
Technische Universität München

TUM School of Engineering and Design

Software Agents with Design Patterns for Industrial Automation

Control based on Cyber-Physical Production Systems

Luis Alberto Cruz Salazar

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen

Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. rer. nat. Thomas Hamacher

Prüfende der Dissertation:

1. Prof. Dr.-Ing. Birgit Vogel-Heuser

2. apl. Prof. Dr.-Ing. habil. Arndt Lüder

3. Assoc. Prof. Dr. Elisabet Estévez Estévez

Die Dissertation wurde am 19.03.2024 bei der Technischen Universität München eingereicht und

durch die TUM School of Engineering and Design am 17.07.2024 angenommen.

„Die ihn aber aufnahmen und an ihn glaubten, denen gab er das Recht,

Kinder Gottes zu werden...“

Johannes 1:12

“But as many as received him, to them gave he power to become the sons of God,

even to them that believe on his name…”

John 1:12

Main peer-reviewed publications
In the following, the selected peer-reviewed journal and conference papers, which primarily

contributed to the context of this dissertation, are listed.

I. Cruz S. LA, Vogel-Heuser B (2017) Comparison of agent oriented software methodologies to apply in cyber

physical production systems. In: 15th International Conference on Industrial Informatics (INDIN). IEEE,

Emden, Germany, pp 65–71. https://doi.org/10.1109/INDIN.2017.8104748

II. Cruz S. LA, Mayer F, Schütz D, Vogel-Heuser B (2018) Platform Independent Multi-Agent System for

Robust Networks of Production Systems. IFAC-PapersOnLine 51:1261–1268.

https://doi.org/10.1016/j.ifacol.2018.08.359

III. Cruz S. LA, Ryashentseva D, Lüder A, Vogel-Heuser B (2019) Cyber-physical production systems

architecture based on multi-agent’s design pattern—comparison of selected approaches mapping four agent

patterns. Int J Adv Manuf Technol 105:4005–4034. https://doi.org/10.1007/s00170-019-03800-4

IV. Cruz S. LA, Vogel-Heuser B (2022) A CPPS-architecture and workflow for bringing agent-based

technologies as a form of artificial intelligence into practice. at - Automatisierungstechnik 70:580–598.

https://doi.org/10.1515/auto-2022-0008

V. Cruz S. LA, Vogel‐Heuser B (2022) Industrial Artificial Intelligence: A Predictive Agent Concept for

Industry 4.0. In: 20th International Conference on Industrial Informatics (INDIN). pp 1–6.

https://doi.org/10.1109/INDIN51773.2022.9976159

Complementary peer-reviewed publications
In the following, the other peer-reviewed journal and conference papers are listed, which

contributed in a complementary manner to the context of this dissertation.

VI. Vogel-Heuser B, Ryashentseva D, Cruz S. LA, et al (2018) Agentenmuster für flexible und

rekonfigurierbare Industrie 4.0/CPS- Automatisierungsbzw. Energiesysteme. In: VDI-Berichte (ed)

Automation 2018, 1st ed. VDI Verlag, Düsseldorf, pp 1119–1130. https://doi.org/

https://doi.org/10.51202/9783181023303-1119

VII. Lüder A, Zawisza J, Cruz S. LA, et al (2018) Identifying Design Pattern for Agent Based Production

System Control. In: 44th Annual Conference of the IEEE Industrial Electronics Society, IECON. IEEE,

Washington D.C., USA, pp 2896–2901. https://doi.org/10.1109/IECON.2018.8591336

VIII. Ryashentseva D, Cruz S. LA, Vogel-Heuser B, Lüder A (2018) Development and evaluation of a

unified agents- and supervisory control theory based manufacturing control system. In: 14th

International Conference on Automation Science and Engineering (CASE). IEEE, Munich, Germany, pp

187–192. https://doi.org/10.1109/COASE.2018.8560539

IX. Vogel-Heuser B, Seitz M, Cruz S. LA, et al (2020) Multi-agent systems to enable Industry 4.0. at -

Automatisierungstechnik 68:445–458. https://doi.org/10.1515/auto-2020-0004

X. Haben F, Vogel-Heuser B, Najjari H, Seitz M. Trunzer E, Cruz S. LA (2021) Low-entry Barrier Multi-

Agent System for Small- and Middle-sized Enterprises in the Sector of Automated Production Systems.

In: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).

IEEE, pp 1351–1357. https://doi.org/10.1109/IEEM50564.2021.9672973

XI. Seitz M, Gehlhoff F, Cruz S. LA, et al (2021) Automation platform independent multi-agent system for

robust networks of production resources in industry 4.0. Journal of Intelligent Manufacturing 32:2023–

2041. https://doi.org/10.1007/s10845-021-01759-2

Standard publication
In the following, a standard made a particularly important contribution to this dissertation.

XII. VDI/VDE (2021) 2653 Sheet 4: Multi-agent systems in industrial automation - Selected patterns for field

level control and energy systems. Available in: https://www.vdi.de/en/home/vdi-standards/details/vdivde-

2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-

energy-systems

https://doi.org/10.1109/INDIN.2017.8104748
https://doi.org/10.1016/j.ifacol.2018.08.359
https://doi.org/10.1007/s00170-019-03800-4
https://doi.org/10.1515/auto-2022-0008
https://doi.org/10.1109/INDIN51773.2022.9976159
https://doi.org/10.51202/9783181023303
https://doi.org/10.51202/9783181023303
https://doi.org/10.1109/IECON.2018.8591336
https://doi.org/10.1109/COASE.2018.8560539
https://doi.org/10.1515/auto-2020-0004
https://doi.org/10.1109/IEEM50564.2021.9672973
https://doi.org/10.1007/s10845-021-01759-2
https://www.vdi.de/en/home/vdi-standards/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/en/home/vdi-standards/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/en/home/vdi-standards/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems

Acknowledgments

First of all, I dedicate this project and my entire university career to the LORD for being the

one who prospers and blesses me at every moment of my life, making it a source of success

and filling it with the best experiences.

I am deeply grateful to Prof. Birgit Vogel-Heuser, who allowed me to follow the PhD under

her supervision. Thanks to her excellence and dedication, I am allowed today to culminate

this professional dream, and it has definitely been a great benefit her support in the whole

process, without her help this dream was not possible. I want to also thank Prof. Luis Ribeiro

for his accurate feedback on my contribution.

To the Technical University of Munich (TUM) and the Universidad Antonio Nariño

(specifically PFAN scholarship) for providing me with the tools, academic support, and

economic resources necessary to train as a Doctor-Engineering in the wonderful country of

Germany, facing the challenge of transforming my environment with dedication and

perseverance. Thanks to both institutions and the Ministry of Science and Technology of

Colombia Minciencias (call 756 Doctorates abroad) for their trust and financial support.

Throughout my time at the Institute of Information Systems AIS-TUM, thank my colleagues

Dr.-Ing. Juliane Fischer and Dr.-Ing. Suhyun Cha, for their constant support. They patiently

and wisely guided me in the content of most of my publications. Also, thank Dr.-Ing.

Emanuel Trunzer for the support and wishes in this thesis. I take with me the best memories

of the TUM staff for welcoming me and giving me all the required support to reach this work.

To all those people who are important in my life and to whom I owe my time for my

professional sacrifices, especially my daughters Mariana Cruz and Paloma Cruz. To all my

family and friends, I thank you from the bottom of my heart for your support since I know

that, in one way or another, you participated and paved the way for achieving my training.

Now, I project myself as a capable and suitable person to teach in my personal and

professional environment, following the German high-quality education.

Thank you to each of you for your teachings, family, friends and colleagues, the list would be

endless, but rest assured that each one of you is part of this achievement, your time and

appreciation in my life means that it has also been your work!

List of Abbreviations

AI Artificial Intelligence

AMS Agent Management System

AOSE Agent Oriented Software Engineering

CA Communication Agent

CPPS Cyber-Physical Production System

CPS Cyber-Physical System

AIS Institute of Automation and Information Systems

AAS Asset Administration Shell

aPS automated Production System

I4.0 Industry 4.0

IA Industrial Agent

IIoT Industrial Internet of Things

IT Information Technology

KB Knowledge Base

DF Directory Facilitator

DT Digital Twin

MAS Multi-Agent System

ML Machine Learning

OT Operational Technology

PLC Programmable Logic Controller

POU Program Organization Unit

PA Process Agent

PPR Product, Process, Resource

RA Research Agent

RAMI4.0 Reference Architecture Model Industry 4.0

Req Requirement

RQ Research Question

TUM Technical University of Munich

Table of Contents

Contents
Main peer-reviewed publications .. 3

Acknowledgments... 4

List of Abbreviations .. 5

Table of Contents .. 6

List of Figures ... 9

List of Tables .. 10

1. Introduction and motivation .. 11

1.1 Motivation for automated Production Systems with Multi-Agent Systems 11

1.2 Why Industrial Agents and Cyber-Physical Production Systems? 12

1.3 Delimitation and key differentiation of this thesis .. 14

1.4 Scientific problem: issue statements ... 15

Issue 1: Lack of a comprehensive overview and classification of MAS patterns in CPPS .. 15

Issue 2: Challenge of reusability and extendibility of MAS design patterns for I4.0 15

Issue 3: Integration of MAS design patterns with existing CPPS models and standards 16

Issue 4: Implementing sub-agent patterns and AASs into hybrid CPPS platforms. 16

1.5 Research questions, and main contributions ... 16

1.6 Structure of this dissertation ... 17

2. Research method and conceptual background .. 17

2.1 Research method and strategy stages .. 17

2.2 IA design pattern definition .. 18

2.3 Requirements for MAS architectures for I4.0/CPPS .. 20

2.4 Related work: how do IAs contribute to the CPPSs? ... 20

T a b l e o f C o n t e n t s | 7

3. Main contributions of IA design patterns to CPPS ... 29

3.1 Contribution 1 (Con1): MAS criteria categorization .. 30

3.2 Contribution 2 (Con2): IA pattern needs for I4.0 ... 31

3.3 Contribution 3 (Con3): agent-based CPPS scenarios ... 34

3.4 Contribution 4 (Con4): MAS architecture with DTs .. 36

3.5 Contribution 5 (Con5). IA patterns standardization ... 38

4. Summary of publications ... 41

4.1 Publication I: “Comparison of agent oriented software methodologies to apply in cyber

physical production systems” (Cruz & Vogel-Heuser, 2017) .. 42

Summary of Pub. I (ReqsForCPPS) .. 42

Author’s contributions on Pub. I ... 43

4.2 Publication II: “Platform Independent Multi-Agent System for Robust Networks of

Production Systems” (Cruz S. et al., 2018) .. 43

Summary of Pub. II (MASplatform) ... 44

Author’s contributions on Pub. II ... 44

4.3 Publication III: “Cyber-physical production systems architecture based on multi-

agent’s design pattern—comparison of selected approaches mapping four agent patterns”

(Cruz S. et al., 2019) ... 45

Summary of Pub. III (MASpatterns) .. 45

Author’s contributions on Pub. III .. 46

4.4 Publication IV: “CPPS-architecture and workflow for bringing agent-based

technologies as a form of artificial intelligence into practice” (Cruz S. & Vogel-Heuser,

2022a) 47

Summary of Pub. IV (MARIANNE) .. 47

Author’s contributions on Pub. IV .. 48

4.5 Publication V: “Industrial Artificial Intelligence: A Predictive Agent Concept for

Industry 4.0” (Cruz S. & Vogel-Heuser, 2022b) .. 48

T a b l e o f C o n t e n t s | 8

Summary of Pub. V (Agent4.0) .. 48

Author’s contributions on Pub. V ... 49

5. Discussion and outlook ... 49

5.1 Main publications results related to the issues .. 49

5.2 Fulfillment of the requirements and the covered CPPS challenges 52

5.3 Conclusion and outlook .. 54

6. References .. 56

7. Appendix A. Includes main contribution papers (Pub.I-V) ... 64

L i s t o f F i g u r e s | 9

List of Figures

Figure 1: Artificial Intelligence categories and the Industrial Agent application. Source: Based on

(Russell & Norvig, 2010). ... 11

Figure 2: Challenges and gaps of Industrial Agents. .. 13

Figure 3: Thesis’ scope of the agent-based CPPS proposed for industrial control automation

within the manufacturing field. ... 15

Figure 4: Levels of research objectives in a holistic research method. Source: Adapted from

(Hurtado 2012). ... 17

Figure 5: Comprehensive concept maps from Scopus AI, after the question (Dec 2023): How do

industrial agents contribute to the optimization of Cyber-Physical Production Systems? 22

Figure 6: Overview of relevant state-of-the-art contributions, their field of contribution, and

identified research gap that can be positioned at the junction where CPPS, MAS, and design

patterns intersect. .. 26

Figure 7: State-of-the-art agent-based CPPS patterns based on their introduced challenges

(selected RQs from Fig. 2). ... 27

Figure 8: Citation network of selected paper (overlay view in VOSviewer®). 28

Figure 9: Research issues, contributions, and publications (namely paper numbers Pub.X as

occur). ... 29

Figure 10: General landscape of the I4.0 scenario proposed with their I4.0 components and their

IT/OT technologies. .. 35

Figure 11: Logical architecture of the MAS (right) extended to an AAS-based MAS version

(left)... 37

Figure 12: MAS from Hoffmann (Hoffmann, 2017) (left) and Lüder et al. (Lüder et al., 2017)

(right). ... 39

Figure 13: Challenges and gaps of Industrial Agents – related thesis’ contribution (selected RQs

from Fig. 2). .. 54

L i s t o f T a b l e s | 10

List of Tables

Table 1: Rating scheme of requirements related to issues (Section 1.4) to evaluate relevant work.

... 20

Table 2: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table

1. CPPS approaches .. 22

Table 3: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table

1. MAS approaches. .. 23

Table 4: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table

1. Pattern approaches. ... 25

Table 5: Criteria to classify MAS architectures / patterns (Cruz S. et al., 2019). 30

Table 6: Industrial Agents, their main competencies, and examples. Source: (Cruz S. & Vogel-

Heuser, 2022a). ... 32

Table 7: Agent4.0’s Industrial AI characteristics evaluation (Cruz S. & Vogel-Heuser, 2022b). 33

Table 8: Qualitative Assessment of IAs interfaces of the I4.0 demonstrators (Cruz S. & Vogel-

Heuser, 2022b). ... 35

Table 9: Relationship and comparison between I4.0 models (Cruz S. & Vogel-Heuser, 2022a). 37

Table 10: List of sub-agents patterns for MAS architectures extended from (Cruz S. et al., 2019;

Vogel-Heuser et al., 2018). ... 40

Table 11: Overview of the author contribution (for each activity of each paper, the contribution

of all authors is 100%). ... 41

Table 12: Summary of the primary results from the main publications. 42

Table 13: Overview of the thesis’ storyline contributions. ... 49

Table 14: Summary of the rating of requirement fulfilment. .. 52

I n t r o d u c t i o n a n d m o t i v a t i o n | 11

1. Introduction and motivation

Within the framework of Industrie 4.0 (I4.0), interconnections, smart sensors, actuators, and

other equipment are becoming more common in an automated Production System “aPS”.

Multiple aPSs encompass networked entities, also known as a Cyber-Physical Production System

“CPPS” (Vogel-Heuser et al. 2015a), or an industrial Cyber-Physical System “CPS” (Ribeiro

and Hochwallner 2018). In this sense, industry and academia discuss CPPS’s benefits and

common ground with agents as a way to develop CPPSs in various aPS domains, e.g.,

manufacturing and smart grids (Leitão et al. 2016). Nevertheless, what exactly is an agent for the

I4.0? Is it possible to categorize Industrial Agents “IAs” as a type of Artificial Intelligence “AI”?

Or does it remain just a software program, as discussed in (Franklin and Graesser 1997)?

1.1 Motivation for automated Production Systems with Multi-Agent Systems

Russell and Norvig define that the agent is an entity that “just acts”, because it comes from the

Latin agree (meaning to do). Those authors also introduce the Rational Agent concept as part of

their AI categories, as “one that acts so as to achieve the best outcome or, when there is

uncertainty, the best expected outcome” (Russell and Norvig 2010). They use a taxonomy for the

following AI system’ categorization: i) thinking humanly, e.g., artificial neural networks and

other cognitive methods; ii) acting humanly, e.g., humanoid robots with natural language

processing; iii) thinking rationally, e.g., expert systems or rules of inference and optimization;

and iv) acting rationally, e.g., intelligent software agents that are expected to achieve goals.

Figure 1 represents this AI categorization, adding industrial application contribution and its

complexity addressed by typical IAs (e.g., Resource agent, Process agent).

Figure 1: Artificial Intelligence categories and the Industrial Agent application. Source: Based on (Russell & Norvig, 2010).

I n t r o d u c t i o n a n d m o t i v a t i o n | 12

As a consequence of agent seminal definitions, it is possible to say that in a control system, a

human and an agent’s behavior are defined by a goal-orientated approach (Telang et al. 2019;

Heylighen 2023). An agent’s behavior represents a specific combination of tasks, but these tasks

are not unique. For example, a human can select any route to resolve math calculations (e.g.,

multiplications are a sums compound). Agents, therefore, are distinct entities with the ability to

take a goal-oriented approach. Agents are able to complete goals with autonomy, similar to

humans, but (as far as recent experts demonstrate), they cannot reach the full AI autonomy level

yet (Plattform Industrie 4.0 2019). The authors in (Leitão et al. 2016), add modularity, flexibility,

robustness, and responsiveness to IA features, which are not entirely part of human behavior.

Along these lines “Artificial Intelligence in Industrie 4.0” is a technical report published by

the working groups on “Technological and Application Scenarios” and on AI of the I4.0

platform that presents an Industrial AI concept level yet (Plattform Industrie 4.0 2019). The most

relevant conclusion is that I4.0 experts and scientists must become accustomed to the behavior of

autonomous AI-controlled systems, collaborate with them, and even comply with their

requirements. In this way, initiatives related to IAs instantly raise many concerns about existing

norms and new standardization. These regulations often provide guidelines and, in some cases,

offer procedures driven by IA design patterns (Ribeiro et al. 2018; Leitão et al. 2021). An IA is

one way of achieving I4.0 systems due to natural autonomy and additional intelligent features,

e.g., reactiveness, proactiveness, and human collaboration. Thus, collaborative and grouped IAs

(named sub-agents) are defined as a Multi-Agent System (MAS), which is particularly well

suited for representing distributable AI able to develop industrial CPSs (Karnouskos et al. 2020a)

and to use in I4.0 scenarios (Vogel-Heuser et al. 2020; Seitz et al. 2021).

1.2 Why Industrial Agents and Cyber-Physical Production Systems?

A CPPS consists of “intelligent entities that collaborate and exchange information globally, and

they are proclaimed as the basis of Industry 4.0. A CPPS enables characteristics of Cyber-

Physical Systems in the production automation domain” (Vogel-Heuser et al., 2015). Hence,

I4.0/CPPS usually refers to the Fourth Industrial Revolution. In the industrial context, according

to German FA 3.351 VDI/VDE experts’ standardization, an IA is “an encapsulated

(hardware/software) entity with specified objectives. An agent endeavors to reach these

objectives through its autonomous behavior, in interacting with its environment and with other

1 Previously FA 5.15, “Agent systems” is a working group of the Society of German Engineers (VDI) and German Electrical Engineers (VDE).

I n t r o d u c t i o n a n d m o t i v a t i o n | 13

agents” (VDI/VDE, 2012). At the same time, TC-IA2 by the IEEE P2660.1 working group

normalized the IA definition as an “agile and robust software entity that intelligently represents

and manages the functionalities and capabilities of an industrial unit” (IEEE, 2021). Concerning

AI, German experts define it as “supplements technical systems with the ability to process tasks

independently and efficiently” (Plattform Industrie 4.0, 2019). Nonetheless, those definitions are

limited; they do not answer how IA/AI acquire their intelligence. Then, there are multiple and

generally accepted definitions of both terms IA/AI that are ambiguous and far from the same

between their communities. To bridge these discrepancies and provide a cohesive understanding

by research questions (RQs), reference can be made to the pivotal Fig. 2.

