{
◁

2

(
2ϱ↓ dς

2
)

△
2 (ϱ+ dς2)

,

√
◁
(2ϱ↓ dς2)

dς2

}
(51)

as well as

qϱ :=
1

2
min

{(
ω
c (◁,ϱ,ς)

△
⇁

2

)1/ω

, E↘

}
and rϱ := max

s↑[0,R0]

{
max

v↑Bs(v→)
E(v) ↔ qϱ

}
.

Moreover, p is as defined in (43) in Proposition 22 with B = c(◁,ϱ,ς)

V(ε0) and with r = rϱ.

We remark that, by construction, qϱ > 0 and rϱ ↔ R0. Furthermore, recalling the notation
Er = supv↑Br(v→) E(v) from Proposition 21, we have qϱ + Erω ↔ 2qϱ ↔ E↘ as a consequence of
the definition of rϱ. Since qϱ > 0, the continuity of E ensures that there exists sqω > 0 such that
E(v) ↔ qϱ for all v ↗ Bsqω

(v→), thus yielding also rϱ > 0.
Let us now define the time horizon Tε ⇔ 0, which may depend on ϖ, by

Tε := sup
{
t ⇔ 0 : V(εt↓) > ⇁ and ↑vε(εt↓)↓ v

→
↑2 < C(t⇑) for all t⇑ ↗ [0, t]

}
(52)

with C(t) := c(◁,ϱ,ς)

V(εt). Notice for later use that C(0) = B.

Our aim now is to show V(εTε) = ⇁ with Tε ↗
[

1↓⇀

(1+⇀/2) T
→
, T

→ and that we have at least

exponential decay of V(εt) until time Tε, i.e., until accuracy ⇁ is reached.
First, however, we ensure that Tε > 0. With the mapping t ⇑→ V(εt) being continuous

as a consequence of the regularity ε ↗ C([0, T ],P4(Rd)) established in Theorem 6 and t ⇑→

↑vε(εt)↓ v
→
↑2 being continuous due to [10, Lemma 3.2] and ε ↗ C([0, T ],P4(Rd)), Tε > 0

follows from the definition, since V(ε0) > ⇁ and ↑vε(ε0)↓ v
→
↑2 < C(0). While the former is

immediate by assumption, applying Proposition 21 with qϱ and rϱ gives the latter since

↑vε(ε0)↓ v
→
↑2 ↔

(qϱ + Erω)
ω

ω
+

exp (↓ϖqϱ)

ε0(Brω(v→))

∫
↑v ↓ v

→
↑2 dε0(v)

↔
c (◁,ϱ,ς)

△
⇁

2
+

exp (↓ϖqϱ)

ε0(Brω(v→))


2V(ε0)

↔ c (◁,ϱ,ς)
△
⇁ < c (◁,ϱ,ς)


V(ε0) = C(0),

where the first inequality in the last line holds by the choice of ϖ in (50).
Next, we show that the functional V(εt) decays essentially exponentially fast in time. More

precisely, we prove that, up to time Tε, V(εt) decays

(i) at least exponentially fast (with rate (1↓ ◁)(2ϱ↓ dς
2)), and
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(ii) at most exponentially fast (with rate (1 + ◁/2)(2ϱ↓ dς
2)).

To obtain (i), recall that Lemma 17 provides an upper bound on d

dt
V(εt) given by

d

dt
V(εt) ↔ ↓

(
2ϱ↓ dς

2
)
V(εt) +

△
2
(
ϱ+ dς

2
)

V(εt) ↑vε(εt)↓ v
→
↑2

+
dς

2

2
↑vε(εt)↓ v

→
↑
2
2 .

(53)

Combining this with the definition of Tε in (52) we have by construction

d

dt
V(εt) ↔ ↓(1↓ ◁)

(
2ϱ↓ dς

2
)
V(εt) for all t ↗ (0, Tε).

Analogously, for (ii), by Lemma 18, we obtain a lower bound on d

dt
V(εt) of the form

d

dt
V(εt) ⇔ ↓

(
2ϱ↓ dς

2
)
V(εt)↓

△
2
(
ϱ+ dς

2
)

V(εt) ↑vε(εt)↓ v
→
↑2

⇔ ↓(1 + ◁/2)
(
2ϱ↓ dς

2
)
V(εt) for all t ↗ (0, Tε),

where the second inequality again exploits the definition of Tε. Grönwall’s inequality now
implies for all t ↗ [0, Tε] the upper and lower bound

V(εt) ↔ V(ε0) exp
(
↓(1↓ ◁)

(
2ϱ↓ dς

2
)
t
)
, (54)

V(εt) ⇔ V(ε0) exp
(
↓(1 + ◁/2)

(
2ϱ↓ dς

2
)
t
)
, (55)

thereby proving (i) and (ii). We further note that the definition of Tε in (52) together with the
definition of C(t) and (54) permits to control

max
t↑[0,Tε]

↑vε(εt)↓ v
→
↑2 ↔ max

t↑[0,Tε]
C(t) ↔ C(0). (56)

To conclude, it remains to prove that V(εTε) = ⇁ with Tε ↗
[

1↓⇀

(1+⇀/2) T
→
, T

→. For this we
distinguish the following three cases.
Case Tε ⇔ T

→: We can use the definition of T → in (26) and the time-evolution bound of V(εt)
in (54) to conclude that V(εT →) ↔ ⇁. Hence, by definition of Tε in (52) together with the
continuity of V(εt), we find V(εTε) = ⇁ with Tε = T

→.
Case Tε < T

→ and V(εTε) ↔ ⇁: By continuity of V(εt), it holds for Tε as defined in (52),
V(εTε) = ⇁. Thus, ⇁ = V(εTε) ⇔ V(ε0) exp

(
↓(1 + ◁/2)

(
2ϱ↓ dς

2
)
Tε

)
by (55), which can be

reordered as

1↓ ◁

(1 + ◁/2)
T
→ =

1

(1 + ◁/2) (2ϱ↓ dς2)
log

(
V(ε0)

⇁

)
↔ Tε < T

→
.

Case Tε < T
→ and V(εTε) > ⇁: We shall show that this case can never occur by verifying that

↑vε(εTε)↓ v
→
↑2 < C(Tε) due to the choice of ϖ in (50). In fact, fulfilling simultaneously both

V(εTε) > ⇁ and ↑vε(εTε)↓ v
→
↑2 < C(Tε) would contradict the definition of Tε in (52) itself.

To this end, by applying again Proposition 21 with qϱ and rϱ, and recalling that ⇁ < V(εTε), we
get

↑vε(εTε)↓ v
→
↑2 ↔

(qϱ + Erω)
ω

ω
+

exp (↓ϖqϱ)

εTε

(
Brω(v→)

)
∫

↑v ↓ v
→
↑2 dεTε(v)

<
c (◁,ϱ,ς)


V(εTε)

2
+

exp (↓ϖqϱ)

εTε

(
Brω(v→)

)

2V(εTε).

(57)
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Since, thanks to (56), we have the bound maxt↑[0,Tε] ↑vε(εt)↓ v
→
↑2 ↔ B for B = C(0), which

is in particular independent of ϖ, Proposition 22 guarantees that there exists a p > 0 not
depending on ϖ (but depending on B and rϱ) with

εTε(Brω(v
→)) ⇔

(∫
⇀rω(v) dε0(v)

)
exp(↓pTε) ⇔

1

2
ε0

(
Brω/2(v

→)
)
exp(↓pT

→) > 0,

where we used v
→
↗ supp(ε0) for bounding the initial mass ε0 and the fact that ⇀r (as defined

in Equation (41)) is bounded from below on Br/2(v
→) by 1/2. With this we can continue the

chain of inequalities in (57) to obtain

↑vε(εTε)↓v
→
↑2 <

c (◁,ϱ,ς)

V(εTε)

2
+

2 exp (↓ϖqϱ)

ε0
(
Brω/2(v

→)
)
exp(↓pT →)


2V(εTε)

↔ c (◁,ϱ,ς)

V(εTε) = C(Tε),

(58)

where the first inequality in the last line holds by the choice of ϖ in (50). This establishes
the desired contradiction, again as consequence of the continuity of the mappings t ⇑→ V(εt)
and t ⇑→ ↑vε(εt)↓ v

→
↑2.

Proof of Theorem 12 when H ∈⇒ 1. The proof follows the lines of the one for the inactive cuto!
H ⇒ 1, but requires some modifications since Lemmas 17 and 18 need to be replaced by
Lemmas 19 and 20, to derive bounds for the evolution of V(εt).

As in the proof for the case H ⇒ 1 we first choose the parameter ϖ such that

ϖ > ϖ0 :=
1

qϱ


log


4

2V(ε0)

Cϱ


+

p

(1↓ ◁) (2ϱ↓ dς2)
log

(
V(ε0)

⇁

)

↓ log ε0
(
Brω/2(v

→)
)

,

(59)

where Cϱ is obtained when replacing with ⇁ each V(εt) in C(t) defined as

C(t) := min

{
E↘
2LE

,

(
E↘
2LE

)1/(1+ς)

,
◁

4

(
2ϱ↓ dς

2
)

△
2 (ϱ+ dς2)


V(εt),

√
◁

2

(2ϱ↓ dς2)

dς2
V(εt),


◁

4

ω
2

L
2ω
E

(
2ϱ↓ dς

2
)

ϱ
V(εt)

1/(2ω)

,


◁

4

ω
2

L
2ω
E

(
2ϱ↓ dς

2
)

ϱ
V(εt)

1/(2ω(1+ς))}
.

(60)

Moreover, rϱ is as defined before, p as in (43) with B = C(0) and r = rϱ, and

qϱ :=
1

2
min

{(
ω
Cϱ

2

)1/ω

, E↘

}
.

Let us now define again a time horizon Tε according to (52), however with the modified
definition of C(t) from (60). It is straightforward to check that Tε > 0 by choice of ϖ in (59).
Our aim is again to show V(εTε) = ⇁ with Tε ↗

[
1↓⇀

(1+⇀/2) T
→
, T

→ and that we have at least

exponential decay of V(εt) until Tε.
Since due to Assumption A3 and with the definition of C(t) in (60) it holds

max
t↑[0,Tε]

E(vε(εt)) ↔ max
t↑[0,Tε]

LE(1 + ↑vε(εt)↓ v
→
↑
ς

2) ↑vε(εt)↓ v
→
↑2 ↔ E↘, (61)

Lemmas 19 and 20 provide an upper and a lower bound for the time derivative of V(εt), which,
when being combined with the definitions of Tε and C(t) in (60), yield

d

dt
V(εt) ↔ ↓ (1↓◁)

(
2ϱ↓dς

2
)
V(εt) and

d

dt
V(εt) ⇔ ↓ (1+◁/2)

(
2ϱ↓dς

2
)
V(εt)
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for all t ↗ (0, Tε) as before. We can thus follow the lines of the proof for the case H ⇒ 1,
since also here C(t) is bounded. In particular, the choice of ϖ in (59) allows to derive the
contradiction ↑vε(εTε)↓ v

→
↑2 < C(Tε) by employing Propositions 21 and 22.

Remark 24 (Informal lower bound for ϖ0). As mentioned in Section 3.3, insightful lower
bounds on the required ϖ0 in Theorem 12 may be interesting in view of better understanding
the convergence of the microscopic system (4) to the mean-field limit (8). Let us therefore
informally derive in what follows an instructive lower bound on the required ϖ0 under the
assumption that E satisfies Condition A2 globally with ν = 1/2 and that E is locally L-Lipschitz
continuous around v

→, i.e., in some ball BR(v→). We restrict ourselves to the case of an inactive
cuto! function H ⇒ 1.

Recalling (53) in the proof of Theorem 12, ϖ should be large enough to ensure

↑vε(εt)↓ v
→
↑2 ↔ c (◁,ϱ,ς)


V(εt) for all t ↗ [0, T ], (62)

where T is the time satisfying V(εT ) = ⇁. To achieve this, we recall that for ↼ ↗ P(Rd)
the quantitative Laplace principle in Proposition 21 with choices qϱ := c (◁,ϱ,ς)2 ω2⇁/8 and
rϱ := min{R, qϱ/L} for q and r, respectively, yields

↑vε(↼)↓ v
→
↑2 ↔

△
2qϱ
ω

+
exp (↓ϖqϱ)

↼(Brω(v→))

∫
↑v ↓ v

→
↑2 d↼(v)

provided that A2 holds globally with ν = 1/2 and that E is L-Lipschitz continuous on some
ball BR(v→). It remains to choose ϖ > ϖ0, where

ϖ0 := sup
t↑[0,T ]

↓8

c (◁,ϱ,ς)2 ω2⇁
log

(
c (◁,ϱ,ς)

2
△
2

εt


Bmin{R, c(⇀,⇁,↼)2φ2ϱ/(8L)}(v

→)
)

, (63)

suggesting that ϖ0 is strongly related to the time-evolution of the probability mass of εt around
v
→. Recalling Proposition 22, this mass adheres to the lower bound

εt(Br(v
→)) ⇔ ε0(Br/2(v

→)) exp(↓pt)/2 for some p > 0 and any r > 0.

However, this result is pessimistic due to its worst-case nature, and inserting it into (63) with
the corresponding p as in (43) leads to overly stringent requirements on ϖ0, which are reflected
by the respective second summands in (50) and (59). Rather, a successful application of the
CBO method entails that the probability mass around the global minimizer increases over time,
so that t ⇑→ εt(Br(v→)) is typically minimized at t = 0. In such case, the lower bound (63)
becomes

ϖ0 =
↓8

c (◁,ϱ,ς)2 ω2⇁
log

(
c (◁,ϱ,ς)

2
△
2

ε0


Bmin{R, c(⇀,⇁,↼)2φ2ϱ/(8L)}(v

→)
)

. (64)

5 Proof details for Section 3.3

In this section we provide the proof details for the result about the mean-field approximation of
CBO, Proposition 16. After giving the proof of the auxiliary Lemma 15, which ensures that the
dynamics is to some extent bounded, we prove Proposition 16.

Proof of Lemma 15. By combining the ideas of [10, Lemma 3.4] with a Doob-like inequality,
we derive a bound for E supt↑[0,T ]

1
N

∑
N

i=1max
{
↑V

i
t ↑

4
2 + ↑V

i
t ↑

4
2

}
, which ensures that ε̂Nt , ε

N
t ↗

P4(Rd) with high probability. Here, εN denotes the empirical measure associated with the
processes (V i)i=1,...,N .
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Employing standard inequalities shows

E sup
t↑[0,T ]

∥∥V i

t

∥∥4
2
↭ E

∥∥V i

0

∥∥4
2
+ ϱ

4 E sup
t↑[0,T ]

∥∥∥∥
∫

t

0

(
V

i

τ ↓ vε(ε̂
N

τ )
)
d0

∥∥∥∥
4

2

+ ς
4 E sup

t↑[0,T ]

∥∥∥∥
∫

t

0

∥∥V i

τ ↓ vε(ε̂
N

τ )
∥∥
2
dB

i

τ

∥∥∥∥
4

2

,

(65)

where we note that the expression
∫
t

0 ↑V
i
τ ↓ vε(ε̂Nτ )↑2 dBi

τ appearing in the third term of the
right-hand side is a martingale, which is a consequence of [51, Corollary 3.2.6] combined with
the regularity established in [10, Lemma 3.4]. This allows to apply the Burkholder-Davis-Gundy
inequality [56, Chapter IV, Theorem 4.1], which yields

E sup
t↑[0,T ]

∥∥∥∥
∫

t

0

∥∥V i

τ ↓ vε(ε̂
N

τ )
∥∥
2
dB

i

τ

∥∥∥∥
4

2

↭ E
(∫

T

0

∥∥V i

τ ↓ vε(ε̂
N

τ )
∥∥2
2
d0

)2

.

Let us stress that the constant appearing in the latter estimate depends on the dimension d.
Further bounding this as well as the second term of the right-hand side in (65) by means of
Jensen’s inequality and utilizing [10, Lemma 3.3] yields

E sup
t↑[0,T ]

∥∥V i

t

∥∥4
2
↔ C

(
1 + E

∥∥V i

0

∥∥4
2
+ E

∫
T

0

∥∥V i

τ

∥∥4
2
+

∫
↑v↑

4
2 dε̂

N

τ (v) d0

)
(66)

with a constant C = C(ϱ,ς, d, T, b1, b2). Averaging (66) over i allows to bound

E sup
t↑[0,T ]

∫
↑v↑

4
2 dε̂

N

t (v) ↔ C


1 + E

∫
↑v↑

4
2 dε̂

N

0 (v) + 2

∫
T

0
E sup
τ̂↑[0,τ ]

∫
↑v↑

4
2 dε̂

N

τ̂
(v) d0


,

which, after applying Grönwall’s inequality, ensures that the left-hand side is bounded indepen-
dently of N by a constant K=K(ϱ,ς, d, T, b1, b2). With analogous arguments,

E sup
t↑[0,T ]

∫
↑v↑

4
2 dε

N

t (v) ↔ K.

Equation (30) follows now from Markov’s inequality.

Proof of Proposition 16. By exploiting the boundedness thanks to Lemma 15 through a cuto!
technique, we can follow the steps taken in [25, Theorem 3.1].
Let us define the cuto! function

IM (t) =

{
1, if 1

N

∑
N

i=1max
∥∥V i

τ

∥∥4
2
,
∥∥V i

τ

∥∥4
2


↔ M for all 0 ↗ [0, t],

0, else,

which is adapted to the natural filtration and has the property IM (t) = IM (t)IM (0) for all
0 ↗ [0, t]. With Jensen’s inequality and Itô isometry this allows to derive

E
∥∥V i

t ↓ V
i

t

∥∥2
2
IM (t) ↭ c

∫
t

0
E
∥∥V i

τ ↓ V
i

τ

∥∥2
2
+
∥∥vε(ε̂Nτ )↓ vε(ετ )

∥∥2
2


IM (0) d0 (67)

for c =
(
ϱ
2
T + ς

2
)
. Here we directly used that the processes V i

t and V
i
t share the initial data as

well as the Brownian motion paths. In what follows, let us denote by ε
N
τ the empirical measure

of the processes V i
τ . Then, by using the same arguments as in the proofs of [10, Lemma 3.2] and
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[25, Lemma 3.1] with the care of taking into consideration the multiplication with the random
variable IM (0), we obtain

E
∥∥vε(ε̂Nτ )↓ vε(ετ )

∥∥2
2
IM (0) ↭ E

∥∥vε(ε̂Nτ )↓ vε(ε
N

τ )
∥∥2
2
IM (0) + E

∥∥vε(εNτ )↓ vε(ετ )
∥∥2
2
IM (0)

↔ C

(
max

i=1,...,N
E
∥∥V i

τ ↓ V
i

τ

∥∥2
2
IM (0) +N

↓1

)

for a constant C = C(ϖ, C1, C2,M,M2, b1, b2). After plugging the latter into (67) and taking
the maximum over i, the quantitative mean-field approximation result (31) follows from an
application of Grönwall’s inequality after recalling the definition of the conditional expectation
and noting that #M ↔ IM (t) pointwise and for all t ↗ [0, T ].

6 Conclusions

In this paper we establish the convergence of consensus-based optimization (CBO) methods to
the global minimizer. The proof technique is based on the novel insight that the dynamics of
individual agents follow, on average over all realizations of Brownian motion paths, the gradient
flow dynamics associated with the map v ⇑→ ↑v ↓ v

→
↑
2
2, where v

→ is the global minimizer of
the objective E . This implies that CBO methods are barely influenced by the local energy
landscape of E , suggesting a high degree of robustness and versatility of the method. As opposed
to restrictive concentration conditions on the initial agent configuration ε0 in the analyses
in [10, 26, 31, 32], our result holds under mild assumptions about the initial distribution ε0.
Furthermore, we merely require local Lipschitz continuity and a certain tractability condition
about the objective E , relaxing the regularity requirement E ↗ C

2(Rd) together with further
assumptions from prior works. In order to demonstrate the relevance of the result of convergence
in mean-field law for establishing a complete convergence proof of the original numerical
scheme (2), we prove a probabilistic quantitative result about the mean-field approximation,
which connects the finite particle regime with the mean-field limit. With this we close the gap
regarding the mean-field approximation of CBO and provide the first, and so far unique, holistic
convergence proof of CBO on the plane.

We believe that the proposed analysis strategy can be adopted to other recently developed
adaptations of the CBO algorithm, such as CBO methods tailored to manifold optimization
problems [25,26], polarized CBO adjusted to identify multiple minimizers simultaneously [9], as
well as related metaheuristics including, for instance, Particle Swarm Optimization [30,38,42],
which can be regarded as a second-order variant of CBO with inertia [20,30]. For CBO with
anisotropic Brownian motions, which are especially relevant in high-dimensional optimization
problems [11], for CBO with memory e!ects and gradient information, which can be beneficial
in signal processing and machine learning applications [13, 57], for CBO reconfigured for multi-
objective optimization, as well as for constrained CBO, this has already been done in [28], [57],
[7], and [8], respectively.

Acknowledgments

The authors would like to profusely thank Hui Huang for many fruitful and stimulating
discussions about the topic.

This work has been funded by the German Federal Ministry of Education and Research
and the Bavarian State Ministry for Science and the Arts. The authors of this work take
full responsibility for its content. MF further acknowledges the support of the DFG Project
“Identification of Energies from Observations of Evolutions” and the DFG SPP 1962 “Non-smooth
and Complementarity-Based Distributed Parameter Systems: Simulation and Hierarchical
Optimization”. TK acknowledges the support of the Technical University of Munich for hosting

29



him while conducting the work on this manuscript. KR acknowledges the financial support
from the Technical University of Munich – Institute for Ethics in Artificial Intelligence (IEAI).

References

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann machines. A stochastic approach
to combinatorial optimization and neural computing. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, Ltd., Chichester, 1989.
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Appendix: Extended proof details of Section 3.3

Extended proof of Lemma 15. By combining the ideas of [10, Lemma 3.4] with a Doob-like
inequality, we derive a bound for E supt↑[0,T ]

1
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i=1max
{
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i
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4
2, ↑V

i
t ↑

4
2

}
, which ensures that

ε̂
N
t , ε

N
t ↗ P4(Rd) with high probability. Here, εN denotes the empirical measure associated

with the processes (V i)i=1,...,N . For notational simplicity, but without loss of generality, we
restrict ourselves to the case H ⇒ 1 in what follows.
By employing the inequality (x+ y)q ↔ 2q↓1(xq + y

q), q ⇔ 1 we note that
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for all i = 1, . . . , N . Taking first the supremum over t ↗ [0, T ] and consecutively the expectation
on both sides of the former inequality yields
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(68)

The second term on the right-hand side of (68) can be further bounded by
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as a consequence of Jensen’s inequality. For the third term on the right-hand side of (68)
we first note that the expression
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i
τ is a martingale. This is due to [51,

Corollary 3.2.6] since its expected quadratic variation is finite as required by [51, Definition 3.1.4].
The latter immediately follows from the regularity established in [10, Lemma 3.4]. Therefore
we can apply the Burkholder-Davis-Gundy inequality [56, Chapter IV, Theorem 4.1], which
gives for a generic constant C2p depending only on the dimension d the bound
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Here, the latter step is again due to Jensen’s inequality. The right-hand sides of (69) and (70)
can be further bounded since
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where in the last step we made use of [10, Lemma 3.3], which shows that
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with b1 = 0 and b2 = e
ε(E↓E) in the case that E is bounded, and
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in the case that E satisfies the coercivity assumption (22). Inserting the upper bounds (69) and
(70) together with the estimate (71) into (68) yields
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with a constant C = C(p,ϱ,ς, d, T, b1, b2). Averaging (73) over i allows to bound
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which ensures after an application of Grönwall’s inequality, that E supt↑[0,T ]
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in place of (73). Noticing that
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inequality, again provided that ε0 ↗ P2p(Rd). With this being the case for p = 2 and by choosing
K su#ciently large for either estimate, the statement follows from a union bound and Markov’s
inequality. More precisely,
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Extended proof of Proposition 16. By exploiting the boundedness of the dynamics established
in Lemma 15 through a cuto! technique, we can follow the steps taken in [25, Theorem 3.1].
For notational simplicity, we restrict ourselves to the case H ⇒ 1 in what follows. However,
at the expense of minor technical modifications, the proof can be extended to the case of a
Lipschitz-continuous active function H.
Let us define the cuto! function

IM (t) =

{
1, if 1

N

∑
N

i=1max
∥∥V i

τ

∥∥4
2
,
∥∥V i

τ

∥∥4
2


↔ M for all 0 ↗ [0, t],

0, else,
(75)
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which is adapted to the natural filtration and has the property IM (t) = IM (t)IM (0) for all

0 ↗ [0, t]. This allows to obtain for E
∥∥V i

t ↓ V
i
t

∥∥2
2
IM (t) the inequality

E
∥∥V i

t ↓ V
i

t

∥∥2
2
IM (t) ↔ 2E

∥∥V i

0 ↓ V
i

0

∥∥2
2

+ 4ϱ2E
∥∥∥∥
∫

t

0

((
V

i

τ ↓ vε(ε̂
N

τ )
)
↓
(
V

i

τ ↓ vε(ετ )
))

IM (0) d0

∥∥∥∥
2

2

+ 4ς2E
∥∥∥∥
∫

t

0

(∥∥V i

τ ↓ vε(ε̂
N

τ )
∥∥
2
↓
∥∥V i

τ ↓ vε(ετ )
∥∥
2

)
IM (0) dBi

τ

∥∥∥∥
2

2

↔ 2E
∥∥V i

0 ↓ V
i

0

∥∥2
2

+ 8ϱ2
TE

∫
t

0

∥∥V i

τ ↓ V
i

τ

∥∥2
2
+
∥∥vε(ε̂Nτ )↓ vε(ετ )

∥∥2
2


IM (0) d0

+ 8ς2
dE

∫
t

0

∥∥V i

τ ↓ V
i

τ

∥∥2
2
+
∥∥vε(ε̂Nτ )↓ vε(ετ )

∥∥2
2


IM (0) d0,

where we used in the first step that the processes V i
τ and V

i
τ share the Brownian motion paths,

and in the second step both Itô isometry and Jensen’s inequality. Noting further that the
processes also share the initial data, we are left with

E
∥∥V i

t ↓ V
i

t

∥∥2
2
IM (t) ↔ 8

(
ϱ
2
T + ς

2
d
) ∫ t

0
E
∥∥V i

τ ↓ V
i

τ

∥∥2
2
+
∥∥vε(ε̂Nτ )↓ vε(ετ )

∥∥2
2


IM (0) d0,

(76)

where it remains to control E↑vε(ε̂Nτ )↓ vε(ετ )↑22IM (0). By means of Lemmas 25 and 26 below
we have the bound

E
∥∥vε(ε̂Nτ )↓ vε(ετ )

∥∥2
2
IM (0) ↔ 2E

∥∥vε(ε̂Nτ )↓ vε(ε
N

τ )
∥∥2
2
IM (0)

+ 2E
∥∥vε(εNτ )↓ vε(ετ )

∥∥2
2
IM (0)

↔ C


1

N

N∑

i=1

E
∥∥V i

τ ↓ V
i

τ

∥∥2
2
IM (0) +N

↓1



↔ C

(
max

i=1,...,N
E
∥∥V i

τ ↓ V
i

τ

∥∥2
2
IM (0) +N

↓1

)

(77)

for a constant C = C(ϖ, C1, C2,M,M2, b1, b2). After integrating the bound (77) into (76) and
taking the maximum over i we are left with

max
i=1,...,N

E
∥∥V i

t ↓ V
i

t

∥∥2
2
IM (t) ↔ C

∫
t

0
max

i=1,...,N
E
∥∥V i

τ ↓ V
i

τ

∥∥2
2
IM (0) d0 + CTN

↓1
, (78)

where C depends additionally on ϱ, ς, d and T , i.e., C = C(ϖ,ϱ,ς, d, T, C1, C2,M,M2, b1, b2).
The second part of the statement now follows from an application of Grönwall’s inequality and
by noting that #M ↔ IM (t) pointwise and for all t ↗ [0, T ].

Lemma 25. Let IM be as defined in (75). Then, under the assumptions of Theorem 6, it holds

∥∥vε(ε̂Nτ )↓ vε(ε
N

τ )
∥∥2
2
IM (0) ↔ C

1

N

N∑

i=1

∥∥V i

τ ↓ V
i

τ

∥∥2
2
IM (0)

for a constant C = C(ϖ, C1, C2,M).
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Proof. The proof follows the steps taken in [10, Lemmas 3.1 and 3.2].

Let us first note that by exploiting that the quantity 1
N

∑
N

i=1

∥∥V i
τ

∥∥4
2
is bounded uniformly by

M due to the multiplication with IM (0), we obtain with Jensen’s inequality that

e
↓εE

IM (0)
1
N

∑
N

i=1 φε(V i
τ )

↔
IM (0)

exp
(
↓ϖ

1
N

∑
N

i=1(E(V
i
τ )↓ E)

) ↔
IM (0)

exp
(
↓ϖC2

1
N

∑
N

i=1(1+↑V i
τ ↑

2
2)
)

↔ exp
(
ϖC2(1+

△

M)
)
=: cM ,

(79)

where, in the second inequality, we used the assumption (21) on E . An analogous statement
can be obtained for the processes V i

τ .
For the norm of the di!erence between vε(ε̂Nτ ) and vε(εNτ ) we have the decomposition

∥∥vε(ε̂Nτ )↓ vε(ε
N

τ )
∥∥
2
IM (0) =

∥∥∥∥∥

∑
N

i=1 V
i
τ φε(V i

τ )∑
N

j=1 φε(V
j
τ )

↓

∑
N

i=1 V
i
τ φε(V i

τ )∑
N

j=1 φε(V
j
τ )

∥∥∥∥∥
2

IM (0)

↔ (↑T1↑2 + ↑T2↑2 + ↑T3↑2) IM (0),

(80)

where the terms T1, T2 and T3 are obtained by inserting mixed terms with respect to V
i
τ and V

i
τ .

They are defined implicitly below and their norm is bounded as follows. For the first term T1

we have

↑T1↑2 IM (0) =

∥∥∥∥∥
1

N

N∑

i=1

(
V

i

τ ↓ V
i

τ

) φε(V i
τ )

1
N

∑
N

j=1 φε(V
j
τ )

∥∥∥∥∥
2

IM (0)

↔
1

N

N∑

i=1

∥∥V i

τ ↓ V
i

τ

∥∥
2

∣∣∣∣∣
φε(V i

τ )
1
N

∑
N

j=1 φε(V
j
τ )

∣∣∣∣∣ IM (0)

↔

∣∣∣∣∣
e
↓εE

IM (0)
1
N

∑
N

j=1 φε(V
j
τ )

∣∣∣∣∣
1

N

N∑

i=1

∥∥V i

τ ↓ V
i

τ

∥∥
2
IM (0)

↔ cM

√√√√ 1

N

N∑

i=1

∥∥V i
τ ↓ V i

τ

∥∥2
2
IM (0),

(81)

where we made use of (79) and Cauchy-Schwarz inequality in the last step. For the second
term T2, by using the assumption (20) on E in the third line and by following similar steps, we
obtain

↑T2↑2 IM (0) =

∥∥∥∥∥
1

N

N∑

i=1

(
φε(V

i

τ )↓ φε(V
i

τ )
) V

i
τ

1
N

∑
N

j=1 φε(V
j
τ )

IM (0)

∥∥∥∥∥
2

IM (0)

↔
1

N

N∑

i=1

∣∣φε(V
i

τ )↓ φε(V
i

τ )
∣∣
∥∥∥∥∥

V
i
τ

1
N

∑
N

j=1 φε(V
j
τ )

∥∥∥∥∥
2

IM (0)

↔ ϖC1e
↓εE 1

N

N∑

i=1

(∥∥V i

τ

∥∥
2
+
∥∥V i

τ

∥∥
2

) ∥∥V i

τ ↓ V
i

τ

∥∥
2

∥∥V i
τ

∥∥
2

1
N

∑
N

j=1 φε(V
j
τ )

IM (0)

↔
3

2
ϖC1

∣∣∣∣∣
e
↓εE

IM (0)
1
N

∑
N

j=1 φε(V
j
τ )

∣∣∣∣∣

√√√√ 1

N

N∑

i=1


↑V i

τ ↑
4
2 +

∥∥V i
τ

∥∥4
2


IM (0)

·

√√√√ 1

N

N∑

i=1

∥∥V i
τ ↓ V i

τ

∥∥2
2
IM (0)

↔ 3ϖC1cMM
1
2

√√√√ 1

N

N∑

i=1

∥∥V i
τ ↓ V i

τ

∥∥2
2
IM (0).

(82)
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Analogously, for the third term T3, we get

↑T3↑2 IM (0) =

∥∥∥∥∥
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N

i=1 V
i
τ φε(V i

τ )∑
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∑
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N

j=1 φε(V
j
τ )

∥∥∥∥∥
2
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↔
1

N
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j
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1
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∑
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i
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1
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∑
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j
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1
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∑
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2
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2
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2
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·
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j
τ )



↔
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1
4
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N
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2
+
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2


IM (0)

√√√√ 1

N
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2
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1
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∥∥2
2
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(83)

By inserting the three individual bounds (81), (82) and (83) into (80) and taking the squares of
both sides, we obtain the upper bound from the statement.

Lemma 26. Let ε0 ↗ P2(Rd) and let IM be as defined in (75). Then, under the assumptions
of Theorem 6, it holds

sup
τ↑[0,T ]

E
∥∥vε(εNτ )↓ vε(ετ )

∥∥2
2
IM (0) ↔ CN

↓1 (84)

for a constant C = C(ϖ, C2,M,M2, b1, b2), where M2 denotes the second-order moment bound
of ε and where b1 and b2 are the problem-dependent constants specified in (72).

Proof. The proof follows the steps taken in [25, Lemma 3.1].
By inserting a mixed term, we can bound the norm of the di!erence between vε(εNτ ) and vε(ετ )
by

∥∥vε(εNτ )↓ vε(ετ )
∥∥
2
IM (0) =

∥∥∥∥∥
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i=1
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φε(v)
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dετ (v)

∥∥∥∥∥
2

IM (0)

↔ (↑T1↑2 + ↑T2↑2) IM (0),

(85)

where the terms T1 and T2 are defined implicitly and bounded in what follows. By utilizing the
bound (79), for the first term T1, we get

↑T1↑2 IM (0) =

∥∥∥∥∥
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∫
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∫
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(86)
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Similarly, for the second term we have

↑T2↑2 IM (0) =

∥∥∥∥∥

∫
v
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1
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j=1 φε(V
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∫
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(87)

where the last step uses that by Jensen’s inequality and [10, Lemma 3.3] it holds

↑vε(ετ )↑
2
2 ↔

∫
↑v↑

2
2

φε(v)

↑φε↑L1(ϑϑ )

dετ (v) ↔ b1 + b2

∫
↑v↑

2
2 dετ (v) ↔ b1 + b2M2

with constants b1 and b2 as specified in (72) and M2 denoting a bound on the second-order
moment of ε, which exists according to the regularity of ε established in Theorem 6 as a
consequence of the initial regularity ε0 ↗ P2(Rd). In order to further bound (86) and (87),
respectively, let us introduce the random variables

Z
i

τ = V
i

τ φε(V
i

τ )↓

∫
vφε(v) dετ (v) and z

i
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i
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which have zero expectation, i.e., EZi
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respectively. Moreover, due to the independence of the V
i
τ ’s the Z

i
τ ’s are independent and thus

satisfy EZi
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j
τ = 0 for i ∈= j. Using this we can rewrite
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N
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(88)

where the inequality in the last step is due to the estimate

E
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∥∥2
2
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∥∥V 1
τ φε(V

1
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∥∥2
2
+ 2

∥∥∥∥
∫

vφε(v) dετ (v)

∥∥∥∥
2

2

↔ 2e↓εE
(
E
∥∥V 1
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Following analogous arguments and noting that
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yields the inequality

E
∣∣∣∣∣
1

N

N∑

i=1

φε(V
i

τ )↓

∫
φε(v) dετ (v)

∣∣∣∣∣

2

=
1

N
E
∣∣z1τ

∣∣2 ↔ 4e↓εE 1

N
. (89)

Taking the square and expectation on both sides of (86) and (87), inserting the two individual
bounds (88) and (89), gives the statement after recalling (85).
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Paper Summary of [CBO-II]35

In the paper “Convergence of Anisotropic Consensus-Based Optimization in Mean-Field
Law,” presented at the 25th European Conference on the Applications of Evolution-
ary and Bio-Inspired Computation, held as part of the EvoStar Conference, and pub-
lished in the proceedings Applications of Evolutionary Computation, part of the Lecture
Notes in Computer Science series, we prove global convergence in mean-field law for the
continuous-time analog of the CBO method (2.2) in the setting of anisotropic noise.

CBO is a population-based metaheuristic derivative-free optimization method capable
of globally minimizing nonconvex and nonsmooth functions, i.e., solving (2.1), in high
dimensions, in particular, when using anisotropic noise as originally proposed and investi-
gated in [Car+21]. It is based on stochastic swarm intelligence, and inspired by consensus
dynamics and opinion formation. Compared to other metaheuristic algorithms like par-
ticle swarm optimization, CBO is of a simpler nature and, therefore, more amenable to
a rigorous theoretical convergence analysis.

By adapting the analytical framework put forward in [CBO-I], we show in [CBO-II]
that anisotropic CBO converges globally in mean-field law with a dimension-independent
rate for a rich class of objectives under minimal assumptions on the initialization of the
method [CBO-II, Theorem 2], see also Theorem 3.6. This is confirmed numerically in
[CBO-II, Figure 1]. The relevance of such convergence result of the mean-field limit is
demonstrated in this dissertation, where we combine it with a quantitative mean-field
approximation result, see Proposition 3.16, and classical results of numerical approxi-
mation of SDEs in order to obtain probabilistic global convergence guarantees of the
numerical CBO method, see Theorem 3.19. To motivate anisotropic CBO from a prac-
tical perspective and demonstrate empirically successful applications of the method in
the high-dimensional setting already with limited computational capacities, we showcase
numerical experiments on a benchmark problem from machine learning, which is well
understood in the literature [CBO-II, Section 4]. More specifically, we train a shallow
and a convolutional neural network classifier for the MNIST dataset of handwritten dig-
its [LCB10]. For this, we e�ciently implement the anisotropic CBO algorithm utilizing
several tweaks in the implementation, such as random mini-batch ideas and a cooling
strategy of the parameters as proposed in [Car+21; For+21].

KR’s Contributions. KR proposed to extend the analysis about the global conver-
gence of CBO methods in mean-field law developed in [CBO-I] to CBO with anisotropic
noise due to its superior performance for high-dimensional optimization problems. To-
gether with TK, KR discussed the necessary modifications to the theory before working
out the technical details, conducting the numerical experiments, in particular imple-
menting CBO for training small neural networks using random mini-batch ideas, and
writing a first draft of the paper, which was then discussed with, proofread by and re-
fined together with TK and MF.

35In this section, we follow [CBO-II, Abstract].
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Abstract. In this paper we study anisotropic consensus-based optimiza-
tion (CBO), a population-based metaheuristic derivative-free optimiza-
tion method capable of globally minimizing nonconvex and nonsmooth
functions in high dimensions. CBO is based on stochastic swarm intelli-
gence, and inspired by consensus dynamics and opinion formation. Com-
pared to other metaheuristic algorithms like Particle Swarm Optimiza-
tion, CBO is of a simpler nature and therefore more amenable to theoret-
ical analysis. By adapting a recently established proof technique, we show
that anisotropic CBO converges globally with a dimension-independent
rate for a rich class of objective functions under minimal assumptions on
the initialization of the method. Moreover, the proof technique reveals
that CBO performs a convexification of the optimization problem as the
number of particles goes to infinity, thus providing an insight into the
internal CBO mechanisms responsible for the success of the method.
To motivate anisotropic CBO from a practical perspective, we further
test the method on a complicated high-dimensional benchmark problem,
which is well understood in the machine learning literature.

Keywords: High-dimensional global optimization · Metaheuristics ·
Consensus-based optimization · Mean-field limit · Anisotropy

1 Introduction

Several problems arising throughout all quantitative disciplines are concerned
with the global unconstrained optimization of a problem-dependent objective
function E : Rd → R and the search for the associated minimizing argument

v∗ = arg min
v∈Rd

E(v),

which is assumed to exist and be unique in what follows. Because of nowadays
data deluge such optimization problems are usually high-dimensional. In machine
c© Springer Nature Switzerland AG 2022
J. L. Jiménez Laredo et al. (Eds.): EvoApplications 2022, LNCS 13224, pp. 738–754, 2022.
https://doi.org/10.1007/978-3-031-02462-7_46
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learning, for instance, one is interested in finding the optimal parameters of a
neural network (NN) to accomplish various tasks, such as clustering, classifi-
cation, and regression. The availability of huge amounts of training data for
various real-world applications allows practitioners to work with models involv-
ing a large number of trainable parameters aiming for a high expressivity and
accuracy of the trained model. This makes the resulting optimization process
a high-dimensional problem. Since typical model architectures consist of many
layers with a large amount of neurons, and include nonlinear and potentially non-
smooth activation functions, the training process is in general a high-dimensional
nonconvex optimization problem and therefore a particularly hard task.

Metaheuristics have a long history as state-of-the-art methods when it comes
to tackling hard optimization problems. Inspired by self-organization and col-
lective behavior in nature or human society, such as the swarming of flocks of
birds or schools of fish [3], or opinion formation [20], they orchestrate an inter-
play between locally confined procedures and global strategies, randomness and
deterministic decisions, to ensure a robust search for the global minimizer. Some
prominent examples are Random Search [19], Evolutionary Programming [7],
Genetic Algorithms [11], Ant Colony Optimization [6], Particle Swarm Opti-
mization [14] and Simulated Annealing [1].

CBO follows those guiding principles, but is of much simpler nature and
more amenable to theoretical analysis. The method uses N particles V 1, . . . , V N ,
which are initialized independently according to some law ρ0 ∈ P(Rd), to explore
the domain and to form a global consensus about the minimizer v∗ as time passes.
For parameters α,λ,σ > 0 the dynamics of each particle is given by

dV i
t = −λ

(
V i
t − vα(ρ̂Nt )

)
dt+ σD

(
V i
t − vα(ρ̂Nt )

)
dBi

t, (1)

where ρ̂Nt denotes the empirical measure of the particles. The first term in (1) is a
drift term dragging the respective particle towards the momentaneous consensus
point, a weighted average of the particles’ positions, computed as

vα(ρ̂Nt ) :=
∫

v
ωα(v)

‖ωα‖L1(ρ̂N
t )

dρ̂Nt (v), with ωα(v) := exp(−αE(v))

and motivated by the fact that vα(ρ̂Nt ) ≈ arg mini=1,...,N E(V i
t ) for α & 1 if the

arg min is unique. To feature the exploration of the energy landscape of E , the
second term in (1) is a diffusion injecting randomness into the dynamics through
independent standard Brownian motions ((Bi

t)t≥0)i=1,...,N . The two commonly
studied diffusion types are isotropic [2,9,18] and anisotropic [4] diffusion with

D
(
V i
t − vα(ρ̂Nt )

)
=

{∥∥V i
t − vα(ρ̂Nt )

∥∥
2
Id, for isotropic diffusion,

diag
(
V i
t − vα(ρ̂Nt )

)
, for anisotropic diffusion,

where Id ∈ Rd×d is the identity matrix and diag : Rd → Rd×d the operator
mapping a vector onto a diagonal matrix with the vector as its diagonal. The
term’s scaling encourages in particular particles far from vα(ρ̂Nt ) to explore larger
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regions. The coordinate-dependent scaling of anisotropic diffusion has proven to
be particularly beneficial for high-dimensional optimization problems by yielding
dimension-independent convergence rates (see Fig. 1) and therefore improving
both computational complexity and success probability of the algorithm [4,8].

A theoretical convergence analysis of the CBO dynamics is possible either
on the microscopic level (1) or by analyzing the macroscopic behavior of the
particle density through a mean-field limit. In the large particle limit a particle
is not influenced by individual particles but only by the average behavior of all
particles. As shown in [12], the empirical random particle measure ρ̂N converges
in law to the deterministic particle density ρ ∈ C([0, T ],P(Rd)), which weakly
(see Definition 1) satisfies the non-linear Fokker-Planck equation

∂tρt = λdiv
(
(v − vα(ρt)) ρt

)
+

σ2

2

d∑

k=1

∂kk

(
D(v − vα(ρt))

2
kk ρt

)
. (2)

A quantitative analysis of the convergence rate remains, on non-compact
domains, an open problem, see, e.g., [9, Remark 2]. Analyzing a mean-field limit
such as (2) allows for establishing strong qualitative theoretical guarantees about
CBO methods, paving the way to understand the internal mechanisms at play.

Prior Arts. The original CBO work [18] proposes the dynamics (1) with
isotropic diffusion, which is analyzed in the mean-field sense in [2]. Under a
stringent well-preparedness condition about ρ0 and C2 regularity of E the authors
show consensus formation of the particles at some ṽ close to v∗ by first establish-
ing exponential decay of the variance Var (ρt) and consecutively showing ṽ ≈ v∗

as a consequence of the Laplace principle [17]. This analysis is extended to the
anisotropic case in [4].

Motivated by the surprising phenomenon that, on average, individual par-
ticles of the CBO dynamics follow the gradient flow of v '→ ‖v − v∗‖22, see [9,
Figure 1b], the authors of [9] develop a novel proof technique for showing global
convergence of isotropic CBO in mean-field law to v∗ under minimal assump-
tions. Following [9, Definition 1], we speak of convergence in mean-field law to
v∗ for the interacting particle dynamics (1), if the solution ρt to the associated
mean-field limit dynamics (2) converges narrowly to the Dirac delta δv∗ at v∗

for t → ∞. The proof is based on showing an exponential decay of the energy
functional V : P(Rd)→R≥0, given by

V(ρt) :=
1
2

∫
‖v − v∗‖22 dρt(v). (3)

This simultaneously ensures consensus formation and convergence of ρt to δv∗ .

Contribution. In view of the effectiveness and efficiency of CBO methods with
anisotropic diffusion for high-dimensional optimization problems, a thorough
understanding is of considerable interest. As we illustrate in Fig. 1, anisotropic
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(a) The Rastrigin function in
one coordinate direction

(b) Evolution of V(ρ̂N
t ) for isotropic and an-

isotropic CBO for different dimensions

Fig. 1. A demonstration of the benefit of using anisotropic diffusion in CBO. For the
Rastrigin function E(v) =

∑d
k=1 v

2
k + 5

2 (1 − cos(2πvk)) with v∗ = 0 and spurious local
minima (see (a)), we evolve the discretized system of isotropic and anisotropic CBO
using N = 320000 particles, discrete time step size ∆t = 0.01 and α = 1015, λ = 1,
and σ = 0.32 for different dimensions d ∈ {4, 8, 12, 16}. We observe in (b) that the
convergence rate of the energy functional V(ρ̂N

t ) for isotropic CBO (dashed lines) is
affected by the ambient dimension d, whereas anisotropic CBO (solid lines) converges
independently from d with rate (2λ − σ2).

CBO [4] converges with a dimension-independent rate as opposed to isotropic
CBO [2,9,18], making it a particularly interesting choice for problems in high-
dimensional spaces, e.g., from signal processing and machine learning applica-
tions. In this work we extend the analysis of [9] from isotropic CBO to CBO
with anisotropic diffusion. More precisely, we show global convergence of the
anisotropic CBO dynamics in mean-field law to the global minimizer v∗ under
minimal assumptions about the initial measure ρ0 and for a rich class of objec-
tives E . Furthermore, utilizing some tweaks in the implementation of anisotropic
CBO, such as a random mini-batch idea and a cooling strategy of the param-
eters as proposed in [4,10], we show that CBO performs well, in fact, almost
on par with state-of-the-art gradient-based methods, on a long-studied machine
learning benchmark in 2000 dimensions, despite using just 100 particles and no
gradient information. This encourages the use and further investigation of CBO
as a training algorithm for challenging machine learning tasks.

Organization. In Sect. 2 we first recall details about the well-posedness of the
mean-field dynamics (2) in the case of anisotropic diffusion before we present the
main theoretical result about the convergence of anisotropic CBO in mean-field
law. The proof follows in Sect. 3. Section 4 illustrates the practicability of the
method on a benchmark problem and Sect. 5 concludes the paper.
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For the sake of reproducible research, in the GitHub repository https://
github.com/KonstantinRiedl/CBOGlobalConvergenceAnalysis we provide the
Matlab code implementing the CBO algorithm used in this work.

Notation. B∞
r (u) is a closed (∞ ball in Rd with center u and radius r. For the

space of continuous functions f : X → Y we write C(X,Y ), with X ⊂ Rn, n ∈ N,
and a suitable topological space Y . For X ⊂ Rn open and for Y = Rm, m ∈ N,
the function space Ck

c (X,Y ) contains functions f ∈ C(X,Y ) that are k-times
continuously differentiable and compactly supported. Y is omitted if Y = R.

The objects of study are laws of stochastic processes, ρ ∈ C([0, T ],P(Rd)),
where P(Rd) contains all Borel probability measures over Rd. ρt ∈ P(Rd) is a
snapshot of such law at time t and ) some fixed distribution. Measures ) ∈ P(Rd)
with finite p-th moment are collected in Pp(Rd). For any 1 ≤ p < ∞, Wp denotes
the Wasserstein-p distance. E()) is the expectation of a probability measure ).

2 Global Convergence in Mean-Field Law

In this section we first recite a well-posedness result about the Fokker-Planck
Eq. (2) and then present the main result about global convergence.

2.1 Definition of Weak Solutions and Well-Posedness

We begin by defining weak solutions of the Fokker-Planck Eq. (2).

Definition 1. Let ρ0 ∈ P(Rd), T > 0. We say ρ ∈ C([0, T ],P(Rd)) satisfies
the Fokker-Planck Eq. (2) with initial condition ρ0 in the weak sense in the time
interval [0, T ], if we have for all φ ∈ C∞

c (Rd) and all t ∈ (0, T )

d

dt

∫
φ(v) dρt(v) = − λ

∫ d∑

k=1

(v − vα(ρt))k∂kφ(v) dρt(v)

+
σ2

2

∫ d∑

k=1

D
(
V i
t − vα(ρ̂Nt )

)2
kk

∂2
kkφ(v) dρt(v)

(4)

and limt→0 ρt = ρ0 pointwise.

In what follows the case of CBO with anisotropic diffusion is considered,
i.e., D

(
V i
t − vα(ρ̂Nt )

)
= diag

(
V i
t − vα(ρ̂Nt )

)
in Eqs. (1), (2) and (4).

Analogously to the well-posedness results [2, Theorems 3.1, 3.2] for CBO with
isotropic diffusion, we can obtain well-posedness of (2) for anisotropic CBO.

Theorem 1. Let T > 0, ρ0 ∈ P4(Rd) and consider E : Rd → R with E :=
E(v∗) > −∞, which, for some constants C1, C2 > 0, satisfies

|E(v) − E(w)| ≤ C1(‖v‖2 + ‖w‖2) ‖v − w‖2 , for all v, w ∈ Rd,

E(v) − E ≤ C2

(
1 + ‖v‖22

)
, for all v ∈ Rd.
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If in addition, either supv∈Rd E(v) < ∞, or, for some C3, C4 > 0, E satisfies

E(v) − E ≥ C3 ‖v‖22 , for all ‖v‖2 ≥ C4,

then there exists a law ρ ∈ C([0, T ],P4(Rd)) weakly satisfying Eq. (2).

Proof. The proof is based on the Leray-Schauder fixed point theorem and uses
the same arguments as the ones provided for [2, Theorems 3.1, 3.2].

Remark 1. As discussed in [9, Remark 7], the proof of Theorem1 justifies an
extension of the test function space C∞

c (Rd) in Definition 1 to

C2
∗(Rd) :=

{
φ ∈ C2(Rd) : |∂kφ(v)| ≤ c(1 + |vk|) and ‖∂2

kkφ‖∞ < ∞
for all k ∈ {1, . . . , d} and some constant c > 0

}
.

2.2 Main Results

We now present the main result about global convergence in mean-field law for
objective functions that satisfy the following conditions.

Definition 2 (Assumptions). We consider functions E ∈ C(Rd), for which

A1 there exists v∗ ∈ Rd such that E(v∗) = infv∈Rd E(v) =: E, and
A2 there exist E∞, R0, η > 0, and ν ∈ (0,∞) such that

‖v − v∗‖∞ ≤ 1
η

(
E(v) − E

)ν for all v ∈ B∞
R0

(v∗), (5)

E∞ < E(v) − E for all v ∈
(
B∞

R0
(v∗)

)c
. (6)

Assumption A2 can be regarded as a tractability condition of the energy
landscape around the minimizer and in the farfield. Equation (5) requires the
local coercivity of E , whereas (6) prevents that E(v) ≈ E far away from v∗.

Definition 2 covers a wide range of function classes, including for instance
the Rastrigin function, see Fig. 1a, and objectives related to various machine
learning tasks, see, e.g., [10].

Theorem 2. Let E be as in Definition 2. Moreover, let ρ0 ∈ P4(Rd) be such that

ρ0(B∞
r (v∗)) > 0 for all r > 0. (7)

Define V(ρt) := 1/2
∫

‖v − v∗‖22 dρt(v). Fix any ε ∈ (0,V(ρ0)) and τ ∈ (0, 1),
parameters λ,σ > 0 with 2λ > σ2, and the time horizon

T ∗ :=
1

(1 − τ) (2λ − σ2)
log

(
V(ρ0)

ε

)
. (8)

Then there exists α0 > 0, which depends (among problem dependent quantities)
on ε and τ , such that for all α > α0, if ρ ∈ C([0, T ∗],P4(Rd)) is a weak solution
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to the Fokker-Planck Eq. (2) on the time interval [0, T ∗] with initial condition
ρ0, we have mint∈[0,T∗] V(t) ≤ ε. Furthermore, until V(ρt) reaches the prescribed
accuracy ε, we have the exponential decay

V(ρt) ≤ V(ρ0) exp
(
−(1 − τ)

(
2λ − σ2

)
t
)

and, up to a constant, the same behavior for W 2
2 (ρt, δv∗).

The rate of convergence (2λ−σ2) obtained in Theorem2 is confirmed numer-
ically by the experiments depicted in Fig. 1. We emphasize the dimension-
independent convergence of CBO with anisotropic diffusion, contrasting the
dimension-dependent rate (2λ − dσ2) of isotropic CBO, cf. [9, Theorem 12].

3 Proof of Theorem 2

This section provides the proof details for Theorem2, starting with a sketch in
Sect. 3.1. Sections 3.2–3.4 present statements, which are needed in the proof and
may be of independent interest. Section 3.5 completes the proof.

Remark 2. Without loss of generality we assume E = 0 throughout the proof.

3.1 Proof Sketch

The main idea is to show that V(ρt) satisfies the differential inequality

d

dt
V(ρt) ≤ −(1 − τ)

(
2λ − σ2

)
V(ρt) (9)

until V(ρT ) ≤ ε. The first step towards (9) is to derive a differential inequality for
V(ρt) using the dynamics of ρ, which is done in Lemma 1. In order to control the
appearing quantity ‖vα(ρt) − v∗‖2, we establish a quantitative Laplace principle.
Namely, under the inverse continuity property A2, Proposition 1 shows

‖vα(ρt) − v∗‖2 ! ((r) +
√
d exp(−αr)

ρt(B∞
r (v∗))

, for sufficiently small r > 0,

where ( is decreasing with ((r) → 0+ as r → 0. Thus, ‖vα(ρt) − v∗‖2 can be
made arbitrarily small by suitable choices of r - 1 and α & 1, as long as we
can guarantee ρt(B∞

r (v∗)) > 0 for all r > 0 and at all times t ∈ [0, T ]. The latter
requires non-zero initial mass ρ0(B∞

r (v∗)) as well as an active Brownian motion,
as made rigorous in Proposition 2.
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3.2 Evolution of the Mean-Field Limit

We now derive the evolution inequality of the energy functional V(ρt).

Lemma 1. Let E : Rd → R, and fix α,λ,σ > 0. Moreover, let T > 0 and let
ρ ∈ C([0, T ],P4(Rd)) be a weak solution to Eq. (2). Then V(ρt) satisfies

d

dt
V(ρt) ≤ −

(
2λ − σ2

)
V(ρt) +

√
2

(
λ + σ2

) √
V(ρt) ‖vα(ρt) − v∗‖2

+
σ2

2
‖vα(ρt) − v∗‖22 .

Proof. Noting that φ(v) = 1/2 ‖v − v∗‖22 is in C2
∗(Rd) and recalling that ρ satis-

fies the identity (4) for all test functions in C2
∗(Rd), see Remark 1, we obtain

d

dt
V(ρt) = −λ

∫
〈v − v∗, v − vα(ρt)〉 dρt(v) +

σ2

2

∫
‖v − vα(ρt)‖22 dρt(v),

where we used ∂kφ(v) = (v − v∗)k and ∂2
kkφ(v) = 1 for all k ∈ {1, . . . , d}.

Following the steps taken in [9, Lemma 14] yields the statement. "

3.3 Quantitative Laplace Principle

The Laplace principle asserts that − log(‖ωα‖L1($))/α → E as α → ∞ as long
as the global minimizer v∗ is in the support of ). Under the assumption of the
inverse continuity property this can be used to qualitatively characterize the
proximity of vα()) to the global minimizer v∗. However, as it neither allows to
quantify this proximity nor gives a suggestion on how to choose α to reach a
certain approximation quality, we introduced a quantitative version in [9, Propo-
sition 17], which we now adapt suitably to satisfy the anisotropic setting.

Proposition 1. Let E = 0, ) ∈ P(Rd) and fix α > 0. For any r > 0 we define
Er := supv∈B∞

r (v∗) E(v). Then, under the inverse continuity property A2, for any
r ∈ (0, R0] and q > 0 such that q + Er ≤ E∞, we have

‖vα()) − v∗‖2 ≤
√
d(q + Er)ν

η
+

√
d exp(−αq)
)(B∞

r (v∗))

∫
‖v − v∗‖2 d)(v).

Proof. Following the lines of the proof of [9, Proposition 17] but replacing all (2

balls and norms by (∞ balls and norms, respectively, we obtain

‖vα()) − v∗‖∞ ≤ (q + Er)ν

η
+

exp (−αq)
)(B∞

r (v∗))

∫
‖v − v∗‖∞ d)(v).

The statement now follows noting that ‖·‖∞ ≤ ‖·‖2 ≤
√
d ‖·‖∞. "
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3.4 A Lower Bound for the Probability Mass Around v∗

In this section we provide a lower bound for the probability mass of ρt(B∞
r (v∗)),

where r > 0 is a small radius. This is achieved by defining a mollifier φr so that
ρt(B∞

r (v∗)) ≥
∫

φr(v) dρt(v) and studying the evolution of the right-hand side.

Lemma 2. For r > 0 we define the mollifier φr : Rd → R by

φr(v) :=

{∏d
k=1 exp

(
1 − r2

r2−(v−v∗)2k

)
, if ‖v − v∗‖∞ < r,

0, else.
(10)

We have Im(φr) = [0, 1], supp(φr) = B∞
r (v∗), φr ∈ C∞

c (Rd) and

∂kφr(v) = −2r2
(v − v∗)k(

r2 − (v − v∗)2k
)2φr(v),

∂2
kkφr(v) = 2r2




2
(
2 (v − v∗)2k − r2

)
(v − v∗)2k −

(
r2 − (v − v∗)2k

)2

(
r2 − (v − v∗)2k

)4



 φr(v).

Proof. φr is a tensor product of classical well-studied mollifiers. "
Proposition 2. Let T > 0, r > 0, and fix parameters α,λ,σ > 0. Assume
ρ ∈ C([0, T ],P(Rd)) weakly solves the Fokker-Planck Eq. (2) in the sense of Defi-
nition 1 with initial condition ρ0 ∈ P(Rd) and for t ∈ [0, T ]. Furthermore, denote
B := supt∈[0,T ] ‖vα(ρt) − v∗‖∞. Then, for all t ∈ [0, T ] we have

ρt (B∞
r (v∗)) ≥

(∫
φr(v) dρ0(v)

)
exp (−qt) ,

for q := 2dmax
{

λ(cr+B
√
c)

(1−c)2r
+

σ2(cr2+B2)(2c+1)
(1−c)4r2

,
2λ2

(2c−1)σ2

}
,

(11)

where c ∈ (1/2, 1) can be any constant that satisfies (1 − c)2 ≤ (2c − 1)c.

Remark 3. In order to ensure a finite decay rate q < ∞ in Proposition 2 it is
crucial to have a non-vanishing diffusion σ > 0.

Proof (Proposition 2). By the properties of the mollifier in Lemma 2 we have

ρt (B∞
r (v∗)) ≥

∫
φr(v) dρt(v).

Our strategy is to derive a lower bound for the right-hand side of this inequality.
Using the weak solution property of ρ and the fact that φr ∈ C∞

c (Rd), we obtain

d

dt

∫
φr(v) dρt(v) =

d∑

k=1

∫ (
T1k(v) + T2k(v)

)
dρt(v) (12)

with T1k(v) := −λ (v − vα(ρt))k ∂kφr(v)

and T2k(v) :=
σ2

2
(v − vα(ρt))

2
k ∂2

kkφr(v)
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(a) vα(ρt) ∈ Ωr, σ = 0.2 (b) vα(ρt) "∈ Ωr, σ = 0.2 (c) vα(ρt) "∈ Ωr, σ = 1

Fig. 2. Visualization of the decomposition of Ωr as in (15) for different positions of
vα(ρt) and values of σ.

for k ∈ {1, . . . , d}. We now aim for showing T1k(v)+T2k(v) ≥ −qφr(v) uniformly
on Rd individually for each k and for q > 0 as in the statement. Since the
mollifier φr and its derivatives vanish outside of Ωr := {v ∈ Rd : ‖v − v∗‖∞ < r}
we restrict our attention to the open (∞-ball Ωr. To achieve the lower bound
over Ωr, we introduce for each k ∈ {1, . . . , d} the subsets

K1k :=
{
v ∈ Rd : |(v − v∗)k| >

√
cr

}
(13)

and

K2k :=
{
v ∈ Rd : −λ (v − vα(ρt))k (v − v∗)k

(
r2 − (v − v∗)2k

)2

> c̃r2
σ2

2
(v − vα(ρt))

2
k (v − v∗)2k

}
,

(14)

where c̃ := 2c − 1 ∈ (0, 1). For fixed k we now decompose Ωr according to

Ωr = (Kc
1k ∩ Ωr) ∪ (K1k ∩ Kc

2k ∩ Ωr) ∪ (K1k ∩ K2k ∩ Ωr) , (15)

which is illustrated in Fig. 2 for different positions of vα(ρt) and values of σ.
In the following we treat each of these three subsets separately.

Subset Kc
1k ∩ Ωr: We have |(v − v∗)k| ≤

√
cr for each v ∈ Kc

1k, which can be
used to independently derive lower bounds for both terms T1k and T2k. For T1k,
we insert the expression for ∂kφr from Lemma2 to get

T1k(v) = 2r2λ (v − vα(ρt))k
(v − v∗)k(

r2 − (v − v∗)2k
)2φr(v)

≥ −2r2λ
|(v − vα(ρt))k||(v − v∗)k|(

r2 − (v − v∗)2k
)2 φr(v) ≥ −2λ(

√
cr +B)

√
c

(1 − c)2r
φr(v)

=: −q1φr(v),
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where |(v − vα(ρt))k| ≤ |(v − v∗)k| + |(v∗ − vα(ρt))k| ≤
√
cr + B is used in the

last inequality. For T2 we insert the expression for ∂2
kkφr from Lemma2 to obtain

T2k(v) = σ2r2 (v−vα(ρt))
2
k

2
(
2 (v−v∗)2k−r2

)
(v−v∗)2k−

(
r2−(v−v∗)2k

)2

(
r2−(v−v∗)2k

)4 φr(v)

≥ −2σ2(cr2+B2)(2c+1)
(1−c)4r2

φr(v) =: −q2φr(v),

where the last inequality uses (v − vα(ρt))2k ≤ (
√
cr +B)2 ≤ 2(cr2 +B2).

Subset K1k ∩ Kc
2k ∩ Ωr: As v ∈ K1k we have |(v − v∗)k|2 >

√
cr. We observe

that T1k(v) + T2k(v) ≥ 0 for all v in this subset whenever
(

−λ (v − vα(ρt))k (v − v∗)k +
σ2

2
(v − vα(ρt))

2
k

)(
r2 − (v − v∗)2k

)2

≤ σ2 (v − vα(ρt))
2
k

(
2 (v − v∗)2k − r2

)
(v − v∗)2k .

(16)

The first term on the left-hand side in (16) can be bounded from above exploiting
that v ∈ Kc

2k and by using the relation c̃ = 2c − 1. More precisely, we have

−λ(v−vα(ρt))k(v−v∗)k

(
r2−(v−v∗)2k

)2
≤ c̃r2

σ2

2
(v−vα(ρt))

2
k(v−v∗)2k

=(2c−1)r2
σ2

2
(v−vα(ρt))

2
k(v−v∗)2k ≤

(
2 (v−v∗)2k−r2

)σ2

2
(v−vα(ρt))

2
k(v−v∗)2k,

where the last inequality follows since v ∈ K1k. For the second term on the
left-hand side in (16) we can use (1 − c)2 ≤ (2c − 1)c as per assumption, to get

σ2

2
(v−vα(ρt))

2
k

(
r2−(v−v∗)2k

)2
≤ σ2

2
(v−vα(ρt))

2
k (1−c)2r4

≤ σ2

2
(v−vα(ρt))

2
k (2c−1)r2cr2 ≤ σ2

2
(v−vα(ρt))

2
k

(
2 (v−v∗)2k−r2

)
(v−v∗)2k .

Hence, (16) holds and we have T1k(v) + T2k(v) ≥ 0 uniformly on this subset.

Subset K1k ∩ K2k ∩ Ωr: As v ∈ K1k we have |(v − v∗)k|2 >
√
cr. We first note

that T1k(v) = 0 whenever σ2 (v − vα(ρt))
2
k = 0, provided σ > 0, so nothing

needs to be done if vk = (vα(ρt))k. Otherwise, if σ2 (v − vα(ρt))
2
k > 0, we exploit

v ∈ K2k to get

(v − vα(ρt))k (v − v∗)k(
r2 − (v − v∗)2k

)2 ≥
− |(v − vα(ρt))k| |(v − v∗)k|(

r2 − (v − v∗)2k
)2

>
2λ (v − vα(ρt))k (v − v∗)k

c̃r2σ2 |(v − vα(ρt))k| |(v − v∗)k|
≥ − 2λ

c̃r2σ2
.
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Using this, T1k can be bounded from below by

T1k(v) = 2r2λ (v − vα(ρt))k
(v − v∗)k(

r2 − (v − v∗)2k
)2 φr(v) ≥ −4λ2

c̃σ2
φr(v) =: −q3φr(v).

For T2k, the nonnegativity of σ2 (v − vα(ρt))
2
k implies T2k(v) ≥ 0, whenever

2
(
2 (v − v∗)2k − r2

)
(v − v∗)2k ≥

(
r2 − (v − v∗)2k

)2
.

This holds for v ∈ K1k, if 2(2c − 1)c ≥ (1 − c)2 as implied by the assumption.

Concluding the Proof: Using the evolution of φr as in (12) and the individual
decompositions of Ωr for the terms T1k + T2k, we now get

d
dt

∫
φr(v) dρt(v) =

d∑

k=1

(∫

K1k∩Kc
2k∩Ωr

(T1k(v) + T2k(v))︸ ︷︷ ︸
≥0

dρt(v)

+

∫

K1k∩K2k∩Ωr

(T1k(v) + T2k(v))︸ ︷︷ ︸
≥−q3φr(v)

dρt(v) +

∫

Kc
1k∩Ωr

(T1k(v) + T2k(v))︸ ︷︷ ︸
≥−(q1+q2)φr(v)

dρt(v)

)

≥ −dmax {q1 + q2, q3}
∫

φr(v) dρt(v) = −q

∫
φr(v) dρt(v).

An application of Grönwall’s inequality concludes the proof. "

3.5 Proof of Theorem 2

We now have all necessary tools to conclude the global convergence proof.

Proof (Theorem 2). Lemma1 provides a bound for the time derivative of V(ρt),
given by

d

dt
V(ρt) ≤ −

(
2λ − σ2

)
V(ρt) +

√
2

(
λ + σ2

) √
V(ρt) ‖vα(ρt) − v∗‖2

+
σ2

2
‖vα(ρt) − v∗‖22 .

(17)

Now we define the time T ≥ 0 by

T := sup
{
t ≥ 0 : V(ρt′) > ε and ‖vα(ρt′) − v∗‖2< C(t′) for all t′ ∈ [0, t]

}
, (18)

where

C(t) := min

{
τ

2

(
2λ − σ2

)
√
2 (λ + σ2)

,

√
τ
(2λ − σ2)

σ2

}
√

V(ρt).
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Combining (17) with (18), we have by construction for all t ∈ (0, T )

d

dt
V(ρt) ≤ −(1 − τ)

(
2λ − σ2

)
V(ρt).

Grönwall’s inequality implies the upper bound

V(ρt) ≤ V(ρ0) exp
(
−(1 − τ)

(
2λ − σ2

)
t
)
, for t ∈ [0, T ]. (19)

Accordingly, we note that V(ρt) is a decreasing function in t, which implies the
decay of the auxiliary function C(t) as well. Hence, we may bound

max
t∈[0,T ]

‖vα(ρt) − v∗‖2 ≤ max
t∈[0,T ]

C(t) ≤ C(0), (20)

max
t∈[0,T ]

∫
‖v − v∗‖2 dρt(v) ≤ max

t∈[0,T ]

√
2V(ρt) ≤

√
2V(ρ0). (21)

To conclude that V(ρT ) ≤ ε, it now remains to check three different cases.

Case T ≥ T ∗: If T ≥ T ∗, we can use the definition of T ∗ in (8) and the
time-evolution bound of V(ρt) in (19) to conclude that V(ρT∗) ≤ ε. Hence, by
definition of T in (18), we find V(ρT ) = ε and T = T ∗.

Case T < T ∗ and V(ρT ) = ε: Nothing needs to be discussed in this case.

Case T < T ∗, V(ρT ) > ε, and ‖vα(ρT ) − v∗‖2 ≥ C(T ): We shall show that
there exists α0 > 0 so that for any α ≥ α0 we have ‖vα(ρT ) − v∗‖2 < C(T ), a
contradiction, which proves that the case never occurs. To do so, we define

q := min
{(

ηC(T )/(2
√
d)

)1/ν
, E∞

}
/2 and r := max

s∈[0,R0]

{
max

v∈B∞
s (v∗)

E(v) ≤ q

}
.

By construction, r ≤ R0 and q+Er = q+supv∈B∞
r (v∗) E(v) ≤ 2q ≤ E∞. Further-

more, we note that q > 0 since C(T ) > 0. By continuity of E there exists sq > 0
such that E(v) ≤ q for all v ∈ B∞

sq (v
∗), thus yielding also r > 0. Therefore, we

can apply Proposition 1 with q and r as above together with (21) to get

‖vα(ρT ) − v∗‖2 ≤ 1
2
C(T ) +

√
d exp (−αq)

ρT (B∞
r (v∗))

√
2V(ρ0). (22)

Furthermore, by (20) we have maxt∈[0,T ] ‖vα(ρt) − v∗‖2 ≤ C(0), implying that
all assumptions of Proposition 2 hold. Therefore, there exists a > 0 so that

ρT (B∞
r (v∗)) ≥

∫
φr(v) dρ0(v) exp(−aT ) > 0,

where we used (7) for bounding the initial mass ρ0, and the fact that φr is
bounded from below on B∞

cr (v∗) for any c < 1. Then, by using any α > α0 with

α0 =
1
2q

(
log d − 2 log ρT (B∞

r (v∗)) + log
(
V(ρ0)
V(ρT )

)
+ 2 log

(
λ + σ2

τ (2λ − σ2)

))
,

(22) is strictly smaller than C(T ), giving the desired contradiction. "
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4 A Machine Learning Example

In this section, we showcase the practicability of the implementation of
anisotropic CBO as described in [4, Algorithm 2.1] for problems appearing in
machine learning by training a shallow and a convolutional NN (CNN) classifier
for the MNIST dataset of handwritten digits [16]. Let us emphasize that it is
not our aim to challenge the state of the art for this task by employing the most
sophisticated model or intricate data preprocessing. We merely believe that this
is a well-understood, complex, high-dimensional benchmark to demonstrate that
CBO achieves good results already with limited computational capacities.

Let us now describe the NN architectures used in our numerical experiment,
see also Fig. 3. Each input image is represented by a matrix of dimension 28×28
with entries valued between 0 and 1 depending on the grayscale of the respective
pixel. For the shallow neural net (see Fig. 3a) the image is first reshaped to a vec-
tor x ∈ R728 before being passed through a dense layer of the form ReLU(Wx+b)
with trainable weight matrix W ∈ R10×728 and bias vector b ∈ R10. The CNN
(see Fig. 3b) has learnable kernels and its architecture is similar to the one of
the LeNet-1, cf. [15, Section III.C.7]. In both networks a batch normalization
step is included after each ReLU activation, which entails a considerably faster
training process. Moreover, in the final layers a softmax activation function is
applied so that the output can be interpreted as a probability distribution over
the digits. In total, the number of unknowns to be trained in case of the shallow
NN is 7850, which compares to 2112 free parameters for the CNN. We denote
the parameters of the NN by θ and its forward pass by fθ.

Fig. 3. Architectures of the NNs used in the experiments of Sect. 4.

As a loss function during training we use the categorical crossentropy loss
((ŷ, y) = −

∑9
k=0 yk log (ŷk) with ŷ = fθ(x) denoting the output of the NN for a

training sample (x, y) consisting of image and label. This gives rise to the objec-
tive function E(θ) = 1

M

∑M
m=1 ((fθ(xm), ym), where (xm, ym)Mm=1 denote the M

training samples. When evaluating the performance of the NN we determine the
accuracy on a test set by counting the number of successful predictions.

The used implementation of anisotropic CBO combines ideas presented in [10,
Section 2.2] with the algorithm proposed in [4]. More precisely, it employs random
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mini-batch ideas when evaluating the objective function E and when computing
the consensus point vα, meaning that E is only evaluated on a random subset of
size nE of the training dataset and vα is only computed from a random subset
of size nN of all particles. While this reduces the computational complexity, it
simultaneously increases the stochasticity, which enhances the ability to escape
from local optima. Furthermore, inspired by Simulated Annealing, a cooling
strategy for the parameters α and σ is used as well as a variance-based particle
reduction technique similar to ideas from Genetic Algorithms. More specifically,
α is multiplied by 2 after each epoch, while the diffusion parameter σ follows
the schedule σepoch = σ0/ log2(epoch + 2). For our experiments we choose the
parameters λ = 1, σ0 =

√
0.4 and αinitial = 50, and discrete time step size ∆t =

0.1 for training both the shallow and the convolutional NN. We use N = 100
particles, which are initialized according to N

(
(0, . . . , 0)T , Id

)
. The mini-batch

sizes are nE = 60 and nN = 10 and despite vα being computed only on a basis
of nN particles, all N particles are updated in every time step, referred to as
the full update in [4]. We emphasize that hyperparameters have not been tuned
extensively.

In Fig. 4 we report the results of our experiment. While achieving a test
accuracy of almost 90% for the shallow NN, we obtain around 97% accuracy with
the CNN. For comparison, when trained with backpropagation with finely tuned
parameters, a comparable CNN achieves 98.3% accuracy, cf. [15, Figure 9]. In
view of these results, CBO can be regarded as a successful optimizer for machine
learning tasks, which performs comparably to the state of the art. At the same
time it is worth highlighting that CBO is extremely versatile and customizable,
does not require gradient information or substantial hyperparameter tuning and
has the potential to be parallelized.

Fig. 4. Comparison of the performances of a shallow (dashed lines) and convolutional
(solid lines) NN with architectures as described in Figs. 3a and b, when trained with a
discretized version of the anisotropic CBO dynamics (1). Depicted are the accuracies
on a test dataset (orange lines) and the values of the objective function E (blue lines),
which was chosen to be the categorical crossentropy loss on a random sample of the
training set of size 10000. (Color figure online)
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5 Conclusion

In this paper we establish the global convergence of anisotropic consensus-based
optimization (CBO) to the global minimizer in mean-field law with dimension-
independent convergence rate by adapting the proof technique developed in [9].
It is based on the insight that the dynamics of individual particles follow, on
average, the gradient flow dynamics of the map v '→ ‖v − v∗‖22. Furthermore, by
utilizing the implementation of anisotropic CBO suggested in [4], we demonstrate
the practicability of the method by training the well-known LeNet-1 on the
MNIST data set, achieving around 97% accuracy after few epochs with just 100
particles.

In subsequent work we plan to extend our theoretical understanding of CBO
to the finite particle regime, and aim to provide extensive numerical studies.
We also intend to use this approach to explain the mean-field law convergence
behavior of other metaheuristics such as Particle Swarm Optimization, see, e.g.,
[5,13].
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Paper Summary of [CBO-III]36

In the paper “Consensus-Based Optimization with Truncated Noise,” published in the
special issue “From integro-di�erential models to data-oriented approaches for emergent
phenomena” of the European Journal of Applied Mathematics, we propose and explore
the variant (3.106) of CBO, which incorporates truncated noise in order to enhance the
well-behavedness of statistics of the law of the dynamics.

CBO is a versatile multi-particle metaheuristic optimization method suitable for per-
forming nonconvex and nonsmooth global optimizations in form of (2.1) and comes with
an analytical framework [CBO-I; CBO-II], which is flexible enough to allow for various
modifications of the dynamics.

By introducing a truncation of the noise term of the CBO dynamics as in (3.106), we
achieve in [CBO-III] that, in contrast to the original version of the algorithm, the law
of the mean-field dynamics exhibits sub-Gaussian behavior [CBO-III, Lemma 8]. This
permits that higher moments of the law of the particle system can be e�ectively bounded
[CBO-III, Section 1]. As a result, our proposed variant exhibits enhanced convergence
performance, allowing in particular for wider flexibility in choosing the noise parameter
of the method [CBO-III, Theorem 3], which is also confirmed experimentally [CBO-III,
Figure 1 and Section 4]. By adopting the analytical framework of [CBO-I] we further rig-
orously prove global convergence in expectation of the proposed CBO variant requiring
only minimal assumptions on the objective function and on the initialization [CBO-III,
Theorem 3]. Theoretical improvements with respect to previous works and as a conse-
quence of the sub-Gaussian behavior resulting from the truncated noise are reflected in
[CBO-III, Proposition 15], where global convergence in mean-field law is assured un-
der weaker conditions on the noise parameter of the method, as well as in [CBO-III,
Proposition 7], where a non-probabilistic quantitative mean-field approximation result
is provided. The combination of the former results about the convergence in mean-field
law and the quantitative mean-field approximation together with classical results of nu-
merical approximation of SDEs allows to obtain the aforementioned global convergence
guarantees in expectation of the numerical CBO method [CBO-III, Theorem 3]. From
convergence in expectation, a convergence in probability result can be derived imme-
diately. Numerical evidences demonstrate the benefit of truncating the noise in CBO
[CBO-III, Figure 1 and Section 4].

KR’s Contributions. After MF reached out to PR to discuss about CBO and an
initial meeting together with KR, LS proposed the idea of using truncated noise in the
CBO dynamics and worked out the technical details of the analysis following the analyt-
ical framework established by MF, KR, and collaborators in earlier works. LS and KR
conducted the numerical experiments. During LS’s visit at the Technical University of
Munich, LS and KR discussed, prepared, and finalized the manuscript, which was then
proofread by and refined together with MF and PR.

36In this section, we follow [CBO-III, Abstract].
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Consensus-Based Optimization

with Truncated Noise
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Abstract

Consensus-based optimization (CBO) is a versatile multi-particle metaheuristic optimization
method suitable for performing nonconvex and nonsmooth global optimizations in high
dimensions. It has proven e!ective in various applications while at the same time being
amenable to a theoretical convergence analysis. In this paper, we explore a variant of CBO,
which incorporates truncated noise in order to enhance the well-behavedness of the statistics
of the law of the dynamics. By introducing this additional truncation in the noise term of
the CBO dynamics, we achieve that, in contrast to the original version, higher moments of
the law of the particle system can be e!ectively bounded. As a result, our proposed variant
exhibits enhanced convergence performance, allowing in particular for wider flexibility in
choosing the noise parameter of the method as we confirm experimentally. By analyzing the
time-evolution of the Wasserstein-2 distance between the empirical measure of the interacting
particle system and the global minimizer of the objective function, we rigorously prove
convergence in expectation of the proposed CBO variant requiring only minimal assumptions
on the objective function and on the initialization. Numerical evidences demonstrate the
benefit of truncating the noise in CBO.

