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Abstract 
This doctoral thesis explores the underlying genetics of multimorbidity using large genomic datasets. 

Multimorbidity is defined as the co-occurrence of multiple chronic health conditions in one individual 

and represents a rising public health challenge. Global trends such as increasing average body mass 

index (BMI) and life expectancy contribute to the escalating prevalence of multimorbidity cases. 

Beyond the personal burden, including polypharmacy and adverse side effects, multimorbidity poses 

a challenge to society as a whole by increasing treatment demands that subsequently inflate 

healthcare expenses. Yet, most health-related and drug development research is focused on treating 

and/or preventing individual diseases. Consequently, healthcare services are not optimally designed 

to assist patients suffering from two or more health conditions.   

A very prevalent multimorbidity pattern among women and men is a combination of cardiometabolic 

and osteoarticular diseases. In older adults, a common example is the type 2 diabetes-osteoarthritis 

comorbidity. Type 2 diabetes affects more than 536 million people worldwide and is characterized by 

elevated blood glucose levels and insulin resistance. Osteoarthritis is the most common whole-joint 

chronic disorder, affecting over 520 million people worldwide. A further very common pair of 

diseases that coexist in adults is a combination of metabolic and severe mental diseases, exemplified 

here by type 2 diabetes and schizophrenia. Schizophrenia is a major psychiatric disorder with a global 

prevalence of 1% and typically characterized by problems with perception, cognitive function, and 

behavior. 

Using summary statistics of large-scale genome-wide association studies (GWAS), the genetic 

intersection between both pairs of comorbidities was investigated separately. Firstly, genome-wide 

analyses were performed to unveil the genetic correlation and causality via Mendelian randomization 

between each pair of conditions. Secondly, regional genetic colocalization analysis was conducted to 

find shared risk signals. By scoring all genes in the vicinity of the identified shared association signals, 

a list of putative effector genes simultaneously influencing both diseases were derived. Finally, a 

deeper dive into the genetic insights revealed by the top-scoring putative effector genes was 

conducted, including pathway analyses and exploration of druggability. 

For type 2 diabetes and osteoarthritis, the well-established positive association was corroborated, 

which was stronger for knee osteoarthritis than hip osteoarthritis. Subsequently, 19 high-confidence 

effector genes were identified. In addition to the well-established involvement of obesity in this 

comorbidity, other possible involved biological mechanisms were highlighted including the 

Wnt/β‐catenin signaling pathway and imbalances in bone marrow cell differentiation. Despite the 

positive epidemiological correlation between type 2 diabetes and schizophrenia, evidence for a 

negative genetic correlation was found, in addition to no evidence of a causal relationship. 
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Intriguingly, a protective effect of schizophrenia liability on increased BMI was found, challenging 

conventional understanding of adiposity-related mechanisms underlying each condition. Highlighted 

biological pathways possibly underlying this comorbidity pair include cholesterol trafficking and 

adipogenesis. 

The research presented in this doctoral thesis holds promise for advancing personalized medicine 

through the identification of novel therapeutic targets and opportunities for drug repurposing, 

contingent upon rigorous validation. The generalizability of findings is partially hampered due to 

disparities in data availability, particularly from diverse populations. 

Zusammenfassung 
In dieser Doktorarbeit werden die genetischen Grundlagen der Multimorbidität anhand großer 

genomischer Datensätze untersucht. Multimorbidität ist definiert als das gleichzeitige Auftreten 

mehrerer chronischer Gesundheitszustände bei einer Person und stellt eine zunehmende 

Herausforderung für die öffentliche Gesundheit dar. Globale Trends wie der steigende 

durchschnittliche (BMI) und die höhere Lebenserwartung tragen zur zunehmenden Prävalenz von 

Multimorbidität bei. Neben der persönlichen Belastung durch Polypharmazie und unerwünschte 

Nebenwirkungen stellt die Multimorbidität eine Herausforderung für die Gesellschaft als Ganzes dar, 

da sie den Behandlungsbedarf erhöht und damit die Kosten im Gesundheitswesen in die Höhe treibt. 

Der Großteil der gesundheitsbezogenen Forschung und der Arzneimittelentwicklung ist jedoch auf die 

Behandlung und/oder Vorbeugung einzelner Krankheiten ausgerichtet.  

Ein sehr häufig anzutreffendes Multimorbiditätsmuster ist eine Kombination aus kardiometabolischen 

und osteoartikulären Erkrankungen. Bei älteren Erwachsenen ist die Komorbidität von Typ-2-Diabetes 

und Osteoarthritis ein häufiges Beispiel. Typ-2-Diabetes betrifft weltweit mehr als 536 Millionen 

Menschen und ist durch einen erhöhten Blutzuckerspiegel und Insulinresistenz gekennzeichnet. 

Osteoarthritis ist die häufigste chronische Erkrankung der gesamten Gelenke, von der weltweit über 

520 Millionen Menschen betroffen sind. Ein weiteres sehr häufiges Krankheitspaar, das bei 

Erwachsenen nebeneinander auftritt, ist die Kombination von Stoffwechsel- und schweren 

psychischen Erkrankungen, hier am Beispiel von Typ-2-Diabetes und Schizophrenie. Schizophrenie ist 

eine schwere psychiatrische Störung mit einer weltweiten Prävalenz von 1%, die typischerweise durch 

Probleme mit der Wahrnehmung, der kognitiven Funktion und dem Verhalten gekennzeichnet ist. 

Anhand von zusammenfassenden Statistiken groß angelegter genomweiter Assoziationsstudien 

(GWAS) wurde die genetische Schnittmenge zwischen beiden Komorbiditätspaaren getrennt 

untersucht. Erstens wurden genomweite Analysen durchgeführt, um die genetische Korrelation und 

Kausalität zwischen jedem Paar von Erkrankungen aufzudecken. Zweitens wurde eine regionale 
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genetische Kolokalisationsanalyse durchgeführt, um gemeinsame Risikosignale zu finden. Durch die 

Auswertung aller Gene in der Nähe der identifizierten gemeinsamen Assoziationssignale wurde eine 

Liste von mutmaßlichen Effektorgenen erstellt, die beide Krankheiten gleichzeitig beeinflussen. 

Schließlich wurden die genetischen Erkenntnisse, die sich aus den am besten bewerteten 

mutmaßlichen Effektorgenen ergaben, vertieft, u. a. durch eine Analyse der Signalwege und die 

Erforschung der Medikamentenverfügbarkeit. 

Für Typ-2-Diabetes und Osteoarthritis bestätigte sich der bekannte positive Zusammenhang, der bei 

Kniearthrose stärker ausgeprägt war als bei Hüftarthrose. In der Folge wurden 19 Effektorgene mit 

hoher Wahrscheinlichkeit identifiziert. Neben der bekannten Beteiligung von Fettleibigkeit an dieser 

Komorbidität wurden weitere mögliche biologische Mechanismen hervorgehoben, darunter der 

Wnt/β-Catenin-Signalweg und Ungleichgewichte bei der Differenzierung von Knochenmarkzellen. 

Trotz der positiven epidemiologischen Korrelation zwischen Typ-2-Diabetes und Schizophrenie 

wurden Beweise für eine negative genetische Korrelation gefunden, aber auch keine Hinweise auf 

einen kausalen Zusammenhang. Interessanterweise wurde eine schützende Wirkung der 

Schizophrenie-Haftung auf einen erhöhten BMI festgestellt, was das herkömmliche Verständnis der 

adipositasbezogenen Mechanismen, die beiden Erkrankungen zugrunde liegen, in Frage stellt. Zu den 

hervorgehobenen biologischen Wegen, die möglicherweise diesem Komorbiditätspaar zugrunde 

liegen, gehören der Cholesterinverkehr und die Adipogenese. 

