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Abstract

This work develops computationally efficient techniques for modeling and simulating complex flows. It
relies on the concept of adaptive numerical experimentation. Adaptive experimentation describes the
machine-learning guided process of systematically exploring the parameter space of a specific problem
while aiming to achieve defined objectives. It is a ubiquitous approach in science and engineering.
Central to this study are two flow phenomena: shock-interface interaction and dendritic growth. Both are
pivotal in numerous technical applications that range from therapeutic applications in modern medicine
to the burgeoning field of additive manufacturing. Advanced simulation frameworks with state-of-the-art
numerical methods are necessary to simulate these multi-scale problems accurately.

The first contribution of this work is the development of a modular simulation framework for com-
pressible multi-phase flows utilizing a sharp-interface level-set method with conservative interface inter-
action. Its design efficiently harnesses spatial and temporal adaptation techniques and leverages high-
performance computing architectures, enabling large-scale simulations of three-dimensional problems.
Secondly, a novel multi-fidelity Gaussian Process model is proposed to construct stochastic surrogate
models for dendritic growth problems. These models are integral to adaptive experimentation work-
flows. The proposed model ensures computational efficiency by combining numerous cheap, low-fidelity
estimates with fewer computationally expensive, high-fidelity samples. The newly proposed simulation
framework facilitates the generation of samples with varying fidelity. Thirdly, an efficient solution strategy
for general inverse Stefan problems is proposed based on similar ideas. It integrates multi-fidelity Gaus-
sian process models in a Bayesian optimization algorithm based on a cost-aware multi-fidelity knowledge
gradient acquisition function. Exploiting the specific structure of the target function and reformulating it
as a composite function significantly improves the stability of the optimization procedure. Solving the
inverse problem of single dendritic growth, i. e. identifying process and material parameters that achieve
prescribed growth properties of the crystal, exemplifies the approach’s applicability.

Successfully implementing multi-fidelity adaptive numerical experimentation for complex dendritic
growth problems could expedite the rapid and efficient design of new materials with targeted properties.
The tools developed in this thesis allow for the efficient modeling and simulation of complex flow problems
and contribute valuable methodologies to the broader scientific community.



Zusammenfassung

In der vorliegenden Arbeit werden rechnerisch effiziente Techniken zur Modellierung und Simulation
komplexer Strömungen entwickelt. Sie stützt sich auf das Konzept adaptiver numerischer Experimente.
Adaptive Experimente beschreiben den durch maschinelles Lernen gesteuerten Prozess der system-
atischen Erkundung des Parameterraums eines bestimmten Problems unter Berücksichtigung eines
vorgegebenen Ziels. Es handelt sich um einen weit verbreiteten Ansatz in Wissenschaft und Technik.
Zentral für diese Studie sind zwei Strömungsphänomene: Die Interaktion von Stoßwellen mit Phasen-
grenzflächen und dendritisches Kirstallwachstum. Beide sind von wesentlicher Bedeutung für zahlre-
iche technische Anwendungen, die von therapeutischen Anwendungen in der modernen Medizin bis
hin zum aufstrebenden Gebiet der additiven Fertigung reichen. Fortschrittliche Simulationsprogramme
mit hochmodernen numerischen Methoden sind unabdingbar, um diese mehrskaligen Probleme mit der
erforderlichen Genauigkeit zu simulieren.

Das erste Ziel dieser Arbeit ist die Entwicklung einer modularen Simulationsumgebung für kom-
pressible Mehrphasenströmungen unter Verwendung einer Level-Set-Methode. Diese erlaubt es, die
Phasengrenzfläche detailliert aufzulösen und die Interaktion von Fluiden konservativ zu modellieren.
Die Nutzung räumlicher und zeitlicher Komprimierungsalgorithmen sowie Parallelisierungsstrategien für
moderne Hochleistungsrechnerarchitekturen ermöglicht hoch aufgelöste Simulationen von dreidimen-
sionalen Problemen. Zweitens wird ein neuartiges Multi-Fidelity Gaußsches Prozessmodell vorgestellt,
um stochastische Ersatzmodelle für dendritische Wachstumsprozesse zu generieren. Diese Modelle
sind integraler Bestandteil des adaptiven Experimentierens. Das vorgeschlagene Modell gewährleis-
tet Recheneffizienz, indem es zahlreiche kostengünstige Abschätzungen mit wenigen rechenintensiven,
hochgenauen Datenpunkten kombiniert. Die vorgestellte Simulationsumgebung erleichtert die Erzeu-
gung von Datenpunkten mit variabler Genauigkeit. Drittens wird eine effiziente Lösungsstrategie für
allgemeine inverse Stefan-Probleme vorgeschlagen welche Multi-Fidelity-Gaußsche Prozessmodelle in
einen Bayesschen Optimierungsalgorithmus integriert. Der adaptive Algorithmus generiert iterativ neue
Datenpunkte, um die Genauigkeit der Lösung des Optimierungsproblems zu verbessern. Die neuen
Datenpunkten werden basierend auf einer Kosten-Nutzen-Abschätzung bestimmt. Die Ausnutzung der
spezifischen Struktur der Zielgrößenfunktion und damit verbundene Reformulierung als zusammenge-
setzte Funktion verbessert die Stabilität des Optimierungsverfahrens signifikant. Die Anwendbarkeit
des Ansatzes wird durch die Lösung des inversen Problems für dendritisches Kristallwachstum gezeigt.
Es werden Prozess- und Materialparameter identifiziert, mit welchen vorgegebene Wachstumseigen-
schaften des Kristalls erreicht werden.

Die erfolgreiche Umsetzung von Multi-Fidelity Ansätzen des adaptiven Experimmentierens für kom-
plexe dendritische Wachstumsprobleme ermöglicht eine schnelle und effiziente Entwicklung neuartiger
Materialien mit gezielten Materialeigenschaften. Zusammenfassend werden in dieser Arbeit effiziente
Methodiken für die Modellierung und Simulation komplexer Strömungsprobleme entwickelt, welche für
die breitere wissenschaftliche Gemeinschaft und Industrie von Nutzen sind.





Contents

Acronyms xi

Nomenclature xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A modular simulation framework for compressible multi-phase flows . . . . . . . . . . . . . . 3
1.3 Numerical adaptive experimentation of single dendritic growth . . . . . . . . . . . . . . . . . 4

2 Fundamentals 11
2.1 Mathematical and numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Numerical model for the governing equations . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Numerical model for the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Spatial and temporal adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Stochastic surrogate modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Multi-fidelity modeling using Gaussian processes . . . . . . . . . . . . . . . . . . . . 19

2.3 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Single-fidelity acquisition strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Multi-fidelity acquisition strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Accomplishments 25
3.1 A modular high-performance multi-phase flow simulation framework . . . . . . . . . . . . . . 25
3.2 Modeling dendritic crystal growth using stochastic multi-fidelity surrogate models . . . . . . 28
3.3 Solving the inverse Stefan problem for dendritic crystal growth . . . . . . . . . . . . . . . . . 30

4 List of Publications 33
4.1 Publications comprising this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Further publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Peer-reviewed journal publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Conference proceedings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Discussion with Respect to the State of the Art and Conclusion 35

A Peer-Reviewed Journal Publications 39
A.1 ALPACA - a level-set based sharp-interface multiresolution solver for conservation laws . . 39
A.2 Stochastic multi-fidelity surrogate modeling of dendritic crystal growth . . . . . . . . . . . . . 60
A.3 Multi-fidelity Bayesian optimization to solve the inverse Stefan problem . . . . . . . . . . . . 80

Bibliography 103

ix





Acronyms

1D one dimensional

2D two dimensional

3D three dimensional

ALPACA Adaptive Levelset Parallel Code Alpaca

ALTS adaptive local time stepping

AMR adaptive mesh refinement

API application programming interface

BO Bayesian optimization

CDF cumulative distributions functions

CFD computational fluid dynamics

cfKG continuous-fidelity knowledge-gradient

CFL Courant-Friedrichs-Lewy

CPU central processing unit

CTS constant time stepping

DACE design and analysis of computer experiments

DoE design of experiments

xi



xii 0 Acronyms

EGO efficient global optimization

EI expected improvement

EOS equation of state

FVM finite volume method

GFM ghost-fluid method

GP Gaussian process

GP-UCB Gaussian process upper confidence bound

GPU graphics processing unit

HPC high-performance computing

KG knowledge-gradient

LBM Lattice Boltzmann method

LS level-set

LTS local time stepping

MF multi-fidelity

MFDGP multi-fidelity deep Gaussian process

mfKG multi-fidelity knowledge-gradient

ML machine learning

MPI Message Passing Interface

MR multiresolution



xiii

NSE Navier-Stokes equations

OOP object-oriented programming

p-s-p process-structure-property

PDE partial differential equation

QoIs quantities of interest

RK Runge-Kutta

RMI Richtmyer-Meshkov instability

SBI shock-bubble interaction

SF single-fidelity

SPH Smoothed Particle Hydrodynamics

SVI stochastic variational inference

VOF volume of fluid

WENO weighted essentially non-oscillatory





Nomenclature

Greek letters

α Volume fraction

∆ Finite-volume cell

γ Surface tension coefficient

κ Thermal conductivity

µ Dynamic viscosity

φ Level set

Π Stress tensor

ρ Density

σ Standard deviation

τ Pseudo time

ξ Fluid identifier

Roman letters

∆t Time step

∆x Cell size

I Identity matrix

n Normal vector

Q Interface quantitiy

S Volume-force vector

U Vector of conserved quantities

v Velocity vector

D Dataset

N Normal distribution

S Interface

V Material volume

xv



xvi Nomenclature

A Aperture

c Speed of sound

cp Specific heat capacity

C F L CFL constant

E Total specific energy

e Specific internal energy

F Flux

g Gravitational acceleration

p Pressure

q Heat flux density

T Temperature

T Viscous stress tensor

t Time

V Volume

Super- and subscripts

S Volume forces

S Interface

µ Viscous

c Convection

i, j, k Cell indices

l Liquid phase

m Property for the melt

q Heat

s Property for the solid

Mathematical symbols

· Dot product

E Expectation

∇ Gradient

⊗ Tensor product

∂ Partial derivative



Chapter 1

Introduction

1.1 Motivation

This thesis overviews my research on the numerical experimentation of multi-phase flow problems in-
volving interfacial instabilities. The focus is on three topics: building a performant numerical simulation
framework for multi-phase flows, generating multi-fidelity stochastic surrogate models for dendritic crystal
growth, and analyzing inverse Stefan problems using multi-fidelity Bayesian optimization techniques.

Multi-phase flows are paramount in everyday life and govern flow phenomena on all scales. They
lead to the formation of droplets in the atmosphere or bubbles in the ocean [22], can be observed when
preparing or enjoying meals [139], or govern critical biological and medical flows such as blood flow [22]
to only name a few examples. Given this diversity and ubiquity, a characterization of multi-phase flow
based on observations is difficult. Instead, a classification based on common phenomenological themes
[22] is motivated. Disperse flows and separated flows are the resulting topologies. Disperse flows
consist of finite particles, droplets, or bubbles interspersed within a connected, continuous medium. In
contrast, separated flows involve distinct continuous phases of different fluids, separated by well-defined
interfaces [22].

Multi-phase flows may be inherently unstable, i. e. they cannot sustain small perturbations to which
any physical system is subjected to. Such flows depart progressively from their initial state when exposed
to small disturbances and never revert to it. In contrast, stable multi-phase flows may dampen the small
disturbances and revert to the initial state [27]. Unstable phase interfaces may again be found on all
scales. Examples are regular wave formations of clouds in the atmosphere [61], visually fascinating
effects when preparing drinks [139] or inside microfluidic devices [32].

A particularly important type of inherently unstable multi-phase flow is liquid-solid phase transition
under non-equilibrium conditions. A prominent example thereof is the formation of dendritic microstruc-
tures. Phenomena in nature, such as ice crystals [29], and many manufacturing processes such as
century-old welding, macroscopic castings, or modern additive manufacturing rely on the growth of den-
dritic microstructures [123]. The latter manufactures metallic bulk parts layer-by-layer based on com-
plex computer-aided designs [118]. The single layers are microstructures that result from solidification
processes that begin with the formation of dendrites. Additive manufacturing processes offer a wide
variety of process parameters that influence the development of microstructures. The microstructure
determines the mechanical properties of the solidified phase and, therefore, of the manufactured prod-
uct. This process-structure-property (p-s-p) relationship is an important research topic investigated by
many researchers [118]. Modeling the p-s-p relationship experimentally and numerically is necessary
to understand the underlying mechanisms. However, identifying optimal operation conditions of additive
manufacturing processes that yield targeted material properties ultimately requires solving the inverse
problem. Solving the forward and inverse problem of the p-s-p relationship requires accurate models
describing the unstable interface growth of dendritic microstructures.

Numerical simulations are a powerful tool for investigating interfacial instabilities. They allow insights
into spatial and temporal features far out of reach when performing experiments and allow non-invasive
measurements. The mathematical and numerical models have to be carefully chosen to get the desired

1



2 1 Introduction

detailed insight into the phenomena of interest. Also, it has to be ensured that the model captures
all relevant phenomena with sufficient accuracy. Various numerical methods are available to solve the
governing equations of fluid flow. Those are e. g. the finite volume method (FVM), Smoothed Particle
Hydrodynamics (SPH) or Lattice Boltzmann method (LBM), to list only a few. The methodology used
for the investigations in this thesis is the FVM, as it is the most widespread approach for simulating
the variety of flow phenomena considered in this work. Various methods to model phase interfaces are
available. They can be categorized as interface-capturing schemes with smeared interfaces or interface-
tracking schemes with a sharp interface representation. Prominent interface capturing schemes are
volume of fluid (VOF) methods [90, 147] or the diffuse interface method [1, 5]. Prominent examples
for the interface tracking schemes are the free-Lagrange [13, 204], front-tracking [69, 70, 202, 205],
or level-set (LS) algorithm [39, 152, 197]. This work uses the LS approach since it naturally handles
topology changes [66, 67], allows straightforward calculation of geometric quantities [183], and eases
imposing interfacial physics [26]. An extensive overview of LS methods and a comparison to other
interface modeling approaches can be found in [66, 183].

Applying high-fidelity numerical simulations to investigate interfacial instabilities has been successful
in several fields and improved understanding of the underlying mechanisms [28, 68, 132, 180, 203, 220].
Interfacial instabilities occurring in real systems are often strongly influenced by the system state, which
is characterized by a variety of parameters. Investigating the complete parameter space by simulat-
ing all possible and relevant parameter combinations quickly becomes time-consuming, computationally
expensive or even infeasible. Thus, efficient computational techniques are necessary to explore the pa-
rameter space. Adaptive experimentation offers a powerful tool, therefore [11, 73]. It assumes that a
system’s response depends on independent input parameters and aims to find a set of input parameters
that give an optimal system response. Based on an initially available set of (numerical) experiments,
adaptive experimentation iteratively updates the beliefs about the system to decide which experiment to
run next. Bayesian optimization (BO) [105, 124, 144] and bandit optimization [40, 119] are prominent
examples of adaptive experimentation techniques. Whereas the former is specifically suitable for prob-
lems with continuous parameters, the latter is commonly used for problems with a finite set of choices.
The parameter spaces describing the interfacial growth processes studied here are mostly continuous.
Thus, BO techniques are used in this work. In addition, multi-fidelity modeling is used to improve the effi-
ciency of the employed BO technique. Multi-fidelity modeling relies on the fact that a system’s response
may often be modeled with varying fidelity. The high-fidelity model describes the system with sufficient
accuracy for the task at hand. Low-fidelity models represent the same system with less accuracy but are
typically computationally cheaper [157]. Fusing data from various fidelities may reduce the overall cost
of BO.

This work investigates the potential of adaptive experimentation techniques for the cost-efficient anal-
ysis of interface instabilities and includes three major contributions:

1. A modular high-performance computational fluid dynamics (CFD) simulation framework for com-
pressible multi-phase flows. It serves as the simulator for the adaptive numerical experimentation
of interface instabilities.

2. A novel strategy for generating stochastic multi-fidelity surrogate models based on multi-fidelity
deep Gaussian processs (MFDGPs). It is an approach for efficiently generating surrogate models
leveraging resolution fidelities that are naturally given by the discretization scheme of the newly
developed simulation framework.

3. An efficient multi-fidelity Bayesian optimization framework for solving the inverse problem for den-
dritic crystal growth. It relies on the developed simulation framework for solving the forward prob-
lem and again leverages resolution fidelities for multi-fidelity modeling.

In the following Section 1.2, an overview of the CFD simulation framework for compressible multi-
phase flows developed in the scope of this thesis is given. Section 1.3 introduces dendritic growth
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processes and the adaptive numerical experimentation framework used for their analysis. Chapter 2
presents the governing equations for fluid flow and their numerical discretization, multi-fidelity stochastic
surrogate models, and the BO approaches used for adaptive experimentation. Chapter 3 highlights
the contributions and novelties of the publications included in this work. For each publication, a short
review of the current state in the corresponding field is given, pointing out the particular issues that are
addressed. Chapter 4 lists all publications published during my time as a doctoral candidate. Chapter 5
concludes the thesis and gives an outlook on possible future work.

1.2 A modular simulation framework for compressible multi-phase flows

A wide range of scientific and engineering problems can be effectively modeled using conservation equa-
tions. Applications include, but are not limited to, traffic flow [131, 134, 171], the shallow water equations
[177, 194, 200], electromagnetism [145], plasmaphysics [9] or gasdynamics [133]. The governing con-
servation equations for these problems often exhibit high nonlinearity and may include mechanisms
describing the dynamics of discontinuities, such as shock waves or phase interfaces. Accurate, high-
fidelity predictions of such multiscale problems necessitate significant temporal and spatial resolutions
alongside numerical methods capable of capturing their complex dynamics.

For single-phase flows, the (cell-averaged) FVM Godunov’s approach [71] is a popular method for
discretizing the Navier-Stokes equations (NSE). It guarantees discrete conservation, reduces the smear-
ing of flow states to a minimum, and allows suppressing oscillations at discontinuities. Also, it enables
combining approximate Riemann solvers [53, 82, 172] with high-order low-dissipative weighted essen-
tially non-oscillatory (WENO) type reconstruction stencils [102]. WENO are attractive since they allow
constructing stencils of arbitrary order. However, they introduce high computational cost and in combi-
nation with selected Riemann solvers might show severe numerical instabilities [54, 55, 62]. To optimally
select numerical schemes for a wide range of flow problems, a simulation framework must provide im-
plementations for a variety of different schemes that can be interchanged seamlessly.

A suitable interface model must extend the framework for scenarios involving multiple phases. This
work primarily focuses on separated multi-phase flows, where small interface structures might strongly
influence the dynamics. The sharp-interface level-set method, introduced by Osher and Sethian [152],
allows accurately locating the interface structure on the numerical grid and straightforward calculation
of geometric surface parameters such as surface normals or curvature. It defines the interface as the
zero-contour of a higher-dimensional function φ that denotes the signed distance to the interface. Thus,
the absolute value of the level-set value at a certain position gives the normal distance to the interface,
and its sign indicates the fluid. This inherently limits the level-set method to simulate two-phase flows.
Extensions to an arbitrary number of fluids is a topic of ongoing research [154, 155]. The LS is advanced
in time by solving an additional advection equation and subsequent reinitialization to re-establish the
signed-distance property of the LS.

Modeling phase interfaces with the LS method requires imposing boundary conditions at fluid-fluid
interfaces. This is achieved using the ghost-fluid method (GFM) proposed by Fedkiw et al. [47]. It
introduces grid-aligned ghost values for each fluid on the opposite side of the interface. Imposing inter-
facial physics then reduces to appropriately populating the ghost cells. In the original GFM, ghost-cells
are necessary for the single- and two-phase discretization. [96] propose explicit, conservative interface-
exchange terms. These are based on the solution of a two-material Riemann problem at the interface
and independent of the information in the ghost cells. Thus, ghost cells are solely used for single-
phase discretization. The interface-exchange terms can account for inviscid- [96], viscid- [136], and
heat-exchange [166] effects. Also, models to consider evaporation [129] or liquid-solid phase transi-
tion [108] exist. Combining the sharp-interface level-set method with conservative interface-exchange
terms is compatible with the introduced high-order low-dissipative Godunov-type scheme for single-
phase discretization. A simulation framework implementing the proposed method must consider several
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performance aspects to enable large-scale simulations of complex multiscale and multi-phase flow phe-
nomena.

Popular techniques to improve the efficiency of numerical solvers are spatial and temporal compres-
sion techniques. Two prevalent algorithms to achieve spatial compression, i. e. dynamic adaption of
the computational-grid resolution to the underlying flow field, are gradient-based adaptive mesh refine-
ment (AMR) [19] and wavelet-based multiresolution (MR) [81] algorithms [41, 78, 94, 148, 181, 189,
191, 210]. This thesis focuses on MR compression. Compared to AMR, it improves CPU and mem-
ory compression rates for the same accuracy level when discretizing hyperbolic conservation laws [38].
To fully leverage the potential of modern high-performance computing (HPC) systems, a block-based
variant of the MR algorithm can be employed [79, 92, 93, 191]. The spatially varying grid resolution of
block-based MR compression allows its combination with temporal compression. The time-step size∆t
is often chosen to satisfy stability criteria, such as the Courant-Friedrichs-Lewy (CFL) condition, that di-
rectly depend on the local cell size ∆x . This motivates local time stepping (LTS) [42] and adaptive local
time stepping (ALTS) [111] approaches that advance coarser regions with larger time steps compared
to finer regions. They thus outperform constant time stepping (CTS) schemes that advance all regions
with the globally smallest time-step size [17, 84, 175]. Block-based MR schemes can be efficiently paral-
lelized via the Message Passing Interface (MPI) using a domain-decomposition approach that treats MR
block as the smallest inter-rank parallel unit [93]. Thereby, the efficient usage of modern HPC systems
is possible and highly-resolved simulations, which give detailed insights into the problems relevant to
this work, can be conducted. The modular open-source simulation framework Adaptive Levelset Par-
allel Code Alpaca (ALPACA) implements all the mentioned aspects. Section 3.1 highlights this thesis’s
contribution to the development of the framework.

1.3 Numerical adaptive experimentation of single dendritic growth using
Gaussian Process surrogate models and Bayesian Optimization

The solidification process of a material in liquid state can either be stable or unstable. The stable process
is characterized by a flat planar interface, while the unstable process exhibits microstructure patterns.
These patterns emerge when small, local perturbations at the solid-liquid interface are enhanced and
amplified over time. Unstable growth occurs when the liquid phase is supercooled, i. e. cooled below
its solid-liquid equilibrium temperature, and thermodynamically metastable [101]. The dominating mi-
crostructure patterns are dendritic (tree-like) structures, featuring a main trunk and side branches that
grow at different locations of the main trunk [4].

Modeling the liquid-solid phase transition that leads to microstructure formation poses a Stefan prob-
lem [193]. It describes a free boundary problem between phases of a material undergoing phase change.
Decades of research have focused on understanding and mathematically modeling dendritic growth pat-
terns [195]. After an initial transient phase, the growth of a single dendrite becomes steady. Crucial
to this process is the relationship between a dendrite’s operating point, specified by its tip radius and
velocity, and local melt parameters like undercooling. For a two-dimensional parabolic dendrite, Ivantsov
[100] first mathematically related the product of tip velocity and radius to melt undercooling. To uniquely
determine the operating point, an additional independent criterion is required. Oldfield [149] introduced
a stability criterion based on the balance of capillarity and diffusion, but this does not accurately predict
dendritic branching behavior [99, 153]. Langer and Müller-Krumbhaar [128] also consider the interplay
of capillarity and diffusion and derive a stability criterion applying a Mullins-Sekerka stability analysis,
which, combined with Ivantsov’s model, provides a unique solution for the operating point. Several au-
thors [6, 14, 16, 18, 24, 115, 140, 158, 201] proposed to include capillary anisotropy to correctly capture
the morphological development during crystal growth. This so-called microscopic solvability theory for
the operating point of dendrites provides sufficiently accurate predictions at high undercooling [122], and
can be used for validating numerical models. Validated numerical models may then provide detailed
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insight into more complex directional dendritic growth patterns on the microscale, including multiple den-
drites. Furthermore, these numerical models allow studying complex processes beyond the microscopic
solvability theory, which e. g. involve varying material parameters.

Detailed and accurate investigation of dendritic microstructure formation often relies on physics-
driven, simulation-based digital twins [118]. Popular, mesh-based approaches for interface-modeling in
liquid-solid phase transition are the front-tracking [106, 173, 184], phase-field [113, 117], enthalpy [208,
209], VOF [33, 135], and the previously discussed LS [67, 152] method. The front-tracking approach ex-
plicitly represents the interface using lower-dimensional grids that evolve and deform with the solid-liquid
interface. The phase-field, enthalpy, VOF and LS implicitly represent the interface and solve evolution
equations for auxiliary variables defined on every grid cell [101]. Among the level-set approaches, Kaiser
et al. [108] developed a semi-implicit sharp-interface formulation based on conservative interface fluxes
into both phases. It is particularly appealing since it ensures low numerical dissipation by using high-
order spatial and temporal discretization schemes, and is thus employed in this work.

The scheme proposed by Kaiser et al. [108] allows physics-driven investigation of dendritic mi-
crostructures - the finest scale of the p-s-p relationship. Data-driven methods offer a compelling alterna-
tive for modeling the p-s-p relationship, as discussed by Kouraytem et al. [118]. These methods are par-
ticularly useful for integrating diverse information sources, integrating data derived from physics-based
simulations or experimental results [89]. A synergistic combination of both physics- and data-driven ap-
proaches may contribute to the “high-throughput highway to computational materials design” [34]. This
combination can contribute to various major aspects in analyzing the p-s-p relationship. It facilitates a
comprehensive understanding of the underlying mechanisms and prediction of outcomes (a bottom-up
perspective). Additionally, it allows for optimizing process strategies and addressing inverse problems
(a top-down perspective). This dissertation contributes to both of these paradigms, proposing efficient
solution strategies for the forward and inverse problem of single dendritic growth.

Efficient and accurate models are crucial for linking the operational behavior of a dendrite to pro-
cess parameters. These models tackle the forward problem of single dendritic growth, a crucial part of
broader-scale modeling endeavors such as grain or part scale simulations [137]. Relying solely on nu-
merical simulations to solve the forward problem necessitates significant computational resources and
may not be suitable for scenarios where a simplified input-output relationship suffices. Understanding the
dependence of steady-state growth parameters on relevant system properties and environmental condi-
tions, while neglecting the transient evolution of the phase interface, may be mentioned as an example.
In such cases, surrogate models offer a promising alternative.

The input-output relation investigated in this work considers directional dendritic solidification. An
undercooled melt surrounds an initially spherical seed. Crystallization of the seed is initiated since
the temperature of the surrounding melt is below the liquid-solid phase transition temperature. Due to
anisotropic surface tension, the crystal exhibits preferred growth directions along the main coordinate
axes, as sketched in Fig. 1.1. After an initially transient phase, the growth velocity of the dendritic tip,
denoted by uΓ , converges against a steady-state solution. The steady-state tip velocity depends on
material and local melt parameters. Those are the normalized undercooling τ, capillary anisotropy ϵ,
and the thermal conductivity ratio κm/κs between melt and solid. The normalized undercooling can be
determined using

τ=
(T − Tm) c

L
, (1.1)

where T is the initial temperature in the melt, Tm the melting temperature, c the specific heat capacity,
and L the latent heat. Thus, the functional dependence for the tip velocity that is modeled using surrogate
models reads

uΓ = f (τ,ϵ,κm/κs) . (1.2)
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t0 t0 +∆t t0 + 2∆t t0 + 3∆t t0 + 4∆t t0 + 5∆t

uΓ 4∆t

4∆t

Figure 1.1: Temporal evolution of the growth of an initially spherical seed for equidistant snapshots in time. The
initial time and time interval between the snapshots are denoted by t0 and ∆t , respectively. The visualization of
the single snapshots leverages the symmetry of the crystal and only depicts one-fourth of the dendrite. Starting
from the second image, a constant growth velocity uΓ of the tip can be observed.

Modern data-driven techniques based on statistical learning allow the generation of elaborated sur-
rogate models that accurately capture complex engineering systems [25, 58, 83, 169]. A prominent rep-
resentative for regression surrogate models are Gaussian process (GP) surrogates, which are already
successfully applied to model or control micro- and macro-scale additive-manufacturing processes [120,
168, 179, 223] of, e. g. , composites [95] or ceramics [141, 219]. The cost for data generation often
dominates when generating GP surrogate models solely relying on data obtained from highly accurate
numerical simulations. This may be overcome by multi-fidelity modeling. Therein, not just the high-
fidelity model - which provides a sufficiently accurate system description for the intended application -
but also less accurate, computationally more efficient or cheaper lower-fidelity models are utilized. Sup-
plementing high-fidelity data with lower-fidelity approximations may improve model accuracy. Typical
examples of low-fidelity models are models with reduced dimensionality, previously developed experi-
mental relationships, or coarse-grid approximations [10, 157]. Multi-fidelity and multi-level methods are
closely connected. Both aim to increase overall modeling quality by augmenting the high-fidelity model
with lower-fidelity information. This concept is widely spread for the efficient construction of response
surfaces [10, 116, 142, 161], uncertainty quantification [15, 43, 46, 52, 143] or solutions for inverse
problems [45]. Multi-level methods typically define a hierarchy of low-fidelity models by varying a single
parameter, such as the grid resolution of a numerical simulator. In contrast, multi-fidelity methods allow
for deriving fidelity hierarchies based on more general models and various information sources such as
experimental data, regression models directly derived from high-fidelity data or linearized models [157].
Peherstorfer et al. [157] provide an extensive review of multi-fidelity modeling. This work focuses on
multi-fidelity GP regression to cost-efficiently construct surrogate models, which is particularly attractive
due to the inherent capability to quantify predictive uncertainty.

In their pioneering work, Kennedy and O’Hagan [114] propose the first multi-fidelity GP model. It
combines a GP model with a linear autoregressive scheme. Their approach was successfully applied for
problems where the relationship between the low and high-fidelity model is linear [31, 58, 160, 162]. This,
however, is the major shortcoming, as for many real-world applications strong non-linear relationships
between fidelity levels occur [161]. Thus, several authors extend the work of Kennedy and O’Hagan [114]
and develop models that capture nonlinear and space-dependent relationships between fidelity levels
[35, 161, 167]. Among them, Raissi and Karniadakis [167] combine the linear autoregressive scheme of
[114] with deep neural networks. Their model is especially suitable when the relationship between fidelity
levels contains discontinuities. Inspired by the structure of deep GPs [36, 37], the functional composition
of GPs, Perdikaris et al. [161] and Cutajar et al. [35] develop an approach integrating GP regression and
nonlinear autoregressive schemes. This allows capturing nonlinear and space-dependent relationships
between fidelity levels. This work focuses on the MFDGP model of Cutajar et al. [35] as it better
resists overfitting. Another factor that might harm the accuracy of standard GP regression models is the
non-stationarity of input-output relations. These are relations where the covariance is not invariant to
translation in input space. As a remedy, Snoek et al. [188] motivate learning parameters of a family of
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cumulative distributions functions (CDF) to transform the input space. Their approach is referred to as
input warping and has successfully been applied in many practical applications such as for the estimation
of loss reserves [126] or model-tuning frameworks [163].

In addition to addressing the direct Stefan problem related to dendritic growth, the rapid and efficient
development of new materials with desired properties necessitates tackling the inverse problem [63,
185]. In the context of dendritic growth, this involves determining local melt parameters, such as under-
cooling, as well as material parameters that lead to specific growth characteristics of the dendrite. While
exact analytical solutions for the inverse Stefan problem exist, they are limited to certain one-dimensional
scenarios [186]. In other cases, approximate solution strategies are required.

Diverse methodologies exist to address the inverse Stefan problem. Several authors [7, 103, 104,
146] consider a one-dimensional inverse Stefan problem and determine heat fluxes to obtain a pre-
scribed phase-interface. Other approaches consider determining material parameters, such as thermal
coefficients, in the context of solidification problems [23, 192]. Zabaras et al. [221, 222] identify a
heat flux at the domain boundary given interface velocities and the heat flux passing through the inter-
face. They reduce the inverse Stefan problem to a minimization problem. Voller [207] uses enthalpy
and sensitivity coefficients to find the heat flux at a boundary with a prescribed position of the inter-
face. Grzymkowski and Słota [74, 75] employ optimization in the context of an Adomian decomposition
method to solve the one-phase inverse Stefan problem. The aforementioned literature mainly consid-
ers one-dimensional and one-phase problems. Studies considering multiple phases, two-dimensional
problems, or their combination are scarce or have practical limitations due to the reliance on specific
mathematical models. Future studies addressed these gaps. Słota [187] focuses on a two-phase prob-
lem and uses a genetic optimization algorithm to select the convective heat-transfer coefficient of the
boundary for a given interface position. Following the idea of employing optimization approaches for
solving the inverse problem, Hetmaniok et al. [88] propose using Ant Colony Optimization to deter-
mine the heat transfer coefficient in two dimensional (2D) binary alloy solidification. They highlight the
computational complexity of their approach and emphasize the importance of computationally efficient
algorithms to investigate inverse problems for complex solidification processes.

