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„Die ihn aber aufnahmen und an ihn glaubten, denen gab er das Recht,  

Kinder Gottes zu werden...“ 

Johannes 1:12 

 

 

 

 

 

 

“But as many as received him, to them gave he power to become the sons of God,  

even to them that believe on his name…” 

John 1:12 

 



Main peer-reviewed publications 
In the following, the selected peer-reviewed journal and conference papers, which primarily 

contributed to the context of this dissertation, are listed. 

I. Cruz S. LA, Vogel-Heuser B (2017) Comparison of agent oriented software methodologies to apply in cyber 

physical production systems. In: 15th International Conference on Industrial Informatics (INDIN). IEEE, 

Emden, Germany, pp 65–71. https://doi.org/10.1109/INDIN.2017.8104748 

II. Cruz S. LA, Mayer F, Schütz D, Vogel-Heuser B (2018) Platform Independent Multi-Agent System for 

Robust Networks of Production Systems. IFAC-PapersOnLine 51:1261–1268. 

https://doi.org/10.1016/j.ifacol.2018.08.359 

III. Cruz S. LA, Ryashentseva D, Lüder A, Vogel-Heuser B (2019) Cyber-physical production systems 

architecture based on multi-agent’s design pattern—comparison of selected approaches mapping four agent 

patterns. Int J Adv Manuf Technol 105:4005–4034. https://doi.org/10.1007/s00170-019-03800-4 

IV. Cruz S. LA, Vogel-Heuser B (2022) A CPPS-architecture and workflow for bringing agent-based 

technologies as a form of artificial intelligence into practice. at - Automatisierungstechnik 70:580–598. 

https://doi.org/10.1515/auto-2022-0008 

V. Cruz S. LA, Vogel‐Heuser B (2022) Industrial Artificial Intelligence: A Predictive Agent Concept for 

Industry 4.0. In: 20th International Conference on Industrial Informatics (INDIN). pp 1–6. 

https://doi.org/10.1109/INDIN51773.2022.9976159 

 

Complementary peer-reviewed publications 
In the following, the other peer-reviewed journal and conference papers are listed, which 

contributed in a complementary manner to the context of this dissertation. 

VI. Vogel-Heuser B, Ryashentseva D, Cruz S. LA, et al (2018) Agentenmuster für flexible und 

rekonfigurierbare Industrie 4.0/CPS- Automatisierungsbzw. Energiesysteme. In: VDI-Berichte (ed) 

Automation 2018, 1st ed. VDI Verlag, Düsseldorf, pp 1119–1130. https://doi.org/ 

https://doi.org/10.51202/9783181023303-1119 

VII. Lüder A, Zawisza J, Cruz S. LA, et al (2018) Identifying Design Pattern for Agent Based Production 

System Control. In: 44th Annual Conference of the IEEE Industrial Electronics Society, IECON. IEEE, 

Washington D.C., USA, pp 2896–2901. https://doi.org/10.1109/IECON.2018.8591336 

VIII. Ryashentseva D, Cruz S. LA, Vogel-Heuser B, Lüder A (2018) Development and evaluation of a 

unified agents- and supervisory control theory based manufacturing control system. In: 14th 

International Conference on Automation Science and Engineering (CASE). IEEE, Munich, Germany, pp 

187–192. https://doi.org/10.1109/COASE.2018.8560539 

IX. Vogel-Heuser B, Seitz M, Cruz S. LA, et al (2020) Multi-agent systems to enable Industry 4.0. at - 

Automatisierungstechnik 68:445–458. https://doi.org/10.1515/auto-2020-0004 

X. Haben F, Vogel-Heuser B, Najjari H, Seitz M. Trunzer E, Cruz S. LA (2021) Low-entry Barrier Multi-

Agent System for Small- and Middle-sized Enterprises in the Sector of Automated Production Systems. 

In: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). 

IEEE, pp 1351–1357. https://doi.org/10.1109/IEEM50564.2021.9672973 

XI. Seitz M, Gehlhoff F, Cruz S. LA, et al (2021) Automation platform independent multi-agent system for 

robust networks of production resources in industry 4.0. Journal of Intelligent Manufacturing 32:2023–

2041. https://doi.org/10.1007/s10845-021-01759-2 

Standard publication 
In the following, a standard made a particularly important contribution to this dissertation. 

XII. VDI/VDE (2021) 2653 Sheet 4: Multi-agent systems in industrial automation - Selected patterns for field 

level control and energy systems. Available in: https://www.vdi.de/en/home/vdi-standards/details/vdivde-

2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-

energy-systems

https://doi.org/10.1109/INDIN.2017.8104748
https://doi.org/10.1016/j.ifacol.2018.08.359
https://doi.org/10.1007/s00170-019-03800-4
https://doi.org/10.1515/auto-2022-0008
https://doi.org/10.1109/INDIN51773.2022.9976159
https://doi.org/10.51202/9783181023303
https://doi.org/10.51202/9783181023303
https://doi.org/10.1109/IECON.2018.8591336
https://doi.org/10.1109/COASE.2018.8560539
https://doi.org/10.1515/auto-2020-0004
https://doi.org/10.1109/IEEM50564.2021.9672973
https://doi.org/10.1007/s10845-021-01759-2
https://www.vdi.de/en/home/vdi-standards/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/en/home/vdi-standards/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/en/home/vdi-standards/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems


Acknowledgments 

First of all, I dedicate this project and my entire university career to the LORD for being the 

one who prospers and blesses me at every moment of my life, making it a source of success 

and filling it with the best experiences.  

I am deeply grateful to Prof. Birgit Vogel-Heuser, who allowed me to follow the PhD under 

her supervision. Thanks to her excellence and dedication, I am allowed today to culminate 

this professional dream, and it has definitely been a great benefit her support in the whole 

process, without her help this dream was not possible. I want to also thank Prof. Luis Ribeiro 

for his accurate feedback on my contribution. 

To the Technical University of Munich (TUM) and the Universidad Antonio Nariño 

(specifically PFAN scholarship) for providing me with the tools, academic support, and 

economic resources necessary to train as a Doctor-Engineering in the wonderful country of 

Germany, facing the challenge of transforming my environment with dedication and 

perseverance. Thanks to both institutions and the Ministry of Science and Technology of 

Colombia Minciencias (call 756 Doctorates abroad) for their trust and financial support. 

Throughout my time at the Institute of Information Systems AIS-TUM, thank my colleagues 

Dr.-Ing. Juliane Fischer and Dr.-Ing. Suhyun Cha, for their constant support. They patiently 

and wisely guided me in the content of most of my publications. Also, thank Dr.-Ing. 

Emanuel Trunzer for the support and wishes in this thesis. I take with me the best memories 

of the TUM staff for welcoming me and giving me all the required support to reach this work. 

To all those people who are important in my life and to whom I owe my time for my 

professional sacrifices, especially my daughters Mariana Cruz and Paloma Cruz. To all my 

family and friends, I thank you from the bottom of my heart for your support since I know 

that, in one way or another, you participated and paved the way for achieving my training. 

Now, I project myself as a capable and suitable person to teach in my personal and 

professional environment, following the German high-quality education.  

Thank you to each of you for your teachings, family, friends and colleagues, the list would be 

endless, but rest assured that each one of you is part of this achievement, your time and 

appreciation in my life means that it has also been your work! 



List of Abbreviations 

 
AI Artificial Intelligence 

AMS Agent Management System 

AOSE Agent Oriented Software Engineering 

CA Communication Agent 

CPPS Cyber-Physical Production System 

CPS Cyber-Physical System 

AIS Institute of Automation and Information Systems 

AAS Asset Administration Shell  

aPS automated Production System 

I4.0 Industry 4.0 

IA Industrial Agent 

IIoT Industrial Internet of Things 

IT Information Technology 

KB Knowledge Base 

DF Directory Facilitator 

DT Digital Twin 

MAS Multi-Agent System 

ML Machine Learning 

OT Operational Technology 

PLC Programmable Logic Controller 

POU Program Organization Unit 

PA Process Agent 

PPR Product, Process, Resource 

RA Research Agent 

RAMI4.0 Reference Architecture Model Industry 4.0 

Req Requirement 

RQ Research Question 

TUM Technical University of Munich



Table of Contents 

Contents 
Main peer-reviewed publications .................................................................................................... 3 

Acknowledgments........................................................................................................................... 4 

List of Abbreviations ...................................................................................................................... 5 

Table of Contents ............................................................................................................................ 6 

List of Figures ................................................................................................................................. 9 

List of Tables ................................................................................................................................ 10 

1. Introduction and motivation .............................................................................................. 11 

1.1 Motivation for automated Production Systems with Multi-Agent Systems ................. 11 

1.2 Why Industrial Agents and Cyber-Physical Production Systems? ............................... 12 

1.3 Delimitation and key differentiation of this thesis ........................................................ 14 

1.4 Scientific problem: issue statements ............................................................................. 15 

Issue 1: Lack of a comprehensive overview and classification of MAS patterns in CPPS .. 15 

Issue 2: Challenge of reusability and extendibility of MAS design patterns for I4.0 ........... 15 

Issue 3: Integration of MAS design patterns with existing CPPS models and standards ..... 16 

Issue 4: Implementing sub-agent patterns and AASs into hybrid CPPS platforms. ............. 16 

1.5 Research questions, and main contributions ................................................................. 16 

1.6 Structure of this dissertation ......................................................................................... 17 

2. Research method and conceptual background ................................................................ 17 

2.1 Research method and strategy stages ............................................................................ 17 

2.2 IA design pattern definition .......................................................................................... 18 

2.3 Requirements for MAS architectures for I4.0/CPPS .................................................... 20 

2.4 Related work: how do IAs contribute to the CPPSs? ................................................... 20 



T a b l e  o f  C o n t e n t s   | 7 

3. Main contributions of IA design patterns to CPPS ......................................................... 29 

3.1 Contribution 1 (Con1): MAS criteria categorization .................................................... 30 

3.2 Contribution 2 (Con2): IA pattern needs for I4.0 ......................................................... 31 

3.3 Contribution 3 (Con3): agent-based CPPS scenarios ................................................... 34 

3.4 Contribution 4 (Con4): MAS architecture with DTs .................................................... 36 

3.5 Contribution 5 (Con5). IA patterns standardization ..................................................... 38 

4. Summary of publications ................................................................................................... 41 

4.1 Publication I: “Comparison of agent oriented software methodologies to apply in cyber 

physical production systems” (Cruz & Vogel-Heuser, 2017) .................................................. 42 

Summary of Pub. I (ReqsForCPPS) ...................................................................................... 42 

Author’s contributions on Pub. I ........................................................................................... 43 

4.2 Publication II: “Platform Independent Multi-Agent System for Robust Networks of 

Production Systems” (Cruz S. et al., 2018) .............................................................................. 43 

Summary of Pub. II (MASplatform) ..................................................................................... 44 

Author’s contributions on Pub. II ......................................................................................... 44 

4.3 Publication III: “Cyber-physical production systems architecture based on multi-

agent’s design pattern—comparison of selected approaches mapping four agent patterns” 

(Cruz S. et al., 2019) ................................................................................................................. 45 

Summary of Pub. III (MASpatterns) .................................................................................... 45 

Author’s contributions on Pub. III ........................................................................................ 46 

4.4 Publication IV: “CPPS-architecture and workflow for bringing agent-based 

technologies as a form of artificial intelligence into practice” (Cruz S. & Vogel-Heuser, 

2022a) 47 

Summary of Pub. IV (MARIANNE) .................................................................................... 47 

Author’s contributions on Pub. IV ........................................................................................ 48 

4.5 Publication V: “Industrial Artificial Intelligence: A Predictive Agent Concept for 

Industry 4.0” (Cruz S. & Vogel-Heuser, 2022b) ...................................................................... 48 



T a b l e  o f  C o n t e n t s   | 8 

Summary of Pub. V (Agent4.0) ............................................................................................ 48 

Author’s contributions on Pub. V ......................................................................................... 49 

5. Discussion and outlook ....................................................................................................... 49 

5.1 Main publications results related to the issues .............................................................. 49 

5.2 Fulfillment of the requirements and the covered CPPS challenges .............................. 52 

5.3 Conclusion and outlook ................................................................................................ 54 

6. References ............................................................................................................................ 56 

7. Appendix A. Includes main contribution papers (Pub.I-V) ............................................. 64 

 

  



L i s t  o f  F i g u r e s   | 9 

List of Figures 

 

Figure 1: Artificial Intelligence categories and the Industrial Agent application. Source: Based on 

(Russell & Norvig, 2010). ............................................................................................................. 11 

Figure 2: Challenges and gaps of Industrial Agents. .................................................................... 13 

Figure 3: Thesis’ scope of the agent-based CPPS proposed for industrial control automation 

within the manufacturing field. ..................................................................................................... 15 

Figure 4: Levels of research objectives in a holistic research method. Source: Adapted from 

(Hurtado 2012). ............................................................................................................................. 17 

Figure 5: Comprehensive concept maps from Scopus AI, after the question (Dec 2023): How do 

industrial agents contribute to the optimization of Cyber-Physical Production Systems? ........... 22 

Figure 6: Overview of relevant state-of-the-art contributions, their field of contribution, and 

identified research gap that can be positioned at the junction where CPPS, MAS, and design 

patterns intersect. .......................................................................................................................... 26 

Figure 7: State-of-the-art agent-based CPPS patterns based on their introduced challenges 

(selected RQs from Fig. 2). ........................................................................................................... 27 

Figure 8: Citation network of selected paper (overlay view in VOSviewer®). ........................... 28 

Figure 9: Research issues, contributions, and publications (namely paper numbers Pub.X as 

occur). ........................................................................................................................................... 29 

Figure 10: General landscape of the I4.0 scenario proposed with their I4.0 components and their 

IT/OT technologies. ...................................................................................................................... 35 

Figure 11: Logical architecture of the MAS (right) extended to an AAS-based MAS version 

(left)............................................................................................................................................... 37 

Figure 12: MAS from Hoffmann (Hoffmann, 2017) (left) and Lüder et al. (Lüder et al., 2017) 

(right). ........................................................................................................................................... 39 

Figure 13: Challenges and gaps of Industrial Agents – related thesis’ contribution (selected RQs 

from Fig. 2). .................................................................................................................................. 54 

 

  



L i s t  o f  T a b l e s   | 10 

List of Tables 

 

Table 1: Rating scheme of requirements related to issues (Section 1.4) to evaluate relevant work.

....................................................................................................................................................... 20 

Table 2: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 

1. CPPS approaches ...................................................................................................................... 22 

Table 3: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 

1. MAS approaches. ...................................................................................................................... 23 

Table 4: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 

1. Pattern approaches. ................................................................................................................... 25 

Table 5: Criteria to classify MAS architectures / patterns (Cruz S. et al., 2019). ........................ 30 

Table 6: Industrial Agents, their main competencies, and examples. Source: (Cruz S. & Vogel-

Heuser, 2022a). ............................................................................................................................. 32 

Table 7: Agent4.0’s Industrial AI characteristics evaluation (Cruz S. & Vogel-Heuser, 2022b). 33 

Table 8: Qualitative Assessment of IAs interfaces of the I4.0 demonstrators (Cruz S. & Vogel-

Heuser, 2022b). ............................................................................................................................. 35 

Table 9: Relationship and comparison between I4.0 models (Cruz S. & Vogel-Heuser, 2022a). 37 

Table 10: List of sub-agents patterns for MAS architectures extended from (Cruz S. et al., 2019; 

Vogel-Heuser et al., 2018). ........................................................................................................... 40 

Table 11: Overview of the author contribution (for each activity of each paper, the contribution 

of all authors is 100%). ................................................................................................................. 41 

Table 12: Summary of the primary results from the main publications. ...................................... 42 

Table 13: Overview of the thesis’ storyline contributions. ........................................................... 49 

Table 14: Summary of the rating of requirement fulfilment. ........................................................ 52 

  



I n t r o d u c t i o n  a n d  m o t i v a t i o n   | 11 

1. Introduction and motivation 

Within the framework of Industrie 4.0 (I4.0), interconnections, smart sensors, actuators, and 

other equipment are becoming more common in an automated Production System “aPS”. 

Multiple aPSs encompass networked entities, also known as a Cyber-Physical Production System 

“CPPS” (Vogel-Heuser et al. 2015a), or an industrial Cyber-Physical System “CPS” (Ribeiro 

and Hochwallner 2018).  In this sense, industry and academia discuss CPPS’s benefits and 

common ground with agents as a way to develop CPPSs in various aPS domains, e.g., 

manufacturing and smart grids (Leitão et al. 2016). Nevertheless, what exactly is an agent for the 

I4.0? Is it possible to categorize Industrial Agents “IAs” as a type of Artificial Intelligence “AI”? 

Or does it remain just a software program, as discussed in (Franklin and Graesser 1997)? 

1.1 Motivation for automated Production Systems with Multi-Agent Systems 

Russell and Norvig define that the agent is an entity that “just acts”, because it comes from the 

Latin agree (meaning to do). Those authors also introduce the Rational Agent concept as part of 

their AI categories, as “one that acts so as to achieve the best outcome or, when there is 

uncertainty, the best expected outcome” (Russell and Norvig 2010). They use a taxonomy for the 

following AI system’ categorization: i) thinking humanly, e.g., artificial neural networks and 

other cognitive methods; ii) acting humanly, e.g., humanoid robots with natural language 

processing; iii) thinking rationally, e.g., expert systems or rules of inference and optimization; 

and iv) acting rationally, e.g., intelligent software agents that are expected to achieve goals. 

Figure 1 represents this AI categorization, adding industrial application contribution and its 

complexity addressed by typical IAs (e.g., Resource agent, Process agent). 

 

Figure 1: Artificial Intelligence categories and the Industrial Agent application. Source: Based on (Russell & Norvig, 2010). 
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As a consequence of agent seminal definitions, it is possible to say that in a control system, a 

human and an agent’s behavior are defined by a goal-orientated approach (Telang et al. 2019; 

Heylighen 2023). An agent’s behavior represents a specific combination of tasks, but these tasks 

are not unique. For example, a human can select any route to resolve math calculations (e.g., 

multiplications are a sums compound). Agents, therefore, are distinct entities with the ability to 

take a goal-oriented approach. Agents are able to complete goals with autonomy, similar to 

humans, but (as far as recent experts demonstrate), they cannot reach the full AI autonomy level 

yet (Plattform Industrie 4.0 2019). The authors in (Leitão et al. 2016), add modularity, flexibility, 

robustness, and responsiveness to IA features, which are not entirely part of human behavior.  

Along these lines “Artificial Intelligence in Industrie 4.0” is a technical report published by 

the working groups on “Technological and Application Scenarios” and on AI of the I4.0 

platform that presents an Industrial AI concept level yet (Plattform Industrie 4.0 2019). The most 

relevant conclusion is that I4.0 experts and scientists must become accustomed to the behavior of 

autonomous AI-controlled systems, collaborate with them, and even comply with their 

requirements. In this way, initiatives related to IAs instantly raise many concerns about existing 

norms and new standardization. These regulations often provide guidelines and, in some cases, 

offer procedures driven by IA design patterns (Ribeiro et al. 2018; Leitão et al. 2021). An IA is 

one way of achieving I4.0 systems due to natural autonomy and additional intelligent features, 

e.g., reactiveness, proactiveness, and human collaboration. Thus, collaborative and grouped IAs 

(named sub-agents) are defined as a Multi-Agent System (MAS), which is particularly well 

suited for representing distributable AI able to develop industrial CPSs (Karnouskos et al. 2020a) 

and to use in I4.0 scenarios (Vogel-Heuser et al. 2020; Seitz et al. 2021). 

1.2 Why Industrial Agents and Cyber-Physical Production Systems? 

A CPPS consists of “intelligent entities that collaborate and exchange information globally, and 

they are proclaimed as the basis of Industry 4.0. A CPPS enables characteristics of Cyber-

Physical Systems in the production automation domain” (Vogel-Heuser et al., 2015). Hence, 

I4.0/CPPS usually refers to the Fourth Industrial Revolution. In the industrial context, according 

to German FA 3.351 VDI/VDE experts’ standardization, an IA is “an encapsulated 

(hardware/software) entity with specified objectives. An agent endeavors to reach these 

objectives through its autonomous behavior, in interacting with its environment and with other 

 
1 Previously FA 5.15, “Agent systems” is a working group of the Society of German Engineers (VDI) and German Electrical Engineers (VDE). 
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agents” (VDI/VDE, 2012). At the same time, TC-IA2 by the IEEE P2660.1 working group 

normalized the IA definition as an “agile and robust software entity that intelligently represents 

and manages the functionalities and capabilities of an industrial unit” (IEEE, 2021). Concerning 

AI, German experts define it as “supplements technical systems with the ability to process tasks 

independently and efficiently” (Plattform Industrie 4.0, 2019). Nonetheless, those definitions are 

limited; they do not answer how IA/AI acquire their intelligence. Then, there are multiple and 

generally accepted definitions of both terms IA/AI that are ambiguous and far from the same 

between their communities. To bridge these discrepancies and provide a cohesive understanding 

by research questions (RQs), reference can be made to the pivotal Fig. 2. 

 
Figure 2: Challenges and gaps of Industrial Agents.  

Highlighted green RQs refer to the focus of this dissertation, which started in 2016, and based on those, are created the thesis’ 

RQs; IA experts subsequently proposed the other RQs. Source: Adapted from the presentation of the workshop3 “Agents in agile 

manufacturing (CPPS) - Status of Last Meeting”, AIS-TUM, 2019.  

 
2 TC-IA refers to the international IEEE-IES Technical Committee on Industrial Agents. 
3 Following are the participants of the agent-based CPPS workshop and their affiliations: Andrei Lobov (Norwegian University of Science and 
Technology), Armando Colombo (University of Applied Sciences Emden/Leer), Arndt Lüder (Otto von Guericke University Magdeburg), Birgit 

Vogel-Heuser (Technical University of Munich), Christoph Hanisch (FESTO AG), Elfahaam Haitham (RWTH Aachen University), Friedrich 

Durand (afag Automation AG), Kira Barton (University of Michigan), Luis Ribeiro (Linköping University), Marga Marcos (University of the 
Basque Country), Paulo Leitão (Polytechnic Institute of Bragança), Peer Stritzinger (Erlang Ecosystem Foundation), Peter Göhner (University of 

Stuttgart), Stamatis Karnouskos (SAP), Ulrich Epple (RWTH Aachen University), and Valeriy Vyatkin (Aalto University). 
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Figure 2 recompiles a comprehensive list of questions, highlighting the numerous challenges 

and gaps associated with agents: interfaces, AI/Knowledge, engineering, CPPS, I4.0, patterns, 

standardization, metrics, and other interlaced IA concepts. Also, this figure illustrates specific 

RQs that are central to this dissertation, serving as both an informative backdrop and a compass 

guiding the formulation of the thesis’ issues statements and the RQs. The origins of this figure 

were a presentation from the Workshop titled “Agents in agile manufacturing (CPPS)” held at 

AIS-TUM in 2019. It is imperative to mention that these discussions and subsequent findings in 

the workshop were the collaborative endeavors of experts from both IFAC 3.35 NMO GMA 

VDI/VDE and IEEE IES TC-IA by the IEEE P2660.1 working groups. This collaboration 

signifies the synthesis of knowledge, experiences, and expertise from renowned IA experts trying 

to shape the future landscape of agent-based CPPS. 

1.3 Delimitation and key differentiation of this thesis 

Considering the properties of IAs and their relevant standards, this cumulative thesis presents a 

MAS architecture to understand the aspects of the flexible and intelligent CPPS. For this thesis, a 

CPPS often refers to I4.0 and the MAS approach as well as in (Colombo et al., 2021; Gangoiti et 

al., 2021; Karnouskos et al., 2020; Tang et al., 2018; Vogel-Heuser et al., 2015). Regarding I4.0, 

the thesis refers to precisely the Asset Administration Shell (AAS), which is one of the main 

specifications of the Reference Architecture Model for I4.0 or RAMI4.0 (DIN SPEC 91345 norm 

(DIN SPEC, 2016)). AAS is the Digital Twin (DT) of assets that form the I4.0 components, and 

together with IA, AAS allows smart access to resource information, as well as connectivity with 

other I4.0 components (Cruz S. et al., 2019). As a result, relevant IA pattern standards and their 

AI challenges for the I4.0 show how MAS can be overcome with the help of identified IA skills, 

capable with the Product, Process, Resource (PPR) model (Cruz S. & Vogel-Heuser, 2022a). 

This dissertation focuses on IAs design patterns and their capability for the standardized I4.0 

concepts (e.g., RAMI4.0, AASs, PPR), proposing an agent-based CPPS architecture to achieve 

smart production. As introduced by Fig. 3, the MAS proposed is delimited to CPPSs that are able 

to provide both soft and hard real-time responsiveness, as well as to facilitate vertical integration 

across various levels of industrial control automation in the specific domain of discrete 

manufacturing. The innovative differentiation of this thesis are the IA design patterns embedded 

within an agent-based CPPS that are specifically designed to synergize with core components of 

industrial automation systems, including Supervisory Control and Data Acquisition (SCADA), 
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Manufacturing Execution Systems (MES), and Enterprise Resource Planning (ERP) platforms, 

which are aligned to RAMI4.0 and its AAS concept as demonstrated by (Cruz S. et al., 2019; 

Cruz S. & Vogel-Heuser, 2022a). 

 

Figure 3: Thesis’ scope of the agent-based CPPS proposed for industrial control automation within the manufacturing field. 

1.4 Scientific problem: issue statements 

The research presented in this dissertation was conducted with the collaborative German FA 3.35 

VDI/VDE experts. Based on experiences and feedback made in this working group that involves 

researchers, industry representatives, and engineers from many scientific disciplines focused on 

IAs, the recent standard “2653 Sheet 4: Multi-agent systems in industrial automation - Selected 

patterns for field level control and energy systems” (VDI/VDE, 2021), was developed. 

Altogether, these result in four significant issues that influence traceability in the context of 

agent-based CPPS based on design patterns, which are briefly discussed in the following: 

Issue 1: Lack of a comprehensive overview and classification of MAS patterns in CPPS 

Despite the increasing relevance of MAS patterns in CPPS, there remains a gap in the literature 

offering a consolidated overview and classification of these patterns, involving their depiction, 

criteria, domains of applicability, and reusability. This lack of information impedes the extensive 

development of MAS in the industrial field, e.g., logistic, smart manufacturing, smart grids. 

Issue 2: Challenge of reusability and extendibility of MAS design patterns for I4.0 

As the demand for adaptable and scalable CPPS increases, the need for reusable and extendible 

MAS design patterns becomes more relevant. Yet, there remains uncertainty regarding which 

MAS design patterns are universally reusable and how they can be further extended to supply 

emerging I4.0 scenarios. 
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Issue 3: Integration of MAS design patterns with existing CPPS models and standards 

There’s a need to ensure that MAS design patterns are consistent with established CPPS models 

and standards, like RAMI4.0 and PPR. However, it’s unclear how these patterns can be 

effectively integrated and developed to align with such models. 

Issue 4: Implementing sub-agent patterns and AASs into hybrid CPPS platforms. 

While sub-agent patterns and AASs offer promise in enhancing CPPS functionalities, there is a 

lack of clear guidelines on how to seamlessly implement these into hybrid CPPS. 

1.5 Research questions, and main contributions 

This work addresses four research questions (RQ1-RQ4) that recompile RQs from Fig. 2 and aim 

to solve the issues above: 

RQ1. How are the MAS patterns for CPPS depicted and what criteria are used to describe them? 

RQ2. For which domains of CPPS are the MAS patterns designed and applicable? 

RQ3. What are the reusable MAS design patterns for CPPS? 

RQ4. How can MAS patterns be used for a CPPS aligned with the RAMI4.0 and PPR model? 

 

The potential benefits of this thesis’ contributions (Con1-Con5) are the following: 

Con1. Systematic and well-discussed criteria (or abstraction for the summary) compiled at least 

in the IA working group of the German IFAC FA 3.35 is presented.  

Con2. A mapping of analyzed MAS functional requirements to sub-agent patterns will be 

provided, considering their capabilities and skills. 

Con3. Proposed sub-agent patterns for MAS technology in I4.0 demonstrators are applicable; 

further extended agent-based CPPS designs and applications are possible for more use cases 

based on selected I4.0 scenarios. 

Con4. The identified design patterns are the basis for the development of agent-based CPPS and 

for their structural representation (CPPS requirements). The contribution considers an explicit 

MAS architecture (with final requirements) for the application of an individual CPPS in process 

industry domain. 

Con5. In order to improve industrial applicability, a VDI/VDE norm is used as proof of 

evaluation for the impact of IA patterns and AASs implementation into hybrid CPPS platforms. 
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1.6 Structure of this dissertation 

The remainder of this cumulative thesis is structured as follows. Chapter 2 presents the research 

methods and conceptual background, including the related work. Chapter 3 describes the main 

contributions to CPPS.  Chapter 4 summarizes the findings of the included publications. Chapter 

5 outlines the contribution of the research, presents some inferences from the findings, and 

suggests future research directions. The included manuscripts are listed in the Appendix A. 

2. Research method and conceptual background 

In this thesis, the paradigm of the holistic research method is adopted. It means there are multiple 

views to understanding a system, called holism (Hurtado 2012), using tools for observing, 

learning, and depicting what is perceived qualitatively and quantitatively of concepts. 

2.1 Research method and strategy stages 

Holism could indicate different thoughts, but they must be considered complementary. 

Therefore, the objectives of the holistic paradigm are classified according to their complexity 

levels and those have a common goal hierarchy, as depicted in Fig. 4.  

 
Figure 4: Levels of research objectives in a holistic research method. Source: Adapted from (Hurtado 2012). 

In a holistic research method, objectives are organized hierarchically, from the lowest to the 

highest relevance. The hierarchy of the research objectives levels tracks the following order: 

perceptual (description), apprehensive (comparison), comprehensive (proposition), and 

integrative (confirmation). Figure 4 illustrates the general method to obtain this thesis’ research 

goals based on the holistic paradigm (Hurtado, 2012). This proposal will reach the Integrative 

(confirmative) holistic paradigm level since the objectives of developing agent-based CPPS 

driven by design patterns involve the researcher’s amendment of the event. Therefore, to fulfill 
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all the objectives of this research project, the following four sequential macro stages and their 

descriptions are established by inductive4 reasoning: 

I. State of the art and theoretical framework: documenting, analyzing, and characterizing the 

outstanding models of IA design patterns for CPPS based on the state-of-the-art review. 

II. Analysis and design of the model: establishing the requirements and identifying IA design 

patterns in order to propose an agent-based CPPS. 

III. Implementation and validation: applying a MAS architecture to evaluate the agent-based 

CPPS driven by design patterns, validating the effectiveness of the design. 

IV. Publications and dissertation: realizing the monograph and the other publications 

requirements during the validation of the proposed agent-based CPPS. 

2.2 IA design pattern definition 

In this thesis, the IA design pattern definition is based on the IA standardization (from FA 3.35 

VDI/VDE, see section 1.2) and the “design pattern” term, which provides a means of 

identification of broader success aspects in particular problems. Design pattern definition has 

been adapted for various other disciplines, particularly in software engineering (Gamma et al., 

1994). Moreover, the original idea of patterns was introduced by the architect Christopher 

Alexander et al. as a reusable form of a solution to a design problem (Alexander et al., 1977): 

“Each pattern describes a problem which occurs over and over again in our environment, and then 

describes the core of the solution to that problem, in such a way that you can use this solution a 

million times over, without ever doing it the same way twice.” 

— Alexander et al., (1977). 

Design patterns usually aim to improve the flexibility of object-oriented systems (Gamma et 

al., 1994), as well as MAS in nature, IA patterns are a research and development field considered 

to enable flexibility, robustness, and responsiveness to industrial automation systems (Leitão et 

al., 2018). Within this field, several MAS architectures have been developed over the last 25 

years with the intention of providing distinct manufacturing system capabilities (Lüder et al., 

2017). Simultaneously in Information Technology (IT) domain, IA experts realized that it is time 

to consider similarities and differences between the emerged and independent MAS approaches 

(Ribeiro et al., 2018). MAS patterns need to be also investigated for large-scale systems in CPPS 

(Colombo et al., 2013). As a result, a more recent description of MAS design patterns was given: 

 
4 Inductive reasoning, or induction, involves forming general theories from specific observations. For example, observing something happen 

repeatedly and concluding that it will happen again in the same way. Source: https://www.dictionary.com/e/inductive-vs-deductive 
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“For each design pattern it is assumed, that it will be described by a descriptive and unique name, 

a description of goals and reasons of the design pattern and its use, a description of the problem 

intended to be used by the design pattern, a description of the usage restrictions of the design 

pattern, a description of the solution the pattern provides including a naming of all relevant entities 

and their interaction (possibly accompanied by a graphical representation of the reach structure), 

a description of the impact reached by using the described solution, if possible known applications 

of the design pattern, and if required other design pattern related to the described design pattern.” 

— Lüder et al., (2017) 

However, the IA expert’s community has realized that there is not a formal agreement about 

IA patterns definition and incurred unintentionally different types of terms, such as: common 

practices (domain templates) for software agents in low-level automation (IEEE, 2021); or 

blueprints for the design and realization of MAS (VDI/VDE, 2021). Therefore, there is no 

widely accepted IA design pattern definition currently. Based on this consideration, an IA design 

pattern definition for agent-based CPPS control might be derived, enabling control engineers to 

select a MAS approach within the development of well-proven criteria. This is the primary 

intention of this thesis section. Consequently, the IA design pattern is defined as follows: 

Definition of this thesis: Industrial Agent pattern 

An IA design pattern is characterized as a structured approach5 that delineates the core of a solution to a 

recurrent issue in industrial systems, adapted in a manner that allows —but not limited to— agent-based 

CPPS applications. This approach is not merely a template but a comprehensive method that includes a 

distinctive and descriptive MAS name, an explication of the pattern’s objectives and the rationale behind 

its use, and a detailed description of the problem it aims to solve. It also includes the constraints under 

which the design pattern operates, a thorough description of the solution provided —including the 

relevant sub-agent entities and their interactions, often accompanied by a graphical illustration of the 

structure— and the anticipated impact of employing the proposed solution. Where applicable, known 

applications of MASs and any associated or complementary design patterns are also described. 

IA patterns here refer to the MAS for the industrial automation system domain, mainly agent-

based CPPS. Hence, this definition is intended to bridge the gap between various terminologies, 

offering control engineers a coherent set of MAS-proven structures. Additionally, the IA design 

 
5 In this thesis, the term “approach” is conceptualized as a collection of architectures, methodologies, and/or standards that adhere to a common 

scheme, as introduced in (Cruz & Vogel-Heuser, 2017; VDI/VDE, 2021). Concerning architectures, they are exclusively acknowledged as 
configurations for static system modeling. Frequently, these configurations are proposed by their authors and may lack detailed procedural 

guidance for implementation. A methodology is defined as a prescribed sequence of actions designed to enhance efficiency in development and 

to elevate the quality of systems, commonly within the context of software engineering. It further delineates how processes should be 
systematically, predictably, and reliably executed. Both architectures and methodologies may receive accreditation from global standardizing 

institutions. A manufacturing standard might be of the private or open variety, depending on the nature of the standard development organization. 
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pattern definition aims to mitigate the possible apophenia6, which means the potential for MAS 

developers to perceive false patterns or assign unnecessary significance to unrelated events and 

entities within complex systems. By providing a clear, well-established set of criteria for the 

identification and utilization of IA design patterns, this thesis endeavors to ground the 

development process of MAS design patterns. As a proof of the concepts, empirical evidence has 

been validated by IA experts and their recent standardization (IEEE, 2021; VDI/VDE, 2021). 

2.3 Requirements for MAS architectures for I4.0/CPPS 

Hence, the formulated requirements listed in Table 1 need to be fulfilled to assist in analyzing, 

categorizing, implementing, and evaluating IA patterns in agent-based CPPS. 

Table 1: Rating scheme of requirements related to issues (Section 1.4) to evaluate relevant work. 

Req1-Classification – Criteria of MAS classification 

Related to Issue 1: Lack of comprehensive MAS overview 

● Detailed classification criteria for MAS approaches delivers valid and decidable information for their evaluation 

◑ 
Limited MAS approaches classification for CPPS or not classifying/identifying with similar design pattern’s terms, e.g., 

names, functionalities, etc. 

○ No classifications or criteria defined. 

Req2-Domain – CPPS application field 

Related to Issue 1: Lack of comprehensive MAS overview 

● 
Support of MAS approaches have application in diverse domains with different goals and benefits e.g., flexibility, 

adaptability, etc. 

◑ Limited CPPS are applicable in every domain in appliance with the real-time requirements of MAS approaches 

○ No consideration of a CPPS domain. 

Req3-Reusability – MAS design patterns for I4.0 

Related to Issue 2: MAS extendibility 

● There are reusable MAS patterns and sub-agents with functional and non-functional requirements for CPPS design 

◑ Limited MAS components follow specific sub-agents, which have particular aims and are reusable for CPPS design 

○ No consideration of IA patterns or sub-agent patterns. 

Req4-Modelling – Support of models associated to I4.0 

Related to Issue 3: CPPS models, and Issue 4:  AAS into CPPS 

● It is possible to harmonize different MAS approaches to obtain a simple CPPS architecture aligned with RAMI4.0/PPR 

◑ Limited MAS patterns provide I4.0 component’s properties and specific information to its AAS or PPR model 

○ No consideration of RAMI4.0 or PPR modelling 

2.4 Related work: how do IAs contribute to the CPPSs?  

Concurrently, I4.0 is founded on design concepts that are not fully satisfied by the automation 

languages widely used today. The new design concepts, such as Industrial CPS or CPPS and the 

DT, aim to provide more customized goods and optimization techniques while addressing the 

urgent requirement to increase sustainability (Ribeiro & Gomes, 2021). The IEC 61131-3 and 

 
6 Apophenia is the tendency to find patterns or meanings where other people do not, perceiving meaningful connections between unrelated things. 

In 1958, psychiatrist Klaus Conrad (Berlin, 27.02.1986) introduced the German term, Apophänie, from the Greek verb ἀποφαίνειν (apophaínein).  
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IEC 61499 standards and their subsequent enhancements, which now include an object-oriented 

programming language, are the dominant programming languages in the control of aPS, 

especially at the plant level (Cruz S. & Vogel-Heuser, 2020). At this industry field level, 

Programmable Logic Controllers (PLCs) are primarily utilized to control whole aPSs, 

networking them to create CPPS (Karnouskos et al., 2019). Research in CPPS and DTs, driven 

by AASs, has significantly enhanced the development of metamodels (López-García et al., 

2023). These model-based approaches detail the structure of interconnected machines and 

systems, supporting the optimization and reusability of PLC pattern codes (Fischer, Vogel-

Heuser, Berscheit, et al., 2021). 

In the context previously described, IAs contribute to the CPPS optimization by addressing 

the challenges and needs of modern aPS (Karnouskos et al., 2019; Vogel-Heuser et al., 2020). 

Based on a systematic keyword search using the tool Scopus AI7, three keyways were derived in 

which IAs can optimize CPPS, as follows: 

Design patterns and interfaces: IAs help to design and implement CPPS by providing design 

patterns and interfaces between agents and the systems (Leitão et al., 2021; VDI/VDE, 2021). 

These design patterns and interfaces enable continuous and collaborative communication 

between the IAs and modern aPSs. 

Metrics for evaluation: IAs contribute to the optimization of CPPS by providing metrics to 

evaluate the quality of agent-based syetems (Karnouskos et al., 2018; Ribeiro et al., 2018). These 

metrics assess the performance and effectiveness of the aPS, leading to improvement and 

optimization. 

Distributed intelligence (smartness): IAs implement distributed AI within CPPS (Karnouskos 

et al., 2020), allowing, for instance, decentralized decision-making and flexibility in task 

allocation, leading to improved efficiency and adaptability of the systems (Land et al., 2023).  

Overall, IAs play a crucial role in optimizing CPPS by providing design patterns, interfaces, 

metrics for evaluation, and distributed intelligence. As Fig. 5 depicts, IAs are able to address 

CPPS challenges and improve the industrial automation control of modern aPS (Leitão et al., 

2023; Ribeiro & Gomes, 2021). 

 
7 Scopus AI is an intuitive and intelligent search tool powered by generative AI (GenAI) that delivers insights with unprecedented speed and 

clarity. Scopus AI uses natural language processing, which means that it goes beyond matching specific keywords or Boolean operators; instead, 
it is possible to type questions, statements, or hypotheticals using everyday language. More info online: 

https://www.elsevier.com/products/scopus/scopus-ai 
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Figure 5: Comprehensive concept maps from Scopus AI, after the question (Dec 2023): How do industrial agents contribute to 

the optimization of Cyber-Physical Production Systems? 

Considering those challenges for agent-based CPPS, Table 2 to 4 summarizes the requirement 

fulfillment of all requirements presented (Req1-Req4, see Table 1) for CPPS, MAS and patterns 

approaches, respectively. IA patterns classification is like the Product-Resource-Order-Staff 

Architecture (PROSA) in which holons are defined for resources, products, orders, and so-called 

staff services (Valckenaers, 2020). These IA types have been well-researched and are suitable for 

various MAS architectures (Gehlhoff, 2023; Ribeiro & Gomes, 2021). 

Table 2: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 1. CPPS approaches 

Group/ 

leader 

                          Requirement 

Work 

Req1-

Classification  

Req2- 

Domain 

Req3- 

Reusability  

Req4- 

Modelling  

Barata (Barata et al., 2022) ○ ◑ MM farm ◑ PL ○ 
(Peres, 2019) ◑ AS ◑ generic aPS ◑ PL ◑ RG 
(Rocha, 2018) ◑ AS ◑ predictive aPS ◑ PL ◑ RG 

Leitão & 
Ribeiro 

(Colombo et al., 2021) ○ ●aPS/smart grid ◑ PL ◑ ISA 95/88 

(Leitão, Colombo, et al., 2016) ◑ AS ●aPS projects ○ ○ 
(Ribeiro & Hochwallner, 2018) ○ ●generic CPPS ○ ◑ RG 

Cardin & 
Trentesaux 

(Barbosa, 2016) ◑ AS ◑ MM ADACOR2 ◑ holons ○ 
(Cardin, 2019) ◑ AS ◑ aPS ○ ○ 
(Jimenez et al., 2017) ◑ AS ◑ hybrid control ◑ entity ○ Pollux 
(Nouiri et al., 2019) ○ ● smart grid ○ ○ 

Lüder (Calà, 2019) ○ ● aPS ◑ PL ○ 
(Lüder et al., 2020) ○ ● aPS ○ ◑ AAS 
(Zawisza, 2019) ◑ AS ● aPS ◑ PL ○ 

Other CPPS 
developers 

(Case, 2015) ○ ● smart grid ◑ ○ 

(E. A. Lee, 2015) ○ ● generic CPS ○ ○ 

(J. Lee et al., 2015) ○ ● generic CPPS ○ ○ 

(Panetto et al., 2019) ○ ◑ discrete aPS ○ ◑ RG 

(Váncza & Monostori, 2017) ○ ●bioinspired aPS ○ Ueda’s legacy ○  
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Standard RAMI4.0 (DIN SPEC, 2016) ○ ● aPS ○ ◑ AAS  
TUM-AIS (Schütz et al., 2017) ○ ● aPS ○ ○ 

(Trunzer, 2020) ○ ● aPS ○ ◑ RG 

(Vogel-Heuser et al., 2022) ○ ● aPS ◑ PL ○ 
Zoitl (Shakil & Zoitl, 2020) ○ ● aPS ◑ IEC 61499 ◑ RG 

aPS: automated Production System; 
CPS: Cyber-Physical System; 

AS: limited agent survey (literature review without very well-proven criteria classification);  
MM/MS: MAS methodology / MAS software for the industrial domain; 

PL: Patterns has limited consideration (only patterns mentioned, no method proposed);  
RG: Reference general assessment (RAMI4.0 in general, not focusing on specific AAS/PPR concepts) 

Table 2 systematically rates the extent to which current CPPS approaches meet a series of 

predefined criteria. It identifies the efforts of Colombo et al (2021), Ribeiro & Hochwallner 

(2019), E. Lee (2015), and Lee et al. (2014) as particularly impactful in domain-specific 

applications, highlighting need to achieve CPPS flexibility and responsiveness. The table, 

however, also shows notable variance in the IA patterns reusability and modeling support based 

on RAMI4.0/PPR models of these approaches (Req3), suggesting a crucial need for a 

standardized, interoperable framework that enhances CPPS implementation efficiency, as 

analyzed by (Leitão & Strasser, 2016). 

Table 3: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 1. MAS approaches. 

Group/ 

leader 

                             Requirement 
Work 

Req1- 
Classification  

Req2- 
Domain 

Req3-Reusability  Req4- 
Modelling  

Agent 
platform 

(Kruger & Basson, 2019) ○ ◑MS Java/JADE ◑ FIPA patterns ○ 

(Melo et al., 2019) 
◑ platform 
criteria 

◑MS 
Python/PADE ◑ FIPA patterns ○ 

Agent project 
(Cruz & Vogel-Heuser, 2017) 

◑ AOSE 
criteria ◑ aPS ○ ◑ ISA 95 

levels 
(Wright, 2001) ○ ◑ MM SAAM ◑ IT pattern ○ 

Agent/IA 
standard 

(IEEE, 2005) ○ ◑ MM FIPA ◑ IA norm ○ 
(VDI/VDE, 2012) ○ ● aPS ◑ IA norm ○ 

AOSE (Cardoso & Ferrando, 2021) ◑ AS ◑ MM ○ ○ 

(Mendonça et al., 2021) 
● AOSE 
criteria ◑ MM ◑ BDI model ○ 

Barton (Kovalenko et al., 2019) ◑ AS ◑ aPS ◑ PA pattern ○ 
(Kovalenko, 2020) ◑ AS ◑ aPS ● PA pattern ○ 

Leitão & 
Ribeiro 

(Karnouskos et al., 2018) 
● quality 
criteria 

◑ MM ISO/IEC 
25010 ◑ PL ○ 

(Leitão et al., 2021) ◑ AS ● industrial CPS ◑ PL ◑ RG 
(Ribeiro & Gomes, 2021) ◑ AS ● industrial CPS ◑ metamodel ○ 
(Sakurada & Leitao, 2020) ◑ AS ● industrial CPS ◑ PL ◑RAMI layers 

Casquero,  (Priego, 2017) ◑ AS ◑ MM FAPS ◑ PL ○ 
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Estévez & 
Marcos 

(López-García, 2023) ◑ AS ◑ MS IAMS ● IA interface ◑ AAS 
(Gangoiti et al., 2022) ◑ AS ◑ MM RECON ● IA patterns ○ 

Fay (Fay et al., 2019) ○ ◑ aPS ◑ PL ◑ RG 
(Gehlhoff, 2023) ◑ AS ● aPS ◑ PL ◑ RG 
(Gehlhoff & Fay, 2020) ◑ AS ◑ aPS ◑ PL ○ 
(Reinpold et al., 2024) ◑ AS ● aPS DT ◑ PL ◑ AAS 

Göhner (Badr, 2011) ○ ◑ aPS/FMS ◑ PL ○ 
Lüder (Ryashentseva, 2016) ◑ AS ◑ aPS ◑ PL ◑ RG 
TUM-AIS (Fischer et al., 2020) ◑ AS ● aPS/MFS ◑ metamodel ○ 

(Land et al., 2023) ◑ IA criteria ◑ aPS ○ ◑ RG 
(Hoffmann et al., 2017) ◑ AS ◑ aPS ◑ FIPA patterns ○ 
(Rehberger, 2020) ◑ AS ◑ aPS ● PA pattern ○ 
(Schütz, 2015) ◑ AS ◑ aPS ◑ metamodel ○ 
(Vogel-Heuser et al. 2015a) ◑ AS ● industrial CPS ◑ PL ○ 
(Wannagat, 2010) ◑ AS ● aPS ● IA resource ○ 

Other MAS 
authors 

(Bendjelloul et al., 2022) ◑ AS ◑ MS ◑ PL ◑ RG 
(Fast-Berglund et al., 2020) ○ ◑ aPS ○ ○ 
(Hoffmann, 2017) ◑ AS ◑ aPS ● IA interface ○ 
(Marschall, Ochsenkuehn, et 
al., 2022) ○ ◑ drink aPS ◑ PL ◑ RG 

(Theiss, 2015) ◑ AS ◑ MS Java ◑ IA interface ○ 
(Theiss & Kabitzsch, 2017) ◑ AS ◑ MS Java ● IA interface ○ 
(Villavicencio et al., 2019) ◑ AS ◑ MM MAGReS ○ ○ 

Note: see ‘footnotes’ from Table 2. 