Die in dieser Dissertation vorgestellten Forschungsergebnisse versprechen Fortschritte in der 

personalisierten Medizin durch die Identifizierung neuartiger therapeutischer Ziele und 

Möglichkeiten für die Umwidmung von Arzneimitteln, vorausgesetzt, die Ergebnisse werden rigoros 

validiert. Die Verallgemeinerbarkeit der Ergebnisse wird teilweise durch die unterschiedliche 

Verfügbarkeit von Daten, insbesondere aus verschiedenen Bevölkerungsgruppen, beeinträchtigt. 
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Theoretical background 

Brief introduction to human statistical genetics 
Statistical genomics is an interdisciplinary field that blends statistical techniques with genomic 

technologies to interpret large-scale datasets. This field is dedicated to analyzing complex genomic 

data from the entirety of an organism's genetic information, including the study of gene expression, 

gene regulation, and the interaction between different genetic loci and environmental factors. This 

data is generated by modern genomic technologies such as high-throughput sequencing, microarrays, 

and other forms of genomic profiling1. The goal of human statistical genomics is to understand the 

genomic architecture of complex traits, identify genetic determinants of diseases, and uncover the 

underlying mechanisms of gene expression and regulation2. Statistical genomics is the method of 

choice to pave the way for personalized medicine, bridging the gap between raw genetic data and 

meaningful biological insights. 

 

The costs of researching and developing new therapeutics, estimated in the billions of dollars, are 

primarily fueled by a significant number of clinical trial failures3. Statistical genomics can accelerate 

drug target discovery, making it not only faster but also more cost-effective by prioritizing drug 

candidates in the initial phases of drug discovery. Two-thirds of the new drugs approved by the FDA in 

2021 were supported by human genetic evidence, indicating that drug targets with human genetic 

support are more likely to succeed in clinical trials4. Translation discoveries can not only enhance the 

efficiency of drug discovery but also hold the promise of developing more targeted and effective 

therapeutic interventions, ultimately shaping the landscape of precision medicine. 

 

The creation and development of the field of statistical genomics were made possible by the 

synergetic development of two key elements: the exponential growth in computational power and 

the emergence of large-scale genomic datasets, facilitated by cutting-edge genomic technologies and 

methodological tools. The field of genomics witnessed a revolution with the advent of high-

throughput sequencing and other genomic profiling technologies. These technologies have made it 

possible to generate large-scale genomic datasets, providing a comprehensive view of the genome at 

a resolution that was not possible before5. The availability and the ever-diminishing costs of 

generating extensive genomic datasets has been a game-changer for statistical genomics. A 

significant milestone was the finishing process of the Human Genome Project in 2003, which 

published a 99% coverage of the euchromatic human genome6. The complete coverage of all genomic 

regions was completed in 20227. To turn the generated vast amount of raw genomic sequences into 

meaningful biological information, the development of statistical methods for genetic data analysis 

has been crucial. 
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In the early days of genetic research, the limited computational capacity posed a significant challenge 

in handling and analyzing the complex and voluminous data generated by genomic studies. The rapid 

advancement in computing technology over the past few decades, concurrently to the advance in 

high-throughput genomic technologies, has dramatically changed this landscape. Today's high-

performance computing systems can process and analyze vast amounts of data at speeds previously 

unimaginable, enabling the development of sophisticated software capable of dissecting genomic 

patterns accurately8. 

 

Using statistical genetics to study complex traits 
Complex traits are characterized by their non-Mendelian inheritance patterns. These traits do not 

follow the simple monogenic model underlying Mendelian traits. Instead, they arise from the 

interplay of multiple genetic and environmental factors9. Environmental factors play a crucial role in 

the expression of complex traits including lifestyle choices, diet, exposure to toxins, and even social 

and economic factors. These factors can explain why, even among individuals with similar genetic 

makeup, such as twins, there can be differences in the expression of traits. Complex traits can be 

binary, such as diseases, or quantitative traits such as height, and BMI.  

 

Throughout genetics research history different models of trait inheritance have been proposed. The 

infinitesimal model of inheritance, also known as polygenic model, was developed by Ronald Fisher in 

191810. It describes quantitative traits as being influenced by a sum of non-genetic and genetic 

factors contributing to the trait with a small, infinitesimal effect. These small effects cumulate to 

influence the phenotype. A more recent concept proposes that all genes expressed in relevant cell 

types impact complex traits. This omnigenic model suggests that a trait can be influenced by genes 

outside of traditional disease-specific pathways, highlighting the interconnectedness of genetic 

networks11.  

 

One statistical tool that has profoundly reshaped our growing understanding of complex traits is 

Genome-Wide Association Studies (GWAS). GWAS comprehensively examine genetic variations across 

many genomes to find variants statistically associated with a particular binary or quantitative 

complex trait providing insights into its genetic basis12. The establishment of large biobanks that 

combine both genotype and phenotype data from hundreds of thousands of individuals from global 

populations such as the UK Biobank13, Biobank Japan14 and FinnGen15 propelled large GWAS2. Today, 

the GWAS catalog, a curated collection of GWAS, contains data from more than 6,680 publications 

encompassing more than 67,000 GWAS summary statistics16. After identification of risk variants 
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associated to traits through GWAS, a significant challenge in the study of complex traits lies in linking 

the prioritized genetic risk variants to their functional outcomes, known as the variant-to-function 

challenge17. This challenge is at the forefront of current statistical human genetic research, as 

understanding the functional implications of genetic variations is crucial for translating research into 

medical clinics and achieving the goal of beneficiating the broad population.  

 

As sample sizes in GWAS increased, the presence of genetic correlation between common traits was 

revealed. Analysis of GWASs from 588 traits showed that 90% of the loci with association signals were 

shared between multiple traits across multiple domains, highlighting the interconnected nature of 

genetic information proposed in the omnigenic inheritance model18. This underscores the need for a 

more nuanced understanding of how genes contribute to the overall phenotype of an organism. The 

phenomenon wherein a single genetic variant or gene influences multiple, seemingly unrelated traits 

is called pleiotropy19. These pleiotropic effects can manifest in different tissues or organs and are 

complex to disentangle, as the gene product may have multiple functions or be involved in various 

pathways within the organism.  

 

Pleiotropy can be classified into biological, mediated or spurious20. In biological pleiotropy causal 

variants influencing distinct traits are located within the same gene or regulatory unit. Mediated 

pleiotropy occurs when a genetic variant directly influences one trait, which subsequently impacts 

another. In this case, while GWASs may identify an association between the variant and the second 

trait, this association disappears when adjusting for the first trait. Finally, spurious pleiotropy refers to 

the apparent association between a genetic variant and multiple traits that is not reflective of a true 

biological relationship. Instead, this association arises due to methodological or design artifacts 

during the planning or analysis stages of the study and can lead to inaccurate or misleading results in 

genetic research.  

 

The thesis will present research on the interrelation between pairs of diseases and will focus on three 

human health disorders: type 2 diabetes, osteoarthritis, and schizophrenia. These conditions are 

exemplary of complex traits, each influenced by a unique interplay of genetic and environmental 

factors. A brief overview of each condition will be introduced next. 