Figure 2: Challenges and gaps of Industrial Agents.

Highlighted green RQs refer to the focus of this dissertation, which started in 2016, and based on those, are created the thesis’

RQs; IA experts subsequently proposed the other RQs. Source: Adapted from the presentation of the workshop3 “Agents in agile

manufacturing (CPPS) - Status of Last Meeting”, AIS-TUM, 2019.

2 TC-IA refers to the international IEEE-IES Technical Committee on Industrial Agents.
3 Following are the participants of the agent-based CPPS workshop and their affiliations: Andrei Lobov (Norwegian University of Science and
Technology), Armando Colombo (University of Applied Sciences Emden/Leer), Arndt Lüder (Otto von Guericke University Magdeburg), Birgit

Vogel-Heuser (Technical University of Munich), Christoph Hanisch (FESTO AG), Elfahaam Haitham (RWTH Aachen University), Friedrich

Durand (afag Automation AG), Kira Barton (University of Michigan), Luis Ribeiro (Linköping University), Marga Marcos (University of the
Basque Country), Paulo Leitão (Polytechnic Institute of Bragança), Peer Stritzinger (Erlang Ecosystem Foundation), Peter Göhner (University of

Stuttgart), Stamatis Karnouskos (SAP), Ulrich Epple (RWTH Aachen University), and Valeriy Vyatkin (Aalto University).

I n t r o d u c t i o n a n d m o t i v a t i o n | 14

Figure 2 recompiles a comprehensive list of questions, highlighting the numerous challenges

and gaps associated with agents: interfaces, AI/Knowledge, engineering, CPPS, I4.0, patterns,

standardization, metrics, and other interlaced IA concepts. Also, this figure illustrates specific

RQs that are central to this dissertation, serving as both an informative backdrop and a compass

guiding the formulation of the thesis’ issues statements and the RQs. The origins of this figure

were a presentation from the Workshop titled “Agents in agile manufacturing (CPPS)” held at

AIS-TUM in 2019. It is imperative to mention that these discussions and subsequent findings in

the workshop were the collaborative endeavors of experts from both IFAC 3.35 NMO GMA

VDI/VDE and IEEE IES TC-IA by the IEEE P2660.1 working groups. This collaboration

signifies the synthesis of knowledge, experiences, and expertise from renowned IA experts trying

to shape the future landscape of agent-based CPPS.

1.3 Delimitation and key differentiation of this thesis

Considering the properties of IAs and their relevant standards, this cumulative thesis presents a

MAS architecture to understand the aspects of the flexible and intelligent CPPS. For this thesis, a

CPPS often refers to I4.0 and the MAS approach as well as in (Colombo et al., 2021; Gangoiti et

al., 2021; Karnouskos et al., 2020; Tang et al., 2018; Vogel-Heuser et al., 2015). Regarding I4.0,

the thesis refers to precisely the Asset Administration Shell (AAS), which is one of the main

specifications of the Reference Architecture Model for I4.0 or RAMI4.0 (DIN SPEC 91345 norm

(DIN SPEC, 2016)). AAS is the Digital Twin (DT) of assets that form the I4.0 components, and

together with IA, AAS allows smart access to resource information, as well as connectivity with

other I4.0 components (Cruz S. et al., 2019). As a result, relevant IA pattern standards and their

AI challenges for the I4.0 show how MAS can be overcome with the help of identified IA skills,

capable with the Product, Process, Resource (PPR) model (Cruz S. & Vogel-Heuser, 2022a).

This dissertation focuses on IAs design patterns and their capability for the standardized I4.0

concepts (e.g., RAMI4.0, AASs, PPR), proposing an agent-based CPPS architecture to achieve

smart production. As introduced by Fig. 3, the MAS proposed is delimited to CPPSs that are able

to provide both soft and hard real-time responsiveness, as well as to facilitate vertical integration

across various levels of industrial control automation in the specific domain of discrete

manufacturing. The innovative differentiation of this thesis are the IA design patterns embedded

within an agent-based CPPS that are specifically designed to synergize with core components of

industrial automation systems, including Supervisory Control and Data Acquisition (SCADA),

I n t r o d u c t i o n a n d m o t i v a t i o n | 15

Manufacturing Execution Systems (MES), and Enterprise Resource Planning (ERP) platforms,

which are aligned to RAMI4.0 and its AAS concept as demonstrated by (Cruz S. et al., 2019;

Cruz S. & Vogel-Heuser, 2022a).

Figure 3: Thesis’ scope of the agent-based CPPS proposed for industrial control automation within the manufacturing field.

1.4 Scientific problem: issue statements

The research presented in this dissertation was conducted with the collaborative German FA 3.35

VDI/VDE experts. Based on experiences and feedback made in this working group that involves

researchers, industry representatives, and engineers from many scientific disciplines focused on

IAs, the recent standard “2653 Sheet 4: Multi-agent systems in industrial automation - Selected

patterns for field level control and energy systems” (VDI/VDE, 2021), was developed.

Altogether, these result in four significant issues that influence traceability in the context of

agent-based CPPS based on design patterns, which are briefly discussed in the following:

Issue 1: Lack of a comprehensive overview and classification of MAS patterns in CPPS

Despite the increasing relevance of MAS patterns in CPPS, there remains a gap in the literature

offering a consolidated overview and classification of these patterns, involving their depiction,

criteria, domains of applicability, and reusability. This lack of information impedes the extensive

development of MAS in the industrial field, e.g., logistic, smart manufacturing, smart grids.

Issue 2: Challenge of reusability and extendibility of MAS design patterns for I4.0

As the demand for adaptable and scalable CPPS increases, the need for reusable and extendible

MAS design patterns becomes more relevant. Yet, there remains uncertainty regarding which

MAS design patterns are universally reusable and how they can be further extended to supply

emerging I4.0 scenarios.

I n t r o d u c t i o n a n d m o t i v a t i o n | 16

Issue 3: Integration of MAS design patterns with existing CPPS models and standards

There’s a need to ensure that MAS design patterns are consistent with established CPPS models

and standards, like RAMI4.0 and PPR. However, it’s unclear how these patterns can be

effectively integrated and developed to align with such models.

Issue 4: Implementing sub-agent patterns and AASs into hybrid CPPS platforms.

While sub-agent patterns and AASs offer promise in enhancing CPPS functionalities, there is a

lack of clear guidelines on how to seamlessly implement these into hybrid CPPS.

1.5 Research questions, and main contributions

This work addresses four research questions (RQ1-RQ4) that recompile RQs from Fig. 2 and aim

to solve the issues above:

RQ1. How are the MAS patterns for CPPS depicted and what criteria are used to describe them?

RQ2. For which domains of CPPS are the MAS patterns designed and applicable?

RQ3. What are the reusable MAS design patterns for CPPS?

RQ4. How can MAS patterns be used for a CPPS aligned with the RAMI4.0 and PPR model?

The potential benefits of this thesis’ contributions (Con1-Con5) are the following:

Con1. Systematic and well-discussed criteria (or abstraction for the summary) compiled at least

in the IA working group of the German IFAC FA 3.35 is presented.

Con2. A mapping of analyzed MAS functional requirements to sub-agent patterns will be

provided, considering their capabilities and skills.

Con3. Proposed sub-agent patterns for MAS technology in I4.0 demonstrators are applicable;

further extended agent-based CPPS designs and applications are possible for more use cases

based on selected I4.0 scenarios.

Con4. The identified design patterns are the basis for the development of agent-based CPPS and

for their structural representation (CPPS requirements). The contribution considers an explicit

MAS architecture (with final requirements) for the application of an individual CPPS in process

industry domain.

Con5. In order to improve industrial applicability, a VDI/VDE norm is used as proof of

evaluation for the impact of IA patterns and AASs implementation into hybrid CPPS platforms.

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 17

1.6 Structure of this dissertation

The remainder of this cumulative thesis is structured as follows. Chapter 2 presents the research

methods and conceptual background, including the related work. Chapter 3 describes the main

contributions to CPPS. Chapter 4 summarizes the findings of the included publications. Chapter

5 outlines the contribution of the research, presents some inferences from the findings, and

suggests future research directions. The included manuscripts are listed in the Appendix A.

2. Research method and conceptual background

In this thesis, the paradigm of the holistic research method is adopted. It means there are multiple

views to understanding a system, called holism (Hurtado 2012), using tools for observing,

learning, and depicting what is perceived qualitatively and quantitatively of concepts.

2.1 Research method and strategy stages

Holism could indicate different thoughts, but they must be considered complementary.

Therefore, the objectives of the holistic paradigm are classified according to their complexity

levels and those have a common goal hierarchy, as depicted in Fig. 4.

Figure 4: Levels of research objectives in a holistic research method. Source: Adapted from (Hurtado 2012).

In a holistic research method, objectives are organized hierarchically, from the lowest to the

highest relevance. The hierarchy of the research objectives levels tracks the following order:

perceptual (description), apprehensive (comparison), comprehensive (proposition), and

integrative (confirmation). Figure 4 illustrates the general method to obtain this thesis’ research

goals based on the holistic paradigm (Hurtado, 2012). This proposal will reach the Integrative

(confirmative) holistic paradigm level since the objectives of developing agent-based CPPS

driven by design patterns involve the researcher’s amendment of the event. Therefore, to fulfill

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 18

all the objectives of this research project, the following four sequential macro stages and their

descriptions are established by inductive4 reasoning:

I. State of the art and theoretical framework: documenting, analyzing, and characterizing the

outstanding models of IA design patterns for CPPS based on the state-of-the-art review.

II. Analysis and design of the model: establishing the requirements and identifying IA design

patterns in order to propose an agent-based CPPS.

III. Implementation and validation: applying a MAS architecture to evaluate the agent-based

CPPS driven by design patterns, validating the effectiveness of the design.

IV. Publications and dissertation: realizing the monograph and the other publications

requirements during the validation of the proposed agent-based CPPS.

2.2 IA design pattern definition

In this thesis, the IA design pattern definition is based on the IA standardization (from FA 3.35

VDI/VDE, see section 1.2) and the “design pattern” term, which provides a means of

identification of broader success aspects in particular problems. Design pattern definition has

been adapted for various other disciplines, particularly in software engineering (Gamma et al.,

1994). Moreover, the original idea of patterns was introduced by the architect Christopher

Alexander et al. as a reusable form of a solution to a design problem (Alexander et al., 1977):

“Each pattern describes a problem which occurs over and over again in our environment, and then

describes the core of the solution to that problem, in such a way that you can use this solution a

million times over, without ever doing it the same way twice.”

— Alexander et al., (1977).

Design patterns usually aim to improve the flexibility of object-oriented systems (Gamma et

al., 1994), as well as MAS in nature, IA patterns are a research and development field considered

to enable flexibility, robustness, and responsiveness to industrial automation systems (Leitão et

al., 2018). Within this field, several MAS architectures have been developed over the last 25

years with the intention of providing distinct manufacturing system capabilities (Lüder et al.,

2017). Simultaneously in Information Technology (IT) domain, IA experts realized that it is time

to consider similarities and differences between the emerged and independent MAS approaches

(Ribeiro et al., 2018). MAS patterns need to be also investigated for large-scale systems in CPPS

(Colombo et al., 2013). As a result, a more recent description of MAS design patterns was given:

4 Inductive reasoning, or induction, involves forming general theories from specific observations. For example, observing something happen

repeatedly and concluding that it will happen again in the same way. Source: https://www.dictionary.com/e/inductive-vs-deductive

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 19

“For each design pattern it is assumed, that it will be described by a descriptive and unique name,

a description of goals and reasons of the design pattern and its use, a description of the problem

intended to be used by the design pattern, a description of the usage restrictions of the design

pattern, a description of the solution the pattern provides including a naming of all relevant entities

and their interaction (possibly accompanied by a graphical representation of the reach structure),

a description of the impact reached by using the described solution, if possible known applications

of the design pattern, and if required other design pattern related to the described design pattern.”

— Lüder et al., (2017)

However, the IA expert’s community has realized that there is not a formal agreement about

IA patterns definition and incurred unintentionally different types of terms, such as: common

practices (domain templates) for software agents in low-level automation (IEEE, 2021); or

blueprints for the design and realization of MAS (VDI/VDE, 2021). Therefore, there is no

widely accepted IA design pattern definition currently. Based on this consideration, an IA design

pattern definition for agent-based CPPS control might be derived, enabling control engineers to

select a MAS approach within the development of well-proven criteria. This is the primary

intention of this thesis section. Consequently, the IA design pattern is defined as follows:

Definition of this thesis: Industrial Agent pattern

An IA design pattern is characterized as a structured approach5 that delineates the core of a solution to a

recurrent issue in industrial systems, adapted in a manner that allows —but not limited to— agent-based

CPPS applications. This approach is not merely a template but a comprehensive method that includes a

distinctive and descriptive MAS name, an explication of the pattern’s objectives and the rationale behind

its use, and a detailed description of the problem it aims to solve. It also includes the constraints under

which the design pattern operates, a thorough description of the solution provided —including the

relevant sub-agent entities and their interactions, often accompanied by a graphical illustration of the

structure— and the anticipated impact of employing the proposed solution. Where applicable, known

applications of MASs and any associated or complementary design patterns are also described.

IA patterns here refer to the MAS for the industrial automation system domain, mainly agent-

based CPPS. Hence, this definition is intended to bridge the gap between various terminologies,

offering control engineers a coherent set of MAS-proven structures. Additionally, the IA design

5 In this thesis, the term “approach” is conceptualized as a collection of architectures, methodologies, and/or standards that adhere to a common

scheme, as introduced in (Cruz & Vogel-Heuser, 2017; VDI/VDE, 2021). Concerning architectures, they are exclusively acknowledged as
configurations for static system modeling. Frequently, these configurations are proposed by their authors and may lack detailed procedural

guidance for implementation. A methodology is defined as a prescribed sequence of actions designed to enhance efficiency in development and

to elevate the quality of systems, commonly within the context of software engineering. It further delineates how processes should be
systematically, predictably, and reliably executed. Both architectures and methodologies may receive accreditation from global standardizing

institutions. A manufacturing standard might be of the private or open variety, depending on the nature of the standard development organization.

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 20

pattern definition aims to mitigate the possible apophenia6, which means the potential for MAS

developers to perceive false patterns or assign unnecessary significance to unrelated events and

entities within complex systems. By providing a clear, well-established set of criteria for the

identification and utilization of IA design patterns, this thesis endeavors to ground the

development process of MAS design patterns. As a proof of the concepts, empirical evidence has

been validated by IA experts and their recent standardization (IEEE, 2021; VDI/VDE, 2021).

2.3 Requirements for MAS architectures for I4.0/CPPS

Hence, the formulated requirements listed in Table 1 need to be fulfilled to assist in analyzing,

categorizing, implementing, and evaluating IA patterns in agent-based CPPS.

Table 1: Rating scheme of requirements related to issues (Section 1.4) to evaluate relevant work.

Req1-Classification – Criteria of MAS classification

Related to Issue 1: Lack of comprehensive MAS overview

● Detailed classification criteria for MAS approaches delivers valid and decidable information for their evaluation

◑
Limited MAS approaches classification for CPPS or not classifying/identifying with similar design pattern’s terms, e.g.,

names, functionalities, etc.

○ No classifications or criteria defined.

Req2-Domain – CPPS application field

Related to Issue 1: Lack of comprehensive MAS overview

●
Support of MAS approaches have application in diverse domains with different goals and benefits e.g., flexibility,

adaptability, etc.

◑ Limited CPPS are applicable in every domain in appliance with the real-time requirements of MAS approaches

○ No consideration of a CPPS domain.

Req3-Reusability – MAS design patterns for I4.0

Related to Issue 2: MAS extendibility

● There are reusable MAS patterns and sub-agents with functional and non-functional requirements for CPPS design

◑ Limited MAS components follow specific sub-agents, which have particular aims and are reusable for CPPS design

○ No consideration of IA patterns or sub-agent patterns.

Req4-Modelling – Support of models associated to I4.0

Related to Issue 3: CPPS models, and Issue 4: AAS into CPPS

● It is possible to harmonize different MAS approaches to obtain a simple CPPS architecture aligned with RAMI4.0/PPR

◑ Limited MAS patterns provide I4.0 component’s properties and specific information to its AAS or PPR model

○ No consideration of RAMI4.0 or PPR modelling

2.4 Related work: how do IAs contribute to the CPPSs?

Concurrently, I4.0 is founded on design concepts that are not fully satisfied by the automation

languages widely used today. The new design concepts, such as Industrial CPS or CPPS and the

DT, aim to provide more customized goods and optimization techniques while addressing the

urgent requirement to increase sustainability (Ribeiro & Gomes, 2021). The IEC 61131-3 and

6 Apophenia is the tendency to find patterns or meanings where other people do not, perceiving meaningful connections between unrelated things.

In 1958, psychiatrist Klaus Conrad (Berlin, 27.02.1986) introduced the German term, Apophänie, from the Greek verb ἀποφαίνειν (apophaínein).

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 21

IEC 61499 standards and their subsequent enhancements, which now include an object-oriented

programming language, are the dominant programming languages in the control of aPS,

especially at the plant level (Cruz S. & Vogel-Heuser, 2020). At this industry field level,

Programmable Logic Controllers (PLCs) are primarily utilized to control whole aPSs,

networking them to create CPPS (Karnouskos et al., 2019). Research in CPPS and DTs, driven

by AASs, has significantly enhanced the development of metamodels (López-García et al.,

2023). These model-based approaches detail the structure of interconnected machines and

systems, supporting the optimization and reusability of PLC pattern codes (Fischer, Vogel-

Heuser, Berscheit, et al., 2021).

In the context previously described, IAs contribute to the CPPS optimization by addressing

the challenges and needs of modern aPS (Karnouskos et al., 2019; Vogel-Heuser et al., 2020).

Based on a systematic keyword search using the tool Scopus AI7, three keyways were derived in

which IAs can optimize CPPS, as follows:

Design patterns and interfaces: IAs help to design and implement CPPS by providing design

patterns and interfaces between agents and the systems (Leitão et al., 2021; VDI/VDE, 2021).

These design patterns and interfaces enable continuous and collaborative communication

between the IAs and modern aPSs.

Metrics for evaluation: IAs contribute to the optimization of CPPS by providing metrics to

evaluate the quality of agent-based syetems (Karnouskos et al., 2018; Ribeiro et al., 2018). These

metrics assess the performance and effectiveness of the aPS, leading to improvement and

optimization.

Distributed intelligence (smartness): IAs implement distributed AI within CPPS (Karnouskos

et al., 2020), allowing, for instance, decentralized decision-making and flexibility in task

allocation, leading to improved efficiency and adaptability of the systems (Land et al., 2023).

Overall, IAs play a crucial role in optimizing CPPS by providing design patterns, interfaces,

metrics for evaluation, and distributed intelligence. As Fig. 5 depicts, IAs are able to address

CPPS challenges and improve the industrial automation control of modern aPS (Leitão et al.,

2023; Ribeiro & Gomes, 2021).

7 Scopus AI is an intuitive and intelligent search tool powered by generative AI (GenAI) that delivers insights with unprecedented speed and

clarity. Scopus AI uses natural language processing, which means that it goes beyond matching specific keywords or Boolean operators; instead,
it is possible to type questions, statements, or hypotheticals using everyday language. More info online:

https://www.elsevier.com/products/scopus/scopus-ai

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 22

Figure 5: Comprehensive concept maps from Scopus AI, after the question (Dec 2023): How do industrial agents contribute to

the optimization of Cyber-Physical Production Systems?

Considering those challenges for agent-based CPPS, Table 2 to 4 summarizes the requirement

fulfillment of all requirements presented (Req1-Req4, see Table 1) for CPPS, MAS and patterns

approaches, respectively. IA patterns classification is like the Product-Resource-Order-Staff

Architecture (PROSA) in which holons are defined for resources, products, orders, and so-called

staff services (Valckenaers, 2020). These IA types have been well-researched and are suitable for

various MAS architectures (Gehlhoff, 2023; Ribeiro & Gomes, 2021).