When formulating inverse Stefan problems as an optimization task, BO is an attractive solution strat-
egy. BO is an iterative optimization procedure that relies on two main components: A stochastic sur-
rogate model that mimics the behavior of the target function based on available samples, and an ac-
quisition function that iteratively updates prior beliefs about the real system and guides the optimization
by proposing the location for the next samples. Figure 1.2 exemplarily sketches the BO workflow. The
idea of BO originates from the work of Kushner [124]. He considers a one dimensional (1D) problem
and employs Wiener processes as surrogate model. The optimization process is guided by maximizing
the probability of improvement. Perttunen [164] and Elder [44] extend this work to higher-dimensional
problems. Another important work is by Močkus [144], who proposes the widely used expected improve-
ment (EI) acquisition function. The efficient global optimization (EGO) algorithm proposed by Jones et
al. [105] motivates applying BO to optimization problems where the amount of function evaluations is
severely limited by time or cost. This makes it especially attractive for engineering problems. They em-
ploy a design and analysis of computer experiments (DACE) stochastic process model. DACE is based
on Kriging, which in some variants is equivalent to GPs regression [206], the most prominent type of
surrogate modeling in BO. To further improve the efficiency of BO, combining GP surrogate models and
acquisition functions capable of multi-fidelity (MF) modeling is an attractive approach. MF acquisition
functions must balance between sample fidelity and accuracy when proposing the next sample. Devel-
oping multi-fidelity BO frameworks is an active field of research. Huang et al. [98], Lam et al. [127] and
Picheny et al. [165] propose an augmented EI capable of MF modeling. Kandasamy et al. [112] propose
a multi-fidelity acquisition function based on the Gaussian process upper confidence bound (GP-UCB)
[190]. Wu et al. [217, 218] proposed the multi-fidelity knowledge-gradient (mfKG) acquisition function
which considers the cost of observing samples with a certain fidelity. The choice of the next sample’s
location and fidelity is based on the trade-off between the estimated improvement in solution quality and
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the sampling cost at a certain fidelity level. This formulation allows both batch and sequential optimiza-
tion. Compared to other state-of-the-art algorithms, the mfKG achieves better performance and is thus
considered in this work. The contributions of this thesis to analyzing the forward and inverse Stefan
problem are highlighted in Sections 3.2 and 3.3.
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START

Initial design of experiment

Run experiment

Append to dataset

Build surrogate model

Evaluate and optimize
acquisition function based

on surrogate model

Evaluate acquired point

Investigate underlying problem

END

SIMULATION & DATA MANAGEMENT

SURROGATE MODELLING

ACQUISITION STRATEGY

Figure 1.2: Flow graph of a BO algorithm. First, an initial design of experiments (DoE) is generated. Then, the
target function is evaluated for the points generated by the initial DoE. The points and corresponding targets are
collected in a dataset. Based on it, a stochastic surrogate model mimicking the behavior of the target function
is constructed. Using the surrogate model, investigations on the real system, such as e. g. optimization, can be
realized. In case an optimum for the target function is sought, an acquisition function is constructed. It expresses
the most promising setting for the next sample to be generated. The next sample is generated at the location that
maximizes the acquisition function. The newly acquired point is then appended to the dataset and the procedure
repeats. By that, the model quality and consequently the estimated solution of the optimization problem are
improved.





Chapter 2

Fundamentals

2.1 Mathematical and numerical model

2.1.1 Governing equations

The compressible NSE are given by the system of conservation equations

∂ ρ

∂ t
= −divρu (2.1)

∂ ρu
∂ t

= −div (ρu⊗ u−Π) +ρg (2.2)

∂ ρE
∂ t

= −div (ρEu−Πu+ q) +ρg · u, (2.3)

considering the conservation of mass, momentum, and energy, respectively. Therein, ρ denotes the
density, u the velocity vector, g the gravitational acceleration vector, and E = e+ u2/2 the specific total
energy. The specific total energy consists of specific internal and kinetic energy. Heat fluxes read

q= −κ∇T (2.4)

with the thermal conductivity κ and temperature T . The stress tensor for Newtonian fluids reads

Π= −pI+ T= −pI+µ
�

∇⊗ u+ (∇⊗ u)T −
2
3

div(u) I
�

, (2.5)

where p denotes the pressure, µ the dynamic viscosity, I the identity matrix, and T the viscous stress
tensor.

In integral formulation, Eqs. (2.1) to (2.3) read
∫

V

∂ ρ

∂ t
dV = −

∮

∂ V

(ρu) · n dA (2.6)

∫

V

∂ ρu
∂ t

dV = −
∮

∂ V

(ρu⊗ u+ pI− T) · n dA +

∫

V

ρg dV (2.7)

∫

V

∂ ρe
∂ t

dV = −
∮

∂ V

(ρeu+ pI− Tu+ q) · n dA+

∫

V

ρg · u dV, (2.8)

where V denotes a material volume with boundary ∂ V . Reformulations yield the flux-based formulation
∫

V

∂U
∂ t

dV = −
∮

∂ V

(Fc + Fµ + Fq) dA+

∫

V

S dV (2.9)

11
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for the state vector U=
�

ρ ρu ρe
�T

, with convective, viscous and heat-flux densities

Fc =





(ρu) · n
(ρu⊗ u+ pI) · n
(ρeu+ pI) · n



 , Fµ =





0 · n
−T · n
−Tu · n



 , and Fq =





0
0

q · n



 , (2.10)

respectively. The volume-force vector is given by

S=





0 · n
(ρg) · n
(ρg · u) · n



 . (2.11)

For two-phase flows, the material volume V consists of two distinct and immiscible fluid phases ξa,
where a ∈ [1,2], that occupy non-overlapping subdomains Vξa , a ∈ [1, 2] |V = Vξ1 ∪ Vξ2 . They are
separated by the internal surface S that represents the phase interface. The interface-normal vector
pointing towards Vξa is denoted as nξa

S . When omitting the superscript the interface-normal vector

pointing towards ξ1 is considered, i. e. nS = nξ1
S .

In multi-phase flow, each phase satisfies the NSE separately. This allows to reformulate the flux-based
formulation given by Eq. (2.9) to

∫

Vξ1∪Vξ2

∂U
∂ t

dV =−
∮

(∂ Vξ1∪∂ Vξ2 )\S

(Fc + Fµ + Fq) dA

−
∮

S

�

Fc
S + FµS + Fq

S
�

dA

+

∫

Vξ1∪Vξ2

S dV,

(2.12)

with the convective, viscous and heat transfer interface flux densities

Fc
S =





(ρu) · nS
(ρu⊗ u+ pI) · nS
(ρeu+ pI) · nS



 , FµS =





0 · nS
−T · nS
−Tu · nS



 , and Fq
S =





0
0

q · nS



 , (2.13)

respectively.
Thermodynamic closure of the NSE is obtained by an equation of state (EOS)

p = f (ρ, e) (2.14)

relating pressure, density and energy.

2.1.2 Numerical model for the governing equations

To numerically solve the balance equations, the material volume V is partitioned into a disjunct set of
cuboid finite volumes

∆i, j,k ≤ V |Σ∆i, j,k = V; i, j, k ∈ N (2.15)

with cell size ∆x and cell volume ∆V = ∆x3. A finite volume cell may contain parts of an interface S,
as shown in Fig. 2.1. Therein, the cell in the center,∆i, j,k, is cut by an interface. The linearized interface
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Figure 2.1: Sketch of the discretization of the part of a material volume cut by an interface S. The finite-volume
cell ∆i, j,k and its characterizing geometrical measures are shown. Note, the figure considers a 2D slice in the
i, j-plane for simplicity.

inside such cut cells is denoted by Si, j,k. The volumetric portion αξa
i, j,k of ∆i, j,k is covered by fluid ξa. It

is also referred to as volume fraction and is indicated by the gray region in the figure. Analogously, the
portion of a cell face covered by ξa is denoted by apertures Aξa

i± 1
2 , j,k

, Aξa

i, j± 1
2 ,k

, and Aξa

i, j,k± 1
2
. The discrete

set of cells comprising all cells which contain parts of a single phase is denoted by

eVξa =
¦

∆i, j,k|α
ξa
i, j,k ̸= 0

©

. (2.16)

The discrete set of cells comprising all cut cells is defined as

eS =
¦

∆i, j,k|α
ξ1
i, j,k ̸= 0 and αξ2

i, j,k ̸= 0
©

. (2.17)

Integrating the NSE in flux formulation given in Eq. (2.12) over ∆i, j,k yields

∫

∆
ξa
i, j,k

∂U
∂ t

dV = −
∮

∂∆
ξa
i, j,k\Si, j,k

Fc+µ+q dA−
∮

Si, j,k

Fc+µ+q
S dA+

∫

∆
ξa
i, j,k

S dV
(2.18)

for phase ξa with ∆ξa
i, j,k = Vξa ∩ ∆i, j,k. Therein, the short notations Fc+µ+q = Fc + Fµ + Fq and

Fc+µ+q
S = Fc

S + FµS + Fq
S summarizing convective, viscous and heat-flux contributions is introduced for

brevity. Equation (2.18) can be rewritten as

∂
�

αξa Ū
�

i, j,k

∂ t
= −

∮

∂∆
ξa
i, j,k\Si, j,k

Fc+µ+q dA−
∮

Si, j,k

Fc+µ+q
S dA+

∫

∆
ξa
i, j,k

S dV (2.19)

with the volume-averaged conservative quantities

Ū=
1

α
ξa
i, j,k

∫

∆
ξa
i, j,k

U dV. (2.20)
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In Eq. (2.19), the first term on the right accounts for cell-face fluxes, the second term for the interaction
between fluids at the phase interface, and the last term for volume forces.

The cell face fluxes can be further simplified to

−
∮

∂∆
ξa
i, j,k\Si, j,k

Fc+µ+q dA=
�

�

Aξa
eFc+µ+q

1

�

i− 1
2 , j,k −

�

Aξa
eFc+µ+q

1

�

i+ 1
2 , j,k+

�

Aξa
eFc+µ+q

2

�

i, j− 1
2 ,k −

�

Aξa
eFc+µ+q

2

�

i, j+ 1
2 ,k+

�

Aξa
eFc+µ+q

3

�

i, j,k− 1
2
−
�

Aξa
eFc+µ+q

3

�

i, j,k+ 1
2

�

∆x2,

(2.21)

assuming constant, discretized flux densities at cell faces, which are indicated by the superscript f(·).
The subscripts 1,2, 3 denote the Cartesian component of the three-dimensional flux vector. The con-
vective fluxes are evaluated by solving a Riemann problem at cell faces and by using low-dissipative
high-order shock-capturing reconstruction schemes. Determining viscous fluxes requires evaluating the
viscous stress tensor at cell faces. Therefore, cell-centered velocity gradients are calculated and then
reconstructed at cell faces together with respective velocities. Heat fluxes are discretized in the same
way.

The interface-interaction fluxes read

−
∮

Si, j,k

Fc+µ+q
S dA=

�

eFc+µ+q
S ∆S

�

i, j,k , (2.22)

assuming constant, discretized flux densities at the linearized interface inside a cell. Therein, the flux
densities are calculated using the interface normal vector nS

i, j,k and the interface segment

∆Si, j,k =
�

(Ai− 1
2 , j,k − Ai+ 1

2 , j,k)
2

+ (Ai, j− 1
2 ,k − Ai, j+ 1

2 ,k)
2

+ (Ai, j,k− 1
2
− Ai, j,k+ 1

2
)2
�

1
2
∆x2.

(2.23)

The contribution from the convective flux densities are calculated based on the solution of the two-
material Riemann problem satisfying the stress balance in interface normal direction

−nS ·Π(U
ξ1
S ) · nS + nS ·Π(U

ξ2
S ) · nS = −γnS(∇T · nS) · nS , (2.24)

where Uξa
S , i = 1, 2 denote the interface states of the respective fluid. The above stress balance consid-

ers capillary forces, which depend on the surface-tension coefficient γ between the two fluids. The stress
balance can be formulated as a two-material Riemann problem. Its solution yields the absolute values
for interface velocity (uS)i, j,k and interface pressures

�

pξ1
S

�

i, j,k
and

�

pξ2
S

�

i, j,k
. These are required to

evaluate the flux densities FS . Viscous interface fluxes are calculated by using the same differentiation
stencil as for the viscous cell-face fluxes following [136].

The volumetric source term on the right of Eq. (2.18) reads
∫

∆
ξa
i, j,k

S dV =
�

αξa
eS
�

i, j,k∆x3, (2.25)

where eS denotes the constant, discretized volume-force vector inside the cell. More details and a thor-
ough validation can be found in [93].
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2.1.3 Numerical model for the interface

The LS approach captures the interface by a scalar LS function φ(x, t) that fulfills the signed-distance
property |∇φ|= 1 [2, 150]. Thus, the zero LS contour

S(x, t) = {x : φ(x, t) = 0} (2.26)

always gives the location of the interface. The sign of the LS function allows distinguishing the two
phases, i.e. φ > 0 in Vξ1 and φ < 0 in Vξ2 .

The previously described discretization of the balance equations in Section 2.1.2 requires information
about the location and other geometric interface characteristics. The interface normal nS follows from
the normalized gradient of the level set

nS(x) =
∇φ(x)
∥∇φ(x)∥

. (2.27)

Linearly interpolating the LS function inside ∆i, j,k allows analytically calculating cell-face apertures

Aξa

i± 1
2 , j,k

, Aξa

i, j± 1
2 ,k

, and Aξa

i, j,k± 1
2
. The volume fractions αξa

i, j,k can be determined based on the cell-face

apertures following [129].
The level set is evolved in time by solving the partial differential equation (PDE)

∂ φ(x, t)
∂ t

= −uS(x, t)nS · ∇φ(x, t) = −uS(x, t) |∇φ(x, t)|= DLSA,2(φ(x, t)), (2.28)

where the advection velocity uS follows from Eq. (2.24). The advection Eq. (2.28) is strictly only valid
at the interface. However, its numerical discretization requires solving it in a small region around the
interface. This might lead to an irregular LS field that violates the signed-distance property. The signed-
distance property can be recovered by solving the reinitialization equation

∂ φ

∂ τ
= sgn (φ0) (1− |∇φ|) (2.29)

iteratively in pseudo-time τ to steady state, according to [198]. In Eq. (2.29), sgn(·) denotes the sign
function and φ0 the level set prior to reinitialization.

Stencils used to calculate the right-hand side of the NSE or the LS advection equation might cross
the interface. Thus, appropriate boundary conditions have to be imposed at the phase interface for
several quantities. Therefore, the original GFM proposed by Fedkiw et al. [47] is employed. It introduces
so-called ghost cells. For the fluid with φ > 0, all cells in the vicinity of the interface with φ < 0 are
ghost cells. Cells with φ > 0 are real-fluid cells. The definition for the fluid with φ < 0 is vice versa.
For the sharp interface LS method employed in this thesis, Hu et al. [96] propose filling ghost cells
by extrapolating real-fluid conservative states U in interface-normal direction. Therefore, the one-way
extrapolation equation

∂U(x)
∂ τ

= nζi
S (x) · ∇U(x) (2.30)

is solved iteratively in pseudo-time τ to steady-state. Details about the discretization of the right-hand
side in Eq. (2.30) can be found in [151].

A two-way extrapolation is necessary to extrapolate quantities known only at the interface Q to the
near-interface region. This is done by solving

∂Q(x)
∂ τ

= sgn (φ)nζi
S (x) · ∇Q(x) (2.31)

iteratively in pseudo time τ to steady state. Details about the discretization of the right-hand side in
Eq. (2.31) can be found in [151].



16 2 Fundamentals

2.1.4 Time integration

The NSE and LS advection equations are evolved in time using explicit Runge-Kutta (RK) integration
[125, 176]. To avoid spurious oscillations and ensure stability, strong stability-preserving integration
schemes [80] together with a time-step size restriction

∆tNSE = C F L ·min
�

∆tc ,∆tµ,∆tq,∆tS,∆tS
�

(2.32)

are employed. Therein,

∆tc = min
∆i, j,k∈eVξ1∪∆i, j,k∈eVξ2

�

∆x
Σ∥∥v∥+ c∥

�

,

∆tµ = min
∆i, j,k∈eVξ1∪∆i, j,k∈eVξ2

�

3ρ∆x2

14µ

�

,

∆tS = min
∆i, j,k∈eVξ1∪∆i, j,k∈eVξ2

�

2∆x

Σ∥∥v∥+ c∥+
p

Σ∥∥u∥+ c∥+ 4∥g∥∆x

�

,

∆tq = min
∆i, j,k∈eVξ1∪∆i, j,k∈eVξ2

�

3ρcp∆x2

14κ

�

, and

∆tS = min
∆i, j,k∈ eS

 
√

√

√

∆x3

8πγ

∑

i

ρξa

!

(2.33)

denote the stability criteria for convective fluxes [111], viscous fluxes [196, 198], heat fluxes, volume
forces [196, 198] and interface terms [21], respectively. The speed of sound c follows from the EOS and
cp denotes the specific heat capacity at constant pressure.

For full cells withαξa
i, j,k = 1, stability is ensured by setting the CFL constant according to the restriction

given by the employed RK integration scheme. To avoid spurious oscillations in cut cells with αξa
i, j,k≪ 1,

a conservative mixing procedure proposed in [94] is employed.

2.1.5 Spatial and temporal adaptivity

A naive implementation of the LS method in combination with the GFM leads to a high memory footprint.
Also, compared to a single-phase implementation without LS, it introduces a high amount of floating
point operations. Spatial and temporal adaption techniques help to reduce the computational effort. The
narrow-band technique [2, 159] based on ideas of [30] improves the overall efficiency of the LS method.
It limits LS related operations such as advection, reinitialization or extrapolation to a small region around
the interface. To identify the cells for which the respective operations are performed, a tagging system is
used. It distinguishes the following cell types:

• Cut cells are cells that contain the interface. For those cells, the conservative interface-interaction
fluxes are calculated.

• Cut-cell neighbors are cells directly adjacent to cut cells.

• Extension-band cells are cells which are not any of the above. In addition, their distance to the
nearest cut-cell neighbor cell is less than or equal to 2∆x , 2

p
2∆x , or 2

p
3∆x for one-, two-,

or three-dimensional problems, respectively. For all cells enclosed by the extension band, the
extrapolation equations for the GFM are solved.

• Reinitialization-band cells are cells directly adjacent to extension-band cells that are none of the
above. For all cells enclosed by the reinitialization band, LS reinitialization is performed.
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Cut cell

Cut-cell neighbor

Reinitialization band

Extension band

Interface

Figure 2.2: Interface tag structure for a 2D grid with curved interface. The interface line is shown in orange. Cells
containing a piece of the interface are consequently marked as cut cells. The band structure of cut-cell neighbors,
extension-band cells, and reinitialization-band cells is clearly visible.

• Remaining cells are referred to as bulk cells.

As an example, the interface-tag field for a simple 2D domain with a curved interface is shown in Fig. 2.2.
Spatial adaptivity can be realized using MR compression techniques. Compared to other spatial

adaptation methods, such as AMR, they show improved central processing unit (CPU) usage and mem-
ory compression rates [38]. MR compression is based on a dyadic refinement strategy and therefore
motivates its implementation using an octree to represent a three dimensional (3D) mesh. Often, nodes
in the octree correspond to a single cell. However, following the concept of block-based spatial adaption
techniques presented in [51, 174], this work uses a block-based MR algorithm presented by Hoppe et al.
[93]. Instead of considering single cells as elements of the octree, blocks containing a predefined num-
ber of cells are considered. Each block holds its own set of halo cells. Compared to non-block-based
MR approaches, this reduces the communication overhead in distributed-memory environments. The
block-based MR algorithm can be seamlessly coupled with the previously introduced tagging system.
Besides increasing the computational efficiency, the tagging system also reduces the memory footprint
of the LS method [94]. For a 1D setup, Fig. 2.3 exemplarily shows the block-based MR octree including
the mesh and halo cells. It refines around the location of the interface. The location of the interface can
be traced using the introduced tagging system. Interface tags are defined and set on each resolution
level.

Temporal adaptivity is realized using the ALTS scheme presented by Kaiser et al. [111]. It achieves
temporal adaptivity by integrating coarser levels with larger time-step sizes than finer levels.



18 2 Fundamentals

Cut cell

Cut-cell neighbor

Reinitialization band

Extension band

Bulk cell

Interface

Figure 2.3: Interface tag representation for a three-leveled block-based MR tree in one dimension. Black dots
represent cell faces, with thicker dots indicating the cell faces separating inner cells from halo cells. Each node
contains two halo cells on both sides. To indicate the overlap of halo cells, blocks of the same level are offset on
top or below each other.

2.2 Stochastic surrogate modelling

2.2.1 Gaussian processes

Building surrogate models for outputs generated by a numerical solver states a regression problem. The
target is to learn the mapping f (x) given a set of n input vectors X = [x1, . . . ,xn] and observations
y = [y1, . . . , yn] with yi ∈ R. Assuming that observations may be corrupted with zero-mean Gaussian
noise ε∼N

�

0,σ2
ε

�

, they are related to the unknown function by a homoscedastic noise model

yi = f (xi) + εi . (2.34)

The available observation can be summarized in the training dataset

D = {X ,y} . (2.35)

In the scope of this work, the unknown function f (x) is assigned a GP prior. A "Gaussian process is
a collection of random variables, any finite number of which have a joint Gaussian distribution" [169, p.
13]. A multivariate Gaussian distribution is fully specified by its mean vector and covariance matrix. For
a GP, the entries of the mean vector and covariance matrix are generated by a mean function m(x) and
a covariance function k(x,x′)

m(x) = E [ f (x)] , (2.36)

k(x,x′) = E
�

( f (x)−m(x))( f (x′)−m(x′))
�

, (2.37)

where E denotes the expectation. A zero mean function is often assumed for a GP prior, thus m(x) = 0.
The symmetric positive covariance function, also denoted as kernel function, quantifies the pairwise
covariance between two input points x and x ′. The kernel function can encode prior knowledge, such
as monotonicity or periodicity, on the function into the GP model.

For regression problems, the primary goal is to compute the output of the function f∗ = f (X∗)
for n∗ (unseen) inputs X∗ =

�

x1,∗, . . . ,xn∗,∗
�

. Therefore, the conditional posterior distribution of the
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unknown function given observations p(f∗|D,x∗) has to be determined. According to the GP prior, the
joint distribution of the observations in the training dataset and the predicted function values is

�

y
f∗

�

∼N
�

0,

�

K(X , X ) +σ2
εI K(X , X∗)

K(X∗, X ) K(X∗, X∗)

��

, (2.38)

where N indicates a normal distribution. Its mean and covariance are given by the first and second
argument, respectively. In Eq. (2.38), K(X , X ) is the n × n matrix of the covariances evaluated at all
pairs of training points, K(X , X∗) a n× n∗ matrix of the covariances evaluated at all pairs of training and
test points, K(X∗, X ) a n∗ × n covariance matrix of test and training points, and K(X∗, X∗) a n∗ × n∗
covariance matrix between all pairs of test points. Making predictions then follows from conditioning the
joint Gaussian prior distribution on the observations. This yields the predictive Gaussian distribution

f∗|X∗, X ,y∼N (K(X∗, X )
�

K(X , X ) +σ2
n I
�−1

y,

K(X∗, X∗)− K(X∗, X )
�

K(X , X ) +σ2
n I
�−1

K(X , X∗)).
(2.39)

For better readability, the notations K = K(X , X ) and K∗ = K(X , X∗) are introduced. If only one test
point x∗ is considered, i.e. n∗ = 1, the vector containing the covariances between the test point and the
training points will be abbreviated by k(x∗) = k∗. Following this notation, the mean and covariance of
the predictive distribution for a single test point can be written as

f̄∗ = k∗
T (K +σ2

n I)−1y (2.40)

and

Cov f∗ = k(x∗, x∗)− k∗
T (K +σ2

n I)−1k∗, (2.41)

respectively. An example of GP regression is visualized in Fig. 2.4.
The kernel function is typically parameterized using a set of hyperparameters θ that are learned from

the data. Therefore, the log marginal likelihood log p(y|X ,θ ), which is the probability of the observed
data in the training set given their inputs and the hyperparameters of the kernel function, is maximized.
It can be determined by the marginalization over the function values f and is given by

p(y|X ,θ ) =

∫

p(y|f, X )p(f|X ,θ )df. (2.42)

For a GP under the above-mentioned assumptions, f|X ∼ N (0, K) and y|f ∼ N (f,σ2
n I) hold [169].

This yields the log marginal likelihood

log p(y|X ) = −
1
2

yT (K +σ2
n I)−1y−

1
2

log |K +σ2
n I | −

n
2

log2π. (2.43)

2.2.2 Multi-fidelity modeling using Gaussian processes

The described GP regression framework can be systematically extended for MF modeling. Multi-fidelity
regression fuses limited true observations (high-fidelity ) with many cheap approximate observations
(low-fidelity ) [114, 157]. GPs are particularly attractive as their stochastic nature allows incorporating
prior beliefs about the relation between fidelity levels and quantifying predictive uncertainty. In the scope
of this work, two MF modeling approaches based on GPs are considered. First, MF modeling is achieved
by an appropriate kernel function. Second, an autoregressive scheme is adapted for GP regression.
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(a) Five different function realizations sampled from a GP prior with zero mean and a
squared exponential kernel function are shown in orange. The prior mean is shown by
the black line. The 95% confidence interval, which corresponds to twice the standard
deviation, is shown in blue.
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(b) Based on five training points, which are shown by the orange dots, the mean of
the posterior predictive distribution is indicated by the black line. The 95% confidence
interval is shown in blue. The true sine function is shown by the black dotted line.
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(c) The posterior predictive mean and 95% confidence interval are highlighted as before.
The orange lines show five different function realizations of the GP fitted to the data.

Figure 2.4: GP regression for the 1D regression problem of the sine function.

Kernel functions with continuous fidelity parameter

In case the unknown function f (x) can be evaluated with different fidelity, a continuous fidelity parameter
s can be introduced. The unknown function then depends on the inputs and the fidelity parameter
f (x, s). A GP prior with an appropriately shaped kernel function that captures both dependencies can
be introduced [218] to obtain a MF GP regression model.

Autoregressive schemes

Kennedy & O’Hagan [114] and Le Gratiet & Garnier [130] introduce multi-fidelity GPs based on the
autoregressive scheme of [114]. It is based on a hierarchy of discrete fidelity levels and assumes a
linear relation

fl (x) = βl fl−1 (x) +δl (x) (2.44)

between them. Therein, fl denotes the high-fidelity function and fl−1 is the function at the preceding
lower fidelity. Both functions are modeled using a GP prior. The sum on the right side of the equation
highlights that the high-fidelity function at level l contains two contributions. The first contribution relates
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fidelity levels by linearly scaling samples drawn from the GP at the preceding lower fidelity l − 1 with
the constant factor βl . The second contribution δl (x) models an input-space dependent bias between
fidelities and also gets assigned a GP prior. Since fidelity levels are scaled using a constant in this
approach, it misses accuracy when the relationship between fidelities is nonlinear and input-space de-
pendent [161]. As a remedy, Perdikaris et al. [161] and Cutajar et al. [35] generalize the autoregressive
multi-fidelity scheme of Eq. (2.44) to

fl (x) = βl ( fl−1 (x) ,x) +δl (x) . (2.45)

It has a similar structure to the linear autoregressive scheme. But, instead of introducing a linear scaling
between fidelity levels, a space-dependent nonlinear transformation βl , that is modeled using a GP prior,
reflects the influence of the preceding lower fidelity level l − 1. The second term in the right-hand side
of Eq. (2.45) again considers a space-dependent bias δl (x). Perdikaris et al. [161] and Cutajar et al.
[35] suggest leveraging the additive structure and independence assumption between the GPs βl and
δl , and rewrite the autoregressive scheme of Eq. (2.45) as a composition of GPs

fl (x) = gl

�

f ∗l−1 (x) ,x
�

. (2.46)

Therein, the contributions from the space-dependent nonlinear transformation between fidelity levels
and the space-dependent bias are summarized in a single GP gl . As a consequence, it takes x and
samples from the posterior of the GP modeling the preceding fidelity f ∗l−1 (x) as inputs. Cutajar et al.
[35] express the compositional structure of Eq. (2.46) with deep GPs [37, 178] and derive MFDGPs that
accurately capture nonlinear and space-dependent relations between fidelity levels. In the scope of this
work, MFDGPs in settings with up to three fidelity levels are employed. Therefore, a MF dataset

DM F =
��

X1,y1
�

,
�

X2,y2
�

,
�

X3,y3
�	

(2.47)

comprising data from three fidelity levels is used. In Eq. (2.47) , Xl and yl denote inputs and corre-
sponding outputs at fidelity level l ∈ {1, 2,3}. Following the notation of the autoregressive schemes, the
fidelity increases with the superscript l. Based on a MF training dataset, MFDGP models as sketched
in the lower part of Fig. 2.5 can be built. Since the GP in the first layer refers to the lowest fidelity level,
it only depends on data from the original input space. In contrast, the GPs in the second and third layer
combine data from the input space and corresponding function evaluations from the GPs modeling the
first and second fidelity level, respectively. The mean and standard deviation of the posterior distribution
of the MFDGP at fidelity level l are denoted as y∗l and σ

�

y∗l
�

, respectively, see Fig. 2.5. The GPs at
each level are modeled using standard GPs as presented in Section 2.2.1 with a zero mean function.
The covariance function is defined according to Cutajar et al. [35]. The covariance between two inputs
xi and x j of the GP prior at each level is expressed by

kl = kβl
�

xi ,x j|θβl
�

�

σ2
l f ∗l−1

�

xi
�T

f ∗l−1

�

x j
�

+ k f −1
l

�

f ∗l−1

�

xi
�

, f ∗l−1

�

x j
�

|θ f −1
l

��

+ kδl
�

xi ,x j|θδl
�

.

(2.48)

Inspired by the structure of the autoregressive schemes, it consists of two contributions. The first scales
the covariance between outputs obtained from the preceding fidelity level with an input-space-dependent
scaling factor that considers the covariance between points from the input space kβl . The covariance

between outputs from the preceding fidelity level consists of the sum of k f −1
l and the linear covariance

σ2
l f ∗l−1

�

xi
�T

f ∗l−1

�

x j
�

with variance hyperparameter σ2
l . The second contribution of the right-hand

side of Eq. (2.48), kδl , captures the bias at the l-th fidelity level. Except for the linear covariance term,
all remaining covariances are assigned Matérn covariance functions [138] with smoothness measure
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5/2 and automatic relevance determination. For the first layer, the covariance function from Eq. (2.48)
reduces to

k1 = kδ1
�

xi ,x j|θδ1
�

. (2.49)

The MFDGP model is trained using the two-step approach proposed by Cutajar et al. [35]. In turn,
this is based on stochastic variational inference (SVI) techniques [86, 91]. The integrals to calculate
the posterior distribution of the MFDGP model are generally intractable [36]. Thus, sampling-based
approaches are required for their evaluation.

y1 y2 y3

f 1,2,3
1 f 2,3

2 f 3
3

X1,w X2,w X3,w

hC DF

X1 X2 X3

y∗1 y∗2 y∗3

f ∗1 f ∗2 f ∗3

x∗,w

hC DF

X∗

MFDGP ARCHITECTURE

INPUT-SPACE WARPING

Figure 2.5: Left: Combination of input warping and a MFDGP model architecture with three fidelity levels. Gray
nodes indicate inputs and outputs from a multi-fidelity training dataset with three fidelity levels. Blue nodes indicate
warped inputs. White nodes show latent variables and denote samples drawn from a GP. The fidelity level
associated with quantities is indicated by superscripts. Subscripts indicate the layer of the MFDGP. Thus, f2

1
denotes the evaluation of the MFDGP at the first layer for the inputs of the second fidelity level. Right: Predictions
using the same architecture with three fidelity levels for an (unseen) input x∗. The input for the GP on each level
consists of the original input x∗ and the evaluation of the model up to the previous fidelity level. The output of the
model for fidelity l is the posterior predictive distribution at the respective level, which is denoted by y∗l . Picture
adapted from [213].