 

Pathogenesis, prevalence and genetics of type 2 diabetes 
Type 2 diabetes is a chronic metabolic disorder characterized by elevated blood sugar levels21. The 

hallmark of type 2 diabetes is an impaired insulin sensitivity leading to higher insulin tolerance. 

Insulin is a hormone produced by the pancreas that regulates blood sugar levels21. In response to this 
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insulin resistance, the pancreas initially produces more of this hormone to maintain normal blood 

sugar levels by increasing the cell’s glucose intake. Over time, however, this compensatory 

mechanism fails as the pancreas becomes unable to sustain the high levels of insulin production22. 

This leads to a gradual increase in blood glucose levels, resulting in the onset of type 2 diabetes. It is 

the most common form of diabetes mellitus, affecting over 521 million of people worldwide in 

202123. The increasing global prevalence of this condition underscores the importance of public 

health efforts focusing on prevention, early detection, and effective management strategies.  

 

There is no curative treatment available for type 2 diabetes and medical interventions are directed 

towards disease management involving monitoring, lifestyle modifications such as diet and exercise 

and drug therapies to manage blood sugar levels. Type 2 diabetes usually develops in adulthood and 

is strongly linked to environmental factors including obesity, sedentary lifestyle, and age as well as 

genetics serving as a prime example of how lifestyle and genetic factors combine to influence 

health22. Having further chronic health conditions is common in type 2 diabetes patients, with varying 

profiles of multimorbidity24.  

 

Genetic heritability of type 2 diabetes was estimated at around 50%25. To unravel the genetics 

underlying this disease, large sample sizes are required. Data must be gathered from global 

populations to address the ancestry-specific genetic nuances of type 2 diabetes. For instance, at the 

same BMI level or waist-to-hip ratio, East Asians are at higher absolute risk of type 2 diabetes 

compared to Europeans26. Tackling the genetic contribution to type 2 diabetes in both global and 

specific populations, the largest GWAS for type 2 diabetes to date was recently published by the Type 

2 Diabetes Global Genomics Initiative (T2DGGI). This multi-ancestry GWAS included data from 

2,535,601 (428,452 cases) individuals of which almost 40% were from non-European ancestries27. 

 

Pathogenesis, prevalence and genetics of osteoarthritis 
Osteoarthritis, a whole-joint degenerative disorder, is the most common form of arthritis affecting 

almost 600 million people worldwide28. It is characterized by irreversible cartilage degradation 

eventually followed by its complete loss and synovial inflammation29. Its most common symptom is 

pain accompanied by stiffness and decreased joint mobility.  Osteoarthritis is one of the leading 

causes of disability worldwide affecting weight-bearing joints such as the knee, hip, and spine as well 

as non-weight-bearing joints such as the hand, and finger30. Primarily elderly are affected by this 

disease, but it can occur in younger individuals as well mainly due to traumas. Similarly to type 2 

diabetes, there is no curative treatment for this complex disease and management therapies target 
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the alleviation of pain28. In severe cases, surgical interventions like joint replacement may be 

necessary.  

 

Genetics plays a significant role in the development of osteoarthritis alongside environmental and 

lifestyle factors such as obesity, female sex, joint injuries and age. Patients suffering from 

osteoarthritis are also at higher risk of having other chronic conditions compared to individuals 

without osteoarthritis31. The genetic heritability of this chronic disease was estimated between 20% 

and 60%32,33. Advances in genetic research are shedding light on the molecular mechanisms behind 

osteoarthritis, offering hope for more targeted therapies and prevention strategies. The largest 

osteoarthritis GWAS to date is the result of efforts from the Genetics of Osteoarthritis consortium34.  

This meta-analysis has identified 100 independent genetic risk loci for 11 osteoarthritis phenotypes 

including both weight-bearing and non-weight bearing joints and consisted mostly of samples from 

European ancestry. 

 

Pathogenesis, prevalence and genetics of schizophrenia 
Schizophrenia is a chronic and severe mental health disorder that affects a person's ability to think, 

feel, and behave35. Characterized by episodes of psychosis involving delusions, hallucinations, 

disorganized thinking, and other cognitive impairments, it typically emerges in late adolescence or 

early adulthood. Symptoms of schizophrenia are typically divided into three categories: positive 

symptoms, which include hallucinations and delusions, negative symptoms, such as reduced 

emotional expression, social withdraw and lack of motivation, and cognitive symptoms, which 

includes impaired attention and memory35. Despite the low global prevalence of less than 1%36, 

schizophrenia represents one of the 15 leading causes of disability worldwide37. Patients suffering 

from schizophrenia have high rates of physical comorbidities including cardiovascular and metabolic 

diseases38,39. Diagnosis is based primarily on patient history and observed behavior, for instances 

episodes of substance abuse. The primary treatment for managing schizophrenia symptoms is 

antipsychotic medication, which should be complemented by psychosocial interventions, including 

psychotherapy, social skills training, and supported employment.  

 

Environmental factors including exposure to viruses, malnutrition before birth, problems during birth, 

and psychosocial factors play a substantial role in the development of this condition. Additionally, 

genetic epidemiological studies have shown that schizophrenia has an estimated heritability of 

~80%35. The largest schizophrenia GWAS to date consists of data from 76,755 individuals with 

schizophrenia and 243,649 controls and has identified several genetic variants associated with risk of 

schizophrenia in 287 distinct genomic loci40.  
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Multimorbidity of complex traits: prevalence, patterns, and implications  
Having multiple chronic health conditions is denominated multimorbidity. The overall global 

prevalence of multimorbidity was estimated from 126 studies including data from over 15 million 

people at 37.2%. The region with highest prevalence of multimorbidity was South America (45.7%) 

followed by North America (43.1%), Europe (39.2%) and Asia (35%)41. In the world, it is estimated 

that 65% of the population over 65 years and 85% of the population over 85 years suffer from more 

than one long-term medical condition simultaneously42. This pattern demonstrates the well-known 

association between multimorbidity and age43. Additionally, observational studies have shown that 

overweight is associated with increased risk of multimorbidity and has been linked to heterogeneous 

comorbidities including digestive, respiratory, neurological, musculoskeletal, infectious, and 

malignant diseases44,45. A study with 150 Brazilians with severe obesity reported that 90.7% of them 

suffered from two or more conditions and 76.7% suffered from at least three conditions. The 

prevalence of three or more health conditions was 90% for the individuals between 45-65 years 

compared to 65.9% for 18-34 years46.  

 

Due to the increasing tendency of the world’s average BMI and life expectancy, the number of people 

affected by multimorbidity is predicted to substantially increase on a global scale over the next 

years47. Improved diagnostics capabilities and offer also play a role in the rising number of comorbid 

cases. By diminishing quality of life and increasing healthcare expenses, multimorbidity represents 

more than an individual burden influencing the health system and society as a whole48. However, 

despite the rapidly increasing number of patients affected by multimorbidity among global 

population, most health-related research is employed in preventing and treating diseases 

individually49. Consequently, healthcare services are not designed to assist multimorbid cases. This 

leads to several negative consequences for both patients and the healthcare services. Patient care is 

suboptimal and even harmful due to inadequate polypharmacy that increases treatment burden 

leading to increased healthcare expenses50. 