Table 4 focuses on evaluating pattern approaches for I4.0, drawing attention to the 

contributions of López-García & Marcos (2021) and Leitão et al. (2021), who have advanced the 

field through their work on IA pattern interfaces (Req3) and the MAS application in industrial 

CPS. Despite these advances, the table indicates that patterns are not fully reusable (only focus 

on IA interface), demanding a more detailed set of IA patterns (Req3), suitable for various agent-

based CPPS aligned to RAMI4.0, as introduced by (Leitão et al., 2023). 
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Table 4: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 1. Pattern approaches. 

Group/ 

leader 

                   Requirement 
Work 

Req1- 
Classification  

Req2- 
Domain 

Req3- 
Reusability  

Req4- 
Modelling  

IA standard (IEEE Std 2660.1-2020) ○ ◑ aPS ● IA norm ◑ RG 
(VDI/VDE 2653-4 2021) ● structure criteria ● aPS/smart grid ● IA norm ◑ RG 

Casquero,  
Estévez & 
Marcos 

(López-García et al., 
2021) ○ ◑ aPS ● IA interface ◑ AAS 

(López-García et al., 
2023) ○ ◑ MS IAMS ● IA interface ◑ AAS 

Leitão & 
Ribeiro 

(Karnouskos et al., 2020) ○ ● industrial CPS ● IA interface ◑ RG 

(Leitão & Strasser, 2016) ○ ● aPS/smart grid ● IA interface ○ 

(Leitão et al., 2023) ○ ● aPS/smart grid ● IA interface ◑ RAMI layers 

(Ribeiro et al., 2018) ◑ AS ● industrial CPS ● IA interface ○ 
(Sharma et al., 2019) ○ ◑ MS IASelect ● IA interface ○ 

Vyatkin (Patil et al., 2018) ◑ code criteria ● industrial CPS ◑ IEC 61499 FBs ○ 
(Sorouri et al., 2012) ○ ◑ aPS ◑ IEC 61499 FBs ○ 
(Vyatkin, 2016) ○ ● industrial CPS ◑ IEC 61499 ○ 

Lüder (Lüder et al., 2017) ◑ AS ● aPS ● IA resource ○ 
TUM-AIS (Fay et al., 2015) ● structure criteria ◑ MM FAVA ◑ metamodel ○ 

(Fischer, Vogel-Heuser, 
Berscheit, et al., 2021) 

◑ code criteria ● aPS ◑ IEC 61131-3 ○ 

(Fuchs et al., 2014) ○ ◑ aPS ◑ IEC 61131-3 ○ 
(Neumann et al., 2020) ◑ structure criteria ◑ aPS ◑ IEC 61131-3 ○ 

Other 
pattern 
authors 

(Albrecht et al., 2024) ◑ AS ◑ MM MARL ◑ learning IA 
pattern ○ 

(Bloom et al., 2018) ○ ◑ MS ◑ IIoT patterns ○ 
(Charpenay et al., 2021) ◑ AS ◑ MM MOSAIK ◑ artifacts  ○ 
(Chitchyan et al., 2007) ○ ◑ aPS ◑ metamodel ○ 
(Gamma et al., 1994) ○ ◑ MM ● IA types ○ 

(Papoudakis et al., 2021) ◑ code criteria ◑ MM MARL ◑ learning IA 
pattern ○ 

(Roher & Richardson, 
2013) ○ ◑ MM ◑ IT patterns ○ 

(Schulte et al., 2016) ○ ◑ MM ◑ human pattern ○ 
Valckenaers 
& Weyns 

(Holvoet et al., 2009) ○ ◑ MM D-MAS ● IA patterns ○ 

(Juziuk et al., 2014) ◑ SRL criteria ◑ aPS ◑ pattern 
dimension ○ 

(Valckenaers, 2020) ◑ AS ◑ MM 
ARTI/PROSA ● IA patterns ○ 

(Weyns, 2012) ● SRL criteria ○ ◑ pattern 
dimension ○ 

Zoitl (Sonnleithner et al., 2021) ○  ◑ aPS ◑ IEC 61499 skill ○ 
(Zoitl & Prahofer, 2013) ○ ◑ aPS ◑ IEC 61499 FBs ○ 

Note: see ‘Footnotes’ from Table 2. 
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These standards have substantially shaped the structural criteria and domain applications that 

are essential to effectively integrate MAS within CPPS. Yet, the table also identifies a gap in the 

reusability of IAs (Req3), signifying an opportunity for evolving research to address the 

adaptability of MAS approaches based on patterns, as introduced in (Karnouskos et al. 2020). 

The approaches reviewed and their respective contribution fields (CPPS, MAS or design 

patterns) are summarized in Fig. 6. 

 
Figure 6: Overview of relevant state-of-the-art contributions, their field of contribution, and identified research gap that can be 

positioned at the junction where CPPS, MAS, and design patterns intersect. 

As can be seen in Fig. 6, many CPPS and MAS approaches that consider aPSs exist. On the 

other hand, several distinct design patterns for industrial systems were identified. Nevertheless, 

only five approaches exist that fully encompass a well-proven classification criteria (Req1) for 

MAS: (D’Avila Mendonça et al., 2022; Fay et al., 2015; Fischer, Vogel-Heuser, Schneider, et al., 

2021; Juziuk et al., 2014; VDI/VDE, 2021). In fact, only two publications previous to this thesis 

have shared points about CPPS, MAS and design patterns of their requirements’ contribution 

(Cruz S. et al., 2019; VDI/VDE, 2021). 

Based on the preliminary tables’ classification, a synthesis across previous work is conducted 

to present the state-of-the-art agent-based CPPS, as depicted in Fig. 7. So far, the previous 

studies reported (cp. Fig. 6) are still mainly collected from some phases of the MASs and CPPSs 
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developments (e.g., architecture, metamodel, IEC 61131-3/IEC 61499 code); thus, further study 

is necessary to explore IAs patterns in other phases of agent-based CPPS domains. 

 
Figure 7: State-of-the-art agent-based CPPS patterns based on their introduced challenges (selected RQs from Fig. 2). 

Finally, VOSviewer® is used as a key visualization tool to gain a comprehensive, delimited, 

understanding of the academic landscape of agent-based CPPS and DTs driven by AASs. Thus, 

the co-citation map, shown in Fig. 8, identifies the key contributors to these fields (CPPS and 

DT) and explains the interconnected nature of their work. This map provides insights of IAs 

driven by DTs research, showcasing the most productive authors and the top 20 most co-cited 

authors. 

Figure 6 conceptualizes the gaps and intersections of CPPS, MAS, and design patterns, 

exposing the areas ripe for more research. Then, Fig. 7 serves as a visual confirmation of the 

interconnected research domains, while Fig. 8 (a citation network) provides a graphic insight into 

the authorial contributions and their interrelationships, indicating the potential for future 

collaboration and knowledge exchange. 
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Figure 8: Citation network of selected paper (overlay view in VOSviewer®). 

The authors are from a Web of Science search, and as introduced in (Reinpold et al., 2024), the selected keywords were: (agent* 

OR mas OR digital-twin OR “digital twin” OR twin OR “administration shell” OR “aas”; from last 5 year (2018 to 2023) in the 

field TOPIC (Title-Abs-Key). A number of 145 results and 20 keywords (from 125) with a frequency equal to or superior to 5, 

were processed. Each node in the figure represents an author, with the size of each node corresponding to the author’s 

productivity or number of works. The links between nodes indicate co-citations, and the thickness of these links represents the 

frequency of co-citation. 

In conclusion, the related work discussed in this section substantiates the critical role of IAs in 

optimizing CPPS, as articulated by design patterns, evaluation metrics, and distributed 

intelligence. The systematic review of MAS approaches, informed by a robust assessment 

scheme, opens the way to understand how IA patterns contribute to the field of smart 

manufacturing and CPPS optimization. However, none of the approaches surveyed prove agent-

based CPPS implementation efforts using IA patterns capable of both RAMI4.0 and PPR (Req4) 

and suitable criteria classification (Req1), as shown in gray areas of tables 2 to 4. Therefore, the 

research gap that is addressed within this thesis is identified as:  

Research gap:  

There is a deficiency in the comprehensive integration of IA design patterns within agent-based CPPS that aligns 

with established I4.0 models, i.e., RAMI4.0/PPR/ISA95/88. Existing literature and approaches fail to provide a 

unified methodology that encapsulates the full characteristics of IA functionalities, particularly regarding scalable 

patterns, cross-domain applicability, and this standardization conformity. Moreover, there is no universally accepted 

IAs categorization that sufficiently addresses the heterogeneity of MAS architectures, which is crucial for 

developing robust, interoperable, and adaptive industrial systems. Additionally, current frameworks do not 

adequately support the AAS interface generation for diverse communication protocols, which is essential for the 

efficient and flexible exchange of information within the smart manufacturing domain. 
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3. Main contributions of IA design patterns to CPPS 

The work program is structured into five contributions (Con1-Con5): (Con1) MAS criteria, 

(Con2) Pattern needs, (Con3) I4.0 scenario, (Con4) MAS architecture, and (Con5) MAS 

guideline. The relationships between research issues, research contributions and their 

publications are presented in Fig. 9. In the following, the research contributions are described. 

 

Figure 9: Research issues, contributions, and publications (namely paper numbers Pub.X as occur). 
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3.1 Contribution 1 (Con1): MAS criteria categorization 

CPPS refer to mechatronic systems coupled with software entities and digital information, 

enabling the smart factory concept for I4.0 (Karnouskos et al., 2020; Monostori et al., 2016). The 

migration of existing control systems to CPPS is still a challenge due to the complexity involved 

(Calà et al., 2017; Ribeiro & Gomes, 2021). Design patterns are proposed to help developers 

build software with common solutions derived from experiences (Leitão et al., 2018). 

Con1 aims to provide a description and comparison of existing MAS design patterns. Two 

classification criteria are introduced to support MAS developers in implementing CPPS. Through 

an evaluation of four selected patterns (named here sub-agents), a well-discussed 

survey/summary of at least twenty MAS by the German IFAC NMO GMA FA 3.35 finds that IA 

patterns greatly benefit CPPS design. They also conclude that manufacturing based on MAS is 

an effective way to address the complex requirements of CPPS development.  As example of this 

contribution, Table 5 introduces the compilation of the criteria for the MAS design pattern 

template (with examples), including pattern category, pattern type, pattern name, pattern 

description, context, solution, implementation, MAS-architecture, knowledge base and 

processing, real-time properties, dependability, learning, MAS-autonomy, and others. Those are 

valid classification criteria in correspondence to RQ1 (how describe MAS patterns?).  

Table 5: Criteria to classify MAS architectures / patterns (Cruz S. et al., 2019). 

Criteria Descriptions Examples options  

Pattern category Favorable function patterns: System 

properties that can be realized by 

employing MAS, i.e. increased flexibility 

and adaptability 

Flexibility pattern, adaptability pattern, reliability pattern, 

reconfigurability pattern 

Pattern type Name of the pattern type: Technology-

independent task of the MAS (categorized) 

Fault-tolerant sensors 

Pattern name Name of the MAS pattern  Soft sensor 

Pattern 

description 

Description of the logic structure (which 

components/agents does the pattern 

contain?) 

MAS with 4 sub-agents, which enable identifying faulty 

sensors and automatically replacing them with soft sensors 

based on models  

Context / Area 

of application 

Application context of the pattern Various domains, e.g. logistics, process engineering 

MAS- 

Architecture 

Approach for realization of the agents’ 

behavior 

Reactive / cognitive / hybrid 

Solution Graphical depiction of the MAS-

Architecture 

Depiction of the MAS’ components (notation class 

diagram) 

Knowledge base 

and processing 

How is the knowledge stored? 

Models, rules. How is the knowledge 

processed? With which methods? 

Model from engineering, ontology, meta model data 

structure. Inference mechanisms for ontologies 

Learning / 

Knowledge 

acquisition 

Methods and techniques for learning 

abilities / knowledge base 

Machine learning, neuronal networks 
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Implementation Technological realization of the MAS 

(platform, languages) 

Model: SysML, programming language IEC 61131-3 

Real-time 

Properties 

Timeliness and concurrency requirements  Usage replacement sensor < 2 PLC-cycles < 40 ms 

Dependability Requirements towards reliability, 

availability, maintainability, security, or 

safety 

Soft sensor can replace sensor with a reliability of x% 

MAS-

Autonomy 

Autonomy/independence in decision 

making 

Replacement of sensor not autonomously, since number of 

replaceable sensors is limited  

Others Additional author’s comments (remarks, 

clarifications, etc.) 

 

Con1 also provides a first conceptualization to agent-based CPPSs that meets the 

requirements of smart factories based on MAS survey authors into RAMI4.0 layers and Agent 

Oriented Software Engineering (AOSE) methodologies. Design patterns based on MAS offer 

properties such as flexibility/changeability, reliability, reconfigurability, adaptability/agility and 

dependability, which are essential for CPPS (also related and confirmed by Con2). Con1 aims to 

provide engineers and programmers with existing patterns based on MAS structures to improve 

design efforts and increase efficiency in manufacturing control. It also explores the applicability 

and benefits of MAS and design patterns in the industrial sectors in multiple production systems 

domain: discrete manufacturing, continuous process, hybrid production. The results from Con1 

are the necessary inputs for Con4 and Con5. In conclusion, the aimed delivery of Con1 is: 

• Providing two classification criteria for comprehensive analysis of IA patterns for CPPS 

and highlighting their benefits in addressing the requirements of CPPS development. The 

proposed patterns come from a discussed survey of twenty agent-based approaches which 

offer a variety of “ready-made’ solutions for MAS developers and enable the rapid 

application of MAS in industry, including selected AOSE methodologies.  

3.2 Contribution 2 (Con2): IA pattern needs for I4.0 

IA patterns are crucial in the landscape of I4.0, marking a significant challenge in how modern 

aPS are designed, monitored, and controlled (Leitão et al., 2021; Lüder et al., 2017; Ribeiro et 

al., 2018). IA patterns are able to encapsulate sophisticated capabilities and skills, enabling 

autonomous decision-making, adaptive behavior, and adding plug & produce features within 

CPPS (Baumgartel & Verbeet, 2020; Shakil & Zoitl, 2020; Zimmermann et al., 2019). 

Karnouskos et al. highlighted the importance of IAs having clear propositions on the 

functionalities, services, and value-added aspects they offer, which supports the notion of IA 

patterns encapsulating sophisticated capabilities and skills within (Karnouskos et al., 2020). 
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Provided examples of IA applications in various domains, such as factory automation, power & 

energy systems, and building automation, demonstrating the wide range of applications of IA 

patterns aligned to I4.0 standards (IEEE, 2021; Leitão et al., 2023; VDI/VDE, 2021).  

The findings from Con2 provide insightful information about IA patterns, skills, and 

capabilities essential for I4.0 applications, as introduced in Table 6. Con2 aims to describe the 

importance of standardized IA design patterns and discuss the characteristics of Industrial AI 

vital for agent-based CPPS. In this sense, Con2 emphasizes the significance of the Industrial AI 

characteristics (C1-C5), including autonomy, reactiveness, proactiveness, predictability, and 

human cooperativeness, and their relevance in achieving the goals of I4.0 (Cruz S. & Vogel-

Heuser, 2022a). In general, most of the representative CPPS approaches are missing 

predictability characteristics and the RAMI4.0 capability (Cruz S. & Vogel-Heuser, 2022b). 

Therefore, in order to fulfill those requirements, Con2 delivers the Multi-Agent aRchitecture for 

Industrial Automation applying desigN patterNs practicEs (MARIANNE), following the 

normalized guidelines, and addressed by IA classes and capabilities, as introduced in Table 6.  

Table 6: Industrial Agents, their main competencies, and examples. Source: (Cruz S. & Vogel-Heuser, 2022a). 

IA class IA’s competence/capability (capable of) Instantiation (a particular example) 

I. Physical 

access agent 

Abstracting and connecting 

heterogeneous production equipment with 

the MAS 

This IA acts as a digital representation of a physical object 

ranging from a single product (or a service) to an enterprise 

network at the hierarchy axis (Baumgartel & Verbeet, 2020). 

This IA class also has access to assets’ main functionalities 

and is building on the normalized Resource Agent (see 

VDI/VDE 2653-4 guideline (VDI/VDE, 2021)) 

II. 

Organizational 

agent 

Offering various services into an 

integrated and united execution model 

that can support managing and organizing 

the operation of the MAS and its IAs (see 

FIPA Agent Management Specification 
(IEEE, 2005)) 

This IA type is often concerned with non-physical entities, 

e.g., orders, production plans, production schedules, among 

others (Unland, 2015). The typical instances of this IA class 

are the normalized Agent Management System and the 

Process Agent (see VDI/VDE 2653-4 guideline (VDI/VDE, 

2021)) 

III. Interface 

agent  

Providing effective communication 

between the IAs converting property 

interfaces into multiple protocols 

An IA class’ instantiation is the normalized Communication 

Agent (see VDI/VDE 2653-4 guideline (VDI/VDE, 2021)), 

and this may, for example, interconnect IAs and LLC 

automation functions based on the IEEE 2660.1 interface 

practice (IEEE, 2021) 

IV. Human 

agent 

Allowing humans to act as agents in the 

MAS interacting with others 

agents/systems among the automation 

levels 

This IA type should be able to achieve the concept for 

Human-in-the-loop in I4.0 (Karnouskos et al., 2020) 

Con2 identifies four IA classes (see Table 6), along with their specific capabilities and 

alignment of Industrial AI characteristics, further highlighting the critical role of IA patterns in 

MAS architectures for CPPS. The IA patterns, such as the Reactive IA, Proactive IA, and 

Predictive IA, are categorized based on their response time and main behaviors, explaining the 

diverse capabilities (C1-C5) necessary for achieving autonomy, reactiveness, proactiveness, 
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predictability, and human cooperativeness in I4.0 scenarios (Cruz S. & Vogel-Heuser, 2022b). 

The main importance of these IA patterns, skills, and capabilities allows adaptable CPPS within 

the context of RAMI4.0 and the AAS concept, related to Con4. These IA patterns and 

characteristics enable Industrial AI to effectively manage uncertain conditions, respond to 

environmental information, take the initiative for decision-making, predict outcomes, and 

facilitate human-in-the-loop interactions, essential for the successful implementation of I4.0 

systems (Cruz S. & Vogel-Heuser, 2022b, 2022a). Results from Con2 have necessary inputs for 

Con5, defining the IA capabilities and skill for the IA patterns standardization.  

By aligning IA design patterns with Industrial AI characteristics and developing predictive 

agents, e.g., Agent4.0 from Table 7 (Cruz S. & Vogel-Heuser, 2022b). Con2 contributes to the 

advancement of agent-based CPPS design patterns, ultimately fostering the realization of 

intelligent and efficient I4.0 systems, for aPS but also able to energy systems  (VDI/VDE, 2021). 

Those are agent-based CPPS goals and benefits in different fields that correspondence to RQ2 

(for which CPPS domains?). In conclusion, the aimed delivery of Con2 is: 

• Introducing two significant definitions in the standardization of IA patterns: Industrial IA 

characteristics and IA types together its competencies or skills. Also, the integration of a 

predictive agent type, like the Agent4.0, with MARIANNE to develop intelligent, 

efficient, and adaptable CPPS, aligning with RAMI4.0/AAS. This contribution not only 

supplies smart production but also extends the IA patterns normalization to smart grids, 

reflecting the versatile applicability of agent-based CPPS in various domains.  

 

Table 7: Agent4.0’s Industrial AI characteristics evaluation (Cruz S. & Vogel-Heuser, 2022b). 

Industrial AI characteristics 

(C1-C5) evaluation 

Agent4.0 function (skill) description 

Autonomy Reactiveness Proactiveness Predictability Human 

Copera. 

Agent4.0 should increase its initial Knowledge Base 

competence because of the “learning element” (often non-

real-time). Sec.IV.A* 
●  ● ● ● 

Agent4.0 may operate in a time-predictable way, i.e., enabling 
short/medium/long-term production tasks. Sec.IV.A ● ●  ●  
Agent4.0 can predict data valuable to other IAs, by a central 
learning module. Sec.IV.A ●    ● 
Agent4.0 can apply a supervised learning method, e.g., a 

Linear Regression algorithm, to achieve its goals. Sec.V.B    ● ● 

Agent4.0 usually does not fulfil hard/soft real-time 

requirements because predictability implies learning from 

the past and being located at the heterarchy top. Sec.II.C4 
   ●  

●: needed. *Sec.X (section label) refers to the publication reference in (Cruz S. & Vogel-Heuser, 2022b).  



M a i n  c o n t r i b u t i o n s  o f  I A  d e s i g n  p a t t e r n s  t o  C P P S   | 34  

3.3 Contribution 3 (Con3): agent-based CPPS scenarios 

The I4.0 demonstrators play a crucial role in validating the implementation of agent-based CPPS. 

These demonstrators are essential for showcasing the integration of MAS in building CPPS 

compliant with the RAMI4.0 (Bendjelloul et al., 2022). The use of IAs has facilitated the 

realization of more CPPS, emphasizing the significance of these demonstrators in validating the 

implementation of agent-based CPPS (Marschall, Schleicher, et al., 2022). As proof of concepts, 

Con3 includes the thesis’ evaluations in three I4.0 demonstrators, at the Institute of Automation 

and Information Systems (AIS), from the Technical University of Munich. The first I4.0 

demonstrator is the Robot Integrated Agent Network (RIAN) that enables the connection of 

heterogeneous plants at the control level and the usage of this competence for enabling the 

interconnection of a cooperating production line. According to the I4.0 concept development, the 

information of the plants is transmitted via the internet while the physical connection is 

performed via mobile transportation robots, as demonstrated at the Fair Trade Automatica 2014. 

The second I4.0 demonstrator is the Hybrid Process-Model (often named myYoghurt plant) 

that is a major laboratory production system for implementing and evaluating the concepts and 

approaches that are investigated at the AIS-TUM chair, including for platform independent MAS 

for robust networks of CPPS (Cruz S. et al., 2018; Seitz et al., 2021). Therefore, myYogurth 

plant consists of multiple plant sections that emulate different industrial domains, i.e. material 

flow, discrete manufacturing and continuous (chemical) process.  

The third I4.0 demonstrator is the Extended Pick and Place Unit (xPPU) that handles and 

manipulates work pieces of different material. The xPPU sets 16 variants evolution scenarios that 

are characterized by a variety of different changes in platform, context, and software. It perfectly 

keeps the balance between representing the reality and limiting the complexity and is therefore a 

useful evaluation plant for IA patterns research (Cruz S. & Vogel-Heuser, 2022a, 2022b). As the 

Fig. 10 depicts, Con3 uses the adaptation of IA patterns AMS, CA, RA, and PA for 

standardization (Con5) into MARIANNE architecture for the xPPU I4.0 scenarios (Cruz S. et al., 

2019; Cruz S. & Vogel-Heuser, 2022b). Those IA patterns have particular aims and can be 

reused for several CPPSs in correspondence to RQ3 (what MAS patterns are reusable?). 
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Figure 10: General landscape of the I4.0 scenario proposed with their I4.0 components and their IT/OT technologies. 

Con3 is valuable due to the variability of the selected I4.0 demonstrators that differ in many 

aspects, like accessibility by different protocols, modularity, and independent platform 

requirements, enabling their application into I4.0 scenarios (Seitz et al., 2021).  For example, 

Table 8 results from testing those CPPSs and the applicable classification criteria based on IA 

pattern interfaces (IEEE, 2021). Results from Con3 have necessary inputs for Con4, enabling a 

common MAS architecture. 
 

Table 8: Qualitative Assessment of IAs interfaces of the I4.0 demonstrators (Cruz S. & Vogel-Heuser, 2022b). 

Pattern criteria* myYoghurt xPPU demonstrator 

Location On-device Hybrid 

Interaction mode Loosely coupled Tightly coupled 

API client C++/C#, Java (JADE) REST/JSON, Python (PADE) 

Channel FIPA-ACL, OPC UA HTTP, FIPA-ACL, OPC UA 

Score* 2.56 3.20 

*Criteria recommendation come from (IEEE, 2021). The score value is according to our expertise, 

providing a qualitative assessment of the IEEE 2660.1 interface practice into the CPPSs. 

Con5 shows a proof of concept of the I4.0 scenarios8 such as the Adaptable Factory (AF), 

Order-Controlled Production (OCP), and Self-organizing Adaptive Logistics (SAL), reducing the 

 
8 See detailed information about AF/OCP/SAL scenarios in the documentation online available:  
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time and cost efforts, as the proposed IA patterns are “ready-made” solutions (Vogel-Heuser et 

al., 2020). As proof of evaluation, Con5 considers the collaboration of the AIS-TUM and the 

Institute of Automation Technology with Helmut Schmidt University (see Pub. XI). The xPPU 

and myYoghurt in combination with other I4.0 demonstrators at Helmut Schmidt University 

collaborate in the application of the OCP and AF scenarios (Seitz et al., 2021). In conclusion, the 

aimed delivery of Con3 is: 

• Providing insights of the deployment of three I4.0 demonstrators —RIAN, myYoghurt 

plant, and xPPU— which validate the integration and effectiveness of IA design patterns 

within CPPS. This is further evidenced by qualitative assessments and collaborative 

research, providing crucial data for advancing the dissertation’s aims and reinforcing the 

practicality of IA patterns in at least two extended I4.0 scenarios i.e., OCP and AF. 

3.4 Contribution 4 (Con4): MAS architecture with DTs 

The integration of IA patterns and the concept of the AAS from RAMI4.0 significantly 

influences the development of agent-based CPPS within I4.0 (López-García et al., 2021; 

Reinpold et al., 2024). AASs considered here as a digital twin, allows the interoperability of 

agent-based CPPSs, providing a standardized digital representation of assets, enabling unified 

communication and integration of physical assets with their digital equivalents (Gangoiti et al., 

2021; Sakurada & Leitao, 2020).  Con4 provides valuable insights into the integration of IAs and 

the AAS concept for the development of agent-based CPPS. Specifically, Con4 describes a 

generic MAS architecture derived from IA patterns capable of an AAS and illustrates the 

relationships between IA patterns and their roles in a CPPS (Cruz S. & Vogel-Heuser, 2022b), as 

depicted in Fig. 11. This MAS ensures CPPS platform independence and interoperability (Cruz 

S. et al., 2018), addressing the autonomy, reactiveness, proactiveness, predictability, and human 

cooperativeness required for agent-based CPPS (Cruz S. & Vogel-Heuser, 2022b), related to 

Con2. The AAS concept in Con2 serves as a digital representation of physical resources linked 

to RAs, providing the basis for merging new I4.0 components and enabling whole integration 

with IT/OT systems. Additionally, the deployment of autonomous and collaborative 

manufacturing entities with enhanced self-capabilities, such as self-optimization, self-awareness, 

and self-monitoring, is highlighted as a priority for CPPS (Cruz S. & Vogel-Heuser, 2022b). 

 
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html 
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Figure 11: Logical architecture of the MAS (right) extended to an AAS-based MAS version (left). 

aPS, automated Production Systems; AMS, Agent Management System; DF, Directory Facilitator; KB, Knowledge Base; ML, 

Machine Learning; MTS, Message Transport System. 

The main importance of integrating IA patterns and the AAS concept lies in achieving a high 

level of interoperability, but also performance, learnability, and reconfigurability necessary for 

addressing I4.0 scenarios (Con3). Con4 aims to integrate the use of ML models for Agent4.0 to 

facilitate the identification of critical CPPS situations in an unsupervised training environment. 

Agent4.0 with its AAS is enabling automatically performed cost-opportunity analyses to decide 

on incorporating additional agent-based (soft) sensors to increase availability to the resources 

(Cruz S. & Vogel-Heuser, 2022a). Table 9 introduces how MAS architecture based on 

metamodel criteria, is aligned with established RAMI4.0/AAS and PPR models, in 

correspondence to RQ4 (how to align CPPS to RAMI4.0/PPR?).  

Table 9: Relationship and comparison between I4.0 models (Cruz S. & Vogel-Heuser, 2022a). 

How can the  

(1-3) model realize 

or define the (a-i)? 

Metamodel criteria*  

a. Functional 

hierarchy 

levels 

b.  

Engineer. 

Process steps 

c.  

Technical flow 

sorts 

d.  

Material 

e.  

Information 

classes 

f.  

Discipline 

range 

g.  

Level of 

detail 

h.  

aPS type 

i. Specific 

application 

domain 

V
ia
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o
f 

th
e 
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n

 

    

V
ia
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1. RAMI4.0/ 

AAS 

I4.0- 

component 
 

AAS: sub-

model element 

collection 

Asset 

AAS: 

sub-model 

element 

AAS: 

property or 

range 

AAS: sub-

models 
I4.0-system 

I4.0- 

component 

2. PPR model Resource Process 
Product 

Process 
Product    Process  

3. MARIANNE 

(this work) 

Physical 

access agent, 

Interface agent 

Organizational 

agent 
Process energy 

Organizational 

agent 

Human agent, 

Cognitive 

modeling 

Knowledge 

base 

Module: 

Unit, 

Equipment, 

Control 

Application 

Operation 

Maintenance 

Planning 

Scheduling 

 *Source: metamodeling aPS criteria from (Cha et al., 2020).  

Key findings from Con4 reveal the pivotal role of IA patterns in enabling autonomy and 

collaboration within the framework of I4.0. The digital representation of an IA by an AAS 

encapsulates information and services, orchestrating intelligent IA patterns and enabling 
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cooperation aligned to FIPA protocols and based on their IA patterns skill and capabilities 

(Con2). AASs are essential for providing a comprehensive digital representation of all available 

information about and from an object, whether it is a hardware system or an independent 

software platform (Cruz S. et al., 2018). In conclusion, the aimed delivery of Con4 is: 

• Supporting a comprehensive and robust MAS architecture for the integration of IA 

patterns and the AAS concept, laying the groundwork for the realization of intelligent, 

autonomous, and adaptable CPPS aligned with the principles not only of RAMI4.0 but 

also the PPR model. The contributions made in Con4 are pivotal in advancing agent-

based CPPS design patterns, thereby facilitating the achievement of smart, 

interconnected, and predictive I4.0 systems by the concept of Agent4.0. 

3.5 Contribution 5 (Con5). IA patterns standardization 

The IA experts highlight the necessity to analyze standardization needs for deploying agent-

based technology, addressing industrial requirements imposed by different application fields 

(Leitão & Strasser, 2016). Furthermore, the IA community discusses the identification of 

patterns derived from existing implementations of IAs and the assessment of their characteristics, 

using the ISO/IEC 25010 standard as a starting point (Karnouskos et al., 2018). Additionally, TC 

IA members, led by Professor Paulo Leitão in the IEEE P2660.1, highlight the use of agent 

technologies for higher-level decision-making and lower-level automation and control functions 

in industrial systems, emphasizing the need for IA interface patterns for agent-based CPPS 

(Ribeiro et al., 2018). Additionally, the VDI/VDE 2653 guidelines, led by Professor Birgit 

Vogel-Heuser, have been surveyed by the TC 3.35 experts on MAS, indicating their relevance 

and importance of IA patterns standardization in the industrial context (Vogel-Heuser et al., 

2018). In this sense, the VDI/VDE 2653 Sheet 4 is relevant (see Pub.  XII) proof of Con5 

meaning that the thesis’ contribution is valuable and valid due to the fact of the classification 

criteria and the IAs pattern standardized. Con5 considers the main aspects derived from the 

classification criteria (Con2), but also the evaluation by the German IA experts for each IA 

pattern, including the integration of MAS approaches in the traditional automation pyramid e.g., 

based on ISA 95 standard (see Pub. III). The IA pattern categories were derived based on thirteen 

proposed criteria that classify MAS architectures’ patterns, such as sub-agent name, main 

functionality, automation level, real-time capability, communication base, key properties, and 

related work (Cruz S. et al., 2019). Accordingly, to these criteria, Fig. 12 introduces the 
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comparison of two MAS heterarchies and its common IA patterns already standardized 

(VDI/VDE, 2021): RAs and PAs.  

 
Figure 12: MAS from Hoffmann (Hoffmann, 2017) (left) and Lüder et al. (Lüder et al., 2017) (right). 
Knowledge Base (KB), Resource Agent (RA), Communication Process (CP) and Process agent (PA). Source: (VDI/VDE, 2021). 

The classification criteria demonstrate that similar MAS authors often use common IA 

patterns with various names, i.e., sub-agents, bust in different domains. Additionally, Con5 aims 

to integrate IAs design patterns into a CPPS aligned with RAMI4.0’s layers, that is crucial for 

ensuring effective communication, real-time optimization, and decision-making processes within 

I4.0 systems. Those are agent-based CPPS values in different RAMI4.0’s layers that 

correspondence to RQ4 (how to align CPPS to RAMI4.0?). Table 10 provides a list of sub-agent 

patterns for selected MAS architectures (Con1). Con5 demonstrates that the sub-agents 

identified can be classified without consideration of names such as coordination agents, schedule 

agents, supervision agent, supervisor agents, rescheduler agents, and resource capability 

monitoring agents among others (Cruz S. et al., 2019). Negotiations and collaborations among 

those different IAs create a MAS heterarchy for industry. The MAS scope of the architectures 

discussed include, smart manufacturing, energy systems, material flow systems, image 

processing and information processing. Instead of considering the names, Con5 involves criteria 

based on IA common functionalities (i.e., resource access, coordination process, communication 

interface, or the KB), traditional type of agent (i.e., reactive, or proactive), ISA 95 level of 

application (L0-L3) and other characteristics of the MAS. Con5 by the classification of sub-

agents helps to differentiate the architecture of each MAS and can be defined as modular or 

integral, according to (Ribeiro, 2017).  
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Table 10: List of sub-agents patterns for MAS architectures extended from (Cruz S. et al., 2019; Vogel-Heuser et al., 2018). 

 
 

Autor / Author Ressourcenagent (RA) / 

Resource agent (RA): 

 

 

L0–L2 

Prozessagent (PA) / 

Process agent (PA): 

 

 

L2–L3 

Agenten-Management- 

System (AMS) / 

Agent management 

system (AMS): L1–

L2 

Kommunikationsa- 

gent (CA) / 

Communication 

agent (CA): 

L1–L3 

Intelligente Fertigung / Smart manufacturing 

Badr [56] – 

RA 

± 

job@ 

± 

service@ 

– 

Brehm et al. [57] ++ 

(RA || field related@) 

– ++ 

gateway@ 

++ 

broker@ 

Cruz et al. [22] ++ 

RA 

++ 

(product@ & 

diagnosis@) 

++ 

AMS 

– 

Rehberger [32] ++ 

RA 

++ 

product 

management@ 

– + 

@interaction 

Ryashentseva 

[28] 

++ 

(executive@ & 

rescheduler@ & 

dispatcher@) 

++ 

supervisor@ 

– – 

Schütz [31] ++ 

RA 

++ 

PA 

++ 

(control strategy@ & 

system@) 

++ 

(CA || @interaction) 

Theiss [14] + 

plant@ 

++ 

(test coordination@ & 

monitoring@) 

± 

analysis@ 

+ 

test@ 

Ulewicz [33] ++ 

(hardware@ & 

system@) 

– ++ 

AMS 

++ 

(CA & system@) 

Vogel-Heuser 

et al. [58] 

++ 

plant@ 

++ 

(coordination@ & cus- 

tomer@) 

++ 

AMS 

– 

Wannagat [29] ++ 

(RA || control@) 

++ 

(PA & system@) 

++ 

AMS 

++ 

(CA || @interaction) 

Folmer [30] ++ 

control@ 

+ 

process@ 

+ 

system@ 

++ 

CA 

Kovalenko et al. 

[55] 

++ 

RA 

++ 

product@ 

– – 

Legat [59] ++ 

execution@ 

++ 

(supervision@ & re- 

configuration@) 

++ 

AMS 

– 

Lüder et al. [60] ++ 

(RA || field 

related@-RRA) 

++ 

decision 

support@-DSA 

++ 

(order@ & product type 

info related@) 

– 

Hoffmann [34] + 

(autonomous@ || 

transport@-specific) 

++ 

(coordination@ || man- 

ufacturing, 

specific@) 

++ 

OPC UA Address-Space as 

blackboard 

+ 

customer@ 

Materialflusssystem / Material flow system 

Fischer [35] ++ 

(control@ & 

order@ & system@) 

++ 

coordinator@ 

++ 

AMS 

++ 

CA 
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The comparison of the selected MAS approaches enables mapping four IA patterns: the RA, 

AMS, CA, and PA (Cruz S. et al., 2019). The PA supervises the execution of a production 

recipe/plan and interacts with RAs and AMSs. The CA converts proprietary interfaces into 

multiple communication protocols. The AMS allows bidirectional mapping between IP-

addresses and sub-agents’ identifications. The RA consists of modules such as Control Module 

and Diagnosis Module, as a part of its KB. The PA pattern coordinates the execution of process 

steps and interacts with RAs, CAs, and AMSs. In conclusion, the aimed delivery of Con5 is: 

• Leveraging the VDI/VDE 2653 Sheet 4 as a benchmark, affirming the thesis’ value and 

validity by aligning with established guidelines for evaluating, impacting, and extending 

IA patterns in agent-based CPPS. This alignment ensures that the contribution not only 

adheres to other recognized standards —e.g., RAMI4.0 (DIN SPEC91345), IEEE Std 

2660.1-2020— but also advances the field by providing a systematic classification and 

application of MAS patterns for field-level control and energy systems. 

4. Summary of publications 

This chapter highlights the research results obtained in main five papers (publications I to V). 

Additional publications (publications VI to XII) are mentioned and related as complementary 

contributions of this dissertation. Table 11 summarizes the percentage value of the candidate 

contribution in each author publication. Table 12 specifies the details of each publication in 

accordance with the RQs and contributions. The included papers (namely paper numbers as they 

occur) are attached in Appendix A. 

Table 11: Overview of the author contribution (for each activity of each paper, the contribution of all authors is 100%). 

                Contribution  

(%) 

Publication                                                             Conceptualization Data Investigation Writing 

Pub.I - ReqsForCPPS 

(Cruz S. and Vogel-Heuser 2017) 
60% 70% 80% 80% 

Pub.II - MASplatform 

(Cruz S. et al. 2018) 
60% 40% 70% 60% 

Pub.III - MASpatterns 

(Cruz S. et al. 2019) 
60% 50% 75% 55% 

Pub.IV - MARIANNE 

(Cruz S. and Vogel-Heuser 2022a) 
70% 65% 70% 50% 

Pub.V - Agent4.0 

(Cruz S. and Vogel-Heuser 2022b) 
75% 90% 80% 70% 

Notes about contribution parts 

Conceptualization: Development; conceptual design of the research project 

Data:                        Data curation or software (acquisition, creating, organizing) 

Investigation:          Formal analysis; methodology 

Writing:                   Visualization; writing - original draft; writing - review & editing 
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Table 12: Summary of the primary results from the main publications. 

Publication No., year 

(name) Main results 
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Pub. I, 2017 

(ReqsForCPPS) 

 

• Requirements for agents-based CPPS were 

identified 

• Contrast of main AOSE: Gaia, Prometheus, etc. 

○ ● ○ ◑ ● ○ ◑ ○ ◑ 

Pub. II, 2018 

(MASplatform) 

 

• MAS requirements defined and an agent-based 

CPPS architecture applied to a I4.0 scenario 

• Agent-based CPPS FIPA compliant is proposed 

○ ● ◑ ○ ◑ ○ ◑ ● ◑ 

Pub. III, 2019, 

(MASpatterns) 

 

• The main four agent design patterns were 

defined: AMS, CA, PA, RA 

• Around twenty MAS analyzed, and patterns 

were standardized driven classification criteria 

• Support to create the VDI/VDE 2653-4 norm 

● ◑ ● ◑ ● ● ◑ ◑ ● 

Pub. IV, 2022, 

(MARIANNE) 

 

• Agent-based CPPS architecture derived from 

MAS patterns (MARIANNE) 

• Guideline to develop an agent-based CPPS 

aligned RAMI4.0/PPR 

● ○ ● ● ◑ ◑ ● ● ● 

Pub. V, 2022, 

(Agent4.0) 
• Reusable Agent4.0 concept and its skills 

• ML-based agent into a MAS architecture by a 

I4.0 demonstrator 

◑ ○ ● ● ◑ ● ● ● ◑ 

Full covered ●; Partially covered ◑; No covered○ 

4.1 Publication I: “Comparison of agent oriented software methodologies to apply 

in cyber physical production systems” (Cruz & Vogel-Heuser, 2017) 

Luis Alberto Cruz Salazar and Birgit Vogel-Heuser 

Summary of Pub. I (ReqsForCPPS) 

This paper aims to classify existing agent-based approaches as a basis for realizing CPPS and 

identify the benefits of Agent-Oriented Software Engineering (AOSE) and its development. 

Despite the several benefits provided by methodologies, such as Gaia, TROPOS, Prometheus, 

and INGENIAS, their adoption in agent-based CPPS solutions is still uncommon. Then, the 

achievements of this study include identifying the importance of MAS requirements for industry 

and highlighting AOSE methodologies as a valuable strategy for application in I4.0/CPPS. A 

summary of current CPPS projects and their application field, as well as a comparison of hybrid 

MAS methodologies, are introduced. CPPS projects are categorized based on their focus (i.e., 

demonstrators, smart manufacturing approaches, electric grid, applications, or architectures) and 

their alignment with the ISA 95 standard levels. The projects cover a range of applications, 
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including intelligent manufacturing, autonomous cars, robotic surgery, and smart grids. The 

significance of this study lies in its contribution to improving manufacturing systems by applying 

advanced information technologies (ITs) and its integration of operational technologies (OTs) 

through industrial networking and knowledge of physical things by CPSs. Ten requirements for 

applying MAS in CPPS are introduced, such flexibility, reconfigurability, operational efficiency, 

scalability, fault tolerance, interoperability, and adaptability. According to the contribution, those 

requirements can be achieved by applying new advanced IT/OT technologies for manufacturing 

systems. The paper also provides insights into the future of automation through the Industrial 

Internet of Things (IIoT). The authors provide a general overview of the existing AOSE 

methodologies and their benefits without going into specific details or practical applications. The 

study concludes that AOSE has significant potential in I4.0/CPPS implementation and can 

contribute to developing the smart factory concept. However, it emphasizes the need for further 

research and exploration to leverage the benefits of agent-based CPPS.  

Author’s contributions on Pub. I 

The main contribution to this paper (Cruz & Vogel-Heuser, 2017), was the introduction of ten 

relevant requirements for agents-based CPPS. Additionally, the principal author contrasted 

typical AOSE methodologies, such as Gaia, Prometheus, etc., to identify their applicability to 

industrial applications, highlighting that the selected the majority of the selected AOSE show at 

least 50% coverage of the requirements on average. Nevertheless, some requirements need 

urgent attention since most of the AOSE methodologies do not consider them. Last but not least, 

the thesis’ author explains the evolution of systems from embedded systems (i.e., based on 

Machine-to-machine communication) to the IIoT. The initial version of the manuscript (Cruz & 

Vogel-Heuser, 2017), was written by the thesis’ author. 

This section was published as Pub. I (ReqsForCPPS): 

Cruz, S. L. A., & Vogel-Heuser, B. (2017). Comparison of agent oriented software 

methodologies to apply in cyber physical production systems. 15th International Conference 

on Industrial Informatics, INDIN, 65–71. https://doi.org/10.1109/INDIN.2017.8104748 

4.2 Publication II: “Platform Independent Multi-Agent System for Robust 

Networks of Production Systems” (Cruz S. et al., 2018) 

Luis Alberto Cruz Salazar, Felix Mayer, Daniel Schütz and Birgit Vogel-Heuser 
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Summary of Pub. II (MASplatform) 

This paper focuses on the problem of information control in manufacturing, specifically in the 

context of CPPS. The manuscript emphasizes that customized products require a flexible 

production process, and CPPS is a potential solution. However, implementing CPPS in 

heterogeneous production systems requires a platform-independent and robust software solution. 

The study proposes a MAS software solution for creating application-independent CPPS. The 

study aims to assess the efficiency of the design and implementation of a MAS, implementation 

in ANSI C and JAVA to support a variety of hardware platforms. The concept was evaluated 

through different use cases and experiments, providing robust and distributed software, and 

implementing in heterogeneous CPPS. Protocols and messages facilitate the communication and 

collaboration between IAs in the CPPS. The IAs can represent either physical systems or 

organizational entities. Physical systems agents manage access to the production system, 

dynamically regulating this access based on company policies. Organizational entity agents 

perform tasks such as diagnosis services and introducing production requests. IAs can 

dynamically reconfigure production systems to achieve load balancing within the CPPS network 

i.e., real-time response. The study also discusses using MAS to decentralize automation, enhance 

flexibility, and enable advanced functionality in production plants. The organizational entities 

periodically check all IAs for availability to update directories, which are distributed in a cloud 

among multiple nodes. This distributed directory, i.e., the DF, and the AMS pattern minimize 

search request time. The MAS software architecture is designed to represent different abstraction 

layers of communication, including hardware, protocol, and messages from FIPA standard. A 

hierarchical approach is adopted, with an IA interface responsible for handling connections and 

directory services. Each IA can have multiple communication interfaces to support different 

hardware platforms. In general, the study provides an overview of a MAS architecture and the 

functionality of the communication platform for CPPS, highlighting the potential benefits of 

heterarchical and isoarchical architectures. However, due to the lack of quantitative evaluation, 

the study primarily presents qualitative experiments and discussions. 

Author’s contributions on Pub. II 

The main contribution to this paper (Cruz S. et al., 2018), was the description of the MAS 

requirements defined and an agent-based CPPS applied to a I4.0 scenario. Also, the author 
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proposed a MAS architecture for CPPS networks that is FIPA compliant (extended in Pub. XI). 

The partial manuscript (Cruz S. et al., 2018) was written and improved by the thesis’ author. 

This section was published as Pub. II (MASplatform): 

Cruz S., L. A., Mayer, F., Schütz, D., & Vogel-Heuser, B. (2018). Platform Independent 

Multi-Agent System for Robust Networks of Production Systems. IFAC-PapersOnLine, 

51(11), 1261–1268. https://doi.org/10.1016/j.ifacol.2018.08.359 

4.3 Publication III: “Cyber-physical production systems architecture based on 

multi-agent’s design pattern—comparison of selected approaches mapping 

four agent patterns” (Cruz S. et al., 2019) 

Luis Alberto Cruz Salazar, Daria Ryashentseva, Arndt Lüder and Birgit Vogel-Heuser 

Summary of Pub. III (MASpatterns) 

This article explores how design patterns focused on MAS can be applied in advanced 

manufacturing settings, specifically in CPPS. It offers a systematic classification and 

examination of MAS patterns, setting out criteria to quickly adapt them across different 

industrial sectors. The key contribution of this paper is in detailing existing MAS patterns that 

assist engineers and programmers in developing and enhancing the efficiency of manufacturing 

control. It compares various MAS solutions, providing a detailed survey and insights into their 

architectural IA patterns. 