The predictive accuracy of MFDGPs suffers when using stationary kernel functions, such as the
previously mentioned kernel functions from the Matérn family, to model non-stationary functions with
spatially varying length scales. To overcome this issue, Snoek et al. [188] warp the input space us-
ing learned transformations based on CDFs. Integrating this idea with the autoregressive scheme of
Eq. (2.46) yields

ft (x) = gt

�

f ∗t−1 (hC DF (x)) , hC DF (x)
�

, (2.50)

where hC DF (x) is a bijective warping function. The MFDGP then gets a transformed representation of
the original inputs hC DF (x) as input, cf. Fig. 2.5. In the scope of this work, the class of Kumaraswamy
CDF [57, 121] is used as input warping function. The hyperparameters of the Kumaraswamy CDF
and the MFDGP model are jointly optimized. The implementation of the model architecture combining
MFDGPs and input-space warping is based on GPyTorch [65] and BoTorch [12].
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2.3 Bayesian optimization

BO is an iterative optimization algorithm that typically aims to optimize quantities of interest (QoIs) that
depend on a set of design parameters x := {x1, x2, ...xd} on the design space X ∈ Rd . Throughout
this work, evaluating the QoIs requires running computationally expensive numerical simulations, limiting
the number of feasible evaluations to a few hundred. The target of BO is to optimize a target function
f (x), representing the QoIs, that depends on the simulator outputs. The goal is to find xopt such that

xopt = argmax
x∈X

f(x) (2.51)

A dependency between simulator observations y and the target function can be expressed as

y (x) = f (x) + ε (2.52)

with zero-mean Gaussian noise ε ∼ N
�

0,σ2
ε

�

. When designing an algorithm used to solve the de-
scribed optimization problem, several challenges have to be considered. Besides the fact that evaluating
the target function is computationally expensive, its evaluation typically does not include any information
about gradients with respect to the design parameters. Also, information about the structure of the target
function, such as concavity or linearity, is missing. As a solution, BO optimizes a stochastic surrogate
model, the first crucial component of a BO algorithm, that mimics the behavior of the target function,
instead of relying on the real model. The second crucial component of a BO algorithm is an acquisition
function ϕt : X → R. It is a policy that drives the iterative search for the optimal point in the design
space. A typical BO algorithm follows the following procedure:

1. Based on an initial DoE, an initial dataset DBO is generated.

2. A stochastic surrogate model is fitted to DBO. In the scope of this work, GP surrogate models are
employed.

3. The solution of the optimization problem specified in Eq. (2.51) is estimated by either optimizing
the surrogate model using standard optimization algorithms or by assuming the currently available
observation with the best target-function value as optimum.

4. Based on the estimated solution of the optimization problem and the posterior distribution of the
stochastic surrogate model, an acquisition function is constructed. Acquisition functions are de-
fined in a way, that high values correspond to a high interest in placing additional data points at the
respective locations. High interest can be because a certain point is close to the point that solves
the optimization problem, has high predictive uncertainty, or a combination of both. The point
maximizing the acquisition function is considered as next sample. Optimization of the acquisition
function can be realized using standard optimization approaches.

5. Evaluate the sample proposed by the acquisition function and extend the dataset with it.

6. Iterate starting from the second step, until a convergence criterion is met.

In order to further increase the efficiency of BO, MF modeling can be used. Therefore, both the stochastic
surrogate model and the acquisition function must be suitable for MF modeling. GP surrogate models
suitable for single-fidelity (SF) and MF settings have already been presented in Section 2.2.

2.3.1 Single-fidelity acquisition strategy

The EI maximizes the expected difference between the currently observed best value and the objec-
tive at the next query point. It is especially attractive since its analytic form including the gradient is



24 2 Fundamentals

available [105]. Look-ahead acquisition functions are another noteworthy approach. They explicitly
take into account the effect of observations on the surrogate model in subsequent optimization steps.
Knowledge-gradient (KG) [60, 76], predictive entropy search [87], and heuristic approaches [72] are
popular representatives.

Assuming a maximization problem, the KG quantifies the expected increase in the solution from
obtaining an additional set of data DKG. Compared to simpler acquisition functions such as EI, it often
shows improved performance [182]. Nevertheless, naive implementations of KG are computationally
expensive and hard to implement. Balandat et al. [12] propose a performant, simple, and flexible variant
of the KG leveraging modern paradigms of computation. Further improvements to the standard KG
include considering correlated beliefs [59] and enabling parallel batch-optimization [216]. The parallel
KG is referred to as q-KG.

If in a certain state during the optimization n observations of the simulator are contained in the
dataset DBO, maxx∈X f̄ ∗n (x) denotes the maximum of the posterior mean, and thus the estimated so-
lution of the optimization problem after observing n samples. The parallel q-KG policy then aims to
suggest the next batch of q samples, which in combination with corresponding observations are then
added to DBO. Subsequently, the next iteration of the BO starts. The extended dataset is denoted
by DBO+KG. The maximum of the posterior mean of the extended dataset is maxx∈X f̄ ∗n+q (x). The
expected increase in the maximum posterior mean after gathering a batch of q samples is the differ-
ence maxx∈X f̄ ∗n+q (x)−maxx∈X f̄ ∗n (x). Its probability distribution can be computed for the batch of q
samples x1:q := {z1, z2, .., zq} by defining the q-KG factor

q-KG
�

x1:q,X
�

= En

h

max
x∈X

f̄ ∗n+q (x) |y
�

x1:q

�

i

−max f̄ ∗n (x) , (2.53)

where En[·] := E
�

· | x (1:n), y(1:n)
�

is the expectation conditioned on the posterior distribution after n
observations. The next sample batch x1:q is given by the points maximizing the q-KG factor.

2.3.2 Multi-fidelity acquisition strategy

In the MF setting, the target function depends on the design space and a continuous fidelity parameter
s ∈ [0, 1], where increasing values of s indicate increasing fidelity. This defines the optimization task
to find the optimum of f (x, s = 1) for the highest fidelity level with s = 1. The cost for sampling the
target function depends on the fidelity parameter s. This has to be taken into account by the acquisition
policy. Also, the acquisition policy must not only suggest the location where to sample next, but also
the corresponding fidelity s. Therefore, the continuous-fidelity knowledge-gradient (cfKG) function [217]
is used. The cfKG [217] acquisition function extends the q-KG policy introduced in Eq. (2.53) to multi-
fidelity problems described by a continuous fidelity parameter s. The solution of the BO after having n
observations in the dataset is estimated by the highest-fidelity point that maximizes the posterior mean
x∗HF = argmaxx∈X f̄ ∗n (x , 1). To further guide the BO, the q-cfKG suggests a batch of q input locations
and fidelity parameters z1:q =

�

(x1, s1) , · · · ,
�

xq, sq

��

for the next iteration. Analogous to the SF setting,
the expected increase in the maximum posterior gathering q additional samples can be expressed by
maxx∈X f̄ ∗n+1 (x , 1)−maxx∈X f̄ ∗n (x , 1). Based on this measure for the expected increase in solution
quality, and by considering the cost-function costn (x , s) that estimates the cost of querying a sample at
point x with fidelity s, the q-cfKG describes the benefit-cost ratio

q-cfKG
�

z1:q

�

=
En+q

�

maxx ′∈X f̄ ∗n+q

�

x
′
, 1m

�

|zn+1:n+q = z1:q

�

−maxx ′∈X f̄ ∗n
�

x
′
, 1m

�

max1⩽i⩽q costn (zn+i)
. (2.54)

The batch of q points that maximizes the q-KG factor is the next to be sampled.



Chapter 3

Accomplishments

This chapter offers a comprehensive summary of the three primary, first-author, peer-reviewed publi-
cations [94, 212, 213] comprising this thesis, and highlights their accomplishments. The publications
collectively address the three principal elements of the adaptive numerical experimentation workflow
sketched in Fig. 1.2: The first component is the simulation framework, which delivers a high-fidelity
numerical simulator for complex flow problems. The second are stochastic surrogate models that accu-
rately mimic the physical system. Lastly, the acquisition function is discussed, which plays a crucial role
in steering the experimentation workflow towards effectively and precisely solving the target problem.

3.1 A modular high-performance multi-phase flow simulation framework

The capability of accurately simulating demanding multi-phase flow phenomena requires state-of-the-
art numerical schemes. As presented in Section 2.1, the sharp-inteface LS method with conservative
interface interaction is a particularly attractive choice for compressible two-phase flows. Especially when
overall dynamics are heavily influenced or even dominated by the interface. The accurate representation
of the interface by the LS is beneficial. However, the integration of the proposed LS algorithm into a
simulation framework is demanding due to the additional computational complexity.

This challenge is addressed by seamlessly integrating the LS algorithm into the compressible CFD
simulation framework ALPACA [3]. ALPACA provides spatial adaptivity by a sophisticated multiresolution
compression algorithm [93] and temporal adaptivity by ALTS [111]. The algorithmic backbone of the LS
implementation inside ALPACA are interface tags motivated by the narrowband approach [2, 30, 159].
They represent the interface and its surrounding band. Only the thereby tagged region is influenced
by the discretization of the LS algorithm. Additionally, these interface tags enable the MR algorithm
to accurately locate the interface, guaranteeing that it is always fully refined and the MR can react
adequately to the interface movement, deformation, and other topological changes.

A second important aspect is the extendability and flexibility of the simulation framework. The rea-
sons, therefore, are manifold. The development of numerical schemes requires comparison with related
schemes. Ideally, this is done based on the same implementation and by easily switching schemes. In
addition, when integrating a simulation environment in an adaptive numerical experimentation workflow,
a user-friendly application programming interface (API) eases investigations. These goals are achieved
by a modular implementation using modern object-oriented programming (OOP) paradigms that ease
extendibility and the development of new methods.
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Summary of: Nils Hoppe, Josef M. Winter, Stefan Adami, Nikolaus A. Adams: ALPACA - A Level-set
based Sharp-interface Multiresolution Solver for Conservation Laws. Computer Physics Communica-
tions, Volume 272, 108246, 2022. [94]

This paper describes the integration of the LS algorithm into the MR scheme [94] implemented in the
compressible CFD simulation framework ALPACA [3]. Modular building blocks for the multi-phase dis-
cretization of the governing equations presented in Section 2.1.2 and the discretization of the interface
using the LS method presented in Section 2.1.3 extend the pre-existing single-phase implementation.
Alternative discretization schemes of e. g. the interface extrapolation for the GFM or the LS reinitialization
are presented where available.

The introduction of the publication highlights various applications for compressible multi-phase flows,
introduces different numerical schemes for multi-phase flow simulation, motivates the usage of the LS
method, gives an overview of spatial adaption techniques, and motivates the implementation of the LS
algorithm in combination with a block-based MR scheme. Furthermore, relevant implementation aspects
are stated.

Then, the compressible NSE for multiple distinct and immiscible phases and their numerical dis-
cretization are presented. The LS method is employed to sharply represent the interface. Fluxes across
the interface are considered by conservative interface exchange terms that are evaluated by solving a
two-material Riemann problem at the interface. The evolution of the interface with the flow field is ob-
tained by solving an additional advection equation for the LS and a subsequent reinitialization procedure
to ensure the validity of the LS. Boundary conditions at the interface are imposed using the GFM method.
Various numerical discretization schemes for these building blocks of the LS algorithm are presented.

Next, the efficient integration of the LS method into the MR algorithm proposed by [93] is described.
The narrowband approach limits the computations relevant for the interface discretization to a small
band surrounding the interface. The location of the narrowband is dynamically tracked by interface tags,
which can also be used to sense approaching and vanishing interfaces. This fact is leveraged by the MR
algorithm to adjust the block structure to the dynamic evolution of the interface.

The remainder of the publication investigates the implementation’s capability by simulating various
challenging test cases. First, the convergence of the overall algorithm is investigated using an academic
test case. Second, multi-phase flow configurations are simulated and compared to numerical and exper-
imental reference data from literature. Using a 2D Richtmyer-Meshkov instability (RMI), we investigate
the evolution of characteristic interface locations and compare them to numerical results from literature.
Thereafter, 2D and 3D shock-bubble interactions (SBIs) simulations are presented in convergent and
divergent configurations. A convergent configuration refers to the case when the acoustic impedance of
the bubble is greater than for the surrounding liquid. The divergent configuration denotes the opposite.
The results show excellent agreement with reference data from literature. The simulated cases highlight
the capability of simulating resolutions of up to four billion effective cells and complex material models
such as the Sutherland law to express temperature-dependent viscosities. Third, the parallelization for
different combinations of the numerical building blocks is evaluated by scaling runs on up to twenty-four
thousand cores. Last, compute and memory compression of the coupled LS and narrowband approach
are assessed for the 3D cases presented in the work. Therefore, different metrics have been proposed
that allow measuring savings in terms of compute time and memory consumption. They are defined to
distinguish savings due to the MR compression and the interface-tag-based narrowband approach. For
test cases with many MR refinement levels, high compression metrics >90% are observed.

For this publication, I have implemented the LS algorithm. I have conducted the simulations pre-
sented in sections 8.1 to 8.6 and predominantly written sections 2, 3, and 8.5 to 8.6. I have equally
contributed to sections 1 and 11 as well as to the abstract and program summary. I have extensively
reviewed the remaining sections. The visualizations in the respective sections were created by me. My
first co-author has conducted the works presented in the remaining sections, which he has predomi-
nantly written and has equally contributed to sections 1 and 11 as well as to the abstract and program
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summary. He has extensively reviewed the sections written by me. Reviewer feedback was handled
by both of us in a fair and equal manner. The remaining co-authors have coordinated, supervised, and
secured funding for the project. They have also reviewed the manuscript and responses to the reviewers.
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3.2 Modeling dendritic crystal growth using stochastic multi-fidelity sur-
rogate models

The stochastic surrogate model is a crucial component of the adaptive experimentation workflow high-
lighted in Fig. 1.2. It mimics the behavior of the investigated physical system and thus heavily influences
the quality of the evaluated target. A commonly used class of surrogate models are GPs, which are
inherently able to quantify predictive uncertainty. To reduce the required high-fidelity data, the potential
of MF modeling based on resolution fidelities for building stochastic surrogate models for complex multi-
phase flow phenomena is explored. The MF model is based on MFDGPs [35] in combination with input
warping [188]. The implementation of the MFDGPs is realized using the open-source Gaussian process
library GPyTorch developed by Gardner et al. [65]. Their implementation provides a performant frame-
work for scalable, flexible, and modular GP models and is based on the open-source high-performance
deep learning library PyTorch [156].

The dependency of the steady-state tip velocity of a single crystal on process- and material parame-
ters states the physical problem for which the surrogate models is constructed. The simulations therefore
are conducted using the semi-implicit conservative sharp-interface method for liquid-solid phase transi-
tion developed by Kaiser et al. [108]. Their implementation extends the LS algorithm presented in the
preceding Section 3.1.

Summary of: Josef M. Winter, Jakob W. J. Kaiser, Stefan Adami, Nikolaus A. Adams: Stochastic
multi-fidelity surrogate modeling of dendritic crystal growth. Computer Methods in Applied Mechanics
and Engineering, Volume 393, 114799, 2022. [213]

This work employs an enhanced multi-fidelity Gaussian process framework to generate stochastic
response surfaces for the tip velocity of a single crystal. It combines many rough estimates of the tip
velocity (low-fidelity model) with only a few high-fidelity measurements. Data for all fidelity levels is
created using the simulation framework ALPACA, introduced in Section 3.1, applying the model devel-
oped by Kaiser et al. [108] to simulate two-dimensional crystal growth. The fidelity hierarchy bases on
coarse-grid approximations of high-fidelity numerical simulations.

Dendritic microstructures and their defects significantly impact the mechanical properties of final
products, particularly those manufactured through additive manufacturing processes. Modeling the for-
mation process of these final products, encompassing all scales from single dendritic growth to evolving
microstructures and ultimately the part scale, poses a multiscale challenge. The introduction of this
publication emphasizes the importance of simplified surrogate models, particularly those linking the op-
erational state of a crystal with process and material parameters. They allow for bridging the various
hierarchy levels of this multiscale problem. The attractiveness of MFDGPs for this purpose is high-
lighted, as they enable the construction of sophisticated surrogates capable of accurately capturing the
response of complex engineering systems. Leveraging the potential of MF modeling, MFDGPs help
reduce the cost associated with dataset generation. The error-based refinement strategy of the MR al-
gorithm, implemented in ALPACA, facilitates the definition of a hierarchy of resolution fidelities using the
same simulator.

The following section of the publication presents the physical and mathematical model to describe
the operating point of a single crystal, which is characterized by its steady-state tip velocity and radius.
The parameters that influence the growth process are presented. Those are normalized undercooling,
capillary anisotropy and the thermal conductivity ratio between solid and melt, cf. Section 1.3. The
relation between the tip velocity and these parameters is identified as the system for which a surrogate
model is constructed. The description of the numerical model solving the crystal-growth process allows
for deriving a hierarchy of three fidelity levels based on coarse grid approximations of the high-fidelity
solution. A convergence analysis and comparison with data from literature ensures the validity of the
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high-fidelity model.
The MF models considered in the publication are based on autoregressive schemes presented in

Section 2.2.2. Fidelity hierarchies for physical systems often show nonlinear and space-dependent rela-
tionships between fidelity levels. MF models based on the linear autoregressive scheme of Kennedy &
O’Hagan [114] feature deficiencies for such problems as highlighted by Perdikaris et al. [161]. Thus, the
publication combines MFDGPs [35], which base on a generalized autoregressive scheme, cf. Eq. (2.45),
with input warping [188] to regularize the model-parameter space.

The dataset generated for the publication relies on three fidelity levels. The thorough analysis of the
datasets unveils that the underlying problem of single dendritic growth features a nonlinear relationship
between the selected fidelity levels. It thus justifies the choice of the selected MF modeling strategy.
Also, sensitivities of the tip velocity on model parameters can be identified. Based on the presented
dataset, surrogate models with varying compositions of the training dataset are generated.

The remainder of the publication analyses the created surrogate models in detail. First, it is shown
that input warping improves the predictive accuracy of MF models. When increasing the number of
data points used for fitting the model, the predictive error of the trained models converges. Second, the
composition of the dataset is varied and its influence on the predictive accuracy of models combining
MFDGPs and input warping is investigated. The analysis highlights that three-fidelity modeling does
not outperform two-fidelity modeling. Furthermore, two-fidelity modeling drastically outperforms single-
fidelity modeling. When increasing the number of high-fidelity samples used for training, the predictive
error converges. The same trends hold when increasing the number of low-fidelity samples. Analyzing
the computational cost highlights that the drastically improved accuracy of two-fidelity models comes
with a negligible cost overhead compared to single-fidelity modeling.

As lead author of this publication, I predominantly wrote the script including the shown visualizations
and addressed the reviewer comments. I have implemented the MF model, combining MFDGPs and
input warping, inside the modular open-source GP library GPyTorch. Also, I selected the simulation
setups and implemented the dataset generation routines. I defined the hierarchy of fidelities, conducted
the dataset generation and its analysis, trained the MF models, and evaluated their properties. My co-
authors have coordinated, supervised, and secured funding for the project. They have also reviewed the
manuscript and responses to the reviewers.
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3.3 Solving the inverse Stefan problem for dendritic crystal growth using
Bayesian optimization techniques

This publication covers the complete iterative workflow for adaptive numerical experimentation and
solves the inverse Stefan problem for single dendritic growth. Again, the relation between the steady-
state tip velocity and process- and material parameters is considered. Solving the inverse problem aims
to identify the process- and material parameters that yield a targeted, prescribed tip velocity. The al-
gorithm used for the adaptive experimentation workflow is MF BO. It is highlighted that the proposed
method consists of several building blocks that can be exchanged flexibly to adjust the algorithm for
various scenarios.

MF BO consists of three crucial components. Those are the simulation framework that models the
forward problem, the stochastic surrogate model capturing the input-output relation of the forward prob-
lem, and a policy that guides the algorithm towards the solution. As simulation framework ALPACA is
used. The posterior predictive distribution of the surrogate model is required to evaluate the acquisition
function. Thus, the surrogate model and acquisition function must be compatible with each other. In
the context of this work, MF GPs that include the MF aspect in the kernel function, cf. Section 2.2.2, in
combination with the q-cfKG acquisition strategy, cf. Section 2.3.2, are employed.

The implementation of the GP model is again based on GPyTorch. The acquisition function is im-
plemented based on BoTorch, developed by Balandat et al. [12], a modern programming framework for
Bayesian optimization. Recent advances in the field of machine learning (ML) lead to the development
of open-source libraries for efficient tensor calculations and the training of deep-learning models. These
libraries are based on the concept of automatic differentiation and allow leveraging the full performance
of graphics processing unit (GPU) hardware. PyTorch is a prominent representative. BoTorch leverages
the powerful framework of PyTorch and provides a modular implementation of various acquisition func-
tions. Furthermore, it interfaces with GPyTorch as backbone for the GP models.

Summary of: Josef M. Winter, Rim Abaidi, Jakob W. J. Kaiser, Stefan Adami, Nikolaus A. Adams:
Multi-fidelity Bayesian optimization to solve the inverse Stefan problem. Computer Methods in Applied
Mechanics and Engineering, Volume 410, 115946, 2023.

This paper addresses the solution of the inverse Stefan problem for single dendritic growth utilizing
MF BO. In this approach, multiple low-fidelity estimates of a solidification problem are amalgamated
with a limited number of high-fidelity measurements to construct a comprehensive MF GP. The inverse
problem is tackled by employing the GP model within a BO framework based on a MF KG acquisition
function. The target function for the optimization process quantifies the deviation between observed and
target values and is reformulated as a composite function. This reformulation significantly enhances the
stability of the optimization procedure.

The motivation for this work, as discussed in the preceding Section 3.2, arises from the influence
of dendritic growth patterns on material properties, particularly in modern additive manufacturing pro-
cesses. Solutions to the inverse problem of dendritic growth can contribute to designing materials with
desired properties. Following the motivation, an extensive literature review is provided, highlighting that
while several authors have employed optimization-based approaches for solving the inverse Stefan prob-
lem, they often face challenges due to specific mathematical formulations of the target function or com-
putational complexity. The publication identifies BO as a promising approach since it offers cost-efficient
optimization of black-box functions and efficient integration with MF modeling. The q-cfKG acquisition
function, optimizing a benefit-cost ratio, is employed in this publication.

The subsequent section introduces the methodology employed in this study. The SF and MF opti-
mization approaches are detailed and a composite structure for the target function is proposed. The
composite structure allows separating the surrogate model for observed data from the target function.
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The target function may be non-differentiable at certain points in the domain since it quantifies the ab-
solute deviation between observed and target values. Traditional kernel functions of GP models may be
inadequate for such relations. Consequently, constructing the surrogate model for simulator observa-
tions and considering the loss only during optimization and acquisition function evaluation circumvents
this issue. This approach brings additional advantages, including the reusability of observed data points
and improved physical interpretability of the surrogate model.

The optimization problem’s solution is approximated by optimizing the target function using the pos-
terior mean of the GP surrogate model. To assess the accuracy of the estimated solution, it is necessary
to evaluate the numerical solver at the currently suggested optimum and subsequently compare it with
the recommended solution. The proposed methodology allows augmenting the dataset used to train
the GP by incorporating the data point generated during the evaluation process. This augmentation
introduces additional feedback into the iterative optimization process, promoting exploitation beyond the
batches suggested by the acquisition function that tend to be exploratory. This procedure is referred to
as recommendation fitting.

The performance of the proposed adaptive experimentation framework is evaluated in two settings.
First, the inverse problem for the growth of a planar solidification front is considered in a single-fidelity
setting. The results show that the modified acquistion strategy, including recommendation fitting, shows
better convergence results compared to solely relying on the KG acquisition function. Second, the
inverse problem for the growth of a single dendrite, already investigated in the preceding Section 3.2,
is considered. There, it is found that MF modeling improves convergence properties and cost-efficiency
compared to a SF setting, especially when access to high-fidelity data is limited and low- and high-fidelity
models are well correlated in the region of the input space where the solution is located.

For this publication, I have implemented the MF BO. I have conducted the simulations and analysis
for the dendritic growth problem. I have predominantly written section 7. Furthermore, I have equally
contributed to sections 1 to 5 and 8 as well as to the abstract. I have extensively reviewed the remaining
sections. The visualizations in the respective sections were created by me. My first co-author has
conducted the work presented in the remaining sections, which she has predominantly written and has
equally contributed to sections 1 to 5 and 8 as well as to the abstract. She has extensively reviewed the
sections I wrote. The remaining co-authors have coordinated, supervised, and secured funding for the
project. They have also reviewed the manuscript.
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Chapter 5

Discussion with Respect to the State of the Art and
Conclusion

Numerically investigating multi-phase flow phenomena remains challenging, even today. Reasons for
this include the multi-scale nature of such problems involving multiple spatial and temporal scales, con-
figurations that might be inherently unstable, and the presence of phase interfaces that potentially domi-
nate investigated flow configurations. As a consequence, the simulation frameworks used to investigate
these problems must provide sophisticated numerical models that accurately and stably capture relevant
flow details and possibly existing phase interfaces. Also, its implementation must be highly performant,
and leverage modern computing hardware to enable highly-resolved simulations. Realistic flow prob-
lems typically depend on a set of parameters. Their influence on relevant output quantities has to be
investigated. Adaptive experimentation provides a powerful tool for this purpose. Based on an initially
available set of observations, it iteratively updates prior beliefs about the system to decide which con-
figuration should additionally be investigated. In this work, a simulation framework for multi-phase flow
based on the level-set method is developed and integrated into an adaptive experimentation workflow
based on multi-fidelity Bayesian optimization. It covers contributions to the three main components of
such an algorithm which are listed in the following.

First, a sharp-interface model is integrated into the compressible multiresolution [93] simulation
framework ALPACA [3] with local time stepping [111]. A level-set function [39, 152, 198] gives a sharp
representation of phase interfaces and allows solving the governing equations for each phase separately.
Conservative interface interaction terms consider the exchange of mass, momentum, and energy over
the interface [96, 97, 136, 199]. Boundary conditions at the interface are imposed using the GFM method
[47]. The efficiency of the level-set algorithm is ensured using an interface-tagging system inspired by
the narrowband approach [2, 30, 159]. Interface tags dynamically track the near-interface region. Based
on them, the expensive level-set-related calculations are limited to the near-interface region. Also, the
memory usage of the algorithm can be reduced. The GFM requires information about all fluids in cells
close to the interface. The interface tags ensure that memory for both fluids is only allocated close to the
interface. Away from it, it is sufficient to allocate memory for the respective present fluid. The developed
simulation framework is published under an open-source license for reuse by the scientific community.
Various other parallel open-source research codes for compressible multi-phase flows exist [8, 26, 64,
85, 170, 181, 210]. However, they mostly use diffuse-interface methods and do not provide sharp inter-
face level-set interface models for compressible multi-phase flows. Also, they do not employ LTS. Sharp
interface level-set simulations of compressible multi-phase flows using spatial adaption techniques are
presented in [78, 148], however, their code bases are not freely available. The developed sharp interface
level-set model for compressible multi-phase flows is hence unique and has already been employed in
several studies [107, 109, 214]. Also, the careful algorithmic design and implementation did not put lim-
itations on the extendability of the framework but fostered the extension of existing numerical schemes
and the development of new numerical schemes [53].

Second, a novel stochastic-surrogate modeling approach combining input warping techniques [188]
and multi-fidelity deep Gaussian processes [35] is developed. It is applied to model the tip velocity of a
single dendrite. The dataset is generated using the semi-implicit conservative sharp interface method for
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non-equilibrium liquid-solid phase transition of pure melts developed by Kaiser et al. [108] that is readily
available in the simulation framework ALPACA. The dataset contains a hierarchy of resolution fidelities
that leverages the error-based refinement strategy of the MR algorithm. The surrogate models trained
using the novel approach are significantly more accurate compared to single-fidelity models, especially
when a limited amount of high-fidelity data is available. Input warping further improves the accuracy of
the models. The resulting models accurately capture the tip velocity’s dependence on process- and ma-
terial parameters. The stochastic nature of the model allows for quantifying the uncertainty associated
with the predictions. The employed multi-fidelity modeling strategy relies on Gaussian Process models
that allow capturing nonlinear and space-dependent relationships between fidelity levels. This fact is
crucial for the dendritic growth problem, since the generated dataset evinces this property. Babaee et
al. [10] investigate mixed convection flows using multi-fidelity Gaussian processes. Their problem also
shows nonlinear and space-dependent relationships between fidelity levels. The authors find, that in
regions where low-fidelity are not informative, high-fidelity samples are important to achieve accurate
results. Perdikaris et al. [161] assume that this is caused by the limited expressivity of the linear au-
toregressive schemes used by [10]. To verify their assumption, Perdikaris et al. [161] use multi-fidelity
Gaussian processes based on the generalized autoregressive scheme. They find that the ability to cap-
ture a space-dependent relationships between fidelity levels yields consistently better results. Wiens
et al. [211] apply the same multi-fidelity Gaussian process model to model chemical energy surfaces.
A drawback of the model employed in [161] and [211] is the fact, that it requires nested datasets. This
implies that at locations where high-fidelity data is available, low-fidelity data must also be available. This
restriction does not hold for the proposed method based on MFDGP. Also, to the best of the author’s
knowledge, MFDGP in combination with input warping techniques have not been used to analyze flow
problems before.

Third, a novel multi-fidelity Bayesian optimization framework combining composite BO, multi-fidelity
modeling using the cost-aware knowledge gradient acquisition function, and recommendation fitting is
proposed. It is used to solve the inverse Stefan problem for single-dendritic growth. Process and ma-
terial parameters that yield a targeted tip velocity are identified. Leveraging multi-fidelity modeling and
recommendation fitting strongly improves the convergence properties of the algorithm and significantly
speeds up the process of obtaining the solution. Formulating the target function as a composite function
improves the interpretability of the surrogate model and eases re-using data samples and pre-trained
surrogate models. Solving the inverse Stefan problem is an important topic investigated by several au-
thors [7, 23, 74, 75, 103, 104, 146, 192, 207]. However, many are limited to one-dimensional settings,
one-phase problems, or rely on specific mathematical formulations of the problem. These studies are
extended to more complex cases involving two-dimensional setups and multiple phases by Słota [187]
and Hetmaniok et al. [88]. Both studies rely on optimization-based approaches. Hetmaniok et al. [88]
emphasize the computational complexity when employing optimization-based approaches to realistic
problems and highlight the importance of efficient algorithms. The proposed method tackles this chal-
lenge for the first time using the presented approach based on multi-fidelity Bayesian optimization, and
observes a significant reduction of computational complexity due to the multi-fidelity modeling. Multi-
fidelity Bayesian optimization for flow problems has also been proposed by Perdikaris et al. [160] and
Han et al. [77]. However, their models rely on the linear autoregressive scheme and require nested
datasets. The approach proposed here is more flexible and handles arbitrary datasets. Flexibility also
exists in the fidelity hierarchy. The proposed algorithm makes no assumptions on the type of fidelity
levels and thus can be easily extended to also include data from other information sources, such as
experiments. Applying the algorithm in the rapid and efficient design of new materials with targeted
properties is a perspective for future work.

In conclusion, this thesis has introduced an adaptive numerical experimentation framework designed
to efficiently and flexibly model and simulate complex flow phenomena. Novel approaches for the foun-
dational building blocks of the framework are presented. The level-set algorithm implemented in the
compressible multi-phase flow simulation framework ALPACA allows efficient and highly detailed simu-
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lations of complex flow phenomena. It has proven to be a powerful simulator for the data-driven investi-
gation of flow phenomena. ML architectures combining MFDGPs with input warping allow to efficiently
generate surrogate models for simulation data. Additionally, multi-fidelity modeling has been used to de-
velop a highly adaptable and efficient Bayesian optimization framework. The versatility of the proposed
framework makes it an attractive candidate for several applications in research and industry.





Appendix A

Peer-Reviewed Journal Publications

A.1 ALPACA - a level-set based sharp-interface multiresolution solver
for conservation laws

Sign in/Register

© 2024 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. |  Privacy statement |  Data Security and Privacy
|  For California Residents | Terms and Conditions

ALPACA - a level-set based sharp-interface multiresolution
solver for conservation laws

Author: Nils Hoppe,Josef M. Winter,Stefan Adami,Nikolaus A. Adams

Publication: Computer Physics Communications

Publisher: Elsevier

Date: March 2022

© 2021 Elsevier B.V. All rights reserved.

Journal Author Rights

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation,
provided it is not published commercially. Permission is not required, but please ensure that you reference the
journal as the original source. For more information on this and on your other retained rights, please
visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at
customercare@copyright.com

39



Computer Physics Communications 272 (2022) 108246

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

ALPACA - a level-set based sharp-interface multiresolution solver for 

conservation laws ✩,✩✩

Nils Hoppe ∗,1, Josef M. Winter ∗,1, Stefan Adami, Nikolaus A. Adams

Chair of Aerodynamics and Fluid Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching bei München, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 March 2021
Received in revised form 19 November 2021
Accepted 23 November 2021
Available online 1 December 2021

Keywords:
Computational fluid dynamics
Compressible Navier-Stokes equations
Sharp interface
Temporal and spatial adaptivity
HPC
C++20

ALPACA is a simulation environment for simulating hyperbolic and (incompletely) parabolic conservation 
laws with multiple distinct and immiscible phases. As prominent example, consider the compressible 
Navier-Stokes equations (NSE). Solutions to these equations give insight and understanding of many 
important engineering applications. Numerical simulations of nonlinear parabolic systems of equations 
are very challenging for their complex nonlinear dynamics including the propagations of discontinuities 
such as shocks and phase interfaces. Accurate predictions require high temporal and spatial resolutions 
for such multi-scale problems. We utilize low dissipation high-resolution methods to capture the 
dynamics inside the separate phases. Their interaction is modeled by a sharp-interface level-set method 
with conservative interface-interaction. This allows to accurately locate the interface position and to easily 
prescribe arbitrary coupling conditions. We tackle the resulting immense computational loads by using a 
block-based multiresolution (MR) algorithm and adaptive local time stepping. The level-set treatment is 
integrated into the MR algorithm with little overhead by employing a smart tagging system and adaptive 
storage of the fluid data in the MR nodes. We embed these methods in a C++20 object-oriented modular 
framework using state-of-the-art programming paradigms. Furthermore, our implementation is capable 
to exploit the multiple levels of parallelism in modern high-performance computing (HPC) systems 
efficiently. We demonstrate the capabilities of our framework by simulating a variety of compressible 
multi-phase flow problems. Problem-sizes are of O

(
1010
)

effective degree of freedom (DOFs). By the use 
of MR, we typically achieve memory and compute compressions of > 90%. We demonstrate near-optimal 
parallel performance for scaling runs using O

(
104
)

cores, regardless of the employed numerical models.