Table 2: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 1. CPPS approaches

Group/

leader

 Requirement

Work

Req1-

Classification

Req2-

Domain

Req3-

Reusability

Req4-

Modelling

Barata (Barata et al., 2022) ○ ◑ MM farm ◑ PL ○
(Peres, 2019) ◑ AS ◑ generic aPS ◑ PL ◑ RG
(Rocha, 2018) ◑ AS ◑ predictive aPS ◑ PL ◑ RG

Leitão &
Ribeiro

(Colombo et al., 2021) ○ ●aPS/smart grid ◑ PL ◑ ISA 95/88

(Leitão, Colombo, et al., 2016) ◑ AS ●aPS projects ○ ○
(Ribeiro & Hochwallner, 2018) ○ ●generic CPPS ○ ◑ RG

Cardin &
Trentesaux

(Barbosa, 2016) ◑ AS ◑ MM ADACOR2 ◑ holons ○
(Cardin, 2019) ◑ AS ◑ aPS ○ ○
(Jimenez et al., 2017) ◑ AS ◑ hybrid control ◑ entity ○ Pollux
(Nouiri et al., 2019) ○ ● smart grid ○ ○

Lüder (Calà, 2019) ○ ● aPS ◑ PL ○
(Lüder et al., 2020) ○ ● aPS ○ ◑ AAS
(Zawisza, 2019) ◑ AS ● aPS ◑ PL ○

Other CPPS
developers

(Case, 2015) ○ ● smart grid ◑ ○

(E. A. Lee, 2015) ○ ● generic CPS ○ ○

(J. Lee et al., 2015) ○ ● generic CPPS ○ ○

(Panetto et al., 2019) ○ ◑ discrete aPS ○ ◑ RG

(Váncza & Monostori, 2017) ○ ●bioinspired aPS ○ Ueda’s legacy ○

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 23

Standard RAMI4.0 (DIN SPEC, 2016) ○ ● aPS ○ ◑ AAS
TUM-AIS (Schütz et al., 2017) ○ ● aPS ○ ○

(Trunzer, 2020) ○ ● aPS ○ ◑ RG

(Vogel-Heuser et al., 2022) ○ ● aPS ◑ PL ○
Zoitl (Shakil & Zoitl, 2020) ○ ● aPS ◑ IEC 61499 ◑ RG

aPS: automated Production System;
CPS: Cyber-Physical System;

AS: limited agent survey (literature review without very well-proven criteria classification);
MM/MS: MAS methodology / MAS software for the industrial domain;

PL: Patterns has limited consideration (only patterns mentioned, no method proposed);
RG: Reference general assessment (RAMI4.0 in general, not focusing on specific AAS/PPR concepts)

Table 2 systematically rates the extent to which current CPPS approaches meet a series of

predefined criteria. It identifies the efforts of Colombo et al (2021), Ribeiro & Hochwallner

(2019), E. Lee (2015), and Lee et al. (2014) as particularly impactful in domain-specific

applications, highlighting need to achieve CPPS flexibility and responsiveness. The table,

however, also shows notable variance in the IA patterns reusability and modeling support based

on RAMI4.0/PPR models of these approaches (Req3), suggesting a crucial need for a

standardized, interoperable framework that enhances CPPS implementation efficiency, as

analyzed by (Leitão & Strasser, 2016).

Table 3: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 1. MAS approaches.

Group/

leader

 Requirement
Work

Req1-
Classification

Req2-
Domain

Req3-Reusability Req4-
Modelling

Agent
platform

(Kruger & Basson, 2019) ○ ◑MS Java/JADE ◑ FIPA patterns ○

(Melo et al., 2019)
◑ platform
criteria

◑MS
Python/PADE ◑ FIPA patterns ○

Agent project
(Cruz & Vogel-Heuser, 2017)

◑ AOSE
criteria ◑ aPS ○ ◑ ISA 95

levels
(Wright, 2001) ○ ◑ MM SAAM ◑ IT pattern ○

Agent/IA
standard

(IEEE, 2005) ○ ◑ MM FIPA ◑ IA norm ○
(VDI/VDE, 2012) ○ ● aPS ◑ IA norm ○

AOSE (Cardoso & Ferrando, 2021) ◑ AS ◑ MM ○ ○

(Mendonça et al., 2021)
● AOSE
criteria ◑ MM ◑ BDI model ○

Barton (Kovalenko et al., 2019) ◑ AS ◑ aPS ◑ PA pattern ○
(Kovalenko, 2020) ◑ AS ◑ aPS ● PA pattern ○

Leitão &
Ribeiro

(Karnouskos et al., 2018)
● quality
criteria

◑ MM ISO/IEC
25010 ◑ PL ○

(Leitão et al., 2021) ◑ AS ● industrial CPS ◑ PL ◑ RG
(Ribeiro & Gomes, 2021) ◑ AS ● industrial CPS ◑ metamodel ○
(Sakurada & Leitao, 2020) ◑ AS ● industrial CPS ◑ PL ◑RAMI layers

Casquero, (Priego, 2017) ◑ AS ◑ MM FAPS ◑ PL ○

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 24

Estévez &
Marcos

(López-García, 2023) ◑ AS ◑ MS IAMS ● IA interface ◑ AAS
(Gangoiti et al., 2022) ◑ AS ◑ MM RECON ● IA patterns ○

Fay (Fay et al., 2019) ○ ◑ aPS ◑ PL ◑ RG
(Gehlhoff, 2023) ◑ AS ● aPS ◑ PL ◑ RG
(Gehlhoff & Fay, 2020) ◑ AS ◑ aPS ◑ PL ○
(Reinpold et al., 2024) ◑ AS ● aPS DT ◑ PL ◑ AAS

Göhner (Badr, 2011) ○ ◑ aPS/FMS ◑ PL ○
Lüder (Ryashentseva, 2016) ◑ AS ◑ aPS ◑ PL ◑ RG
TUM-AIS (Fischer et al., 2020) ◑ AS ● aPS/MFS ◑ metamodel ○

(Land et al., 2023) ◑ IA criteria ◑ aPS ○ ◑ RG
(Hoffmann et al., 2017) ◑ AS ◑ aPS ◑ FIPA patterns ○
(Rehberger, 2020) ◑ AS ◑ aPS ● PA pattern ○
(Schütz, 2015) ◑ AS ◑ aPS ◑ metamodel ○
(Vogel-Heuser et al. 2015a) ◑ AS ● industrial CPS ◑ PL ○
(Wannagat, 2010) ◑ AS ● aPS ● IA resource ○

Other MAS
authors

(Bendjelloul et al., 2022) ◑ AS ◑ MS ◑ PL ◑ RG
(Fast-Berglund et al., 2020) ○ ◑ aPS ○ ○
(Hoffmann, 2017) ◑ AS ◑ aPS ● IA interface ○
(Marschall, Ochsenkuehn, et
al., 2022) ○ ◑ drink aPS ◑ PL ◑ RG

(Theiss, 2015) ◑ AS ◑ MS Java ◑ IA interface ○
(Theiss & Kabitzsch, 2017) ◑ AS ◑ MS Java ● IA interface ○
(Villavicencio et al., 2019) ◑ AS ◑ MM MAGReS ○ ○

Note: see ‘footnotes’ from Table 2.

Table 4 focuses on evaluating pattern approaches for I4.0, drawing attention to the

contributions of López-García & Marcos (2021) and Leitão et al. (2021), who have advanced the

field through their work on IA pattern interfaces (Req3) and the MAS application in industrial

CPS. Despite these advances, the table indicates that patterns are not fully reusable (only focus

on IA interface), demanding a more detailed set of IA patterns (Req3), suitable for various agent-

based CPPS aligned to RAMI4.0, as introduced by (Leitão et al., 2023).

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 25

Table 4: Evaluation of relevant work (sorted into group/leader) based on rating scheme in Table 1. Pattern approaches.

Group/

leader

 Requirement
Work

Req1-
Classification

Req2-
Domain

Req3-
Reusability

Req4-
Modelling

IA standard (IEEE Std 2660.1-2020) ○ ◑ aPS ● IA norm ◑ RG
(VDI/VDE 2653-4 2021) ● structure criteria ● aPS/smart grid ● IA norm ◑ RG

Casquero,
Estévez &
Marcos

(López-García et al.,
2021) ○ ◑ aPS ● IA interface ◑ AAS

(López-García et al.,
2023) ○ ◑ MS IAMS ● IA interface ◑ AAS

Leitão &
Ribeiro

(Karnouskos et al., 2020) ○ ● industrial CPS ● IA interface ◑ RG

(Leitão & Strasser, 2016) ○ ● aPS/smart grid ● IA interface ○

(Leitão et al., 2023) ○ ● aPS/smart grid ● IA interface ◑ RAMI layers

(Ribeiro et al., 2018) ◑ AS ● industrial CPS ● IA interface ○
(Sharma et al., 2019) ○ ◑ MS IASelect ● IA interface ○

Vyatkin (Patil et al., 2018) ◑ code criteria ● industrial CPS ◑ IEC 61499 FBs ○
(Sorouri et al., 2012) ○ ◑ aPS ◑ IEC 61499 FBs ○
(Vyatkin, 2016) ○ ● industrial CPS ◑ IEC 61499 ○

Lüder (Lüder et al., 2017) ◑ AS ● aPS ● IA resource ○
TUM-AIS (Fay et al., 2015) ● structure criteria ◑ MM FAVA ◑ metamodel ○

(Fischer, Vogel-Heuser,
Berscheit, et al., 2021)

◑ code criteria ● aPS ◑ IEC 61131-3 ○

(Fuchs et al., 2014) ○ ◑ aPS ◑ IEC 61131-3 ○
(Neumann et al., 2020) ◑ structure criteria ◑ aPS ◑ IEC 61131-3 ○

Other
pattern
authors

(Albrecht et al., 2024) ◑ AS ◑ MM MARL ◑ learning IA
pattern ○

(Bloom et al., 2018) ○ ◑ MS ◑ IIoT patterns ○
(Charpenay et al., 2021) ◑ AS ◑ MM MOSAIK ◑ artifacts ○
(Chitchyan et al., 2007) ○ ◑ aPS ◑ metamodel ○
(Gamma et al., 1994) ○ ◑ MM ● IA types ○

(Papoudakis et al., 2021) ◑ code criteria ◑ MM MARL ◑ learning IA
pattern ○

(Roher & Richardson,
2013) ○ ◑ MM ◑ IT patterns ○

(Schulte et al., 2016) ○ ◑ MM ◑ human pattern ○
Valckenaers
& Weyns

(Holvoet et al., 2009) ○ ◑ MM D-MAS ● IA patterns ○

(Juziuk et al., 2014) ◑ SRL criteria ◑ aPS ◑ pattern
dimension ○

(Valckenaers, 2020) ◑ AS ◑ MM
ARTI/PROSA ● IA patterns ○

(Weyns, 2012) ● SRL criteria ○ ◑ pattern
dimension ○

Zoitl (Sonnleithner et al., 2021) ○ ◑ aPS ◑ IEC 61499 skill ○
(Zoitl & Prahofer, 2013) ○ ◑ aPS ◑ IEC 61499 FBs ○

Note: see ‘Footnotes’ from Table 2.

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 26

These standards have substantially shaped the structural criteria and domain applications that

are essential to effectively integrate MAS within CPPS. Yet, the table also identifies a gap in the

reusability of IAs (Req3), signifying an opportunity for evolving research to address the

adaptability of MAS approaches based on patterns, as introduced in (Karnouskos et al. 2020).

The approaches reviewed and their respective contribution fields (CPPS, MAS or design

patterns) are summarized in Fig. 6.

Figure 6: Overview of relevant state-of-the-art contributions, their field of contribution, and identified research gap that can be

positioned at the junction where CPPS, MAS, and design patterns intersect.

As can be seen in Fig. 6, many CPPS and MAS approaches that consider aPSs exist. On the

other hand, several distinct design patterns for industrial systems were identified. Nevertheless,

only five approaches exist that fully encompass a well-proven classification criteria (Req1) for

MAS: (D’Avila Mendonça et al., 2022; Fay et al., 2015; Fischer, Vogel-Heuser, Schneider, et al.,

2021; Juziuk et al., 2014; VDI/VDE, 2021). In fact, only two publications previous to this thesis

have shared points about CPPS, MAS and design patterns of their requirements’ contribution

(Cruz S. et al., 2019; VDI/VDE, 2021).

Based on the preliminary tables’ classification, a synthesis across previous work is conducted

to present the state-of-the-art agent-based CPPS, as depicted in Fig. 7. So far, the previous

studies reported (cp. Fig. 6) are still mainly collected from some phases of the MASs and CPPSs

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 27

developments (e.g., architecture, metamodel, IEC 61131-3/IEC 61499 code); thus, further study

is necessary to explore IAs patterns in other phases of agent-based CPPS domains.

Figure 7: State-of-the-art agent-based CPPS patterns based on their introduced challenges (selected RQs from Fig. 2).

Finally, VOSviewer® is used as a key visualization tool to gain a comprehensive, delimited,

understanding of the academic landscape of agent-based CPPS and DTs driven by AASs. Thus,

the co-citation map, shown in Fig. 8, identifies the key contributors to these fields (CPPS and

DT) and explains the interconnected nature of their work. This map provides insights of IAs

driven by DTs research, showcasing the most productive authors and the top 20 most co-cited

authors.

Figure 6 conceptualizes the gaps and intersections of CPPS, MAS, and design patterns,

exposing the areas ripe for more research. Then, Fig. 7 serves as a visual confirmation of the

interconnected research domains, while Fig. 8 (a citation network) provides a graphic insight into

the authorial contributions and their interrelationships, indicating the potential for future

collaboration and knowledge exchange.

R e s e a r c h m e t h o d a n d c o n c e p t u a l b a c k g r o u n d | 28

Figure 8: Citation network of selected paper (overlay view in VOSviewer®).

The authors are from a Web of Science search, and as introduced in (Reinpold et al., 2024), the selected keywords were: (agent*

OR mas OR digital-twin OR “digital twin” OR twin OR “administration shell” OR “aas”; from last 5 year (2018 to 2023) in the

field TOPIC (Title-Abs-Key). A number of 145 results and 20 keywords (from 125) with a frequency equal to or superior to 5,

were processed. Each node in the figure represents an author, with the size of each node corresponding to the author’s

productivity or number of works. The links between nodes indicate co-citations, and the thickness of these links represents the

frequency of co-citation.

In conclusion, the related work discussed in this section substantiates the critical role of IAs in

optimizing CPPS, as articulated by design patterns, evaluation metrics, and distributed

intelligence. The systematic review of MAS approaches, informed by a robust assessment

scheme, opens the way to understand how IA patterns contribute to the field of smart

manufacturing and CPPS optimization. However, none of the approaches surveyed prove agent-

based CPPS implementation efforts using IA patterns capable of both RAMI4.0 and PPR (Req4)

and suitable criteria classification (Req1), as shown in gray areas of tables 2 to 4. Therefore, the

research gap that is addressed within this thesis is identified as:

Research gap:

There is a deficiency in the comprehensive integration of IA design patterns within agent-based CPPS that aligns

with established I4.0 models, i.e., RAMI4.0/PPR/ISA95/88. Existing literature and approaches fail to provide a

unified methodology that encapsulates the full characteristics of IA functionalities, particularly regarding scalable

patterns, cross-domain applicability, and this standardization conformity. Moreover, there is no universally accepted

IAs categorization that sufficiently addresses the heterogeneity of MAS architectures, which is crucial for

developing robust, interoperable, and adaptive industrial systems. Additionally, current frameworks do not

adequately support the AAS interface generation for diverse communication protocols, which is essential for the

efficient and flexible exchange of information within the smart manufacturing domain.

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 29

3. Main contributions of IA design patterns to CPPS

The work program is structured into five contributions (Con1-Con5): (Con1) MAS criteria,

(Con2) Pattern needs, (Con3) I4.0 scenario, (Con4) MAS architecture, and (Con5) MAS

guideline. The relationships between research issues, research contributions and their

publications are presented in Fig. 9. In the following, the research contributions are described.

Figure 9: Research issues, contributions, and publications (namely paper numbers Pub.X as occur).

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 30

3.1 Contribution 1 (Con1): MAS criteria categorization

CPPS refer to mechatronic systems coupled with software entities and digital information,

enabling the smart factory concept for I4.0 (Karnouskos et al., 2020; Monostori et al., 2016). The

migration of existing control systems to CPPS is still a challenge due to the complexity involved

(Calà et al., 2017; Ribeiro & Gomes, 2021). Design patterns are proposed to help developers

build software with common solutions derived from experiences (Leitão et al., 2018).

Con1 aims to provide a description and comparison of existing MAS design patterns. Two

classification criteria are introduced to support MAS developers in implementing CPPS. Through

an evaluation of four selected patterns (named here sub-agents), a well-discussed

survey/summary of at least twenty MAS by the German IFAC NMO GMA FA 3.35 finds that IA

patterns greatly benefit CPPS design. They also conclude that manufacturing based on MAS is

an effective way to address the complex requirements of CPPS development. As example of this

contribution, Table 5 introduces the compilation of the criteria for the MAS design pattern

template (with examples), including pattern category, pattern type, pattern name, pattern

description, context, solution, implementation, MAS-architecture, knowledge base and

processing, real-time properties, dependability, learning, MAS-autonomy, and others. Those are

valid classification criteria in correspondence to RQ1 (how describe MAS patterns?).

Table 5: Criteria to classify MAS architectures / patterns (Cruz S. et al., 2019).

Criteria Descriptions Examples options

Pattern category Favorable function patterns: System

properties that can be realized by

employing MAS, i.e. increased flexibility

and adaptability

Flexibility pattern, adaptability pattern, reliability pattern,

reconfigurability pattern

Pattern type Name of the pattern type: Technology-

independent task of the MAS (categorized)

Fault-tolerant sensors

Pattern name Name of the MAS pattern Soft sensor

Pattern

description

Description of the logic structure (which

components/agents does the pattern

contain?)

MAS with 4 sub-agents, which enable identifying faulty

sensors and automatically replacing them with soft sensors

based on models

Context / Area

of application

Application context of the pattern Various domains, e.g. logistics, process engineering

MAS-

Architecture

Approach for realization of the agents’

behavior

Reactive / cognitive / hybrid

Solution Graphical depiction of the MAS-

Architecture

Depiction of the MAS’ components (notation class

diagram)

Knowledge base

and processing

How is the knowledge stored?

Models, rules. How is the knowledge

processed? With which methods?

Model from engineering, ontology, meta model data

structure. Inference mechanisms for ontologies

Learning /

Knowledge

acquisition

Methods and techniques for learning

abilities / knowledge base

Machine learning, neuronal networks

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 31

Implementation Technological realization of the MAS

(platform, languages)

Model: SysML, programming language IEC 61131-3

Real-time

Properties

Timeliness and concurrency requirements Usage replacement sensor < 2 PLC-cycles < 40 ms

Dependability Requirements towards reliability,

availability, maintainability, security, or

safety

Soft sensor can replace sensor with a reliability of x%

MAS-

Autonomy

Autonomy/independence in decision

making

Replacement of sensor not autonomously, since number of

replaceable sensors is limited

Others Additional author’s comments (remarks,

clarifications, etc.)

Con1 also provides a first conceptualization to agent-based CPPSs that meets the

requirements of smart factories based on MAS survey authors into RAMI4.0 layers and Agent

Oriented Software Engineering (AOSE) methodologies. Design patterns based on MAS offer

properties such as flexibility/changeability, reliability, reconfigurability, adaptability/agility and

dependability, which are essential for CPPS (also related and confirmed by Con2). Con1 aims to

provide engineers and programmers with existing patterns based on MAS structures to improve

design efforts and increase efficiency in manufacturing control. It also explores the applicability

and benefits of MAS and design patterns in the industrial sectors in multiple production systems

domain: discrete manufacturing, continuous process, hybrid production. The results from Con1

are the necessary inputs for Con4 and Con5. In conclusion, the aimed delivery of Con1 is:

• Providing two classification criteria for comprehensive analysis of IA patterns for CPPS

and highlighting their benefits in addressing the requirements of CPPS development. The

proposed patterns come from a discussed survey of twenty agent-based approaches which

offer a variety of “ready-made’ solutions for MAS developers and enable the rapid

application of MAS in industry, including selected AOSE methodologies.