Keywords: global optimization, derivative-free optimization, nonsmoothness, nonconvexity, metaheuris-

tics, consensus-based optimization, truncated noise

AMS subject classifications: 65K10, 90C26, 90C56, 35Q90, 35Q84

1 Introduction

The search for a global minimizer v→ of a potentially nonconvex and nonsmooth cost function

f : Rd
→ R

∗
Email: massimo.fornasier@cit.tum.de (corresponding author)

†
Email: peter.richtarik@kaust.edu.sa

‡
Email: konstantin.riedl@ma.tum.de

§
Email: lukang.sun@kaust.edu.sa

1

ar
X

iv
:2

31
0.

16
61

0v
2 

 [m
at

h.
O

C
]  

12
 F

eb
 2

02
4



holds significant importance in a variety of applications throughout applied mathematics, science
and technology, engineering, and machine learning. Historically, a class of methods known as
metaheuristics [3,5] has been developed to address this inherently challenging and, in general, NP-
hard problem. Examples of such include evolutionary programming [19], genetic algorithms [31],
particle swarm optimization (PSO) [36], simulated annealing [1], and many others. These
methods work combining local improvement procedures and global strategies by orchestrating
deterministic and stochastic advances, with the aim of creating a method capable of robustly and
e”ciently finding the globally minimizing argument v→ of f . However, despite their empirical
success and widespread adoption in practice, most metaheuristics lack a solid mathematical
foundation that could guarantee their robust convergence to global minimizers under reasonable
assumptions.

Motivated by the urge to devise algorithms which converge provably, a novel class of
metaheuristics, so-called consensus-based optimization (CBO), originally proposed by the authors
of [40], has recently emerged in the literature. Due to the inherent simplicity in the design of CBO,
this class of optimization algorithms lends itself to a rigorous theoretical analysis, as demonstrated
in particular in the works [11, 13, 23, 24, 27, 28, 39]. However, this recent line of research does
not just o!er a promising avenue for establishing a thorough mathematical framework for
understanding the numerically observed successes of CBO methods [13,15,21,24,42], but beyond
that allows to explain the e!ective use of conceptually similar and wide-spread methods such as
PSO as well as at first glance completely di!erent optimization algorithms such as stochastic
gradient descent (SGD). While the first connection is to be expected and by now made fairly
rigorous [17, 26, 34] due to CBO indisputably taking PSO as inspiration, the second observation
is somewhat surprising, as it builds a bridge between derivative-free metaheuristics and gradient-
based learning algorithms. Despite CBO solely relying on evaluations of the objective function,
recent work [43] reveals an intrinsic SGD-like behavior of CBO itself by interpreting it as a
certain stochastic relaxation of gradient descent, which provably overcomes energy barriers
of nonconvex function. These perspectives, and, in particular the already well-investigated
convergence behavior of standard CBO, encourage the exploration of improvements to the
method in order to allow overcoming the limitations of traditional metaheuristics mentioned at
the start. For recent surveys on CBO we refer to [25, 45].

While the original CBO model [40] has been adapted to solve constrained optimizations [4,9,
14], optimizations on manifolds [20–22,29,37], multi-objective optimization problems [7,8, 38],
saddle point problems [33] or the task of sampling [12], as well as has been extended to make use
of memory mechanisms [6, 42, 46], gradient information [42, 44], momentum [16], jump-di!usion
processes [35] or localization kernels for polarization [10], we focus in this work on a variation of
the original model, which incorporates a truncation in the noise term of the dynamics. More
formally, given a time horizon T > 0, a time discretization t0 = 0 < #t < · · · < K#t = tK = T
of [0, T ], and user-specified parameters ω,ε,ϑ > 0 as well as vb, R > 0, we consider the interacting
particle system

V i
k+1,!t ↑ V i

k,!t =↑#tε
Ä
V i
k,!t ↑ Pvb,R

Ä
vω(ϖ̂

N
k,!t)

ää
+ ϑ
Ä∥∥V i

k,!t ↑ vω(ϖ̂
N
k,!t)

∥∥
2
↓M
ä
Bi

k,!t,

(1)

V i
0 ↔ ϖ0 for all i = 1, . . . , N, (2)

where ((Bi
k,!t)k=0,...,K↑1)i=1,...,N are independent, identically distributed Gaussian random

vectors in Rd with zero mean and covariance matrix #tIdd. Equation (1) originates from
a simple Euler-Maruyama time discretization [30, 41] of the system of stochastic di!erential

2



equations (SDEs), expressed in Itô’s form as

dV i
t = ↑ε

Ä
V i
t ↑ Pvb,R

Ä
vω(ϖ̂

N
t )
ää

dt+ ϑ
Ä∥∥V i

t ↑ vω(ϖ̂
N
t )

∥∥
2
↓M
ä
dBi

t (3)

V i
0 ↔ ϖ0 for all i = 1, . . . , N. (4)

where ((Bi
t)t↓0)i=1,...,N are now independent standard Brownian motions in Rd. The empirical

measure of the particles at time t is denoted by ϖ̂Nt := 1
N

∑N
i=1 ϱV i

t
. Moreover, Pvb,R is the

projection onto BR(vb) defined as

Pvb,R (v) :=

{
v, if ↗v ↑ vb↗2 ↘ R,

vb +R v↑vb
↔v↑vb↔2

, if ↗v ↑ vb↗2 > R.
(5)

As a crucial assumption in this paper, the map Pvb,R depends on R and vb in such way that
v→ ≃ BR(vb). Setting the parameters can be feasible under specific circumstances, as exemplified
by the regularized optimization problem f(v) := Loss(v) + $ ↗v↗2, wherein v→ ≃ BLoss(0)/”(0).
In the absence of prior knowledge regarding vb and R, a practical approach is to choose vb = 0
and assign a su”ciently large value to R. The first terms in (1) and (3), respectively, impose
a deterministic drift of each particle towards the possibly projected momentaneous consensus
point vω(ϖ̂Nt ), which is a weighted average of the particles’ positions and computed according to

vω(ϖ̂
N
t ) :=

∫
v

ςω(v)

↗ςω↗L1(ε̂Nt )

dϖ̂Nt (v). (6)

The weights ςω(v) := exp(↑ωf(v)) are motivated by the well-known Laplace principle [18],
which states for any absolutely continuous probability distribution φ on Rd that

lim
ω↗↘

Å
↑
1

ω
log

Å∫
ςω(v) dφ(v)

ãã
= inf

v≃supp(ϑ)
f(v) (7)

and thus justifies that vω(ϖ̂Nt ) serves as a suitable proxy for the global minimizer v→ given the
currently available information of the particles (V i

t )i=1,...,N . The second terms in (1) and (3),
respectively, encode the di!usion or exploration mechanism of the algorithm, where, in contrast
to standard CBO, we truncate the noise by some fixed constant M > 0.

We conclude and re-iterate that both the introduction of the projection Pvb,R
(
vω(ϖ̂Nt )

)
of the

consensus point and the employment of truncation of the noise variance
(∥∥V i

t ↑ vω(ϖ̂Nt )
∥∥
2
↓M

)

are main innovations to the original CBO method. We shall explain and justify these modifications
in the following paragraph.

Despite these technical improvements, the approach to analyze the convergence behavior
of the implementable scheme (1) follows a similar route already explored in [11,13,23,24]. In
particular, the convergence behavior of the method to the global minimizer v→ of the objective f
is investigated on the level of the mean-field limit [23, 32] of the system (3). More precisely, we
study the macroscopic behavior of the agent density ϖ ≃ C([0, T ],P(Rd)), where ϖt = Law(Vt)
with

dVt = ↑ε
(
Vt ↑ Pvb,R (vω(ϖt))

)
dt+ ϑ

(∥∥Vt ↑ vω(ϖt)
∥∥
2
↓M

)
dBt (8)

and initial data V0 ↔ ϖ0. Afterwards, by establishing a quantitative estimate on the mean-field
approximation, i.e., the proximity of the mean-field system (8) to the interacting particle sys-
tem (3) and combining the two results, we obtain a convergence result for the CBO algorithm (1)
with truncated noise.
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Motivation for using truncated noise. In what follows we provide a heuristic explanation
of the theoretical benefits of employing a truncation in the noise of CBO as in (1), (3) and (8).
Let us therefore first recall that the standard variant of CBO [40] can be retrieved from the
model considered in this paper by setting vb = 0, R = ⇐ and M = ⇐. For instance, in place of
the mean-field dynamics (8), we would have

dV CBO
t = ↑ε

Ä
V CBO
t ↑ vω(ϖ

CBO
t )

ä
dt+ ϑ

∥∥V CBO
t ↑ vω(ϖ

CBO
t )

∥∥
2
dBt.

Attributed to the Laplace principle (7) it holds vω(ϖCBO
t ) ⇒ v→ for ω su”ciently large, i.e., as

ω → ⇐, the former dynamics converges to

dY CBO
t = ↑ε

Ä
Y CBO
t ↑ v→

ä
dt+ ϑ

∥∥Y CBO
t ↑ v→

∥∥
2
dBt. (9)

Firstly, observe that here the first term imposes a direct drift to the global minimizer v→ and
thereby induces a contracting behavior, which is on the other hand counteracted by the di!usion
term, which contributes a stochastic exploration around this point. In particular, with Y CBO

t

approaching v→, the exploration vanishes so that Y CBO
t converges eventually deterministically to

v→. Conversely, as long as Y CBO
t is far away from v→, the order of the random exploration is

strong. By Itô’s formula we have

d

dt
E
î∥∥Y CBO

t ↑ v→
∥∥p
2

ó
= p

Å
↑ε+

ϑ2

2
(p+ d↑ 2)

ã
E
î∥∥Y CBO

t ↑ v→
∥∥p
2

ó

and thus

E
î∥∥Y CBO

t ↑ v→
∥∥p
2

ó
= exp

Å
p

Å
↑ε+

ϑ2

2
(p+ d↑ 2)

ã
t

ã
E
î∥∥Y CBO

0 ↑ v→
∥∥p
2

ó
(10)

for any p ⇑ 1. Denoting with µCBO
t the law of Y CBO

t , this means that, given any ε,ϑ > 0, there
is some threshold exponent p→ = p→(ε,ϑ, d), such that

lim
t↗↘

Wp

Ä
µCBO
t , ϱv→

ä
= lim

t↗↘

Ä
E
î∥∥Y CBO

t ↑ v→
∥∥p
2

óä1/p

= lim
t↗↘

exp

ÅÅ
↑ε+

ϑ2

2
(p+ d↑ 2)

ã
t

ãÄ
E
î∥∥Y CBO

0 ↑ v→
∥∥p
2

óä1/p

= 0

for p < p→, while for p > p→ it holds

lim
t↗↘

Wp

Ä
µCBO
t , ϱv→

ä
= lim

t↗↘

Ä
E
î∥∥Y CBO

t ↑ v→
∥∥p
2

óä1/p

= lim
t↗↘

exp

ÅÅ
↑ε+

ϑ2

2
(p+ d↑ 2)

ã
t

ãÄ
E
î∥∥Y CBO

0 ↑ v→
∥∥p
2

óä1/p

= ⇐.

Recalling that the distribution of a random variable Y has heavy tails if and only if the moment
generating function MY (s) := E [exp(sY )] = E

î∑↘
p=0(sY )p/p!

ó
is infinite for all s > 0, these

computations suggest that the distribution of µCBO
t exhibits characteristics of heavy tails as

t → ⇐, thereby increasing the likelihood of encountering outliers in a sample drawn from µCBO
t

for large t.
On the contrary, for CBO with truncated noise (8), we get, thanks once again to the Laplace

principle as ω → ⇐, that (8) converges to

dYt = ↑ε
(
Yt ↑ v→

)
dt+ ϑ

(∥∥Yt ↑ v→
∥∥
2
↓M

)
dBt, (11)
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for which we can compute

d

dt
E
î∥∥Yt ↑ v→

∥∥p
2

ó
↘ ↑pεE

î∥∥Yt ↑ v→
∥∥p
2

ó
+ p

ϑ2

2
M2 (p+ d↑ 2)E

î∥∥Yt ↑ v→
∥∥p↑2

2

ó

↘ ↑εE
î∥∥Yt ↑ v→

∥∥p
2

ó
+ ε

ϑpMp(d+ p↑ 2)
p
2

ε
p
2

,

for any p ⇑ 2. Notice, that to obtain the second inequality we used Young’s inequality1 as well
as Jensen’s inequality. By means of Grönwall’s inequality, we then have

E
î∥∥Yt ↑ v→

∥∥p
2

ó
↘ exp (↑εt)E

î∥∥Y0 ↑ v→
∥∥p
2

ó
+

ϑpMp(d+ p↑ 2)
p
2

ε
p
2

(12)

and therefore, denoting with µt the law of Yt,

lim
t↗↘

Wp (µt, ϱv→) ↘
ϑM

⇓
d+ p↑ 2

ε
1

2

< ⇐

for any p ⇑ 2.
In conclusion, we observe from Equation (10) that the standard CBO dynamics as described

in Equation (9) diverges in the setting ϑ2d > 2ε when considering the Wasserstein-2 distance W2.
Contrarily, according to Equation (12), the CBO dynamics with truncated noise as presented
in Equation (11) converges with exponential rate towards a neighborhood of v→, with radius
ϑM

⇓
d/

⇓
ε. This implies that for a relatively small value of M the CBO dynamics with truncated

noise exhibits greater robustness in relation to the parameter ϑ2d/ε. This e!ect is confirmed
numerically in Figure 1.

Remark 1 (Sub-Gaussianity of truncated CBO). An application of Itô’s formula allows to show

that, for some ↼ > 0, E
î
exp
Ä∥∥Y t ↑ v→

∥∥2
2
/↼2
äó

< ⇐, provided E
î
exp
Ä∥∥Y 0 ↑ v→

∥∥2
2
/↼2
äó

< ⇐.
Thus, by incorporating a truncation in the noise term of the CBO dynamics, we ensure that the
resulting distribution µt exhibits sub-Gaussian behavior and therefore we enhance the regularity
and well-behavedness of the statistics of µt. As a consequence, more reliable and stable results
when analyzing the properties and characteristics of the dynamics are to be expected.

Contributions. In view of the aforementioned enhanced regularity and well-behavedness of
the statistics of CBO with truncated noise compared to standard CBO [40] together with the
numerically observed improved performance as depicted in Figure 1, a rigorous convergence
analysis of the implementable CBO algorithm with truncated noise as given in (1) is of theoretical
interest. In this work we provide theoretical guarantees of global convergence of (1) to the global
minimizer v→ for possibly nonconvex and nonsmooth objective functions f . The approach to
analyze the convergence behavior of the implementable scheme (1) follows a similar route as
initiated and explored by the authors of [11, 13, 23, 24]. In particular, we first investigate the
mean-field behavior (8) of the system (3). Then, by establishing a quantitative estimate on the
mean-field approximation, i.e., the proximity of the mean-field system (8) to the interacting
particle system (3), we obtain a convergence result for the CBO algorithm (1) with truncated
noise. Our proving technique nevertheless di!ers in crucial parts from the one in [23, 24] as,
on the one side, we do take advantage of the truncations, and, on the other side, we require
additional technical e!ort to exploit and deal with the enhanced flexibility of the truncated
model. Specifically, the central novelty can be identified in the proof of sub-Gaussianity of the
process, see Lemma 8.

1
Choose a = ω

p→2
p E
î∥∥Yt → v→

∥∥p↑2

2

ó
and b = ω2M2

(d+p↑2)

ε(p→2)/p , and recall that ab ↑ p↑2

p a
p

p→2 +
2

p b
p
2 .
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(a) Phase diagram of success probabilities of isotropic CBO with

and without truncated noise at the example of the Ackley function

f(v) = ↑20 exp
(
↑0.2/

↓
d ↔v↔2

)
↑ exp

Ä
1/d

∑d
k=1 cos(2ϑvk)

ä
with

d = 4

(b) Phase diagram of success probabilities of isotropic CBO with

and without truncated noise at the example of the Rastrigin function

f(v) =
∑d

k=1 v2
k + 2.5

(
1 ↑ cos(2ϑvk)

)
with d = 4

Figure 1: A comparison of the success probabilities of isotropic CBO with (left phase diagrams) and without (right

separate columns) truncated noise for di!erent values of the truncation parameter M and the noise level ε. (Note

that standard CBO as investigated in [11,23,40] is retrieved when choosing M = ↓, R = ↓ and vb = 0 in (1)).

In both settings (a) and (b) the depicted success probabilities are averaged over 100 runs and the implemented

scheme is given by an Euler-Maruyama discretization of Equation (3) with time horizon T = 50, discrete time step

size ”t = 0.01, R = ↓, vb = 0, ϑ = 10
5
and ω = 1. We use N = 100 particles, which are initialized according to

ϖ0 = N ((1, . . . , 1), 2000). In both figures we plot the success probability of standard CBO (right separate column)

and the CBO variant with truncated noise (left phase transition diagram) for di!erent values of the truncation

parameter M and the noise level ε, when optimizing the Ackley ((a)) and Rastrigin ((b)) function, respectively.
We observe that truncating the noise term (by decreasing M) consistently allows for a wider flexibility when

choosing the noise level ε and thus increasing the likelihood of successfully locating the global minimizer.

1.1 Organization

In Section 2 we present and discuss our main theoretical contribution about the global convergence
of CBO with truncated noise in probability and expectation. Section 3 collects the necessary
proof details for this result. In Section 4 we numerically demonstrate the benefits of using
truncated noise, before we provide a conclusion of the paper in Section 5. For the sake
of reproducible research, in the GitHub repository https://github.com/KonstantinRiedl/

CBOGlobalConvergenceAnalysis we provide the Matlab code implementing CBO with truncated
noise.

1.2 Notation

We use ↗ · ↗2 to denote the Euclidean norm on Rd. Euclidean balls are denoted as Br(u) :=
{v ≃ Rd : ↗v ↑ u↗2 ↘ r}. For the space of continuous functions f : X → Y we write C(X,Y ),
with X ⇔ Rn and a suitable topological space Y . For an open set X ⇔ Rn and for Y = Rm

the spaces Ck
c (X,Y ) and C

k
b (X,Y ) contain functions f ≃ C(X,Y ) that are k-times continuously

di!erentiable and have compact support or are bounded, respectively. We omit Y in the real-
valued case. All stochastic processes are considered on the probability space (%,F ,P). The
main objects of study are laws of such processes, ϖ ≃ C([0, T ],P(Rd)), where the set P(Rd)
contains all Borel probability measures over Rd. With ϖt ≃ P(Rd) we refer to a snapshot of such
law at time t. Measures φ ≃ P(Rd) with finite p-th moment

∫
↗v↗p2 dφ(v) are collected in Pp(Rd).

For any 1 ↘ p < ⇐, Wp denotes the Wasserstein-p distance between two Borel probability
measures φ1, φ2 ≃ Pp(Rd), see, e.g., [2]. E [·] denotes the expectation.
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2 Global Convergence of CBO with Truncated Noise

We now present the main theoretical result of this work about the global convergence of CBO
with truncated noise for objective functions that satisfy the following conditions.

Definition 2 (Assumptions). Throughout we are interested in functions f ≃ C(Rd), for which

A1 there exist v→ ≃ Rd such that f(v→) = infv≃Rd f(v) =: f and ω, Lu > 0 such that

sup
v≃Rd

∥∥∥ve↑ω(f(v)↑f)
∥∥∥
2
=: Lu < ⇐ (13)

for any ω ⇑ ω and any v ≃ Rd,

A2 there exist f↘, R0, ↽, Lϖ > 0 such that

↗v ↑ v→↗2 ↘
1

Lϖ
(f(v)↑ f)ϖ for all v ≃ BR0

(v→), (14)

f↘ < f(v)↑ f for all v ≃
(
BR0

(v→)
)c
, (15)

A3 there exist Lϱ > 0, ⇀ ≃ [0, 1] such that

|f(v)↑ f(w)| ↘ Lϱ(↗v ↑ v→↗ϱ2 + ↗w ↑ v→↗ϱ2) ↗v ↑ w↗2 for all v, w ≃ Rd, (16)

f(v)↑ f ↘ Lϱ

Ä
1 + ↗v ↑ v→↗1+ϱ

2

ä
for all v ≃ Rd. (17)

A few comments are in order: Condition A1 establishes the existence of a minimizer v→ and
requires a certain growth of the function f . Condition A2 ensures that the value of the function
f at a point v can locally be an indicator of the distance between v and the minimizer v→. This
error bound condition was first introduced in [23] under the name inverse continuity condition. It
in particular guarantees the uniqueness of the global minimizer v→. Condition A3 sets controllable
bounds on the local Lipschitz constant of f and on the growth of f , which is required to be at
most quadratic. A similar requirement appears also in [11, 23], but there also a quadratic lower
bound was imposed.

2.1 Main Result

We can now state the main result of the paper. Its proof is deferred to Section 3.

Theorem 3. Let f ≃ C(Rd) satisfy A1, A2 and A3. Moreover, let ϖ0 ≃ P4(Rd) with v→ ≃

supp(ϖ0). Let V i
0,!t be sampled i.i.d. from ϖ0 and denote by ((V i

k,!t)k=1,...,K)i=1,...,N the iterations

generated by the numerical scheme (1). Fix any ⇁ ≃ (0,W 2
2 (ϖ0, ϱv→)), define the time horizon

T → :=
1

ε
log

Å
2W 2

2 (ϖ0, ϱv→)

⇁

ã

and let K ≃ N and #t satisfy K#t = T →. Moreover, let R ≃
(
↗vb ↑ v→↗2+

√
⇁/2,⇐

)
, M ≃ (0,⇐)

and ε,ϑ > 0 be such that ε ⇑ 2ϑ2d or ϑ2M2d = O(⇁). Then, by choosing ω su!ciently large
and N ⇑ (16ωLϱϑ2M2)/ε, it holds

E




∥∥∥∥∥
1

N

N∑

i=1

V i
K,!t ↑ v→

∥∥∥∥∥

2

2



 ↭ CNA(#t)2m +
CMFA

N
+ ⇁ (18)

up to a generic constant. Here, CNA depends linearly on the dimension d and the number of
particles N and exponentially on the time horizon T →, m is the order of accuracy of the numerical
scheme (for the Euler-Maruyama scheme m = 1/2), and CMFA = CMFA(ε,ϑ, d,ω, Lϖ , ↽, Lϱ , Lu, T →, R, vb, v→,M).
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Remark 4. In the statement of Theorem 3, the parameters R and vb play a crucial role. We
already mentioned how they can be chosen in an example after Equation (5). The role of these
parameters is bolstered in particular in the proof of Theorem 3, where it is demonstrated that, by
selecting a su!ciently large ω depending on R and vb, the dynamics (8) can be set equal to

dVt = ↑ε
(
Vt ↑ Pv→,ς(vω(ϖt))

)
dt+ ϑ

(∥∥Vt ↑ vω(ϖt)
∥∥
2
↓M

)
dBt, ,

where ϱ represents a small value. For the dynamics (3), we can analogously establish its
equivalence to

dV i
t = ↑ε

Ä
V i
t ↑ Pv→,ς(vω(ϖ̂

N
t ))
ä
dt+ ϑ

Ä∥∥V i
t ↑ vω(ϖ̂

N
t )

∥∥
2
↓M
ä
dBi

t, i = 1, . . . , N,

with high probability, contingent upon the selection of su!ciently large values for both ω and N .

Remark 5. The convergence result in form of Theorem 3 obtained in this work di”ers from
the one presented in [23, Theorem 14] in the sense that we obtain convergence is in expectation,
while in [23] convergence with high probability is established. This distinction arises from the
truncation of the noise term employed in our algorithm.

3 Proof Details for Section 2

3.1 Well-Posedness of Equations (1) and (3)

With the projection map Pvb,R being 1-Lipschitz, existence and uniqueness of strong solutions
to the SDEs (1) and (3) are assured by essentially analogous proofs as in [11, Theorems 2.1, 3.1
and 3.2]. The details shall be omitted. Let us remark, however, that due to the presence of the
truncation and the projection map, we do not require the function f to be bounded from above
or exhibit quadratic growth outside a ball, as required in [11, Theorems 2.1, 3.1 and 3.2].

3.2 Proof Details for Theorem 3

Remark 6. Since adding some constant o”set to f does not a”ect the dynamics of Equations (3)
and (8), we will assume f = 0 in the proofs for simplicity but without loss of generality.

Let us first provide a sketch of the proof of Theorem 3. For the approximation error (18) we
have the error decomposition

E




∥∥∥∥∥
1

N

N∑

i=1

V i
K,!t ↑ v→

∥∥∥∥∥

2

2



 ↭ E




∥∥∥∥∥
1

N

N∑

i=1

(
V i
K,!t ↑ V i

T →
)
∥∥∥∥∥

2

2





︸  
I

+E




∥∥∥∥∥
1

N

N∑

i=1

(
V i
T → ↑ V i

T →
)
∥∥∥∥∥

2

2





︸  
II

+ E




∥∥∥∥∥
1

N

N∑

i=1

V i
T → ↑ v→

∥∥∥∥∥

2

2





︸  
III

,

(19)

where ((V i
t )t↓0)i=1,...,N denote N independent copies of the mean-field process (Vt)t↓0 satisfying

Equation (8).
In what follows, we investigate each of the three term separately. Term I can be bounded

by CNA (#t)2m using classical results on the convergence of numerical schemes for stochastic
di!erential equations (SDEs), as mentioned for instance in [41]. The second and third term,
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respectively, are analyzed in separate subsections, providing detailed explanations and bounds
for each of the two terms II and III.

Before doing so, let us provide a concise guide for reading the proofs. As the proofs are
quite technical, we start for reader’s convenience by presenting the main building blocks of the
result first, and collect the more technical steps in subsequent lemmas. This arrangement should
hopefully allow to grasp the structure of the proof more easily, and to dig deeper into the details
along with the reading.

3.2.1 Upper Bound for the Second Term in (19)

For Term II of the error decomposition (19) we have the following upper bound.

Proposition 7. Let f ≃ C(Rd) satisfy A1, A2 and A3. Moreover, let R and M be finite such
that R ⇑ ↗vb ↑ v→↗2 and let N ⇑ (16ωLϱϑ2M2)/ε. Then we have

E




∥∥∥∥∥
1

N

N∑

i=1

(
V i
T → ↑ V i

T →
)
∥∥∥∥∥

2

2



 ↘
CMFA

N
, (20)

where CMFA = CMFA(ε,ϑ, d,ω, Lϖ , ↽, Lϱ , Lu, T →, R, vb, v→,M).

Proof. By a synchronous coupling we have

dV i
t = ↑ε

(
V i
t ↑ Pvb,R (vω(ϖt))

)
dt+ ϑ

(∥∥V i
t ↑ vω(ϖt)

∥∥
2
↓M

)
dBi

t,

dV i
t = ↑ε

Ä
V i
t ↑ Pvb,R

Ä
vω(ϖ̂

N
t )
ää

dt+ ϑ
Ä∥∥V i

t ↑ vω(ϖ̂
N
t )

∥∥
2
↓M
ä
dBi

t,

with coinciding Brownian motions. Moreover, recall that Law(V i
t ) = ϖt and ϖ̂Nt = 1/N

∑N
i=1 ϱV i

t
.

By Itô’s formula we then have

d
∥∥V i

t ↑ V i
t

∥∥2
2
=


↑ 2ε

¨
V i
t ↑ V i

t ,
(
V i
t ↑ V i

t

)
↑

Ä
Pvb,R (vω(ϖt))↑ Pvb,R

Ä
vω(ϖ̂

N
t )
ää!

+ ϑ2d
Ä∥∥V i

t ↑ vω(ϖt)
∥∥
2
↓M ↑

∥∥V i
t ↑ vω(ϖ̂

N
t )

∥∥
2
↓M
ä2 

dt

+ 2ϑ
Ä∥∥V i

t ↑ vω(ϖt)
∥∥
2
↓M ↑

∥∥V i
t ↑ vω(ϖ̂

N
t )

∥∥
2
↓M
ä (

V i
t ↑ V i

t

)⇐
dBi

t,

(21)

and after taking the expectation on both sides

d

dt
E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
= ↑2εE

î¨
V i
t ↑ V i

t ,
(
V i
t ↑ V i

t

)
↑

Ä
Pvb,R (vω(ϖt))↑ Pvb,R

Ä
vω(ϖ̂

N
t )
ää!ó

+ ϑ2dE
Ä∥∥V i

t ↑ vω(ϖt)
∥∥
2
↓M ↑

∥∥V i
t ↑ vω(ϖ̂

N
t )

∥∥
2
↓M
ä2

↘ ↑2εE
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
+ ϑ2dE

ï∥∥∥
(
V i
t ↑ V i

t

)
↑

Ä
vω(ϖt)↑ vω(ϖ̂

N
t )
ä∥∥∥

2

2

ò

+ 2εE
∥∥V i

t ↑ V i
t

∥∥
2

∥∥∥Pvb,R (vω(ϖt))↑ Pvb,R

Ä
vω(ϖ̂

N
t )
ä∥∥∥

2



↘ ↑2εE
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
+ 2εE

î∥∥V i
t ↑ V i

t

∥∥
2

∥∥vω(ϖt)↑ vω(ϖ̂
N
t )

∥∥
2

ó

+ ϑ2dE
ï∥∥∥

(
V i
t ↑ V i

t

)
↑

Ä
vω(ϖt)↑ vω(ϖ̂

N
t )
ä∥∥∥

2

2

ò
.

(22)

Here, let us remark that the last (stochastic) term in (21) disappears after taking the expectation.

This is due to E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
< ⇐, which can be derived from Lemma 8 after noticing that
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Lemma 8 also holds for processes V i
t . Since by Young’s inequality it holds

2εE
î∥∥V i

t ↑ V i
t

∥∥
2

∥∥vω(ϖt)↑ vω(ϖ̂
N
t )

∥∥
2

ó
↘ ε

Ñ
E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó

2
+ 2E

î∥∥vω(ϖt)↑ vω(ϖ̂
N
t )

∥∥2
2

ó
é

,

and

E
ï∥∥∥

(
V i
t ↑ V i

t

)
↑

Ä
vω(ϖt)↑ vω(ϖ̂

N
t )
ä∥∥∥

2

2

ò
↘ 2E

î∥∥V i
t ↑ V i

t

∥∥2
2
+
∥∥vω(ϖt)↑ vω(ϖ̂

N
t )

∥∥2
2

ó
,

we obtain
d

dt
E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
↘

Å
↑
3ε

2
+ 2ϑ2d

ã
E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó

+ 2
(
ε+ ϑ2d

)
E
î∥∥vω(ϖt)↑ vω(ϖ̂

N
t )

∥∥2
2

ó (23)

after inserting the former two inequalities into Equation (22). For the term E
î∥∥vω(ϖt)↑ vω(ϖ̂Nt )

∥∥2
2

ó

we can decompose

E
î∥∥vω(ϖt)↑ vω(ϖ̂

N
t )

∥∥2
2

ó
↘ 2E

î∥∥vω(ϖt)↑ vω(ϖ̄
N
t )

∥∥2
2

ó
+ 2E

î∥∥vω(ϖ̄Nt )↑ vω(ϖ̂
N
t )

∥∥2
2

ó
, (24)

where we denote

ϖ̄Nt =
1

N

N∑

i=1

ϱV i
t
.

For the first term in Equation (24), by Lemma 11, we have

E
î∥∥vω(ϖt)↑ vω(ϖ̄

N
t )

∥∥2
2

ó
↘ C0

1

N

for some constant C0 depending on ε,ϑ, d,ω, Lϱ , Lu, T →, R, vb, v→ and M . For the second term
in Equation (24), by combining [11, Lemma 3.2] and Lemma 8, we obtain

E
î∥∥vω(ϖ̄Nt )↑ vω(ϖ̂

N
t )

∥∥2
2

ó
↘ C1

1

N

N∑

i=1

E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
,

for some constant C1 depending on ε,ϑ, d,ω, Lu, R and M . Combining these estimates we
conclude

d

dt

1

N

N∑

i=1

E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
↘

Å
↑
3ε

2
+ 2ϑ2d+ 4C1

(
ε+ ϑ2d

)ã 1

N

N∑

i=1

E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó

+ 4
(
ε+ ϑ2d

)
C0

1

N
.

After an application of Grönwall’s inequality and noting that V i
0 = V i

0 for all i = 1, . . . , N , we
have

1

N

N∑

i=1

E
î∥∥V i

t ↑ V i
t

∥∥2
2

ó
↘ 4

(
ε+ ϑ2d

) C0

N
te(↑

3ε
2
+2φ2d+4C1(↼+φ2d))t. (25)

for any t ≃ [0, T →]. Finally, by Jensen’s inequality and letting t = T →, we have

E




∥∥∥∥∥
1

N

N∑

i=1

(
V i
T → ↑ V i

T →
)
∥∥∥∥∥

2

2



 ↘
CMFA

N
, (26)

where the constant CMFA depends on ε,ϑ, d,ω, Lu, Lϱ , T →, R, vb, v→ and M .
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In the next lemma we show that the distribution of Vt is sub-Gaussian.

Lemma 8. Let R and M be finite with R ⇑ ↗vb ↑ v→↗2. For any ↼ > 0, let N satisfy

N ⇑ (4ϑ2M2)/(ε↼2). Then, provided that E
î
exp
Ä∑N

i=1

∥∥V i
0 ↑ v→

∥∥2
2
/(N↼2)

äó
< ⇐, it holds

C↽ := sup
t≃[0,T →]

E

exp

∑N
i=1

∥∥V i
t ↑ v→

∥∥2
2

N↼2


< ⇐, (27)

where C↽ depends on ↼,ε,ϑ, d, R,M and T →, and where

dV i
t = ↑ε

(
V i
t ↑ Pvb,R (vω(ϖt))

)
dt+ ϑ

(∥∥V i
t ↑ vω(ϖt)

∥∥
2
↓M

)
dBi

t

for i = 1, . . . , N with Bi
t being independent to each other and Law(V i

t ) = ϖt.

Proof. To apply Itô’s formula, we need to truncate the function exp
Ä
↗v↗22/↼

2
ä
from above. For

this, define for W > 0 the function

GW (x) :=






x x ≃ [0,W ↑ 1]
1
16(x+ 1↑W )4 ↑ 1

4(x+ 1↑W )3 + x x ≃ [W ↑ 1,W + 1]

W x ≃ [W + 1,⇐)

.

It is easy to verify that GW is a C
2 approximation of the function x↓W satisfying GW ≃ C

2(R+),
GW (x) ↘ x ↓W , G⇒

W ≃ [0, 1] and G⇒⇒
W ↘ 0.

Since GW,N,↽(t) := exp
Ä
GW

(∑N
i=1

∥∥V i
t ↑ v→

∥∥2
2
/N

)
/↼2
ä
is upper bounded, we can apply Itô’s

formula to it. We abbreviateG⇒
W := G⇒

W

(∑N
i=1

∥∥V i
t ↑ v→

∥∥2
2
/N

)
andG⇒⇒

W := G⇒⇒
W

(∑N
i=1

∥∥V i
t

∥∥2
2
/N

)

in what follows. With the notation Yt :=
(
(V 1

t )
⇐, · · · , (V N

t )⇐
)⇐

, the Nd dimensional process Yt

satisfies dYt = ↑ε
(
Yt ↑Pvb,R(ϖt)

)
dt+MdBt, where Pvb,R(ϖt) =

Ä
Pvb,R(ϖt)

⇐, . . . ,Pvb,R(ϖt)
⇐
ä⇐

,

M = diag (M1, . . . ,MN ) with Mi = ϑ
∥∥V i

t ↑ vω (ϖt)
∥∥
2
↓ MId and Bt the Nd dimensional

Brownian motion. We then have GW,N,↽(t) = exp
Ä
GW

(
↗Yt↗

2
2 /N

)
/↼2
ä
and

dGW,N,↽(t) =
N∑

i=1

↖YtGW,N,↽(t)dYt +
1

2
tr
(
M↖

2
Yt,Yt

GW,N,↽(t)M
)
dt

= GW,N,↽(t)
G⇒

W

↼2

N∑

i=1

Ç
2
V i
t ↑ v→

N

å⇐

dV i
t

+
1

2
GW,N,↽(t)

N∑

i=1


G⇒

W
2d

N↼2
+G⇒⇒

W

4
∥∥V i

t ↑ v→
∥∥2
2

N2↼2

+
(
G⇒

W

)2 4
∥∥V i

t ↑ v→
∥∥2
2

N2↼4


(
ϑ
∥∥V i

t ↑ vω (ϖt)
∥∥
2
↓M

)2
dt.

(28)
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The first term on the right-hand side of (28) can be expanded as follows

GW,N,↽(t)
G⇒

W

↼2

N∑

i=1

Ç
2
V i
t ↑ v→

N

å⇐

dV i
t = GW,N,↽(t)G

⇒
W

N∑

i=1

Ç
2
V i
t ↑ v→

N↼2

å⇐

dV i
t

= GW,N,↽(t)G
⇒
W

N∑

i=1

Ç
2
V i
t ↑ v→

N↼2

å⇐ Ä
↑ε
Ä
V̄t

i
↑ v→ + v→ ↑ Pvb,R(ϖt))

ä
dt+ ϑ

(∥∥V i
t ↑ vω(ϖt)

∥∥
2
↓M

)
dBi

t

ä

= GW,N,↽(t)G
⇒
W

{
↑2ε

N↼2

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2
dt↑

2ε

N↼2

N∑

i=1


V i
t ↑ v→, v→ ↑ Pvb,R(vω(ϖt))


dt

+2ϑ
N∑

i=1

(∥∥V i
t ↑ vω(ϖt)

∥∥
2
↓M

)
Ç
(V i

t ↑ v→)

N↼2

å⇐

dBi
t


.

(29)
Notice additionally that


V i
t ↑ v→, v→ ↑ Pvb,R(vω(ϖt))


↘

∥∥V i
t ↑ v→

∥∥
2
↗v→ ↑ Pvb,R(vω(ϖt))↗2 ↘ 2R

∥∥V i
t ↑ v→

∥∥
2

(30)

as v→ and Pvb,R(vω(ϖt)) belong to the same ball BR(vb) around vb of radius R. Similarly, we can
expand the coe”cient of the second term. According to the properties G⇒

W ≃ [0, 1] and G⇒⇒
W ↘ 0

we can bound it from above yielding

1

2
GW,N,↽(t)

N∑

i=1


G⇒

W
2d

N↼2
+G⇒⇒

W

4
∥∥V i

t ↑ v→
∥∥2
2

N2↼2
+
(
G⇒

W

)2 4
∥∥V i

t ↑ v→
∥∥2
2

N2↼4


(
ϑ
∥∥V i

t ↑ vω (ϖt)
∥∥
2
↓M

)2

↘ GW,N,↽(t)G
⇒
W
ϑ2M2d

↼2
+GW,N,↽(t)

(
G⇒

W

)2 2ϑ2M2

N2↼4

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2

↘ GW,N,↽(t)G
⇒
W
ϑ2M2d

↼2
+GW,N,↽(t)G

⇒
W
2ϑ2M2

N2↼4

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2
.

(31)
By taking expectations in (28) and combining it with (29), (30) and (31), we obtain

d

dt
E [GW,N,↽(t)] ↘ E


GW,N,↽(t)G

⇒
W


↑2ε

N↼2

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2
+

4Rε

N↼2

N∑

i=1

∥∥V i
t ↑ v→

∥∥
2

+ GW,N,↽(t)G
⇒
W
ϑ2M2d

↼2
+GW,N,↽(t)G

⇒
W
2ϑ2M2

N2↼4

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2



Rearranging the former yields

d

dt
E [GW,N,↽(t)] ↘ E


GW,N,↽(t)G

⇒
W


4εR

N↼2

N∑

i=1

∥∥V i
t ↑ v→

∥∥
2


+

ϑ2M2d

↼2



↑

Å
2ε

N↼2
↑

2ϑ2M2

N2↼4

ã N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2


,

(32)

Since by Young’s inequality, it holds 4R
∥∥V i

t ↑ v→
∥∥
2
↘ 4R2 +

∥∥V i
t ↑ v→

∥∥2
2
, we can continue

12



Estimate (32) by

d

dt
E [GW,N,↽(t)] ↘ E


GW,N,↽(t)G

⇒
W


ϑ2M2d+ 4εR2

↼2
↑

Å
ε

N↼2
↑

2ϑ2M2

N2↼4

ã N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2



↘ E

GW,N,↽(t)G

⇒
W


↑A

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2
+B



(33)

with A := ↼
N↽2 ↑

2φ2M2

N2↽4 and B := φ2M2d+4↼R2

↽2 . Now, if
∑N

i=1

∥∥V i
t ↑ v→

∥∥2
2
⇑ (B ↑ 1)/A, we have

GW,N,↽(t)G
⇒
W


↑A

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2
+B


↘ 0,

while, if
∑N

i=1

∥∥V i
t ↑ v→

∥∥2
2
↘ (B ↑ 1)/A, we have

GW,N,↽(t)G
⇒
W


↑A

N∑

i=1

∥∥V i
t ↑ v→

∥∥2
2
+B


↘ Be

B↑1

Nϖ2A .

Thus the latter inequality always holds true and consequently we have with (33)

d

dt
E [GW,N,↽(t)] ↘ Be

B↑1

Nϖ2A ,

which gives after integration

E [GW,N,↽(t)] ↘ E [GW,N,↽(0)] +Be
B↑1

Nϖ2A t

↘ E

exp

∑N
i=1

∥∥V i
0 ↑ v→

∥∥2
2

N↼2


+Be

B↑1

Nϖ2A t.

Letting W → ⇐, we eventually obtain

E

exp

∑N
i=1

∥∥V i
t ↑ v→

∥∥2
2

N↼2


↘ E


exp

∑N
i=1

∥∥V i
0 ↑ v→

∥∥2
2

N↼2


+Be

B↑1

Nϖ2A t < ⇐, (34)

provided that E
î
exp
Ä∑N

i=1

∥∥V i
0 ↑ v→

∥∥2
2
/N↼2

äó
< ⇐.

If N ⇑ (4ϑ2M2)/(ε↼2) , we have

B ↑ 1

N↼2A
↘

B

N↼2A
=

N(ϑ2M2d+ 4εR2)

εN↼2 ↑ 2ϑ2M2
↘ C(↼,ε,ϑ,M,R, d).

Thus, C↽ is upper bounded and independent of N .

Remark 9. The sub-Gaussianity of Vt follows from Lemma 8 by noticing that the statement
can be applied in the setting N = 1 when choosing ↼ su!ciently large.

Remark 10. In Lemma 8, as the number of particles N increases, the condition for ↼ to ensure
C↽ < ⇐ becomes more relaxed. Specifically, the value of ↼ can be as small as one needs as N
increases. This phenomenon can be easily understood by considering the limit as N approaches

infinity. In this case, C↽ tends to supt≃[0,T →] exp
Ä
E
î∥∥Vt ↑ v→

∥∥2
2

ó
/↼2
ä
. Therefore, as one shows

an upper bound on the second moment of Vt, it becomes evident that C↽ remains finite as N
tends to infinity.
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With the help of Lemma 8, we can now prove the following lemma.

Lemma 11. Let f ≃ C(Rd) satisfy A1 and A3. Then, for any t ≃ [0, T →], M and R with
R ⇑ ↗vb ↑ v→↗2 finite, and N satisfying N ⇑ (16ωLϱϑ2M2)/ε, we have

E
î∥∥vω(ϖt)↑ vω(ϖ̄

N
t )

∥∥2
2

ó
↘

C0

N
, (35)

where C0 := C0(ε,ϑ, d,ω, Lϱ , Lu, T →, R, vb, v→,M).

Proof. Without loss of generality, we assume v→ = 0 and recall that we assumed f = 0 in the
proofs as of Remark 6. We have

E
î∥∥vω(ϖt)↑ vω(ϖ̄

N
t )

∥∥2
2

ó
= E




∥∥∥∥∥

1
N

∑N
i=1 V

i
t e

↑ωf(V i
t)

1
N

∑N
i=1 e

↑ωf(V i
t)

↑

∫
Rd ve↑ωf(v)dϖt(v)∫
Rd e↑ωf(v)dϖt(v)

∥∥∥∥∥

2

2





↘ 2E




∥∥∥∥∥

1
1
N

∑N
i=1 e

↑ωf(V i
t)


1

N

N∑

i=1

V i
t e

↑ωf(V i
t) ↑

∫

Rd
ve↑ωf(v)dϖt(v)

∥∥∥∥∥

2

2





+ 2E




∥∥∥∥∥

vω(ϖt)
1
N

∑N
i=1 e

↑ωf(V i
t)


1

N

N∑

i=1

e↑ωf(V i
t) ↑

∫

Rd
e↑ωf(v)dϖt(v)

∥∥∥∥∥

2

2





↘ 2E




∥∥∥∥∥e

ω 1

N

∑N
i=1

f(V i
t)


1

N

N∑

i=1

V i
t e

↑ωf(V i
t) ↑

∫

Rd
ve↑ωf(v)dϖt(v)

∥∥∥∥∥

2

2





+ 2 ↗vω(ϖt)↗
2
2 E




∥∥∥∥∥e

ω 1

N

∑N
i=1

f(V i
t)


1

N

N∑

i=1

e↑ωf(V i
t) ↑

∫

Rd
e↑ωf(v)dϖt(v)

∥∥∥∥∥

2

2





↘ 2T1T2 + 2 ↗vω(ϖt)↗
2
2 T1T3,

(36)

where we defined

T1 :=

E

e4ω

1

N

∑N
i=1

f(V i
t)
 1

2

,

T2 :=

Ñ
E




∥∥∥∥∥
1

N

N∑

i=1

V i
t e

↑ωf(V i
t) ↑

∫

Rd
ve↑ωf(v)dϖt(v)

∥∥∥∥∥

4

2





é 1

2

,

T3 :=

Ñ
E




∥∥∥∥∥
1

N

N∑

i=1

e↑ωf(V i
t) ↑

∫

Rd
e↑ωf(v)dϖt(v)

∥∥∥∥∥

4

2





é 1

2

.

In the following, we upper bound the terms T1, T2 and T3 separately. Firstly, recall that by
Lemma 8 we have for t ≃ [0, T →] that

E

exp

∑N
i=1

∥∥V i
t

∥∥2
2

N↼2


↘ C↽ < ⇐, (37)
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where C↽ only depends on ↼,ε,ϑ, d, R,M and T →. With this,

T 2
1 = E


exp


4ω

1

N

N∑

i=1

f(V i
t )


↘ E


exp


4ω

1

N

N∑

i=1

Lϱ

Ä
1 +

∥∥V i
t

∥∥1+ϱ

2

ä

↘ e4ωLϱE

exp


4ωLϱ

1

N

N∑

i=1

∥∥V i
t

∥∥1+ϱ

2



↘ e8ωLϱE

exp


4ωLϱ

1

N

N∑

i=1

∥∥V i
t

∥∥2
2



= e8ωLϱE

exp


1

↼2
1

N

N∑

i=1

∥∥V i
t

∥∥2
2



↘ e8ωLϱC↽|↽= 1

2
⇑

ςLϱ

,

where we set ↼2 = 1/(4ωLϱ) in the next-to-last step and where N should satisfy N ⇑

(16ωLϱϑ2M2)/ε. Secondly, we have

E




∥∥∥∥∥
1

N

N∑

i=1

V i
t e

↑ωf(V i
t) ↑

∫

Rd
ve↑ωf(v)dϖt(v)

∥∥∥∥∥

4

2



 =
1

N4
E




∑

i1,i2,i3,i4≃{1,...,N}

¨
Zi1
t , Zi2

t

! ¨
Zi3
t , Zi4

t

!




↘
4!L4

u

N2
,

where
Ä
Zi
t := V i

t e
↑ωf(V i

t) ↑
∫
Rd ve↑ωf(v)dϖt(v)

ä
i=1,...,N

are i.i.d. and have zero mean. Thus,

T2 =

Ñ
E




∥∥∥∥∥
1

N

N∑

i=1

V i
t e

↑ωf(V i
t) ↑

∫

Rd
ve↑ωf(v)dϖt(v)

∥∥∥∥∥

4

2





é 1

2

↘
5L2

u

N
.

Similarly, we can derive

T3 =

Ñ
E




∥∥∥∥∥
1

N

N∑

i=1

e↑ωf(V i
t) ↑

∫

Rd
e↑ωf(v)dϖt(v)

∥∥∥∥∥

4

2





é 1

2

↘
5

N
.

Collecting the bounds for the terms T1, T2 and T3 and inserting them in (36), we obtain

E
î
↗vω(ϖt)↑ vω(ϖ̄t)↗

2
2

ó
↘ 10e6ωLϱC

1

2
↽ |↽= 1

2
⇑

ςLϱ

Ç
L2
u + sup

t≃[0,T →]
↗vω(ϖt)↗

2
2

å
1

N
. (38)

Since by Lemmas 14, 16 and 17, we know that ↗vω(ϖt)↗2 can be uniformly bounded by a constant
depending on ω,ε,ϑ, d, R, vb, v→,M,Lϖ and ↽ (see in particular Equation (48) that combines the
aforementioned lemmas), we can conclude (38) with

E
î
↗vω(ϖt)↑ vω(ϖ̄t)↗

2
2

ó
↘

C0

N
(39)

for some constant C0 depends on ε,ϑ, d,ω, Lϖ , ↽, Lϱ , Lu, T →, R, vb, v→ and M .
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3.2.2 Upper Bound for the Third Term in (19)

In this section, we bound Term III of the error decomposition (19). Before stating the main
result of this section, Proposition 15, we first need to provide two auxiliary lemmas, Lemma 12
and Lemma 14.

Lemma 12. Let R,M ≃ (0,⇐). Then it holds

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε
Ä
↗Pvb,R (vω(ϖt))↑ v→↗22 + ↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ä

+ ϑ2M2d.

(40)

If further ε ⇑ 2ϑ2d, we have

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε
Ä
↗Pvb,R (vω(ϖt))↑ v→↗22 + ↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ä
.

(41)

Proof. By Itô’s formula, we have

d
∥∥Vt ↑ v→

∥∥2
2
= 2

(
Vt ↑ v→

)⇐
dVt + ϑ2d

Ä∥∥Vt ↑ vω(ϖt)
∥∥2
2
↓M2

ä
dt

= ↑2ε

Vt ↑ v→, Vt ↑ Pvb,R (vω(ϖt))


dt+ 2ϑ

(∥∥Vt ↑ vω(ϖt)
∥∥
2
↓M

) (
Vt ↑ v→

)⇐
dBt

+ ϑ2d
Ä∥∥Vt ↑ vω(ϖt)

∥∥2
2
↓M2

ä
dt

= ↑ε
î∥∥Vt ↑ v→

∥∥2
2
+
∥∥Vt ↑ Pvb,R (vω(ϖt))

∥∥2
2
↑ ↗Pvb,R (vω(ϖt))↑ v→↗22

ó
dt

+ 2ϑ
(∥∥Vt ↑ vω(ϖt)

∥∥
2
↓M

) (
Vt ↑ v→

)⇐
dBt + ϑ2d

Ä∥∥Vt ↑ vω(ϖt)
∥∥2
2
↓M2

ä
dt,

which, after taking the expectation on both sides, yields

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
= ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε ↗Pvb,R (vω(ϖt))↑ v→↗22 ↑ εE
î∥∥Vt ↑ Pvb,R (vω(ϖt))

∥∥2
2

ó

+ ϑ2dE
î∥∥Vt ↑ vω(ϖt)

∥∥2
2
↓M2

ó
.

(42)

For the term E
î∥∥Vt ↑ Pvb,R (vω(ϖt))

∥∥2
2

ó
, we notice that

E
î∥∥Vt ↑ Pvb,R (vω(ϖt))

∥∥2
2

ó
= E
î∥∥Vt ↑ vω(ϖt)

∥∥2
2

ó
+ E
î
↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ó

+ 2E

Vt ↑ vω(ϖt), vω(ϖt)↑ Pvb,R (vω(ϖt))



⇑ E
î∥∥Vt ↑ vω(ϖt)

∥∥2
2

ó
+ E
î
↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ó

↑

Å
1

2
E
î∥∥Vt ↑ vω(ϖt)

∥∥2
2

ó
+ 2E

î
↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

óã

=
1

2
E
î∥∥Vt ↑ vω(ϖt)

∥∥2
2

ó
↑ E
î
↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ó
,

which, inserted into Equation (42), allows to derive

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε
Ä
↗Pvb,R (vω(ϖt))↑ v→↗22 + ↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ä

↑
1

2
εE
î∥∥Vt ↑ vω(ϖt)

∥∥2
2

ó
+ ϑ2d

Ä∥∥Vt ↑ vω(ϖt)
∥∥2
2
↓M2

ä
.
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From this we get for any ε and ϑ that

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε
Ä
↗Pvb,R (vω(ϖt))↑ v→↗22 + ↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ä

+ ϑ2M2d.

(43)

as well as

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε
Ä
↗Pvb,R (vω(ϖt))↑ v→↗22 + ↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ä

+

Å
↑
1

2
ε+ ϑ2d

ã
E
î∥∥Vt ↑ vω(ϖt)

∥∥2
2

ó
.

(44)

If ε ⇑ 2ϑ2d, by Equation (44), we get

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε
Ä
↗Pvb,R (vω(ϖt))↑ v→↗22 + ↗vω(ϖt)↑ Pvb,R (vω(ϖt))↗

2
2

ä
.

(45)

Remark 13. When R = M = ⇐, we can show

d

dt
E
î∥∥V t ↑ v→

∥∥2
2

ó
= ↑εE

î∥∥V t ↑ v→
∥∥2
2

ó

+ ε ↗vω(ϖt)↑ v→↗22 ↑
(
ε↑ ϑ2d

)
E
î∥∥Vt ↑ vω(ϖt)

∥∥2
2

ó
.

If further ε ⇑ ϑ2d, we have

d

dt
E
î∥∥V t ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥V t ↑ v→
∥∥2
2

ó
+ ε ↗vω(ϖt)↑ v→↗22 .

This di”ers from [23, Lemma 18].

The next result is a quantitative version of the Laplace principle as established in [23, Proposition
21].

Lemma 14. For any r > 0, define fr := supv≃Br(v→) f(v). Then, under the inverse continuity
condition A2, for any r ≃ (0, R0] and q > 0 such that q + fr ↘ f↘, it holds

↗vω(ϖ)↑ v→↗2 ↘
(q + fr)

ϖ

Lϖ
+

exp(↑ωq)

ϖ (Br (v→))

∫
↗v ↑ v→↗2 dϖ(v) (46)

With the above preparation, we can now upper bound Term III. We have by Jensen’s inequality

III = E




∥∥∥∥∥
1

N

N∑

i=1

V i
T → ↑ v→

∥∥∥∥∥

2

2



 ↘
1

N

N∑

i=1

E
î∥∥V i

T → ↑ v→
∥∥2
2

ó
, (47)

i.e., it is enough to upper bound E
î∥∥VT → ↑ v→

∥∥2
2

ó
, which is the content of the next statement.
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Proposition 15. Let f ≃ C(Rd) satisfy A1, A2 and A3. Moreover, let ϖ0 ≃ P4(Rd) with
v→ ≃ supp(ϖ0). Fix any ⇁ ≃ (0,W 2

2 (ϖ0, ϱv→)) and define the time horizon

T → :=
1

ε
log

Å
2W 2

2 (ϖ0, ϱv→)

⇁

ã
.

Moreover, let R ≃ (↗vb ↑ v→↗2 +
√
⇁/2,⇐), M ≃ (0,⇐) and ε,ϑ > 0 be such that ε ⇑ 2ϑ2d or

ϑ2M2d = O(⇁). Then we can choose ω su!ciently large, depending on ε,ϑ, d, T →, R, vb,M, ⇁ and

properties of f , such that E
î∥∥VT → ↑ v→

∥∥2
2

ó
= O(⇁).

Proof. We only prove the case ε ⇑ 2ϑ2d in detail. The case ϑ2M2d = O(⇁) follows similarly.
According to Lemmas 14 and 17, we have

↗vω(ϖt)↑ v→↗2 ↘
(q + fr)

ϖ

Lϖ
+

exp(↑ωq)

ϖt (Br (v→))
E
∥∥Vt ↑ v→

∥∥
2



↘
(q + fr)

ϖ

Lϖ
+ exp(↑ωq)C2C3,

(48)

where C2 := (exp{q⇒T →
})/C4 < ⇐, q⇒ and C4 are from Lemma 17, and where, as of Lemma 16,

C3 := sup[0,T →] E
∥∥Vt ↑ v→

∥∥
2


< ⇐. In what follows, let us deal with the two terms on the

right-hand side of (48). For the term (q + fr)
ϖ/Lϖ , let q = fr. Then by A2 and A3, we can

choose proper r, such that 2(Lϖr)1/ϖ ↘ 2fr ↘ f↘. Further by A3, we have

(q + fr)
ϖ

Lϖ
=

(2fr)ϖ

Lϖ
↘

(2Lϱ)ϖr(1+ϱ)ϖ

Lϖ
,

so if

r < r0 := min

{ ⇁

8

 1

2(1+ϱ)φ

Å
Lϖ

(2Lϱ)ϖ

ã 1

(1+ϱ)φ

,

…
⇁

2


,

we can bound
(q + fr)

ϖ

Lϖ
=

(2fr)ϖ

Lϖ
↘

⇓
⇁

2
⇓
2
.

For term exp(↑ωq)C2C3, we can choose ω large enough such that

exp(↑ωq)C2C3 ↘

⇓
⇁

2
⇓
2
.

With these choices of r and ω and by integrating them into Equation (48), we obtain

↗vω(ϖt)↑ v→↗22 <
⇁

2
,

for all t ≃ [0, T →], and thus

↗vω(ϖt)↑ vb↗2 ↘ ↗vω(ϖt)↑ v→↗2 + ↗v→ ↑ vb↗2 ↘

…
⇁

2
+ ↗v→ ↑ vb↗2 ↘ R.

Consequently, by Lemma 12, we have

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑ε

Ä
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↑ ↗vω(ϖt)↑ v→↗22

ä

↘ ↑ε

E
î∥∥Vt ↑ v→

∥∥2
2

ó
↑

⇁

2


,

since now Pvb,R(vω(ϖt)) = vω(ϖt). Finally by Grönwall’s inequality, E
î∥∥VT → ↑ v→

∥∥2
2

ó
↘ ⇁.
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Lemma 16. Let ↗vb ↑ v→↗2 < R < ⇐ and 0 < M < ⇐. Then it holds

sup
t≃[0,T →]

E
∥∥Vt ↑ v→

∥∥
2


↘

√
max

¶
E
î∥∥V0 ↑ v→

∥∥2
2

ó
,εR2 + ϑ2M2d

©
. (49)

Proof. By Equation (42) we have

d

dt
E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ ↑εE

î∥∥Vt ↑ v→
∥∥2
2

ó

+ ε ↗Pvb,R (vω(ϖt))↑ v→↗22 ↑ εE
î∥∥Vt ↑ Pvb,R (vω(ϖt))

∥∥2
2

ó

+ ϑ2dE
î∥∥Vt ↑ vω(ϖt)

∥∥2
2
↓M2

ó

↘ ↑εE
î∥∥Vt ↑ v→

∥∥2
2

ó
+ εR2 + ϑ2M2d,

yielding

E
î∥∥Vt ↑ v→

∥∥2
2

ó
↘ max

¶
E
î∥∥V0 ↑ v→

∥∥2
2

ó
,εR2 + ϑ2M2d

©
,

after an application of Grönwall’s inequality for any t ⇑ 0.

Lemma 17. For any M ≃ (0,⇐), τ ⇑ 1, r > 0 and R ≃ (↗vb ↑ v→↗2 + r,⇐) it holds

ϖt (Br (v
→)) ⇑ C4 exp

(
↑q⇒t

)
> 0,

where

C4 :=
∫
Br(v→)

1 + (τ ↑ 1)
∥∥v↑v→

r

∥∥⇀
2
↑ τ

∥∥v↑v→

r

∥∥⇀↑1

2
dϖ0(v)

and where q⇒ depends on τ,ε,ϑ, d, r, R, vb and M .

Proof. Recall that the law ϖt of Vt satisfies the Fokker-Planck equation

∂tϖt = ε div ((v ↑ Pvb,R (vω(ϖt))) ϖt) +
ϑ2

2
#
ÄÄ

↗v ↑ vω (ϖt)↗
2
↓M2

ä
ϖt
ä
.

Let us first define for τ ⇑ 1 the test function

▷⇀
r (v) :=

®
1 + (τ ↑ 1)

∥∥v
r

∥∥⇀
2
↑ τ

∥∥v
r

∥∥⇀↑1
2

, ↗v↗2 ↘ r,

0, else,
(50)

for which it is easy to verify that ▷⇀
r ≃ C

1
c (Rd, [0, 1]). Since Im▷⇀

r ⇔ [0, 1], we have ϖt(Br(v→)) ⇑∫
Br(v→)

▷⇀
r (v ↑ v→) dϖt(v). To lower bound ϖt(Br(v→)), it is thus su”cient to establish a lower

bound on
∫
Br(v→)

▷⇀
r (v ↑ v→) dϖt(v). By Green’s formula

d

dt

∫

Br(v→)
▷⇀
r (v ↑ v→) dϖt(v) = ↑ε

∫

Br(v→)
↙v ↑ Pvb,R (vω(ϖt)) ,↖▷⇀

r (v ↑ v→)∝ dϖt(v)

+
ϑ2

2

∫

Br(v→)

Ä
↗v ↑ vω(ϖt)↗

2
2 ↓M2

ä
#▷⇀

r (v ↑ v→)dϖt(v)

= τ(τ ↑ 1)

∫

Br(v→)

↗v ↑ v→↗⇀↑3
2

r⇀↑3

Å
1↑

↗v ↑ v→↗2
r

ãÅ
ε

"
v ↑ Pvb,R (vω(ϖt))

r
,
v ↑ v→

r

#

↑
ϑ2

2
(d+ τ ↑ 2)

↗v ↑ vω(ϖt)↗
2
2 ↓M2

r2

ã
+

ϑ2

2

↗v ↑ vω(ϖt)↗
2
2 ↓M2

r2


dϖt(v).
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For simplicity, let us abbreviate

& : =

Å
1↑

↗v ↑ v→↗2
r

ãÅ
ε

"
v ↑ Pvb,R (vω(ϖt))

r
,
v ↑ v→

r

#

↑
ϑ2

2
(d+ τ ↑ 2)

↗v ↑ vω(ϖt)↗
2
2 ↓M2

r2

ã
+

ϑ2

2

↗v ↑ vω(ϖt)↗
2
2 ↓M2

r2
.

We can choose ⇁1 small enough, depending on τ and d, such that when ↗v ↑ v→↗2/r > 1↑ ⇁1, we
have

& =

Å
1↑

↗v ↑ v→↗2
r

ã
ε

"
v ↑ Pvb,R (vω(ϖt))

r
,
v ↑ v→

r

#

+

Å
ϑ2

2
↑

Å
1↑

↗v ↑ v→↗2
r

ã
ϑ2

2
(d+ τ ↑ 2)

ã
↗v ↑ vω(ϖt)↗

2
2 ↓M2

r2

⇑

Å
1↑

↗v ↑ v→↗2
r

ã
ε

"
v ↑ Pvb,R (vω(ϖt))

r
,
v ↑ v→

r

#
+

ϑ2

3

↗v ↑ vω(ϖt)↗
2
2 ↓M2

r2
,

where the last inequality works if ↗v ↑ v→↗2/r ⇑ 1↑ 1/(6(d+ τ ↑ 2)).
If vω(ϖt) ′≃ BR(vb), we have |↙v ↑ Pvb,R (vω(ϖt)) , v ↑ v→∝|/r2 ↘ C(r,R, vb) and, since R >

↗vb ↑ v→↗2+r, (↗v ↑ vω(ϖt)↗
2
2 ↓M2)/r2 ⇑ C(r,M,R, vb), which allows to choose ⇁2 small enough,

depending on ε, r,ϑ, R, vb and M , such that & > 0 when ↗v ↑ v→↗2/r > 1↑min{⇁1, ⇁2}.
If vω(ϖt) ≃ BR(vb) and ↗v ↑ vω(ϖt)↗2 ↘ M , we have by Lemma 18

& ⇑

Å
1↑

↗v ↑ v→↗2
r

ã
ε

"
v ↑ vω(ϖt)

r
,
v ↑ v→

r

#
+

ϑ2

3

↗v ↑ vω(ϖt)↗
2
2

r2

=

Å
ϑ2

3
+

Å
1↑

↗v ↑ v→↗2
r

ã
ε

ã
↗v ↑ v→↗22

r2
+

ϑ2

3

↗vω(ϖt)↑ v→↗22
r2

↑

Å
2ϑ2

3
+

Å
1↑

↗v ↑ v→↗2
r

ã
ε

ã"
vω(ϖt)↑ v→

r
,
v ↑ v→

r

#

⇑ 0,

when ↗v ↑ v→↗2 /r ≃

1↑ 2ϑ2/(3ε), 1


.

If vω(ϖt) ≃ BR(vb) and ↗v ↑ vω(ϖt)↗2 > M , we have

& ⇑

Å
1↑

↗v ↑ v→↗2
r

ã
C(ε, r, R, vb) +

ϑ2

3
M2,

i.e., we can choose ⇁3 small enough, depending on ε, r,ϑ, R, vb and M , such that & ⇑ 0 when
↗v ↑ v→↗2/r > 1↑min{⇁1, ⇁2, ⇁3, 2ϑ2/3ε}.

Combining the cases from above, we conclude that & ⇑ 0 when ↗v ↑ v→↗2/r ⇑ 1 ↑

min{⇁1, ⇁2, ⇁3, 2ϑ2/3ε}. On the other hand, when ↗v ↑ v→↗2/r ↘ 1 ↑ min{⇁1, ⇁2, ⇁3, 2ϑ2/3ε},
we have

τ(τ ↑ 1)
↗v ↑ v→↗⇀↑3

2

r⇀↑3
& = τ(τ ↑ 1)

↗v ↑ v→↗⇀↑3
2

r⇀↑3

&

▷⇀
r (v)

▷⇀
r (v ↑ v→) ⇑ ↑C5▷

⇀
r (v ↑ v→)

for some constant C5 depending on r,R,M, vb,ε,ϑ, d and τ , since |&| is upper bounded and
▷⇀
r (v ↑ v→) ⇑ ▷⇀

r ((1 ↑ min{⇁1, ⇁2, ⇁3, 2ϑ2/3ε})r) > 0 for any v satisfies ↗v ↑ v→↗2/r ↘ 1 ↑

min{⇁1, ⇁2, ⇁3, 2ϑ2/3ε}.
All in all we have

d

dt

∫

Br(v→)
▷⇀
r (v ↑ v→) dϖt(v) ⇑ ↑q⇒

∫

Br(v→)
▷⇀
r (v ↑ v→) dϖt(v),
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where q⇒ := max{C5, 0}. By Grönwall’s inequality, we thus have

ϖt(Br(v
→)) ⇑

∫

Br(v→)
▷⇀
r (v ↑ v→) dϖt(v) ⇑ e↑q↗t

∫

Br(v→)
▷⇀
r (v ↑ v→) dϖ0(v),

which concludes the proof.

Lemma 18. Let a, b > 0. Then we have

(a+ b(1↑ x))x2 + ay2 ↑ (2a+ b(1↑ x))xy ⇑ 0,

for any x ≃ [1↑ 2a/b, 1] ∞ (0,⇐) and y ⇑ 0.

Proof. For y = 0, this is true. For y > 0, divide both side by ay2 and denote c = b/a. Then
the lemma is equivalent to showing (1 + c(1↑ x)) (x/y)2 ↑ (2 + c(1↑ x))x/y + 1 ⇑ 0, i.e., it is
enough to show minr↓0 (1+ c(1↑ x))r2 ↑ (2+ c(1↑ x))r+1 ⇑ 0, when x ≃ [1↑ 2/c, 1]. We have

argmin
r

(1 + c(1↑ x))r2 ↑ (2 + c(1↑ x))r + 1 =
2 + c(1↑ x)

2 + 2c(1↑ x)
,

and thus

min
r↓0

(1 + c(1↑ x))r2 ↑ (2 + c(1↑ x))r + 1

= (1 + c(1↑ x))

Å
2 + c(1↑ x)

2 + 2c(1↑ x)

ã2
↑ (2 + c(1↑ x))

2 + c(1↑ x)

2 + 2c(1↑ x)
+ 1

= ↑
1

2

(2 + c(1↑ x))2

2 + 2c(1↑ x)
+ 1 ⇑ 0,

when x ≃ [1↑ 2/c, 1]. This finishes the proof.

4 Numerical Experiments

In this section we numerically demonstrate the benefit of using CBO with truncated noise. For
isotropic [11, 23, 40] and anisotropic noise [13, 24], we compare the CBO method with truncation
M = 1 to standard CBO for several benchmark problems in optimization, which are summarized
in Table 1.

Name Objective function f v→ f

Ackley ↑20 exp

↑0.2

»
1
d

∑d
i=1 v

2
i


↑ exp

Ä
1
d

∑d
i=1 cos (2◁vi)

ä
+ 20 + e (0, . . . , 0) 0

Griewank 1 +
∑d

i=1
v2i

4000 ↑
∏d

i=1 cos
(vi

i

)
(0, . . . , 0) 0

Rastrigin 10d+
∑d

i=1


v2i ↑ 10 cos (2◁vi)


(0, . . . , 0) 0

Alpine 10
∑d

i=1

∥∥(vi ↑ v→i ) sin (10 (vi ↑ v→i ))↑ 0.1 (vi ↑ v→i )
∥∥
2

(0, . . . , 0) 0

Salomon 1↑ cos

200◁

»∑d
i=1 v

2
i


+ 10

»∑d
i=1 v

2
i (0, . . . , 0) 0

Table 1: Benchmark test functions

In the subsequent tables we report comparison results for the two methods for the di!erent
benchmark functions as well as di!erent numbers of particles N and, potentially, di!erent
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numbers of steps K. Throughout, we set vb = 0 and R = ⇐, which is out of convenience. Any
su”ciently large but finite choice for R yields identical results.

The success criterion is defined by achieving the condition
∥∥∥ 1
N

∑N
i=1 V

i
K,!t ↑ v→

∥∥∥
2
↘ 0.1,

which ensures that the algorithm has reached the basin of attraction of the global minimizer.
The success rate is averaged over 1000 runs.

Isotropic Case. Let d = 15. In the case of isotropic noise, we always set ε = 1, ϑ = 0.3,
ω = 105 and step-size #t = 0.02. The initial positions (V i

0 )i=1,...,N are sampled i.i.d. from
ϖ0 = N (0, Id). In Table 2 we report results comparing the isotropic CBO method with truncation
M = 1 and the original isotropic CBO method [11, 23, 40] (M = +⇐) for the Ackley, Griewank
and Salomon function. Each algorithm is run for K = 200 steps.

Number of steps K = 200

Test function M N = 150 N = 300 N = 600 N = 900 N = 1200

Ackley
1 0.978 0.999 1 1 1

+⇐ 0.001 0.056 0.478 0.824 0.935

Griewank
1 0.060 0.188 0.5013 0.671 0.791

+⇐ 0 0 0.010 0.013 0.032

Salomon
1 0.970 1 1 1 1

+⇐ 0.005 0.068 0.603 0.909 0.979

Table 2: For the 15-dimensional Ackley and Salomon function, the CBO method with truncation (M = 1) is able to locate
the global minimum using only N = 300 particles. In comparison, even with an larger number of particles (up to N = 1200),
the original CBO method (M = +↘) cannot achieve a flawless success rate. In the case of the Griewank function, the
original CBO method (M = +↘) exhibits a quite low success rate, even when utilizing N = 1200 particles. Contrarily, in
the same setting, the CBO method with truncation (M = 1) achieves a success rate of 0.791.

Since the benchmark functions Rastrigin and Alpine are more challenging, we use more particlesN
and a larger number of steps K, namely K = 200 and K = 500. We report the results in Table 3.

Number of steps K = 200

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Rastrigin
1 0.180 0.256 0.298 0.322 0.337

+⇐ 0 0 0.004 0.004 0.007

Alpine
1 0.029 0.049 0.051 0.070 0.080

+⇐ 0 0.001 0.004 0.004 0.004

Number of steps K = 500

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Rastrigin
1 0.213 0.265 0.316 0.326 0.343

+⇐ 0.001 0.004 0.005 0.009 0.010

Alpine
1 0.103 0.115 0.147 0.165 0.173

+⇐ 0.010 0.015 0.033 0.037 0.040

Table 3: For the 15-dimensional Rastrigin and Alpine function, both algorithms have di#culties in finding the global
minimizer. However, the success rates for the CBO method with truncation (M = 1) are significantly higher compared to
those of the original CBO method (M = +↘).

Anisotropic Case. Let d = 20. In the case of anisotropic noise, we set ε = 1,ϑ = 5,ω = 105

and step-size #t = 0.02. The initial positions of the particles are initialized with ϖ0 = N (0, 100Id).
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In Table 4 we report results comparing the anisotropic CBO method with truncation M = 1 and
the original anisotropic CBO method [13,24] (M = +⇐) for the Rastrigin, Ackley, Griewank
and Salomon function. Each algorithm is run for K = 200 steps.

Number of steps K = 1000

Test function M N = 75 N = 150 N = 300 N = 600 N = 900

Rastrigin
1 0.285 0.928 0.990 1 1

+⇐ 0.728 0.952 0.993 1 1

Ackley
1 0.510 0.997 1 1 1

+⇐ 0.997 1 1 1 1

Griewank
1 0.097 0.458 0.576 0.625 0.665

+⇐ 0.093 0.101 0.157 0.159 0.167

Salomon
1 0.010 0.434 0.925 0.998 1

+⇐ 0.622 0.954 0.970 0.934 0.891

Table 4: For the 20-dimensional Rastrigin, Ackley and Salomon function, the original anisotropic CBO method (M = +↘)
works better than the anisotropic CBO method with truncation (M = 1), in particular when the particle number N is small.
In the case of the Salomon function, when increasing the number of particle to N = 900, the success rates of the original
anisotropic CBO method (M = +↘) decreases. In the case of the Griewank function, however, we find that the anisotropic
CBO method with truncation (M = +↘) works considerably better than the original anisotropic CBO method (M = 1).

Since the benchmark function Alpine is more challenging and none of the algorithms work in
the previous setting, we reduce the dimensionality to d = 15, choose ϑ = 1, use ϖ0 = N (0, Id) to
initialize, employ more particles and use a larger number of steps K, namely K = 200, K = 500
and K = 1000. We report the results in Table 5.

Number of steps K = 200

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Alpine
1 0 0.006 0.006 0.008 0.025

+⇐ 0.001 0.004 0.008 0.007 0.021

Number of steps K = 500

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Alpine
1 0.130 0.224 0.291 0.336 0.365

+⇐ 0.083 0.175 0.250 0.292 0.330

Number of steps K = 1000

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Alpine
1 0.102 0.198 0.293 0.340 0.368

+⇐ 0.097 0.179 0.250 0.295 0.331

Table 5: For the 15-dimensional Alpine function, the anisotropic CBO method with truncated noise (M = 1) works better
than the original anisotropic CBO method (M = +↘).

5 Conclusions

In this paper we establish the convergence to a global minimizer of a potentially nonconvex
and nonsmooth objective function for a variant of consensus-based optimization (CBO) which
incorporates truncated noise. We observe that truncating the noise in CBO enhances the well-
behavedness of the statistics of the law of the dynamics, which enables enhanced convergence
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performance and allows in particular for a wider flexibility in choosing the noise parameter of the
method, as we observe numerically. For rigorously proving the convergence of the implementable
algorithm to the global minimizer of the objective, we follow the route devised in [23].

Acknowledgements and Competing Interests

This work has been funded by the KAUST Baseline Research Scheme and the German Federal
Ministry of Education and Research, and the Bavarian State Ministry for Science and the Arts.
In addition to this, MF acknowledges the support of the Munich Center for Machine Learning.
PR acknowledges the support of the Extreme Computing Research Center at KAUST. KR
acknowledges the support of the Munich Center for Machine Learning and the financial support
from the Technical University of Munich – Institute for Ethics in Artificial Intelligence (IEAI).
LS acknowledges the support of KAUST Optimization and Machine Learning Lab. LS also
thanks the hospitality of the Chair of Applied Numerical Analysis of the Technical University of
Munich for discussions that contributed to the finalization of this work.

References

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann machines. A stochastic approach
to combinatorial optimization and neural computing. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, Ltd., Chichester, 1989.
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the sphere: convergence to global minimizers and machine learning. J. Mach. Learn. Res.,
22:Paper No. 237, 55, 2021.

[22] M. Fornasier, H. Huang, L. Pareschi, and P. Sünnen. Anisotropic di!usion in consensus-based
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Paper Summary of [CBO-IV]37

In the paper “Leveraging Memory E�ects and Gradient Information in Consensus-Based
Optimisation: On Global Convergence in Mean-Field Law,” published in the European
Journal of Applied Mathematics, we propose and, by taking a mean-field perspective,
theoretically analyze the variant (3.117) of CBO, which makes use of memory e�ects
and gradient information.

CBO is a versatile, flexible and customizable multi-particle metaheuristic optimiza-
tion method suitable for performing nonconvex and nonsmooth global optimizations in
the form of (2.1) in high dimensions. It has proven e�ective and successful in various
applications, while remaining at the same time amenable to theoretical analysis thanks
to its originally minimalistic design.

The underlying dynamics, however, is flexible enough to incorporate di�erent mecha-
nisms widely used in evolutionary computation and machine learning, as we demonstrate
in [CBO-IV] by analyzing a variant of CBO, given in its discrete-time form in (3.117),
which exploits memory mechanisms and gradient information. For modeling the memory
of a particle, we follow the work [GP21]. A generalization of the analytical techniques
put forward in [CBO-I; CBO-II] then allows us to rigorously prove that this more elab-
orate dynamics converges to a global minimizer of the objective function in mean-field
law for a vast class of functions under minimal assumptions on the initialization of the
method [CBO-IV, Theorem 5]. The proof, in particular, reveals how to leverage fur-
ther, in some applications advantageous, forces in the dynamics without losing provable
global convergence in the mean-field limit. A study of the mean-field approximation of
this variant is left for future considerations. As a corollary we present an analogous con-
vergence result for the CBO dynamics with gradient information but without memory
e�ects [CBO-IV, Corollary 2.6]. To demonstrate the benefit of the herein investigated
memory e�ects and gradient information in certain applications, we present numerical
evidence for the superiority of this CBO variant for benchmark problems in optimiza-
tion, see [CBO-IV, Figure 2], as well as in applications coming from machine learning
and compressed sensing [CBO-IV, Section 4]. More specifically, by reusing the e�cient
implementation of the anisotropic CBO algorithm from [CBO-II], which utilizes several
tweaks in the implementation, such as random mini-batch ideas and a cooling strategy of
the parameters [Car+21; For+21], and which is now enhanced through the use of mem-
ory mechanics, we train both a shallow and a convolutional neural network model for
classifying the MNIST dataset of handwritten digits [LCB10]. Moreover, by approach-
ing an experiment in compressed sensing [FR13], which has become a very active and
profitable field of research since the seminal works [CRT06; Don06], we showcase an
application of CBO methods, where gradient information turns out to be indispensable
for their success.

KR’s Contributions. KR is the sole author of this work.

37In this section, we follow [CBO-IV, Abstract].
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Abstract
In this paper, we study consensus-based optimisation (CBO), a versatile, flexible and customisable optimisation
method suitable for performing nonconvex and nonsmooth global optimisations in high dimensions. CBO is a
multi-particle metaheuristic, which is effective in various applications and at the same time amenable to theoretical
analysis thanks to its minimalistic design. The underlying dynamics, however, is flexible enough to incorporate
different mechanisms widely used in evolutionary computation and machine learning, as we show by analysing
a variant of CBO which makes use of memory effects and gradient information. We rigorously prove that this
dynamics converges to a global minimiser of the objective function in mean-field law for a vast class of functions
under minimal assumptions on the initialisation of the method. The proof in particular reveals how to leverage
further, in some applications advantageous, forces in the dynamics without loosing provable global convergence. To
demonstrate the benefit of the herein investigated memory effects and gradient information in certain applications,
we present numerical evidence for the superiority of this CBO variant in applications such as machine learning and
compressed sensing, which en passant widen the scope of applications of CBO.

1. Introduction
Interacting multi-particle systems are ubiquitous in a wide variety of scientific disciplines with applica-
tion areas reaching from atomic scales over the human scale to the astronomical scale. For instance,
large-scale multi-agent models are used to understand the coordinated movement of animal groups
[19, 51] or crowds of people [1, 20]. Especially fascinating in this context is that such complex and
often intelligent behaviour – phenomena known as self-organisation and swarm intelligence – emerge
from seemingly simple rules of interaction [56]. This intriguing capabilities have drawn researchers’
attention towards designing interacting particle systems for specific purposes in various disciplines. In
applied mathematics in particular, agent-based optimisation algorithms look back on a long and success-
ful history of empirically achieving state-of-the-art performance on challenging global unconstrained
problems of the form

x∗ = arg min
x∈Rd

E(x).