The paper also explores into the creation of agent-based CPPS and its structural design 

(functional requirements), supporting the integration and development of MAS at various 

domains (discrete manufacturing, continuous process, hybrid production), in line with traditional 

industry standards such as ISA 95. The MAS design pattern requirements provide a framework 

for developing and implementing CPPS architectures. These align with the RAMI4.0 standard 

and the AAS concept. The RAMI4.0’s Asset Layer contains the physical elements managed by a 

MAS patterns, with Resource Agent (RA) patterns being key to asset management. However, the 

paper does not specify the direct relationship between RAs and assets. Communication is 

facilitated through the RAMI4.0’s Communication Layer, utilizing CA patterns compatible with 

field bus and industrial communication protocols like OPC UA. 

Not all IAs in the MAS directly control the assets—mostly RAs do—while MAS may also 

offer additional services like the (Agent Management System) AMS and the Directory Facilitator 
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(DF), following the FIPA standard. Another accepted IA pattern is the Communication Agent 

(CA) that converts proprietary interfaces into multiple industrial protocols. The topmost 

organization layer of RAMI4.0 can include the organizational structure’s representation 

(Information Layer). Here, the Process Agent (PA) pattern enables the operation of organizations 

within diverse MAS. The Information Layer of RAMI4.0 holds semantic information about 

assets and the organization of PAs, which can represent a product in this layer. As PAs have their 

own information on procedures and plans, they coordinate their own production.  

The article also examines four general research questions linked to eight hypotheses, five of 

which are fully- and three partially-true. RQs and true hypotheses address various aspects, 

including the depiction of MAS patterns for CPPS, the domains to which MAS patterns are 

applicable, and the reusability of MAS design patterns for CPPS; additionally, there are missing 

concerns, such as how MAS design patterns align with RAMI4.0 and functional and non-

functional requirements, whose hypotheses are partially true.  

As practical examples, two I4.0 demonstrators —myYoghurt and the Robot Integrated Agent 

Network “RIAN”— showcase the application of these patterns in agent-based CPPS. These case 

studies analyze and implement functional requirements like Resource Access, Knowledge Base, 

Coordination Process, and Communication Interface. However, the paper suggests further 

exploration of additional IA patterns and non-functional requirements is needed. 

Author’s contributions on Pub. III 

The main contribution to this paper (Cruz S. et al., 2019), was the identification and 

categorization of the four IA patterns introduced: AMS, CA, PA, and RA. Those were 

preliminary works discussed in several international events (see publications VI, VII and VIII). 

Twenty MAS developed by the leading German FA 3.35 group in agent research (including 

personalized MAS figures), and patterns with their classification criteria (Con1). The members 

of the working group have been asked to report their IA patterns in its architecture using the 

criteria templates. Subsequently, as proof of evaluation (Con5), four IA patterns were evaluated 

by German FA 3.35 group and published in the VDI/VDE 2653 Sheet 4 guideline (see Pub. XII). 

The initial version of the manuscript (Cruz S. et al., 2019),  was written by the thesis’ author. 

This section was published as Pub. III (MASpatterns): 

Cruz S., L. A., Ryashentseva, D., Lüder, A., & Vogel-Heuser, B. (2019). Cyber-physical 

production systems architecture based on multi-agent’s design pattern—comparison of 
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selected approaches mapping four agent patterns. International Journal of Advanced 

Manufacturing Technology, 105(9), 4005–4034. https://doi.org/10.1007/s00170-019-03800-4 

4.4 Publication IV: “CPPS-architecture and workflow for bringing agent-based 

technologies as a form of artificial intelligence into practice” (Cruz S. & 

Vogel-Heuser, 2022a) 

Luis Alberto Cruz Salazar and Birgit Vogel-Heuser 

Summary of Pub. IV (MARIANNE) 

This paper discusses the classification of IAs based on their behavior. The motivation for this 

study is the increasing use of AI in production systems and the need for collaboration between 

I4.0 experts and autonomous systems. The study highlights the importance of existing standards 

and design patterns in realizing I4.0 systems and discusses the properties and capabilities of IAs 

in the context of AI. It distinguishes between Reactive Agents and Deliberative Agents, in which 

Reactive Agents have a faster response to their environment by simple situation-action 

associations. In contrast, Deliberative Agents have more sophisticated behavior and can behave 

proactively. The paper highlights the advantages and disadvantages of each type of agent and 

proposes the need for improved IA typologies to address the increasing capabilities of AI 

systems. Additionally, the study discusses the use of IA design patterns in Model-Driven 

Engineering (MDE) for MAS in the context of I4.0/CPPS, including integrating function patterns 

and knowledge bases and achieving autonomous and collaborative manufacturing systems. The 

study compares different I4.0 standardization efforts relevant to the implementation of AI using 

IAs and introduces a MAS architecture called “MARIANNE” for flexible and intelligent CPPS. 

The manuscript also provides an implementation guideline for implementing this agent-based 

CPPS. Overall, the study aims to provide a guide for implementing AI in the form of IAs in 

CPPS. MARIANNE includes physical access (in/output devices) represented by RAs but also 

uses the AMS, PA, and CA patterns, relating to the PPR model. The CPPS uses Python, 

AASXexplorer, Node-RED, and TwinCAT files. IA patterns in MARIANNE include types such 

as Control, Reasoning, Learning, and logical descriptions like Unit, Equipment, and Module 

from the ISA-88 model, but also apply the AAS concept for RAMI4.0 to achieve I4.0 systems. 
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Author’s contributions on Pub. IV 

The main contribution to this paper (Cruz S. & Vogel-Heuser, 2022a), was the development of 

an agent-based CPPS architecture derived from MAS patterns, named MARIANNE, and driven 

by the most recently IA standardization (IEEE, 2021; VDI/VDE, 2021). From the best of the 

thesis’ author knowledge, there is no similar work that integrates both norms in a unique MAS 

architecture. Additionally, the main author presented a guideline to develop an agent-based 

CPPS aligned to RAMI4.0/PPR and extendable to I4.0 scenarios (see Pub. XI). The initial 

version of the manuscript (Cruz S. & Vogel-Heuser, 2022a), was written by the thesis’ author. 

This section was published as Pub. IV (MARIANNE): 

Cruz S., L. A., & Vogel-Heuser, B. (2022a). A CPPS-architecture and workflow for bringing 

agent-based technologies as a form of artificial intelligence into practice. At - 

Automatisierungstechnik, 70(6), 580–598. https://doi.org/10.1515/auto-2022-0008 

4.5 Publication V: “Industrial Artificial Intelligence: A Predictive Agent 

Concept for Industry 4.0” (Cruz S. & Vogel-Heuser, 2022b) 

Luis Alberto Cruz Salazar and Birgit Vogel-Heuser 

Summary of Pub. V (Agent4.0) 

This paper focuses on the concept of Industrial AI in the context of I4.0. The innovative part is 

the authors introduce a predictive IA concept called Agent4.0 that applies supervised learning to 

increase the predictability of an agent-based CPPS. They suggest that IA patterns can be used to 

represent distributable AI in various I4.0 scenarios. The study evaluates the five Industrial AI 

characteristics for the Agent4.0: autonomy, reactiveness, proactiveness, human cooperativeness, 

and the ability to learn from online/offline operations. The study contributes to the IA patterns 

field by introducing a “learning element” into the Agent4.0, which collaborates with the AAS in 

an I4.0 demonstrator. This distinguishes it from existing IA design patterns that are primarily 

reactive and proactive, with limited predictive capabilities. The authors highlight that probability 

is not predictability, indicating the need for a distinction between probabilistic and predictive IA 

models. They emphasize the importance of training the Agent4.0 through ML methods to 

achieve predictive systems. Then, acquisition of data and other ML methods such as artificial 

neural networks, fuzzy logic, and linear regression are proposed as ways to support decision-

making in intelligent systems.  As limitation, definitions of predictive IA and AI used in this 
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study may not be universally accepted, leading to potential ambiguity and lack of consensus 

within the AI and I4.0 communities. The acquisition of complex and comprehensive data 

required for training IA’s Knowledge Base models may pose challenges, as obtaining such data 

can be difficult in industrial settings, i.e., hard real-time capable. The study focuses on a specific 

ML concept (linear regression) into Agent4.0, which may limit the generalizability of the 

findings to other AI applications and MAS architectures. Overall, the study contributes to the 

advancement of agent-based technologies and AI in practice. 

Author’s contributions on Pub. V 

The main contribution to this paper (Cruz S. & Vogel-Heuser, 2022b), was the introduction of 

the reusable Agent4.0 concept and its skills description. This is an ML-based agent into a MAS 

architecture by an I4.0 demonstrator. The tools implemented were preliminary used in 

collaboration with the author on a Small- and Middle-sized Enterprises (see Pub. X). The initial 

version of the manuscript (Cruz S. & Vogel-Heuser, 2022b), was written by the thesis’ author. 

This section was published as Pub. V (Agent4.0): 

Cruz S., L. A., & Vogel-Heuser, B. (2022b). Industrial Artificial Intelligence: A Predictive 

Agent Concept for Industry 4.0. IEEE 20th International Conference on Industrial 

Informatics (INDIN), 27–32. https://doi.org/10.1109/INDIN51773.2022.9976159 

5. Discussion and outlook 

A brief overview of the research contribution is discussed to summarize the thesis. It connects 

the results to the issues raised in the Introduction. After that, if the requirements have been 

fulfilled, it is reviewed, and a future work as outlook is provided. 

5.1 Main publications results related to the issues 

This section outlines the main contribution of the thesis throughout the Table. 13, which 

summarizes the main results from the contributions that supported the concept design and 

evaluation of this dissertation, related to the introduced issues and RQs (see Section 1). 

Table 13: Overview of the thesis’ storyline contributions. 

Issues Research Questions Contributions 

Lack of a comprehensive 

overview and classification 

of MAS patterns in CPPS  

RQ1. How are MAS patterns for 

CPPS depicted and what criteria 

are used to describe them? 

Con1. A well-discussed criteria and systematic 

summaries in the industrial agents working group of the 

German IFAC NMO GMA FA 3.35 is presented 

RQ2. For which domains of 

CPPS are the MAS patterns 

designed and applicable? 

Con2. Mapping of MAS functional requirements to sub-

agent patterns was provided considering their capabilities 

and skills 
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Challenge of reusability and 

extendibility of MAS 

patterns for I4.0 

RQ3. What are the reusable MAS 

patterns for CPPS? 

Con3. Proposed IA patterns for agent-based CPPS in I4.0 

demonstrators and selected I4.0 scenarios are applicable 

Integration of MAS patterns 

with existing CPPS models 

and standards 
RQ4. How can MAS patterns be 

used into a CPPS aligned with the 

RAMI4.0 and PPR model? 

Con4. The identified design patterns are the basis for the 

development of an agent-based CPPS architecture and 

for its structural representation, aligned with established 

models e.g. PPR 

Implementing sub-agent 

patterns and AASs into 

hybrid CPPS platforms 

Con5. An VDI/VDE guideline is used as proof of 

evaluation for the impact of the IA patterns and AASs 

implementation into hybrid CPPS platforms 

The thesis enriches the literature on IA patterns research in the CPPS domains, which is 

scarce since there were only few publications on the topic primarily targeting IA patterns 

standardization. Furthermore, the stepwise research for challenges presented in Section 1.2 can 

be employed in future work on the agent-based CPPS. Research contributions related to the four 

issues that are initially mentioned in the Introduction (see Section 1.4), is covered as follows: 

Issue 1: Lack of a comprehensive overview and classification of MAS patterns in CPPS. 

MAS approaches are classified in order to facilitate the migration from the conventional 

automation systems to the CPPS in Con1. Therefore, authors use a template that consists of a list 

of classification criteria validated by experts in the German community FA 5.15 (see Section 

3.1). Because all MAS approaches were created to be used in different domains and different 

layers of the automation pyramid, a notable part of the IA pattern functional requirements are 

concentrated to provide autonomy, reactiveness, proactiveness, predictability, and human 

cooperativeness. Their capabilities and skills of these IA capabilities and skills are enlisted and 

described in Con2. 

Issue 2: Challenge of reusability and extendibility of MAS design patterns for I4.0. 

The reusability and extendibility of MAS design patterns, particularly in the scope of I4.0, are 

strongly exemplified through Con3. This contribution showcases I4.0 demonstrators, such as 

RIAN, the myYoghurt plant, and the xPPU, which highlight the adaptability and scalability of 

MAS design patterns across diverse industrial domains (see Section 3.3). By implementing these 

patterns in various contexts, from discrete hybrid manufacturing, Con3 not only proves their 

effectiveness but also their capacity for reuse and extension in response to the evolving 

requirements of I4.0/CPPS. The qualitative assessment of IA interfaces within these 

demonstrators, as mentioned in Con3, provides critical insights into the integration and 

effectiveness of IA design patterns, further supporting the argument for their broad applicability 

and potential for innovation in CPPS. This directly confronts Issue 2 by demonstrating practical 
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applications and reinforcing the need for IA patterns that are both reusable and extendable, 

ensuring they can evolve alongside I4.0 demonstrators and by driven by standards. 

Issue 3: Integration of MAS design patterns with existing CPPS models and standards. 

Con4 and Con5 address this issue integrating MAS patterns with established I4.0 models and 

standards. Con4 outlines a comprehensive MAS architecture that leverages the concept of the 

AAS from RAMI4.0, illustrating a strategic alignment that enhances CPPS’s interoperability and 

digital twin capabilities. This architecture ensures that IA patterns are not only compatible with 

I4.0 standards but are fundamentally designed to enhance CPPS functionality through improved 

data integration, communication, and operational efficiency. Furthermore, Con5 emphasis on the 

standardization of IA patterns builds upon this foundation by offering a methodical approach to 

embedding IA patterns within CPPS. This includes the development of predictive agents, such as 

Agent4.0, which aligns with the MARIANNE framework, demonstrating a forward-thinking 

approach to CPPS design that integrates IA capabilities and skills. By collectively focusing on 

harmonization with standards like RAMI4.0 and the PPR model, these contributions address the 

critical need for a unified framework that not only respects existing standards but also drives 

CPPS towards better implementation. 

Issue 4: Implementing sub-agent patterns and AASs into hybrid CPPS platforms. 

The dual contributions of Con4 and Con5 again come to the face in addressing Issue 4, focusing 

on the challenges associated with implementing sub-agent patterns and AASs within complex, 

hybrid CPPS platforms. Con4’s detailed exposition on MAS architecture and its integration with 

AASs highlights the necessity of a robust and adaptable framework to CPPS. This architecture 

not only supports the integration of digital twins through AASs but also ensures CPPS can fully 

benefit from the autonomy, interoperability, and adaptability promised by I4.0. Meanwhile, 

Con5 extends this integration by standardizing IA patterns, thus facilitating the deployment of 

sub-agent patterns in a manner that is both effective and in alignment with industry standards 

such as RAMI4.0 and the PPR model. This concerted effort is key in scaling the implementation 

challenges, enhancing CPPS functionalities, and ensuring a unified integration process. Through 

the strategic alignment of IA patterns with digital twin capabilities and the standardization of IA 

patterns, contributions 4 and 5 provide a clear roadmap for overcoming the inherent complexities 

of implementing advanced MAS structures within hybrid CPPS environments. 
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5.2 Fulfillment of the requirements and the covered CPPS challenges 

Table 14 presents the results of a self-evaluation of requirements fulfillment introduced before 

(see Section 2.). Since a requirement is still only partially met, significant concerns may be 

covered. Nevertheless, the three conditions that were met demonstrate the success of this thesis. 

Regarding MAS classification (Req1), Pub. I and Pub. III detail classification methods for 

MAS approaches by describing the criteria used to depict agent-based CPPS architectures, 

including those based on AOSE. Those publications state that the classification criteria deliver 

valid and decidable information for the evaluation of MAS approaches, detailed in Section 3.1 

(Con1). Pub. III also mentions that MAS approaches for CPPS can be classified and identified 

based on similar and reusable design pattern terms (Req3).  

Table 14: Summary of the rating of requirement fulfilment. 

Requirement Rating* Detailed rating and reference to publication 

Req1-

Classification 
● 

Fulfilled – An enlargement of the collected classification criteria (cp. Table 5 and Table 6) is 

reported in Pub. III and detailed in Section 3.1 (Con1). Additionally, the Pub. I and Pub. III 

provide surveys of MAS practices based on main AOSE methodologies, differentiating them by 

CPPS requirement’ classification 

Req2- 

Domain 
● 

Fulfilled – Pub. III presents agent-based CPPS requirements and MAS architectures, mapping four 

IA patterns and their domains of application, detailed in Section 3.2 (Con2). Pub. IV and Pub. V 

define and evaluate IA pattern capabilities skills, relating Industrial AI characteristics and 

providing applicability in a I40 demonstrator with an extendible domain 

Req3-

Reusability 
● 

Fulfilled – Pub II introduces the characterization of reusable IA patterns applicable into I4.0 

demonstrators, detailed in Section 3.3 (Con3). Proof of its reusability is the normalized patterns 

which are Resource Agents, Process Agents, Communication Agents, and Agent Management 

Systems (cp. Table 10). Consequently, Pub. IV and Pub. V develop a proposed MAS architecture 

based on these reusable patterns and named MARIANNE. Pub. II to Pub. V introduce various I4.0 

demonstrators where IA patterns were applied and a selected I4.0 scenario was derived. 

Req4-

Modelling 
◑ 

Partially fulfilled – Pub. III combines RAMI4.0, and IA patterns suitability for CPPS, considering 

the AAS model, detailed in Section 3.4 (Con4). Additionally in Section 3.5 (Con5), Pub. IV and 

Pub. V make three contributions regarding modelling and standardization: examining the 

combination of VDI/VDE 2653-4 and IEEE 2660.1 standards, presenting an MAS architecture for 

CPPS derived from IA patterns (MARIANNE), and providing guidelines for implementing IAs and 

AASs into hybrid CPPS platforms. In addition, Pub. VII and Pub. VIII only reported early 

findings and initial I4.0 scenarios with their PPR modeling. Therefore, those results can be seen as 

complementary results of this thesis. Thus, further work is needed to incorporate more aspects of 

RAMI4.0 and PPR to build up a major comprehensive agent-based CPPS model for I4.0. 

*Rating means ● fulfilled, and ◑ partially fulfilled. 

Additionally, Pub. I discusses how AOSE can be developed into a CPPS-aligned framework. 

Both Pub. I and Pub. III, have selected MAS architectures, methodologies, or standards for 

classification, surveying the state of industrial MAS practices (Req1). Primarily, regarding the 

CPPS requirements, the capability to interface with various application domains (Req2) is 

ensured through the utilization of an open software MAS architecture, as elaborated in Pub. II to 

Pub. V. Independence from specific levels and diverse domains is realized by the incorporation 

of four types of IA patterns (Req3): Resource Agents (RAs), Process Agents (PAs), 
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Communication Agents (CAs), and Agent Management Systems (AMSs), detailed in Section 3.2 

(Con2). 

The implementation of TCP/IP as the basis of the communication protocol, exemplified by 

OPC UA, addresses certain aspects of error handling and recovery, and facilitates the integration 

of CPPS networks with other application domains (Req2). The distribution of organizational sub-

agents within cloud environments, such as PAs and AMSs, leads to a decentralized agent-based 

CPPS with reusable structure (Con4), as depicted in Pub. II, Pub. IV, and Pub. V. However, the 

Acceptance of I4.0 components and the capability of sub-agents in PPR model (Req4) require 

additional investigation and more evaluation experiments. Preliminary evaluations of the PPR 

model and IAs have been conducted and are documented in the complementary references of this 

thesis by Pub. VII and Pub. VIII.  

To fulfill the RAMI4.0 requirements (Req4), I4.0 demonstrators are assembled out of I4.0 

components, accommodating various engineering models and standards, detailed in Section 3.3 

(Con3). The focus of the MAS architecture on software components, particularly sub-agent 

patterns, facilitates the association of physical asset connections via AAS (Req3), aligning with 

the functional requirements of AutomationML, detailed in Section 3.4 (Con4). The principles of 

system boundaries and nestability for I4.0 components introduced in Pub. III, are further 

organized along RAMI4.0 layers and architecture axis within the MAS (Req4), respectively, 

which is implemented in Pub. IV and Pub. V. The general AAS model, discussed in Pub. III to 

Pub. V achieves the virtual representation –digital twin concept– and the functional 

characteristics of I4.0 components from RAMI4.0 (Req4). However, the agent-based CPPS 

architecture has not yet articulated non-functional requirements as a kind of feature of model 

elements (Req3), as noted in Pub. III. This limits the modeling (Req4), such as explicit quality 

characteristics or evaluation metric attributes, which would detail the extent to which the IA 

patterns fully fulfill their supported models associated to I4.0. 

Pub. IV and Pub. V uses the VDI/VDE 2653-4 and IEEE 2660.1 standards (Con5), 

proposing and evaluating the applied IA patterns for the MARIANNE architecture for the xPPU 

demonstrator, as detailed in Section 3.5 (Con5). MARIANNE incorporates IA patterns based on 

these standards and focuses on the relationships with I4.0 concepts such as RAMI4.0/AAS, and 

the PPR model (Req4). Pub. IV suggests that further analysis should be done to execute these 

existing models for I4.0, considering various aspects such as function hierarchy levels and 
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information classes. Above all presented findings, the enlargement of agent-based CPPS based 

on design pattern and its covered challenges is summarized in Fig. 13 (related to the challenges 

in Fig. 2), that is considered the main contribution of this thesis.  

 

Figure 13: Challenges and gaps of Industrial Agents – related thesis’ contribution (selected RQs from Fig. 2). 

Publications refer to: Pub. I (Cruz S. & Rojas A., 2013); Pub. II (Cruz S. et al., 2018); Pub. III (Cruz S. et al., 2019); Pub.IV 

(Cruz S. & Vogel-Heuser, 2022a); Pub.V (Cruz S. & Vogel-Heuser, 2022b); Pub. VI (Vogel-Heuser et al., 2018); Pub. VII 

(Lüder et al., 2018); Pub. VIII (Ryashentseva et al., 2018); Pub. IX (Vogel-Heuser et al., 2020); Pub. X (Haben et al., 2021); Pub. 

XI (Seitz et al., 2021); and Pub. XII (VDI/VDE, 2021). Source: Adapted from the presentation of the Workshop “Agents in agile 

manufacturing (CPPS) - Status of Last Meeting”, AIS-TUM, 2019. 

   

5.3 Conclusion and outlook 

The advancement of IA patterns within CPPS raises at a fundamental connection, ready for 

significant evolution in the context of I4.0. The demonstrable success of MAS in addressing 

complex integration, reusability, and scalability challenges, as evidenced by this thesis 

contribution, sets a solid foundation for future innovations in agent-based CPPS. The practical 

applications showcased through I4.0 demonstrators highlight the adaptability of MAS patterns, 

promising a future where CPPS are increasingly dynamic, interoperable, and efficient. The 

alignment of MARIANNE architecture with I4.0 standards, particularly through the integration 

with RAMI4.0 and the AAS, underscores a strategic direction towards enhanced DT capabilities 

and system interoperability. This alignment not only facilitates a seamless integration of MAS 

within existing CPPS models and standards but also drives the development of intelligent, 
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autonomous systems that can effectively respond to the complex demands of modern 

manufacturing environments. Looking ahead, the standardization of IA patterns and the 

incorporation of advanced IAs, such as Agent4.0, within the MAS architecture signal a move 

towards more predictive, self-optimizing CPPS. This evolution will likely emphasize the need 

for MAS frameworks that are not only adaptable to various industrial domains but also capable 

of anticipating and reacting to changes in real-time, thereby enhancing the resilience and 

efficiency of manufacturing processes. Furthermore, the challenges of implementing sub-agent 

patterns and AASs in hybrid CPPS platforms will drive innovations in MAS design, focusing on 

the integration of complex IA capabilities and skills. A well-discussed and comprehensive 

VDI/VDE guideline for effectively deploying IA patterns is crucial in probing agent-based CPPS 

challenges and ensuring CPPSs can leverage the total target of I4.0. Thus, the issues and RQs 

stated in the introduction have been successfully answered, and the IA patterns with the proposed 

MARIANNE architecture address the research gap by fulfilling most requirements. 

As a future work, creating and standardizing KPIs specific to agent-based CPPS will enable 

MAS developers to measure system performance against industry benchmarks, facilitating a 

more objective assessment of their operational efficacy, scalability, and resilience. As well as the 

standardized IA patterns, these KPIs must be normalized, including metrics related to system 

adaptability, integration success rates, efficiency gains, and the effectiveness of predictive and 

autonomous functionalities within CPPS. By quantifying these aspects, MAS developers can 

better estimate the return on investment of implementing IA patterns and justify further 

innovation and adoption in the industry domain. 

In conclusion, the future of MAS patterns within CPPS for I4.0 looks promising, with a clear 

trajectory toward more intelligent, flexible, and interconnected aPS. The ongoing research and 

development efforts, as highlighted through the contributions discussed, will indeed play a 

critical role in shaping the next generation of CPPS, ultimately contributing to the realization of 

the smart factory vision. 
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Abstract— Cyber-Physical Systems (CPS) could be the most 

modern electronic development as yet, thanks to the integration 

of information and communication technology (ICT). CPS has 

associated with computer systems (cyber part) which are closely 

related to the real-world processes (physical part). A CPS is 

supported by the newest and foreseeable further advances of 

computer science, data and communication equipment on the one 

hand, and of manufacturing science and tools, on the other. On 

the contrary, within the multiple applications, there are CPS for 

manufacturing systems, called CPPS (Cyber-Physical Production 

Systems). The fourth industrial revolution regularly 

distinguished as I4.0 is based on CPPS. Considerable numbers of 

authors agree that paradigms agent-based as Multi-Agent 

Systems (MAS) converge or they make up some parts to apply 

CPPS. In general, this paper emphasizes that there are different 

important approaches in CPPS implementation which point 

near, in particular to MAS. The objective of this article is to 

provide general and specific concepts associated CPPS 

implementation through agents, considering the current 

multiples approaches and methods. A key result is that Agent-

Oriented Software Engineering (AOSE) methodologies have been 

a highlight to comparisons leading benefits to apply in CPPS. 

Keywords— Agent Oriented Software Engineering (AOSE), 

Cyber-Physical Production Systems (CPPS), Multiagent Systems, 

Industrial Automation, Industry 4.0. 

I.  INTRODUCTION 

The flexibility and re-configurability along with the 
robustness and operational efficiency of manufacturing systems 
can be substantially improved by applying new and advanced 
information and communications technology (ICT). Recent 
trends in IT are regularly associated with of the Internet of 
Things (IoT). High impact academic institutions, industries, 
and governments all over the world develop plans and 
strategies for their long-term evolution around those terms [1]. 

Under this agreement, Industry, 4.0 (I4.0) was initialized in 
Germany and extended to Europe, aiming at the expansion of 
the fourth industrial revolution. Leading prospect of I4.0 and 
other related concepts are mass customization and flexibility of 
production systems, based on Cyber-Physical Systems (CPS).  

Substantial changes are required in the manufacturing 
systems for I4.0, which should include the new technologies 
such as reconfigurable machines and more intelligent robots 
which are principally different in appearance and 
functionalities; nevertheless, they follow a similar pattern 
among them in their communication and interaction behavior.  

Based on [2], the evolution of systems could include the 
industrial type of IoT or IIoT/I2oT, as shown by from Fig. 1. 
First, the demand to develop specific tasks and real-time 
computing creates the Embedded Systems. Second, systems, 
products, services are generated and evolved through the 
application of interconnected networks and systems, or 
communication from Machine to Machine (M2M). 

 

Fig. 1. Evolution from Embedded Systems to the IIoT [2]. 

Different approaches can be modified or adapted to develop 
CPS, in particular for the consideration of industrial automation 
systems for manufacturing or CPPS (Cyber-Physical 
Production Systems). The main contribution of this paper is to 
classify existing agent-based approaches as a technological 
basis to realize CPPS and to identify benefits of Agent 
Oriented Software Engineering (AOSE) as a useful strategy for 
CPPS development.  

Therefore, first, this paper shows related applications of 
currently CPPS projects and their approaches (Section II). 
Second, the next section explains ten requirements relevant for 
the apply Multi-Agent Systems (MAS) for CPPS (Section III). 
Compendium and comparison of primary MAS methodologies 
are given in the last section (Section IV). The paper is 
concluded with a summary and outlook of future work. 

II. IMPACT OF CYBER-PHYSICAL PRODUCTION SYSTEM IN 

INDUSTRIAL AUTOMATION 

Nowadays, a significant amount of manufacturing 
information is already generated. There is a great need for a 
new generation of systems to design and realize more than 
networking, ICT, and knowledge being integrated into physical 
things [3]. Hence, with the recent advent of Information 
Technology (IT), it is possible to apply computers to store data, 
analyze statistics, recover records, transmit signals, and 
manipulate general information for the production 
environment. IT evolution generated the Cyber-Physical 
Systems terminology. 



 

CPS concept consists of a virtual part (software) and a real 
part (hardware). CPS have a trend towards more flexible 
cooperative distributed systems, and they will introduce new 
communication concepts [4]. The primary benefit of the CPS in 
automation is smooth integration of software components at 
runtime so that its operability, especially productivity for 
manufacturing is not hindered as much as possible. 

Thanks for primary integration benefit, there are a lot of 
applications for CPS such as autonomous cars, robotic surgery, 
smart buildings, smart grid, medical implant devices and smart 
manufacturing and they are just some of the examples since 
they are in permanent extension [2]. 

CPS for manufacturing systems has also generated Cyber-
Physical Production Systems concept. CPPS are intended to 
develop the necessary contributions to obtain the Smart 
Factory [1]. CPPS could be done more practical thanks to the 
advance of newly available devices for the future of 
automation through IIoT [5]. A reported landscape of works 
with CPPS and their proposals are enlisted through Table I. 

TABLE I.  SELECTED CPPS PROJECTS PROPOSALS 

Project Proposal 
myJoghurt 

[1], [6] 
Implementing examples for CPPS through prototypical MAS-based evaluating and 
using the production scenario from different German chairs 

IDAPS [7] Perceiving as a microgrid is intelligent, having a built-in multi-agent functionality in 
the context of Intelligent Distributed Autonomous Power Systems 

ENIAC JU 
E2SG [7] 

Developing methods for detecting and controlling energy flows in the grid with 
information transmitted over the grid itself 

Socrades [7], 
[8] 

Exploring application of service orientation and web services using formalisms for 
modeling, analysis, and execution for next generation of industrial automation 

GRID4EU & 
SGAM [7]  

Testing innovative concepts and technologies in real-size environments, to 
highlight and help remove barriers to the deployment of Smart Grids in Europe 

IMC-AESOP 
[7], [8] 

Proposing a Service-Oriented Architecture (SOA) for very large-scale distributed 
systems in batch and process control applications 

Grace [9] Developing a modular, intelligent, and distributed control system that integrates 
process and quality control using the MAS principles 

IDEAS [7], 
[10] 

Enabling fast deployment of mechatronic modules based on eEAS paradigm, 
advocating the use of process-oriented and associating interacting agents 

Pabadis 
Promise [7] 

Distributing manufacturing execution systems and bringing flexibility features to 
the control systems using software agents and plug-and participate technology 

iSiKon [1] Increasing ding flexibility in heterogeneous material flow systems based on 
intelligent software in self-configuring modules 

SmartFactoryKL 

[11] 
Working on new concepts, standards, and solutions to form the basis for highly 
flexible automation technology and manufacturer-independent Industrie 4.0 plant 

HySociaTea 
[12] 

Establishing the basis for production environment of the future with a team of 
humans closely collaborating with robots and virtual agents 

It's OWL [13] Focusing is in the fields of self-optimization, human-machine interaction, 
intelligent networking, energy efficiency and systems engineering 

uPlant [14] Testing facility for methods from the areas of monitoring, modeling, control and 
optimization of modern and future automation technologies 

PhyNetLab 
[15] 

Developing of ultra-low power WSN for decentralized control of materials 
handling facility 

Selected projects from Table I are several large-scale R&D 
initiatives, which were conducted over the years to research the 
use of CPS in industrial applications. These projects have 
demonstrated crucial challenges, such as safety, security, and 
interoperability and have become a reality especially 
manufacturing systems [7]. Furthermore, these projects have 
also been covered by industrial partners as well as academic 
experts. Therefore, the parallel development of academic and 
industrial approach has been possible. 

There are many different definitions for CPPS. One in [4] 
says, “Cyber-Physical Production Systems (CPPS) are Cyber-
Physical Systems as applied in the domain of 
manufacturing/production, in Germany the term Industrie 4.0 
is used”. Other authors in [16] mentioned that “Cyber-physical 
systems (CPS) are systems of collaborating computational 
entities which are in intensive connection with the surrounding 

physical world and its on-going processes, providing and using, 
at the same time, data-accessing and data-processing services 
available on the Internet.”  

A preview summary could be that CPPS as the previous 
generation for Intelligent Manufacturing Systems (IMS) and 
future automation [2], [5]. Thus recent works show that the 
most significant contributions of CPPS are the following [1], 
[6], [7], [16]–[18]: 

 Vertical and horizontal integration through value and smart 

networks. 

 Manufacturing devices are intelligent to acquiring 

information from their environs and act autonomously 

(smartness). 

 Cooperation and collaboration will be some inherited skills 

to use connections to the other system actors (including 

human beings). 

 Reaction properties towards internal and external changes 

or failures (robustness). 

 Optimal decision making for energy and resource 

efficiency. 

Along last decade, in the selected projects from Table I, 
classified in Table II, they have been developed CPPS 
demonstrators, Smart manufacturing approaches, Electric Grid 
applications or Architectures installed in industrial 
environments. The Table II also categorizes these selected 
CPPS projects agreeing to ISA 95 standard levels. As surveyed 
in [17], the ISA 95 levels could be classified according to 
Device Level (L1); Supervisory Control And Data Acquisition 
or SCADA Level (L2); Manufacturing Operations 
Management or MOM Level (L4); and the Enterprise or ERP 
Level (L4). 

TABLE II.  CATEGORIZATION OF SELECTED CPPS PROJECTS 

 

III. APPROACHES REVIEW FOR CPPS 

After the first classification of existing CPPS projects, in 

the previous section, manufacturing concepts, CPPS 

approaches, and its general characteristics are discussed in this 

chapter. 



 

A.  Concepts of Architecture, Methodology, and Standard in 

Manufacturing Approaches  

For this paper, an approach is defined as a set of 
architectures, methodologies and/or standards that follow a 
common scheme. In the case of architectures, they are 
considered only as structures of static modeling systems. Most 
of these are frameworks patented by their authors and often do 
not have the procedural information to carry out their 
implementation (methodology). A methodology determines a 
series of steps to be taken to improve productivity in 
development and quality systems (generally for engineering 
software). It also indicates how it will perform the process in a 
systematic, predictable and repeatable way. Both an 
architecture and the methodology can be endorsed by 
international institutions which generate standards. Depending 
on the nature of the organization, a standard in manufacturing 
may be a private or open type. 

In the ideal case, architecture can be promoted by its 
methodology to carry out its implementation, and they both can 
be standardized. However, in the reviewed authors' academic 
literature (e.g. [7], [10], [17]), architectures, methodologies, 
and standards are mutually exclusive characteristics. In fact, 
not all architectures, nor methodologies in manufacturing 
systems are supported by international standards. 

In summary, a manufacturing approach is a collection of 
architectures, methodologies, or standards that are part of a 
similar paradigm but do not maintain the same structural, 
dynamic, and procedural properties. 

B. Manufacturing Approaches  for CPPS 

This section will give an overview of traditional 

manufacturing approaches and their particularly comprised 

points. After that, agents based schemes will be introduced 

with their characteristics. 

1) Traditional Hierarchical Approach 

Most of the traditional manufacturing systems belong to 
this classification. These are implemented using centralized 
and staggered control techniques, and present good responses 
regarding outputs due to their optimization capability. Such 
methods typically follow a rigid multilevel structure, which 
prevents them from reacting agilely to possible variations. 

Hierarchical architectures are similar to that pyramid 
Computer Integrated Manufacturing (CIM). In this, the 
different levels cannot take the initiative; therefore, the system 
is vulnerable to disturbances and autonomy, and its reactions to 
disturbances are weak. This rigidity increases the costs of its 
development produces a system problematic to maintain [5].  

A significant example is a norm applied to batch processes, 
called ISA-88, which corresponds to hierarchical schemes due 
to its centralized nature. This standard does not present a 
solution to the automation system, but it refers to an ordered 
method for thinking, working and communicating. It has a 
hierarchy characteristic between control levels of devices and 
equipment. It also contains models and terminology that allow 
analyzing the organization. 

2) Heterarchical Approach based on Multiagent System 

Heterarchical manufacturing techniques introduce a proper 

response to the requirements of flexibility and agility. These 

designs provide an excellent performance against changes and 

can be continuously adapted to their environment. Systems are 

fragmentations of small and completely autonomous units. 

The independent components, called agents, are the main 

part of this architecture, and they obtain cooperation skill 

through negotiation protocols structures. Multi-agent system 

(MAS) approach prohibits all types of hierarchy to give all the 

power to the necessary modules. By eliminating hierarchical 

relationships in the system, the modules cooperate as equals, 

generating a flat architecture rather than assigning 

subordination and supervisory relationships. 

Gaia is a particular example tailored to the analysis and 

design of MAS [8]. Gaia is a general methodology that 

supports both levels of the individual agent structure and the 

agent society in the MAS development process [9]. In this 

methodology, MAS looks like a system constituted of a 

conglomeration of autonomous interactive agents that exist in 

an organized society in which each agent plays one or more 

specific roles. Gaia structures MAS regarding a role model, 

based on the roles that agents have to play within the 

heterarchy and the interacting protocols between such 

different characters. Functions include the following 

attributes: responsibilities, permissions, activities, and 

protocols. 

3) Hybrid Approach Based on Hybrid Systems 

Another main approach similar to MAS is a holonic (or 
holon based) manufacturing system (HMS) by P. Leitão, H. 
Van Brussel, and P. Valckenaers [8], which consists of 
autonomous, intelligent, flexible, distributed, co-operative 
holons. Multiagent systems (MAS) and holonic MAS (HMAS) 
may comprise complex systems. Getting started with such 
hybrid architectures can be challenging to implement CPS. 

The design enables the product cases to drive their 

production; consequently, coordination through holons can be 

completely decentralized. In contrast to many decentralized 

setups, the manufacturing based on holarchies (levels of 

holons) predicts future behaviors and proactively uses actions 

to prevent impending difficulties from occurring.  

Hence, one of the most hopeful features of HMS is that 

they symbolize a transition between fully hierarchical and 

heterarchical systems. Review literature of HMS indicates that 

the ADACOR (ADAptive holonic COntrol aRchitecture for 

distributed manufacturing systems) is one of the most 

remarkable for HMSs. ADACOR architecture identifies four 

types of basic holons: Product holon (PH), Task holon (TH), 

Operational holon (OH), and Supervisor holon (SH) [8]. It is a 

holonic design that offers an adaptive manufacturing control 

approach scales from a stationary state to a transient state, in 

typical and unexpected conditions, respectively, combining 

the benefits of hierarchical and heterarchical control structures 

applying some adaptive elements. 



 

Finally, a classification of the approaches is provided, to 
identify levels of ISA 95 (y-axis Fig. 2) and on the Z-axis real 
time requirements for important works in CPPS. Also, Fig. 2 
shows the classification into hierarchical, heterarchical and 

hybrid on the x-axis and arranges a selected Architectures, 
Methodologies, and Standards, which could be applied in the 
development of CPPS according to the proposed classification. 

 
Fig.2. Classification of agent-oriented architectures, methodologies, and standards for CPPS approaches 

IV. REQUIREMENTS FOR CPPS 

Main requirements need to be satisfied before obtaining the 

vision of integration and convergence of the IIoT, and in this 

way, all its benefits can be achieved [4], [6]. In particular, it is 

important to consider that even in highly developed countries 

there are asymmetries on the degree of digitalization of 

manufacturing, and even within the same organization, there 

are areas which have been highlighted on automation from 

others [7]. To overcome these challenges and to homogenize a 

comparison, in this section, requirements for future 

manufacturing architectures and CPPS necessities are derived. 

A. CPPS Minimal Conditions (Requirement 1) 

Some studies have been conducted to investigate the 

conditions to discover the necessary technical characteristics 

for CPPS, realizing a CPS architecture that could couple 

various industrial production facilities [6]. Consequently, 

several fundamental properties of a CPPS were recognized 

that could be summarized into four main groups of following 

elements: 

1) Independence architecture model (R1.1) 

Modules could be simple to integrate with open 

architecture and platform independent implementation. From 

the numerous varieties of automation system items that need 

to be able to play in CPPS, network requirements concerning 

the computing devices for which a necessary examination 

arises. For example, Programmable Logic Controllers (PLC) 

are frequently used in industry. Thus, these devices need to be 

considered as one platform type to integrate into the agent-

based CPPS. Nevertheless, independence of architecture 

means that CPPS is not limited to this class of devices.  

However, expanding the different platform should always be 

possible to maintain data transfer for more multiple kinds of 

applications. 

2) Open communication protocol for IIoT (R1.2) 

This requirement is related to standardization and is 

pointed out by the industry as a major distinctive for the 

manufacturing acceptance of any technology (open 

architecture). There could be easy and quick abilities to switch 

between open protocols for IIoT (e.g. OPC-UA).  Due to the 

importance of the communication in this ubiquitous 

networking era, many kinds of components, layers, and 

protocols are required to have OPC-UA standard features in a 

manufacturing control systems. 

3) Levels of automation are enabled from ISA 95(R1.3)  

All levels of automation are allowed (ISA 95) depending 

on the scenario in which the CPPS is applied. Various parts of 

a manufacturing system may have to be connected to the 

network. It means, in a simple automation system, only overall 

production equipment, and their respective information 

element systems need to be linked to the CPPS network. Then, 

to be applicable in several different scenarios, a CPPS should 

not be limited to a particular hierarchy level of a 

manufacturing system. For this, the connection of random 

system components should be feasible independently of their 

locations in a plant hierarchy or global context of ISA level. 

4) Easy to adapt the system to future products (R1.4) 

It will be necessary to have easy adaptation the system to 

future products (Smart products). According to that 

information and the knowledge regarding their techniques, the 



 

production facilities can reason about circumstances for 

executing the processes and, based on results, return the 

product with either an offer or rejection. 

Behind a pure syntactical correspondence of the received 

operation report and the models that describe production 

capabilities, the application of semantic technologies enables a 

semantic checking and hence enhanced possibilities of uniting 

the different entities of a CPPS. The communication necessary 

for switching the request, offers or refusals, is realized by 

information that is either published by global data inside of the 

CPPS or sent directly to the other entities of the system in a 

Machine to Machine (M2M) communication manner. 

B. Intelligent Characteristics Attributes (Requirement 2) 

1) Autonomy (R2.1) 

Autonomy could be achieved by deducing behaviors of the 

CPPS on agents from its experience, and processes. Agent-

based approaches support the success, called Plug and Work 

production systems, where various elements are joined to a 

complete production system without hand-operated 

configuration efforts. The primary goal of these developments 

is the creation of a basically soft agent platform that presents 

guidelines and facilitates a fast, platform-neutral 

implementation of the agent technology.   

2) Communication and ontology (R2.2) 

Communication is necessary to speak same languages and 

common agent ontology. In general cases, agents may 

communicate to achieve goals or due to selected event. 

Considerations of inter-agent communication include which 

protocol to use, how to define a domain –in terms an agent 

from another field can understand– and how competent could 

be the communication technique. 

3) Cooperation (R2.3) 

Cooperation is crucial to enable developing mutually 

acceptable goals. Cooperative skills for CPPS offer necessary 

elements and subsystems to connect an intelligent network.  

CPPS networks will be based on the context within and across 

all levels of production, from processes through machines up 

to ERP systems.  

Manufacturing control systems require autonomous entities 

to be classified in hierarchical and heterarchical structures for 

cooperation. Cooperation requirement is related to the kind of 

behavior that the control unit at factory level should exhibit. 

Manufacturing control based agent are regularly handling a 

high number of duplicated events, which are known but 

random. This flow of events should be processed in an 

efficient manner with temporal constraints and agent 

collaboration. 

The administration of the agent events can consequently be 

determined apriori by routines, while the beginning and 

execution of these routines should be performed in a real-time 

collaboration technique. The size of the event set and their 

activity patterns increase over time. 

4) Pro-activity (R2.4) 

The agent is capable of achieving his assigned goal. It 

means that MAS must have skills to take the initiative not 

solely motivated by events, also adapt itself generating 

"rational" actions to succeed goals. This suggests some degree 

of Pro-activeness (e.g. it tracks its’ own agenda). For CPPS 

researchers, this is a defining attribute of an agent. 

C. Formalized Modeling Terms (Requirement 3) 

Innovative approaches to abstractions (formalisms) and 

architectures are necessary to enable control, communication 

and computing integration. CPPS implementation implies the 

rapid design and to be developed. They should admit the 

combination and interoperability of heterogeneous systems 

that formed the CPSs in a modular, practical and hardy 

manner. 

1) Using standard language (R3.1) 

The models for CPPS require internationals standards 

which are the base for the expansion of standard lines between 

SCADA, MES and ERP levels systems. Formalism such as the 

Unified Modeling Language (UML) helps to structure and 

comprehend information from manufacturing architectures 

through understandable models. 

Other modeling languages have been proposed to model a 

CPS in [18], called Systems Modeling Language (SysML). 

SysML has been established in automation systems based on 

UML to support Model-Based Systems Engineering (MBSE). 

A related semantic is Automation Markup Language 

(AutomationML), and it is one of the imminent upcoming 

open standard series (IEC 62714) for the description of 

production plants and their components.  For Plug and Work 

concept, AutomationML defines the contents, which is 

exchanged between the parties and systems complex.  

It requirement helps to model plants and plant components 

with their skills, topology, interfaces, and relations to others, 

geometry, dynamics and even logic and behavior. 

2) Level of abstraction for overview (R3.2)   

There could be a different degree of abstraction for 

applying the model in CPPS. The conventional approaches 

and methods for manufacturing system modeling, such as 

CIM, are mainly based on a top-down scheme. The user’s 

requirements and the general conceptual design constitute the 

whole set of modeling limitations. With these approaches, 

very rigid hierarchical architectures are built.  

Other non-traditional designs were differentiated as being 

bottom-up structure. Nonetheless, in line with the order of the 

complexity of the distributed system made up by a network of 

smart entities, IMS modeling requires several development 

methods. It includes bottom-up and top-down integration, 

depending on the level being formed. It is not mandatory to 

define the whole set of constraints at the origin. A mixed 

construction process allows the generation of reconfigurable 

and scalable structures. 



 

3) IDE coverage and complexity (R3.3) 

The model must provide details to facilitate the 

implementation in Integrated Development Environment 

(IDE) and platforms. In traditional automation systems, there 

are only a few languages including the languages defined in 

IEC 61131-3. These languages were developed for IDE with a 

focus on automation systems. Depending on a proper runtime, 

tools could be often programmed in C or assembly language. 

With the increase of mobile devices, such as smartphones or 

tablet PCs playing an important part in CPPS, the range of 

different languages and platforms gets even wider. Every 

platform uses its runtime, and again even the various 

programming languages. 