3.2 Contribution 2 (Con2): IA pattern needs for I4.0

IA patterns are crucial in the landscape of I4.0, marking a significant challenge in how modern

aPS are designed, monitored, and controlled (Leitão et al., 2021; Lüder et al., 2017; Ribeiro et

al., 2018). IA patterns are able to encapsulate sophisticated capabilities and skills, enabling

autonomous decision-making, adaptive behavior, and adding plug & produce features within

CPPS (Baumgartel & Verbeet, 2020; Shakil & Zoitl, 2020; Zimmermann et al., 2019).

Karnouskos et al. highlighted the importance of IAs having clear propositions on the

functionalities, services, and value-added aspects they offer, which supports the notion of IA

patterns encapsulating sophisticated capabilities and skills within (Karnouskos et al., 2020).

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 32

Provided examples of IA applications in various domains, such as factory automation, power &

energy systems, and building automation, demonstrating the wide range of applications of IA

patterns aligned to I4.0 standards (IEEE, 2021; Leitão et al., 2023; VDI/VDE, 2021).

The findings from Con2 provide insightful information about IA patterns, skills, and

capabilities essential for I4.0 applications, as introduced in Table 6. Con2 aims to describe the

importance of standardized IA design patterns and discuss the characteristics of Industrial AI

vital for agent-based CPPS. In this sense, Con2 emphasizes the significance of the Industrial AI

characteristics (C1-C5), including autonomy, reactiveness, proactiveness, predictability, and

human cooperativeness, and their relevance in achieving the goals of I4.0 (Cruz S. & Vogel-

Heuser, 2022a). In general, most of the representative CPPS approaches are missing

predictability characteristics and the RAMI4.0 capability (Cruz S. & Vogel-Heuser, 2022b).

Therefore, in order to fulfill those requirements, Con2 delivers the Multi-Agent aRchitecture for

Industrial Automation applying desigN patterNs practicEs (MARIANNE), following the

normalized guidelines, and addressed by IA classes and capabilities, as introduced in Table 6.

Table 6: Industrial Agents, their main competencies, and examples. Source: (Cruz S. & Vogel-Heuser, 2022a).

IA class IA’s competence/capability (capable of) Instantiation (a particular example)

I. Physical

access agent

Abstracting and connecting

heterogeneous production equipment with

the MAS

This IA acts as a digital representation of a physical object

ranging from a single product (or a service) to an enterprise

network at the hierarchy axis (Baumgartel & Verbeet, 2020).

This IA class also has access to assets’ main functionalities

and is building on the normalized Resource Agent (see

VDI/VDE 2653-4 guideline (VDI/VDE, 2021))

II.

Organizational

agent

Offering various services into an

integrated and united execution model

that can support managing and organizing

the operation of the MAS and its IAs (see

FIPA Agent Management Specification
(IEEE, 2005))

This IA type is often concerned with non-physical entities,

e.g., orders, production plans, production schedules, among

others (Unland, 2015). The typical instances of this IA class

are the normalized Agent Management System and the

Process Agent (see VDI/VDE 2653-4 guideline (VDI/VDE,

2021))

III. Interface

agent

Providing effective communication

between the IAs converting property

interfaces into multiple protocols

An IA class’ instantiation is the normalized Communication

Agent (see VDI/VDE 2653-4 guideline (VDI/VDE, 2021)),

and this may, for example, interconnect IAs and LLC

automation functions based on the IEEE 2660.1 interface

practice (IEEE, 2021)

IV. Human

agent

Allowing humans to act as agents in the

MAS interacting with others

agents/systems among the automation

levels

This IA type should be able to achieve the concept for

Human-in-the-loop in I4.0 (Karnouskos et al., 2020)

Con2 identifies four IA classes (see Table 6), along with their specific capabilities and

alignment of Industrial AI characteristics, further highlighting the critical role of IA patterns in

MAS architectures for CPPS. The IA patterns, such as the Reactive IA, Proactive IA, and

Predictive IA, are categorized based on their response time and main behaviors, explaining the

diverse capabilities (C1-C5) necessary for achieving autonomy, reactiveness, proactiveness,

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 33

predictability, and human cooperativeness in I4.0 scenarios (Cruz S. & Vogel-Heuser, 2022b).

The main importance of these IA patterns, skills, and capabilities allows adaptable CPPS within

the context of RAMI4.0 and the AAS concept, related to Con4. These IA patterns and

characteristics enable Industrial AI to effectively manage uncertain conditions, respond to

environmental information, take the initiative for decision-making, predict outcomes, and

facilitate human-in-the-loop interactions, essential for the successful implementation of I4.0

systems (Cruz S. & Vogel-Heuser, 2022b, 2022a). Results from Con2 have necessary inputs for

Con5, defining the IA capabilities and skill for the IA patterns standardization.

By aligning IA design patterns with Industrial AI characteristics and developing predictive

agents, e.g., Agent4.0 from Table 7 (Cruz S. & Vogel-Heuser, 2022b). Con2 contributes to the

advancement of agent-based CPPS design patterns, ultimately fostering the realization of

intelligent and efficient I4.0 systems, for aPS but also able to energy systems (VDI/VDE, 2021).

Those are agent-based CPPS goals and benefits in different fields that correspondence to RQ2

(for which CPPS domains?). In conclusion, the aimed delivery of Con2 is:

• Introducing two significant definitions in the standardization of IA patterns: Industrial IA

characteristics and IA types together its competencies or skills. Also, the integration of a

predictive agent type, like the Agent4.0, with MARIANNE to develop intelligent,

efficient, and adaptable CPPS, aligning with RAMI4.0/AAS. This contribution not only

supplies smart production but also extends the IA patterns normalization to smart grids,

reflecting the versatile applicability of agent-based CPPS in various domains.

Table 7: Agent4.0’s Industrial AI characteristics evaluation (Cruz S. & Vogel-Heuser, 2022b).

Industrial AI characteristics

(C1-C5) evaluation

Agent4.0 function (skill) description

Autonomy Reactiveness Proactiveness Predictability Human

Copera.

Agent4.0 should increase its initial Knowledge Base

competence because of the “learning element” (often non-

real-time). Sec.IV.A*
● ● ● ●

Agent4.0 may operate in a time-predictable way, i.e., enabling
short/medium/long-term production tasks. Sec.IV.A ● ● ●
Agent4.0 can predict data valuable to other IAs, by a central
learning module. Sec.IV.A ● ●
Agent4.0 can apply a supervised learning method, e.g., a

Linear Regression algorithm, to achieve its goals. Sec.V.B ● ●

Agent4.0 usually does not fulfil hard/soft real-time

requirements because predictability implies learning from

the past and being located at the heterarchy top. Sec.II.C4
 ●

●: needed. *Sec.X (section label) refers to the publication reference in (Cruz S. & Vogel-Heuser, 2022b).

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 34

3.3 Contribution 3 (Con3): agent-based CPPS scenarios

The I4.0 demonstrators play a crucial role in validating the implementation of agent-based CPPS.

These demonstrators are essential for showcasing the integration of MAS in building CPPS

compliant with the RAMI4.0 (Bendjelloul et al., 2022). The use of IAs has facilitated the

realization of more CPPS, emphasizing the significance of these demonstrators in validating the

implementation of agent-based CPPS (Marschall, Schleicher, et al., 2022). As proof of concepts,

Con3 includes the thesis’ evaluations in three I4.0 demonstrators, at the Institute of Automation

and Information Systems (AIS), from the Technical University of Munich. The first I4.0

demonstrator is the Robot Integrated Agent Network (RIAN) that enables the connection of

heterogeneous plants at the control level and the usage of this competence for enabling the

interconnection of a cooperating production line. According to the I4.0 concept development, the

information of the plants is transmitted via the internet while the physical connection is

performed via mobile transportation robots, as demonstrated at the Fair Trade Automatica 2014.

The second I4.0 demonstrator is the Hybrid Process-Model (often named myYoghurt plant)

that is a major laboratory production system for implementing and evaluating the concepts and

approaches that are investigated at the AIS-TUM chair, including for platform independent MAS

for robust networks of CPPS (Cruz S. et al., 2018; Seitz et al., 2021). Therefore, myYogurth

plant consists of multiple plant sections that emulate different industrial domains, i.e. material

flow, discrete manufacturing and continuous (chemical) process.

The third I4.0 demonstrator is the Extended Pick and Place Unit (xPPU) that handles and

manipulates work pieces of different material. The xPPU sets 16 variants evolution scenarios that

are characterized by a variety of different changes in platform, context, and software. It perfectly

keeps the balance between representing the reality and limiting the complexity and is therefore a

useful evaluation plant for IA patterns research (Cruz S. & Vogel-Heuser, 2022a, 2022b). As the

Fig. 10 depicts, Con3 uses the adaptation of IA patterns AMS, CA, RA, and PA for

standardization (Con5) into MARIANNE architecture for the xPPU I4.0 scenarios (Cruz S. et al.,

2019; Cruz S. & Vogel-Heuser, 2022b). Those IA patterns have particular aims and can be

reused for several CPPSs in correspondence to RQ3 (what MAS patterns are reusable?).

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 35

Figure 10: General landscape of the I4.0 scenario proposed with their I4.0 components and their IT/OT technologies.

Con3 is valuable due to the variability of the selected I4.0 demonstrators that differ in many

aspects, like accessibility by different protocols, modularity, and independent platform

requirements, enabling their application into I4.0 scenarios (Seitz et al., 2021). For example,

Table 8 results from testing those CPPSs and the applicable classification criteria based on IA

pattern interfaces (IEEE, 2021). Results from Con3 have necessary inputs for Con4, enabling a

common MAS architecture.

Table 8: Qualitative Assessment of IAs interfaces of the I4.0 demonstrators (Cruz S. & Vogel-Heuser, 2022b).

Pattern criteria* myYoghurt xPPU demonstrator

Location On-device Hybrid

Interaction mode Loosely coupled Tightly coupled

API client C++/C#, Java (JADE) REST/JSON, Python (PADE)

Channel FIPA-ACL, OPC UA HTTP, FIPA-ACL, OPC UA

Score* 2.56 3.20

*Criteria recommendation come from (IEEE, 2021). The score value is according to our expertise,

providing a qualitative assessment of the IEEE 2660.1 interface practice into the CPPSs.

Con5 shows a proof of concept of the I4.0 scenarios8 such as the Adaptable Factory (AF),

Order-Controlled Production (OCP), and Self-organizing Adaptive Logistics (SAL), reducing the

8 See detailed information about AF/OCP/SAL scenarios in the documentation online available:

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 36

time and cost efforts, as the proposed IA patterns are “ready-made” solutions (Vogel-Heuser et

al., 2020). As proof of evaluation, Con5 considers the collaboration of the AIS-TUM and the

Institute of Automation Technology with Helmut Schmidt University (see Pub. XI). The xPPU

and myYoghurt in combination with other I4.0 demonstrators at Helmut Schmidt University

collaborate in the application of the OCP and AF scenarios (Seitz et al., 2021). In conclusion, the

aimed delivery of Con3 is:

• Providing insights of the deployment of three I4.0 demonstrators —RIAN, myYoghurt

plant, and xPPU— which validate the integration and effectiveness of IA design patterns

within CPPS. This is further evidenced by qualitative assessments and collaborative

research, providing crucial data for advancing the dissertation’s aims and reinforcing the

practicality of IA patterns in at least two extended I4.0 scenarios i.e., OCP and AF.

3.4 Contribution 4 (Con4): MAS architecture with DTs

The integration of IA patterns and the concept of the AAS from RAMI4.0 significantly

influences the development of agent-based CPPS within I4.0 (López-García et al., 2021;

Reinpold et al., 2024). AASs considered here as a digital twin, allows the interoperability of

agent-based CPPSs, providing a standardized digital representation of assets, enabling unified

communication and integration of physical assets with their digital equivalents (Gangoiti et al.,

2021; Sakurada & Leitao, 2020). Con4 provides valuable insights into the integration of IAs and

the AAS concept for the development of agent-based CPPS. Specifically, Con4 describes a

generic MAS architecture derived from IA patterns capable of an AAS and illustrates the

relationships between IA patterns and their roles in a CPPS (Cruz S. & Vogel-Heuser, 2022b), as

depicted in Fig. 11. This MAS ensures CPPS platform independence and interoperability (Cruz

S. et al., 2018), addressing the autonomy, reactiveness, proactiveness, predictability, and human

cooperativeness required for agent-based CPPS (Cruz S. & Vogel-Heuser, 2022b), related to

Con2. The AAS concept in Con2 serves as a digital representation of physical resources linked

to RAs, providing the basis for merging new I4.0 components and enabling whole integration

with IT/OT systems. Additionally, the deployment of autonomous and collaborative

manufacturing entities with enhanced self-capabilities, such as self-optimization, self-awareness,

and self-monitoring, is highlighted as a priority for CPPS (Cruz S. & Vogel-Heuser, 2022b).

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 37

Figure 11: Logical architecture of the MAS (right) extended to an AAS-based MAS version (left).

aPS, automated Production Systems; AMS, Agent Management System; DF, Directory Facilitator; KB, Knowledge Base; ML,

Machine Learning; MTS, Message Transport System.

The main importance of integrating IA patterns and the AAS concept lies in achieving a high

level of interoperability, but also performance, learnability, and reconfigurability necessary for

addressing I4.0 scenarios (Con3). Con4 aims to integrate the use of ML models for Agent4.0 to

facilitate the identification of critical CPPS situations in an unsupervised training environment.

Agent4.0 with its AAS is enabling automatically performed cost-opportunity analyses to decide

on incorporating additional agent-based (soft) sensors to increase availability to the resources

(Cruz S. & Vogel-Heuser, 2022a). Table 9 introduces how MAS architecture based on

metamodel criteria, is aligned with established RAMI4.0/AAS and PPR models, in

correspondence to RQ4 (how to align CPPS to RAMI4.0/PPR?).

Table 9: Relationship and comparison between I4.0 models (Cruz S. & Vogel-Heuser, 2022a).

How can the

(1-3) model realize

or define the (a-i)?

Metamodel criteria*

a. Functional

hierarchy

levels

b.

Engineer.

Process steps

c.

Technical flow

sorts

d.

Material

e.

Information

classes

f.

Discipline

range

g.

Level of

detail

h.

aPS type

i. Specific

application

domain

V
ia

s
o
f

th
e

im
p
le

m
en

ta
ti

o
n

V
ia

s
o
f

th
e

im
p
le

m
en

ta
ti

o
n

1. RAMI4.0/

AAS

I4.0-

component

AAS: sub-

model element

collection

Asset

AAS:

sub-model

element

AAS:

property or

range

AAS: sub-

models
I4.0-system

I4.0-

component

2. PPR model Resource Process
Product

Process
Product Process

3. MARIANNE

(this work)

Physical

access agent,

Interface agent

Organizational

agent
Process energy

Organizational

agent

Human agent,

Cognitive

modeling

Knowledge

base

Module:

Unit,

Equipment,

Control

Application

Operation

Maintenance

Planning

Scheduling

 *Source: metamodeling aPS criteria from (Cha et al., 2020).

Key findings from Con4 reveal the pivotal role of IA patterns in enabling autonomy and

collaboration within the framework of I4.0. The digital representation of an IA by an AAS

encapsulates information and services, orchestrating intelligent IA patterns and enabling

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 38

cooperation aligned to FIPA protocols and based on their IA patterns skill and capabilities

(Con2). AASs are essential for providing a comprehensive digital representation of all available

information about and from an object, whether it is a hardware system or an independent

software platform (Cruz S. et al., 2018). In conclusion, the aimed delivery of Con4 is:

• Supporting a comprehensive and robust MAS architecture for the integration of IA

patterns and the AAS concept, laying the groundwork for the realization of intelligent,

autonomous, and adaptable CPPS aligned with the principles not only of RAMI4.0 but

also the PPR model. The contributions made in Con4 are pivotal in advancing agent-

based CPPS design patterns, thereby facilitating the achievement of smart,

interconnected, and predictive I4.0 systems by the concept of Agent4.0.

3.5 Contribution 5 (Con5). IA patterns standardization

The IA experts highlight the necessity to analyze standardization needs for deploying agent-

based technology, addressing industrial requirements imposed by different application fields

(Leitão & Strasser, 2016). Furthermore, the IA community discusses the identification of

patterns derived from existing implementations of IAs and the assessment of their characteristics,

using the ISO/IEC 25010 standard as a starting point (Karnouskos et al., 2018). Additionally, TC

IA members, led by Professor Paulo Leitão in the IEEE P2660.1, highlight the use of agent

technologies for higher-level decision-making and lower-level automation and control functions

in industrial systems, emphasizing the need for IA interface patterns for agent-based CPPS

(Ribeiro et al., 2018). Additionally, the VDI/VDE 2653 guidelines, led by Professor Birgit

Vogel-Heuser, have been surveyed by the TC 3.35 experts on MAS, indicating their relevance

and importance of IA patterns standardization in the industrial context (Vogel-Heuser et al.,

2018). In this sense, the VDI/VDE 2653 Sheet 4 is relevant (see Pub. XII) proof of Con5

meaning that the thesis’ contribution is valuable and valid due to the fact of the classification

criteria and the IAs pattern standardized. Con5 considers the main aspects derived from the

classification criteria (Con2), but also the evaluation by the German IA experts for each IA

pattern, including the integration of MAS approaches in the traditional automation pyramid e.g.,

based on ISA 95 standard (see Pub. III). The IA pattern categories were derived based on thirteen

proposed criteria that classify MAS architectures’ patterns, such as sub-agent name, main

functionality, automation level, real-time capability, communication base, key properties, and

related work (Cruz S. et al., 2019). Accordingly, to these criteria, Fig. 12 introduces the

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 39

comparison of two MAS heterarchies and its common IA patterns already standardized

(VDI/VDE, 2021): RAs and PAs.

Figure 12: MAS from Hoffmann (Hoffmann, 2017) (left) and Lüder et al. (Lüder et al., 2017) (right).
Knowledge Base (KB), Resource Agent (RA), Communication Process (CP) and Process agent (PA). Source: (VDI/VDE, 2021).

The classification criteria demonstrate that similar MAS authors often use common IA

patterns with various names, i.e., sub-agents, bust in different domains. Additionally, Con5 aims

to integrate IAs design patterns into a CPPS aligned with RAMI4.0’s layers, that is crucial for

ensuring effective communication, real-time optimization, and decision-making processes within

I4.0 systems. Those are agent-based CPPS values in different RAMI4.0’s layers that

correspondence to RQ4 (how to align CPPS to RAMI4.0?). Table 10 provides a list of sub-agent

patterns for selected MAS architectures (Con1). Con5 demonstrates that the sub-agents

identified can be classified without consideration of names such as coordination agents, schedule

agents, supervision agent, supervisor agents, rescheduler agents, and resource capability

monitoring agents among others (Cruz S. et al., 2019). Negotiations and collaborations among

those different IAs create a MAS heterarchy for industry. The MAS scope of the architectures

discussed include, smart manufacturing, energy systems, material flow systems, image

processing and information processing. Instead of considering the names, Con5 involves criteria

based on IA common functionalities (i.e., resource access, coordination process, communication

interface, or the KB), traditional type of agent (i.e., reactive, or proactive), ISA 95 level of

application (L0-L3) and other characteristics of the MAS. Con5 by the classification of sub-

agents helps to differentiate the architecture of each MAS and can be defined as modular or

integral, according to (Ribeiro, 2017).

M a i n c o n t r i b u t i o n s o f I A d e s i g n p a t t e r n s t o C P P S | 40

Table 10: List of sub-agents patterns for MAS architectures extended from (Cruz S. et al., 2019; Vogel-Heuser et al., 2018).