Here, E : Rd →R denotes a possibly nonconvex and nonsmooth high-dimensional objective function,
whose global minimiser x∗ is assumed to exist and be unique for the remainder of this work. Well-known
representatives of this family are Evolutionary Programming [24], Genetic Algorithms [38], Particle
C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
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2 K. Riedl

Swarm Optimisation [43] and Ant Colony Optimisation [23]. They belong to the broad class of so-
called metaheuristics [4, 6], which are methods orchestrating an interaction between local improvement
procedures and global strategies, deterministic and stochastic processes, to eventually design an efficient
and robust procedure for searching the solution space of the objective function E .

Motivated by both the substantiated success of metaheuristics in applications and the lack of rig-
orous theoretical guarantees about their convergence and performance, the authors of [52] proposed
consensus-based optimisation (CBO), which follows the spirit of metaheuristics but allows for a rig-
orous theoretical analysis [12, 14, 28, 29, 33, 34]. By taking inspiration from consensus formation in
opinion dynamics [36], CBO methods use N particles X1, . . . , XN to explore the energy landscape of
the objective E and to eventually form a consensus about the location of the global minimiser x∗. In its
original form [52], the dynamics of each particle Xi, which is governed by a stochastic differential equa-
tion (SDE), is subject to two competing forces. A deterministic drift term pulls the particles towards a
so-called consensus point, which is an instantaneously computed weighted average of the positions of
all particles and approximates the global minimiser x∗ the best possible given the currently available
information. The resulting contractive behaviour is counteracted by the second term which is stochas-
tic in nature and thereby features the exploration of the energy landscape of the objective function. Its
magnitude and therefore its explorative power scales with the distance of the individual particle from
the consensus point, which encourages particles far away to explore larger regions of the domain, while
particles already close advance their position only locally.

In this work, motivated by the numerical evidence presented below as well as other recent papers such
as [32, 54, 55], we consider a more elaborate variant of this dynamics which exhibits the two following
additional drift terms.

• The first is a drift towards the historical best position of the particular particle. To store such infor-
mation, we follow the work [32], where the authors introduce for each particle an additional state
variable Yi, which can be regarded as the memory of the respective particle Xi. In contrast to the
original dynamics, an individual particle is therefore described by the tuple (Xi, Yi). Moreover, the
consensus point is no longer computed from the instantaneous positions Xi, but the historical best
positions Yi.

• The second term is a drift in the direction of the negative gradient of E evaluated at the current
position of the respective particle Xi.

Both terms are accompanied by associated noise terms. We now make the CBO dynamics with memory
effects and gradient information rigorous by providing a formal description of the interacting particle
system. A visualisation of the dynamics with all relevant quantities and forces is provided in Figure 1.
Given a finite time horizon T > 0, and user-specified parameters α, β, θ , κ , λ1, σ1 > 0 and λ2, λ3, σ2, σ3 ≥
0, the dynamics is given by the system of SDEs

dXi
t = − λ1

(
Xi

t − yα(ρ̂N
Y ,t)
)

dt − λ2

(
Xi

t − Yi
t

)
dt − λ3∇E(Xi

t) dt

+ σ1D
(
Xi

t − yα(ρ̂N
Y ,t)
)

dB1,i
t + σ2D

(
Xi

t − Yi
t

)
dB2,i

t + σ3D
(
∇E(Xi

t)
)

dB3,i
t ,

(1.1a)

dYi
t = κ

(
Xi

t − Yi
t

)
Sβ,θ

(
Xi

t , Yi
t

)
dt (1.1b)

for i = 1, . . . , N and where ((Bm,i
t )t≥0)i=1,...,N are independent standard Brownian motions in Rd for m ∈

{1, 2, 3}. The system is complemented with independent initial data (Xi
0, Yi

0)i=1,...,N , typically such that
Xi

0 = Yi
0 for all i = 1, . . . , N. A numerical implementation of the scheme usually originates from an Euler-

Maruyama time discretisation of equation (1.1). The first term appearing in the SDE for the position Xi
t ,

i.e., in the first line of equation (1.1a), is the drift towards the consensus point

yα(ρ̂N
Y ,t) :=

∫
y

ωα(y)
‖ωα‖L1(ρ̂N

Y ,t)

dρ̂N
Y ,t(y), with ωα(y) := exp (−αE(y)). (1.2)

Here, ρ̂N
Y ,t denotes the random empirical measure of the particles’ historical best positions, i.e., ρ̂N

Y ,t :=
1
N

∑N
i=1 δYi

t
. Definition (1.2) is motivated by the fact that yα(ρ̂N

Y ,t) ≈ arg mini∈{1,...,N} E(Yi
t ) as α → ∞ under
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European Journal of Applied Mathematics 3

Figure 1. A visualisation of the CBO dynamics (1.1) with memory effects and gradient information.
Particles with positions X1, . . . , XN (yellow dots with their trajectories) explore the energy landscape
of the objective E in search of the global minimiser x∗ (green star). Each particle stores its local his-
torical best position Yi

t (yellow circles). The dynamics of the position Xi
t of each particle is governed

by three deterministic terms with associated random noise terms (visualised by depicting eight possible
realisations with differently shaded green arrows). A global drift term (dark blue arrow) drags the par-
ticle towards the consensus point yα(ρ̂N

Y ,t) (orange circle), which is computed as a weighted (visualised
through colour opacity) average of the particles’ historical best positions. A local drift term (light blue
arrow) imposes movement towards the respective local best position Yi

t . A gradient drift term (purple
arrow) exerts a force in the direction −∇E(Xi

t).

reasonable assumptions. The first term in the second line of equation (1.1a) is with the consensus drift
associated diffusion term, which injects randomness into the dynamics and thereby features the explo-
rative nature of the algorithm. The two commonly studied diffusion types are isotropic [12, 28, 52] and
anisotropic [14, 29] diffusion with

D( · ) =
{

‖ · ‖2 Id, for isotropic diffusion,
diag ( · ), for anisotropic diffusion,

(1.3)

where Id ∈Rd×d is the identity matrix and diag : Rd →Rd×d the operator mapping a vector onto a diago-
nal matrix with the vector as its diagonal. Despite the potential of the dynamics getting trapped in affine
subspaces, the coordinate-dependent scaling of anisotropic diffusion has proven to be beneficial for the
performance of the method in high-dimensional applications by allowing for dimension-independent
convergence rates [14, 29]. For this reason, we restrict our attention to the case of anisotropic noise
in what follows. Nevertheless, theoretically similar results as the ones presented in this work can be
obtained also for the isotropic case. The second term in the first line of equation (1.1a) is the drift
towards the historical best position of the respective particle. In contrast to the global nature of the con-
sensus drift, which incorporates information from all N particles, this term depends only on the past of
the specific particle. To store such information about the history of each particle [32], an additional state
variable Yi is introduced for every particle, which evolves according to equation (1.1b), where

Sβ,θ (x, y) = 1
2

(
1 + θ + tanh

(
β (E(y) − E(x))

))
(1.4)

is chosen throughout this article, which is an approximation to the Heaviside function H(x, y) = 1E(x)<E(y)

as θ → 0 and β → ∞. The variable Yi
t can therefore be regarded as the memory of the ith particle, i.e.,

as the location of the in-time best-seen position of Xi up to time t. This can be understood most easily
when discretising (1.1b) as

Yi
k+1 = Yi

k + *tκ
(
Xi

k+1 − Yi
k

)
Sβ,θ

(
Xi

k+1, Yi
k

)

and noting that with parameter choices κ = 1/*t, θ = 0 and β , 1 it holds Yi
k+1 = Xi

k+1 if E(Xi
k+1) <

E(Yi
k) and Yi

k+1 = Yi
k else. The third term in the first line of equation (1.1a) is the drift in the direction
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4 K. Riedl

of the negative gradient of E , which is a local and instantaneous contribution. The remaining two terms
are noise terms, which are associated with the formerly described memory and gradient drifts.

A theoretical convergence analysis of CBO can be carried out either by directly investigating the
microscopic system (1.1) or its numerical time discretisation, as promoted for instance in a simplified
setting in the works [33, 34], or alternatively, as done for example in [12, 14, 26, 28, 29], by analysing the
macroscopic behaviour of the particle density through a mean-field limit associated with (1.1). Formally,
such mean-field limit is given by the self-consistent nonlinear and nonlocal SDE

dXt = −λ1

(
Xt − yα(ρY ,t)

)
dt − λ2

(
Xt − Yt

)
dt − λ3∇E(Xt) dt

+ σ1D
(
Xt − yα(ρY ,t)

)
dB1

t + σ2D
(
Xt − Yt

)
dB2

t + σ3D
(
∇E(Xt)

)
dB3

t ,
(1.5a)

dYt = κ
(
Xt − Yt

)
Sβ,θ

(
Xt, Yt

)
dt, (1.5b)

which is complemented with initial datum (X0, Y0) ∼ ρ0, and where ρt = ρ(t) = Law
(
Xt, Yt

)
with

marginal law ρY ,t of Yt given by ρY ,t = ρY(t, · ) =
∫

dρt( · , y). The measure ρ ∈ C([0, T], P(Rd ×Rd))
in particular weakly satisfies the Fokker-Planck equation

∂tρt = divx

((
λ1

(
x − yα(ρY ,t)

)
+ λ2(x − y) + λ3∇E(x)

)
ρt

)
+ divy

((
κ(y − x)Sβ,θ (x, y)

)
ρt

)

+ 1
2

d∑

k=1

∂2
xkxk

((
σ 2

1 D
(
x − yα(ρY ,t)

)2

kk
+ σ 2

2 D(x − y)2
kk + σ 2

3 D(∇E(x))2
kk

)
ρt

)
,

(1.6)

see Definition 2.1. Working with the partial differential equation (PDE) (1.6) instead of the interacting
particle system (1.1) typically permits to employ more powerful technical tools, which result in stronger
and deterministic statements about the long-time behaviour of the average agent density ρ. This analysis
approach is rigorously justified by the mean-field approximation, i.e., the fact that the empirical particle
measure ρ̂N

t := 1
N

∑N
i=1 δ(Xi

t ,Y
i
t ) converges in some sense to the mean-field law ρt as the number of particles

N tends to infinity. For the original CBO dynamics, a qualitative result about convergence in distribution
is provided in [39], which is based on a tightness argument in the path space. More precisely, the authors
of that work show that the sequence {ρ̂N}N≥2 of C([0, T], P(Rd))-valued random variables is tight, which
permits to employ Prokhorov’s theorem to obtain, up to a subsequence, some limiting measure, which
turns out to be deterministic and at the same time satisfy the associated mean-field PDE. A more desir-
able quantitative approximation result, on the other hand, can be established by proving propagation of
chaos, i.e., by establishing for instance

max
i=1,...,N

sup
t∈[0,T]

E
∥∥∥(Xi

t , Yi
t ) − (X

i

t, Y
i

t)
∥∥∥

2

2
≤ CN−1 as N → ∞,

where (X
i

t, Y
i

t) denote N i.i.d. copies of the mean-field dynamics (1.5). For the original variant of uncon-
strained CBO, this was first done in [28, Section 3.3]. To keep the focus of this work on the long-time
behaviour of the CBO variant (1.6), a rigorous analysis of the mean-field approximation is left for future
considerations.

Before summarising the contributions of the present paper, let us put our work into context by
providing a comprehensive literature overview about the history, developments and achievements of
CBO.

Versatility and flexibility of CBO: a literature overview
Since its introduction in the work [52], CBO has gained a significant amount of attention from various
research groups. This has led to a vast variety of different developments, of both theoretical and applied
nature, as well as what concerns the mathematical modelling and numerical analysis of the method. By
interpreting CBO as a stochastic relaxation of gradient descent, the recent work [53] even establishes a
connection between the worlds of derivative-free and gradient-based optimisation.

A first rigorous but local convergence proof of the mean-field limit of CBO to global minimisers
is provided for the cases of isotropic and anisotropic diffusion in [12, 14], respectively. By analysing
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the time-evolution of the variance of the law of the mean-field dynamics ρt and proving its exponen-
tial decay towards zero, the authors first establish consensus formation at some stationary point before
they ensure that this consensus is actually close to the global minimiser. A similarly flavoured approach
is pursued in [33, 34], however, directly for the fully in-time discrete microscopic system and in the
simplified setting, where the same Brownian motion is used for all agents, which limits the exploration
capabilities of the method. In contrast, in the recent works [28, 29], the authors, again for the isotropic
and anisotropic CBO variant, respectively, investigate the time-evolution of the Wasserstein-2 distance
between the law ρt and a Dirac delta at the global minimiser. This is also the strategy which we pursue
in this paper. By proving the exponential decay of W2(ρt, δx∗) to zero, consensus at the desired location
follows immediately. Moreover, by providing a probabilistic quantitative result about the mean-field
approximation, the authors give a first, and so far unique, holistic global convergence proof for the
implementable, i.e., discretised numerical CBO algorithm in the unconstrained case. The results about
the mean-field approximation of the latter papers were partially inspired by the series of works [25–27],
in which the authors constrain the particle dynamics of CBO to compact hypersurfaces and prove local
convergence of the numerical scheme to minimisers by adapting the technique of [12, 14]. This ensures
a beneficial compactness of the stochastic processes, which simplifies the convergence of the interacting
particle dynamics to the mean-field dynamics. In the unconstrained case, such intrinsic compactness is
replaced by the fact that the dynamics are bounded with high probability, which is sufficient to estab-
lish convergence in probability. Further related works about CBO for optimisations with constraints
include the papers [35, 44], where a problem on the Stiefel manifold is approached, and the works [9,
15], where the constrained optimisation is recast into a penalised problem. The philosophy of using an
interacting swarm of particles to approach various relevant problems in science and engineering has
promoted several variations of the original CBO algorithm for minimisation. Amongst them are meth-
ods based on consensus dynamics to tackle multi-objective optimisation problems [7, 8, 45], saddle
point problems [40], the search for several minimisers simultaneously [10] or the sampling from certain
distributions [13].

In the same vein and also in the spirit of this work, the original CBO method itself has undergone
several modifications allowing for a more complex dynamics. This includes the use of particles with
memory [31, 55], the integration of momentum [17], the usage of jump-diffusion processes [42] and
the exploitation of on-the-fly extracted higher-order differential information through inferred gradients
based on point evaluations of the objective function [54]. It moreover turned out that the renowned
particle swarm optimisation method (PSO) [43] can be formulated and regarded as a second-order gen-
eralisation of CBO [18, 32]. This insight has enabled to adapt the for CBO-developed analysis techniques
to rigorously prove the convergence of PSO [41].

In the collection of formerly referenced works and beyond, CBO has demonstrated to be a valuable
method for a wide scope of applications reaching from the phase retrieval or robust subspace detection
problem in signal processing [26, 27], over the training of neural networks for image classification in
machine learning [14, 29] as well as in the setting of clustered federated learning [16], to asset allocation
in finance [5]. It has been furthermore employed to approximate low-frequency functions in the presence
of high-frequency noise and to the task of solving PDEs with low-regularity solutions [17].

Contributions
In view of the various developments and the wide scope of applications, a theoretical understanding of
the long-time behaviour of the in practical applications employed CBO methods is of paramount interest.
In this work, we analyse a variant of CBO which incorporates memory effects as well as gradient infor-
mation from a theoretical and numerical perspective. As demonstrated concisely in Figure 2 and more
comprehensively in Section 4, the herein investigated dynamics, which is more involved than standard
CBO, proves to be beneficial in applications in machine learning and compressed sensing. Despite this
additional complexity, by employing the analysis technique devised in [28, 29], we are able to provide
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6 K. Riedl

(a) Memory e"ects and an additional drift
towards the historical best position of each
individual particle improve the success prob-
ability of CBO.

(b) Gradient information and a drift in the
direction of the negative gradient can be in-
dispensable in certain applications such as
compressed sensing.

Figure 2. A demonstration of the benefits of memory effects and gradient information in CBO methods.
In both settings (a) and (b) the depicted success probabilities are averaged over 100 runs of CBO and the
implemented scheme is given by a Euler-Maruyama discretisation of equation (1.1) with time horizon
T = 20, discrete time step size *t = 0.01, α = 100, β = ∞, θ = 0, κ = 1/*t, λ1 = 1 and σ1 =

√
1.6. In

(a) we plot the success probability of CBO without (left separate column) and with (right phase dia-
gram) memory effects for different values of the parameter λ2, i.e., for different strengths of the memory
drift, when optimising the Rastrigin function E(x) =∑d

k=1 x2
k + 5

2
(1 − cos (2πxk)) in dimension d = 4. As

remaining parameters we choose σ2 = λ1σ1 and λ3 = σ3 = 0, i.e., no gradient information is involved.
We observe that an increasing amount of memory drift improves the success probability significantly,
even in the case where, theoretically, there are no convergence guarantees anymore, see Theorem 2.5
and Corollary 2.6. Section 4.2 provides further details. In (b) we depict the success probability of CBO
without (left separate column) and with (right phase diagram) gradient information for different values
of the parameter λ3, i.e., for different strengths of the gradient drift, when solving a compressed sensing
problem in dimension d = 200 with sparsity s = 8. On the vertical axis we depict the number of measure-
ments m, from which we try to recover the sparse signal by solving the associated -1-regularised problem
(LASSO). As remaining parameters we use merely N = 10 particles, choose σ3 = 0 and λ2 = σ2 = 0, i.e.,
no memory drift is involved. We observe that gradient information is required to be able to identify the
correct sparse solution and standard CBO would fail in such task. Section 4.4 provides more details.

rigorous mean-field-type convergence guarantees to the global minimiser, which describe the behaviour
of the method in the large-particle limit and allow to draw conclusions about the typically observed
performance in the practicable regime. Our results for CBO with memory effects and gradient informa-
tion hold for a vast class of objective functions under minimal assumptions on the initialisation of the
method. Moreover, the proof reveals how to leverage further, in other applications advantageous, forces
in the dynamics while still being amenable to theory and allowing for provable global convergence.

1.1. Organisation
In Section 2, after providing details about the existence of solutions to the macroscopic SDE (1.5) and
the associated PDE (1.6), we present and discuss our main theoretical contribution. It is about the con-
vergence of CBO with memory effects and gradient information, as given in equation (1.1), to the global
minimiser of the objective function in mean-field law, see [28, Definition 1]. More precisely, we show
that the mean-field dynamics (1.5) and (1.6) converge with exponential rate to the global minimiser.
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Section 3 contains the proof details of this result. In Section 4, we numerically demonstrate the bene-
fits of the additional memory effects and gradient information of the previously analysed CBO variant.
We in particular present applications of CBO in machine learning and compressed sensing, before we
conclude the paper in Section 5.

For the sake of reproducible research, in the GitHub repository https://github.com/
KonstantinRiedl/CBOGlobalConvergenceAnalysis we provide the Matlab code implementing the
CBO algorithm with memory effects and gradient information analysed in this work.

1.2. Notation
Given a set A ⊂Rd, we write (A)c to denote its complement, i.e., (A)c := {z ∈Rd:z 1∈ A}. For -∞ balls in
Rd with centre z and radius r, we write B∞

r (z). The space of continuous functions f :X → Y is denoted
by C(X, Y), with X ⊂Rn and a suitable topological space Y . For X ⊂Rn open and for Y =Rm, the func-
tion space Ck

c (X, Y) contains functions f ∈ C(X, Y) that are k-times continuously differentiable and have
compact support. Y is omitted in the case of real-valued functions. The operator ∇ denotes the standard
gradient of a function on Rd.

In this paper, we mostly study laws of stochastic processes, ρ ∈ C([0, T], P(Rd)), and we refer to a
snapshot of such law at time t by writing ρt ∈P(Rd). Here, P(Rd) denotes the set of all Borel probability
measures . over Rd. In Pp(Rd) we moreover collect measures . ∈P(Rd) with finite pth moment. For
any 1 ≤ p < ∞, Wp denotes the Wasserstein-p distance between two Borel probability measures .1, .2 ∈
Pp(Rd), see, e.g., [2]. E(.) denotes the expectation of a probability measure ..

2. Global convergence in mean-field law
In the first part of this section, we provide an existence result about solutions of the nonlinear macro-
scopic SDE (1.5), respectively, the associated Fokker-Planck equation (1.6). Thereafter we specify the
class of studied objective functions and present the main theoretical result about the convergence of the
dynamics (1.5) and (1.6) to the global minimiser.

Throughout this work, we consider the – in typical applications beneficial – case of CBO with
anisotropic diffusion, i.e., D( · ) = diag ( · ) in equations (1.1), (1.5) and (1.6), and also equation (2.1)
below. However, up to minor modifications, analogous results can be obtained for isotropic diffusion.

2.1. Definition and existence of weak solutions
Let us begin by rigorously defining weak solutions of the Fokker-Planck equation (1.6).

Definition 2.1. Let ρ0 ∈P(Rd ×Rd), T > 0. We say ρ ∈ C([0, T], P(Rd ×Rd)) satisfies the Fokker-
Planck equation (1.6) with initial condition ρ0 in the weak sense in the time interval [0, T], if we have
for all φ ∈ C2

c (Rd ×Rd) and all t ∈ (0, T)

d
dt

∫∫
φ(x, y) dρt(x, y) = −

∫∫
κSβ,θ (x, y)

〈
y − x, ∇yφ(x, y)

〉
dρt(x, y)

−
∫∫

λ1

〈
x−yα(ρY ,t),∇xφ(x, y)

〉
+λ2〈x−y,∇xφ(x, y)〉+λ3〈∇E(x),∇xφ(x, y)〉 dρt(x, y)

+ 1
2

∫∫ d∑

k=1

(
σ 2

1 D
(
x−yα(ρY ,t)

)2

kk
+σ 2

2 D(x−y)2
kk+σ 2

3 D(∇E(x))2
kk

)
∂2

xkxk
φ(x, y) dρt(x, y)

(2.1)

and limt→0 ρt = ρ0 (in the sense of weak convergence of measures).

For solutions of the mean-field dynamics (1.5) and (1.6), we have the following existence result.
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8 K. Riedl

Theorem 2.2. Let T > 0, ρ0 ∈P4(Rd ×Rd). Let E : Rd →R with E > −∞ satisfy for some constants
C1, C2 > 0 the conditions

|E(x) − E(x′)| ≤ C1 (‖x‖2 + ‖x′‖2) ‖x − x′‖2, for all x, x′ ∈Rd, (2.2)
E(x) − E ≤ C2

(
1 + ‖x‖2

2

)
, for all x ∈Rd, (2.3)

and either supx∈Rd E(x) < ∞ or

E(x) − E ≥ C3 ‖x‖2
2 , for all ‖x‖2 ≥ C4 (2.4)

for some C3, C4 > 0. Furthermore, in the case of an active gradient drift in the CBO dynamcis (1.5), i.e.,
if λ3 1= 0, let E ∈ C1(Rd) and obey additionally

‖∇E(x) − ∇E(x′)‖2 ≤ L̃∇E‖x − x′‖2, for all x, x′ ∈Rd (2.5)

for some L̃∇E > 0. Then, if (X0, Y0) is distributed according to ρ0, there exists a nonlinear process
(X, Y) ∈ C([0, T], Rd ×Rd) satisfying (1.5) with associated law ρ = Law

(
(X, Y)

)
having regularity ρ ∈

C([0, T], P4(Rd ×Rd)) and being a weak solution to the Fokker-Planck equation (1.6) with ρ(0) = ρ0.

Assumption (2.2) requires that E is locally Lipschitz continuous with the Lipschitz constant being
allowed to have linear growth. This entails in particular that the objective has at most quadratic growth
at infinity as formulated explicitly in Assumption (2.3), which can be seen when choosing x′ = x∗ and
C2 = 2C1 max{1, ‖x∗‖2

2} in (2.2). Assumption (2.4), on the other hand, assumes that E also has at least
quadratic growth in the farfield, i.e., overall it grows quadratically far away from x∗. Alternatively, E may
be bounded from above. Since the objective E can be usually modified for the purpose of analysis out-
side a sufficiently large region, these growth conditions are not really restrictive. In case of an additional
gradient drift term in the dynamics, i.e., λ3 1= 0, the objective naturally needs to be continuously dif-
ferentiable. Furthermore, Assumption (2.5) imposes E to be L̃∇E-smooth, i.e., having an L̃∇E-Lipschitz
continuous gradient.

Remark 2.3. The regularity ρ ∈ C([0, T], P4(Rd ×Rd)) obtained in Theorem 2.2 above is an immedi-
ate consequence of the regularity of the initial condition ρ0 ∈P4(Rd ×Rd). It allows to extend the test
function space C∞

c (Rd ×Rd) in Definition 2.1 to the larger space

C2
∗(Rd ×Rd) :=

{
φ ∈ C2(Rd ×Rd):

∣∣∂xkφ(x, y)
∣∣≤ Cφ(1+‖x‖2+‖y‖2) for some Cφ>0

and sup
(x,y)∈Rd×Rd

max
k=1,...,d

|∂2
xkxk

φ(x, y)| < ∞
}
, (2.6)

as can be seen from the proof of Theorem 2.2, which we sketch in what follows.

Proof sketch of Theorem 2.2. The proof is based on the Leray-Schauder fixed point theorem and
follows the steps taken in [12, Theorems 3.1, 3.2].
Step 1: For a given function u ∈ C([0, T], Rd) and an initial measure ρ0 ∈P4(Rd), according to standard
SDE theory [3, Chapters 6], we can uniquely solve the auxiliary SDE

dX̃t = − λ1

(
X̃t − ut

)
dt − λ2

(
X̃t − Ỹt

)
dt − λ3∇E(X̃t) dt

+ σ1D
(
X̃t − ut

)
dB1

t + σ2D
(
X̃t − Ỹt

)
dB2

t + σ3D
(
∇E(X̃t)

)
dB3

t

dỸt = κ
(
X̃t − Ỹt

)
Sβ,θ

(
X̃t, Ỹt

)
dt

with (X̃0, Ỹ0) ∼ ρ0. This is due to the fact that the coefficients of the drift and diffusion terms are locally
Lipschitz continuous and have at most linear growth, which, in turn, is a consequence of the assumptions
on E as well as the smoothness of Sβ,θ as defined in (1.4). This induces ρ̃t = Law

(
(X̃t, Ỹt)

)
. Moreover, the

assumed regularity of the initial distribution ρ0 ∈P4(Rd ×Rd) allows to obtain a fourth-order moment
estimate of the form E

[
‖X̃t‖4

2 + ‖Ỹt‖4
2

]
!
(
1 + 2E

[
‖X̃0‖4

2 + ‖Ỹ0‖4
2

])
ect, see, e.g. [3, Chapter 7]. So, in

particular, ρ̃ ∈ C([0, T], P4(Rd ×Rd)).
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Step 2: For some test function φ ∈ C2
∗(Rd ×Rd) as defined in (2.6), by Itô’s formula, we derive

dφ(X̃t, Ỹt) = ∇xφ(X̃t, Ỹt) ·
(
−λ1

(
X̃t − ut

)
− λ2

(
X̃t − Ỹt

)
− λ3∇E(X̃t)

)
dt

+ ∇yφ(X̃t, Ỹt) ·
(
κ
(
X̃t − Ỹt

)
Sβ,θ

(
X̃t, Ỹt

))
dt

+ 1
2

d∑

k=1

∂2
xkxk

φ(X̃t, Ỹt)
(
σ 2

1 D
(
X̃t − ut

)2

kk
+σ 2

2 D
(
X̃t − Ỹt

)2

kk
+σ 2

3 D
(
∇E(X̃t)

)2

kk

)
dt

+ ∇xφ(X̃t, Ỹt) ·
(
σ1D

(
X̃t − ut

)
dB1

t + σ2D
(
X̃t − Ỹt

)
dB2

t + σ3D
(
∇E(X̃t)

)
dB3

t

)

After taking the expectation, applying Fubini’s theorem and observing that the stochastic integrals of
the form E

∫ t

0 ∇xφ(X̃t, Ỹt) · D( · ) dBt vanish as a consequence of [50, Theorem 3.2.1(iii)] due to the
established regularity ρ̃ ∈ C([0, T], P4(Rd ×Rd)) and φ ∈ C2

∗(Rd ×Rd), we obtain
d
dt
Eφ(X̃t, Ỹt) = −E∇xφ(X̃t, Ỹt) ·

(
λ1

(
X̃t − ut

)
+ λ2

(
X̃t − Ỹt

)
+ λ3∇E(X̃t)

)

+E∇yφ(X̃t, Ỹt) ·
(
κ
(
X̃t − Ỹt

)
Sβ,θ

(
X̃t, Ỹt

))

+ 1
2

d∑

k=1

∂2
xkxk

φ(X̃t, Ỹt)
(
σ 2

1 D
(
X̃t − ut

)2

kk
+σ 2

2 D
(
X̃t − Ỹt

)2

kk
+σ 2

3 D
(
∇E(X̃t)

)2

kk

)

according to the fundamental theorem of calculus. This shows that ρ̃ ∈ C([0, T], P4(Rd ×Rd)) satisfies
the Fokker-Planck equation

d
dt

∫∫
φ(x, y) dρ̃t(x, y) = −

∫∫
κSβ,θ (x, y)

〈
y − x, ∇yφ(x, y)

〉
dρ̃t(x, y)

−
∫∫

λ1 〈x − ut, ∇xφ(x, y)〉 + λ2 〈x − y, ∇xφ(x, y)〉 + λ3 〈∇E(x), ∇xφ(x, y)〉 dρ̃t(x, y)

+ 1
2

∫∫ d∑

k=1

(
σ 2

1 D(x − ut)
2
kk + σ 2

2 D(x − y)2
kk + σ 2

3 D(∇E(x))2
kk

)
∂2

xkxk
φ(x, y) dρ̃t(x, y)

(2.7)

The remainder is identical to the cited reference and is summarised below for completeness.
Step 3: Setting T u := yα(ρ̃Y) ∈ C([0, T], Rd) provides the self-mapping property of the map

T : C([0, T], Rd) → C([0, T], Rd), u 5→ T u = yα(ρ̃Y),

which is compact as a consequence of a stability estimate for the consensus point [12, Lemma 3.2]. More
precisely, as shown in the cited result, it holds ‖yα(ρ̃Y ,t) − yα(ρ̃Y ,s)‖2 " W2(ρ̃Y ,t, ρ̃Y ,s) for ρ̃Y ,t, ρ̃Y ,s ∈P4(Rd).
Together with the Hölder-1/2 continuity of the Wasserstein-2 distance W2(ρ̃Y ,t, ρ̃Y ,s), this ensures the
claimed compactness of T .
Step 4: Then, for u = ϑT u with ϑ ∈ [0, 1], there exists ρ ∈ C([0, T], P4(Rd ×Rd)) satisfying (2.7)
with marginal ρY such that u = ϑyα(ρY). For such u, a uniform bound can be obtained either thanks
to the boundedness or the growth condition of E required in the statement. An application of the
Leray-Schauder fixed point theorem concludes the proof by providing a solution to (1.5).

2.2. Main result
We now present the main theoretical result about global mean-field law convergence of CBO with
memory effects and gradient information for objectives that satisfy the following conditions.

Definition 2.4 (Assumptions). Throughout, we are interested in functions E ∈ C(Rd), for which
A1 there exists a unique x∗ ∈Rd such that E(x∗) = infx∈Rd E(x) =: E , and
A2 there exist E∞, R0, η > 0, and ν ∈ (0, ∞) such that

‖x − x∗‖∞ ≤ 1
η

(E(x) − E)ν for all x ∈ B∞
R0

(x∗), (2.8)

E∞ < E(x) − E for all x ∈
(
B∞

R0
(x∗)

)c
. (2.9)
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10 K. Riedl

Furthermore, for the case of an additional gradient drift component, i.e., if λ3 1= 0, we additionally
require that E ∈ C1(Rd) and that
A3 there exist C∇E > 0 such that

‖∇E(x)‖2 ≤ C∇E ‖x − x∗‖2 for all x ∈Rd. (2.10)

In the case, where no gradient drift is present, i.e., λ3 = 0 in equations (1.1), (1.5) and (1.6), the
objective function E is only required to be continuous and satisfy Assumptions A1 and A2. While the
former merely imposes that the infimum is attained at x∗, the latter can be regarded as a tractability
condition of the energy landscape of E [26, 28]. More precisely, the inverse continuity condition (2.8)
ensures that E is locally coercive in some neighbourhood of the global minimiser x∗. Condition (2.9), on
the other hand, guarantees that in the farfield E is bounded away from the minimal value by at least E∞.
This in particular excludes objectives for which E(x) ≈ E far away from x∗. Note that A2 actually already
implies the uniqueness of x∗ requested in A1. In case of an additional gradient drift term in the dynamics,
i.e., λ3 1= 0, the objective naturally needs to be continuously differentiable. Furthermore, in Assumption
A3 we impose that the gradient ∇E grows at most linearly. This is a significantly weaker assumption
compared to typical smoothness assumptions about E in the optimisation literature (in particular in the
analysis of stochastic gradient descent), where Lipschitz-continuity of the gradient of E is required [49].

We are now ready to state the main theoretical result. Its proof is deferred to Section 3. For the reader’s
convenience let us recall that

W2
2

(
ρt, δ(x∗ ,x∗)

)
=
∫∫ (‖x − x∗‖2

2 + ‖y − x∗‖2
2

)
dρt(x, y),

which motivates to investigate the behaviour of the Lyapunov functional V(ρt) as introduced in (2.11)
below.

Theorem 2.5. Let E ∈ C(Rd) satisfy A1 and A2. Furthermore, in the case of an active gradient drift in the
CBO dynamcis (1.5), i.e., if λ3 1= 0, let E ∈ C1(Rd) obey in addition A3. Moreover, let ρ0 ∈P4(Rd ×Rd)
be such that (x∗, x∗) ∈ supp (ρ0). Let us define the functional

V(ρt) := 1
2

∫∫ (‖x − x∗‖2
2 + ‖y − x‖2

2

)
dρt(x, y), (2.11)

and the rates

χ1 := min
{
λ1−λ2−3λ3C∇E−2σ 2

1 −2σ 2
3 C2

∇E , 2κθ+λ2−λ1−λ3C∇E−2σ 2
2

}
, (2.12a)

χ2 := max
{
3λ1+λ2+3λ3C∇E−2σ 2

1 +2σ 2
3 C2

∇E , 2κθ+3λ2+λ1+λ3C∇E−2σ 2
2

}
, (2.12b)

which we assume to be strictly positive through a sufficient choice of the parameters of the CBO dynam-
ics. Furthermore, provided that V(ρ0) > 0, fix any ε ∈ (0, V(ρ0)), ϑ ∈ (0, 1) and define the time horizon

T∗ := 1
(1 − ϑ)χ1

log
(
V(ρ0)

ε

)
. (2.13)

Then, there exists α0 > 0, depending (among problem-dependent quantities) also on ε and ϑ , such that
for all α > α0, if ρ ∈ C([0, T∗], P4(Rd ×Rd)) is a weak solution to the Fokker-Planck equation (1.6) on
the time interval [0, T∗] with initial condition ρ0, we have

V(ρT) = ε with T ∈
[

(1 − ϑ)χ1

(1 + ϑ/2)χ2
T∗, T∗

]
. (2.14)

Furthermore, on the time interval [0, T], V(ρt) decays at least exponentially fast, i.e., for all t ∈ [0, T] it
holds

W2
2 (ρt, δ(x∗ ,x∗)) ≤ 6V(ρt) ≤ 6V(ρ0) exp (−(1 − ϑ)χ1t) . (2.15)
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Theorem 2.5 proves the exponentially fast convergence of the law ρ of the dynamics (1.5) to the
global minimiser x∗ of E under a minimal assumption about the initial distribution ρ0. The result in par-
ticular allows to devise a strategy for the parameter choices of the method. Namely, fixing the parameters
λ2, λ3, σ1, σ2, σ3 and θ , choosing λ1 and consecutively κ such that

λ1 > λ2 + 3λ3C∇E + 2σ 2
1 + 2σ 2

3 C2
∇E and κ >

1
2θ

(
−λ2 + λ1 + λ3C∇E + 2σ 2

2

)

ensures that the convergence rate χ1 is strictly positive. Since χ2 ≥ χ1, χ2 > 0 as well. Given a desired
accuracy ε, by consulting the proof in Section 3.4, we can further derive an estimate on the lower bound
of α, namely

α0 ∼ d + log 16d + log
(
V(ρ0)

ε

)
− log c (ϑ , χ1, λ1, σ1) − log ρ0

(
B∞

r (x∗) × B∞
r (x∗)

)

for some suitably small r ∈ (0, R0), which, like the hidden constant, may depend on ε. The choice of the
first set of parameters, in particular what concerns the drift towards the historical best and in the direction
of the negative gradient, requires some manual hyperparameter tuning and depends on the problem at
hand. We will see this also in Section 4, where we conduct numerical experiments in different application
areas.

Eventually, with (2.13) one can determine the maximal time horizon T∗, until which the Lyapunov
functionalV(ρt) is guaranteed to have reached the prescribed ε. The exact time point T , whereV(ρT) = ε,
is characterised more concretely in equation (2.14). Due to the presence of memory effects and gradient
information, which might counteract the consensus drift of CBO, it seems challenging to specify T more
closely. However, in the case of standard CBO, T turns out to be equal to T∗ up to a factor depending
merely on ϑ , see, e.g., [28].

In fact, this result can be retrieved as a special case of the subsequent Corollary 2.6, where we state
an analogous convergence result for the CBO dynamics with gradient information but without memory
effect. Its respective proof follows the lines of the one of the richer dynamics in Section 3, cf. also [28,
Theorem 12] and [29, Theorem 2], and it is left as an exercise to the reader interested in the technical
details of the proof technique. More precisely, for the instantaneous CBO model with gradient drift,

dX̃i
t = −λ1

(
X̃i

t − yα (̂ρ̃ t
N)
)

dt − λ3∇E(X̃i
t) dt

+ σ1D
(
X̃i

t − yα (̂ρ̃ t
N)
)

dB̃1,i
t + σ3D

(
∇E(X̃i

t)
)

dB̃3,i
t ,

(2.16)

where ̂̃ρ t
N := 1

N

∑N
i=1 δX̃i

t
and to which the associated mean-field Fokker-Planck equation reads

∂tρ̃t = div
((

λ1 (x − yα(ρ̃t)) + λ3∇E(x)
)
ρ̃t

)

+ 1
2

d∑

k=1

∂2
xkxk

((
σ 2

1 D(x − yα(ρ̃t))
2
kk + σ 2

3 D(∇E(x))2
kk

)
ρ̃t

)
,

(2.17)

we have the following convergence result.

Corollary 2.6. Let E ∈ C(Rd) satisfy A1 and A2. Furthermore, in the case of an active gradient drift,
i.e., if λ3 1= 0, let E ∈ C1(Rd) obey in addition A3. Moreover, let ρ̃0 ∈P4(Rd) be such that x∗ ∈ supp (ρ̃0).
Let us define the functional

Ṽ(ρ̃t) := 1
2

∫
‖x − x∗‖2

2 dρ̃t(x), (2.18)

and the rates

χ̃1 := 2λ1 − 2λ3C∇E − σ 2
1 − σ 2

3 C2
∇E , (2.19a)

χ̃2 := 2λ1 + 2λ3C∇E − σ 2
1 + σ 2

3 C2
∇E , (2.19b)
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12 K. Riedl

which we assume to be strictly positive through a sufficient choice of the parameters of the CBO dynam-
ics. Furthermore, provided that Ṽ(ρ̃0) > 0, fix any ε ∈ (0, Ṽ(ρ̃0)), ϑ ∈ (0, 1) and define the time horizon

T̃∗ := 1
(1 − ϑ)χ̃1

log
(
Ṽ(ρ̃0)

ε

)
. (2.20)

Then, there exists α̃0 > 0, depending (among problem-dependent quantities) also on ε and ϑ , such that
for all α > α̃0, if ρ̃ ∈ C([0, T∗], P4(Rd)) is a weak solution to the Fokker-Planck equation (2.17) on the
time interval [0, T̃∗] with initial condition ρ̃0, we have

Ṽ(ρ̃T̃) = ε with T̃ ∈
[

(1 − ϑ)χ̃1

(1 + ϑ/2)χ̃2
T̃∗, T̃∗

]
. (2.21)

Furthermore, on the time interval [0, T̃], Ṽ(ρ̃t) decays at least exponentially fast, i.e., for all t ∈ [0, T̃]
it holds

W2
2 (ρ̃t, δx∗ ) = 2Ṽ(ρ̃t) ≤ 2Ṽ(ρ̃0) exp (−(1 − ϑ)χ̃1t) . (2.22)

3. Proof details for Section 2.2
In what follows, we provide the proof details for the global mean-field law convergence result of CBO
with memory effects and gradient information, Theorem 2.5. The entire section can be read as a proof
sketch with Corollaries 3.3 and 3.5, Propositions 3.6 and 3.8 containing the key individual statements.
How to combine these results rigorously to complete the proof of Theorem 2.5 is then covered in detail
in Section 3.4.

Remark 3.1. Without loss of generality, we assume E = 0 throughout this section.

3.1. Evolution of the mean-field limit
Recall that our overall goal is to establish the convergence of the dynamics (1.6) to a Dirac delta at the
global minimiser x∗ with respect to the Wasserstein-2 distance, i.e.,

W2

(
ρt, δ(x∗ ,x∗)

)
→ 0 as t → ∞.

To this end, we analyse the decay behaviour of the functional V(ρt) as defined in (2.11), i.e., V(ρt) =
1
2

∫∫ (‖x − x∗‖2
2 + ‖y − x‖2

2

)
dρt(x, y). More precisely, we will show its exponential decay with a rate

controllable through the parameters of the CBO method.
Let us start below with deriving the evolution inequalities for the functionals

X (ρt) = 1
2

∫∫
‖x − x∗‖2

2 dρt(x, y) and Y(ρt) = 1
2

∫∫
‖y − x‖2

2 dρt(x, y).

Lemma 3.2. Let E : Rd →R, and fix α, λ1, σ1 > 0 and λ2, σ2, λ3, σ3, β, κ , θ ≥ 0. Moreover, let T > 0
and let ρ ∈ C([0, T], P4(Rd ×Rd)) be a weak solution to the Fokker-Planck equation (1.6). Then, the
functionals X (ρt) and Y(ρt) satisfy

d
dt

(
X (ρt)
Y(ρt)

)
≤ −

(
2λ1−λ2−2λ3C∇E−σ 2

1 −σ 2
3 C2

∇E −λ2−σ 2
2

−λ1−λ3C∇E−σ 2
1 −σ 2

3 C2
∇E 2κθ+2λ2−λ1−λ3C∇E − σ 2

2

)(
X (ρt)
Y(ρt)

)

+
√

2
( (

λ1+σ 2
1

)√
X (ρt)

λ1

√
Y(ρt)+σ 2

1

√
X (ρt)

)∥∥yα(ρY ,t)−x∗∥∥
2
+σ 2

1

2

(
1
1

)∥∥yα(ρY ,t)−x∗∥∥2

2
,

where the inequality has to be understood component-wise.
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Proof. We note that the functions φX (x, y) = 1/2 ‖x − x∗‖2
2 and φY (x, y) = 1/2 ‖y − x‖2

2 are in C2
∗(Rd ×

Rd) and recall that ρ satisfies the weak solution identity (2.1) for such test functions. Hence, by applying
(2.1) with φX and φY as above, we obtain for the evolution of X (ρt)

d
dt
X (ρt) = −

∫∫
λ1

〈
x−yα(ρY ,t), x−x∗〉+ λ2〈x−y, x−x∗〉 + λ3〈∇E(x), x−x∗〉 dρt(x, y)

+ 1
2

∫∫
σ 2

1

∥∥x−yα(ρY ,t)
∥∥2

2
+ σ 2

2 ‖x−y‖2
2 + σ 2

3 ‖∇E(x)‖2
2 dρt(x, y)

(3.1)

and for the evolution of Y(ρt)

d
dt
Y(ρt) = −

∫∫
κSβ,θ (x, y) ‖x − y‖2

2 dρt(x, y)

−
∫∫

λ1

〈
x − yα(ρY ,t), x − y

〉
+ λ2 ‖x − y‖2

2 + λ3 〈∇E(x), x − y〉 dρt(x, y)

+ 1
2

∫∫
σ 2

1

∥∥x − yα(ρY ,t)
∥∥2

2
+ σ 2

2 ‖x − y‖2
2 + σ 2

3 ‖∇E(x)‖2
2 dρt(x, y).

(3.2)

Here we used ∇xφX (x, y) = x − x∗, ∇yφX (x, y) = 0, ∂2
xkxk

φX (x, y) = 1, ∇xφY (x, y) = x − y, ∇yφY (x, y) =
y − x and ∂2

xkxk
φY (x, y) = 1. Let us now collect auxiliary estimates in (3.3a)–(3.3g), which turn out to be

useful in establishing upper bounds for (3.1) and (3.2). Using standard tools such as Cauchy-Schwarz
and Young’s inequality we have

− 〈x − y, x − x∗〉 ≤ ‖x − y‖2 ‖x − x∗‖2 ≤ 1
2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.3a)

−
〈
x − yα(ρY ,t), x − x∗〉= − ‖x − x∗‖2

2 −
〈
x∗ − yα(ρY ,t), x − x∗〉

≤ − ‖x − x∗‖2
2 +

∥∥yα(ρY ,t) − x∗∥∥
2
‖x − x∗‖2 , (3.3b)

−
〈
x − yα(ρY ,t), x − y

〉
= − 〈x − x∗, x − y〉 −

〈
x∗ − yα(ρY ,t), x − y

〉

≤ 1
2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
+
∥∥yα(ρY ,t) − x∗∥∥

2
‖x − y‖2 , (3.3c)

∥∥x − yα(ρY ,t)
∥∥2

2
= ‖x − x∗‖2

2 − 2
〈
yα(ρY ,t) − x∗, x − x∗〉+

∥∥yα(ρY ,t) − x∗∥∥2

2

≤ ‖x − x∗‖2
2 + 2

∥∥yα(ρY ,t) − x∗∥∥
2
‖x − x∗‖2 +

∥∥yα(ρY ,t) − x∗∥∥2

2
, (3.3d)

where in (3.3b)–(3.3d) we expanded the left-hand side of the scalar product and the norm by subtracting
and adding x∗. Furthermore, by means of A3 we obtain

− 〈∇E(x), x − x∗〉 ≤ ‖∇E(x)‖2 ‖x − x∗‖2 ≤ C∇E ‖x − x∗‖2
2 , (3.3e)

− 〈∇E(x), x − y〉 ≤ ‖∇E(x)‖2 ‖x − y‖2 ≤ C∇E ‖x − x∗‖2 ‖x − y‖2

≤ C∇E

2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.3f)

‖∇E(x)‖2
2 ≤ C2

∇E ‖x − x∗‖2
2 . (3.3g)

Integrating the bounds (3.3a), (3.3b), (3.3d), (3.3e) and (3.3g) into equation (3.1) results in the upper
bound

d
dt
X (ρt) ≤ −

(
2λ1 − λ2 − 2λ3C∇E − σ 2

1 − σ 2
3 C2

∇E

)
X (ρt) +

(
λ2 + σ 2

2

)
Y(ρt)

+
√

2
(
λ1 + σ 2

1

) √
X (ρt)

∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

2

∥∥yα(ρY ,t) − x∗∥∥2

2
,

where we furthermore used that by Jensen’s inequality
∫∫

‖x − x∗‖2 dρt(x, y) ≤
√∫∫

‖x − x∗‖2
2 dρt(x, y) =

√
2X (ρt). (3.4)

3��9��  0����:2 ������
 ����	
������������� /5��310��75�71�/"�.6/:�021��7�!1:���"��:1��



14 K. Riedl

For equation (3.2), we first note that, by definition, Sβ,θ ≥ θ uniformly. This combined with the bounds
(3.3c), (3.3d), (3.3f) and (3.3g) allows to derive

d
dt
Y(ρt) ≤ −

(
2κθ + 2λ2 − λ1 − λ3C∇E − σ 2

2

)
Y(ρt) +

(
λ1 + λ3C∇E + σ 2

1 + σ 2
3 C2

∇E

)
X (ρt)

+
√

2
(
λ1

√
Y(ρt) + σ 2

1

√
X (ρt)

) ∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

2

∥∥yα(ρY ,t) − x∗∥∥2

2
,

where we used (3.4) together with an analogous bound for
∫∫ ‖x − y‖2 dρt(x, y).

Recalling that V(ρt) =X (ρt) +Y(ρt) immediately allows to obtain an evolution inequality for V(ρt)
of the following form.

Corollary 3.3. Under the assumptions of Lemma 3.2, the functional V(ρt) satisfies
d
dt
V(ρt) ≤ −χ1V(ρt) + 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

∥∥yα(ρY ,t) − x∗∥∥2

2
, (3.5)

with χ1 as specified in (2.12a).

Analogously to the upper bounds on the time evolutions of the functionals X (ρt), Y(ρt) and V(ρt),
we can derive bounds from below as follows.

Lemma 3.4. Under the assumptions of Lemma 3.2, the functionals X (ρt) and Y(ρt) satisfy
d
dt

(
X (ρt)
Y(ρt)

)
≥ −

(
2λ1+λ2+2λ3C∇E−σ 2

1 +σ 2
3 C2

∇E λ2−σ 2
2

λ1+λ3C∇E−σ 2
1 +σ 2

3 C2
∇E 2κθ+2λ2+λ1+λ3C∇E − σ 2

2

)(
X (ρt)
Y(ρt)

)

−
√

2
( (

λ1+σ 2
1

)√
X (ρt)

λ1

√
Y(ρt)+σ 2

1

√
X (ρt)

)∥∥yα(ρY ,t)−x∗∥∥
2

,

where the inequality has to be understood component-wise.

Proof. By following the lines of the proof of Lemma 3.2 and noticing that in analogy to the estimates
(3.3), it hold

− 〈x − y, x − x∗〉 ≥ − ‖x − y‖2 ‖x − x∗‖2 ≥ −1
2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.6a)

−
〈
x − yα(ρY ,t), x − x∗〉= − ‖x − x∗‖2

2 −
〈
x∗ − yα(ρY ,t), x − x∗〉

≥ − ‖x − x∗‖2
2 −

∥∥yα(ρY ,t) − x∗∥∥
2
‖x − x∗‖2 , (3.6b)

−
〈
x − yα(ρY ,t), x − y

〉
= − 〈x − x∗, x − y〉 −

〈
x∗ − yα(ρY ,t), x − y

〉

≥ −1
2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
−
∥∥yα(ρY ,t) − x∗∥∥

2
‖x − y‖2 , (3.6c)

∥∥x − yα(ρY ,t)
∥∥2

2
= ‖x − x∗‖2

2 − 2
〈
yα(ρY ,t) − x∗, x − x∗〉+

∥∥yα(ρY ,t) − x∗∥∥2

2

≥ ‖x − x∗‖2
2 − 2

∥∥yα(ρY ,t) − x∗∥∥
2
‖x − x∗‖2 , (3.6d)

as well as
− 〈∇E(x), x − x∗〉 ≥ − ‖∇E(x)‖2 ‖x − x∗‖2 ≥ −C∇E ‖x − x∗‖2

2 , (3.6e)
− 〈∇E(x), x − y〉 ≥ − ‖∇E(x)‖2 ‖x − y‖2 ≥ −C∇E ‖x − x∗‖2 ‖x − y‖2

≥ −C∇E

2

(‖x − y‖2
2 + ‖x − x∗‖2

2

)
, (3.6f)

‖∇E(x)‖2
2 ≥ −C2

∇E ‖x − x∗‖2
2 . (3.6g)

we obtain the statement by integrating the bounds into equations (3.1) and (3.2).

Corollary 3.5. Under the assumptions of Lemma 3.2, the functional V(ρt) satisfies
d
dt
V(ρt) ≥ −χ2V(ρt) − 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2

, (3.7)

with χ2 as specified in (2.12b).
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In order to be able to apply Grönwall’s inequality to (3.5) and (3.7) with the aim of obtaining estimates
of the form V(ρt) ≤ V(ρ0)e−(1−ϑ)χ1t and V(ρt) ≥ V(ρ0)e−(1−ϑ/2)χ2 t for some χ1, χ2 > 0 and a suitable ϑ ∈
(0, 1), it remains to control the quantity

∥∥yα(ρY ,t) − x∗
∥∥

2
through the choice of the parameter α. This is

the content of the next section.

3.2. Quantitative Laplace principle
The well-known Laplace principle [21, 48, 52] asserts that for any absolutely continuous probability
distribution . ∈P(Rd) with x∗ ∈ supp (.) it holds

lim
α→∞

(
− 1

α
log ‖ωα‖L1(.)

)
= E(x∗) = E , (3.8)

which allows to infer that the α-weighted measure ωα/ ‖ωα‖L1(.) . is concentrated in a small region
around the minimiser x∗, provided that E attains its minimum at a single point, which is however
guaranteed by the inverse continuity property A2.

The asymptotic nature of the result (3.8), however, does not permit to obtain the required quantitative
estimates, which is the reason why the authors of [28] proposed a quantitative nonasymptotic variant of
the Laplace principle. In the following proposition, cf. [29, Proposition 1], we state this result for the
setting of anisotropic noise considered throughout the paper.

Proposition 3.6 ([29, Proposition 1]). Let E = 0, . ∈P(Rd) and fix α > 0. For any r > 0 we define
Er := supy∈B∞

r (x∗) E(y). Then, under the inverse continuity property A2, for any r ∈ (0, R0] and q > 0 such
that q + Er ≤ E∞, we have

‖yα(.) − x∗‖2 ≤
√

d(q + Er)ν

η
+

√
d exp (−αq)
.(B∞

r (x∗))

∫
‖y − x∗‖2 d.(y).

Proof. The proof is a mere reformulation of the one of [29, Proposition 1], which is presented in what
follows for the sake of completeness.

For any a > 0, Markov’s inequality gives ‖ωα‖L1(.) ≥ a.({y : exp (−αE(y)) ≥ a}). By choosing a =
exp (−αEr) and noting that

.
({

y ∈Rd: exp (−αE(y)) ≥ exp (−αEr)
})

= .
({

y ∈Rd:E(y) ≤ Er

})
≥ .(B∞

r (x∗)),

we get ‖ωα‖L1(.) ≥ exp (−αEr).(B∞
r (x∗)). Now let r̃ ≥ r > 0. With the definition of the consensus point

yα(.) =
∫

yωα(y)/‖ωα‖L1(.) d.(y) and Jensen’s inequality, we can decompose

‖yα(.) − x∗‖∞ ≤
∫

B∞
r̃ (x∗)

‖y − x∗‖∞
ωα(y)

‖ωα‖L1(.)

d.(y)

+
∫

(B∞
r̃ (x∗))

c
‖y − x∗‖∞

ωα(y)
‖ωα‖L1(.)

d.(y).

After noticing that the first term is bounded by r̃ since ‖y − x∗‖∞ ≤ r̃ for all y ∈ B∞
r̃ (x∗), we can continue

the former with

‖yα(.) − x∗‖∞ ≤ r̃ + 1
exp (−αEr).(B∞

r (x∗))

∫

(B∞
r̃ (x∗))c

‖y − x∗‖∞ ωα(y) d.(y)

≤ r̃ + exp
(
−α infy∈(B∞

r̃ (x∗))c E(y)
)

exp
(
−αEr).(B∞

r (x∗)
)
∫

(B∞
r̃ (x∗))c

‖y − x∗‖∞ d.(y)

= r̃ + exp
(
−α

(
infy∈(B∞

r̃ (x∗))c E(y) − Er

))

.(B∞
r (x∗))

∫
‖y − x∗‖∞ d.(y), (3.9)
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16 K. Riedl

where for the second term we used ‖ωα‖L1(.) ≥ exp (−αEr).(B∞
r (x∗)) from above. Let us now choose

r̃ = (q + Er)ν/η, which satisfies r̃ ≥ r, since A2 with E = 0 and r ≤ R0 implies

r̃ = (q + Er)ν

η
≥ E ν

r

η
=
(
supy∈B∞

r (x∗) E(y)
)ν

η
≥ sup

y∈B∞
r (x∗)

‖y − x∗‖∞ = r.

Furthermore, due to the assumption q + Er ≤ E∞ in the statement we have r̃ ≤ E ν
∞/η, which together

with the two cases of A2 with E = 0 allows to bound the infimum in (3.9) as follows

inf
y∈(B∞

r̃ (x∗))c
E(y) − Er ≥ min

{
E∞, (η̃r)

1
ν

}
− Er = (η̃r)

1
ν − Er = (q + Er) − Er = q.

Inserting this and the definition of r̃ into (3.9), we get the result as a consequence of the norm equivalence
‖ · ‖∞ ≤ ‖ · ‖2 ≤

√
d ‖ · ‖∞.

To eventually apply Proposition 3.6 in the setting of Corollary 3.3, i.e., to upper bound the distance of
the consensus point yα(ρY ,t) to the global minimiser x∗, it remains to ensure that ρY ,t(B∞

r (x∗)) is bounded
away from 0 for a finite time horizon. We ensure that this is indeed the case in what follows.

3.3. A lower bound for the probability mass ρY ,t(B∞
r (x∗))

In this section, for any small radius r > 0, we provide a lower bound on the probability mass of
ρY ,t(B∞

r (x∗)) by defining a mollifier φr : Rd ×Rd →R so that

ρY ,t(B∞
r (x∗)) = ρt(Rd × B∞

r (x∗)) =
∫∫

Rd×B∞
r (x∗)

1 dρt(x, y) ≥
∫∫

φr(x, y) dρt(x, y)

and studying the evolution of the right-hand side.

Lemma 3.7. For r > 0 let 5r := {(x, y) ∈Rd ×Rd: max{‖x − x∗‖∞ , ‖x − y‖∞} < r/2} and define the
mollifier φr : Rd ×Rd →R by

φr(x, y) :=






∏d
k=1 exp

(
1 − ( r

2 )
2

( r
2 )

2−(x−x∗)2
k

)
exp

(
1 − ( r

2 )
2

( r
2 )

2−(x−y)2
k

)
, if (x, y) ∈ 5r,

0, else.

We have that Im(φr) = [0, 1], supp (φr) = 5r ⊂ B∞
r/2(x∗) × B∞

r (x∗) ⊂Rd × B∞
r (x∗), φr ∈ C∞

c (Rd ×Rd) and

∂xkφr(x, y) = − r2

2




(x − x∗)k((

r
2

)2 − (x − x∗)2
k

)2 + (x − y)k((
r
2

)2 − (x − y)2
k

)2



 φr(x, y),

∂ykφr(x, y) = − r2

2
(y − x)k((

r
2

)2 − (x − y)2
k

)2 φr(x, y),

∂2
xkxk

φr(x, y) = r2

2








2
(

2 (x − x∗)2
k −

(
r
2

)2
)

(x − x∗)2
k −

((
r
2

)2 − (x − x∗)2
k

)2

((
r
2

)2 − (x − x∗)2
k

)4





+




2
(

2 (x − y)2
k −

(
r
2

)2
)

(x − y)2
k −

((
r
2

)2 − (x − y)2
k

)2

((
r
2

)2 − (x − y)2
k

)4







 φr(x, y).

Proof. It is straightforward to check the properties of φr as it is a tensor product of classical well-studied
mollifiers.
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To keep the notation as concise as possible in what follows, let us introduce the decomposition

∂xkφr = δ∗
xk
φr + δY

xk
φr and ∂2

xkxk
φr = δ2,∗

xkxk
φr + δ2,Y

xkxk
φr, (3.10)

where

δ∗
xk
φr(x, y)= − r2

2 (x−x∗)k
((

r
2

)2−(x−x∗)2
k

)2 φr(x, y) and δY
xk
φr(x, y)= − r2

2 (x−y)k((
r
2

)2−(x−y)2
k

)2 φr(x, y)

and analogously for δ2,∗
xkxk

φr and δ2,Y
xkxk

φr.

Proposition 3.8. Let T > 0, r > 0, and fix parameters α, λ1, σ1 > 0 as well as parameters
λ2, σ2, λ3, σ3, β, κ , θ ≥ 0 such that σ2 > 0 iff λ2 1= 0 and σ3 > 0 iff λ3 1= 0. Moreover, assume the valid-
ity of Assumption A3 if λ3 1= 0. Let ρ ∈ C([0, T], P(Rd ×Rd)) weakly solve the Fokker-Planck equation
(1.6) in the sense of Definition 2.1 with initial condition ρ0 ∈P(Rd ×Rd) and for t ∈ [0, T]. Then, for
all t ∈ [0, T] we have

ρY ,t(B∞
r (x∗)) ≥

(∫∫
φr(x, y) dρ0(x, y)

)
exp (−pt) (3.11)

with

p := d
3∑

i=1

ωi

(
(
1+1i∈{1,3}

)
(

2λiCϒ

√
c

(1−c)2 r
2

+ σ 2
i C2

ϒ

(1−c)4
(

r
2

)2 + 4λ2
i

c̃σ 2
i

)

+1i=2
σ 2

2 c
(1−c)4

)

, (3.12)

where, for any B < ∞ with supt∈[0,T]

∥∥yα(ρY ,t) − x∗
∥∥

2
≤ B, Cϒ = Cϒ (r, B, d, C∇E) is as defined in

(3.20). Moreover, ωi = 1λi>0 for i ∈ {1, 2, 3} and c ∈ (1/2, 1) can be any constant that satisfies
(1 − c)2 ≤ (2c − 1)c.

Remark 3.9. In order to ensure a finite decay rate p < ∞ in Proposition 3.8, it is crucial to have non-
vanishing diffusions σ1 > 0, σ2 > 0 if λ2 1= 0 and σ3 > 0 if λ3 1= 0. As apparent from the formulation of
the statement as well as the proof below, σ2 or σ3 may be 0 if the corresponding drift parameter, λ2 or
λ3, respectively, vanishes.

Proof of Proposition 3.8. By the definition of the marginal ρY and the properties of the mollifier φr

defined in Lemma 3.7, we have

ρY ,t(B∞
r (x∗)) = ρt

(
Rd × B∞

r (x∗)
)
≥ ρt(5r) ≥

∫∫
φr(x, y) dρt(x, y).

Our strategy is to derive a lower bound for the right-hand side of this inequality. Using the weak solution
property of ρ as in Definition 2.1 and the fact that φr ∈ C∞

c (Rd ×Rd), we obtain

d
dt

∫∫
φr(x, y) dρt(x, y) =

d∑

k=1

∫∫
Ts

k(x, y) dρt(x, y)

+
d∑

k=1

∫∫ (
Tc

1k(x, y)+Tc
2k(x, y)+T-

1k(x, y)+T-
2k(x, y)+Tg

1k(x, y)+Tg
2k(x, y)

)
dρt(x, y), (3.13)

where Ts
k(x, y) := −κSβ,θ (x, y) (y − x)k ∂ykφr(x, y) and

Tc
1k(x, y):= −λ1

(
x−yα(ρY ,t)

)
k
∂xkφr(x, y), Tc

2k(x, y):= σ 2
1

2

(
x−yα(ρY ,t)

)2

k
∂2

xkxk
φr(x, y),

T-
1k(x, y):= −λ2 (x−y)k ∂xkφr(x, y), T-

2k(x, y):= σ 2
2

2
(x−y)2

k ∂2
xkxk

φr(x, y),

Tg
1k(x, y):= −λ3∂xkE(x)∂xkφr(x, y), Tg

2k(x, y):= σ 2
3

2

(
∂xkE(x)

)2
∂2

xkxk
φr(x, y)

for k ∈ {1, . . . , d}. Since the mollifier φr and its derivatives vanish outside of 5r, we restrict our attention
to 5r and aim for showing for all k ∈ {1, . . . , d} that
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18 K. Riedl

• Ts
k(x, y) ≥ 0,

• Tc
1k(x, y) + Tc

2k(x, y) ≥ −pcφr(x, y),
• T-

1k(x, y) + T-
2k(x, y) ≥ −p-φr(x, y),

• Tg
1k(x, y) + Tg

2k(x, y) ≥ −pgφr(x, y)

pointwise for all (x, y) ∈ 5r with suitable constants 0 ≤ p-, pc, pg < ∞.
Term Ts

k: Using the expression for ∂ykφr from Lemma 3.7 and the fact that Sβ,θ ≥ θ/2 ≥ 0, it is easy to
see that

Ts
k(x, y) = r2κ

2
Sβ,θ (x, y)

(y − x)2
k((

r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ 0. (3.14)

Terms Tc
1k + Tc

2k, T-
1k + T-

2k and Tg
1k + Tg

2k: We first note that the third inequality from above holds with
p- = 0 if λ2 = σ2 = 0 and the fourth with pg = 0 if λ3 = σ3 = 0.

Therefore, in what follows we assume that λ2, σ2, λ3, σ3 > 0. In order to lower bound the three terms
from above, we arrange the summands by using the abbreviations introduced in (3.10) as follows. For
Tc

1k + Tc
2k, we have

Tc
1k(x, y) + Tc

2k(x, y)

= −λ1

(
x − yα(ρY ,t)

)
k
δ∗

xk
φr(x, y) + σ 2

1

2

(
x − yα(ρY ,t)

)2

k
δ2,∗

xkxk
φr(x, y) (3.15a)

− λ1

(
x − yα(ρY ,t)

)
k
δY

xk
φr(x, y) + σ 2

1

2

(
x − yα(ρY ,t)

)2

k
δ2,Y

xkxk
φr(x, y), (3.15b)

for T-
1k + T-

2k we have
T-

1k(x, y) + T-
2k(x, y)

= −λ2 (x − y)k δ∗
xk
φr(x, y) + σ 2

2

2
(x − y)2

k δ2,∗
xkxk

φr(x, y) (3.16a)

− λ2 (x − y)k δY
xk
φr(x, y) + σ 2

2

2
(x − y)2

k δ2,Y
xkxk

φr(x, y) (3.16b)

and for Tg
1k + Tg

2k we have
Tg

1k(x, y) + Tg
2k(x, y)

= −λ3∂xkE(x)δ∗
xk
φr(x, y) + σ 2

3

2
(∂xkE(x))2δ2,∗

xkxk
φr(x, y) (3.17a)

− λ3∂xkE(x)δY
xk
φr(x, y) + σ 2

3

2
(∂xkE(x))2δ2,Y

xkxk
φr(x, y). (3.17b)

We now treat each of the two-part sums in (3.15a), (3.15b), (3.16a), (3.16b), (3.17a) and (3.17b) sepa-
rately by employing a technique similar to the one used in the proof of [29, Proposition 2], which was
developed originally to prove [28, Proposition 20].
Terms (3.15a), (3.16a) and (3.17a): Owed to their similar structure (in particular with respect to the
denominator of the derivatives δ∗

xk
φr and δ2,∗

xkxk
φr), we can treat the three sums (3.15a), (3.16a) and (3.17a)

simultaneously. Therefore, we consider the general formulation

−λϒk(x, y)δ∗
xk
φr(x, y) + σ 2

2
ϒ 2

k (x, y)δ2,∗
xkxk

φr(x, y) =: T∗
1k(x, y) + T∗

2k(x, y), (3.18)

which matches (3.15a) when ϒk(x, y) = (x − yα(ρY ,t))k, λ = λ1 and σ = σ1, (3.16a) when ϒk(x, y) = (x −
y)k, λ = λ2 and σ = σ2, and (3.17a) when ϒk(x, y) = ∂xkE(x), λ = λ3 and σ = σ3.

To achieve the desired lower bound over 5r, we introduce the subsets

K∗
1k :=

{
(x, y) ∈Rd ×Rd : |(x − x∗)k| >

√
c

2
r
}
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and

K∗
2k :=

{

(x, y) ∈Rd ×Rd : − λϒk(x, y) (x − x∗)k

(( r
2

)2

− (x − x∗)2
k

)2

> c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k

}

,

where c̃ := 2c − 1 ∈ (0, 1). For fixed k, we now decompose 5r according to

5r =
(
(K∗

1k)
c ∩ 5r

)
∪
(
K∗

1k ∩ (K∗
2k)

c ∩ 5r

)
∪
(
K∗

1k ∩ K∗
2k ∩ 5r

)
.

In the following, we treat each of these three subsets separately.
Subset (K∗

1k)
c ∩ 5r: We have |(x − x∗)k| ≤

√
c

2
r for each (x, y) ∈ (K∗

1k)
c, which can be used to independently

derive lower bounds for both summands in (3.18). For the first, we insert the expression for δ∗
xk
φr(x, y)

to get

T∗
1k(x, y) = r2

2
λϒk(x, y)

(x − x∗)k((
r
2

)2 − (x − x∗)2
k

)2 φr(x, y)

≥ − r2

2
λ

|ϒk(x, y)||(x − x∗)k|((
r
2

)2 − (x − x∗)2
k

)2 φr(x, y) ≥ − 2λCϒ

√
c

(1 − c)2 r
2

φr(x, y)

=: − p∗,ϒ
1 φr(x, y),

(3.19)

where, in the last inequality, we used that (x, y) ∈ 5r, the definition of B and Assumption A3 to get the
bound

|ϒk(x, y)| =






∣∣(x − yα(ρY ,t))k

∣∣≤ r
2
+ B, if ϒk(x, y) = (x − yα(ρY ,t))k,

|(x − y)k| ≤ r
2
, if ϒk(x, y) = (x − y)k,∣∣∂xkE(x)

∣∣≤ ‖∇E(x)‖2 ≤ C∇E ‖x − x∗‖2

≤ C∇Ed ‖x − x∗‖∞ ≤ C∇Ed r
2

if ϒk(x, y) = ∂xkE(x).

≤ max
{ r

2
+ B, C∇Ed

r
2

}
=: Cϒ (r, B, d, C∇E). (3.20)

For the second summand, we insert the expression for δ2,∗
xkxk

φr(x, y) to obtain

T∗
2k(x, y) = σ 2

2
ϒ 2

k (x, y)δ2,∗
xkxk

φr(x, y)

= σ 2
( r

2

)2

ϒ 2
k (x, y)

2
(

2 (x−x∗)2
k−
(

r
2

)2
)

(x−x∗)2
k−
((

r
2

)2−(x−x∗)2
k

)2

((
r
2

)2 − (x−x∗)2
k

)4 φr(x, y)

≥ − σ 2C2
ϒ

(1 − c)4
(

r
2

)2 φr(x, y) =: − p∗,ϒ
2 φr(x, y),

(3.21)

where the last inequality uses ϒ2
k (x, y) ≤ C2

ϒ .
Subset K∗

1k ∩ (K∗
2k)

c ∩ 5r: As (x, y) ∈ K∗
1k, we have |(x − x∗)k| >

√
c

2
r. We observe that the sum in (3.18)

is nonnegative for all (x, y) in this subset whenever
(

−λϒk(x, y) (x − x∗)k + σ 2

2
ϒ 2

k (x, y)
)(( r

2

)2

− (x − x∗)2
k

)2

≤ σ 2ϒ 2
k (x, y)

(
2 (x − x∗)2

k −
( r

2

)2
)

(x − x∗)2
k .

(3.22)
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The first term on the left-hand side in (3.22) can be bounded from above by exploiting that v ∈ (K∗
2k)

c

and by using the relation c̃ = 2c − 1. More precisely, we have

− λϒk(x, y) (x − x∗)k

(( r
2

)2

− (x − x∗)2
k

)2

≤ c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k

= (2c−1)
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k ≤
(

2 (x − x∗)2
k −

( r
2

)2
)

σ 2

2
ϒ 2

k (x, y) (x − x∗)2
k ,

where the last inequality follows since v ∈ K∗
1k. For the second term on the left-hand side in (3.22), we

can use (1 − c)2 ≤ (2c − 1)c as per assumption, to get

σ 2

2
ϒ 2

k (x, y)
(( r

2

)2

− (x − x∗)2
k

)2

≤ σ 2

2
ϒ 2

k (x, y)(1 − c)2
( r

2

)4

≤ σ 2

2
ϒ 2

k (x, y)(2c − 1)
( r

2

)2

c
( r

2

)2

≤ σ 2

2
ϒ 2

k (x, y)
(

2 (x − x∗)2
k −

( r
2

)2
)

(x − x∗)2
k .

Hence, (3.22) holds and we have that (3.18) is uniformly nonnegative on this subset.
Subset K∗

1k ∩ K∗
2k ∩ 5r: As (x, y) ∈ K∗

1k, we have |(x − x∗)k| >
√

c
2

r. To start with we note that the first
summand of (3.18) vanishes whenever σ 2ϒ 2

k (x, y) = 0, provided σ > 0, so nothing needs to be done if
ϒk(x, y) = 0. Otherwise, if σ 2ϒ 2

k (x, y) > 0, we exploit (x, y) ∈ K∗
2k to get

ϒk(x, y) (x − x∗)k((
r
2

)2 − (x − x∗)2
k

)2 ≥ − |ϒk(x, y)| |(x − x∗)k|((
r
2

)2 − (x − x∗)2
k

)2

>
2λϒk(x, y) (x − x∗)k

c̃
(

r
2

)2
σ 2 |ϒk(x, y)| |(x − x∗)k|

≥ − 8λ

c̃r2σ 2
.

Using this, the first summand of (3.18) can be bounded from below by

T∗
1k(x, y) = λ

r2

2
ϒk(x, y) (x − x∗)k((

r
2

)2 − (x − x∗)2
k

)2 φr(x, y) ≥ − 4λ2

c̃σ 2
φr(x, y) =: − p∗,ϒ

3 φr(x, y). (3.23)

For the second summand, the nonnegativity of σ 2ϒ 2
k (x, y) implies the nonnegativity, whenever

2
(

2 (x − x∗)2
k −

( r
2

)2
)

(x − x∗)2
k ≥

(( r
2

)2

− (x − x∗)2
k

)2

.

This holds for v ∈ K∗
1k, if 2(2c − 1)c ≥ (1 − c)2 as implied by the assumption.

Term (3.16b): Recall that this term has the structure

−λ2 (x − y)k δY
xk
φr(x, y) + σ 2

2

2
(x − y)2

k δ2,Y
xkxk

φr(x, y) =: TY ,1
1k (x, y) + TY ,1

2k (x, y). (3.24)

We first note that the first summand of (3.24) is always nonnegative since

TY ,1
1k (x, y) = λ2

r2

2
(x − y)2

k((
r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ 0. (3.25)

For the second summand of (3.24), a direct computation shows

TY ,1
2k (x, y) = σ 2

2

( r
2

)2

(x − y)2
k

3 (x − y)4
k −

(
r
2

)4

((
r
2

)2 − (x − y)2
k

)4 φr(x, y),

which is nonnegative on the set

KY
k :=

{
(x, y) ∈Rd ×Rd :

∣∣(x − y)k

∣∣>
√

c
2

r
}
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for any c ≥ 1/
√

3, as ensured by (1 − c)2 ≤ (2c − 1)c. On the complement (KY
k )c, we have

∣∣(x − y)k

∣∣≤
√

c
2

r, which can be used to bound

TY ,1
2k (x, y) = σ 2

2

( r
2

)2

(x−y)2
k

3 (x−y)4
k−
(

r
2

)4

((
r
2

)2−(x−y)2
k

)4 φr(x, y)

≥ − σ 2
2 c

(1−c)4 φr(x, y) =: − pY ,ϒ-φr(x, y).

(3.26)

Terms (3.15b) and (3.17b): The final two terms to be controlled have again a similar structure of the
form

−λϒk(x, y)δY
xk
φr(x, y) + σ 2

2
ϒ 2

k (x, y)δ2,Y
xkxk

φr(x, y) =: TY ,2
1k (x, y) + TY ,2

2k (x, y), (3.27)

where we recycle the notation introduced after (3.18), i.e., ϒk(x, y) = (x − yα(ρY ,t))k, λ = λ1 and σ = σ1

in the case of (3.15b) and ϒk(x, y) = ∂xkE(x), λ = λ3 and σ = σ3 in the case of (3.17b).
The procedure for deriving lower bounds is similar to the one at the beginning with the exception

that the denominator of the derivatives δY
xk
φr and δ2,Y

xkxk
φr requires to introduce an adapted decomposition

of 5r. To be more specific, we define the subsets

KY
1k :=

{
(x, y) ∈Rd ×Rd :

∣∣(x − y)k

∣∣>
√

c
2

r
}

and

KY
2k :=

{

(x, y) ∈Rd ×Rd : − λϒk(x, y) (x − y)k

(( r
2

)2

− (x − y)2
k

)2

> c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − y)2
k

}

,

where c̃ := 2c − 1 ∈ (0, 1). For fixed k, we now decompose 5r according to
5r =

(
(KY

1k)
c ∩ 5r

)
∪
(
KY

1k ∩ (KY
2k)

c ∩ 5r

)
∪
(
KY

1k ∩ KY
2k ∩ 5r

)
.

In the following, we treat again each of these three subsets separately.
Subset (KY

1k)
c ∩ 5r: We have

∣∣(x − y)k

∣∣≤
√

c
2

r for each (x, y) ∈ (KY
1k)

c, which can be used to independently
derive lower bounds for both summands in (3.27). For the first summand, we insert the expression for
δY

xk
φr(x, y) to get

TY ,2
1k (x, y) = r2

2
λϒk(x, y)

(x − y)k((
r
2

)2 − (x − y)2
k

)2 φr(x, y)

≥ − r2

2
λ

|ϒk(x, y)|
∣∣(x − y)k

∣∣
((

r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ − 2λCϒ

√
c

(1 − c)2 r
2

φr(x, y)

=: − pY ,ϒ
1 φr(x, y),

(3.28)

where we recall from above that ϒk(x, y) ≤ Cϒ , which was used in the last inequality. For the second
summand, we insert the expression for δ2,Y

xkxk
φr(x, y) to obtain

TY ,2
2k (x, y) = σ 2

( r
2

)2

ϒ 2
k (x, y)

2
(

2 (x−y)2
k−
(

r
2

)2
)

(x−y)2
k−
((

r
2

)2−(x−y)2
k

)2

((
r
2

)2−(x−y)2
k

)4 φr(x, y)

≥ − σ 2C2
ϒ

(1 − c)4
(

r
2

)2 φr(x, y) =: − pY ,ϒ
2 φr(x, y),

(3.29)

where the last inequality uses ϒ2
k (x, y) ≤ C2

ϒ .
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22 K. Riedl

Subset KY
1k ∩ (KY

2k)
c ∩ 5r: As (x, y) ∈ KY

1k, we have
∣∣(x − y)k

∣∣>
√

c
2

r. We observe that the sum in (3.27) is
nonnegative for all (x, y) in this subset whenever

(
−λϒk(x, y) (x − y)k + σ 2

2
ϒ 2

k (x, y)
)(( r

2

)2

− (x − y)2
k

)2

≤ σ 2ϒ 2
k (x, y)

(
2 (x − y)2

k −
( r

2

)2
)

(x − y)2
k .

(3.30)

The first term on the left-hand side in (3.30) can be bounded from above exploiting that v ∈ (KY
2k)

c and
by using the relation c̃ = 2c − 1. More precisely, we have

− λϒk(x, y) (x − y)k

(( r
2

)2

− (x − y)2
k

)2

≤ c̃
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − y)2
k

= (2c − 1)
( r

2

)2 σ 2

2
ϒ 2

k (x, y) (x − y)2
k ≤
(

2 (x − y)2
k −

( r
2

)2
)

σ 2

2
ϒ 2

k (x, y) (x − y)2
k ,

where the last inequality follows since v ∈ KY
1k. For the second term on the left-hand side in (3.30), we

can use (1 − c)2 ≤ (2c − 1)c as per assumption, to get

σ 2

2
ϒ 2

k (x, y)
(( r

2

)2

− (x − y)2
k

)2

≤ σ 2

2
ϒ 2

k (x, y)(1 − c)2
( r

2

)4

≤ σ 2

2
ϒ 2

k (x, y)(2c − 1)
( r

2

)2

c
( r

2

)2

≤ σ 2

2
ϒ 2

k (x, y)
(

2 (x − y)2
k −

( r
2

)2
)

(x − y)2
k .

Hence, (3.30) holds and we have that (3.27) is uniformly nonnegative on this subset.
Subset KY

1k ∩ KY
2k ∩ 5r: As (x, y) ∈ KY

1k, we have
∣∣(x − y)k

∣∣>
√

c
2

r. To start with we note that the first
summand of (3.27) vanishes whenever σ 2ϒ 2

k (x, y) = 0, provided σ > 0, so nothing needs to be done
if ϒk(x, y) = 0. Otherwise, if σ 2ϒ 2

k (x, y) > 0, we exploit (x, y) ∈ KY
2k to get

ϒk(x, y) (x − y)k((
r
2

)2 − (x − y)2
k

)2 ≥ − |ϒk(x, y)|
∣∣(x − y)k

∣∣
((

r
2

)2 − (x − y)2
k

)2

>
2λϒk(x, y) (x − y)k

c̃
(

r
2

)2
σ 2 |ϒk(x, y)|

∣∣(x − y)k

∣∣
≥ − 8λ

c̃r2σ 2
.

