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Abstract 
Analyzing geospatial data is crucial for various domains such as urban planning, environmental 

management, and public health. Geospatial data, as a unique form of data, recording the spatial attributes 

and interactions of different locations, making its accurate and comprehensive description pivotal for the 

success of spatial data analysis. The success in representing and analyzing geospatial information is key to 

ensuring the accuracy and trustworthiness of findings in these areas, calling for a careful and detailed 

approach to describing spatial data1. This research emphasizes the importance of a refined understanding 

and modeling of spatial data, addressing the complexities and specificities that distinguish it from other 

data types, to enhance the precision and effectiveness of spatial analysis. 

The objective of this thesis is to develop a more comprehensive understanding of spatial data's uniqueness 

and to leverage this understanding to improve spatial analysis methods. This thesis focuses on the 

challenges in spatial data analysis across three distinct tasks (i.e. descriptive tasks, explanatory tasks, and 

predictive tasks), stemming from the incomplete description of spatial data characteristics, and endeavors 

to address these issues through targeted investigations. 

The thesis is structured around three main attempts to address these challenges: 

Identifying overlapping community structures: It explores methods to detect overlapping community 

structures within spatial interaction data, recognizing that these structures can significantly influence spatial 

dynamics and interactions. 

Explaining nonlinear interactions between geographical variables: The research investigates the complex, 

nonlinear relationships between geographical variables, aiming to develop models that can better account 

for these dynamics under weak statistical assumptions. 

Improving spatial prediction in sparse and biased samples: The dissertation focuses on refining spatial 

prediction methods to overcome the limitations posed by sparse and biased samples, enhancing the 

reliability of predictions in spatial analysis. 

Through these efforts, the dissertation seeks to bridge the research gap by providing a more accurate and 

nuanced description of spatial data, thereby facilitating more effective spatial analysis and decision-

making processes.  

 
In this thesis, "spatial" will be used in the context as a synonym for "geospatial". 
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Zusammenfassung 
Die Analyse von Geodaten ist für verschiedene Bereiche wie Stadtplanung, Umweltmanagement und 

öffentliche Gesundheit von entscheidender Bedeutung. Geodaten, als eine einzigartige Form von Daten, 

die die räumlichen Attribute und Interaktionen verschiedener Orte aufzeichnet, machen ihre genaue und 

umfassende Beschreibung entscheidend für den Erfolg der räumlichen Datenanalyse. Der Erfolg bei der 

Darstellung und Analyse von geografischen Informationen ist entscheidend, um die Genauigkeit und 

Vertrauenswürdigkeit von Ergebnissen in diesen Bereichen sicherzustellen, was eine sorgfältige und 

detaillierte Herangehensweise an die Beschreibung von räumlichen Daten erfordert. Diese Forschung 

betont die Bedeutung eines verfeinerten Verständnisses und Modellierung von räumlichen Daten, um die 

Komplexitäten und Spezifika zu adressieren, die es von anderen Datentypen unterscheiden, und um die 

Präzision und Effektivität der räumlichen Analyse zu verbessern. 

Das Ziel dieser Arbeit ist es, ein umfassenderes Verständnis der Einzigartigkeit räumlicher Daten zu 

entwickeln und dieses Verständnis zu nutzen, um räumliche Analysemethoden zu verbessern. Diese 

Dissertation konzentriert sich auf die Herausforderungen in der räumlichen Datenanalyse in drei 

verschiedenen Aufgaben (d.h. beschreibende Aufgaben, erklärende Aufgaben und prädiktive Aufgaben), 

die aus der unvollständigen Beschreibung der räumlichen Datenmerkmale resultieren, und bemüht sich, 

diese Probleme durch gezielte Untersuchungen anzugehen. 

Die Arbeit ist um drei Hauptansätze strukturiert, um diese Herausforderungen anzugehen: 

Identifizierung sich überlappender Gemeinschaftsstrukturen: Es werden Methoden untersucht, um sich 

überlappende Gemeinschaftsstrukturen innerhalb von räumlichen Interaktionsdaten zu erkennen, wobei 

erkannt wird, dass diese Strukturen die räumlichen Dynamiken und Interaktionen wesentlich beeinflussen 

können. 

Erklärung nichtlinearer Wechselwirkungen zwischen geografischen Variablen: Die Forschung untersucht 

die komplexen, nichtlinearen Beziehungen zwischen geografischen Variablen, mit dem Ziel, Modelle zu 

entwickeln, die diese Dynamiken unter schwachen statistischen Annahmen besser berücksichtigen können. 

Verbesserung der räumlichen Vorhersage in spärlichen und voreingenommenen Stichproben: Die 

Dissertation konzentriert sich darauf, räumliche Vorhersagemethoden zu verfeinern, um die durch spärliche 

und voreingenommene Stichproben verursachten Einschränkungen zu überwinden und die Zuverlässigkeit 

von Vorhersagen in der räumlichen Analyse zu verbessern. 
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Durch diese Bemühungen zielt die Dissertation darauf ab, die Forschungslücke zu überbrücken, indem sie 

eine genauere und nuanciertere Beschreibung räumlicher Daten bereitstellt, was eine effektivere räumliche 

Analyse und Entscheidungsfindungsprozesse ermöglicht. 
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1. Introduction 
1.1 Motivation 

The unique nature of space makes Geographic Information Science a valuable field of study (Longley et al. 

2015; Liu et al. 2023), distinguishing geospatial data from other data types. Geospatial data usually contain 

observations of geographic variables at different locations and interaction intensity between locations. The 

uniqueness of geospatial data compared to other data types includes: 1) Communities distributed across 

space offer opportunities for complementarity, leading to spatial interactions between different locations 

(O’Kelly 2009); 2) Data collected from different locations, whether pertaining to a single or multiple 

geographical variables, typically exhibit complex nonlinear interactions and are not independent (Z. Li 

2022); 3) Geospatial data are sparse samples from the uneven geographic distribution, which can hardly 

reveal universal patterns over space, and exhibit biases both in spatial and statistical distribution (OLIVER 

and WEBSTER 1990; Kwan 2012).  

Overlooking the uniqueness of spatial data can lead to the incorporation of misleading information into 

analytical models, thus impairing their performance. It can result in deceptive conclusions and might even 

trigger ethical issues due to the inaccurate or biased findings (Chang 2021). Consequently, a thorough 

understanding of the characteristics of geospatial data is essential for precise spatial modeling and informed 

decision-making in spatial analysis and its associated disciplines. 

The intricate nature of geospatial data presents challenges for modeling, making traditional statistical 

methods difficult to apply directly. On the positive side, these unique characteristics also bring valuable 

information and opportunities to spatial analysis. Through a deep understanding of geographic data, 

scientists have developed a range of methods for describing the uniqueness of spatial data, thereby 

developing appropriate models for various types of spatial analysis tasks. The spatial data can be described 

by the well-known spatial effects, such as spatial heterogeneity (Fotheringham, Brunsdon, and Charlton 

2003), spatial dependence (Anselin 1995), and distance decay  (Fotheringham 1981). Spatially explicit 

models are developed by incorporating these spatial effects to improve model performance or to minimize 

their side effect on the spatial task. 

Understanding spatial data and providing a reasonable description are crucial for designing successful 

spatial models for various analysis tasks. The mission of spatial analysis is to describe geographical 

phenomena, explain their operational principles, and make reasonable predictions about these phenomena's 

characteristics in unknown areas or future times (Cressie 1990; Fotheringham and Rogerson 2008). The 

descriptive task focuses on the reflection of facts of spatial distribution or WHAT spatial pattern exists. The 
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explanatory task goes deeper into the relationships between values from different locations or between 

variables, or WHY they are correlated. Predictive tasks involve constructing appropriate models based on 

identified spatial patterns and interpreted relationships. These models are then used to predict values for 

unobserved areas or future time periods based on collected geographical data. After the spatial data has 

been collected as the representation for the geographical world, the method of describing spatial data 

fundamentally influences various spatial analysis tasks, including descriptive tasks, explanatory tasks, and 

predictive tasks (Figure 1-1). 

First, descriptive tasks involve identifying spatial patterns and structures, including quantifying the degree 

of spatial clustering of variables, discovering potential topological and semantic structures in space. Spatial 

data can be modeled in different forms include field models, object models, and network models, depending 

on the purpose of data description and the method of data acquisition (Michael F. Goodchild 1992). For 

describing the degree of clustering and dispersion of spatial distribution, field models and object models 

are often chosen. The spatial pattern is characterized by how individual entities are positioned in space and 

the geographic connections between them (Chou 1995). Methods such as the Getis-Ord Gi* for identifying 

hotspots and cold spots (Getis and Ord 1992), and Moran's I index for describing spatial autocorrelation 

(Moran 1950), are pivotal in recognizing spatial patterns. To uncover the structural information of 

geospatial areas, we often use geographic data with interaction or connection information, such as static 

road networks and dynamic human mobility data, where geographic data can be expressed as networks or 

graphs connecting locations. A key aspect of describing geographic interaction data is estimating the 

strength of spatial interactions between different locations. For example, a widely accepted concept is 

distance decay (Fotheringham 1981), indicating that the interaction between two locations decreases as the 

distance between them increases. 

Second, explaining the relationships between geographical variables is a core mission of geography 

(Fotheringham, Brunsdon, and Charlton 2003). Geographers aim to understand the correlations between 

geographic variables, especially since such correlations often vary across space (Fotheringham and Li 2023). 

This widespread variation in the distribution and relationships of geographic variables in space is described 

as spatial heterogeneity (Anselin 2010). To explain the associations between geographic variables under 

the premise of spatial heterogeneity, common methods include adding parameters for spatial variation to 

the model, such as Geographically Weighted Regression (GWR) and Bayesian spatially varying coefficient 

models (Fotheringham, Brunsdon, and Charlton 2003; Gelfand et al. 2003). 

Third, for spatial prediction tasks, the understanding of spatial data features and the accuracy of their 

description significantly affect the performance of spatial predictions. The values of geographic variables 
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at different locations often have potential dependencies, described by spatial autocorrelation (Chou 1995). 

The presence of spatial autocorrelation makes the effective sample size insufficient in spatial prediction. 

Spatial sample points are often sparse and traditional prediction models may face underfitting problem. 

However, by utilizing spatial autocorrelation, we can model relationships between sample points collected 

from different locations, thus making predictions in unknown areas. For example, in geostatistics, unbiased 

estimation is achieved through constructing semivariograms based on known sample points (Luo and Song 

2021; Luo et al. 2023). 

 
Figure 1-1. The framework of spatial analysis, spanning the collection of spatial data, its 

description, and the construction of models for three types of spatial tasks. 

Despite the development of numerous spatial analysis methods through reasonable description of spatial 

data, many characteristics of spatial data remain inadequately described and understood, thus limiting the 

performance and applicability of current spatial analysis methods. This thesis focus on three aspects of 

spatial data that have not been addressed:  

1) Spatial interactions may arise from overlapping community structures (Luo and Zhu 2022). There is the 

challenge of mining overlapping community structures from spatial interaction data (Figure 1-2a).  

2) The values of geographic variables often have weak statistical assumptions, with nonlinear interactions 

between different geographic variables (Luo et al. 2022; Z. Li 2022; Fotheringham and Li 2023). As is 
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shown in Figure 1-2b, the cofounding effect may exist, that the relationship between X"  and )  varies 

depending on whether the value of another variable, X! , is high or low.  

3) The issue of spatial data being sparse in space can lead to biased information provided (Figure 1-2c), 

both in terms of statistical distribution and spatial distribution (Michael F. Goodchild 1989). In spatial 

interpolation, building a prediction model, such as Kriging, over the global space often fails to accurately 

capture data attributes on non-stationary surfaces. The stratified modeling strategy, for example, training 

models separately in sub-regions, is widely used. However, this approach can lead to underfitting because 

the number of samples in each sub-region may be limited due to sparse sampling issues. In addition, In 

areas of high heterogeneity, sparse spatial sampling can lead to inaccuracies in capturing the correct 

statistical distribution, potentially skewing the data towards characteristics of sub-regions with more 

sampling points. 

 

Figure 1-2. Three cases where spatial data has not been effectively modeled in three spatial tasks: a) 

descriptive task; b) explanatory tasks; c) predictive task 
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In fact, the methods of describing spatial data, specifically spatial effects and associations, extend far 

beyond what is currently proposed, such as dependence and heterogeneity. Numerous spatial associations 

can be characterized. For instance, the generative mechanisms of spatial interactions and communities, the 

similarity in spatial patterns of two geographic variables can indicate their correlation to a certain extent, 

and the spatial relationships across different regions and scales can be collaboratively modeled and 

predicted. To better describe spatial data, a more generalized modeling of spatial associations is required. 

In this thesis, we aim to gain a thorough and integrated understanding of spatial data's uniqueness. This will 

enable more generalized modeling of spatial associations and lead to more accurate spatial analysis. 

1.1 Objectives 

The primary aim of this research is to model spatial relationships, aiming to provide a more accurate 

description of spatial data and thereby enhance spatial analysis tasks. In this thesis, we define this approach 

as generalized spatial association modeling. Our goal is to detect the comprehensive nature of spatial data. 

The main characteristic of spatial data that introduces challenges and potential benefits to spatial models is 

that data from different locations are potentially associated in some way. We believe that current methods 

used to describe spatial data, such as spatial heterogeneity and dependence, also aim to detect spatial 

associations, though from different perspectives. 

In this thesis, we aim to identify generalized spatial associations among spatial data and focus on addressing 

the following research questions: 

RQ-1: Can potential overlapping community structures in space be identified using spatial interaction data? 

RQ-2: How can nonlinear interactions between geographical variables be identified under the premise of 
weak assumptions? 

RQ-3: How can accurate spatial predictions be made in cases of sparse and biased samples? 

 

By modeling spatial associations in a more generalized manner, this work aims to achieve three objectives: 

O-1: To uncover the overlapping community structures that drive spatial interactions; 

O-2: To investigate nonlinear interactions between geographical variables under weak statistical 

assumptions, while also elucidating the contribution of single variables in the context of multivariate 

interactions; 

O-3: To explore suitable methods for spatial prediction, including spatial interpolation and extrapolation, 

in the presence of sparse and biased samples.  
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1.2 Thesis structure 

This is a cumulative thesis, comprising six peer-reviewed journal papers and one peer-reviewed conference 

paper. Following this chapter, Chapter 2 is dedicated to the current research on spatial data and spatial 

analysis methods. It begins with the nature of spatial data and spatial effects to describe spatial data. It then 

summarizes the research progress in three spatial analysis tasks: description, explanation, and prediction. 

Chapter 3 provides an summary of the conducted research. Given the nature of spatial data, the publications 

included in this thesis aim to improve the performance of spatial analysis through more comprehensive 

modeling of spatial association. They cover the three aforementioned spatial analysis tasks. Chapter 4 

concludes the thesis with the main findings of the research, its shortcomings and limitations, and potential 

future directions for expansion. 

Part I: Detection of overlapping spatial communities in spatial interaction data 

1. (A1) Luo, P. and Zhu, D., 2022, November. Sensing overlapping geospatial communities from 

human movements using graph affiliation generation models. In Proceedings of the 5th ACM 

SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery (pp. 1-9). 

Part II: Explanation of Non-linear interactions between variables 

2. (A2) Luo, P., Song, Y. and Wu, P., 2021. Spatial disparities in trade-offs: economic and 

environmental impacts of road infrastructure on continental level. GIScience and Remote Sensing, 

58(5), pp.756-775.  

3. (A3) Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y. and Meng, L., 2022. Identifying 

determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a 

geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and 

Remote Sensing, 185, pp.111-128 

4. (A4) Li, Y.#, Luo, P.#(co-first), Song, Y., Zhang, L., Qu, Y and Hou, Z., 2023. A locally 

explained heterogeneity model for examining wetland disparity. International Journal of Digital 

Earth, 13(2), p.4533-4552.  

5. (A5) Luo, P., et al. (2023). Measuring univariate effects in the interaction of geographical patterns. 

International Journal of Geographical Information Science. (Under Review) 

Part III: Prediction of spatial distribution using sparse and biased samples 
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6. (A6) Luo, P., Song, Y., Zhu, D., Cheng J. and Meng L. A Generalized Spatial Heterogeneity Model 

for Interpolation.2022 International Journal of Geographical Information Science, 37(3), 634-

659 

7. (A7) Yao, Y., Dong, A., Liu, Z., Jiang, Y., Guo, Z., Cheng, J., Guan, Q. and Luo, P*.  

(correspondence, project lead), 2023. Extracting the pickpocketing information implied in the built 

environment by treating it as the anomalies. Cities, 143, p.104575. 

 

1. Theoretical background and related work 

In this section, we first discuss the characteristics of spatial data and the methods used to describe spatial 

data, focusing on several spatial effects. Second, we summarize the research progress into three tasks of 

spatial analysis. Finally, we elucidate the limitations corresponding to each of the three spatial tasks. 

2.1 The nature of spatial data and approach to describe them 

Geographic data are from the uneven sampling of geographic variables in space. The spatial distribution 

characteristics of geographic variables are directly or indirectly reflected in the spatial data: 

1. Spatially uneven numerical distribution. This results from either the heterogeneous distribution of 

numerical values of geographical variables across space or from inappropriate spatial sampling (J.-

F. Wang et al. 2012). 

2. Spatially uneven data-generating process, leading to geographical variable relationships that differ 

across different areas (Anselin 1988). 

3. Data from different locations have relationships. This may from the generation process of 

geographic variables, including geographic diffusion processes (Chin et al. 2017) and spatial 

spillovers (Capello 2009). Depending on the type of spatial data, the relationship between different 

areas can be numerical proximity or some form of spatial interaction with varying intensities 

(O’Kelly 2009). 

Based on the characteristics of spatial data, several concepts have been developed to describe spatial data, 

which can also be referred to as spatial effects. These are: spatial heterogeneity, spatial dependence, and 

distance decay. 
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2.1.1 Spatial heterogeneity 

Spatial heterogeneity suggests that the value/form of a geographical variable or the underlying process 

differs over space (De Marsily et al. 2005; Fotheringham, Brunsdon, and Charlton 2003; Getis and Ord 

1992). Spatial heterogeneity in value/ form is a common occurrence, which can be divided into local 

heterogeneity and stratified heterogeneity (J. Guo et al. 2022). The heterogeneity of spatial processes refers 

to the differences in the generating processing of data at different locations. At the level of algorithms and 

models, this heterogeneity is manifested in the form and parameters of models exhibiting spatial variation, 

also known as spatial non-stationarity (Liu et al. 2023). This variation often leads to geographical 

phenomena displaying unique characteristics or patterns in distinct areas (Luo and Song 2021).  

To capture spatial heterogeneity, models can be structured either discretely or continuously. When 

considering discrete heterogeneity, multi-level models and spatial regimes are frequently applied 

(Fotheringham and Li 2023; Anselin and Amaral 2023).  On the other hand, models like GWR and Spatial 

Eigenvector Filtering are employed for continuous heterogeneity, allowing for the analysis of spatially 

varying coefficients (Fotheringham, Brunsdon, and Charlton 2003; Griffith 2003). 

2.1.2  Spatial dependence  

Spatial dependence refers to the correlation that exists between neighboring locations in geospatial space, 

which reflects the tendency of geographical phenomena to cluster or disperse in space (Anselin 1995). The 

existence of spatial dependence forms the foundation of geographical analysis. It indicates that the 

assumption of variable independence, typically upheld in classical statistics, is often violated in geospatial 

data, wherein the count of independent sample points is fewer than the total number of samples (Griffith 

2005).  

A common method to describe spatial dependence is spatial autocorrelation. Methods for assessing spatial 

autocorrelation can be divided into global autocorrelation indices and local autocorrelation indices. Global 

autocorrelation indices include Moran’s I index and Geary's C coefficient, among others. Local 

autocorrelation indices are used to quantify spatial dependence in local spaces. For example, Anselin 

introduced the local indicator for spatial association (Anselin 1995), and Getis proposed the generalized G 

statistic.  

Additionally, the semivariogram from geostatistics can also be used to assess spatial dependence (Cressie 

1990; Luo and Song 2021; Luo et al. 2023). When the value of the semivariogram increases with distance 

until reaching a stable value (known as the sill), it indicates spatial dependence within that range of distance; 
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the sample points are spatially related. If the semivariogram value rapidly increases to the sill, this suggests 

that spatial dependence significantly decreases within a short distance, indicating greater spatial variability. 

Conversely, if the increase in the semivariogram is gradual, it suggests that even at greater distances, the 

sample points maintain a certain level of similarity, indicating stronger spatial dependence and less spatial 

heterogeneity. 

It should be noted that spatial dependence and spatial heterogeneity are often represent the same spatial 

distribution, but from various aspects, so it can be difficult to distinguish from one another. This inverse 

problem stems from the challenge of identifying the processes that generate such spatial patterns based on 

available spatial data (Anselin 2010). 

2.1.3 Distance decay 

In geographic spaces, there exist varying intensities of connections between features at different locations, 

which move and exchange in diverse ways (Liu et al. 2023). This process is known as spatial interaction 

(O’Kelly 2009). As defined for spatial data, an essential component is the information that records the 

spatial interactions between different locations. A widely accepted method to describe spatial interaction is 

the principle of distance decay, suggesting that the closer two locations are in spatial distance, the higher 

the potential intensity of their interactions (S. Gao et al. 2013). The distance decay can be modeled from 

various function, such as gravity model (Chen 2015). 

However, with technological advancements, the cost of interactions in both physical and virtual spaces has 

significantly decreased (Luo and Zhu 2022). Different locations are closely connected by dense population 

flows, or individuals can interact through social media despite being far apart. Therefore, the importance 

of geographic distance needs to be reassessed (Liu et al. 2023). Despite this, extensive research indicates 

that geographic constraints still exist within highly mobile spatial networks, making distance remain an 

important factor in modeling spatial interactions. 

2.2 Current progress in spatial analysis through the description of spatial data 

2.2.1 Spatial patterns in spatial interaction data 

Describing the spatial distribution patterns of geographic data with spatial interactions is one of the research 

focuses in geography (Liu et al. 2023). With the advent of the big data era, an increasing amount of data 

involving spatial interactions is being captured, such as population movement trajectories, taxi origin-

destination (OD) data, and trade networks (Figure 2-1). This type of data is characterized by its 
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representation as a spatial network composed of nodes and edges (Luo and Zhu 2022). Here, nodes represent 

different locations, and the edges connecting these nodes are weighted to record the strength of interactions 

between two locations. 

Spatial interactions arise from differences between locations, including complementarity, intervening 

opportunities, and transferability (Liu et al. 2020). Therefore, geographic patterns manifest as spatial 

differentiation with distinct attributes, suggesting that spatial distributions can be characterized by 

community structures with unique features, which are fundamental to the formation of spatial interactions. 

Locations within the same community exhibit stronger spatial interaction strengths, whereas interactions 

between locations in different communities are weaker. Different communities offer services and 

opportunities of varying functional types, often presenting degrees of irreplaceability in space. Hence, 

complementarity exists between different communities, leading to the movement and interaction of people 

in space. 

It is possible to infer geographic community structures from spatial interaction data, thanks to the wide 

availability of spatial interaction data and the close link between spatial interactions and spatial community 

structures (Liu et al. 2020; Jia et al. 2022). The task of dividing spatial units into non-overlapping 

community areas based on spatial interaction data is defined as community detection (Hong and Yao 2019). 

Geographic community detection refers to the process of identifying clusters of nodes with tightly 

connected characteristics in networks that include geographic location information. Geographic community 

detection aims to describe the spatial patterns of a spatial network based on spatial interaction data, which 

involves identifying and understanding the network's structural and functional patterns. For geographic 

spatial networks, uncovering spatial patterns can reveal regular information about geographic variables in 

space: 1) understanding the function of locations within the entire network and identifying key locations; 

2) understanding the propagation characteristics of geographic variables in space; 3) facilitating 

personalized urban management and services. 
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Figure 2-1. Spatial data can beyond Euclidean space. (adopted from (Dong et al. 2024) and (Setayesh, 

Sourati Hassan Zadeh, and Bahrak 2022)) 

For geographic community detection, a key element is accurately quantifying the spatial interaction strength 

between two nodes in space (Y. Wang et al. 2020; M. Li et al. 2021). There are several approaches to this: 

1. Geographical distance: The principle of setting spatial interaction strength on this basis is derived from 

Tobler's first law of geography, which posits that distance determines the similarity between two places. 

This distance could be Euclidean distance or road distance. For example, (Hong and Yao 2019) based their 

weighting of the spatial network on the distance between two road nodes to perform hierarchical community 

detection in urban road networks. 

2. Mobility interaction of geographic entities: This method involves using the intensity of interactions 

between places, such as human movement (D. Guo et al. 2018), e-scooter flows, and call flow between two 

cells (S. Gao et al. 2013). Since mobility data can capture time-dynamic information, this approach can also 

facilitate dynamic community detection (Jia et al. 2022). 

3. Social intensity: This method considers the social intensity between two geographic entities as the spatial 

interaction intensity. For instance, (Yao et al. 2021) used the perception assessment from street view images 

between two road segments (e.g., wealth, safety) as the measure of spatial interaction intensity. 

Each of these methods offers a unique perspective on understanding and measuring spatial interactions, 

contributing to the detection of geographic communities by considering both physical proximity and the 

intensity of social and physical interactions. 
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Conventional methods for detecting communities primarily investigate communities by examining the 

structure of networks, identifying disjoin communities, such as through methods of partitioning graphs 

(Newman 2013), statistical inference (Zhao et al. 2017), and spectral clustering (Zhou and Amini 2018). 

For instance, aiming to enhance modularity, the Louvain algorithm was developed for rapid identification 

of communities and has seen extensive application (Blondel et al. 2008). 

2.2.2 Detection and explanation of spatial relationship between geographical variables 

In geographical analysis, a primary objective is to understand the processes behind geographical data and 

explain how geographical variables are interrelated (Fotheringham, Brunsdon, and Charlton 2003). 

Grasping these connections is crucial for mastering the mechanisms generating the data, predicting future 

trends, and guiding policy and decision-making. Through statistical methods designed specifically for 

geographical data, one can explore the quantitative relationships between geographical variables. 

Traditional statistical models often focus on non-spatial correlations, assuming a uniform relationship 

across space, with model parameters being constant throughout the area (Z. Li 2022). Initially, global linear 

regression models produce a single regression equation from data generated at different locations, assuming 

that the data generation process within the study area is the same. Second, global spatial regression methods 

have been developed to consider spatial effects by explicitly incorporating spatial autocorrelation into the 

regression models, such as spatial lag models and spatial error models (Anselin 1988; 1992). However, 

their model parameters remain constant in space (Haining 1990). These assumptions of parameter spatial 

stability in global models can lead to biased results and incorrect assumptions. 

The relationships between different variables generally vary across space, necessitating local parameter 

estimation. Local models have been developed to address this issue, allowing model parameters to vary 

with location. Examples of local models include GWR (Fotheringham, Brunsdon, and Charlton 2003), 

Bayesian Spatially Varying Coefficient Models (Gelfand et al. 2003) and Eigenvector Spatial Filtering 

Models (Griffith 2003; Tiefelsdorf and Griffith 2007). 

2.2.3 Spatial interpolation and spatial extrapolation 

The essence of spatial prediction lies in utilizing observational data from known locations to estimate 

geographic variable values in uncharted territories, extending possibly to a global distribution (Mitas and 

Mitasova, n.d.; Zhu and Cao 2023). The classification of spatial prediction methodologies bifurcates into 

interpolation and extrapolation. Spatial interpolation is a method for predicting the values of unknown data 

points situated between known data points (Cressie 1990). In geospatial analysis, this method is 

predominantly employed to estimate values at locations within a region based on a set of known values 
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from that same area. Spatial extrapolation refers to predicting the values of data points beyond the areas 

where known data are collected. This range may encompass unsampled areas within a study region or 

entirely new study areas (Zhu et al. 2022). 

Spatial interpolation includes deterministic methods and statistical methods. Deterministic methods such 

as Voronoi natural neighbor interpolation, Inverse Distance Weighting (IDW), and Triangular Irregular 

Networks (TIN), rely on predefined spatial relationships to structure geospatial phenomenon predictions 

(Lam 1983). Statistical methods, mainly geostatistics, undertake an extensive learning process to model 

geographic data as realizations of spatial processes. Geostatistics focuses on depicting spatial variability 

using semi-variograms and predicts unobserved values with the kriging method series (OLIVER and 

WEBSTER 1990).  

For spatial extrapolation, the general approach involves constructing relationships between explanatory 

variables and variables to be predicted based on existing data from a study area, then generalizing these 

relationships to areas without samples for prediction. Regression models are the most commonly utilized 

methods for extrapolation. Non-spatial regression models include univariate linear regression, multivariate 

linear regression, nonlinear models, etc. Moreover, machine learning regression, such as random forest, has 

been increasingly applied to spatial prediction in recent years (Yao et al. 2023). Due to their robust data-

fitting capabilities and ability to capture non-linearities, they often outperform traditional regression models 

(Z. Li 2022). 

Spatial regression models primarily estimate model parameters based on existing data, serving as 

explanatory models rather than predictive ones. However, in some instances, they can also be used for 

predictive extrapolation. Spatial regression formalizes spatial relationships as correlation structures within 

a linear regression model framework (Anselin 1988). This involves specifying, estimating, and diagnosing 

regression models that incorporate spatial effects, thus optimizing the model for spatial prediction. Spatial 

regression models are designed to manage the complexities of spatial data, including spatial autocorrelation 

and heterogeneity, by directly embedding spatial dependence into the regression analysis. This not only 

aids in understanding spatial dynamics but also improves prediction accuracy by considering the spatial 

relationships among variables (Anselin 1992). 

2.3 The limitations of current methods describing spatial data 
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2.3.1 Describing spatial interaction and spatial pattern in non-geospatial space 

Traditional descriptions of spatial patterns based on spatial interaction strength come with significant 

constraints, assuming that a location belongs to only one community with homogeneous characteristics 

(Figure 2-2b). However, it's possible for a location to overlap multiple communities with distinct attributes 

(Figure 2-2c). For example, social services such as police deployment and medical services are often 

optimized as community-based resource allocations. Residents living between two clinics might have 

access to both, positioning them in an overlapping service area of the two clinics. Assigning residents 

exclusively to one clinic under a non-overlapping community division could lead to wastage of public 

resources. 

Moreover, according to Granovetter's theory (S. Granovetter 1973), connections within a network can be 

complex, classified into strong and weak ties. Structurally embedded (tightly connected) edges are often 

strong socially, while remote edges spanning different network sections tend to be weak socially. Most 

existing community detection algorithms presuppose that a set of nodes constitutes a community only if 

they are connected more strongly than expected. This fundamental assumption overlooks the fact that nodes 

with weak ties can form communities that offer greater informational benefits. Often, it is acquaintances, 

not friends, who provide us with information beyond our immediate sphere. Long-distance and weak 

connections form critical community structures that are indispensable for societal benefits. 

 

 

Figure 2-2. Spatial networks and communities: (a) Spatial network of geographical units; (b) Disjoint 
communities; (c) Overlapping communities 

 

Therefore, considering that communities may overlap spatially and that the strength of connections between 

community members varies, inferring such complex overlapping community structures from spatial 

interaction networks is particularly important. Achieving this goal will help optimize resource allocation, 

enhance the efficiency of public services, and strengthen community cohesion and social capital. 



15 
 

 

2.3.2 Explanation of spatial correlation in complex and non-linear interactions 

Most prevalent spatial correlation analysis methods are grounded in the linear regression paradigm, 

integrating spatial parameters. This adherence results in the statistical assumptions conforming to the 

linear paradigm, characterized by: 

- Normal distribution 

- Independent and identically distributed (i.i.d.) data 

- Linear relationships among variables 

In contrast, geographical data often present: 

- Unbounded distributions, challenging the traditional statistical assumptions due to the absence of i.i.d. 

and normal distribution. 

- Pronounced non-linear interrelations among variables, complicating the modeling of spatial data using 

traditional linear paradigm-based methods. 

As is shown in Figure 2-3, the average house price data in the UK has been found to exhibit strong spatial 

dependence, particularly evident in regions such as London. Additionally, there is a pronounced skewness 

in the overall distribution of house prices, with significant disparities in statistical distributions across 

different regions. 

 

Figure 2-3. The statistic assumptions of traditional regression models are violated in spatial data 
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The statistical characteristics of spatial data can lead to incorrect inferences with traditional methods, 

especially those that utilize the linear regression paradigm. Figure 2-4 demonstrates the problem of 

capturing nonlinear relationships using GWR (Sachdeva et al. 2022). When explanatory variables and 

response variables exhibit nonlinear relationships, even if these relationships are stable across space, GWR 

may inaccurately interpret this as spatial variation. In summary, it is crucial to address the challenges posed 

by the unconstrained distribution of spatial data, as well as the complex nonlinear interactions between 

different variables for identifying spatial correlations. 

 

Figure 2-4. The global nonlinear relationship between y and x (y = a$!) are incorrectly interpreted as the 

process spatial nonstationarity (%& = '$) by GWR (adopted from Sachdeva et al. 2022). 

2.3.3 Prediction of spatial distribution using sparse and biased samples 

One of the main challenge for the current spatial prediction models is addressing sparse and biased samples. 

Spatial data are samples from the real geographic world (M F Goodchild, Anselin, and Deichmann 1993). 

Limited by time and economic costs, the distribution of spatial data often exhibits sparsity, and the actual 

obtained geographic spatial distribution data is usually incomplete (A.S. and B.K. 1991). Moreover, due to 

the heterogeneity of spatial data itself, no sampling method can perfectly represent the distribution of 

geographical variables over space, hence spatial data inherently possess uncertainty. A common case of 

spatial prediction is predicting the distribution of air quality based on in-situ sensors. Due to sampling cost 

constraints, the sensors we can deploy are often very sparse. In the case illustrated in Figure 2-5, we rely 

on a spatial quality monitoring network of around 100 sites to obtain an assessment of air quality throughout 

the city of London. Given the limited samples and size of the spatial prediction area, this poses a major 
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challenge for spatial prediction models, whether spatial interpolation or extrapolation. Are 100 points 

sufficient to capture the entire spatial distribution of air quality in London? If not, predictions of air quality 

are likely to contain significant errors and uncertainties. If predictions for certain areas of air quality are 

overestimated or underestimated, it could lead to misleading policies. Who then bears responsibility for the 

local residents? Therefore, we must have a clear understanding of the predictive uncertainty of spatial 

forecasting in cases of sparse samples and endeavor to address it. 

 

Figure 2-5. The snapshot of the London government website2, showing that London is establishing the 

world's largest air quality monitoring network. 

In the context of spatial interpolation, the incompleteness of sampling data hinders the ability to construct 

accurate spatial relationships, leading to imprecise estimates of spatial structures. Current models, when 

predicting spatial data, often rely on a strong assumption of spatial stationarity, they assume that the process 

generating spatial data is uniform across the study area (Luo et al. 2023). Traditional spatial interpolation 

methods, such as geostatistics, typically assume that variables exhibit second-order stationarity. Similarly, 

when utilizing deep learning models—transforming spatial prediction tasks into computer vision tasks 

using convolutional neural networks—the inherent mechanism of convolutional kernels implies an 

assumption of distributional stationarity. However, for the large area, capturing spatial non-stationarity over 

the entire space becomes challenging. This indicates that within a study area, more than one data generation 

process may exist (B. Gao et al. 2020). A common solution to this issue is spatial zoning for modeling 

purposes. Nevertheless, in cases of sparse sampling, such zoning inevitably results in a very limited number 

 
2 https://www.london.gov.uk/press-releases/mayoral/to-identify-londons-toxic-air-hotspots 



18 
 

of observable points available for modeling within each zone, leading to the construction of inaccurate 

semivariograms, and thus, diminished predictive performance (Luo et al. 2023). 

For spatial extrapolation prediction, the relationship between explanatory variables and variables to be 

predicted is constructed based on data collected from known regions. Due to the existence of spatial 

heterogeneity, sparse samples often contain incomplete and biased information, leading to unreliable 

conclusions in the models constructed (Figure 1-2).  

3 Summary of the work 

3.1 Detection of overlapping spatial communities in spatial interaction data 

Related publication: Luo, P. and Zhu, D., 2022, November. Sensing overlapping geospatial communities 

from human movements using graph affiliation generation models. In Proceedings of the 5th ACM 

SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery (pp. 1-9). 

To mine overlapping spatial community structures from spatial interaction data, we introduce a hypothesis: 

the more communities two locations simultaneously belong to, the stronger their spatial interaction (Luo 

and Zhu 2022; 2024). Thus, the intensity of spatial interactions can be estimated by the strength of the 

locations' affiliations to communities. As illustrated in Figure 3-1, assume there are two communities, 

*+," (colored red) and *+,! (colored green), and three locations A, B, and C in a city. Each location has 

a certain degree of affiliation with both communities. For instance, A belongs exclusively to *+,", C to 

*+,!, while B is at the overlapping of *+," and *+,!. Our hypothesis posits that spatial interactions 

(e.g., human mobility) between two locations occur because they share at least one common community. 

Based on this hypothesis, there would be population movement between A and B, and between B and C, 

while direct movement between A and C might be less feasible and B would act as a intersections. In this 

way, the overlapping community structures can be used to reconstruct spatial interaction networks, offering 

an opportunity to infer community structures from the collected spatial interaction networks.  
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Figure 3-1. The illustration of how the overlapping community structure can generate spatial interaction 

(Luo and Zhu 2024) 

Our task is to infer the spatial distribution of communities from available spatial interaction data (such as 

human mobility). We have adopted a graph generation approach to address this issue. Knowing that the 

strength of spatial interactions can be estimated through the affiliation strength of two nodes to different 

communities, we can initialize the affiliation strength of each node to the communities. Subsequently, we 

estimate the spatial interaction network and compare it with the actual spatial interaction network. The 

differences between these networks are used to optimize the affiliation strength. This optimization process 

can be facilitated using Graph Convolutional Networks (GCN). In this graph, the affiliation strength of each 

location to different communities is represented as node attributes, while the intensity of the spatial 

interaction network is represented as the edge weight between nodes. 
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Figure 3-2. The framework of exploring the overlapping community structure from spatial interaction data 

(i.e. human mobility).  

As shown in Figure 3-2, a) to better extract the features of each location, we first embed the local spatial 

information of each location using the node2vec model (Grover and Leskovec 2016). This embedded 

information serves as the initial attributes for each node; b) subsequently, we utilize a GCN model to 

estimate the edge weights based on these attributes (Kipf and Welling 2017). c) After calculating the 

weights between each pair of edges, we can compare these with the actual data to compute the loss, which 

then feeds back into the GCN for optimization. We conducted a case study using mobile positioning data 

from the Twin Cities Metropolitan Area in Minnesota to validate our model's effectiveness in real-world 

human mobility networks. Our empirical results revealed the overlapping spatial structure of communities, 

the overlapping intensity for each location, and the spatially heterogeneous structure of community 

affiliations in the Twin Cities. 

 

3.2 Explanation of Non-linear interactions between variables 

3.2.1 Theoretical foundation and assumption 

Spatial relationships often exhibit nonlinearity and the variables involved are not independent but interact 

in complex ways. We introduce a novel approach to identify spatial relationships: the similarity of spatial 

patterns. As demonstrated in Figure 3-3, based on the spatial distribution of the Digital Elevation Model 



21 
 

(DEM) and Precipitation in the United States, which exhibit remarkably similar features, we intuitively 

infer a spatial relationship between them. Indeed, similar models, such as the spatial stratified heterogeneity 

(SSH) model, have been used to analyze such relationships.  

 

Figure 3-3. The similar distribution of DEM and precipitation indicates their relationship 

Building on the concept of SSH, we have developed and expanded a theoretical and methodological 

framework for spatial correlation analysis based on the similarity of spatial distributions. The core concept 

of our proposed models is that the interactions between geographical patterns can reveal spatial associations. 

This model posits that the behavior of a response variable is shaped by the interactions among multiple 

explanatory variables. Specifically, the influence of an explanatory variable X on the spatial pattern of a 

response variable Y signifies the spatial association between X and Y. Spatial patterns can be defined in 

various ways, often demonstrating that a geographical variable's distribution forms distinct, relatively 

homogeneous subregions. Within these subregions, values are similar, while across different subregions, 

they are dissimilar.  

In this thesis, we delved into the theory of spatially stratified heterogeneity, experimented with its 

application (A2), accuracy (A3), and interpretability (A4), and ultimately developed a model capable of 

estimating spatial variability relationships (A5). 
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Figure 3-4. The progress of models proposed in this thesis for explaining non-linear interactions between 

geographical variables.  

3.2.2 Models for explaining spatial non-linear interactions 

Four publications A2 to A5 are included in this section: 

• In A2, we explored the spatially differentiated trade-offs between economic benefits and roadside 

environmental impacts at a continental scale, using the model of Spatial Stratified Heterogeneity 

(SSH). 

Related publication: (A2) Luo, P., Song, Y. and Wu, P., 2021. Spatial disparities in trade-offs: economic 

and environmental impacts of road infrastructure on continental level. GIScience and Remote Sensing, 

58(5), pp.756-775. 

The study uncovers substantial spatial disparities in the effects of road infrastructure on the economy and 

the roadside environment. In major cities like Sydney and Melbourne, economic growth exacerbates 

environmental pressure, whereas in suburban and rural areas, the roadside environment has improved. 

• In A3, we developed the model of Geographically Optimal Zones-based Heterogeneity model 

(GOZH)  to achieve a more accurate representation of spatial correlations. 
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Related publication: (A3) Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y. and Meng, L., 2022. 

Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using 

a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote 

Sensing, 185, pp.111-128 

In the SSH model, spatial discretization is typically performed using equal intervals, quantiles, or geometric 

divisions, without any optimization in the process. The outcomes of this method are influenced by the rules 

for spatial discretization. Consequently, the Power of Determinants (PD) cannot fully elucidate the spatial 

association between explanatory and response variables. Studies have indicated significant underestimation 

of PD in the classic SSH model (Song et al. 2020; Luo et al. 2022). Moreover, the process of spatial 

discretization in spatial stratified heterogeneity should be consistent, whether for a single explanatory 

variable or multiple variables, a challenge not yet addressed by current algorithms. Therefore, we discard 

the distinction between the effects of single factors and interactions in the current model. We argue that the 

most accurate representation of spatial analysis heterogeneity for a given set of explanatory variables, be it 

single or multiple, is the one that yields the highest PD value among countless spatial discretization methods. 

We define this value as Ω, which can also be referred as the Optimal PD (OPD). 

- = max(/) = 1 −min3445#,%6
447  (1) 

where X represents the explanatory variable, and D denotes the spatially discretized variable. Therefore, 

within Ω, the Sum of Squares Within (SSW) is a function of X and D.  

To solve for the Ω value, we transform the problem of determining spatially stratified heterogeneity into an 

optimization problem and incorporate machine learning algorithms, utilizing a stepwise optimization 

approach (see Figure 1).  
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Figure 3-5. The illustration of the GOZH model 

• In A4, we attempted to enhance the interpretability of our model. Drawing on game theory, we 

analyzed the collinearity of each explanatory variable in their interactions.  

Related publication: (A4) Li, Y.#, Luo, P.#(co-first), Song, Y., Zhang, L., Qu, Y and Hou, Z., 2023. A 

locally explained heterogeneity model for examining wetland disparity. International Journal of Digital 

Earth, 13(2), p.4533-4552. 

The objective of this study was to demystify the "black box" and ascertain the contribution of individual 

variables to the OPD. We introduced the Locally Explained Heterogeneity Model(LESH), which, in 

conjunction with the SHAP (Shapley Additive exPlanations) and SSH (Spatially Stratified Heterogeneity) 

models, allows for a comprehensive explanation of each variable's contribution, irrespective of the number 

of variables or the complexity of their interactions. We decomposed the PD to ascertain the contribution of 

each variable, employing the Shapley value for this purpose. The Shapley value, a concept from cooperative 

game theory, measures the contribution of participants to the collective payoff of a cooperative game. It is 

a method for distributing the total payoff of the cooperative game among the participants, to fairly assess 

each participant's contribution. In our study, we leveraged the concept of the Shapley value to calculate the 

contribution of each explanatory variable to the PD, denoting the calculated values as the Shapley Power 

of Determinants (SPD). 
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Figure 3-6. The computational workflow of the LESH model. The steps (a-c) represent the process of 

calculating OPD, while steps (a, b, d, e) depict the process of calculating the SPD. 

• In A5, we developed a Geographical Pattern Interaction model capable of exploring spatial 

variability parameters.  

Related publication:(A5) Luo, P., et al. (2023). Measuring univariate effects in the interaction of 

geographical patterns. International Journal of Geographical Information Science. (Under Review) 

Building on the LESH model, we endeavored to solve the correlations between variables at each location. 

Under the theoretical assumption that similarity in spatial patterns can indicate spatial associations, we 

developed global and local indicators of spatial patterns. These indicators are based on the interactions of 

spatial patterns of different variables, and we introduced the Shapley value to identify the contributions of 

different variables at both global and local levels. 

This study introduces a Geographical Pattern Interaction (GPI) model to analyze univariate effects within 

the context of pattern interaction among variables. The GPI model consists of three main components 

(Figure 3-7):  

1. Generation of GPI for the response variable based on the spatial patterns of multiple explanatory variables, 

facilitated by the Geographically Optimal Zones-based Heterogeneity (GOZH) model. This aims to identify 

optimal geographic zones for variable combinations and establish the best geographical partition for all 

explanatory variables. 
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2. Computation of global univariate effects in GPI, where the variance for each geographic partition under 

various variable combinations is calculated to assess the overall relationship between explanatory and 

response variables. This includes interactions between single and multiple explanatory variables, using 

spatially stratified heterogeneity and the SHAP interpretable machine learning algorithm to quantify the 

contribution of individual variables in these interactions. 

3. Assessment of local univariate effects in GPI, focusing on the local effects of GPI, local univariate effects, 

and characteristics like nonlinearity, dominant local variables, and bivariate effects. The model calculates 

mean responses for each geographic partition under different variable combinations and employs SHAP to 

determine the variable contributions to the geographic classification, reflecting the relationship between 

explanatory and response variables in each region. 

The GPI model was applied to identify factors affecting the homeless rate in Australia, demonstrating its 

practical utility in real-world applications. 

 

Figure 3-7. The framework of GPI model. 
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3.3 Spatial prediction with biased and sparse data 

To address the challenges of scarcity and bias in spatial data for spatial prediction, we have selected two 

cases for exploration: spatial interpolation (A6) and spatial extrapolation prediction (A7). 

• In A6, we developed a Generalized Heterogeneity Model (GHM) for large scale spatial 

interpolation 

 Related publication: (A6) Luo, P., Song, Y., Zhu, D., Cheng J. and Meng L. A Generalized Spatial 

Heterogeneity Model for Interpolation.2022 International Journal of Geographical Information Science, 

37(3), 634-659 

Spatial heterogeneity often manifests as geographic variables existing in multiple homogeneous spatial 

strata. Therefore, a straightforward and effective approach to apply geostatistical models to spatially 

second-order non-stationary surfaces, is to divide the geographical space into several strata with relatively 

strong homogeneity. These subregions often satisfy the assumption of spatial second-order stationarity, 

allowing for spatial interpolation within each. This method is known as Stratified Kriging (StK). However, 

StK has two main drawbacks: firstly, the interpolation within each stratum ignores the numerical 

information of other strata, leading to a loss in accuracy. Secondly, the spatial division process and 

subsequent independent interpolation in each stratum can result in unrealistic abrupt changes and 

discontinuities along the strata boundaries, often contradicting our understanding of geospatial continuity. 

The motivation for this research is to achieve accurate and reliable spatial predictions for large-scale 

geographical environments, considering both the existence of spatial strata and the spatial dependencies 

along the strata boundaries. A practical solution is to use information from other strata when predicting a 

particular stratum, ensuring overall accuracy while making reasonable estimations at the strata boundaries. 

For example, when interpolating population density in urban-rural transition zones, data from both urban 

and rural areas provide necessary information. In interpolating elevation in plain-plateau transition zones, 

it is essential to consider the mixed characteristics of plateau and plain elevations. 