Autor / Author Ressourcenagent (RA) /

Resource agent (RA):

L0–L2

Prozessagent (PA) /

Process agent (PA):

L2–L3

Agenten-Management-

System (AMS) /

Agent management

system (AMS): L1–

L2

Kommunikationsa-

gent (CA) /

Communication

agent (CA):

L1–L3

Intelligente Fertigung / Smart manufacturing

Badr [56] –

RA

±

job@

±

service@

–

Brehm et al. [57] ++

(RA || field related@)

– ++

gateway@

++

broker@

Cruz et al. [22] ++

RA

++

(product@ &

diagnosis@)

++

AMS

–

Rehberger [32] ++

RA

++

product

management@

– +

@interaction

Ryashentseva

[28]

++

(executive@ &

rescheduler@ &

dispatcher@)

++

supervisor@

– –

Schütz [31] ++

RA

++

PA

++

(control strategy@ &

system@)

++

(CA || @interaction)

Theiss [14] +

plant@

++

(test coordination@ &

monitoring@)

±

analysis@

+

test@

Ulewicz [33] ++

(hardware@ &

system@)

– ++

AMS

++

(CA & system@)

Vogel-Heuser

et al. [58]

++

plant@

++

(coordination@ & cus-

tomer@)

++

AMS

–

Wannagat [29] ++

(RA || control@)

++

(PA & system@)

++

AMS

++

(CA || @interaction)

Folmer [30] ++

control@

+

process@

+

system@

++

CA

Kovalenko et al.

[55]

++

RA

++

product@

– –

Legat [59] ++

execution@

++

(supervision@ & re-

configuration@)

++

AMS

–

Lüder et al. [60] ++

(RA || field

related@-RRA)

++

decision

support@-DSA

++

(order@ & product type

info related@)

–

Hoffmann [34] +

(autonomous@ ||

transport@-specific)

++

(coordination@ || man-

ufacturing,

specific@)

++

OPC UA Address-Space as

blackboard

+

customer@

Materialflusssystem / Material flow system

Fischer [35] ++

(control@ &

order@ & system@)

++

coordinator@

++

AMS

++

CA

S u m m a r y o f p u b l i c a t i o n s | 41

The comparison of the selected MAS approaches enables mapping four IA patterns: the RA,

AMS, CA, and PA (Cruz S. et al., 2019). The PA supervises the execution of a production

recipe/plan and interacts with RAs and AMSs. The CA converts proprietary interfaces into

multiple communication protocols. The AMS allows bidirectional mapping between IP-

addresses and sub-agents’ identifications. The RA consists of modules such as Control Module

and Diagnosis Module, as a part of its KB. The PA pattern coordinates the execution of process

steps and interacts with RAs, CAs, and AMSs. In conclusion, the aimed delivery of Con5 is:

• Leveraging the VDI/VDE 2653 Sheet 4 as a benchmark, affirming the thesis’ value and

validity by aligning with established guidelines for evaluating, impacting, and extending

IA patterns in agent-based CPPS. This alignment ensures that the contribution not only

adheres to other recognized standards —e.g., RAMI4.0 (DIN SPEC91345), IEEE Std

2660.1-2020— but also advances the field by providing a systematic classification and

application of MAS patterns for field-level control and energy systems.

4. Summary of publications

This chapter highlights the research results obtained in main five papers (publications I to V).

Additional publications (publications VI to XII) are mentioned and related as complementary

contributions of this dissertation. Table 11 summarizes the percentage value of the candidate

contribution in each author publication. Table 12 specifies the details of each publication in

accordance with the RQs and contributions. The included papers (namely paper numbers as they

occur) are attached in Appendix A.

Table 11: Overview of the author contribution (for each activity of each paper, the contribution of all authors is 100%).

 Contribution

(%)

Publication Conceptualization Data Investigation Writing

Pub.I - ReqsForCPPS

(Cruz S. and Vogel-Heuser 2017)
60% 70% 80% 80%

Pub.II - MASplatform

(Cruz S. et al. 2018)
60% 40% 70% 60%

Pub.III - MASpatterns

(Cruz S. et al. 2019)
60% 50% 75% 55%

Pub.IV - MARIANNE

(Cruz S. and Vogel-Heuser 2022a)
70% 65% 70% 50%

Pub.V - Agent4.0

(Cruz S. and Vogel-Heuser 2022b)
75% 90% 80% 70%

Notes about contribution parts

Conceptualization: Development; conceptual design of the research project

Data: Data curation or software (acquisition, creating, organizing)

Investigation: Formal analysis; methodology

Writing: Visualization; writing - original draft; writing - review & editing

S u m m a r y o f p u b l i c a t i o n s | 42

Table 12: Summary of the primary results from the main publications.

Publication No., year

(name) Main results

Thesis’ RQs and contributions

R
Q

1
.

H
o

w
 d

es
cr

ib
e

M
A

S
 p

a
tt

er
n

s?

R
Q

2
.

W
h

ic
h

 C
P

P
S

d
o

m
a

in
s/

re
q

u
ir

em
en

ts
?

R
Q

3
.

W
h

ic
h

 M
A

S

p
a

tt
er

n
s

a
re

 r
eu

sa
b

le
?

R
Q

4
.

H
o

w
 u

se
 M

A
S

 t
o

R
A

M
I4

.0
 a

n
d

 P
P

R
?

C
o

n
1

.
M

A
S

 c
ri

te
ri

a

C
o

n
2

.
P

a
tt

er
n

s
n

ee
d

s

C
o

n
3

.
I4

.0
 s

ce
n

a
ri

o

C
o

n
4

.
M

A
S

 a
rc

h
it

ec
tu

re

C
o

n
5

.
M

A
S

 g
u

id
el

in
e

Pub. I, 2017

(ReqsForCPPS)

• Requirements for agents-based CPPS were

identified

• Contrast of main AOSE: Gaia, Prometheus, etc.

○ ● ○ ◑ ● ○ ◑ ○ ◑

Pub. II, 2018

(MASplatform)

• MAS requirements defined and an agent-based

CPPS architecture applied to a I4.0 scenario

• Agent-based CPPS FIPA compliant is proposed

○ ● ◑ ○ ◑ ○ ◑ ● ◑

Pub. III, 2019,

(MASpatterns)

• The main four agent design patterns were

defined: AMS, CA, PA, RA

• Around twenty MAS analyzed, and patterns

were standardized driven classification criteria

• Support to create the VDI/VDE 2653-4 norm

● ◑ ● ◑ ● ● ◑ ◑ ●

Pub. IV, 2022,

(MARIANNE)

• Agent-based CPPS architecture derived from

MAS patterns (MARIANNE)

• Guideline to develop an agent-based CPPS

aligned RAMI4.0/PPR

● ○ ● ● ◑ ◑ ● ● ●

Pub. V, 2022,

(Agent4.0)
• Reusable Agent4.0 concept and its skills

• ML-based agent into a MAS architecture by a

I4.0 demonstrator

◑ ○ ● ● ◑ ● ● ● ◑

Full covered ●; Partially covered ◑; No covered○

4.1 Publication I: “Comparison of agent oriented software methodologies to apply

in cyber physical production systems” (Cruz & Vogel-Heuser, 2017)

Luis Alberto Cruz Salazar and Birgit Vogel-Heuser

Summary of Pub. I (ReqsForCPPS)

This paper aims to classify existing agent-based approaches as a basis for realizing CPPS and

identify the benefits of Agent-Oriented Software Engineering (AOSE) and its development.

Despite the several benefits provided by methodologies, such as Gaia, TROPOS, Prometheus,

and INGENIAS, their adoption in agent-based CPPS solutions is still uncommon. Then, the

achievements of this study include identifying the importance of MAS requirements for industry

and highlighting AOSE methodologies as a valuable strategy for application in I4.0/CPPS. A

summary of current CPPS projects and their application field, as well as a comparison of hybrid

MAS methodologies, are introduced. CPPS projects are categorized based on their focus (i.e.,

demonstrators, smart manufacturing approaches, electric grid, applications, or architectures) and

their alignment with the ISA 95 standard levels. The projects cover a range of applications,

S u m m a r y o f p u b l i c a t i o n s | 43

including intelligent manufacturing, autonomous cars, robotic surgery, and smart grids. The

significance of this study lies in its contribution to improving manufacturing systems by applying

advanced information technologies (ITs) and its integration of operational technologies (OTs)

through industrial networking and knowledge of physical things by CPSs. Ten requirements for

applying MAS in CPPS are introduced, such flexibility, reconfigurability, operational efficiency,

scalability, fault tolerance, interoperability, and adaptability. According to the contribution, those

requirements can be achieved by applying new advanced IT/OT technologies for manufacturing

systems. The paper also provides insights into the future of automation through the Industrial

Internet of Things (IIoT). The authors provide a general overview of the existing AOSE

methodologies and their benefits without going into specific details or practical applications. The

study concludes that AOSE has significant potential in I4.0/CPPS implementation and can

contribute to developing the smart factory concept. However, it emphasizes the need for further

research and exploration to leverage the benefits of agent-based CPPS.

Author’s contributions on Pub. I

The main contribution to this paper (Cruz & Vogel-Heuser, 2017), was the introduction of ten

relevant requirements for agents-based CPPS. Additionally, the principal author contrasted

typical AOSE methodologies, such as Gaia, Prometheus, etc., to identify their applicability to

industrial applications, highlighting that the selected the majority of the selected AOSE show at

least 50% coverage of the requirements on average. Nevertheless, some requirements need

urgent attention since most of the AOSE methodologies do not consider them. Last but not least,

the thesis’ author explains the evolution of systems from embedded systems (i.e., based on

Machine-to-machine communication) to the IIoT. The initial version of the manuscript (Cruz &

Vogel-Heuser, 2017), was written by the thesis’ author.

This section was published as Pub. I (ReqsForCPPS):

Cruz, S. L. A., & Vogel-Heuser, B. (2017). Comparison of agent oriented software

methodologies to apply in cyber physical production systems. 15th International Conference

on Industrial Informatics, INDIN, 65–71. https://doi.org/10.1109/INDIN.2017.8104748

4.2 Publication II: “Platform Independent Multi-Agent System for Robust

Networks of Production Systems” (Cruz S. et al., 2018)

Luis Alberto Cruz Salazar, Felix Mayer, Daniel Schütz and Birgit Vogel-Heuser

S u m m a r y o f p u b l i c a t i o n s | 44

Summary of Pub. II (MASplatform)

This paper focuses on the problem of information control in manufacturing, specifically in the

context of CPPS. The manuscript emphasizes that customized products require a flexible

production process, and CPPS is a potential solution. However, implementing CPPS in

heterogeneous production systems requires a platform-independent and robust software solution.

The study proposes a MAS software solution for creating application-independent CPPS. The

study aims to assess the efficiency of the design and implementation of a MAS, implementation

in ANSI C and JAVA to support a variety of hardware platforms. The concept was evaluated

through different use cases and experiments, providing robust and distributed software, and

implementing in heterogeneous CPPS. Protocols and messages facilitate the communication and

collaboration between IAs in the CPPS. The IAs can represent either physical systems or

organizational entities. Physical systems agents manage access to the production system,

dynamically regulating this access based on company policies. Organizational entity agents

perform tasks such as diagnosis services and introducing production requests. IAs can

dynamically reconfigure production systems to achieve load balancing within the CPPS network

i.e., real-time response. The study also discusses using MAS to decentralize automation, enhance

flexibility, and enable advanced functionality in production plants. The organizational entities

periodically check all IAs for availability to update directories, which are distributed in a cloud

among multiple nodes. This distributed directory, i.e., the DF, and the AMS pattern minimize

search request time. The MAS software architecture is designed to represent different abstraction

layers of communication, including hardware, protocol, and messages from FIPA standard. A

hierarchical approach is adopted, with an IA interface responsible for handling connections and

directory services. Each IA can have multiple communication interfaces to support different

hardware platforms. In general, the study provides an overview of a MAS architecture and the

functionality of the communication platform for CPPS, highlighting the potential benefits of

heterarchical and isoarchical architectures. However, due to the lack of quantitative evaluation,

the study primarily presents qualitative experiments and discussions.

Author’s contributions on Pub. II

The main contribution to this paper (Cruz S. et al., 2018), was the description of the MAS

requirements defined and an agent-based CPPS applied to a I4.0 scenario. Also, the author

S u m m a r y o f p u b l i c a t i o n s | 45

proposed a MAS architecture for CPPS networks that is FIPA compliant (extended in Pub. XI).

The partial manuscript (Cruz S. et al., 2018) was written and improved by the thesis’ author.

This section was published as Pub. II (MASplatform):

Cruz S., L. A., Mayer, F., Schütz, D., & Vogel-Heuser, B. (2018). Platform Independent

Multi-Agent System for Robust Networks of Production Systems. IFAC-PapersOnLine,

51(11), 1261–1268. https://doi.org/10.1016/j.ifacol.2018.08.359

4.3 Publication III: “Cyber-physical production systems architecture based on

multi-agent’s design pattern—comparison of selected approaches mapping

four agent patterns” (Cruz S. et al., 2019)

Luis Alberto Cruz Salazar, Daria Ryashentseva, Arndt Lüder and Birgit Vogel-Heuser

Summary of Pub. III (MASpatterns)

This article explores how design patterns focused on MAS can be applied in advanced

manufacturing settings, specifically in CPPS. It offers a systematic classification and

examination of MAS patterns, setting out criteria to quickly adapt them across different

industrial sectors. The key contribution of this paper is in detailing existing MAS patterns that

assist engineers and programmers in developing and enhancing the efficiency of manufacturing

control. It compares various MAS solutions, providing a detailed survey and insights into their

architectural IA patterns.

The paper also explores into the creation of agent-based CPPS and its structural design

(functional requirements), supporting the integration and development of MAS at various

domains (discrete manufacturing, continuous process, hybrid production), in line with traditional

industry standards such as ISA 95. The MAS design pattern requirements provide a framework

for developing and implementing CPPS architectures. These align with the RAMI4.0 standard

and the AAS concept. The RAMI4.0’s Asset Layer contains the physical elements managed by a

MAS patterns, with Resource Agent (RA) patterns being key to asset management. However, the

paper does not specify the direct relationship between RAs and assets. Communication is

facilitated through the RAMI4.0’s Communication Layer, utilizing CA patterns compatible with

field bus and industrial communication protocols like OPC UA.

Not all IAs in the MAS directly control the assets—mostly RAs do—while MAS may also

offer additional services like the (Agent Management System) AMS and the Directory Facilitator

S u m m a r y o f p u b l i c a t i o n s | 46

(DF), following the FIPA standard. Another accepted IA pattern is the Communication Agent

(CA) that converts proprietary interfaces into multiple industrial protocols. The topmost

organization layer of RAMI4.0 can include the organizational structure’s representation

(Information Layer). Here, the Process Agent (PA) pattern enables the operation of organizations

within diverse MAS. The Information Layer of RAMI4.0 holds semantic information about

assets and the organization of PAs, which can represent a product in this layer. As PAs have their

own information on procedures and plans, they coordinate their own production.

The article also examines four general research questions linked to eight hypotheses, five of

which are fully- and three partially-true. RQs and true hypotheses address various aspects,

including the depiction of MAS patterns for CPPS, the domains to which MAS patterns are

applicable, and the reusability of MAS design patterns for CPPS; additionally, there are missing

concerns, such as how MAS design patterns align with RAMI4.0 and functional and non-

functional requirements, whose hypotheses are partially true.

As practical examples, two I4.0 demonstrators —myYoghurt and the Robot Integrated Agent

Network “RIAN”— showcase the application of these patterns in agent-based CPPS. These case

studies analyze and implement functional requirements like Resource Access, Knowledge Base,

Coordination Process, and Communication Interface. However, the paper suggests further

exploration of additional IA patterns and non-functional requirements is needed.

Author’s contributions on Pub. III

The main contribution to this paper (Cruz S. et al., 2019), was the identification and

categorization of the four IA patterns introduced: AMS, CA, PA, and RA. Those were

preliminary works discussed in several international events (see publications VI, VII and VIII).

Twenty MAS developed by the leading German FA 3.35 group in agent research (including

personalized MAS figures), and patterns with their classification criteria (Con1). The members

of the working group have been asked to report their IA patterns in its architecture using the

criteria templates. Subsequently, as proof of evaluation (Con5), four IA patterns were evaluated

by German FA 3.35 group and published in the VDI/VDE 2653 Sheet 4 guideline (see Pub. XII).

The initial version of the manuscript (Cruz S. et al., 2019), was written by the thesis’ author.

This section was published as Pub. III (MASpatterns):

Cruz S., L. A., Ryashentseva, D., Lüder, A., & Vogel-Heuser, B. (2019). Cyber-physical

production systems architecture based on multi-agent’s design pattern—comparison of

S u m m a r y o f p u b l i c a t i o n s | 47

selected approaches mapping four agent patterns. International Journal of Advanced

Manufacturing Technology, 105(9), 4005–4034. https://doi.org/10.1007/s00170-019-03800-4

4.4 Publication IV: “CPPS-architecture and workflow for bringing agent-based

technologies as a form of artificial intelligence into practice” (Cruz S. &

Vogel-Heuser, 2022a)

Luis Alberto Cruz Salazar and Birgit Vogel-Heuser

Summary of Pub. IV (MARIANNE)

This paper discusses the classification of IAs based on their behavior. The motivation for this

study is the increasing use of AI in production systems and the need for collaboration between

I4.0 experts and autonomous systems. The study highlights the importance of existing standards

and design patterns in realizing I4.0 systems and discusses the properties and capabilities of IAs

in the context of AI. It distinguishes between Reactive Agents and Deliberative Agents, in which

Reactive Agents have a faster response to their environment by simple situation-action

associations. In contrast, Deliberative Agents have more sophisticated behavior and can behave

proactively. The paper highlights the advantages and disadvantages of each type of agent and

proposes the need for improved IA typologies to address the increasing capabilities of AI

systems. Additionally, the study discusses the use of IA design patterns in Model-Driven

Engineering (MDE) for MAS in the context of I4.0/CPPS, including integrating function patterns

and knowledge bases and achieving autonomous and collaborative manufacturing systems. The

study compares different I4.0 standardization efforts relevant to the implementation of AI using

IAs and introduces a MAS architecture called “MARIANNE” for flexible and intelligent CPPS.

The manuscript also provides an implementation guideline for implementing this agent-based

CPPS. Overall, the study aims to provide a guide for implementing AI in the form of IAs in

CPPS. MARIANNE includes physical access (in/output devices) represented by RAs but also

uses the AMS, PA, and CA patterns, relating to the PPR model. The CPPS uses Python,

AASXexplorer, Node-RED, and TwinCAT files. IA patterns in MARIANNE include types such

as Control, Reasoning, Learning, and logical descriptions like Unit, Equipment, and Module

from the ISA-88 model, but also apply the AAS concept for RAMI4.0 to achieve I4.0 systems.

S u m m a r y o f p u b l i c a t i o n s | 48

Author’s contributions on Pub. IV

The main contribution to this paper (Cruz S. & Vogel-Heuser, 2022a), was the development of

an agent-based CPPS architecture derived from MAS patterns, named MARIANNE, and driven

by the most recently IA standardization (IEEE, 2021; VDI/VDE, 2021). From the best of the

thesis’ author knowledge, there is no similar work that integrates both norms in a unique MAS

architecture. Additionally, the main author presented a guideline to develop an agent-based

CPPS aligned to RAMI4.0/PPR and extendable to I4.0 scenarios (see Pub. XI). The initial

version of the manuscript (Cruz S. & Vogel-Heuser, 2022a), was written by the thesis’ author.