Using this, the first summand of (3.27) can be bounded from below by

TY ,2
1k (x, y) = λ

r2

2
ϒk(x, y) (x − y)k((

r
2

)2 − (x − y)2
k

)2 φr(x, y) ≥ − 4λ2

c̃σ 2
φr(x, y) =: − pY ,ϒ

3 φr(x, y). (3.31)

For the second summand, the nonnegativity of σ 2ϒ 2
k (x, y) implies the nonnegativity, whenever

2
(

2 (x − y)2
k −

( r
2

)2
)

(x − y)2
k ≥

(( r
2

)2

− (x − y)2
k

)2

.

This holds for v ∈ KY
1k, if 2(2c − 1)c ≥ (1 − c)2 as implied by the assumption.

Concluding the proof: Combining the formerly established lower bounds (3.19), (3.21), (3.23), (3.25),
(3.26), (3.28), (3.29) and (3.31), we obtain for the constants pc, p- and pg defined at the beginning of the
proof
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pc = p∗,ϒc
1 + p∗,ϒc

2 + p∗,ϒc
3 + pY ,ϒc

1 + pY ,ϒc
2 + pY ,ϒc

3 = 2

(
2λ1Cϒ

√
c

(1 − c)2 r
2

+ σ 2
1 C2

ϒ

(1 − c)4
(

r
2

)2 + 4λ2
1

c̃σ 2
1

)

p- = p∗,ϒ-
1 + p∗,ϒ-

2 + p∗,ϒ-
3 + pY ,ϒ- = 2λ2Cϒ

√
c

(1 − c)2 r
2

+ σ 2
2 C2

ϒ

(1 − c)4
(

r
2

)2 + 4λ2
2

c̃σ 2
2

+ σ 2
2 c

(1 − c)4

pg = p∗,ϒg
1 + p∗,ϒg

2 + p∗,ϒg
3 + pY ,ϒg

1 + pY ,ϒg
2 + pY ,ϒg

3 = 2

(
2λ3Cϒ

√
c

(1 − c)2 r
2

+ σ 2
3 C2

ϒ

(1 − c)4
(

r
2

)2 + 4λ2
3

c̃σ 2
3

)

.

(3.32)

Together with (3.14) and by using the evolution of φr as in (3.13), we eventually obtain
d
dt

∫∫
φr dρt ≥ −d

(
pc + p- + pg

) ∫ ∫
φr dρt

≥ −d
3∑

i=1

ωi

(
(
1+1i 1=2

)
(

2λiCϒ

√
c

(1−c)2 r
2

+ σ 2
i C2

ϒ

(1−c)4
(

r
2

)2 + 4λ2
i

c̃σ 2
i

)

+1i=2
σ 2

2 c
(1−c)4

)∫∫
φr dρt

= −q
∫∫

φr dρt,

where q is defined implicitly and where ωi = 1λi>0 for i ∈ {1, 2, 3}. Notice that ω1 = 1 since λ1 > 0 by
assumption. An application of Grönwall’s inequality concludes the proof.

3.4. Proof of Theorem 2.5
We now have all necessary tools at hand to prove the global mean-field law convergence result for
CBO with memory effects and gradient information by rigorously combining the formerly discussed
statements.

Proof of Theorem 2.5. If V(ρ0) = 0, there is nothing to be shown since in this case ρ0 = δ(x∗ ,x∗). Thus,
let V(ρ0) > 0 in what follows.

Let us first choose the parameter α such that

α > α0 := 1
qε

(

log

(
2d+2

√
d

c (ϑ , χ1, λ1, σ1)

)

+ max
{

1
2

,
p

(1 − ϑ)χ1

}
log

(
V(ρ0)

ε

)
− log ρ0

(
5rε/2

)
)

,

(3.33)

where we introduce the definitions

c (ϑ , χ1, λ1, σ1) := min

{
ϑ

2
χ1

2
√

2
(
λ1 + σ 2

1

) ,

√
ϑ

2
χ1

σ 2
1

}

(3.34)

as well as

qε := 1
2

min
{ (

η
c (ϑ , χ1, λ1, σ1)

√
ε

2
√

d

)1/ν

, E∞

}
and rε := max

s∈[0,R0]

{
max

v∈B∞
s (x∗)

E(v) ≤ qε

}
. (3.35)

Moreover, p is as given in (3.12) in Proposition 3.8 with B = c (ϑ , χ1, λ1, σ1)
√
V(ρ0) in Cϒ and with

r = rε. By construction, qε > 0 and rε ≤ R0. Furthermore, recalling the notation Er = supv∈B∞
r (x∗) E(v)

from Proposition 3.6, we have qε + Erε ≤ 2qε ≤ E∞ according to the definition of rε. Since qε > 0, the
continuity of E ensures that there exists sqε

> 0 such that E(v) ≤ qε for all v ∈ B∞
sqε

(x∗), yielding also
rε > 0.

Let us now define the time horizon Tα ≥ 0 by

Tα := sup
{
t ≥ 0:V(ρt

′ ) > ε and
∥∥yα(ρY ,t

′ ) − x∗∥∥
2
< C(t′) for all t′ ∈ [0, t]

}
(3.36)

with C(t) := c (ϑ , χ1, λ1, σ1)
√
V(ρt). Notice for later use that C(0) = B.
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Our aim now is to show that V(ρTα
) = ε with Tα ∈

[
(1−ϑ)χ1

(1+ϑ/2)χ2
T∗, T∗] and that we have at least

exponential decay of V(ρt) until time Tα, i.e., until the accuracy ε is reached.
First, however, we verify that Tα > 0, which is due to the continuity of t 5→ V(ρt) and t 5→∥∥yα(ρY ,t) − x∗

∥∥
2

since V(ρ0) > ε and
∥∥yα(ρY ,0) − x∗

∥∥
2
< C(0) at time 0. While the former is a conse-

quence of the assumption, the latter follows from Proposition 3.6 with qε and rε as defined in (3.35),
which allows to show that

∥∥yα(ρY ,0) − x∗∥∥
2
≤

√
d
(
qε+Erε

)ν

η
+

√
d exp (−αqε)

ρY ,0

(
B∞

rε
(x∗)

)
∫

‖y − x∗‖2 dρY ,0(y)

≤
√

d
(
qε+Erε

)ν

η
+

√
d exp (−αqε)

ρY ,0

(
B∞

rε
(x∗)

)
∫ ∫

‖y − x‖2+‖x − x∗‖2 dρ0(x, y)

≤ c (ϑ , χ1, λ1, σ1)
√

ε

2
+2

√
d exp (−αqε)

ρY ,0

(
B∞

rε
(x∗)

)
√
V(ρ0)

≤ c (ϑ , χ1, λ1, σ1)
√

ε < c (ϑ , χ1, λ1, σ1)
√
V(ρ0) = C(0).

The first inequality in the last line holds by the choice of α in (3.33) and by noticing that 5rε/2 ⊂Rd ×
B∞

rε
(x∗) and thus ρ0(5rε/2) ≤ ρY ,0

(
B∞

rε
(x∗)

)
.

Next, we show that the functional V(ρt) is sandwiched between two exponentially decaying functions
with rates (1 − ϑ)χ1 and (1 + ϑ/2)χ2, respectively. More precisely, we prove that, up to time Tα, V(ρt)
decays

(i) at least exponentially fast (with rate (1 − ϑ)χ1), and
(ii) at most exponentially fast (with rate (1 + ϑ/2)χ2).

To obtain (i), recall that Corollary 3.3 provides an upper bound on the time derivative of V(ρt) given
by

d
dt
V(ρt) ≤ −χ1V(ρt) + 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2
+ σ 2

1

∥∥yα(ρY ,t) − x∗∥∥2

2
(3.37)

with χ1 as in (2.12a) being strictly positive by assumption. By combining (3.37) and the definition of
Tα in (3.36), we have by construction

d
dt
V(ρt) ≤ −(1 − ϑ)χ1V(ρt) for all t ∈ (0, Tα).

Analogously, for (ii), by Corollary 3.5, we obtain a lower bound on the time derivative of V(ρt) given
by

d
dt
V(ρt) ≥ −χ2V(ρt) − 2

√
2
(
λ1 + σ 2

1

) √
V(ρt)

∥∥yα(ρY ,t) − x∗∥∥
2

≥ −(1 + ϑ/2)χ2V(ρt) for all t ∈ (0, Tα),
(3.38)

where the second inequality again exploits the definition of Tα. Grönwall’s inequality now implies for
all t ∈ [0, Tα] the upper and lower estimates

V(ρt) ≤ V(ρ0) exp (−(1 − ϑ)χ1t) , (3.39a)
V(ρt) ≥ V(ρ0) exp (−(1 + ϑ/2)χ2t) , (3.39b)

thereby proving (i) and (ii). The definition of Tα together with the one of C(t) permits to control
max

t∈[0,Tα ]

∥∥yα(ρY ,t) − x∗∥∥
2
≤ max

t∈[0,Tα ]
C(t) ≤ C(0). (3.40)

To conclude, it remains to prove V(ρTα
) = ε with Tα ∈

[
(1−ϑ)χ1

(1+ϑ/2)χ2
T∗, T∗]. To this end, we consider the

following three cases separately.
Case Tα ≥ T∗: If Tα ≥ T∗, the time-evolution bound of V(ρt) from (3.39a) combined with the definition
of T∗ in (2.13) allows to immediately infer V(ρT∗ ) ≤ ε. Therefore, with V(ρt) being continuous, V(ρTα

) =
ε and Tα = T∗ according to the definition of Tα in (3.36).
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Case Tα < T∗ and V(ρTα
) ≤ ε: By continuity of V(ρt), it holds for Tα as defined in (3.36), V(ρTα

) = ε.
Thus, ε = V(ρTα

) ≥ V(ρ0) exp (−(1 + ϑ/2)χ2Tα) as a consequence of the time-evolution bound (3.39b).
The latter can be reordered as

(1 − ϑ)χ1

(1 + ϑ/2)χ2
T∗ = 1

(1 + ϑ/2)χ2
log

(
V(ρ0)

ε

)
≤ Tα < T∗.

Case Tα < T∗ and V(ρTα
) > ε: We will prove that this case can actually not occur by showing that∥∥yα(ρY ,Tα

) − x∗
∥∥

2
< C(Tα) for the α chosen in (3.33). In fact, if both V(ρTα

) > ε and
∥∥yα(ρY ,Tα

) − x∗
∥∥

2
<

C(Tα) held true simultaneously, this would contradict the definition of Tα in (3.36). To obtain this
contradiction, we apply again Proposition 3.6 with qε and rε as before to get

∥∥yα(ρY ,Tα
) − x∗∥∥

2
≤

√
d
(
qε+Erε

)ν

η
+

√
d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)

)
∫

‖y − x∗‖2 dρY ,Tα
(y)

≤
√

d
(
qε+Erε

)ν

η
+

√
d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)

)
∫ ∫

‖y − x‖2+‖x − x∗‖2 dρTα
(x, y)

≤ c (ϑ , χ1, λ1, σ1)
√

ε

2
+2

√
d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)

)
√
V(ρTα

)

<
c (ϑ , χ1, λ1, σ1)

√
V(ρTα

)
2

+2
√

d exp (−αqε)

ρY ,Tα

(
B∞

rε
(x∗)

)
√
V(ρTα

). (3.41)

Since, thanks to (3.40), we have maxt∈[0,Tα ] ‖yα(ρY ,t) − x∗‖2 ≤ B for B = C(0), which in particular does
not depend on α, Proposition 3.8 guarantees the existence of p > 0 independent of α (but dependent on
B and rε) with

ρY ,Tα
(B∞

rε
(x∗)) ≥

(∫∫
φrε (x, y) dρ0(x, y)

)
exp (−pTα)

≥ 1
2d

ρ0

(
5rε/2

)
exp (−pT∗) > 0.

Here we use that (x∗, x∗) ∈ supp (ρ0) to bound the initial mass ρ0 and the fact that φr from Lemma 3.7 is
bounded from below on 5r/2 by 1/2d. With this, we can continue the chain of inequalities in (3.41)3 to
obtain

∥∥yα(ρY ,Tα
) − x∗∥∥

2
<

c (ϑ , χ1, λ1, σ1)
√
V(ρTα

)
2

+ 2d+1
√

d exp (−αqε)

ρ0

(
5rε/2

)
exp (−pT∗)

√
V(ρTα

)

≤ c (ϑ , χ1, λ1, σ1)
√
V(ρTα

) = C(Tα),

with the first inequality in the last line holding due to the choice of α in (3.33). This gives the desired
contradiction, again thanks to the continuity of t 5→ V(ρt) and t 5→

∥∥yα(ρY ,t) − x∗
∥∥

2
.

4. Numerical experiments
In the first part of this section, we comment on how to efficiently implement a numerical scheme for
the CBO dynamics (1.1) which allows to integrate memory mechanisms without additional computa-
tional complexity. Afterwards, we numerically demonstrate the benefit of memory effects and gradient
information at the example of interesting real-world inspired applications.
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4.1. Implementational aspects
Discretising the interacting particle system (1.1) in time by means of the Euler-Maruyama method [37]
with prescribed time step size *t results in the implementable numerical scheme

Xi
k+1 = Xi

k − *tλ1

(
Xi

k − yα(ρ̂N
Y ,k)
)
− *tλ2

(
Xi

k − Yi
k

)
− *tλ3∇E(Xi

k)

+ σ1D
(
Xi

k − yα(ρ̂N
Y ,k)
)

B1,i
k + σ2D

(
Xi

k − Yi
k

)
B2,i

k + σ3D
(
∇E(Xi

k)
)

B3,i
k ,

(4.1a)

Yi
k+1 = Yi

k + *tκ
(
Xi

k+1 − Yi
k

)
Sβ,θ

(
Xi

k+1, Yi
k

)
, (4.1b)

where ((Bm,i
k )k=0,...,K−1)i=1,...,N are independent, identically distributed Gaussian random vectors in Rd with

zero mean and covariance matrix *tId for m ∈ {1, 2, 3}.
We notice that, compared to standard CBO, see, e.g., [28, Equation (2)], the way the historical best

position is updated in (4.1b) (recall the definition of Sβ,θ from equation (1.4)) requires one additional
evaluation of the objective function per particle in each time step, which raises the computational com-
plexity of the numerical scheme substantially if computing E is costly and the dominating part. However,
for the parameter choices κ = 1/*t, θ = 0 and β = ∞, in place of (4.1b), we obtain the update rule

Yi
k+1 =

{
Xi

k+1, if E(Xi
k+1) < E(Yi

k),
Yi

k, else,
(4.2)

which is how one expects a memory mechanism to be implemented. This way allows to recycle in time
step k the computations made in the previous step and thus leads to no additional computational cost as
consequence of using memory effects. The memory consumption, on the other hand, is approximately
twice as high as in standard CBO.

4.2. A benchmark problem in optimisation: the Rastrigin function
Let us validate in this section the numerical observation made in Figure 2a in the introduction about the
benefit of memory effects. Namely, it has been observed in several prior works that a higher noise level
can enhance the success of CBO. To rule out that the improved performance for λ2 > 0 in Figure 2a
originates solely from the larger present noise as consequence of the additional noise term associated
with the memory drift, we replicate in Figure 3 the experiments with the exception of setting σ2 = 0.
The obtained results confirm that already the usage of memory effects together with a memory drift
improves the performance. However, we also notice that an additional noise term further increases the
success probability.

4.3. A machine learning example
As a first real-world inspired application, we now investigate the influence of memory mechanisms in a
high-dimensional benchmark problem in machine learning, which is well-understood in the literature,
namely the training of a shallow and a convolutional NN (CNN) classifier for the MNIST dataset of
handwritten digits [47].

The experimental setting is the one of [29, Section 4] with tested architectures as described in
Figure 4. While it is not our aim to challenge the state of the art at this task by employing very sophisti-
cated architectures, we demonstrate that CBO is on par with stochastic gradient descent without requiring
time-consuming hyperparameter tuning.

To train the learnable parameters θ of the NNs, we minimise the empirical risk E(θ ) =
1
M

∑M
j=1 -(fθ (xj), yj), where fθ denotes the forward pass of the NN and (xj, y j)M

j=1 the M training sam-
ples consisting of image and label. As loss - we choose the categorical crossentropy loss -(̂y, y) =
−∑9

k=0 yk log (̂yk) with ŷ = fθ (x) denoting the output of the NN for a sample (x, y).
Our implementation is the one of [29, Section 4], which includes concepts from [14] and [26, Section

2.2]. Firstly, mini-batching is employed when evaluating E and when computing the consensus point yα,
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Figure 3. Success probability of CBO without (left separate column) and with memory effects for dif-
ferent values of the parameter λ2 ∈ [0, 4] (right phase diagram) when optimising the Rastrigin function
in dimension d = 4 in the setting of Figure 2a with the exception of setting σ2 = 0. In this way we validate
that the presence of memory effects is responsible for the improved performance and not just a higher
noise level.

(b) CNN (LeNet-1), cf. [    , Section III.C.7], with two convolu-46
tional and two pooling layers, and one dense layer

(a) Shallow NN with
one dense layer

Figure 4. NN architectures used in the experiments of Section 4.3. Images are represented as 28 × 28
matrices with entries in [0, 1]. For the shallow NN in (a) the input is reshaped into a vector x ∈R728 which
is then passed through a dense layer of the form ReLU(Wx + b) with trainable weights W ∈R10×728 and
bias b ∈R10. The learnable parameters of the CNN in (b) are the kernels and the final dense layer.
Both networks include a batch normalisation step after each ReLU activation function and a softmax
activation in the last layer in order to be able to interpret the output as a probability distribution over
the digits. We denote the trainable parameters of the NN by θ . The shallow NN has 7850 and the CNN
2112. (Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Applications of Evolutionary Computation, Convergence of Anisotropic Consensus-Based Optimization
in Mean-Field Law, M. Fornasier, T. Klock, K. Riedl, c© 2022.)

which means that E is evaluated on a random subset of size nE = 60 of the training dataset and yα is
computed from a random subset of size nN = 10 of all N = 100 particles. Secondly, a cooling strategy
for α and the noise parameters is used. More precisely, α is doubled each epoch, while σ1 and σ2 follow
the schedule σi,epoch = σi,0/ log2 (epoch + 2) for i = 1, 2.

In Figure 5, we report the testing accuracies and the training risks evaluated at the consensus point
based on a random sample of the training set of size 10,000 for both the shallow NN and the CNN
when trained with one of three algorithms: standard CBO without memory effects as obtained when
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(a) Testing accuracy and empirical risk plots
for the shallow NN and the CNN when
trained with CBO without memory e"ects
(lightest lines), with memory e"ects but with-
out memory drift (line with intermediate
opacity) and with memory e"ects and mem-
ory drift (darkest lines)

(b) Zooming into the testing accuracies
(right column) and the empirical risks (left
column) during the final 5 epochs (high-
lighted with green boxes in (a) ) fortheshal-
low NN (bottom row) and the CNN (top
row)

Figure 5. Comparison of the performances (testing accuracy and training loss) of a shallow NN (dashed
lines) and a CNN (solid lines) with architectures as described in Figure 4, when trained with CBO with-
out memory effects (lightest lines), with memory effects but without memory drift (line with intermediate
opacity) and with memory effects and memory drift (darkest lines). Depicted are the accuracies on a
test dataset (orange lines) and the values of the objective function E evaluated on a random sample of
the training set of size 10,000 (blue lines). We observe that memory effects slightly improve the final
accuracies while slowing down the training process initially.

discretising [29, Equation (1)], CBO with memory effects but without memory drift as in equation (4.1)
with λ2 = σ2 = 0, and CBO with memory effects and memory drift as in equation (4.1) with λ2 = 0.4 and
σ2 = λ2σ1. The remaining parameters are λ1 = 1, σ1,0 =

√
0.4, αinitial = 50, β = ∞, θ = 0, κ = 1/*t, and

discrete time step size *t = 0.1. We train for 100 epochs and use N = 100 particles, which are initialised
according to N

(
(0, . . . , 0)T , Id

)
. All results are averaged over 5 training runs.

As concluded already in [29, Section 4], we obtain accuracies comparable to SGD, cf. [46, Figure 9].
Moreover, we see slightly improved results when exploiting memory effects. However, we also notice
that memory mechanisms slow down the training process initially.

4.4. A compressed sensing example
In the final numerical section of this paper, we showcase an application where gradient information turns
out to be indispensable for the success of CBO methods, namely an experiment in compressed sensing
[30], which has become a very active and profitable field of research since the seminal works [11, 22]
about two decades ago.

One of the most common problems encountered in engineering and technology is concerned with the
inference of information about an unknown signal x∗ ∈Rd from (linear) measurements b ∈Rm. While
classical linear algebra suggests that the number of measurements m must be at least as large as the
dimensionality d of the signal, in many applications measurements are costly, time-consuming or both,
making it desirable to reduce their number to the absolute minimum. Very often one aims at m 8 d,
since real-world signals usually live in high-dimensional spaces. In general, this would be an impossible
task. However, in typical practical scenarios additional information about the quantity of interest x∗ is
available, which indeed allows to reconstruct signals from few measurements b. An empirically observed
assumption about real-world signals is compressibility, meaning that they can be well-approximated by
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sparse vectors, i.e., vectors whose components are for the most part zero. Exploiting sparsity enables us
to solve the underdetermined system Ax∗ = b efficiently in both theory and practice. Compressed sensing
is concerned with the task of designing a measurement process A ∈Rm×d together with a reconstruction
algorithm capable of recovering the sparse solution x∗ from the set of solutions consistent with the
measurements. This can be formulated as the nonconvex combinatorial optimisation

min ‖x‖0 subject to Ax = b,

where ‖x‖0 is colloquially referred to as -0-‘norm’ and denotes the number of non-zero elements of x.
Solving -0-minimisation is however NP-hard in general, which lead researchers to consider the convex
relaxation

min ‖x‖1 subject to Ax = b. (4.3)

-1-minimisation is easy to solve by means of established methods from convex optimisation and provably
recovers the correct solution for a suitable measurement matrix A. The remaining question is about the
correct way of inferring information about the signal through measurements. Remarkably and responsi-
ble for the wide success of compressed sensing is that random matrices enjoy properties such as the null
space or restricted isometry property, which guarantee successful recovery, for m # s log (d/s), where s
denotes the sparsity of the signal x∗, i.e., s = ‖x∗‖0. Up to the logarithmic factor in the ambient dimen-
sion d, this is optimal, since in theory m = 2s measurements are necessary and sufficient to reconstruct
every s-sparse vector.

In the numerical experiments following, we resort to the regularised variant of the sparse recovery
problem

min E(x) with E(x) = 1
2

‖Ax − b‖2
2 + µ ‖x‖p

p (4.4)

for a suitable regularisation parameter µ > 0. For p = 1 we obtain the regularisation of (4.3), whereas
for p < 1 the optimisation (4.4) becomes nonconvex. Our results in Figures 2b and 6 show that CBO
with gradient information is capable of solving the convex but also the nonconvex optimisation problem
(4.4) with p = 1/2 with already very few measurements. As parameters of the CBO algorithm, which is
obtained as a Euler-Maruyama discretisation of equation (1.1), we choose in both cases the time horizon
T = 20, time step size *t = 0.01, α = 100, β = ∞, θ = 0, κ = 1/*t, λ1 = 1, λ2 = 0 and σ1 = σ2 = σ3 =
0. We use either N = 10 or N = 100 particles, which is specified in the respective caption. After running
the CBO algorithm, a post-processing step is performed, in which the support of the suspected sparse
vector is identified by checking which entries are not smaller than 0.01 before the final sparse solution
is then obtained by solving the linear system constrained to this support.

The depicted success probabilities are averaged over 100 runs of CBO. In Figure 2b, we solve the
sparse recovery problem in the convex setting for an 8-sparse 200-dimensional signal with p = 1 using
CBO without and with gradient information with merely 10 particles. We observe that gradient informa-
tion is indispensable to be able to identify the correct sparse solution and standard CBO would fail in such
task. In Figure 6, we conduct a slightly lower-dimensional experiment with a 2-sparse 50-dimensional
signal. Here our focus is to enter the nonconvex recovery regime by comparing the convex -1-regularised
with the nonconvex -1/2-regularised problem. We discover that in either case reconstruction is feasible
from already very few measurements. Increasing the number of optimising particles has almost no effect
for the convex optimisation problem, in the nonconvex setting recovery benefits from more particles.
Furthermore, the nonconvex problem demands a more moderate choice of the strength of the gradient.

5. Conclusions
In this paper, we investigate a variant of consensus-based optimisation (CBO) which incorporates mem-
ory effects and gradient information. By developing further and generalising the proof technique devised
in [28, 29], we establish the global convergence of the underlying dynamics to the global minimiser x∗ of
the objective function E in mean-field law. To this end, we analyse the time-evolution of the Wasserstein
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(a) Convex sparse recovery using CBO with-
out and with gradients with N = 10 particles
to solve (4.4) with p = 1 from m measure-
ments

(b) Convex sparse recovery using CBO with-
out and with gradients with N = 100 parti-
cles to solve (4.4) with p = 1 from m mea-
surements

(c) Nonconvex sparse recovery using CBO
without and with gradients with N = 10
particles to solve (4.4) with p = 0.5 from m
measurements

(d) Nonconvex sparse recovery using CBO
without and with gradients with N = 100 
particles to solve (4.4) with p = 0.5 from m
measurements

Figure 6. Comparison between the success probabilities of CBO without (left separate columns)
and with gradient information for different values of the parameter λ3 ∈ [0, 4] (right phase diagrams)
with N = 10 ((a) and (c)) or N = 100 particles ((b) and (d)) when solving the convex or nonconvex
-p-regularised least squares problem (4.4) with p = 1 and µ = ((a) and (b)) or p = 0.5 and µ = ((c)
and (d)), respectively. On the vertical axis we depict the number of measurements m, from which we
try to recover the 2-sparse and 50-dimensional sparse signal. As further parameters we choose the time
horizon T = 20, discrete time step size *t = 0.01, α = 100, β = ∞, θ = 0, κ = 1/*t, λ1 = 1, λ2 = 0 and
σ1 = σ2 = σ3 = 0. We discover that in both the convex and nonconvex setting reconstruction is feasible
from already very few measurements. While increasing the number of optimising particles has almost
no effect for the convex optimisation problem, in the nonconvex setting recovery benefits from more par-
ticles. Note that the separate columns and the left most column of the phase diagrams coincide, and are
only depicted in this way to highlight that we compare also CBO.

distance between the law of the mean-field CBO dynamics and a Dirac delta at the minimiser and show
its exponential decay in time. Our result holds under minimal assumptions about the initial measure ρ0

and for a vast class of objective functions. The numerical benefit of such additional terms, specifically
the employed memory effects and gradient information, is demonstrated at the example of a benchmark
function in optimisation as well as at real-world applications such as compressed sensing and the training
of neural networks for image classification.
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By these means, we demonstrate the versatility, flexibility and customisability of the class of CBO
methods, both with respect to potential application areas in practice and modifications to the underlying
optimisation principles, while still being amenable to theoretical analysis.
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Paper Summary of [CBX]38

In the paper “CBX: Python and Julia packages for consensus-based interacting particle
methods,” we give an overview of the packages CBXpy and CBX.jl, which provide uni-
fied Python and Julia implementations of several consensus-based interacting particle
methods.

CBO, as originally proposed by the authors of [Pin+17], is a multi-particle meta-
heuristic derivative-free optimization method suitable for tackling nonconvex nonsmooth
optimization problems of the form (2.1). Since its introduction, several variants of the
algorithm have been proposed and analyzed.

With the packages CBXpy and CBX.jl we o�er a lightweight, easy-to-understand, -use
and -extend implementation of CBO together with several of those variants, including
CBO with mini-batch ideas [Car+21; CBO-II], CBO with restart [Car+21; CBO-II], a
cooling strategy of the parameters [For+21; CBO-II], polarized CBO [BWR22], CBO
with memory e�ects [GP21; CBO-IV], PSO [GP21; Gra+23; PSO], CBS [Car+22], and
more to come. The zoo of di�erent variants of CBO coined the acronym CBX. The
defined structures and hierarchies in the code ensure a usage experience similar to opti-
mizer classes in scikit-opt and PyTorch [Pas+19]. Numerous utilities, like performance
evaluation or plotting routines tailored to CBO methods are provided. The code of
these packages builds upon the repositories polarcbo, where polarized CBO [BWR22] is
implemented, as well as cbo-in-python, and Consensus.jl, respectively.

KR’s Contributions. The wish to create Python and Julia packages for CBO meth-
ods and its variants, which eventually led to the present work, started at the Lorentz
Center in Leiden during the workshop “Purpose-driven particle systems” in Spring 2023,
which was attended by several of the authors. Already before that, KR supervised the
Master’s student project of Igor Tukh that resulted in the Python package cbo-in-python,
which had considerable influence on the present CBXpy package. Independently and at
a similar time, TR wrote the Python package polarcbo for the polarized CBO variant,
which eventually laid the conceptual and structural foundation of the present CBXpy
package. Again, independently and at that time, RB wrote the Julia package Consen-
sus.jl, which is the foundation of the present CBX.jl package. In order to come up
with unified Python and Julia implementations of CBO and its variants, which share
the core functionalities while still having idiomatic code, all authors discussed in joint
meetings the conceptualization and structuring of the implementation. The largest and
foundational parts of the current CBXpy code were written by TR. KR contributed the
implementation of some variants of CBO, such as CBO with memory e�ects and PSO.
Moreover, KR and TR discussed several implementational details and features that have
been used in the CBO literature. Most parts of the manuscript were written by TR, KR,
CT, and RB before the paper was discussed, refined, finalized and proofread together
by all authors.

38In this section, we follow [CBX].
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Summary

We introduce CBXPy and ConsensusBasedX.jl, Python and Julia implementations of consensus-based in-
teracting particle systems (CBX), which generalise consensus-based optimization methods (CBO) for global,
derivative-free optimisation. The raison d’être of our libraries is twofold: on the one hand, to o!er high-
performance implementations of CBX methods that the community can use directly, while on the other,
providing a general interface that can accommodate and be extended to further variations of the CBX fam-
ily. Python and Julia were selected as the leading high-level languages in terms of usage and performance,
as well as their popularity among the scientific computing community. Both libraries have been developed
with a common ethos, ensuring a similar API and core functionality, while leveraging the strengths of each
language and writing idiomatic code.

Mathematical background

Consensus-based optimisation (CBO) is an approach to solve, for a given (continuous) objective function
f : Rd → R, the global minimisation problem

x→ = argmin
x↑Rd

f(x),

i.e., the task of finding the point x→ where f attains its lowest value. Such problems arise in a variety
of disciplines including engineering, where x might represent a vector of design parameters for a structure
and f a function related to its cost and structural integrity, or machine learning, where x could comprise
the parameters of a neural network and f the empirical loss, which measures the discrepancy of the neural
network prediction with the observed data.

In some cases, so-called gradient-based methods (those that involve updating a guess of x→ by evaluating
the gradient ↑f) achieve state-of-the-art performance in the global minimisation problem. However, in
scenarios where f is non-convex (when f could have many local minima), where ↑f is not well-defined, or
where the evaluation of ↑f is impractical due to cost or complexity, derivative-free methods are needed.
Numerous techniques exist for derivative-free optimisation, such as random or pattern search [22, 43, 27],
Bayesian optimisation [38] or simulated annealing [26]. Here, we focus on particle-based methods, specifically,
consensus-based optimisation (CBO), as proposed by Pinnau et al. [42], and the consensus-based taxonomy
of related techniques, which we term CBX.

CBO uses a finite numberN of agents (particles), xt = (x1
t , . . . , x

N
t ), to explore the landscape of f without

evaluating any of its derivatives (as do other CBX methods). At each time t, the agents evaluate the objective
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function at their position, f(xi
t), and define a consensus point cω. This point is an approximation of the

global minimiser x→, and is constructed by weighing each agent’s position against the Gibbs-like distribution
exp(↓ωf) [7]. More rigorously,

cω(xt) =
1

∑N
i=1 εω(xi

t)

N∑

i=1

xi
t εω(x

i
t), where εω( · ) = exp(↓ωf( · )),

for some ω > 0. The exponential weights in the definition favour those points xi
t where f(xi

t) is lowest, and
comparatively ignore the rest, particularly for larger ω. If all the found values of the objective function are
approximately the same, cω(xt) is roughly an arithmetic mean. Instead, if one particle is much better than
the rest, cω(xt) will be very close to its position.

Once the consensus point is computed, the particles evolve in time following the stochastic di!erential
equation (SDE)

dxi
t = ↓ϑ

(
xi
t ↓ cω(xt)

)
dt

︸ ︷︷ ︸
consensus drift

+ϖ
∥∥xi

t ↓ cω(xt)
∥∥ dBi

t︸ ︷︷ ︸
scaled di!usion

,

where ϑ and ϖ are positive parameters, and where Bi
t are independent Brownian motions in d dimensions.

The consensus drift is a deterministic term that drives each agent towards the consensus point, with rate ϑ.
Meanwhile, the scaled di!usion is a stochastic term that encourages exploration of the landscape. While both
the agents’ positions and the consensus point evolve in time, it has been proven that all agents eventually
reach the same position and that the consensus point cω(xt) is a good approximation of x→ [11, 18]. Other
variations of the method, such as CBO with anisotropic noise [14], polarised CBO [10], or consensus-based
sampling (CBS) [13] have also been proposed.

In practice, the solution to the SDE above cannot be found exactly. Instead, an Euler–Maruyama scheme
[35] is used to update the position of the agents. The update is given by

xi ↔ xi ↓ ϑ”t
(
xi ↓ cω(x)

)
+ ϖ

↗
”t

∥∥xi ↓ cω(x)
∥∥ ϱi,

where ”t > 0 is the step size and ϱi ↘ N (0, Id) are independent, identically distributed, standard normal
random vectors.

As a particle-based family of methods, CBX is conceptually related to other optimisation approaches
which take inspiration from biology, like particle-swarm optimisation (PSO) [32], from physics, like simulated
annealing (SA) [26], or from other heuristics [40, 31, 48, 4]. However, unlike many such methods, CBX has
been designed to be compatible with rigorous convergence analysis at the mean-field level (the infinite-particle
limit, see [28]). Many convergence results have been shown, whether in the original formulation [11, 18], for
CBO with anisotropic noise [14, 19], with memory e!ects [44], with truncated noise [20], for polarised CBO
[10], and PSO [30]. The relation between CBO and stochastic gradient descent has been recently established
by Riedl et al. [45], which suggests a previously unknown yet fundamental connection between derivative-free
and gradient-based approaches.

CBX methods have been successfully applied and extended to several di!erent settings, such as con-
strained optimisation problems [17, 9], multi-objective optimisation [8, 34], saddle-point problems [29], fed-
erated learning tasks [12], uncertainty quantification [2], or sampling [13].

Statement of need

In general, very few implementations of CBO already exist, and none have been designed with the generality
of other CBX methods in mind. We summarise here the related software:

Regarding Python, we refer to Duan et al. [16] and Guo [24] for a collection of various derivative-free
optimisation strategies. A very recent implementation of Bayesian optimisation is described by Kim and
Choi [33]. PSO and SA implementations are already available [37, 24, 21, 6]. They are widely used by
the community and provide a rich framework for the respective methods. However, adjusting these imple-
mentations to CBO is not straightforward. The first publicly available Python packages implementing CBX
algorithms were given by some of the authors together with collaborators. Tukh and Riedl [47] implement

2



Figure 1: Typical evolution of a CBO method minimising the Ackley function [1].

standard CBO [42], and Roith, Bungert, and Wacker [46] provide an implementation of polarised CBO [10].
CBXPy is a significant extension of the latter.

Regarding Julia, PSO and SA methods are, among others, implemented by Mogensen and Riseth [39],
Mej́ıa-de-Dios and Mezura-Montes [36], and Bergmann [5]. PSO and SA are also included in the meta-library
[15], as well as Nelder–Mead, which is a direct search method. One of the authors gave the first specific Julia
implementation of standard CBO [3]; that package has now been deprecated in favour of ConsensusBasedX.jl,
which o!ers additional CBX methods and a far more general interface.

Features

CBXPy and ConsensusBasedX.jl provide a lightweigh and easy-to-understand high-level interface. An ex-
isting function can be optimised with just one call. Method selection, parameters, di!erent approaches to
particle initialisation, and termination criteria can be specified directly through this interface, o!ering a
flexible point of entry for the casual user. Some of the methods provided are standard CBO [42], CBO with
mini-batching [14], polarised CBO [10], CBO with memory e!ects [23, 44], and consensus-based sampling
(CBS) [13]. Parallelisation tools are available.

A more proficient user will benefit from the fully documented interface, which allows the specification of
advanced options (e.g., debug output, the noise model, or the numerical approach to the matrix square root
of the covariance matrix). Both libraries o!er performance evaluation methods as well as visualisation tools.

Ultimately, a low-level interface (including documentation and full-code examples) is provided. Both
libraries have been designed to express common abstractions in the CBX family while allowing customisation.
Users can easily implement new CBX methods or modify the behaviour of the existing implementation by
strategically overriding certain hooks. The stepping of the methods can also be controlled manually.

CBXPy specifics

Most of the CBXPy implementation uses basic Python functionality, and the agents are handled as an array-
like structure. For certain specific features, like broadcasting-behaviour, array copying, and index selection,
we fall back to the numpy implementation [25]. However, it should be noted that an adaptation to other array

3



Figure 2: CBXPy logo.

or tensor libraries like PyTorch [41] is straightforward. Compatibility with the latter enables gradient-free
deep learning directly on the GPU, as demonstrated in the documentation.

The library is available on GitHub and can be installed via pip. It is licensed under the MIT license.
The documentation is available online.

ConsensusBasedX.jl specifics

Figure 3: ConsensusBasedX.jl logo.

ConsensusBasedX.jl has been almost entirely written in native Julia (with the exception of a single call
to LAPACK). The code has been developed with performance in mind, thus the critical routines are fully
type-stable and allocation-free. A specific tool is provided to benchmark a typical method iteration, which
can be used to detect allocations. Through this tool, unit tests are in place to ensure zero allocations in
all the provided methods. The benchmarking tool is also available to users, who can use it to test their
implementations of f , as well as any new CBX methods.

The library is available on GitHub. It has been registered in the general Julia registry, and therefore it can
be installed by running ]add ConsensusBasedX. It is licensed under the MIT license. The documentation
is available online.
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[38] Jonas Močkus. “On Bayesian methods for seeking the extremum”. In: Optimization Techniques IFIP
Technical Conference: Novosibirsk, July 1–7, 1974. Springer. 1975, pp. 400–404.

[39] P Mogensen and A Riseth. “Optim: A mathematical optimization package for Julia”. In: Journal of
Open Source Software 3.24 (2018).

[40] B Chandra Mohan and R Baskaran. “A survey: Ant Colony Optimization based recent research and
implementation on several engineering domain”. In: Expert Syst. Appl. 39.4 (2012), pp. 4618–4627.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch: An imperative style, high-
performance deep learning library”. In: Advances in neural information processing systems 32 (2019).

6
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Paper Summary of [CBO&GD]39

In the paper “Gradient is All You Need?” we provide a novel analytical perspective on
the theoretical understanding of gradient-based learning algorithms by interpreting CBO
as a stochastic relaxation of gradient descent.

CBO is a multi-particle derivative-free optimization method, with provable conver-
gence guarantees, capable of globally minimizing nonconvex nonsmooth functions.

Remarkably, we observe both experimentally [CBO&GD, Figure 1] and theoreti-
cally [CBO&GD, Theorem 2] that through communication of the particles, CBO exhibits
an SGD-like behavior despite solely relying on evaluations of the objective function, i.e.,
on zero-order information. The fundamental value of such link between CBO and SGD
lies in the fact that CBO is provably globally convergent to global minimizers for ample
classes of nonsmooth and nonconvex objective functions [CBO-I]. Hence, on the one side,
we o�er a novel explanation for the success of stochastic relaxations of gradient descent
by furnishing useful and precise insights that explain how problem-tailored stochastic
perturbations of gradient descent (like the ones induced by CBO) overcome energy bar-
riers and reach deep levels of nonconvex functions. On the other side, and contrary to
the conventional wisdom for which derivative-free methods ought to be ine�cient or not
to possess generalization abilities, our results unveil an intrinsic gradient descent nature
of heuristics. This viewpoint furthermore complements previous insights into the work-
ing principles of CBO, which describe the dynamics in the mean-field limit through a
nonlinear nonlocal partial di�erential equation that allows to alleviate complexities of
the nonconvex function landscape [CBO-I; CBO-II]. Our proofs leverage a completely
nonsmooth analysis, which combines a novel quantitative version of the Laplace principle
(log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing
so, we furnish useful and precise insights that explain how stochastic perturbations of
gradient descent overcome energy barriers and reach deep levels of nonconvex functions.
We further widen the scope of applications of methods which — in one way or another,
be it explicitly or implicitly — estimate and exploit gradients.

KR’s Contributions. Based on numerical experiments suggesting that CBO behaves
GD-like in certain parameter settings, KR initiated discussions with TK and MF about
investigating the trajectory of the consensus point of CBO. Independently and a bit
earlier, TK proposed to study a CBO-related algorithm, which later turned out to be
the consensus hopping scheme and, therefore, to that day, is fondly referred to as Timo’s
scheme. Together with MF, KR sketched and worked out the individual proof steps to
eventually rigorously connect CBO with GD via the consensus hopping scheme, which
was rediscovered at that time. The technical details were made explicit by KR and
carefully checked by and thoroughly discussed with MF. KR conducted the numerical
experiments and wrote significant parts of the paper, which was then completed and
refined together with MF.

39In this section, we follow [CBO&GD, Abstract].
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Abstract

In this paper we provide a novel analytical perspective on the theoretical under-
standing of gradient-based learning algorithms by interpreting consensus-based
optimization (CBO), a recently proposed multi-particle derivative-free optimization
method, as a stochastic relaxation of gradient descent. Remarkably, we observe
that through communication of the particles, CBO exhibits a stochastic gradient
descent (SGD)-like behavior despite solely relying on evaluations of the objective
function. The fundamental value of such link between CBO and SGD lies in the
fact that CBO is provably globally convergent to global minimizers for ample
classes of nonsmooth and nonconvex objective functions, hence, on the one side,
offering a novel explanation for the success of stochastic relaxations of gradient
descent. On the other side, contrary to the conventional wisdom for which zero-
order methods ought to be inefficient or not to possess generalization abilities, our
results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint
furthermore complements previous insights into the working principles of CBO,
which describe the dynamics in the mean-field limit through a nonlinear nonlocal
partial differential equation that allows to alleviate complexities of the nonconvex
function landscape. Our proofs leverage a completely nonsmooth analysis, which
combines a novel quantitative version of the Laplace principle (log-sum-exp trick)
and the minimizing movement scheme (proximal iteration). In doing so, we furnish
useful and precise insights that explain how stochastic perturbations of gradient
descent overcome energy barriers and reach deep levels of nonconvex functions.
Instructive numerical illustrations support the provided theoretical insights.

1 Introduction

Gradient-based learning algorithms, such as stochastic gradient descent (SGD), AdaGrad [1],
RMSProp and Adam [2], just to name a few of the most known and advocated, have undoubt-
edly been one of the cornerstones of the astounding successes of machine learning [3–5] in the
last decades. In particular, the efficient computation of gradients through backpropagation [6] and
automatic differentiation [7] has allowed practitioners to leverage nowadays enormous amounts of
data to train huge models [8]. Despite an ever-growing relevance of advancing our mathematical
understanding concerning the behavior of gradient-based learning algorithms when employed to train
neural networks, the fundamental reasons behind their empirical successes largely remain elusive [9]
and defy our theoretical understanding [10]. Yet, over the last years, several studies have started
shedding light on the peculiarities of neural network loss functions as well as the training dynamics
of SGD and its variants, see, e.g., [10–24] and references therein.
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In this work, we consider the more generic, ubiquitous problem of finding a global minimizer of a
potentially nonsmooth and nonconvex objective function E : Rd

→ R, i.e., solving

x→
↑ argmin

x↑Rd

E(x). (1)

We shall provide a novel analytical perspective on the theoretical understanding of gradient-based
learning algorithms for such general global optimization problem by interpreting a recently proposed
multi-particle metaheuristic derivative-free (zero-order) optimization method, called consensus-based
optimization (CBO) [25], as a stochastic relaxation of gradient descent (GD), see Theorem 1 below for
the statement of our main result and Figure 1 for an illustration. The essential benefit of establishing
such link between CBO and (S)GD lies in the fact that CBO is provably capable of achieving global
convergence towards global minimizers for rich classes of nonsmooth and nonconvex objective
functions [26–31], see Section 3 and in particular Theorem 4 for a review of [30, 31]. Hence,
such up to now largely unexplored connection between mathematically explainable derivative-free
optimization methods and gradient-based learning algorithms discloses, on the one side, a novel and
complementary perspective on why stochastic relaxations of GD are so successful, and, conversely,
but no less surprising, unveils an intrinsic GD nature of heuristics on the other.

Before elaborating on the aforementioned connection, let us introduce CBO in detail, distill its
fundamental conceptual principles, and explain the mechanisms behind its functioning. Inspired by
particle swarm optimization (PSO) [32], the method employs an interacting stochastic system of N
particles X1, . . . , XN to explore the domain and to form consensus about the global minimizer x→

over time. More concretely, given a finite number of time steps K, a discrete time step size !t > 0
and denoting the position of the i-th particle at time step k ↑ {0, . . . ,K} by Xi

k, this position is
computed for user-specified parameters ω,ε,ϑ > 0 according to the iterative update rule

Xi
k = Xi

k↓1 ↓!tε
(
Xi

k↓1 ↓ xE
ω(ϖ̂

N
k↓1)

)
+ ϑD

(
Xi

k↓1 ↓ xE
ω(ϖ̂

N
k↓1)

)
Bi

k, (2)

where ϖ̂Nk denotes the empirical measure of the particles at time step k, i.e., ϖ̂Nk = 1
N

∑N
i=1 ϱXi

k
. In

the spirit of the exploration-exploitation philosophy of evolutionary computation techniques [33–35],
the dynamcis (2) of each particle is governed by two competing terms, one being stochastic, the other
deterministic in nature. The first of the two terms on the right-hand side of (2) imposes a deterministic
drift towards the so-called consensus point xE

ω, which is defined for a measure ς ↑ P(Rd) by

xE
ω(ς) :=

∫
x

φE
ω(x)

↔φE
ω↔L1(ε)

dς(x), with φE
ω(x) := exp(↓ωE(x)). (3)

Notice that in the case ς = ϖ̂Nk , Formula (3) is just a weighted (exploiting the particles’ knowledge
of their objective function values) convex combination of the positions Xi

k. To be precise, owed to
the particular choice of Gibbs weights φE

ω, larger mass is attributed to particles with comparably
low objective value, whereas only little mass is given to particles whose value is undesirably high.
This facilitates the interpretation that xE

ω(ϖ̂
N
k ) is an approximation to argmini=1,...,N E(Xi

k), which
improves as ω → ↗ and which can be regarded as a proxy for the global minimizer x→, based on the
information currently available to the particles. Theoretically, this is justified by the log-sum-exp
trick or the Laplace principle [36, 37]. Let us further remark that the particles communicate and
exchange information amongst each other exclusively through sharing the consensus point xE

ω. The
other term in (2) is a stochastic diffusion injecting randomness into the dynamics, thereby encoding
its explorative nature. Given i.i.d. Gaussian random vectors Bi

k in Rd with zero mean and covariance
matrix !tId, each particle is subject to anisotropic noise, i.e., D( • ) = diag( • ),1 which favors
exploration the farther a particle is away from the consensus point in a certain direction. In particular,
the diffusive character of the dynamics vanishes over time as consensus is reached. The described
exploration-exploitation mechanism can be seen as a multi-particle reincarnation of similar ones
executed by simulated annealing [38–40] and the annealed Langevin dynamics [41]. System (2)
is complemented with independent initial data xi

0 distributed according to a common probability
measure ϖ0 ↑ P(Rd), i.e., Xi

0 = xi
0 ↘ ϖ0.

Hence, CBO distills fundamental principles from other popular and successful metaheuristics, in
particular PSO and simulated annealing, but, let us emphasize, that it comes with two fundamental

1diag : Rd → Rd→d denotes the operator mapping a vector onto a diagonal matrix with the vector as its
diagonal.
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advantages compared to these algorithms. Firstly, it outperforms such well-established methods in
experiments over challenging benchmarks [42–44]. Secondly, and remarkably, it comes with solid
and robust theoretical guarantees of global convergence to global minimizers [26–31]. For these
reasons, it has to be considered a baseline for understanding heuristics.

(a) A noisy Canyon function E with a valley shaped
as a third degree polynomial

(b) The CBO scheme (4) (sampled over several
runs) follows on average the valley of E while
passing over local minima.

Figure 1: An illustration of the intuition that the CBO scheme (4) can be regarded as a stochastic
derivative-free (zero-order) relaxation of gradient descent. To find the global minimizer x→ of the
nonconvex objective function E depicted in (a), we run the CBO algorithm (2) for K = 250 iterations
with parameters !t = 0.1, ω = 100, ε = 1 and ϑ = 1.6, and N = 200 particles, initialized
i.i.d. according to ϖ0 = N

(
(8, 8), 0.5Id

)
. This experiment is performed 50 times. For each run we

depict in (b) the positions of the consensus points computed during the CBO algorithm (2), i.e., the
iterates of the CBO scheme (4) for k = 1, . . . ,K. The color of the individual points corresponds
to time, i.e., iterates at the beginning of the scheme are plotted in blue, whereas later iterates are
colored orange. We observe that, after starting close to the initial position, the trajectories of the
consensus points follow the path of the valley leading to the global minimizer x→, until it is reached.
In particular, unlike gradient descent (cf. Figure 2b), the scheme (4) has the capability of jumping
over locally deeper passages. Such desirable behavior is observed also for the Langevin dynamics (6)
(see Figure 2c), which can be regarded as a stochastic (noisy) version of gradient descent.

An insightful theoretical understanding of the behavior of CBO is to be gained, as we are about to
show, by tracing the dynamics of the consensus point xE

ω of the CBO algorithm (2). For this purpose,
let us introduce the CBO scheme as the iterates (xCBO

k )k=0,...,K defined according to

xCBO
k = xE

ω(ϖ̂
N
k ), with ϖ̂Nk =

1

N

N∑

i=1

ϱXi
k
,

xCBO
0 = x0 ↘ ϖ0,

(4)

where the particles’ positions Xi
k are given by Equation (2). The main theoretical finding of this work

is concerned with the observation that the iterates of the CBO scheme (4), i.e., the trajectory of the
consensus point xE

ω, follow, with high probability, a stochastically perturbed GD. This is illustrated in
Figure 1 below and made rigorous in the following Theorem 1, whose proof is deferred to Section 4.1.
Theorem 1 (CBO is a stochastic relaxation of GD (main result)). Let E ↑ C

1(Rd) be L-smooth2

and satisfy minimal assumptions (summarized in Assumption 2 below). Then, for ↼ > 0 (satisfy-
ing ↼ < 1/(↓2”) if ” < 0) and with parameters ω,ε,ϑ,!t > 0 such that ω ↭ 1

ϑ d log d, the
iterates (xCBO

k )k=0,...,K of the CBO scheme (4) follow a stochastically perturbed GD, i.e., they obey

xCBO
k = xCBO

k↓1 ↓ ↼≃E(xCBO
k↓1 ) + gk, (5)

where gk is stochastic noise fulfilling for each k = 1, . . . ,K with high probability the quantitative
estimate ↔gk↔2 = O

(
|ε↓ 1/!t|+ ϑ

⇐
!t+

√
↼/ω+N↓1/2

)
+O(↼).

2A function f ↑ C1(Rd) is L-smooth if ↓↔f(x)↗↔f(x↑)↓2 ↘ L ↓x↗ x↑↓2 for all x, x↑ ↑ Rd.
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The statement of Theorem 1 has to be read with a twofold interpretation, highlighting the two sides
of the same coin. First, in view of the powerful capability of CBO to converge to global minimizers
for rich classes of nonsmooth and nonconvex objective functions (see Section 3 and in particular
Theorem 4), Theorem 1 states that there exist stochastic relaxations of GD that are provably able to
robustly and reliably overcome energy barriers and reach deep levels of nonconvex functions. Such
relaxations may even be derivative-free and do not require smoothness of the objective, as is the case
with CBO. Second, and conversely, against the common wisdom that derivative-free optimization
heuristics search the domain mainly by random exploration and therefore ought to be inefficient, we
provide evidence that such heuristics in fact work successfully in finding benign optima [45–51],
precisely because they are suitable stochastic relaxations of gradient-based methods. The similar
behavior of CBO and SGD is further substantiated by the following numerical illustration. While the
trajectories of the CBO scheme (4) are to be seen Figure 1b, we depict for comparison in Figure 2c
below the discretized dynamics of the annealed Langevin dynamics [52–54],

dXt = ↓≃E(Xt) dt+
√

2↽↓1
t dBt. (6)

Both stochastic methods are capable of global minimization while overcoming energy barriers and
escaping local minima. For analyses of the (annealed) Langevin dynamics we refer to [41, 55–58].

Let us now comment on a few more technical aspects of Theorem 1. First to be mentioned is that, in
particular compared to Polyak-!ojasiewicz-like conditions [59] or certain families of log-Sobolev
inequalities [11] required to analyze the dynamics of gradient-based methods such as (S)GD or the
Langevin dynamics, the assumptions under which our statement holds are rather weak. Combined
with similar assumptions being sufficient to prove global convergence of CBO (as stated in Theorem 4),
this extends the class of functions, for which stochastic gradient-based methods are successful in
global optimization. Secondly, the stochastic perturbations gk in (5) are not generic as they obey
precise scalings. In particular, they get tighter as soon as the discrete CBO time step size !t ⇒ 1,
the drift parameter ε ⇑ 1/!t ⇓ 1, the noise parameter ϑ ⇒ 1, the weight parameter ω ⇓ 1, the
number of employed particles N ⇓ 1 and the GD time step size ↼ ⇒ 1. For the latter we conjecture
a potential amelioration of the estimate by refining even more the quantitative Laplace principle
involved in the proof of Proposition 7, which would allow to improve the order O(↼) dependence of
the bound for ↔gk↔2. Yet, as it stands, the O(↼) term is about a deterministic bounded perturbation of
the gradient, which is possibly of smaller magnitude than the gradient. Let us stress that such bounded
perturbations of gradients alone do not allow to overcome local energy barriers in general (just think
of a local minimizer, around which the magnitude of gradients grows faster than the displacement:
any movement from the minimizer ought necessarily to get reverted). Hence, it is the stochastic part
of the perturbation that enables the convergence to global minimizers. In fact, for a moderate time
step size !t > 0, a drift parameter ε > 0 relatively small compared to 1/!t, a non-insignificant
noise parameter ϑ > 0, a moderate value of the weight parameter ω > 0 and a modest number N of
particles, CBO is factually a stochastic relaxation of GD with strong noise.

Apart from gaining primarily theoretical insights from this link, let us conclude the introduction by
mentioning a further, more practical aspect of establishing such a connection. In several real-world
applications, including various machine learning settings, using gradients may be undesirable or even
not feasible. This can be due to the black-box nature or nonsmoothness of the objective, memory
limitations constraining the use of automatic differentiation, a substantial presence of spurious local
minima, or the fact that gradients carry relevant information about data, which one may wish to keep
undisclosed. In machine learning, in specific, the problems of hyperparameter tuning [60, 61], convex
bandits [62, 63], reinforcement learning [64], the training of sparse and pruned neural networks [65],
and federated learning [66–68] stimulate interest in alternative methods to gradient-based ones. In
such situations, if one still wishes to rely on a GD-like optimization behavior, Theorem 1 suggests the
use of CBO (or related methods such as PSO [69]), which will be both reliable and efficient,3 with
linear complexity in the number of deployed particles. We report, for instance, recent ideas in the
setting of clustered federated learning [71], where CBO is leveraged to avoid reverse engineering of
private data through exchange of gradients. While we do not empirically investigate the complexity
of CBO or provide comparisons with the state of the art for different applications in this paper, a
summary of the existing literature on this matter may be found in the footnote of Section 3.

3Needlessly to be said, but if gradients are available and inexpensive to compute, methods which exploit this
information are expected to be more efficient and competitive. However, incorporating a gradient drift into CBO
is possible and may bear advantages of theoretical and practical nature [70, 71].
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Contributions. In view of the overwhelming empirical evidence that gradient-based learning
algorithms exceed in a variety of machine learning tasks what is mathematically rigorously justified,
we provide in this work a novel and surprising analytical perspective on their theoretical understanding
by interpreting consensus-based optimization (CBO), which is guaranteed to globally converge to
global minimizers of potentially nonsmooth and nonconvex loss functions [30, 31], as a stochastic
relaxation of gradient descent (GD). Specifically, we show that in suitable scalings of its parameters,
CBO — despite being a derivative-free (zero-order) optimization method — naturally approximates
a stochastic gradient flow dynamics, hence implicitly behaves like a gradient-based (first-order)
method, see Theorem 1 and Figure 1. To establish this connection we leverage a completely
nonsmooth analysis that combines simultaneously a recently obtained quantitative version of the
Laplace principle [30] (log-sum-exp trick) and the minimizing movement scheme [72] (proximal
iteration [73]), which is well-known from gradient flow theory [74]. Our results furnish useful
and precise insights that explain the mechanisms which enable stochastic perturbations of GD to
overcome energy barriers and to reach deep levels of nonconvex objective functions, even allowing
for global optimization. While the usual approach to a global analysis of (stochastic) GD requires the
loss to be L-smooth and to obey the Polyak-!ojasiewicz condition, for the global convergence of
CBO merely local Lipschitz continuity and a certain growth condition around the global minimizer
are required [30, 31]. By establishing such surprising link between stochastic GD on the one hand
and metaheuristic black-box optimization algorithms such as CBO on the other, we not just allow for
complementing our theoretical understanding of successfully deployed optimization algorithms in
machine learning and beyond, but we also widen the scope of applications of methods which — in
one way or another, be it explicitly or implicitly — estimate and exploit gradients.

Organization. Section 2 summarizes the main assumptions under which the theoretical results of
this work are valid. In Section 3 we recapitulate state-of-the-art global convergence results for CBO
in the setting of potentially nonsmooth and nonconvex objective functions E . Section 4 is dedicated
to presenting the technical details behind the main theoretical findings of this work. We first sketch
how to interpret CBO as a stochastic relaxation of GD by introducing the consensus hopping scheme,
which interconnects the derivative-free with the gradient-based world in optimization. It further
highlights a connection between sampling and optimization. Afterwards, the proof of our main result,
Theorem 1, is provided in Section 4.1 with the central technical tools being collected in Section 4.2.
The proof details together with further discussions and insights are deferred to the supplemental
material. Section 5 eventually concludes the paper by discussing future perspectives. In the GitHub
repository https://github.com/ we provide the implementation of the algorithms analyzed in
this work and the code used to create the visualizations.

Notation. We write C(X) and C
k(X) for the spaces of continuous and k-times continuously

differentiable functions f : X → R, respectively. With ≃f we denote the gradient of a differentiable
function f . P(Rd), respectively Pp(Rd), is the set containing all probability measures over Rd

(with finite p-th moment). Pp(Rd) is metrized by the Wasserstein-p distance Wp, see, e.g., [75, 76].
N (m,#) denotes a Gaussian distribution with mean m and covariance matrix #.

2 Characterization of the class of objective functions

The theoretical findings of this work hold for objective functions satisfying the following conditions.
Assumption 2. Throughout we consider objective functions E ↑ C(Rd),

A1 for which there exists x→
↑ Rd such that E(x→) = infx↑Rd E(x) =: E ,

A2 for which there exist C1, C2 > 0 such that

|E(x)↓ E(x↔)| ⇔ C1(↔x↔2 + ↔x↔
↔2) ↔x↓ x↔

↔2 for all x, x↔
↑ Rd, (7)

|E(x)↓ E| ⇔ C2(1 + ↔x↔22) for all x ↑ Rd, (8)

A3 for which either E := supx↑Rd E(x) < ↗, or for which there exist C3, C4 > 0 such that

E(x)↓ E ↖ C3 ↔x↔
2
2 for all x ↑ Rd with ↔x↔2 ↖ C4, (9)
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A4 which are semi-convex (”-convex for some ” ↑ R), i.e., E(•)↓ !
2 ↔•↔

2
2 is convex.

A detailed discussion of Assumptions A1– A4 may be found in Appendix B.

3 Consensus-based optimization converges globally

Let us recapitulate in this section recent global convergence results for CBO. Optimizing a nonconvex
objective E using the CBO dynamics (2) corresponds to an evolution of N particles in an interaction
potential generated by E . A global convergence analysis of this algorithm on the microscopic level
proves difficult as it requires to study a system of a large number of interacting stochastic processes,
which are highly correlated due to the dependence injected by communication through the consensus
point xE

ω. However, with the particles being interchangeable by design of the method [25], the
object of analytical interest is the empirical measure ϖ̂Nt , whose continuous-time dynamics can be
approximated, assuming propagation of chaos [77], in the mean-field limit (large-particle limit) by
the solution of a nonlinear nonlocal Fokker-Planck equation of the form

⇀tϖt = εdiv
((
x↓ xE

ω(ϖt)
)
ϖt
)
+

ϑ2

2

d∑

k=1

⇀kk
(
D

(
x↓ xE

ω(ϖt)
)2
kk

ϖt
)
. (10)

This perspective enables the use of powerful deterministic calculus tools for analysis [26]. Fornasier
et al. [30, 31] recently proved that, in the mean-field limit, CBO performs a gradient descent of the
Wasserstein-2 distance to a Dirac measure located at the global minimizer x→ with exponential rate.
Their results are valid for large classes of optimization problems under minimal assumptions about
the initialization and are in particular generic in the sense that the convergence of ϖt is independent of
the original hardness of the underlying optimization problem. More precisely it holds the following.
Theorem 3 (CBO asymptotically convexifies nonconvex problems, [31, Theorem 2]). Fix ⇁ > 0.
Let E ↑ C(Rd) satisfy A1 and ↔x↓ x→

↔↗ ⇔ (E(x)↓ E)ϖ/η for all x ↑ Rd with constants
η, ν > 0. Moreover, let ϖ0 ↑ P4(Rd) with x→

↑ supp ϖ0. Then, for any ▷ ↑ (0, 1) and
parameters ε, ϑ > 0 with 2ε > ϑ2, there exists ω0 = ω0(⇁, ▷,ε,ϑ, d, ν, η, ϖ0) such that for
all ω ↖ ω0 a weak solution (ϖt)t↑[0,T→] to (10) satisfies mint↑[0,T→] W

2
2 (ϖt, ϱx→) ⇔ ⇁, where

T → = 1
(1↓ϱ)(2ς↓φ2) log

(
W 2

2 (ϖ0, ϱx→)/⇁
)
. Furthermore, until the accuracy ⇁ is reached, it holds

W 2
2 (ϖt, ϱx→) ⇔ W 2

2 (ϖ0, ϱx→) exp
(
↓(1↓ ▷)

(
2ε↓ ϑ2

)
t
)
. (11)

While Theorem 3 captures a canonical convexification of a large class of nonconvex optimization
problems as the number of optimizing particles of CBO approaches infinity, it fails to explain
empirically observed successes of the method using just few particles for high-dimensional problems
coming from signal processing [29, 70] and machine learning [27, 31, 29, 70, 71].4 However, by
ensuring that propagation of chaos [77] holds, Fornasier et al. [30] quantify that the fluctuations of
the empirical measure ϖ̂Nt around ϖt are of order O(N↓1/2) for any finite time horizon. This allows
to obtain probabilistic global convergence guarantees of the CBO dynamics (2) of the following kind.
Theorem 4 (Global CBO convergence, [30, Theorem 13]). Let ⇁total > 0 and ϱ ↑ (0, 1/2). Let
E ↑ C(Rd) satisfy A1– A3 and consider valid the assumptions of Theorem 3. Then, with probability
larger than 1↓

(
ϱ + ⇁↓1

total(CD!t+ CMFN↓1 + ⇁)
)
, the final iterations (Xi

K)i=1,...,N of (2) fulfill
∥∥∥∥∥
1

N

N∑

i=1

Xi
K ↓ x→

∥∥∥∥∥

2

2

⇔ ⇁total, (12)

where, besides problem-dependent constants, CD=CD(d,N, T →, ϱ↓1) and CMF=CMF(ω, T →, ϱ↓1).

Despite the results of this section requiring the global minimizer x→ to be unique, there exists a
polarized variant of CBO [78] capable of finding multiple global minimizers at the same time.

4[29] applies CBO for a phase retrieval problem, robust subspace detection, and the robust computation
of eigenfaces; [70] solves a compressed sensing task; [27, 31, 70] train shallow neural networks; [71] devises
FedCBO to solve clustered federated learning problems while ensuring maximal data privacy
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Remark 5. A conceptually similar philosophy has been taken recently by Mei et al. [10], Rotskoff
and Vanden-Eijnden [12], Chizat and Bach [11], and Sirignano and Spiliopoulos [13] to explain the
generalization capabilities of over-parameterized neural networks. Leveraging that the mean-field
description (w.r.t. the number of neurons) of the SGD learning dynamics is captured by a nonlinear
PDE that admits a gradient flow structure on

(
P2(Rd),W2

)
, they show that, remarkably, original

complexities of the loss landscape are alleviated in this scaling. Together with a quantification of the
fluctuations of the empirical neuron distribution around this mean-field limit, they derive convergence
results for SGD for sufficiently large networks with optimal generalization error.

4 Consensus-based optimization is a stochastic relaxation of gradient descent

In this section we present the technical details behind the main theoretical result of this work,
Theorem 1, i.e., we explain how to establish a connection between the CBO scheme (4), which
captures the flow of the derivative-free CBO dynamics (2), and GD.

From CBO to consensus hopping. Let us envision for the moment the movement of the particles
during the CBO dynamics (2). At every time step k, after having computed xE

ω(ϖ̂
N
k↓1), each particle

moves a !tε fraction of its distance towards this consensus point, before being perturbed by stochastic
noise. As we let ε → 1/!t, the particles’ velocities increase, until, in the case ε = 1/!t, each of
them hops directly to the previously computed consensus point, followed by a random fluctuation.
Put differently, we are left with a numerical scheme, which, at time step k, samples N particles
around the old iterate in order to subsequently compute as new iterate the consensus point (3) of the
empirical measure of the samples. Such algorithm is precisely a Monte Carlo approximation of the
consensus hopping (CH) scheme with iterates (xCH

k )k=0,...,K defined by

xCH
k = xE

ω(µk), with µk = N
(
xCH
k↓1, ϑ̃

2Id
)
,

xCH
0 = x0.

(13)

Theorem 6 in Section 4.2 makes this intuition rigorous by quantifying the approximation quality
between CBO and CH in terms of the parameters of the schemes. Sample trajectories of the CH
scheme are depicted in Figure 2a.

(a) The CH scheme (13) (sampled
over several runs) follows on aver-
age the valley of E and can occa-
sionally escape local minima.

(b) Gradient descent gets stuck in
a local minimum of E .

(c) The Langevin dynamics (6)
(sampled over several runs) fol-
lows on average the valley of E and
escapes local minima.

Figure 2: An illustrative comparison between the algorithms discussed in this work. While gradient
descent (obtained as an explicit Euler time discretization of d

dtx(t) = ↓≃E(x(t)) with time step size
!t = 0.01 and ran for K = 104 iterations) gets stuck in a local minimum along the valley of E (see
(b)), the stochastic algorithms in (a) and (c) as well as Figure 1b have the capability of escaping local
minima. In (a) we depict the positions of the consensus hopping scheme (13) for K = 250 iterations
with parameters ω = 100 and ϑ̃ = 0.6, and where we approximate the underlying measure µk at
each step k using 200 samples. The ability of the CH scheme to escape local minima improves with
larger ϑ̃, see Figure F.1 in Appendix F. In (c) we depict the trajectory of the overdamped Langevin
dynamics (6) with ↽t = 0.02 log(t+ 1) (obtained as an Euler-Maruyama time discretization of (6)
with time step size !t = 0.001 and ran for K = 104 iterations). The remaining setting is as in
Figure 1, in particular, 50 individual runs of the experiment are plotted in (a) and (c).
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From CH to GD. With the sampling measure µk assigning (in particular for small ϑ̃) most mass to
the region close to the old iterate, the CH scheme (13) improves at every time step k its objective
function value while staying near the previous iterate. A conceptually analogous behavior to such
localized sampling can be achieved through penalizing the length of the step taken at time step k.
This gives raise to an implicit version of the CH scheme with iterates (x̃CH

k )k=0,...,K given as

x̃CH
k = argmin

x↑Rd

Ẽk(x), with Ẽk(x) :=
1

2↼

∥∥xCH
k↓1 ↓ x

∥∥2
2
+ E(x),

x̃CH
0 = x0.

(14)

Actually, the modulated objective Ẽk defined in (14) naturally appears when writing out the expression
of xE

ω(µk) from (13) using that µk is a Gaussian. This creates a link between the sampling width
ϑ̃ and the step size ↼ . The fact that the parameter ↼ can be seen as the step size of (14) becomes
apparent when observing that the optimality condition of the k-th iterate of (14) reads x̃CH

k =
xCH
k↓1 ↓ ↼≃E(x̃CH

k ), which is an implicit gradient step. Proposition 7 in Section 4.2 estimates the
discrepancy between xCH

k and x̃CH
k employing the quantitative Laplace principle [30, Proposition 18].

Let us conclude this discussion by remarking that the scheme (14) itself is not self-consistent but
requires the computation of the iterates of the CH scheme (13). For this reason we introduce the
minimizing movement scheme (MMS) [72] as the iterates (xMMS

k )k=0,...,K given according to

xMMS
k = argmin

x↑Rd

Ek(x), with Ek(x) :=
1

2↼

∥∥xMMS
k↓1 ↓ x

∥∥2
2
+ E(x),

xMMS
0 = x0,

(15)

which is known to be the discrete-time implicit Euler of the gradient flow d
dtx(t) = ↓≃E(x(t)) [74].

4.1 Proof of the main result, Theorem 1

Proof of Theorem 1. From the optimality condition of the scheme (x̃CH
k )k=1,...,K in (14) and with the

iterations (xCH
k )k=1,...,K as in (13), we get

(
x̃CH
k ↓xCH

k↓1

)
+↼≃E(x̃CH

k )=0. Using this we decompose

xCBO
k = x̃CH

k +
(
xCBO
k ↓ x̃CH

k

)
= xCH

k↓1 ↓ ↼≃E(x̃CH
k ) +

(
xCBO
k ↓ x̃CH

k

)
.

Since xCH
k↓1 = xCBO

k↓1 +
(
xCH
k↓1 ↓ xCBO

k↓1

)
and ≃E(x̃CH

k ) = ≃E(xCBO
k↓1 ) +

(
≃E(x̃CH

k )↓≃E(xCBO
k↓1 )

)

we can continue the former to obtain

xCBO
k = xCBO

k↓1 ↓ ↼≃E(xCBO
k↓1 ) +

(
xCH
k↓1 ↓ xCBO

k↓1

)
↓ ↼

(
≃E(x̃CH

k )↓≃E(xCBO
k↓1 )

)
+

(
xCBO
k ↓x̃CH

k

)
,

where it remains to control the stochastic error term gk from (5), which is comprised of the terms
g1k := xCH

k↓1 ↓ xCBO
k↓1 , g2k := ↼

(
≃E(x̃CH

k )↓≃E(xCBO
k↓1 )

)
and g3k := xCBO

k ↓ x̃CH
k . By Theorem 6,

∥∥g1k
∥∥
2
=

∥∥xCH
k↓1 ↓ xCBO

k↓1

∥∥
2
= O

(
|ε↓ 1/!t|+ ϑ

⇐

!t+ ϑ̃ +N↓1/2
)

with high probability. For g2k, first notice that 1
2ϑ

∥∥x̃CH
k ↓ xCH

k↓1

∥∥2
2
+E(x̃CH

k ) ⇔ E(xCH
k↓1) by definition

of x̃CH
k , which facilitates a bound on

∥∥x̃CH
k ↓ xCH

k↓1

∥∥
2

of order O(↼) with high probability under A2
and by means of Remark C.7. Since E is L-smooth, with the latter derivations and Theorem 6,

∥∥g2k
∥∥
2
= ↼

∥∥≃E(x̃CH
k )↓≃E(xCBO

k↓1 )
∥∥
2
⇔ ↼L

∥∥x̃CH
k ↓ xCBO

k↓1

∥∥
2

⇔ ↼L
(∥∥x̃CH

k ↓ xCH
k↓1

∥∥
2
+

∥∥xCH
k↓1 ↓ xCBO

k↓1

∥∥
2

)

= O(↼2) +O
(
↼
(
|ε↓ 1/!t|+ ϑ

⇐

!t+ ϑ̃ +N↓1/2
))

with high probability. Eventually, by Theorem 6 and Proposition 7 (hence, the quantitative Laplace
principle [30, Proposition 18], see Proposition E.2), it holds for a sufficiently large choice of ω that

∥∥g3k
∥∥
2
=

∥∥xCBO
k ↓ x̃CH

k

∥∥
2
⇔

∥∥xCBO
k ↓ xCH

k

∥∥
2
+
∥∥xCH

k ↓ x̃CH
k

∥∥
2

= O
(
|ε↓ 1/!t|+ ϑ

⇐

!t+ ϑ̃ +N↓1/2
)
+O(↼)

with high probability, which concludes the proof recalling that ϑ̃2 = ↼/(2ω) as of Proposition 7.
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4.2 Technical details connecting CBO with GD via the CH scheme (13)

We now make rigorous what was described colloquially at the beginning of this section. The proofs
of the results below are deferred to Appendices D and E. M is the moment bound from Remark C.7.

CBO is a stochastic relaxation of CH. Theorem 6 explains how the CBO scheme (4) can be
interpreted as a stochastic relaxation of the CH scheme (13).
Theorem 6 (CBO relaxes CH). Fix ⇁ > 0 and ϱ ↑ (0, 1/2). Let E ↑ C(Rd) satisfy A1– A3. We
denote by (xCBO

k )k=0,...,K the iterates of the CBO scheme (4) and by (xCH
k )k=0,...,K the ones of the

CH scheme (13). Then, with probability larger than 1↓ (ϱ + ⇁), it holds for all k = 1, . . . ,K that
∥∥xCBO

k ↓ xCH
k

∥∥2
2
⇔ ⇁↓1C

(
|ε↓ 1/!t|2 + ϑ2!t+ ϑ̃2 +N↓1

)
(16)

with a constant C = C(ϱ↓1,!t, d,ω,ε,ϑ, b1, b2, C1, C2,K,M).

CH behaves like a gradient-based method. Since by definition of the iterates x̃CH
k in (14), it holds

x̃CH
k = xCH

k↓1 ↓ ↼≃E(x̃CH
k ), Proposition 7 constitutes that (granted a sufficiently large choice of ω

and a suitably small choice of ϑ̃) the CH scheme (13) performs a gradient step at every time step k.
Proposition 7 (CH performs gradient steps). Fix ⇁ > 0 and ϱ ↑ (0, 1/2). Let E ↑ C(Rd) satisfy
A1– A4. We denote by (xCH

k )k=0,...,K the iterations of the CH scheme (13) and by (x̃CH
k )k=0,...,K the

ones of the scheme (14). Moreover, assume that the parameters ω, ↼ and ϑ̃ are such that ↼ < 1/(↓2”)
if ” < 0, ω ↭ 1

ϑ d log d is sufficiently large and ϑ̃2 = ↼/(2ω). Then, with probability larger than
1↓ (ϱ + ⇁), it holds for all k = 1, . . . ,K that

∥∥xCH
k ↓ x̃CH

k

∥∥2
2
⇔ ⇁↓1c↼2 (17)

with a constant c = c(ϱ↓1, C1,M).

The proof of Proposition 7 is based on the quantitative Laplace principle [30, Proposition 18] (see
also Proposition E.2). We conjecture that a refinement thereof may allow to control the error in (17)
just through ω and ϑ̃ without creating a dependence on ↼ . Nevertheless, the bound is sufficient to
suggest a gradient-like behavior of the CH scheme (13) (see the discussion after Theorem 1).

Combining Proposition 7 with a stability argument for the MMS and applying Grönwall’s inequality
allows to control in Theorem 8 the divergence between the CH scheme (13) and the MMS (15).
Theorem 8 (CH relaxes a gradient flow). Fix ⇁ > 0 and ϱ ↑ (0, 1/2). Let E ↑ C(Rd) satisfy A1– A4.
We denote by (xCH

k )k=0,...,K the iterations of the CH scheme (13) and by (xMMS
k )k=0,...,K the ones

of the MMS (15). Moreover, assume that the parameters ω, ↼ and ϑ̃ are such that ↼ < 1/(↓2”)
if ” < 0, ω ↭ 1

ϑ d log d is sufficiently large and ϑ̃2 = ↼/(2ω). Then, with probability larger than
1↓ (ϱ + ⇁), it holds for all k = 1, . . . ,K that

∥∥xCH
k ↓ xMMS

k

∥∥2
2
⇔ ⇁↓1c(1 + ◁↓1) ↼2

k↓1∑

↼=0

(
1 + ◁

(1 + ↼”)2

)↼

(18)

for any ◁ ↑ (0, 1) and with a constant c = c(ϱ↓1, C1,M).

Corollary 9. Fix ⇁ > 0 and ϱ ↑ (0, 1/2). Let E ↑ C(Rd) satisfy A1– A4 with ” > 0. Then, in the
setting of Theorem 8 and with probability larger than 1↓ (ϱ + ⇁), it holds for all k = 1, . . . ,K that

∥∥xCH
k ↓ xMMS

k

∥∥2
2
⇔ ⇁↓1c(1 + ◁↓1)↼2

(1 + ↼”)2

(1 + ↼”)2 ↓ (1 + ◁)
. (19)

5 Conclusions

In this paper we provided a novel analytical perspective on the theoretical understanding of gradient-
based learning algorithms by showing that consensus-based optimization (CBO), an intrinsically
derivative-free optimization method guaranteed to globally converge to global minimizers of poten-
tially nonsmooth and nonconvex loss functions, implicitly behaves like a gradient-based method.
This allows to interpret CBO as a stochastic relaxation of gradient descent. Besides forging such
unexpected link and thereby driving forward our theoretical understanding of both gradient-based
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learning methods and metaheuristic black-box optimization algorithms, we widen the scope of ap-
plications of methods which — in one way or another, be it explicitly or implicitly — estimate and
exploit gradients. In particular, we believe these insights to bear the potential for designing efficient
and reliable training methods which behave like first-order methods while not relying on the ability
of computing gradients. Potential areas of application in machine learning may include the usage of
nonsmooth losses, hyperparameter tuning, convex bandits, reinforcement learning, the training of
sparse and pruned neural networks, or federated learning.

An analogous analysis approach may be carried over to second-order methods (with momentum),
allowing to establish a link between Adam [2] and the well-known particle swarm optimization
method [32], which is related to CBO through a zero-inertia limit [42, 69]. Together with recent
observations [79] based on tools from kinetic theory that simulated annealing [38–40] is related to the
Langevin dynamics [52–54], this would strengthen even further the surprising and yet largely unex-
plored link between gradient-based learning algorithms and derivative-free metaheuristic optimization
methods. Beyond that we envisage the likely connections between consensus-based sampling [80]
and log-concave sampling or sampling by Langevin flows [81–84].
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Supplemental Material

Supplemental material for the paper: “Gradient is All You Need?” authored by Konstantin Riedl,
Timo Klock, Carina Geldhauser, and Massimo Fornasier.

This supplemental material is organized into the following six appendices.

• Appendix A: Introductory facts

• Appendix B: Discussion of Assumption 2

• Appendix C: Boundedness of the numerical schemes

• Appendix D: Proof details for Theorem 6

• Appendix E: Proof details for Proposition 7 and Theorem 8

• Appendix F: Additional numerical experiments

A Introductory facts

Notation. To keep the notation concise, we hide generic constants, i.e., we write a ↫ b for a ⇔ cb,
if c is a constant independent of problem-dependent constants. Moreover, since we work with random
variables in several instances, many equalities and inequalities hold almost surely without being
mentioned explicitly. We abbreviate with i.i.d. independently and identically distributed.

We write ↔•↔2 and ↙• , •∝ for the Euclidean norm and scalar product on Rd, respectively. Euclidean
balls are denoted by Br(x) := {z ↑ Rd : ↔z ↓ x↔2 ⇔ r}. Moreover, we write ↔•↔↗ for the
0↗-norm and denote the associated 0↗-balls by B↗

r (x) := {z ↑ Rd : ↔z ↓ x↔↗ ⇔ r}.

For the space of continuous functions f : X → Y we write C(X,Y ), with X ′ Rn and a suitable
topological space Y . For an open set X ′ Rn and for Y = Rm the space C

k(X,Y ) contains
functions f ↑ C(X,Y ) that are k-times continuously differentiable. We omit Y in the real-valued
case, i.e., C(X) = C(X,R) and C

k(X) = C
k(X,R).

The operator ≃ denotes the gradient of a function on Rd.