Our proposed solution employs Area-To-Area Kriging (ATAK) to describe long-distance spatial 

relationships, widely used for modeling spatial data at different scales (Figure 3-8). We believe that ATAK 

can calculate the weights of other strata, representing the spatial associations between different strata. Based 

on our fundamental assumption that the scale of spatial relationships of geographic variables is distance-

dependent, we differentiate spatial relationships in geostatistical modeling into neighborhood and long-

distance spatial relationships. Neighborhood spatial relationships are described using pairwise points and 
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solved using ordinary kriging. In contrast, long-distance global spatial relationships, representing larger 

scales or areas, are solved using ATAK. Using this method, our proposed generalized heterogeneity model 

extends geostatistical modeling spatially, allowing for more accurate large-scale spatial predictions under 

the premise of spatial second-order non-stationarity by separately modeling local and global spatial 

relationships. 

 

Figure 3-8. The framework of GHM. 

• In A7, to address the issue of misleading information caused by the inherent bias of spatial data in 

spatial predictions, we introduced the concept of anomaly detection.  

Related publication: (A7) Yao, Y., Dong, A., Liu, Z., Jiang, Y., Guo, Z., Cheng, J., Guan, Q. and Luo, P*.  

(correspondence, project lead), 2023. Extracting the pickpocketing information implied in the built 

environment by treating it as the anomalies. Cities, 143, p.104575. 

Predicting certain geospatial phenomena, such as crime or traffic accidents, often involves biased and sparse 

data, leading to model underfitting, significant bias, and even potential ethical issues. In response to this 

problem, we propose treating geospatial phenomena with biased and sparse samples as "anomalies." This 

allows us to use the abundantly available "normal samples" to build models and implement large-scale 

spatial predictions through anomaly detection.  

In A8, we demonstrated this approach using pickpocketing risk prediction task, where, with only limited 

crime location points and based on street view images, we achieved fine-grained risk prediction across the 

entire city of Shenzhen, China. We collected 154,868 street view images from Shenzhen with the aim of 
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predicting the latent crime risk in each image (Figure 3-9). However, in 2018, Shenzhen City only recorded 

the locations of 682 pickpocketing crime. This presents a typical sparse data spatial prediction problem. 

We interpret the prediction of crime risk from street view images as anomaly detection. Despite having 

only 682 spatial locations of crimes, resulting in a limited number of street view images, we can extract 

features from images that are not close to crime locations, which we term as normal features. We then 

compute the features for each image in the test set using the same model and calculate its similarity to the 

normal features. The lower the similarity, the higher the underlying crime risk in the image. 

 

Figure 3-9. The framework of estimating crime risk based on the anomaly detection 
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4. Conclusion and outlook 

4.1 Conclusion 

The distinction between spatial tasks and other types of tasks is attributed to the inherent characteristics of 

spatial data that differ from those of other data types. The uniqueness of spatial data is primarily described 

through spatial effects and spatial relationships. Currently, many spatial relationships are not yet adequately 

modeled, which limits the performance of spatial analysis. 

This thesis aims to modeling the generalized spatial association and  addressed research gaps in three spatial 

analysis tasks – description, explanation and predictio. We developed new spatial models based on a deeper 

understanding of spatial data. The research questions have been explored with the following findings: 

Ø Overlapping community structures can be uncovered through graph generation tasks. We proposed a 

mechanism model for generating spatial interactions based on overlapping community structures and 

transformed the task of inferring community structures from spatial interaction data into a graph 

generation task.  

Ø Non-linear relationships and interactions among geographic variables can be mined from spatial data 

with weak assumptions, by analyzing the similarity and interactions of spatial patterns. 

Ø When using biased and sparse spatial data for spatial prediction:  

• (Interpolation) Large-scale unbiased estimation can be achieved by constructing spatial 

relationships at different scales to address the modeling issues in non-stationary spatial 

areas; 

• (Extrapolation) The problem of misleading conclusions caused by statistical and spatial 

biases in data can be addressed using the concept of anomaly detection. 

4.2 Limitations and outlook 

Space possesses its uniqueness, and there is a broad spectrum of research efforts, including this thesis, 

aimed at mitigating the negative impacts of this uniqueness on spatial analysis. These efforts focus on 

harnessing appropriate modeling methods to fully exploit the rich information contained within spatial data. 

Nonetheless, understanding and exploring the characteristics of geospatial data remains a challenging 

process that is far from complete. 

For descriptive tasks, this thesis concentrates on spatial interaction data and community structure. However, 

the connotation of spatial patterns extends beyond this scope. Besides spatial interaction data that can be 
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represented as a network model, certain spatial data need to be characterized as field models and object 

models. Pattern recognition for these types of spatial data is not covered in this thesis.  

In terms of explanatory tasks, the methods uncovered in this thesis effectively analyze the spatial 

correlations between different geographical variables. Yet, the proposed models have not addressed spatial 

causality, which is a valuable direction for future research. Additionally, the method proposed in this thesis 

aims to analyze spatial correlations by examining similarities in spatial patterns. We attempt to extract this 

correlation purely through numerical correlations. Therefore, we do not explicitly consider geographic 

location information, such as incorporating latitude and longitude as features or parameters into the model. 

Due to the collinearity between location features  and many geographic variables, explicitly considering 

them may actually lead to inaccurate results. However, some scholars argue that spatial analysis requires 

explicit consideration of spatial location. We does not fully agree with this view but acknowledges that in 

further research, it is worth exploring the impact of spatial location when analyzing correlations between 

variables. This is because in some cases, the spatial distribution of geographic variables may not primarily 

result from the influence of another variable but from their own spatial processes, such as spatial diffusion. 

Therefore, eliminating this aspect of influence when analyzing the correlation between different variables 

is an important topic. 

For predictive tasks, the first work involves large-scale spatial interpolation, necessitating the reasonable 

partitioning of space into smaller, homogeneous regions. In this step, a simplistic method was employed, 

dividing the study area by latitude and longitude, which may not align with the spatial distribution 

characteristics of geographical variables. In future work, more precise spatial partitioning methods should 

be employed, especially those that consider the spatial distribution patterns of geographical variables 

thoroughly. In extending the spatial scope of this work, street view images were used to predict crime risk. 

The hypothesis was that the distribution of some geographical phenomena in space could be considered 

anomalous. Therefore, only samples where these phenomena had not occurred were used for model training. 

However, in many cases, it is challenging to ensure that locations in the training data without recorded 

crimes are genuinely free of crime risk, possibly because crimes in these areas went unrecorded or 

undetected by the police. This uncertainty is a characteristic of spatial data, limited by the costs and time 

constraints of sampling, meaning that spatial data always contain uncertainties regarding the actual 

distribution of geographical variables and phenomena. Future research on spatial prediction tasks based on 

anomaly detection should incorporate as much prior knowledge as possible and leverage expert experience 

to select training samples, thus maximizing the reliability of the training data. 
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Additionally, most data utilized in this thesis are sourced from open-access databases and span multiple 

regions (e.g., USA, China, Australia). These datasets are largely reproducible and reusable. All remote 

sensing data employed in the thesis are collected from the Google Earth Engine (GEE). For instance, the 

NDVI data in A2, precipitation data in A3, and DEM data in A4. Furthermore, a significant portion of the 

data sources are derived from official census data, such as the Australian homeless rate data in A5 sourced 

from the Australian Bureau of Statistics, and the pickpocketing data in Shenzhen in A8 sourced from openly 

available court judgment data in China. However, there still exist certain non-open-source data in this thesis, 

such as the device-level travel trajectory data in A1, which is obtained from a commercial entity (i.e., 

PlaceIQ3). This presents a limitation of this thesis. Although we believe the contribution of A1 primarily 

lies in its methodological approach, validating models using open-source data and publishing results in the 

future remains a worthwhile direction. 

Finally, throughout the process of conducting a series of studies, i.e., exploring more comprehensive and 

accurate spatial relationship modeling methods, we have been repeatedly inspired by visual analytics. For 

example, in the second part of the thesis, while exploring the spatial relationships of different geographical 

variables, the inspiration stemmed from the intuitive understanding that humans have regarding the 

correlation between two variables: correlated variables exhibit similar spatial distributions. This aligns with 

the realm of geovisual analytics. This thesis endeavors to translate conclusions from visual analytics into 

mathematical language and construct models to explore the correlation of geographical variables. This 

thesis has shown the feasibility of utilizing visual analytics to investigate spatial relationships. We believe 

this is partly attributed to human visual intuition in comprehending the geographical world. In future work, 

we anticipate that integrating advanced multivariate visualization methods will further extend the model's 

applicability and enhance our insight and understanding of the intricate relationships within geographical 

data. 
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ABSTRACT
Geographical units densely connected by human movements can
be treated as a geospatial community. Detecting geospatial commu-
nities in a mobility network reveals key characteristics of human
movements and urban structures. Recent studies have found com-
munities can be overlapping in that one location may belong to
multiple communities, posing great challenges to classic disjoint
community detection methods that only identify single-a�liation
relationships. In this work, we propose a Geospatial Overlapping
Community Detection (GOCD) framework based on graph genera-
tion models and graph-based deep learning. GOCD aims to detect
geographically overlapped communities regarding the multiplex
connections underlying human movements, including weak and
long-range ties. The detection process is formalized as deriving
the optimized probability distribution of geographic units’ commu-
nity a�liations in order to generate the spatial network, i.e., the
most reasonable community a�liation matrix given the observed
network structure. Further, a graph convolutional network (GCN)
is introduced to approach the a�liation probabilities via a deep
learning strategy. The GOCD framework outperformed existing
baselines on non-spatial benchmark datasets in terms of accuracy
and speed. A case study of mobile positioning data in the Twin
Cities Metropolitan Area (TCMA), Minnesota, was presented to
validate our model on real-world human mobility networks. Our
empirical results unveiled the overlapping spatial structures of
communities, the overlapping intensity for each CBG, and the spa-
tial heterogeneous structure of community a�liations in the Twin
Cities.
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1 INTRODUCTION
Geographic units with strong human movement connections can
be called geospatial communities [11]. Geographic units within
the same geospatial community are more closely connected than
those belonging to di�erent communities [6, 8]. Social services,
such as police deployment and medical services, are often opti-
mized as community-based resource allocation. Policymakers need
to consider reasonable policies based on the spatial distribution
of communities. Research has shown that geographic space can
be well characterized by graph structures, where geographic units
are formalized as the nodes, and the connections between geo-
graphic units are the edges. Therefore, the sensing of geospatial
communities, i.e., assigning a community label for each location in
the network, can be seen as a community detection task in graph-
structured spatial networks [10]. Detecting communities in spatial
networks is essential in understanding human activities, socioeco-
nomics, urban structure, etc. through looking at the socio-economic
interactions [22], and even the hierarchical relationship between
regions [10].

Traditional community detection methods mainly focus on iden-
tifying disjoint communities (as shown in Figure 1 b), which means
that each node may belong to only one community [1, 3]. While in
the real world, communities could overlap (see Figure 1 c) [5, 13–15].
For example, human activities like tourists, commuting, and health
care establish di�erent kinds and levels of connections across the
geographic units and thus form overlapping communities that may
have shared local components [24].In addition, from a community
service perspective, people often reside in the service area of more
than one public facility. For example, residents living in the middle
of two clinics maybe accessible to both clinics. In this case, residents
belong to the overlapping area of the two clinics’ service coverages.
If a disjoint community is carried out, residents can only be allo-
cated to one of the two clinics. Therefore, overlapping community
detection can e�ectively alleviate resource constraints and improve
social services’ e�ciency. However, to the best of our knowledge,
no overlapping community detection research has been conducted
yet in the geography domain.

https://orcid.org/1234-5678-9012
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Figure 1: Spatial networks and communities: (a) Spatial net-
work of geographical units; (b) Disjoint communities; (c)
Overlapping communities

Furthermore, based on Granovetter’s theory, connections within
networks can be complex, classi�ed as both strong and weak ties
[7]. Structurally embedded (tightly connected) edges are often so-
cially strong, while long-range edges spanning di�erent network
parts are usually socially weak. Most existing community discov-
ery algorithms assume that a set of nodes can only be treated as
a community when they are more strongly connected compared
to the expectation [17]. This basic assumption overlooks the fact
that nodes with weak connections can structure communities that
provide more information gains. For instance, it is acquaintances,
not friends, who tell us more beyond our �eld [16]. Long-range and
weak connections form critical community structures that can not
be neglected for societal goods [23].

In sum, current community detection methods have not yet
uncovered the overlapping nature of geospatial communities and
has ignored long-range or weak ties in spatial networks. In this
study, we provide a geospatial overlapping community detection
(GOCD) framework based on the graph generation model and graph
deep learning. First, we construct a spatial network based on the
O-D information in human movements. Second, we proposed the
Geospatial Graph A�liation Generation model (GAGM), which
generates the spatial graphs using the community a�liation proba-
bilities and also provides the optimization objective for overlapping
community detection. Third, we introduce the approach of graph
convolutional networks to approximate the optimized community
a�liation probabilities in the GAGM and thus uncover the geospa-
tial overlapping community structures. In the remainder of the
paper, we provide the literature review of the current community
detection studies in Section 2. The proposed GOCD framework
is described in Section 3. A case study and results are shown in
Section 4. Finally, the study is concluded in Section 5.

2 RELATEDWORK
Community detection. Traditional community detection methods
mainly explore community from network structures [19], discov-
ering non-overlapping communities, such as graph partition [4],
statistical inference [9], and spectral clustering [2]. For example,
with the goal of maximizing modularity, Louvain algorithm was
invented for fast community discovery and has been widely used
[3].

In order to discover overlapping communities, some methods
based on the graph generation model (GGM) were proposed [20, 21].
The basic assumption of these methods is that two nodes will have a

stronger connection due to the more shared community a�liations.
For example, people with more common hobbies are more likely
to become friends. The �rst graph generation-based overlapping
community detection model is the Community-A�liation Graph
(CAG) model [20]. It assumes that all nodes within a community
are connected to each other with a �xed probability. However, the
assumption is too strong in that it ignores the heterogeneity of
nodes inside a community. To address this problem, the BIGCLAM
(Cluster A�liation Model for Big Networks) was proposed [21],
which assumes that nodes are attached to the communities with dif-
ferent membership strengths. The membership strength determines
the probability of having connections between any two nodes.

However, most traditional algorithms for overlapping commu-
nity detection can only be applied to small networks. It is often di�-
cult to achieve the desired results for complex, large-scale networks
in the real world [19]. In recent years, applications of deep learning
based on graph structures have achieved promising performances
[18]. Many graph-based deep learning algorithms, especially the
graph convolutional networks (GCN) have been applied to node
prediction and link prediction tasks in various scenarios [12, 25].
Still, limited research has been done on overlapping community
discovery in large networks. The Neural Overlapping Community
Detection (NOCD) was proposed by combining the BIGCLAM and
GCN [18], which was a pioneer attempt to achieve high detection
accuracy for overlapping community structures and was applied to
only non-spatial datasets.

Geospatial community detection. Geographic networks are
more complex and have more nonlinear properties than most non-
spatial networks, which pose a great challenge to overlapping com-
munity detection in geographic space. Compared with a large num-
ber of community detection studies in non-spatial scenarios (e.g.,
social networks), there are fewer studies on community structures
in the geospatial context. Guo [8] constructs a geographic net-
work based on trajectory data and combines multiple community
structure measure metrics to perform community detection in hu-
man movements. Hong and Yao [10] implemented a hierarchical
community detection for road networks based on the Informap
algorithm. Random walks and the Leiden technique were combined
to detect the dynamical spatial community [11]. To the best of our
knowledge, no studies of geographically overlapping community
detection have been conducted.

3 METHODOLOGY
This study proposes the Geospatial Overlapping Community De-
tection (GOCD) framework. The basic idea of GOCD is to formalize
the overlapping community detection tasks by discovering the most
reasonable community a�liation matrix to reproduce the observed
spatial networks. Our framework has two basic assumptions:

• Two geographical units are connected only when they be-
long to at least one geographical community.

• Within a geographic community, each one of the geographic
units has a a�liation strength, which determines the proba-
bility of any two geographic units to be connected.
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Speci�cally, GOCD consists of three steps: First, geospatial knowl-
edge is introduced to construct spatial networks based on associa-
tions such as human movements. Second, we construct the Geospa-
tial Graph A�liation Generation model (GAGM), which can gener-
ate the whole network by the community a�liation information of
each node. Since the community detection task is to get a�liation
information from known networks, the GAGM model can be un-
derstood as the inverse task of community detection. Based on this,
community detection can be understood as �nding the a�liation
matrix which has the highest possibility generates a known net-
work. Hence, the GAGM provides an optimized objective function
for our GOCD framework. Third, the GCNs is used to solve the
community detection problem by discovering the optimized a�lia-
tion matrix. The computed community a�liation matrix provides
the overlapped community memberships for each geographic unit.

Figure 2 illustrates the general process of detecting overlapping
community structures from a geospatial network. We will explain
each step in the following subsections. It should be mentioned that
our model is inspired by the NOCD [18], which has been used for
overlapping community detection in non-spatial networks. Since it
is not designed for community detection with geographic contexts,
spatial constraints and spatial associations are not considered in
the NOCD.

3.1 Constructing spatial networks
The geographical units are interconnected to form aweighted graph
⌧ = (+ , ⇢), where + = {1, . . . ,# } contains # geographic units,
and ⇢ = {(D, E) 2 + ⇥+ : �DE} includes the connection of any two
geographic units, where �DE represents the weight of the edges
between node u and node v. The connections can be distance, topo-
logical adjacency, human movements and many other types of
geographic connections [25]. The weight of the edges between all
nodes forms the adjacency matrix �. In addition, each node may
have a vector of attributes in dimension ⇡ . The attribute vectors of
all nodes form the attribute matrix - 2 R#⇥⇡ , as shown in Figure
2(a)

3.2 Generating networks with community
a�liations

Based on the ideas of CAG model [20] and BIGCLAM [21], we pro-
pose the Geospatial Graph A�liation Generation model (GAGM). It
can generate the geographic network by the community a�liation
of each node.

Assume that the set of communities in a geographic network is
⇠ . There are two nodes< and : , and the membership a�liation
strength vector of them are �< and �: , respectively. �< is consist of
the membership a�liation strength of node< to every community.

The GAGM create an edge (<,:) between nodes< and : with a
probability % (<,:):

% (<,:) = 1 � exp
⇣
��< · �):

⌘
(1)

The derivation process of Equation (1) is as follows. Suppose
that there is a community 2 (2 2 ⇠) and the membership strength
of nodes < and : to 2 is �<2 (�<2 2 �<)and �:2 (�:2 2 �: ), re-
spectively. The interaction strength between nodes < and : in

community 2 is - (2)
<,:

, which we assume obey the Poisson distribu-
tion [18]:

- (2)
<:

⇠ %>8B (�<2 · �:2 ) (2)

Then the total interaction strength -<: is the sum of - (2)
<:

:

-<: =
’
2

- (2)
<:

(3)

Then it obeys the Poisson distribution:

-<: ⇠ %>8B
 ’
2

�<2 · �:2

!
= %>8B (�< · �): ) (4)

Since the edge possibility % (<,:) is same as % (-<: > 0):

% (<,:) = % (-<: > 0) = 1�% (-<: = 0) = 1�exp
⇣
��< · �):

⌘
(5)

Based on the above derivations, we know that using GAGM, if the
membership strength of each geographic unit to each community is
given, we can calculate the connection probability between any two
nodes, and thus reproduce the overall geographic network (graph).

As the outcomes, we de�ne the community a�liation matrix
� , where �8 9 denotes the community strength of the 8-th node
to the 9-th community. Then the community detection task can
be understood as the inverse of the following process: �nding the
optimal � that can generate the geographic network (⌧) constructed
in the previous step with the maximum probability. That is, �nding
the � which can maximize the % (⌧ |� ):
% (⌧ | L ) =

÷
(<,:)2⇢

% (<,:)
÷

(<,:)8⇢
(1 � % (<,:))

=
÷

(<,:)2⇢

⇣
1 � exp

⇣
�L)<L:

⌘⌘ ÷
(<,:)8⇢

exp
⇣
�L)<L:

⌘

(6)

3.3 Optimizing overlapped communities with
Graph Convolutional Networks

Being di�erent from traditional methods, we introduces GCN to
solve the � matrix [18] in a graph-based deep learning manner:

• De�ne � as the output of GCN:

� := GCN\ (�,- ) (7)

• The objective of GCN is set as maximizing % (⌧ |� )
Since the likelihood function involves a product of many small

probabilities, we use the log likelihood as the GCN loss function:

L(� ) =
’

(<,:)2⇢
log

⇣
1 � exp

⇣
�L)<Lk

⌘⌘
�

’
(<,:)8⇢

L)<Lk (8)

In addition, the geospatial graphs are often extremely sparse,
which means many pairs of nodes don’t have human movements.
In this case, the second term in equation (8) has a much larger
contribution. We deal with this problem by balancing the two terms:

L(� ) = 1
|⇢ |

’
(<,:)2⇢

log
⇣
1 � exp

⇣
�L)<L:

⌘⌘
� 1
=2 � |⇢ |

’
(<,:)8⇢

L)<L:

(9)
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Figure 2: Illustration of the Geospatial Overlapping Community Detection framework

Thus, the optimization objective of the GCN is:

\¢ = argmax
\

L(� ) = argmax
\

L (⌧⇠#\ (�,- )) (10)

After obtaining the optimized a�liation matrix � , we assign
node< to community 2 if its a�liation strength �<2 is higher than
the threshold V . The V is de�ned as the membership indicator which
controls the connection strength of nodes inside the community. If
V is 0, every pair of nodes with minimal weak connections will be
assigned as the same community.

3.4 Model evaluation
Four metrics are used to evaluate the geospatial community detec-
tion result based on GOCD:

• Coverage (COV) describe what percentage of the edges is
explained by at least one community. (i.e. if (D, E) is an edge,
both nodes share at least one community). Higher coverage
is better:

Coverage (⇠1, . . . ,⇠ ) =
1
|⇢ |

’
D,E2⇢

1
h
I)D IE > 0

i
(11)

• Conductance (CON) is average conductance of the detected
communities (weighted by community size). Lower is better.

outside (⇠) =
’

D2⇠,E8⇠
�DE

inside(⇠) =
’

D2⇠,E2⇠,E<D
�DE

Conductance (⇠) = outside(⇠)
inside(⇠) + outside(⇠)

AvgConductance (⇠1, . . . ,⇠ ) =
1Õ
8 |⇠8 |

’
8

Conductance (⇠8 ) · |⇠8 |

(12)
• Density (DEN) represents average density of the detected
communities (weighted by community size). Higher is better.

d (⇠) = # existing edges in ⇠
# of possible edges in ⇠

AvgDensity (⇠1, . . . ,⇠ ) =
1Õ
8 |⇠8 |

’
8

d (⇠8 ) · |⇠8 |
(13)

• Clustering coe�cient (CC) describes average clustering coef-
�cient of the detected communities (weighted by community
size). Higher is better.

AvgClustCoef (⇠1, . . . ,⇠ ) =
1Õ
8 |⇠8 |

’
8

ClustCoef (⇠8 ) · |⇠8 |

(14)
In addition, since geographic community detection is an unsu-

pervised task with no community a�liation labels, we applied our
model to a non-geospatial dataset for model validation, details can
be found in Section 4.2.
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4 CASE STUDY
4.1 Data and study area

Figure 3: Statistic distribution of OD trips on a Monday (a,c)
and a Sunday (b,d)

We conducted the overlapping community detection in the Twin
Cities metro area (TCMA), Minnesota, U.S., to verify the e�ective-
ness of our proposed framework. Minnesota is the largest state in
the Midwest U.S. Its most important urban area is the Twin Cities
region consisting of Minneapolis and St. Paul, which, along with
their surrounding urban areas, account for more than half of Min-
nesota’s total residents. The Twin Cities contains seven counties,
186 CTUs, and 2085 census block groups (CBGs), according to the
2020 American Community Survey (ACS).

The trajectory data at the device level were collected from Pla-
ceIQ 1, a location data and technology company for place intel-
ligence. The raw data records the device ID, time, latitude and
longitude information of the starting and ending points for each
individual trip. We used two-day data for this study, i.e., 2021.03.01
(Sunday) and 2021.03.02 (Monday). The data for Sunday had a to-
tal of 2445310 trip records from 268627 devices, and the data for
Monday had 2370828 trip records from 257363 devices.

We did a statistical analysis of the �ow data, and the results are
shown in Figure 3. On Monday, the average number of trips per de-
vice was 9.1030, and the average duration of each trip was 594.7033
s. On Sunday, the average number of trips per device was 9.2120,
and the average duration of each trip was 594.6005 s. The average
number of trips per device was 9.2120, and the average duration of
each trip was 594.6005 s. On Monday, the average number of trips
per device was 9.1030 and the average duration of each trip was
594.7033 s.

1https://www.placeiq.com/

Figure 4: The CBGs-level human �ows in Twin Cities Metro
Area and the communities detected by Louvain method (Dif-
ferent colors represent di�erent communities): (a) human
�ows on Monday, (b) communities on Monday, (c) human
�ows on Sunday, (d) communities on Sunday

We merge the human movement data into 2085 CBGs to get a
2085⇥2085 O-D matrix. Each $⇡8 9 represents the number of �ows
from CBG 8 to 9 . The �ow maps for the two days are visualized in
Figure 4. In addition, we performed non-overlapping community
detection using the Louvain algorithm (Figure 4 (b,d)).The results
show that communities detected by the Louvain algorithm tend to
exhibit spatial aggregation.

4.2 Spatial network construction and model
settings

We de�ne the edges between two geographic units in the graph as
human �ows to detect geospatial communities from such human
�ows. Therefore, a graph can be described as an adjacency matrix
�, and �8 9 represents the human �ows between locations 8 and
9 . If we distinguish the departure and arrival of human �ows, �8 9
is the �ow from 8 to 9 . In this context, the geospatial network
is a directed weighted graph. If no distinction is made between
departures and arrivals, then �8 9=� 98 and the edge weight of the
two geographic units is the sum of the �ows between them. In this
case, the geospatial network is a undirected weighted graph.

Since the relatively low intensity and long-distance �ows may
represent the trivial behaviours and cannot reveal the major pat-
terns, we removed human �ows less than 10, and �ows with dis-
tance longer than 5 km. These two parameters were selected by
checking the statistic distribution of the human �ows and can be

https://www.placeiq.com/
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further explored. After constructing the spatial networks, a classic
two-layer GCN was adopted to optimize the GAGM [12, 18]. The
process is de�ned as:

� := GCN) (G,- ) = ReLU
⇣
�̂ ReLU

⇣
�̂-, (1)

⌘
, (2)

⌘
, (15)

where �̂ = ⇡̃�1/2�̃⇡̃�1/2 is the normalized adjacency matrix intro-
duced in [12].

Since there is no ground truth community a�liation label in our
geospatial network, we optimized the architecture and membership
indicators V using the benchmark dataset, inspired by the previous
study. The benchmark dataset contains the co-authorship network
developed from the Microsoft Academic Graph [18]. In this net-
work, authors are graph nodes, and several research �elds represent
communities. The optimized V is found to be 0.5 . In addition, we
chose the community number  =10 via a sensitivity analysis. We
set a series of  ranges from 1 to 100 and found ten to be the most
reasonable. All the detected ten communities contain a reasonable
number of geographical units (i.e. CBGs).

We veri�ed the model performance in this non-spatial bench-
mark dataset, the results shown in Table 1 indicate that the trained
model achieved high accuracy in detecting the overlapping com-
munities.

Table 1: Community detection performance on the bench-
mark dataset

COV CON DEN CC

Ground truth 0.9588 0.3392 3.853E-03 -1.29E-04
Predicted 0.9240 0.2309 4.627E-03 -2.391E-05

4.3 Results
4.3.1 Spatial pa�ern of overlapping communities. The community
detection was conducted using GAGM. Four indicators were used to
describe the overlapping community properties, which are shown
in Table 2. The results show overlapping communities have similar
coverage and density on weekdays and weekends. overlapping
communities have 4.52 % higher conductance on weekdays than at
weekends. In addition, overlapping communities have a positive
cluster coe�cient on weekdays and a negative cluster coe�cient
on weekends.

Table 2: Community detection performance on weekday and
weekend mobility networks

Time COV CON DEN CC

Weekday 0.4208 0.6246 1.077E-02 3.13E+01
Weekend 0.4187 0.5976 1.334E-02 -2.812E+01

The spatial distributions of the detected overlapping communi-
ties on aMonday (Figure 5) and a Sunday (Figure 6) were detected by
the GAGM. The center maps in these �gures represent the number
of communities to which each CBG belongs (overlapping intensity).

Table 3: Spatial autocorrelation analysis of overlapping in-
tensity

Time Moran’s Index z-score p-value

Weekday 0.1855 14.8523 0.0000
Weekend 0.1442 11.5547 0.0000

The results show that the downtown area has a higher overlapping
intensity on Monday than Sunday. In addition, residential areas
and shopping malls also have more places with higher intensity of
community overlapping. On Sunday, the suburbs including some
lake areas and golf clubs, have a higher overlapping intensity. The
Minneapolis�Saint Paul International (MSP) Airport had the high-
est overlapping intensity. This indicates that on weekends, people
from a wider area travel through the airport.

Further, we conducted a spatial autocorrelation analysis of over-
lapping intensity based on the global moran’s index. The results
showed that both weekday and weekend overlapping intensity
have signi�cant positive spatial autocorrelation at p<0.01, and the
z-score of moran’s index was higher than 2.58. Among them, the
z-score moran’s index for Monday (14.8523) is higher than that
of the Sunday (11.5547), which indicates that on a weekday, the
overlapping intensity of the community shows a stronger spatial
dependence: a geographic unit with strong �ows is more likely to
amplify the interactions of surrounding geographic units. This may
be due to the fact that there are more human �ows on a weekday
between working places and residential areas. Meanwhile, on week-
ends, people travel for more diverse purposes, so the interactions
between geographic units can be more complex and fragmented.

4.3.2 Local variations of the overlapping. We calculated the dif-
ferences between the overlapping intensity of CBGs on Monday
and on Sunday in Figure 7. A blue CBG means it belongs to more
communities on Monday, and a red CBG means it belongs to more
communities on Sunday. We selected four case regions for the ex-
ploratory analysis: (a) represents Minneapolis College of Art and
Design, which belongs to 3 more communities on Sundays than
on Mondays. This indicates that the college interacts more closely
and diversi�es with other areas during the weekend. The opposite
is true for its surrounding residential communities, where there is
higher community overlap on Mondays. (b) represents the campus
of the University of Minnesota. (c) is located in a typical residen-
tial area. It has a much higher intensity of community overlap on
Mondays than on weekends. This may be due to the fact that on
weekdays, residents are out for working places, leading to a diverse
interaction in these areas. (d) is the MSP airport, which has a lower
community intensity on Monday than on Sunday. This may be
due to the fact that there are more trips related to the airport on
weekends.

4.3.3 Overlapping communities of the MSP airport. We selected the
MSP airport for further interpretability analysis. As shown in Figure
7, we obtained the shared times of overlapping memberships with
the airport for all CBGs. On Monday, the airport is subordinate to
3 communities, and on Sunday, it is subordinate to 5 communities.
The average shared membership times to the MSP airport for all
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Figure 5: Overlapping cmmunity structure on Monday

Figure 6: Overlapping community structure on Sunday

CBGs on Monday and Sunday is 0.6 and 0.65, respectively, indicat-
ing that on Sunday, the airport has a more complex overlapping
community structure in terms of human movements.

We calculated the shared community frequency of all CBGs
to the MSP airport. Results show that on Monday, 53.53 % of all
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Figure 7: Overlapping intensity di�erence between Monday and Sunday. A blue CBG means it belongs to more communities on
Monday, and a red CBG means it belongs to more communities on Sunday

Figure 8: Shared times of community membership with MSP airport on (a) Monday and (b) Sunday

CBGs are not subordinate to any community that contains the
MSP airport. While on Sunday, the proportion is only 48.63 %. In
addition, on Monday, 918 CBGs have 1 or 2 times of community
sharing with the MSP airport. On Sunday, the number becomes
1049. Notably, on Monday, 51 CBGs have three or more overlaps
with the MSP airport, while there are only 19 on Sunday with three

or more overlaps. These �ndings indicate that although most areas
have weaker connections to the airport on Monday compared to
Sunday, there still exists a small number of areas with more shared
communities to the airports on Monday, re�ecting the importance
of weak ties revealed by the geospatial overlapping community
detection.



Sensing overlapping geospatial communities from human movements using graph a�iliation generation models GeoAI ’22, November 1, 2022, Sea�le, WA, USA

5 CONCLUSION
Communities in the real-world can be overlapped, yet there is no
research focus on the overlapping community structures in geospa-
tial networks. In this study, we combined a graph generation model
with the graph convolution network for overlapping geospatial com-
munity detection from human movements. We collected trajectory
data from the Twin Cities, MN for validation, and the results show
signi�cant spatial di�erences of overlapping community structures
between a weekday and weekend. Also, overlapping communities
have a positive cluster coe�cient on the weekday and a negative
cluster coe�cient on the weekend. Further, we selected MSP air-
port for local analysis and found that compared to the weekday,
the average overlapping intensity w.r.t. the airport is higher in the
weekend, accompanied with a lower spatial autocorrelation in the
weekend. Since the overlapping communities are not truly labelled,
the community detection results can not be perfectly veri�ed in
this study. We will conduct more in-depth interpretability studies
in the future to better validate the proposed GOCD framework.
The GOCD framework can help to better describe the complex
urban structure and explore the potential connections between lo-
cal regions, guiding sustainable community planning and resource
allocation in future cities.
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Spatial disparities in trade-offs: economic and environmental impacts of road 
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ABSTRACT
Remote sensing and geospatial techniques are being used to provide large-scale and regional 
solutions for achieving the sustainable development goals (SDGs) of the United Nations, including 
sustainable infrastructure development. Road transportation infrastructure has a significant con-
tribution to the economy, but it also increases environmental pressure. However, little knowledge 
is available about spatial characteristics in the relationship between road impacts on the economy 
and impacts on the roadside environment. This research explores the spatial disparities in the 
relationship of road impacts on a continental level in Australia from 2011 to 2016. The performance 
of road transportation infrastructure is characterized from the perspectives of road density, con-
nectivity, traffic volumes, and service to communities, other transportations (e.g. ports and air-
ports), and industries, using remote sensing data and spatial heterogeneity models. Local economy 
and roadside environment are respectively presented using resident income and the change of 
roadside Enhanced Vegetation Index (EVI) and Aerosol Optical Depth (AOD) derived from the 
moderate resolution imaging spectroradiometer (MODIS) onboard the Terra satellite generated 
from Google Earth Engine. The road impacts of variables and their interaction on the economy and 
environment were calculated using an optimal parameters-based geographical detectors model 
(OPGD). Results reveal that the interaction of road density and traffic volumes can explain 47.4% of 
the resident income. In addition, results demonstrate the significant spatial disparities in the 
relationship between road impacts on the economy and impacts on the local environment. In 
major cities, such as Sydney and Melbourne, the pressure of roadside environment is increased 
with the economic growth, but the roadside environment has been improved in suburban and 
rural areas. Areas with the service to industries range from 64.4 km to 128 km have the most 
significant roadside EVI increase (2.5%). To the best of our knowledge, this is the first research to 
explore spatially differentiated trade-offs between the economic and roadside environmental 
impacts of roads using remotely sensed data, geospatial data, and spatial heterogeneity model 
at the continental level. Findings from this study provide an in-depth understanding of the 
interactions and trade-offs of road impacts on the local economy and the environment. 
Geospatial trade-offs and impact analysis methods in the study can be applied in wider fields to 
achieve global and regional SDGs.
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1. Introduction

Remote sensing and geospatial techniques provide 
effective data-driven solutions and opportunities for 
achieving the sustainable development goals (SDGs) 
of the United Nations. The remote sensing supported 
solutions for achieving SDSs generally include three 
categories. First, remote sensing can provide massive 
large-scale and timely Earth observation data for ana-
lyzing sustainability (Anderson et al. 2017; Cochran 
et al. 2020; Im 2020; Pathak et al. 2021). Remote sen-
sing sensors can cover a large area with a rapid 
update frequency, making it possible to detect cli-
mate change, disasters, and health at a global scale 

(J. Yang et al. 2013; Viana et al. 2017). Next, geospatial 
techniques are essential tools for investigating spatial 
and spatiotemporal patterns, exploring factors, and 
future scenario prediction. Long time-series remote 
sensing images are helpful for understanding 
mechanisms of human-environment interaction and 
effectively dealing with environmental challenges 
(Bishop-Taylor, Tulbure, and Broich 2018). Finally, 
data-driven solutions generated from remote sensing 
and geospatial techniques are solid and quantitative 
evidence for management and making practical deci-
sions. The environmental variables, such as air quality 
variables (Alvarez-Mendoza, Teodoro, and Ramirez- 
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Cando 2019), obtained from remote sensing data are 
universally meaningful compared with in-situ and 
ground monitoring data due to the large spatial 
scale and long duration for effective decision- 
making (Boulila, Farah, and Hussain 2018).

Sustainable transportation infrastructure is one of 
the key sectors to improve economic development 
and social well-being among SDGs. A primary func-
tion of transportation infrastructure is to connect dif-
ferent regions, which is helpful for providing job 
opportunities and economic activity (Agbelie 2014). 
Well-performed transportation infrastructure also 
enables high accessibility to markets and raw materi-
als and raises productivity due to the reduction in 
traffic congestion and travel time (Agbelie 2014; 
Umar et al. 2020). Given its importance on the social 
economy, hundreds of billions of dollars are spent on 
infrastructure investment and construction world-
wide every year (Allen and Arkolakis 2020).

Road transportation infrastructure can provide 
great economic opportunities, but it may also 
increase local environmental pressure (Damania 
et al. 2018). The roadside environmental pressure 
caused by road transportation includes air pollution, 
soil erosion, vegetation and forest degradation, risks 
to species diversity, etc. Developed transportation 
infrastructure usually means high traffic volumes, 
leading to an increase in emissions, causing air pollu-
tion, and the urban heat island effect (Karagulian et al. 
2015). Road transportation is closely associated with 
roadside soil pollution such as the increase of soil pH 
and heavy metals, and soil erosion (Jantunen et al. 
2006; Ghosh, Raj, and Maiti 2020). Besides, the road-
side environmental changes can decrease the natural 
growth of vegetation (Ghosh, Raj, and Maiti 2020), 
cause species diversity loss (Jantunen et al. 2006; 
Deljouei et al. 2018), lead to forest degradation 
(Mann, Agrawal, and Joshi 2019), and threat the eco-
system. In order to reduce environmental pressure 
while safeguard economic growth, authorities usually 
face trade-offs of road impacts, which is the coordina-
tion between impacts on the economy and impacts 
on the environment. However, the methods and 
knowledge about identifying and understanding the 
trade-offs of road impacts are still limited.

The roadside environment can be characterized by 
combined ground monitoring data and remote- 
sensing data. Most of the earlier studies explored 
the relationship between environmental factors and 

transportation investments using in-situ data, includ-
ing soil samples for analyzing heavy metal pollution 
around roads (Ghosh, Raj, and Maiti 2020) and data 
from environmental monitor stations for investigating 
the environmental impacts of transportation infra-
structure (Jantunen et al. 2006). However, monitoring 
stations dedicated to detecting the roadside environ-
ment are often relatively few and sparsely distributed 
spatially, making it difficult to conduct large-scale 
studies. Remote sensing has become a common 
data source to represent the roadside environments, 
and it is more effective in providing essential data for 
characterizing roadside environments than station- 
based monitoring data at a large spatial scale. 
Roadside environmental variables retrieved from 
remote sensing data include soil variables, climate 
variables, and vegetation variables. For instance, soil 
moisture (Al-Yaari et al. 2019), soil heavy metal con-
tent (Y. Ge, Thomasson, and Sui 2011) can be esti-
mated using remote sensing technology, which has 
equivalent accuracy with situ observation (Ma et al. 
2019). Aerosol Optical Depth (AOD), a key physical 
quantity characterizing the degree of atmospheric 
turbidity, is an important factor in determining aero-
sol climate effects and estimating environmental pol-
lution levels (Martins et al. 2019). Vegetation indexes 
and LST data can be used to assess the road impacts 
on roadside vegetation and trees (Cârlan et al. 2020). 
Vegetation indexes calculated by different bands of 
remote sensing images are often used to reveal vege-
tation situations. Among them, the enhanced 
Vegetation Index (EVI) is a very commonly used vege-
tation index that can effectively reflect vegetation 
changes (Rashid Khan et al. 2018).

The interactive impacts of different variables of 
road infrastructure on the economy and environment 
are sophisticated, leading to the difficulty of quantify-
ing trade-offs of road impacts (Allen and Arkolakis 
2020). It is also a challenge to estimate regional dis-
parities in the road impacts on the economy and the 
environment due to the ubiquitous spatial heteroge-
neity in both road performance variables and eco-
nomic and environmental variables. Therefore, 
spatial heterogeneity methods are required to 
explore the road impacts on the economy and the 
environment and its trade-offs. The geographical 
detector model is an effective approach to investigate 
the spatial heterogeneity in the stratified structure of 
variables without the requirement of statistical 
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distributions of data (Y. Hu et al. 2011; Song, Wu et al. 
2020a). It has been widely used in investigating envir-
onment change (Du et al. 2016; Shrestha and Luo 
2017; Ding et al. 2019; Zhu, Meng, and Zhu 2020), 
urban expansion (Yang, Qian, and Long 2016), health 
risk assessment (J. F. Wang et al. 2010; Erjia et al. 2017; 
Liao et al. 2017), natural disaster risk assessment (Hu 
et al. 2011; Zhang, Nie et al. 2020). In recent studies, 
the geographical detectors model has been applied in 
transportation studies. For instance, it is used to iden-
tify influence factors of traffic accidents (Y. Zhang, Lu, 
and Qu 2020) and traffic jam (Daniel(Jian), Kaisheng, 
and Suwan 2018), explore the impact of transporta-
tion modes on epidemic (Cai et al. 2019) and impact 
of transportation on population distribution (L. Wang 
and Chen 2018), and analyze road deterioration (Song 
et al. 2018b, 2020b). An optimal parameters-based 
geographical detector (OPGD) was developed to 
explore the relationship between road deteriorations 
and potential explanatory variables, such as traffic 
volumes, climate, and soil attributes (Song et al. 
2020b). Geographical detectors model is also widely 
used to study the association between road transpor-
tation and the roadside environment, such as traffic 
emissions (Daniel(Jian), Kaisheng, and Suwan 2018), 
heavy metal pollutions around the transportation hub 
(D. Li and Liao 2018), wildlife movements affected by 
roads (Shi et al. 2018), and build environment (S. 
Wang et al. 2018; Li, Lyu et al. 2020b).

In general, current research lacks a spatial analysis 
approach to explore the trade-offs between the 
impact of road infrastructure on the roadside environ-
ment and the economy. Thus, most of the road per-
formance indicators and roadside environmental data 
used are statistical data and roadside environmental 
monitoring stations, making it difficult to provide 
sufficient spatial information. In this study, spatial 
disparities in the trade-offs between road impacts 
on the economy and the roadside environment 
were investigated with remote sensing and geospa-
tial data using an optimal parameters-based geogra-
phical detector (OPGD) model. First, road 
performance was characterized from the perspectives 
of road density, connectivity, traffic volumes, and ser-
vices to communities, other transportations (e.g. ports 
and airports), and industries. The services of road 
infrastructure were evaluated using a spatial accessi-
bility analysis with OpenStreetMap (OSM) derived 
points of interest (POIs). Next, based on the Google 

Earth Engine (GEE) platform, the change of roadside 
EVI and AOD were calculated and used to characterize 
the roadside environment. Resident income was used 
as a proxy variable of the local economics in this 
study. Third, an OPGD model was utilized to assess 
the spatial trade-offs of road impacts on the economy 
and roadside environment. In this step, optimal para-
meters of spatial discretization were derived for esti-
mating the power of determinant (PD) and the power 
of interactive determinant (PID) of indicators of road 
infrastructure for the local economy and roadside 
environment. The nonlinearity and spatial disparities 
of impacts of individual road performance variables 
were compared to assess the spatial trade-offs. 
Finally, a sensitivity analysis was performed to evalu-
ate the parameters of the roadside environment on 
the model and results. To the best of our knowledge, 
this is the first research to explore spatially differen-
tiated trade-offs between the economic and roadside 
environmental impacts of roads using remotely 
sensed data, geospatial data, and spatial heterogene-
ity model at the continental level.

2. Study area and data

2.1. Study area

The transportation infrastructure systems are funda-
mental land assets in Australia. Australia has a well- 
developed road infrastructure consisting of 800,000 
kilometers of road networks and transportation facil-
ities, which is one of the most expanded road net-
works in the world. Transportation infrastructure 
makes a major contribution to the Australian econ-
omy in terms of employment, production, and 
exports, and contributed 7.4% to GDP in 2015–16 in 
Australia (ABS 2015). Australian authorities have 
developed national strategies on progressing toward 
transportation infrastructure-related SDGs, such as 
SDG 9 – building resilient infrastructure and SDG 
11 – making cities and communities sustainable 
(Allen et al. 2019; Hall et al. 2020; Allen et al. 2020). 
In this study, the Local Government Areas (LGA) in 
Australia are used as the spatial unit of analysis.

2.2. Income data

Resident income data collected at the LGA level in 2011 
and 2016 were used to demonstrate the local economy 
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in Australia (ABS 2020). The data is compiled from the 
Linked Employee Dataset (LEED), based on the 
Australian taxation system. The income values of the 
data represent personal income before any taxation, 
levies (e.g. Medicare levy), and losses, and inflation is 
not considered. In this study, the average income at 
each LGA between 2011 and 2016 was calculated to 
represent the local economy during this period.

2.3. Environment data

MODIS EVI data and MODIS AOD data were used to 
reveal roadside environmental changes related to 
road transportation infrastructure. The MOD13Q1 V6 
product provides vegetation index values on a per- 
pixel basis with a resolution of 250 meters (Didan et al. 
2015). The product contains two vegetation index 
bands, NDVI and EVI. The NDVI is the difference 
between near-infrared and red reflectance divided 
by the sum of them. The EVI is computed as follows: 

EVI à G ⇤ ρnir � ρred

ρnir á C1 ⇤ ρred � C2 ⇤ ρblueÖ Ü á L
(1) 

where ρnir , ρred, and ρblue are near-infrared band, red 
band, and blue band of MODIS, respectively. G is the 
gain factor and equals 2.5 for MODIS EVI data. C1 and 
C2 are the coefficients of the aerosol resistance term, 
which are 6.0 and 7.5, respectively. L is the canopy 
background adjustment which equals 1.0 for MODIS 
EVI data. The value of EVI and NDVI are from −1 to 1.

Compared to NDVI, EVI minimizes canopy back-
ground variation and maintains sensitivity in dense 
vegetation conditions (Matsushita et al. 2007). Also, 
EVI uses the blue band to eliminate residual atmo-
spheric pollution caused by smog and sub-pixel thin- 
cloud cover. In addition, the MODIS Terra AOD 
(MCD19A2 V6) data with the resolution of 1 km is 
used as a proxy variable of roadside emissions 
(Martins et al. 2019). It contains AOD bands at 0.470 
and 0.550 μm, where the 0.550 μm band of AOD is 
used in this study due to its wide applications in 
exploring environmental pollution issues (Allen et al. 
2015).

2.4. Data of road performance

2.4.1. Traffic data
Traffic volume is a wide used indicator of the trans-
portation infrastructure capacity. In this study, the 

number of motor vehicles is used as proxy variables 
of nationwide traffic volume data across Australia. 
Australia bureau of statistics publishes the number 
of motor vehicles by LGA in 2006, 2011, and 2016. 
The mean volume at the LGA level in 2011 and 2016 
was calculated as the average traffic volume during 
this period.

2.4.2. Facilities and networks
The data of facilities and road networks used in 
this study were derived from the OSM (http://www. 
openstreetmap.org). The OSM is the most widely 
recognized volunteered geographic information 
(VGI) data, and the database consists of vector 
data, such as facility location data, road networks, 
administrative boundaries, and land cover (Haklay 
and Weber 2008; Schultz et al. 2017). As is shown 
in table 1, in this study, the facilities data contain 
28 types of POI at level B from nine types at level 
A: education facility, health facility, green spaces/ 
sports area, public facility, residential area, airport, 
port, industry area, and commercial area (Table 1). 
Road networks from OSM in Australia contain mul-
tiple hierarchies of roads, and six hierarchies were 
selected to calculate road infrastructure perfor-
mance, which are primary road, primary road link 
secondary, secondary link, trunk, and trunk link.