This section was published as Pub. IV (MARIANNE):

Cruz S., L. A., & Vogel-Heuser, B. (2022a). A CPPS-architecture and workflow for bringing

agent-based technologies as a form of artificial intelligence into practice. At -

Automatisierungstechnik, 70(6), 580–598. https://doi.org/10.1515/auto-2022-0008

4.5 Publication V: “Industrial Artificial Intelligence: A Predictive Agent

Concept for Industry 4.0” (Cruz S. & Vogel-Heuser, 2022b)

Luis Alberto Cruz Salazar and Birgit Vogel-Heuser

Summary of Pub. V (Agent4.0)

This paper focuses on the concept of Industrial AI in the context of I4.0. The innovative part is

the authors introduce a predictive IA concept called Agent4.0 that applies supervised learning to

increase the predictability of an agent-based CPPS. They suggest that IA patterns can be used to

represent distributable AI in various I4.0 scenarios. The study evaluates the five Industrial AI

characteristics for the Agent4.0: autonomy, reactiveness, proactiveness, human cooperativeness,

and the ability to learn from online/offline operations. The study contributes to the IA patterns

field by introducing a “learning element” into the Agent4.0, which collaborates with the AAS in

an I4.0 demonstrator. This distinguishes it from existing IA design patterns that are primarily

reactive and proactive, with limited predictive capabilities. The authors highlight that probability

is not predictability, indicating the need for a distinction between probabilistic and predictive IA

models. They emphasize the importance of training the Agent4.0 through ML methods to

achieve predictive systems. Then, acquisition of data and other ML methods such as artificial

neural networks, fuzzy logic, and linear regression are proposed as ways to support decision-

making in intelligent systems. As limitation, definitions of predictive IA and AI used in this

D i s c u s s i o n a n d o u t l o o k | 49

study may not be universally accepted, leading to potential ambiguity and lack of consensus

within the AI and I4.0 communities. The acquisition of complex and comprehensive data

required for training IA’s Knowledge Base models may pose challenges, as obtaining such data

can be difficult in industrial settings, i.e., hard real-time capable. The study focuses on a specific

ML concept (linear regression) into Agent4.0, which may limit the generalizability of the

findings to other AI applications and MAS architectures. Overall, the study contributes to the

advancement of agent-based technologies and AI in practice.

Author’s contributions on Pub. V

The main contribution to this paper (Cruz S. & Vogel-Heuser, 2022b), was the introduction of

the reusable Agent4.0 concept and its skills description. This is an ML-based agent into a MAS

architecture by an I4.0 demonstrator. The tools implemented were preliminary used in

collaboration with the author on a Small- and Middle-sized Enterprises (see Pub. X). The initial

version of the manuscript (Cruz S. & Vogel-Heuser, 2022b), was written by the thesis’ author.

This section was published as Pub. V (Agent4.0):

Cruz S., L. A., & Vogel-Heuser, B. (2022b). Industrial Artificial Intelligence: A Predictive

Agent Concept for Industry 4.0. IEEE 20th International Conference on Industrial

Informatics (INDIN), 27–32. https://doi.org/10.1109/INDIN51773.2022.9976159

5. Discussion and outlook

A brief overview of the research contribution is discussed to summarize the thesis. It connects

the results to the issues raised in the Introduction. After that, if the requirements have been

fulfilled, it is reviewed, and a future work as outlook is provided.

5.1 Main publications results related to the issues

This section outlines the main contribution of the thesis throughout the Table. 13, which

summarizes the main results from the contributions that supported the concept design and

evaluation of this dissertation, related to the introduced issues and RQs (see Section 1).

Table 13: Overview of the thesis’ storyline contributions.

Issues Research Questions Contributions

Lack of a comprehensive

overview and classification

of MAS patterns in CPPS

RQ1. How are MAS patterns for

CPPS depicted and what criteria

are used to describe them?

Con1. A well-discussed criteria and systematic

summaries in the industrial agents working group of the

German IFAC NMO GMA FA 3.35 is presented

RQ2. For which domains of

CPPS are the MAS patterns

designed and applicable?

Con2. Mapping of MAS functional requirements to sub-

agent patterns was provided considering their capabilities

and skills

D i s c u s s i o n a n d o u t l o o k | 50

Challenge of reusability and

extendibility of MAS

patterns for I4.0

RQ3. What are the reusable MAS

patterns for CPPS?

Con3. Proposed IA patterns for agent-based CPPS in I4.0

demonstrators and selected I4.0 scenarios are applicable

Integration of MAS patterns

with existing CPPS models

and standards
RQ4. How can MAS patterns be

used into a CPPS aligned with the

RAMI4.0 and PPR model?

Con4. The identified design patterns are the basis for the

development of an agent-based CPPS architecture and

for its structural representation, aligned with established

models e.g. PPR

Implementing sub-agent

patterns and AASs into

hybrid CPPS platforms

Con5. An VDI/VDE guideline is used as proof of

evaluation for the impact of the IA patterns and AASs

implementation into hybrid CPPS platforms

The thesis enriches the literature on IA patterns research in the CPPS domains, which is

scarce since there were only few publications on the topic primarily targeting IA patterns

standardization. Furthermore, the stepwise research for challenges presented in Section 1.2 can

be employed in future work on the agent-based CPPS. Research contributions related to the four

issues that are initially mentioned in the Introduction (see Section 1.4), is covered as follows:

Issue 1: Lack of a comprehensive overview and classification of MAS patterns in CPPS.

MAS approaches are classified in order to facilitate the migration from the conventional

automation systems to the CPPS in Con1. Therefore, authors use a template that consists of a list

of classification criteria validated by experts in the German community FA 5.15 (see Section

3.1). Because all MAS approaches were created to be used in different domains and different

layers of the automation pyramid, a notable part of the IA pattern functional requirements are

concentrated to provide autonomy, reactiveness, proactiveness, predictability, and human

cooperativeness. Their capabilities and skills of these IA capabilities and skills are enlisted and

described in Con2.

Issue 2: Challenge of reusability and extendibility of MAS design patterns for I4.0.

The reusability and extendibility of MAS design patterns, particularly in the scope of I4.0, are

strongly exemplified through Con3. This contribution showcases I4.0 demonstrators, such as

RIAN, the myYoghurt plant, and the xPPU, which highlight the adaptability and scalability of

MAS design patterns across diverse industrial domains (see Section 3.3). By implementing these

patterns in various contexts, from discrete hybrid manufacturing, Con3 not only proves their

effectiveness but also their capacity for reuse and extension in response to the evolving

requirements of I4.0/CPPS. The qualitative assessment of IA interfaces within these

demonstrators, as mentioned in Con3, provides critical insights into the integration and

effectiveness of IA design patterns, further supporting the argument for their broad applicability

and potential for innovation in CPPS. This directly confronts Issue 2 by demonstrating practical

D i s c u s s i o n a n d o u t l o o k | 51

applications and reinforcing the need for IA patterns that are both reusable and extendable,

ensuring they can evolve alongside I4.0 demonstrators and by driven by standards.

Issue 3: Integration of MAS design patterns with existing CPPS models and standards.

Con4 and Con5 address this issue integrating MAS patterns with established I4.0 models and

standards. Con4 outlines a comprehensive MAS architecture that leverages the concept of the

AAS from RAMI4.0, illustrating a strategic alignment that enhances CPPS’s interoperability and

digital twin capabilities. This architecture ensures that IA patterns are not only compatible with

I4.0 standards but are fundamentally designed to enhance CPPS functionality through improved

data integration, communication, and operational efficiency. Furthermore, Con5 emphasis on the

standardization of IA patterns builds upon this foundation by offering a methodical approach to

embedding IA patterns within CPPS. This includes the development of predictive agents, such as

Agent4.0, which aligns with the MARIANNE framework, demonstrating a forward-thinking

approach to CPPS design that integrates IA capabilities and skills. By collectively focusing on

harmonization with standards like RAMI4.0 and the PPR model, these contributions address the

critical need for a unified framework that not only respects existing standards but also drives

CPPS towards better implementation.

Issue 4: Implementing sub-agent patterns and AASs into hybrid CPPS platforms.

The dual contributions of Con4 and Con5 again come to the face in addressing Issue 4, focusing

on the challenges associated with implementing sub-agent patterns and AASs within complex,

hybrid CPPS platforms. Con4’s detailed exposition on MAS architecture and its integration with

AASs highlights the necessity of a robust and adaptable framework to CPPS. This architecture

not only supports the integration of digital twins through AASs but also ensures CPPS can fully

benefit from the autonomy, interoperability, and adaptability promised by I4.0. Meanwhile,

Con5 extends this integration by standardizing IA patterns, thus facilitating the deployment of

sub-agent patterns in a manner that is both effective and in alignment with industry standards

such as RAMI4.0 and the PPR model. This concerted effort is key in scaling the implementation

challenges, enhancing CPPS functionalities, and ensuring a unified integration process. Through

the strategic alignment of IA patterns with digital twin capabilities and the standardization of IA

patterns, contributions 4 and 5 provide a clear roadmap for overcoming the inherent complexities

of implementing advanced MAS structures within hybrid CPPS environments.

D i s c u s s i o n a n d o u t l o o k | 52

5.2 Fulfillment of the requirements and the covered CPPS challenges

Table 14 presents the results of a self-evaluation of requirements fulfillment introduced before

(see Section 2.). Since a requirement is still only partially met, significant concerns may be

covered. Nevertheless, the three conditions that were met demonstrate the success of this thesis.

Regarding MAS classification (Req1), Pub. I and Pub. III detail classification methods for

MAS approaches by describing the criteria used to depict agent-based CPPS architectures,

including those based on AOSE. Those publications state that the classification criteria deliver

valid and decidable information for the evaluation of MAS approaches, detailed in Section 3.1

(Con1). Pub. III also mentions that MAS approaches for CPPS can be classified and identified

based on similar and reusable design pattern terms (Req3).

Table 14: Summary of the rating of requirement fulfilment.

Requirement Rating* Detailed rating and reference to publication

Req1-

Classification
●

Fulfilled – An enlargement of the collected classification criteria (cp. Table 5 and Table 6) is

reported in Pub. III and detailed in Section 3.1 (Con1). Additionally, the Pub. I and Pub. III

provide surveys of MAS practices based on main AOSE methodologies, differentiating them by

CPPS requirement’ classification

Req2-

Domain
●

Fulfilled – Pub. III presents agent-based CPPS requirements and MAS architectures, mapping four

IA patterns and their domains of application, detailed in Section 3.2 (Con2). Pub. IV and Pub. V

define and evaluate IA pattern capabilities skills, relating Industrial AI characteristics and

providing applicability in a I40 demonstrator with an extendible domain

Req3-

Reusability
●

Fulfilled – Pub II introduces the characterization of reusable IA patterns applicable into I4.0

demonstrators, detailed in Section 3.3 (Con3). Proof of its reusability is the normalized patterns

which are Resource Agents, Process Agents, Communication Agents, and Agent Management

Systems (cp. Table 10). Consequently, Pub. IV and Pub. V develop a proposed MAS architecture

based on these reusable patterns and named MARIANNE. Pub. II to Pub. V introduce various I4.0

demonstrators where IA patterns were applied and a selected I4.0 scenario was derived.

Req4-

Modelling
◑

Partially fulfilled – Pub. III combines RAMI4.0, and IA patterns suitability for CPPS, considering

the AAS model, detailed in Section 3.4 (Con4). Additionally in Section 3.5 (Con5), Pub. IV and

Pub. V make three contributions regarding modelling and standardization: examining the

combination of VDI/VDE 2653-4 and IEEE 2660.1 standards, presenting an MAS architecture for

CPPS derived from IA patterns (MARIANNE), and providing guidelines for implementing IAs and

AASs into hybrid CPPS platforms. In addition, Pub. VII and Pub. VIII only reported early

findings and initial I4.0 scenarios with their PPR modeling. Therefore, those results can be seen as

complementary results of this thesis. Thus, further work is needed to incorporate more aspects of

RAMI4.0 and PPR to build up a major comprehensive agent-based CPPS model for I4.0.

*Rating means ● fulfilled, and ◑ partially fulfilled.

Additionally, Pub. I discusses how AOSE can be developed into a CPPS-aligned framework.

Both Pub. I and Pub. III, have selected MAS architectures, methodologies, or standards for

classification, surveying the state of industrial MAS practices (Req1). Primarily, regarding the

CPPS requirements, the capability to interface with various application domains (Req2) is

ensured through the utilization of an open software MAS architecture, as elaborated in Pub. II to

Pub. V. Independence from specific levels and diverse domains is realized by the incorporation

of four types of IA patterns (Req3): Resource Agents (RAs), Process Agents (PAs),

D i s c u s s i o n a n d o u t l o o k | 53

Communication Agents (CAs), and Agent Management Systems (AMSs), detailed in Section 3.2

(Con2).

The implementation of TCP/IP as the basis of the communication protocol, exemplified by

OPC UA, addresses certain aspects of error handling and recovery, and facilitates the integration

of CPPS networks with other application domains (Req2). The distribution of organizational sub-

agents within cloud environments, such as PAs and AMSs, leads to a decentralized agent-based

CPPS with reusable structure (Con4), as depicted in Pub. II, Pub. IV, and Pub. V. However, the

Acceptance of I4.0 components and the capability of sub-agents in PPR model (Req4) require

additional investigation and more evaluation experiments. Preliminary evaluations of the PPR

model and IAs have been conducted and are documented in the complementary references of this

thesis by Pub. VII and Pub. VIII.

To fulfill the RAMI4.0 requirements (Req4), I4.0 demonstrators are assembled out of I4.0

components, accommodating various engineering models and standards, detailed in Section 3.3

(Con3). The focus of the MAS architecture on software components, particularly sub-agent

patterns, facilitates the association of physical asset connections via AAS (Req3), aligning with

the functional requirements of AutomationML, detailed in Section 3.4 (Con4). The principles of

system boundaries and nestability for I4.0 components introduced in Pub. III, are further

organized along RAMI4.0 layers and architecture axis within the MAS (Req4), respectively,

which is implemented in Pub. IV and Pub. V. The general AAS model, discussed in Pub. III to

Pub. V achieves the virtual representation –digital twin concept– and the functional

characteristics of I4.0 components from RAMI4.0 (Req4). However, the agent-based CPPS

architecture has not yet articulated non-functional requirements as a kind of feature of model

elements (Req3), as noted in Pub. III. This limits the modeling (Req4), such as explicit quality

characteristics or evaluation metric attributes, which would detail the extent to which the IA

patterns fully fulfill their supported models associated to I4.0.

Pub. IV and Pub. V uses the VDI/VDE 2653-4 and IEEE 2660.1 standards (Con5),

proposing and evaluating the applied IA patterns for the MARIANNE architecture for the xPPU

demonstrator, as detailed in Section 3.5 (Con5). MARIANNE incorporates IA patterns based on

these standards and focuses on the relationships with I4.0 concepts such as RAMI4.0/AAS, and

the PPR model (Req4). Pub. IV suggests that further analysis should be done to execute these

existing models for I4.0, considering various aspects such as function hierarchy levels and

D i s c u s s i o n a n d o u t l o o k | 54

information classes. Above all presented findings, the enlargement of agent-based CPPS based

on design pattern and its covered challenges is summarized in Fig. 13 (related to the challenges

in Fig. 2), that is considered the main contribution of this thesis.

Figure 13: Challenges and gaps of Industrial Agents – related thesis’ contribution (selected RQs from Fig. 2).

Publications refer to: Pub. I (Cruz S. & Rojas A., 2013); Pub. II (Cruz S. et al., 2018); Pub. III (Cruz S. et al., 2019); Pub.IV

(Cruz S. & Vogel-Heuser, 2022a); Pub.V (Cruz S. & Vogel-Heuser, 2022b); Pub. VI (Vogel-Heuser et al., 2018); Pub. VII

(Lüder et al., 2018); Pub. VIII (Ryashentseva et al., 2018); Pub. IX (Vogel-Heuser et al., 2020); Pub. X (Haben et al., 2021); Pub.

XI (Seitz et al., 2021); and Pub. XII (VDI/VDE, 2021). Source: Adapted from the presentation of the Workshop “Agents in agile

manufacturing (CPPS) - Status of Last Meeting”, AIS-TUM, 2019.

5.3 Conclusion and outlook

The advancement of IA patterns within CPPS raises at a fundamental connection, ready for

significant evolution in the context of I4.0. The demonstrable success of MAS in addressing

complex integration, reusability, and scalability challenges, as evidenced by this thesis

contribution, sets a solid foundation for future innovations in agent-based CPPS. The practical

applications showcased through I4.0 demonstrators highlight the adaptability of MAS patterns,

promising a future where CPPS are increasingly dynamic, interoperable, and efficient. The

alignment of MARIANNE architecture with I4.0 standards, particularly through the integration

with RAMI4.0 and the AAS, underscores a strategic direction towards enhanced DT capabilities

and system interoperability. This alignment not only facilitates a seamless integration of MAS

within existing CPPS models and standards but also drives the development of intelligent,

D i s c u s s i o n a n d o u t l o o k | 55

autonomous systems that can effectively respond to the complex demands of modern

manufacturing environments. Looking ahead, the standardization of IA patterns and the

incorporation of advanced IAs, such as Agent4.0, within the MAS architecture signal a move

towards more predictive, self-optimizing CPPS. This evolution will likely emphasize the need

for MAS frameworks that are not only adaptable to various industrial domains but also capable

of anticipating and reacting to changes in real-time, thereby enhancing the resilience and

efficiency of manufacturing processes. Furthermore, the challenges of implementing sub-agent

patterns and AASs in hybrid CPPS platforms will drive innovations in MAS design, focusing on

the integration of complex IA capabilities and skills. A well-discussed and comprehensive

VDI/VDE guideline for effectively deploying IA patterns is crucial in probing agent-based CPPS

challenges and ensuring CPPSs can leverage the total target of I4.0. Thus, the issues and RQs

stated in the introduction have been successfully answered, and the IA patterns with the proposed

MARIANNE architecture address the research gap by fulfilling most requirements.

As a future work, creating and standardizing KPIs specific to agent-based CPPS will enable

MAS developers to measure system performance against industry benchmarks, facilitating a

more objective assessment of their operational efficacy, scalability, and resilience. As well as the

standardized IA patterns, these KPIs must be normalized, including metrics related to system

adaptability, integration success rates, efficiency gains, and the effectiveness of predictive and

autonomous functionalities within CPPS. By quantifying these aspects, MAS developers can

better estimate the return on investment of implementing IA patterns and justify further

innovation and adoption in the industry domain.

In conclusion, the future of MAS patterns within CPPS for I4.0 looks promising, with a clear

trajectory toward more intelligent, flexible, and interconnected aPS. The ongoing research and

development efforts, as highlighted through the contributions discussed, will indeed play a

critical role in shaping the next generation of CPPS, ultimately contributing to the realization of

the smart factory vision.

R e f e r e n c e s | 56

6. References

Albrecht, S. V, Christianos, F., & Schäfer, L. (2024). Multi-Agent Reinforcement Learning: Foundations

and Modern Approaches. MIT Press. https://www.marl-book.com

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: Towns, Buildings,

Construction (Vol. 2).

Badr, I. (2011). Agent-based dynamic scheduling for flexible manufacturing systems. PhD thesis, Faculty

5: Computer Science, Electrical Engineering and Information Technology, University of Stuttgart.