 

Understanding multimorbidity requires a paradigm shift from viewing it as a random collection of 

individual conditions to predictable disease clusters, influenced by an interplay between genetic and 

environmental factors. To systematically identify these multimorbidity clusters, several methods have 

been applied. A study using data from the UK Biobank13 systematically created an atlas of 11,285 

multimorbid disease pairs among 438 common diseases51. Cardiometabolic and mental health 

conditions are the most consistently identified clusters, though musculoskeletal and allergic condition 

clusters have also been observed42.  
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Multimorbidity patterns differ strongly across life stages, sexes, ancestries52 and socio-economic 

groups53. Co-occurrence of multiple diseases tends to appear at a younger age in low- and middle-

income countries. A multi-ancestry study showed African American ancestry individuals presented 

the highest number of multimorbidities at an earlier age than patients of other ancestries54. This 

study also showed that the most common diseases with comorbidities transversing global 

populations are lipidemia, hypertension, and diabetes regardless of age or obesity level. 

Multimorbidity increased with age in both with and without obesity groups. This earlier onset can 

often be attributed to a range of complex socio-economic and environmental challenges. including 

constrained healthcare systems and social support, environmental and socio-economic stressors 

related to poverty42. 

 

As multimorbidity patterns, the correlation between different traits can vary by ancestry, gender and 

social-cultural environment55. Genetic correlation between phenotypes can reveal shared etiology 

and insights into disease mechanisms. Understanding which diseases cluster together, recognizing 

patterns across the world, and identifying predictors and determinants to prevent the development 

of multimorbidity are some of the research questions in the field of multimorbidity. Approaches that 

target these questions can help design tools to assist clinicians in prevention, early intervention, and 

treatment of co-occurring health disorders. Moreover, researching the genetic processes underlying 

multimorbidity can lead to the development of novel drugs that maximize the benefits and limit the 

risks of treatments, thus preventing the risks of polypharmacy and enabling a more personalized 

treatment. 

 

Definition of scientific problem and research question 
My doctoral thesis focuses on unraveling the shared genetic basis that underlies specific pairs of 

complex combinations of coexisting chronic conditions. The studied complex combinations of 

diseases concurrently affect two or more different body systems within a single individual. The 

rationale behind investigating pairs of diseases, as opposed to larger groups, beyond the relative 

simplicity of the model, is rooted in the fact that targeting a combination of two diseases can impact 

a broader population compared to focusing on individuals with a very specific combination of three 

or more diseases. This approach aims at advancing and democratizing the translation of research 

findings into clinical applications.  
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The primary aim of this thesis is to elucidate biological mechanisms and prioritize genes involved 

simultaneously in the two studied diseases. Leveraging large-scale GWAS data, genetic correlation 

between the studied complex traits can be estimated, shedding light on the presence of an 

underlying shared genetic etiology. In addition, genetic causal inference analysis can provide insights 

into biological pathways mutually implicated in both studied conditions. Once the genome-wide 

correlation and causality are established, subsequent local analyses can be performed to derive a 

biologically informed list of prioritized effector genes that concurrently influence both health 

conditions. The prioritized genes may act on both diseases either in the same or in opposite direction 

of effect. This phenomenon of genetic variants or genes affecting different diseases is known as 

pleiotropy, as explained above. 

 

Observational studies can offer valuable insights into the epidemiological correlation between two 

traits, that can exhibit either a positive or negative direction of association56. This research capitalizes 

on such findings to select common yet understudied comorbid complex traits to be the topic of each 

presented project. The two studied comorbid conditions were mainly chosen as examples for very 

frequent co-existing classes of complex diseases, namely cardiometabolic and osteoarticular 

diseases57 and cardiometabolic and psychiatric diseases58. Another factor that influenced this choice 

was the availability of large and publicly available GWAS data as well as molecular data from disease-

relevant tissues. 

 

In the scope of this doctoral thesis, two peer-reviewed publications tackling the shared genetic 

etiology between co-occurring diseases pairs were produced. The first project studied the 

comorbidity between type 2 diabetes and osteoarthritis, which  share common risk factors such as 

age and increased BMI, and most studies report a epidemiological positive correlation between 

them59. Together, type 2 diabetes and osteoarthritis affect more than 950 million patients in the 

world. The shared genetic etiology underlying type 2 diabetes and schizophrenia was the pair of 

comorbid conditions chosen for the second project. These two conditions are also observed more 

often together than by chance, positive correlation results persisting even after adjusting for 

antipsychotic medications, which at times might increase the patient’s BMI60.  

 

We posit that complex health conditions exhibiting epidemiological associations may, to some extent, 

have shared genetic aetiology. This doctoral thesis aims to leverage statistical genomics data-based 

approaches, along with large-scale genomics and multi-omics data from diverse human populations 

to study these conditions. The overarching goal is to unravel the shared etiology of specific comorbid 

pairs of health conditions, thereby offering insights into disease biology. Additionally, this research 
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seeks to identify potential targets for novel candidates or repurposing opportunities in therapeutic 

intervention. 

 

Literature review and state-of-the-art research 
Prioritizing putative causal genes 
Following the identification of genetic variants associated with a trait by GWAS, the function of these 

variants remains unknown, challenging the translation of the findings into meaningful biological 

insights17. Various approaches have been developed to address the well-defined variant-to-function 

challenge, aiming to pinpoint candidate genes responsible for the observed associations. A very 

robust method consists of generating a pipeline for gene prioritization by combining different lines of 

biological evidence that support the involvement of a gene.  

 

In 2021, an open resource called Open Targets was developed to advance translation of genomics 

discoveries61. It integrates GWAS data with molecular and functional genomics, along with drug 

information in a standardized manner. To prioritize therapeutic target genes for drug discovery, Duffy 

et al. developed a genetic priority score by integrating eight genetic features with drug indications 

using the Open Targets databse62. The score was further extended by the direction of genetic effect 

and drug mechanisms, resulting in a directional prioritization score. 

 

Disentangling the shared genetic etiology between complex traits 
To uncover links between multimorbid conditions using genetic data, several collaborative projects 

have been assembled. For instance, a collaborative called GEMINI (Genetic Evaluation of 

Multimorbidity towards INdividualisation of Interventions) (https://sites.exeter.ac.uk/gemini, 

accessed on the 1st of February 2024) was formed in the UK and the in the US the Multimorbidity 

Mechanism and Therapeutics Research Collaborative (MMTRC) has published multiple peer-reviewed 

papers52.  

 

A straightforward statistical genetics approach to tackle multimorbidity without resorting to 

individual level data is to thoroughly explore the genetic risk loci identified by GWAS for different 

health conditions that are shared among them. This was implemented, for instance, in a study 

focusing on age-related conditions63. Based on individual GWAS, the authors found 22 loci shared 

between the prioritized age-related phenotypes, including APOE. Specifically for type 2 diabetes, the 

TCF7L2 locus and the FTO locus were shared with different cancer types including breast and prostate 

cancer, which are epidemiological respectively positively and negatively associated with type 2 

https://sites.exeter.ac.uk/gemini
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diabetes. Another study tackling multimorbidity’s association with aging prioritized 995 genes related 

to multiple age-related diseases using colocalization and clustering analyses64.  