2.4.3. Population data
Spatial distributions of the population are character-
ized using the WorldPop population density data 
(https://www.worldpop.org/), which was generated 
to provide an open population dataset for sustain-
ability development, disaster management, and 
health applications (Stevens et al. 2015b; Gaughan 
et al. 2013). The WorldPop data provide distributions 

Table 1. Facility category and levels of POI.
Category of 
facility POI at Level A POI at Level B
Communities Education 

facility
University, college, library, 

kindergarten, school
Health facility Hospital, pharmacy
Green space/ 

Sport area
Park, sport center, playground

Public facility Police, post office, fire station
Resident area Hotel, resident community

Other 
transportations

Airport Airport
Port Port

Industries Industry area Waste, water plant, water tower, 
wind mill, factory

Commercial 
area

Supermarket, bank, ATM, restaurant, 
cinema, theater, shop
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of different kinds of population attributes, including 
density and age structure. The population density of 
WorldPop was mapped using a random forest model 
with a wide range of ancillary data and downscaled 
from the census data at an administrative level to the 
grid level (Stevens et al. 2015a; Gaughan et al. 2013). 
In this study, the WorldPop population density data at 
1 km resolution in 2011 and 2016 were used for 
analysis.

3. Methods

Figure 1 shows the schematic overview of methods 
for assessing the spatial disparities in trade-offs 
between road impacts on the economy and the envir-
onment. In general, the methods consist of four steps: 
(i) Road density and road connectivity were calculated 
at an LGA level; (ii) spatial accessibility analysis was 
performed for each category of facilities, and the road 
services to communities, other transportations (e.g. 
ports and airports), and industries were estimated as 
the sum entropy weighted spatial accessibilities; (iii) 
roadside environment conditions were defined and 
quantified using MODIS EVI and AOD data. The road-
side environment across the whole road network was 
computed on GEE. Fourth, PD and PID were estimated 
between road transportation infrastructure variables 
and economic or environmental variables. The trade- 
offs of road impacts on the economy and environ-
ment were analyzed through the comparison of their 
respective PD distributions; (iv) the sensitivity of the 
road buffer was explored by analyzing the road 
impacts on the environment at four different road 
buffers.

3.1. Calculation of road density and road 
connectivity

Road density and road connectivity are essential indi-
cators to access road infrastructure and economic 
development. Road density in an LGA is a ratio 
between total length within the LGA and the area. 
Road connectivity is represented by the ratio of the 
number of interactions and the area. The original road 
network from OSM was segmented according to toad 
attributes, such as road name, road hierarchy, and the 
max speed of the road. This segmentation may lead to 
massive junctions located in the middle of roads, and 
these junctions cannot reflect the transportation 
capacity. To address this issue, we merged the 
whole road network and then identified junctions at 
the intersections across the network. Thus, the density 
of identified junctions was used to present the road 
connectivity within LGAs.

3.2. Accessibility analysis

Road services to communities, other transportations, 
and industries were evaluated using a spatial accessi-
bility analysis. Accessibility can be characterized by 
the average distance from the population to the facil-
ity. In this study, a network-based accessibility analy-
sis was used to indicate services of the three types of 
facilities. The method to estimate the services of facil-
ities includes the following steps.

First, population-weighted centroids (PWCs) were 
computed for LGAs. Due to spatial heterogeneity of 
population distribution, the PWCs can more accu-
rately reveal the clustered location of the population 

Figure 1. Schematic overview of assessing spatial disparities in trade-offs between road impacts on the economy and environment.
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within a region than geometric centroids (Song et al. 
2018a). The average population density between 
2011 and 2016 was used to calculate PWCs using 
the PWC estimation method presented in Song et al. 
(2018a).

Second, spatial accessibility to the facility was 
computed using a network-based analysis method. 
POIs at level B were merged into level A, and all the 
PWCs and POIs were relocated in the road network 
according to the nearest Euclidean distance before 
the spatial accessibility. Accessibility of each cate-
gory of the facility was represented by the average 
distance of the PWC to the nearest certain number of 
facilities. The numbers of target facilities were 
searched to determine the service capacity of facil-
ities to local residents. If the number of targeted 
facilities is too small, the accessibility may be 
unstable and lack conviction, and if the number of 
target facilities is too large, the accessibility differ-
ences between different regions are blurred. A series 
of numbers of target destinations were set to select 
the suitable target destination count for different 
types of facilities. And the most reasonable destina-
tion counts were selected by visual checking. In this 
study, the number of target destinations for ports 
and airports and for other facilities was 2 and 10, 
respectively.

The final step was to present services of facilities 
using the sum of entropy-weighted spatial accessibil-
ity to facilities (Bao et al. 2020). Nine facility accessi-
bilities were grouped into three categories, service to 
communities, service to other transportations, and 
service to industries using the entropy weight 
method. Entropy, an information indicator of variable, 
was used to evaluate the contribution of accessibil-
ities for facilities in level A to the corresponding ser-
vices to facilities. Thus, entropy was used to estimate 
the weights of accessibilities. If the information 
entropy of accessibility is high, a high weight should 
be given to the accessibility to a certain type of facil-
ity. The first step of the entropy weight method was to 
normalize the accessibilities. Then, the standardized 
value of the jth type of POIs at level B within the ith 
LGA is calculated as follows: 

Sij à
PijPn
ià1 Pij

(2) 

where n is the number of LGAs, Pij is the normalized 
number jth POI at the ith LGA. Then, the information 

entropy ÖEjÜ and the information entropy weights 
ÖEWjÜ of the jth type of POI are calculated as: 

Ej à �ln nÖ Ü�1
Xn

ià1
Wijlog2Sij (3) 

EWj à
1� Ej

m�
Pm

jà1 Ej
(4) 

wherem is the number of POI types in this category. 
Finally, the service of roads to a category of facilities at 
the ith LGA is computed as a sum entropy weighted 
accessibility to facilities in this category: 

ηi à
Xm

jà1
EWj ⇤ αj (5) 

where αj is the accessibility of jth category of facility.

3.3. Local economy and roadside environment

Average resident income was used to represent 
the local economy. The missing data at five LGAs 
(5/541) were filled using the inverse distance 
weighting (IDW) method (Donald 1968). To evalu-
ate the roadside environment change, a 1 km buf-
fer around the road network was generated to 
calculate the mean values of environmental vari-
ables within the buffer (Figure 2). Then, the road-
side change of EVI and AOD of each LGA between 
2016 and 2011 were calculated using the 1 km 
buffer from the GEE platform.

3.4. OPGD-based spatial trade-offs analysis

PD and PID are used to investigate the impacts of 
road performance on the economy and environ-
ment. PD and PID were widely used indicators to 
represent the impact of explanatory variables on 
response variables from the perspective of spatial 
heterogeneity (J. F. Wang et al. 2010). PD is used to 
explain the impact of individual variables, and PID 
is used to explain the interactive impact of vari-
ables. The fundamental assumption of the indica-
tors is that: if an explanatory variable has 
a significant influence on a response variable, 
they are probably distributed in similar spatial pat-
terns. In this study, a strategy of the optimization 
of spatial discretization was used to identify opti-
mal discretization parameters of road performance 
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indicators (Song et al. 2020b; Song and Peng 
2021). Then, the PD and PID values were calculated 
to represent the impacts of six road performance 
indicators on resident income, change of roadside 
EVI, and change of roadside AOD, respectively. 
Finally, a sensitivity analysis was performed to vali-
date the developed methods in the study. The 
optimization of spatial discretization was per-
formed using the R package “ISDA” (Song and 
Peng 2021) and the PD and PID values were calcu-
lated using the R package “GD” (Song et al. 2020b).

3.4.1. Optimization of spatial discretization
The geographical detector model can only deal with 
discrete variables to calculate the PD and PID. Thus, all 
continuous variables need to be converted into dis-
crete variables before inputting the model (Wang and 
Chengdong 2017). The spatial data discretization 
method aims to divide continuous geographical and 
geospatial data into several intervals depending on 
the data’s physical or statistical characteristics (Song 
et al. 2020b). In this study, the optimal spatial discre-
tization method proposed by Song and Peng (2021) 
was used. Firstly, all variables are divided into 3–22 
groups using a quantile break. Second, for each 
optional parameter combination of an explanatory 
variable, the Q value was calculated, and a variation 
curve of the 75th quantile Q values was smoothed 
using a locally estimated scatterplot smoothing 
(LOESS) model. Finally, when the increase rate of the 

curve is lower than 5%, the point was selected as the 
optimal break number and used in further analysis.

Using the spatial discretization, the whole area was 
divided into several spatial overlay zones according to 
each explanatory variable. The average risk value at 
a zone of the explanatory variable was represented by 
the average value of response variables at this zone (Z. 
Wang et al. 2020). In this study, the spatial distribution of 
impacts of roads to the local economy and the roadside 
environment is assessed and visualized using the mean 
risk value.

3.4.2. Power of determinant
The PD is used to explore the explanatory power of 
road performance indicators on the economy and 
environment (Song and Peng 2021). The PD is mea-
sured by a Q value defined as: 

Q à 1�
PH

zà1 Nzσ2
z

Nσ2 (6) 

where z is the number of spatial zones, Nz and N are 
the number of LGAs in zone z and the whole study 
area, respectively, and σ2

z and σ2 are the variance of 
the response variable for the units in zone z and the 
whole study area, respectively. The Q value ranges 
from 0 to 1, and the Q value indicates that the expla-
natory variable explains 100 × Q% of the response 
variable. The Q value followed the noncentral F-test, 
which was used to determine the significance level 
(J. F. Wang et al. 2010)

Figure 2. Road network and change of EVI derived from MODIS (a) and buffers for capturing roadside environment (e.g. EVI) (b).
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3.4.3. Power of interactive determinant
The PID explains whether the explanatory powers of 
two factors are enhanced, weakened, or independent 
of each other (J. F. Wang et al. 2010; Hu et al. 2011; 
J. F. Wang, Zhang, and Fu 2016). First, the PD values of 
two explanatory variables XA and XB for the response 
variable were calculated as Q XAÖ Ü and Q XBÖ Ü, respec-
tively. Then, the PID of the interaction, a spatial over-
lay of factors XA and XB, was calculated as Q XA \ XBÖ Ü. 
The comparison between PID and individual PD indi-
cates if variables are spatially independent, enhanced, 
or weakened by each other. For instance, if Q XA \ XBÖ Ü
is higher than the sum of Q XAÖ Ü and Q XBÖ Ü, the inter-
action of XA and XB has an enhanced effect on the 
response variable. Conversely, the interaction of XA 

and XB has a weakened effect on the response vari-
able. If Q XA \ XBÖ Ü equals to Q XAÖ Ü á Q XBÖ Ü, XA and XB 

are spatially independent when affecting the 
response variable.

3.4.4. Sensitivity analysis

The sensitivity analysis was conducted to explore the 
influence of parameters for defining roadside envir-
onment on the road impact assessment. In the study, 
the roadside environment was defined as EVI and 
AOD values at a 1-km buffer of roads. To evaluate 
the impacts of the distance of buffer on the road 
impact assessment, the impacts were calculated and 
compared for roadside EVI and AOD with four 

different buffers around the road network in 
Australia (Figure 2b), including 0.5 km, 1 km, 2 km, 
and 5 km. The roadside change of EVI and AOD 
between 2011 and 2016 was evaluated within each 
road buffer based on the GEE platform. The PD values 
of road impacts on roadside environment variables at 
four buffers were calculated to analyze the sensitivity 
of the buffer distance on the impact evaluations. As 
a result, the variations of PD values under different 
distances of buffers can demonstrate the sensitivity of 
the methods.

4. Results

4.1. Spatial patterns

4.1.1. Local economy and roadside environment
Figure 3 shows spatial distributions and urban-rural 
comparisons of resident income and changes of road-
side EVI and AOD. Resident income has a slight urban- 
rural disparity, where the urban resident income 
($59,299 per year) is 15.17% higher than the rural 
resident income ($51,487 per year). Resident income 
in major cities is higher than in other regions.

From the perspective of the environment, the 
change of the roadside environment from 2011 to 
2016 also contains regional disparities. Vegetation 
plays an important role in both the regional hydro-
logical cycle, climate regulation, and ecological sus-
tainability. EVI can characterize vegetation cover 

Figure 3. Spatial distributions (top) and density distributions (bottom) of local economy and environment changes: (a, d) resident 
income; (b, e) change of roadside EVI; and (c, f) change of roadside AOD. Roadside EVI and AOD are derived from MODIS.
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changes very well (Duarte et al. 2018). The roadside 
EVI is increased in rural areas with 0.0058 EVI change, 
but it is decreased in urban areas with −0.0110 of EVI 
change. Roadside EVI decreases more in major cities 
than in suburban and rural areas. Suburban areas 
have the highest increase of EVI. The change of road-
side EVI reflects the impact of human activities on the 
roadside environment, including infrastructure con-
struction and road transport (Jantunen et al. 2006). 
The decrease of roadside EVI in urban areas reveals 
road transportation infrastructure has a negative 
impact on the environment (Ghosh, Raj, and Maiti 
2020).

AOD is an indicator of atmospheric conditions in 
a region. The main factors contributing to the increase 
in AOD are polluting gases from industrial production, 
construction, transport, and other human activities. In 
Australia, AOD slightly increased in most areas, where 
the growth of AOD in urban areas is 2.1 times higher 
than that in rural areas, which was 0.0030 and 0.0014, 
respectively. The highest increase in AOD appears in 
the major cities and suburban areas. In inland areas and 
some parts of east areas, the AOD decreased, which 
indicates the improvement in air quality. In summary, 
from the spatial perspective, roadside environmental 
changes are closely linked with economic growth.

4.1.2. Road performance
Table 2 shows the weights of accessibilities to nine 
types of facilities in the three categories. The spatial 

accessibility to each of the three categories of facil-
ities, which is used to estimate the road services to 
facilities, is the sum of weighted accessibilities to 
different types of facilities in the category.

Figure 4 shows spatial distributions of road perfor-
mance indicators. In general, road performance indi-
cators perform better in major cities than that in 
suburban areas and rural areas. In major cities, ser-
vices to communities and industries perform better 
than the service to other transportations, including 
ports and airports. The average distance of services to 
communities and industries ranges from 1.0 km to 
7.4 km, while its ranges from 7.4 km to 54.6 km to 
other transportations.

The three direct road performance indicators, road 
density, road connectivity, and traffic volumes, are 
generally correlated with regional economic develop-
ment. The differences between the three indicators in 
major cities, suburban areas, and rural areas are sig-
nificant. As for the three indirect indicators, services to 

Table 2. The entropy weights of accessibility.
Accessibility to three 
categories of facilities

Accessibility different types of 
facilities in the category

Entropy 
weight

Communities Residential area 0.227
Public 0.197
Health 0.180
Green space and Sport area 0.224
Education 0.172

Other transportations Ports 0.518
Airports 0.481

Industries Industry 0.391
Commercial 0.610

Figure 4. Spatial distributions of road performance indicators: (a) road density, (b) road connectivity, (c) traffic volumes, (d) service to 
communities, (e) service to other transportations, and (f) service to industries.
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facilities, in addition to being influenced by the over-
all level of economic development, are also related to 
the industrial structure of the region and the type of 
facilities it leads to. For example, the services to other 
transportations in major cities and coastal cities 
ranges from 7.4 km to 54.6 km, while are above 
54.6 km in suburban areas. However, in most of the 
suburban areas, services to the industry are below 
7.4 km, with less difference with major cities.

Table 3 shows a statistical summary of response 
variables, including economy, roadside environment, 
and road performance indicators. The mean LGA- 
based income is 55,100, USD and the coefficient of 
variation (CV) of resident income is 0.30. The CV 
values of changes of roadside EVI and AOD are 
−12.87 and 4.54, respectively. The CV values indicate 
that the changes of EVI and AOD have much higher 
spatial disparities than resident income. The mean 
road density and connectivity are 0.44 km/km2 and 
1.07 interactions/km2. The mean traffic volume of 

LGAs is 16,170 per road. The mean distance between 
PWCs and facilities of communities, other transporta-
tions, and industries are 91.97 km, 252.23 km, and 
55.39 km, respectively.

4.2. Road impacts on economy and environment

4.2.1. Optimal spatial discretization
Figure 5 shows the process of optimal spatial data dis-
cretization for the analysis of resident income, change of 
roadside EVI, and change of roadside AOD. With the 
break number increased from 3 to 16, the Q values of 
road performance indicators are generally increased 
(Figure 5 a–c), but the increase rate is gradually reduced 
(Figure 5 d-f). When the increase rate is lower than 0.05, 
the optimal break number is selected (Song and Peng 
2021). The optimal numbers of spatial discretization are 
7, 8, and 8 for spatial analysis of resident income, the 
change of EVI, and the change of AOD, respectively.

Table 3. Statistical summary of economic and roadside environmental variables and road performance indicators.
Variable Code Mean Median SD Min Max CV

Response variable Resident income ($1,000) / 55.10 51.71 16.44 26.35 216.01 0.30
Change of roadside EVI※ / −0.0023 −0.0051 0.0290 −0.0704 0.0699 −12.41
Change of roadside AOD※ / 0.0022 0.0027 0.0100 −0.0283 0.0490 4.54

Road performance indicators Road density (km/km2) rd 0.44 0.08 0.84 0.00 5.76 1.90
Road connectivity (interactions/km2) rc 1.07 0.02 2.77 0.00 22.01 2.58
Traffic volumes (103) vlm 16.17 5.17 30.16 0.02 412.55 1.87
Service to communities (km) sc 91.97 43.13 136.54 0.85 1107.01 1.49
Service to other transportations (km) st 252.23 183.02 269.30 0.00 2096.52 1.07
Service to industries (km) si 55.39 22.78 91.62 0.00 870.30 1.65

※Roadside EVI and AOD are derived from MODIS.

Figure 5. Processes and results of the optimization of spatial discretization for resident income (a, d), change of roadside EVI (b, e), and 
change of roadside AOD (c, f).
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4.2.2. PD and PID of roads to economy and 
environment
Figure 6 shows the PD and PID of road transportation 
infrastructure on the local economy and roadside 
environment. Road density and service to commu-
nities have the largest impact on resident income, 
with Q values of 0.2775 and 0.2754, respectively. 
Highly dense roads can benefit the resident income. 
Road service to communities has a higher impact on 
resident income than services to other facilities. 
Community facilities include schools, hospitals, and 
public facilities, which are most relevant to human’s 
daily activities. Results also show that the road service 
to public facilities brings more benefits to the resident 
income than the service to industries. Thus, the 
investment and construction of the living facilities 
are helpful for improving local resident income.

The interaction of traffic volumes with all the other 
variables has a nonlinear enhancing effect on resident 
income. Resident income is determined by multiple 
mixed factors, which are difficult to be measured 
(Glaeser, Kahn, and Rappaport 2008; Xue ting et al. 
2018). This study shows that the interaction between 
traffic volumes and road density can explain 47.4% of 
resident income. The service to communities has the 
highest impact on the change of roadside EVI, with 
a Q value of 0.2539. And service to other transporta-
tions has the highest impact on the change of 

roadside AOD, with a Q value of 0.2475. The interac-
tion of service to other transportations and traffic 
volumes has the highest impact on the roadside 
environment, explaining 41.1% of the change of road-
side EVI and 43.2% of the change of roadside AOD. 
Most of the imports and exports rely on port trans-
portation in Australia. Maritime exports in 2016 were 
1,394.5 million tonnes, comprising 909.5 million tons of 
crude oil and inedible materials (except fuels) and 
440.2 million tons of mineral fuels, lubricants, and 
related materials in Australia (BITRE 2018). The change 
of the roadside environment is mainly because of the 
air pollution from freight transportation between ports 
and industrial regions, including mining, oil and gas 
products, grain, and other agricultural products.

Results show the distinctive impacts of traffic 
volumes on the local economy and roadside environ-
ment. Traffic volumes can be regarded as the proxy of 
economic vitality (Li, Gao et al. 2020a), while they can 
only explain 4.15% of resident income and 16.39% of 
roadside EVI. But our result shows traffic volumes and 
other road infrastructure performance have an extre-
mely nonlinear enhanced impact on the local econ-
omy and roadside environment, which can explain 
nearly 50% of resident income, change of roadside 
EVI, and change of roadside AOD. This means only 
enough traffic volumes or economic vitality is insuffi-
cient to promote economic growth and 

Figure 6. PD (top) and PID (bottom) of road performance indicators to resident income (a, d), change of roadside EVI (b, e), and change 
of roadside AOD (c, f).
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environmental change, but when it is integrated with 
well-built road infrastructure, including roads and 
service facilities, the economy will develop rapidly, 
although environmental change will also intensify. 
On the other side, economic development also relies 
on adequate social-economic vitality, including 
a stable investment environment and reasonable eco-
nomic policies. Only well-constructed infrastructure 
construction is not enough.

4.2.3. Spatial distributions and trade-offs of impacts
Road density and road connectivity are direct indica-
tors to represent road performances. Figure 7 shows 
the impacts of road density and road connectivity on 

the local economy and roadside environment, 
revealed by risk values from the geographical detec-
tor. The spatial disparities and nonlinearity of road 
impacts on the economy and environment are 
revealed. In major cities, road density and road con-
nectivity have the highest impacts on resident income 
(refer to the red dots in the first map of Figure 7 a, b). 
Areas with the highest road density (range from 
1.16 km/km2 to 5.76 km/km2) and the highest road 
connectivity (range from 2.27 interactions/km2 to 22 
interactions/km2) have the highest resident income, 
which is 75,560 USD and 69,780, USD respectively. 
Resident income in suburban areas has the lowest 
dependence on road density and road connectivity.

Figure 7. Trade-offs between road impacts on income and roadside environment: regional impacts of road density (a) and 
connectivity (b). Different colors of dots in maps represent the positive or negative impacts on the economy and environment. 
Roadside EVI and AOD are derived from MODIS.
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As for environmental impacts, road density and 
road connectivity negatively impact roadside vegeta-
tion in major cities, with the decreased EVI (refer to 
the orange dots in the second map of Figure 7 a, b). 
The highest decrease EVI (−1.7%) appears in the areas 
with a road density range from 0.294 km/km2 to 
1.38 km/km2. The second highest decrease of EVI is 
−1.5% in areas with road connectivity range from 
0.456 interactions/km2 to 2.76 interactions/km2. In 
suburban and rural areas, road performance has 
a positive impact on roadside vegetation, especially 
in suburban areas. The highest increase EVI (1.8%) 
appears in the areas with road connectivity range 
from 0.0026 interactions/km2 to 0.0058 interactions/ 
km2. EVI also increase a lot (1.7%) in areas with road 
density range from 0.0645 km/km2 to 0.0804 km/km2. 
EVI is a remote sensing indicator of vegetation cover-
age and vegetation condition. Results also indicate 
that the effects of protecting and recovering roadside 
vegetation are varied across different regions. Among 
different regions, actions in suburban areas have the 
highest positive effect on roadside vegetation growth 
and recovery. Therefore, the spatial disparities of road 
impacts on roadside vegetation should be considered 
in practical road asset management and decision- 
making.

Traffic volumes and service to facilities are indirect 
indicators for road performance. Figure 8 shows the 
impacts of four indicators on the local economy and 

roadside environment. The findings from Figure 8 can 
be summarized into economic impact and environ-
mental impact, as follows:

From the economic impact perspective, resident 
income in major cities has the highest dependence 
on transportation infrastructure performance (refer to 
the red dots in the first map of Figure 8 a-d). In sub-
urban areas, services to facilities have relatively less 
importance to resident income (refer to the blue dots 
in the first map of Figure 8 b-d). Suburban areas with 
services to communities range from 33.7 km to 52.7 km 
have the lowest resident income ($47,485). Therefore, 
the investment and construction of service facilities are 
usually helpful for the economic growth in suburban 
areas. In rural areas, traffic volumes have the lowest 
impact on resident income (refer to the blue dots in the 
first map of Figure 8 a). Thus, increasing traffic volumes 
in rural areas is a potential approach to stimulate the 
local economy since traffic volumes can partially indi-
cate local socio-economic vitality.

From the environmental impact perspective, in 
major cities, roads have a negative impact on road-
side vegetation, as demonstrated by the decreased 
EVI (refer to the orange dots in the second map of 
Figure 8 a-d). Areas with traffic volumes range from 
37,400 to 413,000 have the highest reduction in road-
side EVI (−1.7%). In rural areas, traffic volumes and 
services to facilities are beneficial to the roadside 
environment, increasing roadside EVI (refer to the 

Figure 8. Regional impacts of traffic volumes and service to facilities. (a) Traffic volume; (b) service to communities; (c) service to other 
transportations; (d) service to industries. Different colors of dots in maps represent the positive or negative impacts on the economy 
and environment. Roadside EVI and AOD are derived from MODIS.
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green dots in the second map of Figure 8 a). And the 
EVI in suburban areas increases more than in rural 
areas. Areas with service to industries range from 
64.4 km to 128 km have the highest increase in road-
side EVI (2.5%). Besides desert areas, all variables posi-
tively impact on the increase of roadside AOD, and 
traffic volumes have the highest impact. The increase 
of AOD in suburban areas is higher than that in major 
cities and rural areas.

To sum up, this study reveals the significant non-
linearity, spatial disparities, and interactions of trade- 
offs between road impact on the economy and the 
local environment. In major cities, road-related income 
is much higher than that in other regions. On the 
contrary, the local economy in suburban areas has 
the lowest dependence on road performance.

Major cities with the highest road-related 
income have higher environmental pressure than 
other regions, which reveals interactions of trade- 
offs between road impact on the local economy 
and the roadside environment. In suburban and 
rural areas, the roadside environment has improve-
ments, with the increase of EVI. Generally, subur-
ban areas have a higher increase of EVI than rural 
areas. In desert areas where environmental degra-
dation serves, the EVI decreases a lot in the desert 
areas. However, road performance factors except 

traffic volumes can reduce the roadside AOD, 
which indicates that the construction of road infra-
structure is beneficial to improving the desert 
environment.

4.3. Sensitivity analysis

Sensitivity analysis was used to reveal the impact of 
the road on roadside environment change within 
different distances. Figure 9 shows the trend of 
Q values of six explanatory variables for change 
of roadside EVI and AOD. The order of significance 
of variables is not changed for all distances to roads. It 
shows that 1 km is the most reasonable distance to 
evaluate the change of roadside environment. Apart 
from service to industries, the road has the highest 
impact on EVI at 1 km for all variables. Change rates of 
Q values of all variables are slight, which are −1.64% 
to 2.44% for the change of roadside EVI and −5.81% to 
1.87% for the change of roadside AOD. The road 
impact to the roadside EVI is most sensitive when 
the road buffer changes from 0.5 km to 1 km. The 
change rate of Q value for service to industries is 2.4%. 
And road impact to the roadside AOD is more sensi-
tive from 1 km buffer to 2 km buffer, with the −1.6% 
change rate of Q value for service to other 
transportations.

Figure 9. The Q values (left) and change rates (right) of explanatory variables at different buffers for environment variables: (a, b) 
change of roadside EVI; (c, d) change of roadside AOD. Roadside EVI and AOD are derived from MODIS.
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5. Discussion

The positive impact of transportation infrastructure 
on resident income includes saving commuting 
time, connecting markets and raw materials, 
which can reduce transport costs, and providing 
job opportunities. However, road transportation 
infrastructure may damage the environment. The 
construction of road infrastructure and the erosion 
of soil in this process destroys the roadside vege-
tation and thus decrease the EVI. In addition, 
industrial facilities will come with an AOD increase. 
Therefore, the trade-offs between the economy 
and the environment must be considered when 
investing in road transportation infrastructure. 
However, past studies have been less likely to 
analyze and characterize this impact from 
a spatial perspective. Road performance indicators 
and environmental pollution indicators mostly use 
statistical data or data from monitoring stations. 
The spatial distribution of these data is sparse, 
and it is difficult to reveal spatial information. As 
a result, the spatial patterns of environmental and 
economic impacts of roads have not been explored 
comprehensively.

In this study, the relationship between transporta-
tion infrastructure, the environment, and the econ-
omy was explored using remote sensing data and 
a spatial heterogeneity model. And the trade-offs 
between road impacts on the local economy and 
the roadside environment were revealed. Findings 
are summaries as follows. First, road density, service 
to communities, and service to other transportations 
play the most important role in determining resident 
income, change of roadside EVI, and change of road-
side AOD, respectively. The interaction of traffic 
volumes with other transport infrastructure variables 
can significantly affect the economy and the environ-
ment. In particular, the interaction of traffic volumes 
with road density can explain nearly 50% of the resi-
dent income.

Second, the environmental and economic impacts 
of transportation infrastructure have a spatial differ-
ence. Major cities are more dependent on transporta-
tion infrastructure for economic development but 
face greater environmental pressures than suburban 
and rural areas, with the decrease of roadside EVI and 
rapid increase of roadside AOD. On the contrary, the 
roadside environment has improved in suburban and 

rural areas, with increased EVI and a lower increase of 
AOD than in major cities.

Third, road transportation infrastructure has 
a nonlinear impact on the economy and the environ-
ment, leading to the interactions of trade-offs 
between road impact on the economy and the impact 
on the local environment. The development of road 
infrastructure systems can enhance economic growth, 
but it also brings pressure to the roadside environ-
ment. In order to improve resident income and pro-
tect the environment, regional strategies are required 
for achieving sustainable road infrastructure develop-
ment. The actions primarily include strategic road 
infrastructure maintenance and management (Song 
et al. 2018b), nation-wide and network-level strate-
gies for sustainable infrastructure development (Song 
et al. 2020b), and roadside ecological and environ-
mental protections.

In this study, results show that the effects of actions 
for improving both economic growth and roadside 
environment in suburban and rural areas are more 
significant than that in major cities. The primary rea-
son is that major cities have higher environmental 
pressure than suburban and rural areas. This means 
that much more actions are required in major cities to 
decrease the environmental impacts of road infra-
structure than in suburban and rural areas. Finally, 
road impact on the vegetation is most sensitive at 
the distance range from 0.5 km to 1 km around the 
road. In comparison, road impact on the AOD is most 
sensitive at the distance range from 1 km to 2 km 
around the road.

Road transportation infrastructure also has signifi-
cant impacts on the landscape dynamic. First, road 
infrastructure has critical impacts on vegetation 
dynamics. According to our study, in major cities, 
roadside EVI is critically reduced due to dense roads, 
high traffic volumes, and well-constructed service 
facilities. Road density and traffic volumes lead to 
the highest EVI decrease (−1.7%). In suburban and 
rural areas, the roadside environment has improve-
ments, with the increase of EVI. And suburban areas 
have a higher increase of EVI than in rural areas. 
Second, road infrastructure also has significant 
impacts on the fragmentation of landscape, especially 
in suburban and rural areas. The construction of road 
infrastructure can create separation and barriers, 
causing fragmentation of the landscapes and popula-
tions (Jaarsma and Willems 2002). Areas with high 
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demands of transport infrastructure have the highest 
fragmented landscape units (Andrea et al. 2017). To 
explore the environmental impact of roads, this study 
uses roadside EVI as the proxy of vegetation. The 
decrease in EVI might reveal the vegetation degrada-
tion or the increase of other land cover types. The 
latter reason can represent the increase of landscape 
fragmentation while our result can’t fully prove it. 
Further study can use land cover data to explore the 
road impact on landscape fragmentation.

Road infrastructure performance is represented by 
six variables in this study. Road density and road 
connectivity are the direct indicators that characterize 
road infrastructure performance. Road density reflects 
the length of road construction, and road connectivity 
demonstrates the capacity of the road (Damania et al. 
2018). The interaction of the two factors with traffic 
volume explains nearly 50% of the resident income. In 
major cities, road density and connectivity have the 
most significant positive impact on resident income. 
But they threaten the roadside environment, with the 
decrease of roadside EVI and increase of roadside 
AOD. In suburban areas, the road-related income is 
much lower than that in major cities. And the road-
side environment has improved with the increase of 
roadside EVI.

Traffic volumes are a good indicator of economic 
vitality. They interact with other road variables to 
provide a non-linear enhancement impact on the 
local economy and the roadside environment. Traffic 
volumes also imply the generation of vehicle emis-
sions that can cause unavoidable AOD growth. 
However, traffic volumes have a positive effect on 
roadside vegetation in suburban and rural areas, 
with the max increase of EVI is 0.013.

Services to facilities reflect the service perfor-
mance of road infrastructure from a socio-economic 
perspective. High accessibility can reduce commut-
ing time and decreases congestion, thus reducing 
emissions to some extent. Therefore, services to facil-
ities lead to EVI growth in suburban and rural areas. 
The highest increase of EVI (2.5%) appears in areas 
with services to industries range from 64.4 km to 
128 km. But in major cities, services to facilities 
would threaten the roadside environment because 
of more traffic volumes associated with denser facil-
ities compared to suburban and rural areas, leading 
to a large amount of exhaust gas. Besides, freight 
transportation to ports includes many mineral fuels, 

oil, gas materials, which can bring pressure to the 
roadside environment.

Current studies usually employed economic models 
or time series analysis to explore the impact of trans-
port infrastructure on the economy and the environ-
ment, which failed to reveal the impact from the 
perspective of spatial (Mohmand, Wang, and Saeed 
2017). Besides, enough attention has not been paid to 
discuss the trade-offs of the impact of the road on the 
economy and the environment. The main contributions 
of this study to road transportation research are as 
follows. First, road performance and roadside environ-
mental change were evaluated by geospatial data, 
including POIs, population data, remote sensing data. 
Service to facilities was represented by accessibility 
using a network-based accessibility analysis method. 
Second, spatial trade-offs between the impact of road 
infrastructure on the economy and that on the roadside 
environment were investigated using an OPGD model. 
Third, the spatial difference of road impacts on the 
economy and the local environment was explored 
using mean risk values. To sum up, this study considers 
the heterogeneity of the spatial distribution of trans-
port infrastructure and uses a spatial analysis model to 
reveal the impact of transportation infrastructure on 
the local economy and the environment.

There are still shortcomings in this study. First, the 
impact of road infrastructure performance on the econ-
omy and environment may take some time to fully 
manifest, but the long-time series analysis was not con-
ducted in this study due to the limited available data. 
Follow-up studies should combine spatial analysis meth-
ods with a time analysis model to make a deeper analy-
sis of the mechanism of the impact of transport 
infrastructure on the economy and the environment. 
In addition, spatial autocorrelation was not considered 
when conducting a spatial analysis model. Future stu-
dies should use a spatial model that combines spatial 
heterogeneity and spatial autocorrelation to better 
explain the impact of roads on the environment and 
economy.

6. Conclusion

This study investigates the impacts of road transpor-
tation infrastructure on the local economy and road-
side environment using spatial heterogeneity 
methods. The spatial disparities in trade-offs have 
been assessed between road impacts on the 
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economy and environment. Significant nonlinearity 
and spatial disparities, such as urban-rural variations, 
have been identified in the trade-offs. In general, 
roadside EVI is decreased, and roadside AOD is criti-
cally increased in major cities together with eco-
nomic growth. However, in suburban and rural 
areas, roadside EVI is increased, and the increase of 
roadside AOD is much lower than that in major cities, 
although the economic development is approximate 
with that in major cities. Therefore, this study reveals 
that the environmental pressure from road transpor-
tation in major cities is much higher than that in 
suburban and rural areas. Results show that the 
effects of actions for improving both economic 
growth and roadside environment in suburban and 
rural areas are more significant than that in major 
cities. The primary reason is that major cities have 
higher environmental pressure than suburban and 
rural areas. This means that much more actions are 
required in major cities to decrease the environmen-
tal impacts of road infrastructure than in suburban 
and rural areas. This study contributes to a deep 
understanding of the interaction between road infra-
structure, economy, and environment and can also 
guide the authorities to make strategic decisions for 
sustainable infrastructure development.
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A B S T R A C T   

Soil moisture is a fundamental ecological component for climate and hydrological studies. However, the dis-
tribution patterns of soil moisture are spatially heterogenous and influenced by multiple environmental factors. 
The knowledge is still limited in assessing the large-scale spatial heterogeneity of soil moisture in in situ data 
modelling, in situ network design, spatial down-scaling, and remote sensing-based soil moisture retrieval. Het-
erogeneity models are effective in characterizing spatial disparities, but they are not capable of examining the 
maximum regional disparities. To address this bottleneck, the authors of this study developed a geographically 
optimal zones-based heterogeneity (GOZH) model. By progressively optimizing geographical zones of soil 
moisture and quantifying the heterogeneity among zones, GOZH may help identify individual and interactive 
determinants of soil moisture across a large study area. It was applied to identify spatial determinants of in situ 
soil moisture data collected at 653 monitoring stations in the Northern Hemisphere in unfrozen and frozen 
seasons from April 2015 to December 2017, with only thawed data considered in both seasons. Correspondingly, 
a series of variables were derived from Google Earth Engine (GEE) remote sensing data. The results demonstrated 
the significant regional disparities of soil moisture, and the combinations of determinants are critically different 
among geographical zones and between unfrozen and frozen seasons. At a global scale, the combinations of 
determinants can explain about 48% of the spatial pattern of soil moisture. Spatial heterogeneity of soil moisture 
in frozen seasons is much more complex than that in unfrozen seasons regarding geographical zones and 
explanatory variables. The variability of soil moisture during unfrozen seasons can be more explainable than that 
during frozen seasons, which was a convincing evidence for previous studies that soil moisture predictions were 
mostly performed during unfrozen seasons. Primary variables that determine spatial patterns of soil moisture are 
changed from climate variables during the unfrozen season to geographical variables during the frozen season. 
Results show that GOZH model can effectively explore spatial determinants of soil moisture through avoiding the 
underestimation of individual variables, overestimation of multiple variables, and finely divide zones. The 
research findings from this study provide an in-depth understanding of the spatial heterogeneity of soil moisture 
and can be implemented in more effective in situ sampling network design, spatial down-scaling of soil moisture, 
and accurate inversion of surface parameters from the satellite data of soil moisture.   

1. Introduction 

Soil moisture is an essential component of an ecosystem (Green et al., 
2019; Li et al., 2020), and plays a fundamental role in plant growth (Lei 

et al., 2018), food security (McColl et al., 2017), carbon and water cycles 
(Wang et al., 2017), soil productivity, and projection of the global 
climate change (Berg et al., 2017). Monitoring of soil moisture is 
required for agricultural production (Lei et al., 2018), drought 
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monitoring (Babaeian et al., 2018), on-farm moisture management, 
water resources management, hydrological simulation, and forecasting 
(Kumar et al., 2018). Nevertheless, the strong and complex spatial het-
erogeneity of soil moisture challenges large-scale and regional studies in 
hydrology and climate (Chaney et al., 2015; Molero et al., 2018). The 
spatial heterogeneity of soil moisture is closely associated with precip-
itation, atmospheric variability, evapotranspiration (ET), runoff etc 
(Quinn et al., 1995; Peters-Lidard et al., 1997; Famiglietti et al., 2008; 
Chaney et al., 2015). It also critically affects the in situ sampling 
network design (Chaney et al., 2015; Dari et al., 2019), spatial down-
scaling of soil moisture, hydrologic modelling, and agricultural man-
agement (Vereecken et al., 2014). 

In-situ observations have been the fundamentally essential data for 
understanding soil moisture, climate variability, and the validation and 
refinements of remote sensing products (Albergel et al., 2009; Ma et al., 
2019; Zappa et al., 2019; Dari et al., 2019). The in situ soil moisture 
observations have a number of advantages. First, the in situ data of soil 
moisture has high accuracy and continuous observations (Albergel et al., 
2012). The in situ data are generally continuously observed by seconds 
at sampling sites and the accuracy can reach up to 0.05 m3/m3 (Albergel 
et al., 2010; Gruber et al., 2013). In addition, compared with remote 
sensing products with spatial resolutions between 250 m and 1 km, the 
in situ data are collected at precise locations of monitoring stations or 
GPS locations in the field (Wu and Liu, 2012). Finally, the regional, 
national, or global sampling networks assure the overall reliability and 
quality of in situ observations (Dorigo et al., 2011; Molero et al., 2018). 
The increasing number of open data libraries have brought about new 
opportunities for global data sharing and collaborative studies. For these 
reasons, the in situ observations provide the most essential data source 
for understanding soil moisture, climate variability, and the validation 
and refinement of remote sensing products. 

The spatial variability of soil moisture is influenced by complex 
geographical and environmental factors, such as temperature, vegeta-
tion, topography, soil properties, depth to water table, freeze–thaw 
states, and scales (Brocca et al., 2010; Chaney et al., 2015; Ochsner et al., 
2019; Li et al., 2021). These factors fall into four categories: (1) Climate 
conditions, for instance, precipitation may directly influence the water 
balance and the hydrological cycle (Kusangaya et al., 2016; Wang et al., 
2018), and temperature may influence the energy balance principle and 
water circulation (Tao et al., 2021); (2) Geographical and terrain con-
ditions, they may affect the storage and evaporation of soil moisture, 
and influence the direction and amount of water flow (Silva et al., 2014). 
The altitude may change the soil properties by influencing the envi-
ronmental factor such as temperature (Niu et al., 2017); (3) Soil prop-
erties and freeze–thaw states, they are related to the forms and amount 
of water stored in soil. Fine-textured soils can store water more readily 
than coarse soils, resulting in high soil moisture. Soil texture can also 
affect the heat fluxes and thus soil moisture (Albergel et al., 2008; 
Shellito et al., 2018); (4) Surface coverage, for example, vegetation can 
influence the vertical drinage and ET flues, and closely associated with 
soil moisture (Baroni et al., 2013; Vereecken et al., 2014). In addition to 
individual variables, studies have demonstrated variables usually have 
interactive effects in affecting soil moisture patterns (Famiglietti and 
Wood, 1994; Western et al., 2004; Wilson et al., 2005; Konare et al., 
2008; Chaney et al., 2015). Characteristics of spatial heterogeneity is 
also affected by the spatial scale (Han et al., 2018). The spatial vari-
ability of soil moisture is essentially different at the field scale (Nielsen 
et al., 1973; Bell et al., 1980; Vereecken et al., 2014), catchment scale 
(Western et al., 2004; Rosenbaum et al., 2012), regional scale (Romshoo, 
2004; Zhao et al., 2013), and continental scale (Entin et al., 2000). 

Given the considerable differences among regional environmental 
impacts on soil moisture, effective and reliable geographical zones are 
critically important for regional soil moisture inversions from remote 
sensing data, downscaling with the supports of local terrain and envi-
ronmental variables (Zhuo et al., 2020), and network design (Vereecken 
et al., 2014). For example, the valid reference of regional difference of 

the soil moisture determinants is increasingly needed at a global scale 
when calibrating the ground roughness parameterization scheme with 
ground observation data (Verhoest et al., 2008). The limited knowledge 
in the regional disparity of soil moisture and its controls have been a 
challenge for the interpretability and transferability of the parameters. 
In addition, the geographical zones considering the spatial heterogene-
ity of soil moisture can support the network design (Zhuo et al., 2020). 
The network can capture spatial variability of soil moisture at the lowest 
possible cost by improving the representation of the soil moisture 
samples (Vereecken et al., 2014; Chaney et al., 2015). 

A wide range of methods have been developed to understand the 
spatial heterogeneity of soil moisture. The commonly use methods can 
be classified into three categories, geostatistical analysis, wavelet anal-
ysis, and empirical orthogonal function (EOF) (Vereecken et al., 2014). 
Geostatistical models are effectively applied to identify static mapping 
patterns in soil properties (Ochsner et al., 2019). The spatial pattern of 
soil moisture at the field scale determined by multiple factors was 
observed through geostatistical analysis (Brocca et al., 2010). Wavelet 
analysis was originally used to analyze time series and has been applied 
to characterize the spatial variability of soil data patterns (Song et al., 
2021; Vereecken et al., 2014). For example, the spatial pattern of soil 
moisture and temperature in the southern interior of British Columbia 
was characterized based on wavelet analysis (Redding, 2003). The dif-
ference of spatial scales in soil moisture variability was revealed using 
the wavelet analysis (Das and Mohanty, 2008). Empirical orthogonal 
function (EOF) methods were developed in terms of spatial modes and 
signal processing of soil moisture data (Wang et al., 2017). For instance, 
studies based on the EOF methods demonstrate that soil characteristics 
and topography were the two most critical factors to soil moisture (Perry 
and Niemann, 2007), and soil texture explained 61% of the variation in 
soil moisture (Jawson and Niemann, 2007). 

Spatial stratified heterogeneity (SSH) models are effective ap-
proaches to investigate determinants of spatial variability of geograph-
ical variables (Wang et al., 2016). The basic assumption of SSH models is 
to compare the zonal spatial distribution patterns of dependent and in-
dependent variables. The zones are determined by categories of cate-
gorical variables or the spatial discretization of continuous explanatory 
variables (Song et al., 2020; Wang et al., 2010). As such, the spatial 
discretization is essential for identifying spatial determinants, and the 
process of spatial discretization is presented in the next paragraph. The 
power of determinants (PD) is calculated as a ratio between the sum of 
zonal variance and the variance of data across the whole space. This 
means that a higher PD value is associated with higher zonal variance. 
The commonly used SSH models include Geodetector (Song et al., 2018; 
Wang et al., 2010, 2016), optimal parameter-based geographical de-
tector (OPGD) (Song et al., 2020; Luo et al., 2021), interactive detector 
of spatial associations (Song and Wu, 2021), etc. The SSH models have 
been increasingly implemented to characterize the spatial variability of 
soil properties. For example, the spatial difference of tillage factors of 
the China soil loss equation was characterized using the SSH model 
(Chen, 2021). The driving forces of soil erosion were explored using the 
GD model (Liang and Fang, 2021). The spatiaotemporal variability of 
soil organic matter was also revealed based on the heterogeneity using 
the GD model (Hu et al., 2021). In addition, some soil properties, such as 
soil organic carbon, were mapped using the GD–based kriging model 
(Liu et al., 2021). Overall, existing research demonstrated the effec-
tiveness and viability of using the spatial stratified heterogeneity model 
to reveal the variability of soil variables. 

However, regarding the complex spatial heterogeneity of in situ soil 
moisture in large regions, there are still difficulties in addressing 
following issues using current SSH models. First, spatial discretization is 
an essential step to identify geographical zones based on spatial patterns 
of explanatory variables (Song and Wu, 2021). In current studies, the 
general procedure of spatial discretization is performed using a two-step 
approach. The individual geographical variables are first discretized 
using supervised or unsupervised approaches, such as equal, quantile, 
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standard deviation, and geometric breaks, to determine spatial zones 
based on an individual variable, and then combine the spatial zones 
through a spatial overlay (Cang and Luo, 2018; Song et al., 2020). In this 
method, distribution characteristics of the response variables are not 
fully explained in the discretization process, leading to the incomplete 
exploration of the influence of explanatory variables on the response 
variable. Thus, it is necessary to identify the geographically optimal 
zones which can maximize the difference among zones and minimize the 
similarities within zones. In addition, the reliability of estimating the 
power of interactive determinants needs to be improved due to the 
massive finely divided zones from the spatial overlay of zone layers of 
multiple explanatory variables (Song and Wu, 2021). In most of the 
previous studies, the power of interactive determinants is only estimated 
for the interaction of only two or three explanatory variables as for the 
problem of massive finely divided zones. Therefore, it is essential to 
develop reliable models to identify geographical optimal zones and 
more accurately estimate the power of interactive determinants of 
spatial heterogeneity of the soil moisture in large regions. 

In this study, we developed a geographically optimal zones-based 
heterogeneity (GOZH) model to characterize the spatial heterogeneity 
and examine determinants of large-scale soil moisture. In the GOZH 
model, an optimal power of determinant (OPD) indicator was developed 
to reveal the contributions of variables on spatial patterns of soil mois-
ture, where the spatial discretization was conducted heuristically in a 
step-wise process. The GOZH model was used to identify the 
geographically optimal zones during the unfrozen and frozen season and 
estimate the determinants of spatio-temporal disparities in soil moisture 
of the Northern Hemisphere. Soil moisture in situ data were collected at 
653 monitoring stations in the Northern Hemisphere from April 2015 to 
December 2017 to present the soil moisture with high accuracy and in 
precise locations. Only soil data at thawed status were included to 
ensure the modelling reliability. Correspondingly, remote sensing-based 
explanatory variables were derived from Google Earth Engine (GEE), 
and classified into four categories, geography, climate, soil, environ-
ment ecology. First, impacts of individual variables on soil moisture and 
temporal variations during 33 months were characterised. Second, the 
geographically optimal zones of seasonal soil moisture were identified 
using the GOZH model. Third, the determinants of spatial patterns were 
demonstrated during two seasons according to the geographically 
optimal zones derived in the last step. Finally, the performance of GOZH 
model was evaluated and compared with the OPGD model. 