Barata, J., Jassbi, J., & Nikghadam-Hojjati, S. (2022). A Framework of Collaborative Multi-actor

Approach Based Digital Agriculture as a Solution for the Farm to Fork Strategy (pp. 503–518).

https://doi.org/10.1007/978-3-031-14844-6_40

Barbosa, J. (2016). Self-organized and evolvable holonic architecture for manufacturing control [PhD

thesis, Université de Valenciennes et du Hainaut-Cambresis]. In PHD Theses. https://tel.archives-

ouvertes.fr/tel-01137643v2

Baumgartel, H., & Verbeet, R. (2020). Service and Agent based System Architectures for Industrie 4.0

Systems. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, 1–6.

https://doi.org/10.1109/NOMS47738.2020.9110406

Bendjelloul, A., Mihoubi, B., Gaham, M., Moufid, M., & Bouzouia, B. (2022). A framework for an

effective virtual commissioning of agent-based cyber-physical production systems integrated into

manufacturing facilities. Concurrent Engineering, 30(4), 399–410.

https://doi.org/10.1177/1063293X221121819

Bloom, G., Alsulami, B., Nwafor, E., & Bertolotti, I. C. (2018). Design patterns for the industrial Internet

of Things. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS),

1–10. https://doi.org/10.1109/WFCS.2018.8402353

Calà, A. (2019). A novel migration approach towards decentralized automation in cyber-physical

production systems. http://dx.doi.org/10.25673/13760

Calà, A., Lüder, A., Cachada, A., Pires, F., Barbosa, J., Leitão, P., & Gepp, M. (2017). Migration from

traditional towards cyber-physical production systems. Proceedings - 2017 IEEE 15th International

Conference on Industrial Informatics, INDIN 2017, 1147–1152.

https://doi.org/10.1109/INDIN.2017.8104935

Cardin, O. (2019). Classification of cyber-physical production systems applications: Proposition of an

analysis framework. Computers in Industry. https://doi.org/10.1016/j.compind.2018.10.002

Cardoso, R. C., & Ferrando, A. (2021). A Review of Agent-Based Programming for Multi-Agent

Systems. Computers, 10(2), 16. https://doi.org/10.3390/computers10020016

Case, D. M. (2015). Engineering complex systems with multigroup agents [PhD thesis, Computing and

Information Sciences, Kansas State University]. http://hdl.handle.net/2097/19045

Cha, S., Vogel‐Heuser, B., & Fischer, J. (2020). Analysis of metamodels for model‐based production

automation system engineering. IET Collaborative Intelligent Manufacturing, 2(2), 45–55.

https://doi.org/10.1049/iet-cim.2020.0013

Charpenay, V., Schraudner, D., Seidelmann, T., Spieldenner, T., Weise, J., Schubotz, R., Mostaghim, S.,

& Harth, A. (2021). MOSAIK: A Formal Model for Self-Organizing Manufacturing Systems. IEEE

Pervasive Computing, 20(1), 9–18. https://doi.org/10.1109/MPRV.2020.3035837

Chitchyan, R., Pinto, M., Rashid, A., & Fuentes, L. (2007). COMPASS: Composition-Centric Mapping of

Aspectual Requirements to Architecture. In Transactions on Aspect-Oriented Software Development

IV (pp. 3–53). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77042-8_2

R e f e r e n c e s | 57

Colombo, A. W., Bangemann, T., & Karnouskos, S. (2013). A system of systems view on collaborative

industrial automation. Proceedings of the IEEE International Conference on Industrial Technology.

https://doi.org/10.1109/ICIT.2013.6505980

Colombo, A. W., Karnouskos, S., Yu, X., Kaynak, O., Luo, R. C., Shi, Y., Leitão, P., Ribeiro, L., &

Haase, J. (2021). A 70-Year Industrial Electronics Society Evolution Through Industrial

Revolutions: The Rise and Flourishing of Information and Communication Technologies. IEEE

Industrial Electronics Magazine, 15(1), 115–126. https://doi.org/10.1109/MIE.2020.3028058

Cruz S., L. A., Mayer, F., Schütz, D., & Vogel-Heuser, B. (2018). Platform Independent Multi-Agent

System for Robust Networks of Production Systems. IFAC-PapersOnLine, 51(11), 1261–1268.

https://doi.org/10.1016/j.ifacol.2018.08.359

Cruz S., L. A., & Rojas A., O. A. (2013). Comparación de enfoques de sistemas de control tradicionales y

el paradigma de los Sistemas Holónicos de Manufactura. II International Congress of Engineering

Mechatronics and Automation, CIIMA, 6.

Cruz S., L. A., Ryashentseva, D., Lüder, A., & Vogel-Heuser, B. (2019). Cyber-physical production

systems architecture based on multi-agent’s design pattern—comparison of selected approaches

mapping four agent patterns. International Journal of Advanced Manufacturing Technology, 105(9),

4005–4034. https://doi.org/10.1007/s00170-019-03800-4

Cruz, S. L. A., & Vogel-Heuser, B. (2017). Comparison of agent oriented software methodologies to

apply in cyber physical production systems. 15th International Conference on Industrial

Informatics, INDIN, 65–71. https://doi.org/10.1109/INDIN.2017.8104748

Cruz S., L. A., & Vogel-Heuser, B. (2020). Applying Core Features of the Object-Oriented Programming

Paradigm by Function Blocks Based on the IEC 61131 and IEC 61499 Industrial Automation

Norms. In T. Borangiu, D. Trentesaux, P. Leitao, A. Giret Boggino, & V. Botti Navarro (Eds.),

Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (1st

ed., pp. 273–289). Springer International Publishing. https://doi.org/10.1007/978-3-030-27477-1_21

Cruz S., L. A., & Vogel-Heuser, B. (2022a). A CPPS-architecture and workflow for bringing agent-based

technologies as a form of artificial intelligence into practice. At - Automatisierungstechnik, 70(6),

580–598. https://doi.org/10.1515/auto-2022-0008

Cruz S., L. A., & Vogel-Heuser, B. (2022b). Industrial Artificial Intelligence: A Predictive Agent

Concept for Industry 4.0. IEEE 20th International Conference on Industrial Informatics (INDIN),

27–32. https://doi.org/10.1109/INDIN51773.2022.9976159

D’Avila Mendonça, G., Filho, I. P. de S., & Guedes, G. T. A. (2022). A Detailed Analysis of a Systematic

Review About Requirements Engineering Processes for Multi-agent Systems (pp. 46–69).

https://doi.org/10.1007/978-3-031-10161-8_3

DIN SPEC. (2016). Reference Architecture Model Industrie 4.0 (RAMI4.0).

Fast-Berglund, Å., Romero, D., Åkerman, M., Hodig, B., & Pichler, A. (2020). Agent- and Skill-Based

Process Interoperability for Socio-Technical Production Systems-of-Systems (pp. 46–54).

https://doi.org/10.1007/978-3-030-57997-5_6

Fay, A., Vogel-Heuser, B., Frank, T., Eckert, K., Hadlich, T., & Diedrich, C. (2015). Enhancing a model-

based engineering approach for distributed manufacturing automation systems with characteristics

and design patterns. Journal of Systems and Software, 101, 221–235.

https://doi.org/10.1016/j.jss.2014.12.028

Fay, A., Vogel-Heuser, B., Seitz, M., Gehlhoff, F., & VDI/VDE. (2019). Agents for the realisation of

Industrie 4.0. https://www.vdi.de/ueber-uns/presse/publikationen/details/agents-for-the-realisation-

of-industrie-40

R e f e r e n c e s | 58

Fischer, J., Lieberoth-Leden, C., Fottner, J., & Vogel-Heuser, B. (2020). Design, Application, and

Evaluation of a Multiagent System in the Logistics Domain. IEEE Transactions on Automation

Science and Engineering, 1–14. https://doi.org/10.1109/TASE.2020.2979137

Fischer, J., Vogel-Heuser, B., Berscheit, A., & Parigger, S. (2021). Comparison of Two Concepts for

Planned Reuse of Variant-rich IEC 61131-3-based Control Software. 2021 IEEE International

Conference on Industrial Engineering and Engineering Management (IEEM), 713–720.

https://doi.org/10.1109/IEEM50564.2021.9672967

Fischer, J., Vogel-Heuser, B., Schneider, H., Langer, N., Felger, M., & Bengel, M. (2021). Measuring the

Overall Complexity of Graphical and Textual IEC 61131-3 Control Software. IEEE Robotics and

Automation Letters, 6(3), 5784–5791. https://doi.org/10.1109/LRA.2021.3084886

Franklin, S., & Graesser, A. (1997). Is It an agent, or just a program?: A taxonomy for autonomous

agents. In ECAI ’96: Proceedings of the Workshop on Intelligent Agents III, Agent Theories,

Architectures, and Languages (pp. 21–35). https://doi.org/10.1007/BFb0013570

Fuchs, J., Feldmann, S., Legat, C., & Vogel-Heuser, B. (2014). Identification of Design Patterns for IEC

61131-3 in Machine and Plant Manufacturing. IFAC Proceedings Volumes, 47(3), 6092–6097.

https://doi.org/10.3182/20140824-6-ZA-1003.01595

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-

Oriented Software. Pearson Education. https://books.google.de/books?id=6oHuKQe3TjQC

Gangoiti, U., López, A., Armentia, A., Estévez, E., & Marcos, M. (2021). Model-Driven Design and

Development of Flexible Automated Production Control Configurations for Industry 4.0. Applied

Sciences, 11(5), 2319. https://doi.org/10.3390/app11052319

Gangoiti, U., López-García, A., Armentia, A., Estevez, E., Casquero, O., & Marcos, M. (2022). A

Customizable Architecture for Application-Centric Management of Context-Aware Applications.

IEEE Access, 10, 1603–1625. https://doi.org/10.1109/ACCESS.2021.3138586

Gehlhoff, F. (2023). Agent-based Decentralised Architecture for Integrated Process Planning and

Scheduling of Transport and Production Processes. PhD thesis, Helmut-Schmidt-

Universität/Universität der Bundeswehr Hamburg.

Gehlhoff, F., & Fay, A. (2020). Agent-based decentralised architecture for multi-stage and integrated

scheduling. 2020 25th IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA), 1443–1446. https://doi.org/10.1109/ETFA46521.2020.9212059

Haben, F., Vogel-Heuser, B., Najjari, H., Seitz, M., Trunzer, E., & Cruz S., L. A. (2021). Low-entry

Barrier Multi-Agent System for Small- and Middle-sized Enterprises in the Sector of Automated

Production Systems. International Conference on Industrial Engineering and Engineering

Management (IEEM), 1351–1357. https://doi.org/10.1109/IEEM50564.2021.9672973

Heylighen, F. (2023). The meaning and origin of goal-directedness: a dynamical systems perspective.

Biological Journal of the Linnean Society, 139(4), 370–387.

https://doi.org/10.1093/biolinnean/blac060

Hoffmann, M. (2017). Adaptive and Scalable Information Modeling to Enable Autonomous Decision

Making for Real-Time Interoperable Factories. PhD thesis, Faculty of Mechanical Engineering,

RWTH Aachen.

Hoffmann, M., Meisen, T., & Jeschke, S. (2017). OPC UA Based ERP Agents: Enabling Scalable

Communication Solutions in Heterogeneous Automation Environments. Intern. Conf. on Practical

Applications of Agents and Multi-Agent Systems (PAAMS).

Holvoet, T., Weyns, D., & Valckenaers, P. (2009). Patterns of Delegate MAS. 2009 Third IEEE

International Conference on Self-Adaptive and Self-Organizing Systems, 1–9.

https://doi.org/10.1109/SASO.2009.31

R e f e r e n c e s | 59

Hurtado, J. (2012). Metodología de la investigación guía para la comprensión Holística para la ciencia. In

Quirón Ediciones. Ediciones Quirón-Sypal.

IEEE. (2005). Foundation for Intelligent Physical Agents FIPA - Specifications.

http://www.fipa.org/repository/standardspecs.html

IEEE. (2021). IEEE Recommended Practice for Industrial Agents: Integration of Software Agents and

Low-Level Automation Functions. IEEE Std 2660.1-2020, 1–43.

https://doi.org/10.1109/IEEESTD.2021.9340089

Jimenez, J. F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., & Leitão, P. (2017). Pollux: a dynamic

hybrid control architecture for flexible job shop systems. International Journal of Production

Research. https://doi.org/10.1080/00207543.2016.1218087

Juziuk, J., Weyns, D., & Holvoet, T. (2014). Design Patterns for Multi-agent Systems: A Systematic

Literature Review. In Agent-Oriented Software Engineering (pp. 79–99). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-54432-3_5

Karnouskos, S., Leitão, P., Ribeiro, L., & Colombo, A. W. (2020). Industrial Agents as a Key Enabler for

Realizing Industrial Cyber-Physical Systems: Multiagent Systems Entering Industry 4.0. IEEE

Industrial Electronics Magazine, 14(3), 18–32. https://doi.org/10.1109/MIE.2019.2962225

Karnouskos, S., Ribeiro, L., Leitão, P., Lüder, A., & Vogel-Heuser, B. (2019). Key Directions for

Industrial Agent Based Cyber-Physical Production Systems. IEEE International Conference on

Industrial Cyber Physical Systems (ICPS), 17–22. https://doi.org/10.1109/icphys.2019.8780360

Karnouskos, S., Sinha, R., Leitão, P., Ribeiro, L., & Strasser, Thomas. I. (2018). Assessing the Integration

of Software Agents and Industrial Automation Systems with ISO/IEC 25010. 2018 IEEE 16th

International Conference on Industrial Informatics (INDIN), 61–66.

https://doi.org/10.1109/INDIN.2018.8471951

Kovalenko, I. (2020). Intelligent Product Agents for Multi-Agent Control of Manufacturing Systems. PhD

thesis, University of Michigan, Departament of Mechanical Engineering.

Kovalenko, I., Tilbury, D., & Barton, K. (2019). The model-based product agent: A control oriented

architecture for intelligent products in multi-agent manufacturing systems. Control Engineering

Practice, 86, 105–117. https://doi.org/10.1016/j.conengprac.2019.03.009

Kruger, K., & Basson, A. H. (2019). Evaluation of JADE multi-agent system and Erlang holonic control

implementations for a manufacturing cell. International Journal of Computer Integrated

Manufacturing, 32(3), 225–240. https://doi.org/10.1080/0951192X.2019.1571231

Land, K., Nardin, L. G., & Vogel-Heuser, B. (2023). Increasing Robustness of Agents’ Decision-Making

in Production Automation using Sanctioning. 2023 IEEE 21st International Conference on

Industrial Informatics (INDIN), 1–6. https://doi.org/10.1109/INDIN51400.2023.10217852

Lee, E. A. (2015). The past, present and future of cyber-physical systems: A focus on models. Sensors

(Switzerland), 15(3), 4837–4869. https://doi.org/10.3390/s150304837

Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based

manufacturing systems. Manufacturing Letters, 3, 18–23.

https://doi.org/10.1016/j.mfglet.2014.12.001

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical

systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11–25.

https://doi.org/10.1016/j.compind.2015.08.004

Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart Agents in

Industrial Cyber–Physical Systems. Proceedings of the IEEE, 104(5), 1086–1101.

https://doi.org/10.1109/JPROC.2016.2521931

R e f e r e n c e s | 60

Leitão, P., Karnouskos, S., Ribeiro, L., Moutis, P., Barbosa, J., & Strasser, Thomas. I. (2018). Integration

Patterns for Interfacing Software Agents with Industrial Automation Systems. IECON 2018 - 44th

Annual Conference of the IEEE Industrial Electronics Society, 2908–2913.

https://doi.org/10.1109/IECON.2018.8591641

Leitão, P., Karnouskos, S., Strasser, T. I., Jia, X., Lee, J., & Colombo, A. W. (2023). Alignment of the

IEEE Industrial Agents Recommended Practice Standard With the Reference Architectures

RAMI4.0, IIRA, and SGAM. IEEE Open Journal of the Industrial Electronics Society, 4, 98–111.

https://doi.org/10.1109/OJIES.2023.3262549

Leitão, P., & Strasser, T. (2016). Analyzing standardization needs for applying agent technology in

industrial environments. 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE),

754–759. https://doi.org/10.1109/ISIE.2016.7744984

Leitão, P., Strasser, T. I., Karnouskos, S., Ribeiro, L., Barbosa, J., & Huang, V. (2021). Recommendation

of Best Practices for Industrial Agent Systems based on the IEEE 2660.1 Standard. Proceedings of

the IEEE International Conference on Industrial Technology, 2021-March, 1157–1162.

https://doi.org/10.1109/ICIT46573.2021.9453511

López-García, A. (2023). Industrial agents for resilient manufacturing systems. An I4.0 plantform for the

manufacturing domain.

López-García, A., Casquero, O., Estévez, E., Armentia, A., Orive, D., & Marcos, M. (2023). An industrial

agent-based customizable platform for I4.0 manufacturing systems. Computers in Industry, 146,

103859. https://doi.org/10.1016/j.compind.2023.103859

López-García, A., Casquero, O., & Marcos, M. (2021). Design patterns for the implementation of

Industrial Agent-based AASs. 2021 4th IEEE International Conference on Industrial Cyber-

Physical Systems (ICPS), 213–218. https://doi.org/10.1109/ICPS49255.2021.9468129

Lüder, A., Behnert, A.-K., Rinker, F., & Biffl, S. (2020). Generating Industry 4.0 Asset Administration

Shells with Data from Engineering Data Logistics. 2020 25th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA), 867–874.

https://doi.org/10.1109/ETFA46521.2020.9212149

Lüder, A., Calà, A., Zawisza, J., & Rosendahl, R. (2017). Design pattern for agent based production

system control — A survey. 2017 13th IEEE Conference on Automation Science and Engineering

(CASE), 717–722. https://doi.org/10.1109/COASE.2017.8256187

Lüder, A., Zawisza, J., Cruz S., L. A., Seitz, M., & Vogel-Heuser, B. (2018). Identifying Design Pattern

for Agent Based Production System Control. 44th Annual Conference of the IEEE Industrial

Electronics Society, IECON, 2896–2901. https://doi.org/10.1109/IECON.2018.8591336

Marschall, B., Ochsenkuehn, D., & Voigt, T. (2022). Design and Implementation of a Smart, Product-Led

Production Control Using Industrial Agents. IEEE Journal of Emerging and Selected Topics in

Industrial Electronics, 3(1), 48–56. https://doi.org/10.1109/JESTIE.2021.3117121

Marschall, B., Schleicher, M., Sollich, A., Becker, T., & Voigt, T. (2022). Design and Installation of an

Agent-Controlled Cyber-Physical Production System Using the Example of a Beverage Bottling

Plant. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 3(1), 39–47.

https://doi.org/10.1109/JESTIE.2021.3097941

Melo, L. S., Sampaio, R. F., Leão, R. P. S., Barroso, G. C., & Bezerra, J. R. (2019). Python‐based

multi‐agent platform for application on power grids. International Transactions on Electrical

Energy Systems, 29(6). https://doi.org/10.1002/2050-7038.12012

Mendonça, G., Filho, I., & Guedes, G. (2021). A Systematic Review about Requirements Engineering

Processes for Multi-Agent Systems. Proceedings of the 13th International Conference on Agents

and Artificial Intelligence, 69–79. https://doi.org/10.5220/0010240500690079

R e f e r e n c e s | 61

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G.,

Sihn, W., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals -

Manufacturing Technology, 65(2), 621–641. https://doi.org/10.1016/j.cirp.2016.06.005

Neumann, E.-M., Vogel-Heuser, B., Fischer, J., Ocker, F., Diehm, S., & Schwarz, M. (2020).

Formalization of Design Patterns and Their Automatic Identification in PLC Software for

Architecture Assessment. IFAC-PapersOnLine, 53(2), 7819–7826.

https://doi.org/10.1016/j.ifacol.2020.12.1881

Nouiri, M., Trentesaux, D., & Bekrar, A. (2019). Towards Energy Efficient Scheduling of Manufacturing

Systems through Collaboration between Cyber Physical Production and Energy Systems. Energies,

12(23), 4448. https://doi.org/10.3390/en12234448

Panetto, H., Iung, B., Ivanov, D., Weichhart, G., & Wang, X. (2019). Challenges for the cyber-physical

manufacturing enterprises of the future. Annual Reviews in Control, 47, 200–213.

https://doi.org/10.1016/j.arcontrol.2019.02.002

Papoudakis, G., Christianos, F., Schäfer, L., & Albrecht, S. V. (2021). Benchmarking Multi-Agent Deep

Reinforcement Learning Algorithms in Cooperative Tasks. Advances in Neural Information

Processing Systems - Datasets and Benchmarks Track. http://arxiv.org/abs/2006.07869

Patil, S., Drozdov, D., & Vyatkin, V. (2018). Adapting Software Design Patterns To Develop Reusable

IEC 61499 Function Block Applications. 2018 IEEE 16th International Conference on Industrial

Informatics (INDIN), 725–732. https://doi.org/10.1109/INDIN.2018.8472071

Peres, R. A. F. da S. (2019). An Industrial Data Analysis and Supervision Framework for Predictive

Manufacturing Systems. http://hdl.handle.net/10362/91108

Plattform Industrie 4.0. (2019). Technology Scenario “Artificial Intelligence in Industrie 4.0.”

Priego, R. (2017). A model-based approach for supporting flexible automation production systems and an

agent-based implementaction.

Rehberger, S. (2020). Combining Product- and Resource-Related Reasoning for Agent-Based Production

Automation.