For example, instance applications for Android 

applications use a Java framework; hence, they have to be 

written in Java language. Another example is Firefox OS, 

which is in progress and it uses JavaScript language in 

combination with Hyper Text Markup Language (HTML) for 

mobile applications. could be required to find devices with 

this IDE to apply CPPS there soon. 

D. Systems and Human Integration Needs (Requirement 4)  

1) Open systems to different systems domain (R4.1) 

It is open to different kind of systems area (e.g. energy, 

manufacturing, or process). Due to the broad diversity of 

industrial process systems, the development custom or tailored 

solutions has to be reduced. On the contrary, an architecture 

for agent-based CPPS should apply to a variety of situations, 

i.e. different kind of products and processes. For this reason, 

the MAS architecture, protocols, and messages for CPPS 

should be independent of a particular application. 

2) Hybrid topologies (R4.2) 

It is necessary to include hybrid topologies to enlarge and 

downsize the production system because many different 

architectures can be present in a CPS. It means that various 

manufacturers may integrate several designs. A specialized 

engineering or development tool is established for every 

element in a CPS. The developers are used to their respective 

devices and have their skill in its approach. It should be 

possible to continue developing in the similar languages. 

Because of this, devices with different runtime systems have 

to be mixed into a CPS. 

3) Social norms considering human factors (R4.3) 

CPPS must provide social norms to execute MAS 

considering human factors. Also, if all data and information 

available concerning a CPPS and its products, production 

facilities, and architecture is modeled and semantically 

represented, the preparation of this knowledge for human 

personnel or customers remains an essential issue. It must 

include concepts that support the engineering of CPPS and 

their system entities (e.g. intelligent products and production 

facilities) as well as mechanisms to preprocess the relevant 

process data during production for human operators, support 

personnel and even for the customers of the produced goods. 

This information will provide opportunities for individual 

arrangements (e.g. age or user level distinguished visualization 

and interaction mechanisms) as well as integrations with 

regularly used especially mobile devices and humans [6]. 

V. AOSE STRENGTHS TO IMPLEMENT CPPS 

MAS or Agent-based approaches signify a natural method 

of realizing CPPS [6]–[8], [17]. The important concept of 

MAS is Agent Oriented Software Engineering, and there are 

several AOSE methodologies, which are at least ten years old 

[5]. Indeed, the decision of an AOSE methodology depends on 

the MAS demands, in this case, CPPS requirements expressed 

in section III. 

Considering requirements from part III, this article will 

now examine the different methodologies of reported in the 

dedicated literature of AOSE. The goal of this revision is to 

determine to what extend these procedures into account the 

requirements for implementing CPPS. Firstly, this section 

presents a brief summary of the various methods (more details 

can be found in [8], [9]). Finally, this chapter will make a 

comparison discussion based on the requirements it has cited 

in Chapter III. 

A. Main Agent Oriented Software Engineering  (AOSE) 

Previously selected ones of AOSE for the CPS event-

driven multi-agent model, a comparison should be performed 

based on the following evaluation criteria, grouped into four 

main categories: CPPS Minimal Conditions, Intelligent 

Characteristics Attributes, Systems and Human Integration 

Needs. Table III presents the comparison between AOSE 

approaches that could be used in a real CPPS implementation. 

Table III.   MAIN AOSE STRENGTHS ORDERING 



 

B. Discussion 

The analysis of Table III allows extracting some important 

conclusions related to the adoption of AOSE to develop CPPS. 

In the CPPS Minimal Attributes (R1), the area of interest 

covered by the Independence architecture model requirement 

(R1.1) is entirely covered. However, on the same item, there is 

a little coverage of the ISA 95 Levels for vertical integration 

automation (R1.3). It means that AOSE methodologies must 

help to increment integration of separate system components 

regardless of their location in a plant hierarchy (or global 

context of ISA level). 

The second general distinctive is that Intelligent 

Characteristics requirement (R2) has coverage satisfactorily. 

However, Pro-activity requirement (R2.4) is not available for 

many AOSE yet. It is necessary to consider improving AOSE 

technologies to have skills with more initiatives achieving 

their assigned goal. 

In the same line, there is good coverage in the Formalized 

Modeling Terms requirement (R3) for AOSE methodologies. 

Conversely, there is low Level of Abstraction for an Overview 

element (R3.2); then, AOSE requires a different development 

formal method, bottom-up and top-down depending on the 

degree being formed. 

Another observation is that Systems and Human 

Integration Needs (R4) are the least covered because main 

parts of this specification are not included yet. In fact, both 

Hybrid Topologies (R4.2) and the Social Norms Considering 

Human Factors needs (R4.3) are weak in the selected AOSE 

methodologies. That can be given by the complexity of human 

behavior and its corresponding integration into the 

manufacturing system in a predictable way. 

At last, an essential issue when reviewing the selected 

AOSE methodologies for CPPS is that the majority group 

show at least 50% coverage of the requirements (R1-R4), on 

average. Nevertheless, there are some requirements (R1.3, 

R3.2, and R4.3) that need urgent attention since they are not 

considered by most of the AOSE methodologies. 

In summary, it is important to note from Table III that we 

can conclude the adoption of AOSE to apply CPPS combined 

with other approaches with different architectures, 

methodologies, and international standards could improve all 

the coverage of requirements from section III. 

VI. CONCLUSION AND ROADMAP 

The comparison reported in this paper analyzes the 

combined strength of approaches for implementing CPS in 

manufacturing. As contained in the context, a CPPS could be 

considered as a system of multiple agents with a precise 

technique called MAS or hybrid HMAS. CPPS would have 

better flexibility, adaptability, and proactivity due to agent-

based negotiation and holarchies. In the MAS approach, 

essential issues to be applied on CPPS are AOSE 

methodologies. Future work could address the main AOSE 

benefits and problems for CPPS and extend this to evaluate 

results through metrics. Metrics are crucial to obtain benefits 

with clearness and to compare offers from different CPPS 

providers. For example, flexibility is one of the upper goals of 

CPPS, and it will require metrics to estimate reliable results. 
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1. INTRODUCTION 

Individually made products help companies to set themselves 

apart from competitors and satisfy customers' need for 

individuality. Consequently, small lot sizes and 

customization are current trends in production. Both trends 

demand high flexibility and adaptability of production 

systems. The coupling of different locally distributed 

production systems enables, e.g., scenarios for collaborative 

manufacturing of customized products and exploration of 

new possible processes, which emerge from the 

collaboration. The connection of multiple plants' sensors can, 

e.g., provide opportunities for a cross production system 

diagnosis, i.e., the identification under which conditions a 

certain type of sensor is most likely to exhibit failures. One 

approach to dynamically connect different systems in order to 

realize different use cases is the utilization of Service-

Oriented Architectures (SOA)(Jammes and Smit, 2005). In 

SOA, every function of a given system is exposed by the 

system itself as a remotely callable service. The application 

of software agents and Multi-Agent Systems (MAS) (Leitão, 

Marik and Vrba, 2012) is another solution for a network of 

dynamically connected remote systems. MAS can increase 

flexibility and fault tolerance while retaining simplicity and a 

higher degree of autonomy for the participating entities. 

This paper proposes a generic MAS platform, whose agents 

can be deployed on a great variety of different computational 

devices, in order to fulfil different use cases inside a network 

of locally distributed production facilities. The architecture of 

this platform is derived from the already existing standard of 

the Foundation for Physical Agents (FIPA) for MAS. In 

contrast to other platforms like the Java Agent DEvelopment 

Environment (JADE) (Bellifemine, Poggi and Rimassa, 

2001), the proposed platform is intended to be lightweight 

and able to connect different heterogeneous production 

systems as well as their components, e.g., small sensors, in 

order to realize a network of Cyber-Physical Production 

System (CPPS) for arbitrary use cases. CPPS constitute a 

specialization of the concept of Cyber-Physical Systems 

(CPS), which are often defined as “integrations of 

computation with physical processes” (Lee, 2008). Inside a 

CPPS network, cyber representations (C), e.g., agents, of 

controlled physical entities or systems (P), e.g., a plants or 

sensors, in a production environment (P) connect to other 

related entities to form a bigger system (S) and realize 

different industrial related use cases. 

The distributed intelligence and decision finding inside MAS 

renders the management of uncertainties and dynamics inside 

a CPPS network, as the complexity of a central node would 

be exceedingly high otherwise. Another challenge is to 

support the implementation on devices with merely limited 

computing resources. This requires a suitable and flexible 

architecture for software agents as well as resource-friendly 

communication protocols and messages. The approach 

recognizes five requirements for the realization of a CPPS 

(sec. 2). Based on these requirements, the paper proposes an 

approach separated into a concept for a logical architecture, a 

concept for the software architecture, and a concept for 

protocols and messages (sec. 4). These three concepts already 

partially satisfy a subset of the imposed requirements by 

design. The fulfilment of the other requirements is evaluated 

using an operating agent-based CPPS network (sec. 5). The 

paper concludes with a summary and an outlook. 

2. REQUIREMENTS OF AN AGENT-BASED CPPS 

This section derives the requirements for an agent-based 

network of locally distributed CPPS before related work is 

analysed regarding these requirements in sec. 3.  
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(R1) Application independence: Due to the broad variety of 

industrial production process classes, the development of 

multiple custom-tailored solutions has to be considered not 

feasible. To the contrary, an architecture for agent-based 

CPPS networks should be applicable for a variety of 

scenarios, i.e., different production processes. Consequently, 

the basic MAS architecture, protocols and messages, should 

be independent of a specific application. 

(R2) Level independence: Depending on the scenario, in 

which the CPPS network is applied, different parts of an 

automated production system may have to be connected to 

the network. For example, in a simple production scenario 

only overall production facilities and their respective 

automation / IT systems need to be connected to the CPPS 

network. However, for a diagnosis scenario, that considers 

multiple plants inside a CPPS network, also field-level 

devices may be relevant. Consequently, an agent-based CPPS 

should not be limited to a specific hierarchy level of a 

production automation system. 

(R3) Platform independent implementation: From the great 

variety of automation systems' components, that need to be 

able to participate inside a CPPS network (cp. R2), 

restrictions and requirements regarding the computing 

devices arise. For the automation of overall production plants 

Programmable Logic Controllers (PLC) are predominantly 

used in industry. Consequently, these platforms need to be 

considered as one important device type. However, due to the 

required level-independence of the approach (cp. R2), it must 

not be limited to this class of devices. Especially for small 

sensors often cost efficient and not very powerful hardware is 

used, in order to reduce the overall cost of the components. 

Consequently, basic software and data for the MAS need to 

be small and lightweight, i.e., resource-friendly concerning 

permanent and non-permanent memory, CPU, and 

bandwidth. 

(R4) Robustness against errors: Typical problems found in 

large networks include connection loss, unsteady bandwidth, 

and load problems. During runtime, unforeseen problems and 

changes may occur, e.g., failure of machinery, new urgent 

tasks or maintenance. These may lead to unavailability of the 

corresponding system. The local problem may also affect the 

whole network, e.g., by delaying production. Thus, intelligent 

software and intelligent communication, e.g., broadcast as 

well as point-to-point messages with dynamic routing, should 

be used. In some cases, e.g., permanent unavailability of 

production systems or connected components, the CPPS has 

to reconfigure itself to ensure overall availability and 

continuation of the production. The same holds true for 

orderly joining and leaving systems at runtime. In all cases, 

the MAS must react to these dynamic conditions in an 

appropriate way, i.e., it must be robust against (unforeseen) 

reconfiguration requests, especially against reconfiguration of 

the network, i.e., participants joining and leaving. 

(R5) Decentralization: Not only the CPPS as a whole, but 

also subsets have to deal with temporary network connection 

loss. This means, the CPPS may split in smaller parts for a 

limited amount of time prior to re-connection. During this 

time, participating remote systems and system components 

must not be incapable of action. Thus, a central management 

node with all required knowledge as well as implemented a 

priori calculations is not suitable. Instead, critical information 

should be distributed between multiple nodes, so that access 

is ensured as far as possible and decisions can be made 

dynamically. 

3. RELATED WORKS 

To persist in today's global markets, information must flow 

between all layers of a company and even between 

collaborating companies. This requires new approaches to 

communication and production. Some work is done at 

comparing the HTTP protocol to Modbus (Jestratjew and 

Kwiecien, 2013) at PLC level. HTTP is considerable lower, 

mainly due to slow string processing on PLCs. A common 

way to access the factory floor is using gateways. In (Sauter 

and Lobashov, 2011) an overview of suitable high-level 

protocols to access automation data via gateways is 

presented. One possible implication is a reconfigurable 

sensor interface (Tao et al., 2014). This work also presents 

new design method, but only focuses on the perception layer 

of the IoT architecture (R2). A work concerning groups and 

grouping of devices is also described in (Vicaire et al., 2012). 

The work uses a central middleware (R5), programmed in 

JAVA (R3). An approach for agent-based gateway 

implementations is presented in (Faul, Jazdi and Weyrich, 

2016)but not evaluated regarding its resource efficiency and, 

thus, its platform independence (R3). In the context of 

Industry 4.0 recently a number of architectures have been 

presented based on the paradigms SOA (Moghaddam, Silva 

and Nof, 2015), MAS (Alexakos and Kalogeras, 2015; 

Hoffmann, Meisen and Jeschke, 2017), Internet of Things 

(IoT) (Sauer, Hausten and Hofstedt, 2016), or CPS in general 

(Bagheri et al., 2015), which did not investigate a specific 

implementation's resource efficiency in detail (R2, R3). This 

also holds for the works presented in (Quintanilla et al., 

2016), which propose a holonic architecture for CPPS, 

although they evaluate the need for communication (i.e., 

number of messages exchanged) in a simplified production 

scenario. For simulation real-time models, the author in 

(Aksyonov et al., 2015) describes the integration problem on 

a basic class of models further extended by the intelligent 

distributed agents (R5). The main model consists of agent 

resources conversion process with support for MAS 

modelling, in combination with discrete-event modelling and 

the ontology of the system. 

In (Girbea et al., 2014) it is focused on designing a SOA 

additionally capable of real-time operation. This is achieved 

using a priori algorithms and is thus not suitable for 

dynamically changing environments (R4). Other approaches 

use SOA for diagnosis (Calvo et al., 2012) and the concept 

presents a possible architecture and diagnosis algorithms 

without implementation. A different possible implementation 

language for SOA is IEC 61499, e.g., proposed in (Barata, 

Cândido and Feijao, 2008) in combination with a message 

broker. A runtime based on a formal mapping between SOA 

and IEC 61499 is proposed in (Delamer and Lastra, 2006). In 

contrast to other programming languages, IEC 61499 only 

runs on special hardware or with dedicated runtimes (R3). 
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However, this excludes, e.g., small 8-bit micro-controllers. 

An approach to enable reconfiguration is to use a (central) 

middleware to orchestrate a SOA. One such approach is the 

iLand project (Calvo et al., 2012; García-Valls, Rodríguez-

López and Fernández-Villar, 2013). A-priori algorithms are 

used to analyse the system and to calculate possibilities and 

strategies in case of failure and other reconfiguration triggers. 

Nevertheless, a priori calculations cannot be done in global 

networks with unknown behaviour (R4). Additionally, 

reconfiguration and behavioural intelligence is accumulated 

inside a central node running on powerful hardware (R2, R3, 

R5). Other work often utilizes the Holonic Manufacturing 

System (HMS) paradigm and corresponding reference 

architectures like PROSA (Brussel et al., 1998). Although in 

this and other works applying the HMS paradigm, e.g., 

ADACOR (Leitão and Restivo, 2006), central entities do 

exist, the decentralization of the architectures decision 

making can be adjusted by altering the controlling entities' 

autonomy. 

MAS are increasingly investigated in order to decentralize 

automation, enhance flexibility of production plants and 

realize advanced functionality (Brennan, 2007; Leitão, Marik 

and Vrba, 2012). Enabling reconfiguration within a 

production plants is the most common usage for software 

agents and can be used e.g., to handle device failures, 

structural changes or dynamic production planning (Lüder et 

al., 2005). Also agents for the industry have been applied to 

achieve other crucial properties of CPPS such as complexity 

management, intelligence, modularity, robustness, adaptation, 

and responsiveness (Leitão and Karnouskos, 2015; Cruz S. 

and Vogel-Heuser, 2017). Thanks to these benefits, 

increasing adoption of MAS in manufacturing have been 

demonstrated via important industry initiatives and projects 

results with agents in smart production, smart electric grids, 

and scheduling and logistics optimization (R1, R2, R3) 

(Leitão et al., 2016). There are resource-efficient agent 

systems available (Theiss et al., 2008) that, however, do not 

support PLCs and other small devices (R3). Enabling 

reconfiguration on automation hardware, e.g., in context of a 

transportation system, is also possible (Vallée et al., 2011). In 

this work, a MAS is used to reconfigure a transportation 

system during runtime, in case of failure of one of the 

conveyor belts. This agent system is also implemented in the 

programming language IEC 61499, so that additional 

software or specialized hardware for running the code is 

needed, thus excluding micro-controllers (R3). Other MAS 

implemented in IEC 61499 are also aimed at modular 

logistics systems (Yan and Vyatkin, 2013).  

Other research on new approaches by using IEC 61499 as an 

emerging standard for industrial automation is presented in 

(Vyatkin, 2011). Other work targets the use of MAS in the 

field of intelligent energy systems or smart grids (Vrba et al., 

2014). Apart from manufacturing industry, MAS are also 

used in process industry, e.g., to control critical processes 

(Metzger and Polakow, 2011). Another concept and 

implementation for reconfiguration is presented in (Barata, 

Cândido and Feijao, 2008). This research focuses on 

challenges of the shop floor, especially addition and removal 

of manufacturing components (modules) during runtime. 

Communication is based on JADE, using JAVA and FIPA 

ACL Messages. Thus, the platform independence is limited 

(no small devices are supported) (R3). The IDEAS project 

(Onori et al., 2012) uses specifically designed and produced 

boards to bring agent technology to lower automation levels. 

These boards are designed to support JAVA (JADE). Thus, 

to deploy this agent system, specifically designed hardware 

must be used small microcontrollers or other existing 

automation hardware are not supported (R1, R2, R3).  

4. CONCEPT OF AN AGENT-BASED CPPS 

For the development of the proposed architecture, different 

aspects have been taken into account. The aspect logical 

architecture describes the relations between the agents and 

how the MAS is set up. The aspect software architecture 

describes measures taken in order to allow a wide variety of 

hardware platforms, i.e., ensure platform independency. The 

aspect MAS protocols and messages describes the design of 

the data exchange between the connected agents. These 

aspects play an essential role in realizing the overall features 

of the proposed concept (cp. section 2). 

4.1 MAS Logical Architecture 

Derived from the already existing standard of the Foundation 

for Physical Agents (FIPA) for MAS, the architecture shown 

in Fig. 1 was developed for arbitrary use cases. All agents of 

the CPPS are connected via a common network, e.g., the 

global internet. The communication and collaboration is 

realized by protocols and messages described in sec. 4.3. To 

support a variety of different use cases (cp. R1), an agent of 

the CPPS can have one of two characteristics: each agent 

represents either a physical system (Fig. 1; 1, 2) or an 

organizational entity (Fig. 1; 3), e.g., an agent fulfilling 

diagnosis services (diagnosis agent) or introducing 

production requests into the system (product agent). In the 

first case, the agent manages the access of the CPPS network 

to the production system (and vice versa) while, due to an 

agent's inveterate autonomy, it can dynamically regulate this 

access in accordance with the policies of the company which 

owns the production system. Furthermore, these agents can 

dynamically reconfigure their production system, e.g., in a 

manufacturing-specific scenario, in order to realize a load 

balancing of production orders inside the CPPS network. 

 

Fig. 1. Logical Architecture of the MAS. 

A CPPS network may consist of a varying number of this 

type of agents. In order to support the easy migration of 

existing arbitrary systems to network-enabled systems (cp. 

R1, R2), an agent may be a dedicated part of the automation 

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1289

 

 

     

 

(R1) Application independence: Due to the broad variety of 

industrial production process classes, the development of 

multiple custom-tailored solutions has to be considered not 

feasible. To the contrary, an architecture for agent-based 

CPPS networks should be applicable for a variety of 

scenarios, i.e., different production processes. Consequently, 

the basic MAS architecture, protocols and messages, should 

be independent of a specific application. 

(R2) Level independence: Depending on the scenario, in 

which the CPPS network is applied, different parts of an 

automated production system may have to be connected to 

the network. For example, in a simple production scenario 

only overall production facilities and their respective 

automation / IT systems need to be connected to the CPPS 

network. However, for a diagnosis scenario, that considers 

multiple plants inside a CPPS network, also field-level 

devices may be relevant. Consequently, an agent-based CPPS 

should not be limited to a specific hierarchy level of a 

production automation system. 

(R3) Platform independent implementation: From the great 

variety of automation systems' components, that need to be 

able to participate inside a CPPS network (cp. R2), 

restrictions and requirements regarding the computing 

devices arise. For the automation of overall production plants 

Programmable Logic Controllers (PLC) are predominantly 

used in industry. Consequently, these platforms need to be 

considered as one important device type. However, due to the 

required level-independence of the approach (cp. R2), it must 

not be limited to this class of devices. Especially for small 

sensors often cost efficient and not very powerful hardware is 

used, in order to reduce the overall cost of the components. 

Consequently, basic software and data for the MAS need to 

be small and lightweight, i.e., resource-friendly concerning 

permanent and non-permanent memory, CPU, and 

bandwidth. 

(R4) Robustness against errors: Typical problems found in 

large networks include connection loss, unsteady bandwidth, 

and load problems. During runtime, unforeseen problems and 

changes may occur, e.g., failure of machinery, new urgent 

tasks or maintenance. These may lead to unavailability of the 

corresponding system. The local problem may also affect the 

whole network, e.g., by delaying production. Thus, intelligent 

software and intelligent communication, e.g., broadcast as 

well as point-to-point messages with dynamic routing, should 

be used. In some cases, e.g., permanent unavailability of 

production systems or connected components, the CPPS has 

to reconfigure itself to ensure overall availability and 

continuation of the production. The same holds true for 

orderly joining and leaving systems at runtime. In all cases, 

the MAS must react to these dynamic conditions in an 

appropriate way, i.e., it must be robust against (unforeseen) 

reconfiguration requests, especially against reconfiguration of 

the network, i.e., participants joining and leaving. 

(R5) Decentralization: Not only the CPPS as a whole, but 

also subsets have to deal with temporary network connection 

loss. This means, the CPPS may split in smaller parts for a 

limited amount of time prior to re-connection. During this 

time, participating remote systems and system components 

must not be incapable of action. Thus, a central management 

node with all required knowledge as well as implemented a 

priori calculations is not suitable. Instead, critical information 

should be distributed between multiple nodes, so that access 

is ensured as far as possible and decisions can be made 

dynamically. 

3. RELATED WORKS 

To persist in today's global markets, information must flow 

between all layers of a company and even between 

collaborating companies. This requires new approaches to 

communication and production. Some work is done at 

comparing the HTTP protocol to Modbus (Jestratjew and 

Kwiecien, 2013) at PLC level. HTTP is considerable lower, 

mainly due to slow string processing on PLCs. A common 

way to access the factory floor is using gateways. In (Sauter 

and Lobashov, 2011) an overview of suitable high-level 

protocols to access automation data via gateways is 

presented. One possible implication is a reconfigurable 

sensor interface (Tao et al., 2014). This work also presents 

new design method, but only focuses on the perception layer 

of the IoT architecture (R2). A work concerning groups and 

grouping of devices is also described in (Vicaire et al., 2012). 

The work uses a central middleware (R5), programmed in 

JAVA (R3). An approach for agent-based gateway 

implementations is presented in (Faul, Jazdi and Weyrich, 

2016)but not evaluated regarding its resource efficiency and, 

thus, its platform independence (R3). In the context of 

Industry 4.0 recently a number of architectures have been 

presented based on the paradigms SOA (Moghaddam, Silva 

and Nof, 2015), MAS (Alexakos and Kalogeras, 2015; 

Hoffmann, Meisen and Jeschke, 2017), Internet of Things 

(IoT) (Sauer, Hausten and Hofstedt, 2016), or CPS in general 

(Bagheri et al., 2015), which did not investigate a specific 

implementation's resource efficiency in detail (R2, R3). This 

also holds for the works presented in (Quintanilla et al., 

2016), which propose a holonic architecture for CPPS, 

although they evaluate the need for communication (i.e., 

number of messages exchanged) in a simplified production 

scenario. For simulation real-time models, the author in 

(Aksyonov et al., 2015) describes the integration problem on 

a basic class of models further extended by the intelligent 

distributed agents (R5). The main model consists of agent 

resources conversion process with support for MAS 

modelling, in combination with discrete-event modelling and 

the ontology of the system. 

In (Girbea et al., 2014) it is focused on designing a SOA 

additionally capable of real-time operation. This is achieved 

using a priori algorithms and is thus not suitable for 

dynamically changing environments (R4). Other approaches 

use SOA for diagnosis (Calvo et al., 2012) and the concept 

presents a possible architecture and diagnosis algorithms 

without implementation. A different possible implementation 

language for SOA is IEC 61499, e.g., proposed in (Barata, 

Cândido and Feijao, 2008) in combination with a message 

broker. A runtime based on a formal mapping between SOA 

and IEC 61499 is proposed in (Delamer and Lastra, 2006). In 

contrast to other programming languages, IEC 61499 only 

runs on special hardware or with dedicated runtimes (R3). 
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software (Fig. 1; 1) as well as separate software on separate 

hardware (Fig. 1; 2). It may represent a single device (Fig. 1; 

4) as well as several devices (Fig. 1; 5). Application, level 

and platform independence (cp. R1, R2, R3) as well as 

migration are further increased by not setting a default for the 

communication with attached physical systems (Fig. 1; 6). 

Possible implementations are e.g., field bus protocols, OPC 

or proprietary protocols. To support as many different 

hardware devices as possible, the code that manages 

communication with physical systems is released in separate 

communication modules (cp. R3). This also allows future 

implementation of further use cases (cp. R1). The operation 

and reconfiguration (cp. R4) of the CPPS is based on a FIPA 

compliant platform (Bellifemine, Poggi and Rimassa, 2001), 

which requires three basic organizational entities, e.g., for 

discovery purposes: an agent management system (AMS), a 

message transport system (MTS) and a directory facilitator 

(DF). Robustness against errors (cp. R4) can be enhanced by 

using direct connections between agents. The AMS allows 

the bidirectional mapping between IP-addresses and agents' 

names. This enables direct communication between agents 

(Fig. 1; 7) by e.g., requesting the IP-address of an agent 

(identified by its name) and afterwards using this information 

to establish a direct connection that does not depend on other 

entities. Use-Case independence (cp. R1) can be enhanced by 

keeping protocols and messages flexible. The MTS is a 

directory of protocols and messages in a format based on 

eXtensible Markup Language (XML), which are required to 

participate in a use case. It can be extended and adapted to 

specific use cases. The DF is a service that stores agents' 

abilities, i.e., the production capabilities of a system. All 

agents register themselves with these organizational entities 

(Fig 1; 8) and are afterwards detectable by other agents by 

name, ability or address. This also enables new agents or 

systems to access to the CPPS network. In order to enable 

high availability and independence from single nodes (cp. 

R5) as well as easy handling of joining and leaving nodes 

(cp. R4), the organizational entities also periodically check 

all agents for availability to keep the directories up to date 

(cp. R4). Similar to internet name services, the directories are 

distributed in a cloud (Fig. 1; 9) among multiple nodes. This 

also minimizes the time required for search requests because 

of the proximity of the directory relative to the agent. 

4.2 MAS Software Architecture 

The presented logical architecture serves as a specification 

for the MAS software architecture. From this and under 

consideration of the requirements stated in sec. 2, the 

software architecture for the agent-based CPPS shown in Fig. 

2 was developed. To achieve application, level and platform 

independence (cp. R1, R2, R3), several measures were taken. 

For the organizational entities, i.e., the AMS, MTS, efficient 

implementations in the programming language ANSI C were 

developed according to the specified logical architecture. 

Therefore, the implementations comprise declarations for the 

particular directories as well as lookup functions. The 

implementation of the basic agent is provided as an ANSI C 

library, upon which an application specific executable 

implementation can be built. All basic functionality is 

exposed to the final executable in the form of multiple 

interfaces that can be adjusted to the user's specific 

applications and needs. By separating basic, i.e., the pure 

administration of an entity inside the CPPS, and use case 

specific behaviours, e.g., scheduling production orders to the 

shop floor, the implementation can be used for a multitude of 

use cases (cp. R1). To be able to distinguish between basic 

functionality and use case specific functions, an appropriate 

interface was developed. In detail, the agent interface and 

class is responsible for overall intelligent behaviour, situation 

awareness and runtime adaption of the single agent itself. The 

implementation in the executable (AgentImpl), i.e., all agents 

shown in Fig. 1, may be used by the developer of a specific 

application in order to realize application specific properties 

and functions, including all intelligence required to handle its 

application specific tasks (cp. R1). For example, in a 

manufacturing-specific scenario the AgentImpl would contain 

the implementation to dispatch, monitor and reconfigure 

running manufacturing tasks to the production units of a 

plant. In contrast, the generic interface in the library (Agent) 

defines all basic operations needed to participate in the MAS, 

e.g., joining, registration and heartbeat monitoring. A 

separate class (AgentConfig) handles initial configuration of 

the agent, as well as its internal dynamic reconfiguration 

during runtime (R4) inside the MAS network, e.g., when 

communications need to be changed. 

 

Fig. 2. Software Architecture of the MAS. 

In order to represent the different abstraction layers of a 

communication, i.e., hardware, protocol and message, a 

hierarchical approach, from general to use case specific, was 

selected. The interface class (IOInterface) and its realization 

is responsible for handling connections to other agents and 

the directory services, e.g., the DF (cp. Fig. 1, 7, 8). It 

abstracts specific behaviours by handling communication 

hardware and low-level protocol specific tasks, functions and 

behaviours, e.g., creating and closing connections. Each 

agent can have multiple communication interfaces 

simultaneously, in order to support many different hardware 

platforms (cp. R3). The actual realization inside the 

executable implements the behaviour for a specific hardware 

interface, e.g., TCP/IP (IOIfaceTCP). Information relevant 

for an established connection to another agent is saved in a 

dedicated class (IOConnection) one instance per connection. 

The parser class (IOParser) handles the raw data stream 

received through an interface and extracts messages out of it, 

e.g., by handling packet fragmentation and finding message 

boundaries. These messages can be basic messages for 

managing the overall agent system, as well as use case 
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specific messages. A specific class inside the executable 

(IOParserX) handles basic and use case specific protocols, 

e.g., downloaded from the MTS. The handler class 

(IOHandler) manages the incoming use case specific 

messages and reacts according to the application specific 

procedures, provided in the executable (IOHandlerY). In 

summary, raw data is received via the IOInterface and split 

into agent messages by the IOParser. Afterwards the 

messages are processed by the IOHandler, i.e., appropriate 

actions are executed. 

To support different hardware platforms, the implementation 

was developed to be platform independent (cp. R3), i.e., the 

programming language was chosen appropriately. Widely 

used languages for platform independent programming 

include C and JAVA. Although there are JAVA runtime 

environments (JRE) available for small devices, there is none 

small enough to fit a small sensor's 8-bit micro-controller 

together with the agent itself. Consequently, platforms based 

on JAVA are not suitable. Much the same applies to C++. 

Commonly used industrial automation devices as PLCs and 

soft-PLCs predominantly support the programming 

languages standardized by the IEC 61131-3. In addition, with 

their programming environments a great variety of PLC 

vendors provides support for programming PLCs in C. 

Therefore, because of the broad support that also includes a 

variety of PLCs, C was chosen as the programming language 

to implement the agent-based CPPS network. 

Implementations of different application specific systems can 

be generated for a multitude of hardware platforms using the 

corresponding ANSI C compilers. Therefore, specific 

characteristics of the hardware platform, e.g., big-little endian 

problem, are abstracted by the compiler. However, by using 

ANSI C as the implementation language of the agents for the 

CPPS network, the interfaces and classes are all implemented 

as plain Cstructs. Inheritance is implemented similar to the 

Linux kernel, i.e., realizations derive from these structs using 

function pointers and the parent as first member. 

4.3 MAS Protocol and Messages 

The global internet as an omnipresent communication 

medium suggests itself as a suitable solution for 

communication between multiple production facilities. By 

using the internet, the network layer of the OSI model is 

fixed (IP). For the transport layer there are two possibilities, 

namely TCP and UDP. In contrast to UDP, TCP is a 

connection-oriented protocol that offers high reliability, 

packet ordering and flow control. When using UDP-based 

communication error checking, packet ordering etc. needs to 

be done by the application, thus stressing CPU and memory 

and increasing application size. Therefore, TCP was chosen 

as the standard transport layer protocol. On top of TCP, the 

protocols used on a higher level (process level) have to be 

specified. This includes protocols for the application 

independent agent system management, as well as protocols 

for the application. Following the structure of the internet 

protocol suite, the application specific protocols are 

embedded in the platform protocol as the platform protocol is 

embedded in TCP (transport layer). Likewise, also the 

message format and message encoding have to be specified. 

As the framework only provides basic functionality there is 

also only a basic set of management functions used to 

identify, search and connect agents. In a production scenario 

these functions can be used either for (plant) agents to 

register production capabilities, which their facilities offer or 

for (product) agents to broadcast inquiries for offered 

capabilities.  

Because of the open software design of the agent system, 

neither the message format nor protocols are static. 

Nowadays, with the advent of the IoT, many systems use 

HTTP as a primary protocol. Likewise, MQTT is popular for 

small devices, but uses a publish/subscribe architecture that 

needs a central node, just as OPC UA uses a client-server 

architecture. To avoid the costs required for processing HTTP 

headers (cp. R3) and still not needing a message broker (cp. 

R5) or increasing size, a very small protocol was developed 

that enables the agents to exchange arbitrary data. It uses a 

fixed binary header, containing all needed information. This 

includes e.g., size, so that also binary data is possible, 

sequence number or conversation id and the actual data. The 

header can easily be processed because of the fixed size and 

positions. Since for the communication messages based on 

XML are used, which are parsed by the corresponding 

function of the receiving agent (cp. sec. 4.2), specific 

characteristics of the hardware platforms, e.g., the big-little 

endian problem mentioned earlier, are abstracted from by the 

developed communication mechanism. Subsuming this 

section, by the proposed logical architecture and software 

architecture as well as the protocols and messages, a generic 

MAS platform for networked CPPS was developed 

considering multiple requirements. Due to the requirements 

regarding platform and level independence, ANSI C was used 

as the programming language for the platform.  

5. USE CASES AND EVALUATION 

Some of the requirements stated in sec. 2 are already partly 

achieved by the design of the proposed architecture: The 

suitability for different use cases (R1) is ensured by both the 

logical and the software architecture. Level independence 

(R2) and platform independence (R3) are partly achieved by 

using a modular library and ANSI C. Using TCP/IP as 

underlying communication protocol solves parts of the error 

handling and recovery (R4) but also enables connections to 

systems using other implementations. By distributing 

organizational elements in the cloud, the MAS is 

decentralized (R5). However, resource-friendliness (R3) and 

the reconfiguration in case of joining/leaving agents (R4) 

were further investigated by quantitative experiments. As a 

first assessment of the platforms suitability, these 

experiments measure the pure footprint of the platform. 

5.1 Application Examples of the Agent-Based CPPS 

To investigate the required application independency of the 

approach (cp. R1), the proposed generic architecture for an 

agent-based CPPS was applied in two different specific 

application examples. At first, the agent-based CPPS was 

used in an academic demonstrator that produces mass-

customized products, i.e., yoghurt.  
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software (Fig. 1; 1) as well as separate software on separate 

hardware (Fig. 1; 2). It may represent a single device (Fig. 1; 

4) as well as several devices (Fig. 1; 5). Application, level 

and platform independence (cp. R1, R2, R3) as well as 

migration are further increased by not setting a default for the 

communication with attached physical systems (Fig. 1; 6). 

Possible implementations are e.g., field bus protocols, OPC 

or proprietary protocols. To support as many different 

hardware devices as possible, the code that manages 

communication with physical systems is released in separate 

communication modules (cp. R3). This also allows future 

implementation of further use cases (cp. R1). The operation 

and reconfiguration (cp. R4) of the CPPS is based on a FIPA 

compliant platform (Bellifemine, Poggi and Rimassa, 2001), 

which requires three basic organizational entities, e.g., for 

discovery purposes: an agent management system (AMS), a 

message transport system (MTS) and a directory facilitator 

(DF). Robustness against errors (cp. R4) can be enhanced by 

using direct connections between agents. The AMS allows 

the bidirectional mapping between IP-addresses and agents' 

names. This enables direct communication between agents 

(Fig. 1; 7) by e.g., requesting the IP-address of an agent 

(identified by its name) and afterwards using this information 

to establish a direct connection that does not depend on other 

entities. Use-Case independence (cp. R1) can be enhanced by 

keeping protocols and messages flexible. The MTS is a 

directory of protocols and messages in a format based on 

eXtensible Markup Language (XML), which are required to 

participate in a use case. It can be extended and adapted to 

specific use cases. The DF is a service that stores agents' 

abilities, i.e., the production capabilities of a system. All 

agents register themselves with these organizational entities 

(Fig 1; 8) and are afterwards detectable by other agents by 

name, ability or address. This also enables new agents or 

systems to access to the CPPS network. In order to enable 

high availability and independence from single nodes (cp. 

R5) as well as easy handling of joining and leaving nodes 

(cp. R4), the organizational entities also periodically check 

all agents for availability to keep the directories up to date 

(cp. R4). Similar to internet name services, the directories are 

distributed in a cloud (Fig. 1; 9) among multiple nodes. This 

also minimizes the time required for search requests because 

of the proximity of the directory relative to the agent. 

4.2 MAS Software Architecture 

The presented logical architecture serves as a specification 

for the MAS software architecture. From this and under 

consideration of the requirements stated in sec. 2, the 

software architecture for the agent-based CPPS shown in Fig. 

2 was developed. To achieve application, level and platform 

independence (cp. R1, R2, R3), several measures were taken. 

For the organizational entities, i.e., the AMS, MTS, efficient 

implementations in the programming language ANSI C were 

developed according to the specified logical architecture. 

Therefore, the implementations comprise declarations for the 

particular directories as well as lookup functions. The 

implementation of the basic agent is provided as an ANSI C 

library, upon which an application specific executable 

implementation can be built. All basic functionality is 

exposed to the final executable in the form of multiple 

interfaces that can be adjusted to the user's specific 

applications and needs. By separating basic, i.e., the pure 

administration of an entity inside the CPPS, and use case 

specific behaviours, e.g., scheduling production orders to the 

shop floor, the implementation can be used for a multitude of 

use cases (cp. R1). To be able to distinguish between basic 

functionality and use case specific functions, an appropriate 

interface was developed. In detail, the agent interface and 

class is responsible for overall intelligent behaviour, situation 

awareness and runtime adaption of the single agent itself. The 

implementation in the executable (AgentImpl), i.e., all agents 

shown in Fig. 1, may be used by the developer of a specific 

application in order to realize application specific properties 

and functions, including all intelligence required to handle its 

application specific tasks (cp. R1). For example, in a 

manufacturing-specific scenario the AgentImpl would contain 

the implementation to dispatch, monitor and reconfigure 

running manufacturing tasks to the production units of a 

plant. In contrast, the generic interface in the library (Agent) 

defines all basic operations needed to participate in the MAS, 

e.g., joining, registration and heartbeat monitoring. A 

separate class (AgentConfig) handles initial configuration of 

the agent, as well as its internal dynamic reconfiguration 

during runtime (R4) inside the MAS network, e.g., when 

communications need to be changed. 

 

Fig. 2. Software Architecture of the MAS. 

In order to represent the different abstraction layers of a 

communication, i.e., hardware, protocol and message, a 

hierarchical approach, from general to use case specific, was 

selected. The interface class (IOInterface) and its realization 

is responsible for handling connections to other agents and 

the directory services, e.g., the DF (cp. Fig. 1, 7, 8). It 

abstracts specific behaviours by handling communication 

hardware and low-level protocol specific tasks, functions and 

behaviours, e.g., creating and closing connections. Each 

agent can have multiple communication interfaces 

simultaneously, in order to support many different hardware 

platforms (cp. R3). The actual realization inside the 

executable implements the behaviour for a specific hardware 

interface, e.g., TCP/IP (IOIfaceTCP). Information relevant 

for an established connection to another agent is saved in a 

dedicated class (IOConnection) one instance per connection. 

The parser class (IOParser) handles the raw data stream 

received through an interface and extracts messages out of it, 

e.g., by handling packet fragmentation and finding message 

boundaries. These messages can be basic messages for 

managing the overall agent system, as well as use case 
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The production facilities were represented by a varying 

number (with minimum of three) operational laboratory 

production plants of different German universities (Vogel-

Heuser et al., 2014). All the facilities were administered 

resembled a network of locally distributed production sites, 

connected by the internet, which offer the execution of sub-

processes, e.g., the processing of raw materials (yoghurt), 

adding different flavours, or finishing or packaging the 

yoghurt. Therefore, with the first implementation, facilities 

for (batch) processes as well as discrete manufacturing were 

controlled and linked by the MAS inside the CPPS network. 

The second application example additionally considered 

logistics between production facilities executed by mobile 

robots. Here, the agent-based CPPS implemented a 

distributed production environment on a trade show, 

including multiple companies in different exhibition halls. 

The manufacturing steps, available at the different facilities 

contributed to the production of a bottle opener, which could 

be customized by trade show visitors. The possibilities for an 

application specific implementation (AgentImpl, cp. sec. 4.2) 

of the developed generic platform were used by developers of 

the different participating companies to implement on their 

own hardware the functionality that was necessary to manage 

the execution of production steps at the different facilities in 

the exhibition halls. Thereby, different hardware platforms, 

e.g., PC and PLC, were used. Due to the agent platform's 

open protocol that builds on TCP/IP connections to other 

implementations, e.g., based on C++, were enabled for this 

application scenario. The transport of the give-away articles 

between the different companies and exhibition halls was 

done using small partly autonomous mobile robots that were 

also represented by agents and were automatically embedded 

in the overall process. In both use cases, the production 

facilities were represented by autonomous agents that are 

connected to the local hardware and accept new orders after 

registering at the directory services. Since the customers' 

orders for products need to be decomposed into multiple 

different manufacturing tasks, to which the facility agents can 

respond, a coordinator agent was implemented for this 

purpose. The mobile robots are also represented by agents, 

thus dynamically responding to transport requests. The agents 

are running on diverse hardware platforms, e.g., PC and PLC, 

under different operating systems, i.e., Windows and Linux. 

Each use case has a dedicated set of messages for 

communication, based on the lightweight protocol described 

earlier. New orders are entered by the user via a web 

interface and are afterwards distributed inside the production 

network.  

The two use cases show, that the MAS is able to physically 

and logically connect multiple plants (high level) as well as 

smaller devices via internet. The connected agents run on a 

multitude of different hardware while the basic functions are 

the same with all use cases. It is not necessary to provide a 

central node for management or decision making purposes 

besides the organizational entities, which mainly enable the 

communication between the autonomous entities, and the 

coordinator agent, which decomposes product orders into 

manufacturing tasks. Consequently, although a high level of 

autonomy may be implemented for the controlling entities, 

compared to other works, the proposed architecture does not 

fully support the implementation of heterarchic, e.g., (Rey et 

al., 2013), or isoarchic, e.g., (Pujo, Broissin and Ounnar, 

2009), architectures yet. Since the specific implementations 

for the second application example, i.e., the industrial 

production scenario on the trade show, were developed by the 

companies themselves, no comprehensive experiments for a 

quantitative evaluation with these scenarios could be 

conducted. Consequently, as first step in this direction, 

qualitative experiments using only the basic platform are 

presented in the following.  

5.2 Experiments for Quantitative Evaluation 

To further examine the fulfilment of the requirements stated 

earlier, different measurements were conducted in a 

laboratory experiment. This includes the resource 

requirements of an agent (cp. R3) and the suitability of the 

approach for large, constantly changing networks (cp. R3, 

R4). This was measured by obtaining timings during platform 

runtime. A network consisting of agents running on different 

platforms was set up. The different platforms included the 

ARM platform as well as x86 (32bit and 64bit). The first 

point that was investigated was the resource usage of a single 

instance of an agent of the proposed approach (cp. Fig. 2, 

AgentImpl) without application specific implementation 

parts, i.e., the pure footprint of the agent platform. The 

specific implementation of an agent's main() function is 

strongly related to its role inside an agent system the 

reconfiguration capabilities that have been implemented, and 

its developer's skills. Consequently, in order to evaluate the 

suitability of the proposed MAS platform, in a first step, 

these parts of an agent's implementation were not considered. 

Table 1 shows the resource usage (footprint) on an ARM 

platform, running Arch Linux (3.6.11-12-ARCH+, GCC 

4.9.2). The agent, together with the agent library, needs 

approximately 23k bytes of permanent memory, e.g., flash 

memory. In comparison, the Matrikon OPC UA Embedded 

Server needs about 240k bytes of flash memory on an ARM 

architecture, OPC UA server implementation were proposed 

that require 116k bytes (Iatrou and Urbas, 2016), and a 

typical MQTT implementation needs about 44k bytes. 

Consequently, the resources needed for MAS platforms based 

on standard issue OPC UA stacks, e.g., (Hoffmann, Meisen 

and Jeschke, 2017), can be considered higher, although such 

approaches are promising in terms of already available 

technology. During execution, the heap usage of an agent is 

about 3k bytes of memory per connection. This is due to the 

fixed buffer sizes (2*1600 bytes) currently used and can thus 

be drastically reduced by using dynamic memory allocation 

for receiving and sending data. On a Windows platform, the 

values differ: Disk usage is 52k bytes for the library and 10k 

bytes for the agent. Values for the AMES framework (disk 

size is not available due to unavailability of the AMES 

platform), JADE (Bellifemine, Poggi and Rimassa, 2001) and 

AKKA (Gupta, 2012) are given as additional references. 

Both JADE and AKKA are very powerful JAVA libraries, 

offering a wide variety of functionality, covering many 

industrial and scientific aspects, thus further increasing size 

and memory consumption. The comparison done shows the 

suitability of the proposed MAS for resource-constrained 

small devices. The values for AMES were taken from (Theiss 
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et al., 2008), whereas the values for JADE and AKKA were 

measured on an Intel Core2 Quad with 8GB RAM, running 

Windows 7 64bit. All values highly depend on the actual 

platform, due to different instruction sets, library volume and 

optimization possibilities. Especially the memory footprint 

differs and can be further enhanced by increasing response 

time. The table shows, that the executable's size is about 24k 

(on ARM). Much of this size originates from the C library 

that is used to e.g., create an entry point for the operating 

system. On Linux, about half of the executable's size amounts 

to these operating system functions. However, as a small 

micro-controller typically, does not have an operating system, 

this can be discarded in this case (R3).  

Table 1.  Resource Usage 

 

Response time and typical internet characteristics, e.g., 

connection loss and joining/leaving nodes, were investigated 

as part of the experiments as well. A varying number of 

agents, i.e., connections to the network, joining and leaving at 

random, were used. The agents ran on different hardware 

platforms, communicating with each other. For the 

measurements only a single directory (non-distributed) 

service was used as a central node, running on an Intel Core 2 

Duo 6600, with 4GB of RAM, with Windows 7 (64bit). Fig. 