Convex analysis. For a convex function f ↑ C(Rd) the subdifferential ⇀f(x) at a point x ↑ Rd is
the set

⇀f(x) =
{
p ↑ Rd : f(y) ↖ f(x) + ↙p, y ↓ x∝ for all y ↑ Rd

}
.

In the setting f ↑ C(Rd), ⇀f(x) is closed, convex, nonempty and bounded. If f ↑ C
1(Rd),

⇀f(x) = {≃f(x)}. Moreover, it is straightforward to verify that for x1, x2, p1, p2 ↑ Rd with
p1 ↑ ⇀f(x1) and p2 ↑ ⇀f(x2) it holds ↙p1 ↓ p2, x1 ↓ x2∝ ↖ 0.

Probability measures. The set of all Borel probability measures over Rd is denoted by P(Rd). For
p > 0, we collect measures ς ↑ P(Rd) with finite p-th moment


↔x↔p2 dς(x) in Pp(Rd).

The Dirac delta ϱx for a point x ↑ Rd is a measure satisfying ϱ(B) = 1 if x ↑ B and ϱ(B) = 0 if
x ∞↑ B for any measurable set B ′ Rd.

Wasserstein distance. For any 1 ⇔ p < ↗, the Wasserstein-p distance between two Borel
probability measures ς, ς↔ ↑ Pp(Rd) is defined by

Wp(ς, ς
↔) =


inf

ϱ↑”(ε,ε↑)

∫
↔x↓ x↔

↔
p
2 d▷(x, x

↔)

1/p

, (20)

where $(ς, ς↔) denotes the set of all couplings of (a.k.a. transport plans between) ς and ς↔, i.e.,
the collection of all Borel probability measures over Rd

∈ Rd with marginals ς and ς↔ on the first
and second component, respectively, see, e.g., [75, 76]. Pp(Rd) endowed with the Wasserstein-p
distance Wp is a complete separable metric space [75, Proposition 7.1.5].
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A generalized triangle-type inequality. It holds for p, J ↑ N by Hölder’s inequality


J∑

j=1

aj



p

⇔ Jp↓1
J∑

j=1

|aj |
p . (21)

A discrete variant of Grönwall’s inequality. If zk ⇔ azk↓1 + b with a, b ↖ 0 for all k ↖ 1, then

zk ⇔ akz0 + b
k↓1∑

↼=0

a↼ ⇔ akz0 + b
k↓1

↼=1

(1 + a) ⇔ akz0 + bea(k↓1) (22)

for all k ↖ 1. Notice that, while the first inequality in (22) is as sharp as the initial estimates, the
remaining two inequalities are rather rough upper bounds.

B Discussion of Assumption 2

Assumption A1 requires that the continuous objective function E attains its globally minimal value E

at some x→
↑ Rd. This does in particular not exclude objectives with multiple global minimizers.

Remark B.1. For the global convergence results [30, 31] of CBO (which we recapitulated in
Section 3), however, uniqueness of the global minimizer x→ is required and implied by an additional
coercivity condition of the form ↔x↓ x→

↔↗ ⇔ (E(x) ↓ E)ϖ/η, which has to hold for all x ↑ Rd

with constants η, ν > 0. It can be regarded as a tractability condition of the energy landscape of E
and is also known as the inverse continuity property from [29] or as the error bound condition from
[85–88]. Actually, as stated in [30, Assumption A2], it is sufficient if such coercivity condition holds
locally around the unique global minimizer x→, provided that in the farfield, E is well above E . More
precisely, for the results of Section 3 to hold, it is sufficient if E ↑ C(Rd) satisfies

↔x↓ x→
↔↗ ⇔

1

η
(E(x)↓ E)ϖ for all x ↑ B↗

R0
(x→)

E(x)↓ E > E↗ for all x ↑
(
B↗

R0
(x→)

)c

with constants η, ν, E↗, R0 > 0.

To deploy CBO in the setting of objective functions with several global minima, Bungert et al. [78]
propose a polarized variant of CBO, which localizes the dynamics by integrating a kernel in the
computation of the consensus point (3). This ensures that each particle is primarily influenced by
particles close to it, allowing for the creation of clusters.

Assumptions A2 and A3 can be regarded as regularity conditions on the objective landscape of E . The
first part of A2, Equation (7), is a local Lipschitz condition, which ensures that the objective function
does not change too quickly, assuring that the information obtained when evaluating the function
is informative within a region around the point of evaluation. The second part of A2, Equation (8),
controls and limits the growth of the objective in the farfield. In combination with the second option
in A3, Equation (9), this forces the objective to grow quadratically in the farfield. However, note
that one can always redefine the objective outside a sufficiently large ball such that both conditions
are met while the other assumptions are preserved. Alternatively, the first option in A3 allows for
bounded functions.

Assumption A4 requires the objective E to be semi-convex with parameter ” ↑ R. For ” > 0,
”-convexity is stronger than convexity (strong convexity with parameter ”). For ” < 0, semi-
convexity is weaker, i.e., potentially nonconvex functions E are included in the definition. The class
of semi-convex functions is typical in the literature of gradient flows, since their general theory
extends from the convex to this more general setting [74]. One particular property, which we shall
exploit in this work, is that for such functions the time discretization of a gradient flow, potentially
for a small step size, defined through an iterated scheme, called minimizing movement scheme [72],
is well-defined. However, while semi-convexity is useful to ensure the well-posedness of gradient
flows, it is not sufficient to obtain convergence to global minimizers. Other properties such as the
Polyak-!ojasiewicz condition [59] or the log-Sobolev inequalities governing the flow of the Langevin
dynamics [11] may be necessary.
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C Boundedness of the numerical schemes

Before showing the boundedness in expectation of the numerical schemes (4), (13), (15) and (14)
over time in Sections C.1– C.4, respectively, let us first recall from [26, Lemma 3.3] an estimate on
the consensus point (3), which facilitates the subsequent proofs.
Lemma C.1 (Boundedness of consensus point xE

ω). Let E ↑ C(Rd) satisfy A1– A3. Moreover, let
ς ↑ P2(Rd). Then it holds

∥∥xE
ω(ς)

∥∥2
2
⇔ b1 + b2

∫
↔x↔22 dς(x)

with constants b1 = 0 and b2 = b2(ω, E , E) > 0 in case the first condition of A3 holds and with
bi = bi(ω, C2, C3, C4) > 0 for i = 1, 2 as given in (23) in case of the second condition of A3.

Proof. In case the first condition of A3 holds, we have by definition of the consensus point xE
ω in (3)

and Jensen’s inequality

∥∥xE
ω(ς)

∥∥2
2
⇔

∫
↔x↔22

φE
ω(x)

↔φE
ω↔L1(ε)

dς(x) ⇔ eω(E↓E)
∫

↔x↔22 dς(x).

In case of the second condition of A3, the statement follows from [26, Lemma 3.3] with constants

b1 = C2
4 + b2 and b2 = 2

C2

C3


1 +

1

ωC3

1

C2
4


, (23)

which concludes the proof.

With this estimate we have all necessary tools at hand to prove the boundedness of the numerical
schemes investigated in this paper.

C.1 Boundedness of the consensus-based optimization (CBO) dynamics (2) and (4)

Let us remind the reader that the iterates (xCBO
k )k=0,...,K of the consensus-based optimization (CBO)

scheme (4) are defined by

xCBO
k = xE

ω(ϖ̂
N
k ), with ϖ̂Nk =

1

N

N∑

i=1

ϱXi
k
,

xCBO
0 = x0 ↘ ϖ0,

where the iterates
(
(Xi

k)k=0,...,K

)
i=1,...,N

are given as in (2) by

Xi
k = Xi

k↓1 ↓!tε
(
Xi

k↓1 ↓ xE
ω(ϖ̂

N
k↓1)

)
+ ϑD

(
Xi

k↓1 ↓ xE
ω(ϖ̂

N
k↓1)

)
Bi

k,

Xi
0 = xi

0 ↘ ϖ0

with Bi
k being i.i.d. Gaussian random vectors in Rd with zero mean and covariance matrix !tId for

k = 0, . . . ,K and i = 1, . . . , N , i.e., Bi
k ↘ N (0,!tId).

Lemma C.2 (Boundedness of the CBO dynamics (2) and the CBO scheme (4)). Let E ↑ C(Rd)
satisfy A1– A3. Moreover, let ϖ0 ↑ P4(Rd). Then, for the empirical random measures (ϖ̂Nk )k=0,...,K

and the iterates (Xi
k)k=0,...,K of (2) it holds

E max
k=0,...,K

∫
↔x↔42 dϖ̂

N
k (x) ⇔ M

CBO and max
i=1,...,N

E max
k=0,...,K

∥∥Xi
k

∥∥4
2
⇔ M

CBO

with a constant M
CBO = M

CBO(ε,ϑ, d, b1, b2,K!t,K, ϖ0) > 0. Moreover, for the iter-
ates (xCBO

k )k=0,...,K of (4) it holds

E max
k=0,...,K

∥∥xCBO
k

∥∥4
2
⇔ M

CBO.
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Proof. We first note that Xi
k as defined iteratively in (2) satisfies

Xi
k = Xi

0 ↓!tε
k∑

↼=1

(
Xi

↼↓1 ↓ xE
ω(ϖ̂

N
↼↓1)

)
+ ϑ

k∑

↼=1

D
(
Xi

↼↓1 ↓ xE
ω(ϖ̂

N
↼↓1)

)
Bi

↼

and that for any k = 1, . . . ,K by means of the standard inequality (21) for p = 4 and J = 3 we have

max
↼=0,...,k

∥∥Xi
↼

∥∥4
2
↫

∥∥Xi
0

∥∥4
2
+ (!tε)4 max

↼=1,...,k

∥∥∥∥∥

↼∑

m=1

(
Xi

m↓1 ↓ xE
ω(ϖ̂

N
m↓1)

)
∥∥∥∥∥

4

2

+ ϑ4 max
↼=1,...,k

∥∥∥∥∥

↼∑

m=1

D
(
Xi

m↓1 ↓ xE
ω(ϖ̂

N
m↓1)

)
Bi

m

∥∥∥∥∥

4

2

.

(24)

Noticing that the random process Y i
↼ :=

∑↼
m=1 D

(
Xi

m↓1 ↓ xE
ω(ϖ̂

N
m↓1)

)
Bi

m, 0 = 0, . . . , k is
a martingale w.r.t. the filtration

{
F↼ = ϑ

(
{Xi

0} ∋ {Bi
m,m = 1, . . . , 0}

)}k↓1

↼=0
since it satisfies

E

Y i
↼ | F↼↓1


= Y i

↼↓1 for 0 = 1, . . . , k, we can apply a discrete version of the Burkholder-Davis-
Gundy inequality [89, Corollary 11.2.1] yielding

E max
↼=1,...,k

∥∥∥∥∥

↼∑

m=1

D
(
Xi

m↓1↓xE
ω(ϖ̂

N
m↓1)

)
Bi

m

∥∥∥∥∥

4

2

↫ dE
d∑

j=1

(
k∑

↼=1

(
D
(
Xi

↼↓1↓xE
ω(ϖ̂

N
↼↓1)

))2
jj
(Bi

↼)
2
j

)2

.

Thus, when taking the expectation on both sides of (24) and employing Jensen’s inequality, we can
use the latter to obtain

E max
↼=0,...,k

∥∥Xi
↼

∥∥4
2
↫ E

∥∥Xi
0

∥∥4
2
+ (!tε)4K3 E

k∑

↼=1

∥∥Xi
↼↓1 ↓ xE

ω(ϖ̂
N
↼↓1)

∥∥4
2

+ ϑ4dK E
d∑

j=1

k∑

↼=1

(
D
(
Xi

↼↓1 ↓ xE
ω(ϖ̂

N
↼↓1)

))4
jj
(Bi

↼)
4
j

↫ E
∥∥Xi

0

∥∥4
2
+ (!tε)4K3 E

k∑

↼=1

(∥∥Xi
↼↓1

∥∥4
2
+

∥∥xE
ω(ϖ̂

N
↼↓1)

∥∥4
2

)

+ (!t)2ϑ4dK E
d∑

j=1

k∑

↼=1

((
Xi

↼↓1

)4
j
+

(
xE
ω(ϖ̂

N
↼↓1)

)4
j

)

↫
(
1 + (!tε)4K3 + (!tϑ2d)2K

)
E

k∑

↼=1

(∥∥Xi
↼↓1

∥∥4
2
+

∥∥xE
ω(ϖ̂

N
↼↓1)

∥∥4
2

)

↫
(
1 + ε4(K!t)4 + ϑ4d2(K!t)2

)
E max

↼=1,...,k

(∥∥Xi
↼↓1

∥∥4
2
+

∥∥xE
ω(ϖ̂

N
↼↓1)

∥∥4
2

)

⇔ C E max
↼=1,...,k

∥∥Xi
↼↓1

∥∥4
2
+ b21 + b22

∫
↔x↔42 dϖ̂

N
↼↓1(x)



(25)

with a constant C = C(ε,ϑ, d,K!t). In the second step we made use of the standard inequality (21)
for p = 4 and J = 2, exploited that Bi

↼ is independent from D
(
Xi

↼↓1 ↓ xE
ω(ϖ̂

N
↼↓1)

)
for any 0 =

1, . . . , k and used that the fourth moment of a Gaussian random variable B ↘ N (0, 1) is EB4 = 3

(e.g., by recalling that EB4 = d4

dx4MB(x)

x=0

, where MB denotes the moment-generating function
of B). Moreover, recall that K!t denotes the final time horizon, and note that the last step is due to
Lemma C.1. Averaging (25) over i allows to bound

1

N

N∑

i=1

E max
↼=0,...,k

∥∥Xi
↼

∥∥4
2
⇔ C̃

(
1 +

1

N

N∑

i=1

E max
↼=1,...,k

∥∥Xi
↼↓1

∥∥4
2

)
(26)
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with a constant C̃ = C̃(ε,ϑ, d, b1, b2,K!t). Since E

↔x↔42 dϖ̂

N
0 (x) = 1

N

∑N
i=1 E ↔xi

0↔
4
2, an

application of the discrete variant of Grönwall’s inequality (22) yields the second inequality in

E max
↼=0,...,k

∫
↔x↔42 dϖ̂

N
↼ (x) ⇔

1

N

N∑

i=1

E max
↼=0,...,k

∥∥Xi
↼

∥∥4
2

⇔ C̃k E
∫

↔x↔42 dϖ̂
N
0 (x) + C̃eC̃(k↓1),

(27)

showing that the left-hand side is bounded independently of N , which gives the first bound in the first
part of the statement. Making use thereof in (25) also yields the second part after another application
of Grönwall’s inequality. The second part of the statement follows by noting that an application of
Lemma C.1 gives

E max
↼=1,...,k

∥∥xCBO
↼

∥∥4
2
= E max

↼=1,...,k

∥∥xE
ω(ϖ̂

N
↼ )

∥∥4
2

⇔ 2b21 + 2b22 E max
↼=1,...,k

∫
↔x↔42 dϖ̂

N
↼ (x),

where the last expression is bounded as in (27). Recalling that xCBO
0 = x0 ↘ ϖ0 ↑ P4(Rd) and

choosing the constant MCBO large enough for all three estimates to hold with k = K concludes the
proof.

C.2 Boundedness of the consensus hopping scheme (13)

Let us recall that the iterates (xCH
k )k=0,...,K of the consensus hopping (CH) scheme (13) are defined

by
xCH
k = xE

ω(µk), with µk = N
(
xCH
k↓1, ϑ̃

2Id
)
,

xCH
0 = x0.

Lemma C.3 (Boundedness of the CH scheme (13)). Let E ↑ C(Rd) satisfy A1– A3. Moreover, let
ϖ0 ↑ P4(Rd). Then, for the random measures (µk)k=1,...,K in (13) it holds

E max
k=1,...,K

∫
↔x↔42 dµk(x) ⇔ M

CH

with a constant MCH = M
CH(ϑ̃, d, b1, b2,K, ϖ0) > 0. Moreover, for the iterates (xCH

k )k=0,...,K

of (13) it holds
E max

k=0,...,K

∥∥xCH
k

∥∥4
2
⇔ M

CH.

Proof. According to the definition of the scheme (13) and with the standard inequality (21) for p = 4
and J = 2, we observe that for any k = 2, . . . ,K it holds

∫
↔x↔42 dµk(x) =

∫
↔x↔42 dN

(
xCH
k↓1, ϑ̃

2Id
)
(x)

↫
∥∥xCH

k↓1

∥∥4
2
+

∫
↔x↔42 dN

(
0, ϑ̃2Id

)
(x)

=
∥∥xE

ω(µk↓1)
∥∥4
2
+ (d2 + 2d) ϑ̃4

↫ b21 + b22

∫
↔x↔42 dµk↓1(x) + d2ϑ̃4,

where for the third step we explicitly computed that for the fourth moment of a multivariate Gaussian
distribution it holds


↔x↔42 dN (0, Id) (x) = d2 + 2d. Moreover, in the final step we employed

Lemma C.1 together with Jensen’s inequality. Along the same lines we have

↔x↔42 dµ1(x) ↫

↔x0↔
4
2 + d2ϑ̃4. An application of the discrete variant of Grönwall’s inequality (22) therefore allows

to obtain
∫

↔x↔42 dµk(x) ↫ b2k2 ↔x0↔
4
2 +

(
b21 + d2ϑ̃4

)
ecb

2

2
(k↓1)

19



with a generic constant c > 0. Taking the maximum over the iterations k and the expectation w.r.t.
the initial condition ϖ0 gives the first part of the statement. Recalling that xCH

0 = x0 ↘ ϖ0 ↑ P4(Rd),
the second part follows after an application of Lemma C.1, since

E max
↼=1,...,k

∥∥xCH
↼

∥∥4
2
= E max

↼=1,...,k

∥∥xE
ω(µ↼)

∥∥4
2

⇔ 2b21 + 2b22 E max
↼=1,...,k

∫
↔x↔42 dµ↼(x).

Choosing the constant MCH large enough for either estimate to hold with k = K concludes the
proof.

Lemma C.4. Let Y i
k ↘ µk for i = 1, . . . , N and let µ̂N

k = 1
N

∑N
i=1 ϱY i

k
. Then, under the assump-

tions of Lemma C.3, for the empirical random measures (µ̂N
k )k=1,...,K it holds

E max
k=1,...,K

∫
↔x↔42 dµ̂

N
k (x) ⇔ MCH

with a constant MCH = MCH(ϑ̃, d, b1, b2,K, ϖ0) > 0.

Proof. By definition of the empirical measure µ̂N
k it holds

E max
k=1,...,K

∫
↔x↔42 dµ̂

N
k (x) = E max

k=1,...,K

1

N

N∑

i=1

∥∥Y i
k

∥∥4
2
⇔

1

N

N∑

i=1

E max
k=1,...,K

∥∥Y i
k

∥∥4
2
. (28)

Since Y i
k ↘ µk = N

(
xCH
k↓1, ϑ̃

2Id
)

for any k = 1, . . . ,K and i = 1, . . . , N , we can write Y i
k =

xCH
k↓1 + ϑ̃Bi

Y,k, where Bi
Y,k is a standard Gaussian random vector, i.e., Bi

Y,k ↘ N (0, Id). By means
of the standard inequality (21) for p = 4 and J = 2 we thus have

E max
k=1,...,K

∥∥Y i
k

∥∥4
2
↫ E max

k=1,...,K

∥∥xCH
k↓1

∥∥4
2
+ ϑ̃4E max

k=1,...,K

∥∥Bi
Y,k

∥∥4
2

⇔ M
CH +Kϑ̃4(d2 + 2d),

(29)

where in the last step we employed Lemma C.3 for the first term and bounded the maximum by the
sum in the second term before using again that E↔B↔

4
2 = d2 + 2d for B ↘ N (0, Id). Inserting (29)

into (28) yields the claim.

C.3 Boundedness of the minimizing movement scheme (15)

We recall that the iterates (xMMS
k )k=0,...,K of the minimizing movement scheme (MMS) (15) are

defined by

xMMS
k = argmin

x↑Rd

Ek(x), with Ek(x) :=
1

2↼

∥∥xMMS
k↓1 ↓ x

∥∥2
2
+ E(x),

xMMS
0 = x0.

Lemma C.5 (Boundedness of the MMS (15)). Let E ↑ C(Rd) satisfy A1– A2. Moreover, let
ϖ0 ↑ P4(Rd). Then, for the iterates (xMMS

k )k=0,...,K of (15) it holds

E max
k=0,...,K

∥∥xMMS
k

∥∥4
2
⇔ M

MMS

with a constant MMMS = M
MMS(K↼, C2, ϖ0) > 0.

Proof. Since xMMS
k is the minimizer of Ek, see (15), a comparison with the old iterate xMMS

k↓1 yields

1

2↼

∥∥xMMS
k↓1 ↓ xMMS

k

∥∥2
2
+ E(xMMS

k ) ⇔ E(xMMS
k↓1 )
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for any k = 1, . . . ,K. Using the standard inequality (21) for p = 2 and J = k, this can be utilized to
obtain

∥∥xMMS
k

∥∥2
2
⇔ 2

∥∥xMMS
0

∥∥2
2
+ 2K

k∑

↼=1

∥∥xMMS
↼ ↓ xMMS

↼↓1

∥∥2
2

⇔ 2
∥∥xMMS

0

∥∥2
2
+ 4K↼

k∑

↼=1

(
E(xMMS

↼↓1 )↓ E(xMMS
↼ )

)

= 2
∥∥xMMS

0

∥∥2
2
+ 4K↼

(
E(xMMS

0 )↓ E(xMMS
k )

)

⇔ 2 ↔x0↔
2
2 + 4K↼ (E(x0)↓ E)

⇔ 2 ↔x0↔
2
2 + 4K↼C2(1 + ↔x0↔

2
2)

= 2 (1 + 2K↼C2) ↔x0↔
2
2 + 4K↼C2,

which trivially also holds for k = 0. Taking the square and expectation w.r.t. the initial condition ϖ0
on both sides concludes the proof.

C.4 Boundedness of the implicit version of the CH scheme (14)

Let us recall that the iterates (x̃CH
k )k=0,...,K of the scheme (14) are defined by

x̃CH
k = argmin

x↑Rd

Ẽk(x), with Ẽk(x) :=
1

2↼

∥∥xCH
k↓1 ↓ x

∥∥2
2
+ E(x),

x̃CH
0 = x0.

Lemma C.6 (Boundedness of the implicit version of the CH scheme (14)). Let E ↑ C(Rd) satisfy
A1– A3. Moreover, let ϖ0 ↑ P4(Rd). Then, for the iterates (x̃CH

k )k=0,...,K of (14) it holds

E max
k=0,...,K

∥∥x̃CH
k

∥∥4
2
⇔ MCH

with a constant MCH = MCH(↼, C2,MCH) > 0.

Proof. Since x̃CH
k is the minimizer of Ẽk, see (14), a comparison with xCH

k↓1 yields
1

2↼

∥∥xCH
k↓1 ↓ x̃CH

k

∥∥2
2
+ E(x̃CH

k ) ⇔ E(xCH
k↓1).

This can be utilized to obtain
∥∥x̃CH

k

∥∥2
2
= 2

∥∥x̃CH
k ↓ xCH

k↓1

∥∥2
2
+ 2

∥∥xCH
k↓1

∥∥2
2

⇔ 4↼
(
E(xCH

k↓1)↓ E(x̃CH
k )

)
+ 2

∥∥xCH
k↓1

∥∥2
2

⇔ 4↼
(
E(xCH

k↓1)↓ E
)
+ 2

∥∥xCH
k↓1

∥∥2
2

⇔ 4↼C2

(
1 +

∥∥xCH
k↓1

∥∥2
2

)
+ 2

∥∥xCH
k↓1

∥∥2
2

= 2 (1 + 2↼C2)
∥∥xCH

k↓1

∥∥2
2
+ 4↼C2.

Taking the square and expectation w.r.t. the initial condition ϖ0 on both sides concludes the proof by
virtue of Lemma C.3.

C.5 Boundedness of all numerical schmemes

Remark C.7 (Boundedness of the schemes (4), (13), (14) and (15)). To keep the notation of the main
body of the paper concise, we denote by M the collective moment bound

M = max

M

CBO, MCBO,MCH, MCH, MMMS, MCH

, (30)

where M
CBO, MCH, MCH, MMMS, and MCH are as defined in Lemmas C.2, C.3, C.4, C.5,

and C.6, respectively. Moreover, MCBO = M
CBO(1/!t,ϑ, d, b1, b2,K!t,K, ϖ0).
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D Proof details for Theorem 6

Theorem 6 is centered around the observation that, as ε → 1/!t in the CBO dynamics (2), the CBO
scheme (4) resembles an implementation of the CH scheme (13) via sampling from the underlying
distribution µk and computing the associated weighted empirical average. Accordingly, the proof of
Theorem 6 consists of three ingredients. First, a stability estimate for the CBO dynamics (2) w.r.t.
the parameter ε, see Lemma D.2. Second, a quantification of the structural difference in the noise
component between the CBO scheme (4) and the CH scheme (13), and third a large deviation bound
to control the sampling error associated with the Monte Carlo approximation of the CH scheme (13),
see Lemma D.3.

D.1 Stability of the consensus point (3) w.r.t. the underlying measure

We first recall from [26, Lemma 3.2] in a slightly modified form a stability estimate for the consensus
point (3) w.r.t. the measure from which it is computed. Loosely speaking, we show that the mapping
xE
ω : P(Rd) → Rd is Lipschitz-continuous in the Wasserstein-2 metric.

Lemma D.1 (Stability of the consensus point xE
ω). Let E ↑ C(Rd) satisfy A1– A2. Moreover, let

ς, ς↔ ↑ P(Rd) be random measures and define the cutoff function (random variable)

I
1
M =


1, if max


↔•↔

4
2 dς,


↔•↔

4
2 dς

↔

⇔ M4,

0, else.

Then it holds ∥∥xE
ω(ς)↓ xE

ω(ς
↔)
∥∥
2
I
1
M ⇔ c0W2(ς, ς

↔)I1
M

with a constant c0 = c0(ω, C1, C2,M) > 0.

Proof. To start with, we note that under A2 and with Jensen’s inequality it holds

e↓ωE
I
1
M

↔φE
ω↔L1(ε)

=
I
1
M

exp (↓ω(E(x)↓ E)) dς(x)
⇔

I
1
M

exp
(
↓ωC2(1 + ↔x↔22)

)
dς(x)

⇔
I
1
M

exp
(
↓ωC2(1 +


↔x↔22 dς(x))

) ⇔ exp
(
ωC2(1 +M2)

)
=: cM .

(31)

An analogous statement can be obtained for the measure ς↔.

By definition of the consensus point xE
ω in (3), it holds for any coupling ▷ ↑ $(ς, ς↔) between ς and

ς↔ by Jensen’s inequality

∥∥xE
ω(ς)↓ xE

ω(ς
↔)
∥∥
2
I
1
M ⇔

∫∫ ∥∥∥∥∥x
φE
ω(x)

↔φE
ω↔L1(ε)

↓ x↔ φE
ω(x

↔)

↔φE
ω↔L1(ε↑)

∥∥∥∥∥
2

d▷(x, x↔) I1
M

⇔

∫∫ (
↔T1(x, x

↔)↔2 + ↔T2(x, x
↔)↔2 + ↔T3(x, x

↔)↔2
)
d▷(x, x↔) I1

M ,

(32)

where the terms T1, T2 and T3 are defined implicitly and bounded as follows. For the first term T1

we have

↔T1(x, x
↔)↔2 I

1
M = ↔x↓ x↔

↔2

φE
ω(x)

↔φE
ω↔L1(ε)

I
1
M ⇔ cM ↔x↓ x↔

↔2 I
1
M , (33)

where we utilized (31) in the last step. For the second term T2, with A2 and again (31) we obtain

↔T2(x, x
↔)↔2 I

1
M = ↔x↔

↔2

φE
ω(x)↓ φE

ω(x
↔)


↔φE
ω↔L1(ε)

I
1
M

⇔ ↔x↔
↔2

ωe↓ωEC1(↔x↔2 + ↔x↔
↔2) ↔x↓ x↔

↔2

↔φE
ω↔L1(ε)

I
1
M

⇔ ωcMC1 ↔x
↔
↔2 (↔x↔2 + ↔x↔

↔2) ↔x↓ x↔
↔2 I

1
M .

(34)
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Eventually, for the third therm T3 it holds by following similar steps

↔T3(x, x
↔)↔2 I

1
M = ↔x↔

↔2 φ
E
ω(x

↔)


∥∥φE

ω

∥∥
L1(ε↑)

↓
∥∥φE

ω

∥∥
L1(ε)


↔φE

ω↔L1(ε)
↔φE

ω↔L1(ε↑)

I
1
M

⇔ cM ↔x↔
↔2


ωe↓ωEC1(↔x↔2 + ↔x↔

↔2) ↔x↓ x↔
↔2 d1(x, x

↔)

↔φE
ω↔L1(ε)

I
1
M

⇔ ωc2MC1 ↔x
↔
↔2

∫∫
(↔x↔2 + ↔x↔

↔2) ↔x↓ x↔
↔2 d1(x, x

↔) I1
M .

(35)

Collecting the estimates (33) – (35) in (32), we obtain with Cauchy-Schwarz inequality and by
exploiting the definition of I1

M that

∥∥xE
ω(ς)↓ xE

ω(ς
↔)
∥∥
2
I
1
M ⇔ cM

(
1 + 2ω(1 + cM )C1M

2
)
∫∫

↔x↓ x↔↔
2
2 d▷(x, x

↔) I1
M . (36)

Squaring both sides and optimizing over all couplings ▷ ↑ $(ς, ς↔) concludes the proof.

D.2 Stability of the CBO dynamics (2) w.r.t. the parameters ε and ϑ

Let us now show the stability of the CBO dynamics (2) w.r.t. its parameters, in particular, the drift
and noise parameters ε and ϑ. For this we control in Lemma D.2 below the mismatch of the iterates
of the CBO dynamics (2) for different parameters, however, provided coinciding initialization and
discrete Brownian motion paths.

Lemma D.2 (Stability of the CBO dynamics (2)). Let E ↑ C(Rd) satisfy A1– A3. Moreover,
let ϖ0 ↑ P4(Rd). We denote by

(
(Xi,1

k )k=0,...,K

)
i=1,...,N

and
(
(Xi,2

k )k=0,...,K

)
i=1,...,N

solutions

to (2) with parameters ε1,ϑ1 and ε2,ϑ2, respectively. Furthermore, we write (ϖ̂N,1
k )k=0,...,K and

(ϖ̂N,2
k )k=0,...,K for the associated empirical measures and introduce the cutoff function (random

variable)

I
1
M,k =


1, if max


↔•↔

4
2 dϖ̂

N,1
k ,


↔•↔

4
2 dϖ̂

N,2
k


⇔ M4,

0, else.
(37)

Then, under the assumption of coinciding initial conditions Xi,1
0 = Xi,2

0 for all i = 1, . . . , N as well
as Gaussian random vectors Bi

k for all k = 1, . . . ,K and all i = 1, . . . , N , it holds

1

N

N∑

i=1

E
∥∥Xi,1

k ↓Xi,2
k

∥∥2
2
I
1
M,k ⇔ c1

(
|ε1 ↓ ε2|

2 + |ϑ1 ↓ ϑ2|
2
)
ec2(k↓1)

with constants c1 = c1(!t, d, b1, b2,M) > 0 and c2 = c2(!t, d,ω,ε2,ϑ2, C1, C2,M) > 0 for all
k ↖ 1.

Proof. Let us first remark that the cutoff function I
1
M,k defined in (37) is adapted to

the natural filtration {Fk}k=0,...,K , where Fk denotes the sigma algebra generated by
{Bi

↼, 0 = 1, . . . , k, i = 1, . . . , N}. Now, using the iterative update rule (2) for Xi,1
k and Xi,2

k with
parameters ε1,ϑ1 and ε2,ϑ2, respectively, we obtain, by employing the standard inequality (21) for
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p = 2 and J = 5, for their squared norm difference the upper bound
∥∥Xi,1

k ↓Xi,2
k

∥∥2
2
↫

∥∥Xi,1
k↓1 ↓Xi,2

k↓1

∥∥2
2
+ (!t |ε1↓ε2|)

2
(∥∥Xi,1

k↓1

∥∥2
2
+

∥∥xE
ω(ϖ̂

N,1
k↓1)

∥∥2
2

)

+ (!tε2)
2
(∥∥Xi,1

k↓1 ↓Xi,2
k↓1

∥∥2
2
+

∥∥xE
ω(ϖ̂

N,1
k↓1)↓ xE

ω(ϖ̂
N,2
k↓1)

∥∥2
2

)

+ |ϑ1↓ϑ2|
2
(∥∥Xi,1

k↓1

∥∥2
2
+

∥∥xE
ω(ϖ̂

N,1
k↓1)

∥∥2
2

)∥∥Bi
k

∥∥2
2

+ ϑ2
2

(∥∥Xi,1
k↓1 ↓Xi,2

k↓1

∥∥2
2
+
∥∥xE

ω(ϖ̂
N,1
k↓1)↓ xE

ω(ϖ̂
N,2
k↓1)

∥∥2
2

)∥∥Bi
k

∥∥2
2

↫
(
1+(!tε2)

2+ϑ2
2

∥∥Bi
k

∥∥2
2

)(∥∥Xi,1
k↓1↓Xi,2

k↓1

∥∥2
2
+
∥∥xE

ω(ϖ̂
N,1
k↓1)↓xE

ω(ϖ̂
N,2
k↓1)

∥∥2
2

)

+
(
(!t |ε1↓ε2|)

2 + |ϑ1↓ϑ2|
2 ∥∥Bi

k

∥∥2
2

)(∥∥Xi,1
k↓1

∥∥2
2
+
∥∥xE

ω(ϖ̂
N,1
k↓1)

∥∥2
2

)
.

(38)

Since I
1
M,k satisfies I1

M,k = I
1
M,kI

1
M,↼ for all 0 ⇔ k and I

1
M,k ⇔ 1, we obtain from (38) that

∥∥Xi,1
k ↓Xi,2

k

∥∥2
2
I
1
M,k

↫
(
1+(!tε2)

2+ϑ2
2

∥∥Bi
k

∥∥2
2

)(∥∥Xi,1
k↓1 ↓Xi,2

k↓1

∥∥2
2
+

∥∥xE
ω(ϖ̂

N,1
k↓1)↓ xE

ω(ϖ̂
N,2
k↓1)

∥∥2
2

)
I
1
M,k↓1

+
(
(!t |ε1↓ε2|)

2 + |ϑ1↓ϑ2|
2 ∥∥Bi

k

∥∥2
2

)(∥∥Xi,1
k↓1

∥∥2
2
+
∥∥xE

ω(ϖ̂
N,1
k↓1)

∥∥2
2

)
I
1
M,k↓1.

With the random variables Xi,1
k↓1, Xi,2

k↓1, xE
ω(ϖ̂

N,1
k↓1), x

E
ω(ϖ̂

N,2
k↓1) and I

1
M,k↓1 being Fk↓1-measurable,

taking the expectation w.r.t. the sampling of the random vectors Bi
k, i = 1, . . . , N , i.e., the conditional

expectation Ek = E [ • |Fk↓1], yields

Ek

∥∥Xi,1
k ↓Xi,2

k

∥∥2
2
I
1
M,k

↫
(
1+(!tε2)

2+d!tϑ2
2

) (∥∥Xi,1
k↓1 ↓Xi,2

k↓1

∥∥2
2
+

∥∥xE
ω(ϖ̂

N,1
k↓1)↓ xE

ω(ϖ̂
N,2
k↓1)

∥∥2
2

)
I
1
M,k↓1

+
(
(!t |ε1↓ε2|)

2 + d!t |ϑ1↓ϑ2|
2
)(∥∥Xi,1

k↓1

∥∥2
2
+
∥∥xE

ω(ϖ̂
N,1
k↓1)

∥∥2
2

)
I
1
M,k↓1,

where we used the fact that Ek↔Bi
k↔

2
2 = d!t. Taking now the total expectation E on both sides, we

have by tower property (law of total expectation)

E
∥∥Xi,1

k ↓Xi,2
k

∥∥2
2
I
1
M,k

↫
(
1+(!tε2)

2+d!tϑ2
2

) (
E
∥∥Xi,1

k↓1↓Xi,2
k↓1

∥∥2
2
I
1
M,k↓1 + E

∥∥xE
ω(ϖ̂

N,1
k↓1)↓xE

ω(ϖ̂
N,2
k↓1)

∥∥2
2
I
1
M,k↓1

)

+
(
(!t |ε1↓ε2|)

2 + d!t |ϑ1↓ϑ2|
2
)(

E
∥∥Xi,1

k↓1

∥∥2
2
I
1
M,k↓1 + E

∥∥xE
ω(ϖ̂

N,1
k↓1)

∥∥2
2
I
1
M,k↓1

)
.

(39)

As a consequence of the stability estimate for the consensus point, Lemma D.1, it holds for a constant
c0 = c0(ω, C1, C2,M) > 0 that

E
∥∥xE

ω(ϖ̂
N,1
k↓1)↓ xE

ω(ϖ̂
N,2
k↓1)

∥∥2
2
I
1
M,k↓1 ⇔ c0EW 2

2

(
ϖ̂N,1
k↓1, ϖ̂

N,2
k↓1

)
I
1
M,k↓1

⇔ c0
1

N

N∑

i=1

E
∥∥Xi,1

k↓1 ↓Xi,2
k↓1

∥∥2
2
I
1
M,k↓1,

where we chose 1 = 1
N

∑N
i=1 ϱXi,1

k↓1

△ϱXi,2
k↓1

as viable transportation plan in Definition (20) to upper
bound the Wasserstein distance in the second step. Utilizing this when averaging (39) over i gives

1

N

N∑

i=1

E
∥∥Xi,1

k ↓Xi,2
k

∥∥2
2
I
1
M,k ↫ (1+c0)

(
1+(!tε2)

2+d!tϑ2
2

) 1

N

N∑

i=1

E
∥∥Xi,1

k↓1↓Xi,2
k↓1

∥∥2
2
I
1
M,k↓1

+
(
(!t |ε1↓ε2|)

2 + d!t |ϑ1↓ϑ2|
2
) (

b1 + (1 + b2)M
2
)
,

(40)
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where we employed Lemma C.1 together with the definition of the cutoff function I
1
M,k↓1 to obtain

the bound in the second line of (40). Exploiting that Xi,1
0 = Xi,2

0 for i = 1, . . . , N by assumption,
we conclude the proof by an application of the discrete variant of Grönwall’s inequality (22), which
proves that for all k ↖ 1 it holds

1

N

N∑

i=1

E
∥∥Xi,1

k ↓Xi,2
k

∥∥2
2
I
1
M,k ⇔ c1

(
(!t |ε1 ↓ ε2|)

2 + d!t |ϑ1 ↓ ϑ2|
2
)
ec2(k↓1)

with constants c1 = c1(b1, b2,M) > 0 and c2 = c2(c0,!t, d,ε2,ϑ2) > 0.

D.3 A large deviation bound for the consensus point (3)

For a given measure ς ↑ P(Rd) and a set of N i.i.d. random variables Y i
↘ ς with empirical random

measure ς̂N = 1
N

∑N
i=1 ϱY i , one expects that under certain regularity assumptions it holds by the

law of large numbers

xE
ω(ς̂

N )
a.s.
↓↓→ xE

ω(ς) as N → ↗.

This is made rigorous in the subsequent lemma, which is based on arguments from [90, Lemma 3.1]
and [30, Lemma 23].
Lemma D.3 (Large deviation bound for the consensus point xE

ω). Let E ↑ C(Rd) satisfy A1– A2.
Moreover, for k = 1, . . . ,K, let µk ↑ P(Rd) be a random measure, let (Y i

k )i=1,...,N be N i.i.d.
random variables distributed according to µk, denote by µ̂N

k the empirical random measure µ̂N
k =

1
N

∑N
i=1 ϱY i

k
and define the cutoff function (random variable)

I
2
M,k =


1, if max


↔•↔

4
2 dµ̂

N
k ,


↔•↔

4
2 dµk


⇔ M4,

0, else.
(41)

Then it holds
max

k=1,...,K
E
∥∥xE

ω(µ̂
N
k )↓ xE

ω(µk)
∥∥2
2
I
2
M,k ⇔ c3N

↓1

with a constant c3 = c3(ω, b1, b2, C2,M) > 0.

Proof. To start with, we note that under A2 and with Jensen’s inequality it holds
e↓ωE

I
2
M,k

1
N

∑N
j=1 φ

E
ω(Y

j
k )

=
I
2
M,k

1
N

∑N
j=1 exp

(
↓ω(E(Y j

k )↓ E)
) ⇔

I
2
M,k

1
N

∑N
j=1 exp

(
↓ωC2(1 + ↔Y j

k ↔
2
2)
)

⇔
I
2
M,k

exp
(
↓ωC2(1 +

1
N

∑N
j=1 ↔Y

j
k ↔

2
2)
) ⇔ exp

(
ωC2(1 +M2)

)
=: cM .

(42)

By definition of the consensus point xE
ω in (3), it holds

∥∥xE
ω(µ̂

N
k )↓ xE

ω(µk)
∥∥
2
I
2
M,k =

∥∥∥∥∥

N∑

i=1

Y i
k

φE
ω(Y

i
k )∑N

j=1 φ
E
ω(Y

j
k )

↓

∫
x

φE
ω(x)

↔φE
ω↔L1(µk)

dµk(x)

∥∥∥∥∥
2

I
2
M,k

⇔
(
↔T1↔2 + ↔T2↔2

)
I
2
M,k,

(43)

where the terms T1 and T2 are defined implicitly and bounded as follows. For the first term T1 we
have

↔T1↔2 I
2
M,k =

∥∥∥∥∥

N∑

i=1

Y i
k

φE
ω(Y

i
k )∑N

j=1 φ
E
ω(Y

j
k )

↓

∫
x

φE
ω(x)

1
N

∑N
j=1 φ

E
ω(Y

j
k )

dµk(x)

∥∥∥∥∥
2

I
2
M,k

=
I
2
M,k

1
N

∑N
j=1 φ

E
ω(Y

j
k )

∥∥∥∥∥
1

N

N∑

i=1

Y i
kφ

E
ω(Y

i
k )↓

∫
xφE

ω(x) dµk(x)

∥∥∥∥∥
2

⇔ cMeωE

∥∥∥∥∥
1

N

N∑

i=1

Y i
kφ

E
ω(Y

i
k )↓

∫
xφE

ω(x) dµk(x)

∥∥∥∥∥
2

,

(44)
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where we utilized (42) in the last step. Similarly, for the second term T2 we have

↔T2↔2 I
2
M,k =

∥∥∥∥∥

∫
x

φE
ω(x)

1
N

∑N
j=1 φ

E
ω(Y

j
k )

dµk(x)↓

∫
x

φE
ω(x)

↔φE
ω↔L1(µk)

dµk(x)

∥∥∥∥∥
2

I
2
M,k

=
I
2
M,k

1
N

∑N
j=1 φ

E
ω(Y

j
k )

∥∥xE
ω(µk)

∥∥
2


1

N

N∑

j=1

φE
ω(Y

j
k )↓

∫
φE
ω(x) dµk(x)


2

⇔ cMeωE (b1 + b2M)


1

N

N∑

j=1

φE
ω(Y

j
k )↓

∫
φE
ω(x) dµk(x)


2

,

(45)

where the last step involved additionally Lemma C.1. Let us now introduce the random variables

Zi
k := Y i

kφ
E
ω(Y

i
k )↓

∫
xφE

ω(x) dµk(x) and zik := φE
ω(Y

i
k )↓

∫
φE
ω(x) dµk(x),

respectively, which have zero expectation, and are i.i.d. for i = 1, . . . , N . With these definitions as
well as the bounds (44) and (45) we obtain

E ↔T1↔
2
2 I

2
M,k ⇔ c2Me2ωEE

∥∥∥∥∥
1

N

N∑

i=1

Zi
k

∥∥∥∥∥

2

2

I
2
M,k = c2Me2ωE

1

N2
E

N∑

i=1

N∑

j=1


Zi
k, Z

j
k


I
2
M,k

= c2Me2ωE
1

N2
E

N∑

i=1

∥∥Zi
k

∥∥2
2
I
2
M,k ⇔ 4c2MM2 1

N

(46)

and, analogously,

E ↔T2↔
2
2 I

2
M,k ⇔ c2Me2ωE (b1 + b2M)2

1

N2
E

N∑

i=1

∥∥zik
∥∥2
2
I
2
M,k ⇔ 4c2M (b1 + b2M)2

1

N
. (47)

The last inequalities of (46) and (47) are due to the estimates

E 1

N

N∑

i=1

∥∥Zi
k

∥∥2
2
I
2
M,k ⇔ 2E 1

N

N∑

i=1

∥∥Y i
kφ

E
ω(Y

i
k )
∥∥2
2
I
2
M,k + 2E

∥∥∥∥
∫

xφE
ω(x) dµk(x)

∥∥∥∥
2

2

I
2
M,k

⇔ 2e↓2ωEE 1

N

N∑

i=1

∥∥Y i
k

∥∥2
2
I
2
M,k + 2e↓2ωEE

∫
↔x↔22 dµk(x) I

2
M,k

⇔ 4e↓2ωEM2

and, similarly,

E
z1k

2
2
I
2
M,k ⇔ 4e↓2ωE .

Combining (46) and (47) concludes the proof.

Remark D.4. Alternatively to the explicit computations of Lemma D.3, the stability estimate for the
consensus point, Lemma D.1, would allow to obtain

max
k=1,...,K

E
∥∥xE

ω(µ̂
N
k )↓ xE

ω(µk)
∥∥2
2
I
2
M,k ⇔ c0 max

k=1,...,K
EW 2

2 (µ̂
N
k , µk) I

2
M,k,

where EW 2
2 (µ̂

N
k , µk) can be controlled by employing [91, Theorem 1]. This, however, only gives a

quantitative convergence rate of order O(N↓2/d), which is affected by the curse of dimensionality.
The convergence rate O(N↓1) obtained in Lemma D.3 matches the one to be expected from Monte
Carlo sampling.
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D.4 Proof of Theorem 6

We now have all necessary tools at hand to present the detailed proof of Theorem 6.

Proof of Theorem 6. We notice that for the choice ε = 1/!t the iterative update rule of the particles
of the CBO dynamics (2) becomes

X̃i
k = xE

ω(ϖ̃
N
k↓1) + ϑD

(
X̃i

k↓1 ↓ xE
ω(ϖ̃

N
k↓1)

)
Bi

k, (48)

where ϖ̃Nk = 1
N

∑N
i=1 ϱX̃i

k
. In this case, the associated CBO scheme (4) reads

x̃CBO
k = xE

ω(ϖ̃
N
k ) with ϖ̃Nk =

1

N

N∑

i=1

ϱX̃i
k
, where X̃i

k ↘ N

(
x̃CBO
k↓1 ,!tϑ2D

(
X̃i

k↓1 ↓ x̃CBO
k↓1

)2)
,

x̃CBO
0 = x0,

(49)
which resembles the CH dynamics (13) with the difference in the underlying measure on which
basis the consensus point (3) is computed. Let us further denote by µ̂N

k the empirical measure
µ̂N
k = 1

N

∑N
i=1 ϱY i

k
, where Y i

k ↘ µk = N
(
xCH
k↓1, ϑ̃

2Id
)

for i = 1, . . . , N , i.e., Y i
k = xCH

k↓1 + ϑ̃Bi
Y,k

with Bi
Y,k being a standard Gaussian random vector.

To obtain the probabilistic formulation of the statement, let us denote the underlying probability
space over which all considered random variables get their realizations by (%,F ,P) and introduce
the subset %M of % of suitably bounded random variables according to

%M :=


φ ↑ % : max

k=0,...,K
max

∫
↔•↔

4
2 dϖ̂

N
k ,

∫
↔•↔

4
2 dϖ̃

N
k ,

∫
↔•↔

4
2 dµk,

∫
↔•↔

4
2 dµ̂

N
k


⇔ M4


.

For the associated cutoff function (random variable) we write #M . Moreover, let us define the cutoff
functions

IM,k =


1, if max


↔•↔

4
2 dϖ̂

N
k ,


↔•↔

4
2 dϖ̃

N
k ,


↔•↔

4
2 dµk,


↔•↔

4
2 dµ̂

N
k


⇔ M4 for all 0 ⇔ k,

0, else,
(50)

which are adapted to the natural filtration and satisfy #M ⇔ IM,k as well as IM,k = IM,kIM,↼ for
all 0 ⇔ k.

We can decompose the expected squared discrepancy E
∥∥xCBO

k ↓ xCH
k

∥∥2
2 #M between the CBO

scheme (4) and the CH scheme (13) as

E
∥∥xCBO

k ↓ xCH
k

∥∥2
2
IM,k ⇔ 2E

∥∥xCBO
k ↓ x̃CBO

k

∥∥2
2
IM,k + 2E

∥∥x̃CBO
k ↓ xCH

k

∥∥2
2
IM,k. (51)

In what follows we individually bound the two terms on the right-hand side of (51).

First term: Let us start with the term E
∥∥xCBO

k ↓ x̃CBO
k

∥∥2
2
IM,k, which we bound by combining the

stability estimate for the consensus point, Lemma D.1, with Lemma D.2, a stability estimate for the
underlying CBO dynamics (2) w.r.t. its parameters ε and ϑ. Denoting the auxiliary cutoff function
defined in (37) in the setting ϖ̂N,1

k = ϖ̂Nk and ϖ̂N,2
k = ϖ̃Nk by I

1
M,k, we have due to Lemma D.1 the

estimate
E
∥∥xCBO

k ↓ x̃CBO
k

∥∥2
2
IM,k = E

∥∥xE
ω(ϖ̂

N
k )↓ xE

ω(ϖ̃
N
k )

∥∥2
2
IM,k

⇔ E
∥∥xE

ω(ϖ̂
N
k )↓ xE

ω(ϖ̃
N
k )

∥∥2
2
I
1
M,k ⇔ c0EW 2

2 (ϖ̂
N
k , ϖ̃Nk ) I1

M,k

(52)

with a constant c0 = c0(ω, C1, C2,M) > 0. In the first inequality of (52) we exploited IM,k ⇔ I
1
M,k.

The Wasserstein distance appearing on the right-hand side of (52) can be upper bounded by choosing
1 = 1

N

∑N
i=1 ϱXi

k
△ ϱX̃i

k
as viable transportation plan in Definition (20). This constitutes the first

inequality in the estimate

EW 2
2 (ϖ̂

N
k , ϖ̃Nk ) I1

M,k ⇔
1

N

N∑

i=1

E
∥∥Xi

k ↓ X̃i
k

∥∥2
2
I
1
M,k

⇔ c1
(
|ε1 ↓ ε2|

2 + |ϑ1 ↓ ϑ2|
2
)
ec2(k↓1)

⇔ c1

ε↓
1

!t


2

ec2(k↓1),

(53)
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whereas the second step is a consequence of Lemma D.2 applied with ε1 = ε,ϑ1 = ϑ and ε2 =
1/!t,ϑ2 = ϑ as exploited in the third step. Hence, the constants are c1 = c1(!t, d, b1, b2,M) > 0
and c2 = c2(!t, d,ω,ε,ϑ, C1, C2,M) > 0.

Second term: To control the term E
∥∥x̃CBO

k ↓ xCH
k

∥∥2
2
IM,k we start by decomposing it according to

E
∥∥x̃CBO

k ↓ xCH
k

∥∥2
2
IM,k ⇔ 2E

∥∥x̃CBO
k ↓ xE

ω(µ̂
N
k )

∥∥2
2
IM,k + 2E

∥∥xE
ω(µ̂

N
k )↓ xCH

k

∥∥2
2
IM,k, (54)

where µ̂N
k is as introduced at the beginning of the proof. For the first summand in (54) the stability

estimate for the consensus point, Lemma D.1, gives

E
∥∥x̃CBO

k ↓ xE
ω(µ̂

N
k )

∥∥2
2
IM,k = E

∥∥xE
ω(ϖ̃

N
k )↓ xE

ω(µ̂
N
k )

∥∥2
2
IM,k

⇔ c0EW 2
2 (ϖ̃

N
k , µ̂N

k ) IM,k

(55)

with a constant c0 = c0(ω, C1, C2,M) > 0. By choosing 1 = 1
N

∑N
i=1 ϱX̃i

k
△ ϱY i

k
as viable

transportation plan in Definition (20), we can further bound

EW 2
2 (ϖ̃

N
k , µ̂N

k ) IM,k ⇔
1

N

N∑

i=1

E
∥∥X̃i

k ↓ Y i
k

∥∥2
2
IM,k (56)

and since X̃i
k ↘ N

(
x̃CBO
k↓1 ,!tϑ2D(X̃i

k↓1 ↓ x̃CBO
k↓1 )2

)
and Y i

k ↘ N
(
xCH
k↓1, ϑ̃

2Id
)

we have

1

N

N∑

i=1

E
∥∥X̃i

k ↓ Y i
k

∥∥2
2
IM,k ⇔ 2E

∥∥x̃CBO
k↓1 ↓ xCH

k↓1

∥∥2
2
IM,k↓1

+
4

N

N∑

i=1

(
ϑ2E

∥∥D
(
X̃i

k↓1 ↓ x̃CBO
k↓1

)
Bi

k

∥∥2
2
IM,k↓1 + ϑ̃2E

∥∥Bi
Y,k

∥∥2
2

)

⇔ 2E
∥∥x̃CBO

k↓1 ↓ xCH
k↓1

∥∥2
2
IM,k↓1 + 8ϑ2!t

(
b1 + (1 + b2)M

2
)
+ 4ϑ̃2.

(57)

Note that in the last step we exploited the definition of the cutoff function IM,k, which allowed to
derive the bound

1

N

N∑

i=1

E
∥∥D

(
X̃i

k↓1 ↓ x̃CBO
k↓1

)
Bi

k

∥∥2
2
IM,k↓1 ⇔

2

N

N∑

i=1

E
(∥∥X̃i

k↓1

∥∥2
2
+

∥∥x̃CBO
k↓1

∥∥2
2

)∥∥Bi
k

∥∥2
2
IM,k↓1

⇔ 2E
∥∥x̃CBO

k↓1

∥∥2
2
IM,k↓1 +

2

N

N∑

i=1

E
∥∥X̃i

k↓1

∥∥2
2
IM,k↓1

⇔ 2
(
b1 + (1 + b2)M

2
)

by using Lemma C.1 and the fact that Bi
k ↘ N (0,!tId) is independent from X̃i

k↓1 and x̃CBO
k↓1 .

Inserting (57) into (56) and this into (55) afterwards, we are left with

E
∥∥x̃CBO

k ↓ xE
ω(µ̂

N
k )

∥∥2
2
IM,k ⇔ c

(
E
∥∥x̃CBO

k↓1 ↓ xCH
k↓1

∥∥2
2
IM,k↓1 + ϑ2!t+ ϑ̃2

)
(58)

with a constant c = c(c0, b1, b2,M) > 0. For the second summand in (54) we have by Lemma D.3

E
∥∥xE

ω(µ̂
N
k )↓ xCH

k

∥∥2
2
IM,k ⇔ E

∥∥xE
ω(µ̂

N
k )↓ xE

ω(µk)
∥∥2
2
I
2
M,k

⇔ c3N
↓1,

(59)

with c3 = c3(ω, b1, b2, C2,M) > 0 and where I2
M,k is an auxiliary cutoff function as defined in (41).

Combining (58) with (59) we arrive for (54) at

E
∥∥x̃CBO

k ↓ xCH
k

∥∥2
2
IM,k ⇔ cE

∥∥x̃CBO
k↓1 ↓ xCH

k↓1

∥∥2
2
IM,k↓1 + cϑ2!t+ cϑ̃2 + c3N

↓1. (60)

An application of the discrete variant of Grönwall’s inequality (22) shows that

E
∥∥x̃CBO

k ↓ xCH
k

∥∥2
2
IM,k ⇔ ckE

∥∥x̃CBO
0 ↓ xCH

0

∥∥2
2
+

(
cϑ2!t+ cϑ̃2 + c3N

↓1
)
ec(k↓1), (61)
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where the first term vanishes as both schemes are initialized with x0.

Concluding step: Collecting the estimates (52) combined with (53), and (61) yields for (51) the
bound

E
∥∥xCBO

k ↓ xCH
k

∥∥2
2 #M ↫ c0c1

ε↓
1

!t


2

ec2(k↓1) +
(
cϑ2!t+ cϑ̃2 + c3N

↓1
)
ec(k↓1)

⇔ C

(ε↓
1

!t


2

+ ϑ2!t+ ϑ̃2 + c3N
↓1

)
,

(62)

with a constant C = C(!t, d,ω,ε,ϑ, b1, b2, C1, C2,K,M) > 0. Observe that we additionally used
#M ⇔ IM,k as observed at the beginning.

Probabilistic formulation: We first note that with Markov’s inequality we have the estimate

P
(
%c

M

)
= P


max

k=0,...,K
max

∫
↔•↔

4
2 dϖ̂

N
k ,

∫
↔•↔

4
2 dϖ̃

N
k ,

∫
↔•↔

4
2 dµk,

∫
↔•↔

4
2 dµ̂

N
k


> M4



⇔
1

M4


E max

k=0,...,K

∫
↔•↔

4
2 dϖ̂

N
k + E max

k=0,...,K

∫
↔•↔

4
2 dϖ̃

N
k

+ E max
k=0,...,K

∫
↔•↔

4
2 dµk + E max

k=0,...,K

∫
↔•↔

4
2 dµ̂

N
k



⇔
1

M4

(
M

CBO + MCBO +M
CH + MCH

)
,

where the last inequality is due to Lemmas C.2, C.3 and C.4. Here, MCBO represents
the constant M

CBO from Lemma C.2 in the setting where ε = 1/!t, i.e., MCBO =
M

CBO(1/!t,ϑ, d, b1, b2,K!t,K, ϖ0). Thus, for any ϱ ↑ (0, 1/2), a sufficiently large choice
M = M(ϱ↓1,MCBO, MCBO,MCH, MCH) allows to ensure P

(
%c

M

)
⇔ ϱ. To conclude the proof,

let us denote by K↽ ′ % the set, where (16) does not hold and abbreviate

2 = ⇁↓1C

(ε↓
1

!t


2

+ ϑ2!t+ ϑ̃2 + c3N
↓1

)
.

For the probability of this set we can estimate

P
(
K↽

)
= P

(
K↽ ▽ %M

)
+ P

(
K↽ ▽ %c

M

)
⇔ P

(
K↽

%M

)
P
(
%M

)
+ P

(
%c

M

)

⇔ P
(
K↽

%M

)
+ ϱ ⇔ 2↓1 E

∥∥xCBO
k ↓ xCH

k

∥∥2
2

%M


+ ϱ,

(63)

where the last step is due to Markov’s inequality. By definition of the conditional expectation we
further have

E
∥∥xCBO

k ↓ xCH
k

∥∥2
2

%M


⇔

1

P
(
%M

)E
∥∥xCBO

k ↓ xCH
k

∥∥2
2 #M ⇔ 2E

∥∥xCBO
k ↓ xCH

k

∥∥2
2 #M .

Inserting now the expression from (62) concludes the proof.

E Proof details for Proposition 7 and Theorem 8

Proposition 7 and Theorem 8 are centered around the observation that the CH scheme (13) behaves
gradient-like. To establish this, Proposition 7 exploits, by using the quantitative nonasymptotic
Laplace principle (see Section E.1 and in particular Proposition E.2 for a review of [30, Propo-
sition 18]), that one step of the implicit CH scheme (14) can be recast into the computation of a
consensus point xẼ

ω for an objective function of the form Ẽ(x) = 1
2ϑ ↔ • ↓ x↔22+E(x). To prove The-

orem 8, this is combined with a stability argument for the MMS (15), which relies on the ”-convexity
of E (Assumption A4).
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E.1 A quantitative nonasymptotic Laplace principle

The Laplace principle [36, 37] asserts that for any absolutely continuous probability measure ς ↑

P(Rd) it holds

lim
ω↘↗


↓
1

ω
log

∫
exp

(
↓ωẼ(x)

)
dς(x)


= inf

x↑supp(ε)
Ẽ(x).

This suggests that, as ω → ↗, the Gibbs measure ηẼω = φẼ
ως/↔φ

Ẽ
ω↔L1(ε) converges to a discrete

probability distribution (i.e., a convex combination of Dirac measures) supported on the set of global
minimizers of Ẽ . However, even in the case that such minimizer is unique, it does not permit to
quantify the proximity of xẼ

ω(ς) =

x dηẼω (see also Equation (3)) to the minimizer of Ẽ without the

following assumption (see also Remark B.1).

Definition E.1 (Inverse continuity property). A function Ẽ ↑ C(Rd) satisfies the 02-inverse continuity
property globally if there exist constants η, ν > 0 such that

↔x↓ x̃→
↔2 ⇔

1

η

(
Ẽ(x)↓ Ẽ

)ϖ for all x ↑ Rd, (64)

where x̃→
↑ Rd denotes the unique global minimizer of Ẽ with objective value Ẽ := infx↑Rd Ẽ(x).

As elaborated on in Remark B.1 for the (0↗-)inverse continuity property, it is usually sufficient if (64)
holds locally around the global minimizer x̃→. In the following Proposition E.2, however, we recall
the quantitative Laplace principle in the slightly more specific form, where the 02-inverse continuity
property holds globally as required by Definition E.1. For the general version, namely in the case of
functions which satisfy (64) only on an 02-ball around x̃→ (see [30, Definition 8 (A2)] for the details),
we refer to [30, Proposition 18].

Proposition E.2 (Quantitative Laplace principle). Let Ẽ ↑ C(Rd) satisfy the 02-inverse continuity
property in form of Definition E.1. Moreover, let ς ↑ P(Rd). For any r > 0 define Ẽr :=
supx↑Br(x̃→) Ẽ(x)↓ Ẽ . Then, for fixed ω > 0 it holds for any r, q > 0 that

∥∥xẼ
ω(ς)↓ x̃→∥∥

2
⇔

(
q + Ẽr

)ϖ

η
+

exp(↓ωq)

ς(Br(x̃→))

∫
↔x↓ x̃→

↔2 dς(x). (65)

Proof. W.l.o.g. we may assume Ẽ = 0 since a constant offset to Ẽ neither affects the definition of the
consensus point in (3) nor the quantities appearing on the right-hand side of (65).

By Markov’s inequality it holds ↔exp(↓ωẼ)↔L1(ε) ↖ aς
({

x ↑ Rd : exp(↓ωẼ(x)) ↖ a
})

for any
a > 0. With the choice a = exp(↓ωẼr) and noting that

ς
(

x ↑ Rd : exp(↓ωẼ(x)) ↖ exp(↓ωẼr)
)

= ς
(

x ↑ Rd : Ẽ(x) ⇔ Ẽr

)
↖ ς(Br(x̃

→)),

we obtain ↔exp(↓ωẼ)↔L1(ε) ↖ exp(↓ωẼr)ς(Br(x̃→)). Now let r̃ ↖ r > 0. With the definition of
the consensus point in (3) and by Jensen’s inequality we can decompose

∥∥xẼ
ω(ς)↓ x̃→∥∥

2
⇔

∫

Br̃(x̃→)
↔x↓ x̃→

↔2

exp
(
↓ωẼ(x)

)
∥∥exp(↓ωẼ)

∥∥
L1(ε)

dς(x)

+

∫

(Br̃(x̃→))c
↔x↓ x̃→

↔2

exp
(
↓ωẼ(x)

)
∥∥exp(↓ωẼ)

∥∥
L1(ε)

dς(x).
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The first term is bounded by r̃ since ↔x↓ x̃→
↔2 ⇔ r̃ for all x ↑ Br̃(x̃→). For the second term we use

the formerly derived ↔exp(↓ωẼ)↔L1(ε) ↖ exp(↓ωẼr)ς(Br(x̃→)) to get
∫

(Br̃(x̃→))c
↔x↓ x̃→

↔2

exp
(
↓ωẼ(x)

)
∥∥exp(↓ωẼ)

∥∥
L1(ε)

dς(x)

⇔
1

exp(↓ωẼr)ς(Br(x̃→))

∫

(Br̃(x̃→))c
↔x↓ x̃→

↔2 exp
(
↓ωẼ(x)

)
dς(x)

⇔

exp
(
↓ω

(
infx↑(Br̃(x̃→))c Ẽ(x)↓ Ẽr

))

ς(Br(x̃→))

∫
↔x↓ x̃→

↔2 dς(x).

Thus, for any r̃ ↖ r > 0 we obtain

∥∥xẼ
ω(ς)↓ x̃→∥∥

2
⇔ r̃ +

exp
(
↓ω

(
infx↑(Br̃(x̃→))c Ẽ(x)↓ Ẽr

))

ς(Br(x̃→))

∫
↔x↓ x̃→

↔2 dς(x). (66)

We now choose r̃ =
(
q + Ẽr

)ϖ
/η, which satisfies r̃ ↖ r, since (64) with Ẽ = 0 implies

r̃ =

(
q + Ẽr

)ϖ

η
↖

Ẽ
ϖ
r

η
=

(
supx↑Br(x̃→) Ẽ(x)

)ϖ

η
↖ sup

x↑Br(x̃→)
↔x↓ x̃→

↔2 = r.

Using again (64) with Ẽ = 0 we thus have

inf
x↑(Br̃(x̃→))c

Ẽ(x)↓ Ẽr ↖ (ηr̃)1/ϖ ↓ Ẽr = q + Ẽr ↓ Ẽr = q.

Inserting this and the definition of r̃ into (66) gives the statement.

E.2 The auxiliary function Ẽk

Let us now show that the function Ẽk(x) :=
1
2ϑ

∥∥xCH
k↓1 ↓ x

∥∥2
2
+E(x), which appears later in the proofs

of Proposition 7 and Theorem 8, satisfies the 02-inverse continuity property in form of Definition E.1
if E is ”-convex and the parameter ↼ sufficiently small. As we discuss in Remark E.4 below, the
condition on the parameter ↼ vanishes if E is convex, i.e., ” ↖ 0.
Lemma E.3 (Ẽk satisfies the 02-inverse continuity property). Let Ẽk be defined as above with ↼ > 0
and with E ↑ C(Rd) satisfying A4. Moreover, if ” < 0, assume further that ↼ < 1/(↓”). Then, Ẽk
satisfies the 02-inverse continuity property (64) with parameters

ν =
1

2
and η =


1

2↼
+

”

2
.

I.e., denoting the unique global minimizer of Ẽk by x̃CH
k , it holds

∥∥x↓ x̃CH
k

∥∥
2
⇔

1

η

(
Ẽk(x)↓ Ẽk(x̃

CH
k )

)ϖ
for all x ↑ Rd. (67)

Proof. We first notice that Ẽk is 2η2=
(
1+!ϑ

ϑ

)
-strongly convex (2η2 > 0 by assumption), since

Ẽk(x)↓
1

2


1 + ”↼

↼


↔x↔22 =

1

2↼

(∥∥xCH
k↓1 ↓ x

∥∥2
2
↓ ↔x↔22

)
+ E(x)↓

”

2
↔x↔22

=
1

2↼

(∥∥xCH
k↓1

∥∥2
2
↓ 2


xCH
k↓1, x

)

︸ ︷︷ ︸
convex since linear

+ E(x)↓
”

2
↔x↔22

︸ ︷︷ ︸
convex by A4

is convex by being the sum of two convex functions. By strong convexity of Ẽk, x̃CH
k exists, is unique

and for all 3 ↑ [0, 1] it holds
1

2


1 + ”↼

↼


3(1↓ 3)

∥∥x↓ x̃CH
k

∥∥2
2
⇔ 3Ẽk(x) + (1↓ 3)Ẽk(x̃

CH
k )↓ Ẽk(3x+ (1↓ 3)x̃CH

k )

⇔ 3
(
Ẽk(x)↓ Ẽk(x̃

CH
k )

)
,
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where we used in the last inequality that x̃CH
k minimizes Ẽk. Dividing both sides by 3, letting 3 → 0

and reordering the inequality gives the result.

Remark E.4. In the case that E is ”-convex with ” < 0 (i.e., potentially nonconvex), Lemma E.3
requires that the parameter ↼ is sufficiently small, in order to ensure that Ẽk is strongly convex and
therefore has a unique global minimizer x̃CH

k . On the other hand, if E is convex, i.e., ” ↖ 0, Ẽk is
strongly convex and therefore such constraint is not necessary, i.e., ↼ can be chosen arbitrarily.

Next, we give technical estimates on the quantities (Ẽk)r, νk
(
Br(x̃CH

k )
)

and
 ∥∥x↓ x̃CH

k

∥∥
2
dνk(x),

which appear when applying Proposition E.2 in the setting of the function Ẽk and the probability
measure νk = N

(
xCH
k↓1, 2ϑ̃

2Id
)
. This allows to keep the proof of Proposition 7 more concise.

Lemma E.5. Let Ẽk ↑ C(Rd) be as defined above with E ↑ C(Rd) satisfying A2. Then for
the expressions (Ẽk)r, νk

(
Br(x̃CH

k )
)

and
 ∥∥x↓ x̃CH

k

∥∥
2
dνk(x) appearing in Equation (65) the

following estimates hold. Namely,

(Ẽk)r ⇔


1

2↼

(
r + 4↼C1

(∥∥xCH
k↓1

∥∥
2
+

∥∥x̃CH
k

∥∥
2

))
+ C1

(
r + 2

∥∥x̃CH
k

∥∥
2

)
r,

νk
(
Br(x̃

CH
k )

)
↖

1

(2ϑ̃)d
exp


↓

1

2ϑ̃2

(
r2+8↼2C2

1

(∥∥xCH
k↓1

∥∥2
2
+
∥∥x̃CH

k

∥∥2
2

)) 1

&
(
d
2+1

)rd,
∫ ∥∥x↓ x̃CH

k

∥∥
2
dνk(x) ⇔ 2↼C1

(∥∥xCH
k↓1

∥∥
2
+
∥∥x̃CH

k

∥∥
2

)
+

⇐

2dϑ̃.

Proof. Let us start by investigating the expressions (Ẽk)r, νk
(
Br(x̃CH

k )
)

and
 ∥∥x↓ x̃CH

k

∥∥
2
dνk(x)

individually.

Term (Ẽk)r: By definition (see Proposition E.2) and under A2 it holds

(Ẽk)r = sup
x↑Br(x̃CH

k )

Ẽk(x)↓ Ẽk(x̃
CH
k )

⇔
1

2↼
sup

x↑Br(x̃CH

k )

(∥∥xCH
k↓1 ↓ x

∥∥2
2
↓

∥∥xCH
k↓1 ↓ x̃CH

k

∥∥2
2

)
+ sup

x↑Br(x̃CH

k )

E(x)↓ E(x̃CH
k )

⇔
1

2↼

(
r + 2

∥∥xCH
k↓1 ↓ x̃CH

k

∥∥
2

)
r + C1

(
r + 2

∥∥x̃CH
k

∥∥
2

)
r

⇔


1

2↼

(
r + 2

∥∥xCH
k↓1 ↓ x̃CH

k

∥∥
2

)
+ C1

(
r + 2

∥∥x̃CH
k

∥∥
2

)
r.

Term νk
(
Br(x̃CH

k )
)
: Using the density of the multivariate normal distribution νk =

N
(
xCH
k↓1, 2ϑ̃

2Id
)

we can directly compute

νk
(
Br(x̃

CH
k )

)
=

1

(41ϑ̃2)d/2

∫

Br(x̃CH

k )
exp


↓

1

4ϑ̃2

∥∥x↓ xCH
k↓1

∥∥2
2


dε(x)

↖
1

(41ϑ̃2)d/2

∫

Br(x̃CH

k )
exp


↓

1

2ϑ̃2

(∥∥x↓ x̃CH
k

∥∥2
2
+

∥∥x̃CH
k ↓ xCH

k↓1

∥∥2
2

)
dε(x)

↖
1

(41ϑ̃2)d/2
exp


↓

1

2ϑ̃2

(
r2 +

∥∥x̃CH
k ↓ xCH

k↓1

∥∥2
2

)∫

Br(x̃CH

k )
dε(x)

=
1

(2ϑ̃)d
exp


↓

1

2ϑ̃2

(
r2 +

∥∥x̃CH
k ↓ xCH

k↓1

∥∥2
2

) 1

&
(
d
2 + 1

)rd,

where we used in the last step that the volume of a d-dimensional unit ball is 1d/2/&
(
d
2 + 1

)
.

Here, & denotes Euler’s gamma function. We recall for the readers’ convenience that by Stirling’s
approximation & (x+ 1) ↘

⇐
21x (x/e)x as x → ↗.
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Term
 ∥∥x↓ x̃CH

k

∥∥
2
dνk(x): A straightforward computation gives

∫ ∥∥x↓ x̃CH
k

∥∥
2
dνk(x) =

∫ ∥∥x↓ x̃CH
k

∥∥
2
dN

(
xCH
k↓1, 2ϑ̃

2Id
)
(x)

=

∫ ∥∥x+ xCH
k↓1 ↓ x̃CH

k

∥∥
2
dN

(
0, 2ϑ̃2Id

)
(x)

⇔
∥∥xCH

k↓1 ↓ x̃CH
k

∥∥
2
+

∫
↔x↔2 dN

(
0, 2ϑ̃2Id

)
(x)

⇔
∥∥xCH

k↓1 ↓ x̃CH
k

∥∥
2
+

⇐

2dϑ̃.

Concluding step: To conclude the proof, we further observe that since x̃CH
k is the minimizer of Ẽk,

see (14), a comparison with xCH
k↓1 yields

1

2↼

∥∥xCH
k↓1 ↓ x̃CH

k

∥∥2
2
+ E(x̃CH

k ) ⇔ E(xCH
k↓1).

With A2 it therefore holds
∥∥xCH

k↓1 ↓ x̃CH
k

∥∥2
2
⇔ 2↼

(
E(xCH

k↓1)↓ E(x̃CH
k )

)
⇔ 2↼C1

(∥∥xCH
k↓1

∥∥
2
+

∥∥x̃CH
k

∥∥
2

) ∥∥xCH
k↓1 ↓ x̃CH

k

∥∥
2
,

or rephrased
∥∥xCH

k↓1 ↓ x̃CH
k

∥∥
2
⇔ 2↼C1

(∥∥xCH
k↓1

∥∥
2
+

∥∥x̃CH
k

∥∥
2

)
.

Exploiting this estimate in the former bounds, gives the statements.

E.3 Proof of Proposition 7

We now have all necessary tools at hand to present the detailed proof of Proposition 7.

Proof of Proposition 7. By using the quantitative Laplace principle E.2, we make rigorous and
quantify the fact that xCH

k approximates the minimizer of Ẽk, denoted by x̃k, for sufficiently large ω.

To obtain the probabilistic formulation of the statement, let us again denote the underlying probability
space by (%,F ,P) (note that we can use the same probability space as in Section D since the
stochasticity of both schemes (13) and (14) is solely coming from the initialization) and introduce
the subset %̃M of % of suitably bounded random variables according to

%̃M :=


φ ↑ % : max

k=0,...,K
max

{∥∥xCH
k

∥∥
2
,
∥∥x̃CH

k

∥∥
2

}
⇔ M


.

For the associated cutoff function (random variable) we write #̃M
.

We first notice that by definition of the consensus point xE
ω in (3) it holds

xCH
k = xE

ω(µk) =

∫
x

exp(↓ωE(x))

↔exp(↓ωE)↔L1(µk)

dµk(x)

=

∫
x

exp(↓ωE(x)) exp
(
↓

1
4φ̃2

∥∥x↓ xCH
k↓1

∥∥2
2

)


exp(↓ωE(x↔)) exp

(
↓

1
4φ̃2

∥∥x↔ ↓ xCH
k↓1

∥∥2
2

)
dνk(x↔)

dνk(x)

=

∫
x

exp(↓ωẼk(x))

↔exp(↓ωẼk)↔L1(ϖk)

dνk(x)

= xẼk
ω (νk),

(68)

which introduces the relation ↼ = 2ωϑ̃2 and where we chose νk = N
(
xCH
k↓1, 2ϑ̃

2Id
)
, which is

globally supported, i.e., supp(νk) = Rd. Since, according to Lemma E.3, Ẽk satisfies the inverse
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continuity property (67) with ν = 1/2 and η =
√

1
2ϑ + !

2 > 0, the quantitative Laplace principle,
Proposition E.2, gives for any r, q > 0 the bound

∥∥xCH
k ↓ x̃CH

k

∥∥
2
=

∥∥xẼk
ω (νk)↓ x̃CH

k

∥∥
2
⇔

(
q + (Ẽk)r

)ϖ

η
+

exp(↓ωq)

νk
(
Br(x̃CH

k )
)
∫ ∥∥x↓ x̃CH

k

∥∥
2
dνk(x),

(69)

where (Ẽk)r := supx↑Br(x̃CH

k ) Ẽk(x) ↓ Ẽk(x̃CH
k ). We further notice that by the assumption

↼ < 1/(↓2”) if ” < 0 it holds η ↖ 1/(2
⇐
↼) (in the case ” ↖ 0 the same bound holds triv-

ially). Combining (69) with the technical estimates of Lemma E.5 and the definition of the cutoff
function #̃M

allows to obtain

E
∥∥xCH

k ↓ x̃CH
k

∥∥2
2 #̃M

⇔ 2E
[(

q + (Ẽk)r
)

η2 #̃M

]
+ 2E

[
exp(↓2ωq)

νk
(
Br(x̃CH

k )
)2

∫ ∥∥x↓ x̃CH
k

∥∥
2
dνk(x)

2

#̃M

]

⇔ 8↼
(
q +

(
r
2ϑ + C1r + 6C1M

)
r
)

+ 4 exp


↓2ωq +

1

ϑ̃2

(
r2 + 16↼2C2

1M
2
) 2d(2ϑ̃2)d

r2d
&
(
d
2 + 1

)2 (
16↼2C2

1M
2 + 2dϑ̃2

)

= 8↼
(
q +

(
r
2ϑ + C1r + 6C1M

)
r
)

+ 4 exp


↓2ω


q ↓


r2

↼
+ 16↼C2

1M
2


2d↼d

ωdr2d
&
(
d
2 + 1

)2 (
16↼2C2

1M
2 + d

↼

ω

)
,

(70)

where in the last step we just replaced 2ϑ̃2 by ↼/ω according to the relation. We now choose

r = ↼, q =
3

2
↼ + 16↼C2

1M
2 and ω ↖ ω0 :=

1

↼

(
d log 2 + log(1 + d) + 2 log&

(
d
2 + 1

))
,

where & denotes Euler’s gamma function, for which, by Stirling’s approximation, it holds & (x+ 1) ↘
⇐
21x (x/e)x as x → ↗. With this we can continue the computations of (70) with

E
∥∥xCH

k ↓ x̃CH
k

∥∥2
2 #̃M

⇔ 8
(
2 + C1↼ + 6C1M + 16C2

1M
2
)
↼2

+ 4 exp (↓ω↼)
2d

ωd↼d
&
(
d
2 + 1

)2 (
16↼2C2

1M
2 + d

↼

ω

)

⇔ 8
(
3 + C1↼ + 6C1M + 24C2

1M
2
)
↼2

⇔ c↼2

(71)

with a constant c = c(C1,M). Notice that to obtain the last inequality one may first note and exploit
that one has ω↼ ↖ 1 as well as 1/ω ⇔ ↼ as a consequence of ω ↖ 1/↼ .

Probabilistic formulation: We first note that with Markov’s inequality we have the estimate

P
(
%̃c

M

)
= P


max

k=0,...,K
max

{∥∥xCH
k

∥∥
2
,
∥∥x̃CH

k

∥∥
2

}
> M



⇔
1

M4


E max

k=0,...,K

∥∥xCH
k

∥∥4
2
+ E max

k=0,...,K

∥∥x̃CH
k

∥∥4
2



⇔
1

M4

(
M

CH + MCH
)
,

where the last inequality is due to Lemmas C.3 and C.6. Thus, for any ϱ ↑ (0, 1/2), a sufficiently
large choice M = M(ϱ↓1,MCH, MCH) allows to ensure P

(
%̃c

M

)
⇔ ϱ. To conclude the proof, let

us denote by K̃↽ ′ % the set, where (17) does not hold and abbreviate

2 = ⇁↓1c↼2.
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For the probability of this set we can estimate

P
(
K̃↽

)
= P

(
K̃↽ ▽ %̃M

)
+ P

(
K̃↽ ▽ %̃c

M

)
⇔ P

(
K̃↽

 %̃M

)
P
(
%̃M

)
+ P

(
%̃c

M

)

⇔ P
(
K̃↽

 %̃M

)
+ ϱ ⇔ 2↓1 E

∥∥xCH
k ↓ x̃CH

k

∥∥2
2

 %̃M


+ ϱ,

(72)

where the last step is due to Markov’s inequality. By definition of the conditional expectation we
further have

E
∥∥xCH

k ↓ x̃CH
k

∥∥2
2

 %̃M


⇔

1

P
(
%̃M

)E
∥∥xCH

k ↓ x̃CH
k

∥∥2
2 #̃M

⇔ 2E
∥∥xCH

k ↓ x̃CH
k

∥∥2
2 #̃M

.