Program summary
Program Title: ALPACA - Adaptive Level-set Parallel Code Alpaca
CPC Library link to program files: https://doi .org /10 .17632 /5zr3sg83ct .1
Developer’s repository link: https://gitlab .lrz .de /nanoshock /ALPACA
Licensing provisions: GPLv3
Programming language: C++20
Supplementary material: Code: Copy of the git repository, Videos: Air-helium shock bubble interaction 
(front and back view), Air-R22 shock bubble interaction, Three bubble shock interface interaction.
Nature of problem: Numerical simulation of conservation laws such as the compressible Navier-Stokes 
equation with several interacting gaseous and liquid phases remains challenging even today. These flows 
often involve singularities such as shocks and interfaces as well as instabilities driven by their interaction. 
The inherent highly nonlinear dynamics of those systems leads to a broad range of temporal and spatial 
scales that have to be resolved. There exists a variety of mutually exclusive numerical models that are 
able to tackle these challenges. Those, however, are computationally expensive and require computational 
power that is offered only by large-scale state-of-the-art distributed-memory machines.
Solution method: We have developed a modular simulation environment for conservation laws allowing 
exchange of numerical methods without loss of parallel performance. Computational efficiency is 
enhanced by employing multi-resolution schemes with adaptive local-time stepping. Our block-based 
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✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).
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implementation of these schemes is parallelized using the Message Passing Interface and exploits 
vectorization capabilities of the compute hardware. To simulate distinct and immiscible phases inside 
the computational domain, we utilize a sharp-interface level-set method. The level-set method allows 
to accurately locate the interface position and to easily prescribe arbitrary coupling conditions. The 
narrow-band approach reduces the computational load of the level-set method. We extend this 
method by a smart tagging system that exploits the block-based nature of the algorithm and further 
reduces the computational load. The simulation framework is written in modern C++20 and provides a 
Python interface for integration in Machine Learning and Uncertainty Quantification toolchains. We use 
parallel HDF5 in combination with XDMF to output field quantities. CMake is used as build system. 
We have completely annotated the source code using doxygen-style comments, allowing automated 
documentation generation in different formats. The source code is equipped with CI/CD-automated unit 
tests and an exhaustive integration test suite.
Additional comments including restrictions and unusual features: ALPACA relies on open-source third-party 
libraries for input and testing. These are packaged as git submodules and automatically integrated. 
ALPACA is tested on Linux and macOS.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Conservation equations are used to model a wide variety of sci-
entific and engineering problems, ranging from traffic flow [1–3], 
the shallow water equations [4–6], electromagnetism [7] to gasdy-
namics [8]. For our research, the compressible Navier-Stokes equa-
tions (NSE) are of particular interest to describe fluid mechanical 
problems such as the generation of nanoparticles [9,10], cavitation 
phenomena [11] or biomedical procedures like lithotripsy [12,13]. 
The multi-phase nature of such phenomena poses additional chal-
lenges to numerical models, as the interface has to be properly 
modeled. We provide the simulation environment “Adaptive Lev-
elset Parallel Code Alpaca (ALPACA)” to solve such kind of prob-
lems. During implementation, we considered the following aspects, 
which we will discuss in detail below: Single-phase discretiza-
tion of the compressible NSE, modeling of the interface, efficient 
compression algorithms on modern high-performance computing 
(HPC) systems, and modular implementation of different numeri-
cal methods.

The highly nonlinear dynamics of compressible flows inside 
a single phase require sophisticated and thus compute intensive 
numerical schemes. Examples include Riemann solvers in combi-
nation with high-order low dissipation weighted essentially non-
oscillatory (WENO) reconstruction stencils or alike. Many such 
competing schemes are available [14–19] and have to be cho-
sen according to the precise problem at hand. Hence, support for 
a wide variety of these schemes is beneficial to researchers and 
should be available in modern software frameworks.

When multiple phases govern a physical problem, the numeri-
cal description typically relies on either interface tracking or inter-
face capturing schemes. The latter describe interfaces as disconti-
nuities in material properties by using advected volume fractions 
[20]. For conservative schemes, they guarantee discrete conserva-
tion. However, interfaces might be smeared by numerical diffusion 
[21–23]. In contrast, interface tracking schemes allow a sharp rep-
resentation of interfaces. The most prominent representatives are 
free-Lagrange [24,25], front tracking [26,27] and level-set meth-
ods [28]. In our framework, we use the level-set approach since 
it is able to naturally handle changes in topology [29], eases cal-
culating geometric quantities [30], and allows imposing interfa-
cial physics straightforwardly [20]. For a more extensive overview 
about level-set methods and comparison to other interface model-
ing approaches we refer to [29,30].

As described above, solving the three-dimensional NSE with 
several interacting phases requires resolving a large range of 
physically relevant scales [31–33]. Hence, resolutions easily reach 
O
(
109
)
. To handle such resolutions, the usage of modern distrib-

uted-memory HPC systems is essential together with time and/or 

space adaptive compression schemes. Unfortunately, some com-
pression techniques hinder the necessary multiple-levels of paral-
lelization needed to efficiently use the hardware of HPC systems 
[34,35]. Here, we focus on multiresolution (MR) compression [36]
in fully adaptive formulation [37,38]. Other possible techniques 
are the adaptive mesh refinement (AMR) [39], Wavelet-Galerkin 
[40] methods, or (second-generation) wavelet-collocation meth-
ods [41]. Compared to AMR, a larger compression is achieved 
via MR and the error can be better controlled [42]. Compared 
to Wavelet-Galerkin methods, the treatment of nonlinearities is 
straightforward [31]. In contrast to Wavelet-Collocation, the (data) 
locality is stronger [43]. To obtain an efficient HPC implementation, 
the classical adaptive MR scheme of Harten needs to be improved. 
The original one-dimensional hyperbolic formulation needs to be 
generalized to higher dimensions [44] and to parabolic problems 
[45]. Additionally, memory compression needs to be added [37,38]
and temporal compression needs to be included via (adaptive) lo-
cal time stepping (LTS) [46,47]. We further translate the concept 
of blocking methods from wavelet-collocation [48] and AMR [49]
approaches to the MR algorithm. This block-based MR algorithm 
provides a HPC friendly compression. Also, this allows compiler 
generated single instruction multiple data (SIMD) parallelization 
[50]. We combine this approach with narrow-band techniques 
[51,52] based on ideas of [53] to reduce computational overhead 
of the level-set method. We deduce a tagging system which ex-
tends the narrow-band technique into the MR and thus reduces 
the consumed memory considerably.

We have seen that a competitive simulation environment 
should offer a collection of state-of-the-art discretizations schemes 
for both single- and multiphase problems with efficient com-
pute and memory compression. At the same time, efficient use of 
modern HPC architectures has to be ensured. Therefore, we devel-
oped our software in a modular fashion. The parallelization of the 
overall algorithm is decoupled from the numerical discretization 
schemes. This way the parallelization overhead is separated from 
the compute kernel implementation and the (parallel) compute 
performance is comparable across different modules. This modular 
setup together with the usage of modern object-oriented program-
ming (OOP) paradigms eases extension and development of new 
methods.

The remainder of this paper is structured as follows. In Sec-
tion 2 we give the governing equations. In Section 3 their nu-
merical discretization and the numerical interface model are given. 
We describe our block-based MR in Section 5. Section 6 highlights 
its extension via our newly developed tagging system. We discuss 
implementation details in Section 7. Multi-phase validation cases 
and challenging problems are shown in Section 8. In Section 9 we 
state the resulting (parallel) performance with scaling runs on up 

2
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Fig. 1. Sketch of a material volume cut by an interface (left). The region framed by the dashed line is highlighted on the right and shows a finite volume cell �i, j,k . Note, the 
figure shows a two-dimensional slice in the i, j-plane.

to O
(
104
)

compute cores. Also, the achieved compression across 
the conducted test cases is shown. We conclude with a short sum-
mary and an outlook to future work.

2. Governing equations

The general form of a conservation law reads

∂ψ

∂t
= −div f (ψ) + s(ψ) (1)

where ψ is the balanced quantity, f (ψ) denotes a flux function 
and s(ψ) a source term. We introduce D as short notation for an 
arbitrary right-hand side.

2.1. Navier-Stokes equations

We focus on the compressible NSE given by the system of equa-
tions

∂ρ

∂t
= −divρu (2)

∂ρu

∂t
= −div (ρu ⊗ u − �) + ρg (3)

∂ρE

∂t
= −div (ρEu − �u − q) + ρg · u. (4)

Therein, ρ denotes the density, u the velocity vector, g the gravita-
tional acceleration vector and E = e +u2/2 the specific total energy 
consisting of specific internal and kinetic energy. Heat fluxes are 
considered by

q = κ∇T (5)

with the thermal conductivity κ and temperature T . The stress 
tensor is given by

� = −pI + T = −pI + μ

(
∇ ⊗ u + (∇ ⊗ u)T − 2

3
div(u) I

)
(6)

with pressure p, dynamic viscosity μ, identity matrix I and viscous 
stress tensor T.

In integral formulation, Eqs. (2) to (4) read∫
V

∂ρ

∂t
dV = −

∮
∂V

(ρu) · n dA (7)

∫
V

∂ρu

∂t
dV = −

∮
∂V

(ρu ⊗ u + pI − T) · n dA +
∫
V

ρg dV (8)

∫
V

∂ρe

∂t
dV = −

∮
∂V

(ρeu + pI − Tu − q) · n dA +
∫
V

ρg · u dV ,

(9)

where V denotes a material volume. Rearranging and summarizing 
terms in this set of equations yields the flux-based formulation∫
V

∂U

∂t
dV = −

∮
∂V

(
Fc + Fμ + Fq) dA +

∫
V

S dV (10)

for the state vector U = [ρ ρu ρe
]T with convective, viscous 

and heat-flux densities

Fc =
⎡
⎣ (ρu) · n

(ρu ⊗ u + pI) · n
(ρeu + pI) · n

⎤
⎦ , Fμ =

⎡
⎣ 0 · n

−T · n
−Tu · n

⎤
⎦ , and

Fq =
⎡
⎣ 0

0
q · n

⎤
⎦ , (11)

respectively. The volume-force vector reads

S =
⎡
⎣ 0 · n

(ρg) · n
(ρg · u) · n

⎤
⎦ . (12)

For multi-phase flows, we consider a material volume consist-
ing of two distinct and immiscible fluid phases ξa, i ∈ [1,2]. They 
occupy non-overlapping subdomains Vξa , i ∈ [1,2] | V = Vξ1 ∪ Vξ2 , 
and are separated by an internal surface S representing the phase 
interface. We sketch such a material volume in Fig. 1. Therein, nξa

S
denotes the interface-normal vector pointing towards Vξa . If the 
superscript is omitted, nS = nξ1

S .
The NSE hold for each phase separately. This yields for Eq. (10)∫

Vξ1 ∪Vξ2

∂U

∂t
dV = −

∮
(∂Vξ1 ∪∂Vξ2 )\S

(
Fc + Fμ + Fq) dA

−
∮
S

(
Fc

S + Fμ
S + Fq

S
)

dA

+
∫

Vξ1 ∪Vξ2

S dV

(13)

3
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Table 1
Quantities used for nondimensionalization.

Quantity Nomenclature Nondimensionalization

Length x x∗ = x
lref

Density ρ ρ∗ = ρ
ρref

Velocity u u∗ = u
uref

Temperature T T ∗ = T
Tref

Time t t∗ = t uref
lref

Pressure p p∗ = p
ρref u2

ref

Energy E E∗ = E
ρref u2

ref

Gravity g g∗ = g lref

u2
ref

Viscosity μ μ∗ = μ
ρref uref lref

Surface tension coefficient σ σ ∗ = σ
ρref u2

ref lref

Thermal conductivity κ κ∗ = κ Tref

ρref u3
ref lref

Specific gas constant Rspec R∗
spec = Rspec Tref

u2
ref

with the convective, viscous and heat transfer interface flux densi-
ties

Fc
S =
⎡
⎣ (ρu) · nS

(ρu ⊗ u + pI) · nS
(ρeu + pI) · nS

⎤
⎦ , Fμ

S =
⎡
⎣ 0 · nS

−T · nS
−Tu · nS

⎤
⎦ , and

Fq
S =
⎡
⎣ 0

0
q · nS

⎤
⎦ , (14)

respectively.
Thermodynamic closure of the NSE is obtained by an equation 

of state (EOS) of the form

p = f (ρ, e) (15)

that relates pressure, density and energy. In our framework we 
have implemented numerous EOSes as highlighted in Table 2.

We nondimensionalize the equations described above using ref-
erence states for the length lref , density ρref , velocity uref and 
temperature Tref , see Table 1.

3. Numerical modelling

The numerical modeling of the governing equations and the in-
terface is described below.

3.1. Numerical model for the governing equations

We solve the balance equations numerically by partitioning V
into a disjunct set of cuboid finite volumes

�i, j,k ≤ V |
�i, j,k = V; i, j,k ∈N (16)

with cell size �x and cell volume �V = �x3. A finite volume cell 
may contain an interface S as exemplarily shown in Fig. 1. The 
cell �i, j,k in the center of the figure is cut by an interface. We 
call such cells cut cells. We denote the linearized interface inside 
the cell Si, j,k . The volumetric portion of �i, j,k which is covered by 
fluid ξa is denoted as αξa

i, j,k and indicated by the gray region in the 

figure. We define apertures Aξa

i± 1
2 , j,k

(t), Aξa

i, j± 1
2 ,k

(t), and Aξa

i, j,k± 1
2
(t)

to geometrically describe the cell-face fraction covered by ξa . With 
this we build the discrete sets of cells

Ṽξa =
{
�i, j,k|αξa

i, j,k �= 0
}

(17)

S̃ =
{
�i, j,k|αξ1

i, j,k �= 0 and α
ξ2
i, j,k �= 0

}
(18)

comprising all cells containing parts of Vξa or S respectively. Inte-
grating Eq. (13) over �i, j,k yields∫
�

ξa
i, j,k

∂U

∂t
dV = −

∮
∂�

ξa
i, j,k\Si, j,k

Fc+μ+q dA −
∮

Si, j,k

Fc+μ+q
S dA

+
∫

�
ξa
i, j,k

S dV
(19)

for phase ξa with �
ξa
i, j,k = Vξa ∩ �i, j,k . By introducing volume-

averaged conservative quantities as

Ū = 1

α
ξa
i, j,k

∫
�

ξa
i, j,k

U dV (20)

we can rewrite (19) as

∂
(
αξa Ū
)

i, j,k

∂t
= −

∮
∂�

ξa
i, j,k\Si, j,k

Fc+μ+q dA −
∮

Si, j,k

Fc+μ+q
S dA

+
∫

�
ξa
i, j,k

S dV .

(21)

In the above, the first term on the right accounts for fluxes over 
the cell faces, the second term for interaction between the fluids, 
and the last term for volume forces acting on the fluids. We in-
troduce the short notation Fc+μ+q = Fc + Fμ + Fq and Fc+μ+q

S =
Fc
S + Fμ

S + Fq
S .

Assuming constant, discretized flux densities at cell faces, indi-
cated by the superscript (̃·), the cell face fluxes read

D̃FF = −
∮

∂�
ξa
i, j,k\Si, j,k

Fc+μ+q dA

=
[(

Aξa F̃c+μ+q
1

)
i− 1

2 , j,k
−
(

Aξa F̃c+μ+q
1

)
i+ 1

2 , j,k
+(

Aξa F̃c+μ+q
2

)
i, j− 1

2 ,k
−
(

Aξa F̃c+μ+q
2

)
i, j+ 1

2 ,k
+(

Aξa F̃c+μ+q
3

)
i, j,k− 1

2

−
(

Aξa F̃c+μ+q
3

)
i, j,k+ 1

2

]
�x2.

(22)

Here, the subscripts 1, 2, 3 denote the Cartesian component of 
the flux vector. The convective fluxes are obtained by solving a 
Riemann problem at the respective cell faces and by using low-
dissipative high-order shock-capturing reconstruction schemes. 
Viscous fluxes are obtained by evaluating the viscous stress ten-
sor at cell faces. Therefore, we calculate velocity gradients at cell 
centers. These gradients together with respective velocities are re-
constructed at cell faces. Heat fluxes are computed in the same 
manner.

At interfaces, the interaction fluxes read

D̃IF = −
∮

Si, j,k

Fc+μ+q
S dA =

(̃
Fc+μ+q

S �S
)

i, j,k
, (23)

where the flux densities are calculated using the interface normal 
vector nS

i, j,k and the interface segment

�Si, j,k =
[
(Ai− 1

2 , j,k − Ai+ 1
2 , j,k)

2

+ (Ai, j− 1
2 ,k − Ai, j+ 1

2 ,k)
2

+ (Ai, j,k− 1
2

− Ai, j,k+ 1
2
)2
] 1

2
�x2.

(24)

4
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Table 2
Overview of building-blocks options available in the compute framework.

Building-Block Name Description

Level-set Advection Projection-based Discretization of 
DLSA,1(φ(x, t)) in Eq. (31)

WENO Discretization of 
DLSA,2(φ(x, t)) in Eq. (31)

Level-set Reinitializa-
tion

Min According to [67]

WENO Iterative procedure of [60]
using HJ WENO schemes 
[68]

Ghost-fluid Extrapola-
tion

Iterative According to [60]

Iterative Upwind According to [58]

Interface Riemann 
Solver

Linearized According to [69]. Extension 
to surface tension effects ac-
cording to [54]

Iterative According to [15]
Harten-Lax-van Leer-
contact (HLLC)

According to [70]

Riemann Solver Roe According to [14]
Local-Lax Friedrichs According to [16, sec 2.2.2]
Global-Lax Friedrichs According to [16, sec 2.2.2]
HLLC According to [71]. Different 

signal speeds are available, 
see below.

HLLC-LM According to [17]. Different 
signal speeds are available, 
see below.

HLL According to [15, ch. 10.3]. 
Different signal speeds are 
available, see below.

Signal Speeds Toro According to [71]
Einfeldt According to [72]
Davis According to [73]
Arithmetic According to [74]

Time Integration RK-2 According to [75]
RK-3 According to [75]

Reconstruction Stencils WENO-AO-53 According to [76]
WENO-CU-6 According to [77]
WENO-3 According to [78]
WENO-5-HM According to [79]
WENO-5-Z According to [80]
WENO-5 According to [18]
WENO-7 According to [81]
WENO-9 According to [81]
TENO-5 According to [19]

Derivative Stencils 2nd-order central differ-
ence
4th-order central differ-
ence
HOUC5 According to [82]

Equation of State Stiffened Gas According to [83]
Noble-Able According to [84]
Stiffended Gas Complete According to [85]
Tait According to [86]

We evaluate the convective flux densities based on the solution 
of the two-material Riemann problem satisfying the stress balance 
in interface normal direction

−nS ·�(Uξ1
S ) ·nS +nS ·�(Uξ2

S ) ·nS = −σnS(∇T ·nS) ·nS . (25)

Therein, Uξa
S , i = 1, 2 are the fluid states at the interface of the re-

spective fluid. Note, the above stress balance takes into account 
capillary forces, which are evaluated using the surface-tension co-
efficient σ between the two fluids. By solving this two-material 
Riemann problem, we obtain the absolute values for interface ve-

locity (uS )i, j,k and interface pressures 
(

pξ1
S
)

i, j,k
and 
(

pξ2
S
)

i, j,k
. 

Different two-material Riemann solvers exist. Table 2 list the 

solvers implemented in our framework. Velocity gradients at the 
interface are calculated using the same differentiation stencil as 
for the viscous cell-face fluxes. Details on the calculation of vis-
cous interface fluxes are presented in [54].

The volumetric source term on the right of Eq. (19) reads as

D̃VF =
∫

�
ξa
i, j,k

S dV = (αξa S̃
)

i, j,k �x3. (26)

More details and a thorough validation of the volume forces im-
plemented in ALPACA can be found in [55].

With the previously defined terms of Eqs. (22), (23), and (26), 
we rewrite Eq. (21) as

5
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∂
(
αξa Ū
)

i, j,k

∂t
= D̃FF + D̃IF + D̃VF = D̃NSE.

(27)

3.2. Numerical model for the interface

We implicitly capture the interface by a scalar level-set function 
φ(x, t) fulfilling the signed-distance property |∇φ| = 1 [51,56]. The 
location of the interface is always given by the zero level-set con-
tour

S(x, t) = {x : φ(x, t) = 0} . (28)

Two-phases are distinct from each other by the sign of the level-
set, i.e. φ > 0 in Vξ1 and φ < 0 in Vξ2 .

The discretization of the balance equations presented in Sec-
tion 3.1 requires the geometric information of the interface, includ-
ing the interface normal, cell-face apertures and volume fractions. 
We determine the interface normal nS by the normalized gradient 
of the level set

nS(x) = ∇φ(x)

‖∇φ(x)‖ . (29)

Assuming a linear approximation of the level set inside �i, j,k , cell-
face apertures Aξa

.,.,. are calculated analytically. Given the cell-face 
apertures, we calculate volume fractions αξa

i, j,k following [57].
In addition to the NSE, we solve the partial differential equation 

(PDE)

∂φ(x, t)

∂t
= DLSA(φ(x, t)) (30)

to evolve the level set in time. Two mathematically equivalent for-
mulations of the right-hand side can be found in literature [51,58]:

DLSA,1(φ(x, t)) = −uS(x, t)nS · ∇φ(x, t)

= −uS(x, t) |∇φ(x, t)| = DLSA,2(φ(x, t)).
(31)

The advection equation is strictly only valid where φ(X, t) = 0.0. 
However, solving the equation requires evaluation in a small region 
around the interface.

Solving Eq. (30) for φ �= 0 might lead to an irregular level-set 
field violating the signed-distance property. We recover the signed-
distance property by solving the reinitialization equation

∂φ

∂τ
= DReinit with (32)

DReinit = sgn (φ0) (1 − |∇φ|) (33)

iteratively in pseudo-time τ to steady state, according to [59]. We 
denote the operator to solve an equation to steady state as ISSS . 
Implementation details can be found in Algorithm 4. In Eq. (33), 
sgn(·) denotes the sign function and φ0 denotes the level set prior 
to reinitialization. Temporal evolution of Eq. (32) in pseudo time is 
done using the single step Euler scheme

φm+1 = EEuler
(
φm, D̃Reinit(φ,φn),�τ

)
. (34)

The subscript (·)m indicates the iteration step in pseudo time. The 
pseudo time step �τ is kept constant. The temporal evolution op-
erator E denotes an explicit time-integration scheme. The subscript 
indicates the specific scheme. Section 3.3 below gives more infor-
mation about time integration.

Stencils used to calculate Fα,i, j,k , Xξa
i, j,k , and uϒ,i, j,k might cross 

the interface. However, these stencils work on each fluid separately 
and thus require information of the considered fluid on both sides 
of the interface. We call the cells on the opposing side of the in-
terface ghost cells. Each fluid has its own ghost cells, which overlap 

with the real cells of the other fluid. We fill ghost cells by extrapo-
lating real-fluid conservatives U normal to the interface. Therefore, 
we solve the one-way extrapolation equation

∂U(x)

∂τ
= DExt,1W with (35)

DExt,1W = nζi
S(x) · ∇U(x) (36)

iteratively in pseudo-time τ to steady-state. Details about the dis-
cretization D̃Ext, 1W of the right-hand side can be found in [60]. We 
use a single step Euler scheme

Um+1 = EEuler
(
Um, D̃Ext,1W(U),�τ

)
(37)

to evolve Eq. (35) with constant �τ .
A two-way extrapolation is necessary to extrapolate quantities 

known only at the interface Q to the narrow band. The respective 
equation reads

∂Q(x)

∂τ
= DExt,2W with (38)

DExt,2W = sgn (φ)nζi
S(x) · ∇Q(x), (39)

and is solved iteratively in pseudo time τ to steady state. Again, 
we use a single step Euler scheme

Qm+1 = EEuler
(
Qm, D̃Ext,2W(Q),�τ

)
(40)

to evolve Eq. (38) with constant �τ . Details about the discretiza-
tion of D̃Ext,2W can be found in [60].

3.3. Time integration

We advance initial-boundary value problems of the form ∂U
∂t =

D̃(U) in time using explicit Runge-Kutta (RK) integration [61,62]. 
D̃(U) denotes the discretization of the right-hand side. To avoid 
spurious oscillations, we only apply strong stability preserving [63]
integration schemes. We denote the operator, which evolves the 
equation by one time step according to a RK scheme, by E . For the 
NSE, this gives the solution at the next time step as

Un+1 = ER K
(
Un, D̃(U),�t

)
. (41)

Analogously, the level set is advected in time using the same evo-
lution operator

φn+1 = ER K
(
φn, D̃(φ),�t

)
. (42)

For stability, we have to restrict the time-step size by

�tNSE = C F L · min
(
�tc,�tμ,�tq,�ts,�tS

)
, (43)

where

�tc = max
�i, j,k∈Ṽξ1 ∪�i, j,k∈Ṽξ2

(

‖‖v‖ + c‖

�x

)−1

,

�tμ = max
�i, j,k∈Ṽξ1 ∪�i, j,k∈Ṽξ2

(
14μ

3ρ�x2

)−1

,

�ts = max
�i, j,k∈Ṽξ1 ∪�i, j,k∈Ṽξ2

(

‖‖v‖+ c‖+√


‖‖u‖+ c‖+4‖g‖�x

2�x

)−1
,

�tq = max
�i, j,k∈Ṽξ1 ∪�i, j,k∈Ṽξ2

(
14κ

3ρcp�x2

)−1

, and

�tS = max
�i, j,k∈S̃

⎛
⎜⎝
√√√√ 8πσ

�x3
∑

i
ρξa

⎞
⎟⎠

−1

(44)
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denote the stability criteria for convective fluxes [47], viscous 
fluxes [59,64], heat fluxes, volume forces [59,64] and interface 
terms [65], respectively. Here, the speed of sound c is given by the 
EOS and cp denotes the specific heat capacity at constant pressure.

For full cells with αξa
i, j,k = 1, stability is ensured by setting the 

Courant-Friedrichs-Lewy (CFL) constant smaller 1. To avoid spuri-
ous oscillations in small cells with αξa

i, j,k � 1, a conservative mix-
ing procedure following [57,58,66] is employed, cf. Appendix A.

4. Modularity table

For each of the building blocks of the numerical model pre-
sented above, a variety of alternative discretization schemes exist. 
We list the alternatives available in our framework in Table 2. The 
table consists of three parts. The first part lists the larger building 
blocks that form the numerical model presented above. The second 
part gives stencils used within the building blocks of part one. The 
third part states available EOSes to model the fluids. The building 
blocks are independent of each other and give maximum flexibility 
to the user.

5. Block-based multiresolution

We employ MR compression to decrease the numerical load 
and thus increase the feasible resolution of our simulations. The 
MR representation of a (solution) function u(x, t) is expressed as

u(x, t) =
∑

k

ckθk(x, t) +
∑

m

∑
k

dlm
k ψ

lm
k (x, t) (45)

on overlaying dyadic grids with levels lm, m ∈ [0, . . . ,∞]. Therein, 
ck and θk are scaling coefficients and scaling functions, respec-
tively. Their product sum defines the general shape of the function. 
Respectively, dlm

k and ψ
lm
k denote the details and wavelet func-

tions. They build up the second term on the right which gives 
an indicator of the smoothness on the m-th refinement level lm . 
The subscript k samples the respective functions at grid points 
xlm

k = 2−lm k ∈Z. We achieve compression by restricting m.
Data on level lm is brought to a finer level lm+1 via the predic-

tion operator P(ulm ) → ulm+1 . Vice versa, the conservative averag-
ing operator A(ulm+1 ) → ulm brings information from a finer to a 
coarser level. Both operators are consistent, i.e. A 

(
P
(
ulm

)) = ulm . 
By using interpolation wavelets [36,41], the detail function

dlm(x) =
∑

k

dlm
k ψ

lm
k (x) = ulm+1(x) − ulm (x) (46)

gives a direct measure for the smoothness of the solution u(x, t). 
Small details indicate smooth regions. In these regions, we com-
press the solution by setting details below a level-dependent 
threshold to zero. This MR thresholding naturally defines the re-
spective grid resolution in the flow. Vanishing and non-zero details 
indicate regions to be coarsened, or refined, respectively. In addi-
tion, memory compression is achieved by not storing zero-details 
[37,38]. This results in binary-, quad- or octree data-structures in 
one, two or three dimensions, respectively. We refer to a node in 
this tree as parent if it has children and as leaf otherwise. Harten 
applied this approach successfully to one-dimensional (compress-
ible) fluid-flow simulations [36]. It was extended to viscous flows 
[45] and multiple dimensions [44].

Additionally, further compression is achieved by the use of 
(adaptive) LTS schemes [46,47]. This reduction is achieved by inte-
grating coarser levels with larger time-step sizes than finer levels. 
We call a time step on the finest level a micro time step and on 
the coarsest a macro time step, respectively. The number of micro 

time steps in a macro time step is r = 2lmax−1. For the adaptive LTS, 
the time-step size (43) is adjusted after every micro time step.

We use the previously introduced fully-adaptive MR and adap-
tive LTS scheme to achieve spatial and temporal adaptivity, respec-
tively. However, we do not coarsen or refine single cells. Instead, 
we define blocks which are treated uniformly. Blocks on all lev-
els consist of a predefined number of cells, e.g. 323. Although the 
compression might be lower than for cell-based MR approaches, 
this is of little relevance for three-dimensional cases [55]. Yet, the 
block-based approach allows to leverage the multiple levels of par-
allelism in modern HPC systems [50,55]. For distributed-memory 
parallelization a block is a domain-decomposition element and the 
smallest parallel unit. We use halo cells to handle data dependen-
cies between adjacent blocks [47,50]. Halo cells are filled with data 
from neighboring blocks using the halo-update operator H. Imple-
mentation details are presented in Algorithm 2. At domain borders, 
halo cells are used to impose boundary conditions. In addition, the 
halo concept ensures the graded-tree property [37] even for arbi-
trary resolution jumps between neighboring blocks.

6. Interface tagging system

We have developed a tagging system for the block-based MR 
algorithm that is inspired by the narrow-band approach. The aim 
is to limit the computational and memory overhead of the inter-
face model to the narrow-band region only. Regions away from 
the interface are not affected and still benefit from the clean 
MR mechanism. This is achieved by introducing tags that link 
the narrow-band information into the MR topology. We augment 
the block-based single-phase MR scheme by introducing two node 
types. First, we have single-phase MR nodes that contain one fluid 
block as described in [55]. Second, we have multi-phase nodes that 
contain two fluid blocks. Multi-phase nodes which are leaves ad-
ditionally hold a level-set block. We also store our interface tags 
(ITs) in blocks. All node types hold such an IT block. The differ-
ent block types within a node have the same amount of cells and 
the same geometric location and orientation. The introduced node 
types allow to define the following rules, which ensure the objec-
tives stated above.

1. A tree node may hold one or two blocks. Each block contains 
the data of one and only one phase.

2. A multi-phase node which is a leaf holds an additional level-
set block, which contains the level-set and interface data. In-
terface data are e.g. interface velocity and pressures.

3. Parents of multi-phase nodes are multi-phase nodes them-
selves.

4. Only single-phase nodes participate in the MR based coarsen-
ing and refinement.

5. Single-phase leaves are refined if the interface approaches un-
less they reside on the maximum level. Thus, they become a 
parent node.

6. Maximum-level single-phase leaves allocate a second fluid and 
a level-set block if the interface approaches.

7. Vice versa, maximum level multi-phase leaves deallocate the 
second fluid and level-set block if the interface retreats.

8. Single-phase parent nodes allocate a second fluid block if the 
interface approaches.

9. Conversely, multi-phase parent nodes deallocate the second 
fluid if the interface retreats.

Complying with the first four rules is trivial. The challenging part 
lies in the remaining rules, which require notification of approach-
ing or retreating interfaces.