3 (left) shows the average time needed to process an order 

request inside the CPPS, i.e., until all agents have bid and the 

winner is selected from a varying number of agents, ranging 

from 1 to 500. The agents are using a simple text-based 

protocol with a typical message size of about 40 bytes. Such 

an exemplary agent uses a dynamically linked list to find a 

suitable offer for a request. On smaller platforms (ARM), due 

to less processing power, it is more likely that network 

packets drop or calculations take longer. On powerful 

hardware (x86) the increase for the operation is not as 

significant. The graph also shows that although agents join 

and leave the network and the overall time increases, the 

CPPS always reconfigures itself and a suitable solution for 

production distributing is found (R4). Otherwise the timeout 

for the order request would be reached at three seconds. Fig. 

3 (middle) shows the average workload of the directory 

service, expressed in time needed to handle a single agent 

(connection) in relation to the overall number of agents 

connecting to the network ranging from 1 to 800. The 

workload rises continuously with the number of agents 

present in the network from approximately 0.3ms at one 

connection to approximately 2.5ms at 800 connections. The 

rise results from additional lookups and interruptions as Fig. 

3 (right) shows that the time needed to process the raw data 

packets without handling the action involved can be assumed 

nearly as constant for a number of agents ranging from 1 to 

500. This also shows that the reconfiguration of the CPPS, in 

case of joining and leaving nodes, does not affect the time 

needed to process single requests. Thus, the CPPS stays 

operational (R4). A comparison with OPC UA shows that 

typical servers are limited to about 100 connections. A 

comparison with MQTT message brokers shows, that 

performance heavily depends on the implementation. 

Subsuming, the results of the evaluation experiments imply 

that the generic MAS platform can be considered suitable for 

the imposed requirements (cp. section 2). The evaluation of 

the resource usage (cp. Table 1) shows that the agent 

implementation is small enough to be deployed on micro-

controllers and other small hardware (R2, R3). Also, the 

response and reconfiguration time of the CPPS is not affected 

by joining or leaving nodes but only by the total number of 

connected agents (cp. Fig. 3, left and middle) and, thus, the 

CPPS is flexible enough to handle dynamic environments 

(R4). Even with a high number of agents implemented on 

less powerful hardware, a production order can be processed 

in less than 2.5 seconds by the basic agent platform (cp. Fig. 

3, left), a time that can be considered appropriate for 

production order dispatching.  

6. SUMMARY AND OUTLOOK 

Small lot sizes are a common trend in the production industry 

due to the demand for customized products. Likewise, 

dynamic global markets and new technologies pose new 

challenges for companies. Using a CPPS can help with 

attaining a higher level of flexibility and adaptability, 

especially when such a system allows for migration of 

existing facilities. By distributing intelligence and decision-

making, individual circumstances of a plant can be respected 

and fault tolerance increases. MAS offer a way to implement 

a distributed intelligent system that is adaptable and highly 

flexible. This paper proposes an approach that is separated 

into three aspects: the logical architecture, the software 

architecture, and the protocols and messages of agent-based 

CPPS network. A subset of the imposed requirements was 

fulfilled by the particular design of the three aspects. To 

further evaluate all the requirements and especially the ones 

not satisfied by design, measurements of a basic operating 

agent-based CPPS network were conducted. The evaluation 

showed that the basic MAS can be deployed on small devices 

and that timely reconfiguration without influences on other 

participants is possible.  

 

 

 

 

 

Fig. 3. Time to complete order requests (left), to process a connection (middle), and to process a package (right) 
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The production facilities were represented by a varying 

number (with minimum of three) operational laboratory 

production plants of different German universities (Vogel-

Heuser et al., 2014). All the facilities were administered 

resembled a network of locally distributed production sites, 

connected by the internet, which offer the execution of sub-

processes, e.g., the processing of raw materials (yoghurt), 

adding different flavours, or finishing or packaging the 

yoghurt. Therefore, with the first implementation, facilities 

for (batch) processes as well as discrete manufacturing were 

controlled and linked by the MAS inside the CPPS network. 

The second application example additionally considered 

logistics between production facilities executed by mobile 

robots. Here, the agent-based CPPS implemented a 

distributed production environment on a trade show, 

including multiple companies in different exhibition halls. 

The manufacturing steps, available at the different facilities 

contributed to the production of a bottle opener, which could 

be customized by trade show visitors. The possibilities for an 

application specific implementation (AgentImpl, cp. sec. 4.2) 

of the developed generic platform were used by developers of 

the different participating companies to implement on their 

own hardware the functionality that was necessary to manage 

the execution of production steps at the different facilities in 

the exhibition halls. Thereby, different hardware platforms, 

e.g., PC and PLC, were used. Due to the agent platform's 

open protocol that builds on TCP/IP connections to other 

implementations, e.g., based on C++, were enabled for this 

application scenario. The transport of the give-away articles 

between the different companies and exhibition halls was 

done using small partly autonomous mobile robots that were 

also represented by agents and were automatically embedded 

in the overall process. In both use cases, the production 

facilities were represented by autonomous agents that are 

connected to the local hardware and accept new orders after 

registering at the directory services. Since the customers' 

orders for products need to be decomposed into multiple 

different manufacturing tasks, to which the facility agents can 

respond, a coordinator agent was implemented for this 

purpose. The mobile robots are also represented by agents, 

thus dynamically responding to transport requests. The agents 

are running on diverse hardware platforms, e.g., PC and PLC, 

under different operating systems, i.e., Windows and Linux. 

Each use case has a dedicated set of messages for 

communication, based on the lightweight protocol described 

earlier. New orders are entered by the user via a web 

interface and are afterwards distributed inside the production 

network.  

The two use cases show, that the MAS is able to physically 

and logically connect multiple plants (high level) as well as 

smaller devices via internet. The connected agents run on a 

multitude of different hardware while the basic functions are 

the same with all use cases. It is not necessary to provide a 

central node for management or decision making purposes 

besides the organizational entities, which mainly enable the 

communication between the autonomous entities, and the 

coordinator agent, which decomposes product orders into 

manufacturing tasks. Consequently, although a high level of 

autonomy may be implemented for the controlling entities, 

compared to other works, the proposed architecture does not 

fully support the implementation of heterarchic, e.g., (Rey et 

al., 2013), or isoarchic, e.g., (Pujo, Broissin and Ounnar, 

2009), architectures yet. Since the specific implementations 

for the second application example, i.e., the industrial 

production scenario on the trade show, were developed by the 

companies themselves, no comprehensive experiments for a 

quantitative evaluation with these scenarios could be 

conducted. Consequently, as first step in this direction, 

qualitative experiments using only the basic platform are 

presented in the following.  

5.2 Experiments for Quantitative Evaluation 

To further examine the fulfilment of the requirements stated 

earlier, different measurements were conducted in a 

laboratory experiment. This includes the resource 

requirements of an agent (cp. R3) and the suitability of the 

approach for large, constantly changing networks (cp. R3, 

R4). This was measured by obtaining timings during platform 

runtime. A network consisting of agents running on different 

platforms was set up. The different platforms included the 

ARM platform as well as x86 (32bit and 64bit). The first 

point that was investigated was the resource usage of a single 

instance of an agent of the proposed approach (cp. Fig. 2, 

AgentImpl) without application specific implementation 

parts, i.e., the pure footprint of the agent platform. The 

specific implementation of an agent's main() function is 

strongly related to its role inside an agent system the 

reconfiguration capabilities that have been implemented, and 

its developer's skills. Consequently, in order to evaluate the 

suitability of the proposed MAS platform, in a first step, 

these parts of an agent's implementation were not considered. 

Table 1 shows the resource usage (footprint) on an ARM 

platform, running Arch Linux (3.6.11-12-ARCH+, GCC 

4.9.2). The agent, together with the agent library, needs 

approximately 23k bytes of permanent memory, e.g., flash 

memory. In comparison, the Matrikon OPC UA Embedded 

Server needs about 240k bytes of flash memory on an ARM 

architecture, OPC UA server implementation were proposed 

that require 116k bytes (Iatrou and Urbas, 2016), and a 

typical MQTT implementation needs about 44k bytes. 

Consequently, the resources needed for MAS platforms based 

on standard issue OPC UA stacks, e.g., (Hoffmann, Meisen 

and Jeschke, 2017), can be considered higher, although such 

approaches are promising in terms of already available 

technology. During execution, the heap usage of an agent is 

about 3k bytes of memory per connection. This is due to the 

fixed buffer sizes (2*1600 bytes) currently used and can thus 

be drastically reduced by using dynamic memory allocation 

for receiving and sending data. On a Windows platform, the 

values differ: Disk usage is 52k bytes for the library and 10k 

bytes for the agent. Values for the AMES framework (disk 

size is not available due to unavailability of the AMES 

platform), JADE (Bellifemine, Poggi and Rimassa, 2001) and 

AKKA (Gupta, 2012) are given as additional references. 

Both JADE and AKKA are very powerful JAVA libraries, 

offering a wide variety of functionality, covering many 

industrial and scientific aspects, thus further increasing size 

and memory consumption. The comparison done shows the 

suitability of the proposed MAS for resource-constrained 

small devices. The values for AMES were taken from (Theiss 
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However, since this first experiments only provide a 

quantitative evaluation for the basic platform, in the next 

steps further experiments need to be conducted that provide 

implementations, which are realistic for industrial 

applications.  

In summary, the design and implementation for an agent-

based CPPS network proposed in this paper is a possibility to 

easily connect devices and let them participate in a global 

intelligent network. The applied MAS is platform 

independent, resource-friendly and thus suited for a wide 

variety of devices and use cases. By the proposed 

implementation in the programming language C, the 

approach is portable but not limited to Programmable Logic 

Controllers, as it would be the case with the programming 

languages of the IEC 61131-3. The use of intelligent, 

proactive and autonomous agents yields benefits such as 

inner and outer reconfigurability, robustness against 

perturbations and high overall flexibility. The MAS is 

scalable and adaptable to users' needs as well as suitable for 

high-level and low-level use cases. Future work includes the 

improvement of the programming of the application specific 

tasks and intelligence, possibly by using model-based 

approaches. This includes the evaluation of the MAS design 

and implementation with PLCs as the targets for the 

deployment of the agents. Other work will improve the 

protocols currently used in the communication between 

agents in order to support open standards such as JSON or 

HTTP and it will especially improve security aspects such as 

authentication and encryption that were considered only 

marginally in the current implementation. In the case of the 

open source framework AKKA, actors would be on the same 

level of implementation since is possible to provide basic 

communication and agent (-like) classes. Since AKKA runs 

on JAVA8 or later versions this could implement actor driven 

design attributes and is now extensively used in the industry 

increasing the fault tolerance and reactiveness of systems. 
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Abstract
The growing complexity of production systems requires appropriate control architectures that allow flexible adaptation during
their runtime. Although cyber-physical production systems (CPPS) provide the means to copewith complexity and flexibility, the
migration with existing control systems is still a challenge. The term CPPS denotes a mechatronic system (physical world)
coupled with software entities and digital information (cyber part), both enabling the smart factory concept for the Industry 4.0
(I4.0) paradigm. In this regard, design patterns could help developers to build their software with common solutions for
manufacturing control derived from experiences. We provide a description and comparison of the already existing multi-agent
systems (MAS) design patterns, which were collected and classified by introducing two classification criteria to support MAS
developers. The applicability of these criteria is shown in the case of specific example architectures from the lower and higher
control levels. The authors, together with experts from the German Agent Systems committee FA 5.15, gathered more than
twenty MAS patterns, evaluated, and compared four selected patterns with the presented criteria and terminology. The main
contribution is a CPPS architecture that fulfills requirements related to the era of smart factories, as well as the Reference
Architectural Model I4.0 (RAMI 4.0). The conclusions indicate that agent-based patterns greatly benefit the CPPS design. In
addition, it is shown that manufacturing based on MAS is a good way to address complex requests of the CPPS development.

Keywords Cyber-physical production systems . CPPS . Design patterns . Distributed control systems . Industry 4.0 . MAS .

Multi-agent systems . RAMI 4.0

1 Introduction

Commonly, companies widen their product portfolio and at-
tempt to shorten their production time to increase revenue and

market presence. These actions may indirectly increase the
complexity of the production process. At the same time, the
Industry 4.0 (I4.0) paradigm tries to meet the emerging DIN
SPEC 91345 norm [1], regarding the Reference Architectural
Model I4.0 (RAMI 4.0) inside the factory and migrate from
conventional automation systems to cyber-physical produc-
tion systems (CPPS) [2], and their admitted standards [3, 4].
The term CPPS denotes a mechatronic system coupled to
smart entities that enable the smart factory and machines tools
of I4.0 concept [5, 6]. The application of the distributed con-
trol theory based on the multi-agent systems (MAS) is
employed [7, 8] to cope with CPPS challenges. Since it is
not always straightforward to create such a system from
scratch, ready-made solutions, such as design patterns, based
on the experience of specialists from different fields are re-
quired. In order to reduce the time, cost, and risk of developing
a new design, MAS developers shall understand these pre-
pared solutions in an easy way. Also, as the MAS were not
often implemented in the industry due to the limited
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understanding [8, 9], to increase their acceptation, the pre-
pared patterns can help.

Design patterns provide a means of identification and con-
sideration of broader success aspects in particular problems
[10]. They are described as an abstraction of the system devel-
oping process, since they are based on already working solu-
tions. The abstraction focuses on the essential aspects captured
by the pattern [11]. Therefore, design patterns due to the prop-
erties of the agents [9] provide increased connectivity between
control levels of the automation pyramid, to ease the migration
to the CPPS. As the MAS have a flexible programmable and
dynamic architecture [8], patterns could provide the support of
properties such as reusability, flexibility, adaptability, and
modularity, which will satisfy the requirements of CPPS [3,
12], following the future needs of the automation [13, 14].

1.1 Contribution to the industrial automation

The idea of this paper is to provide engineers and programmers
with existing patterns based on the MAS structures, which will
help improve their design efforts and therefore increasing the
efficiency of the manufacturing process control, and decreasing
the development design cost (reusability [15]). Based on prior
experiences, design patterns are delivered to address MAS into
different levels of the automation hierarchy (low/high level)
with real-time and non-real-time control systems, mainly indus-
trial controllers’ technologies, e.g., Programmable Logic
Controller (PLC). Furthermore, design patterns enable MAS
developers to easily have the same understanding of the solu-
tion system’s design [15–17]. Thus, ready-made templates are
designed to simplify the comparison of MAS alternative solu-
tions [17]. Other benefits of this contribution are the following:

1. Awell-discussed survey/summary at least in agents work-
ing group of the German IFAC NMO GMA FA 5.15 is
presented.

2. Mapping of analyzed MAS functional requirements to
sub-agents’ patterns was provided.

3. Proposed sub-agent patterns for MAS technology in in-
dustrial environments are extendible; further extended de-
signs are possible for more use cases.

4. The proposed sub-agent patterns will reduce the time and
cost efforts, as the proposed pattern is a “ready-made”
solution.

5. The identified design patterns are the basis for the devel-
opment of agent-based CPPS and for their structural rep-
resentation. However, the contribution does not consider
an explicit MAS architecture (with final requirements) for
the application of an individual CPPS or system domain.

6. The proposed sub-agent patterns support integration and
development of MAS for different automation levels
based on ISA 95 and RAM I4.0.

Existing control architectures are frequently based on the de-
veloper’s experience from every single domain, but MAS devel-
opers are often unaware of the benefits of design patterns.
Therefore, this manuscript provides 13 criteria (see Section 3),
as a key result from a preliminary classification of differentMAS
and their evaluation in various domain solutions, as shown in
[18]. Thereby, thiswork aims at finding and validating the criteria
required for pattern creation enabling the migration to CPPS:

& Using relevant requirements of the CPPS from Ribeiro
and Hochwallner [12].

& Aligned with smart agent proposals for industry from
Leitao et al. [9].

& Aligned with the RAMI 4.0 model [1].

Based on the essential properties of MAS [8], this paper
gives a deep classification and analysis of the collected MAS
with the derived criteria, which will help for further pattern
development, and suggestion of agent-based CPPS
architecture.

1.2 Research questions and hypotheses

Despite the fact that theMAS application has not been popular
in industry, nowadays, its admission is acceptable [8, 9] and
the MAS applicability is more extensive than over the last
years [8, 9, 18]. Moreover, the existence of patterns will ease
the perception and comprehension for the MAS developers.
Design patterns based on MAS for manufacturing would en-
able rapid application in industry [17]. Besides, the agent-
based architectural solutions usually possess the characteristic
of “plug and produce” use and are applicable in many do-
mains after simple parameter adjustment [19]. In addition,
they are suitable for different control layers regarding the au-
tomation pyramid that will allow the creation of versatile ap-
proaches regarding CPPS [9]. It is a big challenge to charac-
terize a universal design that applies to the logical architecture
and to software abstractions. Therefore, in this work, the target
of design patterns concerns a functional system level as a
MAS logical architecture that does not deal with software
level abstractions. However, relevant information to logical
architecture and software could be addressed by the final de-
sign proposal. Consequently, this work addresses four general
research questions (RQ1-RQ4) connected to eight research
hypotheses (RH1.1-RH4.2), as shown in Table 1.

The manuscript is structured as follows: Section 2 reviews
the state-of-the-art of the collected MAS patterns for
manufacturing systems. Section 3 introduces the discussion
about the classification criteria to compare MAS approaches
for the further elaboration of the patterns. Section 4 evaluates
the four different MAS approaches applying the 13 classifica-
tion criteria. In Section 5, common functional requirements of
MAS patterns are presented. Finally, Section 6 represents the
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agent-based CPPS architecture aligned with RAMI 4.0 model.
This work is summarized within the conclusion in Section 7.

2 Related work

As described in the previous section, this paper presents select-
ed MAS ready-made solutions to give support to developers,
so they can easily produce new control systems [15, 17]. It
helps to avoid the common design mistakes during the sys-
tem’s development phase [8]. The new solution should support
among others reusability, flexibility, modularity, as defined in
[8, 20]. TheMAS approaches are classified in order to facilitate
the migration from the conventional automation systems to the
CPPS. Therefore, authors use a template that consists of a list
of classification criteria validated by experts in the German
community FA 5.15 (see Section 3). Because all approaches
were created to be used in different domains and different
layers of the automation pyramid, a notable part of them are
concentrated to provide the flexibility or changeability (FC) of
the system. Others concentrate on other features such as reli-
ability (RL), adaptability or agility (AA), reconfigurability
(RC), and dependability (DP). All of these characteristics are
enlisted and described in Table 2, according to [8, 12, 20, 21].

The comparison of existing systems architectures and their
focuses—regarding specific CPPS and RAMI 4.0 require-
ments—are collected and presented in Table 3; as shown,
almost all architectures concentrate on providing flexibility
for the automation systems. Table 3 also compares the struc-
ture for CPPS approaches regarding the control distribution’s
classes from Trentesaux [22]. The CPPS structures can be
classified between Classes 0 and III according to their control
and decision-making mechanism, as the following list:

& Class 0. Centralized control systems (e.g., CIMOSA [23])
& Class I. Fully hierarchical control system (e.g., acquire,

recognize, and cluster architecture for SoA or ARC-SoA
[24])

& Class II. Semi-heterarchical control system (e.g.,
ADACOR [25] architecture)

& Class III. Fully heterarchical control system (e.g., D-MAS
architecture [26])

Any MAS may be used regardless of its class, since all
MAS were proposed for different use cases, e.g., for the in-
dustry, smart grids, etc. [9] and be applied for the purpose of
satisfying the CPPS and RAMI 4.0 requirements (see Section
2.1). In fact, these approaches apply methods and techniques
such as the Industrial Internet of Things (IIoT), decision-mak-
ing mechanisms, semantic models, process synthesis, and op-
timization [18].

The German committee FA 5.15 initiated the idea of this
work, where 20 different agent-based approaches were col-
lected inside of the group discussions. Additionally, each
FA-author had a direct access to the evaluation of the pattern
and gave feedback. Therefore, authors do not claim that the
collected list of MAS is holistically completed, as it focuses
just on German applications for production systems.
However, the list of MAS can be further extended to consider
other applications. At the moment, it covers the different fields
of application from software and manufacturing domains:
smart grids, logistics, geography and image process applica-
tions, etc.

Wannagat [27] presents a MAS implementation concept
for handling a faulty sensor or an actuator for automation
systems. This architecture provides the flexibility, reliability,
and reconfigurability for the production systems. The work of

Table 1 Research questions and related hypotheses

Research questions Hypotheses Proof

RQ1—How are the MAS patterns for CPPS
depicted and what criteria are used to describe them?

RH1.1—classification criteria for MAS approaches delivers valid and
decidable information for their evaluation

D

RH1.2—MAS approaches for CPPS can be classified and identified
with similar design pattern’s terms (e.g., names, functionalities, etc.)

E

RQ2—For which domains of CPPS are the
MAS patterns designed and applicable?

RH2.1—MAS approaches have application in diverse domains with
different goals and benefits (e.g., flexibility, adaptability, etc.)

D

RH2.2—CPPS are applicable in every domain in appliance with the
real-time requirements of MAS approaches

E

RQ3—Which MAS design patterns for CPPS are reusable? RH3.1—there are reusable MAS patterns with functional and non-functional
requirements for CPPS design

E

RH3.2—MAS components follow specific sub-agents, which have
particular aims and are reusable for CPPS design

E

RQ4—How do the MAS design patterns develop
into a CPPS aligned with RAMI 4.0?

RH4.1—it is possible to harmonize different MAS approaches to
obtain a simple CPPS architecture aligned with RAMI 4.0

E

RH4.2—MAS patterns provide Industry 4.0 component’s properties and
specific information to its administration shell

E

D, insights gained from documents and feedback of MAS patterns’ authors; E, insights gained by the validation analysis of this manuscript’s authors
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Schütz [28], based on Wannagat, proposes a heterarchical
approach about a PLC-Agent-System with individual knowl-
edge-based agents. Main features of the approach are flexi-
bility and reconfigurability. The MAS of Ulewicz [7] repre-
sents an abstract architecture concept for plants inside indus-
trial automation. Its focus is on providing flexibility and reli-
ability and it has been applied on real industrial context,

validated by industrial experts. Legat [15] proposed an
agent-based architecture for handling unforeseen failures;
the main features of this approach are flexibility and
reconfigurability [29].

The approach of Rehberger [19] is designed for achieving
both flexibility and availability during run-time (for coping
with unknown product recipes and breakdowns of sub

Table 3 Related work focusing on providing benefits and regarding CPPS and I4.0 requirements

Author(s) Characteristic benefit Classification CPPS requirement RAMI 4.0 requirement

FC RL RC AA DP Scope Class Req.
1.1

Req.
1.2

Req.
1.3

Req.
1.4

Req.
1.5

Req.
2.1

Req.
2.2

Req.
2.3

Req.
2.4

Req.
2.5

ADACOR (Leitão and
Restivo, 2006) [25]

• • • HMS architecture II + ++ ++ + + – – ++ – –

Andrén et al., 2013 [30] • MAS for smart grid III + + ++ + – + – – – –
Cruz S. et al., 2018 [31] • • • CPPS architecture II ++ ++ ++ ++ ++ – – ++ – –
Fischer et al., 2018 [32] • • MFS agent-based III ++ + + + – – – + – –
Karnouskos and De

Holanda, 2009 [33]
• MAS for smart grid III + + ++ ++ – – – ++ – –

Leitão et al., 2016 [9] • • • • MAS for industry III ++ ++ ++ ++ + – – – – –
Lüder et al., 2017 [16] • • MAS for industry III + + ++ – – – – ++ – –
Lüder et al., 2017 [34] • MAS for industry III + + ++ ++ – + + + + +
Nieße, A., 2015 [35] • MAS for smart grid III + + ++ ++ ++ + + ++ + +
PROSA (Brussel et al.,

1998) [36]
• • • HMS architecture II + ++ ++ + + – – ++ – –

Regulin et al., 2016 [37] • MFS agent-based III + ++ ++ + – – – – – –
Rehberger et al., 2017

[19]
• • MAS for industry III + + + ++ – – – + – –

Ribeiro and
Hochwallner, 2018
[12]

• • • • CPPS architecture III ++ ++ ++ ++ + + + ++ + –

Ryashentseva, 2016 [38] • • MAS for industry III + + ++ ++ + – – ++ + -
Schütz et al., 2011 [28] • • MAS for industry III ++ ++ ++ ++ + – – + – –
Theiss and Kabitzsch,

2017 [39]
• MAS for industry III + + ++ ++ + – – + – –

Ulewicz et al. [7] • • MAS for industry III + ++ ++ + – – – + – –
Vogel-Heuser et al., 2014

[40]
• MAS for industry III + ++ ++ + + – – + – –

Wannagat, 2010 [27] • • • CPPS architecture III + + ++ + – – – + – –

Notation: ● Applicable; ++ High; + Medium; – Low

Table 2 Description of characteristics for CPPS [8, 12, 20, 21]

Feature Description

Flexibility/changeability [12, 21] (FC) It is often the grade to which a product or system can be used with effectiveness, efficiency, freedom from risk,
and satisfaction in contexts beyond those initially specified in the requirements

Reliability [21] (RL) A set of attributes that bear on the capability of software to maintain its level of performance under stated
conditions for a stated period of time (four attributes: maturity, fault tolerance, recoverability, reliability
compliance)

Reconfigurability [20] (RC) A system designed at the outset for rapid change in structure, as well as in hardware and software components,
in order to quickly adjust production capacity and functionality within a part family in response to sudden
changes in market or regulatory requirements

Adaptability/agility [8, 12] (AA) The capability of surviving and prospering in a competitive environment of continuous and unpredictable
change by reacting quickly and effectively to changing markets, driven by customer-designed products and
services

Dependability [20] (DP) The set of independent production events (ES) that completely defines the available production processes in a
production system. Their number could be given by an equation in [20]
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modules) as well as adaptability during engineering (MAS
with exchange-/adaptable knowledge base in form of a dis-
crete and continuous plant model). The works of Fischer [32]
and Regulin et al. [37] present MAS control approaches en-
hancing the flexibility and reconfigurability of material flow
systems (MFS). All of them focus on the flexibility and de-
pendability features. Hoffmann’s approach [41] is proposed to
reach the customized products and production configuration
providing dynamic reconfiguration, production fault compen-
sation, and predictive maintenance. The next approach of
Pech [42] enables flexibility and adaptability for the user in-
teraction and query formulation for information retrieval.

The approach of Ryashentseva [38] presents a supervisor-
based and self-adapting architecture with the focus to realize
reconfigurability and adaptability of the production system.
Lüder et al. [16] propose the resource allocation and the re-
source access design patterns for manufacturing systems. He
focuses on reliability, adaptability, and flexibility properties.
Based on this proposal of the ready-made pattern for resource
processing, the possibility of pattern elaboration for the CPPS
is suggested in this paper [16]. Its literature review was based
on a Google Scholar search (exploiting the terms
“manufacturing system,” “agent,” and “control”) and have
limited the works published the last 10 years after 2006 [8,
16]. Summarizing the MAS for manufacturing, a variety of
agent-based methodologies exist for the model-based devel-
opment of software for manufacturing [32, 43]. Surrounded
by their last 100 most recent results, just 19 papers have been
selected, since other papers were not in the production system
control field with architecture representation. Other surveys
about the design patterns for distributed automation have been
analyzed in [11, 17].

Meanwhile, diverse agent-based approaches intending to
provide manufacturing control for CPPS, based on Agent
Oriented Software Engineering (AOSE), have been presented.
The most relevant point of views from the authors are listed
and compared in [4], such as Gaia, MaSe, and other method-
ologies. Holonic Manufacturing Systems (HMS) are also con-
sidered for distributed control systems, in [25, 36, 44, 45].
Finally, MAS approaches also enable to boost energy efficien-
cy via smart grids, as shown in [30, 33, 46].

This section concludes that control decisions and the over-
all intended behavior of different MAS approaches listed are
described. In addition, their integration in the automation pyr-
amid has been specified, and the different control decisions
are outlined. Each industrial agent mapped to a control pyra-
mid layer designated, to which the agent belongs and has a
control decision and specific features (e.g., flexibility). Based
on this research and preliminary work of Lüder et al. [16], the
next chapter presents the development of the classification
criteria in order to evaluate the collected MAS patterns.
Further, in the paper, it will be used to evaluate four different
approaches [16, 27, 38].

2.1 Requirements regarding CPPS and RAMI 4.0

Adapted from Ribeiro and Hochwallner [12] concepts, re-
quirements are understood as explicit conditions which must
be represented by system in order to fulfill a specification, or a
standard.

For an agent-based CPPS, aligned from [4, 12, 31, 40],
there are five key requirements: the application independence
(Req1.1), meaning that a MAS and its protocols and messages
should be independent of a specific application. The level
independence (Req1.2) referring that all levels of automation
for ISA 95 (see Section 5.6) are available depending on the
scenarios in which the CPPS will be applied. Platform inde-
pendent implementation (Req1.3) implying that modules are
effortlessly integratedwith independent implementation (open
technologies). Robustness against errors (Req1.4) meaning
MAS must react to faults and dynamic conditions in an ap-
propriate way, i.e., it must be robust against unforeseen.
Decentralization (Req1.5) means that MAS have to deal with
temporary network connection loss and critical data should be
distributed between multiple nodes.

Regarding the RAMI 4.0 model (see Section 6), there are
other five crucial requirements for the I4.0 components con-
cept [47]. The sub-models (R2.1) shall support various engi-
neering disciplines. The system boundary (R2.2) implies that
a sub-model describes the relationships between the RAMI
4.0 layers. The nestability principle (R2.3) for the specific
engineering discipline shall have its own organizing principles
for the relevant resources (assets in hierarchy dimensions).
The virtual representation (R2.4), an administration shell,
can denote a digital active with their parts. Finally, the func-
tional properties (R2.5) require that the manifest has an exter-
nally accessible set of meta-models describing its functional
and non-functional properties.

3 Classification criteria for MAS patterns
(RQ1)

In this section, the classification criteria for the MAS design
patterns are described. It is based on preliminary consider-
ations that were briefly discussed in the previous section. As
specified in the state of the art, there are many different design
solutions for the control of the manufacturing systems with
MAS architectures. However, the application and thereby the
evaluation of the design pattern criteria will be shown in the
next section that is based on only four MAS field approaches.
Accordingly, the adapted SLR method of outlining and
obtaining design patterns [10], usually applied in the area of
software for mechatronics systems, is presented here. To ex-
tend the work done by Lüder et al. [16], a bottom-up approach
is proposed in this paper. The adaptation of the design pattern
is based on distributed automation systems [17] and
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developed by the classification criteria from Lüder et al. [16]
and Leitao et al. [8] and Ribeiro and Hochwallner [12].
Finally, thirteen criteria were proposed (cp. Table 4) to classify
MAS architectures’ patterns. These patterns were introduced
and evaluated by the members of the German FA 5.15 work-
ing group.

The industrial automation field should support the devel-
opers to create new functionalities based on different common
parts and experiences, to fulfill requirements from the previ-
ous section (see Section 2.1). Consequently, different kinds of
design patterns were to support engineers in solving the re-
spective problems and obtain solutions with common
methods.

One of the main contributions of this paper is the compila-
tion of the criteria for the MAS design pattern template (cp.
Table 4). First, the template introduces the pattern category,
pattern type, pattern name, pattern description, context, solu-
tion, and implementation used for the distributed systems pat-
tern in [17]. Second, the template adds MAS-architecture,
knowledge base and processing, real-time properties, depend-
ability, learning, MAS-autonomy, and others.

In addition to the criteria of the MAS pattern (Table 4), a
classification of each sub-agent pattern of the MAS

architecture is developed. These supplementary criteria de-
scribe in details the features of each sub-agent in order to
better understand MAS architecture and better compare their
identifying patterns. Then, Table 5 extends the patterns de-
scription criterion from Table 4, according to the following
items: sub-agent name, main functionality, ISA 95 level (au-
tomation level), real-time capability, source type info, commu-
nication base, key properties, and related work.

For this proposal paper, an approach is demarcated as a
set of architectures, methodologies, or standards, which
follow a common scheme. In the case of architectures, these
are considered single structures of static system model. The
aspect MAS architecture describes the associations be-
tween different types of agents (or sub-agents) and includes
the MAS set-up [31]. In addition, most of the MAS are not
patented by their authors and usually do not have the prac-
tical data to carry out their implementation (i.e., clear meth-
odology). In this case, MAS methodology should deter-
mine the best steps to follow in order to improve reusability
in development and quality systems (usually used for soft-
ware engineering as AOSE [4]). A good methodology
should indicate how the MAS would satisfy all its process
in a systematic, predictable, and repeatable way. In the end,

Table 4 Criteria to classify MAS architectures/patterns

Criteria Descriptions Examples options

Pattern category Favorable function patterns: system properties that can
be realized by employing MAS, i.e., increased
flexibility and adaptability

Flexibility pattern, adaptability pattern, reliability
pattern, reconfigurability pattern

Pattern type Name of the pattern type: technology-independent task
of the MAS (categorized)

Fault-tolerant sensors

Pattern name Name of the MAS pattern Soft sensor

Pattern description Description of the logic structure (which
components/agents does the pattern contain?)

MAS with 4 sub-agents, which enable identifying
faulty sensors and automatically replacing themwith
soft sensors based on models

Context/area of application Application context of the pattern Various domains, e.g., logistics, process engineering

MAS-architecture Approach for realization of the agents’ behavior Reactive/cognitive/hybrid

Solution Graphical depiction of the MAS-Architecture Depiction of the MAS’ components (notation class
diagram)

Knowledge base and processing How is the knowledge stored? Models, rules. How is
the knowledge processed? With which methods?

Model from engineering, ontology, meta model data
structure. Inference mechanisms for ontologies

Learning/knowledge acquisition Methods and techniques for learning
abilities/knowledge base

Machine learning, neuronal networks

Implementation Technological realization of the MAS (platform,
languages)

Model: SysML, programming language IEC 61131-3

Real-time properties Timeliness and concurrency requirements Usage replacement sensor < 2 PLC-cycles < 40 ms

Dependability Requirements towards reliability, availability,
maintainability, security or safety

Soft sensor can replace sensor with a reliability of x%

MAS-autonomy Autonomy/independence in decision making Replacement of sensor not autonomously, since
number of replaceable sensors is limited

Others Additional author’s comments (remarks, clarifications,
etc.)
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an ideal final stage of the MAS design phase would be its
standardization (creation of norm). International institu-
tions such as ISO, ASME, IEC, IEEE, and others might
endorse both, MAS architectures and methodologies, as a
current standard for smart manufacturing as supported by
experts [3, 4, 21].

The evaluation of the criteria proposed in this section is
introduced as follows based on MAS approaches for
manufacturing.

4 Evaluation of four selected MAS
architectures applying criteria classification
(RQ2)

This section presents the application of the criteria for MAS
design patterns discussed in the previous section (cp. Tables 4
and 5).

The general patterns’ analysis starts from the lowest layer
of the traditional automation pyramid, applied (see Section
5.6) in the logistics domain, manufacturing execution systems
(MES). The first architecture of Wannagat [27] concentrates
on the field level control and presents a MAS architecture for
hard real-time and dependability, applied to PLC controllers
(the most popular in industrial environments). Based on that,
many other authors continue to build their MAS architectures
on it (Folmer [48], Schütz [28], Rehberger [19], and Ulewicz
[7]). Second author Fischer [32] also applied MAS for hard
real-time including control level to put adaptability, flexibility,
and dependability attributes into MFS. In this case, new com-
ponents based on metamodeling can be added. The reflection
of this idea can be found in other researches such as Priego et
al. [49] and Hanisch et al. [50]. A third work by Ryashentseva
[38] represents a MAS approach focused on the real-time
capabilities for self-reconfigurability of production plants,
and has implemented supervisory control theory (SCT) in-
creasing self-adaptability. This approach covers the middle
and low levels of the automation pyramid from the coopera-
tion with legacy systems on field control level and

communication with MES. Finally, Lüder et al. [16] propose
the fourth MAS approach, which includes design patterns
considering different levels of manufacturing, even upper-lev-
el MES.

In this paper, the authors choose the following three basic
terms in order to facilitate the discussion of the following
MAS approaches: i) From the VDI standard 2653 sheet 1, a
sub-agent is an encapsulated entity (of software, hardware, or
both) with specific goals inside the whole MAS architecture.
The sub-agent endeavors to reach his goals with autonomy
and by interacting with its environment and among other
sub-agents [18]. ii) From Ribeiro and Hochwallner [12], a
module is “tightly coupled within and loosely connected to
the rest of the system.” Hence, a module is a MAS software
component that does not have dynamic characteristics and
intelligent properties like a sub-agent (e.g., autonomy, mes-
sage interactions, and cooperativeness). However, it can de-
termine specific functions, methods, or routines which are
often part of or used by sub-agents (e.g., control module
[28]). iii) Adapted from the ISO/IEC 2382-1, a database
(DB) is a collection of data ordered giving to a conceptual
structure relating the features of the info and the associations
among their corresponding entities, supporting one or more
request areas and accessible in various ways. Mostly, a DB in
MAS architectures is an organized collection of data for the
module’s interactions. It is stored and accessed electronically
as the “yellow pages” for services exposed to other sub-agents
[7, 32].

Below, the following abbreviations will be used in the cor-
responding figures: resource agent (RA), coordination process
(CP), knowledge base (KB), and communication interface
(CI).

4.1 Design pattern for the resource agent

The RA architecture presented in [27] provides an agent-based
interface for technical components in the field control level
(see Fig. 1).

Table 5 Criteria to classify the patterns description (sub-agents)

Criteria Descriptions Examples options

Sub-agent name The name of the sub-agent (or acronym) Coordination agent, resource agent

Main functionality The main functionality of the sub-agent with text descriptions Communication entity among other sub-agents

ISA 95 level Action’s automation levels L2, L1–L3. See Section 5.6

Real-time capability Requires or not hard real-time execution for its functionality Yes, No

Source type info. Sub-agent’s info. source (data/hardware/both) Data/hardware/both

Communication base Communication-based concept/theory/protocol (direct or indirect) Control net protocol—CNP, ACL, FIPA specification

Key properties Social primary properties or abilities Autonomous: control over its behavior

Related work Has a preliminary design? Author name, standard
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A RA has four main modules with specific characteris-
tics. One of these is the Control Module that is connected
with the I/Os (sensors and actuators signals) of the plant
hardware. From this module, the data of the control vari-
ables are sent to the actuators and the information from the
sensors is measured. A Diagnosis Module detects failures
within the sub-agent’s status, which identifies the existing
situation based on the sensor data (signals measurements or
other sub-agents’ messages from Agent Interaction). Table
6 shows the design pattern for the RA in production plants
[19, 28].

Incoming sensor measurements are processed in order to
detect sensor failures. In this case, the Diagnosis module
connects to the Knowledge base module, and it specifies
the system model to the corresponding technical device.
Afterwards, each sub-agent reviews the parameters of
the technical specific system from the MAS architecture.
It also preserves the processes inside the explicit limits.
Redundant sensor measurements are calculated using ana-
lytics. These “virtual” data from I/Os provide for the fault
state based on the Diagnosis module (a result of the com-
pensation failures). Finally, the Planning module contains
local goals and negotiates time schedules for message
exchange with other sub-agents. Additional three basic en-
tities from FIPA standard have discovery dedications: a
sub-agent called Agent Management System (AMS), the
Message Transport System (MTS), and the Directory
Facilitator (DF). Robustness against errors should be

enhanced by using direct connections between sub-agents.
The AMS allows the bidirectional mapping between IP-ad-
dresses and sub-agents’ identifications. In addition, the RA
contains communication interfaces to update error status
through message interactions, delivered to sub-agents in
higher heterarchy levels (e.g., AMS).

Table 7 shows the list of identified sub-agents for the MAS
based on the RA pattern in [27].

4.2 Design pattern for plug and produce of MFS

Fischer presents a MAS architecture in [32] that provides ba-
sic entities (sub-agents and modules) for the coordination of
an entire MFS. Figure 2 illustrates the general implementation
scenario of the approach based on Fischer’s static graphic
models. Table 8 shows the design pattern for MFS according
to Fischer’s MAS architecture [32].

This MAS approach is self-motivated in only one of
the MFS’s modules. It contains the sub-agent called
AMS, the DF, and the MTS, all of them from FIPA stan-
dard. These are used in the same manner as presented by
Wannagat et al. [19, 28] in Section 4.1. Fischer’s pattern
focuses on the MFS, but both patterns (Fischer-Wannagat)
are used for the real-time intelligent conveyors’ re-
routing. AMS comprised of methods for registering or
deregistering a module from/to the MAS. The DF allo-
cates orders to the agreeing module and sub-agents by
a l l o c a t i n g t h e e q u i v a l e n t p r i n c i p l e s i n t h e

Fig. 1 Identifications of RA
pattern inWannagat’s architecture
[27]
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Communication Agent. The Order Agent executes the re-
ceived module’s demands. It manages whether the module

could fulfill the demanded order and, if that is possible, it
supplies the order into a list containing scheduled re-

Table 7 Identification of sub-agents patterns for the resource agent as used by Wannagat [27]

Sub-agent name Main functionality ISA 95
level

Real-time Source type
info.

Communication base Key properties Rel. work

Resource agent Deliberates and reasons
about the demanding
task to answer to the
PM with an offer

L0–L2 Yes Hardware Fieldbus IEC 61158
Industrial Ethernet,
EtherCAT

Autonomy,
reactiveness

[7, 19, 28,
32]

Agent interaction Allows remuneration
between software
objects at runtime
depending on the
current situation set

L0–L2 Yes Data/hardware Cooperativeness

Communication
agent

Coordinates the
message-based
communication
between the agents
on a single PLC or
net PLC

L0–L2 No Data Cooperativeness,
reactiveness

Agent management
system

Contains methods for
de/registering module
to/from the system

L2 Yes Data FIPA specification Cooperativeness,
proactiveness

Process agent Supervises and handles
global tasks that
concern the whole
system (e.g., check
global errors)

L0–L2 No Data Cooperativeness,
proactiveness

Table 6 Reconfiguration of faulty devices MAS (Wannagat [27]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility, reliability, and reconfigurability

Pattern type MAS implementation concept for faulty sensor or actuator identification in automation systems

Pattern name Agent@PLC

Pattern description Main part is the resource agent (RA), and three more sub-agents. See Table 7.

Context/area of
application

Solution adapts the actual values with appropriate changes instead of using worst-case values in predefined replacements.
The process operation time will be longer under the prerequisite that the process operation is still beneficial with reduced
precision, speed, etc. This leads to higher availability in different context and domains

MAS-architecture Hybrid-pattern replaces faulty sensor value with virtual one, calculated based on other sensor’s and model’s information
(MDE based calculation). The faulty sensor has to be identified. The possible decrease in correctness is identified; the
virtual sensor is used until the real one is available again

Solution See Fig. 1

Knowledge base and
processing

Object-oriented and agent-based concepts (OOP) and Systems Modeling Language (SysML)

Learning/knowledge
acquisition

Possible, filtering wrong values

Implementation IEC 61131-3

Real-time properties Hard real-time capable thanks to the resource agents’ behavior into physical plant devices such as PLC

Dependability Higher degree of dependability of the MAS–failures of plant components detected by virtual sensors

MAS autonomy It is half-half dependable–individual control agents represent and control technical plant units (e.g., machines) to allocate
their services encapsulated [28]

Others Application uses three different type virtual sensors
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quests. There is also a System Agent with two main re-
sponsibilities. First, it provides the module report checked
in the module’s knowledge base to the Coordinator.

Secondly, it processes from Order Agent requests. The
Coordinator is the highest authority of the system that
initiates the registration or deregistration of modules and

Fig. 2 Identification of MFS
patterns in Fischer’s architecture
[32]

Table 8 Design pattern for MFS (Fischer [32]), according to the introduced classification

Criteria Descriptions

Pattern category Reconfigurability and flexibility (changeability) pattern

Pattern type Agent control approach enhancing the flexibility and reconfigurability of MFS

Pattern name Plug and produce of MFS

Pattern description There are five sub-agents with FIPA specifications. See Table 9

Context/area of application Logistic domain

MAS-architecture Reactive

Solution See Fig. 2

Knowledge base and processing 1) MAS system: agent is implemented with the module’s control code on an individual PLC. 2) Coordinate
system approach: use of two different types the module and global coordinates system

Learning/knowledge acquisition No

Implementation Sub-agents: FIPA and ADS (automation device specification) protocols, implemented in IEC 61131-3. Low level:
IEC 61131-3, object-oriented extension

Real-time properties Yes, since PLCs are hard real-time systems they have to ensure constant cycle times to read/write/process all the
MFS signals

Dependability No

MAS autonomy Half-half autonomy thanks to acting individual agents, which are capable of communicating to give a task, but, a
coordinator connects the MAS to superordinate levels

Others Re-routing considers not only transportation abilities but also manipulations, which need to be performed in order
to fulfill an order correctly
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the recalculation of the system KB at startup or when the
system configuration changes. Table 9 shows the list of
sub-agents for the MAS architectures for MFS design pat-
tern [32].

A Control Agent directly communicates with the field con-
trol level through Program Organization Units (POUs), and
represents the lowest entity in the MAS heterarchy [15]. A
POU gets information or module requirements for founding

Table 9 Identification of sub-agents patterns for MFS as used by Fischer [32]

Sub-agent name Main functionality ISA 95
level

Real-
time

Source type
info.

Communication base Key properties Rel. work

Agent
management
system

Contains methods for
de/registering module
to/from the system

L2 Yes Data FIPA specification Cooperativeness,
proactiveness

FIPA, [7, 37]

Coordinator agent Initiates add or removal
modules (highest
authority)

L2 No Data Automation device
specification (ADS)
protocol

Autonomy,
proactiveness

Communication
agent

Transfers and receives
information of agents via
ADS and Ethernet
communication

L0–L2 Yes Data/hardware Cooperativeness,
reactiveness

Order agent Manages the incoming
module sub-orders

L0–L1 Yes Hardware Cooperativeness

System agent Module description and
processes sub-orders
provides

L2 Yes Hardware Cooperativeness

Control agent Communicates with the
control POUs to get
data/starts actuators
connection to the
hardware

L0–L1 Hardware Reactiveness

Fig. 3 Patterns for self*-control MAS in Ryashentseva’s architecture [38]
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the module’s KB. Individually, one of the sub-agents and
modules recorded above are implemented as an individual
Function Block (FB) into PLC software and a device. The

module’s capabilities and agents are bounded by techniques
given to the equivalent FB following object-oriented exten-
sions with IEC 61131-3 languages [15].

Table 10 Agents pattern for self*-control architecture (Ryashentseva [38]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility pattern

Pattern type Supervisor-based self-adapting architecture

Pattern name Agents and SCT based self*-control architecture for production systems

Pattern description Pattern consists of five sub-agents. See Table 11

Context/area of
application

Applicable in different context and domains

MAS-architecture Hybrid (the high-availability agent reacts on the failures of the other sub-agents proactively, while other agents operate
reactively)

Solution See Fig. 3

Knowledge base and
processing

Meta-model and ontology/inference machine and meta-model

Learning/knowledge
acquisition

Learning is possible: fuzzy-model is located in supervisor agent and can be learned through the experience of rescheduler
agent and executive agent

Implementation Modeled by SysML, implement with FIPA standard

Real-time properties Hard real-time capabilities since the executive agent exchanges data with sensor, actuator and other hardware agents (e.g.,
PLC); Other sub-agents in real-time are working on a request, selecting a suitable resources

Dependability MAS is valid to provide higher reliability, reconfigurability, security and safety

MAS autonomy Knowledge base is edited autonomously; reconfiguration is not autonomously

Others Domain specific knowledge and model are editable during run-time

Table 11 Identification of sub-agents patterns for self*-control as used by Ryashentseva [38]

Sub-agent
name

Main functionality ISA 95
level

Real-time Source type
info.