Inserting now the expression from (71) concludes the proof.

E.4 Proof of Theorem 8

We now have all necessary tools at hand to present the detailed proof of Theorem 8.

Proof of Theorem 8. We combine in what follows Proposition 7 with a stability argument for the
MMS (15).

To obtain the probabilistic formulation of the statement, let us denote, as in the proof of Proposition 7,
the underlying probability space by (%,F ,P) (note that we can use the same probability space as in
Section D since the stochasticity of the three schemes (13), (14) and (15) is solely coming from the
initialization) and introduce the subset %̃M of % of suitably bounded random variables according to

%̃M :=


φ ↑ % : max

k=0,...,K
max

{∥∥xCH
k

∥∥
2
,
∥∥x̃CH

k

∥∥
2

}
⇔ M


.

For the associated cutoff function (random variable) we write #̃M
.

We can decompose the expected squared discrepancy E
∥∥xMMS

k ↓ xCH
k

∥∥2
2 #̃M

between the
MMS (15) and the CH scheme (13) for any ◁ ↑ (0, 1) as

E
∥∥xMMS

k ↓ xCH
k

∥∥2
2 #̃M

⇔ (1 + ◁)E
∥∥xMMS

k ↓ x̃CH
k

∥∥2
2 #̃M

+ (1 + ◁↓1)E
∥∥x̃CH

k ↓ xCH
k

∥∥2
2 #̃M

.
(73)

In what follows we individually estimate the two terms on the right-hand side of (73).

First term: Let us first bound the term E
∥∥xMMS

k ↓ x̃CH
k

∥∥2
2 #̃M

. By definition of xMMS
k and x̃CH

k as
minimizers of (15) and (14), respectively, and with the definition E!(x) := E(x)↓ !

2 ↔x↔
2
2 it holds

(1 + ↼”)xMMS
k ↓ xMMS

k↓1

↼
↑ ↓⇀E!(x

MMS
k ) and

(1 + ↼”)x̃CH
k ↓ xCH

k↓1

↼
↑ ↓⇀E!(x̃

CH
k ).

Since E! is convex due to A4 and as consequence of the properties of the subdifferential we have
〈
↓
(1 + ↼”)xMMS

k ↓ xMMS
k↓1

↼
+

(1 + ↼”)x̃CH
k ↓ xCH

k↓1

↼
, xMMS

k ↓ x̃CH
k

〉
↖ 0,

which allows to obtain by means of Cauchy-Schwarz inequality

(1 + ↼”)
∥∥xMMS

k ↓ x̃CH
k

∥∥2
2
⇔


xMMS
k↓1 ↓ xCH

k↓1, x
MMS
k ↓ x̃CH

k


⇔

∥∥xMMS
k↓1 ↓ xCH

k↓1

∥∥
2

∥∥xMMS
k ↓ x̃CH

k

∥∥
2

or, equivalently,
∥∥xMMS

k ↓ x̃CH
k

∥∥
2
⇔

1

1 + ↼”

∥∥xMMS
k↓1 ↓ xCH

k↓1

∥∥
2
. (74)

Second term: For the term E
∥∥x̃CH

k ↓ xCH
k

∥∥2
2 #̃M

we obtained in (71) in the proof of Proposition 7,
for suitable choices of ϑ̃ and ω, the bound

E
∥∥xCH

k ↓ x̃CH
k

∥∥2
2 #̃M

⇔ c↼2 (75)
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with a constant c = c(C1,M).

Concluding step: Combining this with the estimate (74) yields for (73) the bound

E
∥∥xMMS

k ↓ xCH
k

∥∥2
2 #̃M

⇔
1 + ◁

(1 + ↼”)2
E
∥∥xMMS

k↓1 ↓ xCH
k↓1

∥∥2
2 #̃M

+ c(1 + ◁↓1) ↼2. (76)

An application of the discrete variant of Grönwall’s inequality (22) shows that

E
∥∥xMMS

k ↓ xCH
k

∥∥2
2 #̃M

⇔ c(1 + ◁↓1) ↼2
k↓1∑

↼=0

(
1 + ◁

(1 + ↼”)2

)↼

(77)

for all k = 1, . . . ,K, where we used that both schemes are initialized by the same x0.

Probabilistic formulation: We first note that with Markov’s inequality we have the estimate

P
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)
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{∥∥xCH
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2
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}
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∥∥4
2
+ E max

k=0,...,K

∥∥x̃CH
k

∥∥4
2



⇔
1

M4

(
M

CH + MCH
)
,

where the last inequality is due to Lemmas C.3 and C.6. Thus, for any ϱ ↑ (0, 1/2), a sufficiently
large choice M = M(ϱ↓1,MCH, MCH) allows to ensure P

(
%̃c

M

)
⇔ ϱ. To conclude the proof, let

us denote by K̃↽ ′ % the set, where (18) does not hold and abbreviate

2 = ⇁↓1c(1 + ◁↓1) ↼2
k↓1∑

↼=0

(
1 + ◁

(1 + ↼”)2

)↼

.

For the probability of this set we can estimate

P
(
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)
= P
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 %̃M
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(78)

where the last step is due to Markov’s inequality. By definition of the conditional expectation we
further have

E
∥∥xMMS

k ↓ xCH
k

∥∥2
2

 %̃M


⇔

1

P
(
%̃M

)E
∥∥xMMS

k ↓ xCH
k

∥∥2
2 #̃M

⇔ 2E
∥∥xMMS

k ↓ xCH
k

∥∥2
2 #̃M

.

Inserting now the expression from (77) concludes the proof.
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F Additional numerical experiments

F.1 Comparison of the CH scheme (13) for different sampling widths ϑ̃

To complement Figure 2a, we visualize in Figure F.1 the influence of the sampling width ϑ̃ on the
behavior of the CH scheme (13).

(a) The CH scheme (13) with sam-
pling width ω̃ = 0.4 gets stuck in
a local minimum of E .

(b) The CH scheme (13) with sam-
pling width ω̃ = 0.6 can occasion-
ally escape local minima of E .

(c) The CH scheme (13) with sam-
pling width ω̃ = 0.7 can escape
local minima of E .

Figure F.1: A visual comparison of the CH scheme (13) for different sampling widths ϑ̃. We depict
the positions of the consensus hopping scheme (13) for different values of ϑ̃ (0.4 in (a), 0.6 in (b) and
0.7 in (c)) in the setting of Figure 2a. While for small ϑ̃ the numerical scheme gets stuck in a local
minimum of the objective, the ability to escape such critical points improves with larger ϑ̃. Notice
that (b) coincides with Figure 2a.
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F.2 The numerical experiments of Figures 1 and 2 for a different objective

In the style of Figures 1 and 2 we provide in Figure F.2 an additional set of illustrations of the behavior
of the different algorithms analyzed in this work for a noisy Canyon function with a valley shaped as
a second degree polynomial.

(a) A noisy Canyon function E with a valley shaped
as a second degree polynomial

(b) The CBO scheme (4) (sampled over several
runs) follows on average the valley while passing
over local minima.

(c) The CH scheme (13) (sampled
over several runs) follows on aver-
age the valley of E and can occa-
sionally escape local minima.

(d) Gradient descent gets stuck in
a local minimum of E .

(e) The Langevin dynamics (6)
(sampled over several runs) fol-
lows on average the valley of E and
escapes local minima.

Figure F.2: An additional numerical experiment illustrating the behavior of the CBO scheme (4)
(see (b)), the consensus hopping scheme (13) (see (c)), gradient descent (see (d)) and the overdamped
Langevin dynamics (6) (see (e)) in search of the global minimizer x→ of the nonconvex objective
function E depicted in (a). The experimental setting is the one of Figures 1 and 2 with the only
difference of the particles being initialized around (5,↓1).
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Paper Summary of [PSO]40

In the paper “On the Global Convergence of Particle Swarm Optimization Methods,”
published in the Applied Mathematics and Optimization Journal, we prove the conver-
gence of PSO methods (5.1) to global minimizers.

PSO, originally proposed by the authors of [KE95; Ken97], is a renowned, well-known,
and widely employed metaheuristic optimization algorithm suitable for solving noncon-
vex nonsmooth problems of the form (2.1). Its design is inspired by the fascinating
capabilities of swarm intelligence observed in nature.

Employing tools from stochastic calculus and the analysis of partial di�erential equa-
tions, we provide in [PSO] a rigorous convergence analysis to global minimizers for PSO.
We model the PSO dynamics as suggested in [GP21], where a continuous description
based on a system of SDEs is provided. Our analysis follows the framework put forward
in the line of works [Car+18; Car+21], i.e, we establish convergence to a global min-
imizer of a possibly nonconvex and nonsmooth objective function in two steps. First,
we prove consensus formation of an associated mean-field dynamics by analyzing the
time-evolution of the variance of the particle distribution, which acts as Lyapunov func-
tion of the dynamics. We then show that this consensus is close to a global minimizer
by employing the asymptotic Laplace principle and a tractability condition on the en-
ergy landscape of the objective function. These results allow for the usage of memory
mechanisms, and hold for a rich class of objectives provided certain conditions of well-
preparation of the hyperparameters and the initial datum [PSO, Sections 2 and 3]. In
a second step, at least for the case without memory e�ects, we provide a quantitative
result about the mean-field approximation of particle swarm optimization, which speci-
fies the convergence of the interacting particle system to the associated mean-field limit.
Combining these two results allows for global convergence guarantees of the numerical
particle swarm optimization method with provable polynomial complexity [PSO, Sec-
tion 4]. To demonstrate the applicability of the method we propose an e�cient and
parallelizable implementation, which is tested in particular on a competitive and well-
understood high-dimensional benchmark problem in machine learning [PSO, Section 5].

KR’s Contributions. HH and JQ suggested to extend the convergence analysis frame-
work developed originally for CBO to the well-known PSO method. Together with HH,
KR worked out the convergence proof for the mean-field limit of PSO, both in the set-
ting with and without memory e�ects, and eventually proving convergence to global
minimizers under suitable well-preparedness assumptions. For PSO without memory ef-
fects, KR further devised a mean-field approximation, allowing for a holistic convergence
statement. KR conducted the numerical experiments, coded an e�cient implementation
of PSO using random mini-batch ideas as well as traditional metaheuristic-inspired tech-
niques from genetic programming and simulated annealing, and wrote large parts of the
paper, which was proofread and refined by JQ and HH.

40In this section, we follow [PSO, Abstract].
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Abstract
In this paper we provide a rigorous convergence analysis for the renowned particle
swarm optimizationmethod by using tools from stochastic calculus and the analysis of
partial differential equations. Based on a continuous-time formulation of the particle
dynamics as a system of stochastic differential equations, we establish convergence
to a global minimizer of a possibly nonconvex and nonsmooth objective function in
two steps. First, we prove consensus formation of an associated mean-field dynamics
by analyzing the time-evolution of the variance of the particle distribution, which acts
as Lyapunov function of the dynamics. We then show that this consensus is close to
a global minimizer by employing the asymptotic Laplace principle and a tractability
condition on the energy landscape of the objective function. These results allow for the
usage of memory mechanisms, and hold for a rich class of objectives provided certain
conditions of well-preparation of the hyperparameters and the initial datum. In a sec-
ond step, at least for the case without memory effects, we provide a quantitative result
about the mean-field approximation of particle swarm optimization, which specifies
the convergence of the interacting particle system to the associated mean-field limit.
Combining these two results allows for global convergence guarantees of the numer-
ical particle swarm optimization method with provable polynomial complexity. To
demonstrate the applicability of the method we propose an efficient and parallelizable
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implementation, which is tested in particular on a competitive and well-understood
high-dimensional benchmark problem in machine learning.

Keywords Global derivative-free optimization · High-dimensional nonconvex
optimization · Metaheuristics · Particle swarm optimization · Mean-field limit ·
Vlasov-Fokker-Planck equations

Mathematics Subject Classification 65C35 · 65K10 · 90C26 · 90C56 · 35Q90 · 35Q83

1 Introduction

In nature, collective behavior and self-organization allow complicated global patterns
to emerge from simple interaction rules and random fluctuations. Inspired by the
fascinating capabilities of swarm intelligence, largemulti-agent systems are employed
as a tool for solving challenging problems in applied mathematics. One classical task
arising throughout science is concerned with the global optimization of a problem-
dependent possibly nonconvex and nonsmooth objective function E : Rd → R, i.e.,
the search for a global optimizer

x∗ ∈ arg min
x∈Rd

E(x). (1.1)

A popular class of methods with a long history of achieving state-of-the-art per-
formance on such problems are metaheuristics [14]. They orchestrate an interplay
between local and global improvement procedures, consider memory mechanisms
and selection strategies, and combine random and deterministic decisions, to create a
process capable of escaping local optima and performing a robust search of the solu-
tion space in order to find a global optimizer. Initiated by seminal works on stochastic
approximation [49] and random search [46], a big variety of suchmechanisms has been
introduced, analyzed and applied to numerous real-world problems. A non-exclusive
list of representatives includes evolutionary programming [15], genetic algorithms
[24], simulated annealing [1], and particle swarm optimization [31]. Despite their
tremendous empirical success, it is very difficult to provide a theoretical conver-
gence analysis to global minimizers, mostly due to their stochastic nature and the
appearance of memory effects. Simulated annealing, however, is theoretically actu-
ally well-studied, see, e.g., the works [3, 37] as well as the recent survey [53] and
references therein.

In this paper we study particle swarm optimization (PSO), which was initially
introduced by Kennedy and Eberhart in the 90s [30, 31] and is now widely recognized
as an efficientmethod for tackling complex optimization problems [35, 45]. Originally,
PSO solves (1.1) by considering a group of finitely many particles, which explore
the energy landscape of E . Each agent experiences a force towards its own personal
(historical) best position as well as towards the global best position communicated in
the swarm.We refer to the ability of each particle remembering the best position it has
been positioned at in the past asmemorymechanisms. Although these interaction rules
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are seemingly simple, a complete numerical analysis of PSO is still lacking; see, e.g.,
[41, 55, 57] and references therein. Recently, however, by introducing a continuous
description of PSO based on a system of stochastic differential equations (SDEs), the
authors of [22] have paved the way for a rigorous mathematical analysis using tools
from stochastic calculus and the analysis of partial differential equations (PDEs).

In order to explore the domain and to form a global consensus about the minimizer
x∗ as time passes, the formulation of PSO proposed by the authors of [22] uses N
particles, described by triplets

(
(Xi

t , Y
i
t , V

i
t )t≥0

)
i=1...,N , with Xi

t and V i
t denoting the

position and velocity, and Y i
t being a regularized version of the local (historical) best

position, also referred to as memory, of the i th agent at time t . The particles, formally
stochastic processes, are initialized independently according to some common dis-
tribution f0 ∈ P(R3d). In the most general form the PSO dynamics is given by the
system of SDEs, expressed in Itô’s form as

dXi
t = V i

t dt, (1.2a)

dY i
t = κ

(
Xi
t − Y i

t

)
Sβ,θ

(
Xi
t ,Y

i
t

)
dt, (1.2b)

m dV i
t = − γ V i

t dt + λ1

(
Y i
t − Xi

t

)
dt + λ2

(
yα(ρ̂N

Y ,t ) − Xi
t

)
dt

+ (1D
(
Y i
t − Xi

t

)
dB1,i

t + (2D
(
yα(ρ̂N

Y ,t ) − Xi
t

)
dB2,i

t ,

(1.2c)

where α,β, θ, κ, γ ,m, λ1, λ2, (1, (2 ≥ 0 are user-specified parameters. The change
of the velocity in (1.2c) is subject to five forces. The first term on the right-hand
side models friction with a coefficient commonly chosen as γ = 1 − m ≥ 0, where
m > 0 denotes the inertia weight. The subsequent term can be regarded as the drift
towards the local best position of the i th particle, which it has memorized in the state
variable Y i

t . A continuous-time approximation of its evolution is given by Y i
t and

described in Equation (1.2b). It involves the operator Sβ,θ , given by Sβ,θ (x, y) =
1 + θ + tanh(β(E(y) − E(x))) for 0 ≤ θ ' 1 and β ( 1, which converges to the
Heaviside function as θ → 0 and β → ∞. The concept behind Equation (1.2b) can
then be seen when being discretized, see Remark 1. For an alternative implementation
of the local best position we refer to [54].

Remark 1 A time-discretization of (1.2b) with κ = 1/(2)t), θ = 0 and β = ∞ yields
the update rule

Y i
(k+1))t =

{
Y i
k)t , if E(Xi

(k+1))t ) ≥ E(Y i
k)t ),

Xi
(k+1))t , if E(Xi

(k+1))t ) < E(Y i
k)t ),

(1.3)

meaning that the i th particle stores in Y i
k)t the best position which it has seen up to

the kth iteration. This explains the name local (historical) best position and restores
the original definition from the work [31].
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The last deterministic term imposes a drift towards themomentaneous consensus point
yα(ρ̂N

Y ,t ), given by

yα(ρ̂N
Y ,t ) :=

∫

Rd
y

ωE
α (y)∥∥ωE

α

∥∥
L1(ρ̂

N
Y ,t )

dρ̂N
Y ,t (y), with ωE

α (y) := exp(−αE(y)), (1.4)

where ρ̂N
Y ,t denotes the empirical measure ρ̂N

Y ,t := 1
N

∑N
i=1 δY i

t
of the particles’ local

best positions. The choice of the weight ωE
α in (1.4) comes from the well-known

Laplace principle [12, 38], a classical asymptotic argument for integrals stating that
for any probability measure , ∈ P(Rd) it holds

lim
α→∞

(
− 1

α
log

(∫

Rd
ωE

α (y) d,(y)
))

= inf
y∈supp(,)

E(y). (1.5)

Based thereon, yα(ρ̂N
Y ,t ) is expected to be a rough estimate for a global minimizer x∗,

which improves asα → ∞ and as larger regions of the domain are explored. To feature
the latter, the two remaining terms in (1.2c), each associated with a drift term, are
diffusion terms injecting randomness into the dynamics through independent standard
Brownian motions

(
(B1,i

t )t≥0
)
i=1,...,N and

(
(B2,i

t )t≥0
)
i=1,...,N . The two commonly

studied diffusion types for similar methods are isotropic [8, 18, 42] and anisotropic
[9, 19] diffusion with

D(y − x) =
{

‖y − x‖2 Id, for isotropic diffusion,
diag (y − x), for anisotropic diffusion,

(1.6)

where Id ∈ Rd+d is the identity matrix and diag : Rd → Rd+d the operator mapping
a vector onto a diagonal matrix with the vector as its diagonal. Intuitively, the term’s
scaling encourages agents far from its own local best position or the globally computed
consensus point to explore larger regions, whereas agents already close try to enhance
their positiononly locally.As the coordinate-dependent scalingof anisotropic diffusion
has been proven to be highly beneficial for high-dimensional problems [9, 17], in what
follows, we limit our analysis to this case. An illustration of the formerly described
PSO dynamics (1.2) is given in Fig. 1.

A theoretical convergence analysis of PSO is possible either on the microscopic
level (1.2) or by analyzing the macroscopic behavior of the particle density through
a mean-field limit, what usually admits more powerful analysis tools. In the large
particle limit an individual particle is not influenced any more by individual particles
but only by the average behavior of all particles. As shown in [21, Section 3.2],
the empirical particle measure f̂ N := 1

N

∑N
i=1 δ(Xi ,Y i ,V i ) converges in law to the

deterministic agent distribution f ∈ C([0, T ],P(R3d)), which weakly satisfies the
nonlinear Vlasov-Fokker-Planck equation
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Fig. 1 An illustration of the PSO dynamics. Agents with positions X1, . . . , XN (yellow dots with their
trajectories) explore the energy landscape of E in search of the global minimizer x∗ (green star). The
dynamics of each particle is governed by five terms. A local drift term (light blue arrow) imposes a force
towards its local best position Y i

t (indicated by a circle). A global drift term (dark blue arrow) drags
the agent towards a momentaneous consensus point yα(ρ̂N

Y ,t ) (orange circle) computed as a weighted
(visualized through color opacity) average of the particles’ local best positions. Friction (purple arrow)
counteracts inertia. The two remaining terms are diffusion terms (light and dark green arrows) associated
with a respective drift term

∂t ft + v · ∇x ft + ∇y ·
(
κ(x − y)Sβ,θ (x, y) ft

)

= ∇v ·
(

γ

m
v ft +

λ1

m
(x − y) ft +

λ2

m

(
x − yα(ρY ,t )

)
ft

+
⎛

( 2
1

2m2

(
D(x − y)

)2 + ( 2
2

2m2

(
D
(
x − yα(ρY ,t )

))2
⎝

∇v ft

)
(1.7)

with initial datum f0. The mean-field limit results [6, 25–27, 52] ensure that the
particle system (1.2) is well-approximated by the following self-consistent mean-field
McKean process

dXt = V t dt, (1.8a)

dY t = κ
(
Xt − Y t

)
Sβ,θ

(
Xt ,Y t

)
dt, (1.8b)

m dV t = − γ V t dt + λ1
(
Y t − Xt

)
dt + λ2

(
yα(ρY ,t ) − Xt

)
dt

+ (1D
(
Y t − Xt

)
dB1

t + (2D
(
yα(ρY ,t ) − Xt

)
dB2

t ,

(1.8c)

with initial datum (X0,Y 0, V 0) ∼ f0 and the marginal law ρY ,t of Y t given by

ρY (t, · ) =
∫∫

Rd+Rd
d ft (x, ·, v).

Here, ft denotes the distribution of (Xt ,Y t , V t ). This makes (1.7) and (1.8) nonlinear.
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1.1 Contribution

In view of the versatility, efficiency, and wide applicability of PSO combined with its
long historical tradition, a mathematical analysis of the finite particle system (1.2) is
of considerable interest.

In this work we advance the theoretical understanding of the method and con-
tribute to the completion of a full numerical analysis of PSO by proving rigorously
the convergence of PSO with memory effects to global minimizers using mean-field
techniques. More precisely, under mild regularity assumptions on the objective E and
a well-preparation condition about the initialization f0, we analyze the behavior of
the particle distribution f solving the mean-field dynamics (1.8). At first, it is shown
that concentration is achieved at some ⎡x in the sense that the marginal law w.r.t. the
local best position, ρY ,t , converges narrowly to a Dirac delta δ⎡x as t → ∞. Consecu-
tively, we argue that, for an appropriate choice of the parameters, in particular α ( 1,
which may depend on the dimension d, E(⎡x) can be made arbitrarily close to the
minimal value E := infx∈Rd E(x). A suitable tractability condition on the objective E
eventually ensures that ⎡x is close to a global minimizer. Similar mean-field conver-
gence results are obtained for the case without memory effects. In this setting we are
moreover able to establish the convergence of the interacting N -particle dynamics to
its mean-field limit with a dimension-independent rate, which allows to obtain a so
far unique holistic and quantitative convergence statement of PSO. As the mean-field
approximation result does not suffer from the curse of dimensionality, we in particular
prove that the numerical PSO method has polynomial complexity. With these new
results we solve the theoretical open problem about the convergence of PSO posed in
[22].

Furthermore, we propose an efficient and parallelizable implementation, which
is particularly suited for machine learning problems by integrating modern machine
learning techniques such as randommini-batch ideas aswell as traditionalmetaheuristic-
inspired techniques from genetic programming and simulated annealing.

1.2 Prior Arts

The convergence of PSO algorithms has been investigated by many scholars since
its introduction, which has lead to several variations allowing to establish desirable
properties such as consensus formation or convergence to optimal solutions. While
the matter of consensus is well-studied, see, e.g., [11, 40] or more recently [56],
where the authors employ stochastic approximation methods [32], only few general
theoretical statements regarding the properties of the found consensus are available.
Both the existence of a large number of variations of the algorithm and the lack
of a rigoros global convergence analysis are attributed amongst other things, such
as the stochasticity and the usage of memory mechanisms, to the phenomenon of
premature convergence of basic PSO [31], which was observed in [4, 5] and remedied
by proposing a modified version, called guaranteed convergence PSO. Nevertheless,
this adaptation only allows to prove the convergence to local optima. In order to
obtain therefrom a stochastic global search algorithm, the authors suggest to add
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purely stochastic particles to the swarm, which trivially makes the method capable
of detecting a global optimizer, but entails a computational time which coincides
with the time required to examine every location in the search space. Other works
consider certain notions of weak convergence [7] or provide probabilistic guarantees
of finding locally optimal solutions, meaning that eventually all particles are located
almost surely at a local optimum of the objective function [51]. In [44], similarly to
our work, the expected behavior of the particles is investigated.

All of the formerly mentioned results though are obtained through the analysis
of the particles’ trajectories generated by a time-discretized algorithm as in [21,
Equation (6.3)]. The present paper takes a different point of view by studying the
continuous-time description of the PSO model (1.2) through the lens of the mean-
field approximation (1.7). Analyzing the macroscopic behavior of a system through
a mean-field limit instead of investigating the microscopic particle dynamics has its
origins in statistical mechanics [29], where interactions between particles are approx-
imated by an averaged influence. By eliminating the correlation between the particles,
a many-body problem can be reduced to a one-body problem, which is usually much
easier to solvewhile still giving an understanding of themechanisms at play by describ-
ing the average behavior of the particles. These ideas, for instance, are also used to
study the collective behavior of animals when forming large-scale patterns through
self-organization by analyzing an associated kinetic PDE [6]. In very recent works, this
perspective of analysis has also been taken to demystify the training process of neural
networks, see, e.g., [13, 36], where a mean-field approximation is utilized to formulate
risk minimization by stochastic gradient descent (SGD) in terms of a gradient-flow
PDE, which allows for a rigorous mathematical analysis.

The analysis technique we use follows the line of work of self-organization. It is
inspired by [8, 9], where a variance-based analysis approach has been developed for
consensus-based optimization (CBO), which follows the guiding principles of meta-
heuristics and in particular resembles PSO but is of much simpler nature and therefore
easier to analyze. In comparison to Equation (1.2), CBO methods are described by
a system of first-order SDEs [8, Equation (1.1)] and do not contain memory mecha-
nisms, which are responsible for both a significantly more challenging mathematical
modeling and convergence analysis.

1.3 Organization

Sections 2 and 3 are dedicated to the analysis of PSOwithout andwithmemorymecha-
nisms, respectively. After providing details about the well-posedness of the mean-field
dynamics, we present and discuss the main result about the convergence of the mean-
field dynamics to a global minimizer of the objective function. In Sect. 4 we then state
a quantitative result about the mean-field approximation for PSO without memory
effects, which enables us to obtain a holistic convergence statement of the numeri-
cal PSO method. Eventually, a computationally efficient implementation of PSO is
proposed in Sect. 5, before Sect. 6 concludes the paper. For the sake of reproducible
research, in the GitHub repository https://github.com/KonstantinRiedl/PSOAnalysis
we provide the Matlab code implementing the PSO algorithm analyzed in this work.
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2 Mean-Field Analysis of PSOWithout Memory Effects

Before providing a theoretical analysis of themean-field PSOdynamics (1.7) and (1.8),
in this section we investigate a reduced version, which does not involve memory
mechanisms. Its multi-particle formulation was proposed in [22, Section 3.1] and
reads

dXi
t = V i

t dt, (2.1a)

m dV i
t = −γ V i

t dt + λ
(
xα(ρ̂

N
X ,t ) − Xi

t

)
dt + (D

(
xα(ρ̂

N
X ,t ) − Xi

t

)
dBi

t . (2.1b)

Compared to the full model, each particle is characterized only by its position Xi

and velocity V i . The forces acting on a particle, i.e., influencing its velocity in Equa-
tion (2.1b), are friction, acceleration through the consensus drift and diffusion as
in (1.6) with independent standard Brownian motions

(
(Bi

t )t≥0
)
i=1,...,N . The consen-

sus point xα(ρ̂
N
X ,t ) is directly computed from the current positions of the particles

according to

xα(ρ̂
N
X ,t ) :=

∫

Rd
x

ωE
α (x)∥∥ωE

α

∥∥
L1(ρ̂

N
X ,t )

dρ̂N
X ,t (x), (2.2)

where ρ̂N
X ,t denotes the empirical measure ρ̂N

X ,t := 1
N

∑N
i=1 δXi

t
of the particles’ posi-

tions. Independent and identically distributed initial data
(
(Xi

0, V
i
0 ) ∼ f0

)
i=1,...,N

with f0 ∈ P(R2d) complement (2.1).
Similar to the particle system (1.2), as N → ∞, the mean-field dynamics of (2.1)

is described by the nonlinear self-consistent McKean process

dXt = V t dt, (2.3a)

m dV t = −γ V t dt + λ
(
xα(ρX ,t ) − Xt

)
dt + (D

(
xα(ρX ,t ) − Xt

)
dBt , (2.3b)

with initial datum (X0, V 0) ∼ f0 and themarginal law ρX ,t of Xt given by ρX (t, · ) =⎣
Rd d f (t, · , v). A direct application of the Itô-Doeblin formula shows that the law f ∈
C([0, T ],P(R2d)) is a weak solution to the nonlinear Vlasov-Fokker-Planck equation

∂t ft + v · ∇x ft

= ∇v ·
(

γ

m
v ft +

λ

m

(
x − xα(ρX ,t )

)
ft +

( 2

2m2

(
D
(
x − xα(ρX ,t )

))2 ∇v ft

)(2.4)

with initial datum f0.

Remark 2 A separate theoretical analysis of the dynamics (2.1) is necessary as it
cannot be derived from (1.2) in a way that also the proof technique can be adopted in
a straightforward manner. This can be seen from subtle differences in the proofs of
Theorems 2 and 4; see in particular Lemma 3.
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It is also worth noting that Equation (2.1) bears a certain resemblance to CBO [8,
9, 18, 19, 42], whereas (1.8) resembles [48]. Indeed, as made rigorous in [10], CBO
methods can be derived from PSO in the small inertia limit m → 0, or equivalently
γ → 1. Nevertheless, analyzing the convergence of CBO directly permits sharper
bounds when compared to utilizing the results obtained in our work together with [10,
Theorem 2.4].

Before turning towards the well-posedness of the mean-field dynamics (2.3) and
presenting the main result of this section about the convergence to the global mini-
mizer x∗, let us introduce the class of objective function E considered in the theoretical
part of this work. We remark that the assumptions made in what follows coincide with
the ones of [8, 9] as well as several subsequent works in this direction.

Assumption 1 Throughout the paper we are interested in objective functions E :
Rd → R, for which

A1 there exists x∗ ∈ Rd such that E(x∗) = infx∈Rd E(x) =: E ,
A2 there exists some constant LE > 0 such that

⎤⎤E(x) − E(x ′)
⎤⎤ ≤ LE

(|x | +
⎤⎤x ′⎤⎤) ⎤⎤x − x ′⎤⎤ , for all x, x ′ ∈ Rd ,

A3 either E := supx∈Rd E(x) < ∞ or there exist constants cE , R > 0 such that

E(x) − E ≥ cE |x |2 , for all x ∈ Rd with |x | ≥ R,

A4 E ∈ C2(Rd) with
∥∥∇2E

∥∥
∞ ≤ CE for some constant CE > 0,

A5 there exist . > 0 and / ∈ (0,∞) such that for any x ∈ Rd there exists a global
minimizer x∗ of E (which may depend on x) such that

⎤⎤x − x∗⎤⎤ ≤ (E(x) − E)//..

Assumption A1 just states that the objective function E attains its infimum E at
some x∗ ∈ Rd , which may not necessarily be unique. Assumption A2 describes the
local Lipschitz-continuity of E , entailing in particular that the objective has at most
quadratic growth at infinity. Assumption A3, on the other hand, requires E to be either
bounded or of at least quadratic growth in the farfield. Together, A2 and A3 allow to
obtain thewell-posedness of the PSOmodel.AssumptionA4 is a regularity assumption
about E , which is required only for the theoretical analysis. The quadratic growth
nature of Assumptions A2–A4 in the farfield may bear a certain resemblance to log-
Sobolev inequalities [50], which are pivotal in the convergence analysis of simulated
annealing, see [53] for further details. Unlike simulated annealing however, the PSO
method is a zero-order method where we do not need the gradient information of the
objective function in the numerical application. Assumption A5 should be interpreted
as a tractability condition of the landscape of E , which ensures that achieving an
objective value of approximately E guarantees closeness to a global minimizer x∗ and
thus eliminates cases of almost-optimal valleys in the energy landscape far away from
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any globally minimizing argument. Such assumption is therefore also referred to as
an inverse continuity property.

It shall be emphasized that objectives with multiple global minima of identical
quality are not excluded.

2.1 Well-Posedness of PSOwithout Memory Effects

Let us recite a well-posedness result about the mean-field PSO dynamics (2.3) and
the associated Vlasov-Fokker-Planck equation (2.4). Its proof is analogous to the one
provided for Theorem 3 for the full dynamics (1.8) based on the Leray-Schauder fixed
point theorem.

Theorem 1 Let E satisfy Assumptions A1–A3. Moreover, let m, γ , λ, (,α, T > 0.
If (X0, V 0) is distributed according to f0 ∈ P4(R2d), then the nonlinear SDE (2.3)
admits a unique strong solution up to time T with the paths of process (X , V ) valued in
C([0, T ],Rd)+C([0, T ],Rd). The associated law f has regularity C([0, T ],P4(R2d))

and is a weak solution to the Vlasov-Fokker-Planck equation (2.4). In particular,

sup
t∈[0,T ]

E[|Xt |4 + |V t |4] ≤
(
1+ 2E[|X0|4 + |V 0|4]

)
eCT (2.5)

for some constant C > 0 depending only on m, γ , λ, (,α, cE , R, and LE .

2.2 Convergence of PSOwithout Memory Effects to a Global Minimizer

A successful application of the PSO dynamics underlies the premise that the particles
form consensus about a certain position ⎡x . In particular, in the mean-field limit one
expects that the distribution of a particle’s position ρX ,t converges to a Dirac delta δ⎡x .
This entails that the variance in the position E[|Xt − E[Xt ]|2] and the second-order
moment of the velocity E[|V t |2] of the averaged particle vanish. As we show in what
follows, both functionals indeed decay exponentially fast in time. Motivated by these
expectations we define the functional

H(t) :=
( γ

2m

)2
|Xt − E[Xt ]|2 + |V t |2 +

γ

2m

⎦
Xt − E[Xt ], V t

⎞
, (2.6)

which we analyze in the remainder of this section. Its last term is required from
a technical perspective. However, by proving the decay of E[H(t)], which acts as
Lyapunov function of the dynamics, one immediately obtains the same for E[|Xt −
E[Xt ]|2 + |V t |2] as a consequence of the equivalence established in Lemma 1, which
follows from Young’s inequality.
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Lemma 1 The functionalH(t) is equivalent to |Xt −E[Xt ]|2+|V t |2 in the sense that

1
2

( γ

2m

)2
|Xt − E[Xt ]|2 +

1
2
|V t |2

≤ H(t) ≤ 3
2

(( γ

2m

)2
+ 1

)(
|Xt − E[Xt ]|2 + |V t |2

)
.

(2.7)

We now derive an evolution inequality of the Lyapunov function E[H(t)].

Lemma 2 Let E satisfy Assumptions A1–A3 and let (Xt , V t )t≥0 be a solution to the
nonlinear SDE (2.3). Then E[H(t)] withH as defined in (2.6) satisfies

d
dt

E[H(t)] ≤ − γ

m
E[|V t |2]

−
⎛

λγ

2m2 −
(
2λ2

γm
+ ( 2

m2

)
2e−αE

E[exp(−αE(Xt ))]

⎝

E[|Xt − E[Xt ]|2].

(2.8)

Proof Let us write δXt := Xt −E[Xt ] for short and note that the integration by parts
formula gives

d
dt

E[|δXt |2] = 2E[
⎦
δXt , V t

⎞
]. (2.9)

Observe that, in what follows, the appearing stochastic integrals have vanishing
expectations as a consequence of the regularity f ∈ C([0, T ],P4(R2d)) obtained
in Theorem 1. This is due to [39, Theorem 3.2.1(iii), Definition 3.1.4(iii)], which
state that a stochastic integral vanishes if the associated second moment is integrable.
Notice that the latter condition is sufficient for the stochastic integral to be amartingale.
Applying the Itô-Doeblin formula and Young’s inequality yields

d
dt

E[|V t |2] = −2γ
m

E[|V t |2] +
2λ
m

E[
⎦
V t , xα(ρX ,t ) − Xt

⎞
] + ( 2

m2E[|xα(ρX ,t ) − Xt |2]

≤ −
(
2γ
m

− λ

εm

)
E[|V t |2] +

(
ελ

m
+ ( 2

m2

)
E[|xα(ρX ,t ) − Xt |2], ∀ ε > 0.

(2.10)

Again by employing the Itô-Doeblin formula we obtain

d
dt

E[
⎦
δXt , V t

⎞
] = E[|V t |2] −

(
E[V t ]

)2 − γ

m
E[
⎦
δXt , V t

⎞
] + λ

m
E[
⎦
δXt , xα(ρX ,t ) − Xt

⎞
]

≤ E[|V t |2] − γ

2m
d
dt

E[|δXt |2] +
λ

m
E[
⎦
δXt , xα(ρX ,t ) − E[Xt ]

⎞
] − λ

m
E[|δXt |2]

= E[|V t |2] − γ

2m
d
dt

E[|δXt |2] − λ

m
E[|δXt |2],

(2.11)
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where we used the identity (2.9) and the fact that E[
⎦
δXt , xα(ρX ,t ) − E[Xt ]

⎞
] = 0 in

the last two steps. We now rearrange inequality (2.11) to get

γ

2m
d
dt

E[|δXt |2] +
d
dt

E[
⎦
δXt , V t

⎞
] ≤ E[|V t |2] − λ

m
E[|δXt |2],

which, in combination with (2.10), allows to show

d
dt

E[H(t)] ≤ −
(
3γ
2m

− λ

εm

)
E[|V t |2] − λγ

2m2E[|δXt |2]

+
(

ελ

m
+ ( 2

m2

)
E[|Xt − xα(ρX ,t )|2]. (2.12)

In order to upper bound E[|Xt − xα(ρX ,t )|2], an application of Jensen’s inequality
yields

E[|Xt − xα(ρX ,t )|2] ≤
⎣⎣

R2d

⎤⎤x − x ′⎤⎤2 ωE
α (x

′) dρX ,t (x ′)dρX ,t (x)⎣
Rd ωE

α (x ′) dρX ,t (x ′)

≤ 2e−αE E[|δXt |2]
E[exp(−αE(Xt ))]

. (2.13)

By choosing ε = (2λ)/γ in (2.12) and utilizing the estimate (2.13), we obtain (2.8)
as desired. 01

Remark 3 To obtain exponential decay ofE[H(t)] it is necessary to ensure the negativ-
ity of the prefactor of E[|Xt −E[Xt ]|2] in Inequality (2.8) by choosing the parameters
of the PSO method in a suitable manner. This may be achieved by choosing for any
fixed time t , given α and arbitrary (, γ > 0,

λ > 4DX
t ( 2/γ and subsequently m < γ 2/(8DX

t λ), (2.14)

where we abbreviate DX
t = 2e−αE/E[exp(−αE(Xt ))].

In order to be able to choose the parameters in Remark 3 once at the beginning of
the algorithm instead of at every time step t , we need to be able to control the time-
evolution ofE[exp(−αE(Xt ))].We therefore study its time-derivative in the following
lemma.

Lemma 3 Let E satisfy Assumptions A1–A4 and let (Xt , V t )t≥0 be the solution to the
nonlinear SDE (2.3). Then it holds that

d2

dt2
(
E[exp(−αE(Xt ))]

)2 ≥ − γ

m
d
dt

(
E[exp(−αE(Xt ))]

)2

−4αe−2αECE

⎛

1+ 2
λ

m

(
2m
γ

)2
⎝

E[H(t)]. (2.15)
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Proof We first note that

1
2
d2

dt2
(
E[exp(−αE(Xt ))]

)2

= d
dt

(
E[exp(−αE(Xt ))]

d
dt

E[exp(−αE(Xt ))]
)

=
(
d
dt

E[exp(−αE(Xt ))]
)2

+E[exp(−αE(Xt ))]
d2

dt2
E[exp(−αE(Xt ))]

≥ E[exp(−αE(Xt ))]
d2

dt2
E[exp(−αE(Xt ))], (2.16)

leaving the second time-derivative of E[exp(−αE(Xt ))] to be lower bounded. To do
so, we start with its first derivative. Applying the Itô-Doeblin formula twice and noting
that stochastic integrals have vanishing expectations as a consequence of [39, Theorem
3.2.1(iii), Definition 3.1.4(iii)] combined with the regularity f ∈ C([0, T ],P4(R2d))

obtained in Theorem 1, we have

d
dt

E[exp(−αE(Xt ))] = −αE[exp(−αE(Xt ))〈∇E(Xt ), V t 〉]

= −αE[exp(−αE(X0))〈∇E(X0), V 0〉]

− αE
⎠∫ t

0
d
⎦
exp(−αE(Xs))∇E(Xs), V s

⎞]

= −αE[exp(−αE(X0))〈∇E(X0), V 0〉]

− αE
⎠∫ t

0

〈
exp(−αE(Xs))V s,∇2E(Xs)V s

〉
ds
]

+ α2E
⎠∫ t

0
exp(−αE(Xs))

⎤⎤⎦∇E(Xs), V s
⎞⎤⎤2 ds

]

− αE
⎠∫ t

0
exp(−αE(Xs))

〈
∇E(Xs),−

γ

m
V s

〉
ds
]

− αE
⎠∫ t

0
exp(−αE(Xs))

〈
∇E(Xs),

λ

m
(xα(ρX ,s) − Xs)

〉
ds
]
.

(2.17)

Differentiating both sides of (2.17) with respect to the time t yields

d2

dt2
E[exp(−αE(Xt ))] = −αE[〈exp(−αE(Xt ))V t ,∇2E(Xt )V t 〉]

+ α2E[exp(−αE(Xt ))|〈∇E(Xt ), V t 〉|2]
+ αγ

m
E[exp(−αE(Xt ))〈∇E(Xt ), V t 〉]
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− αλ

m
E[exp(−αE(Xt ))〈∇E(Xt ), xα(ρX ,t ) − Xt 〉]

≥ − γ

m
d
dt

E[exp(−αE(Xt ))]

− α E[〈exp(−αE(Xt ))V t ,∇2E(Xt )V t 〉]︸ ︷︷ ︸
T1

− αλ

m
E[exp(−αE(Xt ))〈∇E(Xt ), xα(ρX ,t ) − Xt 〉]︸ ︷︷ ︸

T2

,

(2.18)

where we employed the first line of (2.17) in the last step. It remains to upper bound
the terms T1 and T2. Making use of Assumptions A1 and A4, we immediately obtain

T1 ≤ E[exp(−αE(Xt ))‖∇2E‖∞|V t |2] ≤ e−αECEE[|V t |2]. (2.19)

For T2, again under Assumptions A1 and A4, we first note that

T2 = −E
[
exp(−αE(Xt ))

⎦
∇E(Xt ) − ∇E(xα(ρX ,t )), Xt − xα(ρX ,t )

⎞]

≤ e−αECEE[|Xt − xα(ρX ,t )|2],
(2.20)

where the equality is a consequence of E[exp(−αE(Xt ))〈∇E(xα(ρX ,t )), Xt −
xα(ρX ,t )〉] = 0, which follows from the definition of xα(ρX ,t ). Bounding E[|Xt −
xα(ρX ,t )|2] as in (2.13) we can further bound (2.20) as

T2 ≤ e−αECEE[|Xt − xα(ρX ,t )|2] ≤ 2e−2αECE
E[|Xt − E[Xt ]|2]
E[exp(−αE(Xt ))]

. (2.21)

Collecting the estimates (2.19) and (2.21) within (2.18) and inserting the result
into (2.16) give

1
2
d2

dt2
(
E[exp(−αE(Xt ))]

)2 ≥ − γ

m
E[exp(−αE(Xt ))]

d
dt

E[exp(−αE(Xt ))]

− E[exp(−αE(Xt ))]αCEe
−αEE[|V t |2]

− 2αλ

m
e−2αECEE[|Xt − E[Xt ]|2]

≥ − γ

2m
d
dt

(
E[exp(−αE(Xt ))]

)2

− αe−2αECE

(
E[|V t |2] +

2λ
m

E[|Xt − E[Xt ]|2]
)
,

which yields the statement after employing the lower bound of (2.7) as in Lemma 1.
01
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We are now ready to state and prove the main result about the convergence of
the mean-field PSO dynamics (2.3) without memory mechanisms to the global mini-
mizer x∗.

Theorem 2 Let E satisfy Assumptions A1–A4 and let (Xt , V t )t≥0 be a solution to
the nonlinear SDE (2.3). Moreover, let us assume the well-preparation of the initial
datum X0 and V 0 in the sense that

P1 µ > 0 with

µ := λγ

2m2 −
(
2λ2

γm
+ ( 2

m2

)
4e−αE

E[exp(−αE(X0))]
,

P2 it holds

mα

2γ

(
E[
⎦
exp(−αE(X0))∇E(X0),V 0

⎞
]
)
+

E[exp(−αE(X0))]

+ αCE
χ( γ

m − χ)

(
1+ 8mλ

γ 2

)
E[H(0)]

(
E[exp(−α(E(X0)−E))]

)2 <
3
16

,

with x+ = max{x, 0} for x ∈ R denoting the positive part and where

χ := 2
3

min{γ /m, µ}
(
(γ /(2m))2 + 1

) .

Then E[H(t)] with H as defined in Equation (2.6) converges exponentially fast with
rate χ to 0 as t → ∞. Moreover, there exists some⎡x, which may depend on α and f0,
such that E[Xt ] →⎡x and xα(ρX ,t ) →⎡x exponentially fast with rate χ/2 as t → ∞.
Eventually, for any given accuracy ε > 0, there exists α0 > 0, which may depend on
the dimension d, such that for all α > α0,⎡x satisfies

E(⎡x) − E ≤ ε.

If E additionally satisfies Assumption A5, we have |⎡x − x∗| ≤ ε//..

Remark 4 As suggested in Remark 3, Theorem 2 traces back the evolution of
E[exp(−αE(Xt ))] to its initial state by employing Lemma 3. This allows to fixate
all parameters of PSO at initialization time. By replacing DX

t with 2DX
0 in (2.14), the

well-preparation of the parameters as in Condition P1 can be ensured.
Condition P2 requires the well-preparation of the initialization in the sense that

the initial datum f0 is both well-concentrated and to a certain extent not too far from
an optimal value. While this might have a locality flavor, the condition is generally
fulfilled in practical applications. Moreover, for CBO methods there is recent work
where such assumption about the initial datum is reduced to the absolute minimum
[18, 19].
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Remark 5 The choice of the parameter α0 necessary in Theorem 2 may be affected by
thedimensionalityd of the optimizationproblemat hand.Byestablishing aquantitative
nonasymptotic Laplace principle, this dependence is made explicit in the works [18,
Proposition 18] and [19, Proposition1],where the authors show thatα0 maybe required
to grow linearly in d, see [18, Remark 21].

Proof of Theorem 2 Let us define the time horizon

T := inf
{
t ≥ 0 : E[exp(−αE(Xt ))] <

1
2
E[exp(−αE(X0))]

}
with inf ∅ = ∞.

Obviously, by continuity, T > 0. We claim that T = ∞, which we prove by con-
tradiction in the following. Therefore, assume T < ∞. Then, for t ∈ [0, T ], we
have

λγ

2m2 −
(
2λ2

γm
+ ( 2

m2

)
2e−αE

E[exp(−αE(Xt ))]

≥ λγ

2m2 −
(
2λ2

γm
+ ( 2

m2

)
4e−αE

E[exp(−αE(X0))]
= µ > 0,

where the positivity of µ is due to the well-preparation condition P1 of the ini-
tialization. Lemma 2 then provides an upper bound for the time derivative of the
functional E[H(t)],

d
dt

E[H(t)] ≤ − γ

m
E[|V t |2] − µE[|Xt − E[Xt ]|2]

≤ −min
{ γ

m
, µ
} (

E[|Xt − E[Xt ]|2] + E[|V t |2]
)

≤ −2
3

min{γ /m, µ}
(
(γ /(2m))2 + 1

)E[H(t)] =: −χE[H(t)],

(2.22)

where we made use of the upper bound of (2.7) as in Lemma 1 in the last inequality.
The rate χ is defined implicitly and it is straightforward to check that χ < γ /m.
Grönwall’s inequality implies

E[H(t)] ≤ E[H(0)] exp(−χ t). (2.23)

Let us now investigate the evolution of the functional X (t) :=
(
E[exp(−αE(Xt ))]

)2
.

First note that

Ẋ (0) := d
dt

X (t)
⎤⎤
t=0 = −2αE[exp(−αE(X0))]E[exp(−αE(X0))

⎦
∇E(X0), V 0

⎞
].
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Then, an application of Grönwall’s inequality to Equation (2.15) from Lemma 3 and
using the explicit bound of E[H(t)] from (2.23) yields

d
dt

X (t) ≥ Ẋ (0) exp
(
− γ

m
t
)

− 4αe−2αECE

⎛

1+ 2
λ

m

(
2m
γ

)2
⎝∫ t

0
E[H(s)] exp

(
− γ

m
(t − s)

)
ds

≥ Ẋ (0) exp
(
− γ

m
t
)

− 4αe−2αECE

⎛

1+ 2
λ

m

(
2m
γ

)2
⎝

E[H(0)] 1
γ /m − χ

(
exp (−χ t) − exp

(
− γ

m
t
))

≥ Ẋ (0) exp
(
− γ

m
t
)

− 4αe−2αECE

⎛

1+ 2
λ

m

(
2m
γ

)2
⎝

E[H(0)] 1
γ /m − χ

exp (−χ t) ,

which, in turn, implies

X (t) ≥ X (0) − m
γ

(
− Ẋ (0)

)
+ − 4αe−2αECE

χ(γ /m − χ)

⎛

1+ 2
λ

m

(
2m
γ

)2
⎝

E[H(0)]

after discarding the positive parts. Recalling the definition of X and employing the
second well-preparation condition P2, we can deduce that for all t ∈ [0, T ] it holds

(
E[exp(−αE(Xt ))]

)2 ≥
(
E[exp(−αE(X0))]

)2

− 2mα

γ
E[exp(−αE(X0))]

(
E[exp(−αE(X0))

⎦
∇E(X0), V 0

⎞
]
)
+

− 4αe−2αECE
χ(γ /m − χ)

⎛

1+ 2
λ

m

(
2m
γ

)2
⎝

E[H(0)]

>
1
4

(
E[exp(−αE(X0))]

)2
,

which entails that there exists δ > 0 such thatE[exp(−αE(Xt ))] ≥ E[exp(−αE(X0))]
/2 in [T , T + δ] as well, contradicting the definition of T and therefore showing the
claim T = ∞.
As a consequence of (2.23) we have

E[H(t)] ≤ E[H(0)] exp(−χ t) and E[exp(−αE(Xt ))] ≥ 1
2
E[exp(−αE(X0))]

(2.24)
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for all t ≥ 0. In particular, by means of Lemma 1, for a suitable generic constant
C > 0, we infer

E[|Xt − E[Xt ]|2] ≤ C exp(−χ t), E[|V t |2] ≤ C exp(−χ t),

and E[|Xt − xα(ρX ,t )|2] ≤ C exp(−χ t), (2.25)

where the last inequality uses the fact (2.13). Moreover, with Jensen’s inequality,

⎤⎤⎤⎤
d
dt

E[Xt ]
⎤⎤⎤⎤ ≤ E[|V t |] ≤ C exp (−χ t/2) → 0 as t → ∞,

showing thatE[Xt ] →⎡x for some⎡x ∈ Rd , whichmay depend on α and f0. According
to (2.25), Xt →⎡x in mean-square and xα(ρX ,t ) →⎡x , since

|xα(ρX ,t ) −⎡x |2 ≤ 3E[|xα(ρX ,t ) − Xt |2]
+3E[|Xt − EXt |2] + 3|EXt −⎡x |2 → 0 as t → ∞.

Eventually, by continuity of the objective functionE and by the dominated convergence
theorem, we conclude that E[exp(−αE(Xt ))] → e−αE(⎡x) as t → ∞. Using this when
taking the limit t → ∞ in the second bound of (2.24) after applying the logarithm
and multiplying both sides with −1/α, we obtain

E(⎡x) = lim
t→∞

(
− 1

α
logE[exp(−αE(Xt ))]

)
≤ − 1

α
logE[exp(−αE(X0))] +

1
α
log 2.

(2.26)

The Laplace principle (1.5) on the other hand allows to choose⎡α ( 1 large enough
such that for given ε > 0 it holds − 1

α logE[exp(−αE(X0))] − E < ε/2 for any
α ≥ ⎡α. Together with (2.26), this establishes 0 ≤ E(⎡x) − E ≤ ε/2 + (log 2)/α ≤ ε

for α ≥ max{⎡α, (2 log 2)/ε}. Finally, under the inverse continuity property A5 we
additionally have |⎡x − x∗| ≤ (E(⎡x) − E)//. ≤ ε//., concluding the proof. 01

3 Mean-Field Analysis of PSOwithMemory Effects

Let us now turn back to the PSO dynamics (1.2) described in the introduction. The
fundamental difference towhatwas analyzed in the preceding section is the presence of
a personal memory of each particle, encoded through the additional state variable Y i

t .
It can be thought of as an approximation to the in-time best position arg minτ≤t E(Xi

τ )

seen by the respective particle. Its dynamics is encoded in Equation (1.2b).
In this section we analyze (1.2) in the large particle limit, i.e., through its mean-field

limit (1.8).
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3.1 Well-Posedness of PSOwith Memory Effects

Ensured by a sufficiently regularized implementation of the local best position Y , we
can show the well-posedness of the mean-field PSO dynamics (1.8), respectively, the
associated Vlasov-Fokker-Planck equation (1.7). As regards uniqueness, it does not
seem straightforward to extend the standard proof technique to the present setting due
to the way the memory effects are implemented in (1.2b) and (1.8b). Therefore, in
what follows, we merely prove existence of solutions and leave the development of a
suitably modified proof technique for future research, see also Remark 8.

Theorem 3 Let E satisfy Assumptions A1–A3. Moreover, let m, γ , λ1, λ2, (1, (2,α,β,

θ, κ, T > 0. If (X0,Y 0, V 0) is distributed according to f0 ∈ P4(R3d), then the
nonlinear SDE (1.8) admits a strong solution up to time T with C([0, T ],Rd) +
C([0, T ],Rd) + C([0, T ],Rd)-valued paths. The associated law f has regular-
ity C([0, T ],P4(R3d)) and is a weak solution to the Vlasov-Fokker-Planck equa-
tion (1.7). In particular,

sup
t∈[0,T ]

E[|Xt |4 + |Y t |4 + |V t |4] ≤
(
1+ 3E[|X0|4 + |Y 0|4 + |V 0|4]

)
eCT (3.1)

for some constant C > 0 depending only on m, γ , λ1, λ2, (1, (2,α,β, θ, κ, cE , R and
LE .

Proof sketch The proof follows the steps taken in [8, Theorems 3.1, 3.2].
Step 1: For a given function u ∈ C([0, T ],Rd) and an initial measure f0 ∈ P4(R3d),
according to standard SDE theory [2, Chapter 6], we can uniquely solve the auxiliary
SDE

d⎡Xt = ⎡Vt dt,
d⎡Yt = κ

(⎡Xt − ⎡Yt
)
Sβ,θ

(⎡Xt ,⎡Yt
)
dt,

m d⎡Vt = − γ ⎡Vt dt + λ1
(⎡Yt − ⎡Xt

)
dt + λ2

(
ut − ⎡Xt

)
dt + (1D

(⎡Yt − ⎡Xt
)
dB1

t

+ (2D
(
ut − ⎡Xt

)
dB2

t ,

with initial condition
(⎡X0,⎡Y0, ⎡V0

)
∼ f0 as, due to the smoothness of Sβ,θ andAssump-

tions A2 and A3, the coefficients are locally Lipschitz and have at most linear growth.
This induces ⎡ft = Law

(⎡Xt ,⎡Yt , ⎡Vt
)
. Moreover, the regularity of f0 ∈ P4(R3d) allows

for a moment estimate of the form (3.1) and thus ⎡f ∈ C([0, T ],P4(R3d)), see, e.g.
[2, Chapter 7]. In what follows, ⎡ρY denotes the spatial local best marginal of ⎡f , i.e.,
⎡ρY (t, · ) =

⎣⎣
R2d d ⎡f (t, x, · , v).

Step 2: Let us now define, for some constant C > 0, the test function space

C2∗(R3d) :=
{
φ ∈ C2(R3d) : |∇vφ| ≤ C (1+ |x | + |y| + |v|)

and sup
k=1,...,d

∥∥∥∂2vkvkφ
∥∥∥

∞
< ∞

}
.

(3.2)
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For some φ ∈ C2∗(R3d), by the Itô-Doeblin formula, we derive

dφ = ∇xφ · ⎡Vt dt + κ∇yφ ·
(⎡Xt−⎡Yt

)
Sβ,θ

(⎡Xt ,⎡Yt
)
dt

+∇vφ ·
(

− γ

m
⎡Vt+

λ1

m

(⎡Yt−⎡Xt
)
+ λ2

m

(
ut−⎡Xt

))
dt

+ 1
2

d∑

k=1

∂2vkvkφ

⎛
( 2
1

m2

(⎡Yt−⎡Xt
)2
k +

( 2
2

m2

(
ut−⎡Xt

)2
k

⎝

dt

+ ∇vφ ·
((1

m
D
(⎡Yt−⎡Xt

)
dB1

t +
(2

m
D
(
ut−⎡Xt

)
dB2

t

)
,

where we mean φ
(⎡Xt ,⎡Yt , ⎡Vt

)
whenever we write φ. After taking the expectation,

applying Fubini’s theorem and observing that the stochastic integrals vanish due to
the definition of the test function space C2∗(R3d) and the regularity (3.1), we observe
that ⎡f ∈ C([0, T ],P4(R3d)) satisfies the Vlasov-Fokker-Planck equation

d
dt

∫∫∫

R3d
φ d ⎡ft =

∫∫∫

R3d
v · ∇xφ d ⎡ft +

∫∫∫

R3d
κ(x − y)Sβ,θ (x, y) · ∇yφ d ⎡ft

−
∫∫∫

R3d

(
γ

m
v + λ1

m
(x − y)+ λ2

m
(x − ut )

)
· ∇vφ d ⎡ft

+
∫∫∫

R3d

d∑

k=1

⎛
( 2
1

2m2 (x − y)2k +
( 2
2

2m2 (x − ut )2k

⎝

· ∂2vkvkφ d ⎡ft .

(3.3)

Step 3: Setting T u := yα(⎡ρY ) ∈ C([0, T ],Rd) provides the self-mapping property of
the map

T : C([0, T ],Rd) → C([0, T ],Rd), u 5→ T u = yα(⎡ρY ),

which is compact as a consequence of the stability estimate |yα(⎡ρY ,t )− yα(⎡ρY ,s)|2 !
W2(⎡ρY ,t ,⎡ρY ,s) for ⎡ρY ,t ,⎡ρY ,s ∈ P4(Rd), see, e.g., [8, Lemma 3.2], and the Hölder-
1/2 continuity of the Wasserstein-2 distance W2(⎡ρY ,t ,⎡ρY ,s).
Step 4: Then, for u = ϑT u with ϑ ∈ [0, 1], there exists ⎡f ∈ C([0, T ],P4(R3d))

satisfying (3.3) with marginal ⎡ρY such that ut = ϑ yα(⎡ρY ,t ). For such u, a uniform
bound can be obtained as of Assumption A3. An application of the Leray-Schauder
fixed point theorem provides a solution to (1.8). 01

3.2 Convergence of PSOwith Memory Effects to a Global Minimizer

Analogously to Sect. 2.2 we define a functional H(t), which is analyzed in this
section to eventually prove its exponential decay and thereby consensus formation
at some ⎡x close to the global minimizer x∗. In addition to the requirements that
the variance E[|Xt − E[Xt ]|2] in the position and the second-order moment of the
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velocityE[|V t |2] of the averaged particle vanish,we also expect that the particle’s posi-
tion Xt aligns with its personal best position Y t over time, meaning thatE[|Xt −Y t |2]
decays to zero. This motivates the definition

H(t) :=
( γ

2m

)2
|Xt − E[Xt ]|2 +

3
2
|V t |2 +

1
2

(
3λ1
m

+ γ 2

m2

)
|Xt − Y t |2

+ γ

2m

⎦
Xt − E[Xt ], V t

⎞
+ γ

m

⎦
Xt − Y t , V t

⎞
,

(3.4)

whose last two terms are required for technical reasons. Again, by the equivalence
established in the following Lemma 4, proving the decay of the Lyapunov function
E[H(t)] directly entails the decay of E[|Xt −E[Xt ]|2 + |V t |2 + |Xt − Y t |2] with the
same rate.

Lemma 4 The functional H(t) is equivalent to |Xt − E[Xt ]|2 + |V t |2 + |Xt − Y t |2
in the sense that

1
2

( γ

2m

)2
|Xt − E[Xt ]|2 +

1
2
|V t |2 +

3λ1
2m

|Xt − Y t |2 ≤ H(t)

≤ 5
2

(( γ

2m

)2
+ 1+ 3λ1

m
+ 2γ 2

m2

)(
|Xt − E[Xt ]|2 + |V t |2 + |Xt − Y t |2

)
.

(3.5)

We now derive an evolution inequality of the Lyapunov function E[H(t)].

Lemma 5 Let E satisfy Assumptions A1–A3 and let (Xt ,Y t , V t )t≥0 be a solution to
the nonlinear SDE (1.8). Then E[H(t)] withH as defined in (3.4) satisfies

d
dt

E[H(t)]

≤ − γ

2m
E[|V t |2]

−
⎛
(λ1+2λ2)γ

(2m)2
−
⎛
9λ22
γm

+ 3( 2
2

m2 + 3λ1γ
(2m)2

⎝
6e−αE

E[exp(−αE(Y t ))]

⎝

E[|Xt−E[Xt ]|2]

−
⎛
(λ1+λ2)γ

m2 +κθ

(
3λ1
m

+ γ 2

m2

)
− 8κ2γ

m
− λ22γ

2m2λ1
− 3( 2

1

2m2

−
⎛
9λ22
γm

+ 3( 2
2

m2

⎝

−
⎛
9λ22
γm

+ 3( 2
2

m2 + 3λ1γ
(2m)2

⎝
12e−αE

E[exp(−αE(Y t ))]

⎝

E[|Xt−Y t |2].

(3.6)

Proof Let us write δXt := Xt −E[Xt ] for short and note that the integration by parts
formula gives

d
dt

E[|δXt |2] = 2E[
⎦
δXt , V t

⎞
]. (3.7)
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Observe that the stochastic integrals have vanishing expectations as a consequence
of [39, Theorem 3.2.1(iii), Definition 3.1.4(iii)] combined with the regularity f ∈
C([0, T ],P4(R2d)) obtained in Theorem 3. An application of the Itô-Doeblin formula
and Young’s inequality yields

d
dt

E[|V t |2] = −2γ
m

E[|V t |2] +
2λ1
m

E[
⎦
V t ,Y t − Xt

⎞
]

+ 2λ2
m

E[
⎦
V t , yα(ρY ,t ) − Xt

⎞
] + ( 2

1

m2E[|Y t − Xt |2]

+ ( 2
2

m2E[|yα(ρY ,t ) − Xt |2]

≤ −
(
2γ
m

− λ2

εm

)
E[|V t |2] +

( 2
1

m2E[|Y t − Xt |2]

+
⎛

ελ2

m
+ ( 2

2

m2

⎝

E[|yα(ρY ,t ) − Xt |2]

− 2λ1
m

E[
⎦
V t , Xt − Y t

⎞
], ∀ ε > 0.

(3.8)

Again by employing the Itô-Doeblin formula we obtain

d
dt

E[
⎦
δXt , V t

⎞
] = E[|V t |2] −

(
E[V t ]

)2 − γ

m
E[
⎦
δXt , V t

⎞
] + λ1

m
E[
⎦
δXt ,Y t − Xt

⎞
]

+ λ2

m
E[
⎦
δXt , yα(ρY ,t ) − Xt

⎞
]

≤ E[|V t |2] − γ

2m
d
dt

E[|δXt |2]

+ λ1

m
E[
⎦
δXt ,

(
Y t − yα(ρY ,t )

)
−
(
Xt − E[Xt ]

)⎞
]

+ λ2

m
E[
⎦
δXt ,E[Xt ] − Xt

⎞
]

= E[|V t |2] − γ

2m
d
dt

E[|δXt |2] − λ1 + λ2

m
E[|δXt |2]

+ λ1

m
E[
⎦
δXt ,Y t − yα(ρY ,t )

⎞
]

≤ E[|V t |2] − γ

2m
d
dt

E[|δXt |2] − λ1 + 2λ2
2m

E[|δXt |2]

+ λ1

2m
E[|Y t − yα(ρY ,t )|2],

where, for the second line, we used the identity (3.7) and that E[
⎦
δXt ,C

⎞
] = 0,

whenever C ∈ Rd is constant, allowing to expand the expression in the way done. We
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now rearrange the previous inequality to get

γ

2m
d
dt

E[|δXt |2] +
d
dt

E[
⎦
δXt , V t

⎞
] ≤ E[|V t |2] − λ1 + 2λ2

2m
E[|δXt |2]

+ λ1

2m
E[|Y t − yα(ρY ,t )|2]. (3.9)

Next, using the Itô-Doeblin formula, we compute

d
dt

E[|Xt − Y t |2] = 2E[
⎦
Xt − Y t , V t − κ

(
Xt − Y t

)
Sβ,θ (Xt ,Y t )

⎞
]

≤ 2E[
⎦
Xt − Y t , V t

⎞
] − 2κθE[|Xt − Y t |2],

(3.10)

where the last step follows from the fact that θ < Sβ,θ (Xt ,Y t ) < 2 + θ < 4. And
lastly, the Itô-Doeblin formula and Young’s inequality allow to bound

d
dt

E[
⎦
Xt − Y t , V t

⎞
]

= − γ

m
E[
⎦
Xt − Y t , V t

⎞
] − λ1 + λ2

m
E[|Xt − Y t |2] +

λ2

m
E[
⎦
Xt − Y t , yα(ρY ,t ) − Y t

⎞
]

+ E[
⎦
V t − κ

(
Xt − Y t

)
Sβ,θ (Xt , Y t ), V t

⎞
]

≤ − γ

m
E[
⎦
Xt − Y t , V t

⎞
] − λ1 + λ2

m
E[|Xt − Y t |2] +

λ22
2mλ1

E[|Xt − Y t |2]

+ λ1

2m
E[|yα(ρY ,t ) − Y t |2]

+ E[|V t |2] +
1
2
E[|V t |2] + 8κ2E[|Xt − Y t |2]

= −
⎛

λ1 + λ2

m
− 8κ2 − λ22

2mλ1

⎝

E[|Xt − Y t |2] +
3
2
E[|V t |2] +

λ1

2m
E[|yα(ρY ,t ) − Y t |2]

− γ

m
E[
⎦
Xt − Y t , V t

⎞
].

(3.11)

We now collect the bounds (3.8), (3.9), (3.10), and (3.11) to show

d
dt

E[H(t)]

≤ −
(
3γ
m

− 3λ2
2εm

− γ

2m
− 3γ
2m

)
E[|V t |2]−

(λ1+2λ2)γ
(2m)2

E[|δXt |2]

−
⎛
(λ1+λ2)γ

m2 − 8κ2γ

m
− λ22γ

2m2λ1
+κθ

(
3λ1
m

+ γ 2

m2

)
− 3( 2

1

2m2

⎝

E[|Xt −Y t |2]

+ 3
2

⎛
ελ2

m
+ ( 2

2

m2

⎝

E[|yα(ρY ,t )−Xt |2]+
3λ1γ
(2m)2

E[|yα(ρY ,t )−Y t |2]

≤ −
(

γ

m
− 3λ2
2εm

)
E[|V t |2]−

(λ1+2λ2)γ
(2m)2

E[|δXt |2]

−
⎛
(λ1+λ2)γ

m2 − 8κ2γ

m
− λ22γ

2m2λ1
+κθ

(
3λ1
m

+ γ 2

m2

)
− 3( 2

1

2m2 −3

⎛
ελ2

m
+ ( 2

2

m2

⎝⎝

E[|Xt −Y t |2]
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+
⎛

3

⎛
ελ2

m
+ ( 2

2

m2

⎝

+ 3λ1γ
(2m)2

⎝

E[|yα(ρY ,t )−Y t |2].

Recalling the computation (2.13) yields the bound

E[|Y t − yα(ρY ,t )|2] ≤ 2e−αE E[|δY t |2]
E[exp(−αE(Y t ))]

≤ 2e−αE 6E[|Y t − Xt |2] + 3E[|δXt |2]
E[exp(−αE(Y t ))]

, (3.12)

where we inserted ±Xt and ±E[Xt ] in the second step and used that (a + b+ c)2 ≤
3(a2 + b2 + c2) as well as Jensen’s inequality. Combining the last two bounds and
choosing ε = (3λ2)/γ we obtain (3.6) as desired. 01
Remark 6 The exponential decay of E[H(t)] it obtained by choosing the parameters
of PSO in a manner which ensures the negativity of the prefactors ofE[|Xt −E[Xt ]|2]
and E[|Xt −Y t |2] in Inequality (3.6). This may be achieved by choosing for any fixed
time t , given α and arbitrary θ, (1, (2, γ > 0,

λ1 >
3( 2

1

2γ
, λ2 > 6max

{
DY
t λ1

4
,
(1+ DY

t )(
2
2

γ

}

, κ >
3λ22(1+ DY

t )

γ θλ1
,

and m < min

{
γ θ

16κ
,

λ1γ
2

18DY
t λ22

}

,

where we abbreviate DY
t = 12e−αE/E[exp(−αE(Y t ))].

In our main theorem on convergence of the PSO dynamics with memory mecha-
nisms to the global minimizer x∗ we again ensure that the parameter can be chosen
once at initialization time.

Theorem 4 Let E satisfy Assumptions A1–A4 and let (Xt , V t )t≥0 be a solution to
the nonlinear SDE (1.8). Moreover, let us assume the well-preparation of the initial
datum X0 and V 0 in the sense that

P1 µ1 > 0 with

µ1 :=
(λ1 + 2λ2)γ

(2m)2
−
⎛
9λ22
γm

+ 3( 2
2

m2 + 3λ1γ
4m2

⎝
12e−αE

E[exp(−αE(Y 0))]
,

P2 µ2 > 0 with

µ2 :=
(λ1 + λ2)γ

m2 + κθ

(
3λ1
m

+ γ 2

m2

)
− 8κ2γ

m
− λ22γ

2m2λ1
− 3( 2

1

2m2

−
⎛
9λ22
γm

+ 3( 2
2

m2

⎝

−
⎛
9λ22
γm

+ 3( 2
2

m2 + 3λ1γ
(2m)2

⎝
24e−αE

E[exp(−αE(Y 0))]
,
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P3 it holds
⎛

ακm
λ1χ

(
CE + 2α2

)
+ 24C2

Eκ

αχ3

⎝
E[H(0)]

E[exp(−α(E(Y 0) − E))]

+ 6κ
αχ

E[|∇E(X0)|2]
E[exp(−α(E(Y 0) − E))]

<
3
32

where

χ := 2
5

min{γ /(2m), µ1, µ2}(
(γ /(2m))2 + 1+ 3λ1/m + 2(γ /m)2

) .

Then E[H(t)] with H as defined in Equation (3.4) converges exponentially fast with
rate χ to 0 as t → ∞. Moreover, there exists some⎡x, which may depend on α and f0,
such that E[Xt ] →⎡x and yα(ρY ,t ) →⎡x exponentially fast with rate χ/2 as t → ∞.
Eventually, for any given accuracy ε > 0, there exists α0 > 0, which may depend on
the dimension d, such that for all α > α0,⎡x satisfies

E(⎡x) − E ≤ ε.

If E additionally satisfies Assumption A5, we additionally have |⎡x − x∗| ≤ ε//..

Remark 7 By replacing DY
t with 2DY

0 in the parameter choices of Remark 6, the
well-preparation of the parameters as in Conditions P1 and P2 can be ensured.

In analogy to Remark 4, Condition P3 guarantees the well-preparation of the ini-
tialization.

Proof of Theorem 4 Let us define the time horizon

T := inf
{
t ≥ 0 : E[exp(−αE(Y t ))] <

1
2
E[exp(−αE(Y 0))]

}
with inf ∅ = ∞.

Obviously, by continuity, T > 0. We claim that T = ∞, which we prove by con-
tradiction in the following. Therefore, assume T < ∞. Then, for t ∈ [0, T ], noting
that E[exp(−αE(Y t ))] ≥ E[exp(−αE(Y 0))]/2, we observe that the prefactors of
E[|Xt − E[Xt ]|2] and E[|Xt − Y t |2] in Lemma 5 are upper bounded by −µ1 and
−µ2, respectively. Lemma 5 then provides an upper bound for the time derivative of
the functional E[H(t)],

d
dt

E[H(t)] ≤ − γ

2m
E[|V t |2] − µ1E[|Xt − E[Xt ]|2] − µ2E[|Xt − Y t |2]

≤ −min
{ γ

2m
, µ1, µ2

} (
E[|Xt − E[Xt ]|2] + E[|V t |2] + E[|Xt − Y t |2]

)

≤ − 2
5

min{γ /(2m), µ1, µ2}(
(γ /(2m))2 + 1+ 3λ1/m + 2γ 2/m2

)E[H(t)] =: −χE[H(t)],

(3.13)

where we made use of the upper bound of (3.5) as in Lemma 4 in the last inequality.
The rate χ is defined implicitly and it is straightforward to check that 0 < χ < γ /m,
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where the positivity of χ follows from the well-preparation conditions P1 and P2 of
the initialization. Grönwall’s inequality implies

E[H(t)] ≤ E[H(0)] exp(−χ t). (3.14)

We now investigate the evolution of the functional Y(t) := E[exp(−αE(Y t ))]. The
Itô-Doeblin formula yields

d
dt

Y(t) = −ακE[exp(−αE(Y t ))
⎦
∇E(Y t ), (Xt − Y t )Sβ,θ (Xt ,Y t )

⎞
]

= −ακE[exp(−αE(Y t ))
⎦
∇E(Y t ) − ∇E(Xt ), (Xt − Y t )Sβ,θ (Xt ,Y t )

⎞
]

− ακE[exp(−αE(Y t ))
⎦
∇E(Xt ), (Xt − Y t )Sβ,θ (Xt ,Y t )

⎞
]

≥ −4ακe−αECEE[|Xt − Y t |2] − 4ακe−αEE[|∇E(Xt )||Xt − Y t |],
(3.15)

where the last step follows from Cauchy-Schwarz inequality and uses Assump-
tion A4 and Sβ,θ (Xt ,Y t ) < 4. Now firstly notice that E[|∇E(Xt )||Xt − Y t |] ≤
e(χ/2)tα2E[|Xt −Y t |2]+ e−(χ/2)t/α2E[|∇E(Xt )|2] by Young’s inequality. Secondly,
using again Assumption A4 in the first inequality, we have

E[|∇E(Xt )|2] = E
[⎤⎤⎤⎤∇E(X0)+

∫ t

0
∇2E(Xs)V s ds

⎤⎤⎤⎤
2
]

≤ 2E[|∇E(X0)|2] + 2C2
E t
∫ t

0
E[|V s |2] ds

≤ 2E[|∇E(X0)|2] + 4C2
E t
∫ t

0
E[H(s)] ds

≤ 2E[|∇E(X0)|2] + 4C2
E tE[H(0)]

∫ t

0
exp(−χs) ds

= 2E[|∇E(X0)|2] + 4C2
E tE[H(0)] 1

χ
(1 − exp(−χ t)) ,

where the next-to-last step uses the explicit bound in (3.14). Using the two latter
observations together with the fact that E[|Xt − Y t |2] ≤ 2m/(3λ1)E[H(t)] we can
continue (3.15) as follows

d
dt

Y(t) ≥ −4ακe−αE
(
CE + exp

(χ

2
t
)

α2
) 2m
3λ1

E[H(t)]

− 4
α

κe−αE exp
(
−χ

2
t
)
E[|∇E(Xt )|2]

≥ −4ακe−αE
(
CE + exp

(χ

2
t
)

α2
) 2m
3λ1

E[H(0)] exp(−χ t)

− 4
α

κe−αE exp
(
−χ

2
t
)(

2E[|∇E(X0)|2] + 4C2
E tE[H(0)] 1

χ
(1 − exp(−χ t))

)
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≥ −4ακe−αE
(
CE exp (−χ t)+ exp

(
−χ

2
t
)

α2
) 2m
3λ1

E[H(0)]

− 4
α

κe−αE exp
(
−χ

2
t
)⎛

2E[|∇E(X0)|2] +
4C2

E t

χ
E[H(0)]

⎝

. (3.16)

By integrating (3.16) we obtain for all t ∈ [0, T ]

Y(t) ≥ Y(0) − 4ακe−αE
(
CE
χ

+ 2α2

χ

)
2m
3λ1

E[H(0)]

− 4
α

κe−αE
⎛

2E[|∇E(X0)|2]
2
χ

+ 16C2
E

χ3 E[H(0)]
⎝

.

Recalling the definition of Y and employing Condition P3, we can deduce that for all
t ∈ [0, T ] it holds

E[exp(−αE(Y t ))] ≥ E[exp(−αE(Y 0))] − 4ακe−αE
(
CE
χ

+ 2α2

χ

)
2m
3λ1

E[H(0)]

− 4
α

κe−αE
⎛

2E[|∇E(X0)|2]
2
χ

+ 16C2
E

χ3 E[H(0)]
⎝

>
3
4
E[exp(−αE(Y 0))],

which entails that there exists δ > 0 such thatE[exp(−αE(Y t ))] ≥ E[exp(−αE(Y 0))]/
2 in [T , T + δ] as well, contradicting the definition of T and therefore showing the
claim T = ∞.

As a consequence of (3.14) we have

E[H(t)] ≤ E[H(0)] exp(−χ t) and E[exp(−αE(Y t ))] ≥ 1
2
E[exp(−αE(Y 0))]

(3.17)

for all t ≥ 0. In particular, by means of Lemma 4, for a suitable generic constant
C > 0, we infer

E[|Xt − E[Xt ]|2] ≤ C exp(−χ t), E[|V t |2] ≤ C exp(−χ t),

and E[|Xt − Y t |2] ≤ C exp(−χ t). (3.18)
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Moreover, with Jensen’s inequality,

⎤⎤⎤⎤
d
dt

E[Xt ]
⎤⎤⎤⎤ ≤ E[|V t |] ≤ C exp (−χ t/2) → 0 as t → ∞,

showing thatE[Xt ] →⎡x for some⎡x ∈ Rd , whichmay depend on α and f0. According
to (3.18), Xt → ⎡x as well as Y t → ⎡x in mean-square. Moreover, by reusing the
inequality (3.12) we get

E[|Y t − yα(ρY ,t )|2] ≤ 4e−αE 6E[|Y t − Xt |2] + 3E[|Xt − EXt |2]
E[exp(−αE(Y 0))]

≤ C exp(−χ t)

showing yα(ρY ,t ) →⎡x , since

|yα(ρY ,t ) −⎡x |2 ≤ 4E[|yα(ρY ,t ) − Y t |2] + 4E[|Y t − Xt |2]
+4E[|Xt − EXt |2] + 4|EXt −⎡x |2 → 0 as t → ∞.

The remainder of the proof follows the lines of the proof of Theorem 2, replacing
merely Xt with Y t . 01

4 A Holistic Convergence Statement of PSOWithout Memory Effects

In Sects. 2 and 3we analyzed themacroscopic behavior of PSOwithout andwithmem-
ory effects in the mean-field regime. For this purpose we introduced the with (1.2)
and (2.1) associated self-consistent mono-particle processes (1.8) and (2.3), for which
we then established convergence guarantees under the in Theorems 2 and 4 specified
assumptions. However, in order to be able to infer therefrom the optimization capa-
bilities of the numerically implemented PSO method, a quantitative estimate on the
approximation quality of the interacting particle system by the corresponding mean-
field dynamics is necessary.

4.1 On theMean-Field Approximation of PSOWithout Memory Effects

The following theorem provides a probabilistic quantitative estimate on themean-field
approximation for PSO without memory effects. Notably, the result does not suffer
from the curse of dimensionality.

Theorem 5 Let T > 0, f0 ∈ P4(R2d) and let N ∈ N be fixed. Moreover, let E obey
Assumptions A1–A4. We denote by

(
(Xi

t , V
i
t )t≥0

)
i=1,...,N the solution to system (2.1)

and let
(
(X

i
t , V

i
t )t≥0

)
i=1,...,N be N independent copies of the solution to themean-field
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dynamics (2.3). Then it holds

P (5M ) = P
⎛

sup
t∈[0,T ]

[
1
N

N∑

i=1

max
{
|Xi

t |4 + |V i
t |4, |X

i
t |4 + |V i

t |4
}]

≤ M

⎝

≥ 1 − 2K
M

, (4.1)

where K = K (γ /m, λ/m, (/m, T , E) is a constant, which is in particular indepen-
dent of N and d.