For approaching interfaces we have to ensure that nodes are 
successively refined, such that lmax is reached before the inter-

7
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Fig. 2. Interface tag structure for a two-dimensional grid. The interface line is shown 
in orange. Cells containing a piece of the interface are consequently marked as cut 
cells ( ). The band structure of C̃NB ( ), ẼB ( ) and R̃B ( ) is clearly visible. 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

face reaches the respective node. We achieve this by the previously 
mentioned ITs. The ITs are a cell-wise quantity. They are denoted 
as Mlm and represent the interface and its surrounding. We use 
four different interface tags. First, the tag value 0 ( ) indicates a 
cut cell. Second, the tag value ±3 ( ) indicates the cut-cell neigh-
bor band

(
C̃NB
)
, defined as

C̃NB = {�i, j,k|∃�i+l, j+m,k+n ∈ S̃ , with l,m,n ∈ {−1, . . . ,+1}} .
(47)

Third, the tag value ±7 ( ) indicates the extension band
(
ẼB
)
, de-

fined as

ẼB = {�i, j,k|∃�i+l, j+m,k+n ∈ S̃ , with l,m,n ∈ {−3, . . . ,+3}} .
(48)

In this region, the extrapolation equations cf. Section 3.2 are solved 
on the finest level. Fourth, the tag value ±8 ( ) indicates the reini-
tialization band

(
R̃B
)
, defined as

R̃B = {�i, j,k|∃�i+l, j+m,k+n ∈ S̃ , with l,m,n ∈ {−4, . . . ,+4}} .
(49)

In this region, the level-set reinitialization equation cf. Section 3.2
is solved. The sign of the IT corresponds to the level-set function 
and indicates the fluid. The used IT values allow efficient bit shift 
operations. Other values could be chosen. Nevertheless, the value 
0 is particularly helpful for the IT averaging described below. As 
an example, we show the interface tag field for a simple two-
dimensional domain in Fig. 2.

With an interface field as shown in Fig. 2, we comply with 
the remaining rules and minimize the computational load. On the 
finest level, the interface tags define the region for the narrow-
band approach. On the other levels, the level set can be neglected 
completely. The interface tags suffice to represent the interface 
and its narrow band in a coarse manner. This saves memory as 
interface tags are one byte integers compared to the eight byte 
level-set double precision values. We deduce ITs on coarser lev-
els from the ITs on the finest level using an averaging operator 
A 
(
Mlm

)→ Mlm−1 analogous to the MR averaging.
In the interface tag averaging, we multiply the interface tag 

values of the fine cells. Thus, the position of cut cells is clearly 
identified by zero values. The other coarse interface tag values are 
in an inconsistent state afterwards. We overwrite them arithmeti-
cally based on the distance to the cut cells, cf. Eqs. (47) to (49). 
We call this the tagging operator T

(
Mlm

)→ Mlm . With correct ITs 

Table 3
Operators involved in the algorithm. For details refer to the respec-
tive sections.

Operator symbol Operator description Details

D Right-hand side Section 2
E Temporal evolution Section 3.3
A Averaging Section 5
P Prediction Section 5
T Tagging Section 6
H Halo update Section 5
ISSS Iterative steady-state solver Section 3.2

Table 4
Buffers involved in the algorithm.

Symbol Symbol description

U Conservatives
P Prime States
M Interface tags
φ Level set
Q Interface quantities

Table 5
Sets of nodes involved in the algorithm.

Nall: All nodes (on all levels)
NL : All nodes on levels lm ∈ {lmax, . . . , lmax−((r+1)∨r)

}
, 

with the current micro time step r ∈ 0, . . . , 2lmax

N0: All nodes on level zero
L: All leaves (on all levels)
LL: All Leaves holding a level-set block

on all levels, adjusting the MR octree to approaching and retreat-
ing interfaces is straightforward. Note, this concept allows to adapt 
the MR representation implicitly as with the details-thresholding 
for approaching flow discontinuities. Fig. 3 shows exemplarily the 
MR discretization of a simple one-dimensional domain. For the 
given time instance, all nodes on the coarsest level are multi-phase 
nodes. The interface then moves to the position indicated by the 
dotted line. Based on the new interface location the ITs are set ac-
cording to the averaging and tagging procedure described above. 
This shifts all ITs on all levels one cell to the right. Hence, the left 
most block does not hold an IT value anymore, not even in its halo, 
and can thus deallocate the second fluid. After that, this node and 
its child nodes will participate in the MR thresholding.

7. Implementation

The implementation of the presented building blocks in a holis-
tic HPC simulation environment is not trivial. Careful attention has 
to be paid to the algorithmic details without compromising the 
computational performance. We summarize the operators used in 
the final algorithm in Table 3.

As stated earlier, the operators work on different quantities 
throughout the algorithm. We keep each such quantity in a re-
spective buffer. For each node in the MR octree, these buffers are 
allocated as blocks. We summarize the used buffers in Table 4. 
Also, operators are applied to different sets of nodes as we have a 
space- and time-adaptive algorithm. We summarize these sets in 
Table 5.

We give the final algorithm to advance the simulation in time 
in Algorithm 1. Detailed descriptions of several subroutines in this 
algorithm are shown in Algorithms 2 to 4. Note, that Algorithm 1
requires a correctly initialized MR tree. This includes the level-set 
field and deduced interface tags.

8
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Fig. 3. Interface tag representation for a three-leveled block-based MR tree in one dimension. For each node the halo cells are represented by dashed lines. To indicate the 
overlap of halo cells, blocks of the same level are offset on top or below each other. The interface for the current and future time is shown as solid, respectively dashed, line 
in orange. The interface tag markers denote the current interface position. The dark blue color indicates a multi-phase node, the brighter one shows a single-phase node. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

while t < tend do
for Micro time steps r do

�tlm ← satisfying Eq. (43), according to [47]
for RK stages do

if r = 0 then D̃N S E (U) |Nall

else D̃N S E (U) |NL

D̃L S A (φ) |LL

A (D̃N S E
(
Ulm

)) |Nall\N0 → D̃N S E
(
Ulm−1

)
H (D̃N S E (U) |Nall , true

)
// cf. Algorithm 2

H (D̃L S A (φ) |LL , true
)

E
(
U, D̃,�tlm

)
// cf. Algorithm 3

E
(
φ, D̃(φ),�t

)
; A (Ulm

) |NL \min (NL ) → Ulm−1

if last stage then Resolution jump flux correction [47]
H (Ũ) and H (φ)

if last stage then
Remesh and re-distribute load // cf. Section 7.1

end

if α
ξa
i, j,k � 1 then Mix cell // cf. Section 3.3

ISSS
(
φ, D̃reinit

)
// cf. Section 3.2

and Algorithm 4
T (M) // cf. Section 6

ISSS
(
P, D̃ext,1W

)
// Extrapolate prime states 

cf. Section 3.2 and Algorithm 4

ISSS
(
Q, D̃ext,2W

)
// Extrapolate interface 

quantities cf. Section 3.2 and Algorithm 4
A (Mlm

) |NL \N0 → Mlm−1

end
end
t+ = �tlm

end

Algorithm 1: Compute Loop executed in a simulation.

Function H (Buffer blm , Bool include_jumps = false
)

for All sides s of blm do
if side is a resolution jump and include_jumps then

Fill halo cells via prediction from coarser level lm
blm,s = P

(
blm,s
)

end
else

Fill halo cells blm,s from neighbor on same level lm
end

end
end

Algorithm 2: Halo update H implementation.

7.1. Distributed implementation

We parallelized the above algorithm using Message Passing In-
terface (MPI). This is also visible by the term “re-distribute load” 
in Algorithm 1. The parallelization is also implied in all routines 
exchanging data between nodes of the MR tree.

Our parallelization builds on the separation of heavy-computa-
tion data from lightweight topology data. We tag each node with a 
unique id. This allows to store the heavy data in a rank-local hash 

Function E (Buffer U, �t)
for All sides s of U do

if s is a resolution jump then
// Integrate its halo cells:

sn+1 = ER K
(
sn, D̃ (U) ,�tlm

)
// cf. Section 3.3

and Eq. (41)

end
end
// Integrate the internal cells:

Un+1 = ER K
(
Un, D̃ (U) ,�tlm

)
end

Algorithm 3: Time integration E implementation according to 
[47].

Function ISSS
(
b, D̃ (b)

)
Iteration counter i = 0
m = maximum number of iterations while i < m do

// Check convergence
if D̃ (b) < ε and i > 0 then

break
end
Calculate D̃ (b) for internal cells
Update b using EEuler

(
b, D̃ (b) ,�τ

)
H (b) |LL // set correct values for the entire 
field

i = i + 1
end

end

Algorithm 4: Iterative implementation of ISSS to reach 
steady-state.

map. The id also identifies communication partners for cross-node 
communication. We distribute the computational load by assigning 
nodes to ranks using a level-wise space filling curve (SFC) [55]. 
Parent nodes are assigned to the same rank as the majority of their 
children reside on. We balance the load every micro time step if 
the topology changed.

7.2. Modularity

We paid special attention to usability, extendability and flexibil-
ity of our implementation without sacrificing parallel performance. 
Therefore, we chose an object-oriented (OO) approach written in 
C++20. We strictly separate data containers and data manipulators. 
This separation eases variation of the building blocks given in Ta-
ble 2. Building blocks are selected at compile-time using the curi-
ously recurring template pattern (CRTP). This enables full compile-
and link-time optimization. Hence, the overall performance is com-
parable between schemes [50] and fair comparisons between com-
peting schemes can be drawn. In addition to compile-time modu-
larity, our framework offers various runtime options, e.g. topology 
settings, boundary conditions or EOSes. We implement those us-

9
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Fig. 4. Error convergence over maximum MR refinement level for the advecting Gaussian density bells. For both, single-phase (left) and two-phase (right), three different 
combinations of reconstruction stencil and RK time integration were tested: WENO-5 and RK-3 ( ) WENO-3 and RK-2 ( ), as well as WENO-1 and RK-2 ( ).

Fig. 5. The simulated domain is shown on the left. The deformation D for different simulated capillary numbers Ca is shown on the right.

ing runtime polymorphism and well-known programming patterns 
like the factory method and the proxy.

8. Numerical test cases

We show the capabilities of our solver by numerous challenging 
test cases. We present a convergence study as well as validation for 
the implemented viscous and capillary terms. Afterwards, physi-
cally interesting shock-interface interactions are presented. Unless 
stated otherwise, we use the following configuration of build-
ing blocks cf. Table 2: projection-based WENO level-set advection 
using the third-order Hamilton-Jacobi WENO (HJ-WENO) stencil, 
WENO reinitialization using the third-order HJ-WENO stencil, it-
erative extrapolation, linearized interface Riemann solver, WENO-5 
reconstruction stencil, Roe Riemann solver, RK-3 time integration. 
We compute velocity and temperature gradients for viscous and 
heat fluxes using fourth-order central differences and reconstruct 
them to cell faces using a fourth-order central scheme.

8.1. Convergence study

We advect two gaussian density bells

ρ = 1 + 5 exp
(
−200 (x − 0.5)2

)
+ 5.0 exp

(
(x − 1.5)2

)
(50)

in a periodic domain of size two with constant velocity u = 1 and 
pressure p = 1. The simulation is run until tend = 0.5. We ran 
this case as single-phase simulation and with an additional in-
terface located between the density bells. For both setups, three 
different configurations of the numerical schemes were tested. The 

first configuration is the standard configuration. For the second 
and third configuration we varied the orders of the reconstruction 
stencil and of the time integration. Convergence is demonstrated 
for increasing maximum MR refinement level. The coarsest resolu-
tion lmax = 1 implies a homogenous mesh. The finest resolution is 
lmax = 7 and accounts for 4096 effective cells. The obtained l2-error 
norms are given in Fig. 4.

The convergence rates show the expected trends. The scheme 
of lowest-order dominates the overall convergence order. Only the 
first order spatial reconstruction exceeds its nominal convergence 
order slightly. For very small errors the convergence levels off due 
to the dominance of the perturbation error [38].

8.2. Shear-drop deformation

We used an immersed circular liquid drop in a sheared ambi-
ent liquid to validate the interplay of viscous and capillary forces. 
In this case, viscous forces shearing the drop compete with the 
surface-minimizing capillary forces. For stable parameters, the drop 
reaches a terminal ellipsoidal shape. Exemplarily, Fig. 5a shows the 
converged state of such a drop. The final state is determined by 
the viscosity ratio μb/μd and the capillary number

Ca = μb R0 ṡ

σ
. (51)

Therein, R0 denotes the initial radius of the droplet, ṡ the shear 
rate, σ the surface tension coefficient and μd and μb the viscosi-
ties of the drop and bulk fluid, respectively. For small deforma-
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Fig. 6. Schematic of the computational domain of a RMI. The wavelength of the single-mode RMI is λ = 1. The interface is initially located at i = 2.9 and disturbed with an 
amplitude a0 = 0.1. The shock is located at s = 0.8. Symmetry and zero-gradient boundary conditions are applied as indicated in the figure.

Table 6
Initial fluid states and EOS parameters for the shock-interface interaction cases. For the upper three cases, the stiffened-gas EOS is 
used. The remaining cases use the stiffened-gas complete EOS.

ρ p u v γ � R et E∞

SF6 RMI
SF6 5.04 1.0 0.0 0.0 1.093 0.0 - - -
pre-shock air 1.0 1.0 0.0 0.0

1.4 0.0 - - -
post-shocked air 1.411 1.628 0.39 0.0

Helium SBI 2D
Helium 0.166 101325.0 0.0 0.0 1.66 0.0 - - -
pre-shocked air 1.2041 101325.0 0.0 0.0

1.4 0.0 - - -
post-shocked air 1.6573 159056.0 114.5 0.0

Helium SBI 3D
Helium 0.166 101325.0 0.0 0.0 1.66 0.0 - - -
pre-shocked air 1.2041 101325.0 0.0 0.0

1.4 0.0 - - -
post-shocked air 1.7201 167819.5 128.7 0.0

R22 SBI 3D
R22 3.117 1.0 0.0 0.0 1.178 0.0 0.3208 0.0 0.0
pre-shocked air 1.0 1.0 0.0 0.0

1.4 0.0 1.0 0.0 0.0
post-shocked air 1.376 1.5698 0.3947 0.0

Three bubble
Air bubble 1.0204 101325.0 0.0 0.0 1.178 0.0 287.058 0.0 0.0
pre-shocked water 993.89 101325.0 0.0 0.0

4.4 6.0e8 1700.0 -1.8e6 7.456e6
post-shocked water 1222.9 1.0e9 434.02 0.0

tions, the following relation between the drop the deformation D
and Ca holds [87]:

D = B1 − B2

B1 + B2
= Ca

19μb/μd + 16

16μb/μd + 16
, (52)

where B1 and B2 denote the major- and minor-axis of the el-
lipsoidal drop. We use a square-shaped domain of length L = 8. 
Shearing is imposed by constant velocities U = ±4m/s at the top 
and bottom boundaries, respectively. This yields ṡ = 1. Periodicity 
is imposed at the remaining boundaries. Initial conditions and ma-
terial parameters using Tait’s EOS for both fluids are

p = 2 · 103, ρ = 1, ρ0 = 1, A = 2 · 103, B = 2 · 104, γ = 7.15,

σ = 50, μ = 5. (53)

The initial condition for the level set is

φ = R0 −
√

(x − 4)2 + (y − 4)2. (54)

We set R0 = 1 and simulate Ca = 0.05, 0.1, . . . , 0.30. The capillary 
number is adjusted by varying σ . The results agree well with the 
analytic solution as presented in Fig. 5b.

8.3. Richtmyer-Meshkov instability

We conduct a two-dimensional Euler simulation of the Richt-
myer-Meshkov Instability (RMI) [88]. Our computational setup fol-

lows [89,90]. We sketch the computational domain in Fig. 6 and 
give the initial conditions in Table 6.

Fig. 7 shows the evolution of the RMI over time. Fig. 7a gives 
the initial state. Then, the incident shock wave moves from left 
to right. When it hits the interface, a reflected shock wave moves 
to the left and a transmitted shock moves to the right, cf. Fig. 7b. 
Baroclinic vorticity generation triggers the interface disturbance, cf. 
Fig. 7c. Over time, the instabilities at the interface grow further 
and the characteristic mushroom like shape develops, cf. Fig. 7d. 
The overall flow features are in good agreement with [89].

We show the temporal evolution of characteristic interface 
points in Fig. 8. The mixing layer width shows a kink at approx-
imately t = 0.15, where the initial shock passes the right-most 
point of the interface. Up to this point the mixing layer decreases. 
Thereafter, it starts to grow. We compare our results for three 
different resolutions λ/�x = 128, 256, 512, where λ denotes the 
wavelength of the single-mode RMI, with [89] and find good agree-
ment.

8.4. Air helium shock-bubble interaction

We conduct two-dimensional Euler simulations of a helium 
column interacting with a shock wave in air. This test case is 
frequently used to assess the performance of numerical methods 
[86,89,91–93]. Our setup follows the experiments of [94] and is 
sketched in Fig. 9. We give the problem dimensions, initial condi-
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Fig. 7. The flow field in the simulated domain for different time instances. The upper half of each image shows numerical schlieren images, and the lower half the velocity in 
x-direction. The interface is shown as a black line.

Fig. 8. Evolution of characteristic interface points. The position of the spike xspike (left-most point of the interface), the position of the bubble dbubble (right-most point of 
the interface), and the mixing layer width wmixing layer = xspike − xbubble are shown. From left to right, we show the coarse, medium and fine results, respectively. Results of 
Terashima, Tryggvason [89] are included for comparison. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 9. Schematic two-dimensional projection of the computational domain for the shock-bubble interactions.

tions and material parameters in Tables 6 and 7, respectively. The 
Mach number of the initial shock wave is Mas = 1.22.

Fig. 10 shows the flow field for two different time instances. 
When the initial shock wave hits the helium bubble, a reflected 
shock moves to the left, and a transmitted shock inside the bubble 
is generated. Due to the higher speed of sound, the transmitted 
shock inside the bubble moves faster than the initial shock in 
air, cf. the flow field in Fig. 10a. Initiated by the shock passage, 
the bubble deforms strongly by the induced jet, cf. Fig. 10b. We 
compare the flow features in our results to 2D numerical simula-

tions [89] and experiments [94] with a helium column. Also, we 
compare quantitatively the temporal evolution of characteristic in-
terface points to results of [92] in Fig. 11. Both, qualitative and 
quantitative assessments show good agreement.

We also conduct three-dimensional simulations of a spherical 
setup as shown in experiments with a helium bubble by [94]. A 
helium sphere interacts with a Mas = 1.25 shock wave in air. In Ta-
ble 6 we give initial conditions and material parameters. Problem 
dimensions and a sketch of the computational domain are given 
in Table 7 and Fig. 9, respectively. Note, Fig. 9 only shows the two 
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Fig. 10. The flow field in the simulated domain for different time instances. The upper half of each image shows numerical schlieren images, and the lower half the pressure 
field. The interface is shown as a black line.

Fig. 11. Evolution of characteristic points of the interface. The position of the upstream point (left-most point of the interface), the position of the downstream point (right-
most point of the interface), and the position of the jet (left-most point of the interface in the symmetry plane) are shown. Exemplarily, the characteristic points are sketched 
in the lower right of the picture in blue, green and orange, respectively. From left to right, we show coarse (512 × 128 effective cells), medium (1024 × 256 effective cells) 
and fine (2048 × 512 effective cells) results, respectively. Reference data is taken from Terashima, Tryggvason [89]. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Table 7
Dimensions of the shock-bubble interaction cases.

lchannel hchannel dshock dbubble D0,bubble

Helium 2D 356mm 89mm 60mm 90mm 50mm
Helium 3D 356mm 89mm 60mm 90mm 45mm
R22 0.4 0.2 0.1 0.15 0.025

spatial dimensions x and y. In the z-direction, we impose the same 
setup regarding size, boundary conditions, and initial conditions as 
in the y-direction. The effective resolution is 4096 × 1024 × 1024
cells. Fig. 12 shows a comparison between the experimental im-
ages of [94] and our numerical results. We find excellent agree-
ment for the drop deformation and flow evolution.

8.5. Air R22 shock-bubble interaction

In contrast to the previous examples, here we study the shock 
interaction with a denser bubble than the surrounding fluid. 
For this purpose, the Air/R22 shock-bubble interaction is simu-
lated based on the setup of [95]. We conduct two- and three-
dimensional simulations of this case.

In Table 6 we give initial conditions and material parame-
ters. Problem dimensions and a sketch of the computational do-
main are given in Table 7 and Fig. 9, respectively. Note, Fig. 9
only shows the two spatial dimensions x and y. In the three-
dimensional case, we impose for the z-direction the same setup 
regarding size, boundary conditions, and initial conditions as in the 
y-direction. For this setup, we neglect body and capillary forces. 
The viscosities for air and R22 depend on the temperature. We 
employ the Sutherland law [96] to express this relation. Follow-
ing [95], we use (T0, μ0, S, Pr)air = (275, 1.725e−5, 110.9, 0.7) and 

(T0, μ0, S, Pr)R22 = (273, 1.15e−5, 330.0, 0.65), respectively, with 
the dimensionless Prandtl number Pr = cpμ/κ .

For the two-dimensional setup, we show the flow field at dif-
ferent time instances in Fig. 13. Due to the shock-focusing in the 
bubble, cf. Fig. 13a, a small cusp develops on the downstream 
centerline of the bubble, cf. Figs. 13b and 13c. At the same time 
baroclinic vorticity generation triggers small interface disturbances 
that eventually grow and shear off from the equatorial plane, cf. 
Fig. 13d. The quantitative comparison of the most upstream in-
terface point with data from Kannan et al. [95] in Fig. 14 shows 
excellent agreement.

Three-dimensional results with a resolution of 2048 × 1024 ×
1024 effective cells are shown in Fig. 15. The flow features are 
similar to the two-dimensional setup presented above. However, 
stronger shock-focusing leads to a much prolonged filament at the 
downstream side in three dimensions, cf. Figs. 15b to 15d.

8.6. Water air shock-bubble interaction

Finally, we consider a shock-interface interaction problem with 
a high density ratio. Here, we focus on a shock-bubble configu-
ration, where the ambient bulk fluid is denser. The opposite con-
figuration has already been studied using ALPACA, e.g. [97]. We 
consider a complex interaction with three staggered bubbles, cf. 
Fig. 16. The initial conditions are provided in Table 6. This test case 
is simulated in 2D and 3D as done in [98]. Note, we choose peri-
odic boundary conditions in the third direction analogous to the 
y-direction.

The flow field for different time instances is shown in Fig. 17. 
After shock passage, the lower bubbles are impinged and skew to-
wards the center bubble, cf. Fig. 17a. Later, the remaining parts 
of the large bubbles disintegrate, cf. Fig. 17b. The small bubble 
then also collapses due to interaction with the initial and reflected 
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Fig. 12. Comparison of computational and experimental results. We show numerical schlieren and the bubble contour for our simulation in the first row. The second row 
shows experimental images for comparison. Images from Haas, J. F., & Sturtevant, B. (1987), Interaction of weak shock waves with cylindrical and spherical gas inhomo-
geneities, Journal of Fluid Mechanics, 181, 41-76, reproduced with permission. A back and front view of the bubble contour colored by the interface velocity is shown in 
the bottom two rows. Blue indicates a high interface velocity opposite to nS . Red indicates a high interface velocity in direction of nS . The shown snapshots are taken at 
t = 20, 82, 145, 223, 350 μs after the initial shock hits the bubble. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 13. The flow field in the simulated domain for different time instances. The upper half of each image shows numerical schlieren. The lower half depicts the temperature. 
The interface is shown as a black line.

shock waves, cf. Figs. 17c and 17d. We compare the evolution of 
the maximum pressure inside the domain with [98] in Fig. 18 and 
find excellent agreement.

Three-dimensional results with an effective resolution of 1792 ×
1024 × 1024 cells are shown in Fig. 19. The flow features are sim-
ilar to the two-dimensional setup.

14



N. Hoppe, J.M. Winter, S. Adami et al. Computer Physics Communications 272 (2022) 108246

Fig. 14. Evolution of the upstream point (left-most point of the interface). From left to right, we show coarse (1024 × 512 effective cells), medium (2048 × 1024 effective 
cells) and fine (4096 × 2048 effective cells) results, respectively. For comparison, results of Kannan et al. [95] are shown.

Fig. 15. The flow field in the simulated domain and the interface contour for different time instances. Numerical schlieren in the x-y center plane are projected to the upper 
right. Similarly, the temperature in the x-z center plane is shown in the bottom. The corresponding legend is given at the bottom. The contour of the R22 bubble is shown 
in gray. Light gray indicates a low interface velocity. Dark gray indicates a high interface velocity.
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Fig. 16. Two-dimensional projection of the three-bubble setup. The width and height of the computational domain are w = 0.0035 and h = 0.002, respectively. The initial 
position of the shock and bigger bubbles are dshock = 0.00015 and dbubble = 0.00075, respectively. The initial distances between the bubbles are dx = 0.0015 and dy = 0.0005, 
respectively.

Fig. 17. The pressure field in the simulated domain for different time instances. The interface is shown as a white line.

9. Performance

We show the parallel performance of our implementation by 
means of profilings, and weak- and strong-scaling studies. We use 
two most differently configured executables, in terms of the mod-
ular algorithmic building blocks, cf. Table 2. Thereby, we show 
that performance is maintained across different variants. We refer 
to these two executables as ‘standard’ and ‘shuffle’. The standard 
configuration coincides with the default configuration of the pre-
vious Section 8. For the shuffle configuration, we employ HOUC 
level-set advection using the HOUC-5 derivative stencil, Min reini-
tialization, iterative upwind extrapolation, HLLC interface Riemann 
solver, WENO-7 reconstruction stencil, HLLC Riemann solver, and 
RK-2 time integration. Viscous and heat terms are calculated the 
same as in the standard configuration.

We conducted all measurements on ‘SuperMUC-NG’ at the 
Leibniz–Rechenzentrum. It consists of Intel Xeon Platinum 8174 
Codename “Skylake” compute nodes. Each node consists of 48 
cores running at a base frequency of 2.7 GHz. Nodes are connected 
via a 100 Gbits−1 OmniPath network.2 To counteract measurement 
uncertainties, we conduct each simulation three times and report 
the average. The variance across all runs was < 2%.

First, we determine the overhead of the multi-phase treatment 
using Intel’s “VTune Amplifier 2019 Update 6”. Therefore, we set 
up a domain consisting of a single block with an interface in the 
middle. We run it on a single core. For the standard and the shuffle 
configuration, the treatment of the level set accounts for roughly 

2 https://doku .lrz .de /display /PUBLIC /SuperMUC -NG.

16



N. Hoppe, J.M. Winter, S. Adami et al. Computer Physics Communications 272 (2022) 108246

Fig. 18. Evolution of the maximum pressure inside the domain. From left to right, we show coarse (896 × 512 effective cells), medium (1792 × 1024 effective cells) and fine 
(3584 × 2048 effective cells) results, respectively. For comparison, we show results of [98] in black.

Fig. 19. Three-dimensional bubble contours colored by interface velocity. Blue indicates a low interface velocity. Red indicates a high interface velocity. The shock travels from 
the lower left to the upper right. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

26% of the runtime. We also simulate a more realistic test case 
with a single resolution jump from lmax = 3 to the coarsest level. It 
is run with 24 MPI ranks. The standard configuration still spends 
about 25% in subroutines related to the level-set treatment. In 
the shuffle configuration this fraction reduces to 20%. In this case, 
8.5% and 9.3% of the runtime are spent in MR related routines for 
standard and shuffle configuration, respectively. For all cases, how-
ever, the major part of the runtime (> 52 − 66%) is spent in the 
flux computation. Our multi-block setup allows using our well-
optimized SIMD-capable modular implementation for single-phase 
flux computations [50].

9.1. Weak scaling

We use a Sod shock-tube problem [99] for our weak-scaling 
analysis. The density, pressure and velocity states at t = 0.2 are 
given in Fig. 20a. The initial discontinuity in the middle of the do-
main is also the initial position of the interface. We model the 
phases as ideal gas with γ = 1.4. We use two blocks on l0 and set 
lmax = l4 for the single-node setup. This yields an effective reso-
lution of 512 × 512 × 1024 cells. The quasi one-dimensionality of 
the problem allows to precisely increase the numerical load. Re-
gardless the adaptive mesh size, the load grows proportional to 
the number of compute nodes. We set up the problem along the 
z-axis and increase the domain size in the “superfluous” dimen-
sions as needed. The increased workload for 512 compute nodes 
results in a problem size of roughly 685 billion degree of freedom 
(DOFs). In this case, despite the MR compression, 100 billion DOFs 
are actually computed cf. Section 10.

In the scaling runs, we reduce the amount of time steps. We 
advance to tend = 0.013 with a constant CFL = 0.95. In Fig. 20b, 
the weak-scaling efficiency ηw for both configurations is given. 
In both configurations, we observe a reasonable scaling behavior. 

The scaling efficiency stays above 75% for all workloads. The shuf-
fle configuration shows better efficiency for smaller node counts. 
However, it is surpassed by the standard configuration for high 
node counts. We credit this behavior to the differences in the pro-
portion of compute load to communication. This difference stems 
mostly from the different amount of RK stages.

9.2. Strong scaling

For the strong scaling runs, we extend the two-dimensional RMI 
setup from Section 8.3 to three dimensions. We start the simula-
tion at the point where the initial shock hits the interface. From 
there, we simulate twelve macro time steps. We vary the reso-
lution by increasing lmax ∈ [l0, l5]. The effective problem size thus 
varies from roughly 2.6 million to 85 billion DOFs. Again, we use 
the two distinct ALPACA configurations: standard and shuffle. Each 
resolution is run with different core numbers. We record the time 
spent per computed cell in Fig. 21.

The scaling behavior for both configurations is very similar. 
The shuffle configuration requires roughly 2/3 of the time-per-cell 
of the standard configuration. This matches our expectation as a 
two-, respectively three-stage RK scheme is used. For every lmax

the curve levels off for higher core counts. This is due to starva-
tion of the additional added cores. However, for an increased lmax

the proper scaling continues. Independent of the problem size, the 
runtime per cell and core stays practically the same.

10. Achieved compression

Here, we investigate the compute and memory compression 
of our coupled MR and narrow-band approach. Compression is 
achieved by the single-phase block-based MR scheme, cf. Section 5. 
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Fig. 20. Two-phase Sod shock tube: Final states and weak scaling efficiency.

Fig. 21. Strong scaling study for the standard (left) and the shuffle (right) configuration. The black line indicates theoretical ideal scaling.

Furthermore, we restrict the additional memory and compute de-
mand of the multi-phase treatment. This restriction is incorporated 
horizontally and vertically in the MR topology, cf. Section 6.

To quantify the savings, we define four normalized (higher is 
better) compression metrics:

1. Compression of total cells Cmr : The fraction of all actually 
stored cells to the effective cells on a homogenous mesh for 
the same resolution. Cmr hence gives the overhead associated 
with storing ancestor nodes.

2. Compression of flux computations C f lux: It is the fraction of 
leaf cells to needed cells on a homogenous mesh. This repre-
sents the saving of costly numerical-flux function evaluations.

3. Vertical multi-phase compression C v : It is the fraction of 
multi-phase cells to a homogenous mesh equivalent. It rep-
resents the saved memory by vertically restricting the multi-
phase treatment.

4. Level-set compression Cls: It is the fraction of cells holding 
a level-set value to a homogenous level-set representation. It 
represents the saved memory by horizontally restricting the 
multi-phase treatment.

Fig. 22 shows the obtained compression rates for the three-
dimensional cases presented in this work. We abbreviate those as 
‘Sod’, ‘Helium’, ‘Three bubble’ and ‘R22’ according to Sections 8.4
to 8.6 and 9.1, respectively.

We observe very high compression rates in all four metrics. The 
higher lmax , the higher the compression. The physical phenomena 
taking place in the simulated domain are also observable in the 
compression plots. The saw-tooth pattern in the Sod case stems 
from the traversing interface and shock front. For the Three-bubble 

case, Cv and Cls increase as the bubbles disintegrate. Inversely, 
Cmr and C f lux decrease due to the increasing amount of shock 
fronts in the domain. The compression for the other cases re-
mains constantly high. No severe trends are observable. Overall, 
the high compression rates Cmr and C f lux show that the exclusion 
of the interface region from the MR thresholding does not affect 
compression considerably. At the same time, the even higher com-
pressions Cv > 90% and Cls > 92% indicate the advantages of the 
tagging system.

11. Conclusion and outlook

We presented a simulation environment that allows solving 
multi-phase hyperbolic and (incompletely) parabolic conservation 
laws. They are solved using high-order shock-capturing finite-
volume schemes and the sharp-interface level-set method. For 
the first time, we have coupled a block-based MR approach with 
narrow-band like compression techniques. This is achieved by in-
troducing a light-weight tagging system. This algorithm reduces 
compute and memory overhead of the multi-phase scheme to a 
minimum. The modern OO implementation allows exchange of 
numerical building blocks at compile time without loss of paral-
lel performance. Scaling results were shown on a state-of-the-art 
HPC system. Various challenging test cases were simulated and 
compared to relevant literature. Therein, we reach resolutions of 
O
(
1010
)

effective DOFs with compression rates > 90%.
For the future, we plan to develop a hybrid parallelization uti-

lizing shared-memory parallelism and to integrate further numeri-
cal interface models.
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Fig. 22. Compression of the three-dimensional cases over relative time. In all plots refers to the Helium case, to the Sod case, to the Three bubble case, 
and to the R22 case. Mind the different scales for the y-axes.
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Appendix A. Small-cell mixing

The time-step restriction according to the CFL criterion, cf. Sec-
tion 3.3, only holds for full cells. When integrating small cells, i.e. 
cells cut by the interface, we employ a small-cell mixing approach 
following [57,58,66]. This avoids instabilities and spurious oscilla-
tions. We define mixing weights βi+l, j+m,k+n, (l, m, n) ∈ {−1, 0, +1}
for any small cell �i, j,k requiring mixing. Mixing weights are de-
fined for each neighboring cell. The mixing weights are normalized 
such that 

∑
l,m,n βi+l, j+m,k+n = 1.0. Cells with βi+l, j+m,k+n �= 0.0

are referred to as target cells �trg . The flux vector between a small 
cell and a target cell reads

Mtrg = βtrg

α
ξa
i, j,k ∗ βtrg + α

ξa
trg

·
[(

αξa Ū
)

trg α
ξa
i, j,k − (αξa Ū

)
i, j,k α

ξa
trg

]
.