The remainder of this paper is structured as follows: Section 2 in-
troduces the in situ soil moisture data and explanatory variables used in 
this study. Section 3 describes the objective, definition, and derivation of 
the GOZH model. Section 4 covers the methodologies to explore the soil 
moisture variability in the Northern Hemisphere using the GOZH model. 
Section 5 presents results of this study, including impacts of individual 
variables and temporal variations, geographically optimal zones, and 
determinants of spatial disparities and seasonal effects. Findings and 
research contributions are discussed in Section 6, and the study is 
concluded in Section 7. 

2. Data 

2.1. In-situ soil moisture data 

In this study, monthly in situ soil moisture data in 762 observation 
locations from 653 monitoring stations across the Northern Hemisphere 
were selected to reveal the heterogeneity and determinants of soil 
moisture (Table 1). All stations belong to 12 networks in the Interna-
tional Soil Moisture Network (ISMN) (Dorigo et al., 2011; Dorigo et al., 
2021). ISMN is a widely used soil moisture network that collects soil 
moisture and soil temperature data sets from global networks, including 
1,400 stations from 40 global networks of soil monitoring (Dorigo et al., 
2015; Ma et al., 2019; Ma et al., 2021). As a data hosting facility of soil 
moisture data, ISMN has been widely used for validations of satellite- 

derived soil moisture products (Ma et al., 2019; Dorigo et al., 2021; Ma 
et al., 2021). In each station, soil moisture data ranging from April 2015 
to December 2017 were collected and analyzed to characterize the 
spatial and temporal patterns of soil moisture in the Northern 
Hemisphere. 

2.2. Explanatory variables 

Four categories of explanatory variables have been collected to 
explain the spatial disparities of soil moisture. They include geograph-
ical, climate, soil, and environmental variables derived from remote 
sensing data (Table 2). All the remote sensing data were derived and 
processed using the Google Earth Engine (GEE). Climate and environ-
mental variables, with the temporal resolution from 8 days to one 
month, were collected from April 2015 to December 2017, consistent 
with the in situ soil moisture data.  

(A) Geographical variables 

Four terrain explanatory variables, including elevation, slope, aspect, 
and hill shade, were included in this study to demonstrate the local 
geographical conditions. The terrain variables were derived from the 
Shuttle Radar Topography Mission (SRTM) data. The SRTM provides the 
digital elevation model (DEM) data with the resolution of about 30 m 
(Elkhrachy, 2018). Slope, aspect, and hill shade variables were 

Table 1 
A brief description and sources of soil moisture in situ data used in this study.  

Network 
name 

Country Number of 
stations 

Depth 
(cm) 

Reference  

USCRN America 97 5 (Bell et al., 2013)  
SNOTEL America 208 5 https://www.wcc. 

nrcs.usda.gov/  
SCAN America 157 5 (Schaefer et al., 

2007)  
CTP_SMTMN China 53 0–5 (Yang et al., 2013)  
RISMA Canada 14 0–5 (McNairn et al., 

2014)  
HOBE Denmark 28 0–5 (Jensen and 

Illangasekare, 2011)  
FMI Finland 19 5 (Zeng et al., 2016)  
SMOSMANIA France 15 5 (Albergel et al., 

2008)  
TERENO Germany 4 5 (Zacharias et al., 

2011)  
BIEBRZA-S-1 Poland 18 5 http://www.igik. 

edu.pl/en  
REMEDHUS Spain 20 0–5 (Martínez-Fernández 

and Ceballos, 2005)  
RSMN Romania 20 0–5 (Ma et al., 2019)   

Table 2 
Explanatory variables of the spatial disparities of soil moisture.  

Category Variable Product Temporal 
resolution  

Geography Elevation SRTM DEM -   
Slope SRTM DEM -   
Aspect SRTM DEM -   
Hill shade SRTM DEM -  

Climate Precipitation GPM Monthly   
Temperature MOD11 8 days  

Soil Soil texture OpenLandMap -   
Soil pH OpenLandMap -   
Soil bunk density OpenLandMap -  

Environment Normalized difference 
vegetation index (NDVI) 

MOD13Q1 16 days   

Enhanced Vegetation Index 
(EVI) 

MOD13Q1 16 days   

Leaf Area Index (LAI) MOD15A2H 8 days   
Evapotranspiration MOD16A2 8 days   
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calculated based on the DEM data using GEE spatial analysis, where 
local gradients were computed using the 4-connected neighbors of each 
pixel for the calculation of slope and aspect.  

(B) Climate variables 

Precipitation and temperature are two essential climate controls on soil 
moisture at a large spatial scale. In this study, monthly precipitation data 
was derived from the Global Precipitation Measurement (GPM) IMERG 
Final Precipitation L3 1 month 0.1 degree x 0.1 degree V06 (Joyce and 
Xie, 2011; Hou et al., 2014). The GPM is an international satellite 
mission to provide precipitation data at a 0.1-degree resolution. The 
temperature data were taken from the land surface temperature (LST) 
product of the 8-days MOD11 composition with a spatial resolution of 
1.2 km (Hashimoto et al., 2008). LST has been used as an effective data 
source for assessing soil conditions and forecasting the soil moisture 
(Holzman et al., 2014; Jiang and Weng, 2017).  

(C) Soil properties 

The soil properties used in this study include soil texture, soil pH, and 
soil bulk density extracted from the Soil Moisture Active Passive (SMAP) 
product (Entekhabi et al., 2010). The SMAP provides a series of soil 
properties data at different depths between 10 cm and 200 cm, and a 
resolution of 250 m. Corresponding to the soil moisture data that were 
collected at depths of 0 to 5 cm from soil monitoring networks (Table 1), 
soil texture, pH and bulk density data were collected at a 10 cm depth to 
represent soil properties related controls of soil moisture.  

(D) Environmental variables 

Local environmental and ecological conditions surrounding soil mois-
ture monitoring stations were characterized using Normalized Differ-
ence Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), 
Evapotranspiration (ET), and Leaf Area Index (LAI) data driven from 
MODIS products using GEE. The NDVI and EVI data were extracted from 
the 16-days Terra MODIS products (MOD13Q1) with a spatial resolution 
of 250 m (Didan et al., 2015). The ET data were collected from the global 
8-day MOD16A2 product with a 1 km spatial resolution (Mu et al., 
2013). The ET variable is used to present the water cycle of the Earth’s 
climate system, especially the evaporation and transpiration processes 
that are critically associated with soil moisture (Purdy et al., 2018). LAI 
data, used as an ecology indicator to explore the soil moisture vari-
ability, was extracted from the MOD15A2H product, which was a 8-days 
composite data with a 500 m resolution. LAI is defined as the one-sided 
green leaf area per unit ground area in broadleaf canopies and as one- 
half the total needle surface area per unit ground area in coniferous 
canopies. LAI is an essential indicator of vegetation structure for 
revealing the interaction between soil and vegetation (Fang et al., 2019). 
The interaction of LAI and soil moisture has a significant impact on 
drought, vegetation growth, vegetation senescence, and drought forest 
(Sawada, 2018; Liu et al., 2017). 

The explanatory variables are derived from the pixels at the location 
of the soil moisture monitoring stations. In this study, spatial hetero-
geneity of soil moisture at stations in the Northern Hemisphere is much 
higher than that of data within grids of explanatory variables, e.g. 90 m 
or 250 m. Therefore, spatial analysis in the study will not be affected by 
the scale effects of explanatory variables derived from remote sensing or 
grid data. Similar processing of deriving explanatory variables of soil 
moisture from grid data can be found in (Peng et al., 2015; Qu et al., 
2021). 

2.3. SMAP freeze/thaw product 

To ensure the reliability of soil moisture analysis, only the in situ 
data of soil moisture at thaw-status landscape were used in the study. To 

select the monthly in situ data at the unfrozen situation, the SMAP L3 
Freeze/Thaw product (SPL3FTP) with a 36 km resolution in the 
Northern Hemisphere were collected (Xu et al., 2018). The SMAP is a 
NASA satellite mission launched in 2015 to monitor the surface (about 5 
cm) global soil moisture and landscape freeze/thaw status (Entekhabi 
et al., 2010; Al-Yaari et al., 2019). Missing data of the SMAP product was 
filled through the comparison of data at neighbouring locations and 
periods. The thaw or freeze status of the landscape at the soil moisture 
stations were derived through spatial overlay. 

3. Geographically optimal zones-based heterogeneity (GOZH) 
model 

3.1. Power of determinants (PD) of spatial stratified heterogeneity (SSH) 
model 

As introduced above, in SSH models, a higher PD value of an 
explanatory variable indicates that the spatial distribution pattern of 
this variable tends to be more similar to the spatial pattern of response 
variable, i.e., soil moisture in this study. The process of estimating PD 
values of explanatory variables generally includes three steps. First, 
continuous explanatory variables should be converted to stratified var-
iables using spatial discretization methods. The stratified variables can 
determine a series of geographical zones of soil moisture. Second, if 
multiple variables are used to identify the interactive impacts on soil 
moisture, geographical zones determined by explanatory variables need 
to be overlapped to generate a new layer of geographical zones, which 
contain geoinformation of all the variables. Finally, the PD value for the 
comparison of spatial patterns between response variable and explana-
tory variables are calculated as a ratio of the variance of soil moisture 
within geographical zones determined by one or multiple explanatory 
variables and the variance across the whole study area. The PD is 
computed as: 

PD = 1− SSW
SST = 1−

∑h

z=1
Nzσ2

z

Nσ2 (1)  

where SSW is the Sum of Squares Within geographical zones determined 
by explanatory variables, SST is the Sum of Squares Total of soil mois-
ture in the whole study area, Nz and σz are the number and standard 
deviation of soil moisture within geographical zone z(z = 1,…,h), and N 
and σ are the number and standard deviation of soil moisture across the 
study area. PD value ranges from 0 to 1, where a high PD value indicates 
a high spatial association between response variable and the explana-
tory variable. 

From this equation and recent studies, we can find that the PD value 
is sensitive to the geographical zones determined by the spatial dis-
cretization of explanatory variables. As such, a more effective and reli-
able spatial discretization approach is required to maximize the variance 
values among zones and minimize variance within zones. In addition, as 
explained in the introduction section, reliable geographical zones are 
also essential for regional soil moisture inversions from remote sensing 
data and downscaling with the supports of local terrain and environ-
mental variables. 

3.2. PD of GOZH model 

In this study, we define the PD as a function of explanatory variables 
and geographical zones, which are determined by stratified variables 
from certain spatial discretization processes: 

γ
(

X,D
)

= 1− SSWX,D

SST (2)  

where X is one or multiple explanatory variables, D is the stratified 
variable for describing geographical zones, and SSWX,D is the sum of 
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squares within geographical zones that are recorded as D and deter-
mined by explanatory variable X. 

In GOZH model, the optimal PD (OPD) value can demonstrate the 
maximum explanatory power of variables in terms of geographically 
optimal zones. As such, the OPD of explanatory variables, expressed as Ω 
value, is the maximum value of the PD function γ: 

Ω = max
(

γ
)

= 1−min
(
SSWX,D

)

SST (3)  

The geographically optimal zones have the minimum intra-area vari-
ance and the maximum inter-area variance. To calculate the Ω value, an 
optimization process is performed as: 

min
(

SSWX,D

)
= min

{
∑h

z=1

∑Nz

j=1

(
yz,j − cz

)2
}

(4)  

where yz,j and cz are the jth observation and mean values of soil moisture 
in zone z, respectively. 

This equation is a nondeterministic polynomial-time complete (NP- 
complete) problem, which is difficult to derive a global optimum. To 
solve this equation, a step-wise spatial discretization of soil moisture is 
performed using a heuristic method with spatial explanatory variables. 
First, all possible two-zone solutions of spatial discretization are derived 
for explanatory variables, and the optimal one is selected as the cutoff 
point according to the squared error minimization criterion. An iteration 
process is performed for each variable Xk to identify the optimal cutoff 
point s, and the parameters in the iteration can be presented as (k, s). 

Accordingly, the input space is divided into two regions. Second, the 
iteration process is performed for multiple variables. The kth explana-
tory variable Xk and its fetching value sk are used as cut-off variables and 
cut-off points, respectively. Two regions in each iteration are defined as 
R1(k, s) =

{
x
⃒⃒
x(k)⩽s

}
and R2(k, s) =

{
x
⃒⃒
x(k) > s

}
. In each split, the var-

iable that allows the maximum explanation of the variance of the 
dependent variable is selected. Thus, the optimization process is con-
verted to a process to identify the optimal variable Xk and the cuttoff 
point s of variable Xk, which can be expressed as: 

mink,s

{
∑

xi∈R1(k,s)
(yi − d1)2 +

∑

xi∈R2(k,s)
(yi − d2)2

}
(5)  

where d1 and d1 are the average values of soil moisture in group R1 and 
R2, respectively. Thus, the above discretization process is repeated 
within each group until the data volume of the group less than a certain 
number, which is called minsplit. During the step-wise spatial dis-
cretization, when the data volume in one group is less than the minsplit, 
this group would not be subdivided further and automatically becomes a 
final spatial zone. This process is similar to the classification and 
regression tree (CART) algorithm (Breiman et al., 2017). The whole 
spatial discretization can be visualized as the binary tree structure. 

Fig. 1 shows an example of the spatial discretization process of the 
GOZH model. In this example, the response variable is D and explana-
tory variables include A, B, and C. To conduct the step-wise spatial 
discretization, explanatory variables are processed one by one. For each 
variable, a series of cutoff points are selected to split the study area into 

Fig. 1. Process and principle of the geographically optimal zones-based heterogeneity (GOZH) model.  
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two zones, and the SSW of soil moisture is calculated. Among all possible 
two-zone solutions, the one with the highest SSW is regarded as the 
optimal spatial discretization result, i.e., the optimal geographical 
zones, in this step. Repeat this process for each variable and data within 
zones, and finally, the optimal geographical zones with the highest 
overall SSW are regarded as the optimal discretization variable. 

Compared with PD values in SSH models, the Ω values of GOZH 
model can identify the optimal geographical zones of data and demon-
strate the maximum PD of explanatory variables. The GOZH model also 
can more effectively reveal the interaction effects of variables compared 
with SSH models. 

4. GOZH-based spatiotemporal determinants and heterogeneity 
of soil moisture 

Fig. 2 shows a flowchart of the GOZH-based spatio-temporal de-
terminants and heterogeneity analysis of soil moisture in the Northern 
Hemisphere. The methods include five steps. The first step was the data 
pre-processing of in situ soil moisture data and explanatory variables 
data. Second, the monthly Ω values of individual explanatory variables 
were calculated to assess contributions of variables to spatial patterns of 
soil moisture. Third, the geographically optimal zones of soil moisture in 
unfrozen and frozen seasons were identified respectively using the 
GOZH model. The fourth step was to calculate determinants of spatial 
heterogeneity in soil moisture in unfrozen and frozen seasons with the 
support of the geographically optimal zones identified in the previous 
step. Finally, model validation was performed to assess the reliability 
and effectiveness of the model. 

4.1. Data pre-processing 

The in situ soil moisture data and explanatory variables data were 
first processed before modelling. The data pre-processing consists of 
following three parts. First, monthly in situ soil moisture at thaw land-
scape were selected using the corresponding SMAP Freeze/Thaw data. 
Second, the temporal periods soil moisture data were divided into un-
frozen and frozen seasons to characterize respective spatial and tem-
poral variation patterns of soil moisture. In this study, since most of the 
stations are located in the mid-latitudes of the Northern Hemisphere, 
April to September was regarded as unfrozen seasons and remaining 
months were frozen seasons. Finally, explanatory variables were pro-
cessed to corresponding locations and time periods of soil moisture 
monitoring stations. For instance, the 8-day composite products LST, 
LAI, and Evapotranspiration, and the 16-day composite data product 
NDVI and EVI were processed to monthly data using GEE. A small 
amount of missing data in a few variables wes interpolated using an 
inverse distance weighting (IDW) spatial interpolation approach. 

4.2. Impacts of individual variables and their temporal variations 

In the study, the GOZH model is first implemented in investigating 
impacts of individual explanatory variables on spatial patterns of soil 
moisture in each month from April 2015 to December 2017. In the 
monthly GOZH model, the geographical optimal zones determined by an 
individual variable were identified through an iteration process to 
maximize the variance among zones and minimize variance within 
zones. The minsplit was selected as 30 according to the data volume (i.e. 

Fig. 2. Schematic overview of GOZH-based identification of determinants for spatiotemporal heterogeneity of soil moisture in the Northern Hemisphere.  

P. Luo et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 185 (2022) 111–128

117

653 stations) to avoid finely divided zones. During the spatial dis-
cretization process, the group with less than 30 stations would not be 
further subdivided and regarded as final spatial zones. Then, an Ω value 
is calculated to present the PD of this variable on soil moisture. Since 
explanatory variables were classified into four aforementioned cate-
gories, Ω value were computed for each variable in the four categories 
and in each month to indicate the temporal variations of impacts of 
individual variables on spatial patterns of soil moisture. 

4.3. Identification of geographically optimal zones 

Reliable and effective geographical zones of soil moisture are 
essential for parameter inversions from remote sensing data and an ac-
curate downscaling. In the study, geographically optimal zones of soil 
moisture based on multiple variables were identified using the GOZH 
model, indicating the highest homogeneity within zones and the highest 
heterogeneity between zones. The optimal zones were then applied to 
assess the overall impacts of multiple variables on spatial patterns of soil 
moisture in the next step. 

The identification of geographically optimal zones for unfrozen and 
frozen seasons takes place in three stages. First, values of monthly soil 
moisture and explanatory variables were merged for each season. Sec-
ond, the optimal interaction was explored for each season, and the 
corresponding stratified variable from the spatial discretization was 
used to identify the geographically optimal zones. According to the 
stratified variable, soil monitoring stations were grouped into zones 
from the optimal interaction. Finally, geographical, climate, soil, and 
environmental characteristics at the locations of soil monitoring stations 
were summarized and analyzed according to the geographically optimal 
zones to reveal the regional spatial variability of soil moisture at a global 
scale. 

4.4. Determinants of spatial disparities and seasonal effects 

This step aims at quantifying the overall Ω value of the spatial 
interaction of explanatory variables on spatial patterns of soil moisture 
in unfrozen and frozen seasons. To assess the Ω value, an optimal 
interaction variable was created using the geographically optimal zones 
identified in the previous step. The optimal interaction variable was a 
categorical variable that involved the inter-dependencies of different 
explanatory variables and could control the spatial variability of soil 
moisture. Assuming the total of number of variables was n, the total 
number of possible spatial interactions (i.e., combinations) of variables 
was M (M = 2n −n−1). The optimal interaction variable demonstrated 
the highest Ω value among all potential spatial interactions of variables. 

In addition to the overall Ω value of the spatial interaction of mul-
tiple explanatory variables, contributions of each variable within the 
overall Ω value was calculated using a variable removal method. The 
reduction of the Ω value due to the removal of this variable was calcu-
lated by removing each explanatory variable one by one in the optimal 
combination. The percentage of the Ω reduction of a given variable 
among the sum of the Ω reduction of all variables indicated the relative 
importance of this variable. Finally, the contribution of a given variable 
to spatial patterns of soil moisture was defined as the overall Ω value 
multiplied by its relative importance. This variable removal method has 
been widely applied in identifying contributions of variables within a 
total contribution in nonlinear models, such as generalized additive 
models (Song et al., 2015). 

4.5. Model evaluation 

To evaluate the effectiveness and reliability of the proposed GOZH 
model, a set of indicators were developed for comparing model perfor-
mance between GOZH and the commonly used OPGD model. The in-
dicators include PD values of individual variables, PD values of 
interactions of variables, and the number of geographical zones for 

examining interactive effects of variables. The OPGD is an improved 
geographical detector model, which can be used to estimate PD values of 
both individual variables and interactions of variables by optimizing the 
spatial discretization process using unsupervised or supervised ap-
proaches (Song et al., 2020). In the OPGD model in this study, the dis-
cretization method is quantile breaks and the optional numbers of 
discretization are consecutive integers from 3 to 22. For each optional 
number of discretization, PD values were computed for all explanatory 
variables. Then, a local estimated scatter plot smoothing (LOESS) 
function was applied to model the trend of the 75% quantile values of PD 
values and calculate the change rates of the trend, where the span for 
fitting the LOESS function was 0.75 (Luo et al., 2021; Song and Wu, 
2021). Finally, the break number enabled the change rate lower than 5% 
is selected as the optimal break number. All these parameters are 
selected based on the parameter selection approaches in previous 
studies (Song and Wu, 2021). The OPGD model was performed using the 
"GD" package in R (Song et al., 2020). 

5. Results 

5.1. Spatial and temporal patterns of soil moisture 

Fig. 3 shows spatial distributions of monthly mean in situ soil 
moisture in the Northern Hemisphere in unfrozen (April-September) and 
frozen (October-March) seasons from 2015 to 2017. In general, soil 
moisture monitoring stations used in the study are densely distributed in 
North America (635 observations), and other stations are distributed in 
Europe (181 observations) and in China (53 observations). Along the 
longitude, locations of soil moisture monitoring stations can be classi-
fied into four areas as illustrated in Figs. 3 b and d. The spatial disparities 
of in situ soil moisture in Europe tend to be higher than those in other 
regions. In addition, the small figure on the right side of the Fig. 3 b 
shows the seasonal effects of monthly soil moisture at both all moni-
toring stations and stations at the thawed landscape. The seasonal effects 
show that the monthly mean soil moisture generally peaks in March and 
has the lowest values in July. The soil moisture in thawed locations 
tends to be higher than that in frozen locations. For instance, in March 
2017, the mean soil moisture at all stations was 0.27, but at thawed 
locations was 0.29. 

5.2. Impacts of individual variables and their temporal variations 

The GOZH model first identified the primary variables of soil mois-
ture. Fig. 4 shows the Ω values of different categories of explanatory 
variables on spatial patterns of soil moisture and their temporal varia-
tions in the study period. The monthly variations of Ω values indicate 
that spatial associations between patterns of soil moisture and explan-
atory variables have similar temporal trends to the spatial variability of 
soil moisture, which is marked with black lines in Fig. 4 a - d. This 
consistent trends demonstrate the effectiveness of the Ω values in 
examining spatial disparities of soil moisture. Fig. 4 e shows monthly 
average Ω values from April 2015 to December 2017. Among the four 
categories of variables, climate variables have the highest spatial asso-
ciations with soil moisture, followed by geographical and environmental 
variables. For instance, from the perspective of individual variables, 
precipitation, elevation, and temperature have the highest Ω values 
among 13 variables and across the 33 months. The maximum Ω value is 
the impact of precipitation (58%) in November 2016. In this month, 
elevation and temperature can explain 55% and 46% of the spatial 
variability of soil moisture, respectively. Compared with climate, 
geographical, and environmental variables, soil property variables tend 
to have lower spatial associations with soil moisture, where soil texture 
has the lowest Ω values, ranging from 0% to 12%. 

From the perspective of monthly variations, in the transitional 
months from frozen to unfrozen seasons, i.e., March and April, spatial 
associations between patterns of soil moisture and explanatory variables 
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generally have the highest Ω values. This means that spatial patterns of 
soil moisture in frozen-unfrozen transitional months can be more 
explained by geographical, climate, soil, and environmental variables. 
For instance, impacts of climate variables on patterns of soil moisture 
have been high in March ranging from 42% to 48% and with an average 
Ω value 47%. In March, the average Ω values of geographical, envi-
ronmental, and soil variables are 24%, 22%, and 9%, respectively, 
which all are the highest monthly average Ω values in each category. We 
also can find that the least interpretable period of spatial patterns of soil 
moisture is the middle frozen seasons, i.e. December and January. 

From the perspective of seasonal variations, results in Fig. 5 also 
reveal that the spatial pattern of soil moisture is more interpretable 
during the unfrozen season compared with that during the frozen sea-
son. The spatial associations in unfrozen and frozen seasons can be 
explained in a number of aspects. First, precipitation, elevation, and 
temperature have been the variables with the highest spatial associa-
tions with soil moisture. Ω values of precipitation, elevation, and tem-
perature are 37.1%, 35.9%, and 32.1% in the unfrozen season, 
respectively, and 31.3%, 37.3%, and 34.5% in the frozen season, 
respectively. Ω values of environmental variables, including NDVI, LAI, 
EI and EVI, are lower than those of climate variables and elevation. Their 
contributions to spatial patterns of soil moisture are 15.8%-28.4% dur-
ing the unfrozen season, and 9.5%-23.9% during the frozen season. This 
means that environmental variables also make important contributions 
to spatial variability of soil moisture. Soil property variables have the 
lowest Ω values in both unfrozen and frozen seasons. In addition, Ω 
values of most variables in the four categories have been reduced from 

unfrozen to frozen seasons. The average Ω value of individual variables 
during the unfrozen season (20.0%) is 12.4% higher than that during the 
frozen season (17.8%). Ω values of precipitation, environmental vari-
ables, hill shade, and soil property variables during the unfrozen season 
are 5.8%, 3.4%-6.4%, 1.3%, and 0.4%-2.5% lower than that during the 
frozen season. Third, different from most variables, Ω values of tem-
perature and geographical variables, including elevation and aspect, are 
increased from unfrozen to frozen seasons. Compared with unfrozen 
season, the Ω value of temperature, elevation, and aspect during the 
unfrozen season are 2.4%, 1.5%, and 1.3% lower than that during the 
frozen season. Finally, the above results also indicate that the spatial 
variability of soil moisture is complex and it is difficult to be explained 
by individual variables. The maximum interpretability of spatial pat-
terns of soil moisture is only around 37% using individual variables. 

5.3. Geographically optimal zones 

5.3.1. Unfrozen seasons 
Fig. 6 shows the geographically optimal zones of soil moisture during 

the unfrozen season identified using the GOZH model. The geographi-
cally optimal zones during the unfrozen season were identified using 
four explanatory variables, including precipitation, NDVI, temperature, 
and soil pH, and included nine zones. Fig. 6 b shows that precipitation 
was the primary variable that controlled spatial patterns of soil moisture 
during the unfrozen season. According to parameters of precipitation in 
the top two layers, the nine zones can be classified into three groups: the 
first group (precipitation < 0.082 mm/hr) contained zone A, the second 

Fig. 3. Spatial distributions of monthly mean in situ soil moisture in the Northern Hemisphere in unfrozen (a and b) and frozen (c and d) seasons. In the small figure 
inside B, white background shows unfrozen seasons, and gray background shows frozen season. 
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group (precipitation >= 0.094) contained zones B, C, and D, and the 
third group (0.082 <= precipitation < 0.094) contained zones E, F, G, H, 
and I. The characteristics of soil moisture and explanatory variables in 
the three groups of zones are explained as follows. 

The first group, including zone A, was primarily distributed in the 
western contiguous United States, Alaska, western Spain, southern 
France, and eastern Romania. The average precipitation in this group is 
only 0.047 mm/hr, which was much lower than the average precipita-
tion in other groups, such as zone B (0.155 mm/hr) and zone F (0.087 
mm/hr). The contiguous United States, southern France, and Romania 
were typical regions that zones were primarily divided by precipitation. 
In the contiguous United States, the western part was drought or desert 
areas and the precipitation was low, and the precipitation was gradually 
increased from the middle to eastern areas. In the southern France, the 
precipitation was low in the Mediterranean coast areas, but it was 
relatively high in the Massif Central areas (Planchon, 2000). The east of 
Romania was drought and most stations were distributed in zone A, but 
the western Romania was more humid than other areas and most of the 
stations were located in zone B. 

The second group, including zones B, C, and D, was generally 
distributed in the eastern contiguous United States, Alaska, southern 
France, Denmark, western Germany, western Romania, northern 
Finland, and eastern Tibetan Plateau, China. Zones B, C, and D were 
divided by temperature, where the temperature in zone B was high, in 
zone C was low, and in zone D was moderate. For instance, soil moisture 
monitoring stations in western Germany were located in zones B and D. 
A typical characteristic of zone B was the high precipitation (> 0.094 

mm/hr) and high temperature (> 20 ◦C), but the average temperature in 
zone D is 19.1 ◦C, which was 30% lower than zone B (27.3 ◦C). 

The third group, including zones E, F, G, H, and I, was mainly located 
at Alaska, southwestern France, eastern Poland, and northeastern 
Finland. A few monitoring stations in this group were sparsely located at 
the contiguous United States, Hawaii, and southern Romania. We can 
find that zones E and F are usually distributed in neighbouring locations, 
such as central United States, southwestern France and southern 
Romania. The variable for differentiating zones E and F was NDVI, 
where the average NDVI in zone E and zone F was 0.49 and 0.65, 
respectively. For instance, in the southern Romania, the precipitation 
was moderate compared with eastern and western areas, and the sta-
tions were further divided into zones E and F by NDVI, where NDVI in 
zone F was 28% higher than that in zone E. Zones H and I had much 
higher average soil moisture than other zones, and they were divided by 
temperature with a threshold 22. For instance, stations in northeastern 
Poland were divided into zone H and I, and their average soil moisture 
were 0.58 and 0.42, respectively. 

5.3.2. Frozen seasons 
Fig. 7 shows the geographically optimal zones of soil moisture during 

the frozen season. The soil moisture monitoring stations were grouped 
into eleven spatial zones based on five variables using the GOZH model. 
The slope was the most important variable for determining the optimal 
zones. According to the slope value higher or lower than 0.33, soil 
moisture stations can be divided into two parts. Area with a slope value 
higher than 0.33 were generally mountainous areas. Compared with the 

Fig. 4. Optimal power of determinants (OPD or Ω value) of explanatory variables on spatial patterns of monthly soil moisture. a: Ω values of geographical variables; 
b: Ω values of climate variables; c: Ω values of soil property variables; d: Ω values of environmental variables; and e: monthly summaries of Ω values from 2015 to 
2017. White background shows unfrozen seasons (April-September), and gray background shows frozen seasons (October-March). 
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unfrozen season, terrain conditions had higher impacts on soil moisture 
disparities during the frozen season. In addition, ET and soil bulk density 
were variables that further divided zones in the second layers (Fig. 7 b). 

According to variables in top two layers, including slope, ET, and soil 
bulk density, the eleven zones could be classified into four groups. 

The first group, consisting of zones A and B, was characterized in 

Fig. 5. Ω values of explanatory variables on spatial patterns of seasonal soil moisture and the comparison between unfrozen and frozen seasons.  

Fig. 6. Geographically optimal zones of soil moisture in the unfrozen season identified using the GOZH model (a), the process of identifying optimal zones (b), and 
statistical summaries of explanatory variables within zones for explaining characteristics of zones (c). 
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high slope and low ET. Zones A and B were divided by soil bulk density, 
where zone A had low soil bulk density and the lowest average soil 
moisture among all zones during the frozen season. Most of the stations 
in this group were located in the Rocky Mountains area in the United 
States and eastern Tibetan Plateau, China. 

The second group, including zones C, D, E, and F, were also located in 
mountainous areas (slop > 0.33), but had relatively high ET (ET > 64 
kg/mm3). For instance, in the mountainous areas of the western United 
States, most stations were located in zones C and E, where the average 
slope were 7.38 and 4.27, respectively. EVI was the variable dividing 
zones C and E. The average EVI in zone C and E was 0.098 and 0.30, 
respectively. This means that in addition to slope and ET, vegetation was 
an essential variable controlling the spatial variability of soil moisture in 
this region. In addition to the mountainous areas of the western United 
States, zone C was also distributed in Alaska, eastern Romania, and 
eastern Tibetan Plateau, China, and zone E was also located in the 
western Spain, southern France, western Germany, and Romania. In the 
western and eastern coastal areas of the United States, stations were 
located in zones D, E and zone F. They were divided by soil pH and 
precipitation. In zone D, soil pH was lower than 5.6 and the average pH 
was 0.53, but it was higher than 5.6 in zones E and F. Zones E and F were 
divided by the 0.12 mm/hr of the precipitation. The average precipi-
tation in zone E and F was 0.107 and 0.17, respectively. 

The third group, containing zone G, had low slope and high soil bulk 
density. Stations in this group were primarily located in the southern 
United States and Romania. The average slope in zone G is 0.20, which 
was much lower than its neighbouring zones, such as zone E (slope  =
4.28). 

The last group, including zones H, I, J, and K, had low slope and soil 
bulk density. Stations in this group were generally distributed in the 
northeastern Poland and northern Finland. For instance, stations in 

northeastern Poland were divided into zones J and K. The soil bulk 
density controlled the spatial disparities in these two zones. The average 
soil bulk density in zones J and K were 111.55 and 109.44, respectively. 
In stations in the northern Finland, EVI and soil bulk density controlled 
spatial patterns of soil moisture. 

5.4. Determinants of spatial disparities and seasonal effects 

Table 3 shows overall Ω values of explanatory variables on spatial 
patterns of soil moisture investigated using the GOZH model and con-
tributions of variables to the overall Ω values during unfrozen and frozen 
seasons. In general, overall Ω values were 47.62% and 47.69% during 
unfrozen and frozen seasons, respectively. This means that variables 
tended to have similar total contributions to spatial patterns of soil 
moisture during both seasons. 

During the unfrozen season, climate variables had higher contribu-
tions to the overall Ω value, where contributions of precipitation and 
temperature were 20.99% and 7.90%, respectively. The contribution of 
precipitation accounted for 44.08% to the overall Ω value. In addition, 
NDVI and soil pH contributed 11.26% and 7.47%, respectively. All these 
contributions were lower than impacts of individual variables on spatial 
patterns of soil moisture. This means that explanatory variables had high 
interactive impacts on affecting patterns of soil moisture. 

During the frozen season, spatial patterns of soil moisture were 
affected by slope, soil bulk density, ET, EVI, precipitation, and soil pH. 
The slope was closely associated with local terrain conditions, and it 
contributed 13.72% to patterns of soil moisture. Similar with the 
assessment of individual variables, geographical variables controlled the 
spatial variability of soil moisture during the frozen season. In addition 
to slope, soil bulk density, ET, EVI, precipitation, and soil pH contrib-
uted 12.62%, 6.58%, 6.31%, 4.04%, ad 4.01% to spatial patterns of soil 

Fig. 7. Geographically optimal zones of soil moisture in the frozen season identified using the GPZH model (A), the process of identifying optimal zones (B), and 
statistical summaries of explanatory variables within zones for explaining characteristics of zones (C). 
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moisture during the frozen season, respectively. 
In addition, Table 3 and Fig. 8 demonstrate contributions of variables 

to dividing optimal zones in unfrozen and frozen seasons. They had 
similar trends with contributions of variables to overall Ω values. For 
instance, precipitation contributed 72.22% to dividing zones during the 
unfrozen season, and slope contributed 54.55% to the dicision of zones 
during the frozen season. 

5.5. Model evaluation 

The performance of the GOZH model in investigating spatial het-
erogeneity in the large-scale soil moisture was evaluated from four as-
pects: exploring individual variables, assessing multiple spatial variables 
with interactive effects, dealing with finely divided zones during spatial 
overlay, and the reliability of models. These aspects of the GOZH model 
were evaluated by comparing with the commonly used OPGD model 
during the unfrozen and frozen seasons. Fig. 9 a-d shows the spatial 
discretization process of the OPGD model for 12 variables, in addition to 
soil texture, which was a categorical variable containing six classes of 
texture. With the break number increase from 1 to 16, the PD, i.e., Q 
value, of all variables increased gradually. The optimal break numbers 
were selected when the increase rate was lower than 0.05. In this study, 
9 and 12 were selected as the optimal break numbers of continuous 
variables during unfrozen and frozen seasons, respectively. Fig. 9 e and f 
shows OPGD-based PD values of individual variables to spatial patterns 
of soil moisture. 

First, the GOZH model supports the derivation of the maximum 
spatial associations between response and explanatory variables 
through the identification of geographically optimal zones. The 
maximum spatial associations can accurately reveal the spatial 

heterogeneity of soil moisture. Therefore, the GOZH model is a reliable 
approach for examining spatial heterogeneity and exploring OPD of 
explanatory variables on spatial patterns of soil moisture. 

In addition, the GOZH model can help reduce the underestimation of 
the PD values by the OPGD model as demonstrated by explorations of 
individual variables. Ranks of PD values explored by OPGD models 
during both unfrozen and frozen seasons were similar to those of GOZH 
models. For instance, precipitation and elevation were variables with 
both the highest Q (PD) and Ω (OPD) values during unfrozen and frozen 
seasons, respectively. However, the power of explanatory variables 
revealed by the GOZH model had a significant enhancement than the 
OPGD model. The average Ω values of individual variables were 80.9% 
and 68.2% higher than the average Q values during the unfrozen and 
frozen seasons, respectively. 

Third, the GOZH model can effectively avoid the overestimation of 
the interactive impacts of multiple spatial variables on patterns of soil 
moisture compared with the OPGD model. Fig. 10 shows a model per-
formance comparison between the GOZH and OPGD models in terms of 
the OPD/PD of variables and numbers of zones with the increased 
number of explanatory variables during the unfrozen and frozen sea-
sons. In Fig. 10 a and c, average GOZH-based Ω values of individual 
variables were 0.20 and 0.18, and they were gradually increased to 0.48. 
In GOZH models, numbers of zones were not critically increased (Fig. 10 
b and d), which indicated the robustness of GOZH models in the analysis 
of spatial heterogeneity. However, in Fig. 10 e and g, average OPGD- 
based Q values of individual variables were both 0.11, respectively, 
and they were rapidly increased to 0.99. Simultaneously, numbers of 
zones were also critically increased from 13 to 750 when the number of 
variables was higher than 1. The critically increased number of zones 
caused the very limited observations within zones and made the 

Table 3 
Contributions of explanatory variables on spatial patterns of soil moisture and contributions to dividing optimal zones in unfrozen and frozen seasons.  

Unfrozen season Frozen season 

Variable Contribution to spatial patterns Contribution to dividing zones Variable Contribution to spatial patterns Contribution to dividing zones 
Precipitation 20.99% 72.22% Slope 13.72% 54.55% 
NDVI 11.26% 11.11% Soil bulk density 12.62% 12.73% 
Temperature 7.90% 11.11% ET 6.58% 14.55% 
Soil pH 7.47% 5.56% EVI 6.31% 10.91% 
Overall Ω  47.62% / Precipitation 4.04% 3.64%    

Soil pH 4.01% 3.64%    
Overall Ω  47.69% /  

Fig. 8. Summary of explanatory variables used for dividing each pair of geographical optimal zones of soil moisture in unfrozen (a) and frozen (b) seasons.  
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Fig. 9. Processes and results of the optimal parameters-based geographical detectors (OPGD) model for assessing power of determinants (PD) of soil moisture. PD of 
variables with different numbers of spatial discretization (a and b), processes of selecting optimal numbers of discretization (c and d), and PD of individual variables 
using optimal parameters (e and f) in unfrozen and frozen seasons, respectively. 

Fig. 10. Model performance comparison between GOZH and OPGD models: power of determinants (PD) and number of zones in the unfrozen and frozen seasons 
investigated using the GOZH model (a-d), and that investigated using the OPGD model (e-h). 

P. Luo et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 185 (2022) 111–128

124

increased Q values unreliable. 
Finally, the GOZH model can eliminate finely divided zones (FDZs) 

that are common in the interactive variable assessment of SSH models. 
Fig. 11 shows the percentages of FDZs in OPGD models. In OPGD 
models, when examining interactive impacts of any two variables on soil 
moisture patterns, about 20% of zones would be FDZs, where there was 
only one observation in each FDZs. When the number of variables was 
higher than 5, nearly all zones would be FDZs. The extremely high 
percentage of FDZs cannot explain the real PD of variables. Thus, the 
analysis of FDZs demonstrates that the rapidly increased Q values of the 
interaction of multiple variables in OPGD models were not reliable when 
three or more variables were used in models. The analysis also explains 
why only two variables were considered in the interaction analysis in 
previous OPGD-based studies. When the variable number exceeds 2, 
most of the zones only have one or a few observations, which makes it 
difficult to reveal the real PD of the interaction of variables. However, in 
GOZH models, no FDZs existed no matter how many explanatory vari-
ables were used. The analysis of FDZs can further confirm the reliability 
and robustness of the GOZH model in the analysis of spatial 
heterogeneity. 

6. Discussion 

6.1. Methodological contributions 

This study proposed a GOZH model to explore the spatial variability 
of soil moisture in the Northern Hemisphere. The GOZH model has 
following advantages in spatial determinant explorations. First, in the 
GOZH model, an OPD indicator was developed reveal the maximum 
spatial associations between soil moisture variability and determinants. 
Second, the optimal geographical zones can be derived from the 
explanatory variables. Third, no statistical assumptions are required in 
the GOZH model. Finally, the model validation in the study has 
demonstrated that the GOZH model can effectively explore spatial de-
terminants of soil moisture through avoiding the underestimation of 
individual variables, overestimation of multiple variables, and finely 
divide zones. 

6.2. Complex spatial heterogeneity of soil moisture patterns 

This study revealed the complex spatial heterogeneity of soil mois-
ture during unfrozen and frozen season at a global scale. The complexity 

of spatial heterogeneity of soil moisture patterns can be explained in 
following aspects. First, spatial patterns of soil moisture had significant 
regional disparities that were closely associated with regional 
geographical, climate, soil, and environmental conditions. The soil 
moisture monitoring stations in the Northern Hemisphere can be 
divided into nine and eleven zones during the unfrozen and frozen 
seasons, respectively. Explanatory variables tended to be similar within 
zones, and significantly varied among different zones. 

In addition, determinants of spatial patterns of large-scale soil 
moisture have seasonal characteristics. On one hand, the spatial het-
erogeneity during unfrozen and frozen seasons has similarities. The 
overall Ω values that examined the maximum PD of four categories of 
explanatory variables in both seasons were approximate 48%, and they 
were affected by the interaction of multiple spatial variables. These re-
sults revealed the complexity of spatial heterogeneity in soil moisture, 
that only half of the heterogeneity could be explained by geographical, 
climate, soil, and environmental variables. 

On the other hand, the spatial heterogeneity of soil moisture during 
the frozen season was more complex than that during the unfrozen 
season. First, spatial distributions of geographically optimal zones dur-
ing the frozen season was much more complex than those during the 
unfrozen season, which appeared in most monitoring stations in the 
North America, Europe, and China. An exception was Alaska, where 
stations were divided into five zones during the unfrozen season, but 
they were located in a zone during the frozen season. Second, more 
explanatory variables are required to identify geographical optimal 
zones and estimate Ω values, where numbers of required explanatory 
variables during the unfrozen and frozen seasons were four and six, 
respectively. Finally, climate variables, including precipitation and 
temperature, are predominant variables of spatial patterns of soil 
moisture during the unfrozen season, accounting for 60.7% of the 
overall Ω value,but spatial patterns of soil moisture were affected by all 
four categories of variables during the unfrozen season, where the pri-
mary variable, slope, only accounted for 28.8% of the overall Ω value. 
Precipitation contributed 72.2% to dividing zones. During the frozen 
season, geographical variables controlled the spatial variability of soil 
moisture, and slope contributed 54.55% to dividing zones. Soil prop-
erties, including soil bulk density and soil pH also determines the 
geographical optimal zones during the frozen season. The slope can 
explain 19.16% of soil moisture during the frozen season, which is lower 
than its contribution to the geographically optimal zones combining 
with other variables. This result is consistent with previous works, which 

Fig. 11. Percentages of finely divided zones (FDZ), which are zones contain only an observation, are critically increased in the OPGD models for unfrozen (A) and 
frozen (B) seasons, when the number of variables is higher than two. On the contrary, percentages of FDZ in GOZH-based results are zero for both seasons. 
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geographical variables can not be the single determinant of soil moisture 
variability (Wilson et al., 2005). 

Finally, it is more difficult to characterize and explain the spatial 
heterogeneity than temporal heterogeneity in soil moisture. For 
instance, previous studies have demonstrated that the fitness of tem-
poral prediction of soil moisture could reach to 96% using deep learning 
models (Cai et al., 2019; Ahmed et al., 2021). However, the accuracy of 
spatial prediction was much lower than that in temporal predictions and 
the accuracy tended to decrease with the increased spatial scale. For 
instance, the fitness of spatial prediction at local scales were 0.41–0.84 
in multiple studies (Badewa et al., 2018; Peng et al., 2017), and that at a 
global scale can only reached to 0.63 (Montzka et al., 2018), even 
models have been improved with the consideration of more soil infor-
mation and characteristics, such as soil texture (Montzka et al., 2018). 
According to this study, the primary reason of the lower accuracy of 
spatial prediction is the complex spatial heterogeneity that only about a 
half of the spatial heterogeneity of soil moisture can be explained by 
explanatory variables. 

6.3. Temporal variations of soil moisture determinants 

The temporal phase of soil moisture determinants was investigated 
from following three aspects. First, the spatial heterogeneity and de-
terminants was varied from April 2015 to December 2017. Generally, 
climate variables, i.e. precipitation and temperature, have the highest 
spatial associations with soil moisture during most periods but the as-
sociations were varied in different months, which is consistent with 
previous findings (Wang et al., 2017). Explanatory variables had the 
highest explanatory power to soil moisture in November 2016, where 
precipitation can impact 58% of soil moisture, and elevation and tem-
perature can explain 55% and 46% of the spatial variability of soil 
moisture. However, variables can only explain up to 5% of soil moisture 
in February 2017. Therefore, a relatively long time period, such as a half 
year, is recommended for reliable explorations of variability and de-
terminants of spatial patterns of soil moisture. 

Second, soil moisture spatial variability has a strong monthly 
pattern. In the frozen-unfrozen season-changing months, i.e., March and 
April, spatial associations between patterns of soil moisture and 
explanatory variables generally have the highest Ω value, and the Ω 
value of climate variables have the highest improvement in this period. 
Previous studies have concluded that during the transition phrase, 
climate variables become more important to soil moisture variability 
likely because the alternation of cold and warm days controlled by 
weather variability (Kang et al., 2010; Wei et al., 2019). The least 
interpretable period of spatial patterns of soil moisture is the middle 
frozen seasons. 

Third, seasonal effects were identified in the spatial heterogeneity of 
soil moisture, results show that the spatial pattern of soil moisture is 
more interpretable during the unfrozen season than during the frozen 
season. The average Ω value of individual variables during the unfrozen 
season (20.0%) is 12.4% higher than that during the frozen season 
(17.8%). Different from most variables, Ω values of temperature and two 
geographically variables, elevation and aspect, are increased from un-
frozen to frozen season. This finding is consistent with previous research 
that in cold weather, soil moisture variability is strongly associated with 
global warming, and the impacts of temperature can be more significant 
(Kang et al., 2010; Wei et al., 2019). Studies also found geographical 
variables is the main driver of soil moisture during the winter when soil 
is frozen which particular because its association to water table (Rose-
nbaum et al., 2012). During the unfrozen season, the impacts of 
geographical variables are negligible due to the low water table (Chaney 
et al., 2015). During the frozen season, with the low ET, the water table 
increases and closes to the surface, which enables higher impacts of the 
groundwater and subsurface flow on the soil moisture variability 
(Western et al., 1998; Rosenbaum et al., 2012). 

6.4. Contributions of heterogeneity and geographical zones to soil 
moisture studies 

Findings about the spatial heterogeneity of soil moisture in this study 
can help optimize the design of soil moisture monitoring network, 
spatial down-scaling of soil moisture data, and accurate inversion of 
surface parameters from soil moisture. 

First, the network design of soil moisture can be optimized with the 
improved understanding of the spatial heterogeneity and determinants 
of regional disparities of soil moisture identified in this study. Due to the 
complex heterogeneity of spatial soil moisture, most existing in situ 
observation networks rarely provide sufficient coverage to capture soil 
moisture variability at a watershed scale. Thus, it is critically required to 
develop a systematic approach to soil moisture network design in order 
to accurately capture soil moisture information in the watershed space 
with a minimum number of sensors. It was found that the current 
(simulated and observed) network of soil moisture detectors un-
derestimates the average spatial heterogeneity (Zhuo et al., 2020). The 
analysis of the determinants of soil moisture heterogeneity and the 
spatial partitioning results from the GOZH model can be used to inform 
the development of new techniques for ground-based measurement 
network design. The intended network design can take into account the 
spatial variability of soil moisture. 