 

A substantial proportion of studies researching the shared genetic etiology between complex traits 

focuses on psychiatric traits65-69. This is partly due to the high correlation between psychiatric 

phenotypes arising from overlapping phenotypic definition. Different approaches have been applied 

in this field. For instance, the genetic association between twelve psychiatric disorders were studied 

by Romero et al., who conducted cross-trait meta-analysis on these traits to identify pleiotropic 

genetic variants using publicly available summary statistics65. Wingo et al. looked at the overlap 

between psychiatric and neurodegenerative diseases, finding robust evidence of shared genetic 

etiology and molecular processes between these traits. The authors performed genetic correlation 

analysis and identified putative pleiotropic or shared causal proteins and transcripts by integrating 

GWAS results with brain transcriptomes and proteomes67. 

 

A further group of highly correlated health disorders exhibiting substantial genetic component are 

autoimmune diseases, which were investigated by several cross-disorder studies70. Noteworthy, a 

significant challenge in understanding autoimmune diseases lies in deciphering gene-environment 

interactions, which significantly influence their development. One study, examining 21 autoimmune 

diseases, revealed that 69% of the genetic loci associated with one disease overlapped with risk loci 

of other autoimmune diseases, indicating shared genetic mechanisms71. The relationship between 

allergies and autoimmune diseases was the focus of multiple genetic studies. One study observed an 

enrichment of allergy risk loci among loci associated with autoimmune diseases72. Another study 

performed multi-trait GWAS including six autoimmune or allergy-related diseases using data from 

large-scale biobanks73. This study identified four shared loci between autoimmune and allergic 

diseases. 

 

Several studies have also conducted research on complex combinations of traits that affect more than 

one tissue or organ in the body. A popular genetic approach to study these comorbid conditions is to 

perform multi-trait GWAS combining multiple phenotypes, as mentioned above for autoimmune and 

allergic diseases. For instance, a multivariate GWAS was conducted by a study researching the shared 

genetic etiology of psycho-cardiometabolic diseases using genomic data on coronary artery disease, 

type 2 diabetes and depression74. The authors identified genetic variants with cross-trait influence by 

using genomic structural equation modelling using summary statistics from each univariate GWAS. By 

making use of the latent multimorbidity factor generated in the genetic factor analysis, a new set of 
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summary statistics was estimated for the common factor, and 389 SNPs were found to be associated 

with the investigated psycho-cardiometabolic multimorbidity.  

 

Many other studies have researched the association between cardiometabolic and psychological 

traits. Leveraging polygenic scores and linkage disequilibrium (LD) score regression, a study 

investigated the differences in the shared genetic etiology between cardiometabolic traits and earlier 

or later onset major depressive disorder75. All cardiometabolic polygenic scores were associated with 

depression and significant genetic correlations were found between depression, BMI, coronary artery 

disease, and type 2 diabetes. Another study examined the multimorbidity between cardiometabolic 

traits and dementia using individual level genetics data from the UK Biobank to create a 

cardiometabolic multimorbidity index based on a polygenic score for dementia, which was applied on 

brain images76.  

 

A further example of studies leveraging multi-trait GWAS to investigate correlated diseases aimed at 

investigating the genetic basis of endometriosis with multisite chronic pain and migraine77. An 

additional approach employed to dissect the association between endometriosis and its 

comorbidities was presented in a study that performed causal inference using Mendelian 

randomization analyses78. This study highlights some potential causes and outcomes of 

endometriosis, such as depression and ovarian cancer, respectively.  

 

The genetic association between obesity and multiple sclerosis was investigated by Zeng et al., who 

performed genetic correlation, causal inference, and cross-trait GWAS analyses79. The study reports a 

significant genetic correlation and causal effect between both traits as well as a list of 39 shared 

genetic variants. A further complex combination of diseases is found between depressive disorder 

and osteoarthritis. Zhang et al. found evidence of a positive genetic correlation and shared genetic 

etiology80. The shared genetic etiologies of many other disease combinations have been studied 

through different approaches. However, a clear indication of putative drug targets that can be 

prioritized in the drug development target is lacking in most studies.  

 

Methodology 
The aim of this doctoral thesis is to explore the shared genetic underpinnings between pairs of 

complex traits by harnessing publicly available genomics datasets. Across the peer-reviewed and 

published projects outlined in this work, a consistent data-driven genomics approach has been 

adopted to unravel the common genetic factors associated with the studied conditions. Firstly, 
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genome-wide analyses were conducted to unveil the genetic correlation and causality between each 

pair of conditions. Secondly, employing genetic colocalization analysis, a comprehensive list of 

putative effector genes simultaneously influencing both diseases was derived. To delve deeper into 

the genetic insights, more exhaustive analyses were undertaken for the top-scoring genes, including 

pathway enrichment analysis and an exploration of druggability. 

 

Our approach identifies genes acting on both health conditions with the same direction of effect and 

with opposing direction of effect. Considering the implications for translation and precision medicine, 

both outcomes are of interest. When a gene acts on two conditions with the same direction, it 

becomes a potential drug target for bilateral treatment. On the other hand, a gene influencing two 

conditions with divergent effects highlights opposing biological mechanisms underlying both 

conditions. In cases where a drug targets such a gene, caution should be exercised for comorbid 

patients, who should avoid undergoing this gene treatment. Meanwhile, all other patients should be 

monitored for signs of the condition associated with an increased risk linked to this gene.  

 

Software and coding environment 
The main programming languages employed in this research were R and bash. R was used to code 

most scripts, while bash was used for calling some external software or to perform data processing 

steps in very large data. RStudio was used to edit R scripts. When writing and compiling R code on the 

servers, an RStudio singularity container was used. MobaXterm professional was used to establish 

SSH connections from within a Microsoft Windows environment. Microsoft Word was used to write 

the manuscripts, conference abstracts and this thesis. The reference manager used was EndNote. 

Evernote was used to document meetings and manage the open tasks in different project. Microsoft 

PowerPoint and Excel were used to prepare presentations as well as posters and finalize 

supplementary tables, respectively. To generate figures we used Microsoft PowerPoint, Inkscape and 

Biorender. 

 

Several measures were considered to adhere to openness and reproducibility in research. Version 

control was achieved using git and by backing up data with Microsoft OneDrive. All generated code 

was deployed in form of scripts and made publicly available on GitHub and Zenodo. Both peer-

reviewed publications attached to this thesis were published as open science articles free for the 

public. 
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Data 
Data generation was not part of this thesis. Instead, publicly available summary statistics from 

genomics data were used. The choice of using summary statistics instead of individual level genomics 

data is motivated by three main reasons. The first reason is the power gain of combining multiple 

GWAS from different cohorts in a meta-analysis instead of using a smaller cohort of genotyped 

individuals. Secondly, data access is managed differently across studies with some of them having 

very restrictive data sharing measures. Finally, by using publicly available data, the analysis pipeline 

developed in this thesis can be reproduced and adapted by other researchers, boosting open science 

and collaborative works.  

 

For the studied diseases as well as for further diseases and qualitative traits related to them, 

literature research was conducted for each trait to find the most recent GWAS with the largest 

summary statistics available. GWAS unadjusted for BMI were prioritized to avoid collider bias. 

Concordance between ancestries of the main diseases and related traits was not considered in this 

first step since the largest single-ancestry GWAS available for the studied traits were unanimously 

from European ancestry. 

 

An extensive literature and databases search was performed to acquire molecular quantitative trait 

locus (QTL) data specific to tissues associated with each primary disease under investigation. For type 

2 diabetes, only pancreatic islets were considered in the first project. For the second project, a 

broader array of type 2 diabetes-relevant tissues was used including liver, subcutaneous ad well as 

adipose tissue and brain27. Osteoarthritis investigations relied on data extracted from the cartilage 

and synovium of osteoarthritis patients. In the case of schizophrenia, brain data from different adult 

regions and dorsolateral data from fetal brains were considered. Notably, for all mentioned tissues 

except for cartilage and synovium, the molecular data either originated from healthy individuals, or 

the disease status was not taken into account.  