(A.1)

It allows calculating mixed conservative states 
(
αξa Ū
)m

. This is 
done using the conservative update

(
αξa Ū
)m

i, j,k = (αξa Ū
)m

i, j,k + Mtrg, (A.2)(
αξa Ū
)m

trg = (αξa Ū
)m

trg − Mtrg . (A.3)

Two cell types require mixing:

1. Cells with αξa
i, j,k ≤ αmix after integration.

2. Cells where αξa
i, j,k = 0.0 after integration but αξa

i, j,k �= 0.0 be-
fore.

For the first type of cells we use βi+l, j+m,k+n = Aξa

i+ l
2 , j+ m

2 ,k+ n
2

. For 

the second type of cells, mixing weights are computed according 
to [58].

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2021.108246.
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Abstract

In this work, we propose a novel framework coupling state-of-the-art multi-fidelity Gaussian Process modeling techniques
with input-space warping for a cost-efficient construction of a stochastic surrogate model. During model generation, we
achieve high computational efficiency by combining a large number of cheap estimates (low-fidelity model) with only a
few, computationally expensive, high-fidelity measurements. We base the fidelity hierarchy on coarse-grid approximations of
high-fidelity numerical simulations and show its successful application within the proposed framework. Utilizing coarse-grid
approximations for multi-fidelity modeling is attractive for many practical applications, since it often allows for multi-fidelity
data generation with a single simulator. As benchmark, we apply this framework to generate a surrogate model for crystal growth
velocities in directional dendritic solidification. The derivation of a relation between this tip velocity and process parameters,
such as undercooling, thermal diffusivity, capillarity, and capillary anisotropy, has been in the focus of research for decades
due to its important role on microstructure evolution during solidification. It defines the thermo-mechanical properties of the
solidified part and influences its behavior in subsequent manufacturing steps.

As data generator, we use the open-source simulation framework ALPACA, applying a conservative sharp-interface level-
set model. We assess the accuracy of the multi-fidelity tip velocity model by using cross-validation techniques. Compared
to single-fidelity models purely based on high-fidelity data, our approach improves prediction accuracy significantly but only
requires a little cost overhead for data generation. The stochastic nature of the resulting surrogate model allows for quantifying
the uncertainty associated with predictions. This motivates the application of the model in Bayesian-optimization algorithms
for inverse problems. Also, it may serve as input for microstructure simulations which rely on accurate relations between local
solidification velocities and process parameters such as undercooling to predict grain-scale crystalline structures and which
need material-dependent model calibration.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The formation of dendritic microstructures and their defects plays a pivotal role in manufacturing, ranging
from century-old techniques such as steel casting to modern additive manufacturing. Since microstructure and
defects determine the mechanical properties of the solidified phase and, therefore, the final product, research has
focused on both understanding and, in the long term, controlling the microstructure evolution. For a detailed
overview, we refer to recent reviews by Kurz et al. [1,2]. Experimental investigations are aggravated by the
extreme process conditions in the melt and the multi-scale nature of the problem, which is dominated by the
macroscopic diffusion of temperature and solute concentration, macroscopic melt-pool convection, and microscopic
phase interface characteristics. Therefore, hierarchical analytic and numerical models are essential to deal with this
complexity and allow for systematic investigations [3]. In such a model hierarchy, simplified surrogate models with
narrow focus play an important role as connection between different hierarchy levels.

Of particular interest is the relation between the operating point of the dendrite, i.e. the tip radius and velocity,
and material and local melt parameters such as the undercooling [4]. A first mathematical model was provided in
the seminal work of Ivantsov [5] for a two-dimensional parabolic dendrite, relating the product of tip radius and
velocity to the melt undercooling. Yet, this corresponds to an infinite number of possible dendrites. Oldfield [6]
solved this uniqueness problem by introducing a stability criterion based on the balance of capillarity and diffusion.
A similar stability criterion was derived by Langer and Müller-Krumbhaar [7] applying a Mullins–Sekerka stability
analysis, also considering the interplay of capillarity and diffusion. Several authors [8–16] proposed to include
capillary anisotropy. This so-called microscopic solvability theory provides sufficiently accurate predictions for the
operating point of the dendrite at high undercoolings [1], and allows for validation of numerical models. Such
validated models may then provide insight into more complex directional growth configurations on the microscale,
including multiple dendrites or varying material parameters which are not included in microscopic solvability theory.

For use in simulations on the grain scale or part scale, however, simplified surrogate models are needed [17]. Since
these models imply many expensive simulations to adapt their free parameters to different material configurations,
an efficient approach is required for model calibration that reduces the computational cost without loss of accuracy.
Modern data-driven approaches based on statistical learning provide techniques to construct sophisticated surrogates
that can accurately capture the response of complex engineering systems, see [18–21]. A popular example is
GP regression surrogate models. Due to the increasing relevance of data-driven approaches in computational
science and engineering, they are being applied in modeling or control of additive-manufacturing processes on
the micro- and macro-scale [22–25] of, e. g. , composites [26] or ceramics [27,28]. Often, multi-fidelity modeling
techniques allow to reduce the computational cost necessary to obtain datasets suitable for generating accurate
surrogate models. Multi-fidelity models rely on the fact, that a high-fidelity numerical model with high accuracy
but high computational cost can be supplemented by information from low-fidelity approximations. Low-fidelity
models are less accurate but require considerably less computational effort [29]. Typical examples of low-fidelity
models are coarse-grid approximations, previously developed experimental correlations, or models with reduced
dimensionality [30,31]. Multi-fidelity methods are closely linked to multi-level methods. Both aim at increasing
information augmenting the high-fidelity model by including information from models with lower fidelity. This is
a widespread concept for efficient construction of response surfaces [31–34], uncertainty quantification [35–39] or
solving inverse problems [40]. Multi-level methods typically vary a single parameter, such as the grid resolution
of a high-fidelity numerical simulator, to derive a hierarchy of low-fidelity models [30]. Multi-fidelity methods
allow more general low-fidelity models such as linearized models or regression models directly derived from high-
fidelity data. A detailed overview about the variety of low-fidelity models can be found in [30]. Here, we focus on
multi-fidelity GP regression for the cost-efficient construction of surrogate models.

The first multi-fidelity GP model was presented in the pioneering work of [41], combining GPs with a linear
autoregressive scheme. This approach was successfully applied in scenarios where the correlation between the low-
and high-fidelity model is linear [19,42–44]. However, many practical systems of interest exhibit linear correlations
only for certain parameter ranges, while showing strong non-linear behavior otherwise [32]. Thus, several authors
extended this work to nonlinear and space-dependent cross-correlations between fidelity levels [32,45,46]. Among
them, [45] combined the linear autoregressive scheme of [41] with deep neural networks. The resulting model
is especially suitable when fidelity levels show cross correlations with discontinuities. Motivated by the structure
of deep GPs [47,48], the functional composition of GPs, [32,46] formulated an approach combining nonlinear
autoregressive schemes and GP regression. This allows capturing nonlinear and space-dependent cross correlation
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Fig. 1. Left: Solid–liquid interface for the growth of an initially spherical seed with radius r0 under anisotropic surface tension. Time
increases as the interface extends in x and y. The tip-velocity vector with magnitude uΓ is highlighted in red for the last snapshot. Right:
Temperature field and solid–liquid interface (black line) for the last snapshot.

between fidelity levels. We employ the MFDGP model of [46] as it reduces the risk of overfitting. The quality of
standard GP regression models for non-stationary functions, i. e. functions where the covariance is not invariant
to translation in input space, can be improved using input warping [49]. It has successfully been applied in many
practical applications such as model-tuning frameworks [50] or to estimate loss reserves [51].

In this work, we propose a novel information-fusion framework coupling MFDGPs with input warping to cost-
efficiently generate stochastic surrogate models. The input warping allows for incorporating prior knowledge about
the relation between parameters and outcomes, and regularizes the input space. The transformed inputs are fed to
the MFDGP model which captures nonlinear cross correlations between fidelity levels. The implementation of the
model is realized with GPyTorch [52] and BoTorch [53]. We base the hierarchy of fidelity levels on coarse-grid
approximations of the high-fidelity model. We employ a wavelet-based multiresolution scheme as data generator
for all fidelities. This generator is implemented in the open-source simulation framework ALPACA [54–56]. Its
error-based refinement strategy gives access to data on different fidelity levels through the same simulator, thus
drastically simplifying the data generation process compared to using different data sources. We demonstrate the
capabilities of the framework by generating a surrogate model for crystal growth velocities in directional dendritic
solidification.

The structure of the paper is as follows. In Section 2 we describe the mathematical and physical model for
crystal growth. In Section 3 we present the multi-fidelity model hierarchy, the MFDGP model, and the generated
dataset. In Sections 4 and 5 we validate the multi-fidelity model and present the final stochastic surrogate model,
respectively. Conclusions are given in Section 6.

2. Problem statement

The investigated setup is sketched in Fig. 1. An initially spherical solid seed is surrounded by an undercooled
melt, i.e. the local temperature in the melt is below the liquid–solid phase transition temperature. This temperature
difference results in the growth of the crystal. As latent heat is released during the phase change process, a
temperature boundary layer forms in both the solid and the melt. The crystal yields preferred growth directions
along the main coordinate axes due to anisotropic surface tension. After an initial transient growth period, the
growth velocity at the dendritic tip converges against a steady-state solution. We choose a domain (x, y) ∈

[0, 2400] × [0, 2400], with the origin being at the center of the seed with initial radius r0 = 50. The capillary
anisotropy is modeled by the standard formulation

d(θ ) = d0(1 − 15εcos(4θ )), (1)

where d0 is the equilibrium capillary length, ε the capillary anisotropy factor, and θ the angle between the interface
normal and the x-axis. This setup has been widely used with some variation for validation of numerical methods for
crystal growth [57–62]. Microscopic solvability theory provides a reference solution for the steady-state tip velocity
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and radius as a function of d0, ε, the thermal diffusivity α, and the normalized undercooling

T =
(T − Tm)c

L
, (2)

where T denotes the temperature in the melt, Tm the melting temperature, c the specific heat capacity, and L the
latent heat. A stability criterion can be derived with

σ ∗
=

2αd0

uΓ r2
Γ

∼= σ0ε
1.75, (3)

where σ0 is a constant on the order of unity that requires calibration from numerical simulations or experiments [2,4].
The steady-state tip velocity uΓ and the steady-state tip radius rΓ follow from this stability criterion and the solution
of Ivantsov [5] for parabolic dendrites in 2D

T =
√

πPe ePe
(

1 − erf
(√

Pe
))

, (4)

where

Pe =
uΓ rΓ

2α
(5)

is the Peclet number. This approach provides reasonable accuracy [4], yet calibration from experimental or numerical
data remains necessary, and material parameters have to be constant across the interface.

In our investigations, we choose d0 = 1, L = 1, cm = cs = c = 1, and αm ≤ αs = 1, allowing for a jump in the
thermal conductivity across the phase interface. Therefore, the steady-state tip velocity can be written as function
of undercooling, capillary anisotropy, and thermal-conductivity ratio following

uΓ = f (T , ε, αm/αs) . (6)

The objective is to develop a surrogate model for f in three-dimensional parameter space

x = (T , ε, αm/αs) ∈ R3 (7)

with 0.5 ≤ T ≤ 0.9, 0.02 ≤ ε ≤ 0.05, and 0.5 ≤ αm/αs ≤ 1. We employ the numerical model for liquid–solid
phase transition as presented in Kaiser et al. [63] to generate data for fitting the surrogate model. This simulation
model is introduced in the following section.

3. Multi-fidelity framework

3.1. Hierarchy of models

The liquid–solid phase transition problem is governed by the continuity equation and the energy-diffusion
equation with interface exchange terms and can be written as

∂U
∂t

= ∇ · Fk + X. (8)

Here, U = (ρ, ρcT )T is the state vector of mass and energy, Fk = (0, ρcα∇T )T models heat fluxes, X = (Xm, X E )T

denotes the interface exchange terms and ρ is the density. The interface exchange terms X appear only at the sharp
interface between melt and crystal. This phase interface is modeled by a level-set function φ which is evolved in
time by solving the level-set advection equation

∂φ

∂t
= uΓ · ∇φ = 0 (9)

numerically. The derivation and validation of the interface exchange terms for the two-material Stefan problem,
including the level-set advection velocity uΓ , are given in [63].

We apply a second-order central scheme to reconstruct thermal fluxes on a Cartesian grid. The solution is evolved
in time by a third-order strongly-stable Runge–Kutta scheme [64,65]. Stability is enforced by computing the timestep
size from the CFL stability criterion

∆t = CFL · min
(
∆x
|uΓ |

,
3

14
(∆x)2

α

)
. (10)
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Fig. 2. (a): Velocity convergence for a single four-fold symmetric crystal for successive grid refinement. The simulation was conducted with
T = 0.65, ε = 0.05, and αm

αs
= 1.0. (b): Accuracy order analysis of the converged tip velocity. (c): Shape of the crystal at t = 20000 for

the simulated resolutions. (d): Temporal evolution of the crystal for a resolution of 64 cells
r0

.

Spatial and temporal efficiency is enforced through the wavelet based multiresolution (MR) scheme of Harten [66]
with adaptive local timestepping for full temporal adaptivity [54]. For a detailed introduction to the applied
computational framework, we refer to Hoppe et al. [55].

The level-dependent spatial resolution with level-dependent timestep sizes results in significant accuracy
improvements for the predicted tip velocity using increasingly finer meshes. This is shown for a single crystal
in Fig. 2. This setup applies ∆T = 0.65, ϵ = 0.05, and αm = 1.0, which is a typical test configuration with known
steady-state tip velocity uΓ ,re f = 0.047 [57–60,67]. Independently of the chosen resolution, the initial condition
with temperature jump at the interface results in an overprediction of the interface velocity. However, with evolving
time, the velocity decreases and reaches a steady state. Fig. 2(b) shows the relative error ϵuΓ = 1 − |

uΓ
uΓ ,re f

| of
the simulated steady-state tip velocity for different mesh resolutions. It converges with approximately first order for
successively finer grids. For the underlying setup, the tips of the dendrite grow along the axes of the structured mesh.
For a different problem setup, tips that would not grow along the grid axes may be affected by mesh anisotropy.
The consistency of the numerical model for such scenarios is investigated in the Appendix.

To allow for a detailed analysis and validation of the resulting surrogate models, we aim for a dataset including
many samples. Also, we aim to have accurate, i. e. highly resolved, high-fidelity measurements as basis for the
surrogate model. Taking into account the available computational resources, we balance the accuracy of the high-
fidelity model with the objective to generate many high-fidelity samples, and define the low-, intermediate- and
high-fidelity models:
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• Low fidelity: Simulations are performed with a spatial resolution of 8 cells per initial seed radius. This results
in very short computing times, yet significant errors in the predicted steady-state velocity.

• Intermediate fidelity: Simulations are performed with a spatial resolution of 32 cells per initial seed radius.
This corresponds to two additional refinement levels in the MR tree compared to the low-fidelity setup.

• High fidelity: Simulations are performed with a spatial resolution of 64 cells per initial seed radius,
corresponding to three additional refinement levels in the MR tree compared to the low-fidelity setup.

3.2. Deep GPs for multi-fidelity modeling

Building the surrogate model for the tip velocity is a supervised learning problem. We aim to learn the mapping
f (x) between a set of N input vectors X = [x1, . . . , xN ], where xi is the parameter vector described in Eq. (7) and
observations y = [y1, . . . , yN ], with yi = uΓ ,i ∈ R. We model observations with a homoscedastic noise model

yi = f (xi ) + ϵi , (11)

assuming that they may be corrupted with zero-mean Gaussian noise ϵ ∼ N
(
0, σ 2

ϵ

)
. The unknown function

f (x) is modeled using a GP prior f (X) ∼ GP (m, K), i. e. any finite subset of input points is considered
as a multivariate Gaussian with mean vector m ∈ RN and covariance matrix K ∈ RN×N . The elements of
the mean vector and covariance matrix are generated using the mean mi = m(xi |θ ) and covariance function
Ki j = k(xi , x j |θ ), respectively, which typically are parametrized by hyperparameters θ . The mean and kernel
function allow incorporating prior knowledge about the real model, such as monotonicity or periodicity. The
posterior distribution of the GP describes a distribution over candidate functions characterized by a posterior
mean and covariance, thus allowing predictions at unobserved data points. Consequently, the output f ∗ (x∗) at
an unobserved input x∗ is normally distributed with mean µ∗ and variance σ ∗

2
, where the superscript ∗ indicates

posterior values.
Multi-fidelity regression enables fusing limited true observations (high-fidelity) with many cheap approximate

observations (low-fidelity) [30,41]. GPs are well suited for multi-fidelity regression since their stochastic nature
allows modeling prior beliefs about the relation between fidelities and gives predictions accompanied by uncertainty
estimates. [41,68] introduce multi-fidelity GPs based on the autoregressive scheme of [41] which assumes a linear
relation between fidelities, i. e.

ft (x) = βt ft−1 (x) + δt (x) , (12)

where ft is the high-fidelity function and ft−1 the function at the preceding lower fidelity. Both are modeled using
a GP prior. The constant βt scales the contribution of samples drawn from the GP at the preceding lower fidelity
t − 1, and a GP prior is assigned to δt (x) which models the bias between fidelities. Such models deliver poor
results when the cross-correlation between fidelities is nonlinear and input-space dependent [32]. [32,46] generalize
the autoregressive multi-fidelity scheme of Eq. (12) to

ft (x) = βt ( ft−1 (x) , x) + δt (x) , (13)

where the correlation between fidelities is not constant but expressed by the unknown function βt . We assign a GP
prior to βt . Following [32,46], the additive structure and independence assumption between the GPs βt and δt allow
to rewrite the autoregressive scheme of Eq. (13) as a composition of GPs

ft (x) = gt
(

f ∗

t−1 (x) , x
)
. (14)

Therein, gt is a GP which takes x and a sample from the posterior of the GP modeling the preceding fidelity f ∗

t−1 (x)

as inputs. Based on deep GPs [47,69] and the compositional structure of Eq. (14) and [46] develop MFDGPs that
accurately capture a nonlinear and space dependent relation between fidelities. We employ MFDGPs in settings
with up to three fidelity levels. We use a dataset

D =
{(

X1, y1) , (X2, y2) , (X3, y3)} , (15)

where Xt and yt denote inputs and corresponding outputs at fidelity level t . The fidelity increases with the superscript
t . Given the training set we build the MFDGP model as sketched in the lower part of Fig. 3. The GP in the first
layer only receives inputs from the input space. The GP in the second layer combines data from the input space as
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Fig. 3. Left: Combined input warping and MFDGP architecture with three fidelity levels. Gray nodes show inputs and outputs from the
training set as labeled. White nodes show latent variables and denote samples drawn from a GP. Superscripts indicate the associated fidelity
level. Subscripts indicate the layer. Thus, the evaluation of MFDGP at layer 1 for the inputs observed with fidelity 2 is denoted as f2

1. Right:
Predictions using the combination of input warping and a MFDGP model with three fidelity levels. Each level gets the original input x∗ as
well as evaluations up to the previous level as input. The output y∗

t denotes the prediction for fidelity t .
Source: Picture adapted from [46].

well as the corresponding function evaluation returned from the previous layer. We denote the mean and standard
deviation of the posterior distribution of the MFDGP at fidelity level t as yt,∗ and σ

[
yt,∗

]
, respectively, see Fig. 3.

We assume a zero mean function as prior for the GP at each level. Following [46], we define the covariance between
two inputs xi and x j of the GP prior at each level as

kl =kβ

l

(
xi , x j

|θ
β

l

)
[
σ 2

l f ∗

l−1

(
xi)T

f ∗

l−1

(
x j)

+ k f −1
l

(
f ∗

l−1

(
xi) , f ∗

l−1

(
x j)

|θ
f −1

l

)]
+ kδ

l

(
xi , x j

|θ δ
l

)
.

(16)

Therein, kβ

l is a input-space dependent scaling factor, k f −1
l denotes the covariance between outputs obtained from

the previous fidelity level, and kδ
l captures the bias at the lth fidelity level. For each covariance function we assign

a Matérn covariance function [70] with smoothness measure ν = 5/2 and automatic relevance determination. The
remaining term, σ 2

l f ∗

l−1

(
xi
)T f ∗

l−1

(
x j
)
, considers a linear covariance between outputs obtained from the previous

fidelity level, where σl is the variance hyperparameter. For the first layer, the covariance function reduces to

k1 = kδ
1

(
xi , x j

|θ δ
1

)
(17)

since no outputs from previous layers exist. To train the MFDGP model, we follow the two-step approach presented
in [46] based on stochastic variational inference (SVI) techniques [71,72]. We assume a normal prior distribution
for the noise parameter of the homoscedastic noise model σ 2

ϵ ∼ N
(

0, σ 2
ϵ,prior

)
, with σϵ,prior = 10−2. Since the

integrals to calculate the posterior distribution are generally intractable [48], we use a sampling-based approach to
obtain the posterior mean and covariance.

When using stationary kernel functions in a MFDGP, difficulties to model non-stationary functions with spatially
varying length scales may arise. [49] propose to warp the input space using learned transformations based on a
cumulative distributions functions (CDF). Following this idea, the autoregressive scheme of Eq. (14) becomes

ft (x) = gt
(

f ∗

t−1 (hC DF (x)) , hC DF (x)
)
, (18)

where hC DF (x) is a bijective warping function. The MFDGP then operates on the transformed inputs hC DF (x) as
sketched in Fig. 3. [49] use the family of Beta cumulative distribution functions as warping function. We follow

7
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the implementation of the BoTorch library [53] and use the class of Kumaraswamy CDF [73,74] as input warping
function. The hyperparameters of the Kumaraswamy CDF are jointly optimized with the hyperparameters of the
MFDGP. Our implementation of the MFDGP including the input-space warping is realized using GPyTorch [52]
and BoTorch [53].

3.3. Data generation

We base the creation and validation of our stochastic surrogate model of the tip velocity on a design of experiment
with NL F = 1000 low-fidelity, NI F = 400 intermediate-fidelity, and NH F = 400 high-fidelity samples. To
analyze the correlation between the different fidelities, we use 150 of the high-, intermediate-, and low-fidelity
data for the same parameter sets. They are obtained from a quasi-Monte Carlo (qMC) sampler based on Sobol’
sequences [75]. The remaining samples for each fidelity level are also generated using a qMC sampler based on
Sobol’ sequences [75].

With the low-fidelity model as reference, we increase the effective resolution for the intermediate- and high-
fidelity models by adding levels to the MR tree. We employ a dyadic refinement strategy, thus halving the cell size
with each additional refinement level. For the two-dimensional domain of this case, this results in up to four-times
larger meshes with each additional resolution level. Assuming that the diffusive time scale determines the smallest
permissive timestep size, cf. Eq. (10), halving the smallest cell size results in four-times smaller timestep sizes. Thus,
without spatial adaptivity, adding one level to the MR tree increases the simulation cost by a factor of 16. Compared
to the low-fidelity model, we add ∆l I F = 2 levels to the MR tree for the intermediate-fidelity model. Thus, without
spatial adaptivity, the intermediate-fidelity model is 16∆lI F = 256 times more expensive than the low-fidelity model.
For the high-fidelity model, we add ∆lH F = 3 levels to the MR tree compared to the low-fidelity model. Thus,
without spatial adaptivity, the high-fidelity model is 16∆lH F = 4096 times more expensive than the low-fidelity
model.

However, spatial and temporal adaptivity of the numerical model result in a reduced computing-time increase.
Measurements of the computing time for the 150 samples available at each fidelity level indicate that the
intermediate-fidelity simulations are by a factor of 27 more expensive than the low-fidelity simulations, and the
high-fidelity simulations by a factor of 224.

In the left column of Fig. 4, we use the 150 samples available at each fidelity level to depict the correlation
between the fidelity levels. It shows, that the correlation is highly nonlinear and that the low-fidelity model
underestimates the true tip velocity. [31] investigates a physical system with similar properties. A low-fidelity
model is employed, giving fairly accurate estimates of the high-fidelity model for a certain region of the input
space. Outside of this region, the low-fidelity estimates are significantly more inaccurate. Multi-fidelity GPs are
applied, based on the linear model presented in Eq. (12). It is observed that prediction quality decreases in
regions where the low-fidelity model is inaccurate. [32] investigates the same system employing GPs based on the
nonlinear autoregressive scheme presented in Eq. (14) and reports improved predictive accuracy compared to [31].
This motivates using MFDGPs, which also are based on the nonlinear autoregressive scheme, to investigate the
tip-velocity data.

In Fig. 4(a), the darker color of points with high tip velocity indicates that the tip velocity strongly increases
with T . This is confirmed by Fig. 4(b), where the high-fidelity tip velocity u H F

Γ is shown for varying T , and an
exponential-like dependence of uΓ on T is implied. When analyzing the colors in Figs. 4(c) and 4(e), no clear
trend for the dependence of the tip velocity on ε and αm/αs can be deduced for the chosen parameter space. This
is confirmed by Figs. 4(d) and 4(f), where uH F

Γ is shown for varying ε and αm
αs

, respectively. A comparison between
the plots suggests that uΓ is most sensitive to T , while ε and αm/αs influence uΓ only moderately. The same can
be concluded when analyzing the correlation between the low- and intermediate-fidelity level.

Fig. 5 shows the shape of the dendrite during steady growth for different parameters for the three different
fidelity levels. From top to bottom, T , and thus uΓ , increases. The tip is more pronounced for higher T and depicts
more instabilities. For the highest undercooling (bottom row), the dendrite develops secondary branches for the
intermediate- and high-fidelity simulations, cf. middle and right picture in the bottom row. This is suppressed for
the lowest fidelity due to the low resolution, cf. left picture in the bottom row. For all parameter sets, the tip is
more pronounced for increasing fidelity. As already visible in the correlation plots, the low-, intermediate- and
high-fidelity model exhibit stronger differences for high T , and thus high uΓ . This is caused by the fact, that
increasing tip velocities require resolving successively smaller tip radii.
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Fig. 4. Left column: Correlation between uΓ obtained from the low-fidelity and high-fidelity model, which are denoted as uL F
Γ and u H F

Γ ,
respectively. From top to bottom, the grayscale of the points is according to T , ε, and αm/αs . Right column: u H F

Γ plotted over a single
parameter. From top to bottom, T , ε, and αm/αs are varied.

4. Model validation

We assess the quality of our MFDGP model by cross validation. We split the low-, intermediate- and high-fidelity
data sets into a training and validation set. The training sets at the fidelity levels consist of NL F,t , NI F,t and NH F,t

samples that are randomly chosen from the overall data. Their combination is used to train the MFDGP model.
The validation sets at each fidelity level consist of the remaining NL F,v = NL F − NL F,t , NI F,v = NI F − NI F,t and
NH F,v = NH F − NH F,t samples, and are used to cross validate the model. Following [31], we define the L2 error
of a trained model as

ϵcv =
1

NH F,v

NH F,v∑
i=1

(
uH F
Γ ,i − uG P

Γ ,i

uH F
Γ ,i

)2

, (19)
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Fig. 5. Shape of the dendrite when a steady-state tip velocity has developed. The low-, middle-, and high-fidelity results are shown in the left,
middle, and right column respectively. The first, second and third rows show results for x = [0.523, 0.0481, 0.921], x = [0.721, 0.0422, 0.804],
and x = [0.897, 0.0395, 0.693] respectively. The respective time is indicated for each plot.

where uH F
Γ ,i denotes the i th high-fidelity measurement of uΓ from the validation set, and uG P

Γ ,i denotes the
corresponding high-fidelity prediction from the MFDGP. Compared to [31], we normalize each summand with the
true tip velocity from the validation set. For comparison, we also train single-fidelity GP regression models solely
based on the high-fidelity points in the training set. In that case, uG P

Γ ,i denotes the prediction of the single-fidelity
GP. To account for the randomness in choosing a training set with NL F,t < NL F , NI F,t < NI F and NH F,t < NH F

points, we create an ensemble of 20 different random realizations of the training set and train the corresponding GP
models. We calculate the L2 error for each model following Eq. (19) and denote their mean and standard deviation
as ϵcv and σϵcv , respectively. Note that σϵcv measures the sensitivity of the trained model to the random selection of
the training points.

In Fig. 6, we vary NH F,t and show the cross-validation error ϵcv for a single-fidelity GP (Fig. 6(a)) and a two-
fidelity MFDGP with NL F,t = 250 (Fig. 6(b)). We train both models either with or without input warping. The
dataset in Section 3.3 implies, that the tip velocity’s dependence on T is nonlinear and potentially non-stationary.
Thus, we apply input warping for T . The quality of the single-fidelity models with and without input warping is
approximately similar, see Fig. 6(a). The noticeable higher error for the model with input warping for NH F,t = 5
is due to overfitting caused by the additional hyperparameters of the Kumaraswamy CDF. The quality of the two-
fidelity model improves when input warping is applied, see Fig. 6(b). Thus, we focus on models with input warping
in the following.

In Figs. 7(a) and 7(c) we vary NH F,t and show ϵcv and σϵcv for a single-fidelity GP, and two-fidelity MFDGPs
with NL F,t = 10, 20 and 100. For all models, ϵcv decreases with increasing NH F,t . For NL F,t = 10 and 20, the
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Fig. 6. (a): Mean cross-validation error ϵcv for single-fidelity GP regression with and without input-space warping, which are denoted with
“Baseline” and “Warping”, respectively. (b): Mean cross-validation error ϵcv for two-fidelity MFDGP regression with and without input-space
warping for NL F,t = 500.

Fig. 7. (a): Mean cross-validation error ϵcv of two-fidelity MFDGPs and a standard single-fidelity GP for varying NH F,t . The two-fidelity
MFDGPs are trained with NL F,t = 10, 20 and 100 low-fidelity points in the training set respectively. (b): Mean cross-validation error
ϵcv of two- and three-fidelity MFDGPs and a standard single-fidelity GP for varying NH F,t . The two-fidelity MFDGPs are trained with
NL F,t = 250, 500 and 750 low-fidelity points in the training set respectively. The three-fidelity MFDGP is trained with NL F,t = 250 and
NI F,t = 50. (c) and (d): Standard deviation σϵcv of the cross-validation error for the models in (a) and (b), respectively.
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Fig. 8. Approximate computational cost ratio of the low- and intermediate-fidelity samples to the high-fidelity samples of the used training
dataset for the models in Fig. 7(b).

multi-fidelity models show similar or better ϵcv than the single-fidelity model where NH F,t ≤ NL F,t . When further
increasing NH F,t , the single-fidelity model outperforms the multi-fidelity models, as the number of low-fidelity
samples used to train the low-fidelity part of the MFDGP model is insufficient to build an accurate base for the high-
fidelity part of the MFDGP model. For NL F,t = 100, multi-fidelity modeling outperforms single-fidelity modeling
for the investigated range of NH F,t . The sensitivity of the models on the selection of the training points exhibits
the same trends as ϵcv , see Fig. 7(c).

In Figs. 7(b) and 7(d) we investigate the quality of multi-fidelity models when further increasing the amount of
low-fidelity training data. Therefore, we vary NH F,t and show ϵcv and σϵcv for a single-fidelity GP, two-fidelity
MFDGPs with NL F,t = 250, 500 and 750, and a three-fidelity MFDGP with NL F,t = 250 and NI F,t = 50. The mean
of the cross-validation error and its standard deviation decrease rapidly up to NH F,t = 30. For NH F,t > 30, a constant
rate of improvement of ϵcv adjusts, where the overall error magnitude of the multi-fidelity model is significantly
lower than for the single-fidelity model. The sensitivity of the models on the selection of the training points is also
better for the multi-fidelity case, see Fig. 7(d). Figs. 7(b) and 7(d) show, that the quality of the two-fidelity model
is approximately similar for NL F,t = 250, 500 and 750 for low NH F,t . For high NH F,t , the models with more NL F,t

tend to outperform the models with less low-fidelity points. Comparing the results for NL F,t = 500 and 750, no
significant improvement can be observed. This suggests that the parameter space is sampled sufficiently dense for
NL F,t = 500 to capture the information content of the low-fidelity model. Considering intermediate-fidelity data
does not improve model quality significantly. For high NH F,t , the two-fidelity models perform even better than
the three-fidelity model. This may be due to the fact that with NI F,t = 50, a similar amount of intermediate- and
high-fidelity data is present for high NH F,t .