Second, the spatial down-scaling of the soil moisture data requires 
the spatial heterogeneity information of large-scale soil moisture 
monitoring data. The coarse resolution of soil moisture remote sensing 
products limits its application at fine scales, which introduces the need 
for their spatial down-scaling (Chaney et al., 2015). A series of down- 
scaling methods had been developed to improve resolutions of soil 
moisture products using multi-source auxiliary data and various 
methods, such as statistical models, geospatial models, machine 
learning, deep learning, and hybrid models (Peng et al., 2017). How-
ever, due to the existence of spatial heterogeneity of soil moisture, the 
accuracy of spatial prediction has been lower than that of temporal 
prediction (Badewa et al., 2018; Peng et al., 2017; Montzka et al., 2018). 
It is also a challenge to quantitatively assess the large differences in soil 
moisture determinants in different regions (Molero et al., 2018). The 
geographically optimal zones of soil moisture obtained using the GOZH 
model, and the control factors in different regions can effectively guide 
the spatial down-scaling process. Our study shows that geographical 
variables are the most important factors to soil moisture in the frozen 
season. For example, soil moisture heterogeneity in the east and west of 
North America is controlled by the slope. Therefore, greater weight 
should be given to geographical variables during spatial down-scaling. 
In the unfrozen season, environmental and climate variables are essen-
tial to soil moisture. Precipitation determines the soil moisture in the 
western United States, while NDVI determines soil moisture in the 
central United States. 

Finally, understanding soil moisture heterogeneity over different 
geographical zones can also support the accurate inversion of surface 
parameters from soil moisture satellite data. The limited knowledge of 
regional differences in soil moisture and its determinants poses a chal-
lenge to calibrate ground roughness parameterization schemes with 
ground observation data. Obtaining information on soil moisture het-
erogeneity can improve the accuracy and the geographical trans-
ferability of the parameterization scheme. (Verhoest et al., 2008). 

There are still limitations of this study. First, the scale effect between 
soil moisture in situ data and remote sensing images were not considered 
in this study. The explanatory variables are derived from the pixels in 
the position of the soil moisture monitor stations. Spatial heterogeneity 
of soil moisture at stations in the Northern Hemisphere is much higher 
than that of data within grids of explanatory variables, e.g., 90 m or 250 
m. Therefore, we assume spatial analysis in the study will not be affected 
by the scale effects of explanatory variables derived from remote sensing 
or grid data. In addition, some explanatory variables, for example, 
elevation and slope, may be represented by a zone with an area larger 
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than the size of grid in the images (Jasiewicz and Stepinski, 2013). In 
this case, data at surrounding grids need to be considered for deriving 
explanatory variables at stations. From the perspective of spatial het-
erogeneity models, approaches can be developed for more effective use 
of continuous variables in spatial heterogeneity models. For instance, 
the spatial association detector (SPADE) (Cang and Luo, 2018) and the 
interactive detector for spatial association (IDSA) (Song and Wu, 2021) 
models were developed to compare zonal and global spatial depen-
dence, i.e., spatial autocorrelation of data, instead of zonal and global 
variance, for computing the PD values. The K-means (Likas et al., 2003; 
Hartigan and Wong, 1979) and hierarchical clustering (Johnson, 1967) 
methods also can be used to derive spatial zones with the continuous 
explanatory variables. Finally, the division of the frozen and unfrozen 
seasons in this study may introduce uncertainty. The study aims to 
explore the soil moisture variability in the Northern Hemisphere. The 
frozen/ unfrozen months were unified in the whole study area since 
most stations are located in the mid-latitude area and only thawed soil 
moisture data were selected and analyzed. However, some stations are 
located in the high latitude area like Alaska, where the unfrozen/frozen 
season of soil moisture may be different from other areas. Thus, further 
studies may explore the soil moisture variability in different climate 
zones. 

7. Conclusion 

This study developed a geographically optimal zones-based hetero-
geneity (GOZH) model to explore the spatial variability of soil moisture 
in the Northern Hemisphere. In the GOZH model, the optimal power of 
determinant (OPD) indicator can reveal the maximum spatial associa-
tions, and the spatial determinants can be effectively explored through 
avoiding the underestimation of individual variables, overestimation of 
multiple variables, and finely divide zones. 

The GOZH model was implemented to explore the spatial and tem-
poral patterns of soil moisture variability. Results shows that in the 
frozen-unfrozen season-changing months, spatial associations between 
patterns of soil moisture and explanatory variables generally have the 
highest OPD value especially for climate variables. The average OPD 
value of individual variables during the unfrozen season (20.0%) is 
higher than that during the frozen season (17.8%). In addition, 
geographically optimal zones and corresponding determinants of soil 
moisture were revealed by the interactive of explanatory variables. 
Variables have similar contributions to spatial pattern of soil moisture 
during two seasons. At a global scale, the combinations of determinants 
can explain about 48% of the spatial pattern of soil moisture. During the 
unfrozen season, climate variables, including precipitation and tem-
perature, have the highest contributions to the overall OPD value. 
During the frozen season, geographical variables (e.g., slope) controlled 
the spatial variability of soil moisture. 

This study can provide a deep understanding of variability and de-
terminants of soil moisture at a global scale. The knowledge of soil 
moisture determinants can be better used in situ network design, spatial 
down-scaling of soil moisture. In addition, the results can also be applied 
to the evaluate soil moisture in satellite imagery and the accurate 
inversion of surface parameters from satellite data on soil moisture. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by funding from the Curtin University and 
the China Scholarship Council. 

References 

Ahmed, A., Deo, R.C., Raj, N., Ghahramani, A., Feng, Q., Yin, Z., Yang, L., 2021. Deep 
learning forecasts of soil moisture: Convolutional neural network and gated 
recurrent unit models coupled with satellite-derived modis, observations and 
synoptic-scale climate index data. Remote Sens. 13 (4), 554. 

Al-Yaari, A., Wigneron, J.P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., 
Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y.H., De Lannoy, G., 2019. 
Assessment and inter-comparison of recently developed/reprocessed microwave 
satellite soil moisture products using ISMN ground-based measurements. Remote 
Sens. Environ. 224 (February), 289–303. 

Albergel, C., Calvet, J.-C., Rosnay, P. d., Balsamo, G., Wagner, W., Hasenauer, S., Naeimi, 
V., Martin, E., Bazile, E., Bouyssel, F., et al., 2010. Cross-evaluation of modelled and 
remotely sensed surface soil moisture with in situ data in southwestern France. 
Hydrol. Earth Syst. Sci. 14 (11), 2177–2191. 

Albergel, C., De Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., 
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ABSTRACT  
Identifying the factors influencing wetland variations is crucial for 
understanding the relationship of climate change with wetland 
conservation and management. The wetland distribution is associated 
with multiple variables, and the interactions among these variables are 
complex. In this study, we aim to explore an interpretable and 
quantitative analysis of factors related to wetland spatiotemporal 
variations on the Tibetan Plateau (TP). By combining SHapley Additive 
exPlanations with a spatially stratified heterogeneity model, we propose 
a locally explained stratified heterogeneity (LESH) model that well reveals 
the effects of multiple variable interactions on the spatiotemporal 
variations of wetlands. The results show that topographic variables are 
the most important variables related to the spatial distribution of 
wetlands on the TP, and climatic variables are the most relevant factors 
for the increase in the wetland area on the TP from 2015 to 2019. In 
addition, the interactions among multiple variables strongly influence 
wetlands on the TP. Among them, when other geographic variables 
interact with the evaporation variable, its explanatory power on wetland 
distribution is significantly increased. Knowledge of wetland distribution 
determinants can help us understand the evolution of wetlands and the 
impacts of climate change on wetland variations.
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1. Introduction

Wetlands provide abundant ecological and climatic benefits. They are critical for hydrology, 
biogeochemical function, and biodiversity conservation (Chatterjee et al. 2015; Cohen et al. 2016; 
Gall et al. 2013; Russi 2013). The soil and biomass in wetlands can capture and store atmospheric car-
bon dioxide over long periods to counteract the effects of climate change (Chmura et al. 2003; Mitsch 
et al. 2013; Were et al. 2019). The Tibetan Plateau (TP) is the birthplace of many large rivers in Asia 
and has unique alpine wetlands (lakes, rivers, marshes, etc., under unique alpine climate conditions) 
(Zhao et al. 2015; Cao and Zhang 2015). As a sensitive region and magnifier of global climate change, 
the TP has been significantly impacted by climate conditions and environmental variability over the 
past three decades (Kang et al. 2007; Yao et al. 2000; Zhang et al. 2020). The spatiotemporal changes in 
wetlands and the relevant factors on the TP have attracted great attention.
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Knowing the factors that influence the wetland variations on the TP could facilitate our under-
standing of wetland development and changes. By revealing the interactions between hydrological 
processes and the ecosystem, we can develop coupling models to simulate spatiotemporal hydrolo-
gical patterns and processes (Xue et al. 2018; Zhang et al. 2016b). These models are essential in pre-
dicting whether wetlands will be resilient or vulnerable to climate change in the future (Zhang et al.  
2016a). This knowledge is also helpful for making decisions regarding wetland restoration and pro-
tection (Hu et al. 2017). To make protection measures more effective and targeted, it is essential to 
set different measures for different regions according to the characteristics of wetlands (Xu et al.  
2019). By carefully designing these partition strategies, researchers can help to protect and preserve 
the unique wetland ecosystems of the TP.

Numerous methods can be used to investigate the related factors of spatiotemporal variations on 
wetlands. These methods can be categorized into two groups: statistical models and mechanical 
models (Wang et al. 2022). Correlation analysis methods are the most widely used statistical 
methods. The correlation of time series data was used to investigate the relationships between vari-
ables (Wang, He, and Niu 2020; Wang et al. 2022). Regression analysis methods use curve-fitting 
statistics to explore spatial relationships. For example, multiple regression was used to predict 
the wetland extent with coastal and watershed variables and calculate the explanatory power to wet-
land changes (Braswell and Heffernan 2019). Geographically weighted regression (GWR) was used 
to reveal the critical influencing factors of spatiotemporal variability on wetlands (Tian et al. 2023). 
In addition, several studies have investigated the impacts of climate variables on wetland changes 
based on mechanical models, such as wetland hydrological models (Moshir Panahi et al. 2022). Xi 
et al. (2020) explored the effects of temperature changes on the wetland areas across 1,250 inland 
Ramsar sites by estimating the wetland areal extent with a hydrological model.

Spatially stratified heterogeneity (SSH) models are effective analytical frameworks for investigating 
the drivers of spatial variability in geographical variables. The utilization of SSH models has been on 
the rise in recent years for characterizing the spatial variability of geographical variables (Guo et al.  
2022; Luo et al. 2022). These models enable a comparison of the spatial distribution patterns of depen-
dent and independent variables to calculate the power of determinants (PD) (Luo et al. 2023). A 
higher PD value indicates similar spatial distributions. In the classical SSH model, spatial discretiza-
tion was conducted according to equal, quantile, or geometric breaks, and no optimization occurred 
in this process. The detected spatial associations of this method were influenced by the rule applied to 
determine spatial discretization. Thus, the corresponding PD could not fully explain the spatial associ-
ations between the explanatory variables and response variables. Studies have detected a significant 
underestimation of PD when using the classical SSH model (Luo et al. 2022). To address the above 
problem, several models have been developed to calculate the optimal power of determinant 
(OPD), such as the optimal parameter based geographical detector (OPGD) and geographically opti-
mal zones-based heterogeneity (GOZH) models (Luo, Song, and Wu 2021; Song et al. 2020; Song and 
Wu 2021; Luo et al. 2022). By optimizing the spatial discretization process, the corresponding OPD 
can significantly improve the method to fully reveal the spatial associations.

However, current SSH models still faced difficulties to explain the contributions of variables due 
to the complex spatial heterogeneity of wetlands in large regions. A black box exists in the current 
SSH models when calculating the interactions between multiple explanatory variables. There is a 
need to distribute the contributions in a fair way to explain the role of each variable and the 
interactions between multiple variables. In addition, past studies have ignored the scale effect of 
geographical variables on wetlands. In spatial analyses, the size of the units directly affects the 
level of detail captured and the results generated (Chen et al. 2019). If the scale of the variables 
changes, then the covariance between them, their correlation coefficient, and the statistical 
model results also change (Wu 2004). Therefore, analyses relying on geographical variables are rela-
tively scale-sensitive, and it is important to choose the optimal scale when characterizing and com-
paring data when using these analysis methods.
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In this study, we developed a locally explained stratified heterogeneity (LESH) model to calculate 
the contribution of each variable for explaining the spatiotemporal heterogeneity of wetlands on the 
TP. The multiple grid-scale wetland density from 2000 to 2019 was calculated from a wetland pro-
duct (Li et al. 2023a; Li et al. 2023b). Correspondingly, the explanatory variables were collected from 
Google Earth Engine (GEE) and classified into three categories: geographic, climatic, and environ-
mental variables. The Shapley value, a commonly employed concept in cooperative game theory 
analyses to fairly distribute the ‘payout’ among players (Shapley 1953; Datta, Sen, and Zick 2016; 
Lundberg and Lee 2017), was introduced to assign a total explanatory power to each variable. 
Based on this model, the contribution of each variable and the interactions among multiple vari-
ables were obtained. First, the optimal scale of analysis was determined by investigating the associ-
ations between each variable with wetland density at different scales. Second, the impacts of 
individual variables on the spatiotemporal variations of wetlands were analysed at the optimal 
scale. Third, the LESH model was used to calculate the interactions among multiple variables. 
Finally, the geographically optimal wetland zones over the first 15 years (slowly fluctuating period) 
and the following 5 years (rapid growth period) of the study period were determined. The impact of 
the related factor on the wetland distribution was analysed according to the geographically optimal 
zones, and each variable’s contribution was calculated.

2. Data

2.1. Response variable

In our study, the wetland density was used as the response variable. Compared with wetland area, 
wetland density was more convenient for comparison among different scales. Wetland density data 
at multiple scales were calculated from the yearly wetland product on the TP (Li et al. 2023a; Li et al.  
2023b). The product was generated from Landsat satellite images between September and October 
from 2000 to 2019. Lakes, rivers, and marshes including moss marshes, herbaceous marshes and salt 
marshes were the main types of extracted wetlands. Validation experiments indicated that this wet-
land product is highly accurate (with a 96.1% user’s accuracy and 90.8% producer’s accuracy).  
Figure 1 shows the spatial (Figure 1a) and temporal (Figure 1b) variations of the wetlands on 
the TP. There are more wetlands in the north-western region and fewer in the south-eastern 
area. In terms of temporal variations, two distinct wetland periods were distinguished by Ruptures 
(Truong, Oudre, and Vayatis 2020), a Python library for change point detection. From 2000 to 2014, 
the TP wetland area fluctuated between 160,000 km2 and 185,000 km2 with no significant changes. 
From 2015 to 2019, the TP wetlands showed a rapidly extending trend. The wetland growth (50,725 
km2) during this period was more than one-fourth of that in 2015. In subsequent analyses, we used 
wetland density from 2000 to 2014 as the proxy of the spatial variations of wetlands, and wetland 
density from 2015 to 2019 as the proxy of the spatial and temporal variations of wetlands.

2.2. Explanatory variables

The explanatory variables used to explain the spatial disparities of wetlands included topographical, 
climatic, and environmental categories derived from remotely sensed data (Table 1). All these data 
were collected using Google Earth Engine (GEE). Since the Landsat images used to identify wetlands 
were all taken from September to October, the explanatory variables were also averaged for September 
and October to represent the climatic and environmental conditions as much as possible.

2.2.1. Topographical variables
Topographical variables, including the elevation and derived slope data, were obtained from GEE to 
represent the topographical conditions of the TP. The data were collected from the digital elevation 
model (DEM) at a resolution of 30 m from the Space Shuttle Radar Terrain Mission (SRTM) (Farr 
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and Kobrick 2000). The slope data were computed from the elevation data by the spatial analysis 
function in GEE.

2.2.2. Climate variables
Climate change is an essential driver of the conversion of wetland ecosystems (Mitsch et al. 2013; 
Wang, He, and Niu 2020). The climate variables used in this study include monthly temperature 
and precipitation data derived from the ERA5-Land monthly averaged data (Muñoz-Sabater 
et al. 2021). ERA5-Land is a reanalysis product that integrates observational data with the funda-
mental principles of physics, thereby providing a precise characterization of the climate. The 
data has been transformed into monthly averages with a spatial resolution of 0.125 × 0.125 degrees.

Figure 1. Distribution of TP wetlands. (a), the number of years with wetlands in each location from 2000 to 2019; (b), the TP 
wetland area changed from 2000 to 2019.

Table 1. Explanatory variables for the wetland density.

Category Variable Abbr. Product

Topography Elevation ELE SRTM DEM
Slope SLO SRTM DEM

Climate Temperature TEM ERA5-Land
Precipitation PRE ERA5-Land

Environment Normalized Difference Vegetation Index NDVI MOD13Q1
Enhanced Vegetation Index EVI MOD13Q1
Evaporation EVA ERA5-Land
Runoff RO ERA5-Land
Snowmelt SM ERA5-Land
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2.2.3. Environmental variables
The enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), evapor-
ation, runoff, and snowmelt were used as environmental variables to characterize the local environ-
mental conditions. The EVI and NDVI data used in this study were obtained from Terra MODIS 
products (MOD13Q1) at a spatial resolution of 250 m (Didan, Munoz, and Huete 2015). Evapor-
ation, runoff, and snowmelt were derived from the ERA5-Land monthly averaged data.

3. Methods

3.1. Locally explained stratified heterogeneity (LESH) model

3.1.1. Concept of the LESH
Figure 2 shows the difference between the three kinds of SSH models. Given the response variable 
and one or multiple explanatory variables, spatial discretization was conducted, and the variance in 
the response variable among the divided zones was calculated. In the classical SSH model 
(Figure 2b), the PD value could not fully explain the spatial associations between the explanatory 
variables and response variables. Some improved models, such as the OPGD and GOZH models 
(Figure 2c), can significantly improve the PD value to fully reveal the spatial associations. However, 
although the OPD can accurately estimate how multiple explanatory variables influence the 
response variable, we have yet to determine the contribution of each explanatory variable. For 
example, we may find that temperature and precipitation can together explain 50% of the wetland 
distribution. There is a need to determine the contribution of temperature to this interaction.

In this study, we aim to open this black box and determine the contribution of each variable to 
the OPD. We propose the LESH model by combining the SHAP and SSH models. The improved 
OPD, called the SHAP power of determinants (SPD), can fully explain the contribution of each 

Figure 2. The development of the SSH model. (a), the response variable and the explanatory variables; (b), the concept of the 
power of determinant (PD); (c), the concept of the optimal power of determinant (OPD); (d), the SHAP power of determinant 
(SPD).
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variable regardless of how many variables are considered or how complex the interaction process is 
(Figure 2d).

Figure 3 shows the flowchart of the LESH model. Given the response variable and multiple 
explanatory variables, the LESH model provides three outputs: the OPD value of individual vari-
ables and multiple variables, the SPD value of each variable, and the geographically optimal 
zones. The OPD values refer to the correlation between the dependent variable and explanatory 
variables. The SPD values represent the contribution of each variable. The geographically optimal 
zones can be applied to assess the overall impacts of multiple variables on spatial patterns of depen-
dent variable.

To begin, the OPD values of individual variables and multiple variables were calculated based on 
the GOZH model (Figure 3b). Subsequently, the contribution of each variable was computed 
according to the concept of Shapley value (Figure 3d). Finally, we obtain the geographically optimal 
zones, which represent the strongest correlation of all possible combinations of explanatory vari-
ables to the spatial distribution of the dependent variable.

3.1.2. Power of determinants (PD) and optimal power of determinants (OPD)
The PD value was a measure of the spatial association between the response variable and the expla-
natory variable, with a higher PD value indicating a stronger association. This value was a ratio of 
the variance in the wetland density within the zones, determined by explanatory variables, to the 
variance across the entire study area. The formula was as follows:

PD = 1ˇ SSW
SST = 1ˇ

Ph
z=1 Nzs2

z
Ns2

(1) 

where SSW represents the summation of squares within individual zones, SST corresponds to the 
summation of squares of wetland density across the entire study area, Nz and sz denote the number 
and standard deviation of wetland density in each zone z (z = 1, … , h), respectively, and N and σ are 
the number and standard deviation of the wetland density across the study area, respectively.

Figure 3. The workflow of the LESH model. (b), calculation of the OPD by the decision tree-based SSH model; (c), the results of 
OPD and the spatial discretization (zones) of the response variable; (d), calculation of the SPD value based on the SHAP model; (e), 
the results of SPD and the optimal spatial discretization (zones) of the response variable.
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In this study, the optimal PD value, which was proposed by the geographically optimal zone- 
based heterogeneity (GOZH) model (Luo et al. 2022), was used to explore the factors influencing 
the wetland distribution. In GOZH, the OPD is represented by the V value, which is calculated as 
follows:

V = max(PD) = 1ˇmin(SSWX,D)
SSD

(2) 

where SSWX,D denotes the sum of squares within zones that are recorded as D and deter-
mined by explanatory variable X. The Ω value can identify the optimal geographical zone 
determined by multiple explanatory variables and demonstrate the maximum PD of these 
explanatory variables.

3.1.3. SHAP power of determinants (SPD)
The cooperative game theory proposed by Shapley (Shapley 1953; Lundberg and Lee 2017) was used 
to calculate the contribution of each explanatory variable under the condition of multivariate inter-
actions. Our method can be described as follows. Suppose that the explanatory variables include x1, 
x2, x3, … xm, for a total of |M| (where |M| represents the number of variables in the set of M) vari-
ables. S = {x1, x2, x3, … xs} (s< = m) is a subset within the |S| explanatory variables excluding xj. Our 
method can distribute the total OPD value to each variable in a ’fair’ way. For variable xj, the SHAP 
power of determinants (SPD), i.e. the contribution of variable xj to the V value, can be calculated by 
the following equation:

uxj (S) =
P

s[M\{xj}

|S|!(|M|ˇ |S|ˇ 1)!
|M|! (v(S < {xj})ˇ v(S)) (3) 

where uxj (S) denotes the SPD of variable xj in the set M. S [ M\{xj} denotes that the S is a 
subset of M, but S does not contain the variable xj, and v(S) is the function used to calculate 
the OPD under the interaction of |S| (where |S| represents the number of variables in the set 
of S) variables.

This formula is equal to the Shapley values (Lundberg et al. 2020; Lundberg and Lee 2017) and 
can be understood as follows: the SPD is the weighted average of the difference between the func-
tions v(S) of all subsets containing the variable xj and those not containing the variable xj (Figure 3). 
Notably, the empty set is also a part of this set. In any combination of subsets, the contribution of 
the variable xj can be calculated by v(S < {xj})ˇ v(S); then, for each variable, the mean of this con-
tribution can be calculated over all permutations.

For a combination of variables S, the following expression can be obtained:

v(S) =
P

{xj}[S
uxj (S), j = 1, 2, . . . S (4) 

i.e. the sum of the contributions of all variables in set S is equal to the total V value of the set. Thus, 
the contribution of each variable we calculated is a part of the V value.

uxi (v(S) + v(S)) = uxi (v(S)) + uxi (v(S)) (5) 

The SPD proposed herein has the following three desirable properties, consistent with the Shapley 
values. 

(1) Symmetry:

If xi and xj are two explanatory variables that contribute equally to all possible combinations, i.e.

v(S < {xi}) = v(S < {xj}) (6) 

INTERNATIONAL JOURNAL OF DIGITAL EARTH 4539



for every subset S that contains neither i nor j, s [ S\{xj, xi}, then their Shapley values are 
identical:

uxi = uxj (7) 

(2) Dummy variable:

If v(S) = v(S < {xj}) for an explanatory variable xj and all combinations s [ M\{xj}, then:

uxj = 0 (8) 

(3) Linearity:

If other methods can be used to calculate the maximum explanatory power of variables, i.e. if both 
v(S) and v(S) exist, then the contribution of the variable xi in the combination of these two methods 
is equal to the sum of the contributions under the respective methods. This ensures the extensibility 
of our method.

uxi (v(S) + v(S)) = uxi (v(S)) + uxi (v(S)) (9) 

3.2. Examining wetland variations with LESH model

The framework comprises three main components (Figure 4): data pre-processing, optimal 
scale determination, and the computational stage utilizing the LESH model. This stage 
involves individual variable exploration, multiple variables exploration and identifying opti-
mal zones.

3.2.1. Data pre-processing and the identification of the optimal analysis scale
The raw wetland data used herein were pixel-based classification images, but the LESH model 
requires continuous variables, such as area and density variables. Therefore, the data had to be 
transformed into the wetland density, i.e. the proportion of wetlands per unit area. To inves-
tigate the effects of the variable scale on the spatial distribution of wetlands, the multi-resol-
ution data was aggregated using average function. The wetland density was aggregated from 
the 1-km resolution to the 10-km resolution at 1-km intervals and from the 10-km resolution 
to the 150-km resolution at 10-km intervals. The explanatory variables were also aggregated to 
different resolutions using the average function. For the elevation, slope, NDVI, and EVI vari-
ables, we first obtained 1-km-resolution data through the GEE platform and then obtained 
multi-resolution data by calculating the pixel means. For the five variables of temperature, pre-
cipitation, evaporation, runoff, and snowmelt, since the original resolution was 0.125°×0.125°, 
we first resampled these data to a 1-km resolution using the GEE platform and then aggre-
gated them to other resolutions by calculating the average values.

In this study, we investigate the optimal scale to analyse the distribution of wetlands on the 
TP using multiscale data in the LESH model. First, for each year and each scale, the OPD 
values of all nine variables were calculated. Second, for each scale, a box plot of all OPD values 
of the nine variables over two decades was obtained. Third, the mean OPD values of the nine 
variables over two decades were calculated. Finally, the optimal scale was selected according to 
the change rate between the adjacent scales. The locally estimated scatterplot smoothing 
(LOESS) model (Jacoby 2000) was used to fit the mean OPD values into a curve, and then 
the change rate of OPD values at different scales was calculated. The scale with a change 
rate of less than 5% was selected as the optimal scale (Song et al. 2020; Luo, Song, and 
Wu 2021).
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3.2.2. Calculating of OPD values of individual variables
Based on the optimal scale, we analysed the effects of individual explanatory variables on the wet-
land density from 2000 to 2019 using the LESH model. First, the annual data were leveraged to 
calculate the OPD values. The order of importance of the variables was determined by comparing 
the OPD values calculated from the individual variables. Second, the annual wetland density and 
explanatory variables were classified into two periods considering that the wetland area showed 

Figure 4. Schematic workflow of the process used to identify the spatiotemporal heterogeneity and influencing factors of the 
wetland distribution on the TP based on the LESH model.
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two distinct phases, i.e. 2000-2014 and 2015-2019. The change rates of each explanatory variable 
in both periods were calculated. By comparing the changes in OPD values of each explanatory 
variable, we obtained the key variables dominating the wetland distributions in different periods.

3.2.3. Calculating of SPD values
This study detected and analysed the interactions of two variables as a case study. We calculated the 
interactions between variable pairs and their respective contributions (SPD) using the LESH model. 
Specifically, the annual data were classified into two periods. Then, we iterated through all possible 
combinations of variables to compute the OPD under different combinations of variables. Finally, 
the SPD values were calculated for each variable. The SPD value is the weighted average of all OPD 
values of the combinations containing the targeted variable with that of the combinations without 
the targeted variable.

3.2.4. Identification of geographically optimal zones
Stratified variables from the spatial discretization were used to identify the geographically optimal 
zones. According to the stratified variables, wetland density was grouped into geographically 
optimal zones, indicating the highest homogeneity within zones and the highest heterogeneity 
between zones.

Since all possible combinations of variables were iterated in the above calculations, we can obtain 
the geographically optimal combination of variables that is most relevant to wetland density. 
Subsequently, the contribution of each variable to these optimal zones was analysed, thereby 
providing insights into how multiple variables impact the spatial patterns of wetlands. Finally, a 
comprehensive analysis of the geographical, climate, and environmental variables was conducted 
based on the geographically optimal zones, aiming to reveal the regional spatial associations with 
the wetland density.

4. Results

4.1. The optimal scale for analysing wetland distribution

The optimal scale was identified for the heterogeneity analysis of the wetland distribution. Figure 5a 
shows the variations in Ω values at different scales. The explanatory power of the wetland 
distribution gradually increased with the scale of analysis. From the 1-km to the 60-km scale, the 
growth rate consistently increased. The highest value (0.140) was reached at the 60-km scale 
(Figure 5b). As the scale increased, the growth rate of Ω value started to decelerate. By the scale 
reached 120-km, the growth rate of Ω value was lower than 0.05. The choice of scale involved a 
trade-off between the strength of interpretation and the granularity of the study, since a high 

Figure 5. Selection of the optimal scale for the wetland distribution analysis. (a), the OPD (Ω) values calculated at different scales, 
with each box containing 20 years of results. (b), the fitting curve of OPD based on LOESS model (black) and the growth rates of 
OPD values (blue).
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scale leads to a decrease in the number of image elements and a decrease in the granularity of the 
study. In this study, we chose 120-km, where the growth rate of Ω value was below 0.05, as the opti-
mal scale for analysis.

4.2. Impacts of individual variables

Figure 6 shows the Ω values of different variables at the 120-km scale over 20 years. From the per-
spective of the three categories of variables, topographic variables had the highest spatial associ-
ations with wetland density, followed by climatic and environmental variables. In terms of 
individual variables, the slope variable has the highest average Ω value among the nine variables, 
explaining 49.2% of the spatial variability in the wetland distribution on average (20 years). 
Among the nontopographic variables, vegetation accounted for the most important role in the wet-
land distribution. Among them, the Ω values of EVI and NDVI were 0.320 and 0.318, respectively. 
Runoff had a Ω value of 0.279 for the wetland distribution.

We further examined the spatial associations between the individual variables and the wetland 
density during two periods. Figure 7 shows the Ω values of each variable during 2000-2014 and 
2015-2019. The results also reveal the dominant impact of the topographical variables on the wet-
land distribution. However, the importance of variables changed during the two periods. During 
2015-2019, the Ω values of topographical variables such as the slope and elevation decreased by 
17.6% and 26.0%, respectively, while the Ω values of NDVI, EVI and temperature increased by 
26.0%, 43.1%, and 73.5% (Figure 7b), respectively, compared with 2000-2014. The decreased Ω 
values of the topographical variables indicated a decrease in the explanatory power on the wetland 
distribution. This suggested that the newly formed wetlands had fewer spatial associations with the 
topographical variables but were more significantly influenced by meteorological variables such as 
temperature and environmental variables.

4.3. Impacts of the interactions of variable pairs

The proposed LESH model can reveal the contribution of each variable in the interactions of mul-
tiple variables. The results show that the interactions between topographic variables and other vari-
ables had the strongest explanatory power for the wetland distribution (Figure 8). Environmental 
and climatic variables play a secondary role in explaining the distribution of wetlands. Among the 
interactions involving nontopographic variables, the interactive effect of NDVI and TEM had the 
greatest impact on the wetland distribution. The Ω values were 0.40 and 0.43 in the 2000-2014 and 
2015-2019 periods, respectively.

Figure 6. The OPD values of the explanatory variables of the wetland distribution. SLO refers to slope, ELE refers to elevation, EVI 
refers to enhanced vegetation index, NDVI refers to Normalized Difference Vegetation Index, TEM refers to temperature, PRE 
refers to precipitation, EVA refers to Evaporation, SM refers to snowmelt, RO refers to runoff.
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Figure 7. The change of OPD values in the two periods. (a), the OPD values in the 2000-2014 and 2015-2019; (b), the percentage 
change of OPD values between the two periods. SLO refers to slope, ELE refers to elevation, EVI refers to enhanced vegetation 
index, NDVI refers to Normalized Difference Vegetation Index, TEM refers to temperature, PRE refers to precipitation, EVA refers to 
Evaporation, SM refers to snowmelt, RO refers to runoff.

Figure 8. SHAP power of determinants (SPD) values between two variables. (a), in the 2000-2014; (b), in the 2015-2019. The pie 
chart proportions correspond to variables on the x- and y-axes and are distinguished by colors. SLO refers to slope, ELE refers to 
elevation, EVI refers to enhanced vegetation index, NDVI refers to Normalized Difference Vegetation Index, TEM refers to temp-
erature, PRE refers to precipitation, EVA refers to Evaporation, SM refers to snowmelt, RO refers to runoff.
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It is noteworthy that some nonlinearly enhanced interactions between the variables were 
detected, as evidenced by the interactive Ω value being greater than the sum of the individual Ω 
values of the two variables. For example, the interactions between evaporation and other variables 
exhibited nonlinearly enhanced effects. In the 2000-2014 period, the Ω value of evaporation and 
temperature was 0.325, of which evaporation accounted for 0.141 and temperature accounted for 
0.184. When the individual variables were used, the Ω value of temperature was 0.09 and that of 
evaporation was 0.05. In the 2015-2019 period, the Ω value of evaporation and slope was 0.71 
(0.62 for slope and 0.09 for evaporation). When the individual variables were used, the Ω value 
of the slope was 0.59 and that of evaporation was 0.05. In addition, we found that the higher the 
correlation between variables was, the weaker the interaction-derived enhancement was. For 
example, NDVI and EVI exhibited high correlations, with correlation coefficients of 0.98, while 
the interaction between these two variables was very weak.

For the temporal pattern, the topographic variables (e.g. elevation, slope) accounted for signifi-
cantly lower proportions of the pairwise interactions between variables in the 2015-2019 period 
than in the 2000-2014 period (Figure 8). This finding was consistent with the results of the individ-
ual variables analysis, i.e. increased wetlands were not significantly correlated with the topographic 
variables.

4.4. Optimal variable combinations and heterogeneous spatial partitioning

The geographically optimal wetland distribution zones in the two periods were detected by the 
LESH model. As shown in Figure 9, in the 2000-2014 period, four variables, the slope, elevation, 
runoff, and precipitation, were used to identify the 12 wetland zones on the TP. All zones could 
be divided into two groups based on slope. The first group included zones A and B with slopes 
greater than 5.5°. These zones were located mainly in the south-eastern region and along the mar-
gins of the TP, where a large number of high mountains are distributed, resulting in steep gradients 
at large scales (120 km). The wetlands here are predominantly low-density riverine wetlands. The 

Figure 9. Geographically optimal results of the LESH model. (a), Geographically optimal wetland zones on the TP in 2000-2014; 
(b), the decision tree of identifying optimal zones; (c), and statistical summaries of explanatory variables in each optimal zone. 
SLO refers to slope, ELE refers to elevation, PRE refers to precipitation, RO refers to runoff.
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second group was composed of the remaining zones, which had slopes less than 5.5°. These zones 
were located mainly in the central TP, that is, the source region of the three rivers and the Qiang-
tang Plateau. Plateaus dominate this region with small changes in slope, and the factors that control 
the distribution of wetlands include multiple variables.

During the period from 2015 to 2019, wetlands on the TP were grouped into 11 regions by five 
variables: the slope, elevation, EVI, temperature, and NDVI (Figure 10). The rules for dividing the 
zones in 2015-2019 differed from those applied in 2000-2014. For example, the region that was 
divided into regions E and I in 2015-2019 was divided into five regions (C, E, F, G, J) in 2000- 
2004, with a more fragmented distribution. Climate change on the TP has also led to changes in 
division rules even though the same regions, for example, the division rules between region K 
and the other regions were dominated by the slope until 2014 but became temperature-dependent 
from 2015-2019.

Figure 11 shows the SPD values of the optimal variable combinations that determine the geo-
graphically optimal zones in the two periods. In 2000-2014, the interactions of four variables 
explained 77.3% of the wetland distribution on the TP, a significantly greater proportion than 
that explained by single variables or when using all nine variables. The slope was the most dominant 
variable, contributing 41% of the explanatory power, and the elevation variable contributed 25%. 
Runoff and precipitation contributed the remaining 10% of the explanatory power. From 2000 
to 2014, the wetland area did not change extensively, so static variables such as the slope and 
elevation contributed largely to the wetland distribution.

During the 2015-2019 period, the five variables of the slope, elevation, EVI, temperature, 
and NDVI divided the TP into 11 regions. The interactions among these five variables 
explained 75.1% of the wetland distribution on the TP. Unlike the previous 15 years, the 
explanatory powers of the slope and elevation on wetland distribution decreased to 33% and 
19%, respectively. The EVI and temperature became the main explanatory factors during the period 
of rapid wetland growth, contributing 9% and 7%, respectively.

Figure 10. Geographically optimal results of the LESH model. (a), Geographically optimal wetland zones on the TP in 2000-2014; 
(b), the decision tree of identifying optimal zones; (c), the statistical summaries of explanatory variables in each optimal zone. SLO 
refers to slope, ELE refers to elevation, EVI refers to enhanced vegetation index, NDVI refers to Normalized Difference Vegetation 
Index, TEM refers to temperature.
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5. Discussion

5.1. Methodological contributions

This study proposed a LESH model to investigate the linkages between the wetland distribution and 
geographical variables on the TP. Compared with other methods (Table 2), the LESH model has the 
following advantages.

First, the LESH model can accurately calculate the spatial associations between geographical 
variables and the wetland distribution, including linear and nonlinear relationships. However, lin-
ear regression models cannot capture the nonlinear relationships between variables.

Figure 11. The SPD values of key variables. (a) shows the SPD values in 2000-2014; (b) shows the SPD values in 2015-2019.

Table 2. Comparison of several commonly used methods.

Method feature CA MLR GWR GOZH LESH

Nonlinear relationship detection Y Y
Interaction relationship detection Y Y
Contribution assignment Y Y Y
Interpretability Y Y Y Y Y
Local spatial variations Y

CA: Correlation analysis (e.g. Pearson Correlation Coefficient), MLR: Multivariable linear regression, GWR: Geographically weighted 
regression, GOZH: Geographically optimal zones-based heterogeneity.
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Second, the LESH model explores spatial associations by considering the interaction among 
explanatory variables. Geographical variables often exhibit complex interrelationships and are sel-
dom independent of each other (Song and Wu 2021). Therefore, for linear models, non-indepen-
dent variables can result in unstable outcomes, reduced explanatory power, and even erroneous 
conclusions (Brauer and Curtin 2018).

Third, the LESH model can fairly allocate the contributions of each variable to the 
spatiotemporal distribution of wetlands. SPD value provides a consistent and objective approach 
to discerning the variable with the most substantial influence. The SPD value based on Shapley 
value is the only method of contribution assignment that can satisfy several desirable theoretical 
properties.

Finally, the LESH model is interpretable throughout the process, including decision tree-based 
OPD calculation and optimal zones identification, and variable contribution assignment based on 
Shapley value. It should be mentioned that GWR is the only algorithm among those compared that 
can map out the spatial correlation within local regions (Local spatial variations).

The LESH model can also be applied to study similar problems, especially those involving com-
plex interactions among multiple variables. The LESH model is desirable for calculating the contri-
bution of each variable and the interactions between variables and can be used in factor analyses, 
driving force explorations, and other applications in different fields, such as the natural sciences, 
social sciences, and environmental pollution (Wang and Xu 2017; Guo et al. 2022).

5.2. Limitations and interpretations of the findings

The proposed LESH model investigated the associations between the response variable and 
explanatory variables based on statistical data analysis rather than by inferring causality from the 
mechanism. Based on the LESH model, the related factors of the wetland spatiotemporal variation 
were detected. We obtained four main findings:

First, 120-km was found to be a suitable scale for exploring the relationships between the wetland 
distribution and environmental variables on the TP. Under this condition, the spatial associations 
between wetlands and environmental variables are highly significant.

Second, we found that topographic variables were the most important variables determining the 
spatial distribution of wetlands on the TP, while climate variables were important in controlling 
the increased wetland areas. Temperature had an essential effect on the wetland area changes. 
Over the past few decades, the TP has generally become increasingly warm and wet (Kuang and 
Jiao 2016). As a region sensitive to global climate change, the TP is warming more rapidly than 
the worldwide average (Duan and Xiao 2015). The period from 2015 to 2019 was the hottest 
five-year period on record (Global Climate Status Statement 2019). The increased glacier meltwater 
and earlier permafrost thawing due to global warming have provided more abundant water 
recharge, resulting in the formation of new wetlands. The wetland data and explanatory variables 
we used were both derived from the mean values of September-October, which might introduce a 
bias in the result. The TP receives most of its precipitation in summer (Zhu and Sang 2018), so a 
greater influence of temperature and precipitation on wetlands would be found using summer data. 
Nonetheless, considering that we used multi-year data and focused on the interannual variation of 
wetlands, this mitigates the uncertainty caused by the data time of September-October.

Third, we investigated the interactions between two variables and the contribution of each vari-
able. The spatiotemporal variabilities in wetlands are influenced by complex geographical factors 
and their interactions. The results show that the interactions of topographic variables with other 
variables have the strongest explanatory powers for the wetland distribution. Among the inter-
actions involving nontopographic variables, the synergistic effect of the NDVI and TEM variables 
had the greatest influence on wetland distribution. In addition, nonlinear enhancement effects were 
observed between evaporation and several other variables, such as between evaporation and temp-
erature, evaporation and precipitation, and evaporation and NDVI. Although there is a complex 
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feedback mechanism between wetlands and vegetation, vegetation is more likely to respond to wet-
land changes rather than being the driver of wetland spatiotemporal variabilities.

Finally, we identified the geographically optimal wetland distribution zones in two periods using 
the LESH model. We identified the major factors influencing wetlands in different regions within 
different periods, thereby enhancing our knowledge and understanding of the drivers of the spatio-
temporal pattern of TP wetlands.

Our study also has the following limitation: the impact of human activities is not considered due 
to a lack of quantifiable data on the entire study area. Previous research shows that agricultural 
activities are an important driver in the decline of wetlands (Nie and Li 2011). However, compared 
to the climate change on the TP wetlands, the impact of human activities may be very limited (Chen 
et al. 2013).

6. Conclusion

In this study, a locally explained heterogeneity model was proposed to explore the heterogeneity of 
the spatiotemporal distribution of wetlands on the TP from 2000 to 2019. The LESH model can 
reveal the maximum spatial associations between the wetland density and multiple related variables 
and can fairly distribute the contributions of each variable and the interactions among multiple 
variables. Based on this model, we sought to improve our general understanding of how (and 
which) spatial factors are related to the wetland distribution and the extent to which the variation 
in the wetland distribution across the TP can be explained by geographical factors.

The results of the spatial patterns of wetland density variabilities in different phases obtained 
with the LESH model show that topographic variables (slope and elevation) were the most impor-
tant variables determining the spatial distribution of wetlands on the TP, and temperature was an 
important reason for the increased wetland area observed from 2015 to 2019 on the TP. Multi-
variate interactions increased the explanatory power of the model to wetland distribution on the 
TP, and the interactions of the evaporation variable with other variables had enhancement effects.

This study enriches the theory of spatial stratification heterogeneity and analyses the wetland 
distribution heterogeneity in the TP over the past 20 years. Knowledge of wetland distribution 
determinants can help us understand the development and evolution of wetlands and the impacts 
of climate change on wetlands. The results of optimal wetland zoning can comprehensively reflect 
the regional natural geographic characteristics, provide a basis for the regional division of the TP, 
and serve biodiversity protection and nature reserve construction.
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Abstract

Understanding the relationships between geographical variables is a fundamental

task in geographical analysis. Based on spatial dependence or heterogeneity, existing

spatial methods underperform in contexts involving nonlinear relationships and intri-

cate interactions among geographical variables. Identifying the relationships between

individual variables (i.e., univariate e↵ect) within multiple interacting variables remains

challenging and long-lasting. In this study, we develop a novel model, the Geographical

Pattern Interaction (GPI), based on a core premise that the spatial pattern in a re-

sponse variable results from the interaction of spatial patterns in explanatory variables.