 

Genome-wide analyses 
Leveraging both global genetic correlation and causal inference methods, genome-wide insights 

about the shared genetic etiology of the studied comorbidity can be gained. To assess the genome-

wide genetic correlation between conditions, LD score regression was employed, which requires only 

GWAS summary statistics instead of individual level data81. This method is unbiased against sample 

overlap and, by restraining the computations to well-imputed HapMap3 SNPs, it achieves 

computational efficiency. 
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To infer causality between the studied conditions, we applied Mendelian randomization (MR) 

analysis82. The MR method uses genetic variants as instrumental variables, mimicking a randomized 

control trial in a natural experiment setting. By relying on non-modifiable genetic information, MR 

can address confounding and reverse causation challenges common in observational studies. Causal 

inference is performed from an exposure trait to an outcome, a variable representing the result of 

interest. Both the exposure and the outcome can be a modifiable life factor, a disease or a biomarker. 

MR assesses the causal impact of the exposure on the outcome by examining the relationship 

between genetic variants influencing the exposure and the outcome. The genetic instrumental 

variables must satisfy three assumptions to be considered valid, which are also visualized in Figure 1: 

1) Relevance: instrumental variables must strongly associate with the exposure. 

2) Independence: instrumental variables must be independent of potential confounders that 

might influence the outcome through mechanisms other than the exposure of interest. 

3) Exclusion restriction: instrumental variables do not affect the outcome other than through 

the exposure and do not affect any other trait that has a downstream effect on the outcome 

of interest. 

 

Figure 1: Overview of Mendelian randomization assumptions. 

The first condition can be formally tested by calculating the F-statistic of the instrumental variables, 

which is a measure of the association strength between the genetic variant and the exposure 

calculated as 𝑏𝑒𝑡𝑎2/𝑠𝑒2, where 𝑏𝑒𝑡𝑎 is the effect of the variant on the exposure and 𝑠𝑒 the standard 

effect of this effect. Weak instrumental variables defined as F-statistic < 10 were removed. The other 

two conditions can only be assessed through sensitivity analysis aiming at disproving confounding or 

pleiotropic mechanisms. 

 

As the main analysis, we applied the inverse variance weighted (IVW) method, which performs a 

random-effects meta-analysis of the Wald ratios for each SNP. As an initial sensitivity analysis, we 

applied the weighted median and the MR-Egger regression methods to ensure consistency of the 
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effect size direction. The weighted median method relaxes the relevance assumption by requiring 

that at least 50% of the variants are valid instruments. MR-Egger combines Wald ratio estimates into 

a meta-regression using an intercept and a slope parameter to estimate the causal effect adjusted for 

directional pleiotropy. The intercept of MR-Egger regression is a measure to assess horizontal 

pleiotropy. Finally, we tested for heterogeneity using the Q-statistic. To account for multiple testing, 

we corrected the p-values of the IVW results using the Bonferroni method. 

 

Increased BMI plays a significant role in the pathogenesis of type 2 diabetes. Genetic variants 

associated with increased BMI might exert an effect via genes expressed in brain or adipose tissue83. 

Hence, to determine the tissue-specific role of BMI in the studied conditions, we applied bidirectional 

MR between BMI and each condition restricted to BMI instruments colocalizing with eQTLs in brain 

and adipose tissue, respectively.  

 

Regional genetic colocalization analysis 
Shifting from a genome-wide perspective to a more local and refined one, we expected to find more 

specific insights about the biology underlying the studied comorbidities by pinpointing shared signals. 

To tackle this goal, we conducted pairwise genetic colocalization analyses to find genomic risk loci 

shared between the studied diseases84. This Bayesian method compares signals between two traits in 

a pre-defined genomic locus and assigns posterior probabilities to five hypotheses regarding the 

individual trait signals, as depicted in Figure 2. 

 

Figure 2: Overview of the five different hypotheses tested in genetic colocalization analysis. 
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For this work, we are mostly interested in the posterior probability of H4 (PP4). Evidence for 

colocalization of a shared risk signal was reported at a threshold of PP4>0.8. Since genetic 

colocalization is a Bayesian method, the concept of type 1 error is not applicable. We kept the default 

priors suggested by the coloc implementation. For each colocalized regions (PP4>0.8) a 95% credible 

set for the causal variant was computed. The type 1 error refers to the probability of wrongly 

rejecting the null hypothesis when it is actually true. Some might think that when performing enough 

regional colocalizations some regions might colocalize (PP4>0.8) by chance. However, this is not the 

case since test probabilities are assigned to each of the five different hypotheses without prioritizing 

H4.  

 

Effector gene prioritization 
The genetic colocalization analysis outputs regions with putatively shared signals associated with the 

studied comorbidity along with a set of variants that most likely comprises the true shared causal 

variant. We have developed a gene prioritization study design to tackle the variant-to-gene challenge 

and identify putative effector genes that act on both conditions simultaneously. We selected all genes 

around the colocalized signals and scored them based on orthogonal lines of biological evidence of 

involvement with each of the studied conditions. It is well-established that regulatory elements might 

interact with genes further away and enhancer elements can reside in long-range distances to the 

affected gene85. Hence, we have opted to score all genes in a 2Mb window around the lead 

colocalization variant to not miss out on any long-range interaction. 

 

The practice of scoring genes surrounding risk signals by integrating multiple biological lines of 

evidence is a widely accepted approach in statistical human genetics, as evidenced by its application 

in numerous peer-reviewed publications34,86. It is essential to note that certain elements of the score 

may not directly correspond to the genetic factors influencing the human expression of the condition, 

such as phenotypes observed in knockout mice. However, these components are not evaluated in 

isolation; instead, they are collectively considered as a composite of small pieces of evidence 

indicating involvement in the pathogenesis of diseases.  

 

Different tissues are relevant for the studied diseases, these are depicted in Figure 3B. For both 

studies, we used six biological lines of evidence structured in an orthogonal way to avoid over-

representation of any evidence (Figure 3A): 

1. Multi-trait genetic colocalization analysis between both studied conditions and molecular 

quantitative trait loci (QTL) from disease-relevant tissues. 

2. Differential gene expression in disease-relevant human tissues. 
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3. Knock-out mice phenotypes related to each condition. 

4. Rare and syndromic human diseases with phenotypes related to each condition. 

5. Previously defined high-confidence effector genes in the literature. 

6. Existence of missense variants in the set of variants of the colocalizing signals. 

 

 

Figure 3: A) Overview of the biological lines of evidence used to score genes around colocalizing signals. B) Overview of the 
relevant tissues for each studied disease. 

 

Our analysis might overlap with criteria used to define a gene as high confidence for the individual 

diseases in previous work. Hence, to incorporate the fifth line of evidence orthogonally, we adjusted 

the gene score. Specifically, if a gene scored zero in our analysis but had been previously designated 

as high confidence for a particular condition in earlier studies, we updated its score to one.  

 

For each disease, one score was created by summing up the result of each biological line of evidence 

that indicated involvement in that particular condition. Additionally, we scored the genes in the 

vicinity of the colocalized signals based on the presence of missense variants associated with the 

genes within the 95% credible sets of the colocalization. This missense score is disease agnostic. The 

scores for each condition along with the missense variant score were summed up to generate a final 
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score for each gene. If a gene only obtained a score in the missense variant category, the total score 

was maintained at zero since this evidence alone does not indicate involvement in the studied 

comorbidity. 