Fig. 8 highlights, that the improved quality of the two-fidelity models incurs a negligible computational overhead
to generate the training points compared to the single-fidelity model. For models with NL F,t = 500 and NH F,t > 30,
the overhead is less than 10%, yet the obtained models provide significantly more accurate results. For example,
the additional cost for two-fidelity modeling with NL F,t = 500 at NH F,t = 30 is 7.5%. Investing the computational
overhead in HF samples would deliver less than three additional HF samples. Adding three HF samples to the SF
model reduces ϵcv by 0.01, whereas the two-fidelity modeling reduces ϵcv by 0.04 . The computational overhead for
the three-fidelity model is higher than for the two-fidelity models, but the model quality does not improve. Thus
we take the two-fidelity model with NL F,t = 500 as reference in the following.

Fig. 9 visualizes the quality of the generated multi-fidelity models by means of correlation plots. We show the
correlation between high-fidelity measurements of uΓ in the validation set and the predictions from the MFDGP
model. MFDGP models with NL F,t = 500 and NH F,t = 5, 10, 30 and 50, respectively, are chosen. Figs. 9(a) and
9(b) show strong deviations between the measured and predicted tip velocities. Predictions are more accurate for
low than for high tip velocities. High tip velocities are underpredicted by the MFDGP model. For increasing NH F,t ,
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Fig. 9. Correlation between uΓ obtained from high-fidelity simulations uΓ ,H F and predicted from the MFDGP model u∗

Γ ,H F . The MFDGP
model was trained with NL F = 500. We show plots for NH F,t = 5, 10, 30 and 50 from top left to bottom right.

see Figs. 9(c) and 9(d), the model clearly gets more accurate, the points accumulate near the diagonal y = x , which
indicates perfect correlation, and the variance of the estimate decreases.

5. Multi-fidelity tip-velocity model

We describe the resulting stochastic response surface of the tip velocity by using a two-fidelity MFDGP model
with NL F = 500 and NH F = 50. The cross-validation error of this model is shown in Fig. 9(d). Fig. 10 shows
the low- and high-fidelity prediction of uΓ for varying T . The remaining parameters are fixed as αm

αs
= 1.0 and

ε = 0.05, respectively. To demonstrate model accuracy, we show additionally generated low- and high-fidelity points
for T = 0.55, 0.65, 0.75 and 0.85, which where not used for training. They agree very well with the posterior
mean of the MFDGP. The low-fidelity estimate of uΓ grows slightly with increasing T , whereas the high-fidelity
measurement strongly grows with increasing T , indicating that the low-fidelity model is more accurate for low uΓ

and underpredicts the nearly exponential growth of uΓ for increasing T . As seen in Section 4, adding low-fidelity
samples further improves model quality.

Figs. 11(a)–11(c) depict the characteristics of the tip-velocity response surface. The plots indicate that uΓ grows
with increasing T , αm

αs
, and ε. Comparing the figures confirms that uΓ depends on T exponentially, whereas the

dependence of uΓ on αm
αs

and ε is almost linear, see Figs. 11(b) and 11(c).
We show the combined influence of two process parameters on uΓ in Fig. 12. The bilinear influence of αm

αs
and

ε on uΓ , as already indicated by preceding, is visible in Fig. 12(a). When fixing αm
αs

or ε, see Figs. 12(b) and 12(c),
the influence of T dominates and the exponential increase is clearly visible.
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Fig. 10. High- and low-fidelity prediction of the MFDGP model of uΓ for varying T and fixed αm
αs

= 1.0 and ε = 0.05. For comparison, low-

and high-fidelity measurements are plotted for several T . The predictive mean of the low- and high-fidelity prediction, u∗

Γ ,L F and u∗

Γ ,H F ,

are shown by the dashed and solid line, respectively. Their respective uncertainty band of ±2σ
[
u∗

Γ ,L F

]
and ±2σ

[
u∗

Γ ,H F

]
is indicated by

the green region.

Fig. 11.

Fig. 12. (a): Contour of the posterior mean of the high-fidelity prediction of uΓ for varying αm
αs

and ε and fixed T = 0.7. (b): Contour of
the posterior mean of the high-fidelity prediction of uΓ for varying T and ε and fixed αm

αs
= 0.75. (c): Contour of the posterior mean of

the high-fidelity prediction of uΓ for varying T and αm
αs

and fixed ε = 0.035.
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6. Summary and conclusions

We have developed a stochastic surrogate model for the tip velocity of a single dendrite. The model is based on
a novel machine-learning model combining input warping techniques and multi-fidelity deep Gaussian processes.
We show, that the hierarchy of resolution fidelities allows for cost-efficiently generating surrogate models that
are significantly more accurate compared to single-fidelity models, especially when access to high-fidelity data is
limited. The resulting model accurately captures the system of interest. Its stochastic nature allows for quantifying
the uncertainty associated with the predictions, and motivates its usage in Bayesian-optimization algorithms for
inverse problems. Also, it may serve as input for microstructure simulations which rely on accurate relations between
local solidification velocities and process parameters to predict grain-scale crystalline structures and which need
material-dependent model calibration.
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Appendix. Note on grid effects of the numerical model

The two-dimensional dendritic growth investigated in this work features four tips growing along the main axes.
The numerical model used to solve the problem is based on a structured mesh that is oriented along the main
axes. When simulating similar scenarios with tips not growing along the main axes, grid effects of the underlying
numerical scheme may affect the observed steady-state tip velocities.

To investigate the consistency of the numerical model for such scenarios we simulate the case presented in
Section 3.1 with capillary anisotropy formulation

d∗(θ ) = d0(1 − 15εcos(4θ + π/4)). (A.1)

This is equivalent to rotating the crystal anisotropy with regard to the grid coordinate system by 45◦. Again, we
apply ∆T = 0.65, ϵ = 0.05, and αm = 1.0. The level-dependent spatial resolution with level-dependent timestep
sizes results in significant accuracy improvements for the predicted tip velocity using increasingly finer meshes.
This is shown for a single crystal in Fig. A.13. Independently of the chosen resolution, the initial condition with
temperature jump at the interface results in an overprediction of the growth velocity. Once the temperature boundary
layer is fully developed, the tip velocity reaches a steady state. Fig. A.13(b) shows the relative error ϵuΓ = 1−|

uΓ
uΓ ,re f

|

of the simulated steady-state tip velocity for different resolutions. Effects of grid anisotropy result in larger errors
than for the original case. This indicates that with sufficiently fine grid resolutions, errors of the same order of
magnitude can be reached as for the original case.

To further investigate the consistency of the numerical method, we simulate a six-fold symmetric crystal and
apply ∆T = 0.65, ϵ = 0.05, and αm = 1.0. We modify the capillary anisotropy model of the four-fold symmetric
crystal presented in Eq. (1), and use

d∗∗(θ ) = d0(1 − 15εcos(6θ )). (A.2)

We choose a domain (x, y) ∈ [0, 3200] × [0, 3200], and locate the seed with initial radius r0 = 50 at the center of
the square. Fig. A.14 shows the shape of the crystal for different resolutions. For resolutions below 128 cells

r0
, the tips

growing along the main axes spread further from the center of the crystal than the remaining tips. For a resolution
of 128 cells

r0
, all six tips spread equally from the center of the crystal indicating diminishing grid effects.
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Fig. A.13. (a): Velocity convergence for a 45◦ rotated single four-fold symmetric crystal for successive grid refinement. The simulation is
conducted with T = 0.65, ε = 0.05, and αm

αs
= 1.0. (b): Accuracy order analysis of the converged tip velocity. (c): Shape of the crystal at

t = 14000 for the simulated resolutions. (d): Temporal evolution of the crystal for a resolution of 256 cells
r0

.

Fig. A.14. Velocity convergence for a six-fold symmetric crystal for successive grid refinement. The simulation was conducted with T = 0.65,
ε = 0.05, and αm

αs
= 1.0. The shape of the crystal at t = 20000 is shown in black for different resolutions. A circle envelope of the four

tips not growing along the main axes is shown in red for each crystal.
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Abstract

In this work, we propose an efficient solution of the inverse Stefan problem by multi-fidelity Bayesian optimization. We
construct a multi-fidelity Gaussian process surrogate model by combining many low-fidelity estimates of a solidification problem
with only a few high-fidelity measurements. To solve the inverse problem, we employ the Gaussian process model in a Bayesian
optimization approach based on a multi-fidelity knowledge gradient acquisition function. To account for the specific structure
of the target function, we reformulate it as a composite function and thus significantly improve the stability of the optimization
procedure. Target values can be switched easily, and previously obtained samples and surrogate models can be reused. The
proposed method iteratively improves the recommended solution of the inverse problem. Explicitly adding recommended points
of previous iterations to the solution procedure enhances the convergence properties of the algorithm.

We demonstrate the applicability of the algorithm by solving the inverse problem for a planar solidification front in a single-
fidelity setting. Process parameters are identified for targeted crystal-growth velocities during directional dendritic solidification.
The relation between these velocities and process parameters, such as undercooling, thermal diffusivity, capillarity, and capillary
anisotropy, defines the thermo-mechanical properties of the solidified part in metal-based additive manufacturing. Material design
is based on the corresponding inverse problem. Cost-efficiency of solving the inverse problem is improved by introducing
a fidelity hierarchy based on coarse-grid approximations of high-fidelity numerical simulations. The open-source simulation
framework ALPACA for multiphase flows allows to generate data at all fidelities. We demonstrate the superior convergence
properties of the presented multi-fidelity approach by comparison with an approach solely based on high-fidelity measurements
of the tip velocity.
© 2023 Elsevier B.V. All rights reserved.

Keywords: Bayesian optimization; Multi-fidelity modeling; Inverse problem; Dendritic growth; Multiresolution

∗ Corresponding authors.
E-mail addresses: josef.winter@tum.de (J.M. Winter), rim.abaidi@tum.de (R. Abaidi), jakob.kaiser@tum.de (J.W.J. Kaiser),

stefan.adami@tum.de (S. Adami), nikolaus.adams@tum.de (N.A. Adams).
1 Both authors contributed equally.

https://doi.org/10.1016/j.cma.2023.115946
0045-7825/© 2023 Elsevier B.V. All rights reserved.



J.M. Winter, R. Abaidi, J.W.J. Kaiser et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 115946

1. Introduction

Solidification processes play a pivotal role in most manufacturing applications, from established manufacturing
techniques such as steel casting to modern additive manufacturing. Metal microstructure evolution during solid-
ification directly determines the mechanical properties of the solid phase and, therefore, the properties of the
manufactured parts. Kurz et al. [1,2] provide detailed reviews on recent research.

The mathematical description of the solidification processes leading to microstructure formation poses a Stefan
problem [3]. A Stefan problem in general describes a free boundary problem between phases of a material
undergoing phase change. Examples are the solidification of metals, freezing of water, and crystal growth. Solving
the Stefan problem is often understood as solving the direct problem. That is, given initial conditions, boundary
conditions, and the material properties, the temporal evolution of the phase boundary, i.e. its position and velocity
in normal direction is solved. To solve the Stefan problem numerically, different methods can be used. They
differ mostly in the methodology used to describe the phase interface. Prominent examples are phase-field [4–6],
level-set [7], or volume of fluid [8–10] methods.

Besides solving the direct Stefan problem, the rapid and efficient design of new materials with targeted properties
requires solving the inverse problem [11,12]. Taking dendritic growth processes as example, this means identifying
the material and local melt parameters, such as the undercooling, yielding a targeted growth of the dendrite.
Çadırlı et al. [13] establish a clear correlation between the growth velocity and mechanical properties, such as
microhardness and ultimate tensile strength for aluminum 7075 alloys. They consider the inverse Stefan problem
to select candidates and appropriate process conditions that would yield certain properties. Jochum [14,15] applies
a non-linear approximation to the one-dimensional one-phase inverse Stefan problem. The problem is reformulated
as choosing a heat flux that minimizes the norm of the difference between a given position of the interface and the
resulting position for the heat flux. Tarzia et al. [16] found the unknown parameters of a solidifying body such as
specific heat, density and latent heat in the context of a one-dimensional one-phase solidification setting. A similar
endeavour in the case of a two-phase problem is undertaken in [17]. Ang et al. [18] formulate a one-dimensional
one-phase inverse Stefan problem that determines the heat flux at the interface, which has a specified position. The
problem is reformulated as a first-kind Volterra integral equation. Murio [19] suggested a method of mollification
to numerically solve ill-posed problems. The method was applied to a one-dimensional one-phase inverse Stefan
problem, where the temperature and heat flux were reconstructed at the domain boundary with a prescribed interface
position. In [20], Zabaras et al. reformulated a two-dimensional inverse Stefan problem into a minimization problem
and resorted to dynamic programming methods for its solution. In [21], an inverse problem, where both conduction
and convection are considered in the liquid phase, is split into two solvable problems: a direct convection problem
in the liquid, and an inverse problem in the solid. Voller [22] used enthalpy and sensitivity coefficients for the task
of finding the heat flux at a boundary with a prescribed position of the interface. The Adomian decomposition
method combined with optimization was also used in [23,24] to solve the one-phase inverse Stefan problem.

State-of-the-art literature highlights the importance and complexity of solving the inverse Stefan problem. Often,
the methodology to obtain the solution relies on specific mathematical formulations. Also, most of the approaches
only present results for one-phase and one-dimensional inverse Stefan problems. To circumvent these drawbacks,
we employ a data-driven optimization-based methodology to solve the inverse Stefan problem for one- and two-
dimensional settings. Therein, the target function which is optimized allows to infer the solution of the inverse
problem. This way, we circumvent the need for a mathematical reformulation of the problem. Instead we use the
methods already available to solve some types of direct Stefan problems to infer the reverse process. Słota [25] uses
a similar approach based on a genetic algorithm to select the convective heat-transfer coefficient of the boundary
with a given interface position. Our approach is based on Bayesian optimization (BO) and Gaussian Process (GP)
surrogate models due to their flexibility and feasibility of cost-efficient solution strategies. Statistical learning
provides techniques to construct sophisticated surrogate models that can accurately capture the response of complex
engineering systems, see [26–29]. GP regression is a prominent example of statistical learning and successfully
used in modeling of additive-manufacturing processes [30–33] of, e. g. , composites [34] or ceramics [35,36].
BO is particularly suitable for optimizing expensive black-box functions, when the gradient information is not
available [37,38]. It constructs a surrogate for the objective function with uncertainty quantification by a Bayesian
machine learning method, namely GP regression. An acquisition function is evaluated based on the surrogate to
choose where to sample next [39]. Surrogate models such as feed-forward neural networks (NN) provide alternatives
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to GPs. However, they are more effective when used with large-size training data. On the other hand, GP regression
performs favorably with small- to medium-size training sets [40].

We employ a composite structure of the target function, as proposed by Astudillo and Frazier [41]. This improves
stability of the optimization procedure, and allows reusing surrogate models, trained for previous target values,
for problems with new, unseen target values. Also, we employ multi-fidelity modeling to efficiently solve the
optimization problem by combining a large number of rough estimates of the target function (low-fidelity model)
with only a few high-fidelity measurements.

Another important aspect of GPs is transfer learning, which incorporates the knowledge from an auxiliary
task to improve the learning and the inference of the targeted initial task. This is especially useful when the
generation of training-data is expensive [42]. Multi-task GPs are one of the common approaches of transfer learning,
where the GP is trained with different tasks in parallel. It uses the inductive bias learned from the auxiliary
tasks to infer the target. A subset of multi-task approaches is multi-fidelity modeling, which uses the correlations
between high- and low-fidelity training data to make more accurate predictions of the high-fidelity function [40].
It is a widespread concept for efficient construction of response surfaces [43–46], uncertainty quantification
[47–51] or solving inverse problems [52]. Low-fidelity data are for example coarse-grid approximations, previously
developed experimental correlations, or models with reduced dimensionality [44,53]. High-fidelity data are by
definition more accurate and thus more expensive to obtain. These can be fine-grid simulations or data gathered
from experiments. The aim of such multi-fidelity models is to use as little high-fidelity data as possible, while
maximizing prediction accuracy. Within a BO framework, the balance between sample fidelity and accuracy is
subject of current research. Several multi-fidelity BO frameworks have been developed in the recent years. Huang
et al. [54], Lam et al. [55] and Picheny et al. [56] proposed an augmented expected improvement (EI), that handles
multi-fidelity modeling. Kandasamy et al. [57] developed a multi-fidelity acquisition function based on the GP
upper confidence bound (GP-UBC) [58]. Wu et al. [59] came up with a trace-aware knowledge-gradient (taKG)
acquisition function, where a function that models the cost of observing points based on their fidelity is introduced.
The selection of the candidate and its fidelity is based on the trade-off between the extent to which sampled
low-fidelity data improves the quality of the solution, and the cost for generating the sample data. Moreover, the
formulation allows both batch and sequential optimization. The optimization of synthetic functions shows a faster
convergence and better accuracy of the taKG over other state-of-the-art multi-fidelity acquisition functions, while
minimizing the costs. The taKG acquisition function is extended to continuous fidelity-levels and referred to as
continuous-fidelity knowledge-gradient (cfKG).

In this work, we propose a general multi-fidelity framework for solving inverse Stefan problems based on BO.
The approach combines stochastic multi-fidelity surrogate modeling based on GPs with a multi-fidelity knowledge-
gradient acquisition function. To account for the nested structure of the target function, we use composite BO to
improve the convergence properties of the iterative solution procedure. Additionally, we suggest recommendation
fitting to further improve the convergence properties. The implementation of the optimization algorithm is based
on GPyTorch [60] and BoTorch [61]. We show its applicability by solving the inverse problem for a moving ice
front and a directional dendritic solidification problem. For the latter, we use the open-source multiphase simulation
framework ALPACA [62] as data generator, and base a hierarchy of fidelity levels on coarse-grid approximations
of the high-fidelity model.

The structure of the paper is as follows. In Section 2 we describe the BO algorithm used to solve the inverse
Stefan problems. In Section 3 we describe the multi-fidelity Bayesian optimization (MFBO) algorithm. In Section 4
we introduce several measures used to monitor the performance and accuracy of the solution procedure. In Section 5,
we introduce the general formulation of an inverse Stefan problem. In Sections 6 and 7 we apply the algorithm to
solve two different Stefan problems. Conclusions are given in Section 8.

2. Bayesian optimization

We consider the set of design parameters x := {x1, x2, . . . , xd} on the feasible space X ∈ Rd . The quantities of
interest (QoIs) are acquired by running the simulator, which is in this work a numerical solver. The target of BO
is to maximize a function y (x) that is given by the simulator outputs. The goal is to find xopt such that

xopt = arg max
x∈X

y(x) (1)
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A dependency between the simulator observations y and the parameters x is usually expressed as

y (x) = f (x) + ϵ (2)

where ϵ represents the observation noise and is assumed to be sampled from a normal distribution N
(
0, σ 2

)
.

Typically, f is expensive to evaluate, limiting the number of affordable evaluations to a few hundred. Information
about the structure of the function such as concavity or linearity are missing. Moreover, evaluating f does not
include any information about first- or second-order derivatives. As a solution, we construct a surrogate f̃ (x) that
uses the simulator as a blackbox. A training set Dn =

{(
X(i), Y(i)

)}n
i=1 is used to construct the surrogate, where X

are samples of x and Y = y (X) are their corresponding simulator outputs.
BO contains two components: a statistical model that acts as a surrogate for the objective function and an

acquisition function that drives the search for the optimal candidate. The interplay of these two components creates
the BO framework. In this work, we use a GP as a surrogate model for the simulator. A GP is a “collection of
random variables, any finite number of which have a joint Gaussian distribution” [26]. For the optimization task,
the GP is used as a prior for the function f (x). It is specified by its mean function and its covariance function,
which are defined as

µ(x) = E[ f (x)]

k
(
x, x′

)
= E

[
( f (x) − µ(x))

(
f
(
x′

)
− µ

(
x′

))] (3)

In this case, the GP can be written as

f (x) ∼ GP
(
µ(x), k

(
x, x′

))
(4)

The posterior f | Dn conditioned on the training set Dn is also a GP with a mean function and covariance function
defined as

µn(x) = k⊤
(
K + η2 In

)−1 y,

κn
(
x, x ′

)
= κ

(
x, x ′

)
− k⊤

(
K + η2 In

)−1
k ′

(5)

where k, k ′
∈ Rn are such that ki = κ (x, xi ) , k ′

i = κ
(
x′, xi

)
. In is the n × n identity matrix and K ∈ Rn×n is given

by Ki, j = κ
(
xi , x j

)
. The posterior is used to compute the acquisition function ϕt : X → R. The point maximizing

the acquisition function, xt ∈ argmaxx∈X ϕt (x), is the next point to evaluate. The acquisition function encodes the
utility of observing the point x based on the posterior. Generally, the acquisition function is defined in such a way
that a high value corresponds to a high value of the objective function, either due to a high prediction or a high
uncertainty, or a combination of both. One of the most used acquisition functions is EI, which might tend to exploit
the space rather than to explore it. This may lead to exploiting regions close to local optima and thus missing the
global optimum.

Acquisition strategy

For the optimization, a novel acquisition strategy, based on the KG acquisition function [63,64] and an
exploitation of the current optimum of the posterior, is adopted in this work. In the following, we describe the
strategy for the single-fidelity setting. The extension to multi-fidelity is carried out in Section 3.

Gupta and Miescke [63] introduced the KG acquisition function as simple look-ahead policy that provided
tractability. Frazier et al. [64] analyzed it and referred to it as KG policy. It was extended to include correlated
beliefs in [65] and to enable parallel batch-optimization in [66]. The parallel KG is referred to as q-KG.

The KG policy chooses the next sampling candidate, such that it maximizes the expected incremental value of
an observation. Unlike the EI, it does not assume that the optimum must be a previously observed point, and the
reward is received only after the final observation.

If we have collected n observations of the simulator and we were to terminate the optimization loop,
maxx∈X µn (x) would be the maximum of the posterior mean. If we were to allow one more batch of samples
of the size q, the maximum of the posterior mean would be maxx∈X µn+q (x). The expected incremental value that
results from the additional batch is the difference maxx∈X µn+q (x) − maxx∈X µn (x). The probability distribution
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of the difference can be computed for the batch of sampling decisions z1:q := {z1, z2, . . . , zq} by defining the q-KG
factor

q-KG
(
z1:q ,X

)
= En

[
max
x∈X

µn+q (x) |y
(
z1:q

)]
− max µn (x) (6)

where En[·] := E
[
· | x(1:n), y(1:n)

]
is the expectation with respect to the posterior distribution after n observations.

The batch z1:q of points that maximize the q-KG factor is the next to be sampled.
The idea behind our modified KG policy originates in the analogy between the optimization process and a

dynamical system. Since the reward of the q-KG policy in [66] is only received after the final observation, the
system does not receive a direct feedback on its performance throughout the whole optimization loop. Observing
the candidates that maximize the q-KG factor gives implicitly a feedback to the system, but it is not a direct indicator
of the optimization performance. It is rather a feedback on the direction of the search. This leads to an exploratory
behavior of the search space. On the other hand, other acquisition functions such as EI receive a direct feedback at
every iteration, as the next observed point is also the reward. This behavior favors exploitation of the current best
optimum.

The idea is to add an extra step to the optimization that would give a feedback to the system on its performance,
by observing the reward at some intermediate stages of the optimization and not only in the end. This step is referred
to as recommendation, as the system recommends a point xrec, that is believed to be the optimum based on the
posterior mean of the surrogate.

The following algorithm describes the steps of the optimization with the modified q-KG acquisition policy. Steps
6 and 7 are the addition to the original algorithm in [66].

Algorithm 1: Bayesian Optimization with modified q-KG policy
Require: number of initial samples I , budget on feasible observations N and recommendation interval srec.
1. Initial stage: Construct a quasi-random batch of I points in X, xi for i = 1, . . . , I .
2. Observe the simulator at the samples xi . Let D represent the complete collection of observations.
3. Set s=0.
while s < N do

4. Get
(
z∗

1, z∗

2, · · · , z∗
q

)
= argmaxz1:q⊂X q-KG

(
z(1:q),X

)
5. Xopt = {z∗

1, z∗

2, · · · , z∗
q} and s = s + q

if s (mod srec) = 0 then
6. xrec = argmaxx∈X µI+s(x).
7. Xopt = Xopt

⋃
{xrec} and s = s + 1

end
8. Sample the points in Xopt, retrain the hyperparameters of the GP by MLE, and update the posterior

distribution of f.
end
return x∗

= argmaxx∈X µI+s(x).

Composite function

In this work, we solve inverse problems using BO optimization. Let ytarget be the targeted simulator output, for
which the input parameters are sought. The optimization task is then

min
x∈X

∥ f (x) − ytarget∥, (7)

where ∥ · ∥ is often the L1 or L2 norm. If we define the function g (x) = ∥x − ytarget∥, then the optimization task
can be reformulated as

min
x∈X

g ( f (x)) . (8)

Astudillo and Frazier [41] introduced a novel BO approach that uses the composite structure of the objective function
and results in a more efficient optimization. This approach consists in building a GP model on f and then using
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the EI under the implied statistical model on g ◦ f to direct the search for new points to sample. The acquisition
function is referred to as EI-CF. The intuition behind this approach is that the observations f (x) might supply
relevant information to the optimization that are not provided by the observations g ( f (x)).

In this work, we make use of the composite structure of the objective function and combine the approach with
our acquisition policy described above. There are three main advantages to this approach compared to a standard
BO:

• The norm function g may be non-differentiable at some points of the domain, thus non-smooth, which makes
it inadequate for the usual kernel functions for the GP model.

• Re-usability of observations from previous experiments with different target values.
• The GP model, fitted directly with the simulator outputs, might give some insights about the underlying

function of the simulator.

3. Multi-fidelity Bayesian optimization

Standard BO methods are often studied in a single-fidelity setting, where there is one single expensive-to-evaluate
objective function. However, cheaper approximations of the function are usually available and can be used to
discard regions of the space that might not be promising [67]. We refer to these approximations as “information
sources (IS)”. Examples of a multi-fidelity source of information are numerical simulations generated by using
different grid refinement levels.

We denote the objective function and its lower-fidelity approximations by g (x, s). The expensive objective
function is defined as f (x) = g (x, 1m) and s ∈ [0, 1]m are the m fidelity-parameters. The final goal is to maximize
the high-fidelity function f . Given that, in a multi-fidelity setting, the cost of evaluating the function depends on
the fidelity level, the acquisition policy has to take into account both the value of information provided by a design
point and the cost of querying it. In this work, cfKG function [68] is adopted as acquisition policy. Analogous to the
single-fidelity implementation, we modify the strategy by observing intermediately promising high-fidelity design
points based on the posterior distribution.

We now briefly describe the statistical model that integrates the different IS and then discuss the acquisition
strategy.

Multi-fidelity surrogate model

The statistical model is a GP that has a kernel function appropriate for multi-fidelity IS. The kernel structure is
originally adopted in the work of Wu et al. [59] for hyperparameter optimization.

We assume g ∼ GP(0, κ), and a query at z = (x, s) gives the observations y = g(x, s) + ϵ. κ is the prior kernel
function. For two levels of fidelity s1 and s2, the kernel function is defined as

κ
(
z, z′

)
= K

(
x, x ′

)
× K1

(
s1, s ′

1

)
× K2

(
s2, s ′

2

)
(9)

where K (., .) is a square-exponential kernel. The idea of the kernel K1 follows from the work of Swersky et al. [69].
It is defined as

K1
(
s1, s ′

1

)
= w +

βα

s1 + s ′

1 + βα
(10)

where w, α and β are strictly positive hyperparameters. The kernel K2 is defined as

K2
(
s2, s ′

2

)
= c + (1 − s2)

1+δ
+

(
1 − s ′

2

)1+δ (11)

where c and δ are also strictly positive hyperparameters.

Multi-fidelity acquisition function

The cfKG [68] acquisition function extends the q-KG policy [66] to multi-fidelity problems where the fidelity
levels are allowed to be continuous. Similarly to q-KG, the strategy is to maximize the information gained by one
additional observation.

6
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The solution after sampling n points would be the highest fidelity point x∗

HF maximizing the posterior mean,
i.e. x∗

HF = argmaxx∈X µn (x, 1m).
If we were to sample one additional point xn+1 with fidelity sn+1 and the simulator outcome yn+1, the gained

information value is the difference maxx∈X µn+1 (x, 1m) − maxx∈X µn (x, 1m). To obtain the cfKG acquisition
function, the expectation of the difference over the random simulator outcome yn+1 is normalized with the cost
of obtaining the additional sample. This yields

cfKG (x, s) =

(
En

[
max
x ′∈X

µn+1
(
x ′, 1m

)
|xn+1 = x, sn+1 = s

]
−

max
x ′∈X

µn
(
x ′, 1m

) )
1

costn (x, s)

(12)

where costn (x, s) is the estimation of the cost of querying the point x at fidelity s. This cost depends also on
the samples observed until iteration n. The next sample according to the cfKG policy is the pair of design point
and fidelity that jointly maximize the cfKG acquisition function. The cfKG generalizes to q-cfKG to include batch
optimization, which then can sample a set of pairs (design point and fidelity) in one iteration. If we define this set
of be z1:q =

(
(x1, s1) , . . . ,

(
xq , sq

))
, where q ⩾ 1 is the size of the set, then the q-cfKG acquisition function is

formulated as

q-cfKG
(
z1:q

)
=

(
En+q

[
max
x ′∈X

µn+q
(
x ′, 1m

)
|zn+1:n+q = z1:q

]
−

max
x ′∈X

µn
(
x ′, 1m

) )
1

max1⩽i⩽q costn (zn+i )

(13)

Similarly to the single-fidelity setting of our framework, we add the possibility of querying the high-fidelity solution
at intermediate stages of the optimization.

4. Definition of terms

In this section, we introduce and define key terms and metrics related to the BO method that are used frequently
in this work:

• Recommendation point: after each iteration i , the surrogate model is updated with a new observation. The
recommendation point xrec,i is the point that maximizes the posterior mean of the surrogate. This point is the
solution of the optimization if iteration i were to be the last.

• True recommendation error: if ytarget is the targeted simulator output, the true recommendation error at iteration
i is defined as

ϵtrue,i =
| fobjective(xrec,i ) − ytarget|

ytarget
(14)

where xrec,i is the recommendation point and fobjective(xrec,i ) is its objective function evaluation. Since each
optimization setup is run multiple times with different random initialization seeds, the error is averaged over the
optimization runs. The mean and the standard deviation of the true error are respectively ϵtrue,i and σ

[
ϵtrue,i

]
.

• Prediction error: it is defined as the absolute difference between the prediction of the surrogate and the true
objective function at a point. In this work, the prediction error is estimated at the recommendation points and
the predictions correspond to the value of the posterior mean at those points. The prediction error can be
written as

ϵprediction,i =
⏐⏐ fobjective

(
xrec,i

)
− fsurrogate

(
xrec,i

)⏐⏐ . (15)

Here again the error is averaged over multiple optimization runs and the mean is denoted by ϵprediction,i

7
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• Average cumulative prediction error: it is defined as

ϵprediction, cumulative =
1
N

N∑
i=1

ϵprediction,i (16)

where N is the number of iterations in a single optimization run.

5. General formulation of the two-phase Stefan problem

Solving the Stefan problem requires finding the temperature and the interface between two phases of a pure
substance. The dynamics of these two variables are governed by the heat diffusion from internal or external heat
sources. We start by giving a general formulation of the two-phase Stefan problem to then explain the cases of
inverse Stefan problems investigated in this work.

We consider a domain D of a pure substance which contains both a liquid and a solid phase. We refer to the
solid region as Ωs and the liquid region as Ωl . The boundary is denoted by Γ . Heat conduction is present in both
phases, yielding the following governing equations:

ρscs
∂T
∂t

= ∇ · (ks∇T ) ,x ∈ Ω (17a)

ρlcl
∂T
∂t

= ∇ · (kl∇T ) ,x ∈ Ω c (17b)

where cl and cs are the heat capacities, ρl and ρs the densities, kl and ks the thermal conductivities and, Tl and Ts

the temperatures, respectively in the liquid and solid phases. In order to fully describe the problem, the interface
conditions need to be considered in addition to the heat Eqs. (17). We assume a continuous temperature field
across the boundary. The interface temperature TΓ is treated as a Dirichlet boundary condition and follows from
the Gibbs-Thomson relation as

TΓ = Tm −
γ Tm

ρs L
κ − ϵu ∥uΓ∥ , (18)

where Tm is the melting temperature, γ the surface tension coefficient, L the latent heat, κ the boundary curvature,
uΓ the normal velocity at the interface, and ϵu the kinetic coefficient. Additionally, the Stefan condition

ṁ [L + (TΓ − Tm) (cl − cs)] = ρ ∥uΓ∥ [L + (TΓ − Tm) (cl − cS)]
= (ks∇Ts − kl∇Tl) · nΓ

(19)

describes how the heat fluxes and the latent heat produced by phase change are balanced at the interface. In Eq. (19),
ṁ is the rate of the liquid mass that is becoming solid and nΓ is the normal vector at the interface pointing from
the solid to the liquid.