Furthermore, if the processes share the initial data as well as the Brownian motion
paths (Bi

t )t≥0 for all i = 1, . . . , N, then we have a probabilistic mean-field approxi-
mation of the form

max
i=1,...,N

sup
t∈[0,T ]

E
[
|Xi

t − X
i
t |2 + |V i

t − V
i
t |2
⎤⎤⎤5M

]
≤ CMFAN−1 (4.2)

with a constant CMFA = CMFA(α, γ /m, λ/m, (/m, T , E, K ,M), which is in partic-
ular independent of N and d.

Proof The proof is based on the arguments of [18, Section 3.3] about the mean-field
approximationofCBO.Firstwe compute abound forE[supt∈[0,T ] 1

N

∑N
i=1 max{|Xi

t |4+
|V i

t |4, |X
i
t |4 + |V i

t |4}], which is then used to derive a mean-field approximation for
PSO conditioned on the set 5M of uniformly bounded processes.
Step 1:Using standard inequalities and Jensen’s inequality allows to derive the bound

E
[

sup
t∈[0,T ]

|Xi
t |4
]

! E[|Xi
0|4] + E

[

sup
t∈[0,T ]

⎤⎤⎤⎤

∫ t

0
V i
s ds

⎤⎤⎤⎤
4
]

≤ C
(
E[|Xi

0|4] + E
⎠∫ T

0
|V i

s |4 ds
]) (4.3)

with C = C(T ). For the velocities V i
t we first note that

E
[

sup
t∈[0,T ]

|V i
t |4
]

! E[|V i
0 |4] +

( γ

m

)4
E
[

sup
t∈[0,T ]

⎤⎤⎤⎤

∫ t

0
V i
s ds

⎤⎤⎤⎤
4
]

+
(

λ

m

)4
E
[

sup
t∈[0,T ]

⎤⎤⎤⎤

∫ t

0

(
xα(ρ̂

N
X ,s) − Xi

s

)
ds
⎤⎤⎤⎤
4
]

+
( (

m

)4
E
[

sup
t∈[0,T ]

⎤⎤⎤⎤

∫ t

0
D
(
xα(ρ̂

N
X ,s) − Xi

s

)
dBi

s

⎤⎤⎤⎤
4
]

.

(4.4)

While the two middle terms on the right-hand side of (4.4) can be controlled as
before by applying Jensen’s inequality, the last term is treated as follows. Since
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⎣ t
0 D

(
xα(ρ̂

N
X ,s)− Xi

s
)
dBi

s is a martingale we can apply the Burkholder-Davis-Gundy
inequality [47, Chapter IV, Theorem 4.1], which gives

E
[

sup
t∈[0,T ]

⎤⎤⎤⎤

∫ t

0
D
(
xα(ρ̂

N
X ,s) − Xi

s
)
dBi

s

⎤⎤⎤⎤
4
]

! sup
t∈[0,T ]

E
[(∫ t

0

⎤⎤⎤xα(ρ̂
N
X ,s) − Xi

s

⎤⎤⎤
2
ds
)2
]

≤ CE
⎠∫ T

0

⎤⎤⎤xα(ρ̂
N
X ,s) − Xi

s

⎤⎤⎤
4
ds
]
,

(4.5)

where the latter step is again due to Jensen’s inequality and with a constantC = C(T ).
Utilizing these bounds allows to continue the inequality in (4.4) and to obtain

E
[

sup
t∈[0,T ]

|V i
t |4
]

≤ C
(
E[|V i

0 |4] + E
⎠∫ T

0
|Xi

s |4 + |xα(ρ̂
N
X ,s)|4 + |V i

s |4 ds
])

(4.6)

with C = C(γ /m, λ/m, (/m, T ). Since according to [8, Lemma 3.3] it holds

|xα(ρ̂
N
X ,s)|2 ≤

∫
|x |2 ωE

α (x)∥∥ωE
α

∥∥
L1(ρ̂

N
X ,s )

dρ̂N
X ,s(x) ≤ b1 + b2

∫
|x |2 dρ̂N

X ,s(y)

= b1 + b2
1
N

N∑

i=1

|Xi
s |2

with b1 = 0 and b2 = eα(E−E) in the case that E is bounded, and

b1 = R2 + b22 and b2 =
2LE max{1, |x∗|2}

cE

(
1+ 1

αcE R2

)

in the case that E satisfies the coercivity assumption A3, we eventually obtain the
upper bound

E
[

sup
t∈[0,T ]

|V i
t |4
]

≤ C



1+ E[|V i
0 |4] + E




∫ T

0
|Xi

s |4 +
1
N

N∑

j=1

|X j
s |4 + |V i

s |4 ds








(4.7)
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with C = C(γ /m, λ/m, (/m, T , b1, b2). Adding up (4.3) and (4.7) yields

E
[

sup
t∈[0,T ]

|Xi
t |4 + |V i

t |4
]

≤ C



1+ E[|Xi
0|4 + |V i

0 |4]

+E




∫ T

0
|Xi

s |4 +
1
N

N∑

j=1

|X j
s |2 + |V i

s |4 ds







 ,

(4.8)

which, averaged over i , allows to derive the bound

E
[

sup
t∈[0,T ]

1
N

N∑

i=1

(
|Xi

t |4 + |V i
t |4

)]

≤ C

⎛

1+ E
[
1
N

N∑

i=1

(
|Xi

0|4 + |V i
0 |4

)]

+
∫ T

0
E
[
1
N

N∑

i=1

(
|Xi

s |4 + |V i
s |4

)]

ds

⎝

.

(4.9)

An application of Grönwall’s inequality ensures that E supt∈[0,T ]
[ 1
N

∑N
i=1

(
|Xi

t |4
+|V i

t |4
) ]

is bounded independently of N by some constant K = K (γ /m, λ/m, (/m,

T , b1, b2). Note, that the constant K does in particular not depend on N or d. With
identical arguments for the processes (X

i
t , V

i
t ) an analogous bound can be obtained for

E
[
supt∈[0,T ]

1
N

∑N
i=1

(
|Xi

t |4 + |V i
t |4
)]
. The first claim of the statement now follows

from Markov’s inequality.
Step 2: We define the cutoff function

IM (t) =
{
1, if 1

N

∑N
i=1 max

{
|Xi

s |4 + |V i
s |4, |X

i
s |4 + |V i

s |4
}

≤ M for all s ∈ [0, t],
0, else,

(4.10)

which is a randomvariable adapted to the natural filtration and satisfying15M ≤ IM (t)
pointwise for all t ∈ [0, T ] as well as IM (t) = IM (t)IM (s) for all s ∈ [0, t]. Firstly,
for the positions, by using standard inequalities and Jensen’s inequality, we obtain the
bound

E[|Xi
t − X

i
t |2 IM (t)] ! E[|Xi

0 − X
i
0|2] + E

[⎤⎤⎤⎤

∫ t

0

(
V i
s − V

i
s
)
IM (s) ds

⎤⎤⎤⎤
2
]

≤ C
(
E[|Xi

0 − X
i
0|2] +

∫ t

0
E
[
|V i

s − V
i
s |2 IM (s)

]
ds
)

(4.11)
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with C = C(T ). Secondly, for the velocities we have

E[|V i
t − V

i
t |2 IM (t)]

! E[|V i
0 − V

i
0|2] +

( γ

m

)2
E
[⎤⎤⎤⎤

∫ t

0

(
V i
s − V

i
s
)
IM (s) ds

⎤⎤⎤⎤
2
]

+
(

λ

m

)2
E
[⎤⎤⎤⎤

∫ t

0

((
xα(ρ̂

N
X ,s) − Xi

s
)
−
(
xα(ρX ,s) − X

i
s
))

IM (s) ds
⎤⎤⎤⎤
2
]

+
( (

m

)2
E
[⎤⎤⎤⎤

∫ t

0

(
|xα(ρ̂

N
X ,s) − Xi

s | − |xα(ρX ,s) − X
i
s |
)
IM (s) dBi

s

⎤⎤⎤⎤
2
]

≤ C
(
E[|V i

0 − V
i
0|2] +

∫ t

0
E
[
|V i

s − V
i
s |2 IM (s)

]
ds

+
∫ t

0
E
[(
|xα(ρ̂

N
X ,s) − xα(ρX ,s)|2 + |Xi

s − X
i
s |2
)
IM (s)

]
ds
)

(4.12)

with C = C(γ /m, λ/m, (/m, T ). In the first step of (4.12) we used that the pro-
cesses (Xi

t , V
i
t ) and (X

i
t , V

i
t ) share the Brownian motion paths, and in the second

both Itô isometry and Jensen’s inequality. In order to conclude, it remains to control
the term E

[
|xα(ρ̂

N
X ,s) − xα(ρX ,s)|2 IM (s)

]
. To do so, in analogy to the definition of

ρ̂N
X ,s , let us denote by ρN

X ,s the empirical measure associated with the processes X
i
s ,

i.e., ρN
X ,s := 1

N

∑N
i=1 δ

X
i
s
. Then, by following the proofs of [8, Lemma 3.2] and [16,

Lemma 3.1], and exploiting the boundedness ensured by the multiplication with the
random variable IM (s), we obtain

E
[
|xα(ρ̂

N
X ,s) − xα(ρX ,s)|2 IM (s)

]

! E
[
|xα(ρ̂

N
X ,s) − xα(ρ

N
X ,s)|2 IM (s)

]
+ E

[
|xα(ρ

N
X ,s) − xα(ρX ,s)|2 IM (s)

]

≤ C

⎛
1
N

N∑

i=1

E[|Xi
s − X

i
s |2 IM (s)] + N−1

⎝

≤ C
(

max
i=1,...,N

E[|Xi
s − X

i
s |2 IM (s)] + N−1

)

with C = C(α, LE , cE , |x∗| ,M, b1, b2). Inserting the latter into (4.12), and adding
up (4.11) and (4.12) yields

E
[(
|Xi

t − X
i
t |2 + |V i

t − V
i
t |2
)
IM (t)

]

≤ C
∫ t

0
E
[(
|Xi

s − X
i
s |2 + |V i

s − V
i
s |2
)
IM (s)

]

+ max
j=1,...,N

E
[
|X j

s − X
j
s |2 IM (s)

]
+ N−1ds

(4.13)
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with C = C(α, γ /m, λ/m, (/m, T , LE , cE , |x∗| ,M, b1, b2) and where we used that
the processes (Xi

t , V
i
t ) and (X

i
t , V

i
t ) share the initial conditions. Lastly, by taking the

maximum over i on both sides we get

max
i=1,...,N

E
[(
|Xi

t − X
i
t |2 + |V i

t − V
i
t |2
)
IM (t)

]

≤ C
∫ t

0
E
⎠

max
j=1,...,N

E
[(
|X j

s − X
j
s |2 + |V j

s − V
j
s |2
)
IM (s)

]
+ N−1

]
ds

(4.14)

with the C from before. After recalling the definition of the conditional expectation,
an application of Grönwall’s inequality concludes the proof. 01
Remark 8 While the first part of Theorem 5 about the uniform in time boundedness of
the empirical measures holds mutatis mutandis for the PSO dynamics with memory
effects (1.2) and (1.8), it does not seem straightforward to obtain the second part in
this setting due to the way the memory effects are implemented in (1.2b) and (1.8b).
As a matter of fact, this is due to exactly the same technical reasons why we lack a
uniqueness statement in Sect. 3.1.We therefore leave the investigation of this extension
to future research, in particular in regard to the question whether a suitably modified
proof technique or another implementations of memory effects resolve this issue.

4.2 Convergence of PSOWithout Memory Effects in Probability

Combining Theorem 5with the convergence analysis of themean-field dynamics (2.1)
as described in Theorem 2, as well as a classical result about the numerical approx-
imation of SDEs allows to obtain convergence guarantees with provable polynomial
complexity for the numerical PSO method as stated in Theorem 6 below. Let us, for
the reader’s convenience, recall from [21, Section 6] that a possible discretized version
of the interacting particle system (2.1) is given by

Xi
(k+1))t = Xi

k)t + )tV i
(k+1))t , (4.15a)

V i
(k+1))t =

(
m

m + )tγ

)
V i
k)t +

(
)tλ

m + )tγ

)(
xα(ρ̂

N
X ,k)t ) − Xi

k)t

)

+
⎛ √

)t(
m + )tγ

⎝

D
(
xα(ρ̂

N
X ,k)t ) − Xi

k)t

)
Bi
k)t (4.15b)

for k = 0, . . . , K and where
(
(Bi

k)t )k=1,...,K−1
)
i=1,...,N are independent, identically

distributed standard Gaussian random vectors in Rd .

Theorem 6 Let εtotal > 0 and δ ∈ (0, 1/2). Then, under the assumptions of Theorems 2
and 5, it holds for the discretized PSO dynamics (4.15) that

⎤⎤⎤⎤⎤
1
N

N∑

i=1

Xi
K)t − x∗

⎤⎤⎤⎤⎤

2

≤ εtotal (4.16)
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with probability larger than 1 −
(
δ + ε−1

total(CNA()t)m + CMFAN−1 + CLLNN−1 +
⎡ε+ε2//.2)

)
. Here, m denotes the order of accuracy of the used discretization scheme.

Moreover, besides problem dependent factors and the parameters of the method, the
dependence of the constants is as follows. CNA depends linearly on d and N, and
exponentially on T .CMFA depends on exponentially onα, T and δ−1. CLLN depends on
the moment bound from Theorem 1. Lastly,⎡ε and ε are chosen according to Theorem 2.

Remark 9 It is worth emphasizing at this point that the time horizon T in Theorem 6
scales asO

(
log(⎡ε−1)/χ

)
and therefore logarithmically in the desired accuracy⎡ε as a

result of Theorem 2, see also the proof below. This ensures that the constants CNA and
CMFA appearing implicitly in the bound (4.16) do not lead to an unfeasible numerical
method by requiring extremely small time step sizes )t and an exceedingly large
amount of particles N .

Proof of Theorem 6 The overall error can be decomposed as

E




⎤⎤⎤⎤⎤
1
N

N∑

i=1

Xi
K)t − x∗

⎤⎤⎤⎤⎤

2 ⎤⎤⎤⎤ 5M





! E




⎤⎤⎤⎤⎤
1
N

N∑

i=1

(
Xi
K)t − Xi

T
)
⎤⎤⎤⎤⎤

2

+ E




⎤⎤⎤⎤⎤
1
N

N∑

i=1

(
Xi
T − X

i
T
)
⎤⎤⎤⎤⎤

2 ⎤⎤⎤⎤ 5M





+ E




⎤⎤⎤⎤⎤
1
N

N∑

i=1

X
i
T − E

[
XT

]
⎤⎤⎤⎤⎤

2

+
⎤⎤E
[
XT

]
−⎡x

⎤⎤2 +
⎤⎤⎡x − x∗⎤⎤2 ,

(4.17)

where we used that P(5M ) ≥ (1 − δ) ≥ 1/2. By means of a classical result about
the convergence of numerical schemes for SDEs [43], the first term in (4.17) can be
bounded byCNA()t)m . For the second term, Theorem 5 gives the estimateCMFAN−1.
The third term can be bounded by CLLNN−1 as a consequence of the law of large
numbers. Eventually, Theorem 2 allows us to choose T = O

(
log(⎡ε−1)/χ

)
sufficiently

large to reach any prescribed accuracy⎡ε for the next-to-last term as well as ε2//.2 for
the last term by a suitable choice of α. With these individual bounds we obtain

E




⎤⎤⎤⎤⎤
1
N

N∑

i=1

Xi
K)t − x∗

⎤⎤⎤⎤⎤

2 ⎤⎤⎤⎤ 5M





≤ CNA()t)m + CMFAN−1 + CLLNN−1 +⎡ε + ε2//.2.

(4.18)

It now remains to estimate the probability of the set K N
εtotal

⊂ 5, where Inequality (4.16)
does not hold. By utilizing the conditional version ofMarkov’s inequality togetherwith
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the formerly established bound (4.18), we have

P
(
K N

εtotal

)
= P

(
K N

εtotal
∩ 5M

)
+ P

(
K N

εtotal
∩ 5c

M
)

≤ P
(
K N

εtotal

⎤⎤5M
)
P(5M )+ P

(
5c

M
)

≤ CNA()t)m + CMFAN−1 + CLLNN−1 +⎡ε + ε2//.2

εtotal
+ δ

(4.19)

for a sufficiently large choice of M in (4.1). 01

A result in this spirit was first presented for CBO in [18, Theorem 14] and is hereby
extended to PSO.

5 Implementation of PSO and Numerical Results

The purpose of this section is twofold. At first, an efficient implementation of PSO
is provided, which is particularly suited for high-dimensional optimization problems
arising in machine learning. Its performance is then evaluated on a standard bench-
mark problem, where we investigate the influence of the parameters, and the training
of a neural network classifier for handwritten digits. Furthermore, several relevant
implementational aspects are discussed, including the computational complexity and
scalability, modifications inspired from simulated annealing and evolutionary algo-
rithms, and the numerical stability of the method.

5.1 An Efficient Implementation of PSO

Let us stress that PSO is an extremely versatile, flexible and customizable optimization
method, which can be regarded as a black-box optimizer. As a zero-order method it
is not reliant on the gradient information and can be even applied to discontinuous
objectives, making it inevitably superior to first-order optimization methods in cases
where derivatives are computationally infeasible. However, also in machine learning
applications, where gradient-based optimizers are considered the state of the art, PSO
may be of particular interest in view of vanishing or exploding gradient phenomena.

Typical objective functions appearing in machine learning are of the form

E(x) = 1
M

M∑

j=1

E j (x), (5.1)

where E j is usually the loss of the j th training sample. In order to run the scheme (1.2),
frequent evaluations of E are necessary, whichmay be computationally intense or even
prohibitive in some applications.

Computational complexity: Inspired by mini-batch gradient descent, the authors
of [28] developed a random batch method for interacting particle systems, which
was employed for CBO in [9]. In the same spirit, we present with Algorithm 1 a
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Algorithm 1 Particle swarm optimization (PSO)
Input: Objective E as in (5.1), time horizon T or number of epochs #epochs, discrete time step size )t ,

batch sizes nN and nE , parameters m, γ , λ1, λ2, (1, (2,α,β, θ and κ , number of particles N , initial-
ization f0

Output: Approximation yα(ρ̂N
Y ,T ) of the global minimizer x∗ of E

1: Generate the particles’ initial positions and velocities (Xi
0, V

i
0 )i=1,...,N according to a common initial

law f0. Initialize the local best positions Y i
0 = Xi

0.
2: Ensure that nE divides M and nN divides N .
3: Convert T into #epochs or vice versa via T = #epochs (M/nE )(N/nN ))t . Set k = 0 and epoch = 1.
4: while epoch ≤ #epochs and stopping criterion not fulfilled

5: Partition {1, . . . ,M} into batches B1
k , . . . ,B

M/nE
k of batch size nE .

6: for b = 1, . . . ,M/nE
7: Define the objective function on this batch as

Ebatch(x) =
1
nE

∑

j∈Bb
k

E j (x). (5.2)

8: Partition the particles, i.e., the set {1, . . . , N }, into disjoint sets P1
k , . . . ,P

N/nN
k of size nN .

9: for n = 1, . . . , N/nN
10: Compute the consensus point yα(ρ̂

N/nN
Y ,k)t ) according to Equation (1.4) with objective Ebatch

from the particles in Pn
k , i.e., with the empirical measure ρ̂

N/nN
Y ,k)t = 1

nN

∑
i∈Pn

k
δY i

k)t
.

11: Update either all particles (full update) or only the particles in the current batch Pn
k (partial

update) according to a discretized version of the PSO dynamics (1.2).
12: if k > 0 and

⎤⎤yα(ρN
Y ,k)t )−yα(ρN

Y ,(k−1))t )
⎤⎤ is too small despite stopping criterion not fulfilled

13: Perform an independent Brownian motion for the positions or velocities of all particles.
14: end if
15: Set k = k + 1.
16: end for
17: end for
18: Check the stopping criterion and break if fulfilled. If not, employ the optional strategies described

at the end of Section 5.1, set epoch = epoch + 1 and continue.
19: end while
20: Compute the consensus point yα(ρ̂N

Y ,T ) according to Equation (1.4) with objective E from all particles,

i.e., with ρ̂N
Y ,T = 1

N
∑N

i=1 δY i
T
.

computationally efficient implementation of PSO. The mini-batch idea is present on
two different levels. In line 7, the objective is defined with respect to a batch of the
training data of size nE , meaning that only a subsample of the data is considered. One
epoch is completed after each data sample was seen exactly once, i.e., after M/nE
steps. At each step the consensus point yα has to be computed, for which Ebatch needs
to be evaluated for N particles. This still constitutes themost significant computational
effort. However, themini-batch idea can be leveraged for a second time. In the for loop
in line 9we partition the particles into sets of size nN and perform the updates of line 11
only for the nN particles in the respective subset. Since this is embarrassingly parallel, a
parallel machine can be deployed to reduce the runtime by up to a factor p (the number
of available processors). While this is referred to as partial update, alternatively, on
a sequential architecture, a full update can be made at every iteration, requiring all
N particles to be updated in line 11. Apart from lowering the required computing
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resources tremendously, these mini-batch ideas actually improve the stability of the
method and the capability of finding good optima by introducing more stochasticity
into the algorithm.

Concerning additional computational complexity due to the usage of memory
effects, let us point out that, except for the required storage of the local (historical)
best positions and their objective values, the update rule (1.3) in combination with the
partial update allows to include such mechanisms with no additional cost by keeping
track of the objective values of the local best positions. In such case, only one func-
tion call of each Ebatch per epoch and per particle is necessary, which is optimal and
coincides with PSO without memory effects or CBO. A different realization of (1.2b)
might result in a higher cost.

Implementational aspects:Adiscretizationof theSDE(1.2) in line 11 canbeobtained
for instance from a simple Euler-Maruyama or semi-implicit scheme [23, 43], see, e.g.,
[21, Equation (6.3)]. In our numerical experiments below Equation (1.3) is used for
updating the local best position, which corresponds to κ = 1/(2)t), θ = 0, and
β = ∞. Furthermore, the friction parameter is set according to γ = 1−m, which is a
typical choice in the literature. Let us also remark that a numerically stable computation
of the consensus point in lines 10 and 20 for α ( 1 can be obtained by replacing Ebatch
with Ebatch −⎡E , where⎡E := mini∈Pn

k
Ebatch(Y i

k)t ).

Cooling and evolutionary strategies: The PSO algorithm can be divided into two
phases, an exploration phase, where the energy landscape is searched coarsely, and
a determination phase, where the final output is identified. While the former ben-
efits from small α and large diffusion parameters, in the latter, α ( 1 guarantees
the selection of the best solution. A cooling strategy inspired from simulated anneal-
ing allows to start with moderate α and relatively large diffusion parameters (1, (2.
After each epoch, α is multiplied by 2, while the diffusion parameters follow the
schedule ( = (/ log(epoch + 2) for ( ∈ {(1, (2}. Such strategy was proposed
in [9, Section 4] for CBO. In order to further reduce computational complexity,
the provable decay of the variance suggests to decrease the number of agents by
discarding particles in accordance with the empirical variance. A possible sched-
ule for the number of agents proposed in [20, Section 2.2] is to set Nepoch+1 =⌈
Nepoch

(
(1 − µ) + µ⎡7epoch/7epoch

)⌉
for µ ∈ [0, 1] and where 7epoch and ⎡7epoch

denote the empirical variances of the Nepoch particles at the beginning and at the end
of the current epoch.

5.2 Numerical Experiments for the Rastrigin Function

Before turning to high-dimensional optimization problems, let us discuss the parameter
choices of PSO in moderate dimensions (d = 20) at the example of the well-known
Rastrigin benchmark function E(v) =∑d

k=1 v
2
k + 5

2 (1−cos(2πvk)), which meets the
requirements of Assumption 1 despite being highly non-convex with many spurious
local optima. To narrow down the number of tunable parameters, we let γ = 1 − m,
choose α = 100, N = 100, and update the local best position (if present) according
to Equation (1.3), i.e., κ = 1/(2)t), θ = 0, and β = ∞. We moreover let λ2 =
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Input
layer

Output
layer

Flatten
Layer

(a) Dense shallow NN.

Input
layer

Output
layerConvolutional and Pooling Layers, and Flatten and Dense Layer

convolution layer,
4 kernels of size

5×5, zero padding

max pooling layer,
kernel size 2×2,

stride 2

convolution layer,
3 kernels of size

5×5, zero padding

max pooling layer,
kernel size 2×2,

stride 2

(b) CNN with two convolutional and two pooling layers, and one dense layer.

Fig. 3 Architectures of the NNs used in the experiments of Sect. 5.3, cf. [19, Section 4]

1 (or λ = 1 for PSO without memory) and )t = 0.01, which are such that the
algorithm either finds consensus or explodes within the time horizon T = 100 in
all instances. For simplicity we assume that (1 = λ1(2. The algorithm is initialized
with positions distributed according to N

(
(2, . . . , 2), 4Id

)
and velocities according

to N
(
(0, . . . , 0), Id

)
. In Fig. 2 we depict the phase diagram comparing the success

probability of PSO for different parameter choices of the inertia parameter m and the
diffusion parameter ( or (2, respectively.

We observe that for m fixed there is a noise threshold above which the dynamics
explodes. While smaller m permit a larger flexibility in the used noise, they require
an individual minimal noise level. Further numerical experiments suggest however
that increasing the number of particles N allows for a lower minimal noise level.
There are subtle differences between PSO without and with memory, but they are not
decisive as in applications also confirmed by the numerical experiments in Sect. 5.3,
[22, Section 5.3] as well as the survey paper [21, Section 6.3].

5.3 AMachine Learning Application

We now showcase the practicability of PSO as implemented in Algorithm 1 at the
example of a very competitive high-dimensional benchmark problem inmachine learn-
ing, the classification of handwritten digits. In what follows we train a shallow and a
convolutional NN (CNN) classifier for theMNIST dataset [34]. Let us point out, that it
is not our objective to challenge the state of the art by employing themost sophisticated
model (deep CNNs achieve near-human performance of more than 99.5% accuracy).
Instead, we want to demonstrate that PSO reaches results comparable to SGD with
backpropagation, while at the same time relying exclusively on the evaluation of E .

In our experiment we use NNs with architectures as depicted in Fig. 3.
The input is a black-and-white image represented by a (28+28)-dimensionalmatrix

with entries between 0 and 1. For the shallow NN (see Fig. 3a), the flattened image is
passed through a dense layer ReLU(W ·+b)with trainable weightsW ∈ R10+728 and
bias b ∈ R10. Our CNN (see Fig. 3b) is similar to LeNet-1, cf. [33, Section III.C.7].
Each dense or convolution layer has a ReLU activation and is followed by a batch
normalization layer to speed up the training process. Eventually, the final layers of
both NNs apply a softmax activation function allowing to interpret the 10-dimensional
output vector as a probability distribution over the digits.
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We denote by θ the trainable parameters of the NNs, which are 7850 for the
shallow NN and 2112 for the CNN. They are learned by minimizing E(θ) =
1
M

∑M
j=1 9( fθ (x j ), y j ), where fθ denotes the forward pass of the NN, (x j , y j )

the j th image-label tuple and 9 the categorical crossentropy loss 9(ŷ, y) =
−∑9

k=0 yk log (ŷk). The performance is measured by counting the number of suc-
cessful predictions on a test set. We use a train-test split of 60000 training and 10000
test images. For our experiments we choose λ2 = 1, ((2)ini tial =

√
0.4, αini tial = 50,

)t = 0.1 and update the local best position according to Equation (1.3). We use
N = 100 agents, which are initialized according to N

(
(0, . . . , 0)T , Id

)
in position

and velocity. The mini-batch sizes are nE = 60 and nN = 100 (consequently a full
update is performed in line 11) and a cooling strategy is used in line 18.

Figure 4a reports the performances for differentmemory settings andfixedm = 0.2,
whereas Fig. 4b depicts the results for different inertia parametersm in the case of PSO
with memory but no memory drift.

For the shallow NN, we obtain a test accuracy of above 89%, whereas the CNN
achieves almost 97%. To put those numbers into perspective, when trained with SGD,
a similar performance for the shallowNN, see [9, Figure 7], and a benchmark accuracy
of 98.3% for a comparable CNN, cf. [33, Figure 9], are reached. As can be seen from
Fig. 4a, the usage of the local best positions when computing the consensus point
significantly improves the performance. The advantage of having an additional drift
towards the local best position is less pronounced. Regarding the inertia parameter m
in Fig. 4b, our numerical results suggest that larger m yield faster convergence.

6 Conclusions

In this paper we prove the convergence of PSO without and with memory effects
to a global minimizer of a possibly nonconvex and nonsmooth objective function in
the mean-field sense. Our analysis holds under a suitable well-preparation condition
about the initialization and comprises a rich class of objectives which in particu-
lar includes functions with multiple global minimizers. For PSO without memory
effects we furthermore quantify how well the mean-field dynamics approximates the
interacting finite particle dynamics, which is implemented for numerical experiments.
Since in particular the latter results does not suffer from the curse of dimensionality,
we thereby prove that the numerical PSO method has polynomial complexity. With
this we contribute to the completion of a mathematically rigorous understanding of
PSO. Furthermore, we propose a computationally efficient and parallelizable imple-
mentation and showcase its practicability by training a CNN reaching a performance
comparable to stochastic gradient descent.

It remains an open problem to extend the mean-field approximation result to the
variant of PSO with memory effects or, alternatively, to devise an implementation of
such effects compatible with the used proof technique.Moreover, we also leave amore
thorough understanding of the influence of the parameters as well as the influence of
memory effects for future, more experimental research.
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Finally, we believe that the analysis framework of this and prior works on CBO [8,
18, 42] motivates to investigate also other renowned metaheuristic algorithms through
the lens of a mean-field limit.
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Paper Summary of [CBO-SP]41

In the paper “Consensus-Based Optimization for Saddle Point Problems,” published in
the SIAM Journal on Control and Optimization, we propose and investigate the CBO-SP
method (6.4) from both an analytical point of view by taking a mean-field perspective
and experimentally.

CBO-SP is a novel multi-particle metaheuristic derivative-free optimization method
for saddle point problems capable of provably finding global Nash equilibria, i.e., solv-
ing problems of the form (6.1). It is substantially inspired by its optimization relative
CBO [Pin+17].

Following the idea of swarm intelligence, our CBO-SP algorithm [CBO-SP, Algo-
rithm 1] employs two groups of interacting particles, one of which performs a min-
imization over one variable while the other performs a maximization over the other
variable. The two groups constantly exchange information through a suitably weighted
average, the consensus point. In [CBO-SP, Section 2.1], we prove the well-posedness
of the continuous-time analog of the CBO-SP algorithm, which is described through
a system of SDEs. This paradigm permits a passage to the mean-field limit (whose
well-posedness is shown in [CBO-SP, Section 2.2]), which makes the method amenable
to a theoretical convergence analysis. In particular, under reasonable assumptions on
the objective function [CBO-SP, Definition 9], which most notably include nonconvex-
nonconcave objectives, and reasonable assumptions about the initialization [CBO-SP,
Definition 10], rigorous convergence guarantees [CBO-SP, Theorem 11] can be obtained.
Following the analytical framework of [Car+18; Car+21], which was developed for CBO
in the optimization setting, we first prove, under certain well-preparedness conditions,
consensus formation of the mean-field dynamics at some location. In a second and con-
secutive step, which involves suitable choices of the parameters of the method, this
consensus is shown to have properties that are typical for saddle points. Eventually, un-
der a suitable condition on the objective function, the aforementioned properties imply
that the found consensus is close to a saddle point. Our numerical investigations, which
comprise illustrative numerical experiments [CBO-SP, Section 5.2] as well as the task
of solving a quadratic game [CBO-SP, Section 5.3], provide numerical evidence for the
success and e�ciency of the proposed CBO-SP algorithm.

KR’s Contributions. JQ suggested to extend the idea of CBO to saddle point prob-
lems. Together with JQ, HH and KR devised a suitable numerical scheme for finding
global Nash equilibria giving rise to CBO-SP, for which KR proved the well-posedness
of the interacting particle system and of the mean-field limit dynamics. The convergence
properties of the mean-field limit under certain well-preparedness assumptions of the
initial data and the parameters of the scheme were then analyzed by HH and KR. KR
conducted the numerical experiments and wrote large parts of the paper, which was
proofread and refined by JQ and HH.

41In this section, we follow [CBO-SP, Abstract].
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CONSENSUS-BASED OPTIMIZATION FOR

SADDLE POINT PROBLEMS
\rightarrow 

HUI HUANG†, JINNIAO QIU‡, AND KONSTANTIN RIEDL§¶

Abstract. In this paper, we propose consensus-based optimization for saddle point problems
(CBO-SP), a novel multi-particle metaheuristic derivative-free optimization method capable of prov-
ably finding global Nash equilibria. Following the idea of swarm intelligence, the method employs two
groups of interacting particles, one which performs a minimization over one variable while the other
performs a maximization over the other variable. The two groups constantly exchange information
through a suitably weighted average. This paradigm permits a passage to the mean-field limit, which
makes the method amenable to theoretical analysis, and it allows to obtain rigorous convergence guar-
antees under reasonable assumptions about the initialization and the objective function, which most
notably include nonconvex-nonconcave objectives. We further provide numerical evidence for the
success of the algorithm.

Key words. saddle point problems, Nash equilibria, nonconvex-nonconcave, derivative-free
optimization, metaheuristics, consensus-based optimization, Fokker–Planck equations

MSC codes. 90C47, 65C35, 65K05, 90C56, 35Q90, 35Q83

DOI. 10.1137/22M1543367

1. Introduction. Optimization problems where the goal is to find the best pos-
sible objective value for the worst-case scenario can be formulated as minimax opti-
mization problems of the form

min
x\rightarrow X

max
y\rightarrow Y

E(x, y).

To be more specific, given a class of objective functions {E( · , y), y \rightarrow Y}, the aim is
to determine the argument x\uparrow \rightarrow X that leads to the smallest objective value even for
the worst-case function parametrized by y\uparrow \rightarrow Y. Such type of problems were origi-
nally formulated in two-player zero-sum game theory [47] but now arise in many areas
in mathematics, biology, the social sciences, and especially economics [34]. Diverse
applications may be found in engineering, operational research, biology, ecology, fi-
nance, economics, energy industry, environmental sciences, and so on. In the last few
years, minimax optimization has also experienced substantial attention from the sig-
nal processing community, due to its connection to distributed processing [8], robust
transceiver design [26], and communication in the presence of jammers [16]. Moreover,
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1094 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

in modern machine learning, several problems are formulated as minimax optimiza-
tion, such as the training of generative adversarial networks (GANs) [17], multi-agent
reinforcement learning [38], fair machine learning [29], and adversarial training [30].
For example, when training GANs, x models the parameter of a generator, usually a
neural network, whose aim is to generate synthetic data with the same statistics as
a given training set, while y represents the parameters of a competing discriminator,
who has to distinguish generated data by the generator from data of the true distribu-
tion. Relatedly, in adversarial machine learning, one aims at learning the parameters
x of a model in a robust manner by exposing it during training to possible adversarial
attacks modeled by y. Both examples can be interpreted as a game between two
neural networks trained in an adversarial manner until some kind of equilibrium is
reached.

In a two-player zero-sum game, the joint payo! function E(x, y) encodes the gain
of the maximization player whose action is to choose y \rightarrow Y, as well as the loss of
the minimization player controlling the action x \rightarrow X . In simultaneous games, each
player chooses its action without the knowledge of the action chosen by the other
player, so both players act simultaneously. Conversely, in sequential games there is
an intrinsic order according to which the players take their actions, meaning that the
ordering of the minimization and maximization matters, i.e., it plays a priorly a role
whether minxmaxy or maxy minx. GANs and adversarial training, for instance, are in
fact sequential games in their standard formulations. In the classical case, where the
payo! function E is convex-concave (i.e., E( · , y) is convex for all y \rightarrow Y and E(x, · ) is
concave for all x \rightarrow X ), the intrinsic order of sequential games does not matter under
an additional compactness assumption on either X or Y by the well-known minimax
theorems of Sion and von Neumann (see [45, 46]). However, nowadays, most modern
applications in signal processing and machine learning entail the setting of nonconvex-
nonconcave minimax problems, where the minimization and maximization problems
are potentially nonconvex and nonconcave. This is significantly more complicated,
and available tool sets and theories are very limited; see the review paper [42].

A well-known notion of optimality originating from game theory is the one of
Nash equilibria (also referred to as saddle points) [35], where neither of the players
has anything to gain by changing only his own strategy. This concept is formalized
within the following definition.

Definition 1. A point (x\uparrow , y\uparrow ) \rightarrow X \uparrow Y is called a Nash equilibrium or saddle

point of a function E if it holds that

E(x\uparrow , y)\downarrow E(x\uparrow , y\uparrow )\downarrow E(x, y\uparrow ) for all (x, y)\rightarrow X \uparrow Y

or, equivalently, if

min
x\rightarrow X

max
y\rightarrow Y

E(x, y) = E(x\uparrow , y\uparrow ) =max
y\rightarrow Y

min
x\rightarrow X

E(x, y).

To keep the notation concise, we write E\uparrow 
for E(x\uparrow , y\uparrow ) in what follows.

In the convex-concave setting, an approximate Nash equilibrium can be found
e""ciently by variants of gradient descent-ascent (GDA) algorithms [4, 18], which al-
ternate between one or more gradient descent steps in the x-variable and gradient
ascent steps in the y-coordinate. Indeed, even if E(x, y) is either concave in y or
convex in x, there are some multistep GDA algorithms available; see [36, 42], for
instance. However, as soon as the payo! function becomes nonconvex-nonconcave,

finding a global equilibrium is in general an NP-hard problem [33]. For this reason,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CBO FOR SADDLE POINT PROBLEMS 1095

some recent works, such as [9, 31], consider a local version of equilibria. More pre-
cisely, a point (x\uparrow , y\uparrow )\rightarrow X \uparrow Y is called a local Nash equilibrium if there exists some
\omega > 0 such that (x\uparrow , y\uparrow ) satisfies Definition 1 in a \omega -neighborhood of (x\uparrow , y\uparrow ). Local
Nash equilibria can be characterized in terms of the so-called quasi-Nash equilibrium
condition [39] or the first-order Nash equilibrium condition [36]. Even so, we men-
tion two recent works where special classes of nonconvex-nonconcave payo! functions
are considered. When E(x, y) is weakly convex in x and weakly concave in y and
the associated Minty variational inequality admits a solution, Liu et al. [25] employ
the inexact proximal point method and prove the first-order convergence, while un-
der the so-called su""ciently bilinear condition, the stochastic Hamiltonian method is
investigated by Loizou et al. [28]. In this work, we shall drop such restrictions and
the gradient dependence in the algorithms and consider a zero-order (derivative-free)
method with rigorous convergence guarantees. Note that the family of population-
based algorithms, such as Particle Swarm Optimization (PSO) [22], has been adapted
to solve min-max problems as done, for instance, in [23, 24, 44]. One straightforward
approach is to treat the min-max problem as a minimization problem and embed the
maximization part in the calculation of the objective values [24]. Alternatively, a
multi-PSO strategy [23, 44] may be employed, where the min-max problem is con-
verted into two optimization problems, one being a maximization problem and the
other a minimization problem. Two PSO algorithms are then used to solve these
two optimization problems, respectively, and they are run independently. Each PSO
is treated as a changing environment of the other PSO, allowing them to cooperate
through the calculation of the objective. Both approaches cannot avoid the necessity
of nested loops/circles of optimization algorithms, which significantly increases the
time complexity.

In the present paper, we propose a zero-order consensus-based optimization
method for finding the global Nash equilibrium (x\uparrow , y\uparrow ) of a smooth objective function
E :X \uparrow Y \updownarrow R with X =Rd1 and Y =Rd2 , which is designed to be amenable to a rig-
orous theoretical convergence analysis, missing so far in the literature on population-
based methods for min-max problems. The dynamics of the algorithm is inspired by
consensus-based optimization, a paradigm for global nonconvex minimizations, which
was introduced by the authors of [40]. Their method employs a system of interacting
particles which explore the energy landscape in order to form a global consensus about
the global minimizer of the objective function as time passes. Taking inspiration from
this concept, let us consider two sets of particles (Xi)N1

i=1 and (Y i)N2

i=1 of potentially
di!erent size, one for minimization and the other for maximization. Each individual
particle of either set is formally described by a stochastic process. In order to achieve
consensus about the equilibrium point of E , the particles interact through a system
of stochastic di!erential equations (SDEs) of the form

dXi
t =\nearrow \varepsilon 1

\Biggr) 
Xi

t \nearrow xY
\omega (\Biggl[ \vargamma 

N1

X,t)
\Biggr] 
dt+ \varpi 1D

\Biggr) 
Xi

t \nearrow xY
\omega (\Biggl[ \vargamma 

N1

X,t)
\Biggr] 
dBX,i

t , \Biggl[ \vargamma N1

X,t =
1

N1

N1\Biggl\lfloor 

i=1

\omega Xi
t
,

(1a)

dY i
t =\nearrow \varepsilon 2

\Biggr) 
Y i
t \nearrow yX\varepsilon (\Biggl[ \vargamma N2

Y,t)
\Biggr] 
dt+ \varpi 2D

\Biggr) 
Y i
t \nearrow yX\varepsilon (\Biggl[ \vargamma N2

Y,t)
\Biggr] 
dBY,i

t , \Biggl[ \vargamma N2

Y,t =
1

N2

N2\Biggl\lfloor 

i=1

\omega Y i
t
,

(1b)

which is complemented by suitable initial conditions Xi
0 \searrow \vargamma X,0 \rightarrow P(Rd1) for

i= 1, . . . ,N1 and Y i
0 \searrow \vargamma Y,0 \rightarrow P(Rd2) for i= 1, . . . ,N2 and where

\Biggr\rfloor \Biggr\rfloor 
BX,i

t

\Biggl\lceil 
t\downarrow 0

\Biggl\lceil 
i=1,...,N1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1096 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

and
\Biggr\rfloor \Biggr\rfloor 
BY,i

t

\Biggl\lceil 
t\downarrow 0

\Biggl\lceil 
i=1,...,N2

are independent standard Brownian motions in Rd1 and Rd2 ,

respectively. Moreover, \Biggl[ \vargamma N1

X,t and \Biggl[ \vargamma N2

Y,t denote the empirical measures of the particles’
x- and y-positions, respectively. While the dynamics (1a) performs minimization in
the x-variable, (1b) performs maximization in the y-coordinate. This is encoded in the
computation of the so-called consensus point

\Biggr\rfloor 
xY
\omega (\Biggl[ \vargamma 

N1

X,t), y
X
\varepsilon (\Biggl[ \vargamma N2

Y,t)
\Biggl\lceil 
, whose components

are given by

xY
\omega (\Biggl[ \vargamma 

N1

X,t) =

\Biggr\rceil 
x

\varrho \omega 

\Biggr\rfloor 
x,
\Biggl\{ 
y d\Biggl[ \vargamma N2

Y,t(y)
\Biggl\lceil 

\Biggr\} \Biggr\} \varrho \omega 

\Biggr\rfloor 
·,
\Biggl\{ 
y d\Biggl[ \vargamma N2

Y,t(y)
\Biggl\lceil \Biggr\} \Biggr\} 

L1(\Biggr) \vargamma 
N1

X,t)

d\Biggl[ \vargamma N1

X,t(x) with \varrho \omega (x, y):=exp(\nearrow \varsigma E(x, y)),

(2a)

yX\varepsilon (\Biggl[ \vargamma N2

Y,t) =

\Biggr\rceil 
y

\varrho \updownarrow \varepsilon 

\Biggr\rfloor \Biggl\{ 
xd\Biggl[ \vargamma N1

X,t(x), y
\Biggl\lceil 

\Biggr\} \Biggr\} \varrho \updownarrow \varepsilon 

\Biggr\rfloor \Biggl\{ 
xd\Biggl[ \vargamma N1

X,t(x), ·
\Biggl\lceil \Biggr\} \Biggr\} 

L1(\Biggr) \vargamma 
N2

Y,t)

d\Biggl[ \vargamma N2

Y,t(y) with \varrho \updownarrow \varepsilon (x, y):=exp(\varphi E(x, y)).

(2b)

Attributed to the Laplace principle [32], xY
\omega (\Biggl[ \vargamma 

N1

X,t) can be interpreted as an

approximation of argmini=1,...,N1
E(Xi

t ,
\Biggl\{ 
y d\Biggl[ \vargamma N2

Y,t(y)) as \varsigma \updownarrow \simeq , while yX\varepsilon (\Biggl[ \vargamma N2

Y,t) \Leftarrow 
argmaxi=1,...,N2

E(
\Biggl\{ 
xd\Biggl[ \vargamma N1

X,t(x), Y
i
t ) as \varphi \updownarrow \simeq ; see, e.g., [14, equation (7)]. The dy-

namics of each of the particles in (1) is governed by two terms. A drift term drags
the particles towards the respective component of the instantaneous consensus point\Biggr\rfloor 
xY
\omega (\Biggl[ \vargamma 

N1

X,t), y
X
\varepsilon (\Biggl[ \vargamma N2

Y,t)
\Biggl\lceil 
and thereby expectedly improves the position of the particles.

The second term injects stochasticity into the dynamics by di!using the particles
according to a scaled Brownian motion, which features the exploration of the land-
scape of the objective. In what follows, we use anisotropic noise, i.e., D( · ) = diag( · ),
which is typically more competitive in high dimensions compared to isotropic noise
D( · ) = \Rightarrow ·\Rightarrow 2; see, e.g., [6, 15]. The theoretical results of this paper, however, can be
obtained mutatis mutandis also in the isotropic setting.

An implementable scheme for a numerical algorithm can be obtained from (1) by
a simple Euler–Maruyama time discretization [19, 41]. For details about the imple-
mentation, we refer the reader to Algorithm 1 in section 5.1.

Remark 2. While the definition of the consensus point in (2) is a natural option,
there are two equally reasonable alternatives. The first possibility is to replace the
mean

\Biggl\{ 
y d\Biggl[ \vargamma N2

Y,t(y) in (2a) simply by y and integrate w.r.t. the joint measure \Biggl[ \vargamma Nt . This

case would require N1 = N2. Analogously,
\Biggl\{ 
xd\Biggl[ \vargamma N1

X,t(x) is substituted by x in (2b).
The second option is to use the other component of the consensus point instead of the
respective mean; i.e., yX\varepsilon (\Biggl[ \vargamma N2

Y,t) replaces
\Biggl\{ 
y d\Biggl[ \vargamma N2

Y,t(y) in (2a) and xY
\omega (\Biggl[ \vargamma 

N1

X,t) substitutes\Biggl\{ 
xd\Biggl[ \vargamma N1

X,t(x) in (2b).
The main motivation for using the variant as in (2) is of a theoretical nature.

Using either of the other two alternatives significantly complicates the convergence
analysis in sections 3 and 4.

Understanding the convergence properties of the dynamics (1) can take place ei-
ther by investigating the long time behavior of the interacting particle system itself
or by analyzing the macroscopic behavior of the agent density associated with (1)
through a mean-field limit. This theoretical approach proved successful in [2, 3, 5, 6,
7, 12, 13, 14, 15, 43] for proving global convergence for several variants of consensus-
based optimization in the setting of minimization. It is, moreover, theoretically justi-
fied by the mean-field approximation which shows that (\Biggl[ \vargamma N1

X,t, \Biggl[ \vargamma 
N2

Y,t) converges in some
sense to a mean field law (\vargamma X,t,\vargamma Y,t) as N1,N2 \updownarrow \simeq . Again, for consensus-based
optimization there exist by now several results in this direction, such as [11, 14, 20],
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CBO FOR SADDLE POINT PROBLEMS 1097

which may be extended to CBO-SP in an immediate manner. In the setting of saddle
point problems, the mean-field dynamics associated with (1) can be described by the
self-consistent monoparticle dynamics

dXt =\nearrow \varepsilon 1

\Biggr\rfloor 
Xt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil 
dt+ \varpi 1D

\Biggr\rfloor 
Xt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil 
dBX

t , \vargamma X,t =

\Biggr\rceil 
d\vargamma t( · , y),

(3a)

dY t =\nearrow \varepsilon 2

\Biggr\rfloor 
Y t \nearrow yX\varepsilon (\vargamma Y,t)

\Biggl\lceil 
dt+ \varpi 2D

\Biggr\rfloor 
Y t \nearrow yX\varepsilon (\vargamma Y,t)

\Biggl\lceil 
dBY

t , \vargamma Y,t =

\Biggr\rceil 
d\vargamma t(x, · ),

(3b)

where \vargamma t = \vargamma (t) = Law
\Biggr\rfloor 
(Xt, Y t)

\Biggl\lceil 
with marginals \vargamma X,t and \vargamma Y,t, respectively. In

particular, the measure \vargamma \rightarrow C([0, T ],P(Rd1+d2)) weakly satisfies the nonlinear nonlocal
Fokker–Planck equation

\leftharpoonup t\vargamma t = \varepsilon 1divx
\Biggr\rfloor \Biggr\rfloor 
x\nearrow xY

\omega (\vargamma 
X
t )

\Biggl\lceil 
\vargamma t
\Biggl\lceil 
+ \varepsilon 2divy

\Biggr\rfloor \Biggr\rfloor 
y\nearrow yX\varepsilon (\vargamma Yt )

\Biggl\lceil 
\vargamma t
\Biggl\lceil 

+
\varpi 2
1

2

d1\Biggl\lfloor 

k=1

\leftharpoonup 2
xkxk

\Biggr\rfloor 
(x\nearrow xY

\omega (\vargamma 
X
t ))2k\vargamma t

\Biggl\lceil 
+

\varpi 2
2

2

d2\Biggl\lfloor 

k=1

\leftharpoonup 2
ykyk

\Biggr\rfloor 
(y\nearrow yX\varepsilon (\vargamma Yt ))

2
k\vargamma t

\Biggl\lceil 
.

(4)

Contributions. Motivated by the fundamental importance of nonconvex-

nonconcave saddle point problems in various applicational areas and the desire for
having numerical algorithms with rigorous global convergence guarantees, we theo-
retically analyze in this work a novel consensus-based optimization method (CBO-SP)
capable of tackling saddle point problems. Using mean-field analysis techniques, we
rigorously prove that CBO-SP converges to saddle points as the number of interact-
ing particles goes to infinity. Our results hold under reasonable assumptions about
the objective function and under certain conditions of the well-preparation of the
hyperparameters and the initial data.

1.1. Organization. In section 2, we first investigate the well-posedness of both
the interacting particle system (1) of CBO-SP and its associated mean-field dynam-
ics (3). Section 3 then presents and discusses the main theoretical statement of this
work concerned with the convergence of the mean-field dynamics (3) towards saddle
points of the objective function E , which are proven in section 4. Section 5 contains
details about the implementation of the numerical algorithm as well as instructive nu-
merical examples which illustrate how CBO-SP works, before we conclude the paper in
section 6. In the GitHub repository https://github.com/KonstantinRiedl/CBOSaddle
Points, we provide the MATLAB code implementing CBO-SP.

2. Well-posedness of CBO-SP and its mean-field dynamics. In the first
part of this section, we provide a well-posedness result about the interacting particle
system (1) of CBO-SP; i.e., we show that a process obeying (1) exists and is unique.
Afterwards, we also prove the well-posedness of the nonlinear macroscopic SDE (3).

2.1. Well-posedness of the interacting particle system. To keep the no-
tation concise in what follows, let us denote the state vector of the entire particle sys-

tem (1) by Z \rightarrow C([0,\simeq ),RN1d1+N2d2) with Z(t) = Zt =
\Biggr) 
(X1

t )
T , . . . , (XN1

t )T , (Y 1
t )

T ,

. . . , (Y N2

t )T
\Biggr] T

for every t\Uparrow 0. Equation (1) can then be reformulated as

dZt =\nearrow \bfitomega F(Zt)dt+\bfitvarepsilon M(Zt)dBt(5)
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1098 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

with (Bt)t\downarrow 0 being a standard Brownian motion in RN1d1+N2d2 and definitions

F(Zt) :=
\Biggr\rfloor 
F 1,X(Zt)

T , . . . , FN1,X(Zt)
T , F 1,Y (Zt)

T , . . . , FN2,Y (Zt)
T
\Biggl\lceil T

with F i,X(Zt) =
\Biggr) 
Xi

t \nearrow xY
\omega (\Biggl[ \vargamma 

N1

X,t)
\Biggr] 
and F i,Y (Zt) =

\Biggr) 
Y i
t \nearrow yX\varepsilon (\Biggl[ \vargamma N2

Y,t)
\Biggr] 
,

M(Zt) := diag
\Biggr\rfloor 
M1,X(Zt), . . . ,M

N1,X(Zt),M
1,Y (Zt), . . . ,M

N2,Y (Zt)
\Biggl\lceil 

with M i,X(Zt) =D
\Biggr) 
Xi

t \nearrow xY
\omega (\Biggl[ \vargamma 

N1

X,t)
\Biggr] 
and M i,Y (Zt) =D

\Biggr) 
Y i
t \nearrow yX\varepsilon (\Biggl[ \vargamma N2

Y,t)
\Biggr] 
.

The diag operator in the definition of M maps the input matrices onto a block-
diagonal matrix with them as its diagonal. \bfitomega and \bfitvarepsilon are (N1d1 + N2d2) \uparrow (N1d1 +
N2d2)-dimensional diagonal matrices, whose first N1d1 entries are \varepsilon 1 and \varpi 1, and the
remaining N2d2 entries are \varepsilon 2 and \varpi 2, respectively.

Having fixed the notation, we have the following well-posedness result for the
SDE system (5) (respectively, (1)), which is proven towards the end of this section.

Theorem 3. Let E \rightarrow C(Rd1+d2) be locally Lipschitz continuous. Then, for N1,
N2 \rightarrow N fixed, the system of SDEs (1) admits a unique strong solution (Zt)t\downarrow 0 for any

initial condition Z0 satisfying E\Rightarrow Z0\Rightarrow 22 <\simeq .

In order to employ the standard result [10, Chapter 5, Theorem 3.1] about the
existence and uniqueness of solutions to SDEs, we need to verify that the coe""cients
of the SDE are locally Lipschitz continuous and of at most linear growth. This is
inherited from the assumed local Lipschitz continuity of E , as we make explicit in the
subsequent lemma.

Lemma 4. Let N1,N2 \rightarrow N, \varsigma ,\varphi > 0, and R> 0 be arbitrary. Let z,\Biggl[ z\rightarrow RN1d1+N2d2

be of the form z = (xT ,yT )T =
\Biggr\rfloor 
(x1)T , . . . , (xN1)T , (y1)T , . . . , (yN2)T

\Biggl\lceil T
and analo-

gously for \Biggl[ z. Then, for any z,\Biggl[ z with \Rightarrow z\Rightarrow 2 \downarrow R and \Rightarrow \Biggl[ z\Rightarrow 2 \downarrow R, it hold for any i the

bounds

\Biggr\} \Biggr\} F i,X(z)
\Biggr\} \Biggr\} 
2
\downarrow \Rightarrow xi\Rightarrow 2 + \Rightarrow x\Rightarrow 2 and

\Biggr\} \Biggr\} F i,Y (z)
\Biggr\} \Biggr\} 
2
\downarrow \Rightarrow yi\Rightarrow 2 + \Rightarrow y\Rightarrow 2

and, abbreviating cR(\leftharpoondown ) := 4\leftharpoondown e2\varpi !RE
\Biggr\} \Biggr\} \Rightarrow \Downarrow zE\Rightarrow 2

\Biggr\} \Biggr\} 
L\rightarrow (BR)

with \#RE := supz\rightarrow BR
E(z) \nearrow 

infz\rightarrow BR E(z),

\Biggr\} \Biggr\} F i,X(z)\nearrow F i,X(\Biggl[ z)
\Biggr\} \Biggr\} 
2
\downarrow \Rightarrow xi \nearrow \Biggl[ xi\Rightarrow 2

+

\Biggl\langle 
1 +

cR(\varsigma )

N1

\Biggr\rangle 
N1 \Rightarrow \Biggl[ xi\Rightarrow 22 + \Rightarrow \Biggl[ x\Rightarrow 22

\Bigg/ \Biggr\rfloor 
\Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 + \Rightarrow y\nearrow \Biggl[ y\Rightarrow 2

\Biggl\lceil 
,

\Biggr\} \Biggr\} F i,Y (z)\nearrow F i,Y (\Biggl[ z)
\Biggr\} \Biggr\} 
2
\downarrow \Rightarrow yi \nearrow \Biggl[ yi\Rightarrow 2

+

\Biggl\langle 
1 +

cR(\varphi )

N2

\Biggr\rangle 
N2 \Rightarrow \Biggl[ yi\Rightarrow 22 + \Rightarrow \Biggl[ y\Rightarrow 22

\Bigg/ \Biggr\rfloor 
\Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 + \Rightarrow y\nearrow \Biggl[ y\Rightarrow 2

\Biggl\lceil 
.

Proof. To derive the first bound, we note that

\Biggr\} \Biggr\} F i,X(z)
\Biggr\} \Biggr\} 
2
=

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 
xi \nearrow 

N1\Biggl\lfloor 

j=1

xj
\varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 
2

\downarrow \Rightarrow xi\Rightarrow 2 + \Rightarrow x\Rightarrow 2 .
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CBO FOR SADDLE POINT PROBLEMS 1099

Analogously, the bound for
\Biggr\} \Biggr\} F i,Y (z)

\Biggr\} \Biggr\} 
2
is obtained. For the other estimates, we first

notice that

F i,X(z)\nearrow F i,X(\Biggl[ z) =
\Bigg\backslash N1

j=1(x
i \nearrow xj)\varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\nearrow 
\Bigg\backslash N1

j=1(\Biggl[ xi \nearrow \Biggl[ xj)\varrho \omega 

\Biggr\rfloor 
\Biggl[ xj , 1

N1

\Bigg\backslash N1

k=1 \Biggl[ yk
\Biggl\lceil 

\Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
\Biggl[ xj , 1

N1

\Bigg\backslash N1

k=1 \Biggl[ yk
\Biggl\lceil 

= I1 + I2 + I3

with I1, I2, and I3 being defined as in what follows. First, for I1 we have

\Rightarrow I1\Rightarrow 2 :=

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 

\Bigg\backslash N1

j=1

\Biggr\rfloor 
(xi \nearrow xj)\nearrow (\Biggl[ xi \nearrow \Biggl[ xj)

\Biggl\lceil 
\varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 
2

\downarrow \Rightarrow xi \nearrow \Biggl[ xi\Rightarrow 2 + \Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 .

For I2 and I3, on the other hand, let us first notice that it holds
\Big/ \Big/ \Big/ \Big/ \Big/ \varrho \omega 

\Big\backslash 
xj ,

1

N1

N1\Biggl\lfloor 

k=1

yk
\left( 
\nearrow \varrho \omega 

\Big\backslash 
\Biggl[ xj ,

1

N1

N1\Biggl\lfloor 

k=1

\Biggl[ yk
\left( \Big/ \Big/ \Big/ \Big/ \Big/ 

\downarrow \varsigma e\updownarrow \omega infz\uparrow BR
E(x,y)\Biggr\} \Biggr\} \Rightarrow \Downarrow zE\Rightarrow 2

\Biggr\} \Biggr\} 
L\rightarrow (BR)

\Big\backslash 
\Biggr\} \Biggr\} xj \nearrow \Biggl[ xj

\Biggr\} \Biggr\} 
2
+

1

N1

N1\Biggl\lfloor 

k=1

\Biggr\} \Biggr\} yk \nearrow \Biggl[ yk
\Biggr\} \Biggr\} 
2

\left( 

and

1
\Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil \downarrow 1

N1 infz\rightarrow BR exp(\nearrow \varsigma E(x,y)) \downarrow 
1

N1e
\updownarrow \omega supz\uparrow BR

E(x,y) .

With this, we immediately obtain for the norm of I2 the upper bound

\Rightarrow I2\Rightarrow 2 :=

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 

\Bigg\backslash N1

j=1(\Biggl[ xi \nearrow \Biggl[ xj)
\Biggr) 
\varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 
\nearrow \varrho \omega 

\Biggr\rfloor 
\Biggl[ xj , 1

N1

\Bigg\backslash N1

k=1 \Biggl[ yk
\Biggl\lceil \Biggr] 

\Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 
2

\downarrow 
2\varsigma e\omega !RE

\Biggr\} \Biggr\} \Rightarrow \Downarrow zE\Rightarrow 2
\Biggr\} \Biggr\} 
L\rightarrow (BR)

N1

\Biggr\rangle 
N1 \Rightarrow \Biggl[ xi\Rightarrow 22 + \Rightarrow \Biggl[ x\Rightarrow 22

\Biggr\rfloor 
\Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 + \Rightarrow y\nearrow \Biggl[ y\Rightarrow 2

\Biggl\lceil 
,

where we abbreviate \#RE := supz\rightarrow BR
E(x,y)\nearrow infz\rightarrow BR E(x,y). Similarly, for I3 we

have

\Rightarrow I3\Rightarrow 2 :=

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 

N1\Biggl\lfloor 

j=1

(\Biggl[ xi \nearrow \Biggl[ xj)\varrho \omega 

\Big\backslash 
\Biggl[ xj ,

1

N1

N1\Biggl\lfloor 

k=1

\Biggl[ yk
\left( 

\uparrow 

\Biggr) \Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
\Biggl[ xj , 1

N1

\Bigg\backslash N1

k=1 \Biggl[ yk
\Biggl\lceil 
\nearrow \varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil \Biggr] 

\Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
\Biggl[ xj , 1

N1

\Bigg\backslash N1

k=1 \Biggl[ yk
\Biggl\lceil \Bigg\backslash N1

j=1 \varrho \omega 

\Biggr\rfloor 
xj , 1

N1

\Bigg\backslash N1

k=1 y
k
\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} \Biggr\} 
2

\downarrow 
2\varsigma e2\omega !RE

\Biggr\} \Biggr\} \Rightarrow \Downarrow zE\Rightarrow 2
\Biggr\} \Biggr\} 
L\rightarrow (BR)

N1

\Biggr\rangle 
N1 \Rightarrow \Biggl[ xi\Rightarrow 22 + \Rightarrow \Biggl[ x\Rightarrow 22

\Biggr\rfloor 
\Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 + \Rightarrow y\nearrow \Biggl[ y\Rightarrow 2

\Biggl\lceil 
.

Combining these bounds yields the result. Analogously,
\Biggr\} \Biggr\} F i,Y (z)\nearrow F i,Y (\Biggl[ z)

\Biggr\} \Biggr\} 
2
can be

bounded.
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1100 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

Proof of Theorem 3. The statement follows by invoking the standard result [10,
Chapter 5, Theorem 3.1] (see Theorem A.1 in the appendix) on the existence and
pathwise uniqueness of a strong solution. The fact that condition (i) of Theorem A.1
about the local Lipschitz continuity and linear growth of F(Zt) and M(Zt) holds,
follows immediately from Lemma 4. To ensure condition (ii) of Theorem A.1, we make
use of [10, Chapter 5, Theorem 3.2] (see Theorem A.2 in the appendix) and verify that
there exists a constant bN1,N2

> 0 such that \nearrow 2\bfitomega Zt ·F(Zt)+tr(\bfitvarepsilon M(Zt)M(Zt)T\bfitvarepsilon T )\downarrow 
bN1,N2

(1 + \Rightarrow Zt\Rightarrow 22). Indeed, since

\nearrow \bfitomega Zt ·F(Zt)\downarrow \varepsilon 1

N1\Biggl\lfloor 

i=1

\Biggr\} \Biggr\} Xi
t

\Biggr\} \Biggr\} 
2

\Biggr\} \Biggr\} F i,X(Zt)
\Biggr\} \Biggr\} 
2
+ \varepsilon 2

N2\Biggl\lfloor 

i=1

\Biggr\} \Biggr\} Y i
t

\Biggr\} \Biggr\} 
2

\Biggr\} \Biggr\} F i,Y (Zt)
\Biggr\} \Biggr\} 
2

\downarrow 
\Biggr) 
\varepsilon 1

\Biggr\rfloor 
1 +

\right) 
N1

\Biggl\lceil 
+ \varepsilon 2

\Biggr\rfloor 
1 +

\right) 
N2

\Biggl\lceil \Biggr] 
\Rightarrow Zt\Rightarrow 22

and

tr(\bfitvarepsilon M(Zt)M(Zt)
T\bfitvarepsilon T ) = \varpi 2

1

N1\Biggl\lfloor 

i=1

\Biggr\} \Biggr\} F i,X(Zt)
\Biggr\} \Biggr\} 2
2
+ \varpi 2

2

N2\Biggl\lfloor 

i=1

\Biggr\} \Biggr\} F i,Y (Zt)
\Biggr\} \Biggr\} 2
2

\downarrow 2
\Biggr\rfloor 
\varpi 2
1

\Biggr\rfloor 
1 +N1

\Biggl\lceil 
+ \varpi 2

2

\Biggr\rfloor 
1 +N2

\Biggl\lceil \Biggl\lceil 
\Rightarrow Zt\Rightarrow 22 ,

the former holds with bN1,N2
defined as the sum of the two former upper bounds.

2.2. Well-posedness of the mean-field dynamics. In what follows, let us
furthermore ensure the well-posedness of the mean-field dynamics (3) and (4), which
is the main object of our studies in section 3. We prove existence and uniqueness of
a solution for objective functions E that satisfies the following conditions.

Definition 5 (assumptions). We consider functions E \rightarrow C1(Rd1+d2), which
W1 are bounded in the sense that there exist E \rightarrow C1(Rd2) and E \rightarrow C1(Rd1) such

that

E(y)\downarrow E(x, y)\downarrow E(x) for all (x, y)\rightarrow Rd1+d2 .

W2 are locally Lipschitz continuous in the sense that there exists a constant C1 > 0
such that for all (x, y), (x\nearrow , y\nearrow )\rightarrow Rd1+d2 it holds that

|E(x, y)\nearrow E(x\nearrow , y\nearrow )|\downarrow C1(1 + \Rightarrow x\Rightarrow 2+\Rightarrow x\nearrow \Rightarrow 2+\Rightarrow y\Rightarrow 2+\Rightarrow y\nearrow \Rightarrow 2) (\Rightarrow x\nearrow x\nearrow \Rightarrow 2 + \Rightarrow y\nearrow y\nearrow \Rightarrow 2) .

W3 have at most quadratic growth in the sense that there exists a constant C2 > 0
obeying

E(x, y)\nearrow E(y+sy\nearrow )

\downarrow C2

\Biggr\rfloor 
1+\Rightarrow x\Rightarrow 22+\Rightarrow y\Rightarrow 22+\Rightarrow y\nearrow \Rightarrow 22

\Biggl\lceil 
for all (x, y), (x\nearrow , y\nearrow )\rightarrow Rd1+d2 , s\rightarrow [0,1],

E(x+sx\nearrow )\nearrow E(x, y)
\downarrow C2

\Biggr\rfloor 
1+\Rightarrow x\Rightarrow 22+\Rightarrow x\nearrow \Rightarrow 22+\Rightarrow y\Rightarrow 22

\Biggl\lceil 
for all (x, y), (x\nearrow , y\nearrow )\rightarrow Rd1+d2 , s\rightarrow [0,1].

For such objectives, we have the following well-posedness result for the macro-
scopic SDE (3) and its associated Fokker–Planck equation (4).

Theorem 6. Let E satisfy assumptions W1–W3. Let T > 0, \vargamma 0 \rightarrow P4(Rd1+d2).
Then there exists a unique nonlinear process (X,Y )\rightarrow C([0, T ],Rd1+d2) satisfying (3).
The associated law \vargamma = Law(X,Y ) has regularity \vargamma \rightarrow C([0, T ],P4(Rd1+d2)) and is a

weak solution to the Fokker–Planck equation (4).

Before giving the proof of Theorem 6, let us first provide some auxiliary results.
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CBO FOR SADDLE POINT PROBLEMS 1101

Lemma 7. Let \rightharpoonup , \Biggl[ \rightharpoonup \rightarrow P2(Rd1+d2) with
\Biggl\{ \Biggl\{ 

\Rightarrow x\Rightarrow 22 + \Rightarrow y\Rightarrow 22 d\rightharpoonup (x, y)\downarrow K and
\Biggl\{ \Biggl\{ 

\Rightarrow \Biggl[ x\Rightarrow 22 +
\Rightarrow \Biggl[ y\Rightarrow 22 d\Biggl[ \rightharpoonup (\Biggl[ x, \Biggl[ y) \downarrow K. Then, under assumptions W1 and W3 on E, it holds for any

s\rightarrow [0,1] that

exp
\Biggr\rfloor 
\nearrow \varsigma E

\Biggr\rfloor \Biggl\{ 
yd\rightharpoonup Y (y) + s

\Biggr\rfloor \Biggl\{ 
\Biggl[ yd\Biggl[ \rightharpoonup Y (\Biggl[ y)\nearrow 

\Biggl\{ 
yd\rightharpoonup Y (y)

\Biggl\lceil \Biggl\lceil \Biggl\lceil 
\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
x,
\Biggl\{ 
yd\rightharpoonup Y (y)

\Biggl\lceil 
d\rightharpoonup X(x)

\downarrow exp (\varsigma C2(1 + 2K)) :=C\omega 
K

(6a)

and

exp
\Biggr\rfloor 
\varphi E

\Biggr\rfloor \Biggl\{ 
xd\rightharpoonup X(x) + s

\Biggr\rfloor \Biggl\{ 
\Biggl[ xd\Biggl[ \rightharpoonup X(\Biggl[ x)\nearrow 

\Biggl\{ 
xd\rightharpoonup X(x)

\Biggl\lceil \Biggl\lceil \Biggl\lceil 
\Biggl\{ 
\varrho \updownarrow \varepsilon 

\Biggr\rfloor \Biggl\{ 
xd\rightharpoonup X(x), y

\Biggl\lceil 
d\rightharpoonup X(x)

\downarrow exp (\varphi C2(1 + 2K)) :=C\varepsilon 
K .

(6b)

Proof. By exploiting assumption W3 and utilizing Jensen’s inequality, we obtain

exp
\Biggr\rfloor 
\nearrow \varsigma E

\Biggr\rfloor \Biggl\{ 
yd\rightharpoonup Y (y) + s

\Biggr\rfloor \Biggl\{ 
\Biggl[ yd\Biggl[ \rightharpoonup Y (\Biggl[ y)\nearrow 

\Biggl\{ 
yd\rightharpoonup Y (y)

\Biggl\lceil \Biggl\lceil \Biggl\lceil 
\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
x,
\Biggl\{ 
yd\rightharpoonup Y (y)

\Biggl\lceil 
d\rightharpoonup X(x)

\downarrow 1

exp
\Biggr) 
\nearrow \varsigma C2

\Biggr) \Biggl\{ 
1 + \Rightarrow x\Rightarrow 22 +

\Biggr\} \Biggr\} \Biggl\{ yd\rightharpoonup Y (y)
\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\} \Biggl\{ \Biggl[ yd\Biggl[ \rightharpoonup Y (\Biggl[ y)

\Biggr\} \Biggr\} 2
2
d\rightharpoonup X(x)

\Biggr] \Biggr] 

\downarrow exp (\varsigma C2(1 + 2K)) ,

where in the last inequality we integrated the moment bounds on \rightharpoonup and \Biggl[ \rightharpoonup . A similar
estimate gives (6b) by exploiting assumption W3.

Lemma 8. Let E satisfy assumption W1 and the assumptions of Theorem 6. Let

\rightharpoonup , \Biggl[ \rightharpoonup \rightarrow P4(Rd1+d2) with
\Biggl\{ \Biggl\{ 

\Rightarrow x\Rightarrow 42+\Rightarrow y\Rightarrow 42 d\rightharpoonup (x, y)\downarrow K and
\Biggl\{ \Biggl\{ 

\Rightarrow \Biggl[ x\Rightarrow 42+\Rightarrow \Biggl[ y\Rightarrow 42 d\Biggl[ \rightharpoonup (\Biggl[ x, \Biggl[ y)\downarrow K.

Then the stability estimate

\Biggr\} \Biggr\} xY
\omega (\rightharpoonup X)\nearrow xY

\omega (\Biggl[ \rightharpoonup X)
\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} yX\varepsilon (\rightharpoonup Y )\nearrow yX\varepsilon (\Biggl[ \rightharpoonup Y )

\Biggr\} \Biggr\} 
2
\downarrow c0W2(\rightharpoonup , \Biggl[ \rightharpoonup )(7)

holds with c0 depending only on \varsigma ,\varphi ,C1,C2, and K.

Proof. To keep the notation concise, we write E\rightharpoonup Y :=
\Biggl\{ 
y d\rightharpoonup Y (y) and E\Biggl[ \rightharpoonup Y :=\Biggl\{ 

\Biggl[ y d\Biggl[ \rightharpoonup Y (\Biggl[ y) in what follows. According to the definition of the consensus point in (2a),
we have

xY
\omega (\rightharpoonup X)\nearrow xY

\omega (\Biggl[ \rightharpoonup X) =

\Biggr\rceil \Biggr\rceil 
x\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
d\rightharpoonup X(x)

\nearrow 
\Biggl[ x\varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil 
\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil 
d\Biggl[ \rightharpoonup X(\Biggl[ x)

\left[ \right]   
=:h(x)\updownarrow h(\Biggr) x)

d\rightharpoondown (x, y, \Biggl[ x, \Biggl[ y),

where \rightharpoondown \rightarrow \$(\rightharpoonup , \Biggl[ \rightharpoonup ) is any coupling of \rightharpoonup and \Biggl[ \rightharpoonup . By adding and subtracting mixed terms,
we obtain the decomposition

h(x)\nearrow h(\Biggl[ x) =
(x\nearrow \Biggl[ x)\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
d\rightharpoonup X(x)

+
\Biggl[ x
\Biggr\rfloor 
\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
\nearrow \varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil \Biggl\lceil 
\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
d\rightharpoonup X(x)

+

\Biggl\{ \Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil 
\nearrow \varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
d\rightharpoondown (x, y, \Biggl[ x, \Biggl[ y)\Biggr\rfloor \Biggl\{ 

\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
d\rightharpoonup X(x)

\Biggl\lceil \Biggr\rfloor \Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil 
d\Biggl[ \rightharpoonup X(\Biggl[ x)

\Biggl\lceil \Biggl[ x\varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil 

=: I1 + I2 + I3,
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1102 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

where I1, I2, and I3 correspond to the three summands. For I1, by using assump-
tion W3 and Lemma 7 with s= 0, we obtain

\Rightarrow I1\Rightarrow 2 \downarrow 
\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
d\rightharpoonup X(x)

\Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 \downarrow 
e\updownarrow \omega E(E\varrho Y )

\Biggl\{ 
\varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
d\rightharpoonup X(x)

\Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 \downarrow C\omega 
K \Rightarrow x\nearrow \Biggl[ x\Rightarrow 2 .

For I2 and I3, on the other hand, let us first notice that for some s, s\nearrow \rightarrow [0,1] it holds
that

\Big/ \Big/ \varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
\nearrow \varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil \Big/ \Big/ \downarrow 
\Big/ \Big/ \varrho \omega 

\Biggr\rfloor 
x,E\rightharpoonup Y

\Biggl\lceil 
\nearrow \varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\rightharpoonup Y

\Biggl\lceil \Biggl\lceil \Big/ \Big/ +
\Big/ \Big/ \varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\rightharpoonup Y

\Biggl\lceil 
\nearrow \varrho \omega 

\Biggr\rfloor 
\Biggl[ x,E\Biggl[ \rightharpoonup Y

\Biggl\lceil \Big/ \Big/ 

=
\Big/ \Big/ \leftharpoonup x\varrho \omega (x+ s(\Biggl[ x\nearrow x),E\rightharpoonup Y )

\Big/ \Big/ \Biggr\} \Biggr\} x\nearrow \Biggl[ x
\Biggr\} \Biggr\} 
2

+
\Big/ \Big/ \leftharpoonup y\varrho \omega (x̂,E\rightharpoonup Y + s\nearrow (E\Biggl[ \rightharpoonup Y \nearrow E\rightharpoonup Y ))

\Big/ \Big/ \Biggr\} \Biggr\} E\Biggl[ \rightharpoonup Y \nearrow E\rightharpoonup Y
\Biggr\} \Biggr\} 
2

\downarrow \varsigma C1e
\updownarrow \omega E(E\varrho Y )2

\Biggr) 
1 +

\Biggr\} \Biggr\} x
\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} \Biggl[ x

\Biggr\} \Biggr\} 
2
+

\Biggr\} \Biggr\} E\rightharpoonup Y
\Biggr\} \Biggr\} 
2

\Biggr] \Biggr\} \Biggr\} x\nearrow \Biggl[ x
\Biggr\} \Biggr\} 
2

+ \varsigma C1e
\updownarrow \omega E

\Biggr\rfloor 
E\varrho Y +s\downarrow (E\Biggr) \varrho Y \updownarrow E\varrho Y )

\Biggl\lceil 
2

\uparrow 
\Biggr) 
1 +

\Biggr\} \Biggr\} E\Biggl[ \rightharpoonup Y
\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} \Biggl[ x

\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} E\rightharpoonup Y

\Biggr\} \Biggr\} 
2

\Biggr] \Biggr\} \Biggr\} E\Biggl[ \rightharpoonup Y \nearrow E\rightharpoonup Y
\Biggr\} \Biggr\} 
2

due to assumptions W2 and W3. With this, we immediately obtain the upper bounds

\Biggr\} \Biggr\} I2
\Biggr\} \Biggr\} 
2
\downarrow 2\varsigma C1C

\omega 
K

\Biggr\} \Biggr\} \Biggl[ x
\Biggr\} \Biggr\} 
2

\Biggr) 
1 +

\Biggr\} \Biggr\} x
\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} E\Biggl[ \rightharpoonup Y

\Biggr\} \Biggr\} 
2
+ 2

\Biggr\} \Biggr\} \Biggl[ x
\Biggr\} \Biggr\} 
2
+ 2

\Biggr\} \Biggr\} E\rightharpoonup Y
\Biggr\} \Biggr\} 
2

\Biggr] \Biggr) \Biggr\} \Biggr\} x\nearrow \Biggl[ x
\Biggr\} \Biggr\} 
2

+
\Biggr\} \Biggr\} E\Biggl[ \rightharpoonup Y \nearrow E\rightharpoonup Y

\Biggr\} \Biggr\} 
2

\Biggr] 
,

\Biggr\} \Biggr\} I3
\Biggr\} \Biggr\} 
2
\downarrow 2\varsigma C1(C

\omega 
K)2

\Biggr\} \Biggr\} \Biggl[ x
\Biggr\} \Biggr\} 
2
·
\Biggr\rceil \Biggr\rceil \Biggr) 

1 +
\Biggr\} \Biggr\} x

\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} E\Biggl[ \rightharpoonup Y

\Biggr\} \Biggr\} 
2
+2

\Biggr\} \Biggr\} \Biggl[ x
\Biggr\} \Biggr\} 
2
+2

\Biggr\} \Biggr\} E\rightharpoonup Y
\Biggr\} \Biggr\} 
2

\Biggr] 

\uparrow 
\Biggr) \Biggr\} \Biggr\} x\nearrow \Biggl[ x

\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} E\Biggl[ \rightharpoonup Y \nearrow E\rightharpoonup Y

\Biggr\} \Biggr\} 
2

\Biggr] 
d\rightharpoondown (x, y, \Biggl[ x, \Biggl[ y).

Collecting the latter three estimates for \Rightarrow I1\Rightarrow 2 ,\Rightarrow I2\Rightarrow 2, and \Rightarrow I3\Rightarrow 2 eventually gives after
an application of Jensen’s and Cauchy–Schwarz’s inequalities

\Biggr\} \Biggr\} xY
\omega (\rightharpoonup X)\nearrow xY

\omega (\Biggl[ \rightharpoonup X)
\Biggr\} \Biggr\} 
2
\downarrow C(\varsigma ,C1,C

\omega 
K ,K)

 \Biggr\rceil \Biggr\rceil 
\Rightarrow x\nearrow \Biggl[ x\Rightarrow 22 d\rightharpoondown (x, y, \Biggl[ x, \Biggl[ y) + \Rightarrow E\Biggl[ \rightharpoonup Y \nearrow E\rightharpoonup Y \Rightarrow 22

\downarrow C(\varsigma ,C1,C
\omega 
K ,K)

 \Biggr\rceil \Biggr\rceil 
\Rightarrow x\nearrow \Biggl[ x\Rightarrow 22 + \Rightarrow y\nearrow \Biggl[ y\Rightarrow 22 d\rightharpoondown (x, y, \Biggl[ x, \Biggl[ y),

where the last step is due to Jensen’s inequality.
\Biggr\} \Biggr\} yX\varepsilon (\rightharpoonup Y )\nearrow yX\varepsilon (\Biggl[ \rightharpoonup Y )

\Biggr\} \Biggr\} 
2
can be bounded

analogously. Eventually, optimizing over all couplings \rightharpoondown \rightarrow \$(\rightharpoonup , \Biggl[ \rightharpoonup ) gives the claim.