 

Analyses on derived list of putatively effector genes 
To glean further insight into the biology behind the highest scoring genes, we performed enrichment 

analysis using curated gene networks in humans and the enrichment software from the 

ConsensusPathDB (http://cpdb.molgen.mpg.de/)87. To identify potential targets for drug repurposing, 

we assessed the druggability status of these top-scoring genes by consulting the Druggable Genome 

database88. Specifically, if a gene happened to be the target of an investigational or approved drug, 

we delved into the prescription advice and mechanism of action associated with that drug using the 

DrugBank database (https://www.drugbank.com). 

 

Additionally, we conducted a deep dive consisting of a more in-depth analysis of the function of the 

top scoring genes. Firstly, we looked at the association of these genes with endophenotypes of each 

condition or shared risk factors. Secondly, we looked at the direction of effect of each line of evidence 

and tried to harmonize across them. Finally, we performed causal inference analysis between the 

expression of the genes in disease-relevant tissues and the individual conditions using Mendelian 

randomization. 

 

Discussion 
Multimorbidity, characterized by the simultaneous presence of multiple chronic health conditions 

within an individual, represents a rising public health challenge. Global trends such as increasing 

average BMI and life expectancy contribute to the escalating prevalence of multimorbidity cases. 

Beyond the personal burden, including polypharmacy and adverse side effects, multimorbidity poses 

a challenge to society as a whole by increasing treatment demands that subsequently inflate 

healthcare expenses. Educating both healthcare practitioners and the general population about 

multimorbidity requires a shift in research efforts, moving away from looking at individual diseases 

towards recognizing the interplay among co-existing health conditions.  

 

In this thesis, I present an approach to disentangle the shared genetic aetiology between pairs of co-

occurring chronic diseases that affect multiple distinct body parts, with type 2 diabetes-osteoarthritis 

and type 2 diabetes-schizophrenia comorbidities as examples. We have successfully identified 

putative genes influencing simultaneously both studied correlated traits and showed interesting 

http://cpdb.molgen.mpg.de/
https://www.drugbank.com/
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insights into disease biology. For type 2 diabetes and osteoarthritis, our statistical genomics analyses 

corroborated the well-established epidemiological positive association between traits. We have also 

shown evidence of a stronger correlation between type 2 diabetes and knee rather than hip 

osteoarthritis. As expected, this positive association is heavily mediated by obesity, but our results 

highlight two further potential biological mechanisms underpinning this comorbidity: the 

Wnt/β‐catenin signalling pathway and an imbalance between osteoblasts and adipocytes 

differentiation in adult bone marrow.  

 

For type 2 diabetes and schizophrenia, our results show evidence of a negative genetic correlation 

and association, contrasting the observed positive epidemiological correlation. An external factor that 

introduces further complexity in the relationship between both conditions is the use of antipsychotic 

medications by schizophrenia patients. Some antipsychotic drugs are known to have an increasing 

effect on body weight, which in turn is associated with type 2 diabetes. Nevertheless, we showed 

evidence of a protective effect of schizophrenia liability on increased BMI, replicating previous 

results89,90. This result opposes the well-established causal effect between BMI and type 2 diabetes, 

pointing to potentially different adiposity-related mechanisms underpinning each condition. 

 

Comparing this work to previous publications, we have focused on using only summary statistics 

instead of individual level data due to substantial power gain and easier reproducibility of the 

developed data-based pipeline. Hence, the use of well-powered comorbidity-specific polygenic scores 

was not possible, which did not pose a major challenge considering that current polygenic scores only 

partially capture the genetic liability to a disease. Multi-trait GWAS were also not performed in order 

not to neglect the identification of signals influencing both studied traits in opposing directions. Our 

approach combined genome-wide and local analyses with a deeper dive into specific top scoring 

genes identified by our gene prioritization pipeline. 

 

Previous research has shown that multimorbidity tends to manifest a decade earlier in communities 

with socioeconomic disadvantages, where it is linked to earlier mortality, reduced functional abilities 

and quality of life, as well as an increased demand for healthcare services42. However, the current 

research in diverse populations faces limitations due to a gap in data availability. There is a notable 

bias in GWAS towards European ancestry individuals91. This bias can be partially attributed to 

historical disengagement of the scientific community with diverse populations and the consequent 

mistrust from these communities92. The primary focus on Eurocentric populations in GWAS poses a 

limitation in the extrapolation of findings to a broader demographic. In recent times, there has been a 

recognition of this bias, leading to the formation of large international collaborative efforts aiming to 
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broaden the scope of GWAS studies beyond European ancestry populations93-95. Notably, the T2DGGI 

consortium published a multi-ancestry type 2 diabetes GWAS that includes data from 2,535,601 

individuals, of which almost 40% belonged to non-European ancestry groups27. These collaborative 

endeavors represent a positive step toward addressing the limitations and promoting inclusivity in 

genetic research. 

 

Deciphering the function of risk variants identified by GWAS integration with molecular QTL data is a 

state-of-the-art approach. Whereas efforts have been made to close the ancestry gap of GWAS data, 

very little has been done to generate molecular data coupled with genetics from diverse population96. 

The gap in data availability from diverse populations is even more striking for molecular data from 

specific primary tissues relevant to diseases, which are essential for interpreting GWAS signals as 

different cell types exhibit distinct gene expression profiles and regulatory landscapes97. In this thesis, 

multi-ancestry GWAS were used to study the type 2 diabetes and schizophrenia comorbidity and the 

lack of molecular QTL data from diverse populations limited the interpretation of the signals shared 

between both conditions. 

 

GWAS may be susceptible to bias based on how phenotypes are defined and how heterogeneous 

they are. For instance, overlapping phenotype definitions in psychiatric diseases can lead to 

misdiagnosis, which will impact the identification of genetic associations. Additionally, GWAS may 

produce biased results if the control group is not carefully selected or if there are underlying biases in 

the control population. For instance, in the case of type 2 diabetes, there might be false positives 

samples in the control groups, who are not yet diagnosed with type 2 diabetes, but will get a formal 

diagnosis of this disease later in life. Exclusion of these biased controls has the downside of leaning 

the GWAS results towards individuals with very prevalent symptoms of a disease, the so called 

“super-cases”. This issue is also known as the liability threshold bias, which can lead to different and 

even opposing patterns between observational and GWAS-based studies. 

 

Analyzing shared genetic etiology may be biased by the presence of shared risk factors, introducing 

possible confounding bias. One approach to reduce this bias employed in this thesis was to extend 

the analyses to endophenotypes or diseases correlated to the studied comorbidities. For instance, 

both type 2 diabetes and osteoarthritis are heavily mediated by increased BMI. Hence, we expect 

both diseases to be partially correlated due to this common association. Failure to consider all 

relevant confounders may lead to misinterpretation of genetic associations and their role in shared 

etiological pathways. Bias can also arise if there is overlap between samples used in different studies 

analyzing shared genetic etiology. This overlap may result in inflated estimates of shared genetic 
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effects, potentially misleading interpretations of the extent of genetic correlation between traits. In 

this work, the largest GWAS summary statistics were used and these large sample sizes account 

partially for potential overlapping sample bias. 