6. Case 1: Growth of a planar solidification front

6.1. Problem formulation

The first case is the classical two-phase Stefan problem, which depicts the growth of a planar solidification
front. We simulate the case of an ice front in undercooled water, i.e. the local temperature in the water is below the
liquid–solid phase transition temperature, as described in [70]. Solidification is initiated at t = 0 from the position
xΓ = 0 and the front propagates in the liquid domain xΓ (t) > 0. The initial and boundary conditions are

Tl |x,t=0 = Tl,0 (20a)

Tl |x→∞,t = Tl,∞ = Tl,0 < Tm (20b)

Ts |x,t=0 = Ts,0 < Tm, (20c)

8
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Table 1
Material parameters for the one-dimensional Stefan problem: water at 243.15 K and ice at 263.15 K.

ρ
[
kg/m3] c [J/(kgK)] k [W/(mK)] L [kJ/kg] Tm [K]

Water 1000 4864.0 0.4829 333.6 273.1
Ice 1000 2030.0 2.319

Fig. 1. Temporal evolution of the interface position for different values of the undercooling.

where Tm is the melting temperature assigned to the flat interface. The analytical solution for this system is given
by Carslaw and Jaeger [71] and gives the temperature profile as

0 < x < xΓ (t) , t > 0 : T (x, t) = Ts,0 + (Tm − Ts,0)
er f

(
x

2
√

αs t

)
er f (β)

x > xΓ (t) , t > 0 : T (x, t) = Tl,0 + (Tm − Tl,0)
er f c

(
x

2
√

αl t

)
er f c (νβ)

,

(21)

with β given by the transcendental equation

β
√

π =
Sts

exp
(
β2

)
er f (β)

+
Stl

νexp
(
ν2β2

)
er f c (νβ)

. (22)

Here, Stl and Sts are the Stefan numbers in the liquid and solid, respectively and defined by

Stl = cl (Tm − Tl) /L (23a)

Sts = cs (Tm − Ts) /L . (23b)

ν is the square-root of the ratio of the thermal diffusivities of the phases ν =
√

αs/αl . The temporal evolution of
the interface location is given by

xΓ (t) = 2β
√

αs t . (24)

We reformulate the growth of a solidification front into an inverse problem. The task consists in inferring the
initial undercooling ∆ = Tm − Tl,0 that propagates the interface up until a given position after a given time. Since
the melting temperature is fixed, the initial liquid temperature is the output quantity of the inverse problem. We use
the material settings found in the original problem proposed by Rauschenberger et al. [70]. The material parameters
are described in Table 1. The initial solid temperature Ts,0 is also kept constant at 263.15 K. For simplicity, the
dependency of some of the material parameters on the temperature is not considered in this work.

In order to formulate the desired objective function for the inverse problem, we compute the interface position
given by the analytical solution of the growth of the ice front as a function of the undercooling and the time,
as can be seen in Fig. 1, where the temporal evolution of the interface position is shown for different values of
undercooling.

9
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Table 2
Optimization setups for the inverse 1D Stefan problem.

Optimization setup Interface position [mm] Duration [s]

1 0.09 0.04
2 0.3 0.4
3 0.4 0.5

We refer to the solver as fanalytical and to the target interface position at the time ttarget as xtarget . The inverse
problem is then formulated as:

min
∆∈A

fobjective = min
∆∈A

| fanalytical(∆, ttarget) − xtarget| (25)

where A is the range of undercooling. We then seek to minimize the error between the computed interface position
and the target interface position. ∆∗ is the true solution to this problem if fobjective(∆∗) = 0. We use the composite
formulation of the objective function to train the GP with the solver outputs.

6.2. Solution to the inverse problem

Table 2 shows the three different optimization setups investigated in the case of the inverse one-dimensional
Stefan problem. Three combinations of target interface position and time duration are specified and the goal of the
optimization is to find their corresponding undercooling. The initial training-sets of size 2, 5 and 10 are generated
quasi-randomly. Each setup, characterized by its target values and the size of the initial set, is run 20 times with
different seeds and the results are averaged.

We run a single-fidelity BO and investigate the effect of the acquisition strategy described in Section 2. To this
end, we compare the results of a SKG acquisition strategy with the results of a combination of KG and fitting the
recommended point to the GP every 1 and 5 iterations of the optimization. For each experiment, a budget of 100
evaluations of the objective function is allowed, not including the initial training points. After each iteration i , the
recommendation point xrec,i is evaluated to measure the performance of the optimization algorithm. For the standard
KG acquisition strategy, this point is never fitted to the GP. For the modified acquisition strategy, depending on
the chosen fitting-interval, this point and its evaluation are added to the training set for the GP-regression as a new
sample.

The mean of the true recommendation error ϵtrue is shown in Fig. 2. Fitting the recommendation, regardless of
the interval, clearly reduces the error across all setups. The standard KG acquisition policy results not only in the
highest errors, but also in the slowest decrease of the error during the optimization, which is characterized by the
plateauing of the error.

The recommendation-fitting interval has also a big impact on the decrease of the error and the convergence
of the optimization. The smaller the interval, the smaller the error is for the same number of evaluations needed.
This means that the algorithm converges faster towards the true solution. The results show that the best acquisition
strategy is to observe the point suggested by the KG function, followed by observing the recommendation and fitting
it to the surrogate model, as this strategy results in the lowest error across all setups and in a steady diminishing
of the error. The error is at least two orders of magnitude smaller than the error produced by the SKG.

The size of the initial training-set is an important design choice as can be seen in Fig. 2. A larger size of the initial
training-set has the effect of decreasing the error. The choice of the size has to be made carefully, as adding a few
extra points to the initial set might provide more benefits than allocating more points later during the optimization.
An example is Fig. 2(b) where the setups with initial size 1 and 10 are compared. For each recommendation-fitting
interval, the error reached after 10 evaluations for the setup with the larger initial set is not recovered for the one
with the smaller initial set even after 100 evaluations.

In Fig. 3, the average cumulative prediction error ϵ̄prediction, cumulative is shown for the different setups. The
predictive accuracy of the surrogate model increases with the size of the initial set. Moreover, the modified KG
acquisition policy yields a better prediction accuracy in the near-solution region, than the SKG, and that for both
fitting-intervals. This confirms the intuition that recommendation-fitting acts as exploitation of the current solution.
As the surrogate model observes many samples, usually clustered in the same region, its predictions become more
accurate in that region.
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Fig. 2. Mean of true error of recommendations for all optimization setups. The full line corresponds to the SKG acquisition function, dotted
line corresponds to the modified KG function with interval 5 and the dashed line corresponds to the modified KG function with interval 1.
The blue color corresponds to the initial set of size 2, the red one to the size 5 and the black one to the size of 10. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Average of cumulative prediction errors of recommendations over the optimization iterations, for different sizes of the initial set. The
prediction error is evaluated at each iteration and each optimization is run for 100 iterations. For each setup, we show results for a standard
KG acquisition function ( ), a modified KG function with interval 1 ( ), and a modified KG function with interval 4 ( ).

We have used different setups to solve the one-dimensional inverse Stefan problem for various target-values. The
experiments show that the modified KG acquisition policy yields not only smaller errors and thus samples closer to
the true solution, but also more accurate predictions. For a budget of 100 function evaluations during optimization,
the combination of a larger initial set and a smaller interval for recommendation-fitting solves the inverse problem
with an error on the order of 10−5.

7. Case 2: Growth of a crystal with four-fold symmetry

7.1. Problem formulation

The second problem we investigate is directional dendritic solidification. We consider an initially spherical seed,
as sketched in Fig. 4, which is surrounded by an undercooled melt. The temperature of the surrounding melt is
below the liquid–solid phase transition temperature and leads to crystallization of the seed. Along the main axes, the
crystal exhibits growth in preferred directions due to anisotropic surface tension, cf. Fig. 4. The temporal evolution
of the crystal is shown in Fig. 4(c). The early phase of the crystallization process is highly transient. Thereafter, the
velocity at the dendritic tip converges against a steady-state solution. Many authors [72–77] consider this setup with
slight variations for the validation of numerical methods for crystal growth. [78] investigate this setup and develop
a stochastic surrogate model for the relation between the tip velocity and material and local melt parameters. They
highlight that multi-fidelity modeling based on a resolution-fidelity hierarchy allows cost-efficient generation of a
surrogate model while improving model accuracy compared to single-fidelity modeling. This motivates investigating
whether multi-fidelity modeling also yields superior performance when solving the inverse Stefan problem. We
infer process and local melt parameters that lead to a certain predefined tip velocity. Following [78], we denote
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Fig. 4. (a): Solid–liquid interface for the growth of an initially spherical seed with radius r0 under anisotropic surface tension. Time increases
as the interface extends in x and y. The tip-velocity vector with magnitude uΓ is highlighted in red for the last snapshot. (b): Temperature
field and solid–liquid interface (black line) for the last snapshot. (c): Temporal evolution of the crystal for a resolution of 64 cells

r0
. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the steady-state tip velocity as uΓ . It is a function of the normalized undercooling T , capillary anisotropy ε, and
thermal-conductivity ratio αm/αs between melt and solid. The normalized undercooling reads

T =
(T − Tm) c

L
, (26)

where T denotes the temperature in the melt, Tm the melting temperature, c the specific heat capacity, and L the
latent heat. It corresponds to the dimensionless Stefan number St . Thus, the functional dependence for the tip
velocity is

uΓ = f (St, ε, αm/αs) . (27)

We denote the vector of independent parameters as

x = (St, ε, αm/αs) ∈ R3, (28)

where 0.5 ≤ St ≤ 0.9, 0.02 ≤ ε ≤ 0.05, and 0.5 ≤ αm/αs ≤ 1 are the bounds of the parameter space. This allows
formulating the inverse problem as optimization task

min
xdendri te

fobjective, dendrite = min
∆

|uΓ (xdendri te) − uΓ ,target|, (29)

where uΓ ,target is the predefined, targeted tip velocity. To determine the tip velocity for arbitrary operating points, we
employ the numerical model for liquid–solid phase transition as presented in Kaiser et al. [79]. It is implemented in
the open-source simulation framework ALPACA [62,80]. This model captures the interface using a sharp-interface
level-set function and considers the phase change between the solid and the melt using conservative interface-
interaction terms. The model offers full spatio-temporal adaptivity through a multiresolution approach with adaptive
local timestepping [81], which is based on the multiresolution approach of Harten [82] with level-dependent cell
sizes. This comprises a natural multi-fidelity property, and allows constituting multi-fidelity data sets by varying the
maximum refinement level as shown in [78]. A detailed description and convergence analysis of the investigated
setup can be found in [78].

To study the behavior of the multi-fidelity BO approach applied to the inverse problem for the dendritic growth in
detail, we need a huge number of evaluations of the target function. At the same time, we aim to have an accurate,
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Fig. 5. Top row: Correlation between uΓ obtained from the low-fidelity and high-fidelity model. They are denoted as uL F
Γ and u H F

Γ ,
respectively. From left to right, the grayscale of the points is according to St , ε, and αm/αs . Bottom row: u H F

Γ plotted over St , ε, and
αm/αs , respectively.

i. e. highly resolved, high-fidelity model for the analysis. Thus, we base the definition of the fidelity hierarchy on
a preexisting data set, that was used in [78]. Taking further into account the available computational resources, we
define the low- and high-fidelity models:

• Low fidelity: Following [78], simulations are performed with a spatial resolution of 8 cells per initial seed
radius. This results in very short computing times, yet with significant errors in the predicted steady-state
velocity.

• High fidelity: Simulations are performed with a spatial resolution of 32 cells per initial seed radius. This
corresponds to two additional refinement levels in the multiresolution (MR) tree compared to the low-fidelity
setup.

The preexisting data set consists of NL F = 1000 low-, and NH F = 400 high-fidelity samples. Based on 150
samples available for both fidelities, we visualize their correlation in Fig. 5. The correlation between low- and
high-fidelity model is nonlinear. For low tip velocities, the low-fidelity model gives accurate estimates of the true,
high-fidelity tip velocity. For increasing tip velocities, the correlation is worse, and the low-fidelity model strongly
underestimates the high-fidelity model. Fig. 5(d) shows that the tip velocity exponentially grows with the Stefan
number. For the capillary anisotropy and the thermal conductivity ratio, cf. Figs. 5(e) and 5(f), no clear trends
can be deduced. Based on the 150 samples available at each fidelity, [78] measure that the compute time for a
high-fidelity sample is on average by a factor of 27 more expensive than a low-fidelity sample. When adding one
additional multiresolution level to the present high-fidelity model, a sample is on average by a factor of 224 more
expensive than a low-fidelity sample. Based on this information, we deduce a quadratic cost model, that is necessary
for the multi-fidelity BO strategy. We linearly map the fidelity-level resolutions onto a continuous fidelity parameter
0.0 ≤ s ≤ 1.0, and define that s = 0.0 corresponds to the low-fidelity model, s =

2
3 corresponds to the high-fidelity

model, and s = 1.0 corresponds to one additional refinement level compared to the high-fidelity model. Based on
the available cost estimates, this allows fitting the quadratic cost function

c∗ (s) = 552.0s2
− 329.0s + 1.0. (30)
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Fig. 6. Shape of the dendrite when a steady-state tip velocity has developed. The low-, and high-fidelity results are shown in the top and
bottom row, respectively. The left, middle, and right column show results for x = [0.523, 0.0481, 0.921], x = [0.721, 0.0422, 0.804], and
x = [0.897, 0.0395, 0.693] respectively. The respective time is indicated for each plot.

In this work, we scale the cost function to

c (s) = c∗

(
2
3

s
)

. (31)

Then, s = 0.0 corresponds to the low-fidelity model, and s = 1.0 corresponds to the high-fidelity model. To ensure
that the acquisition function only proposes points corresponding to the low-, and high-fidelity model, we limit s to
the discrete set s ∈ 0.0, 1.0.

Fig. 6 shows the dendrite during steady growth for different parameters for both fidelity levels. From left to
right, St , and thus uΓ , increases. For higher St , the tip is more pronounced and depicts more instabilities. For the
highest Stefan number (right column), the dendrite develops secondary branches for the high-fidelity model. Due to
the low resolution, the low-fidelity model suppressed these secondary instabilities. Increasing tip velocities, which
occur for higher St , require resolving smaller tip radii. For high tip velocities, the low-fidelity model is not able
to accurately capture the required tip radii. Thus, in this region, the low-fidelity model strongly deviates from the
high-fidelity model and underestimated the high-fidelity tip velocity, as already seen in Fig. 5.

7.2. Solution of the inverse problem

We apply the MFKG algorithm in combination with the composite BO in order to solve the inverse problem
defined in Eq. (29). We run the BO algorithm for 12 iterations and fit the recommendation point after every 4th
iteration. For each iteration we perform a recommendation, and evaluate the true target function at the predicted
solution point.

The computational cost to evaluate the sample proposed by the acquisition function dominates the cost of a
single iteration of the optimization algorithm. Due to the multi-fidelity setting, the cost to evaluate a single sample
varies strongly, depending whether a low- or high-fidelity sample has to be generated. Thus, besides using the
iteration index, the evolution of the optimization algorithm can also be tracked by the cumulative cost of the samples
iteratively proposed by the acquisition strategy. We denote this cumulative cost by ccumulative.

To account for the randomness in choosing the initial training set, we create an ensemble of 10 different random
realizations of each optimization run, and average their results. Thus, we investigate the convergence of the algorithm
using the mean and standard deviation of the true recommendation error over all available runs. Also, we can use
the mean value of the cumulative cost ccumulative to track the evolution of the algorithm. Note, σ [ϵtrue] measures
the sensitivity of the MFKG algorithm to the random selection of training points. We explore the behavior of the
algorithm by varying several parameters. We solve the inverse problem for several target tip velocities uΓ ,target, and
consider different initial training sets for each. NL F,i and NH F,i denote the number of low- and high-fidelity samples
in the initial training set, respectively. Also, for comparison, we conduct single-fidelity runs which solely base on
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Fig. 7. Convergence of the MFBO algorithm for varying initial training sets and uΓ ,target = 0.05. (a), (c), and (e): We show the mean
error ϵ̄ over the number of iterations and the cumulative cost in the left and right part, respectively. (b), (d), and (f): We show the standard
deviation of the error σ [ϵ] over the number of iterations and the cumulative cost in the left and right part, respectively. (g): Comparison
between the cumulative sample generating cost of single- and multi-fidelity modeling.
In all plots, results with NH F,i = 2, 5 and 10 high-fidelity samples in the initial training set are indicated by the red ( ), blue ( ), and
black ( ) color, respectively. Single-fidelity results are shown by solid lines ( ). Multi-fidelity results are shown by dashed lines ( ).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

high-fidelity data. Therefore, the initial training set only bases on high-fidelity data, and we limit s to the discrete
set s ∈ 1.0 to ensure that the acquisition function only proposes high-fidelity points.

In Fig. 7 we solve the inverse problem for uΓ ,target = 0.05 m
s and show ϵtrue, σ [ϵtrue], and ccumulative. As already

shown in Fig. 5, for this targeted tip velocity a good correlation between the low- and high-fidelity model exists.
We investigate the convergence behavior of the algorithm considering NL F,i = 10, 50, and 100 low-fidelity samples
in the initial training set. We show the evolution of ϵtrue in Figs. 7(a), 7(c) and 7(e), respectively, and the evolution
of σ [ϵtrue] in Figs. 7(b), 7(d) and 7(f), respectively. The mean recommendation error converges for all investigated
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initial training sets. Also, the standard deviation of the recommendation error decreases for all configurations. This
highlights, that during the early iterations of the optimization algorithm, the solution quality strongly depends on the
chosen initial training set. For the later stages of the optimization, the solution quality is independent of the initial
training set. For NL F,i = 10, cf. Fig. 7(a), the single-fidelity setting converges faster than the high-fidelity setting
when monitoring ϵtrue over the number of iterations. When considering the evolution of ϵtrue over the cumulative
cost, the multi-fidelity setting outperforms the single-fidelity setting. For this setup, a similar amount of low- and
high-fidelity data is present in the initial training set. Due to the low amount of data present in the initial training set,
the GP surrogate model exhibits high predictive uncertainties even for low-fidelity predictions. Thus, the acquisition
function often suggests generating low-fidelity samples, which is confirmed when comparing the average cumulative
cost for single- and multi-fidelity runs, cf. Fig. 7(g) (left). This leads to the differences when comparing the evolution
of single- and multi-fidelity settings either over the number of iterations, or the cumulative cost. Since the low- and
high-fidelity model show a good correlation for the investigated target tip velocity, the generated low-fidelity samples
contribute significantly to the quality of the GP surrogate, and thus to ϵtrue. For NL F,i = 50, and 100, cf. Figs. 7(c)
and 7(e), multi-fidelity modeling outperforms single-fidelity modeling for all considered initial training sets. Also,
no severe differences can be observed between monitoring ϵtrue over the number of iterations or the cumulative
cost since the parameter space is sufficiently dense sampled for both NL F,i , and during optimization less focus is
put on generating low-fidelity samples. For σ [ϵtrue], cf. Figs. 7(d) and 7(f), the same trends can be observed.

In Fig. 8 we solve the inverse problem for uΓ ,target = 0.1 m
s . Fig. 5 shows, that for the targeted tip velocity

the correlation between the low- and high-fidelity model is worse compared to the previous case. We investigate
the convergence behavior of the algorithm considering NL F,i = 10, 50, and 100 low-fidelity samples in the initial
training set. We show the evolution of ϵtrue in Figs. 8(a), 8(c) and 8(e), respectively, and the evolution of σ [ϵtrue] in
Figs. 8(b), 8(d) and 8(f), respectively. As for the previously investigated target tip velocity, the mean recommendation
error converges for all investigated configurations. Again, we observe that the sensitivity of the result on the initial
training set decreases during later stages of the iterative optimization process, when considering the evolution
of σ [ϵtrue]. Due to the bad correlation between low- and high-fidelity model for uΓ ,target = 0.1 m

s , multi-fidelity
modeling does not outperform single-fidelity modeling here. Nevertheless, we observe convergence for both settings
and achieve relevant recommendation errors ϵtrue < 1% for the same cumulative cost. When adding more low-
fidelity samples to the initial training set, the differences between multi- and single-fidelity modeling decrease
when monitoring the evolution over the cumulative cost, cf. Fig. 8(g).

The convergence study of the inverse dendritic growth problem suggests several trends that require consideration
when defining a multi-fidelity BO setting. Multi-fidelity modeling is especially useful and drastically improves the
convergence of the algorithm, when low- and high-fidelity model correlate well for the targeted value. Also, for
successful multi-fidelity modeling it is necessary that more low- than high-fidelity data are present. These findings
agree with [78]. In case the low- and high-fidelity model do not correlate well for the target value, multi-fidelity
modeling does not improve the optimization process compared to single-fidelity modeling. Nevertheless, the multi-
fidelity setting does not harm the convergence and achieves relevant recommendation errors < 1% with a similar
computational cost as the single-fidelity setup.

In the Appendix, we solve the inverse problem for uΓ ,target = 0.02 m
s and show similar plots as for the previous

targeted tip velocities. For this tip velocity, the low- and high-fidelity model correlate well, cf. Fig. 5, even better
than for uΓ ,target = 0.05 m

s . The trend observed is confirmed, and the multi-fidelity modeling strongly outperforms
the single-fidelity modeling.

We validate the recommended points of the BO algorithm in Fig. 9. The targeted tip velocity is uΓ ,target = 0.05,
and the number of low-fidelity points in the initial data set NL F,i = 100. We show the recommendation points
generated for all optimization runs for varying number of high-fidelity points in the initial training set NH F,i ,
where the recommendation points are colored by their recommendation error. For NH F,i = 2, cf. Fig. 9(a), the
recommendation points cover the whole range of recommendations error. In contrast, for NH F,i = 10, cf. Fig. 9(b),
they focus only cover small recommendation errors. This observation matches with convergence results shown in
Fig. 7(e). For NH F,i = 2, and 10, the recommendation points focus around certain paths for small recommendation
errors (red color). These paths accumulate around 0.7 < St < 0.8. For ε and αm/αs , the paths are more widely
spread in the parameter space. This indicates that the solution of the inverse problem for this uΓ ,target is not unique.
Also, it shows that uΓ ,target is most sensitive to St . These trends agree with the observations already shown in [78].

In Fig. 10 we show the same plots but fix NL F,i = 100 and NH F,i = 10 while varying the targeted tip velocity
uΓ ,target. Again, the recommendation points focus around certain paths. Due to the large number of low-fidelity
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Fig. 8. Convergence of the MFBO algorithm for varying initial training sets and uΓ ,target = 0.1. (a), (c), and (e): We show the mean error
ϵ̄ over the number of iterations and the cumulative cost in the left and right part, respectively. (b), (d), and (f): We show the standard
deviation of the error σ [ϵ] over the number of iterations and the cumulative cost in the left and right part, respectively. (g): Comparison
between the cumulative sample generating cost of single- and multi-fidelity modeling.
In all plots, results with NH F,i = 2, 5 and 10 high-fidelity samples in the initial training set are indicated by the red ( ), blue ( ), and
black ( ) color, respectively. Single-fidelity results are shown by solid lines ( ). Multi-fidelity results are shown by dashed lines ( ).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

samples in the initial training set NL F,i = 100, all paths exhibit small recommendation errors. The solution is
again most sensitive to St . When increasing uΓ ,target, a higher Stefan number is necessary to obtain the targeted tip
velocity. For ε and αm/αs , the recommendation points are again widely spread over the parameter space.

8. Summary and conclusions

We have developed a novel multi-fidelity Bayesian optimization framework combining composite BO, multi-
fidelity modeling using the cost-aware knowledge gradient acquisition function, and a recommendation fitting
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Fig. 9. Parallel coordinates plot for the recommendation points for uΓ ,target = 0.05 m
s , NL F,i = 100 and varying NH F,i .

Fig. 10. Parallel coordinates plot for the recommendation points for NL F,i = 100, NH F,i = 10 and varying uΓ ,target.

approach to solve inverse Stefan problems. We show the convergence properties of the algorithm by considering the
inverse problem for a planar solidification front and highlight the benefits of the recommendation-fitting procedure.
To solve the more complex inverse problem for directional dendritic solidification we introduce a hierarchy of
resolution fidelities. This strongly improves convergence properties and cost-efficiency compared to a single-fidelity
setting, especially when access to high-fidelity data is limited. The proposed algorithm is attractive for many
applications due to its cost-efficient usage of multi-fidelity data generators and the possibility to reuse existing
data samples and pre-trained surrogate models. Since no assumptions on the type of fidelity levels is made, the
algorithm can be easily extended to also include data from other sources, like experiments. Perspectives for future
work are to apply the algorithm in the rapid and efficient design of new materials with targeted properties.
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Appendix. Additional results to analyze the bo convergence

Fig. A.11 shows additional convergence plots for the inverse dendritic growth problem at uΓ ,target = 0.02 m
s . Note,

for further description or the setup of the case and the graphs we refer to Section 7.
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Fig. A.11. Convergence of the MFBO algorithm for varying initial training sets and uΓ ,target = 0.02. (a), (c), and (e): We show the mean
error ϵ̄ over the number of iterations and the cumulative cost in the left and right part, respectively. (b), (d), and (f): We show the standard
deviation of the error σ [ϵ] over the number of iterations and the cumulative cost in the left and right part, respectively. (g): Comparison
between the cumulative sample generating cost of single- and multi-fidelity modeling.
In all plots, results with NH F,i = 2, 5 and 10 high-fidelity samples in the initial training set are indicated by the red ( ), blue ( ), and
black ( ) color, respectively. Single-fidelity results are shown by solid lines ( ). Multi-fidelity results are shown by dashed lines ( ).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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[13] E. Çadırlı, E. Nergiz, H. Kaya, U. Büyük, M. Şahin, M. Gündüz, Effect of growth velocity on microstructure and mechanical properties
of directionally solidified 7075 alloy, Int. J. Cast Metals Res. 33 (1) (2020) 11–23, http://dx.doi.org/10.1080/13640461.2020.1738131.

[14] P. Jochum, The inverse Stefan problem as a problem of nonlinear approximation theory, J. Approx. Theory 30 (2) (1980) 81–98.
[15] P. Jochum, The numerical solution of the inverse Stefan problem, Numer. Math. 34 (4) (1980) 411–429.
[16] A.C. Briozzo, M.F. Natale, D.A. Tarzia, Determination of unknown thermal coefficients for Storm’s-type materials through a

phase-change process, Int. J. Non-Linear Mech. 34 (2) (1999) 329–340.
[17] M.B. Stampella, D.A. Tarzia, Determination of one or two unknown thermal coefficients of a semi-infinite material through a two-phase

Stefan problem, Internat. J. Engrg. Sci. 27 (11) (1989) 1407–1419.
[18] D. Ang, A.P.N. Dinh, D. Thanh, Regularization of an inverse Stefan problem, Differential Integral Equations 9 (2) (1996) 371–380.
[19] D.A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems, John Wiley & Sons, 2011.
[20] N. Zabaras, K. Yuan, Dynamic programming approach to the inverse Stefan design problem, Numer. Heat Transfer 26 (1) (1994)

97–104.
[21] N. Zabaras, T.H. Nguyen, Control of the freezing interface morphology in solidification processes in the presence of natural convection,

Internat. J. Numer. Methods Engrg. 38 (9) (1995) 1555–1578.
[22] V.R. Voller, Enthalpy method for inverse Stefan problems, Numer. Heat Transfer B 21 (1) (1992) 41–55.
[23] R. Grzymkowski, D. Słota, An application of the Adomian decomposition method for inverse Stefan problem with Neumann’s boundary

condition, in: International Conference on Computational Science, Springer, 2005, pp. 895–898.
[24] R. Grzymkowski, D. Słota, One-phase inverse Stefan problem solved by Adomian decomposition method, Comput. Math. Appl. 51

(1) (2006) 33–40.
[25] D. Słota, Solving the inverse Stefan design problem using genetic algorithms, Inverse Problems Sci. Eng. 16 (7) (2008) 829–846.
[26] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, The MIT Press, Cambridge Massachusetts, USA, 2006.
[27] A. Forrester, A. Sobester, A. Keane, Engineering Design Via Surrogate Modelling: A Practical Guide, John Wiley & Sons, 2008.
[28] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, vol. 2, Springer, New York, NY, 2009, http://dx.doi.org/

10.1007/978-0-387-84858-7.
[29] S.H. Bryngelson, A. Charalampopoulos, T.P. Sapsis, T. Colonius, A Gaussian moment method and its augmentation via LSTM recurrent

neural networks for the statistics of cavitating bubble populations, Int. J. Multiph. Flow. 127 (2020) 103262.
[30] H. Zhang, J.P. Choi, S.K. Moon, T.H. Ngo, A knowledge transfer framework to support rapid process modeling in aerosol jet printing,

Adv. Eng. Inform. 48 (2021) 101264.
[31] B. Rankouhi, S. Jahani, F. Pfefferkorn, D. Thoma, Compositional grading of a 316L-Cu multi-material part using machine learning for

the determination of selective laser melting process parameters, Addit. Manuf. 38 (2021) http://dx.doi.org/10.1016/j.addma.2021.101836.
[32] H.A. Kumar, S. Kumaraguru, C. Paul, K. Bindra, Faster temperature prediction in the powder bed fusion process through the

development of a surrogate model, Opt. Laser Technol. 141 (2021) 107122.
[33] R. Saunders, C. Butler, J. Michopoulos, D. Lagoudas, A. Elwany, A. Bagchi, Mechanical behavior predictions of additively manufactured

microstructures using functional Gaussian process surrogates, Npj Comput. Mater. 7 (1) (2021) 1–11.
[34] C. Hu, W. Hau, W. Chen, Q.-H. Qin, The fabrication of long carbon fiber reinforced polylactic acid composites via fused deposition

modelling: Experimental analysis and machine learning, J. Compos. Mater. 55 (11) (2021) 1459–1472, http://dx.doi.org/10.1177/
0021998320972172.

[35] E. Mendoza Jimenez, D. Ding, L. Su, A. Joshi, A. Singh, B. Reeja-Jayan, J. Beuth, Parametric analysis to quantify process input
influence on the printed densities of binder jetted alumina ceramics, Addit. Manuf. 30 (2019) http://dx.doi.org/10.1016/j.addma.2019.
100864.

[36] Y. Yabansu, V. Rehn, J. Hötzer, B. Nestler, S. Kalidindi, Application of Gaussian process autoregressive models for capturing the time
evolution of microstructure statistics from phase-field simulations for sintering of polycrystalline ceramics, Modelling Simul. Mater.
Sci. Eng. 27 (8) (2019) http://dx.doi.org/10.1088/1361-651X/ab413e.

[37] J. Snoek, K. Swersky, R. Zemel, R. Adams, Input warping for bayesian optimization of non-stationary functions, in: International
Conference on Machine Learning, PMLR, 2014, pp. 1674–1682.

20



J.M. Winter, R. Abaidi, J.W.J. Kaiser et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 115946

[38] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas, Taking the human out of the loop: A review of Bayesian optimization,
Proc. IEEE 104 (1) (2015) 148–175.

[39] P.I. Frazier, Bayesian optimization, Recent Adv. Optim. Model. Contemporary Problems (2018) 255–278, http://dx.doi.org/10.1287/
educ.2018.0188.

[40] A.E. Wiens, A.V. Copan, H.F. Schaefer, Multi-fidelity Gaussian process modeling for chemical energy surfaces, Chem. Phys. Lett. X
3 (2019) http://dx.doi.org/10.1016/j.cpletx.2019.100022.

[41] R. Astudillo, P. Frazier, Bayesian optimization of composite functions, in: International Conference on Machine Learning, PMLR, 2019,
pp. 354–363.

[42] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng. 22 (10) (2010) 1345–1359, http://dx.doi.org/10.1109/
tkde.2009.191.

[43] P. Perdikaris, M. Raissi, A. Damianou, N.D. Lawrence, G.E. Karniadakis, Nonlinear information fusion algorithms for data-efficient
multi-fidelity modelling, Proc. R. Soc. A 473 (2198) (2017) 20160751.

[44] H. Babaee, P. Perdikaris, C. Chryssostomidis, G. Karniadakis, Multi-fidelity modelling of mixed convection based on experimental
correlations and numerical simulations, J. Fluid Mech. 809 (2016) 895.

[45] L. Meng, J. Zhang, Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning
model, JOM 72 (1) (2020) 420–428.

[46] G. Kissas, Y. Yang, E. Hwuang, W.R. Witschey, J.A. Detre, P. Perdikaris, Machine learning in cardiovascular flows modeling: Predicting
arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks, Comput. Methods Appl. Mech.
Engrg. 358 (2020) 112623.

[47] C.M. Fleeter, G. Geraci, D.E. Schiavazzi, A.M. Kahn, A.L. Marsden, Multilevel and multifidelity uncertainty quantification for
cardiovascular hemodynamics, Comput. Methods Appl. Mech. Engrg. 365 (2020) 113030, http://dx.doi.org/10.1016/j.cma.2020.113030.

[48] X. Meng, Z. Wang, D. Fan, M. Triantafyllou, G.E. Karniadakis, A fast multi-fidelity method with uncertainty quantification for complex
data correlations: Application to vortex-induced vibrations of marine risers, 2020, arXiv:2012.13481.

[49] A. Doostan, G. Geraci, G. Iaccarino, A bi-fidelity approach for uncertainty quantification of heat transfer in a rectangular ribbed
channel, in: Turbo Expo: Power for Land, Sea, and Air, vol. 49712, American Society of Mechanical Engineers, 2016, V02CT45A031.
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