Communication base Key properties Rel. work

Executive
agent, EA

Exchanges data with sensor, actuators
and other hardware agents (e.g.,
PLC), safety maintenance (with SA)

L0–L1 Yes Data/hardware FIPA specification Cooperativeness [7, 16, 32]

Supervisor
agent, SA

Communicates ERP/MES and
peripheral systems, process
optimization, decision making,
resources’ plans (with DA)

L2–L4 Yes Data/hardware FIPA specification Cooperativeness [32, 51,
52]

Dispatcher
agent, DA

Dispatches the system (with HAA);
knowledge base (resources,
services, modes); provides the
control rules, plan services and
resources (with the EA and SA)

L1–L2 Yes Data/hardware FIPA specification Cooperativeness,
reactiveness

[27, 32]

High
availability
agent, HAA

Provides safety maintenance (with
EA); fault tolerance: back-up
controller; security: leakage
protection; safety: system work
check; dispatcher of the crossed
tasks (DA)

L0–L1 Yes Data/hardware FIPA specification Cooperativeness,
autonomy

[16]

Rescheduler
agent

Implementation resources
configuration (with SA/DA); KB
tuning (DA); mode identification
together with EA and SA

L1–L2 Yes Data/hardware FIPA specification Cooperativeness,
autonomy

[16, 27,
51, 53]
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4.3 Design pattern for agents with self*-control

The MAS architecture with self-control from Ryashentseva [38]
consists of five logically and physically separated sub-agents

cooperatively performing different tasks (see Fig. 3). The tasks
of each sub-agent in this pattern are evenly allocated between
them, describing all the necessary functions and properties of the
cyber physical control system, e.g., from the field level, where

Table 12 Design pattern for resource access (Lüder [16]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility, adaptability, and agility pattern

Pattern type Resource access pattern enables coordination of resources and decoupling of control layers. A structure of
interacting resource related agents is applied enabling processing capability aggregation

Pattern name Resource access design pattern

Pattern description Two mandatory types of sub-agents: the resource related agent and order agent. See Table 13

Context/area of application For any production system control and its architecture representation

MAS-architecture Hybrid

Solution See Fig. 4

Knowledge base and processing Ontology/processing: sub-agents types will execute a negotiation process based on a contract net protocol

Learning/knowledge acquisition No

Implementation Implementation of production process related capabilities and their control; FIPA specifications

Real-time properties Yes, hard real-time capability through to the resource related agent type

Dependability Medium maintainability since the product type information agent stores detailed info about the product ordered,
the maintenance actions and others

MAS Autonomy By one sub-agent type providing decision support

Others Representation of the forming of agent coalition and physical resource access, which are required for production
process execution

Fig. 4 Resource access design pattern from Lüder et al. [16]
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the communication with legacy systems is considered, to the
highest levels of automation pyramid, where the availability of
resources is also considered to produce the highly customized
product. For example, the High-Availability Agent is responsible
for safety and security functions, whereas the Rescheduler Agent
is in charge of data processing inside the process control. This
last sub-agent also ensures the availability of all necessary re-
sources of the system. The Supervisor Agent performs supervi-
sory tasks concerning data processing in the MAS and process
optimization. Table 10 shows the pattern and Table 11 shows the
list of sub-agents of the MAS self*-control architecture [38].

The Dispatcher Agent manages access to the system
functions and deals with the knowledge base to ensure
sustainable control. The Executive Agent is used to com-
municate with and control the legacy systems that are used
now in the industry. This MAS control architecture con-
tributes to high product customization and quality due to
its low development and implementation costs. The univer-
sal features of the proposed control system make its oper-
ation and adaptability feasible for different uses in the
industry.

4.4 Resource access design pattern

The resource access design pattern presented by Lüder et al.
[16] is shown in Fig. 4. It consists of a Resource Related
Agent that provides process-related capabilities to the global
MAS by registering them with the Resource Capability
Monitoring Agent. Control devices (e.g., PLC, RNC, CNC,
etc.) typically implement the single resource-related parts of
the manufacturing process. These execute control modules
and software with hard real-time reaction (often < 1 s). One
category of the Resource Related Agent is the Field Control
Agent that provides fundamental means to access and directly
interact with the field control level by applying timing restric-
tions. The second sub-agent is the Aggregating Agent, which
has not a direct access to the field control level, but it is also
able to organize actions of other resource related agents by
integrating them in a higher-level action. This sub-agent gains
more multifaceted abilities by controlling the coordinated ap-
plication of the underlying abilities.

Table 12 shows the design pattern of the resource access in
production plants [16]. Table 13 shows the list of sub-agents
used by Lüder et al. in this pattern [16].

The classification criteria for MAS manufacturing control
from the Section 3 have been applied. The four patterns used
in this classification were selected based on preliminary work
of authors in [18], which demonstrated that patterns could be
identified despite their different terminology. By applying the
classification to 20 different MAS (see Section 5.6), there is a
necessity to differentiate the classification of sub-agents of
each MAS architecture. In the following section, the patternsTa
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included in MAS approaches will be classified further based
on similar function terminologies and automation levels.

5 Common functionalities and automation
level patterns (RQ3)

In this part, the application of the introduced approaches in
Section 4 and their pattern identification are discussed.

Abstracting a logical composition of CPPS and the scope of
its application’s environment suggest the practice of composi-
tional architecture [5, 40, 54, 55]. CPPS functions with services
can be implemented by recombining the features of the differ-
ent types of sub-agents or components inside the MAS ap-
proach. Regarding the design patterns from the MAS models
analyzed, the authors of this manuscript showed in Section 4
that the approaches do not follow the same structure with com-
parable heterarchy (agent’s hierarchy) of the MAS, although
these are similar in certain functional respects. The heterarchy
refers to the field of application of the sub-agents in the auto-
mation levels (e.g., often associated by ISA 95 levels).

Functionalities refer to the sub-agents’ services (functional
requirements) and the quality of them (non-functional require-
ments) [21]. The flexibility of manufacturing systems is real-
ized by an agent-based control. To apply the agent-based con-
trol in practice, it requires a balance between modular and
integral MAS designs. According to Ribeiro in [5], the
MAS’s structure types regarding the modularity can be de-
fined as modular MAS and integral MAS. The modular archi-
tecture is composed of hybrid modules interconnected to re-
spectively well-defined interfaces. The integral architecture
contains multiple functions, and interacts with many agent
interfaces and often has no discernable modules.

As already mentioned in Section 1.1, the superficial MAS
pattern description does not satisfy the aim of this paper to
create a ready-made solution. Consequently, it is necessary to
identify more specified pattern definitions. Based on the anal-
ysis of the collected approaches, this section focuses on the
common sub-agents and their action fields, which are usually,
applied in the MAS architectures. The next section introduces
patterns called resource access, knowledge base, coordination
process, and communication interface. According to the anal-
ysis, the identifiedMAS solutions are aligned with these func-
tion terminologies—as part of functional requirements—al-
though sometimes with different names.

5.1 Resource access common function

Resource Access (RA*) is a common function closely related to
the hard real-time capabilities of the MAS. For example,
Wannagat’s Resource Agent (Section 4.1) is a type of a modular
architecture. Its four modules contain limited application cases
and the RA modules interact over specific interfaces (e.g.,

Agent Interaction interface or Communication agent). RA is very
similar to the MFS architecture from Fischer (see Figs. 1 and 2),
and also to another work of MFS in [37]. A sub-agent module
from Fischer, called Application agent, encompasses the system
behavior. However, a MAS architecture includes other three sub-
agents with additional modules: order agent, system agent, and
control agent. Fischer’s architecture can be considered as a mod-
ular architecture based on agents’ entities and modules.
Furthermore, this MAS has crucial similarities with the RA of
Wannagat [19, 28]. Instead, Ryashentseva (see Fig. 3) and Lüder
et al. (see Fig. 4) approaches are integral architectures where the
MAS have similar sub-agent types: the executive agent and the
field control agent. Both provide basic abilities and interact with
all components and real-time devices in the field control level,
respectively.

All specified behaviors of the MAS architectures and their
interactions across the defined interfaces are identical.
Besides, the goals of resource agent, application agent, exec-
utive agent, and field control agent include direct connectivity
with the field control level to get data from sensors and actu-
ators in order to manage the incoming module orders.

5.2 Coordination process common function

The MAS architectures from Ryashentseva and Lüder et al.
present production processes with related capabilities to coor-
dinate an overall system by managing the internal components,
such as a supervisor agent, rescheduler agent, and resource
capability monitoring agent. These types of sub-agents are gen-
erally located higher in theMAS heterarchy and are parts of the
Coordination Process (CP) pattern function. CP defines the
boundaries for the sub-agents’ operations and reconfigurations
in order for them to stay within the adequate limits (e.g., re-
strictions of RA). The description of Fischer’s MAS architec-
ture has three main entities: the AMS, DF, and the specific
Coordinator Agent (see Section 4.2). RA from Wannagat has
an exclusive sub-agent for the coordination process and its
functionality is covered by the Diagnosis module and
Planning module (see Section 4.1). All the sub-agents shown
in this section could be grouped into the CP function, since
these are based on FIPA standard and contain methods for de/
registering modules from/to any MAS approach [7, 19, 38].

5.3 Knowledge base common function

Another crucial MAS pattern is the Knowledge Base (KB).
For Wannagat, there is a KB module, which includes an ex-
plicit system model of the consistent technical component as
local knowledge. Fischer uses the same pattern divided in the
System KB and the Module KB. In the case of the integral
architectures, there are clear examples with Ryashentseva (see
Fig. 3) and Lüder et al. (see Fig. 4) approaches, since both are
just based on agents’ entities with specific tasks. Another
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similarity of the self-control architecture is the presence of the
Dispatcher Agent. This sub-agent is comparable to the KB
characteristics of the Resource Related Agent. In general,
the KA should contain an explicit system model of the corre-
sponding technical component as local knowledge. The com-
ponents (sub-agents, modules, and databases) composing the
KB function are able to check whether the values of the pa-
rameters of the technical systems and processes do not violate
the predetermined constraints [7, 28, 38].

5.4 Communication interface common function

The Communication Interface (CI) function enables and ab-
stracts communication in between all components (sub-
agents, modules, databases, etc.) of all ISA 95 levels.
Different platforms via open communications interfaces
(e.g., industrial Ethernet, Profibus) and appropriate communi-
cation protocols (e.g., based on JADE, applying JAVA and
FIPA ACL Messages [31, 39, 56]) have to be accepted by
the CI function. These communication interfaces are also used
for sending errors and state messages to the sub-agents ranked
higher [15, 19, 28, 32, 38]. For example, the Communication
Agent, from Fischer, transfers and receives information of

sub-agents via ADS protocol (ADS, automation device spec-
ification) and Ethernet communication [7, 32]. Tasks of the CI
function are compared with the specific goals of the interfaces
from RA, which are called Agent Interaction and Status. From
Ryashentseva (see Fig. 3) and Lüder et al. (see Fig. 4) ap-
proaches, there are additional sub-agents called High
Availability Agent and Aggregation Agent with special pre-
dictive abilities for maintenance purposes. However, in com-
parison with the Wannagat and Fischer design patterns,
Ryashentseva and Lüder et al. do not clearly define the sub-
agent designated to the CI function.

5.5 Summary of the common functionalities

Comparing the designed patterns in Wannagat, Fischer,
Ryashentseva, and Lüder et al., Fig. 5 shows a summary of
them regarding the common functional requirements
discussed in this section. The four circles represent the KP,
CP, CI, and RA* as well as based on the internal MAS com-
ponents (sub-agents, databases, and modules). In Fig. 5, it is
shown that RA*, CP, and KB are often implemented by the
authors (more MAS components elements are inside the cir-
cles) than CI, which was considered only by Wannagat and

Fig. 5 Summary of the comparison of Wannagat, Fischer, Ryashentseva, and Lüder et al. MAS approaches to map common functional requirements
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Fischer. Additionally, some MAS components (e.g., high
availability agent) do not assign a functional pattern, but these
can apply appropriate quality controls (non-functional
requirements).

5.6 Automation levels and features of sub-agents
patterns

This part explains the most important patterns and their fea-
tures. Sub-agents have been specified and applied in the auto-
mation levels mapped into the ISA 95/IEC 62264 standard,
with open software and technologies application. The stan-
dard follows the traditional automation pyramid (five levels:
L0-L4) where the Plant Level (L0) is the lowest level. The
identified sub-agent patterns show some random elements
with proprietary interfaces that are often used in the industrial
control (e.g., mostly PLCs implementing IEC 61131-3 lan-
guages programs). Next, Device Level (L1) includes the most
popular sub-agent called RA. The components of this level
have typically control devices’ Reaction time (10 ms < RCτ <
1 s). From the functional point of view, RA covers the com-
ponents of a manufacturing system in the real world (L0), with
the lowest RCτ (partially < 1 ms). RA is also a part of the

SCADA Level (L2), with both hard and soft real-time capa-
bilities (1 s < RCτ < 60 s). The Process Agent is the most
popular sub-agent for the MES Level (L3), with medium re-
action time (1 h < RCτ < 1 day). PA sub-agent pattern usually
supervises the execution of a production recipe/plan, and in-
teracts with RAs and AMSs to achieve this goal. In contrast to
AMS, PA is not responsible for the technical system but for
the production recipe, since it usually requires non real-time
capabilities. The MOM/MES functionalities are often results
of negotiations/collaborations among different RAs, AMSs,
and PAs. In this manner, human operators can revise produc-
tion orders and rescheduling decisions that result in those ne-
gotiations. Another popular sub-agent here is the
Communication Agent (often in L1-L3) that converts propri-
etary interfaces into multiple protocols. If for example some of
the RAs request has to be linked to upper automation levels,
they usually communicate via CA in protocols such as ADS,
OPC UA, and FIPA specifications. Figure 6 shows the orga-
nization of the sub-agents in the automation pyramid for the
Industry 3.0 and its migration to the adapted “diabolo” archi-
tecture [57] for Industry 4.0.

The left part of Fig. 6 shows traditional automation levels
with all identified sub-agents. The vertical integration of this

Part a)             Part b)

Fig. 6 Migration from the traditional levels of the automation pyramid
(part a) to the “diabolo” [57] topology (part b). @: Sub-agent pattern;
AMS, agent management system; CA, coordination agent; CBM,
condition based monitoring; CMC, collaborative manufacturing
community; CPPS, cyber physical production system; DMC,
decentralized manufacturing community; DSS, decision support system;
H, horizontal integration; IIoT, industrial internet of things; KPI, key

performance indicator; L, life-cycle integration; MAS, multi-agent
system; MES, manufacturing execution systems; MOM, manufacturing
operations management; OEE, overall equipment effectiveness; PA,
process agent; PHM, prognostics and health management; QMS,
quality management system; RA, resource agent; RCS, resilient control
system; RT, real-time; SAP, systems applications products; SCADA,
supervisory control and data acquisition; and V, vertical integration
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pyramid is one of the essential challenges for the dynamic
evolution of Industry 4.0 [57]. Therefore, the right part intro-
duces the adapted Distributed Architecture to Bolster

Lifecycle Optimization or “diabolo” from [41]. This part of
Fig. 6 shows the crucial functions of an MES within the top
cone and device level processes (real and non-real-time) on

Table 14 List of sub-agents patterns for MAS architectures extended from [18]
Pa

tte
rn Sub-agent name ++Resource

Agent (RA)
++Process Agent
(PA)

++Agent
Management
System (AMS)

+Communication
Agent (CA)

Others
(no pattern)

Common functionality KB, RA* KB, CP KB, CI, CP KB, CI KB

ISA 95 level 0–2 2–3 1–2 1–3 0–4

Type of agent [8]

(reactive or proactive)
epocsSAMevitcaernetfOevitcaorpnetfOevitcaorpnetfOevitcaernetfO

M
ai
n
au

th
or

la
st
na

m
e

Badr –RA ±Job@ ±Service@ – Job group@ Smart 

manufacturing

Brehm et al. ++(RA || field
related@)

– ++Gateway@ ++Broker@ Operator@
(HMI)

Energy systems

Cruz et al. ++RA ++(Product@ &

diagnosis@)

++AMS – – Smart 

manufacturing

Fischer ++(Control@ &

order@ &

system@)

++Coordinator@ ++AMS ++CA – MFS

Folmer ++Control@ +Process@ +System@ ++CA – Smart 

manufacturing

Legat ++Execution@ ++(Supervision@ &
reconfiguration@)

++AMS – – Smart 
manufacturing

Lüder et al. ++(RA || field

related@-RRA)

++Decision

support@-DSA

++(Order@ &

product type
info related@)

– Resource

capability
monitoring@,

(type of DSA)

Smart 

manufacturing

M. Hoffmann +(Autonomous@ ||
transport@-

specific)

++ (Coordination@
|| manufacturing,

specific@)

– +Customer@ ERP
Interface@

Smart 
manufacturing

Nieße A. +Control@ +Planning@ – – – Energy systems

P. Hofmann +Control@ – +Rule set

adaptation@

– Image

object@

Image

processing

Pech ±User@ ±Query

management@

±Query@ ±Ontology@ Information

retrieval@

Information

processing

Rauscher – ±(Coordination@ &
rule instantiation@)

±Model
related@

– Rule@ Information
processing

Regulin et al. +Module@ ++Coordinator@ ++AMS – – MFS

Rehberger ++RA ++Product
management@

– +@interaction – Smart
manufacturing

Ryashentseva ++(Executive@ &

rescheduler@ &
dispatcher@)

++Supervisor@ – – High

availability@,
HAA

Smart 

manufacturing

Schütz ++RA ++PA ++(Control

strategy@ &
system@)

++(CA ||

@interaction)

– Smart 

manufacturing

Theiss +Plant@ ++(Test

coordination@ &
monitoring@)

±Analysis@ +Test@ – Communication

agent

Ulewicz ++(Hardware@ &

system@)

– ++AMS ++(CA &

system@)

– Smart 

manufacturing

Vogel-Heuser et al. ++Plant@ ++(Coordination@

& customer@)

++AMS – – Smart 

manufacturing

Wannagat ++(RA ||
control@)

++(PA & system@) ++AMS ++(CA ||
@interaction)

CPPS plant@ Smart 
manufacturing

Notations: same colors mean these are following a similar pattern with these degrees of “likeness”: ++High; +Medium; ±Low; −Very low or nothing.
Symbols for logical representations are & (and) sub-agent are complementary; || (or) sub-agent are similar. The names are reduced replacing “agent”
word by the “at” sign (@). References of the works are: Badr [58]; Brehm et al. [59]; Cruz et al. [31]; Fischer [32]; Folmer [48]; Legat [53]; Lüder et al.
[16]; M. Hoffmann [41]; Nieße A. [35]; P. Hofmann [52]; Pech [42]; Rauscher [51]; Regulin et al. [37]; Rehberger [19]; Ryashentseva [38]; Schütz [28];
Theiss [39]; Ulewicz [7]; Vogel‐Heuser et al. [40] and Wannagat [27]
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the bottom of the diabolo. Direct and indirect communication
ways are enabled in the bottom of the cone of the diabolo. The
agent-based CPPS architecture with the four patterns (RA, PA,
CA, and AMS) attempts to harmonize the data exchange be-
tween these two cones (e.g., using modeling language for
technical specifications and evaluation of the processes and
resources by Overall Equipment Effectiveness).

The list of all identified sub-agents is shown in Table 14
and organized in the automation pyramid of Fig. 6 (left side).
In the last case, the AMS is also the main pattern of the L1-L2
levels, since this sub-agent can be mapped in a bidirectional
way between sub-agents’ identifications. The AMS provides a
unified interface that makes it possible for every component of
the same type, regardless of the provider, to be reached with
the same protocol. A major requirement for the sub-agents
introduced in the L0-L2 levels is that they should be execut-
able in a hard real-time operating system and should follow the
hardware settings. The top-level (L4) of ISA 95 has the longest
reaction time for the ERP system with long-term schedules (8 h
< RCτ: < 1 week). L4 components should provide a human
interface and interface with eventually cloud services.

Regarding the sub-agents identified, there are not many sub-
agent types, which mainly provide patterns to create orders or
get status information about this level. An example out of the
patterns in the L4 is the ERP Interface Agent from Hoffmann
[41] that establishes via OPC an internal information exchange
with the ERP. More extended specifications and pattern descrip-
tions of these main sub-agents are scoped in the next section of
this paper.

6 Agent-based CPPS architecture for I4.0
component evaluation (RQ4)

The I4.0 focuses on key aspects of smart manufacturing that can
be explained as interactions between the following features [47,
60]: i) horizontal and vertical integration through value networks
and within a factory or production shop; ii) life cycle manage-
ment that refers the end-to-end engineering; iii) the human beings
coordinating the stream value; and iv) the security to achieve the
confidentiality, integrity, and availability of assuring data (trans-
fer and storage). Likewise, the mass personalization known as

Fig. 7 The landscape of the RAM I4.0’s axes and their optional norms
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the Additive Manufacturing can combine the smart manufactur-
ing to a paradigmmove for the I4.0 [61]. In order to facilitate and
promote the smart manufacturing aspects mentioned above,
RAMI 4.0 provides a flexible architecture based on functions
and information levels within 3D dimensions. As illustrated in
Fig. 7, there are different applicable standards [47], to follow the
guidelines in the RAMI 4.0 model.

The RAMI 4.0 model provides a structured view of the
multiple levels (even a specific Asset level) using an architec-
ture consisting of three axes (see Fig. 7). The aim of the model
is to create manageable segments (sub-models) by combining
the different axes at each point in the asset’s phases, to repre-
sent each relevant characteristic. The following items describe
the RAMI 4.0 axes distribution [47, 60]:

& The first axis is named the “Architecture hierarchy”. It is
based on the traditional IEC 62264-1 (ISA 95) and IEC
61512-1 (ISA 88) standards and their levels’ hierarchies.
The goal of this first axis is to define assets and their com-
binations with the necessary precision, since the description
of RAMI 4.0 is a purely logical one.

& The second axis is named the “Layers.” This one uses six
layers to represent the relevant information for the multiple
assets’ roles: Business, Functional, Information,
Communication, Integration and Asset.

& The third axis is named the “Product life-cycle.” Based on
IEC 62890, it represents the lifetime of an asset and the
value-added process.

In the next section, the authors of this paper address the
alignment of sub-agent patterns with the RAMI 4.0 model by
comparing only two dimensions. Many similarities can be
found between agent-based architecture for CPPS and the
RAMI 4.0; however, the Product Life-cycle axis is out of this
paper’s scope.

6.1 MAS architecture based on RAMI 4.0 model

Regarding the Layers axis, theMAS proposed based on patterns
should describe the I4.0 components in terms of properties, sys-
tem structures, specific data and functions, and their external
behavior. Since the present layers do not conform to the ISO-
OSI guidelines, it is not mandatory for a RAMI 4.0 layers to
provide the corresponding information. As a result, some layers
can also be ignored in specific domain systems that are not
applicable. A layer just characterizes parts of asset’s behaviors
and their connection between adjacent layers. A possible defini-
tion for the agent-based CPPS architecture is proposed in the
upcoming paragraphs.

An Asset is a physical/logical item having actual value to the
organization [34, 60] (e.g., products, equipment, software, hu-
man resource, standards, and documentation). In case of a phys-
ical asset, according to the IEC TS 62443-1-1, for industrial

control automation, the device under control can contain the
largest directly quantifiable value. The Asset Layer is the lowest
level of the RAMI 4.0 model because it reflects the physical
components, administrated by other upper layers, which are in
the cyber world.

The Integration Layer is a type of adaptation for the transition
among physical and cyber worlds. The main aim of this layer is
to convert a physical variable into a digital one. The resulting
data is converted according to specific formats. Therefore, the
Resource Agent is the most significant entity in this layer. For
example, RAs have the adequate subroutines to send and receive
data for a controller to regulate the speed in a conveyor (sub
function). Additionally, operator interactions could take place
in this layer, e.g., via Human Machine Interfaces (HMIs).

TheCommunication Layer covers connection lines according
to the guidelines of I4.0. This layer distributes information to
other I4.0 components and receives data back from them. The
base of the Communication Layer absolutely follows the seventh
ISO/OSI layer’s guidelines [47]. ACommunicationAgent, using
a uniform data presentation contained by the CPPS, can stan-
dardize the communication methods. In addition, CAs provide
services for control in the route of the adjacent Information
Layer. The definition of communication technologies within
I4.0, such as Machine-to-Machine (M2M) and Machine-to-
Business (M2B), e.g., the OPCUA (IEC 62541), clearly applies
to direct communication [34]. Other communication protocols,
such as FIPA specifications or MQTT, are much more flexible;
therefore, they enable indirect communication [31, 34]. For this
layer, the patterns AMS, DF, and MTS from FIPA can support
the Communication Layer and will be further explained in the
Functional Layer. For an agent-based CPPS architecture, the
scalability and the interoperability of industrial communication

Fig. 8 Agent-based CPPS architecture aligned into two axes of RAMI
4.0
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networks (IEC 61784) are decisive for numerous smart compo-
nents and functions as well (e.g., RFID sensors).

The Information Layer defines the information for signifi-
cant functions and data storage sites of a particular asset (i.e.,
the Cloud) [47]. The PA could be a logic abstraction for a
product in this layer. Since the PA holds its own information
of procedures and plans, it is responsible for coordinating its
own production. The PA pattern is a special entity of the agent-
based CPPS, which orchestrates the execution of processes
steps (with cooperative skills to interact with RAs, CAs, and
AMSs sub-agents). The Information Layer is important to un-
derstand the different partial models of all the sub-agents, in-
cluding existing data exchange formats for each specific case.
To fulfill the contents of this layer, its 4.0 implementation
should be based on models integrating different fields with
reliable and standard methods. Here, RAMI 4.0 suggests
Automation Markup Language (AutomationML) specifica-
tions, which trace a modular document structure with the
aim to join the diverse and modern engineering tools in their
heterogeneous disciplines (e.g., mechanical engineering and
electrical designs). Thus, for information models, the
AutomationML can enhance or adapt the existing XML-based
data formats, integrating AML and OPC (DIN SPEC 16592),
or using IEC 62424 (CAEX topology), ISO PAS 17506
(Collada), IEC 61131 (PLC open XML). It is also possible
to use engineering and designing tools, e.g., ISO/IEC 19514
(UML/SysML) [34]. For the semantics of AutomationML, the
standard’s properties from ISO 13584-42/IEC 61360 (eCl@ss:
classification and product description) with the Common Data
Dictionary (IEC 61360 CDD) can be applied. All of the above
comply with the standard for the Digital Factory (IEC 62832).

The Functional Layer follows the rules of I4.0 by assigning
all logical functions and services of the assets. These technical
functionalities get data from the Information Layer and depos-
it them back in the same layer, as methods and decision-mak-
ing logic (e.g., mathematical functions) [34, 47]. According to
the use case, these methods can also be executed in other
lower layers such as the Integration, Communication Layer
or Asset Layer. Therefore, AMSs have a fundamental role in
this layer, since it contains methods for registering and
deregistering modules to and from the system. Other leading
patterns are the knowledge base modules because they allow
the RAs or PAs to check whether the parameters of the tech-
nical systems and processes are kept within the predetermined
functional limits.

The Business Layer is the highest level that defines the
pertinent business procedures with their structure require-
ments and the business-related features of the assets
(e.g., regulations, legislative requests, contracting, and licens-
ing) [60]. This layer does not refer to any concrete systems
such as the ERP, since the Functional Layer (in the factory
plant context) usually sets the ERP’s functions. Since no

pattern was found that could fulfill the Business Layer’s re-
quirements, this layer will not be further researched in this
paper.

Each sub-agent located in the agent-based CPPS architec-
ture, as Fig. 8 shows, is not required to have a fixed location in
the RAMI 4.0 layers.

Given the model associates multiple layers in two dimen-
sions, each MAS component pattern is a primary part with a
specific role in its respective layer, but they are possibly joined
with the other adjacent layers, as described above.

There is another important second axis fromRAMI 4.0, the
Architecture hierarchy that represents the hierarchy position
of functionalities and responsibilities within the factories/
plants. This functional hierarchy is not only the equipment
classes or the automation levels of the classical pyramid. As
mentioned above, this axis follows the ISA 95 and ISA 88
standards to realize the classification within the plant (see Fig.
8) [47]. However, RAM I4.0 considers other levels to cover as
many areas as possible from traditional industry to the new
factory automation. New terms based on ISA 95 levels (see
Section 5.6) are established such as the Enterprise Level (L4),
Work Unit Level (L3), Station Level (L2), and Control Device
Level (L1). I4.0 considers other multiple equipment or sys-
tems within the factory because not only the controllers are
decisive for this one. Therefore, the Field Device Level (L0)
has been added below the Control Device Level, and it is a
practical level of a smart field device (e.g., an MAS RFID
intelligent sensor [62]). Moreover, not only the plant and its
equipment are essential in I4.0, but also the products to be
factory-made itself. Then, RAMI 4.0 adds the Product Level
as the lowest level that allows standardized consideration of
the product to be mass-produced and the manufacturing capa-
bility (with their relationships).

An addition has also been made at the highest end of the
Architecture hierarchy axis. The two ISA/IEC standards cited
only define the levels within a plant (see Section 5.6).
However, I4.0 goes further by describing group corporations,
interdependencies, and net of factories (e.g., alliance with out-
er engineering companies and component suppliers/cus-
tomers). Consequently, the Connected World Level has been
added to observe above and outside the Enterprise Level.
Regarding the heterarchy sub-gent’s patterns in this axis, their
locations are based on the first (Lo) to last (L4), as ISA 95
automation levels mention. Consequently, the Connected
World and the Product levels are out of the agent-based
CPPS architecture proposed in this paper.

6.2 Design pattern for the administration shell

For this section, from [1, 34], there are specific terms as im-
portant definitions for I4.0:
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& The Industry 4.0 component (henceforth, I4.0 component)
is a “globally uniquely identifiable participant with com-
munication capability consisting of administration shell
and asset within an I4.0 systemwhich there offers services
with defined QoS (Quality of Service) characteristics.”

& The administration shell is the “virtual digital and active
representation of an I4.0 component in the I4.0 system and
contains the manifest and the component manager.”

& The Manifest is an “externally accessible defined set of
meta-information, which provides information about the
functional and non-functional properties of the I4.0
component.”

& The component manager is “the organizer of self-manage-
ment and of access to the resources of the I4.0 component…”

Looking to fulfill the requirements for the CPPS and the
RAMI 4.0 (see Section 2.1), a general organization for the ad-
ministration shell based on the MAS can be developed. For this,
the I4.0 components for the CPPS proposed display an abstract
form that defines real objects. For example, these could be a
valve as a control element, a pipe as the controlled process, a
sensor as a measuring element, and a PLC’s algorithm as a con-
troller, etc. MAS architecture should be based on design patterns
described above, in both ways, physical (assets) to the cyber

(digital data). Moreover, Information and Communication
Technology (ICT) needs to increase additionally regarding the
appropriate smart manufacturing aspects such as the horizontal/
vertical integrations, product life-cycle, human’s interaction and
others, as mentioned at the beginning of this chapter. As shown
in Fig. 9, the administration shell contains the “Header” and the
“Body” parts. Both in order to provide better identification via
asset(s) designations [34, 47, 60].

The intention of this section is to describe a general imple-
mentation of I4.0 components using a sub model design with
the identified MAS patterns. A basic application of an I4.0
component is based on the suggested international standard
of AutomationML, as a method for the Information Layer, and
OPC UA for the Communication Layer. Both together could
realize the Body of the administration shell of the I4.0 com-
ponents with an agent-based CPPS architecture. For the
Header part, the CPPS provides an adequate unique identifi-
cation of the I4.0 component by a server. Also, the data rep-
resentation and its function access should be integrated.
According to RAMI 4.0 suggestions [47, 60], a unique iden-
tification of the object could be using a UUID (Universally
Unique Identifier) or URIs (Unique Resource Identifiers, e.g.,
for RDF). The AutomationML concept specifies every object
with a UUID that could be kept as long as the object exists.

Fig. 9 CPPS’s administration
shell for I4.0 components
(adapted from [60])
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For communication, the I4.0 component provides access to
technical functions pre-realized in the AMS sub-agent (with
their respective DFs and MTSs), in order to enable the access
to the representation of any asset’s information.

The Body part of the administration shell contains structured
sub-models which might denote information and functions [34].
A standardized format eCl@ss, which is based on IEC 61360, is
suggested to describe the data and functions in a diverse and
harmonize format. The features of all sub-models, in conse-
quence will always develop a comprehensible table of contents
(each I4.0 component and its respective associated manifest and
administration shell). As a prerequisite for required semantics,
the Header shall individually recognize administration shells,
Assets, Sub models and their properties globally.

This paper’s approach assumes that a physical asset type of
interest is controlled by open controller architecture (e.g.,
PLC) that implements lower level programing codes (e.g.,
IEC 61131-3). As the MAS design patterns are shown (see
Section 5), the sub-agents of the different assets type can be
located on all ISA 95 automation levels. Hence, for the oper-
ation of an I4.0 component, it has to be clearly specified,
which technical functions are provided by the component
and their configurations limits. For the PLC implementation
example, adequate variables for the code should be accessible
via functions with multiple OPC UA servers interlinked and
following a service-oriented architecture (SoA), proposed in
[34]. As a result, the administration shell of a I4.0 component
consists of multiple sub models (first is the MAS architecture)
and a nonempty set of interl inked designs (e.g. ,
AutomationML projects, mechanical computer-aided designs
or CADs, interconnecting FBs/POUs models, UML classes
diagrams, and others [47]).

Other standards can be applicable to MAS patterns and
aligned to RAMI 4.0 with multiple aims (see Fig. 7): The
VDMA 24582 (condition monitoring) for maintenance pur-
poses into the Asset Layer and Integration Layer. The ISO/
IEC 27000 for the security of management systems. The IEC

62443 used for the network system security and IEC 62351
for secure authentication [63]. The IEC 61511 applies the
functional safety and the IEC 62061/ISO13849 relates the
machinery safety. Software quality can be valued by ISO/
IEC 25010 and the ISO/IEC 25023 (SQuaRE method) [21].
Semantic web stack can follow the W3C consortium defini-
tions such as SPARQL, RIF/SRWL, RDF/S, and OWL.
Energy efficiency can refer to the ISO/IEC 20140. Finally,
configuration and programing typical tools are based on
C++ plugins for control languages (e.g., mostly in IEC
61131-3 or IEC 61499 [13, 14], IEC 61804 (FBs for process
control or electronics), and the IEC 62453 (Field device tool,
FDT).

6.3 Discussion of the CPPS and RAMI 4.0 requirements
evaluation

The majority of the requirements specified in Section 2.1 are
already partly completed by the design pattern of the proposed
MAS architecture. First, for the CPPS requirements (Req1.1-
Req1.5), the compatibility to different applications (Req1.1) is
warranted by the open software MAS architecture (see Section
5). Level independence (Req1.2) and platform independence
(Req1.3) are partly achieved by applying four types of sub-
agents: the RAs, PAs, CAs, and AMSs (see Section 5.6).
Using the TCP/IP as fundamental communication protocols,
(e.g., OPC UA) can solve parts of handling and recovery errors
(Req1.4), and allows the CPPSs networks to be accessed by
other applications. By distributing organizational sub-agents in
the cloud (e.g., the PAs, and AMs), the agent-based CPPS is
decentralized (Req1.5), as shown in Section 5. However, the
multiple platform acceptation (Req1.3) and the reconfiguration
of sub-agents (Req1.4) should be further examined by quanti-
tative experimentations. As a first assessment of the platforms
suitability, some experiments with these CPPS requirements
were measured into multiple platforms in [31].

Table 15 Research questions, hypotheses (see Table 1), and their evaluation

Research question Hypothesis Status result Proof section related

RQ1 (how describe MAS patterns?) RH1.1 (valid classification criteria) True 3

RH1.2 (similar design MAS pattern’s terms) True 4, 5

RQ2 (for which CPPS domains?) RH2.1 (different goals and benefits) True 2, 4

RH2.2 (only real-time requirements) Partially true 4, 5

RQ3 (which MAS patterns are reusable?) RH3.1 (functional–and non–requirements) Partially true 5

RH3.2 (specific sub-agents) True 5

RQ4 (how to aligned CPPS to RAMI 4.0?) RH4.1 (simple CPPS aligned to RAMI 4.0) Partially true 6

RH4.2 (administration shell capable) True 6
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Regarding the RAMI 4.0 requirements, the proposed I4.0
components support multiple engineering disciplines and
norms (Req2.1). For example, the MAS architecture is focus
on the software components (sub-agents’ patterns); it is also
possible to associate the physical connections of assets via
CAD diagrams, according to functional considerations of
AutomationML, as Section 6 mentioned. The MAS systems
boundaries (Req2.2) and nestability (Req2.3) principles for the
I4.0 components are aligned by the MAS’s organization in the
axis of layers and Architecture axis, respectively (see Section
6.1). The general administration shell model of Section 6.2
partially gets the virtual representation of I40 components
(Req2.4) and its functional properties (Req2.5), as shown in
Section 6.2. However, the agent-based CPPS architecture did
not specify non-functional requirements (Req2.5) yet, such as
precise quality characteristics (non-functional requirements)
or evaluation metrics attributes (e.g., degree to which the
sub-agents cover all their tasks and objectives). The summary
of the hypotheses evaluation according to the fourth research
questions (RH1.1-RH1.4) is shown in Table 15.

From the eight hypotheses (see Table 1), five are true, and
three are partially true, considering the evaluation of this man-
uscript’s authors, and the FA 5.15 expert discussions. These
results are extended by fulfilling preliminary requirements

(see Section 2.1) and represent the related sections of this
manuscript, as shown in Table 15.

6.4 Comparison of the agent-based CPPS architecture
to other approaches

Considering the two essential architecture types from
Trentesaux [22] (hierarchical and heterarchical interaction
entities), CPPS can be described through different designs
with advantages and disadvantages of the distributing control
decisions (see Section 2). Explicitly, hierarchy could be seen
as a type of “vertical control distribution”while heterarchy is a
type of “horizontal control distribution” [64]. The type of
architecture will define the quality characteristics of the
production system. Traditional approaches are included into
the Class 0 and Class I types of architectures, respectively
centralized and fully hierarchical. What is common in these
two architecture types is that they both have a main decision
node, where the planning and information processing are
concentrated [65]. These classes show better optimization
qualities, but a slow response and low tolerance to faults and
expansibility [65]. Thus, it is possible to construct a CPPS
architecture typology that is inspired by Computer
Integrating Manufacturing or CIM (e.g., [23]). The CPPS of

Table 16 Different classes of CPPS approaches

Name of the
architecture/author

CPPS approach Sub-agent pattern

Resource agent (RA) Process agent (PA) Agent management system
(AMS)

Communication agent
(CA)

Class 0: Centralized control systems

CIMOSA [23] Based on CIM +Resource −Capability set −Organization unit –

Class I: Fully hierarchical control system

ARC-SoA [24] SoA and CPS +Data adaptor −Data client agent – +Shared variable engine

iLand [66] SoA +Service manager +Control manager −Application manager +Communication
middleware

Lee et al. [54] Industrial CPS +Snapshot collection −Similarity
identification

−Synthesis optimized future
steps

–

Class II: Semi-heterarchical control system

ADACOR [25] HMS +Operational holon ++Product holon +Supervisor holon –

IDEAS [8] MAS ++Machine resource
agent

++Product agent +AMS +Transportation system
agent

Pollux [67] Hybrid control ++Resource decisional
entity

++Local decisional
entity

++Global
decisional entity

–

PROSA [36] HMS +Resource holon ++Product holon +Order holon –

This paper’s authors MAS ++Resource agent ++Process agent ++AMS +Communication agent

Class III: Fully heterarchical control system

D-MAS [26] MAS ++Delegate ant MAS ++Delegate MAS – ++Smart messages entity

Ueda legacy [68] Bio-inspired +Service +Service engineering – –

Notation of degrees of “equivalence”: ++High, +Medium, −Low/nothing
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Class 0 and Class I (one-level heterarchy) are applicable
for CIM, since these are based on pure hierarchical interac-
tions (e.g., [24]). On the opposite side, Class III uses full
heterarchical interactions to lead mostly distributed architec-
tures (e.g., [26]).

Class II CPPS architectures, being semi-heterarchical, can
be positioned in between because they can integrate both hi-
erarchical or heterarchical interactions (e.g., [25])—assimilat-
ing both advantages and certain disadvantages. The main

advantages of the hierarchical type are the robustness, predict-
ability, and efficiency. Then, in the CPPS approaches of Class
II, local decisions are made taking into account global criteria
and these are distributed to different controllers. Despite their
advantages, traditional methods do not show the capability of
adaptation due to the rigidity of the control architecture that as
a result weakly responds to changes. Such types of production
systems will not show the capabilities of responsiveness, flex-
ibility, and reconfigurability [65]. Therefore, an advantage of

Table 17 Advantages and disadvantages of CPPS classes [22, 64, 65]

Main features of CPPS approaches Classes

0-I II-III

Have short reaction delays (reducing long-term instability (e.g., bullwhip effect in supply chains) – ++

Make easier the procedures to initialize and reconfigure (plug and produce systems capability) and breakdowns recovery – ++

Increase product traceability and allow “smart” products (more active life cycle, e.g., distribution, logistics, inventory, generation,
design, effectiveness, and agility)

– ++

Permit robustness with external/internal unexpected changes to return on long-term investments (opposite to CIM scheme) – ++

Can include the lack of predictability, analytical solutions, and poor ability to define optimal loadings (e.g., cause deadlocks) – ++

Facilitate supply chain collaboration mechanisms (business agility). Systems can co-exist with several hierarchies ++ +

Optimize resources utilization (system extensions and unforeseen modifications are facilitated). – ++

Enable flexibility and reactivity to disturbances (Fault tolerant) – ++

Address a global optimization of the decision-making ++ –

Allow a limit complexity and facilitate system implementation ++ +

Get poor ability to extend the system, and make unforeseen modifications (additions are difficult to make) ++ –

Have poor reliability (paralysis of the levels below a point of failure) and poor fault tolerance ++ –

Notation of applicability: ++High, +Medium, −Low

Fig. 10 The robot integrated agent network “RIAN” (adapted from [69])
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the proposed agent-based CPPS architecture can be found
according to the classification of [64]. The proposed architec-
ture is classified as Class II type, since sub-agent interconnec-
tion is not strongly associated (not Class III), while there is at
least a strong sub-agent connection (not Class I) [64]. For
example, a unique RAs’ network (Class III) of the CPPS could
be a Class II control system with supervisory level sub-agents
(with PA or AMS). Other CPPS approaches [22, 64, 65] can
also support advantages of Class II as well as MAS, bionic,
bio-inspired (e.g., [68]), and holonic. Among the last named
CPPS approaches, the PROSA [36] and ADACOR [25] are
the most relevant architectures. In principle, each holon shall
represent a logical unit of the manufacturing system, while the
sub-agent patterns could help its actual implementation [8,
65].

In heterarchical control systems (Classes II or III), long-
term optimization could be hard to get and to validate, while
with traditional classes (Classes 0 or I), short-term optimiza-
tion is easier to obtain [64]. In the Class III type, as long as all
the entities (e.g., agents) get the equal level of autonomy, an
adequate level of performance can be attained, but there is no
global view of the system [65]. As these features are disad-
vantages of Class III—even for MAS approaches of Class
II—the proposed agent-based CPPS architecture cannot claim
to be exempt from this problem and only an adequate AMS’s
global response to it could address the issue.

Table 16 summarizes different CPPS approaches examples
which allocate control decisions from centralized control

systems (Class 0 and Class I) aiming to design non-centralized
control systems (Class II and Class III). This table compares
components of different CPPS approaches with patterns of
this paper’s proposed CPPS architecture.

Table 17 compares advantages and disadvantages of hier-
archy (Classes 0/I) and heterarchy (Classes II/III) of CPPS
approaches (based on [22, 64, 65]).

6.5 Use case evaluation with an I4.0 demonstrator

The “Robot Integrated Agent Network” (RIAN) completes
the evaluation of the proposed agent-based CPPS architecture.
The RIAN demonstrator was presented at Automatica fair in
an industrial environment [69]. The purpose of the demonstra-
tor was to crosslink heterogeneous production equipment and
robots in a network for common customized production.
RIAN was the result of a collaboration of the academy
(Technical University of Munich “TUM” and Brandenburg
Technical University of Cottbus “BTU”) with different indus-
try partners [69], which applies the reference architecture of
the MyJoghurt I4.0 demonstrator [40]. With RIAN I4.0 dem-
onstrator, the users could customize the bottle opener (with
freely definable lettering) online and choose a delivery time
depending on available production capacity (IIoT-HMI inter-
face). A chain of production stations composed of autono-
mous and operator-controlled mobile transport robots defines
RAIN. These stations cover the production line for the indi-
vidualized bottle opener consisting of the following: cutting

Fig. 11 Interaction in the agent-
based CPPS network (adapted
from [69])
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by laser simulation (CPPS A), injection molding (CPPS B),
engraving-laser (CPPS C), packaging (CPPS D), and custom-
er delivery by a Mobile transport robot (CPPS E), depicted in
Fig. 10 (adapted from [69]).

Starting from the warehouse, mobile robots transport
pieces between stations of the production process.
Intermediate robot stations have hardware interfaces, which
ensure the exact positioning of pieces or their detection by
vision sensors. All CPPS communicate via an agent-based
CPPS network in order to exchange necessary processing
steps as well as clearances for manipulation. The current pro-
duction progress is traceable for the client, for the maintenance
and operating personnel. This is possible due to the aggregat-
ed reports of the individual sub-agent patterns (RAs, PAs,
CAs, and AMS) into an external server (at TUM Garching
near Munich), as shown in Fig. 10.

All CPPS A-E include RAs with goal-orientation algo-
rithms (even with artificial intelligent) to achieve PAs orders.
Inside the Mobile transport robots (CPPS E) and the Packing
station (CPPSD) exists a hardwareMAS interface (MAS ITF)
and agents (CAs) which ensure by computer vision systems
the exact positioning of the products (PAs) in the plant (see
Fig. 10). An agent (PA) assigns initial orders to the transport
robot (RA) from the storage and links the information about
the process steps and the corresponding features of the prod-
ucts. RIAN defines a distribution of production phases for

multiple participating companies and technologies (Req1.1-
Req1.3).

All CPPS interactions are connected to the local hardware
and accept new orders (PAfinal) after registering at the directo-
ry services (from AMS, MTS, and DF). Since the customers’
orders for products need to be decomposed into multiple dif-
ferent manufacturing tasks, to which the facility agents can
respond, various CPPS aligned with the proposed architecture
were implemented for this purpose (see Fig. 11).

A key benefit of the agent-based CPPS approach in the con-
text of I4.0 is the linkage of heterogeneous controls. RIAN
enables suitable controls to cooperate with adequate operating
systems of various robot vendors (e.g., Raspberry Pi with
Raspbian-Linux, Reiss robotics (now KUKA), robot controller
with VX Works, FANUC robot controller with FANUC OS).

Both the implementation on suitable controls as well as on
external computers is possible by using manufacturer provid-
ed interfaces. These interfaces enable data exchange between
agents (CAs) and controls on the field level (RAs). Thus, the
cost of changes in the software on the proprietary controls is
minimized.