 

Considering drug development or repurposing opportunities, the discoveries generated throughout 

this doctoral thesis should be taken as a filtering step to prioritize interesting putative drug targets. It 

is crucial to validate the theoretical findings through experimental methods, which ensure the 

reliability and robustness of the identified associations. To broaden the scope and applicability of the 

presented research, the investigation should be expanded to include additional pairs of diseases. 

Examining a diverse range of disease combinations helps in identifying specific common genetic links 

across various health conditions. 

 

Finally, achieving a more comprehensive understanding of the shared genetic etiology between 

correlated complex health conditions involves integrating data beyond genetic factors. Incorporating 

information on medications, imaging results, and environmental influences can provide a holistic 

view of the complex interactions underlying frequently co-occurring pairs of diseases. This integrated 

approach can contribute to a more nuanced analysis of the interconnected factors influencing disease 

associations, ultimately impacting personalized medicine. 

 

Conclusion  
In conclusion, this doctoral thesis addressed multimorbidity using large-scale genomic data to 

conduct an in-depth exploration of the shared genetic etiology between type 2 diabetes and 

osteoarthritis, and type 2 diabetes and schizophrenia. Valuable insights into disease biology, putative 

effector genes, shared biological pathways and causal relationships have been uncovered. The 

findings presented here might advance personalized medicine by paving the way for the identification 

of novel therapeutic targets and drug repurposing opportunities. Moving forward, it is essential to 

validate the theoretical findings through experimental methods and to expand the investigation to 

integrate data beyond genetic factors, including medications and environmental influences.  

 

Post considerations 
Amidst the backdrop of the COVID-19 pandemic, my first conference talk in October 2021 at the 

American Society of Human Genetics conference, took on an unconventional form—it was pre-

recorded, and the questions and answers session had no public, just faceless voices. Throughout my 

first year of doctoral studies, all conferences that I participated in were conducted exclusively in 
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virtual settings. During this period, remote work became the norm, initially mandatory and later 

adopted as optional. While this might have led to less interactions within the group at times, it also 

allowed for high flexibility, which I made use of extensively compared to the first year of my doctoral 

studies. For the remainder of my studies, traveling to conferences and visiting collaborators was an 

essential part, which was highly encouraged by my supervisor Eleftheria Zeggini.  I started a Ph.D. in 

data science as a natural progression of my academic trajectory. In the fast-paced and exciting 

research environment of the Zeggini lab, I have re-encountered a long-lost childhood excitement 

towards human genetics. I am finishing this chapter in love with the field of statistical genomics and 

very much looking forward to my next chapters in this research area.  

 

Summary of peer-reviewed publications 

Genetic underpinning of the comorbidity between type 2 diabetes and osteoarthritis 
A common pattern of multimorbidity is the combination of cardiometabolic and osteoarticular 

diseases, exemplified by the co-occurrence of type 2 diabetes and osteoarthritis. Osteoarthritis is a 

whole-joint degenerative disorder that affects over 520 million people worldwide. Type 2 diabetes 

affects over 430 million people globally and is marked by high blood glucose levels and insulin 

resistance. Epidemiological studies have shown a positive association between these complex 

diseases that share risk factors such as increased BMI, which is causally linked to both.  

 

Leveraging large-scale GWAS data, we showed a significant positive genetic correlation between type 

2 diabetes and osteoarthritis, which was stronger for the knee compared to the hip. Mendelian 

randomization analyses showed no evidence of causality between both diseases. Using pairwise 

Bayesian colocalization analyses, we identified 18 unique genomic loci with a shared signal between 

type 2 diabetes and osteoarthritis. Integrating multi-omics data and functional information helped 

pinpoint 72 likely effector genes involved in both diseases, with 19 of these being defined as high-

confidence effector genes. To identify potential drug repurposing opportunities, we explored the 

druggability of these effector genes, finding that 16 out of the 72 genes are part of the druggable 

genome, including six tier 1 druggable genes already targeted by existing or developing drugs.  

 

We further explored the role of obesity in the studied comorbidity. We found evidence of a causal 

relationship between adiposity measures and nine high-confidence effector genes. For type 2 

diabetes, BMI-associated variants influencing genes expressed in brain tissue showed a stronger 

impact than those in adipose tissue, a trend also seen in knee osteoarthritis. However, in hip 
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osteoarthritis, variants associated with gene expression in adipose tissue had a stronger effect, 

suggesting different underlying biological processes.  

 

Specific high-confidence effector genes were highlighted for their roles in pathways related to type 2 

diabetes and osteoarthritis, with some demonstrating opposing causal direction of effect on these 

diseases. Based on these genes, we highlighted three potential biological mechanisms underpinning 

the studied comorbidity: obesity, imbalance between osteoblasts and adipocytes differentiation in 

adult bone marrow and the Wnt/β‐catenin signalling pathway.  

 

Together with Eleftheria Zeggini, Ana Arruda has conceptualized the project, including the research 

questions and analysis steps needed to tackle these. Ana Arruda has performed most analyses and 

has written the initial draft of the final manuscript, which was circulated to co-authors for comments 

on the structure, insights, and additional analyses. 

 

Genomic insights into the comorbidity between type 2 diabetes and schizophrenia  
Individuals with mental health disorders face an increased risk of multimorbid physical health 

conditions, impacting life quality and leading to premature death. Here, we have studied the 

comorbidity between type 2 diabetes and schizophrenia, two co-occurring conditions. Type 2 

diabetes, characterized by elevated glucose levels, affects over 536 million people globally, with an 

estimated heritability of ~50%. Schizophrenia, a major psychiatric disorder, with ~1% global 

prevalence, has an estimated general heritability of ~80%. Observational studies indicate a positive 

association between type 2 diabetes and schizophrenia, influenced by sociodemographic factors and 

antipsychotic medication. Genetic studies suggest a partial shared genetic basis between both 

conditions.  

 

Using genome-wide data from large-scale GWAS, we investigated the genetic correlation and 

potential causal relationship between type 2 diabetes and schizophrenia. Despite the positive 

epidemiological correlation between the two conditions, we find evidence for a negative genetic 

correlation and no evidence of a causal relationship. Mendelian randomization analyses revealed a 

protective effect of schizophrenia liability on BMI, contrasting the well-established causal effect of 

BMI on type 2 diabetes. Further causal inference analyses indicated adulthood but not childhood BMI 

had a potential protective effect on schizophrenia in both univariate and multivariate analyses. 

 

We identified 11 genomic loci with evidence of shared genetic signals between type 2 diabetes and 

schizophrenia by performing colocalization analysis. To resolve the identified colocalizing signals, we 
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incorporated multi-omics and functional biology information and prioritized 15 potential effector 

genes showing involvement in both conditions. These genes were enriched in pathways associated 

with lipids and metabolic regulation. Among the 15 identified genes showing evidence of 

involvement in both diseases, five are part of the druggable genome and four of these are tier 1 

druggable targets. The highest scoring genes were EGR2, LAMA4, and NUS1. Our results suggest 

common genetic pathways underlying both conditions but acting in opposite directions.  

 

The project conceptualization including formulating research questions and delineating the necessary 

initial analysis steps was conducted by Ana Arruda and Eleftheria Zeggini. Ana Arruda carried out all 

analyses and wrote the initial draft of the manuscript, which was reviewed by Eleftheria Zeggini. 

Subsequently, the reviewed draft was shared with co-authors for their input and feedback on the 

manuscript's organization, insights, and potential supplementary analyses. 
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