The GPI model uses decision trees and Shapley value explanations to measure global

and local univariate e↵ects underlying geographical data patterns. In addition to the

technical details of GPI, an empirical model of homelessness risk in Australia is used to

demonstrate its utility. Results show that GPI can e↵ectively measure nonlinear spatial

associations and interactive e↵ects that determine homelessness risk, which would be

missed using existing spatial methods. We also conduct a sensitivity analysis demon-

strating GPI’s robustness and reliability. GPI is an interpretable and transferable tool

for exploring complex spatial associations in geographical data by recognizing the of-

ten neglected spatial pattern similarities and interactions between geographic variables.
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geographical pattern interaction

1. Introduction1

One of the primary tasks in geographical analysis is to determine the relation-2

ships between geographical variables (Anselin, 1988; Brunsdon et al., 1996). Analyzing3

these relationships can help understand underlying data generating processes, predict4

future scenarios, and inform decision making. Quantitative relationships can be mea-5

sured through statistical models applied to geographical data (Fotheringham et al.,6

2000; LeSage and Fischer, 2008). Traditional statistical models are often used to7

identify non-spatial relationships. Parameter estimation by using geographical sam-8

ples collected from di↵erent locations, and assuming a constant relationship among9

geographical variables across space, however, may, result in biased results and vio-10

lated assumptions. Spatial statistical approaches have been developed to explicitly11

address possible spatial e↵ects present in the data. Spatial e↵ects are normally classi-12

fied into spatial dependence (Anselin, 1988) and spatial heterogeneity (Fotheringham13

et al., 2003; Goodchild, 2004). Spatial dependence refers to the correlation that ex-14

ists between neighboring locations in geographic space, which reflects the tendency15

of geographical phenomena to cluster or disperse in space , and is often be captured16

through spatial regression models (Anselin, 1995; Luo et al., 2022b). Spatial hetero-17

geneity, on the other hand, indicates that the process generating the data may vary18

across di↵erent locations (Getis and Ord, 1992; De Marsily et al., 2005; Fotheringham19

et al., 2003). This heterogeneity may manifest that geographical phenomena exhibit20

di↵erent characteristics or patterns at di↵erent locations (Luo and Song, 2021). Spatial21

heterogeneity can be modeled in either a discrete or continuous manner. Multi-level22

models and spatial regimes are often used to address discrete heterogeneity (Wang23

and Xu, 2017; Fotheringham and Li, 2023; Anselin and Amaral, 2023), while continu-24

ous heterogeneity can be modeled using spatially varying coe�cients models, such as25

Geographically Weighted Regression (GWR)(Fotheringham et al., 2003) and Spatial26

Eigenvector Filtering (Gri�th and Gri�th, 2003).27

Previous spatial models are predominantly constructed based on the two spatial ef-28

fects mentioned above to reveal spatial association, but there remain some unresolved29
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issues. First, they often fail to consider the complex interactions among explana-30

tory variables (Song et al., 2020; Zhang et al., 2023), and require that the residuals31

from di↵erent variables are independent (Anselin, 1989). The spatial distribution of32

geographical variables can be influenced by the interaction of multiple explanatory33

variables. For example, the function between the response variable and an individual34

explanatory variable Xa, as represented by f(X1) may include interactions with other35

variables (e.g. Xb): f(X1 \X2). It is crucial to comprehend how individual variables36

relate to one another (the univariate e↵ect) when there are several interacting variables37

at play. Ignoring the interaction among variables could cause the univariate e↵ect to38

be over- or underestimated. Second, current spatial models heavily rely on linearity39

assumptions (Comber et al., 2021; Li, 2022). The relationships between geographical40

variables often exhibit significant non-linearity. For instance, a moderate increase in41

temperature can enhance the growth of certain plants, but excessively high tempera-42

tures may inhibit their growth (Zhu et al., 2021b). Third, current models often impose43

strict statistical assumptions on data distribution (e.g., Normal, Poisson), which are44

usually violated in real geospatial dataset (Arbia, 2006). However, geographical data is45

often influenced by spatial dependency resulting non i.i.d.(independent and identically46

distributed) samples. In summary, current spatial models for detecting relationships47

commonly overlook variable interaction e↵ects and impose inflexible statistical assump-48

tions on functional forms (e.g., linearity) and data distributions.49

The limitations mentioned above arise from the modeling approach to spatial ef-50

fects. Most models for detecting spatial relationships assume that spatial e↵ects, such51

as spatial heterogeneity, are continuously present across space. They rely on the val-52

ues of geographical variables at each sample point to model the relationships between53

them. This process typically requires statistical assumptions, such as linearity and nor-54

mal distribution (Gao et al., 2022). However, in reality, spatial heterogeneity can be55

modeled not only continuously across geographical space but also discretely (Anselin56

and Amaral, 2023). Concepts like spatial regimes and stratified spatial heterogeneity57

have been introduced to describe this discrete heterogeneity (Anselin, 2010). Within58

the theoretical framework for discretely modeling spatial heterogeneity, regions with59

heterogeneity are subdivided into multiple homogeneous subregions (Guo et al., 2023).60

3



In each subregion, model parameters remain consistent, indicating a presumed station-61

ary spatial relationship.62

This study models discrete spatial heterogeneity to identify spatial correlations,63

with the expectation of not imposing overly strong statistical assumptions on spatial64

data. We introduce a new way of thinking about spatial relationships in line with65

people’s intuitive understanding of the world: the more similar the spatial distribution66

patterns of two geographical variables, the stronger their relationship may be. The67

extent to which an explanatory variable X’s spatial distribution influences the spatial68

distribution of the response variable Y can reflect their correlation. Our aim is to69

incorporate this assumption into spatial correlation analysis by evaluating the spatial70

pattern similarity among geographical variables to analyze their mutual relationships71

and interaction strength.72

In addition to proposing relatively loose statistical assumptions, we attempt to be73

able to reveal interactions among multiple explanatory variables. The geographically74

optimal zones-based heterogeneity model (GOZH) was developed to address this is-75

sue (Luo et al., 2022a). It has been proven e↵ective in identifying spatial associations76

by detecting the spatial patterns of geographical variables. Its purpose is to achieve77

geographically optimal zones for every combination of variables and to determine the78

geographically optimal partition given all explanatory variables. GOZH does not rely79

on statistical assumptions about data distribution, such as assuming a normal distribu-80

tion. Furthermore, GOZH has the capability to detect non-linear relationships between81

variables.82

However, GOZH cannot reveal global univariate e↵ects under conditions of pattern83

interaction. It can provide an overall assessment of the combined impact of multiple84

explanatory variables on the response variable, but it cannot calculate the individual85

contribution of a specific variable within this interaction. Secondly, it cannot explore86

the local univariate e↵ects under conditions of pattern interaction. One of the key87

distinctions between models based on discrete heterogeneity (e.g. GOZH model) and88

models based on continuous heterogeneity (e.g. GWR model) is that the former cannot89

estimate local spatial non-stationary parameters. Due to this limitation, GOZH cannot90

explore the nonlinearity of local univariate e↵ects.91
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Based on the above discussion, there is a critical need to develop a new approach for92

measuring univariate e↵ects in the interaction of geographical patterns. This approach93

should simultaneously achieve two main objectives: (i) to identify the overall correlation94

between explanatory variables and response variables (global e↵ect), and (ii) to reveal95

the spatial variance of their relationship (local e↵ect).96

Consequently, this study develops a geographical pattern interaction (GPI) model97

to identify the univariate e↵ects under the condition of pattern interaction. GPI model98

works in three steps. The first one is to generate the GPI of the response variable given99

the spatial pattern of multiple explanatory variables. The GOZH model is used to de-100

tect this spatial pattern. The second is to calculate the global univariate e↵ects in GPI.101

For each geographic partitioning under each combination of variables, we calculate the102

variance of each partition and the overall relationship between the explanatory and103

response variables. This analysis includes the interaction between a single explanatory104

variable and multiple explanatory variables, using the concept of spatially stratified105

heterogeneity. We then introduce Shapley value, an interpretable machine-learning al-106

gorithm based on game theory, to quantify the contribution of a single variable in the107

interaction of multiple explanatory variables (Štrumbelj and Kononenko, 2014; Lund-108

berg et al., 2020; Li, 2022; Li et al., 2023; Li, 2023). The third is to calculate local109

univariate e↵ects in GPI, including local e↵ects of GPI, local univariate e↵ects, and110

their characteristics of nonlinearity, local dominant variables, and bi-variate e↵ects.111

We computed the means of the response variables for each geographical partition of112

the region under di↵erent combinations of variables, and then used Shapley to explore113

the contribution of di↵erent variables to the classification of the region as a geograph-114

ically optimal partition. This contribution represents the relationship between the115

explanatory variables and the response variables in this region.116

The remainder of this paper is organized as follows: Section 2 introduces the concept117

and framework of the GPI model; Section 3 presents a case study of applying the GPI118

to analyze the risk of homelessness in Australia; Section 4 demonstrates the results of119

the case study. We discuss the methodological contributions of the GPI in Section 5120

and conclude the study in Section 6.121

5



2. Geographical pattern interaction (GPI)122

2.1. The concept123

The essence of GPI is based on the hypothesis that the interaction between geo-124

graphical patterns can indicate spatial association. The distribution of the response125

variable is determined by a series interactions among multiple explanatory variables.126

For a specific explanatory variable X, its impact on the spatial pattern of the re-127

sponse variable Y represents the spatial association between X and Y . Spatial pattern128

can be characterized in various ways. Normally, the distribution of a geographical129

variable exhibits a spatial pattern: it values can be grouped into several relatively ho-130

mogeneous subregions, where values are similar within each subregion and dissimilar131

between di↵erent subregions (Anselin and Amaral, 2023). The proper description of132

the spatial pattern of each geographic variable can facilitate the exploration of their133

spatial association. We find that the stronger the spatial pattern interaction driven by134

explanatory variables, i.e. higher similarity within subregions and greater dissimilarity135

between subregions in the spatial pattern of the response variable, the stronger the136

spatial association between these explanatory variables and the response variable.137

For instance, we are interested in understanding the association between elevation138

(explanatory variable) and temperature (response variable). We divide the area based139

on elevation into high-elevation and low-elevation regions. When we observe that140

high-elevation regions generally have lower temperatures, and low-elevation regions141

generally have higher temperatures, it is reasonable to infer that temperature is strongly142

influenced by (or associated with) elevation.143

More often, a geographical phenomenon of interest is associated with multiple ex-144

planatory variables and their spatial associations can be determined in a similar manner145

as shown in Figure 1. Suppose the response variable Y is determined by two explana-146

tory variables, Xa and Xb. The value of the response variable, Y , is indicated by the147

color value, while explanatory variables Xa and Xb are distinguished by di↵erent color148

hues to represent di↵erent distributions or categories of values. For example, three149

regions of Xa—red, blue, and green—may represent three di↵erent states or levels of150

the variable. We can determine the geographic interaction patterns of Y based on Xa,151

Xb, and the interaction between Xa and Xb. The distribution of Xa allows for the152
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spatial division of Y into three regions, with mean values of 7.5, 15, and 10, respec-153

tively. We utilize the index q to assess the spatial stratification heterogeneity of this154

case, which measures the extent to which the spatial distribution of X can explain (i.e.155

distinguish) the distribution of Y . The q value for Xa is 0.661 with a p-value of less156

than 0.01, indicating a significant spatial association between Xa and Y . On the other157

hand, based on Xb’s distribution, Y is divided into two subregions with a mean value158

of 10, indicating that Xb alone is ine↵ective in distinctly partitioning Y . The q-value159

for Xb is 0.002 with a p-value of 0.783, suggesting no significant spatial association160

with Y . However, when Xa and Xb interact, the geographic pattern of Y is divided161

into three subregions with mean values of 5, 15, and 10, achieving a perfect separation.162

The q-value is 0.925 with a p-value of less than 0.01, implying a very strong spatial163

association between Y and the combination of Xa and Xb. This demonstrates that the164

collaborative interaction of Xa and Xb can explain 92.5% of the spatial variability in165

Y . It also indicates that some explanatory variables, like Xb, cannot independently166

a↵ect the response variable. However, when they interact with other variables, their167

explanatory power is significantly enhanced. This phenomenon is common in the field168

of geography but has been di�cult to reveal with previous models.169

After detecting the interaction e↵ect of multiple explanatory variables, we aim to170

identify the univariate e↵ects in geographical pattern interaction, which represent the171

contribution of a specific explanatory variable in the interaction. In the proposed GPI172

model, we introduce the idea of game theory. To evaluate the contribution of a specific173

explanatory variable to the response variable, we assess how much it helps achieve174

the spatial pattern mentioned earlier: di↵erent combinations of explanatory variables175

result in various grouping methods. For a particular explanatory variable, such as X,176

the decision to include or exclude it may make di↵erence. We argue that the changes in177

between-group variance among di↵erent groupings can reflect the overall contribution178

(global) of the explanatory variable X to the response variable. Moreover, fluctuations179

in the means assigned to each location or region’s group can provide insight into the180

contribution (local) of X to the response variable at that specific location.181
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Figure 1: An example of identifying the spatial association according to the pattern interaction. The

black lines represent the division of the response variable space based on explanatory variables.

2.2. The GPI model182

Figure 2 shows the framework of the GPI model designed to explore the interac-183

tion of distribution patterns among geographical variables, including both global and184

local spatial relationships among various variables, and to assess the impact of each185

individual variable within this interaction. In the framework, a response variable and186

three explanatory variables are annotated as Y and Xa, Xb, and Xc.187

In the first step, the model generates the geographical pattern interaction of the188

response variable. The spatial distribution of Y is divided into several homogeneous189

subzones given the interaction of the explanatory variables. The model is able to min-190

imize the sum of the within-zone variance of the response variable across all subzones.191

In the second step, the model calculates the global univariate e↵ects in the GPI. It192

reveals the overall impact of each explanatory variable on the response variable. It also193

detects the contribution of each explanatory variable in the GPI.194

In the third step, the model detects the local univariate e↵ects in GPI. Firstly, the195

8



spatial distribution of local e↵ects of GPI is mapped. Secondly, at each spatial position,196

the model discerns the spatial correlation between each individual variable X and the197

response variable Y. In this manner, the spatial distribution of these correlations can198

be visualized. Thirdly, the model explores the nonlinearity of the contribution of199

each explanatory variable. Fourthly, the locally dominant variable is detected which200

represent the explanatory variable with the strongest association with the response201

variable. Finally, at each specific location, the model delves into the interactive e↵ects202

of di↵erent variables.203

Figure 2: Flowchart of geographical pattern interaction (GPI) model

2.2.1. GPI generation204

To clarify the spatial pattern, the first step is to map the interaction of geographical205

patterns with the response variables. We define the outcomes of these geographical206

pattern interactions as homogeneous regions derived from spatial distribution. Within207

each region, the homogeneity should ideally approach optimality (Luo et al., 2021).208

The model should minimize the total variance among these regions, as is measured by209

the PD value:210
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PD = min (SSWX,D) = min

(
hX

z=1

NzX

j=1

(yz,j � c̄z)
2

)
(1)

where X is one or multiple explanatory variables, D is the stratified variable for de-211

scribing geographical strata, and SSWX,D is the sum of squares within geographical212

strata that are recorded asD and determined by explanatory variableX. yz,j and cz are213

the jth observation and mean values of response variables in stratum z, respectively.214

The given Equation 1 presents a challenging problem in the context of nondetermin-215

istic polynomial-time complete (NP-complete) problem, making it di�cult to ascertain216

a global optimum solution. To address this equation, we employ a heuristic approach217

involving spatial explanatory variables to perform a gradual spatial discretization. The218

classification and regression tree (CART) model is introduced to conduct the step-wise219

process:220

min
k,s

8
<

:
X

xi2Z1(k,s)

�
yi � d̄1

�2
+

X

xi2Z2(k,s)

�
yi � d̄2

�2
9
=

; (2)

where d1 and d1 are the average values of response variable in subzone Z1 and Z2,221

respectively.222

In GPI, the choice of spatial discretization method depends on various research223

questions and data. In this study, we use CART because a decision tree-based model224

can o↵er good interpretability. More details regarding to the spatial discretization225

process can refer to GOZH model (Luo et al., 2022a).226

2.2.2. Global univariate e↵ects in GPI227

Global geographical association (for whole study area u) between explanatory vari-228

able Xj and Y is descripted as :229

G = f(Xj(u)|X1 \X2 \ ... \Xn) = 'Xj(PD) (3)

where u = [u], indicates the whole study area containing all location u, f(x) is the230

impact of geo-interaction, ' is the function to calculate the contribution of a single231

explanatory variable. In this study, we specifically apply the Shapley values to quantify232

the univariate contribution to the response variable. Shapley values is a method to233

10



fairly distribute the “payout” among players in game theory (Shapley et al., 1953). It234

can be calculated as:235

'Xj(PD) =

������

X

s2C\{Xj}

|S|!(|C|� |S|� 1)!

|C|! (PD (S [ {Xj})� PD(S))

������
(4)

where, C is a set of all variables excluding Xj, S is a subset of all possible combinations236

of C . |S| and |C| represent the number of variables in the set.237

Specifically, we iterate through all possible variable combination (M combinations238

in total, M = 2n � n� 1) to compute the PD value based on formula 1 and 2. Then,239

the univariate e↵ects are calculated as in formula 4. The 'Xj(PD) is the weighted240

average of the gain in PD values attributable to variable Xj under all combinations.241

In the end, Shapley value of the PD of each variable is calculated to quantify the e↵ect242

of this variable under GPI.243

2.2.3. Local univariate e↵ects under GPI244

Local univariate e↵ects in GPI contain five components: (i) overall local e↵ects245

(average value of each subzone); (ii) local univariate e↵ects under the condition of246

GPI; (iii) nonlinearity of local univariate e↵ects; (iv) identifying predominant local247

variables; and (v) local interaction e↵ects under the condition of GPI.248

The first component is the overall local e↵ects. To a specific location u, the local249

e↵ect of a combination of explanatory variable C (x1, x2 . . . xj | 1  j  n) is calculated250

as:251

lu(C) =
Sumz(C)

nz
(5)

where z is a stratum of the study area.252

The second component is employing Shapley values to calculate local univariate253

e↵ects under the condition of GPI, which is descripted as :254

L = f(Xj(u)|X1 \X2 \ ... \Xn) = '(lu) (6)

where f(x) is the impact of geo-interaction, ' is the function to calculate the255

contribution of a single explanatory variable. We also apply the Shapley values to256

quantify the local univariate e↵ects. The di↵erence between the calculation of the257
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global univariate e↵ect is that, in this case, the input is an indicator used to describe258

the local spatial pattern in location u (as specified in formula 5). Therefore, the259

univariate e↵ects for each location are calculated as follows:260

'xj(lu) =
X

s2C\{xj}

|S|!(|C|� |S|� 1)!

|C|! (lu (S [ {xj})� lu(S)) (7)

where u is a location.261

Thirdly, we explore the non-linear relationships between variables. We group the ex-262

planatory variables using quantiles and then examined the corresponding local Shapley263

values. This allows us to obtain non-linear impact curves of the explanatory variables264

on the dependent variable. Fourthly, we calculate the spatial determinants of each265

location, which is the variable most strongly correlated with the response variable.266

Finally, we compute local interaction e↵ects as the Shapley interaction values do.267

Shapley interaction values further decompose local e↵ect into main e↵ect and interac-268

tion e↵ect. The main e↵ect refers to the individual contribution of each variable, which269

is independent of other variables and can help us understand the importance of each270

variable and its impact on the explained variable. The interaction e↵ect considers the271

synergy between variables. It tells us what kind of impact they have on the explained272

variable when multiple variables are considered together. In other words, the interac-273

tion e↵ect refers to the additional contribution from the interaction of the variables.274

The value is calculated as follows:275

' (xi \ xj) =

������

X

s2M\{xi,xj}

|S|!(|M |� |S|� 2)!

(|M |� 1)!
(�lu(S, xi, xj))

������
(8)

where,' (xi \ xj) represents the interaction value of the coalition of variables xi and

xj, �lu(S, xi, xj) represents the additional reward obtained from the coalition:

�lu(S, xi, xj) = lu(S, xi, xj)� lu(S, xj)� lu(S, xi) + lu(S) (9)

3. Case study: a GPI to identify factors influencing the risk of homelessness276

3.1. Study area and data277

We implemented our model to explore the spatial associations in homelessness risk278

data from Australia in 2016 (Parkinson et al., 2019). The data were from Australian279
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Bureau of Statistics, recording the number of people at risk of homelessness per 10,000280

at the Statistical Area Level 3 (SA3) level (Australian Bureau of Statistics, 2016). The281

risk indicator of homelessness represents the percentage of the population lacking a282

permanent residence, compelled to dwell in open spaces, temporary shelters, or inade-283

quate living conditions. This metric is widely employed to evaluate the socio-economic284

circumstances and fairness within a country or region. Individuals who lose stable285

housing often encounter challenges such as diminished employment prospects and in-286

creased health problems, ultimately resulting in increased social security expenditures287

and economic burdens. Comprehending and addressing the risk of homelessness is288

an essential step toward a just and compassionate society in Australia. By reducing289

this risk, we can foster greater social integration, thereby promoting social harmony290

(Caton et al., 2005). A precise understanding of the extent and causes of homelessness291

empowers the government to formulate more e↵ective social policies and intervention292

strategies to help those most in need.293

Figure 3 shows the spatial distribution of homelessness risk in Australia. The294

homeless risk is high in the central and northern regions, whereas low in the eastern295

and western coastal regions. It has an evident spatial heterogeneity inside several major296

cities, which is high in the city centers and nearby suburbs.297

For the analysis of the spatial association, data of seven socio-economic indicators298

were collected as the explanatory variables that are potentially related to the homeless-299

ness risk. They are population size, population density, unemployment rate, proportion300

of dwellings without internet connection, rental costs, mortgage rate, and commuting301

distance to work. All variables were collected at the SA3 level.302

Table 1: Explanatory variables of the homelessness risk

Name Code Description

population pop estimated resident population

population density popdens population density (persons/km2
)

unemployment rate unemployment unemployment rate (%)

non internet rate noninternet proportion of dwelling without Internet access (%)

rental payment rentalpay median weekly household rental payment ($)

mortgage a↵ordability a↵ordmort
Households where mortgage repayments are

more than 30% of imputed household income

distance to work diswork
average commuting distance from place of usual

residence to work (km)
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Figure 3: The spatial distribution of homeless risk in Australia. The small map displays the remoteness

classification of Australia.

3.2. The workflow of applying GPI for the case study303

The proposed GPI model was employed to investigate the factors associated with304

the homelessness risk in Australia. First, we conduct data preprocessing and generate305

the geographical pattern interaction. The distribution of the homelessness risk in306

Australia was divided into several subzones based on the interaction among explanatory307

variables. This geographically optimized zoning forms the basis for our subsequent308

analysis using the GPI model. Second, we assessed the global univariate e↵ects in309

GPI, calculating the spatial association of individual variable with the homelessness310
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risk. Third, we evaluated the local univariate e↵ects in GPI. The spatial locally impact311

of each individual variable on homelessness risk was estimated. Finally, to validate the312

model’s performance and robustness, a sensitivity analysis was conducted using the313

leave-one-out method. In this approach, we systematically removed one region at a314

time from the model’s input data and examined the resultant changes in dominant315

variables. The model sensitivity was gauged by measuring the percentage change in316

these dominant variables across each region.317

4. Results318

4.1. The GPI of homelessness-related variables319
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Figure 4: The geographical pattern interaction: geographically optimal zones of homelessness risk

Figure 4 depicts the optimal geographic zones of homeless risk in Australia, de-320

termined by seven explanatory variables. Five distinct sub-zones with homogeneous321

homelessness risk were identified. Zone A, having the lowest homelessness risk with322

an average value of 32.7, primarily comprises eastern cities. Zone B, mainly located323

in the eastern coastal regions, has a slightly higher average homelessness risk of 58.8324

than Zone A and the highest average unemployment rate among the five zones at325
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9.8%. Zone C encompasses most of the vast western inland areas, and also includes326

some regions in major cities like Sydney and Melbourne. Zone D, with the most severe327

homelessness problem (average risk of 206.2), includes several inner areas and inner328

cities of Sydney and Melbourne. Zone E, characterized by a sparse population (aver-329

age population density of 0.9), has the highest average non-internet rate (29.1%) and330

distance to work (24.2km), as well as the lowest average rental payment (128.9$) and331

mortgage a↵ordability (9.1%).332

4.2. Global univariate e↵ects in GPI333

Population
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Figure 5: The global univariate e↵ects in GPI

Figure 5 illustrates the strength of the correlations between individual variables334

and the homelessness risk. The interaction of seven explanatory variables explain to-335

tally 40% of the spatial disparities of homelessness risk. Among them, rental payment336

has the strongest association, with a ' value of 0.122. Next is unemployment rate,337

which can explain 10.4% of the homelessness risk. High rental costs may reduce the af-338

fordability of some individuals to housing expenses, forcing them to become homeless.339

Therefore, rental payment is likely a contributing factor to the increase of the home-340

lessness risk. Similarly, as the unemployment rate rises, more people may lose their341

jobs, struggle to sustain their livelihoods, and face the risk of homelessness. Hence, an342

increase in the unemployment rate might lead to a rise in the homelessness risk.343
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The associations between population density, mortgage a↵ordability,the rate of no344

internet, and the homelessness risk are similar, with ' values of 0.047, 0.046, and 0.030,345

respectively. Poorer mortgage a↵ordability could be associated with a higher risk. If346

some individuals are unable to pay their mortgages, they may lose homeownership.347

Higher population density refers to a greater number of people residing in a given348

area. Areas with higher population density may be more susceptible to experiencing349

a higher homelessness risk. This could be due to increased competition for limited350

housing resources and higher rental costs, making it di�cult for some individuals to351

a↵ord housing. The lack of internet access could be related to the homelessness risk352

by preventing individuals from accessing job information, educational resources, and353

social assistance, thereby increasing the homelessness risk.354

4.3. Local univariate e↵ects in GPI355

4.3.1. Local e↵ects of GPI356

Figure 6 shows the local e↵ects of GPI among all explanatory variables. The spatial357

distribution of explanatory variables exhibit a significant clustering pattern in their358

local e↵ect on homelessness risk. The Moran’s I is 0.35, with a Z score of 9.78. The local359

e↵ect in most southeast coastal regions is relatively low (32.65), while its considerably360

high (206.20) in the city centers of Sydney, Melbourne, and Brisbane. This reveals a361

strong association between explanatory variables and homelessness risk in the major362

urban areas.363

4.3.2. Local univariate contributions364

Figure 7 shows the local univariate contribution of each explanatory variables. In365

coastal and urban areas (major cities, inner, outer regions), population may be a366

primary factor contributing to homelessness risk since population influences housing367

demand. In addition, the mortgage a↵ordability plays a crucial role because the high368

cost of homeownership can exert financial pressure on low-income households, thereby369

increasing homelessness risk. In inland and remote areas (remote, very remote), popu-370

lation density and the proportion of rental payments are more closely associated with371

the homeless risk. Population density can be related to the balance between housing372

supply and demand, and in areas with lower population density, it may be challenging373
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Figure 6: Local e↵ects of GPI

to provide an adequate range of housing choices. In these regions, the burden of high374

rental payments can significantly a↵ect the economic stability of low-income house-375

holds. Due to limited opportunities for homeownership, many individuals may rely on376

renting, and high rental costs can lead to financial instability, thereby increasing the377

risk of homelessness.378

4.3.3. Non-linear e↵ects379

Figure 8 indicate the non-linear relationship between explanatory variables and the380

homelessness risk. Figure 8 (a) reveals relationship between the population and the381

homelessness risk. For areas with a smaller population, population size significantly382

influences the homelessness risk. However, as the population increases, this correlation383

diminishes. Below 50,000 in population, a strong association exists, but above this384
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Figure 7: The local univariate e↵ects in GPI: (a) Population; (b) Population density; (c) Unemploy-

ment rate; (d) Non-internet rate; (e) Rental payment; (f) Mortgage a↵ordability; (g) Distance to work

threshold, the correlation stabilizes at a lower level. This suggests that beyond a385

population of around 50,000, community complexity and diversity increase, leading to386

the saturation of the population’s impact on the homelessness risk. In Figure 8 (b), we387

observed that higher population density in regions has a more pronounced influence on388

the homelessness risk. When population density falls below 2,500 people per square389

kilometer, the influence remains relatively stable. In sparsely populated areas, the390

homelessness risk appears less sensitive to population density. In summary, smaller391

communities with limited social resources, including housing and social services, are392

more sensitive to changes in population size, resulting in noticeable e↵ects on the393

homelessness risk. Conversely, in high-density areas, where social resources are more394

abundant, social issues and competition may lead to a more pronounced impact of395
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population density on the homeless risk.396

The unemployment rate (Figure 8 (c)) and the rate of no internet (Figure 7 (d))397

have similar e↵ects on homelessness. When the unemployment rate is low (less than398
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7.5%) or the rate of no internet is low ( less than 20%), their impact on homelessness399

is weak. However, as the unemployment rate or the no internet rate rises, they sig-400

nificantly increase homelessness, accounting for around 40% and 30% of homelessness401

risk, respectively. These relationships are influenced by economic conditions, social402

safety nets, and the housing market. Low unemployment rate in a thriving economy403

reduces homelessness, while rising unemployment rate leads to job insecurity and hous-404

ing mortgage a↵ordability issues, increasing homelessness. Moreover, a rising rate of no405

internet can impede individuals in finding job opportunities, as many job searches oc-406

cur online, further increasing homelessness risk for those without internet access. The407

abrupt changes at critical thresholds (7.5% unemployment rate and 20% no internet408

rate) are due to the non-linear nature of the economic system. Below these thresholds,409

the system is stable with milder interactions, reducing the impact of homelessness. Sur-410

passing these thresholds leads to sudden instability, driven by complex factors, reduced411

market confidence, and economic downturn, leading to more homelessness. Economic412

feedback loops worsen employment prospects, creating a self-reinforcing cycle.413

Figure 8 (e) illustrates the relationship between rental payments and homelessness414

risk. In regions characterized by low rental payments, the impact of rental payments415

is substantial. Furthermore, this impact diminishes as rental payments increase. How-416

ever, in regions with higher rental payments (around 200 units), the correlation between417

rental payments and homelessness risk is weaker, indicating that an increase in rental418

payments does not necessarily lead to a higher homelessness rate. Our findings high-419

light the vulnerability of low-income households to homelessness as a consequence of420

rent increases. This underscores the need for government authorities and policymakers421

to adopt region-specific strategies in their housing and homelessness policies. In areas422

with lower rents, policies should place a stronger emphasis on housing subsidies or rent423

control to alleviate the financial burden on low-income households.424

Figure 8 (f) shows the association between mortgage a↵ordability and homeless-425

ness risk. With the increasing proportion of the population under mortgage pressure,426

its correlation with homelessness risk rises. Specifically, when the proportion of the427

population under mortgage pressure is below 15%, the correlation between the two428

variables is at a lower level (around 0.15). However, when it exceeds 15%, the correla-429

21



tion between them increases more rapidly, reaching around 0.2. As the proportion of430

the population under mortgage pressure increases, the correlation with homelessness431

risk also rises. Specifically, when the proportion of the population under mortgage432

pressure is below 15 %, the correlation between mortgage pressure and homelessness433

risk is relatively low (around 0.15). This suggests that with less mortgage pressure,434

fewer people face economic hardship, reducing the homelessness risk. However, when435

the proportion of the population under mortgage pressure exceeds 15 %, the correla-436

tion between the two variables rapidly increases, reaching around 0.2. This indicates437

that once the proportion of the population under mortgage pressure exceeds a certain438

threshold, the correlation with homelessness risk increase significantly.439

Figure 8 shows the relationship between commuting distance and the homelessness440

risk. It follows an inverted U-shaped pattern. When commuting distance is relatively441

short (less than 10 km) or long (greater than 25 km), there is a higher correlation with442

homelessness risk. However, when commuting distance is at an intermediate level,443

the correlation between the two variables is smaller. When commuting distance is444

relatively short (less than 10 kilometers), a higher homelessness risk may be related445

to the following factors. Firstly, city centers are often hubs of economic activity and446

employment opportunities, attracting a large number of job opportunities, but they447

may also have high housing prices and rental costs. This leads to some low-income448

workers or economically vulnerable groups seeking housing near city centers, but due449

to the high housing price pressure, they may be unable to a↵ord housing and become450

homeless. On the other hand, when commuting distance is relatively long (greater451

than 25 kilometers), the increase in the proportion of homelessness risk may be related452

to the following factors. People look for more a↵ordable housing options in suburban453

or peripheral areas far from city centers but also face longer commuting distances.454

Lengthy commutes can increase economic costs and personal burdens, especially for455

low-income groups who may not be able to a↵ord high transport costs, putting them456

at risk of homelessness.457

4.3.4. Spatial determinants of homelessness risk458

Figure 9 shows the spatial determinant of homelessness risk in Australia, which is459

the explanatory variable with the strongest association with homelessness risk in each460
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location. Regarding three major cities, Sydney, Melbourne, and Brisbane, the most461

significant variables associated with homelessness risk are found to be pop density,462

population, and distance to work. The results show a similar spatial pattern in three463

cities: from the city center to the suburbs, the most influential variables associated464

with homelessness risk are changing from popden, diswork, and pop, respectively. This465

indicates that in the central areas of large metropolises, population density has the466

strongest correlation with homelessness risk. In the outer city areas, the number of467

homelessness individuals is more closely related to commuting distance. In urban468

suburbs, population size plays a crucial role concerning homelessness risk. Regarding469

three smaller cities, Perth, Adelaide, and Hobart, a di↵erent spatial pattern is observed.470

In the central areas of these cities, commuting distance has the most significant impact471

on homelessness risk. In other areas and suburbs of the cities, the variables with the472

strongest association with homelessness risk are population density and population473

size.474

4.3.5. Local bi-variate e↵ects in GPI475

Figure 10 shows the interaction matrix in six major cities, which describes the in-476

teraction e↵ects between each pair of variables to homeless risk. The larger the value,477

the stronger the interaction between the variables, and the greater the impact on the478

homeless group. Interaction between rental payment and other variables has an im-479

portant impact on homelessness risk. The spatial heterogeneity of the interaction of480

variables can be perceived in the heatmap. The interaction between rental payment481

and population density has significant impacts on homelessness risk, particularly in482

major cities such as Sydney, Melbourne, and Brisbane. Higher rental payment coupled483

with elevated population density exacerbates the risk of homelessness. The intensi-484

fied demand for housing in densely populated areas amplifies rental costs, placing a485

disproportionate burden on individuals and families with limited financial resources.486

In Sydney, Melbourne, and Brisbane, where population density is relatively high, the487

cost of housing tends to surge due to the demand-supply dynamics. As a result,488

the convergence of high rents and dense population further marginalises economically489

disadvantaged individuals and households, making them vulnerable to homelessness.490

Moreover, the competitive housing market in densely populated urban areas can limit491
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Figure 9: The spatial dominants of the homelessness risk in GPI at each location, which represent the

variables that have the strongest association with the homelessness risk.

access to a↵ordable housing options, further exacerbating the homelessness risk.492

The interaction between rental payment and unemployment rate has a significant493

impact on homelessness risk in Adelaide and Melbourne. The financial strain caused494

by higher rental costs, coupled with limited or no income due to unemployment, cre-495

ates a situation where individuals or households become more vulnerable to housing496

instability and ultimately homelessness risk. This interaction underscores the critical497

relationship between economic factors and homelessness risk.498

4.4. Model validation499

In the study, GPI model is validated through a sensitivity analysis (Figure 11).500

In 90% of the regions, the percentage change in the dominant variables is below 10%,501
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Figure 10: The local interaction e↵ect in GPI.

indicating the robustness of our model. The dominant variables exhibiting notable vari-502

ations primarily concentrate in northern Australia, an area concurrently characterized503

by a relatively high homelessness risk. This may be because that the GPI model relies504

on decision tree algorithm for the spatially optimized partitioning of the homelessness505

risk, which tends to exhibit sensitivity to outliers to a certain extent.506

5. Discussion507

5.1. The advantage of using spatial pattern to explain geographical interactions508

Previous models for analyzing the association of geographical variables are lim-509

ited in exploring the non-linearity of relationships and interactions between multiple510

variables. First, they often assume linear relationships between variables, whereas, in511

reality, the relationships between geographical variables are often complex and non-512

linear (Zhu et al., 2021a). This leads to the existing models needing improvements to513

capture the relationships among geographical phenomena accurately. Second, existing514

models require to pay more attention to the spatial interactions between geographical515

variables. This study proposes the GPI model that uses spatial patterns to character-516

ize geographical variables’ spatial dependence and spatial heterogeneity for exploring517
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Figure 11: The sensitivity analysis of GPI model. The value refer to the percentage change in the

dominant variables when this region is excluded from the model’s input data.

spatial association. By discretizing the geographical space and analyzing the variance518

and mean of response variables for di↵erent strata, the GPI model can better describe519

the characteristics and patterns of geographical phenomena at di↵erent locations, pro-520

viding more accurate identification of spatial relationships.521

The GPI model is based on two fundamental statistical indicators, variance and522

mean, to characterize spatial patterns and to describe heterogeneity and stationar-523

ity, respectively. Variance is a statistical measure of data dispersion, indicating the524

degree of di↵erence between data points and their mean. A higher variance implies525

greater di↵erences between data points, representing significant global stratified char-526

acteristics. Thus, variance describes global stratified features, i.e., di↵erences between527

di↵erent groupings. In our model, by calculating the between-group variance of re-528
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sponse variables for di↵erent grouping methods, we can assess the contribution of each529

explanatory variable to the global stratified features. When a specific explanatory530

variable contributes significantly to the global stratified features, the corresponding531

grouping method will lead to a higher between-group variance, reflecting the impor-532

tance and impact of that explanatory variable. Mean is a statistical measure of the533

central tendency of data, representing the average position of data points around the534

average value. In our algorithm, we can describe the local stationary features at each535

location or region by calculating the within-group mean of response variables for each536

grouping method. When a specific explanatory variable contributes significantly to the537

local stationary features, the corresponding grouping method will significantly change538

the within-group mean at that location. Thus, the within-group mean for each location539

or region can express local stationary features. This study introduces the interpretable540

machine learning algorithm Shapley to detect the contribution of individual variables541

in the interaction of multiple explanatory variables. Therefore, the GPI model can ef-542

fectively identify each variable’s contribution to the relationships among geographical543

phenomena with the consideration of their spatial interactions and provides a more544

comprehensive explanation of the correlations between geographical variables.545

In summary, in the GPI model, variance describes global stratified features, re-546

flecting di↵erences between response variables under di↵erent grouping methods. The547

mean describes local stationary features, reflecting the concentration of response vari-548

ables around the mean at each location. By computing variance and mean, the GPI549

model can quantify the contributions of explanatory variables to global and local fea-550

tures, thereby achieving the interpretation and analysis of spatial patterns.551

5.2. Limitations and future works552

There are still some limitations to this study, and a few future works are recom-553

mended. For instance, it is recommended to systematically assess the relationship554

between the GPI model and existing spatial regression methods. These models have555

inherent methodological di↵erences, making direct comparisons challenging. In ex-556

isting spatial regression models, coe�cients represent the strength of interaction be-557

tween independent and dependent variables. For example, in the GWR model, the558

coe�cient represents the impact of a unit change in the independent variable on the559
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dependent variable within a specific geographical area. The proposed GPI model is560

not constrained by the linearity of relationships but quantifies interaction strength561

by considering the spatial distribution patterns of geographic variables. We identified562

an inherent connection between GPI and traditional spatial regression. In GPI, the563

influence of independent variables on the dependent variable depends on the extent564

to which their consideration a↵ects the spatial distribution, similar to the concept of565

coe�cients in traditional spatial regression methods.566

However, there are still paradigmatic di↵erences between GPI and existing spa-567

tial regression methods, making mutual validation challenging. In existing spatial568

regression, the relationships between geographic variables are often characterized by a569

polynomial function, while GPI, based on pattern interaction, resembles more of deci-570

sion rules (Apté and Weiss, 1997). The advantage of decision rules is their ability to571

describe discontinuous spatial relationships, where the impact between geographic vari-572

ables exhibits abrupt, non-continuous changes. In future research, we will discuss the573

more fundamental connections between GPI and existing spatial regression methods,574

enabling the design of rational simulation experiments for meaningful inter-method575

comparisons.576

Another area for future work would be the potential contribution of GPI with ad-577

vanced multivariate visualization methods. Given that the basic assumption of GPI578

is that geospatial variables with similar spatial patterns exhibit stronger relationships,579

this aligns with human visual understanding of spatial relationships, particularly the580

ability to recognize spatial correlations based on maps. Hence, it falls within the realm581

of visual analytics. Currently, multivariate visualization methods are only employed582

for displaying results. While GPI has demonstrated its capability to reveal complex583

relationships among geographical variables, integrating advanced multivariate visual-584

ization methods will further extend the model’s applicability and enhance our insight585

and understanding of the intricate relationships within geographical data.586

6. Conclusion587

In this study, we developed a Geographical Pattern Interaction (GPI) model to588

explore spatial relationships among various geographical variables. The model empha-589
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sizes the spatial patterns of geographical variables under the influence of the interac-590

tions of explanatory variables for exploring spatial association. By utilizing Spatial591

Stratified Heterogeneity (SSH) and SHapley Additive exPlanations (SHAP) methods,592

we quantified spatial associations and interactions within the GPI model. The model593

e↵ectively identifies spatial associations for individual and multiple variables. Our594

case study demonstrates the e↵ectiveness of the GPI model in revealing spatial asso-595

ciations, accommodating spatial interactions, and uncovering non-linear relationships.596

Overall, the GPI model o↵ers enhanced explanatory power and adaptability, enrich-597

ing our understanding of complex geographical relationships and providing valuable598

insights for geographical research and analysis. In future work, cautiously generalizing599

the GPI model’s e↵ectiveness is critical. Moreover, combining GPI with multivariate600

visualization methods may facilitate a deeper understanding of the spatial patterns601

and interactions among geographical variables.602
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ABSTRACT
Spatial heterogeneity refers to uneven distributions of geograph-
ical variables. Spatial interpolation methods that utilize spatial
heterogeneity are sensitive to the way in which spatial heterogen-
eity is characterized. This study developed a Generalized
Heterogeneity Model (GHM) for characterizing local and stratified
heterogeneity within variables and to improve interpolation
accuracy. GHM first divides a study area into multiple spatial
strata according to the sample values and locations of a variable.
Then, GHM estimates simultaneously the spatial variations of the
variable within and between the spatial strata. Finally, GHM inter-
polates unbiased estimates and uncertainty at unsampled loca-
tions. We demonstrated the GHM by predicting the spatial
distributions of marine chlorophyll in Townsville, Queensland,
Australia. Results show that GHM improved both the overall inter-
polation accuracy across the study area and along strata bounda-
ries compared with previous interpolation models. GHM also
avoided bull’s eye patterns and abrupt changes along strata
boundaries. In future studies, GHM has the potential to be inte-
grated with machine learning and advanced algorithms to
improve spatial prediction accuracy for studies in broader fields.
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1. Introduction

Spatial prediction and interpolation play fundamental roles in geographic analysis
(Lam 1983, Mitas and Mitasova 1999, Song 2022). An effective understanding of the
characteristics of geographic variables guarantees the accuracy of the spatial interpol-
ation (Oliver and Webster 1990, Zhu et al. 2020). Spatial dependence and spatial het-
erogeneity lay the foundation for spatial interpolations (Goodchild 2004, Tobler 2004).
Geostatistical methods employ the spatial dependence of geographical variables for
spatial prediction (Matheron 1963, Kyriakidis and Goodchild 2006). In kriging interpol-
ation, widely used in geostatistics and comprising techniques such as ordinary kriging
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(OK) and simple kriging, geographic variables are assumed to have second-order spa-
tial stationarity for interpolation (Goovaerts 1997). Kriging assumes that the difference
between the values of a geographical variable in two locations is independent of their
locations but is only related to their distance (Goovaerts 1997). However, although the
spatial second-order stationary assumption is typically satisfied in small areas, it may
be weak in large areas with complex surfaces. Previous studies have developed meth-
ods to address the spatial non-homogeneity issue in interpolation tasks. For example,
kriging with external drift (KED) removes spatial non-homogeneity through continuous
drift (Hudson and Wackernagel 1994, Goovaerts 1997, Bourennane et al. 2000, Gao
et al. 2020). However, the spatial stratified non-homogeneity is difficult to eliminate,
owing to the continuous drift in the lower order (Chiles and Delfiner 2009).

Spatial non-homogeneity is often manifested by a geographic variable distributed
over several spatial strata, each with homogeneous values. Geographical variables
often show spatial stratification in the physical world, which is described as spatial
stratified heterogeneity (SSH) (Wang et al. 2010). The characteristics of SSH make it dif-
ficult to construct a stable and reasonable semivariance function across the region
(Gao et al. 2020). The spatial stratified strategy effectively predicts the spatial distribu-
tion at complex surfaces. SSH describes the geographical phenomenon that variable
distributes as many homogeneous spatial strata with different spatial means or varian-
ces (Song et al. 2018, 2020b, Zhang et al. 2022). SSH does not require the assumption
of spatial second-order stationarity in local heterogeneity. A few recent models have
considered SSH to improve spatial interpolation. For example, in the stratified kriging
(StK) algorithm, the entire study area is divided into several homogeneous strata, each
of which is then subjected to interpolation (Liu et al. 2021). However, the numerical
information of other strata is completely ignored when interpolating each stratum,
and a stratum may only have a limited number of observations after the spatial parti-
tion. Ignoring the data between strata leads to limited information for constructing an
accurate semivariogram and results in a loss of accuracy. In addition, the spatial div-
ision process and subsequent separate interpolation at each stratum may lead to
unreasonably sharp changes along the strata boundaries (Gao et al. 2020).

Spatial dependence is still present in geographic factors located between the differ-
ent strata, despite the existence of spatial stratification effect on a large scale (Song
and Wu 2021). Geographical differences between strata are usually gradual, and strati-
fication boundaries often manifest themselves as transition areas with certain widths
(Fortin et al. 1996, De Smith et al. 2007, Hutchings et al. 2022). Geographic factors in
transition areas usually have mixed characteristics with those of neighboring strata.
This phenomenon is prevalent in both geographic and socio-economic factors. First,
transition areas often exist between different strata of geographic factors, such as ele-
vation and soil moisture. For example, elevation tends to decrease slowly from the
plateau to the plain, creating a transition area. Second, spatial dependency between
strata is also widely presented in socio-economic factors, such as land use (Preston
1966, Chen et al. 2020), nighttime light (Ma et al. 2015), economic development level
(Erickson 1983) and population density (Luo et al. 2019). Significant differences exist
between cities at different levels of development and between urban and rural areas
(Hutchings et al. 2022). However, changes in the boundaries also tend to be gradual.
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For example, population density and socio-economic levels tend to decline slowly
from urban to rural areas, and there is a mixture of urban and rural characteristics at
the urban-rural border. In summary, at larger scales, the distribution of geographical
variables is spatially stratified, but there are usually continuous and gradual strata
boundaries. However, current spatial interpolation models do not consider this phe-
nomenon in geography.

The motivation of this study is to conduct accurate and reliable spatial prediction for
large-scale geographic environments, considering both the existence of spatial stratifica-
tion and spatial dependence at strata boundaries. A practical solution is to borrow infor-
mation from other strata to consider both the spatial stratification strategy to ensure
overall accuracy and reasonable estimates at the strata boundaries. Specifically, when per-
forming spatial interpolation for strata boundaries, it is essential to consider information
from different strata simultaneously. For example, when interpolating the population
density in an urban-rural transition area, both urban and rural areas provide the necessary
information. When interpolating elevations in the plains-plateau transition area, it is neces-
sary to consider that the elevation in this area has a mixed characteristic of plateaus
and plains.

With this motivation, two key issues need to be considered: the identification of
transition areas or boundary areas, and the method used to borrow information from
different areas. However, only a few studies have considered information borrowing to
interpolate, and no study has considered the region in which borrowed information is
needed. For example, a point mean of the surface with stratified non-homogeneity (P-
MSN) algorithm was proposed to conduct interpolation in a large marine area (Gao
et al. 2020). The study area was divided into several strata, and the semivariogram
between each pair of strata was estimated using OK. It does not consider the exist-
ence of transition areas between partitions and assumes that the contribution of infor-
mation from other regions to interpolation is offset by interference.

In summary, large-area stratified interpolation requires the process of bringing
information from other strata, but this process often introduces high uncertainty in
the result and leads to substantial computational cost. Therefore, trade-offs exist in
the amount of information obtained from the outside stratum. The main concern is
that observations from other strata or remote areas can introduce noise. We assume
nþ k observations in the study area, including n observations in the interpolated stra-
tum and k observations from other m strata. Previous studies have controlled the
trade-offs by arranging different weights for the n observations within the stratum
and k observations outside the stratum. This study provides a new method to auto-
matically borrow information from other strata without manually adjusting the
weights of different strata. The basic idea is to merge observations from each other
strata separately and fit the semivariogram between two parts: the observations in
the interpolated stratum and outside strata. Although all the observations from the
outside strata are used to solve the spatial dependence between different strata, each
stratum provides only one value in the fitted semivariogram. Thus, the uncertainty
from the outside strata is expected to be limited when the information is borrowed.
In addition, this approach reduces computational consumption and improves the
interpolation efficiency.
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Calculating the weights of other strata when conducting spatial interpolation was
an important task in this study. Areal interpolation algorithms, such as area-to-point
kriging (ATAP) and area-to-area kriging (ATAK) (Sadahiro 2000, Kyriakidis 2004,
Goovaerts 2010), were developed to estimate the weights of areas. These algorithms
were proposed to handle the interpolation of data at different scales and were used
to disaggregate areal data into spatial prediction at the levels of points and different
areas (Guan et al. 2011, Geddes et al. 2013, Hu and Huang 2020). Given its effective-
ness in representing the spatial association between different areas, it is reasonable to
believe that ATAK can be used to calculate the weights of other strata and character-
ize the spatial association between different strata.

In this study, a Generalized Heterogeneity Model (GHM) was developed. It combines
ATAK and OK for the interpolation of spatial second-order non-homogeneity areas
with high accuracy and efficiency. A specific geographical variable that presents spatial
stratified non-homogeneity in a complex surface is distributed over many spatially
homogeneous strata. Geographical variables that describe the same region exhibit
spatial dependence, whereas variables that describe different regions exhibit spatial
heterogeneity. The relationship between observations from different strata is repre-
sented by the relationship between strata. Thus, ATAK was introduced to characterize
the spatial dependence between different strata and construct the corresponding
semivariogram. In this way, information is borrowed while maintaining spatial depend-
ence inside the homogeneous stratum. In addition, most of the information from
other strata is noisy and interferes with interpolation accuracy. Using ATAK to charac-
terize the spatial dependence between different strata may address this problem,
because only the average value of each outside strata is considered in building the
semivariogram.

We demonstrated the GHM using spatial interpolation of marine chlorophyll in
Townsville, Queensland, Australia. Reliable and spatially continuous data on marine
environments are essential for the conservation of biodiversity. However, in most mar-
ine areas, only sparse and unevenly distributed point samples are available, which is
particularly pronounced in Australian marine regions (Li and Heap 2008). Therefore, it
is critical to develop effective interpolation models for marine environments (Elumalai
et al. 2017). Spatial interpolation in marine environments is challenging for two rea-
sons. First, the spatial second-order stationary assumption is easily violated in large-
area marine environments because of the highly dynamic movement of water masses
and the resulting uneven distribution of ocean components (Gao et al. 2015, 2020).
Stratification has been found and verified in marine environments (Bowman and
Esaias 1981). Effective spatial interpolation technology that considers SSH is necessary
for marine research. Second, spatial interpolation is a relatively difficult task in the
marine environment, compared to that for the land environment, because of the lack
of supporting explanatory variables. Without any supporting data, the mapping per-
formance relies on understanding the characteristics of geographic variables through
reasonable interpolation algorithms, which is an ideal case to verify the advantages of
the proposed GHM.

The accuracy and effectiveness of GHM were evaluated through cross-validation
and comparisons with previous related interpolation models, including OK, KED and
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StK. The remainder of this paper is organized as follows. Section 2 describes the whole
process of GHM for interpolation. Section 3 presents the implementation of GHM for
the interpolation of marine chlorophyll in Townsville, Queensland, Australia. Section 4
discusses the findings and research contributions, and the study is concluded in
Section 5.

2. Generalized heterogeneity model (GHM)

In this study, a Generalized Heterogeneity Model (GHM) was proposed to conduct
stratified spatial prediction while considering information from other strata. This sec-
tion is formulated as follows: concepts of GHM, development of the objective function,
process of solving the function, optimal neighboring search strategy and execution of
the GHM.

2.1. Concepts of GHM

Figure 1 shows the differences among classical geostatistical interpolation algorithms.
The geographical data were assumed to be distributed as lower on the left and higher
on the right. The interpolation theory of OK and KED is primarily based on spatial
dependence, constructing semivariance functions at a global level. StK considers the
existence of SSH by partitioning the space and constructing separate semivariance
functions in each stratum to improve the accuracy. P-MSN considers that information

Figure 1. Theoretical basis of the Generalized Heterogeneity Model (GHM) and the relevant mod-
els: OK (ordinary kriging), KED (kriging with external drift), StK (stratified kriging), P-MSN (point
mean of surface with stratified non-homogeneity) and ATAK (area-to-area kriging).
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between different regions is borrowed from each other using OK to construct a semi-
variance function of the point level between strata.