The configuration, changes, and adaptation of the control
software (reconfigurability and reusability) are manageable by
calling functions according to each manufacturer specification
(CPPS) and adapting parameters or variables at runtime
(Req1.4). An agent (AMS) retrieves status information from

Fig. 12 The I4.0 components of the RIAN demonstrator

Int J Adv Manuf Technol (2019) 105:4005–4034 4031



all controllers containing the state of the plant and the process-
ing progress. Based on this information, it decides the strategy
of a production unit (Req1.5). Besides the agent (PAs) exten-
sive knowledge about the process data, there exists an encap-
sulation to the overall network information (AMS). Over
LAN, Wi-Fi, or mobile data connections, the current produc-
tion time and the price of the service are provided for all
participating agents (RAs, PAs, CAs, and the AMS), as shown
in Fig. 10. An Internet server is required for linking various
transport and production units via the Internet. The server (in
addition to the infrastructural facilities) also creates agents
instances (e.g., PAs) accessible on the cloud. Therefore, dif-
ferent hardware platforms, e.g., PC and PLC, are connected
via the Internet. The open protocol of the MAS platform
(based on TCP/IP) enables connect ions to other
implementations (e.g., based on C++).

In Fig. 12, the agent-based CPPS architecture is shown
considering the Functional and Communication Layers (re-
garding RAMI4.0) of RIAN. The proposed architecture was
used to implement a distributed production environment on
Automatica fair [69] as a collaboration of multiple companies
(e.g., Martin Engineering, Schunk, Beckhoff, and others) in
different exhibition halls (A4, A5, and B5). By using the pro-
posed MAS approach, companies were able to realize the
communication, design, and application with a specific imple-
mentation of different hardware and software platforms. Each
hall represents an administration shell of an I4.0 component
(CPPS A-E). In the industrial context, each hall could be rep-
resented by different worldwide plants, which collaborate in a
unique production process (see Fig. 12).

The industrial partner of RIAN confirmed that they were
amazed by the effectiveness and ease of the collaboration [69].
They implemented all necessary functionality needed to man-
age the production steps at the different facilities in the exhi-
bition halls. The RIAN implementation required less than 3
months with less of four to six developers per academic and
industrial partner.

7 Conclusion

Design patterns can help the MAS developers to set up their
architectures with prepared solutions also for manufactur-
ing control. They could design their own MAS in accor-
dance with accepted MAS patterns in industry to ease the
application of CPPS. Classification criteria also could aid in
the initial information organization of design pattern, since
there are many different approaches for MAS and automa-
tion domain.

Thanks to the preliminary analysis [18], and based on
works by Lüder et al. [16] and Leitao et al. [8], this paper’s
authors have developed 13 classification criteria for MAS pat-
terns. More than 20 MAS patterns were classified with the

derived criteria for MAS revealing different terminologies,
as well as new criteria to classify sub-agents. A CPPS archi-
tecture for manufacturing control for I4.0 components—re-
garding the RAMI 4.0—based on four sub-agents, was iden-
tified from the analysis of design patterns. They are as follow-
ing, Resource Agent (RA), Process Agent (PA), Agent
Management System (AMS), and the Communication Agent
(CA). According to the proposed design pattern, these sub-
agents should be considered mandatory for the agent-based
CPPS architecture, since each of them fulfills fundamental
functionalities. Regarding functional requirements identified,
these are grouped into a Resource Access (RA*), Knowledge
Base (KB), Coordination Process (CP), and Communication
Interface (CI). All sub-agents often use the Knowledge Base
in order to infer formal methods for its implementation. The
Resource Access is a very necessary functional requirement to
acquire and process data from physical resources with hard
real-time capabilities; as well, the RA typically covers the
lowest 0–2 automation levels. The Coordination Process con-
tains procedures and sub-agents’ delimitations for managing
MAS in a higher hierarchy. This functionality is usually in-
cluded in AMS on L1-L2 and PA on L2-L3 automation levels.
The CI enables open communication between automation
levels with multiple data formats, supporting the AMS’s and
CA’s (L1-L3) tasks. CI’s functionalities are frequently repre-
sented in all automation levels.

The proposed pattern of the four sub-agents can deliver
relevant MAS features for developers in order to support
new sub-models’ designs with similar solutions. In addition,
the pattern provides a proper information in order to reduce
time to compare similar researches. This pattern provides
MAS architecture that can help to cope with production com-
plexity and adaptively as required by CPPS.

This document addresses the industrial sectors in multiple
production systems domain: discrete manufacturing, continu-
ous process, hybrid production. In addition, it takes into con-
sideration the specificities of different MAS application (e.g.,
material flow systems, real-time capabilities, agent communi-
cations, and smart grids) and serves the needs of the RAMI 4.0
involving several partners and normativity.

To identify more patterns and to allow easier identification
of such a pattern, in the future, the other 16 patterns from the
FA 5.15 need to be analyzed with their authors support.
Especially, non-functional requirements will be part of the
further work of this manuscript’s authors, since these require-
ments remaining can map quality attributes to the identified
and newly MAS patterns.
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Abstract: Due to the increase in Artificial Intelligence in
theproduction systemsdomain, Industry 4.0 (I4.0) experts
must collaborate with autonomous systems. Industrial AI
raises several concerns about existing standards, which
provide guidelines and design patterns. One way to real-
ize I4.0 systems are Industrial Agents (IAs) due to their in-
herent autonomy and collaboration. Multi-Agent Systems
(MASs) are well suited for realizing distributed AI in I4.0
components. Considering the properties of IAs and exist-
ing standards, an MAS architecture is presented for flex-
ible and intelligent Cyber-Physical Production Systems.
The article compares I4.0 standardization efforts relevant
to adaptAI in the formof IAs, illustrates how IAdesignpat-
terns can be used, and introduces the Multi-Agent aRchi-
tecture for Industrial Automation applying desigN patterNs
practicEs “MARIANNE”. An implementation guideline is
presented to put this CPPS into practice.

Keywords: Artificial Intelligence, Cyber-Physical Produc-
tion Systems, Industrial Agents, Multi-Agent Systems

Zusammenfassung: Aufgrund der Zunahme künstlicher
Intelligenz im Produktionssystembereich müssen Indus-
trie 4.0 (I4.0) Experten mit autonomen Systemen zusam-
menarbeiten. Industrielle KI wirft Fragen zu bestehenden
Standards auf, die Richtlinien und Entwurfsmuster bereit-
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stellen. Eine Möglichkeit, KI in I4.0-Systemen zu realisie-
ren, sind aufgrund ihrer inhärenten Autonomie und Zu-
sammenarbeit industrielle Agenten (IAs). Multi-Agenten-
Systeme (MASs) sind gut geeignet, um verteilte I4.0-
Komponenten zu realisieren. Unter Berücksichtigung der
Eigenschaften von IAs und bestehender Standards wird
eine MAS-Architektur für flexible und intelligente Cyber-
Physical Production Systems (CPPS) vorgestellt. Der Ar-
tikel vergleicht I4.0-Standardisierungsbestrebungen, die
für die Adaption von KI in Form von IAs relevant sind,
zeigt auf, wie KI-Entwurfsmuster verwendet werden kön-
nen und stellt die Multi-Agent aRchitecture for Industri-
al Automation applying desigN patterNs practicEs „MARI-
ANNE” vor. Es wird ein Implementierungsleitfaden vorge-
stellt, um dieses CPPS in die Praxis umzusetzen.

Schlagwörter: Cyber-physische Produktionssysteme, In-
dustrielle Agenten, Künstliche Intelligenz, Multi-Agenten
Systeme

1 Motivation

Artificial Intelligence (AI), in the context of Industry 4.0
(I4.0), opens up the possibility to solvemachine tasks pre-
viously considered to be only performable by humans: in-
terpreting natural language or visual data, identifying de-
sign patterns, and making autonomous decisions [19, 21].
In I4.0, interconnections between machines, smart sen-
sors, actuators, are becoming more common. The net-
worked entities, also known as Cyber-Physical Produc-
tion Systems (CPPSs), or industrial Cyber-Physical Systems
(CPSs) [24], initially commenced as automated Production
Systems (aPSs) in various manufacturing domains. The
CPPSs consist of CPSs applied in aPS domains to link
physical and virtual objects (real world and information-
processing) through constantly, and oftentimes globally,
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interconnected information networks [24]. Typical intelli-
gence concepts enabling CPPSs are “agent” entities that
are often related to AI, referring to a smart, self-contained
software program [14]. Agent-based definitions, typolo-
gies, methodologies, technologies, standards, platforms,
design patterns, and programming language approaches,
such as Agent-Oriented Software Engineering, have all
evolved throughout time [6]. Multi-Agent Systems (MASs)
consist out of Industrial Agents (IAs) that have been touted
as a viable and feasible answer for a series of new in-
dustrial challenges over the years [6, 14, 17]. However,
there is no deep analysis of IA’s levels of intelligence, nor
their direct correspondence to AI applied in I4.0. Addition-
ally, combining AI through Machine Learning (ML) into
IAs has made it possible to achieve CPPS’ learnability and
reconfigurability [21], which are necessary properties to
deal with I4.0 issues. Furthermore, the deployment of au-
tonomous and collaborative manufacturing entities with
enhanced self-capabilities, such as self-optimization, self-
awareness, and self-monitoring, is a priority for CPPS [21].
Industrial AI via IAs is viewed as an essential technology to
accomplish these capabilities anddisrupt thewayaPSpro-
cesses and business models are structured as part of the
I4.0 paradigm [6, 14, 17]. AI is a sub-discipline of software
engineering, capable of implementing IA characteristics
traditionally associated with human intelligence, such as
autonomy, reactiveness, reasoning, predictiveness (learn-
ing), and self-improvement [26]. Despite this, there is no
widely acknowledged, precise, and standardized defini-
tion of Industrial AI [21].

Notwithstanding the ostensible benefits of these In-
dustrial AI systems – CPPS implemented by IAs – the cost
of factory transformation, insufficiently qualified people
in essential AI technologies, a lack of design processes,
and reusable MAS applications continue to make it diffi-
cult for industries to implement I4.0 concepts. For this rea-
son, in recent years, IAworking groups, TC-IA1 by the IEEE
P2660.1 and theGerman IFACNMOGMAFA5.152 VDI/VDE,
have addressed these challenges by establishing design
patterns and best practices. Two relevant standards, the
“IEEE Recommended Practice for Industrial Agents: Inte-
gration of SoftwareAgents andLow-Level AutomationFunc-
tions” [11] and the “2653 Sheet 4: Multi-agent systems in in-
dustrial automation – Selected patterns for field level con-

1 TC-IA refers to the IEEE-IES Technical Committee on Industrial
Agents.
2 FA 5.15 “Agent systems” is aGermanworking group (GMA). English:
Society of German Engineers VDI, and German Electrical Engineers
VDE. VDI/VDE is known as a National Member Organization (NMO)
of IFAC.

trol and energy systems” [30], suggest methods for devel-
oping IAs. The combination of these standardization ef-
forts with models that reflect IA design concepts [1, 3–
5, 8, 9], and also with established notions such as the
Product, Process, Resource (PPR) concept, and I4.0 stan-
dardization efforts, specifically RAMI4.0, is crucial though
and requires an integrated architecture. Hence, this arti-
cle makes three contributions. First, it examines how an
agent-based CPPS can be combined with relevant Refer-
ence Architecture Model I4.0 “RAMI4.0” [7] and the PPR
model (Con1). Second, an MAS architecture for CPPS de-
rived from IA patterns is presented (Con2). Third, to im-
prove industrial applicability, a guideline is provided in
order to facilitate the IAs and AASs implementation into
hybrid CPPS platforms (Con3).

This manuscript is structured as follows: Section 2 ex-
plains IAs’ requirements and introduces the state of the art
regardingMASs in I4.0. Section 3 contains themain contri-
bution of this work and presents an agent-based CPPS and
its definitions. Section 4 describes the MAS’ implementa-
tion by applying an I4.0 scenario and Section 5 discusses
findings from the evaluation. The paper concludes with a
summary and an outlook.

2 State of the art

This section introduces related work regarding Industrial
Agents, their standardization, and approaches for combin-
ing them in an MAS for I4.0. Different viewpoints are de-
cided by current I4.0 experts, leading to multiple models
and meaning various descriptions of the target system [3].
Regarding agent-based CPPS, the two IAs standards are re-
lated here, showing diverse IA pattern types that the MAS
community analyzed from several functionality points of
view.

2.1 Industrial agents for I4.0:
categorization, modeling, and
standardization

Industry 4.0 and CPPS often refer to the MAS approach
[6, 14, 17, 24], and to the Asset Administration Shell (AAS),
which is one of the main specifications of the RAMI4.0 [7].
The AAS, together with an IA, allows smart access to as-
set resource information, aswell as connectivitywith other
I4.0 components [6]. Applying Information Technology (IT)
for I4.0 is notable and able to deploy the Digital Twin
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(DT) concept [22]. Leveraging DTs’ technologies, specifi-
cally, the AAS to realize an MAS, increases the flexibility
and adaptability of aPS [31]. In another hand, an IA is an
intelligent entity used for distributed problem-solving in
automation, typically characterized as autonomous, col-
laborative, and communicative [11]. Implementing IA tech-
nology within multiple automation fields (e. g., planning,
scheduling) has been studied for several years. For exam-
ple, many international projects foster research on future
factories that use IAs, e. g., in smart production, smart
logistics, smart grids [17]. In contrast, using IAs in the
field at the process level (supervision and control) is com-
paratively novel research considering hard/soft real-time
needs [6, 11, 30]. A specific requirement is that an IA must
be autonomous [10, 11, 30]. It may work in an organized
way with other external agents, even humans [11]. IAs
could be applied to apply the Human-in-the-loop concept
in I4.0 [14], where the plant floor operators can act and in-
teracts as agents in the CPPS. All instances should con-
sider different amounts of data and ensure a timely re-
sponse in order to react to workwith agents’ decisions and
actions. The above characteristics divide IAs into multiple
categories, as shown in the following subsections.

2.1.1 Traditional types of IAs by response time and
behavior

For most agent-based automation developers, it is well
known that agent features are mainly based on classifi-
cations. These grouping methods – often called design
patterns – generate relationships and approximate com-
mon functionalities at different automation levels [6]. An
IA also provides the intelligence for the sensors/actuators
to have Low-Level Control “LLC” (with soft or hard real-
time) or provides the support that helps foster a desirable
collaboration withManufacturing Execution System (MES)
and the Enterprise Resource Planning (ERP) levels. Both
ERPandMESarepart ofHigh-Level Control “HLC” andusu-
ally do not require real-time capabilities. Therefore, there
are initially numerous categories, including the Reactive
Agent and the Deliberative Agent definitions [17].

Unland [29] defines a Reactive Agent as a “simple”
agent because this type does not dealwith a representative
world (modeling), nor does it apply complex reasoning.
The Deliberative Agent is often semantically on a higher
level than “reactive” and “proactive” [29], since this type
is synonymous with “Strategy & Goals” and can involve
functions based on (but not limited to) probabilities, logi-
cal deduction, knowledge-based reasoning, among other

inference mechanisms [32]. The Deliberative Agent’s be-
havior and common architectures are reasonably more so-
phisticated than the ones of Reactive Agents. This IA type
is most prevalent, even if the internal processes of delib-
erative software are more complicated, which increases to
their timeand resource consumption.However, in contrast
to a human operator, a Deliberative/Proactive agent “un-
derstands,” only a small part of the entire world, i. e., data
acquisition is restricted by non-biological sensors. Never-
theless, it alwayshaswide-ranging, real-world knowledge.
In the industry, Reactive Agents are implemented in vari-
ous ways, including mapping between situations and ac-
tions. Their connectionways canbe [6]: first directwith the
same network domain, i. e., synchronous connection web
service or OPC UA [34]; second, indirect across different
network domains., i. e., asynchronous FIPA (see ACL Mes-
sage Structure Specification [10]). From those definitions,
Deliberative Agents are moderately flexible when imme-
diately acting upon their environment. They can, on the
other hand, become substantially more complicated and
slower in their reactions. Instead, the Reactive Agent’s be-
havior includes a faster response to relevant stimulations
from its environment, as input produces output by sim-
ple situation-action associations that are frequently imple-
mented, whilst ignoring the rest of the perceived history
(also namely simple Reflex Agents [26]). Hence, the Reac-
tive Agent requires fewer resources than the Deliberative
Agent, and it reacts more quickly.

Nevertheless, on the negative side, the Reactive Agent
is not as dynamic and flexible as the Deliberative Agent
that can usually behave proactively. In other research,
Russell and Norvig [26] consider the behavior of Reactive
Agents to be generally not (much) worse than the one of
Deliberative Agents (also namely Rational Agent [26]). Un-
der certain conditions, proactiveness would imply agent
reactiveness, so IAs react to a state change to achieve a goal
[5].

New advances in IA’s classification considering multi-
ple smartness dimensions should be an interesting topic
for distributed AI researchers, but up to now, it has been
avoided. Two reasons for improving IA typologies are:
firstly, to prevent the AI effect, meaning the IA technolo-
gies that were once thought to be intelligent will be-
come outdated as systems are becoming increasingly ca-
pable. One example would be providing adaptability to
predictability in CPPS architectures that need to be scaled
up [24]. Secondly, this IA categorizationdepends on the ex-
istence or not of the normalized IAs. For instance, if a CPPS
architecture includes reactive or proactive IAs, this is a tra-
ditionalMAS [29]. In contrast, IA classificationbasedon its
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capabilities is more precise, since an IA may handle sev-
eral functions borrowed from advanced AI characteristics,
e. g., learnability [14]. Therefore, Section 2.1.2 proposes a
new IA categorization regarding specific requirements in
the same section and complements it with the traditional
agent types.

2.1.2 Modern classes of IAs (by AI characteristic and IA
capability)

This section proposes combining the traditional types of
IAs with means of modern categorization by Industrial AI
definitions related to I4.0 prerequisites. Summarizing Sec-
tion 2.1.1, the traditional typology refers to response time3

andmain behavior (or feature) by three types of IAs, as fol-
lows (those are adapted from [26, 29]):
– Reactive IA, that reacts to perception [29].
– Proactive IA, that performs initiative actions [29].
– Deliberative IA (henceforth “Predictive IA”), that an-

ticipates by learning tasks. Here, we refer to predic-
tive learning to specify the learning agent that can be
formed or not formed from a traditional IA (reactive or
proactive ones) [26].

One prerequisite for the I4.0 is the formal specification of
capabilities and skills [34]. The I4.0 Platform defines a Ca-
pability as an “implementation independent potential of an
Industrie 4.0 component to achieve an effect within a do-
main” [23]. Also, they describe that a Skill “can be made
executable via services” [23]. On the other hand, the Com-
petence of a system is the “ability to apply knowledge and
skills to achieve intended results” (this taxonomy is stan-
dardized by the ISO/IEC/IEEE 24765 [12]). Skills are also
adopted from the IAs community to denote one of theMAS
self-contained software functionalities [11]. Therefore, in
this paper, capabilities state competencies, just as skills
state functionalities (set of functions to provide IA ser-
vices).

Typically, systems capable of Industrial AI implement
minimal AI characteristics like autonomy (C1) and reac-
tiveness (C2). In various I4.0 use cases, the system auton-
omy is provided by auto-adjusting aPS. A more detailed
description can be found in [19]. As a result, in Indus-
trial AI, the degree of autonomy of equipment or processes
is higher or lower according to the I4.0 scenarios [32]. In

3 Response time, or Time response refers here to the how long is
the time taken by the Industrial Agent to respond to a certain task
(adapted from the IEEE 2660.1 guideline [11]).

the case of reactiveness, for most AI techniques, reactive
control is sensor-driven, and it is the most appropriate for
low-level actions [26], i. e., hard and soft real-time. More-
over, Industrial AI frequently requires proactive (C3) and
predictive (C4) capabilities [21], both are reasoning char-
acteristics, but the last one is the most complex Indus-
trial AI characteristic since it requires learning from the
past (as discussed in Section 2.1.1). On one side, reasoning
generates global solutions to complex tasks using plan-
ning [26], i. e., models for decision making (C3) or models
learning fromexperience/predicteddata (C4).On theother
side, proactiveness (C3) logically implies reactiveness (C2)
[5]. Consequently, Industrial AI often uses reactive meth-
ods for LLC anddeliberative/reasoning techniques for HLC
[26] (see IAs’ definitions in Section 2.1.1). Finally, the hu-
man cooperativeness characteristic (C5) increasingly con-
sider human-machine integration as a fundamental de-
sign principle of CPPSs [14]. However, IA is still far from
an entirely symbiotic human and AI interaction, meaning
there are a poor relationship, co-existence, and collabora-
tion among humans (C4) and IAs [13]. Therefore, concepts
like predictability (C4), as well as the involvement of the
Human-in-the-loop (C5), are the most critical capabilities
to be achieved in Industrial AI systems [21]. Predictability
(C4), applying ML, is one of the AI characteristics through
which IAs provide CPPS to achieve learnability [21]. Pre-
dictive learning is a termused to describe an unsupervised
ML system that can anticipate characteristics of its chang-
ing states [26].

A summary of the Industrial AI characteristics dis-
cussed above is enlisted in Table 1.

2.2 Standardizing industrial agents

Derived from the Industrial AI characteristics (see Section
2.1.2. Table 1), the authors determined four IA classes with
specific capabilities potentially interesting for the devel-
opment of MASs. As listed in Table 2, Class I refers to Phys-
ical access agent, Class II to Organizational agent, Class
III to Interface agent, and Class IV to Human agent. Each
Industrial AI characteristics supports the IA classes by
implementing their capabilities. This means that differ-
ent Industrial AI characteristics implementations can be
mapped to each IA class’s capability (at least one skill
to each class). Moreover, skills and capabilities differ in
the level of implementation [23]: while skills offer details
of asset-dependent descriptions [22] (e. g., Common Data
Dictionary/ECLASS/IEC 61360, OPC UA/IEC 62541 meth-
ods), capabilities are independent formal abstractions of
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Table 1: Definitions of Industrial AI characteristics.

Industrial AI characteristic Characteristic definition

C1. Autonomy [19] Degree to which an industrial system can independently master uncertain conditions in a delimited and
automated manner achieving its objectives systematically, i. e., without external or human intervention

C2. Reactiveness [26] Degree to which an industrial system can respond to a request for the processing of its environment
information (observation and communication responsiveness in real-time)

C3. Proactiveness [5] Degree to which an industrial system takes the initiative for deciding and processing information whilst
pursuing a goal (reasoning for deliberative tasks).

C4. Predictability4 [24] Degree to which an industrial system can predict (predictive capability [25]) the next outcomes of actions
given the actions in the previous tasks and the self-learning (from past information).

C5. Human cooperativeness [14] Degree to which an industrial system can apply the Human-in-the-loop concept

Table 2: Industrial Agents, their main competencies and examples.

IA class IA’s competence/capability (capable of) Instantiation (a particular example)

I. Physical access agent Abstracting and connecting heterogeneous
production equipment with the MAS

This IA acts as a digital representation of a physical object
ranging from a single product (or a service) to an
enterprise network at the hierarchy axis [2]. This IA class
also has access to assets’ main functionalities and is
building on the normalized Resource Agent (see VDI/VDE
2653-4 guideline [30])

II. Organizational agent Offering various services into an integrated and
united execution model that can support
managing and organizing the operation of the
MAS and its IAs (see FIPA Agent Management
Specification [10])

This IA type is often concerned with non-physical entities,
e. g., orders, production plans, production schedules,
among others [29]. The typical instances of this IA class
are the normalized Agent Management System and the
Process Agent (see VDI/VDE 2653-4 guideline [30])

III. Interface agent Providing effective communication between the
IAs converting property interfaces into multiple
protocols

An IA class’ instantiation is the normalized
Communication Agent (see VDI/VDE 2653-4 guideline
[30]), and this may, for example, interconnect IAs and LLC
automation functions based on the IEEE 2660.1 interface
practice [11]

IV. Human agent Allowing humans to act as agents in the MAS
interacting with others agents/systems among
the automation levels

This IA type should be able to achieve the concept for
Human-in-the-loop in I4.0 [14]

the asset application functionalities and that can be ex-
pressed in different ways, e. g., Knowledge Base (KB) for-
malismsbyWebOntology Language,UnifiedModeling Lan-
guagemodels UML/SysML/IEC 19514 [1].

Classes I and II (physical and organizational agents)
cover most traditional IA types also normalized by the
VDI/VDE 2653-4 guideline [30]. Those agents are named
Resource Agent (RA), Process Agent (PA), and Agent Man-
agement System (AMS). The Physical access agent is de-
rived from the RA to access the capabilities of physical re-

4 There aremany definitions to Predictability referring to CPS, as dis-
cussed by Sun et al. [28]; however, we adapted this IA characteristic
based on “the ability to anticipate the behavior of a system”definition
presented by Lee [16]. Additionally, in our approach, the agent-based
CPPS needs to be predictable (able to be predicted) to be learnable.

sources, i. e., abstracting and connecting heterogeneous
production equipment with the MAS [30]. The AMS is part
of the Foundation for Physical Agents “FIPA” (see Agent
Management Specification [10]), while the typical Class III
(interface agent), as the Communication Agent (CA), is ad-
dressed by the IA interfacing patterns of the IEEE 2660.1
guideline [11]. The main definitions from both IA stan-
dards and FIPA elements concerning this work are de-
scribed in Section 3. The IEEE 2660.1 interface practices –
related to Class III agent – are clustered by location (the
place where the HLC/LLC are hosted), i. e., on-device or
hybrid; and the interactionmode dimensions (the way the
HLC/LLC interact), i. e., tightly coupled or loosely coupled
[11]. Thus, the CA accounts for the wide range of IA’s inter-
facing techniques, divided into those two levels of abstrac-
tion. In contrast to the other IA classes (I-III), and due to
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its complexity, Class IV (human agent) is not standardized
yet. One reason is probably the different approaches from
MAS developers to describing intelligence resulting from
a Human-in-the-loop between processes and a human be-
ing.

As CPPSs are complex, modeling them from different
viewpoints helps cut the overall complexity. Taking this
into account, CPPS developers demonstrated that integra-
tion with legacy IT systems (e. g., ERP, MES, PLM appli-
cations) must be addressed proactively [21]. Thus, agent-
based CPPSs typically encompass multiple data sources,
which are able to get reusable information to successfully
deploy distributed AI applications at a large scale, i. e.,
System of a System concept [14]. A relevant modeling re-
quirement for I4.0 is the RAMI4.0 capability, specifically in
the AAS concept. Thus, here RAMI4.0 capability refers to
that MAS architectures should accomplish the developed
I4.0 reports with various models, providing the basis for
expanding new I4.0 components, as the Details of the As-
set Administration Shell report version 3.0 [22]. Therefore,
in order to improve I4.0 semantics, a CPPS should consider
RAMI4.0 as a design principle rather than I4.0 conceptual
standard. This means that CPPSs need an integral under-
standing of the AAS context, where the details of the I4.0
component enables binding semantics, clearly identifying
its assets, sub-models and properties in a constantly read-
able directory [22]. Interestingly, MAS authors using the
AAS and OPC UA [20, 34] added flexibility by the Plug &
produce concept (similar to Plug & play and Plug & work
terms [23]) in various I4.0 scenarios. MASs enable I4.0 sce-
narios such as Adaptable Factory, Order Controller Prod-
uct, and Self-organizing Adaptive Logistics extended by the
authors in [32].

Summarizing, the variety and heterogeneity of avail-
able standardization efforts hinders the efficient and in-
teroperable design of agent-based CPPSs, i. e., applying
the details of the AAS, RAMI4.0 capability, I4.0 compo-
nents and I4.0 scenarios concepts. To address these issues,
the interconnections between the AAS and the respective
models need to be identified, which allows the creation
of an MAS architecture compatible with current I4.0 ap-
proaches.

2.3 Selected MASs for Industry 4.0

This section analyzes existing MAS from different I4.0
research groups in order to have a wide range of ap-
plication domains and points of view. The selected re-
searches are named with acronyms or the prominent au-
thors’ last name. The I4.0 architectures are selected based

on the representative aspects of the aPS domain and the IA
classes identified, as follows: Class I for field-level control,
PROPHESY-CPS [20] and Zimmermann et al. [34]; Class
I-II for discretemanufacturing,H-Entity [5] and SemAnz40
[9]; Class I-III for pattern-based CPPS, Cruz et al. [6], FAPS
[8] and MOSAIK [4]; and finally, covering Class I-IV for In-
dustrial CPS, Ribeiro et al. [24].

When comparing the selected architectures (cp. Table
3), it becomes apparent that aPS domains focus on reac-
tiveness (C1) and proactiveness (C2). Regarding the man-
ufacturing domain, the SemAnz40 [9] defines the KBs to
support semanticmodeling of a reactive aPS (C2). From the
relevant designs for I4.0, Ribeiro et al. [24] propose a CPPS
with strongly human cooperativeness (C5), according to
five scale levels of requirements, including adaptability,
convertibility, integrability and other requirements; each
requirement is described with an obligation grade from
three options: shall (must), should (optional), and will
(may). Its industrial CPS focuses on local autonomy (C1)
and basic protocols, changing its structure dynamically to
cover, among others, predictability (C4) [24]. Although no
reusable patterns are considered in most selected works,
by contrast, MOSAIK [4] determined selected patterns fo-
cusing on the role played by theObjectManagement Group
(e. g., UML/SysML) and AutomationML as exchange stan-
dards for CPPS engineering.

Finally, the creators of promising MASs for CPPS fo-
cus on their natural autonomy, reactiveness, and proac-
tiveness, but their different objectives affect the level of ab-
straction of the model, even in the same application do-
main. For instance, MOSAIK [4] is a self-organized MAS
consistingof different agents or “artifacts”within theman-
ufacturing domain – particularly architectures based on
the cloud,Web of Things, and Industrial Internet of Things
technologies. MASs, by their very nature, have often high
autonomy (C1) and reactiveness characteristics (C2), as
demonstrated by IA researchers [6, 14, 17, 24]. However,
MAS architectures have not advanced in the learnability
of the agents (C4), and few works consider the design pat-
terns practices [4, 34], which use human analyses (C5) to
improve reusability among other benefits [11, 30]. In gen-
eral,most of the representative CPPS approaches shown in
Table 3 are missing predictability characteristics (C4) and
the RAMI4.0 capability. Therefore, in order to fulfill those
requirements, this paper proposes the Multi-Agent aR-
chitecture for Industrial Automation applying desigN pat-
terNs practicEs (MARIANNE) following the IA’s normalized
guidelines [11, 30], and addressed by standardized defini-
tions of its classes (see Section 2.2).

Exploring the state-of-the-art, the authors considered
exemplary MASs extended from [3], as given in Table 3.
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Table 3: Selected MAS architectures for Industry 4.0. Extended from [3].

Cruz et al. [6] FAPS [8] H-Entity [5] PROPHESY-
CPS
[20]

Ribeiro et al.
[24]

SemAnz40
[9]

MOSAIK [4] Zimmermann
et al. [34]

Industrial AI
characteristic
(C1–C5)

C1 Auto.
C2 React.
C3 Proact.
C5 Human
coop.

C1 Auto.
C2 React.
C3 Proact.

C1 Auto.
C2 React.
C3 Proact.
C4 Predict.

C2 React.
C3 Proact.
C4 Predict.

C1 Auto.
C2 React.
C3 Proact.
C4 Predict.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

IA’s classes
(patterns)

I-III (RA, PA,
CA, AMS)

I, III (RA, PA,
CA, AMS)

I-II (RA, AMS) I (RA) I-IV (RA, PA) I, II (RA, PA,
AMS)

I-III (RA, PA,
CA)

I (RA)

RAMI4.0
capability

Partially Yes No Yes Partially Partially No Partially

PPR structure Resource Resource Process
Resource

Resource Process
Resource

Process
Resource

Product
Resource

Resource

They are categorized by the Industrial AI characteristic
achieved, the IAs applied,RAMI4.0 capability, and thePPR
(from the VDI/VDE 3682 guideline) structure correspon-
dence (see details in Section 2.1 and Section 2.2).

Regarding the combination of RAMI4.0, PPR, and IAs
suitability for applying CPPSs (Con1), the authors of this
study intend to extend preliminary work [6]. One signifi-
cant differentiation is the development of the DT by AAS
together with IAs for a CPPS (see Sec. 4). Another criti-
cal factor from this paper is integrating and evaluating
an MAS architecture using the existing IA pattern stan-
dards (see Sec. 5). However, to the best of their knowledge,
DTs and IA design patterns, specifically the AAS, have
not yet been combined into an agent-based CPPS architec-
ture. Hence, there is a need for an architecture that sup-
ports developers in explaining (Con2) and implementing
MASs (Con3). AnMAS architecture and its implementation
guideline in the CPPSs context shall be developed here.

3 Architecture and implementation
workflow for agent-based CPPSs

This section describes a newly developed architecture for
an MAS, improving semantic consistency by combining
standardized entities. Each component definition and the
code implementation described here is freely available on
the GitHub Agent 4.05 project under the GPL v3.0 license.
Meta-elements follow the UML class diagram (MOF 2.0),

5 MARIANNE codes into the Agent 4.0 project: https://github.com/
siulzurc/agent4.0/tree/main/src/MARIANNE

and similar to other IA authors [4], the word “entity” is
used as a synonym for “UML object” to avoid misunder-
standing with a real object participating in an action. In
general, many details such as the unique identifier or ID,
name, and description of each entity are not considered to
make the MAS architecture easily comprensible.

3.1 Comparing models for I4.0/CPPS

MARIANNE is an agent-based architecture proposed for
the manufacturing domain. This MAS is based on various
notions, which are partially standardized in I4.0 works.
The architecture proposed focuses not only on describ-
ing the IA patterns introduced in the VDI/VDE guidelines
(2653, 3682) but also on relationships with RAMI4.0 [7],
i. e., I4.0 concepts and the AAS concept. MARIANNE asso-
ciates relevant and traditional aPS domain concepts, i. e.,
ISA-88 (IEC 61512-1) scenarios. For an overview of MARI-
ANNE’s key concepts and how they relate to models de-
veloped in the context of I4.0, such as RAMI4.0, but also
the PPR concept, see Table 4.

Preliminarily, detailed analyses in Table 4 about ex-
isting models’ classes for I4.0 should be executed regard-
ing various aspects, such as function hierarchy levels, in-
formation classes, level of detail, specific application do-
main, among others, defined by [3]. In essence, a core
model for I4.0 would allow for the creation of a modeling
language with standardized concepts and terminologies,
specifically based on the RAMI4.0/AAS and the PPR mod-
els. For instance, functional hierarchy levels can be real-
ized via the I4.0 component in RAMI4.0/AAS, and via Re-
sources in the PPR model. Using the MARIANNE classes
related to the standards such as those mentioned, partic-

https://github.com/siulzurc/agent4.0/tree/main/src/MARIANNE
https://github.com/siulzurc/agent4.0/tree/main/src/MARIANNE
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Table 4: Relationship and comparison between models’ classes for Industry 4.0.

How can the
(1–3) model
realize or define
the (a–i)?

Metamodel criteria*

a.
Functional
hierarchy
levels

b.
Engineer.
Process
steps

c.
Technical
flow sorts

d.
Material

e.
Information
classes

f.
Discipline
range

g.
Level of
detail

h.
aPS type

i.
Specific
application
domain

Vi
as

of
th
e
im
pl
em

en
ta
tio

n

1. RAMI4.0/
AAS

I4.0-
component

AAS:
sub-model
element
collection

Asset AAS:
sub-model
element

AAS:
property or
range

AAS:
sub-models

I4.0-system I4.0-
component

2. PPR model Resource Process Product
Process

Product Process

3. MARIANNE
(this work)

Physical
access
agent,
Interface
agent

Organiza-
tional
agent

Process
energy

Organiza-
tional
agent

Human
agent,
Cognitive
modeling

Knowledge
base

Module:
Unit,
Equipment,
Control

Application Operation
Mainte-
nance
Planning
Scheduling

*Source: metamodeling aPS criteria from [3].

ularly ISA-88 modules (Unit, Equipment, and Control), a
core model might be efficiently linked, mapped, or even
utilized to generate new viewsmerging aspects of existing
ones [3]. Through reviewing the criteria of the models in
Table 4, CPPS developers could work out the properties of
the target I4.0 model, employ the existing ones, or extend
them.

3.2 MARIANNE architecture
The following sections describe the notions used in MAR-
IANNE that are also used in existing standardization ef-
forts. Second, an implementation guideline for the MAS
is provided to integrate the agent-based patterns that one
can develop to instantiate the architecture.

3.2.1 Concepts used in MARIANNE that are related to
standardization efforts

The main decisional elements from MARIANNE are ex-
plained in this section. This MAS architecture is composed
of four IA classes that cover the main I4.0 concepts (see
Table 4): I4.0 component (can be the Class I or III), As-
set (managed by the Class II), and AAS (generated by the
Class IV). Each IA is a virtual decision-making entity that
can sense, process, store, or act on any CPPS shop floor.
The IA structure used was proposed by Wannagat et al.
[33], and it was employed in MARIANNE IAs. Figure 1 il-
lustrates an overview of the MARIANNE’s architecture in
the GitHub project (see. Section 3) that is implemented
in Python (.py), AASXexplorer (.aasx), Node-RED (.json),

and TwinCAT (.tnzip) files, available online. Design pat-
tern identification by [6] organizes the MARIANNE control
through their IAs (cp. Figure 1, left). For instance, the entity
Status information function provides current IA state rep-
resentations. This entity relates to other IA modules such
as the Unit, Equipment and Control from the ISA-88 model
(cp. Figure 1, right).

The normalized definitions (classes) refer to the gen-
eral overview based on the primary static information of
the models for I4.0 (see Section 2.3). Consequently, a fur-
ther (sub-)class defined byDIN 40912 is contained inMAR-
IANNE to cover the main RAMI4.0 aspects, e. g., for im-
plementing the AAS [22] report, version 3. Hence, systems
implemented according to MARIANNE can be applied to
achieve I4.0 systems (usually connected to cloud service
providers). However, this class can also contain elements
that donot achieve I4.0 requirements and are therefore not
I4.0 components [7]. I4.0 system description contains an
I4.0 component and its primary dependent representation
of the RAMI4.0, i. e., Asset and AAS entities. Like the DT
concept, an AAS is a digital representation of a resource
that refers to assets [8]. Here, MARIANNE has IAs (as a
type of distributed AI) that can encapsulate an Asset as a
value for an organization [7]. MARIANNE reaches the In-
dustrial AI characteristics (C1-C5, see Section 2.1.2) through
IA competencies (cp. Table 2). A Competence entity refers
to skills that depend on at least one softwareModule–MAS
software can be divided into a set of skills [34]. An IA’s
module refers to common functionalities presented as pat-
terns [6] and is extended by the IA’s level of intelligence
and AI characteristics. Then, to implement IA skills, exter-
nal or internalmodules that referencemathematical equa-
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Figure 1:MARIANNE UML Component diagram. Codes for 1) PADE; 2) AASX Package Explorer; 3) Node-RED; and 4) TwinCAT.

tions (e. g., Control, Reasoning, or Learning) or logical de-
scriptions (e. g., ISA-88 physical model: Unit, Equipment,
Module) are integrated. Another function pattern in MAR-
IANNE is the Knowledge Base, a type of Database that en-
ables AIs of the consistent technical component descrip-
tions as local knowledge [6]. Applying KBs enables smart
manufacturing in a formalized way; however, there are
no standardized MAS ways for generating them [31]. For
instance, module entities implement logical production
functionalities on different field-level devices, e. g., Pro-
grammable Logic Controllers (PLCs), Raspberry Pi, indus-
trial computers. The control or KB entities can model fur-
ther data to describe the hardware, e. g., the platform in-
formation, or define the information models. Here, IA’s
modules for logical purposes are written in various in-
dustrial programming languages, e. g., the IEC 61131-3, IEC
61499, Structured Text, C++/C#. Respective variables in
PLCopen XML store local input and output devices’ infor-
mation in different levels of granularity, as given in [34].

Further building blocks to be reused from existing
standardization efforts are essential for application in the
CPPS domain. Here, an Application entity is a software
functional unit [12] but refers to a specific solution of
an agent-based CPPS to communicate efficiently, intelli-
gently, collaboratively, and conform to a goal-oriented ap-
proach [11]. According to various application types, MAS
developers consider that IAs are interacting with physi-
cal types of equipment to perform control functions in the
CPPS domain. Typical aPS application types are Opera-
tion,Maintenance,Planning, and Scheduling. However, the

PPR is also contained inMARIANNE to describe the funda-
mental domain of the CPPS, e. g., the type of process (Con-
tinuous, Discrete, or Batch).

Process, Product, and Resource from the VDI/VDE
3682 guideline are essential for the MAS architecture. Like
an I4.0 component (consisting of an AAS and an asset
[7]), a product is processed by a resource within a process.
Here, a process is responsive to IA functionalities to make
specific executions, deliberating which strategies will ap-
ply and which products or services they will offer. Re-
source entities generate a lot of data and specify the func-
tions required to obtain products or services. The resource
featureswhether thedesiredprocess steps canbe executed
(procedures to transform/transport/store the material/en-
ergy/information). Besides products, MARIANNE also cov-
ers a Service entity, considered as ITIL6 4, as “a means
of enabling value co-creation by facilitating outcomes that
customers want to achieve, without the customer having to
manage specific costs and risks”.

3.2.2 IA types and reusable IA patterns

This work focuses on using design patterns in Model-
Driven Engineering (MDE) for MASs, e. g., using
UML/SysML in CPPS [1]. Recently, agent-based design pat-

6 ITIL, is formerly an Information Technology Infrastructure Library.
The 4th edition in 2019, focuses on fostering digital transforma-
tion, AI, cloud computing, and DevOps detailed practices (source:
www.ibm.com).

http://www.ibm.com
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terns for the industry have been discussed and approved
by VDI/VDE-GMA FA 5.15 and IEEE TC-IA members, pro-
moting standardized guidelines [30] and [11], respectively.
The first guideline is integrated into the MARIANNE archi-
tecture by introducing classes of IA patterns. For the sec-
ond guideline, MARIANNE’s requirements for the types of
IEEE 2660.1 interface practices are discussed, and quali-
tative evaluation from TC-IA guidelines are provided [11].
Software IA must recognize and efficiently handle the in-
terface and functionality of industrial devices (LLC/HLC)
[11]. Therefore, the MARIANNE architecture integrates the
four IA classes proposed (cp. Table 2): human-, interface-,
physical access-, andorganizational agents. Those classes’
definitions and their capabilities (see Section 2.1.2) are not
fully standardized yet in the context of industrial MASs
for I4.0. Instead, to be able to abstract in different levels,
agent classes of the MARIANNE architecture contain ex-
isting IA agent patterns (inheritance relation): RA is an
instance of the Class I; PA and AMS are instances of the
Class II; and CA is an instance of the Class III (see Section
2.2). The Physical access agent, through RAs, access the
capabilities of physical resources connecting shop floor
equipment with the MAS [30]. The Organizational agent
can support the general management of the MARIANNE
and its Scheduling, i. e., it is a PA or an AMS. The Inter-
face agent handles communication entities such as the
communication adapter to provide requirements for dif-
ferent intercommunication systems with the MAS. The CA
is an instance of this IA class, which considers the cat-
egorization based on the agent patterns interfaces, i. e.,
interaction mode and location (see Section 2.2, cp. Table
2). Consequently, a CA can derive four communication in-
terface practices [11]: i) Tightly Coupled Hybrid, ii) Tightly
Coupled On-device; iii) Loosely Coupled Hybrid; and iv)
Loosely CoupledOn-device. These interfaces vary depend-
ing on the location of the CA control (i. e., LLC/HLC), as
well as from its IEEE 2660.1 interface practice [11]. Finally,
the Human agent entity is able to apply the Human-in-
the-loop concept [14], e. g., through the human factor or
cognitive modeling entities.

3.3 MARIANNE’s implementation guideline

For an asset or the whole MAS, the CA provides the com-
munication adapters and cohesions to the outside world.
The CA enables different communication means, e. g.,
among plants, between AMSs, or provides the HumanMa-
chine Interface (HMI). For the latter, the CA can be imple-
mented in Node-RED, while PADE [18] is used for other IA

patterns with an interactive interface. PADE7 has a sim-
ilar structure to JADE but uses Python, making IA’s im-
plementation more versatile [18]. Regarding the abstract
DT concept, according to the online glossary of Platform
Industrie 4.0,8 the AAS concretes its implementation [8].
Other options to implement DTs are the DTDL and Web of
Things [4]. As a guideline, MARIANNE’s implementation
flowchart is shown in Figure 2, focusing in the AAS devel-
opment.

For systems, where real-time capabilities are critical,
the IA classes which control the CPPS, are generated pro-
gramming the LLC, i. e., by the IEC 61131-3/C++ languages
(cp. Figure 2, Case 1). For higher-level applications, where
real-time capabilities are not as critical, IAs can be im-
plemented using a high-level programming language such
as Python (cp. Figure 2, Case 2). Here, additional steps
are required to match the HLC to the CPPS. For managing
the AAS used for this approach, web flow-based program-
ming, e. g., Node-RED, can be applied to manage the AAS
depending on theAAS tools available. In the authors’ com-
prehension, hybrid DT application is acceptable since dif-
ferent DT approaches represent the complexity of asset be-
havior [8]. A hybrid DT application refers here to the com-
bination of equipment used in direct connection with sim-
ulation technologies and with sub-models integrated into
the forms of AAS. Therefore, in this work, the applied AAS
and simulation are symbiotically united. The structure of
AASs is defined and aimed at developing interoperable
DTs [22]. Following this reference, MARIANNE uses the
AAS, which has the two main parts,Manifest and Compo-
nent manager, together with theirHeader and Body [6, 22].
Here the body has various sub-models for each CPPS’ AAS.
DT developers can use various techniques to help them
create DTs. Since IAs cover advanced skills (typically an
AAS’s property/operation [22]) passive AAS are sufficient.
Thus, the AASXPackage Explorer for the AAS creation and
external management is used to create the DT. The Python
package PyI40AAS allows editing the AAS file and mov-
ing skills [31]. REST utilities and dynamic flow program-
ming practices are the foundations and embrace another
technical directionwhere browser-based interfaces are the
foundations. As a result, MARIANNE architecture com-
plies with current web technology developments as part
of IT software applications using Node-RED, i. e., based on
Node.js. In this case, NOVAAS is used as a runtime for the
AAS [20].

7 PADE project: https://github.com/grei-ufc/pade
8 Plattform Industrie 4.0: https://www.plattform-i40.de

https://github.com/grei-ufc/pade
https://www.plattform-i40.de
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Figure 2:MARIANNE’s guideline implementation flowchart and its relationships.

4 Exemplary implementation for
the demonstrator plant xPPU

This section presents an MAS implementation based on
MARIANNE using the eXtended Pick&Place Unit (xPPU)
[1]. As shown in Figure 3 (bottom right), in this context,
the CA control can have a part of the same computational
platform (on-device, i. e., PLC) or another type of Opera-
tion Technology “OT” (hybrid, i. e., Raspberry Pi, or PC).
Typical communication protocols accepted for the I4.0
paradigm, such as Ethernet/EtherCAT, OPCUA, or Profinet
[11], are implemented (cp. Figure 3, center and top).

The xPPU control application is contained in three pri-
mary devices: a PLC, a Raspberry Pi, and a PC with their
KB (cp. Figure 3, top) to provide multiple IA pattern inter-

faces andmultiple communication protocols. Thus, all IAs
within the MAS as introduced in [31] are associated with
the corresponding asset, including a KB. For coding the
IA interfaces (on-device, i. e., PLC) in LLC, the IEC 61131-3
standard was implemented. To program similar IAs and
interfaces in HLC (hybrid, PC, and Raspberry Pi), Node-
RED/NOVAAS and Python/PADE were applied (cp. Figure
3, bottom). The HLC directly applies control on the LLC
(tightly coupled), or brokers can intermediate the inter-
face (loosely coupled). When LLC/HLC within a CA com-
piles and is deployed as a single set of binaries, it cre-
ates a tightly coupled and on-device design scenario. For
instance, with in/output device entity, RAs (cp. Figure 3,
bottom right) connect the sensors and actuators of assets
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Figure 3: General landscape of the I4.0 scenario proposed with their I4.0 components and their IT/OT technologies.