Proof of Theorem 6. The proof is based on the Leray–Schauder fixed point theo-
rem and follows in the spirit of [5, Theorems 3.1, 3.2].
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CBO FOR SADDLE POINT PROBLEMS 1103

Step 1. For given functions uX \rightarrow C([0, T ],Rd1), uY \rightarrow C([0, T ],Rd2) and measure
\vargamma 0 \rightarrow P4(Rd1+d2), according to standard SDE theory [1, Chapter 6], we can uniquely
solve the SDE system

d  Xt =\nearrow \varepsilon 1

\Biggr\rfloor  Xt \nearrow uX
t

\Biggl\lceil 
dt+ \varpi 1D

\Biggr\rfloor  Xt \nearrow uX
t

\Biggl\lceil 
dBX

t ,(8a)

d Yt =\nearrow \varepsilon 2

\Biggr\rfloor  Yt \nearrow uY
t

\Biggl\lceil 
dt+ \varpi 2D

\Biggr\rfloor  Yt \nearrow uY
t

\Biggl\lceil 
dBY

t(8b)

with (  X0,  Y0)\searrow \vargamma 0 as a consequence of the coe""cients being locally Lipschitz contin-
uous and having at most linear growth. This induces  \vargamma t = Law((  Xt,  Yt)). Moreover,
the regularity of the initial distribution \vargamma 0 \rightarrow P4(Rd1+d2) allows for a fourth-order mo-
ment estimate of the form E

\left\{ 
\Rightarrow  Xt\Rightarrow 42 + \Rightarrow  Yt\Rightarrow 42

\right\} 
\downarrow 
\Biggr\rfloor 
1 + 2E

\left\{ 
\Rightarrow  X0\Rightarrow 42 + \Rightarrow  Y0\Rightarrow 42

\right\} \Biggl\lceil 
ect; see, e.g.,

[1, Chapter 7]. So, in particular,  \vargamma \rightarrow C([0, T ],P4(Rd1+d2)), i.e., supt\rightarrow [0,T ]

\Biggl\{ \Biggl\{ 
\Rightarrow x\Rightarrow 42 +

\Rightarrow y\Rightarrow 42 d \vargamma t(x, y)\downarrow K for some K > 0.
Step 2. Let us now define the test function space

C2
\uparrow (Rd1+d2) :=

 
\lhook \rightarrow C2(Rd1+d2) : \Rightarrow \Downarrow \lhook (x, y)\Rightarrow 2 \downarrow C\varsigma 

\Biggr\rfloor 
1 + \Rightarrow x\Rightarrow 2 + \Rightarrow y\Rightarrow 2

\Biggl\lceil 
for some C\varsigma > 0

(9)

and max

 
max

k=1,...,d1

\Biggr\} \Biggr\} \leftharpoonup 2
xkxk

\lhook 
\Biggr\} \Biggr\} 
\searrow , max

k=1,...,d2

\Biggr\} \Biggr\} \leftharpoonup 2
ykyk

\lhook 
\Biggr\} \Biggr\} 
\searrow 

 
<\simeq 

 
.

For any \lhook \rightarrow C2
\uparrow (Rd), by Itô’s formula, we can derive

d\lhook (  Xt,  Yt) =\Downarrow x\lhook (  Xt,  Yt) ·
\Biggr) 
\nearrow \varepsilon 1

\Biggr\rfloor  Xt \nearrow uX
t

\Biggl\lceil 
dt+ \varpi 1D

\Biggr\rfloor  Xt \nearrow uX
t

\Biggl\lceil 
dBX

t

\Biggr] 

+\Downarrow y\lhook (  Xt,  Yt) ·
\Biggr) 
\nearrow \varepsilon 2

\Biggr\rfloor  Yt \nearrow uY
t

\Biggl\lceil 
dt+ \varpi 2D

\Biggr\rfloor  Yt \nearrow uY
t

\Biggl\lceil 
dBY

t

\Biggr] 

+
\varpi 2
1

2

d1\Biggl\lfloor 

k=1

\leftharpoonup 2
xkxk

\lhook (  Xt,  Yt)
\Biggr\rfloor  Xt \nearrow uX

t

\Biggl\lceil 2
k
dt

+
\varpi 2
2

2

d2\Biggl\lfloor 

k=1

\leftharpoonup 2
ykyk

\lhook (  Xt,  Yt)
\Biggr\rfloor  Yt \nearrow uY

t

\Biggl\lceil 2
k
dt.

After taking the expectation, applying Fubini’s theorem, and observing that the
stochastic integrals E

\Biggl\{ t
0 \Downarrow x\lhook (  Xt,  Yt) ·D

\Biggr\rfloor  Xt\nearrow uX
t

\Biggl\lceil 
dBX

t and E
\Biggl\{ t
0 \Downarrow y\lhook (  Xt,  Yt) ·D

\Biggr\rfloor  Yt\nearrow 
uY
t

\Biggl\lceil 
dBY

t vanish as a consequence of [37, Theorem 3.2.1(iii)] due to the established
regularity  \vargamma \rightarrow C([0, T ],P4(Rd1+d2)) and \lhook \rightarrow C2

\uparrow (Rd1+d2), we obtain

d

dt
E\lhook (  Xt,  Yt) = \nearrow \varepsilon 1E\Downarrow x\lhook (  Xt,  Yt) ·

\Biggr\rfloor  Xt \nearrow uX
t

\Biggl\lceil 
\nearrow \varepsilon 2E\Downarrow y\lhook (  Xt,  Yt) ·

\Biggr\rfloor  Yt \nearrow uY
t

\Biggl\lceil 

+
\varpi 2
1

2
E

d1\Biggl\lfloor 

k=1

\leftharpoonup 2
xkxk

\lhook (  Xt,  Yt)
\Biggr\rfloor  Xt \nearrow uX

t

\Biggl\lceil 2
k

+
\varpi 2
2

2
E

d2\Biggl\lfloor 

k=1

\leftharpoonup 2
ykyk

\lhook (  Xt,  Yt)
\Biggr\rfloor  Yt \nearrow uY

t

\Biggl\lceil 2
k

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1104 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

as a consequence of the fundamental theorem of calculus. This shows that the measure
 \vargamma \rightarrow C([0, T ],P4(Rd1+d2)) satisfies the Fokker–Planck equation

d

dt

\Biggr\rceil 
\lhook (x, y)d \vargamma t(x, y) =\nearrow 

\Biggr\rceil 
\varepsilon 1\Downarrow x\lhook (x, y) ·

\Biggr\rfloor 
x\nearrow uX

t

\Biggl\lceil 
+\varepsilon 2\Downarrow y\lhook (x, y) ·

\Biggr\rfloor 
y\nearrow uY

t

\Biggl\lceil 
d \vargamma t(x, y)

+

\Biggr\rceil 
\varpi 2
1

2

d1\Biggl\lfloor 

k=1

\leftharpoonup 2
xkxk

\lhook (x, y)
\Biggr\rfloor 
x\nearrow uX

t

\Biggl\lceil 2
k

+
\varpi 2
2

2

d2\Biggl\lfloor 

k=1

\leftharpoonup 2
ykyk

\lhook (x, y)
\Biggr\rfloor 
y\nearrow uY

t

\Biggl\lceil 2
k
d \vargamma t(x, y).

(10)

Step 3. Setting T u :=
\Biggr\rfloor 
(xY

\omega ( \vargamma X))T , (yX\varepsilon ( \vargamma Y ))T
\Biggl\lceil T \rightarrow C([0, T ],Rd1+d2) provides the

self-mapping property of the map T : C([0, T ],Rd1+d2)\updownarrow C([0, T ],Rd1+d2), u \leftrightarrow \updownarrow T u=\Biggr\rfloor 
(xY

\omega ( \vargamma X))T , (yX\varepsilon ( \vargamma Y ))T
\Biggl\lceil T

. By means of Lemma 8, we have
\Biggr\} \Biggr\} xY

\omega ( \vargamma X,t)\nearrow xY
\omega ( \vargamma X,s)

\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} yX\varepsilon ( \vargamma Y,t)\nearrow yX\varepsilon ( \vargamma Y,s)

\Biggr\} \Biggr\} 
2
\downarrow c0W2( \vargamma t,  \vargamma s)\leftrightsquigarrow c0 |t\nearrow s|1/2 ,

which shows the Hölder-1/2 continuity of T due to the compact embedding C0,1/2([0, T ],
Rd1+d2) \rhook \updownarrow C([0, T ],Rd1+d2). In the last inequality, we note that due to Itô’s isometry
it holds that

W 2
2 ( \vargamma t,  \vargamma s)\downarrow E

 \Biggr\} \Biggr\}  Xt \nearrow  Xs

\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\}  Yt \nearrow  Ys

\Biggr\} \Biggr\} 2
2

 

\downarrow 4
\Biggr\rfloor 
(\varepsilon 2

1 + \varepsilon 2
2)T + (\varpi 2

1 + \varpi 2
2)
\Biggl\lceil \Biggr) 

K +
\Biggr\} \Biggr\} uX

\Biggr\} \Biggr\} 2
L\rightarrow +

\Biggr\} \Biggr\} uY
\Biggr\} \Biggr\} 2
L\rightarrow 

\Biggr] 
|t\nearrow s| .

Step 4. Now, for u\rightarrow C([0, T ],Rd1+d2) satisfying u=  \triangleleft T u with  \triangleleft \rightarrow [0,1], there ex-

ists \vargamma \rightarrow C([0, T ],P4(Rd1+d2)) satisfying (10) such that u=  \triangleleft 
\Biggr\rfloor 
(xY

\omega (\vargamma X))T , (yX\varepsilon (\vargamma Y ))T
\Biggl\lceil T

.
As a consequence of Lemma 7, with s= 0 we can show that

\Rightarrow ut\Rightarrow 22 \downarrow  \triangleleft 2

\Biggl\langle 
(C\omega 

K)2
\Biggr\rceil 

\Rightarrow x\Rightarrow 22 d\vargamma X,t(x) + (C\varepsilon 
K)2

\Biggr\rceil 
\Rightarrow y\Rightarrow 22 d\vargamma Y,t(y)

\Bigg/ 

\downarrow  \triangleleft 2
\Biggr) 
(C\omega 

K)2 + (C\varepsilon 
K)2

\Biggr] \nwarrow 
K,

where we can use K =
\Biggr\rfloor 
1+2E

\left\{ 
\Rightarrow  X0\Rightarrow 42+\Rightarrow  Y0\Rightarrow 42

\right\} \Biggl\lceil 
ecT of Step 1. This allows for a uniform

estimate of \Rightarrow u\Rightarrow L\rightarrow < q for q > 0. An application of the Leray–Schauder fixed point
theorem concludes the proof of existence by providing a solution to (3).

Step 5. For uniqueness, suppose we have two fixed points u1 and u2 (as specified
in the previous step) together with corresponding processes ((  X1)T , ( Y 1)T )T and
((  X2)T , ( Y 2)T )T satisfying (8). Then, taking their di!erence while keeping the initial
conditions and respective Brownian motion paths, we obtain after an application of
Itô’s isometry and the employment of Lemma 8 the bound

E
 \Biggr\} \Biggr\}  X1

t \nearrow  X2
t

\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\}  Y 2

t \nearrow  Y 2
t

\Biggr\} \Biggr\} 2
2

 
\downarrow cE

\Biggr\rceil t

0

\Biggr\} \Biggr\}  X1
\varphi \nearrow  X2

\varphi 

\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\}  Y 1

\varphi \nearrow  Y 2
\varphi 

\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\} xY

\omega ( \vargamma 1X,\varphi )

\nearrow xY
\omega ( \vargamma 2X,\varphi )

\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\} yX\varepsilon ( \vargamma 1Y,\varphi )\nearrow yX\varepsilon ( \vargamma 2Y,\varphi )

\Biggr\} \Biggr\} 2
2
d \triangleright 

\leftrightsquigarrow cE
\Biggr\rceil t

0

\Biggr\} \Biggr\}  X1
\varphi \nearrow  X2

\varphi 

\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\}  Y 1

\varphi \nearrow  Y 2
\varphi 

\Biggr\} \Biggr\} 2
2
d \triangleright 

with c = 4
\Biggr\rfloor 
(\varepsilon 2

1 + \varepsilon 2
2)T + (\varpi 2

1 + \varpi 2
2)
\Biggl\lceil 
. Grönwall’s inequality eventually shows unique-

ness since E
\left\{ 
\Rightarrow  X1

t \nearrow  X2
t \Rightarrow 22 + \Rightarrow  Y 2

t \nearrow  Y 2
t \Rightarrow 22

\right\} 
= 0 for all t\rightarrow [0, T ].
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CBO FOR SADDLE POINT PROBLEMS 1105

3. Convergence to saddle points. Inspired by the theories of mean-field limits
for consensus-based optimization methods (see [11, 14, 20], for instance), the conver-
gence of particles systems (1) to the mean-field dynamics (3) follows in a similar way,
and thus the associated argument is omitted. In this section, we present the main
theoretical result of our paper concerned with the convergence of the macroscopic
dynamics (3) towards saddle points of objective functions E that satisfy the following
conditions.

Definition 9 (assumptions). Throughout this section, we are interested in ob-

jective functions E \rightarrow C2(Rd1+d2), for which

A1 there exist two functions E \rightarrow C1(Rd2) and E \rightarrow C1(Rd1) such that

E(y)\downarrow E(x, y)\downarrow E(x)

for all (x, y) \rightarrow Rd1+d2 . The functions E and E shall, for some constant

C\simeq E > 0, satisfy \Rightarrow \Downarrow E(y)\Rightarrow 2 \downarrow C\simeq E for all y \rightarrow Rd2 and \Rightarrow \Downarrow E(x)\Rightarrow 2 \downarrow C\simeq E for

all x\rightarrow Rd1 .

A2 there exist constants C\simeq E ,C\simeq 2E > 0 such that

max

 
sup

(x,y)\rightarrow Rd1\Leftarrow Rd2

\Rightarrow \Downarrow xE(x, y)\Rightarrow 2 , sup
(x,y)\rightarrow Rd1\Leftarrow Rd2

\Rightarrow \Downarrow yE(x, y)\Rightarrow 2

 
\downarrow C\simeq E ,

max

 
max

k=1,...,d1

\Biggr\} \Biggr\} \leftharpoonup 2
xkxk

E
\Biggr\} \Biggr\} 
\searrow , max

k=1,...,d2

\Biggr\} \Biggr\} \leftharpoonup 2
ykyk

E
\Biggr\} \Biggr\} 
\searrow ,

\Biggr\} \Biggr\} \vargamma 
\Biggr\rfloor 
\Downarrow 2

xE
\Biggl\lceil \Biggr\} \Biggr\} 

\searrow ,
\Biggr\} \Biggr\} \vargamma 

\Biggr\rfloor 
\Downarrow 2

yE
\Biggl\lceil \Biggr\} \Biggr\} 

\searrow 

 
\downarrow C\simeq 2E ,

where \Rightarrow ·\Rightarrow \searrow denotes the L\searrow 
norm on C

\Biggr\rfloor 
Rd1+d2

\Biggl\lceil 
and \vargamma denotes the spectral

radius.

A3 there exist constants \oldstyle{0}0,\oldstyle{1},\oldstyle{2} > 0 such that for each (x, y) \rightarrow Rd1+d2 satisfying

E\uparrow \nearrow E(x\uparrow , y)\downarrow \oldstyle{0}0 and E(x, y\uparrow )\nearrow E\uparrow \downarrow \oldstyle{0}0 for some saddle point (x\uparrow , y\uparrow ) of E,
we have

\Rightarrow x\nearrow x\uparrow \Rightarrow 2 \downarrow 
1

\oldstyle{1}

\Biggr\rfloor 
|E(x, y\uparrow )\nearrow E\uparrow |

\Biggl\lceil \leftharpoonup 
and \Rightarrow y\nearrow y\uparrow \Rightarrow 2 \downarrow 

1

\oldstyle{1}

\Biggr\rfloor 
|E(x\uparrow , y)\nearrow E\uparrow )|

\Biggl\lceil \leftharpoonup 
.

Assumption A1 requires that the twice continuously di!erentiable objective func-
tion E is bounded from below by a function E , which depends only on the y-coordinate,
and from above by a function E , which depends only on the x-coordinate. Moreover,
the first-order derivatives of E and E are assumed to be uniformly bounded.

Assumption A2 is a mere technical regularity assumption about E in terms of the
first and second derivatives. In particular, it requires that the gradients as well as
the second-order derivatives of E are uniformly bounded, which is, however, necessary
only for theoretical analysis of the long time behavior of the algorithm. Analogous
regularity assumptions may be found in the literature; see, e.g., [5, 6, 21]. However, as
a purely zero-order derivative-free method, our CBO-SP algorithm only uses pointwise
values of the objective function E in practical applications.

Assumption A3, on the other hand, should be regarded as a tractability condition
on the landscape of the objective function E . It imposes coercivity of E around saddle
points, which relates the distance from (x\uparrow , y\uparrow ) with the value of the objective function.
We refer the reader to the discussion after [14, Remark 9] for related conditions in
the machine learning literature.

In order to formulate in Theorem 11 below the result about the convergence of
the dynamics (3) towards saddle points of the objective functions E satisfying the
aforementioned assumption, let us define the variances

VarX(t) =E
\Biggr\} \Biggr\} Xt \nearrow EXt

\Biggr\} \Biggr\} 2
2

and VarY (t) =E
\Biggr\} \Biggr\} Y t \nearrow EY t

\Biggr\} \Biggr\} 2
2
,(11)
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1106 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

which act as Lyapunov functionals. In addition, we require certain well-preparedness
assumptions about the initial data and parameters. For this reason, we introduce the
notations

 MX(t) :=E exp
\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil 
and  MY (t) :=E exp

\Biggr\rfloor 
\varphi E(EXt, Y t)

\Biggl\lceil 
,(12a)

MX(t) :=  MX(t) e\omega E(EY t) and MY (t) :=  MY (t) e\updownarrow \varepsilon E(EXt),(12b)

MX
\uparrow (t) :=E exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt, y

\uparrow )
\Biggl\lceil 

and MY
\uparrow (t) :=E exp

\Biggr\rfloor 
\varphi E(x\uparrow , Y t)

\Biggl\lceil 
,(12c)

where the definitions ofMX
\uparrow andMY

\uparrow in (12c) may be di!erent for potentially di!erent
saddle points (x\uparrow , y\uparrow ) (since our assumptions allow for the existence of multiple such
points), meaning, in particular, that there may be multiple functionals MX

\uparrow and MY
\uparrow .

This ambiguity is clarified in Remark 12.

Definition 10 (well-preparedness of the initial data and parameters). The initial
datum (X0, Y 0) and the parameters \varsigma ,\varphi ,\varepsilon 1,\varepsilon 2,\varpi 1, and \varpi 2 of the CBO-SP method are

well-prepared if

P1 µ1 := 2
\Biggr\rfloor 
\varepsilon 1 \nearrow 4\varpi 2

1/MX(0)
\Biggl\lceil 
> 0 and µ2 := 2

\Biggr\rfloor 
\varepsilon 2 \nearrow 4\varpi 2

2/MY (0)
\Biggl\lceil 
> 0.

P2 all saddle points (x\uparrow , y\uparrow ) lie in supp(\vargamma 0), where \vargamma 0 := Law(X0, Y 0) has

marginals \vargamma X0 and \vargamma Y0 . Moreover, for any \omega > 0, there exists some constant

C\leftharpoondown > 0 depending only on \omega such that it holds that

\vargamma X0

\Biggl\langle  
x : exp

\Biggr\rfloor 
\nearrow E(x,E(Y 0))

\Biggl\lceil 
> exp

\Biggl\langle 
\nearrow min

x\rightarrow Rd1

E(x,E(Y 0))

\Bigg/ 
\nearrow \omega 

 \Bigg/ 
\Uparrow C\leftharpoondown ,

\vargamma Y0

\Biggl\langle  
y : exp

\Biggr\rfloor 
E(E(X0), y)

\Biggl\lceil 
> exp

\Biggl\langle 
max
y\rightarrow Rd2

E(E(X0), y)

\Bigg/ 
\nearrow \omega 

 \Bigg/ 
\Uparrow C\leftharpoondown 

as well as

\vargamma X0
\Biggr\rfloor 
{x : exp (\nearrow E(x, y\uparrow ))> exp (\nearrow E\uparrow )\nearrow \omega }

\Biggl\lceil 
\Uparrow C\leftharpoondown ,

\vargamma Y0
\Biggr\rfloor 
{y : exp (E(x\uparrow , y))> exp (E\uparrow )\nearrow \omega }

\Biggl\lceil 
\Uparrow C\leftharpoondown .

P3 it holds that

4\varsigma C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(0)

µ1MX(0)
+ 2

\nwarrow 
2\varsigma \varepsilon 2C\simeq E

\Biggr\rangle 
VarY (0)

µ2

\right) 
MY (0)

\downarrow 1

8
MX(0),

4\varphi C\simeq 2E

\Biggl\langle 
\varepsilon 2 +

\varpi 2
2

2

\Bigg/ 
VarY (0)

µ2MY (0)
+ 2

\nwarrow 
2\varphi \varepsilon 1C\simeq E

\Biggr\rangle 
VarX(0)

µ1

\right) 
MX(0)

\downarrow 1

8
MY (0).

P4 it holds for any fixed (x\uparrow , y\uparrow ) that

4\varsigma \varpi 2
1C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(0)

µ1MX(0)
+8\varsigma \varepsilon 1C\simeq E

\Biggr\rangle 
VarX(0)

µ1

\right) 
MX(0)

+
\nwarrow 
2\varsigma \varepsilon 2C\simeq E

\Biggr\rangle 
VarY (0)

µ2

\right) 
MY (0)

\downarrow 1

8
min

 
MX

\uparrow (0)e\omega E(y
\updownarrow ),  MX(0)e\updownarrow \omega EM

 
,

4\varphi C\simeq 2E

\Biggl\langle 
\varepsilon 2 +

\varpi 2
2

2

\Bigg/ 
VarY (0)

µ2MY (0)
+ 8\varphi \varepsilon 2C\simeq E

\Biggr\rangle 
VarY (0)

µ2

\right) 
MY (0)

+
\nwarrow 
2\varphi \varepsilon 1C\simeq E

\Biggr\rangle 
VarX(0)

µ1

\right) 
MX(0)

\downarrow 1

8
min

 
MY

\uparrow (0)e
\updownarrow \varepsilon E(x\updownarrow ),  MY (0)e\updownarrow \varepsilon EM

 
,

where EM depends on ( x,  y) as well as E and E (see Theorem 11 below).
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CBO FOR SADDLE POINT PROBLEMS 1107

Condition P1 can be satisfied appropriately for big choices of \varepsilon 1 and \varepsilon 2. Con-
dition P2 is valid if the initial distribution \vargamma 0 has some mass at the saddle points
(x\uparrow , y\uparrow ). While this may have a certain locality flavor, in the case of functions E
having multiple saddle points, the condition is generically satisfied at least for one
of them, essentially allowing us to obtain a global result. It is actually su""cient if
there is at least one saddle point satisfying condition P2, in which case the method
is agnostic to saddle points not in supp(\vargamma 0). Conditions P3–P4, on the other hand,
may be ensured if the initial variances VarX(0) and VarY (0) are su""ciently small.
Well-preparedness conditions similar to P2–P4 can be found in the literature about
a convergence analysis of CBO for minimization (see, e.g., [5, 6, 12, 21]), while we
note that the coupling of (X,Y ) due to the intrinsic di!erence between games and
optimizations prompts us to use di!erent proof techniques.

We are now ready to state the result about the convergence of the dynamics (3)
towards saddle points of the objective functions E . The proof details are deferred to
section 4.

Theorem 11. Let E satisfy assumptions A1 and A2, and let (Xt, Y t)t\downarrow 0 be a

solution to the SDE (3). Then the following statements hold:

(1) Under the assumption of well-preparedness of the initial datum (X0, Y 0) and
the parameters \varsigma ,\varphi ,\varepsilon 1,\varepsilon 2,\varpi 1, and \varpi 2 in the sense of P1–P3, VarX and VarY

as defined in (11) converge exponentially fast to 0 as t\updownarrow \simeq . More precisely,

it holds that

VarX(t) +VarY (t)\downarrow VarX(0)e\updownarrow µ1t +VarY (0)e\updownarrow µ2t.(13)

Moreover, there exists some ( x,  y) depending in particular on \varsigma and \varphi such

that, as t\updownarrow \simeq ,

\Biggr\rfloor 
EXt,EY t

\Biggl\lceil 
\updownarrow ( x,  y) and

\Biggr\rfloor 
xY
\omega (\vargamma X,t), y

X
\varepsilon (\vargamma Y,t)

\Biggl\lceil 
\updownarrow ( x,  y).(14)

(2) For any given accuracy \oldstyle{3} > 0, there exist some \varsigma 0,\varphi 0 > 0 such that for all

\varsigma \Uparrow \varsigma 0 and \varphi \Uparrow \varphi 0 the point ( x,  y) from (1) (which may depend on \varsigma and \varphi )
satisfies

|E( x,  y)\nearrow E\uparrow |\downarrow \oldstyle{3} as well as E\uparrow \nearrow E(x\uparrow ,  y)\downarrow \oldstyle{3} and E( x, y\uparrow )\nearrow E\uparrow \downarrow \oldstyle{3}
(15)

provided that the well-preparedness assumptions P1–P4 hold for such \varsigma and

\varphi together with the initial datum (X0, Y 0).
(3) If E satisfies assumption A3 with respect to ( x,  y) from (2) with \oldstyle{3} \downarrow \oldstyle{0}0,

i.e., there exists some saddle point (x\uparrow , y\uparrow ) depending on ( x,  y) such that

\Rightarrow  x \nearrow x\uparrow \Rightarrow 2 \downarrow 1
\rightharpoonup (|E( x, y

\uparrow )\nearrow E\uparrow |)\leftharpoonup and \Rightarrow  y \nearrow y\uparrow \Rightarrow 2 \downarrow 1
\rightharpoonup (|E(x

\uparrow ,  y)\nearrow E\uparrow |)\leftharpoonup , then

we have

\Rightarrow ( x,  y)\nearrow (x\uparrow , y\uparrow )\Rightarrow 2 \downarrow 
2

\oldstyle{1}
\oldstyle{3}\leftharpoonup (16)

provided that the well-preparedness assumptions P1–P4 hold for su!ciently

large \varsigma and \varphi together with the initial datum (X0, Y 0).

Part (1) of Theorem 11 states that under suitable well-preparedness conditions on
the initialization and the parameters, the mean-field dynamics (3) reaches consensus
at some location ( x,  y), which may depend in particular on \varsigma and \varphi , as time evolves.
In part (2) of the statement, for su""ciently large \varsigma and \varphi as well as under certain
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1108 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

well-preparedness conditions, properties of the corresponding point ( x,  y) are specified,
which are typical for saddle points; see (15). These properties eventually allow one to
conclude part (3) of the result, that the ( x,  y) from before is arbitrarily close to any

saddle point (x\uparrow , y\uparrow ) which satisfies the inverse continuity property A3.

Remark 12. It is worth mentioning at this point that in order to prove (15), any
saddle point (x\uparrow , y\uparrow ) satisfying assumption P4 can be used in the definitions of MX

\uparrow 
and MY

\uparrow . For the proof of (16), on the other hand, it is necessary to use in the
definitions of MX

\uparrow and MY
\uparrow a specific saddle point (x\uparrow , y\uparrow ) that satisfies the inverse

continuity property A3 with respect to ( x,  y) as well as assumption P4, so, in this
case, the saddle point (x\uparrow , y\uparrow ) does depend on ( x,  y).

4. Proof details for section 3. In this section, we provide the proof details for
the convergence result of the mean-field dynamics (3) to a saddle point of the objective
function E . Sections 4.1–4.3 present individual statements which are necessary in the
proof of our main theorem, Theorem 11, which is then given in section 4.4.

4.1. Time-evolution of the variances Var
X

and Var
Y
. In order to en-

sure consensus formation of the mean-field dynamics (3), we show that the variances
VarX(t) = E\Rightarrow Xt \nearrow EXt\Rightarrow 22 and VarY (t) = E\Rightarrow Y t \nearrow EY t\Rightarrow 22 of the particle distribution
decay to 0 as t \updownarrow \simeq . For this, we need to analyze their time evolutions, as done in
what follows.

Lemma 13. Let VarX and VarY be as defined in (11), and let us recall the defi-

nitions of MX
and MY

from (12b). Then, under assumption A1, it holds that

d

dt
VarX(t)\downarrow \nearrow 2

\Biggl\langle 
\varepsilon 1 \nearrow 

2\varpi 2
1

MX(t)

\Bigg/ 
VarX(t) and

d

dt
VarY (t)\downarrow \nearrow 2

\Biggl\langle 
\varepsilon 2 \nearrow 

2\varpi 2
2

MY (t)

\Bigg/ 
VarY (t).

(17)

Proof. By means of Itô’s calculus, d
\Biggr\} \Biggr\} Xt \nearrow EXt

\Biggr\} \Biggr\} 2
2
= 2

\Biggr\rfloor 
Xt \nearrow EXt

\Biggl\lceil 
· dXt + \varpi 2

1\Biggr\} \Biggr\} Xt \nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 2
2
dt. Since the appearing stochastic integral vanishes when taking

the expectation as a consequence of the regularity established in Theorem 6 and as-
sumption A1, we obtain

d

dt
VarX(t) =\nearrow 2\varepsilon 1E

\left\{ \Biggr\rfloor 
Xt \nearrow EXt

\Biggl\lceil 
·
\Biggr\rfloor 
Xt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil \right\} 

+ \varpi 2
1E

\Biggr\} \Biggr\} Xt \nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 2
2

=\nearrow 2\varepsilon 1Var
X(t) + \varpi 2

1E
\Biggr\} \Biggr\} Xt \nearrow xY

\omega (\vargamma X,t)
\Biggr\} \Biggr\} 2
2
,

(18)

where we used that E
\left\{ \Biggr\rfloor 
Xt \nearrow EXt

\Biggl\lceil 
·
\Biggr\rfloor 
EXt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil \right\} 

= 0. Analogously, we derive

d

dt
VarY (t) =\nearrow 2\varepsilon 2Var

Y (t) + \varpi 2
2E

\Biggr\} \Biggr\} Y t \nearrow yX\varepsilon (\vargamma Y,t)
\Biggr\} \Biggr\} 2
2
.(19)

In order to control the terms E
\Biggr\} \Biggr\} Xt \nearrow xY

\omega (\vargamma X,t)
\Biggr\} \Biggr\} 2
2
and E

\Biggr\} \Biggr\} Y t \nearrow yX\varepsilon (\vargamma Y,t)
\Biggr\} \Biggr\} 2
2
appearing

in (18) and (19), let us first observe that, for any \Biggl[ x\rightarrow Rd1 , \Biggl[ y \rightarrow Rd2 , Jensen’s inequality
gives

\Biggr\} \Biggr\} \Biggl[ x\nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 2
2
\downarrow 1

E\varrho \omega (Xt,EY t)

\Biggr\rceil 
\Rightarrow \Biggl[ x\nearrow x\Rightarrow 22 \varrho \omega (x,EY t)d\vargamma X,t(x),(20)

\Biggr\} \Biggr\} \Biggl[ y\nearrow yX\varepsilon (\vargamma Y,t)
\Biggr\} \Biggr\} 2
2
\downarrow 1

E\varrho \updownarrow \varepsilon (EXt, Y t)

\Biggr\rceil 
\Rightarrow \Biggl[ y\nearrow y\Rightarrow 22 \varrho \updownarrow \varepsilon (EXt, y)d\vargamma Y,t(y).(21)
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CBO FOR SADDLE POINT PROBLEMS 1109

Exploiting the boundedness of E as of assumption A1, the two latter bounds in par-
ticular imply

E
\Biggr\} \Biggr\} Xt \nearrow xY

\omega (\vargamma X,t)
\Biggr\} \Biggr\} 2
2
\downarrow 2

E\varrho \omega (Xt,EY t)

(22)

\uparrow 
\Biggr\rceil \Biggr) 

E
\Biggr\} \Biggr\} Xt \nearrow EXt

\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\} EXt \nearrow x

\Biggr\} \Biggr\} 2
2

\Biggr] 
\varrho \omega (x,EY t)d\vargamma X,t(x)

\downarrow 2VarX(t) +
2

E\varrho \omega (Xt,EY t)
e\updownarrow \omega E(EY t)VarX(t)\downarrow 4

VarX(t)

MX(t)

and analogously

E
\Biggr\} \Biggr\} Y t \nearrow yX\varepsilon (\vargamma Y,t)

\Biggr\} \Biggr\} 2
2
\downarrow 4

VarY (t)

MY (t)
,(23)

which allow us to conclude the proof when being inserted into (18) and (19),
respectively.

4.2. Time evolution of the functionals MX
and MY

from (12b). In the
time evolutions (17) of the variances VarX and VarY , there appear the functionalsMX

and MY as defined in (12b), which need to be controlled in order to ensure that the
decay rates can be bounded from below by a positive constant, which eventually leads
to at least exponential decay of the variances and therefore consensus of the dynamics
(3). We therefore investigate the evolutions of MX and MY next. To do so, let us
recall from (12b) that MX(t) =  MX(t) e\omega E(EY t) and MY (t) =  MY (t) e\updownarrow \varepsilon E(EXt). We
first bound in Lemma 14 the evolutions of  MX and  MY as defined in (12a), before
we use product rule to obtain a lower bound for the evolutions of MX and MY

in Lemma 15. Let us furthermore remark that  MX and  MY will later allow us to
characterize the convergence point of the dynamics (3).

Lemma 14. Let VarX and VarY be as defined in (11) and  MX
and  MY

as in

(12a). Then, under assumptions A1 and A2, it holds that

d

dt
 MX(t)\Uparrow \nearrow 4\varsigma e\updownarrow \omega E(EY t)C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(t)

MX(t)
\nearrow \varsigma \varepsilon 2e

\updownarrow \omega E(EY t)C\simeq E

\Biggr\rangle 
VarY (t)

\right) 
MY (t)

(24)

as well as

d

dt
 MY (t)\Uparrow \nearrow 4\varphi e\varepsilon E(EXt)C\simeq 2E

\Biggl\langle 
\varepsilon 2 +

\varpi 2
2

2

\Bigg/ 
VarY (t)

MY (t)
\nearrow \varphi \varepsilon 1e

\varepsilon E(EXt)C\simeq E

\Biggr\rangle 
VarX(t)

\right) 
MX(t)

.

(25)

Proof. With Itô’s formula and the chain rule, we first note that

d MX(t) =\nearrow \varsigma E
\left\{ 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil 
\Downarrow xE(Xt,EY t) · dXt

\right\} 

+
\varpi 2
1

2

d1\Biggl\lfloor 

k=1

E
 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil \Biggr\rfloor 
Xt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil 2
k

·
\Biggr) 
\varsigma 2

\Biggr\rfloor 
\leftharpoonup xkE(Xt,EY t)

\Biggl\lceil 2 \nearrow \varsigma \leftharpoonup 2
xkxk

E(Xt,EY t)
\Biggr]  

dt

\nearrow \varsigma E
\left\{ 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil 
\Downarrow yE(Xt,EY t) · dEY t

\right\} 
=: (T1 + T2 + T3)dt,
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1110 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

where for the definition in the last step we exploited the fact that the appearing
stochastic integrals have expectation 0 as a consequence of the regularity established in
Theorem 6 and assumptions A1 and A2. Noticing that E

\left\{ 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil \Biggr\rfloor 
Xt\nearrow 

xY
\omega (\vargamma X,t)

\Biggl\lceil \right\} 
= 0 and \Downarrow xE(xY

\omega (\vargamma X,t),EY t) is deterministic, we obtain for T1 the lower
bound

T1 = \varsigma \varepsilon 1E
\left\{ 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil 
\Downarrow xE(Xt,EY t) ·

\Biggr\rfloor 
Xt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil \right\} 

= \varsigma \varepsilon 1E
\left\{ 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil \Biggr\rfloor 
\Downarrow xE(Xt,EY t)\nearrow \Downarrow xE(xY

\omega (\vargamma X,t),EY t)
\Biggl\lceil 

·
\Biggr\rfloor 
Xt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil \right\} 

\Uparrow \nearrow \varsigma \varepsilon 1e
\updownarrow \omega E(EY t)C\simeq 2EE

\Biggr\} \Biggr\} Xt \nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 2
2
,

where we made use of the assumptions again. For T2, it holds that

T2 \Uparrow \nearrow \varsigma 
\varpi 2
1

2

d1\Biggl\lfloor 

k=1

E
 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil \Biggr\rfloor 
Xt \nearrow xY

\omega (\vargamma X,t)
\Biggl\lceil 2
k
\leftharpoonup 2
xkxk

E(Xt,EY t)
 
dt

\Uparrow \nearrow \varsigma 
\varpi 2
1

2
e\updownarrow \omega E(EY t)C\simeq 2EE

\Biggr\} \Biggr\} Xt \nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 2
2
.

And, eventually, for T3 we have the following bound from below:

T3 = \varsigma \varepsilon 2E
\left\{ 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt,EY t)

\Biggl\lceil 
\Downarrow yE(Xt,EY t) ·

\Biggr\rfloor 
EY t \nearrow yX\varepsilon (\vargamma Y,t)

\Biggl\lceil \right\} 

\Uparrow \nearrow \varsigma \varepsilon 2e
\updownarrow \omega E(EY t)C\simeq E

\Biggr\} \Biggr\} EY t \nearrow yX\varepsilon (\vargamma Y,t)
\Biggr\} \Biggr\} 
2
,

where we used the bounds on the gradient of E required through assumption A1 in
the last step. Collecting the estimates for T1, T2, and T3 and inserting them into the
first equation gives

d

dt
 MX(t)\Uparrow \nearrow \varsigma e\updownarrow \omega E(EY t)C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
E
\Biggr\} \Biggr\} Xt \nearrow xY

\omega (\vargamma X,t)
\Biggr\} \Biggr\} 2
2

\nearrow \varsigma \varepsilon 2e
\updownarrow \omega E(EY t)C\simeq E

\Biggr\} \Biggr\} EY t \nearrow yX\varepsilon (\vargamma Y,t)
\Biggr\} \Biggr\} 
2
.

The two appearing norms can be bounded by recalling (22) and noticing that (21)
gives

\Biggr\} \Biggr\} EY t \nearrow yX\varepsilon (\vargamma Y,t)
\Biggr\} \Biggr\} 2
2
\downarrow 1

E\varrho \updownarrow \varepsilon (EXt, Y t)
e\varepsilon E(EXt)

\Biggr\rceil \Biggr\} \Biggr\} EY t \nearrow y
\Biggr\} \Biggr\} 2
2
d\vargamma Y,t(y)\downarrow 

VarY (t)

MY (t)
.

(26)

Inserting these two latter estimates allows us to continue the former as desired as

d

dt
 MX(t)\Uparrow \nearrow 4\varsigma e\updownarrow \omega E(EY t)C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(t)

MX(t)
\nearrow \varsigma \varepsilon 2e

\updownarrow \omega E(EY t)C\simeq E

\Biggr\rangle 
VarY (t)

\right) 
MY (t)

.

(27)

The estimate for d
dt

 MY (t) can be obtained analogously.

As mentioned already, we derive in the next lemma the time evolutions of the
functionals MX and MY as defined in (12b). This is an immediate consequence of
product rule and Lemma 14.
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CBO FOR SADDLE POINT PROBLEMS 1111

Lemma 15. Let VarX and VarY be as defined in (11) and MX
and MY

as in

(12b). Then, under assumptions A1 and A2, it holds that

d

dt
MX(t)\Uparrow \nearrow 4\varsigma C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(t)

MX(t)
\nearrow 2\varsigma \varepsilon 2C\simeq E

\Biggr\rangle 
VarY (t)

\right) 
MY (t)

(28)

as well as

d

dt
MY (t)\Uparrow \nearrow 4\varphi C\simeq 2E

\Biggl\langle 
\varepsilon 2 +

\varpi 2
2

2

\Bigg/ 
VarY (t)

MY (t)
\nearrow 2\varphi \varepsilon 1C\simeq E

\Biggr\rangle 
VarX(t)

\right) 
MX(t)

.(29)

Proof. By the product rule, we have d
dtM

X(t) = e\omega E(EY t) d
dt

 MX(t) +  MX(t) d
dt

e\omega E(EY t). While the first summand is controlled by recalling Lemma 14, for the second
term we straightforwardly compute

d

dt
e\omega E(EY t) = \varsigma e\omega E(EY t)\Downarrow E(EY t) ·

d

dt
EY t \Uparrow \nearrow \varsigma \varepsilon 2e

\omega E(EY t)C\simeq E
\Biggr\} \Biggr\} EY t \nearrow yX\varepsilon (\vargamma Y,t)

\Biggr\} \Biggr\} 
2
,

where we used the bounds on the gradient of E required through assumption A1
together with the regularity from Theorem 6. Recalling (26) and putting everything
together yields

d

dt
MX(t)\Uparrow \nearrow 4\varsigma C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(t)

MX(t)
\nearrow 
\Biggr\rfloor 
1 +MX(t)

\Biggl\lceil 
\varsigma \varepsilon 2C\simeq E

\Biggr\rangle 
VarY (t)

\right) 
MY (t)

,

which gives the claim after noting that MX(t) \downarrow 1. The proceeding for d
dtM

Y (t) is
identical.

4.3. Time evolution of the functionals MX
\rightarrow and MY

\rightarrow from (12c). Sim-
ilarly to the preceding sections, we study the time evolution of two functionals MX

\uparrow 
and MY

\uparrow as defined in (12c), which aids in proving properties of the limit point of the
mean-field dynamics (3).

Lemma 16. Let VarX and VarY be as defined in (11), MX
and MY

as in (12b),
and MX

\uparrow and MY
\uparrow as in (12c). Then, under assumptions A1 and A2, it holds that

d

dt
MX

\uparrow (t)\Uparrow \nearrow 4\varsigma \varepsilon 1e
\updownarrow \omega E(y\updownarrow )C\simeq E

\Biggr\rangle 
VarX(t)

\right) 
MX(t)

\nearrow 2\varsigma \varpi 2
1e

\updownarrow \omega E(y\updownarrow )C\simeq 2E
VarX(t)

MX(t)
(30)

as well as

d

dt
MY

\uparrow (t)\Uparrow \nearrow 4\varphi \varepsilon 2e
\varepsilon E(x\updownarrow )C\simeq E

\Biggr\rangle 
VarY (t)

\right) 
MY (t)

\nearrow 2\varphi \varpi 2
2e

\varepsilon E(x\updownarrow )C\simeq 2E
VarY (t)

MY (t)
.(31)

Proof. With Itô’s formula and the chain rule, we first note that

dMX
\uparrow (t) =\nearrow \varsigma E

\left\{ 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt, y

\uparrow )
\Biggl\lceil 
\Downarrow xE(Xt, y

\uparrow ) · dXt

\right\} 
(32)

+
\varpi 2
1

2

d1\Biggl\lfloor 

k=1

E
 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt, y

\uparrow )
\Biggl\lceil \Biggr\rfloor 

Xt \nearrow xY
\omega (\vargamma X,t)

\Biggl\lceil 2
k

\uparrow 
\Biggr) 
\varsigma 2

\Biggr\rfloor 
\leftharpoonup xkE(Xt, y

\uparrow )
\Biggl\lceil 2 \nearrow \varsigma \leftharpoonup 2

xkxk
E(Xt, y

\uparrow )
\Biggr]  

dt=: (T1 + T2)dt,
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1112 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

where for the definition in the last step we again exploited the fact that the appearing
stochastic integral has expectation 0 as a consequence of the assumptions. For T1, we
have the lower bound

T1 \Uparrow \nearrow \varsigma \varepsilon 1e
\updownarrow \omega E(y\updownarrow )E

\left\{ \Biggr\} \Biggr\} \Downarrow xE(Xt, y
\uparrow )
\Biggr\} \Biggr\} 
2

\Biggr\} \Biggr\} Xt \nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 
2

\right\} 

\Uparrow \nearrow \varsigma \varepsilon 1e
\updownarrow \omega E(y\updownarrow )C\simeq E

\Biggr\rangle 
E
\Biggr\} \Biggr\} Xt \nearrow xY

\omega (\vargamma X,t)
\Biggr\} \Biggr\} 2
2
.

For T2, it holds that

T2 \Uparrow \nearrow \varsigma 
\varpi 2
1

2

d1\Biggl\lfloor 

k=1

E
 
exp

\Biggr\rfloor 
\nearrow \varsigma E(Xt, y

\uparrow )
\Biggl\lceil \Biggr\rfloor 

Xt \nearrow xY
\omega (\vargamma X,t)

\Biggl\lceil 2
k
\leftharpoonup 2
xkxk

E(Xt, y
\uparrow )
 
dt

\Uparrow \nearrow \varsigma 
\varpi 2
1

2
e\updownarrow \omega E(y\updownarrow )C\simeq 2EE

\Biggr\} \Biggr\} Xt \nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 2
2
.

Collecting the two former estimates for the terms T1 and T2 and inserting them into
(32) gives

d

dt
MX

\uparrow (t)\Uparrow \nearrow \varsigma \varepsilon 1e
\updownarrow \omega E(y\updownarrow )C\simeq E

\Biggr\rangle 
E
\Biggr\} \Biggr\} Xt \nearrow xY

\omega (\vargamma X,t)
\Biggr\} \Biggr\} 2
2

(33)

\nearrow \varsigma 
\varpi 2
1

2
e\updownarrow \omega E(y\updownarrow )C\simeq 2EE

\Biggr\} \Biggr\} Xt \nearrow xY
\omega (\vargamma X,t)

\Biggr\} \Biggr\} 2
2
,

where the last expression can be bounded by employing (22). The estimate for
d
dtM

Y
\uparrow (t) can be obtained analogously.

4.4. Proof of Theorem 11.

Proof of Theorem 11.
Step 1a. Let us define the time horizon

T := inf

 
t\Uparrow 0 :MX(t)<

1

2
MX(0) or MY (t)<

1

2
MY (0)

 
with inf \swarrow =\simeq ,(34)

where MX and MY are as defined in (12b). Obviously, by continuity, T > 0. We
claim that T = \simeq , which is shown by contradiction in what follows. Therefore, let
us assume T < \simeq . Then, as a consequence of the definition of the time horizon
T , the prefactors of VarX(t) and VarY (t) in Lemma 13 are upper bounded by \nearrow µ1

and \nearrow µ2, respectively, for all t \rightarrow [0, T ]. Consequently, Lemma 13 permits the upper
bounds d

dtVar
X(t)\downarrow \nearrow µ1Var

X(t) and d
dtVar

Y (t)\downarrow \nearrow µ2Var
Y (t) for the time evolution

of the functionals VarX and VarY . The negativity of the rate is ensured by the
well-preparedness condition P1. An application of Grönwall’s inequality gives

VarX(t)\downarrow VarX(0)e\updownarrow µ1t and VarY (t)\downarrow VarY (0)e\updownarrow µ2t.(35)

Let us now derive the contradiction. It follows from Lemma 15 for MX and MY

from (12b) that

d
dt

MX(t)\rightarrow \uparrow 8\omega C\uparrow 2E

\Biggr) 
\varepsilon 1 +

\vargamma 2

1

2

\Biggl[ 
VarX(0)e\downarrow µ1t

MX(0)
\uparrow 2

\downarrow 
2\omega \varepsilon 2C\uparrow E

\Biggr] 
VarY (0)e\downarrow µ2t/2

\Biggl\lfloor 
MY (0)

,

d
dt

MY (t)\rightarrow \uparrow 8\varpi C\uparrow 2E

\Biggr) 
\varepsilon 2 +

\vargamma 2

2

2

\Biggl[ 
VarY (0)e\downarrow µ2t

MY (0)
\uparrow 2

\downarrow 
2\varpi \varepsilon 1C\uparrow E

\Biggr] 
VarX(0)e\downarrow µ1t/2

\Biggl\lfloor 
MX(0)

,

(36)

where we used the formerly derived (35) as well as the fact that MX(t)\Uparrow MX(0)/2
and MY (t) \Uparrow MY (0)/2 for all t \rightarrow [0, T ] by the definition of T . Integrating (36) and
employing the well-preparedness condition P3 shows that for all t\rightarrow [0, T ],

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

5/
24

 to
 1

31
.1

59
.2

12
.1

32
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



CBO FOR SADDLE POINT PROBLEMS 1113

MX(t)\Uparrow MX(0)\nearrow 8\varsigma C\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(0)

µ1MX(0)
\nearrow 4

\nwarrow 
2\varsigma \varepsilon 2C\simeq E

\Biggr\rangle 
VarY (0)

µ2

\right) 
MY (0)

\Uparrow 3

4
MX(0),

MY (t)\Uparrow MY (0)\nearrow 8\varphi C\simeq 2E

\Biggl\langle 
\varepsilon 2 +

\varpi 2
2

2

\Bigg/ 
VarY (0)

µ2MY (0)
\nearrow 4

\nwarrow 
2\varphi \varepsilon 1C\simeq E

\Biggr\rangle 
VarX(0)

µ1

\right) 
MX(0)

\Uparrow 3

4
MY (0).

This entails the fact that there exists \omega > 0 such thatMX(t)\Uparrow MX(0)/2 andMY (t)\Uparrow 
MY (0)/2 hold for all t \rightarrow [T,T + \omega ] as well, contradicting the definition of T and
therefore showing that T =\simeq . Consequently, (35) as well as

MX(t)\Uparrow 1

2
MX(0) and MY (t)\Uparrow 1

2
MY (0)(37)

hold for all t\Uparrow 0, which proves (13).
Step 1b. With Jensen’s inequality and by making use of the bounds (22) and (23)

combined with (35) and (37), we further observe that

\Biggr\} \Biggr\} \Biggr\} \Biggr\} 
d

dt
EXt

\Biggr\} \Biggr\} \Biggr\} \Biggr\} 
2

\downarrow \varepsilon 1E
\Biggr\} \Biggr\} Xt \nearrow xY

\omega (\vargamma X,t)
\Biggr\} \Biggr\} 
2
\downarrow 2\varepsilon 1

\Biggr\rangle 
VarX(0)e\updownarrow µ1t/2

\right) 
MX(0)

\updownarrow 0 as t\updownarrow \simeq ,

\Biggr\} \Biggr\} \Biggr\} \Biggr\} 
d

dt
EY t

\Biggr\} \Biggr\} \Biggr\} \Biggr\} 
2

\downarrow \varepsilon 2E
\Biggr\} \Biggr\} Y t \nearrow yX\varepsilon (\vargamma Y,t)

\Biggr\} \Biggr\} 
2
\downarrow 2\varepsilon 2

\Biggr\rangle 
VarY (0)e\updownarrow µ2t/2

\right) 
MY (0)

\updownarrow 0 as t\updownarrow \simeq .

We therefore have
\Biggr\rfloor 
EXt,EY t

\Biggl\lceil 
\updownarrow ( x,  y) for some ( x,  y) \rightarrow Rd1+d2 . In fact, following

from (35),
\Biggr\rfloor 
Xt, Y t

\Biggl\lceil 
\updownarrow ( x,  y) and

\Biggr\rfloor 
xY
\omega (\vargamma X,t), yX\varepsilon (\vargamma Y,t)

\Biggl\lceil 
\updownarrow ( x,  y) in L2 thanks to (22)

and (23). This shows (14).
Step 2a. It remains to verify (15) for the point ( x,  y). With arguments similar to

those in Step 1a, let us first derive analogous statements as in (37) for  MX and  MY

as defined in (12a) as well as MX
\uparrow and MY

\uparrow as defined in (12c), respectively. To do so,
we first notice that (EXt,EY t) is continuous and since it converges to ( x,  y) as t\updownarrow \simeq ,
there exists M > 0, potentially depending on ( x,  y), such that

\Biggr\} \Biggr\} EXt

\Biggr\} \Biggr\} 
2
+
\Biggr\} \Biggr\} EY t

\Biggr\} \Biggr\} 
2
\downarrow M

for all t\Uparrow 0. Since, moreover, E and E are continuous, there exists EM > 0 such that
\nearrow EM \downarrow E(EY t) \downarrow E(EXt) \downarrow EM for all t > 0. Utilizing this together with (35) and
(37), we derive from Lemma 14 for  MX and  MY from (12a) that

d

dt
 MX(t)\Uparrow \nearrow 8\varsigma e\omega EMC\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(0)e\updownarrow µ1t

MX(0)

\nearrow 
\nwarrow 
2\varsigma \varepsilon 2e

\omega EMC\simeq E

\Biggr\rangle 
VarY (0)e\updownarrow µ2t/2

\right) 
MY (0)

,

d

dt
 MY (t)\Uparrow \nearrow 8\varphi e\varepsilon EMC\simeq 2E

\Biggl\langle 
\varepsilon 2 +

\varpi 2
2

2

\Bigg/ 
VarY (0)e\updownarrow µ2t

MY (0)

\nearrow 
\nwarrow 
2\varphi \varepsilon 1e

\varepsilon EMC\simeq E

\Biggr\rangle 
VarX(0)e\updownarrow µ1t/2

\right) 
MX(0)

.

(38)

Analogously, by using (35) and (37) it follows directly from Lemma 16 for MX
\uparrow and

MY
\uparrow from (12c) that
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1114 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

d

dt
MX

\uparrow (t)\Uparrow \nearrow 8\varsigma \varepsilon 1e
\updownarrow \omega E(y\updownarrow )C\simeq E

\Biggr\rangle 
VarX(0)e\updownarrow µ1t/2

\right) 
MX(0)

\nearrow 4\varsigma \varpi 2
1e

\updownarrow \omega E(y\updownarrow )C\simeq 2E
VarX(0)e\updownarrow µ1t

MX(0)
,

d

dt
MY

\uparrow (t)\Uparrow \nearrow 8\varphi \varepsilon 2e
\varepsilon E(x\updownarrow )C\simeq E

\Biggr\rangle 
VarY (0)e\updownarrow µ2t/2

\right) 
MY (0)

\nearrow 4\varphi \varpi 2
2e

\varepsilon E(x\updownarrow )C\simeq 2E
VarY (0)e\updownarrow µ2t

MY (0)
.

(39)

Integrating (38) and employing the well-preparedness condition P3 shows for all t\Uparrow 0
that

 MX(t)\Uparrow  MX(0)\nearrow 8\varsigma e\omega EMC\simeq 2E

\Biggl\langle 
\varepsilon 1 +

\varpi 2
1

2

\Bigg/ 
VarX(0)

µ1MX(0)

\nearrow 2
\nwarrow 
2\varsigma \varepsilon 2e

\omega EMC\simeq E

\Biggr\rangle 
VarY (0)

µ2

\right) 
MY (0)

\Uparrow 3

4
 MX(0),

 MY (t)\Uparrow  MY (0)\nearrow 8\varphi e\varepsilon EMC\simeq 2E

\Biggl\langle 
\varepsilon 2 +

\varpi 2
2

2

\Bigg/ 
VarY (0)

µ2MY (0)

\nearrow 2
\nwarrow 
2\varphi \varepsilon 1e

\varepsilon EMC\simeq E

\Biggr\rangle 
VarX(0)

µ1

\right) 
MX(0)

\Uparrow 3

4
 MY (0).

Analogously, using (39) together with P3 shows for all t\Uparrow 0 that

MX
\uparrow (t)\Uparrow MX

\uparrow (0)\nearrow 16\varsigma \varepsilon 1e
\updownarrow \omega E(y\updownarrow )C\simeq E

\Biggr\rangle 
VarX(0)

µ1

\right) 
MX(0)

\nearrow 4\varsigma \varpi 2
1e

\updownarrow \omega E(y\updownarrow )C\simeq 2E
VarX(0)

µ1MX(0)
\Uparrow 3

4
MX

\uparrow (0),

MY
\uparrow (t)\Uparrow MY

\uparrow (0)\nearrow 16\varphi \varepsilon 2e
\varepsilon E(x\updownarrow )C\simeq E

\Biggr\rangle 
VarY (0)

µ2

\right) 
MY (0)

\nearrow 4\varphi \varpi 2
2e

\varepsilon E(x\updownarrow )C\simeq 2E
VarY (0)

µ2MY (0)
\Uparrow 3

4
MY

\uparrow (0).

Thus, in particular it holds that for all t\Uparrow 0,

 MX(t)\Uparrow 1

2
 MX(0) and  MY (t)\Uparrow 1

2
 MY (0)(40)

as well as

MX
\uparrow (t)\Uparrow 1

2
MX

\uparrow (0) and MY
\uparrow (t)\Uparrow 

1

2
MY

\uparrow (0).(41)

Step 2b. By Chebyshev’s inequality, for each \omega > 0 it holds that

\vargamma t({\Rightarrow (x\nearrow  x, y\nearrow  y)\Rightarrow 2 \Uparrow \omega })\downarrow 2

\omega 2
\Biggr\rfloor 
VarX(t) +VarY (t) +

\Biggr\} \Biggr\} EXt \nearrow  x
\Biggr\} \Biggr\} 2
2
+
\Biggr\} \Biggr\} EY t \nearrow  y

\Biggr\} \Biggr\} 2
2

\Biggl\lceil 
,

which converges to 0 as t \updownarrow \simeq . Thus, the pair (Xt, Y t) converges to ( x,  y) in
probability as t \updownarrow \simeq . Recall the convergence

\Biggr\rfloor 
EXt,EY t

\Biggl\lceil 
\updownarrow ( x,  y), the continu-

ity of E , and the fact that for all t \Uparrow 0, exp(\nearrow \varsigma E(Xt,EY t)) \downarrow exp(\varsigma EM ) holds a.s.
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CBO FOR SADDLE POINT PROBLEMS 1115

By the dominated convergence theorem, one can pass to the limit in t to obtain
limt\Rightarrow \searrow  MX(t) = exp (\nearrow \varsigma E( x,  y)). Analogously, one may get  MY (t)\updownarrow exp (\varphi E( x,  y))
as t \updownarrow \simeq . Using this when taking t \updownarrow \simeq in the bounds (40) after applying the
logarithm and multiplying both sides with \nearrow 1/\varsigma and 1/\varphi , respectively, we obtain

E( x,  y) = lim
t\Rightarrow \searrow 

\Biggl\langle 
\nearrow 1

\varsigma 
log  MX(t)

\Bigg/ 
\downarrow 1

\varsigma 
log 2\nearrow 1

\varsigma 
log  MX(0),

E( x,  y) = lim
t\Rightarrow \searrow 

\Biggl\langle 
1

\varphi 
log  MY (t)

\Bigg/ 
\Uparrow \nearrow 1

\varphi 
log 2 +

1

\varphi 
log  MY (0).

(42)

Due to the first set of well-preparedness conditions from P2, the Laplace principle in
the form of Lemmas A.3 and A.4 when choosing µ\omega as the law of the initial data X0

and µ\varepsilon as the law of Y 0 now allows one to choose \varsigma \Uparrow (2 log 2)/\oldstyle{3} and \varphi \Uparrow (2 log 2)/\oldstyle{3}
large enough such that for given \oldstyle{3}> 0 it moreover holds that

\nearrow 1

\varsigma 
log  MX(0)\nearrow min

x\rightarrow Rd1

E(x,EY 0) =\nearrow 1

\varsigma 
logE exp

\Biggr\rfloor 
\nearrow \varsigma E(X0,EY 0)

\Biggl\lceil 
\nearrow min

x\rightarrow Rd1

E(x,EY 0)

\downarrow \oldstyle{3}/2,

\nearrow 1

\varphi 
log  MY (0) + max

y\rightarrow Rd2

E(EX0, y) =\nearrow 1

\varphi 
logE exp

\Biggr\rfloor 
\varphi E(EX0, Y 0)

\Biggl\lceil 
+ max

y\rightarrow Rd2

E(EX0, y)

\downarrow \oldstyle{3}/2.

Notice here that we well-prepare \varsigma and \varphi simultaneously with the initial data (X0, Y 0)
(therewith (X0, Y 0) depends on \varsigma , \varphi ). However, due to the well-preparedness con-
ditions P2, \varsigma and \varphi can still be taken su""ciently large as ensured in Lemmas A.3
and A.4.

Such choices of parameters in (42) immediately give E( x,  y) \downarrow minx\rightarrow Rd1

E(x,EY 0) + \oldstyle{3} and E( x,  y) \Uparrow maxy\rightarrow Rd2 E(EX0, y) \nearrow \oldstyle{3} and consequently E( x,  y) \downarrow 
minx\rightarrow Rd1 maxy\rightarrow Rd2 E(x, y) + \oldstyle{3} and E( x,  y) \Uparrow maxy\rightarrow Rd2 minx\rightarrow Rd1 E(x, y) \nearrow \oldstyle{3}, which
proves the first part of (15). Second, following an analogous argumentation for MX

\uparrow 
and MY

\uparrow as defined in (12c), we obtain the remainder of (15). More precisely, we first
note that MX

\uparrow (t)\updownarrow exp (\nearrow \varsigma E( x, y\uparrow )) and MY
\uparrow (t)\updownarrow exp (\varphi E(x\uparrow ,  y)) as t\updownarrow \simeq . Taking

now the limit t\updownarrow \simeq in (41) after suitable algebraic manipulations, we obtain

E( x, y\uparrow ) = lim
t\Rightarrow \searrow 

\Biggl\langle 
\nearrow 1

\varsigma 
logMX

\uparrow (t)

\Bigg/ 
\downarrow 1

\varsigma 
log 2\nearrow 1

\varsigma 
logMX

\uparrow (0),

E(x\uparrow ,  y) = lim
t\Rightarrow \searrow 

\Biggl\langle 
1

\varphi 
logMY

\uparrow (t)

\Bigg/ 
\Uparrow \nearrow 1

\varphi 
log 2 +

1

\varphi 
logMY

\uparrow (0).

(43)

A potentially larger choice of \varsigma and \varphi allows (again by the Laplace principle in the
form of Lemmas A.3 and A.4, which applies due to the second set of well-preparedness
conditions from P2) us to guarantee

\nearrow 1

\varsigma 
logMX

\uparrow (0)\nearrow min
x\rightarrow Rd1

E(x, y\uparrow ) =\nearrow 1

\varsigma 
logE exp

\Biggr\rfloor 
\nearrow \varsigma E(X0, y

\uparrow )
\Biggl\lceil 
\nearrow min

x\rightarrow Rd1

E(x, y\uparrow )\downarrow \oldstyle{3}/2,

\nearrow 1

\varphi 
logMY

\uparrow (0) + max
y\rightarrow Rd2

E(x\uparrow , y) =\nearrow 1

\varphi 
logE exp

\Biggr\rfloor 
\varphi E(x\uparrow , Y 0)

\Biggl\lceil 
+ max

y\rightarrow Rd2

E(x\uparrow , y)\downarrow \oldstyle{3}/2

for the specified \oldstyle{3}. Such choices of parameters in (43) immediately give E( x, y\uparrow ) \downarrow 
minx\rightarrow Rd1 E(x, y\uparrow )+ \oldstyle{3} and E(x\uparrow ,  y)\Uparrow maxy\rightarrow Rd2 E(x\uparrow , y)\nearrow \oldstyle{3}, which completes the proof
of (15).

Step 3. Finally, under the inverse continuity property A3 and making use of what
we just proved, we additionally obtain (16), which concludes the proof.
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1116 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

5. Implementation of CBO-SP and numerical experiments.

5.1. Numerical algorithm and implementation. In order to implement and
run CBO-SP on a computer, we first fix a discrete time step size \#t and a number of
iterations K or define any other suitable stopping criterion. Then, by discretizing the
interacting particle system (1) via an Euler–Maruyama time discretization [19, 41] as

\Biggl[ Xi
k+1 = \Biggl[ Xi

k \nearrow \varepsilon 1\#t
\Biggr) 
\Biggl[ Xi
k \nearrow xY

\omega (\Biggl[ \vargamma 
N1

X,k)
\Biggr] 
+ \varpi 1D

\Biggr) 
\Biggl[ Xi
k \nearrow xY

\omega (\Biggl[ \vargamma 
N1

X,k)
\Biggr] 
BX,i

k ,(44a)

\Biggl[ Y i
k+1 = \Biggl[ Y i

k \nearrow \varepsilon 2\#t
\Biggr) 
\Biggl[ Y i
k \nearrow yX\varepsilon (\Biggl[ \vargamma N2

Y,k)
\Biggr] 
+ \varpi 2D

\Biggr) 
\Biggl[ Y i
k \nearrow yX\varepsilon (\Biggl[ \vargamma N2

Y,k)
\Biggr] 
BY,i

k ,(44b)

where \Biggl[ \vargamma N1

X,k and \Biggl[ \vargamma N2

Y,k denote the empirical averages of ( \Biggl[ Xi
k)i=1,...,N1

and (\Biggl[ Y i
k )i=1,...,N2

and where

\Biggl[ xY
\omega (\Biggl[ \vargamma 

N1

X,k) =

\Biggr\rceil 
x

\varrho \omega 

\Biggr\rfloor 
x,
\Biggl\{ 
y d\Biggl[ \vargamma N2

Y,k(y)
\Biggl\lceil 

\Biggr\} \Biggr\} \varrho \omega 

\Biggr\rfloor 
· ,
\Biggl\{ 
y d\Biggl[ \vargamma N2

Y,k(y)
\Biggl\lceil \Biggr\} \Biggr\} 

L1(\Biggr) \vargamma 
N1

X,k)

d\Biggl[ \vargamma N1

X,k(x),(45a)

\Biggl[ yX\varepsilon (\Biggl[ \vargamma N2

Y,k) =

\Biggr\rceil 
y

\varrho \updownarrow \varepsilon 

\Biggr\rfloor \Biggl\{ 
xd\Biggl[ \vargamma N1

X,k+1(x), y
\Biggl\lceil 

\Biggr\} \Biggr\} \varrho \updownarrow \varepsilon 

\Biggr\rfloor \Biggl\{ 
xd\Biggl[ \vargamma N1

X,k+1(x), ·
\Biggl\lceil \Biggr\} \Biggr\} 

L1(\Biggr) \vargamma 
N2

Y,k)

d\Biggl[ \vargamma N2

Y,k(y),(45b)

we obtain the implementable iterative scheme, which is used in the formulation of
Algorithm 1. Moreover,

\Biggr\rfloor 
(BX,i

k )k=1,...,K

\Biggl\lceil 
i=1,...,N1

and
\Biggr\rfloor 
(BY,i

k )k=1,...,K

\Biggl\lceil 
i=1,...,N2

in (44)

are independent Gaussian vectors in Rd1 and Rd2 , respectively, with covariance matrix
\#tId. Note that in (45b) we could also use the old iterates \Biggl[ \vargamma N1

X,k instead of the new

ones \Biggl[ \vargamma N1

X,k+1 for the computation.

5.2. Illustrative numerical experiments for CBO-SP. To visualize the be-
havior of the CBO-SP algorithm in practice, we depict in Figure 1 snapshots of the
positions of the particles for four di!erent types of saddle point functions, which
are plotted in the first row of the figure. The experiments include two nonconvex-

nonconcave examples, which is in general the setting of particular interest in modern

Algorithm 1. CBO-SP.
Input: Objective E , discrete time step size \#t, number of iterates K, parameters
\varepsilon 1,\varepsilon 2,\varpi 1,\varpi 2,\varsigma ,\varphi , number of particles N1 and N2, initialization \vargamma 0
Output: Approximation

\Biggr\rfloor 
\Biggl[ xY
\omega (\Biggl[ \vargamma 

N1

X,k), \Biggl[ yX\varepsilon (\Biggl[ \vargamma N2

Y,k)
\Biggl\lceil 
of the saddle point (x\uparrow , y\uparrow ) of E

1: Generate the particles’ initial positions (Xi
0)i=1,...,N1

and (Y i
0 )i=1,...,N2

according to the initial laws \vargamma X,0 and \vargamma Y,0, respectively. Set k= 0.
2: while k\downarrow K or stopping criterion not fulfilled
3: Compute the component \Biggl[ xY

\omega (\Biggl[ \vargamma 
N1

X,k) of the consensus point according to (45a).

4: Update the X-positions by computing
\Biggr\rfloor \Biggl[ Xi

k+1

\Biggl\lceil 
i=1,...,N1

according to (44a).

5: Compute the component \Biggl[ yX\varepsilon (\Biggl[ \vargamma N2

Y,k) of the consensus point according to (45b).

6: Update the Y -positions by computing
\Biggr\rfloor \Biggl[ Y i

k+1

\Biggl\lceil 
i=1,...,N2

according to (44b).

7: Check the stopping criterion and break if fulfilled. If not, continue and set
k= k+ 1.

8: end while

9: Compute consensus point
\Biggr\rfloor 
\Biggl[ xY
\omega (\Biggl[ \vargamma 

N1

X,k), \Biggl[ yX\varepsilon (\Biggl[ \vargamma N2

Y,k)
\Biggl\lceil 
as final approximation to saddle

point (x\uparrow , y\uparrow ).
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CBO FOR SADDLE POINT PROBLEMS 1117

(a)Objective function
E(x, y) = x2 � y2

(b)Objective function
E(x, y) = R(x)�R(y)

(c) Objective function
E(x, y) = x2�2xy� y2

(d)Objective function
E(x, y) =R(x)�2xy�R(y)

(a0) Initial configuration
of the particles for (a)

(b0) Initial configuration
of the particles for (b)

(c0) Initial configuration
of the particles for (c)

(d0) Initial configuration
of the particles for (d)

(a1)Positions of the par-
ticles at t = 2 for (a)

(b1) Positions of the par-
ticles at t = 2 for (b)

(c1) Positions of the par-
ticles at t = 2 for (c)

(d1) Positions of the par-
ticles at t = 2 for (d)

(a2) Final configuration
of the particles for (a)

(b2)Final configuration
of the particles for (b)

(c2) Final configuration
of the particles for (c)

(d2) Final configuration
of the particles for (d)

Fig. 1. Illustration of the dynamics of CBO-SP when searching the global Nash equilibrium of
four di!erent saddle point functions plotted in (a)–(d) in d = 1, where R(x) =

\Biggr) d
k=1

x2

k + 5

2
(1 \uparrow 

cos(2\omega xk)) is the Rastrigin function. Each column visualizes the positions of the N = 20 particles
when running CBO-SP with parameters \varepsilon = \vargamma = 1015, \varpi 1 = \varpi 2 = 1, \varrho 1 = \varrho 2 =

\downarrow 
0.1 and time step

size !t= 0.1 at three di!erent points in time (t= 0, t= 2, and t= T = 4). The particles are sampled
initially from \varsigma 0 \updownarrow N (2,4)\nearrow N (2,4).

applications. We observe that in all cases (also in case of di!erent initializations) the
saddle point is found fast and reliably.

5.3. Solving a quadratic game with CBO-SP. To demonstrate the prac-
ticability of CBO-SP, we solve a strongly monotone quadratic game [27, section 5]
of the form minx\rightarrow Rd1 maxy\rightarrow Rd2

1
n

\Bigg\backslash n
i=1

1
2x

TAix+ xTBiy \nearrow 1
2x

TCiy with sample size
n = 100 and for various dimensions d1 and d2. The matrices Bi \rightarrow Rd1\Leftarrow d2 have ran-
dom Gaussian entries, and the positive definite matrices Ai \rightarrow Rd1\Leftarrow d1 and Ci \rightarrow Rd2\Leftarrow d2

are of the form Ai =  AT
i
 Ai and Ci =  CT

i
 Ci with  Ai \rightarrow Rd1\Leftarrow d1 and  Ci \rightarrow Rd2\Leftarrow d2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1118 HUI HUANG, JINNIAO QIU, AND KONSTANTIN RIEDL

Table 1
Success rates, average runtime (in ms), and average \varphi \updownarrow -error of the CBO-SP algorithm when

solving a quadratic game for di!erent dimensions d1 and d2 and with di!erent numbers of particles
N . All results are computed on the basis of 100 runs of the algorithm.

N = 40 N = 80 N = 120 N = 200

d1 = 20, d2 = 8 31% (32ms, 1.5 · 10\nearrow 2
)100% (50ms, 2.4 · 10\nearrow 7

)100% (182ms, 6.1 · 10\nearrow 8
)100% (229ms, 2.9 · 10\nearrow 8

)

d1 = 20, d2 = 20 7% (41ms, 3.0 · 10\nearrow 2
) 100% (63ms, 4.5 · 10\nearrow 7

)100% (339ms, 3.7 · 10\nearrow 8
)100% (462ms, 2.4 · 10\nearrow 8

)

d1 = 40, d2 = 8 0% (154ms, 1.1) 1% (190ms, 3.6 · 10\nearrow 2
) 53% (226ms, 2.6 · 10\nearrow 3

) 100% (418ms, 4.8 · 10\nearrow 5
)

d1 = 40, d2 = 20 0% (162ms, 1.2) 0% (285ms, 4.9 · 10\nearrow 2
) 52% (436ms, 3.8 · 10\nearrow 3

) 100% (539ms, 8.2 · 10\nearrow 5
)

d1 = 40, d2 = 40 0% (330ms, 1.9) 0% (336ms, 1.2 · 10\nearrow 1
) 25% (421ms, 5.4 · 10\nearrow 3

) 100% (606ms, 7.9 · 10\nearrow 5
)

having random Gaussian entries. We employ CBO-SP with parameters \varsigma = \varphi = 1015,
\varepsilon 1 = \varepsilon 2 = 1, \varpi 1 = \varpi 2 = 2 using N \rightarrow {40,80,120,200} particles and with time horizon
T = 100 and discrete time step size \#t= 0.1. The particles are sampled initially from
\vargamma 0 \searrow N (4,2Id)\uparrow N (4,2Id) (i.e., they are initialized substantially far from the saddle
point). We depict in Table 1 the success rates, average \oldstyle{4}\searrow -error, and average runtime
of the CBO-SP algorithm computed on the basis of 100 runs. A run is considered
successful if the obtained solution has an accuracy of 10\updownarrow 3 w.r.t. the \oldstyle{4}\searrow -norm. In
brackets, we indicate the average (over the runs) runtime in milliseconds (ms) as well
as the average (over the runs) \oldstyle{4}\searrow -error.
We observe that with the already moderately many particles, the CBO-SP algorithm is
capable of consistently finding the desired saddle point for relatively high-dimensional
minimax problems.

Experiments in much higher dimensions and more applied settings coming, for
instance, from economics or arising when training GANs are left to future and more
experimental research, which focuses on benchmarking rather than providing rigorous
convergence guarantees.

6. Conclusions. In this paper, we propose consensus-based optimization for
saddle point problems (CBO-SP) and analyze its global convergence behavior to global
Nash equilibria. As is apparent from the proof, our technique requires the equilibrium
to satisfy the saddle point property, i.e., that minxmaxy and maxy minx coincide. We
leave to further research the extension of the results to sequential games, where the
latter condition does not hold. This is in particular relevant in, for instance, the
training of GANs, which are formulated as nonsimultaneous games.

Appendix A.

A.1. Existence and uniqueness of solutions to SDEs. For the sake of self-
consistency, we recall two results from [10] about the existence and pathwise unique-
ness of a strong solution of an SDE of the form Zt = Z0 +

\Biggl\{ t
0 b(Zs)ds+

\Biggl\{ t
0 \varpi (Zs)dBs

(\oldstyle{5}). These results are used in the proof of Theorem 3. Note that here we adopted the
notation of [10]; i.e., in our setting, we have Zt =Zt as well as b(Zt) =\nearrow \bfitomega F(Zt) and
\varpi (Zt) =\bfitvarepsilon M(Zt).

Theorem A.1 (see [10, Chapter 5, Theorem 3.1]). Suppose the following:

(i) For any n <\simeq , we have |bi(z)\nearrow bi(z\nearrow )|\downarrow Kn |z \nearrow z\nearrow | and |\varpi ij(z)\nearrow \varpi ij(z\nearrow )|\downarrow 
Kn |z \nearrow z\nearrow | for |z| , |z\nearrow |\downarrow n.

(ii) There exist a constant A < \simeq and a function \oldstyle{6}(z) \Uparrow 0 so that if Zt is a

solution of (\oldstyle{5}), then e\updownarrow At\oldstyle{6}(Zt) is a local supermartingale.

Then (\oldstyle{5}) has a strong solution and pathwise uniqueness holds.
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Theorem A.2 (see [10, Chapter 5, Theorem 3.2]). Let a = \varpi \varpi T
, and suppose

that
\Bigg\backslash d

i=1 2zibi(z)+ aii(z)\downarrow B(1+ |z|2). Then (ii) in Theorem A.1 holds with A=B
and \oldstyle{6}(z) = 1+ |z|2.

A.2. The Laplace principle.

Lemma A.3. Define Sy,\leftharpoondown =
 
x\rightarrow Rd1 : exp

\Biggr\rfloor 
\nearrow E(x, y)

\Biggl\lceil 
> exp

\Biggr\rfloor 
\nearrow minx\rightarrow Rd1E(x, y)

\Biggl\lceil 
\nearrow \omega 

 

for any fixed y \rightarrow Rd2 and any \omega > 0. Let {µ\omega }\omega \downarrow 1 be a family of measures in P(Rd1),
and assume there exists a constant C\leftharpoondown > 0 depending only on \omega such that µ\omega (Sy,\leftharpoondown )\Uparrow C\leftharpoondown 

for all \varsigma \Uparrow 1. Then it holds that

lim
\omega \Rightarrow \searrow 

\nearrow 1

\varsigma 
log

\Biggl\langle \Biggr\rceil 

Rd1

exp (\nearrow \varsigma E(x, y))dµ\omega (x)

\Bigg/ 
= min

x\rightarrow Rd1

E(x, y).

Proof. We first notice that by the definition of the set Sy,\leftharpoondown it holds that

\Biggl\langle \Biggr\rceil 

Rd1

exp (\nearrow \varsigma E(x, y))dµ\omega (x)

\Bigg/ 1/\omega 

\Uparrow 
\Big\backslash \Biggr\rceil 

Sy,\omega 

\Biggl\langle 
exp

\Biggl\langle 
\nearrow min

x\rightarrow Rd1

E(x, y)
\Bigg/ 
\nearrow \omega 

\Bigg/ \omega 

dµ\omega (x)

\left( 1/\omega 

=

\Biggl\langle 
exp

\Biggl\langle 
\nearrow min

x\rightarrow Rd1

E(x, y)
\Bigg/ 
\nearrow \omega 

\Bigg/ 
µ\omega (Sy,\leftharpoondown )

1/\omega 

\Uparrow 
\Biggl\langle 
exp

\Biggl\langle 
\nearrow min

x\rightarrow Rd1

E(x, y)
\Bigg/ 
\nearrow \omega 

\Bigg/ 
C1/\omega 

\leftharpoondown ,

which converges to exp (\nearrow minx\rightarrow Rd1 E(x, y))\nearrow \omega as \varsigma \updownarrow \simeq . Thus, for any \omega > 0, we have

lim inf\omega \Rightarrow \searrow 
\Biggr\rfloor \Biggl\{ 

Rd1
exp (\nearrow \varsigma E(x, y))dµ\omega (x)

\Biggl\lceil 1/\omega \Uparrow exp (\nearrow minx\rightarrow Rd1 E(x, y)) \nearrow \omega . On the

other hand, clearly limsup\omega \Rightarrow \searrow 
\Biggr\rfloor \Biggl\{ 

Rd1
exp (\nearrow \varsigma E(x, y))dµ\omega (x)

\Biggl\lceil 1/\omega \downarrow exp(\nearrow minx\rightarrow Rd1

E(x, y)). Since \omega was arbitrary, this implies that lim\omega \Rightarrow \searrow 
\Biggr\rfloor \Biggl\{ 

Rd1
exp (\nearrow \varsigma E(x, y))

dµ\omega (x))1/\omega = exp(\nearrow minx\rightarrow Rd1 E(x, y)), giving the result after taking the logarithm
on both sides.

Lemma A.4. Define Sx,\leftharpoondown =
 
y \rightarrow Rd2 : exp

\Biggr\rfloor 
E(x, y)

\Biggl\lceil 
> exp

\Biggr\rfloor 
maxy\rightarrow Rd2 E(x, y)

\Biggl\lceil 
\nearrow \omega 

 

for any fixed x\rightarrow Rd1 and any \omega > 0. Let {µ\varepsilon }\varepsilon \downarrow 1 be a family of measures in P(Rd2),
and assume there exists a constant C\leftharpoondown > 0 depending only on \omega such that µ\varepsilon (Sx,\leftharpoondown )\Uparrow C\leftharpoondown 

for all \varphi \Uparrow 1. Then it holds that

lim
\varepsilon \Rightarrow \searrow 

1

\varphi 
log

\Biggl\langle \Biggr\rceil 

Rd2

exp (\varphi E(x, y))dµ\varepsilon (y)

\Bigg/ 
= max

y\rightarrow Rd2

E(x, y).
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