GHM has two theoretical innovations compared to previous studies: (1) GHM con-
siders the existence of strata boundaries (i.e. transition areas between strata) and the
spatial dependence of strata at the boundaries. The borrowed information is used to
improve the interpolation in these regions; (2) GHM borrows information from other
strata in the form of an area. This has the promise of introducing valid information
while avoiding interference information from other strata as much as possible.

2.2. Objective functions of GHM

Given that a spatially stratified area is divided into several homogeneous strata, the
interpolated value is the weighted sum of two parts: observations within the interpo-
lated stratum and observations outside the interpolated area. Assuming that spatial
division has already been conducted, and there exist several homogeneous strata, the
interpolated value is calculated as follows:

Ẑ0 ¼ Zin þ Zout ¼
Xn

i¼1

kiZi þ
Xnþk

j¼nþ1

kjZj (1)

where Ẑ0 is the interpolated value, Zin is the weighted sum of the observations in the
interpolated stratum, and Zout is the weighted sum of the observations in the other
strata. n is the number of observations in the interpolated stratum, and k is the num-
ber of observations in the other strata. Zi and Zj are the observation values, where ki
and kj are the weights of the observations.

Weight vector k includes the weights of all observations, which are characterized as
follows:

k ¼ kin , kout½ $ ¼ k1,k2, k3 . . . kn, knþ1, . . . knþk½ $ (2)

where kin is the weight vector of the observations in the interpolated stratum, consist-
ing of k1,k2, k3 . . . kn: kout is the weight vector of the observations in the other strata,
consisting of knþ1, . . . knþk:

The interpolated values are estimated using the solved weight vector. Similar to
other geostatistic models, two objective functions should be developed to obtain the
best linear unbiased estimation:

E Ẑ0 % Z0
! "

¼ 0
min Var Ẑ0 % Z0

! "
(

(3)

By introducing the Lagrange multiplier, the two formulas are transformed into the
following determinants (Appendices A and B):

R1, 1 . . . R1, nþk ms1

R2, 1 . . . R2, nþk ms1

. . . & & &
Rnþk, 1 . . . Rnþk, nþk ms2

ms1 . . . ms2 0

2

66664

3

77775

k1
k2
. . .
knþk

L

2

66664

3

77775
¼

R1, 0
R2, 0
. . .

Rnþk, 0

ms1

2

66664

3

77775
(4)

where Ri, j is the covariance between available observations i and jði, j ¼ 1, . . . , nþ kÞ:
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Ri, 0 is the covariance between interpolated point 0 and available observation iði ¼
1, . . . nþ kÞ, where ki is the weight of the ith observation. ms1, ms2 are the expecta-
tions of the variables inside and outside the interpolation stratum, respectively.

2.3. Solution

The matrix in the determinant (Equation (4)) describes three types of spatial depend-
ence: dependence of observations in the interpolated stratum, dependence of obser-
vations between the interpolated stratum and the other strata and dependence of
observations in the other strata. In geostatistical analysis, spatial dependence is
described using a semivariogram.

We defined two kinds of semivariograms: the within-semivariogram Sw and the
between-semivariogram Sb. Sw represents the spatial dependence of the observations
in the interpolated stratum. Sb describes the spatial dependence between the observa-
tions in different strata, regardless of whether the observations in the interpolated
stratum are included. In the equation for the determinant (Equation (4)), Sw includes
the covariance of all the pairs of observations in the interpolated stratum. Sw includes
the covariance between the two parts: observations in the interpolated stratum, and
observations in the other strata. The Sw of each stratum was calculated using OK
(Figure 2(c,d)).

Sb was solved by introducing ATAK. ATAK was initially used for interpolation using
polygon data. To build a semivariogram between polygons, the polygons are disaggre-
gated into points. The semivariogram between each pair of points is calculated and
regarded as a semivariogram between polygons (Gotway and Young 2002, Yoo and
Kyriakidis 2006). For example, in ATAK, the predictor of an area with an unknown
value is calculated using a linear combination of covariances between nearby areas.
The calculation of Sb in a stratum is the most important part of the GHM. First, all
observations are merged into different areas (Figure 2(e,f)). Each observation in the

Figure 2. Semantic figure of the GHM for interpolation, including the spatial division, solving of
the within-semivariogram Sw using OK, and the solving of the between-semivariogram Sb
using ATAK.
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interpolated stratum is regarded as an area with only one observation. Observations in
other strata are separately merged into their respective strata. Second, the semivar-
iance between the two areas is calculated using ATAK as follows:

R mi, mjð Þ ¼ R am, akð Þ ¼
1

PPm
s¼1
PPk

t¼1 ws ) wtð Þ
PPm

s¼1

PPk

t¼1
ws ) wtð ÞR us, utð Þ (5)

where !i and !j are the two observations, am is the stratum where !i occurs, and ak is
the stratum where !j occurs. If !i is the observation from the interpolated stratum,
then it is equal to am. us and ut are the observations of am and ak, respectively; Pm
and Pk are the numbers of observations of am and ak, respectively and ws and wt are
the weights of us and ut, respectively, which are usually equal to one. us and ut are
necessary to estimate the area from discretized points.

It should be mentioned that although the observations from other strata are
merged into several areas (i.e. strata), all observations are used to solve the spatial
dependence between the different strata. Thus, the fit between semivariograms con-
siders the spatial dependence in the interpolated stratum as much as possible and
borrows information from the other strata.

2.4. Optimal neighboring search strategy

In geostatistical models, only the number of nearest observations (Nmax) or observa-
tions within a certain range are used for interpolation, considering the computing effi-
ciency (Lichtenstern 2013). As shown in Figure 3(a), only locations near the strata
boundaries have neighboring observations from other strata and borrow information
from other strata. In this study, we define an observation that may have neighboring
observations from another stratum as a boundary observation, and if this condition
does not hold, it is a non-boundary observation.

The Nmax in the non-boundary area only controls information from the same stratum
because only observations in the interpolated stratum are used for interpolation (Figure 3(a)):

Ẑ0nb ¼ Zin ¼
XNmax

i¼1

kiZi (6)

where Ẑ0nb is the interpolated value in the non-boundary area.

Figure 3. Influence of the neighboring search range to GHM: (a) observations that do not include
borrowed information from other strata and (b) observations taking into account information from
other strata.

8 P. LUO ET AL.



In contrast, Nmax in the boundary area determines how much information is bor-
rowed from other strata (Figure 3(b)), because some neighboring observations are
from other strata:

Ẑ0b ¼ Zin þ Zout ¼
Xn

i¼1

kiZi þ
XNmax

j¼nþ1

kjZj (7)

where Ẑ0b is the interpolated value in the boundary area.
Therefore, different search ranges (e.g., the number of nearest observations for

interpolation) should be considered in the boundary and non-boundary areas. It is
necessary to separately optimize Nmax in the two areas. Optimal neighboring search
strategy for boundary and non-boundary observations is proposed in this study. First,
the boundary area of the interpolated stratum is identified (Figure 4(a)). For each stra-
tum, the observations inside are divided into boundary area observations (Figure 4(a),
dark color) and non-boundary area observations (Figure 4(a), light color). There are
many methods for identifying boundary observations, eg edge detection for remote
sensing images and buffer analysis of boundary lines. In addition, for sample point
data, boundary identification is conducted depending on the number of neighboring
observations from other strata or the distance to other strata. Second, after identifying
the strata boundaries, the optimization of Nmax in the boundary area (Figure 4(b)) and
non-boundary area (Figure 4(c)) is executed. Different Nmax values are set in the
boundary and non-boundary regions; then, GHM interpolation is executed to obtain

Figure 4. Nmax selection process: (a) identify the boundary area of the interpolated stratum; cross-
validation using different neighboring search ranges in (b) boundary areas and (c) non-boundary
areas and (d) selection of Nmax. The Nmax with the highest validation accuracy is selected and
labeled with a star.
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the interpolation accuracy using cross-validation. Finally, the Nmax values in the bound-
ary and non-boundary areas with the highest accuracy are selected as the final Nmax

values for GHM interpolation (Figure 4(d)).

2.5. Execution process of GHM

The execution process of interpolation using GHM is summarized as follows. First, a
large area, which is spatial second-order non-stationary, is divided into several homo-
geneous strata. The division process is conducted based on administrative units, geo-
graphical grids or expert experience and using clustering and image segmentation
algorithms (Likas et al. 2003, Gao et al. 2020). Second, the semivariograms for each
stratum are fitted. The variogram inside the stratum was fitted using OK. The vario-
gram between different strata was fitted using ATAK.

Third, Nmax optimization was conducted for each stratum. Finally, interpolation was
conducted for each stratum. The interpolated value for the locations in the boundary
area is the weighted sum of the neighboring observations inside and outside the stra-
tum. The interpolated values in locations at non-boundary areas are the weighted sum
values of the neighboring observations inside the interpolated stratum.

3. Case study: mapping marine chlorophyll using GHM

3.1. Study area and data

In this case study, we demonstrated GHM by spatial interpolation of marine chloro-
phyll in Townsville, Queensland, Australia. Marine chlorophyll data in the study area,
including 4136 observations, were collected by the Australian National Facility for
Ocean Gliders on 1 August 2010, which is a part of the Integrated Marine Observing
System (IMOS) (Davies et al. 2018). The IMOS ocean observing mission is focused on
the Australian coast and is critical for understanding the north-south transport of
freshwater, heat and biogeochemical properties. These data are collected by sensors
containing environmental information, such as temperature, chlorophyll, salinity and
turbidity at different locations and instrument depths. The chlorophyll content ranges
from 0.01 to 311.13, with an average value of 0.62, and the standard deviation is 5.12.
Figure 5 shows the location of the study area and the spatial distribution of the mar-
ine chlorophyll observations in the study area. Figure 5 shows that a significant num-
ber of observations are located in very close proximity, considering that there are
4137 observations but only a few hundred that can be visually distinguished.
Therefore, it is necessary to perform declustering prior to spatial modeling.

3.2. GHM-based interpolation

In this case, samples of marine chlorophyll observations are the only data used for
spatial prediction. It is difficult to collect explanatory variables to support this predic-
tion. Thus, the GHM provides an opportunity to accurately predict the spatial distribu-
tion of marine chlorophyll in the study area. The GHM-based interpolation of marine
chlorophyll includes the following six steps (Figure 6): data pre-processing, spatial
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division, semivariogram solving, Nmax optimization, spatial interpolation and accuracy
assessment. These steps are introduced in the following paragraphs.

The first step is data processing. All observations were up-scaled to 10m grids
using an average composite. Then a log transformation was conducted because the
original data approximately followed a log-normal distribution. Outliers were removed
by eliminating any observations that were more than twice the standard deviation
from the mean.

Second, a spatial division was conducted. An ideal partitioning result should have
the smallest intra-partition variance and the largest inter-partition variance. Thus, a
geographically optimal zones-based heterogeneity (GOZH) model was used to divide
the entire area into several homogeneous strata (Wang et al. 2010, 2016, Song et al.
2020a, Luo et al. 2021, 2022). The GOZH model is a SSH model that allows spatial
division that considers the maximum homogeneity within each stratum. Spatial

Figure 5. (a) Study area and (b) spatial distribution of marine chlorophyll samples in the study
area. Observations with chlorophyll values out of the color legend (0 to 1.5) are shown as
grey dots.

Figure 6. Flowchart of interpolation using GHM.
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division is regarded as an optimization task in the GOZH model and is formulated as
follows:

X ¼ Max 1% SSW
SST

# $
(8)

where X is a measure of the spatial stratified heterogeneity, SSW is the sum-of-squares
within the stratum, and SST is the sum-of-squares total of marine chlorophyll in the
whole study area. In the GOZH model, X was solved step-wise, with the same opti-
mization objective, and was used to split the process of the Classification and
Regression Tree method (Chipman et al. 1998, Luo et al. 2022). Spatial division was
conducted after X was determined.

The spatial division guided by GOZH maintains spatial homogeneity inside each
stratum as much as possible. Thus, the large spatial second-order non-homogeneous
area was divided into several homogeneous strata. During the spatial division process,
longitude and latitude were the two explanatory variables for marine chlorophyll. The
entire study area was divided into several strata according to longitude and latitude
using the GOZH model.

After the spatial division of the observations, a spatial division in the area without
observations was conducted. In this study, we created a Voronoi diagram, using all
the observations, in which the area of each diagram belongs to the same stratum as
the corresponding observation. It should be noted that the GOZH-based spatial dis-
cretization method is not compulsive to be used in GHM. The optimal spatial discret-
ization method should be selected according to the research question and
corresponding expert knowledge. We chose the GOZH and Voronoi diagrams because
they are intuitive and straightforward, obtaining the greatest non-homogeneity
between different strata.

Third, the within- and between-semivariogram in each stratum was solved using OK
and ATAK, respectively. For each stratum, the within-semivariogram Sw describes the
spatial autocorrelation of all observations. The R package ‘gstat’ was used to build the
semivariogram. The Sw varied with the strata. For a specific stratum, all observations
inside were transformed into an area with a uniform value, and all other strata were
merged into an area. Then, ATAK was used to construct a semivariogram between
these areas. The R package ‘atakrig’ was used to conduct ATAK.

Fourth, the boundary observations were identified according to the number of
nearest observations at other strata, and the optimal Nmax was selected based on
cross-validation. For a particular stratum, we counted the N nearest observations
around each observation. The proportion of N observations from the other strata was
then counted. We set a series of N values and chose 15 as the optimal value based on
visual inspection, ensuring that the derived boundary area had a reasonable number
of observations and a stable line structure. Hence, 15 neighboring observations were
calculated for each observation, and the boundary observation was identified if at
least one neighboring observation was from other strata. After identifying the bound-
ary areas, the optimal Nmax values for the boundary areas and non-boundary areas
were identified. To select the optimal parameter, the range of Nmax for the GHM is
from 10 to 15. Because the largest Nmax is smaller than 15, the identified non-bound-
ary observation would have no neighboring observations from other strata. For each
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stratum’s boundary or non-boundary area, we set a different Nmax and then performed
GHM interpolation to verify and calculate the interpolation accuracy. Finally, we
selected the Nmax with the highest accuracy as the final interpolation parameter. In
this study, leave-one-out cross-validation was used to optimize the parameters. Leave-
one-out cross-validation is a particular case of k-fold cross-validation, in which the
number of folds equals the number of observations (Wong 2015). Leave-one-out
cross-validation is widely used to assess the interpolation performance of geostatistical
models (Gong et al. 2014). Each observation was selected as the test set individually,
and interpolation at this location was conducted using all other observations. In this
study, the mean absolute error (MAE) derived from the leave-one-out cross-validation
was used to compare the interpolation accuracy in the boundary and non-boundary
areas to select the optimal Nmax.

Fifth, interpolation was conducted within each stratum using the solved variograms
and optimized Nmax. Finally, the performance of GHM was evaluated using the leave-
one-out cross-validation by comparison with three related geostatistical models, OK,
KED and StK, which were conducted using the R package ‘gstat’. In this study, StK
shared the same spatial division result as GHM to fairly compare the performance. The
semivariograms in OK and KED were solved using the R package ‘gstat’. StK shared
the same semivariograms at each stratum with the within-semivariogram of GHM. The
Nmax values for OK, KED and StK were selected according to sensitivity analysis. It
should be mentioned that there was only one Nmax in the entire study area for the
three models, for both the boundary and non-boundary areas.

3.3. Results

3.3.1. Data pre-processing and neighboring search optimization
This section presents the results of data pre-processing, spatial division and Nmax opti-
mization. Figure 7(a,b) shows the process of spatial division using the GOZH model.
The study area was divided into three strata, considering the highest homogeneity of
marine chlorophyll within each stratum. The boundary identification results are shown
in Figure 7(d). Most boundary observations were located in the regions from %18N*

to %18.5 N*.
Figure 8 shows the process of Nmax optimization for the three strata. In stratum A,

the MAE in the non-boundary area was higher than that in the boundary area. The
highest boundary MAE, at 0.635, corresponded to an Nmax of 10. The boundary MAE
decreased with an increase in Nmax and reached its lowest value when Nmax was 14.
However, the MAE in the non-boundary area was very stable, ranging from 0.460 to
0.462. The lowest value of 0.460 was obtained when the Nmax was 14. Compared with
stratum A, there was no significant pattern of Nmax in stratum B. The boundary MAE
had the lowest value (0.435) when the Nmax was 13. The non-boundary MAE had the
lowest value (0.372) when the Nmax was 11. In stratum C, the MAE in non-boundary
was far higher than that in the boundary area, ranging from 0.516 to 0.529. Here, the
lowest non-boundary MAE (0.516) corresponded to an Nmax of 14. The boundary MAE
increased with an increase in Nmax from 10 to 15 and decreased slightly when Nmax

was 16. The lowest value, which is 0.268, corresponded to an Nmax of 10.
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Table 1 lists the geostatistical parameters of the four models. The variogram of the
original value was used by OK, and the variogram without drift was used by StK. For a
specific stratum, the within-semivariogram Sw and between-semivariogram Sb charac-
terize the spatial dependence within the interpolated stratum and between different
strata, respectively. These two variograms were used by the GHM. In addition, the
within-semivariogram Sw was also used by StK in each stratum.

3.3.2. Accuracy assessment and interpolation results
Table 2 shows the accuracy of the four models in the entire area, boundary area and
non-boundary area. The two stratified models, StK and GHM, had better interpolation
performance than the non-stratified models OK and KED. GHM had the highest

Figure 7. Data pre-processing and spatial division: (a) spatial division process based on the GOZH
model; (b) box plots of marine chlorophyll data distribution in the divided strata; (c) observations
belonging to three divided strata and (d) observations belonging to boundary and non-bound-
ary areas.

Figure 8. Selection of the optimal neighboring samples. Nmax is the number of the nearest obser-
vations used for interpolation: (a) stratum A; (b) stratum B and (c) stratum C.
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accuracy among the four models, with the lowest MAE and root-mean-square (RMSE)
values. The MAE values for the whole area, boundary area and non-boundary area
were 0.457, 0.374 and 0.476, respectively. The MAE of the GHM for the entire area was
6.1%, 5.3% and 1.7% lower than OK, KED and StK, respectively. The RMSE of the GHM
for the entire area was 6.3%, 5.6% and 1.9% lower than OK, KED and StK, respectively.
In addition, GHM performed better interpolation in both the boundary area and non-
boundary area. The MAE in the boundary and non-boundary areas for StK was 1.6%
and 1.9% higher than that of GHM, respectively. GHM takes into account information
from the other strata in the boundary, so the accuracy significantly increased, showing
that marine chlorophyll in boundaries between strata has a spatial dependency, lead-
ing to smooth change. Borrowing information between different strata is necessary to
improve the interpolation accuracy. The accuracy in non-boundary areas is increased
owing to the use of the optimal parameter for the search area in the GHM. The accur-
acy of KED was slightly higher than that of OK in terms of lower RMSE and MAE. The
MAE of KED was 0.83% lower than that for OK for the entire area. It performed better
in the boundary area than in the non-boundary area, with an MAE 2.0% lower than
that for OK.

Figure 9 shows the MAE in the boundary (Figure 9(a)) and non-boundary areas
(Figure 9(b)) in the three strata. The GHM produces interpolation with the highest
accuracy in all strata, especially in the boundary areas. The results showed that the
stratified interpolation model significantly improved the accuracy of the boundary
area. StK and GHM had lower MAE values than OK and KED. In the boundary area of
stratum A, the interpolation MAE of GHM was 0.463, which was 8.4%, 12.5% and
13.0% lower than that of StK, KED and OK, respectively. In the boundary areas of strata
B and C, the accuracies of GHM and StK were similar but were significantly higher

Table 2. Comparison of interpolation models, including OK, KED, StK and GHM, based on
cross-validation.

All area RMSE Boundary area Non-boundary

Model MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

OK 0.485 0.626 0.392 0.415 0.563 0.440 0.501 0.640 0.376
KED 0.481 0.622 0.398 0.407 0.557 0.450 0.498 0.636 0.382
StK 0.465 0.600 0.424 0.380 0.509 0.531 0.485 0.620 0.397
GHM 0.457 0.589 0.439 0.374 0.505 0.536 0.476 0.607 0.414

Table 1. Variogram of marine chlorophyll data under different conditions: variogram of the ori-
ginal value (OK), variogram without drift (StK), between-variogram (GHM) at each stratum, and
within-variogram (GHM and StK) at each stratum.
Area Type of variogram Model Sill Nugget Range (km)

Whole Variogram of the original value Sph 0.38 0.20 3.64
Area Variogram without drift Exp 0.35 0.00 3.30

Within-variogram Sph 0.27 0.00 0.66
Stratum A Between-variogram Sph 0.29 0.00 1.39

Within-variogram Sph 0.23 0.00 1.41
Stratum B Between-variogram Sph 0.30 0.00 12.95

Within-variogram Sph 0.32 0.00 0.95
Stratum C Between-variogram Sph 0.40 0.00 11.30
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than those of OK and KED. In the non-boundary area, MAE was still slightly lower than
that of the other three models.

Figure 10 shows the interpolation results obtained by OK, KED, StK and GHM. Two
non-stratified models, OK and KED, had smooth interpolation results because the
study area was regarded as a whole, and only one semivariogram was built for the
two models. However, the spatial prediction contained bull’s eye patterns around
the samples. The interpolation result from StK avoided the bull’s eye patterns but
showed abrupt changes along the boundaries between the strata. StK conducted the

Figure 9. Comparison of the cross-validation MAE in different strata in the study area: (a) boundary
area and (b) non-boundary area.

Figure 10. Spatial interpolation results of four models: (a) OK; (b) KED; (c) StK and (d) GHM.
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interpolation in each region separately, and no information was borrowed from the
other regions. Another stratified model, GHM, had a smooth result along the bound-
ary, which was similar to the results of OK and KED. Ocean chlorophyll usually has a
smooth distribution; therefore, the continuous change along the boundary is reason-
able. In addition, the GHM avoided bull’s eye patterns. In summary, the results demon-
strate that our proposed GHM had the highest accuracy in both boundary area and
non-boundary area and avoided bull’s eye patterns and abrupt changes along the
boundaries, enabling more reasonable spatial interpolations.

3.3.3. Interpolation uncertainty analysis
Figure 11 shows the spatial distribution of the estimation error from the GHM (Figure
11(a)) and the difference in absolute error between the GHM and the other three
models (Figure 11(b–d)). As shown in Figure 11(b–d), GHM performed the best

Figure 11. (a) Spatial distributions of the estimated errors of GHM, and the error difference
between GHM and other models: (b) OK, (c) KED, (d) StK. An error difference lower than -0.05
means that GHM has better performance, and an error difference greater than 0.05 means the
compared model has better performance. An absolute error difference within 0.05 shows that GHM
has a performance similar to the compared model.
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estimation (blue and green) among the four interpolation algorithms in most observa-
tions. Figure 11(b) shows a comparison of GHM and OK. GHM achieved better results
at 51.5% of the observations than the other models. For the accuracy in the cross sec-
tion, the estimation accuracy of GHM was higher than that of OK, except near 146.3
E*. The average accuracy was higher in all the regions. The division between regions A
and B occurs near 146.3 E*. This indicates that the stratified process loses accuracy at
the boundary between the two regions. From the longitudinal section, the average
accuracy of GHM was higher than that of OK in most of the longitudinal cross sec-
tions. Figure 11(c) shows a comparison between GHM and KED. The average accuracy
of the GHM was higher than that of the KED in most of the longitude and latitude
cross sections.

Figure 11(d) shows the comparison of uncertainty for GHM and StK. Although the
accuracy of GHM was higher than that of StK in the vast majority of the observed
points, the absolute difference between the two estimation accuracies was not signifi-
cant. The accuracy difference curves were around the value of zero in both the longi-
tude and latitude cross sections. However, the uncertainty difference values were lower
than zero in the majority of the regions, indicating that GHM had a relatively higher
accuracy. It is worth mentioning that the accuracy of GHM was higher than that of StK
at the boundary, between the latitudes -18N* and -18.5 N*. This proves that the infor-
mation-borrowing strategy of GHM was essential for reducing interpolation uncertainty.

The estimation variance is an essential indicator of interpolation performance.
Figure 12(a) shows the variance in the observations derived from the GHM using

Figure 12. Cross-validation estimation variance of interpolations: (a) variance of GHM; (b) variance
comparison between GHM and StK and variance in (c) boundary and (d) non-boundary areas in
four models.
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leave-one-out cross-validation. The variance ranged from 0 to 0.8. We compared the
variance difference between the two stratified interpolation models, the proposed
GHM and StK (Figure 12(b)). The results show that the GHM had a lower variance in
most observations. GHM had a lower variance at 78% of boundary observations and
100% of non-boundary observations. A comparison of the error variance among the
four models at different strata is shown in Figure 12(c,d). Generally, the two non-strati-
fied models showed a higher average error variance than StK and GHM. Exceptions
were the non-boundary areas of strata A and C. GHM showed the lowest average vari-
ance in most areas, including all boundary areas. The average variance of GHM (0.19)
was significantly lower than that of the other models in the boundary area of stratum
B, which was 42%, 39% and 17% lower than OK (0.33), KED (0.31) and StK (0.23),
respectively. Two non-stratified models, OK and KED, had a lower variance in the non-
boundary area of stratum A.

The estimation variance from the final interpolation process was mapped to the
entire study area (Figure 13). Considering the estimation variance derived from leave-
one-out cross-validation, the two stratified models have lower error variance than the
non-stratified models. In the OK and KED models, the error variance at locations near
observations was significantly lower than that at locations in other areas. In some
areas with the highest estimation variance, such as the southwestern study area, GHM
and StK also had a relatively low variance compared with OK and KED. GHM and StK
had similar error variances in the non-boundary region because their interpolation

Figure 13. Spatial distributions of interpolation error variance derived from (a) OK, (b) KED, (c) StK
and (d) GHM.
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processes are quite similar apart from the boundary areas. GHM estimates interpola-
tions with lower variance along the boundary than StK, because the boundaries are
characterized and information from other strata is used in the GHM. However, in a
remote area of the boundary region in stratum C, GHM had a higher interpolation
variance than StK. The neighboring searching strategy arranges different Nmax values
to the boundary areas. The optimized Nmax is effective for improving the overall esti-
mation accuracy but may increase the uncertainty in the region close to the non-
boundary area.

In summary, the results show that GHM has the highest estimation accuracy in
terms of MAE and RMSE. GHM-based interpolations also had a lower variance, espe-
cially along the boundary regions. This demonstrates the effectiveness of the GHM
and the necessity of borrowing information for the stratified geostatistical model.

4. Discussion

Spatial prediction is a challenging task for geostatistical models given that spatial
second-order stationarity may be violated. Geographical variables tend to involve spa-
tial stratification, with homogeneity within the stratification. Although heterogeneity
exists between different strata, the stratification boundaries within geographical varia-
bles are bounded by spatial dependencies.

Previous studies have explored stratified interpolation algorithms, such as dividing
the study area into homogeneous strata and removing continuous drift. However, the
stratification process leads to information loss which limits the interpolation accuracy.
Several methods have been developed to conduct the stratified interpolation while
borrowing information from different strata. However, these methods ignore the spa-
tial dependence that exists in the transition area between regions. In addition, when
solving the kriging objective function, the constraints of these methods are typically
too strong. In this study, we propose a GHM for interpolation in a spatially non-homo-
geneous large area. OK and ATAK were used to characterize the spatial dependence
inside the interpolated stratum and between strata, respectively. The study area was
divided into strata that were second-order stationary prior to interpolation. To inter-
polate each stratum, the semivariogram within the observations was solved using OK,
and the semivariogram between observations from different strata was solved using
ATAK. In addition, the boundaries between different strata were identified. The optimal
neighboring observations (Nmax) in the boundary and non-boundary areas was esti-
mated using leave-one-out cross-validation.

In this study, we demonstrated the GHM through spatial prediction of marine
chlorophyll in a study area in Australia. In similar cases, it is difficult to collect explana-
tory variables to support spatial prediction, and GHM performs well for spatial predic-
tion. The results showed that the GHM had the highest interpolation accuracy in
terms of RMSE and MAE. We found that the stratification strategy effectively improved
interpolation accuracy in a large area with spatial second-order non-stationarity. Two
stratified models, StK and our proposed GHM, had higher accuracies than OK and KED.
They also had similar interpolation results in non-boundary areas. The GHM performed
with a higher accuracy in the boundary area than StK. In addition, the interpolation
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result from StK exhibited a sharp change along the boundary, resulting from spatial
division. The GHM had a smoother estimation along the boundary because it bor-
rowed information from other strata. A comparison of the error variances from the
four models also verifies the necessity of information borrowing. The GHM had a lower
estimation variance along the boundary than the StK, reducing the interpolation
uncertainty. Apart from the three baseline models, we also compared the interpolation
performance between the GHM and another information-borrowing model, the
P-MSN. The results show that the MAE and RMSE of the P-MSN in the study area were
0.465 and 0.600, respectively. Its performance was similar to that of StK but lower
than that of GHM. In addition, the MAE of GHM was 3.5% and 1.5% lower than that of
P-MSN in the boundary and non-boundary areas, respectively. This indicates that the
interpolation performance of the GHM is generally better than that of P-MSN, and the
improvement is most evident in the boundary areas.

The main contributions of this study are summarized as follows: First, an effective
and practical method for large-area mapping was developed by combining OK and
ATAK. ATAK was used to characterize the spatial dependence between homogeneous
strata. The introduction of ATAK is highly effective in large-area mapping. Second, an
optimal neighboring search strategy was introduced to better borrow information
from other strata when constructing the between-semivariogram Sb. Third, the results
indicated that the influence of other homogeneous strata might be characterized as
an area effect.

Spatial second-order stationarity is challenging in large areas, and a single semivar-
iogram cannot reflect the real spatial dependence of the entire area. Dividing the
region into several homogeneous small regions is a straightforward way to improve
interpolation accuracy, which is the basic idea of StK. However, StK may lead to each
stratum having limited observations, which introduces the difficulty of fitting a semi-
variogram. In addition, conducting interpolation at different strata leads to a sharp
change along the stratum boundary. In some special environments, such as cliffs and
faults, environmental variables may exhibit sharp changes. In such a situation, spatial
division is conducted according to special geography, and the sharp change in inter-
polation results from StK might be reasonable. However, most geographical variables
change gradually in the real world, especially marine environmental variables such as
the chlorophyll selected in our case study. This sharp change is unreasonable for the
spatial distribution of most geographical variables. Borrowing information from other
strata along the boundary is the basic idea of the GHM, and its effectiveness was veri-
fied by our results.

However, there are still some limitations to this study. First, the methods used for
the spatial division and optimization of Nmax should be improved. Spatial division was
conducted using the GOZH model, which divides the study area according to the lon-
gitude and latitude. The division process may introduce uncertainty because the geo-
graphical environment usually does not have a spatial pattern similar to that of the
longitude and latitude. In this study, our primary aim was to propose and verify the
idea of borrowing information using ATAK; therefore, only simple and straightforward
methods were used for these steps. More advanced and accurate spatial division algo-
rithms should be used in future studies, such as k-means and density-based spatial
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clustering of applications with noise (DBSCAN) (Hartigan and Wong 1979, Hahsler
et al. 2019). Second, the proposed method is a geostatistic interpolation model with-
out combining machine learning and other learning methods. As previous work has
proven the potential of machine learning in spatial interpolation (Zhu et al. 2020), we
will explore how to combine it with GHM to obtain better accuracy.

5. Conclusions

In this study, a Generalized Heterogeneity Model (GHM) was developed to improve
the spatial interpolation accuracy of data in large areas. The study space was divided
into several strata according to geographical distributions. The spatial dependence
within observations in the interpolated stratum was characterized by OK, and the spa-
tial dependence between observations from different strata was characterized by
ATAK. The results of the case study demonstrate that GHM had the highest accuracy
in terms of MAE and RMSE, compared with other widely used interpolation models,
including OK, KED and StK. In addition, the GHM avoided bull’s eye patterns and
abrupt changes along the strata boundaries.

This paper presents an effective approach for interpolating spatial second-order
non-stationary surfaces. We characterized the spatial dependence of different hetero-
geneous partitions by introducing ATAK, which we hope will inspire future spatial
interpolation and prediction. For large-scale regions, both natural and socio-economic
variables tend to exhibit spatial second-order non-stationarity, and the GHM method
has the potential to effectively interpolate and predict them spatially.
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where ms1, ms2 are the expectations of the variable inside and outside the interpolation stratum,
respectively. In this study,ms1 is the mean value of observations in the interpolated stratum, andms2

is the mean value of observations outside the interpolated stratum.
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Appendix B

The estimation error is transformed into the following equation using the residues:
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where Ri, Rj, and R0 are the residues of Zi, Zj, and Z0 after removing the expectations, respectively.
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where Covinside is the spatial covariance function of the stratum to be interpolated, Covoutside is
the spatial covaiance function of all strata outside the stratum to be interpolated, and Covinside is
the spatial covariance function between the interpolated stratum and other strata.

To minimize the d2E as well as achieve the unbiased estimation (Equations (3) and (A1)), the
Lagrange multiplied was introduced to solve this optimization problem. The built Lagrange
function is as follows:
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There are three unknown variable sets: ki (i ¼ 1, 2, . . . n), ki (i ¼ nþ 1, nþ 2, . . . nþ k), and L.
The matrix includes totally nþ k þ 1 unknown values. Solving the matrix using the Lagrange
multiplier as follows:
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These three equations are transformed as the matrix to be clearly understood, as follows:
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where Ri, j represents the CovðRi, RjÞ:
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A B S T R A C T   

The practice of crime risk mapping, enabled by the utilization of geospatial big data such as street view images, 
has received significant research attention. However, in situations where available data is scarce, mapping 
models may suffer from underfitting and generate inaccurate spatial pattern estimations of crime risk. The covert 
nature of pickpocketing crimes results in limited observed areas relevant to such criminal events, leading to 
insufficient coverage of geospatial data. Moreover, the location of crime is also influenced by socio-economic 
characteristics that may introduce biases into crime risk estimates. These factors render it challenging for the 
model to capture a valid crime risk pattern, potentially yielding misleading conclusions. Therefore, effectively 
extracting crime risk with limited data remains a challenge, especially when relying on easily accessible, 
widespread, and unbiased geospatial data. To address this challenge, we propose a novel crime risk assessment 
framework based on deep anomaly detection techniques, assuming that urban landscape anomalies carry deep 
crime risk information. We take Shenzhen as the study area and map the distribution of pickpocketing risk using 
street view images, accurately revealing the spatial aggregation of pickpocketing crime risk. Our findings indi-
cate that pickpocketing crime in China is caused by regional economic conditions, built environment factors, and 
human routine activities. This study provides valuable insights for policing and prevention strategies aimed at 
addressing pickpocketing crimes in large Chinese cities. By leveraging our proposed crime risk assessment 
framework, decision-makers can allocate resources more efficiently and develop targeted interventions to 
mitigate crime risks.   

1. Introduction 

Crime has a significant impact on economic growth and human lives 
(ToppiReddy et al., 2018), a problem that has long plagued human so-
cieties. One of the most common crimes is Pickpocketing, which in-
volves stealing a victim’s property in a public or semi-public place 
(Deshotels, 2013). Pickpocketing is characterized by high concealment, 
small amounts of money involved, and high significant financial and 
material resources investment in detection and apprehension (Lafree & 
Birkbeck, 2010). Therefore, preventing pickpocketing yields greater 
policing benefits than detecting and apprehending the offender. The 
social disorder theory and crime pattern theory suggest out that an 

objective environment can stimulate crime generation to some extent 
(Shaw et al., 1942). Since pickpocketing requires physical contact with 
the victim and often occurs in urban environments, exploring the asso-
ciation between the urban environment and pickpocketing is vital for 
police departments to prevent and control this type of crime and 
maintain social stability. 

Several previous studies have assessed crime risk using historical 
case data, spatio-temporal environmental data, or behavioral trajectory 
data. However, these approaches present certain limitations. Historical 
case data-based assessments can only consider crime patterns based on 
actual case occurrences and have low dimensions and a single source of 
information, making it challenging to assess crime risks in areas where 
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no crime has occurred or where crime data are unavailable (Hossain 
et al., 2020; Hu et al., 2018). Some researchers have integrated spatio- 
temporal environmental data (Ding & Zhai, 2021; Giménez-Santana 
et al., 2018) to further consider the spatio-temporal effects of the 
background environment on crime generation and evolution. Others 
have used micro-level behavioral trajectory data (Rumi et al., 2019; Xiao 
& Zhou, 2020) to assess crime risk, incorporating socioeconomic data 
such as demographic, GDP, and unemployment rates and trajectory data 
such like location check-in and cab traffic for crime risk assessment. 
However, obtaining fine-scale residential travel and socioeconomic data 
can be challenging in some areas, and, some environmental data may 
also be difficult to collect, leading to limited applicability and general-
izability of existing methods. Thus, addressing the question of how to 
use easily accessible and equally objective indicators that can be 
correlated and mapped to crime instead of hard-to-obtain economic 
indicators remains a challenge. 

In the field of crime risk mapping, street view imagery offers a po-
tential solution due to its extensive coverage. Recent studies have shown 
that street view images can provide insight into the physical urban 
environment and reveal crime risk (He et al., 2017; Zhang et al., 2021). 
Street view imagery accurately depicts the physical urban environment 
and allows for inferences about urban perception (Wang et al., 2019a; 
Yao et al., 2019). With easy availability, high-frequency updates, and 
microscopic perspectives on the city, street view imagery has become an 
increasingly popular tool for analyzing human or physical environ-
mental elements using semantic segmentation or target recognition 
methods to test crime theories (He et al., 2017; Yue et al., 2022). Zhang 
et al. (2021) recently analyzed Houston street view imagery and his-
torical criminal records and found a discrepancy between people’s 
perception of safety in the urban environment and the actual crime rate. 
However, most previous studies require large amounts of real, tagged 
crime data for analysis, which can be challenging to obtain for sparsely 
located crime events such as pickpocketing, whose data may have biased 
spatial distribution. Therefore, it remains unclear whether the rela-
tionship between street view imagery and crime can be effectively 
mined when dealing with sparse and biased data. 

Pickpocketing is a very typical and common type of crime that affects 
people’s daily lives, yet reliable data regarding its occurrence is scarce 
and biased. The available data may not accurately reveal the true spatial 
patterns of crime risk due to several factors. Firstly, crime data is scarce 
and incomplete in certain regions. For instance, in China, publicly 
available crime data primarily consists of judgment documents, which 
do not always reflect the true number of pickpocketing crimes 
committed. Due to the relatively minor nature of pickpocketing offenses, 
suspects often employ various methods to evade surveillance and avoid 
detection, resulting in underreporting of such crimes. Secondly, there is 
a problem of biased sampling in the available data. The spatial distri-
bution of crime locations in judgment documents is not solely deter-
mined by the risk of crime but can also be influenced by population 
density, law enforcement efforts, economic conditions, and other attri-
butes. As an example, densely populated and more economically 
developed areas have a high density of crime points, while sparsely 
populated suburban or rural areas may have limited data on pickpock-
eting, despite not necessarily having lower crime risks. Moreover, 
obtaining a conviction for a pickpocketing offense involves a complex 
process that includes the occurrence of the crime, police investigation, 
and court proceedings. Therefore, although judgment documents can 
serve as a reference for analyzing crime patterns, they may not fully 
capture the real spatial pattern of pickpocketing crime. 

In conclusion, we contend that publicly available crime data, espe-
cially for pickpocketing, does not provide a comprehensive representa-
tion of the true spatial pattern of crime risk. Firstly, such data is highly 
sparse in space, which limits its utility in producing accurate crime risk 
assessments. Secondly, the pattern of crime data suffers from sampling 
bias, and can be influenced by socio-economic factors beyond crime risk 
considerations. While many studies have utilized multiple data sources 

to analyze crime risk, these studies often require large quantities of 
labeled data for training models (Hajela et al., 2021; Xiao & Zhou, 
2020). However, given the limited amount of labeled crime data and the 
significant bias present at crime points, there are currently few effective 
methods for achieving accurate spatial predictions of global crime risk. 
Despite studies indicating that the collection of crime information by 
law enforcement agencies inevitably suffers from biases due to in-
fluences from the agencies themselves and those reporting the crimes, it 
is important to note that these data sources still exhibit fewer random 
biases compared to other sources, such as spontaneously reported crime 
victim survey data. Moreover, they provide accurate records of crime 
locations and processes, thus remaining a more trustworthy source of 
crime data (Brunton-Smith et al., 2023; Buil-Gil et al., 2022). However, 
when crime data is accurate but scarce, it remains unclear to what de-
gree policing levels, as quantified by crime data such as judgment doc-
uments, can be trusted as reliable indicators of crime risk. Given the 
current limitations associated with relying solely on real crime points for 
analysis and decision support, we propose the following research 
question: How can precise predictions of global crime risk be generated 
when crime data are sparsely sampled and biased? If it proves possible to 
accurately extract crime risk information from such sparse data sources, 
particularly in relation to hidden crimes like pickpocketing, this could 
have significant implications for large-scale crime risk assessment and 
urban governance. 

Due to various factors, it is common to conduct research on data with 
bias in the field of geographic information. Whether it’s bias brought 
about in the data collection process (Li et al., 2016; Zhang & Zhu, 
2019a),bias in geographically large data voluntarily uploaded by the 
public (Zhang, 2022; Zhang & Zhu, 2019b), or even bias in data 
collected by government agencies (Brunton-Smith et al., 2023; Buil-Gil 
et al., 2022), there are inevitable deviations. Although the data may be 
geographically biased, it is still numerically correct. We can trust that 
the more similar the geographical configuration (i.e., spatial neighbor-
hood geographical variables) of two points (regions), the more similar 
the values (processes) of the target variable at these two points will be 
(Zhu et al., 2018). Based on this idea, finding suitable environmental 
features for the data and designing analysis methods that adapt to this 
data has become the key task in using biased data for geographical 
modeling. 

This study proposes the Crime Anomaly Detection based on Street 
View (CADSV) framework, which utilizes deep learning methods to 
tackle the aforementioned challenges. Anomaly detection is a popular 
technique for identifying rare or unusual patterns within large datasets 
(Chandola et al., 2009), which is similar to a crime assessment task that 
extracts risk information from limited crime labeled street view images. 
In this study, we focus on the city of Shenzhen where we assess the risk 
of pickpocketing at various locations using judgment documents as to 
the supporting data. To further investigate the socioeconomic factors 
associated with crime, we incorporate point of interest (POI) data is used 
to represent the urban functional structures. Additionally, the random 
forest and SHapley Additive exPlanations (SHAP) techniques are used to 
utilize the complex relationship between the urban socioeconomic 
structure and spatial environment. 

2. Related work 

2.1. Risk assessment of pickpocketing crime based on spatial analysis 

Crime risk assessment is essential in policing (Fan et al., 2021; 
Oswald et al., 2018). Some scholars have conducted crime risk assess-
ments based on analysis of historical case data (Hossain et al., 2020; Hu 
et al., 2018). For instance, Hu et al. (2018) utilized a spatiotemporal 
kernel density estimation (STKDE) method to analyze the history of 
crimes in a particular location and identify burglary hotspots in the re-
gion. Similarly, Hossain et al. (2020) employed decision trees and the k- 
nearest neighbors (KNN) algorithm to evaluate crime risk using San 
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Francisco’s criminal activity data from 2003 to 2015. However, these 
studies do not account for the interaction between crime and other social 
environment factors. The data used in these studies are typically low- 
dimensional and obtained from single sources, rendering them suit-
able only for macro trend statistical analyses with limited explanatory 
power for crime risk assessment. Furthermore, reliance on historical 
crime data from a specific location may limit the transferability of 
findings beyond that context. 

The Broken Window Theory (BWT) elucidates the relationship be-
tween crime and environment, positing that visible signs of disorder and 
neglect can foster further criminal activity, including serious crimes 
(Wilson & Kelling, 1982). Certain scholars have augmented historical 
case data with spatiotemporal environmental data to better consider the 
spatiotemporal effects of the contextual environment on the generation 
and evolution of crime (Ding & Zhai, 2021; Giménez-Santana et al., 
2018). For example, Giménez-Santana et al. (2018) used a risk- 
topography modeling approach to identify environmental factors asso-
ciated with three types of violent crime events (homicide, assault, and 
theft) and assessed the risk for different crime types. Ding and Zhai 
(2021) used crime statistics and observed climate records in Beijing to 
demonstrate strong correlations between PM2.5, the Air Quality Index 
(AQI), and bus pickpocketing crimes. Based on these findings, they 
utilized a support vector machine approach was used to predict the risk 
of bus pickpocketing crimes. Many studies have demonstrated that 
crime generally tends to concentrate in micro-specific locations such as 
streets, thereby highlighting the importance of assessing crime risk at 
the micro-level for effective crime prevention and police control (Groff 
et al., 2010; Weisburd et al., 2004). However, spatio-temporal envi-
ronmental data are often collected at the grid scale, which has limited 
spatial resolution, and is generally only suitable for macro-level studies 
while being insufficiently assessed at the micro-scale. 

Crime pattern theory suggests that offenders do not randomly search 
for potential targets but instead rely on the path or routes of their daily 
activities to find suitable targets (Bernasco et al., 2013; Bernasco et al., 
2017; Brantingham & Brantingham, 2013). Therefore, some scholars 
have integrated suspects’ behavioral trajectory data with spatio- 
temporal environmental data (Bouma et al., 2014; Rumi et al., 2019; 
Xiao & Zhou, 2020). Notably, Zhao and Tang (2017) employed POI 
check-in data, weather data, and public service complaint data to pre-
dict future crimes in New York City. Results showed that the inclusion of 
dynamic data characterizing daily human activity helped to accurately 
assess crime risks. Hajela et al. (2021), meanwhile, constructed distinct 
crime prediction models using taxi data, historical crime data, and de-
mographic data, comparing their effectiveness against each other. This 
study demonstrated that methods incorporating dynamic data are more 
effective in crime prediction than those relying exclusively on crime 
data or data pertaining to social environmental factors. In summary, 
these studies consider the impact of the environment on crime at a finer 
scale, which is more effective in assessing pickpocketing risk at the 
micro-scale. However, such research typically requires low-accessibility 
data, thereby limiting its applicability to larger areas. Conversely, street 
view data can satisfy both environmental information provision and 
large-scale information provision, providing data support for crime risk 
assessment. 

2.2. Street view image and city perception 

Street View Images (SVI) are composed of panoramic images of 
various locations on the street that provide a comprehensive reflection 
of the physical urban environment and human activities on a large scale 
(Kang et al., 2020; Yao et al., 2019). In comparison to behavioral tra-
jectory data, SVIs are low-cost and highly accessible. Additionally, they 
can capture detailed information in the physical environment more 
comprehensively using a perspective similar to that of the human eye 
(Zhang et al., 2020). As such, they have been integrated into diverse 
urban studies, including urban safety perceptions (Wang et al., 2019b; 

Zhang et al., 2021) and urban crime research(He et al., 2017). For 
instance, He et al. (2017) employed used Google Street View to identify 
factors in the physical environment of Columbus cities that contribute to 
violent criminal activity. Results showed positive associations between 
crime rates and street graffiti, abandoned buildings, and abandoned 
cars. Similarly, Zhang et al. (2021) analyzed street view images and 
historical criminal records in Houston, finding that areas where people 
feel unsafe do not correlate with high crime rates. There existed a 
perceived bias between perceived safety and actual crime rates in the 
urban environment. 

Most of the current studies examining the relationship between street 
view images and crime risk have focused on Western cities. However, it 
remains uncertain questionable whether research findings on Western 
cities can be effectively applied to Chinese cities. Firstly, there are sig-
nificant disparities in architectural and urban planning styles between 
the East and West (Ashihara & Riggs, 1983). Secondly, various socio- 
political factors contribute to the differences in crime patterns be-
tween East and West (Farrell & Bouloukos, 2001; Steffensmeier et al., 
2017). For instance, a comparative study of high school students in 
China and the United States revealed that crime rates were significantly 
lower in Chinese schools were much lower than in American ones (Webb 
et al., 2011). As such, it is crucial to investigate the relationship between 
urban environments and crime risk in China using street view images. 