[6] and connect the CPPS to offer services and thus create
products.

In general, MARIANNE addresses the main I4.0 con-
cepts, and the IAs’ skills can be implemented in the form
of OPCUAmethods, function blocks, and PLCopenXML as
given in [34]. The PA (cp. Figure 4, bottom right) can store
customers’ orders and their execution plan [15], while in-
formation of all active IAs is managed by the AMS [10]
(cp. Figure 4, top left). The structural software design in
an I4.0 scenario must also be modular to comply with the
adaptability requirements of hardware modules. Connect-
ing IAs, messages, or upgrades can also be intuitively sent
to all MAS using a shared communication network. A com-
munication channel via the OPC UA protocol is chosen to
connect to other systems unifying the data exchanged. Ad-
ditionally, the data live dashboard and GUI function work
as the HMI by a set of web interfaces in Node-RED, as
shown in Figure 4 (Part 1 and Part 2).

Additionally, IT nodes using technologies like Long
Range Wide Area Network (LoRaWAN) can be subse-
quently integrated into theMARIANNE throughother com-
patible communicationmethods, such as theHTTP (REST)
or Message Queuing Telemetry Transport (MQTT), and
mapping the data into objects for model-based structures,
i. e., it is as applied in OPC UA. All communication proto-

cols options for this architecture can be related to the OSI
model.

4.1 Implementing MARIANNE for an
intelligent light barrier

Figure 5 shows the division of the xPPU in modules using
the SysMLblockdefinitiondiagram (bdd, cp. Figure 5, cen-
ter). The agent-based CPPS architecture can be hierarchi-
cally structured through OMAC State Machines (for HLC)
and the lowest three levels of the ISA-88 physical model
(for LLC): unit module, equipment module, and control
module [1]. The xPPU unit module consists of two equip-
mentmodules, the stamping part and the sorting part. The
stamping part is composed of a stack, a crane, and stamp
control modules. The sorting part consists of a conveyor
control module (cp. Figure 5, right).

For each orderedWP a PA is created, and then thisWP
is transported through the stamping plant to the sorting
plant. The crane, which is equipped with a vacuum suc-
tion cup, picks up theWPs from the xPPU’swarehouse and
transports them either to the sorting plant or to the stamp-
ing plant, representing the processing station of the CPPS.
On the stamping plant, a shifting table (crane) transports
the WP under the stamp, where it is then imprinted with
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Figure 4: Dashboard and interfaces (GUI) of the implementation: 1) xPPU’s NOVAAS dashboard, 2) CPPS’ HMI in Node-RED.

Figure 5: IAs and the SysML block definition diagram of separating the xPPU’s HLC/LLC into modules. Adapted from [1].

an adjustable pressure (stack). The crane afterward trans-
ports the WP to the sorting plant. From here, the WP can
be sorted into one of the three ramps that form its final pro-
cess (cp. Figure 5, right). The first two ramps are equipped
with pushers and sensors for material detection. The third
ramp is positioned at the end of the conveyor belt and re-
ceives the WPs that have not been separated beforehand.
Combining three light (binary) sensors LS1-LS3 (cp. Figure
5, right)makes it possible to determine the condition of the
three different material cylinders (WPs).

In this context, physical access- and interface- agent
classes are assigned to the individual CPPS modules (cp.
Figure 5, left), with a distinction beingmade between RAs,
PAs, and the AMSs, as is also the case in [6]. The WPs are

initially assigned to an organizational agent class using
PAs. As a result, these PAs define required services to pro-
duce variousWPs (metallic, plastic, etc.). If the present RA
cannot provide the required service, the PA’s offer is sent
to the next connected RA, who proceeds in the same way.
For instance, someRAs include the crane and the conveyor
belt for WP’s transportation service. If the service is un-
available at the present transport RA, the request is sent
to all connected transport RAs until the required service is
found. In this case, for each offer request, a response will
be sent. The possible processing time (to produce a WP)
is adjusted based on the response time (IA real-time) of
the available transport RAs, managed by PAs and AMSs.
It means the fewer failures in the transport RAs (minor
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IA time responses), the better the processing time perfor-
mance.

The KB of the RAwithin the conveyormodule includes
analytical dependencies between the installed actuators
and sensors. RAs can learn individual parameters at run-
time to substitute missing actual values through mathe-
matical estimations. An example is an agent-based sen-
sor for a light barrier which is located in Ramp 1. The con-
veyors’ drive is provided with an initial speed value (set
value) in the primary state. Then, the WPs traveled dis-
tance and time are used to estimate an achieved speed (ac-
tual value). As a result, the initial speed is compared to the
estimated actual speed, providing an error margin (%). If
the error value is reasonable, the estimated speed is accu-
rate enough and can be accepted. The most accurate es-
timated value decides the amplification factor for Ramp 1.
However, a unique feature among the decision-making RA
is the position-WP function block,which continuously cal-
culates theWP’s location on the conveyor based on the es-
timated speed and defined distance, e. g., LS1 to Ramp 1.
In case of an erroneous position value of the limit switch
sensor, the WP location will be replaced by the estimated
position in the RA function block. To estimate an accurate
final position, at least one of the positioning sensors of the
entire sorting plant must be functioning.

The PA includes – but is not limited to – information
directly and permanently associated with the WP, such as
thematerial type, theprocessing time, or even the absolute
conveyor position during the transfer; all these variables
can be estimated by RA’s function block. Corresponding
ISA-88 modules were previously implemented by Bareiss
et al. [1]. The present light barrier sensor is based onWan-
nagat et al. [33] and the level of abstraction that is part of
this work; however, it uses a much more complex labo-
ratory model that results in two main contributions. The
first contribution implements the PA’s call for proposal
(CFP), using Contract Net Protocol – by PADE – that was
implemented according to FIPA (see Contract Net Interac-
tion Protocol Specification [10]). The second contribution is
the implementation of xPPU sub-models embedded into a
single AAS to increase interoperability.

4.2 IA patterns

Summarizing, as seen in Figure 6, the manufacturing
process is often defined by order generation and execu-
tion (typical RAs and PAs interactions). Addressed by the
VDI/VDE 2653-4 guideline of IA patterns, the RAs repre-
sent physical access (in/output devices) and keep its sta-
tus information function synchronized with the input of

Figure 6: Sequence diagram to detail the IA patterns interactions
in the CPPS network. CFP means “Call For Proposal” and refers to
FIPA (see FIPA Iterated Contract Net Interaction Protocol Specification
[10]).

the appropriate device (sensor data). An AMS is responsi-
ble for providing a single interface accessible for any IAs,
using the same protocol, despite the CA provider. The AMS
pattern, in most situations, keeps track of all involved and
related IAs and their messaging addresses, as described in
the preliminary research about IA patterns [6]. The AMS
typically supervises a white pages service, maintaining a
directory of IA references, and containing the two typi-
cal FIPA management components (see FIPA Agent Man-
agement Specification [10]): Directory Facilitator (DF), and
Message Transport Service (MTS). An AMS, together with
DF/MTS, often communicates with RAs and PAs to accom-
plish general MAS goals [6, 30]. Unlike the AMS, the PA
is responsible for the manufacturing recipe rather than
the technological structure since it naturally includes non-
real-time capability [6]. Some MAS architectures replace
the PA with a Product IA type, as Kovalenko et al. [15].

5 Evaluation of the MARIANNE
architecture and its agents’ AI
capabilites

This section gives an overview of the MARIANNE evalua-
tion, providing details about the contributions and the In-
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dustrial AI characteristics covered through the IAs in the
xPPU demonstrator results.

5.1 MARIANNE IAs and their Industrial AI
characteristics

For a qualitative evaluation, we relied on IAs applied in
the implementation described in Section 4.1. Those IAs are
evaluated using fourwords to indicate a degree for a scale:
shall, should, may, and can, as presented in the IEEE Rec-
ommended Practice for IAs [11]. That degree of obligation
is an enumeration with five possible levels of Industrial AI
characteristics related to IAs, analyzed in Section 2.1.2 (see
Table 1), i. e., level indicates the number of AI characteris-
tics required to apply a function or skills. The degree val-
ues of each IA are proposed by the authors’ and justified
by literature, with the following words’ semantics:
Level 5. Shall indicates “mandatory requirements strictly

to be followed in order to conform to the standard and
from which no deviation is permitted” [11].

Level 4. Should indicates “that among several possibil-
ities one is recommended as particularly suitable,
without mentioning or excluding others; or that a cer-
tain course of action is preferred but not necessarily
required” [11].

Level 3. May indicates “a course of action permissible
within the limits of the standard” [11].

Level 2. Can indicates “statements of possibility and ca-
pability, whether material, physical, or causal” [11].

Level 1. Usually not (authors’ semantic) indicates the
minimum level of an Industrial AI characteristics’
achievement.

According to the analyses from this study, currentMAS im-
plementation reaches different Industrial AI levels (C1-C4),
while IAs -can apply various functions with a specific de-
scription, as given in Table 5. Each of the first IA func-
tion descriptions (cp. Table 5, items 1.1, 2.1, 3.1, and 4.1)
is drawn from the authors’ evaluation of the actual im-
plementation (cp. Section 4); the other skills come from
the authors’ analyses of the IA concepts and their cited
sources.

In the current implementation, the MAS is initiated
by the AMS, and it perceives the skills of other IAs. The
AMS can restart IAs and update their environment mod-
els autonomously (C1). A faster reaction is achieved for
field-level control (C2), as the RAs can implement several
resources, i. e., conveyor, crane, etc. Proactiveness is sup-
portedbyPAs that applyCFPs todetermineand recalculate
necessary RAs in case of broken resources (C2), i. e., the

agent-based soft sensors to increase availability. However,
the physical resources of the RAs cannot be changed by
theMAS itself, this can only be achieved by human actions
(C5). IAsmake decisions based on their environmentmod-
els (C2-C3) created from the AAS and update if the xPPU
models change. MARIANNE is not built to support the col-
laboration of RAs into the same order (only overall pro-
duction process) because PAs usually request single pro-
cesses. A general overview of the IAs evaluation concern-
ing Industrial AI characteristics is given in Figure 7.

5.2 The MAS evaluation

The MARIANNE architecture comprises design patterns
that are structured by four IA classes (Con2). The IAs
applied for the xPPU are proposed and evaluated ad-
dressing VDI/VDE 2653-4 and IEEE 2660.1 standards [11,
30]. MARIANNE does not focus only on IAs but also
RAMI4.0 (Con1), which should be robust, comprehensive,
extendible, and meet I4.0 modeling requirements accu-
rately, i. e., AAS concept (see Section 2.3). Our industry
experts and IAs focus group members confirmed the util-
ity of the agent-based design patterns concerning the IA
classes [30] (Con2). In addition, MAS models show chang-
ing numbers of different semantics for CPPS entities and
variable levels of abstraction, i. e., hierarchical structure
by ISA-88 physical model (see Section 4.1). The authors
of this work confirm that, to the best of their knowledge,
all identified MARIANNE entities fall within the scope of
standard taxonomies (see Section 3.2), ensuring compre-
hensiveness and consistency. Besides, MARIANNE sup-
ports the development of appropriate RAMI4.0 modeling
approaches, i. e., AAS compatible (see Section 3.3). This
work materializes the levels of abstraction of our IAs into
a final implementation (see Section 4), following inter-
national standardizations (see Sections 2.2 and Section
3.2). Lastly, summarizing the MAS architecture guideline
(Con3), the application shows how RAMI4.0 – which rec-
ommends OPC UA as the bridge between IT/OT [20, 22] –
enables vertical and horizontal communicationwithin the
xPPUdemonstrator for itsHLC/LLC (see Section 3.3).More-
over, everything wrapped by the AAS concept is not lim-
ited to OPC-UA but encourages standard web technologies
and IT, particularly by REST/JSON standards within Node-
RED (NOVAAS application). This adaptation facilitates the
integration of OT into IT while taking advantage of the In-
dustrial AI maturity and steadiness of IA solutions, tools,
and applications within IT areas, i. e., PADE plus NOVAAS.
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Table 5: IA functions related to Industrial AI characteristics.

Item
No.

IA’s function (skill) description Industrial AI characteristic* C1–C2
(see Section 2.1.2, Table 1) evaluation

Au
to
no
m
y

Re
ac
tiv
en
es
s

Pr
oa
ct
iv
en
es
s

Pr
ed
ic
ta
bi
lit
y

Hu
m
an

co
op
er
at
iv
en
es
s

1. RA (Reactive, Class I), standardized
1.1 RA may be able to replace sensors data with soft sensors in order to increase

reliability/availability of the MAS. See Section 4.1
● ● ●

1.2 RA can represent and control technical plant components such as equipment (often
hard/soft real-time capability) [6, 30], as well as the resource allocation and its
capabilities as services, e. g., the ProductionService’s action in [8]

● ●

1.3 RA can define its actions in a particular context at runtime utilizing its KB, e. g., for
controlling and reconfiguring material flow systems [6]

● ●

1.4 RA can be able to carry out real-time execution in the plant floor like planning process,
transport, processing workpiece, machining, among others [15]

● ●

1.5 RA usually not have full autonomy due to the submissive heterarchy (it is often located
in the lowest MAS’s hierarchy) [6, 30], i. e., instead of negotiating IAs, a more
hierarchical structure with dominant and submissive IAs might be more suited at the
field-level [31]

●

2. PA (Proactive, Class II), standardized
2.1 PA may supervise the execution of a production recipe/plan the collaboration and

negotiation of other IAs, e. g., RA, AMS, in order to complete its goals (often
non-real-time capability). See Section 4.1

● ● ●

2.2 PA may represent the products that need to be processed [15] ● ● ●
2.3 PA can use graph-search and interaction with the underlying MAS as KB to run a

discrete reasoning process to produce optimal production plans [6, 30]
● ●

2.4 PA can apply a systematic, model-based optimization method during the
decision-making process [15]

● ●

2.5 PA usually are not responsible for the technical system but for the production recipe
since it usually requires non-real-time capabilities [6, 30]

●

3. CA (Reactive, Class III), standardized
3.1 CA may coordinate the message-based communication among other IAs, e. g., on

single or multiple platforms (PLCs, PCs, Raspberry Pis) across the field bus, including
people interfaces (HMI). See Section 4

● ● ●

3.2 CA can convert proprietary interfaces into multiple protocols, e. g., communication
interface by TCP/IP (often real-time capability) [6, 30]

● ●

3.3 CA usually is not limited to direct communication but also by patterns interfaces [11] ●
3.4 CA usually does not have a deterministic behavior communication because message

stacks inside CA possibly will overflow. More details of this experiment are described
in [27]

●

4. AMS (Proactive, Class II), standardized
4.1 AMS shall assume essential functions to coordination, control, and supervision for the

IAs by maintaining a table (white pages) that contains their proper identifiers (often
non-real-time capability). See Section 4.2

● ● ● ● ●

4.2 AMS can manage the operation of the MAS [10, 30], e. g., the creation, deletion,
migration of IAs to and from the MAS [6, 18]

● ●

4.3 AMS can try to restart agents when they fail [18] ● ●
4.4 AMS usually is not outside the IA’s network because of its authority, as only one exists

in a single MAS [10, 18]
●

*Industrial AI characteristics that support the IA main task; ●: needed
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Figure 7: Industrial agents applied in MARIANNE architecture and their level of Industrial AI characteristics (see Table 5).

6 Summary and outlook

AI is an area of study aimed at understanding and creat-
ing intelligent systems that fall into the criteria of think-
ing or behaving logically or humanly [26]. In the I4.0 con-
text, Industrial AI is a technological means of attaining
a certain level of autonomy and other AI characteristics
like reactiveness, proactiveness, predictability, and hu-
man cooperativeness [19, 21]. This paper presented various
technologies for improving aPS to complement CPPS ser-
vices, e. g., using the IA design patterns’ potential. MDE
for I4.0 and applications have received a lot of research
and development attention. MDE can simplify the com-
prehension of the CPPSs and consequently enable access
to an I4.0 scenario. This work examined various IT/OT-
technologies and introduced an agent-based CPPS with IA
topologies and development platforms. Thus, the MARI-
ANNE architecture is proposed, which combines specific
research efforts on how the RAMI4.0 concept might be
used to address the agent-based CPPS with the IA classes.
The PA generates a high-level production plan comprised
of executable skills for each RA. AMS contains (poten-
tially numerous) production process sequences for a spe-
cific product. The CA allows multiple types of communi-
cation among agents, systems, plants, and users of the
CPPS by developing GUIs and HMIs. MARIANNE provides
a broad overview of how recent advances in these IA de-
sign patterns can be linkedwith other components such as
in/output devices, modules, KBs, applications, and other
I4.0 components. Those IT/OT integration technologies
havemotivated affordable Industrial AI gadgets and linked
CPPS services to expand the potential of IT/OT-based ser-
vices. These developments could provide deeper insights
into best IA design patterns practices and enable I4.0 tech-
nologies further. This study is the first MAS research con-
ducted on a CPPS by IA design patterns aligned with the

VDI/VDE 2653-4 and IEEE 2660.1 standards, to the best of
our knowledge.

Definitions and classifications of MAS models charac-
teristics currently lack reusability, semantic interoperabil-
ity, and require more attention in other application do-
mains and I4.0 standardization (see Section 2.2). There-
fore, future IA researchers can face those requirements ap-
plying MARIANNE to perform a deep analysis of agent-
based CPPS features in the next steps. Furthermore, stan-
dardized taxonomies and IA design patterns can relate
to MARIANNE and migrate aPS to multiple domains, im-
proving semantics and a shared understanding of CPPS
(see Section 3.2). Evaluating further aspects of the MARI-
ANNEapproach is subject to upcomingworks andpublica-
tions. MARIANNE can also be applied to the smart grid do-
main by the IA patterns, as shown in the VDI/VDE 2653-4.
For example, using more libraries on PADE capable of the
MOSAIK [4, 18], and IT/OT platforms available for energy
systems [30]. Additionally, to achieve full interoperability,
a normalized way of information exchange between HLC
and LLC was necessary, as it is a formalized way of invok-
ing the LLC services into PLC and functions from the HLC
by the IAs.Here theDT, throughapro-activeAAS, provided
the standardizedway to support information and structure
communication between the IAs and thus interoperabil-
ity. Combining the ECLASS standard could ensure seman-
tic interoperability between IAs (see Section 2.2) [31]. How-
ever, the effort for creatingAASsmanuallywould increase,
even though there are various open tools available, e. g.,
the AASX Package Explorer, PyI40AAS.

In the future, it can be expected that new IAs will be
muchmore potent than reactive and deliberative ones. For
example, it adds learning strategies from analytics, data
mining, and ML as a potential benefit of advanced AI [14].
Additionally, the incorporation of modern ML technolo-
gies in a new type of IA should be researched to increase
the Overall Equipment Effectiveness of a CPPS. Learning
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methods for IAs have the advantage of generating Predic-
tive Agents and Learnability Agents, which are initially en-
abled to operate in unknown environments. This type of
agent becomes more capable than its fundamental knowl-
edge using the mathematical analysis of ML.

Funding: The authors acknowledge the financial support
by the Bavarian State Ministry for Economic Affairs, Re-
gional Development and Energy (StMWi) for the Light-
house Initiative KI.FABRIK (Phase 1: Infrastructure as well
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Abstract— “Artificial Intelligence in Industry 4.0”, a technical 

report published by the working groups “Technological and 

Application Scenarios” and “Artificial Intelligence” (AI) of the 

Industry 4.0 (I4.0) platform, presents an innovative Industrial AI 

concept. Above all, it concludes that I4.0 experts and scientists 

must become accustomed to the behavior of autonomous AI-

controlled systems, collaborate with them and comply with 

learnability requirements (predictability). Industrial AI instantly 

raises a set of concerns about existing norms and new 

standardizations. These frequently provide guidelines and, in some 

cases, offer procedures and implementations using design patterns. 

One way to produce AI in I4.0 systems is through Industrial Agents 

(IAs) due to their natural autonomy and additional intelligent 

characteristics, e.g., reactiveness, proactiveness, and human 

cooperativeness. Multi-Agent Systems (MASs) are particularly 

well suited for representing distributable AI that can develop I4.0 

components being applied to various I4.0 scenarios. Considering 

the properties of IAs and the corresponding standards, an MAS 

architecture is used to understand the aspects of the flexible, 

intelligent, and automated Cyber-Physical Production System 

(CPPS). This article proposes a predictive IA for I4.0 (Agent4.0) to 

an agent-based CPPS architecture, leveraging IA design patterns 

and logical structure for implementing MAS. As a result, relevant 

standardized IA design patterns for I4.0 show how MAS can be 

created with the help of the Industrial AI requirements and 

Agent4.0 skills (functions) identified. 

Keywords— Agent4.0, Artificial Intelligence, Cyber-Physical 

Production Systems, Industry 4.0, Industrial Agents 

 

I. INTRODUCTION 

Several industrial partners, academics, and researchers 

speak about distributed Artificial Intelligence (AI) and its 

potential benefits through Industrial Agents (IAs) in various 

domains, e.g., Manufacturing, Logistics, Smart Grids [1], [2]. 

Nevertheless, what exactly is an agent for Industry 4.0 (I4.0), 

and what are its AI characteristics? 

From its Multi-Agent System (MAS) concept roots, an agent 

is an entity that “just acts” since the word “agent” is derived 

from the Latin verb “agere”, which means “to do” [3]. 

Meanwhile, recently in the I4.0 context, according to German 

agents FA 5.15 VDI/VDE experts’ standardization, an IA 

encapsulates hardware or software to reach objectives through 

its autonomous behavior by interacting with its environment and 

with other IAs [4], [5]. At the same time, TC-IA, by the IEEE 

P2660.1 working group, normalized the IA as an intelligent, 

agile, and robust software that describes and manages the 

functionalities and capabilities of industrial units [6]. Moreover, 

MAS experts define AI as supplemental technical systems with 

the capacity to process tasks independently and efficiently [7].  

Nonetheless, those definitions are limited; they do not 

answer how the MASs acquire their intelligence and apply it to 

I4.0. Then, there are multiple and generally accepted definitions 

of both terms (agents and AI), which are ambiguous and far 

from identical within their communities. 

AI specialists usually use agents to describe technologies 

that complete multiple tasks and can be trained with external 

data (from sensors or databases). The acquisition of data and 

Machine Learning methods like Artificial Neural Networks, 

Fuzzy Logic, and Linear Regression can support decisions 

derived from the information already known to the intelligent 

system. Depending on the lower complexity of Industrial AI 

characteristics such as autonomy and reactiveness, IAs 

algorithms can execute the actions that are considered “the best” 

for smart systems. However, most sophisticated learning 

algorithms must enable intelligent systems to learn from 

online/offline operations, e.g., predictability definition [3], [8]. 

Then, the trained models, data, and knowledge should be 

extended and made reusable [7]. In order to train IA’s 

Knowledge Base models, highly complex and comprehensive 

data is required, resulting in a predictive IA [3]. 

This paper proposes a generic predictive IA concept for I4.0 

(Agent4.0) that applies a supervised learning method to increase 

the predictability of automated production systems. The 

Agent4.0 can be implemented on a high variety of platforms 

through an MAS architecture to fulfill industrial use cases and 

increase interoperability. MAS can be applied to achieve a 

network of agent-based Cyber-Physical Production Systems 

(CPPSs) for I4.0 use cases. CPPSs are industrial Cyber-Physical 

Systems that are usually defined as the integration of virtual 

(software) with physical (hardware) processes [1]. The MAS 

architecture is derived from the already existing IA standards of 

VDI/VDE and TC-IA experts.  

In contrast to other platforms such as the often-used Java 

Agent Development Environment “JADE” [9], [10], the 

proposed platform is the Python Agent Development “PADE” 

framework [11]. PADE is a good alternative for IA’s 

development and execution platforms, allowing MAS to be 

written in a modern programming language by Python with an 

object-oriented paradigm, simple learning, and resources for 

distributed system development.  

This work recognizes five Industrial AI characteristics for 

realizing a CPPS (sec. II) and their related works (sec. III). The 

study suggests an MAS including a logical architecture and 

software tools (sec. IV). This MAS already partially meets the 

AI requirements, and the others are assessed using a predictive 



 

 

 

IA concept (sec. V). The last section (sec. VI) includes a 

summary and an outlook. 

II. INDUSTRIAL AI CHARACTERISTICS AND IA PATTERNS 

This section summarizes five Industrial AI characteristics 

(C1-C5) and exemplifies the main IA patterns extended from 

[12]. After that, sec. III analyses their related work and gap. 

(C1) Autonomy: An IA can independently master uncertain 

conditions in a delimited and automated manner, achieving its 

objectives systematically without external or human 

intervention. VDI/VDE experts define the Resource Agent (RA) 

that is often located in the lowest MAS’s hierarchy without full 

autonomy due to their submissive heterarchy in the low-level 

control [4], [5].  

(C2) Reactiveness: An IA can respond to a request to process 

its environment information from low- to high-level control 

(observation and communication responsiveness in real-time). 

MAS experts define the Communication Agent (CA) that may 

convert proprietary interfaces into multiple protocols [4], [5], 

e.g., a communication interface by TCP/IP (often reactive with 

the real-time capability). 

(C3) Proactiveness: An IA can take the initiative for deciding 

and processing information whilst pursuing a goal (reasoning 

for deliberative tasks). Kovalenko et al. define the Product 

Agent that can apply a systematic, model-based optimization 

method during the decision-making process to achieve a 

common goal [9]. In some MAS compared in [4], [5], the 

Product Agent is often replaced by the Process Agent (PA). 

(C4) Predictability: An IA can predict the subsequent 

outcomes of actions given the actions in the previous tasks and 

the self-learning (from past information). The Learning agent 

concept has a distinctive “learning element”. It is often non-real-

time [3], which is in charge of improving the agent’s 

performance based on feedback and determining how the 

element should be updated to perform CPPS better in the future; 

see CPPS predictability definition in [8]. 

(C5) Human cooperativeness: An IA can apply the concept 

of human-in-the-loop. Karnouskos et al. introduce that IAs may 

be used to accomplish I4.0’s idea of human-in-the-loop, in 

which shop-floor operators interact with their environment and 

CPPS with the help of IAs [1]. 

A traditional IA typology refers to response time and main 

behavior (or feature) by three types [12]: the Reactive IA (reacts 

to perception), the Proactive IA (performs deliberative actions), 

and the Predictive IA (anticipates by learning tasks). Here, four 

IA classes are categorized regarding their main capabilities, and 

Industrial AI characteristics are determined: Class I; Physical 

access agent (abstracting and connecting heterogeneous 

production equipment with the MAS), Class II; Organizational 

agent (managing and organizing the operation of the MAS), 

Class III; Interface agent (handling the interface and 

functionality of low- and high-level control) and Class IV; 

Human agent (acting humans as agents).  

Figure 1 focuses on these IA classes (cp. center), integrating 

the AI typology (response time and main behavior, cp. top) and 

the level of Industrial AI characteristics (cp. bottom). 

 
Fig. 1. Industrial agents’ classes: typology and levels of Industrial AI 

characteristics C1-C5 (adapted from [12]). Inspired by the mindset state in terms 
of challenge/skills levels from Csikszentmihalyi’s flow model.  

III. RELATED WORKS 

IAs are usually considered a type of distributed AI, but these 

are considered to be autonomous and reactive software (cp. C1-

C2), as introduced in [6]. In contrast, Russell and Norvig 

introduce the Rational Agent concept as part of their AI 

categories (cp. C3), meaning it acts in order to achieve the best 

result or the best-expected result in the case of ambiguity [3]. 

They developed a taxonomy for the following AI system’ 

categorization: i) thinking humanly, e.g., artificial neural 

networks and other cognitive methods (cp. C4); ii) acting 

humanly (cp. C5), e.g., humanoid robots with natural language 

processing; iii) thinking rationally, e.g., expert systems or rules 

of inference and optimization (cp. C4); and iv) acting rationally, 

e.g., intelligent software agents that are expected to achieve 

goals (cp. C1-C3). 

While those definitions are helpful, they are far too general. 

Analyzing the roots of the IAs concept and AI facilitates 

contrasting both meanings with recent interpretations. Most 

recently, the authors Kaplan and Haenlein redefined AI as the 

ability of a system to understand external input accurately, learn 

from it, and apply what it has learned to fulfill specified goals 

and tasks through flexible adaptation (cp. C1-C4)[13]. 

Meanwhile, Lee et al. distinguish Industrial AI as a systematic 

discipline that integrates technical elements such as analytics, 

meaning not only the algorithm but also the algorithm’s 

implementation modeling by humans (cp. C5) in certain settings 

and for specific goals [14]. These authors demonstrate in which 

ways Industrial AI enables the system to be self-aware, self-

adaptive, and self-configuring (cp. C1-C4), easing the adoption 

of Digital Twins. 

In order to address IA definitions, the root taxonomies of the 

word “agent” are analyzed. Unland defines an IA as a software 

entity that autonomously represents and manages industrial 

units’ functionalities and capabilities (cp. C1) [6]. The same 

author defines a deliberative and reactive agent as the extreme 



 

 

 

points within the range for the smartness of IAs (cp. C2-C3). In 

both cases, it is possible to replace or combine one deliberative 

agent with many reactive agents without losing quality [15]. 

Gangoiti et al. [10] apply those types of IAs by JADE, 

aiming at adding reactivity and flexibility to CPPS following 

with the digital twin concept (cp. C2), i.e., by the Asset 

Administration Shell (AAS). Another example is IntraMAS 

[16], an intralogistics domain model that appears in different 

forms according to the overall abstraction and proactive control 

software (cp. C3). Those IAs developers focus on the domain of 

CPPS to solve I4.0 issues such as autonomy, reactiveness, 

human collaboration etc. (cp. C1-5).  

Most of the preliminary IA design patterns identified are 

standardized [4], [5], which are only reactive and proactive IAs 

types (C2-C3), with poor information on predictive IAs (C4). 

For instance, MAS experts mention this characteristic, but the 

analyzed IAs patterns do not demonstrate it [4]. The deliberative 

agents improve from their own experience or offline analyzed 

actions, for example, the Learning agent concept [3] (cp. C4). 

This distinction increases since probability is not predictability. 

A classical demonstration explains how the probability that a 

tossed coin will land up heads is 50%, but in no way can this 

accurately predict the next flip [17]. In this case, humans can 

train the agent to predict (cp. C5), on average, how many flips 

out of 200 will be heads, but it would not be able to predict the 

next flip. For this reason, a human applying typical machine 

learning methods are able to get predictive systems (cp. C4). 

Most AI researchers generally mean an “agent” to be a 

computer system that, in addition to having the properties listed 

above, is developed using theories that are more typically 

encountered in humans (cp. C5); however, the IAs capabilities 

are still missing, getting unclear clear IAs types differentiation, 

i.e., level of IA’s autonomy (cp. C1) [7]. Because of these 

definitions, it is viable that in a control system, a human agent 

and traditional agent behaviors are defined by a goal-orientated 

approach (cp. C5). An IA behavior represents a specific 

combination of tasks, but these tasks are not unique. IAs, 

therefore, are distinct entities with the ability to take a goal-

oriented approach with real-time capabilities (cp. C2) [4], [6].  

IAs frequently complete goals with autonomy, similar to 

humans, but (as far as recent experts demonstrate), they cannot 

reach the full AI autonomy level yet (cp. C1)[7]. Leitão et al. 

add modularity, flexibility, robustness, reconfigurability, and 

responsiveness to the IAs characteristics (cp. C1-C4), which are 

not entirely part of human behavior (cp. C5) [2]. For instance, 

Minsky et al. assume the human and computer can be 

“inextricably intertwined,” while the Human-computer 

interaction field commonly refers to them as separate or 

individual entities [18]. However, humans (operators, 

developers) can be considered an external part of the MAS 

regarding the present human agent class.  

Thus, the related approaches gap shows that MAS should 

consider more predictive agents (cp. C4) and human agents (cp. 

C5). In this sense, IAs can avoid the AI effect, which means that 

technology once thought to be intelligent will become outdated 

as machines become increasingly capable. As a result, the next 

sections present agent-based CPPS derived from IA patterns. 

IV. IA PATTERNS AND THE PREDICTIVE IA CONCEPT 

This section presents an agent-based CPPS concept focusing 

on IA patterns and the fulfillment of the Industrial AI 

characteristics introduced. The MAS architecture describes the 

relations between its IAs and visualizes its design. The MAS 

software subsection describes tools used in order to enable a 

wide variety of platforms, ensuring CPPS’s platform 

independence and interoperability. 

A. MAS architecture derived from IA patterns 

Derived from the Foundation for Physical Agents “FIPA” 

[19], the VDI /VDE 2653-4 [4], and the IEEE P2660.1 [6] 

norms, the MAS architecture shown in Fig. 2 was developed. 

Compared to the traditional MAS, the most crucial distinction 

in this paper’s approach is the “learning element” embedded in 

Agent4.0 in collaboration with the Administration shell. 

 
Fig. 2. Simple Logical Architecture of the MAS (extended from [20]). aPS, 
automated Production Systems; AMS, Agent Management System; DT, 

Directory Facilitator; KB, Knowledge Base; ML, Machine Learning; MTS, 

Message Transport System. 

Protocols and messages, specified in sec. V (cp. Table II), 

enable IAs’ communication and collaboration. An IA of the 

CPPS can have one of two aspects to autonomously support a 

variety of different use cases (cp. C1): each IA represents either 

a physical system (Fig. 2; 1) or an organizational entity (Fig. 2; 

2, 4, 5) For instance, an AMS provides IAs diagnosis services 

or introduces production requests into the system by managing 

the PAs. RA usually represents a single device or a group of 

devices (Fig. 2; 1). RAs and PAs (Fig. 2; 2) can be found in a 

CPPS network in various numbers, modularizing software or 

separating hardware, enabling real-time reactiveness (cp. C2), 

and non-real-time proactiveness (cp. C3), respectively.  

An AMS manages the IAs of the entire MAS and works with 

the Message Transport System and the Directory Facilitator for 



 

 

 

discovery purposes [19]. All IAs register themselves with these 

organizational entities from FIPA (Fig 2; 8). The directory 

facilitator is a “yellow pages” service that supplies IA’s skills 

and states [5], [11], [19]. Even if major parts of the FIPA 

standard are discontinued (deprecated or obsolete), AMS 

together with message transport system and the directory 

facilitator are still specifications considered stable and formally 

published [19].  

The AMS supports bidirectional IP-address-to-agent-name 

mapping. This allows direct communication between agents 

(Fig. 2; 7), e.g., asking for an IA’s IP address (identified by its 

name) and then using that data to establish a direct connection 

that is not dependent on other entities. By not defining specific 

interface communication into CAs (Fig. 2; 3), application, level, 

platform reactiveness (cp. C2) as well as AAS integration (Fig. 

2; 5) are further enhanced. OPC UA (Fig. 1; 6) and other 

adequate industrial communication protocols are examples of 

possible implementations. To ensure high availability and 

predictability from single IAs (cp. C5), Agent4.0 monitors all 

RAs for availability on a normal behavior (cp. R4). The IAs 

directories are in the cloud (Fig. 1; 9) over numerous nodes, like 

internet name services.  The logical structure here serves as a 

reusable specification for applying MAS architecture to 

extended CPPS domains, as given in [12]. The software used for 

the agent-based CPPS presented in the next section was selected 

as a result of this, considering the industrial AI needs (sec. II). 

B. MAS software applied 

The following technologies were chosen for the AAS 

deployment based on the previous prerequisites: Node-RED as 

integration middleware, Apache Kafka for the event/message-

based communication pattern, REST services for the Request-

Response communication IA patterns, and AutomationML as 

the supporting format for NOVAAS [21]. The CPPS control 

programs usually are performed at the low-level control of a 

development system’s hierarchy. Because of the widespread use 

of PLCs today, it seems reasonable to assume that they are being 

used in the I4.0 era, as mentioned in [10].  

I4.0 components are often founded on current PLC 

programming technology that relies on typical IEC 61131-3 but 

also distributed IEC 61499 standard. In addition, an AAS is 

configured using OPC UA, one of the most recommended AAS 

technologies [22] for AAS metamodel application. The AAS 

has been generated by transforming each AAS I4.0 

demonstrator into nodes (*.js), as proposed by the authors in 

[21]. The OPC UA Server retains the description in OPC UA of 

the AAS, representing the MAS control and the plant’s models 

based on NOVAAS. Following the modeling, the PLCopen 

XML file is created and imported into TwinCAT3; a PLC 

integrated development environment. The IEC 61131-3 

program is then designed, variables are connected to unique 

in/external modules, and the application is ready to run on the 

xPPU’s PLCs (i.e., real-time capable). The PLCs communicate 

with the plant by EtherCAT and publish an OPC UA server to 

contact the middleware, as introduced in [5]. In this scenario, 

 
1myYoghurt’s web: http://i40d.ais.mw.tum.de 

the middleware, which includes an OPC UA client and a web 

server, is written in Java and runs on a Raspberry Pi. HTTP 

requests from remote users may be activated until the 

middleware is up and running. A web application through 

NOVAAS provides an overview of the AAS representation into 

the OPC UA client and gives the relevant description with 

integrated header and body sub-models [21]. Selected open 

sources and their graphical user interface recommendations for 

digital twin development in this architecture (based on AAS) are 

summarized in Table I. 

TABLE I. OPEN SOURCE AAS DEVELOPMENT APPLICATIONS 

Name Main feature Open access* project 

AASX 
Package 

Explorer 

Use C#, easy GUI, and 
server with AAS 

examples are available 

https://github.com/admin-shell-

io/aasx-package-explorer 

BaSyx 
Use Eclipse, wide range 

of functions/GUI 

https://projects.eclipse.org/proje

cts/technology.basyx 

NOVAAS Use Node-RED, GUI https://gitlab.com/novaas 

PyI40AAS 
Use Python and simple 

pip, no GUI available 

https://git.rwth-

aachen.de/acplt/pyi40aas 
*A repository is available online to use it. GUI refers to graphical user interface.  

V. USE CASE AND EVALUATION 

This section discusses the proof of concept in detail (sec. 

V.A) over scenarios of two agent-based CPPS demonstrators 

with a common MAS architecture (cp. Fig. 2 adapting [5]). 

After that, the main results are evaluated in sec V.B.  

First CPPS is myYoghurt1 demonstrator and the scenario is a 

revised solution by the authors in [20]. Second CPPS is the 

Extended Pick and Place Unit (xPPU2) that comprises storage 

of workpieces space, fabricating, and logistics. The scenario 

depicts a single production line’s availability during processing 

of various types of workpieces. Each order of the xPPU is 

assigned to a new PA that coordinates the xPPU RAs [9]. The 

xPPU contrasts in aspects like openness via different protocols 

and modularity by hybrid platforms compared to myYoghurt 

plant. Table II results from testing those CPPSs and the 

applicable criteria based on [6]. Regarding IAs platforms, the 

main advantage of a PADE over a JADE is that it can send 

serialized objects (FIPA‐ACL messages) and has multi‐
platform interaction based on web technologies [11]. PADE, as 

well the IA patterns implemented in this section are not limited 

for manufacturing, but also extended for smart grids domain [4]. 

TABLE II. QUALITATIVE ASSESSMENT OF IAS INTERFACES OF THE CPPS 

DEMONSTRATORS. EVALUATION BASED ON [6] 

 Pattern criteria* myYoghurt [20] xPPU demonstrator 

Location On-device Hybrid  

Interaction mode Loosely coupled Tightly coupled 

API client C++/C#, Java (JADE) REST/JSON, Python (PADE) 

Channel FIPA-ACL, OPC UA HTTP, FIPA-ACL, OPC UA 

Score* 2.56 3.20 
*Criteria recommendation come from [6]. The score value is according to our expertise, providing 

a qualitative assessment of the IEEE 2660.1 interface practice into the CPPSs. 

IEEE 2660.1 interface practices categorize I4.0 plants for 

example, regarding location (low/high-level control host), 

interaction mode (low/high-level control interactions), 

2xPPU’s web: https://www.mec.ed.tum.de/ais/forschung/demonstratoren/ppu 

http://i40d.ais.mw.tum.de/
https://www.mec.ed.tum.de/ais/forschung/demonstratoren/ppu


 

 

 

application programming interface client, channel, score [6], 

and capability of using hybrid industrial communication 

protocols (e.g., Profinet, EtherCAT, among others), cp. Table II. 

This feature enables mixing open communication approaches 

by running tasks of an OPC UA server. Thus, a generic OPC 

UA Client will access the OPC UA server navigating the two 

AASs (from each plant) to learn more about the IEC 61131-3 

code and the relationship among variables, in/output devices, 

and IAs. Moreover, they control internal/external modules, i.e., 

fault diagnosis, control, etc. A web app has been created, which 

provides an OPC UA Client to communicate with the OPC UA 

Server, enabling the web application to provide a web user with 

a summary of the whole MAS comprised of the PLC and 

managed by the xPPU demonstrator, as given in [5]. 

A. Application Example of the Agent-Based CPPS 

The application of an agent-based CPPS scenario is 

summarized in this subsection. In the MAS, PAs have self-

initiated behavior that endeavors to define the required services 

and resources to produce four types of workpieces: aluminum 

metal (MetalA), bronze metal (MetalB), black plastic 

(PlasticB), and white plastic (PlasticW). PAs take control of an 

MAS situation, making early changes (cp. C2), requesting and 

assigning RAs available to transport workpieces. An agent-soft 

sensor application has been validated through the RAs of the 

xPPU. RAs can replace autonomously individual parameters 

(cp. C1) at runtime to substitute missing actual values through 

mathematical estimations. For instance, a light barrier sensor for 

workpiece location is found at the xPPU’s conveyors. In case of 

failure, RAs react to get real-time data (cp. C2) with a calculated 

accuracy value (values are given in percentage “%”) through the 

workpiece’s velocity and travel time.  

Agent4.0 is provided with a supervised machine learning 

algorithm in the primary state to support (but not limited to) 

long-term production tasks. Then, the workpiece features of 

time, speed, weight, type of material, and distance traveled are 

used to estimate a sensor accuracy value (actual value). 

Agent4.0 uses Linear Regression, due to its low mathematical 

complexity, to find out the best fitting line to represent the 

relationship between these workpiece variables. Figure 3 is a 

screenshot from the Orange tool for training the Agent4.0. In 

practice, Linear Regression is helpful since RAs have an 

extensive dataset, both in the number of rows and columns, that 

may lead into a memory overflow (Fig. 3; right).  

 
Fig. 3. Training Linear Regression model in Orange (Python-based platform) 

for Agent4.0 (left) to predict data for sensor values accuracy (right). 

 

Given that the machine learning representation is a linear 

equation, solving it is as easy as solving an equation for a 

specific set of inputs to make predictions. Agent4.0 can process 

the data from RAs and obtain the prediction data accuracy (%) 

of each agent-based sensor. Not only workpieces positions but 

multiple methods are trained offline by human operators in 

Agent4.0 (cp. C5) to predict other target values, e.g., the type of 

material of the workpieces.  

Fig. 4 plots the observations given through machine learning 

by different figures’ colors; thus, a prediction is provided by the 

black regression line. Most of the observations are close to the 

regression line; hence we can say our Linear Regression is an 

adequate model to make accurate predictions (see Fig. 4; 

correlation coefficient “r” is 0.76). As a result, the initial sensor 

value is compared to the predicted value, providing an error 

margin. If the error value is reasonable (Fig. 4; range between 

blue lines), the estimated sensor value is considered accurate 

enough and accepted by the agent-based sensor. 

 
Fig. 4. Linear Regression plot of the Agent4.0. Predicted value and the 

correlated coefficient “r” (r>0.7 is considered a high correlation). The black line 
is the best fit of data; blue lines are the confidence band, out of this are outliers. 

Through the machine learning model, the Agent4.0 is able to 

predict data such as the accuracy provided by the agent-based 

soft sensor from RAs (Fig. 3; right), increasing their availability. 

The proposed MAS architecture for CPPS was implemented in 



 

 

 

a specific application scenario to examine the required 

application and its Industrial AI characteristics (cp. sec. II). 

Initially, an academic demonstration of mass-customized items 

was employed to test the agent-based CPPS, i.e., by the xPPU 

demonstrator. 

B. Agent4.0’s Qualitative Evaluation 

According to the analyses from this study, current MAS 

implementation reach different Industrial AI levels (C1-C4) due 

to Agent4.0 being able to apply various functions (skills) with 

specific descriptions (cp. Table III and Fig. 5). The terms used 

in Table III are based on the IEEE P2660.1 guideline [6]; 

should” indicates it is recommended to, “may” indicates it is 

permitted to, and “can” indicates it is able to. Fig. 3 and Table 

III, resume each Agent4.0 skill descriptions that are drawn from 

the authors’ evaluation, extending the preliminary work in [12]. 

TABLE III. AGENT4.0’S INDUSTRIAL AI CHARACTERISTICS EVALUATION 

Industrial AI characteristics  

(C1-C5) evaluation 
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Agent4.0 should increase its initial Knowledge 
Base competence because of the “learning 

element” (often non-real-time). Sec IV.A 
●  ● ● ● 

Agent4.0 may operate in a time-predictable 

way, i.e., enabling short/medium/long-term 

production tasks. Sec. V.A   
● ●  ●  

Agent4.0 can predict data valuable to other IAs, 

by a central learning module. Sec. V.A ●    ● 
Agent4.0 can apply a supervised learning 

method, e.g., a Linear Regression algorithm, to 

achieve its goals. Sec. V.B 
   ● ● 

Agent4.0 usually does not fulfill hard/soft real-

time requirements because predictability 

implies learning from the past and being located 
at the heterarchy top. Sec. II.C4 

   ●  

●: needed. *See other IAs’ skills in [12] 

 
Fig. 5. Agent4.0 and its Industrial AI characteristics (cp. Table III). 

VI. SUMMARY AND OUTLOOK 

International MAS experts’ widespread adoption of the IAs 

in the CPPS has contributed to the seemingly insurmountable 

I4.0 paradigm by IA patterns standardization. However, those 

patterns present a unique opportunity to measure Industrial AI 

characteristics in agent-based CPPS, which have so far plagued 

attempts to control how traditional automated production 

systems and equipment are made. The preliminary standardized 

IA patterns (RA, PA, CA, and AMS) demonstrate how to 

achieve autonomy, reactiveness, and proactiveness, providing 

Industrial AI in CPPS with platform independence. Meanwhile, 

the main contribution of this paper shows the Agent4.0 concept 

with an MAS architecture as the subsequent transformation of 

IAs for a CPPS evolution in order to enhance predictability, 

among other Industrial AI characteristics. Those industrial 

needs should be achieved and measured using concepts for 

predictive systems. The concepts in question enable MAS 

developers to predict CPPS behavior uncertainties and thereby 

decrease IAs’ obsolescence, i.e., avoiding the AI effect (concept 

description at the end of sec. III). In this case study, the MAS 

application resides in a cloud environment-based Node-RED 

that is easily accessible with a network connection in order to 

reveal KPIs like OEE. The main benefit of applying IAs and 

reaching a high OEE is the ability to demonstrate CPPS 

competitiveness by highlighting weaknesses. For instance, RA 

increases the availability of the equipment by soft-sensors and 

PA delivers high-quality products to its customers. From these 

IA patterns, it is then possible to differentiate the Agent4.0 that 

increases predictability and human cooperativeness by offline 

training and predicting data trends within CPPS. 

Regarding future work, using different machine learning 

models for Agent4.0 as a resource to identify critical CPPS 

situations in an unsupervised training environment could allow 

automatically performed cost-opportunity analyses to decide 

whether extra agent-based sensors should be included.  
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