Regarding the use of street views for crime risk prediction, a typical 
approach involves first extracting high-dimensional semantic features 
from the images, followed by constructing regression models to establish 
the relationship between these features and crime risk. For example, 
semantic segmentation can be used to extract the proportion of green 
space within an image, while target detection can estimate the number 
of people present (Hipp et al., 2021; Jing et al., 2021). Street view im-
ages contain vast amounts of semantic information that humans have yet 
to explicitly express. This implicit information has the potential to un-
cover crime risk. However, current solely rely on human-defined se-
mantic features, thus overlooking a large amount of semantic 
information present in the images. Moreover, the above framework 
encounters difficulties when analyzing risks in areas not covered by LBS 
data, particularly with biased and spatially sparse crime data. To address 
this problem, it is crucial to extract crime risks from street views based 
on sparse data, which would fill this gap and facilitate the building of 
end-to-end models by eliminating complex image processing steps. 

2.3. Geographical research based on biased data 

In fact, in the field of geographic information, analyzing data with a 
geographical distribution bias is a widely studied problem. For example, 
Volunteer Geographic Information (VGI), voluntarily uploaded by citi-
zens, is one of the newly emerged types of big geographic data in recent 
years (Zhang & Zhu, 2018). With its rich geographic information, high 
update frequency, and low cost, VGI is used to reveal spatiotemporal 
patterns of geographic phenomena. However, since the spatial distri-
bution of volunteer observation work is neither random nor regular, the 
observation results are often spatially biased towards areas with high 
population density or high route accessibility, leading to bias in 
geographic distribution. To address this issue, researchers typically start 
by comparing sample locations with the environmental covariates of the 
predicted areas, improving sample representativeness by comparing 
similarities. Based on this concept, studies by (Zhang & Zhu, 2019b) and 
(Zhang, 2022) have mitigated the spatial bias in samples based on VGI 
by improving sample representativeness. 

Additionally, studies based on geographically biased data in the field 
of digital soil mapping underscore the importance of environmental 
covariates. Since the spatial distribution of soil samples may lean to-
wards specific geographical areas and be influenced by the personnel 
taking measurements, soil samples are a type of data that can be easily 
affected by spatial bias (Li et al., 2016; Zhang & Zhu, 2019a). To solve 
this problem, (Fan et al., 2020) proposed the SoLIM-FilterNA method, 
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which predicts the soil property values of unknown units by learning the 
characteristics of one or more environmental covariates, as long as the 
uncertainty of that unit does not exceed the set threshold. (Zhu et al., 
2018) proposed a method that does not use the explicit relationships 
derived from the entire sample set, but instead makes predictions based 
on the comparison of the geographical configurations of the sample 
points and the prediction points. This study suggests that accurate 
spatial predictions can be made based on biased samples. Similarly, 
facing the issue of data sparsity, (Du et al., 2020) proposed a semi- 
supervised machine learning method for predictive mapping, which 
uses the natural aggregation (clustering) pattern of environmental co-
variate data to supplement the limited samples in prediction. The 
characteristic of these studies is that they step outside of the spatial 
dimension to deal with spatially biased data. It can be seen that in the 
case of geographical bias, if suitable environmental features and 
methods can be selected to fit the data, results better than traditional 
geographic models can be achieved. 

2.4. Deep anomaly detection model 

Anomaly detection models are commonly used to identify events that 
have a low probability of occurrence but often cause fatal harm to the 
system (Chandola et al., 2009). Since crimes tend to be concentrated in 
specific areas, only a few street images are spatially associated with 
crime events (Weisburd, 2015). Therefore, the crime risk information 
contained within the street view images can be classified as anomally. 
Anomaly detection tasks that distinguish between anomalous and 
normal data is a One-Class Classification (OCC) tasks. Early OCC 
research focused on using statistical methods for feature extraction and 
developing classifiers. Since 2017, deep learning methods have become 
the mainstream of OCC research (Perera et al., 2021) which have made 
progress in several areas, such as cybersecurity intrusion detection (Kim 
& Kim, 2021), medical pathology image detection (Schlegl et al., 2017), 
One approach to deep learning-based OCC is to learn normal features 
and compare differences between test data and normal features, with 
greater variations indicating anomalous data (Ruff et al., 2018). 

The convolutional neural network (CNN) structures can be utilized to 
achieve high accuracy in anomaly detection algorithms for images 
(Minhas & Zelek, 2019). Cohen and Hoshen (2020) utilized pyramidal 
neural networks to detect anomalous images and localize anomalous 
parts. Massoli et al. (2021) proposed the MOCCA framework to extract 
features at different depths of deep neural networks, thereby enhancing 
network discrimination in single-classification (OCC) problems. Sabo-
krou et al. (2018) introduced the first single-classification model based 
on GAN networks, which enhances the interpreter’s normalization 
ability while iteratively reconstructing features. 

3. Materials and method 

Fig. 1 depicts a flowchart illustrating the pickpocketing crime risk 
assessment with coupled street view images using deep anomaly 
detection. The methodology comprises three fundamental stages: (1) 
Data preparation. Collected the 2018 judgment documents using a web 
crawler and subsequently extracting the crime locations using a natural 
language processing models, the crime locations were spatially with the 
street view images; (2) Mapping urban crime risk using the proposed 
Constructed Crime Anomaly Detection framework based on Street View 
(CADSV). We evaluated the risk of pickpocketing crimes by calculating 
image feature similarities between street view image; (3) Model inter-
pretability analysis. Used POI kernel density data to characterize the 
drivers of the pickpocketing crime risk. This analysis utilized the 
Random Forest and SHAP models for interpretability. Additionally, we 
explored whether these drivers are consistent with the objective envi-
ronmental risks characterized by the Street View imagery. 

3.1. Study area and data 

Shenzhen (Fig. 2) is a typical migrant city and the most developed 
city in South China, consisting of 10 districts. There are significant dif-
ferences in economic development between downtown and suburban 
areas in Shenzhen (Meyer, 2016). The downtown areas are Shenzhen’s 
political, economic, and cultural centre, including Nanshan District, 

Fig. 1. Schematic overview of pickpocketing crime risk assessment with coupled street view images using deep anomaly detection.  
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Fig. 2. (A) High-spatial resolution remote sensing imagery and (B) Crime locations and land-parcels in the study area (Shenzhen). (C) Road network and street view 
image sampling points. 
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Futian District, Luohu District, and Yantian District. Meanwhile, the 
suburban areas comprise Longhua District, Longgang District, Pingshan 
District, Dapeng District, Guangming District, and Baoan District, with a 
complex composition of foreign and migrant populations. It should be 
noted that the administrative division of Shenzhen underwent signifi-
cant reorganization in 2018. To ensure study validity and offer support 
for future research efforts, all data used in this study were collected from 
2018. 

Land use planning parcels represent the fundamental unit of urban 
cadastral management in China. This study employed Shenzhen land use 
parcel data as the primary analytical unit. These parcels consist of 6913 
records retrieved 

from the Shenzhen Planning and Natural Resources Bureau website 
(https://pnr.sz.gov.cn/). 

Acquiring crime locations from social media platforms has been 
explored in literature by Hipp et al. (2019). However, this approach may 
not provide credible crime data and therefore needs to be supported by 
police or official documents. In this study, the pickpocketing data were 
obtained from the China Judicial Documents website (http://wenshu. 
court.gov.cn). The Supreme People’s Court of China mandates that all 
Chinese courts to publish judgment documents on the web, including 
information such as the cause, time, and location of the crime. To 
validate the accuracy of this data, previous studies have analyzed crime 
cases from different fields (Cai & Xin, 2019; Miao et al., 2016). Our study 
captured all criminal cases from 2018, which amounted to 7535 cases. 
Of these, pickpocketing accounted for 9.05 % (or 682) of all sentencing 
documents. Natural language processing models were utilized to extract 
pickpocketing crime locations, which are accurate up the building level 
or street level can be spatially matched with street view images. 

Street View Image has been utilized in prior studies to reflect the 
physical environment or residents’ perceptions of cities (Helbich et al., 
2019; Wang et al., 2019b; Zhang et al., 2018). In this study, Baidu Street 
View images from 2018 were employed to depict the urban environment 
in Shenzhen. As one of the largest street view service providers available 
in China, Baidu Street View covers a vast majority of Chinese cities 
(Kang et al., 2020). This study used the road network data of Shenzhen 
city in 2018 were obtained via OpenStreetMap using the OpenStreetMap 
API. Byun and Kim (2022) have noted that acquiring street views at the 
street level with a distance of 200 m can effectively reveal the urban 
environment and its changes. There are also studies on crime that use 
200 m as a buffer range for data collection, an interval that is considered 
to best describe the scale of urban communities (Kadar et al., 2016). 
Therefore, this study employed a sampling approach that involved the 
collection of road network data at 200 m intervals, thus obtaining a total 
of 38,717 sampling points. Subsequently, street view images were ac-
quired from four horizontal directions (0◦, 90◦, 180◦, and 270◦) to 
simulate human visual perception. In total, 154,868 street view images 
were obtained for all sampling points. These images were then labeled as 
either pickpocketing risk images or non-pickpocketing risk images based 
on crime locations. Consistent with the sampling interval, a buffer radius 
of 200 m was selected to identify street images at risk of pickpocketing. 
Consequently, a total of 2712 street images were flagged as being at risk 
of pickpocketing. All other street view images were classified as normal 
images. It is worth noting that each street view image was labeled only 
once, although some street view images were located within buffer 
zones of multiple crime locations. 

Point of Interest (POI) data have been demonstrated to effectively 
reflect the socioeconomic and functional structural characteristics of 
cities (Yao et al., 2017). In this study, POI data were utilized to analyze 
the relationship between pickpocketing crimes and urban functions at 
the micro-scale. The POI data used in this study were derived from 
Gaode Map (https://www.amap.com/), one of China’s largest online 
map providers. A total of 213,476 POI data points from the year 2018 
were collected in the study area, which were classified into five major 
categories: Catering & Entertainment, Education & Health care, In-
dustry, Finance & Insurance, and Other Five major categories (Hu & 

Han, 2019). These categories were further divided into nine second- 
level categories, which are Life Services (39,590, 18.55 %), Trans-
portation (37,536, 17.58 %), Landscape (2515, 1.18 %), Police (2544, 
1.19 %), Medical Institutions (20,327, 9.52 %), Restaurants (75,030, 
35.15 %), Finance (14,165, 6.64 %), Entertainment (17,107, 8.01 %) 
and Shopping Malls (4662, 2.18 %). We calculated the density of each 
type of POI density using kernel density analysis. 

3.2. Extracting crime information by treating it as the anomalies 

3.2.1. The propose of the assumption and the overall framework 
Limited availability of crime data in certain regions makes it difficult 

to associate street view images with criminal activity. Typically, crimes 
tend to occur in specific locations according to the crime concentration 
theory (Weisburd, 2015). To address this issue, we propose that crime 
information can be viewed as anomalies within urban landscapes. Based 
on this assumption, we developed a Crime Anomaly Detection based on 
Street View (CADSV) framework for mining pickpocketing risk infor-
mation from spatially sparse street view images and performing large- 
scale risk mapping. The framework is threefold (Fig. 3): 1) The normal 
feature vectors extraction. 20 % of street view images (totally 29,744 
images) labeled with non-crime were randomly selected. The ResNet-50 
Network was used to extract the normal feature vectors for all street 
view image. Normal feature vectors include the feature vector extracted 
for each image. 2) Verify the effectiveness of the extracted normal 
feature vectors for revolving crime information. 3) Mapping the crime 
risk for all street view images in the study area. 

In this study, we aimed to evaluate the effectiveness of our proposed 
Crime Anomaly Detection based on Street View (CADSV) framework. To 
achieve this objective, we randomly selected 29,744 street view images 
to extract normal feature vectors using the ResNet-50 Network. Subse-
quently, we selected 10,148 street images to assess the performance of 
these extracted normal feature vectors. 

It is important to note that we included all crime-labeled images in 
the test set, resulting in a total of 2712 such images. To ensure accurate 
assessment of the capability of the extracted features in assessing crime 
risk, we selected four times as many normal-labeled images as crime- 
labeled ones. Thus, we randomly selected 7436 images for this pur-
pose. It should be noted that there were no strict guidelines for selecting 
this number; however, we considered 10,148 images to be sufficient for 
the evaluation process. 

3.2.2. Normal feature extraction and feature adaptation 
Self-supervised deep anomaly detection is considered a One-Class 

Classification (OCC) problem. However, when the amount of data is 
limited, a trained Convolutional Neural Network (CNN) may not effec-
tively capture the semantic information within image dataset, resulting 
in suboptimal performance. Recent studies have demonstrated that pre- 
training can improve the effectiveness of model in deep anomaly 
detection. The CNN network is trained in a larger dataset to get the 
original feature vectors, which are then adapted features for use in the 
target dataset. 

Feature adaptation aims to map the data from a different source and 
target domains into a feature space such that they are as similar as 
possible to each other in that space. Contrast learning is an excellent and 
effective self-supervised learning method commonly used for the feature 
adaptation of pre-trained feature extractors (Khosla et al., 2020; Reiss & 
Hoshen, 2023). The contrast learning method optimizes the prediction 
task by extracting a dataset x′ of batch size N from the training set and 
training it against the data-enhanced x′ with the loss function shown in 
Eq. 3.1. Where ϕ denotes the feature extraction module used to compute 
the feature vectors, which in this study represents the ResNet-50 model 
with normalization added at the last fully connected layer. This is 
because this method speeds up the convergence of the model and en-
sures adaptive normalization of the feature data (Yao et al., 2021a). 
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Lcontrastive(xi′, xi′′) = − log exp((ϕ(x′)⋅ϕ(x′′) )/τ )
∑2N

i=11[xi ∕= x′]⋅exp((ϕ(x′)⋅ϕ(xi) )/τ ) (3.1) 

The temperature hyperparameter, which is utilized in contrast 
learning to regulate the strength of penalty for negative samples (Wang 
& Liu, 2021), is denoted by τ in Eq. 3.1. 

However, although the above contrast learning method is very 
effective for feature adaptation, for deep anomaly detection in OCC, it 
may lead to catastrophic collapse, where the accuracy of prediction 
decreases instead as the number of training increases. Therefore, we 
used a newly developed loss function, Mean-shifted contrastive loss, 
proposed by Reiss and Hoshen (2023). It is shown that this solves the 
problem of dimensional collapse that may occur in the field of image 
anomaly detection and surpasses the latest previous models in OCC 
classification. The objective function of mean-shifted loss is shown in Eq. 
3.2, and ctrain denotes the normalized centre of all training images: 

θ(x) = ϕ(x) − ctrain

‖ϕ(x) − ctrain‖
(3.2) 

The method is not only able to calculate the Euclidean distance dif-
ference between the feature vector of a single image x and and ctrain, but 
also normalizes the sample difference to the unit sphere and maximizes 
the distance between negative and positive samples. Besides, in order to 
reduce the distance between the x′ samples and ctrain after data 
enhancement, we also introduced the angular center loss (ACL), and the 
formula is shown in Eq. 3.3: 

Langular(x) = −ϕ(x)⋅ctrain (3.3) 

To sum up, the objective function used in this study that combines 
the above two constraints is shown in Eq. 3.4: 

Fig. 3. Crime Anomaly Detection based on Street View (CADSV) framework coupled with Resnet-50 and MSAD.  
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Lmsc(x′,x′′)=−log exp((θ(x′)⋅θ(x′′))/τ)
∑2N

i=11[xi ∕=x′]⋅exp((θ(x′)⋅θ(xi))/τ)
+Langular(x′)+Langular(x′′)

(3.4) 

In this study, small batches of data after data enhancement from the 
original training set are represented byx′and x′′. The data enhancement 
method includes a series of ways such as flipping, cropping, and 
Gaussian filtering of the original image features, and ensures that the 
data enhancement results for x′and x′′ are not the same by introducing 
randomness. 

In this study, the ImageNet dataset was selected to pre-train the 
ResNet-50 network. And the feature adaptation was conducted using the 
proposed objective function in Eq. (3.4). Each image in the training set 
was extracted with a feature vector of 2048 dimensions. Normal feature 
vectors include the feature vectors extracted for each image. 

3.2.3. Risk scoring and feature assessment 
The process of anomaly scoring (risk scoring) for a street image from 

the test set is depicted in Fig. 4. Firstly, the pre-trained ResNet-50 
network was utilized to extract the feature vector of the test image. 
Secondly, the KNN model was used to find the K nearest normal vectors 
for the test feature vector. The K was selected as two, and Euclidean 
Distance was used as distance metric, referring to the previous work 
(Reiss et al., 2021). Third, the risk score of the test image was calculated 
as the cosine distance between the test feature vector and the two 
nearest normal vectors. The cosine distance can take into account both 
the Euclidean distance and the angular distance between the features. It 
has a better deep anomaly detection performance than the other two 
distance metrics (Reiss et al., 2021). The scoring formula is shown in Eq. 
3.5: 

s(x) =
∑

ϕ(y)∈Nk(x)
1 − ϕ(x)⋅ϕ(y) (3.5)  

where Nk(x) denotes the k features in the training set that have the 
closest cosine distance to ϕ(x). Moreover, the training set consists of 
street scenes where no crime occurred, while s(x) indicates the distance 
of the input street scenes from the normal street scenes. This value 
ranges between 0 and 1, with higher values indicating a greater prob-
ability that the input streetscape belongs to the pickpocketing area. 

The Anomaly Scoring was conducted on each image in the test set to 
assess the ability of the extracted normal feature vectors to characterize 
non-criminal features. The scoring results of normal-labeled street view 
images were compared with crime-labeled street view images to verify 

the effectiveness of the normal vectors. 
The model’s performance was evaluated using the AUC metric, 

which represents the area under the ROC curve (Ling et al., 2003). This 
metric can address classification result biases towards the majority class 
when the sample data is imbalanced (Burez & Van den Poel, 2009). The 
ROC curve is a probability curve that plots the true positive rate (TPR) 
against the false-positive rate (FPR), while the AUC measures the 
model’s ability to classify correctly. An AUC close to 1 indicates good 
separability, while an AUC of 0.5 implies no category separation ability. 

In this study, the best threshold for classifying whether street view 
images contain pickpocketing risk features or not was determined using 
the Youden index (Schisterman et al., 2005; Youden, 1950). Classifica-
tion accuracy was subsequently assessed using Recall and F1-score. 
Recall can indicate the proportion of positive samples being correctly 
predicted in the classification results. On the other hand, the F1-score 
provides a comprehensive evaluation of classification model accuracy 
and recall. The formulas used to calculate Recall and F1-score are as 
follows: 

Recall = TP
TP + FN

(3.6)  

F1 = 2*Precison*Recall
Precision + Recall

(3.7)  

where TP denotes the number of correctly identified pickpocketing 
street view images and FN denotes the number of incorrectly predicted 
as normal street view images. 

3.3. Interpretability analysis based on random forest and Shapley 

This study employed the CADSV framework to calculate the street- 
level pickpocketing crime risk score for each image. The average risk 
score of street view images within each land parcel was used to char-
acterize the crime risk score in that particular parcel. To investigate the 
effects of different POIs on the pickpocketing risk, this study utilized a 
SHAP method to interpretability analysis the results. SHAP (SHapley 
Additive Explanations) is a data feature analysis method based on game 
theory (Lundberg & Lee, 2017). This interpretable model that can 
integrate multiple variables effectively and reveal the contribution of 
each input spatial data in the model. The SHAP model finds wide 
application across various fields such as crime (Xie et al., 2022; Zhang 
et al., 2022) and medicine (Kim & Kim, 2022; Yao et al., 2022). The 
SHapley values (Štrumbelj & Kononenko, 2014) were calculated in the 
SHAP model to interpret the contribution and influence of the input 

Fig. 4. The process of anomaly scoring for one test image.  
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features. Specifically, this study employed the Shapley model is used to 
explain the degree of contribution of different POIs to crime risk. The 
formula for calculating SHapley values is presented in Eq. 3.8. 

ϕi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1 )!
|N|!

(v(S ∪ {i} ) − v(S) ) (3.8)  

where ϕidenotes the SHapley value of the i-th independent variable and 
|N| is the number of POI types; S represents an arbitrary disjointly ar-
ranged subset of each POI attribute except the i-th variable; 
v(S ∪ {i} ) denotes the output of the model when all data appear; 
v(S)denotes the output of only the input subset model. Following the 
above method, the SHapley value of each feature can be calculated by 
sequentially arranging and sampling each multi-source spatio-temporal 
data. 

In addition to explaining the contribution of spatial variables using 
the SHAP method, this study used a random forest (RF) model to fit the 
POI density of different types within each land parcel to the pickpock-
eting indices. RF model has been used to analyze complex nonlinear 
correlations between variables in spatial analysis (Hengl et al., 2018; 
Nussbaum et al., 2018; Rodriguez-Galiano et al., 2012). It can effectively 
avoid correlation issues in high-dimensional features and has been 
shown to be the most effective nonlinear fitting model in previous 
studies (Fernández-Delgado et al., 2014). 

4. Result 

4.1. Model accuracy 

The normal feature vectors were extracted from the training dataset 
and evaluated in the test dataset. A 5-fold cross-validation was con-
ducted to obtain the hyperparameters of learning rate (0.0005), batch 
size (64), and epoch (150) were obtained for the training dataset. The 
risk scores of street view images in the test dataset are shown in Fig. 5. 
The test dataset include 7436 normal-labeled images and all 2712 crime- 
labled images. The results revealed a significant difference in risk scores 
between crime-labeled and normal-labeled images, with values of 0.41 
and 0.29, respectively. Accuracy assessment shows that the AUC, Recall, 
and F1-Score were 0.921, 0.816, and 0.767, respectively. The scoring 
result in test dataset demonstrate that the extracted feature vector 
effectively characterizes the normal urban landscape (Fig. 5) and can 
detect crime information as anomalies. 

Fig. 5c shows the percentage of criminal and non-criminal images in 
the test set at different intervals of crime risk values. When the crime risk 
values were less than approximately 0.36, the percentage of non-crime 
images greatly exceeded that of crime images in each interval of risk 
values. Conversely, when the crime risk values were >0.36, the pro-
portion of crime-risk images rapidly increased and surpassed that of 

Fig. 5. Risk scores in test datasets: (A) box plot; (B) Percent stacked histogram; (C) Line chart of the percentage of crime/ non- crime street views in each crime risk 
value interval. 
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non-crime risk. Therefore, the crime risk values obtained from this 
model exhibit good discrimination between crime and non-crime im-
ages. Further statistical analysis revealed that when the crime risk was 
<0.354, including images with a ratio of 74.22 % of cases, 90.05 % of 
them were non-criminal. In contrast, when the crime risk was >0.371, 
19.04 % of the images were included, while 90.78 % were criminal. At a 
crime risk value of 0.354–0.371, the ability to distinguish crime images 
from non-crime images was found to be the weakest, with a ratio of 
276:409 between crime and non-crime images in this range. However, 
this represents only a small percentage (6.75 %) of the total number of 
images. In conclusion, the crime risk value can distinguish between 
crime and non-crime images well. 

Having established the validity and rationality of the extracted 
normal feature vectors, pickpocketing crime risk scoring was conducted 
for all street view images. The resulting scores from street view images 
were then aggregated into land parcel level. To investigate the driving 
factors of pickpocketing crime risk, this study used the random forest to 
fit the nonlinear relationship between each type of POI feature and the 
pickpocketing crime risk index. In the fitting step, the random forest out- 
of-bag samples were randomly accounted for 30 %, and the number of 
decision trees (estimators) was set to 400. The R2, RMSE, and MAE were 
0.455, 0.016, and 0.868, respectively. These results demonstrated that 
socioeconomic features revealed by POI data could effectively explain 
the mapping results of the pickpocketing risk mapping result in most 
areas. 

4.2. Parcel-scale pickpocketing risk mapping 

This study mapped the risk distribution of pickpocketing crime for all 
land parcels in Shenzhen (Fig. 6). The results revealed a high pick-
pocketing risk in the central city with an average value of 0.362, and a 
low pickpocketing risk in the peripheral city with an average value of 
0.347. This observation suggests that commercial and transportation 
activities, which are more prevalent in the central urban areas, may play 

a significant role in shaping the risk pattern of pickpocketing crime in 
Shenzhen. 

Fig. 7 shows the street view images and their corresponding risk 
scores of typical functional zones. In general, for each functional area, 
the more dense the urban building bias, the more chaotic and disorga-
nized the visual perception of the environment, the more likely pick-
pocketing is to occur. For instance, although the risk of crime inside a 
factory is low, while a construction site underway is at greater risk. Our 
findings indicate that the risk of pickpocketing crime is higher in areas 
relatively disorganized and underdeveloped areas. Tangwei Urban 
Village, a shantytown in Shenzhen, with a high migrant population and 
weak security management, had a higher risk of pickpocketing crime 
(0.404) compared to the resident community Yijing Community (0.354), 
as seen in Fig. 6. The Business Centre generally had good infrastructure, 
but its dense flow of people and disorder led to a higher risk of pick-
pocketing crime. For example, Mixc World Shopping Mall, one of the 
major business centres in Shenzhen, Mixc World Shopping Mall had a 
higher risk of pickpocketing crime (0.378) than the average value 
(0.351). These observations highlight the importance of considering 
visual perception when evaluating pickpocketing crime risks in urban 
settings. 

The study results highlight variations in pickpocketing crime risk 
risks across functional areas. Tourist attractions showed a high average 
pickpocketing risk value (0.404) due to Shenzhen’s well-developed 
tourism industry, with numerous scenic green spaces attracting many 
tourists and providing accessible targets for criminals (Fig. 7). Addi-
tionally, the risk values of pickpocketing in residential (0.372), com-
mercial (0.362), industrial (0 0.368), and school (0.357) areas were 
higher than the average pickpocketing risk value (0.351). Such func-
tional areas were characterized by dense crowds that offered an op-
portunity for disorder, making offenders more likely to commit 
pickpocketing crimes. Parks and landscape spaces were adjacent to 
residential areas also had many open spaces (Fig. 7 Scenery) that 
attracted offenders. 

Fig. 6. The distribution of pickpocketing crime risk at land parcel-level in Shenzhen. The triangle marks typical functional areas.  
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Moreover, differences in social structure within functional areas can 
lead to heterogeneity in pickpocketing crime risk. As shown in Fig. 6, the 
transportation facilities in the city centre had a 39.4 % higher average 
pickpocketing risk than transportation facilities in other areas. Specif-
ically, transportation facilities such as Shenzhen Station (0.377) and 
Futian Railway Station (0.373), with an average risk value of 0.375, 
while those in Baoan International Airport (0.172), Pingshan High- 
Speed Railway Station (0.331), and Shenzhen North High-Speed Rail-
way Station (0.306), had an average pickpocketing risk level of 0.269. 
As shown in Fig. 7, the streetscape of stations was very similar in 
different areas. The risk was higher in the city centre with better eco-
nomic development, suggesting that economic factors play plays a 
complex role in pickpocketing crime. 

4.3. Spatial aggregation analysis of pickpocketing crime risk 

The global Moran’ I index of pickpocketing crime risk in Shenzhen 
was 0.591 (p-value <0.001, z-score 51.219), indicating a significant 
spatial correlation. Furthermore, local spatial autocorrelation analysis 
based on the Local Moran’s I index was conducted to investigate the 
pattern of urban crime aggregation (Fig. 8). The results indicated that 
social factors significantly influenced the clustering pattern of pick-
pocketing crimes. Approximately 29.9 % of areas in Shenzhen had high- 
high aggregation of a pickpocketing crime risk, which were mainly 
located in urban central areas, such as University Town (Fig. 8(A)) and 
Futian CBD (Fig. 8(B)). These regions were characterized by a high 
concentration of people and wealth, making them prime targets for 
pickpocketing crimes. Additionally, areas outside the central urban area, 
such as Tangwei Urban Village (Fig. 8(C)), also showed high-high ag-
gregation due to their inadequate infrastructure construction and a large 

Fig. 7. Street view images of typical functional zones of Shenzhen: The Crime risk axis represents the pickpocketing risk score assessed by the CADSV model, and the 
Land-use types axis represents typical functional zones. 
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Fig. 8. Results of parcel-scale pickpocketing crime risk aggregation in Shenzhen and remote sensing images of some typical areas.  

Fig. 9. Distribution of SHAP values and main drivers for all land parcels in Shenzhen: (A) shows the statistical analysis of SHAP values for all land parcels with the 
same characteristics; the SHAP Value axis indicates the magnitude of SHAP values, and the Dominant Factor axis indicates each type of POI characteristic that affects 
the risk of pickpocketing; (B) shows the drivers that have the greatest impact on the risk of pickpocketing in the parcel, which is obtained based on the average 
absolute magnitude of SHAP. 
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proportion of migrant residents. 
Conversely, 26.8 % of the area exhibited low-low aggregation re-

gions, mainly distributed outside the central city. Notably, these regions 
typically had better built environments and overall policing, evident in 
areas such as the central southern region of Baoan district, the science 
and technology industrial area in the south-central Longhua district, and 
the northeastern industrial area in Longgang district (Fig. 8(D)-(F)). Our 
study findings indicate socioeconomic conditions and the built envi-
ronment in neighbouring regions greatly influence the spatial pattern of 
crime risk. The results are consistent with the hypothesis proposed by 
Sparks (2011a). 

4.4. Explainable spatial distribution of pickpocketing risks 

After fitting the relationship between each type of POI feature and 
the risk of pickpocketing crime, we calculated the SHAP values for each 
type of POI feature (Fig. 9(A)). Residents’ routine activity was mainly 
carried out in five facilities, namely Traffic, Entertainment, Catering, 
Shopping, Financial, and Life services facilities (Boivin, 2018). The re-
sults indicate that routine activity was the most important factor influ-
encing pickpocketing crime risk and positively correlates with the risk of 
pickpocketing crime. Compared to Tourist (−0.052), Medical In-
stitutions (−0.003), and Police (−0.009), routine activity had the 
greatest impact on the risk of pickpocketing crime with an overall SHAP 
value of 0.079. According to the resident’s routine activity theory 
(Cohen & Felson, 1979), Routine activity facilities provide criminals and 
potential targets that are prone to criminal activity. Tourist character-
istics had a negative impact on pickpocketing crime risk scores, with a 
negative median SHAP value (−0.079). The Tourist feature reduced the 
risk score in many samples, which indicates that tourism had a high 
potential to reduce the risk of pickpocketing crime in urban areas. The 
results are consistent with the findings of (Bogar & Beyer, 2016) that 
urban landscape features are associated with reduced crime rates. 

The present study investigated the determinants of pickpocketing 
crime risk on all parcels in Shenzhen Shenzhen, revealing insights into 
the spatial heterogeneity of crime risks (Fig. 9(B)). The influence of 
routine activities on the risk of pickpocketing crime was found to be 
spatially heterogeneous. In the downtown area, routine activity facilities 
were observed to positively affect the risk of pickpocketing (average 
SHAP value: 0.184). For example, in the vicinity of Shenzhen University 
Town, where traffic was the main driver, urban residents moved around 
for work and education purposes, and the population was more mobile, 
increasing the risk of pickpocketing crime in the area. However, resi-
dents’ routine activity facilities in suburban areas negatively impact 
crime risk (average SHAP value: −0.118). For example, Shopping and 
Financial features dominated the dominant factors near the central area 
of Baoan district, which reduced the crime risk of the area. This may 
associate with increased guardianship (Boivin, 2018), which stabilizes 
social order. These results support the hypothesis that routine activity 
may increase or decrease criminal activity (Boivin, 2018). 

The present study revealed the heterogeneous effect of tourist at-
tractions on the risk of pickpocketing crime. Tourist (average SHAP 
value: 0.098) had a predominantly positive effect on crime risk in 
economically developed urban areas. For instance, Shenzhen Central 
Park witnessed an increased risk of pickpocketing due to the congre-
gation of many tourists, making tourism the main driver of crime risk in 
the area (Zhong et al., 2011). In contrast, tourists in suburban areas 
(average SHAP value: −0.119) mainly negatively affect crime risk. For 
example, crime risk in Baoan International Airport was driven by 
tourism, but it reduced the risk of pickpocketing crime in the area. This 
could be attributed to the presence of a large area of public green spaces 
near the airport, which stabilizes social order and reduces the risk of 
pickpocketing crime (Jennings & Bamkole, 2019). Our study shows the 
uncertainty of Tourist’s effect on crime risk in the region due to socio-
economic influences, which is in line with the findings of (Groff & 
McCord, 2012). 

5. Discussion 

The extraction of crime information from street view images 
reflecting the built environment is essential for urban governance and 
crime risk analysis. However, the number of street view images labeled 
as crime occurred is often very less. This issue is particularly true in 
China since the most reliable crime data source is the Chinese judgment 
documents, which do not contain all criminal cases. This study is an 
active attempt to extract crime risk through urban built environments 
using spatially sparse crime data. To achieve this, we adopted an 
alternative approach by evaluating the distribution of pickpocketing 
crimes based on OCC-based anomaly detection and street view images. 
In addition, it is the first exploration of the relationship between the 
built environment and pickpocketing crime risk in a large Chinese city. 
Previous studies have analyzed cities’ physical environment and socio-
economic characteristics as reflected in street view images in several U. 
S. cities and explored their relationship with urban crime rates (He et al., 
2017; Zhang et al., 2021). 

5.1. Interpretation of the findings 

In this study, we developed a Crime Anomaly Detection based on the 
Street View (CADSV) model, which can effectively extract deep semantic 
information from massive street view for assessing pickpocketing risks. 
Our results show that the street view images can accurately reflect the 
city’s physical environment and provide reliable assessments of the risk 
of pickpocketing crimes, as confirmed by the high accuracy of the 
CADSV model (AUC = 0.921, recall = 0.816). Through comparative and 
explainable analysis, we obtained a micro-scale pickpocketing risk dis-
tribution map of the study area and confirmed the reliability of the 
results. 

Our findings reveal that pickpocketing crime in Chinese megacities 
exhibits strong spatial autocorrelation, consistent with previous studies’ 
observations that crime tends to be concentrated in small areas (Groff 
et al., 2010; Weisburd et al., 2004). The observed decrease in crime risk 
decreases with distance from the downtown provides quantitative sup-
port for the social disorganization theory proposed by Shaw et al. 
(1942). In the downtown area, pickpocketing is a high prevalence and 
aggregation of pickpocketing crime are significant due to dense human 
traffic, making it challenging to manage. Simultaneously, in the course 
of ongoing urban expansion due to population and economic growth, the 
influx of migrant workers and the gradual deterioration of the physical 
environment in older urban areas (Li et al., 2014) have become the 
dominant drivers of the high prevalence of pickpocketing crimes in 
urban village areas (Liu, 2010). In contrast, the suburbs, and industrial 
parks outside the central city, where a large number of immigrants live 
and work (Roitman & Phelps, 2011), display a better built environment 
and exhibit low-low aggregation of pickpocketing crimes. These findings 
highlight the complexity of the impact of urban function on pickpock-
eting crime. They also confirm that confirm that the complex roles of the 
urban physical environment, neighborhood socioeconomics, and 
migrant population all play a significant role in shaping the spatial 
distribution of pickpocketing crime risk in Chinese cities (Sparks, 
2011b). 

This study also utilized the Random Forest and SHAP model to 
interpretively analyze the relationship between pickpocketing crime, 
urban function, and urban environment at the microscopic scale. The 
proposed model achieved high accuracy (R2 = 0.455) and reliability 
(RMSE = 0.016) by employing urban functions to fit pickpocketing risk, 
thus quantitatively confirming the crucial role of different urban func-
tions in shaping regional pickpocketing risk. Consistent with the routine 
activity theory proposed by Cohen and Felson (1979) and the crime 
pattern theory proposed by Brantingham and Brantingham (2013), our 
findings highlight that routine activity in the central city is a critical 
factor that enhances pickpocketing risks. Furthermore, we observed that 
the high intensity of economic activity in commercial areas contributes 
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significantly to crime incidence in China. 
The results demonstrate that both the built environment information 

and urban functional information captured in street view images play a 
role in shaping crime incidence. Regarding the built environment, areas 
with high-density urban buildings and visually chaotic and disorganized 
surroundings are more susceptible to pickpocketing crimes, while areas 
with better-organized environments have lower risks. Concerning urban 
functional zones, densely populated areas that are challenging to fully 
secure and where high-value items are prevalent pose a higher risk of 
pickpocketing crimes. Examples include high-traffic attractions, shop-
ping centres, isolated factories or residential areas, schools with a high 
number of minors, among others. We can use these findings to guide 
urban planning and security management. For example, in high-traffic 
areas such as commercial centres and tourist attractions, surveillance 
and security forces can be strengthened in advance to reduce the threat 
of crime by installing additional warning signs and alarm facilities based 
on unusual risk situations reflected in the street view images. In 
important areas such as residential and school zones, residents and 
students can be encouraged to exercise extra vigilance towards high- 
value property. Additionally, open spaces like parks and attractions 
could benefit from increased police patrols and surveillance equipment 
deployments in crowded areas can be increased to improve security 
perceptions and prevent pickpocketing and other crimes from 
happening. Furthermore, functional areas may also reflect differences in 
social structures. For instance, the transport facilities present a higher 
risk of crime in the city centre than in other areas, which may have 
complex links to social phenomena such as frequent movements of 
movement of people, conflicts arising from intricate social structures, 
and the allocation of police forces. In the long term, governments should 
to promote social development and long-term security by improving the 
social structure and raising the level of the economy. 

The above discussion underscores the multifaceted nature of pick-
pocketing crime in China’s megacity, which cannot be explained by a 
single theory of crime. The occurrence of such crime is influenced by a 
combination of regional economic development, urban physical envi-
ronment, and routine activity, among other factors. Moreover, inter-
pretable analyses have uncovered complex spatial heterogeneity in the 
drivers of pickpocketing crime across China’s megacity. Routine activity 
exerts a positive impact on areas with intense human activity areas in 
downtown regions but a negative impact in suburban areas. Similarly, 
tourist activity positively affects crime risk in urban centers but has a 
negative effect in the suburbs. These findings indicate that the di-
chotomy of China’s urban-rural structure, characterized by the differ-
ences in physical space, industrial infrastructure, and economic 
composition across regions (Ann et al., 2015; Long et al., 2016), gives 
rise to significant variations in the underlying drivers of crime. 

As a developing country, China faces the challenge of operating with 
a relatively constrained police force and fewer police services available 
per capita compared to developed countries, resulting in inadequate law 
enforcement resources to combat pickpocketing crimes (Hyland & 
Davis, 2019; Wang et al., 2014). To enhance policing effectiveness, our 
findings suggest deploying police patrols strategically high-risk areas for 
pickpocketing crimes while implementing video surveillance systems in 
urban villages, shopping centres, and economic activity centers. 
Furthermore, increasing anti-pickpocketing campaigns at daily activity 
locations such as bus stops and metro stations could raise residents’ 
security awareness and contribute to reducing pickpocketing risks. Our 
study further highlights that urban villages with significant migrant 
populations are at greater risk of pickpocketing crime. Therefore, 
improving service facilities in urban villages and providing more 
employment opportunities may aid in enhancing urban policing efforts. 

There are difficulties in mapping the real spatial pattern of crime risk 
due to the specificity of data collection for the judgment document. The 
anomaly detection model in this study learns from sparse data about 
hidden crime risks and finds a spatial mismatch between the number of 
crime events and the risk of the area. Current policy-making authorities 

quantify the level of policing in an area mostly based on government 
survey data, such as judgment documents. Conclusions based on such 
data may therefore lead to problems such as misallocation of public 
resources and misguided business investments. Our findings may pro-
vide support to government policy makers or commercial investors. 

5.2. The spatial mismatch between the judgment document and mapped 
crime risk 

Our study has revealed a spatial mismatch between crime risk and 
the original crime data obtained from judgment document, as depicted 
in Fig. 10(A). This disparity is a tangible manifestation of the sparse and 
biased sampling problem that this research has explored. Specifically, 
the spatial distribution of data collected through sentencing instruments 
is exceedingly sparse and closely associated with factors such as popu-
lation density and law enforcement efficiency, rendering it difficult to 
accurately reflect the actual spatial pattern of crime risk. 

In practice, acquiring a judgment document involves a lengthy pro-
cess comprising three stages: (1) commission of a crime and successful 
theft; (2) notification of the police by the victim or public body, leading 
to the opening of a case and arrest of the suspect; and (3) filing of a case 
and commencement of prosecution against the accused by the victim or 
public body in a court of law. Consequently, the data we collect for each 
judgment paper represents not only the occurrence of a crime, but also 
the diligence of the court and the efficiency of the police in executing the 
case. Regarding the distribution of crimes, since not all criminal in-
cidents go through the aforementioned process, the sentencing paper 
data can only serve as a sparse sample point and cannot directly depict 
the full scope of criminal activities. 

Regarding the sparsity of sampled data, Table 1 presents the area 
covered by crime points and the number of street view images under 
varying buffer distances. The results reveal that with a buffer distance of 
200 m, only 3 % of the region is labeled as crime-related, with an 
average of 4.17 street view images per buffer. If a shorter buffer distance 
of 50 m is chosen, then merely 0.2 % of the area is covered, and each 
buffer can only include 0.31 street image. Given the limited proportion 
of relevant data, it becomes arduous to offer a comprehensive and ac-
curate spatial pattern at a global level. 

With regards to the biased nature of the data, we counted the judg-
ment instruments for all cases (including cases in which the location is 
not publicly available) in each administrative region of Shenzhen in 
2018 based on the data provided by the Judgment Instruments website 
(https://wenshu.court.gov.cn/), as shown in Fig. 10(B). The figure de-
picts darker colors indicating a higher total number of judgment in-
struments within each respective region. It is evident that the 
aggregation level of crime points obtained through our opportunity 
judgment instruments closely aligns with the number of judgment in-
struments generated by courts in each region. 

In order to further validate our previous assertion concerning human 
activity, we have gathered Real-time Tencent user density (RTUD) data. 
Tencent is one of the largest internet companies in China, with a user 
base exceeding 800 million individuals utilizing its diverse range of 
internet services. Through Tencent Maps or WeChat, when users engage 
in location-related activities, their relevant location information is 
recorded, enabling RTUD data to capture population distribution during 
specific periods. The raw data is stored as a raster image format 
comprising of 24 bands that represent each hour of the day. This study 
utilizes an overlay of the 24-h average change in population density over 
weekdays to generate a graph (He et al., 2020). A correlation can be 
observed between higher crime spots and elevated levels of people’s 
activities, once again affirming the notion that data acquisition does not 
accurately reflect the complete volume of criminal incidents. 

This study has examined areas of mismatch to establish a connection 
between Fig. 10 (A) and Fig. 8. Specifically, in Figs. 10 (A-a) and Fig. 8 
(C), it is apparent that despite the limited sample of pickpocketing crime 
events in Tong Mei Urban Village, the village exhibits a high risk of 
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criminal activity due to its inadequate infrastructure and chaotic 
building structure. Conversely, Fig. 10 (A-b) and Fig. 8 (E) demonstrate 
that emerging technology industrial parks and factories have a lower 
risk of crime, attributed to their well-organized and tidy environment. 
Further, Fig. 10 (A-c) corresponds to Fig. 8 (B), where the Futian Central 
Business District displays a medium-high risk of criminal activity due to 
the concentration of wealth. However, there are also areas with a low 
risk of criminal activity, as seen in Fig. 10(A-c). These regions are 

primarily located in residential areas within the city center, which may 
be due to enhanced security facilities and the higher quality of residents. 

5.3. Limitation and future works 

The present study does have some limitations that must be 
acknowledged. First, the objective of this study is to utilize sparse crime 
data to reflect implicit crime risks in urban built environments using the 
technique of anomaly detection. However, it is important to note that 
this study conducted a crime risk analysis rather than an estimation of 
actual crime rates. There are interactions and complex causal relation-
ships between risk and crime rates. Understanding these relationships is 
critical to developing effective crime prevention and governance stra-
tegies, and requires the integration of multiple social, economic, cultural 
and individual dimensions. Future studies may collaborate with law 
enforcement agencies to analyze the relationship between street view 
images and real-time alarm data utilizing the framework proposed in 
this paper. 

The second limitation of this study pertains to the crime data used in 
model design. The premise assumption of this study is that crime in-
formation can be viewed as an outlier in the urban landscape. Therefore, 
we first removed street view images spatially associated with a crime 
based on judgment documents. After that, we randomly selected a 
certain number of street view images for training purposes so as to 
obtain a normal feature vector. However, we cannot guarantee that no 
crime has occurred in those areas since judgment instruments may not 
always contain all relevant data. Our hypothesis was that by using deep 
learning for feature extraction using numerous images, we could elim-
inate the influence of crime information could be eliminated as much as 
possible. The precision validation results also show such effectiveness. 
To further improve the accuracy, subsequent studies should take into 
account the more prior knowledge and eliminate as much as possible the 
street view images where crime may be present to obtain the most 
effective feature vector. Moreover, exploring the impact of different 
street view image acquisition intervals on the results would be valuable. 
More frequent street view sampling has the potential to yield better 
results，and in the field of crime, how to choose the most suitable 
analysis interval is also a topic worth exploring (Ramos et al., 2021). 
This study has successfully constructed a framework illustrating the 
feasibility of anomaly detection for exploring crime risk. Subsequent 
research endeavors can build upon this framework to delve deeper into 
this topic. 

The third limitation is we utilized POI data to interpret the result of 
crime risk mapping. Prior research has found that POI data can effec-
tively reflect the characteristics of socioeconomic structure (Yao et al., 
2017). Furthermore, we have carried out some work to demonstrate the 
strong relationship between street view images and several social and 
environmental factors such as urban economic level and urban popu-
lation structure (Wang et al., 2021; Yao et al., 2021b). However, POI 
data and street view images can only be proxy variables of socioeco-
nomic characteristics and urban environment. To explain the risk 
mapping result more accurately, future studies will introduce more 
detailed census, travel survey, and trajectory data. Additionally, 
econometric models may be used to analyze the temporal and spatial 

Fig. 10. The overlap of pickpocketing events between the judgment document 
and: (A) the crime risk distribution; (B) the total number of judgment docu-
ments of each district; (C) The average population distribution of Shenzhen 
during the working day. 

Table 1 
The area and images that are covered by crime event according to different 
buffer.  

Buffer range 50 m 100 
m 

150 
m 

200 
m 

250 
m 

300 
m 

Area percentage covered 
by buffer zones  0.2 %  0.8 %  1.9 %  3.0 %  5.4 %  7.8 % 

Average number of 
images covered by one 
buffer  

0.31  1.36  2.51  4.17  6.69  9.45  
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correlations between the multiple urban structures and criminal be-
haviours at the micro-scale. Finally, follow-up research can also expand 
the research scale by obtaining global street view datasets and analyzing 
the similarities and differences of criminal behavior drivers in different 
cities worldwide. 

The solution proposed in this study carries substantial practical 
value, as street view images are easy to obtain, models can be easily 
migrated to other areas, and it can be utilized by lay users to quickly 
comprehend crime risk levels in a particular area of the city. For 
instance, we can develop a mobile application that enables users to 
swiftly assess safety status of a city neighborhood. Visitors arriving in an 
unfamiliar city can rapidly determine whether a specific alley is safe. 
While police crime statistics are typically the most trustworthy in such 
cases, official data may not always cover the entire area. In such sce-
narios, our approach can assist users in identifying and mitigating po-
tential safety concerns. 

6. Conclusion 

This study aims to propose a solution for extracting crime risk in-
formation from the built environment using the limited crime-labeled 
street view images. We also try to prove the association between the 
human perception of the built environment and urban pickpocketing 
crimes in China. To achieve these objectives, we propose a pickpocket-
ing risk assessment model that combines deep anomaly detection tech-
niques to reveal the crime risk from street view images. The SHAP was 
introduced to conduct an interpretable analysis of urban functions and 
crime risks. Through spatial distribution analysis of pickpocketing 
crimes based on judicial documents, our proposed CADSV model accu-
rately and reliably maps out a micro-scale pickpocketing risk distribu-
tion in Shenzhen. Our results indicate street view images can effectively 
assess pickpocketing crime risk in Chinese cities, and the crime risk has a 
strong spatial autocorrelation. Moreover, we demonstrate that pick-
pocketing crime in China is driven by complex factors such as regional 
economic development, physical urban environment, and daily activ-
ities. These findings provide valuable insights for policing deployment 
and city management strategies. Nonetheless, this study does not discuss 
the association between crime risk and actual crime rates. Moreover, the 
inclusion of finer-scale geographic big data could be considered to 
identify crime-related street view images in anomalydetection, thereby 
offering more prior knowledge about crime risk. Furthermore, a more 
comprehensive interpretation of the crime risk mapping results is 
necessary to analyze the correlation between various urban structures 
and criminal behavior at finer spatial and temporal scales. 
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