Reinpold, L. M., Wagner, L. P., Gehlhoff, F., Ramonat, M., Kilthau, M., Gill, M. S., Reif, J. T., Henkel,

V., Scholz, L., & Fay, A. (2024). Systematic comparison of software agents and Digital Twins:

differences, similarities, and synergies in industrial production. Journal of Intelligent

Manufacturing. https://doi.org/10.1007/s10845-023-02278-y

Ribeiro, L. (2017). Cyber-physical production systems’ design challenges. 2017 IEEE 26th International

Symposium on Industrial Electronics (ISIE), 1189–1194. https://doi.org/10.1109/ISIE.2017.8001414

Ribeiro, L., & Gomes, L. (2021). Describing Structure and Complex Interactions in Multi-Agent-Based

Industrial Cyber-Physical Systems. IEEE Access, 9, 153126–153141.

https://doi.org/10.1109/ACCESS.2021.3127344

Ribeiro, L., & Hochwallner, M. (2018). On the Design Complexity of Cyberphysical Production Systems.

Complexity, 2018, 1–13. https://doi.org/10.1155/2018/4632195

Ribeiro, L., Karnouskos, S., Leitão, P., Barbosa, J., & Hochwallner, M. (2018). Performance Assessment

Of The Integration Between Industrial Agents And Low-Level Automation Functions. 2018 IEEE

16th International Conference on Industrial Informatics (INDIN), 121–126.

https://doi.org/10.1109/INDIN.2018.8471927

Rocha, A. D. B. da S. P. (2018). Increase the adoption of Agent-based Cyber-Physical Production

Systems through the Design of Minimally Invasive Solutions. http://hdl.handle.net/10362/58083

Roher, K., & Richardson, D. (2013). Sustainability requirement patterns. 2013 3rd International

Workshop on Requirements Patterns (RePa), 8–11. https://doi.org/10.1109/RePa.2013.6602665

R e f e r e n c e s | 62

Russell, S., & Norvig, P. (2010). Artificial Intelligence A Modern Approach Third Edition. In Pearson.

https://doi.org/10.1017/S0269888900007724

Ryashentseva, D. (2016). Agents and SCT based self* control architecture for production systems [PhD

thesis]. PhD thesis, Faculty of Mechanical Engineering, Otto‐von‐Guericke University Magdeburg.

Ryashentseva, D., Cruz S., L. A., Vogel-Heuser, B., & Lüder, A. (2018). Development and evaluation of

a unified agents- and supervisory control theory based manufacturing control system. 14th

International Conference on Automation Science and Engineering (CASE), 187–192.

https://doi.org/10.1109/COASE.2018.8560539

Sakurada, L., & Leitao, P. (2020). Multi-Agent Systems to Implement Industry 4.0 Components. 2020

IEEE Conference on Industrial Cyberphysical Systems (ICPS), 21–26.

https://doi.org/10.1109/ICPS48405.2020.9274745

Schulte, A., Donath, D., & Lange, D. S. (2016). Design Patterns for Human-Cognitive Agent Teaming

(pp. 231–243). https://doi.org/10.1007/978-3-319-40030-3_24

Schütz, D. (2015). Automatische Generierung von Softwareagenten für die industrielle

Automatisierungstechnik der Steuerungsebene des Maschinen- und Anlagenbaus auf Basis der

Systems Modeling Language. Technische Universität München.

Schütz, D., Aicher, T., & Vogel-Heuser, B. (2017). Automatic generation of shop floor gateway

configurations from systems modeling language. 2017 IEEE International Systems Engineering

Symposium (ISSE), 1–8. https://doi.org/10.1109/SysEng.2017.8088288

Seitz, M., Gehlhoff, F., Cruz S., L. A., Fay, A., & Vogel-Heuser, B. (2021). Automation platform

independent multi-agent system for robust networks of production resources in industry 4.0. Journal

of Intelligent Manufacturing, 32(7), 2023–2041. https://doi.org/10.1007/s10845-021-01759-2

Shakil, M., & Zoitl, A. (2020). OPC UA based IEC 61499 Device Configuration Interface. 2020 IEEE

Conference on Industrial Cyberphysical Systems (ICPS), 162–167.

https://doi.org/10.1109/ICPS48405.2020.9274770

Sharma, C., Sinha, R., & Leitao, P. (2019). IASelect: Finding Best-fit Agent Practices in Industrial CPS

Using Graph Databases. 2019 IEEE 17th International Conference on Industrial Informatics

(INDIN), 1558–1563. https://doi.org/10.1109/INDIN41052.2019.8972272

Sonnleithner, L., Wiesmayr, B., Ashiwal, V., & Zoitl, A. (2021). IEC 61499 Distributed Design Patterns.

2021 26th IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA), 1–8. https://doi.org/10.1109/ETFA45728.2021.9613569

Sorouri, M., Patil, S., & Vyatkin, V. (2012). Distributed control patterns for intelligent mechatronic

systems. IEEE 10th International Conference on Industrial Informatics, 259–264.

https://doi.org/10.1109/INDIN.2012.6301149

Tang, H., Li, D., Wang, S., & Dong, Z. (2018). CASOA: An Architecture for Agent-Based

Manufacturing System in the Context of Industry 4.0. IEEE Access, 6, 12746–12754.

https://doi.org/10.1109/ACCESS.2017.2758160

Telang, P. R., Singh, M. P., & Yorke-Smith, N. (2019). A Coupled Operational Semantics for Goals and

Commitments. Journal of Artificial Intelligence Research, 65, 31–85.

https://doi.org/10.1613/jair.1.11494

Theiss, S. (2015). Echtzeitfähige Softwareagenten zur Realisierung cyber-physischer Produktionssysteme.

Theiss, S., & Kabitzsch, K. (2017). A Java software agent framework for hard real-time manufacturing

control. At - Automatisierungstechnik, 65(11), 749–765. https://doi.org/10.1515/auto-2017-0036

Trunzer, E. (2020). Model-driven System Architectures for Data Collection in Automated Production

Systems.

R e f e r e n c e s | 63

Unland, R. (2015). Industrial Agents. In Industrial Agents: Emerging Applications of Software Agents in

Industry (pp. 23–44). Elsevier. https://doi.org/10.1016/B978-0-12-800341-1.00002-4

Valckenaers, P. (2020). Perspective on holonic manufacturing systems: PROSA becomes ARTI.

Computers in Industry, 120, 103226. https://doi.org/10.1016/j.compind.2020.103226

Váncza, J., & Monostori, L. (2017). Cyber-physical Manufacturing in the Light of Professor Kanji Ueda’s

Legacy. Procedia CIRP. https://doi.org/10.1016/j.procir.2017.04.059

VDI/VDE. (2012). 2653 Sheet 1:2010 Multi-agent systems in industrial automation - Fundamentals.

VDI/VDE. (2021). 2653 Sheet 4: Multi-agent systems in industrial automation - Selected patterns for

field level control and energy systems. https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-

multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-

systems

Villavicencio, C., Schiaffino, S., Andres Diaz-Pace, J., & Monteserin, A. (2019). Group recommender

systems: A multi-agent solution. Knowledge-Based Systems, 164, 436–458.

https://doi.org/10.1016/j.knosys.2018.11.013

Vogel-Heuser, B., Lee, J., & Leitão, P. (2015). Agents enabling cyber-physical production systems. In At-

Automatisierungstechnik (Vol. 63, Issue 10, pp. 777–789). https://doi.org/10.1515/auto-2014-1153

Vogel-Heuser, B., Neumann, E.-M., Fischer, J., Marcos, M., Estevez, E. E., Barbieri, G., Sonnleithner, L.,

& Rabiser, R. (2022). Automation Software Architecture in CPPS - Definition, Challenges and

Research Potentials. 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems

(ICPS), 01–08. https://doi.org/10.1109/ICPS51978.2022.9816893

Vogel-Heuser, B., Ryashentseva, D., Salazar Cruz, L., Ocker, F., Hoffmann, M., Brehm, R., Bruce-Boye,

C., Redder, M., & Lüder, A. (2018). Agentenmuster für flexible und rekonfigurierbare Industrie

4.0/CPS- Automatisierungsbzw. Energiesysteme. In VDI-Berichte (Ed.), Automation 2018 (1st ed.,

pp. 1119–1130). VDI Verlag. https://doi.org/10.51202/9783181023303-1119

Vogel-Heuser, B., Seitz, M., Cruz S., L. A., Gehlhoff, F., Dogan, A., & Fay, A. (2020). Multi-agent

systems to enable Industry 4.0. At - Automatisierungstechnik, 68(6), 445–458.

https://doi.org/10.1515/auto-2020-0004

Vyatkin, V. (2016). IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design,

Third Edition (V. Vyatkin, Ed.; Third Edit). International Society of Automation.

Wannagat, A. (2010). Development and evaluation of agent-based automation systems in order to

increase the flexibility and reliability of manufacturing plants [Dissertation]. PhD thesis, Faculty of

Mechanical Engineering, Technical University of Munich.

Weyns, D. (2012). Design Patterns for Multi-Agent Systems: A Systematic Literature Review.

Https://Homepage.Lnu.Se/Staff/Daweaa/SLR-MASpatterns.Htm#overview.

Wright, T. (2001). Fault Tolerance in the Server and Agent Based Network Management (SAAM) System.

http://hdl.handle.net/10945/1177

Zawisza, J. (2019). Entwicklung und Integration interdependenter Agentensysteme zur dezentralen

Produktionsplanung und -steuerung. http://dx.doi.org/10.25673/13728

Zimmermann, P., Axmann, E., Brandenbourger, B., Dorofeev, K., Mankowski, A., & Zanini, P. (2019).

Skill-based Engineering and Control on Field-Device-Level with OPC UA. 2019 24th IEEE

International Conference on Emerging Technologies and Factory Automation (ETFA), 1101–1108.

https://doi.org/10.1109/ETFA.2019.8869473

Zoitl, A., & Prahofer, H. (2013). Guidelines and Patterns for Building Hierarchical Automation Solutions

in the IEC 61499 Modeling Language. IEEE Transactions on Industrial Informatics, 9(4), 2387–

2396. https://doi.org/10.1109/TII.2012.2235449

A p p e n d i x A . I n c l u d e s m a i n c o n t r i b u t i o n p a p e r s (P u b . I - V) | 64

7. Appendix A. Includes main contribution papers (Pub.I-V)

This part consists of five included papers.

[Pub.I] Cruz S. LA, Vogel-Heuser B (2017) Comparison of agent oriented software

methodologies to apply in cyber physical production systems. In: 15th International

Conference on Industrial Informatics (INDIN). IEEE, Emden, Germany, pp 65–71.

https://doi.org/10.1109/INDIN.2017.8104748

[Pub.II] Cruz S. LA, Mayer F, Schütz D, Vogel-Heuser B (2018) Platform Independent

Multi-Agent System for Robust Networks of Production Systems. IFAC-

PapersOnLine 51:1261–1268. https://doi.org/10.1016/j.ifacol.2018.08.359

[Pub.III] Cruz S. LA, Ryashentseva D, Lüder A, Vogel-Heuser B (2019) Cyber-physical

production systems architecture based on multi-agent’s design pattern—comparison

of selected approaches mapping four agent patterns. Int J Adv Manuf Technol

105:4005–4034. https://doi.org/10.1007/s00170-019-03800-4

[Pub.IV] Cruz S. LA, Vogel-Heuser B (2022) A CPPS-architecture and workflow for

bringing agent-based technologies as a form of artificial intelligence into practice. at

- Automatisierungstechnik 70:580–598. https://doi.org/10.1515/auto-2022-0008

[Pub.V] Cruz S. LA, Vogel‐Heuser B (2022) Industrial Artificial Intelligence: A Predictive

Agent Concept for Industry 4.0. In: 20th International Conference on Industrial

Informatics (INDIN). pp 1–6. https://doi.org/10.1109/INDIN51773.2022.9976159

https://doi.org/10.1109/INDIN.2017.8104748
https://doi.org/10.1016/j.ifacol.2018.08.359
https://doi.org/10.1007/s00170-019-03800-4
https://doi.org/10.1515/auto-2022-0008
https://doi.org/10.1109/INDIN51773.2022.9976159

A p p e n d i x A . I n c l u d e s m a i n c o n t r i b u t i o n p a p e r s (P u b . I - V) | 65

Publication I (ReqsForCPPS)

Copyright © 2017 Institute of Electrical and Electronics Engineers (IEEE). Reprinted, with

permission, from

Luis Alberto Cruz Salazar and Birgit Vogel-Heuser, “Comparison of agent

oriented software methodologies to apply in cyber physical production systems.”

IEEE 15th International Conference on Industrial Informatics

“INDIN”

(2017), pp. 65-71.

https://doi.org/10.1109/INDIN.2017.8104748

IEEE note:

“In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of the Technical University of Munich’s products or

services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for

creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to

obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest Library,

or the Archives of Canada may supply single copies of the dissertation.”

Comparison of Agent Oriented Software Methodologies

to Apply in Cyber Physical Production Systems
Luis A. Cruz S., B. Vogel-Heuser

Institute of Automation and Information System

Technische Universität München

Garching near Munich, Germany

{luis.cruz; vogel-heuser}@tum.de

Abstract— Cyber-Physical Systems (CPS) could be the most

modern electronic development as yet, thanks to the integration

of information and communication technology (ICT). CPS has

associated with computer systems (cyber part) which are closely

related to the real-world processes (physical part). A CPS is

supported by the newest and foreseeable further advances of

computer science, data and communication equipment on the one

hand, and of manufacturing science and tools, on the other. On

the contrary, within the multiple applications, there are CPS for

manufacturing systems, called CPPS (Cyber-Physical Production

Systems). The fourth industrial revolution regularly

distinguished as I4.0 is based on CPPS. Considerable numbers of

authors agree that paradigms agent-based as Multi-Agent

Systems (MAS) converge or they make up some parts to apply

CPPS. In general, this paper emphasizes that there are different

important approaches in CPPS implementation which point

near, in particular to MAS. The objective of this article is to

provide general and specific concepts associated CPPS

implementation through agents, considering the current

multiples approaches and methods. A key result is that Agent-

Oriented Software Engineering (AOSE) methodologies have been

a highlight to comparisons leading benefits to apply in CPPS.

Keywords— Agent Oriented Software Engineering (AOSE),

Cyber-Physical Production Systems (CPPS), Multiagent Systems,

Industrial Automation, Industry 4.0.

I. INTRODUCTION

The flexibility and re-configurability along with the
robustness and operational efficiency of manufacturing systems
can be substantially improved by applying new and advanced
information and communications technology (ICT). Recent
trends in IT are regularly associated with of the Internet of
Things (IoT). High impact academic institutions, industries,
and governments all over the world develop plans and
strategies for their long-term evolution around those terms [1].

Under this agreement, Industry, 4.0 (I4.0) was initialized in
Germany and extended to Europe, aiming at the expansion of
the fourth industrial revolution. Leading prospect of I4.0 and
other related concepts are mass customization and flexibility of
production systems, based on Cyber-Physical Systems (CPS).

Substantial changes are required in the manufacturing
systems for I4.0, which should include the new technologies
such as reconfigurable machines and more intelligent robots
which are principally different in appearance and
functionalities; nevertheless, they follow a similar pattern
among them in their communication and interaction behavior.

Based on [2], the evolution of systems could include the
industrial type of IoT or IIoT/I2oT, as shown by from Fig. 1.
First, the demand to develop specific tasks and real-time
computing creates the Embedded Systems. Second, systems,
products, services are generated and evolved through the
application of interconnected networks and systems, or
communication from Machine to Machine (M2M).

Fig. 1. Evolution from Embedded Systems to the IIoT [2].

Different approaches can be modified or adapted to develop
CPS, in particular for the consideration of industrial automation
systems for manufacturing or CPPS (Cyber-Physical
Production Systems). The main contribution of this paper is to
classify existing agent-based approaches as a technological
basis to realize CPPS and to identify benefits of Agent
Oriented Software Engineering (AOSE) as a useful strategy for
CPPS development.

Therefore, first, this paper shows related applications of
currently CPPS projects and their approaches (Section II).
Second, the next section explains ten requirements relevant for
the apply Multi-Agent Systems (MAS) for CPPS (Section III).
Compendium and comparison of primary MAS methodologies
are given in the last section (Section IV). The paper is
concluded with a summary and outlook of future work.

II. IMPACT OF CYBER-PHYSICAL PRODUCTION SYSTEM IN

INDUSTRIAL AUTOMATION

Nowadays, a significant amount of manufacturing
information is already generated. There is a great need for a
new generation of systems to design and realize more than
networking, ICT, and knowledge being integrated into physical
things [3]. Hence, with the recent advent of Information
Technology (IT), it is possible to apply computers to store data,
analyze statistics, recover records, transmit signals, and
manipulate general information for the production
environment. IT evolution generated the Cyber-Physical
Systems terminology.

CPS concept consists of a virtual part (software) and a real
part (hardware). CPS have a trend towards more flexible
cooperative distributed systems, and they will introduce new
communication concepts [4]. The primary benefit of the CPS in
automation is smooth integration of software components at
runtime so that its operability, especially productivity for
manufacturing is not hindered as much as possible.

Thanks for primary integration benefit, there are a lot of
applications for CPS such as autonomous cars, robotic surgery,
smart buildings, smart grid, medical implant devices and smart
manufacturing and they are just some of the examples since
they are in permanent extension [2].

CPS for manufacturing systems has also generated Cyber-
Physical Production Systems concept. CPPS are intended to
develop the necessary contributions to obtain the Smart
Factory [1]. CPPS could be done more practical thanks to the
advance of newly available devices for the future of
automation through IIoT [5]. A reported landscape of works
with CPPS and their proposals are enlisted through Table I.

TABLE I. SELECTED CPPS PROJECTS PROPOSALS

Project Proposal
myJoghurt

[1], [6]
Implementing examples for CPPS through prototypical MAS-based evaluating and
using the production scenario from different German chairs

IDAPS [7] Perceiving as a microgrid is intelligent, having a built-in multi-agent functionality in
the context of Intelligent Distributed Autonomous Power Systems

ENIAC JU
E2SG [7]

Developing methods for detecting and controlling energy flows in the grid with
information transmitted over the grid itself

Socrades [7],
[8]

Exploring application of service orientation and web services using formalisms for
modeling, analysis, and execution for next generation of industrial automation

GRID4EU &
SGAM [7]

Testing innovative concepts and technologies in real-size environments, to
highlight and help remove barriers to the deployment of Smart Grids in Europe

IMC-AESOP
[7], [8]

Proposing a Service-Oriented Architecture (SOA) for very large-scale distributed
systems in batch and process control applications

Grace [9] Developing a modular, intelligent, and distributed control system that integrates
process and quality control using the MAS principles

IDEAS [7],
[10]

Enabling fast deployment of mechatronic modules based on eEAS paradigm,
advocating the use of process-oriented and associating interacting agents

Pabadis
Promise [7]

Distributing manufacturing execution systems and bringing flexibility features to
the control systems using software agents and plug-and participate technology

iSiKon [1] Increasing ding flexibility in heterogeneous material flow systems based on
intelligent software in self-configuring modules

SmartFactoryKL

[11]
Working on new concepts, standards, and solutions to form the basis for highly
flexible automation technology and manufacturer-independent Industrie 4.0 plant

HySociaTea
[12]

Establishing the basis for production environment of the future with a team of
humans closely collaborating with robots and virtual agents

It's OWL [13] Focusing is in the fields of self-optimization, human-machine interaction,
intelligent networking, energy efficiency and systems engineering

uPlant [14] Testing facility for methods from the areas of monitoring, modeling, control and
optimization of modern and future automation technologies

PhyNetLab
[15]

Developing of ultra-low power WSN for decentralized control of materials
handling facility

Selected projects from Table I are several large-scale R&D
initiatives, which were conducted over the years to research the
use of CPS in industrial applications. These projects have
demonstrated crucial challenges, such as safety, security, and
interoperability and have become a reality especially
manufacturing systems [7]. Furthermore, these projects have
also been covered by industrial partners as well as academic
experts. Therefore, the parallel development of academic and
industrial approach has been possible.

There are many different definitions for CPPS. One in [4]
says, “Cyber-Physical Production Systems (CPPS) are Cyber-
Physical Systems as applied in the domain of
manufacturing/production, in Germany the term Industrie 4.0
is used”. Other authors in [16] mentioned that “Cyber-physical
systems (CPS) are systems of collaborating computational
entities which are in intensive connection with the surrounding

physical world and its on-going processes, providing and using,
at the same time, data-accessing and data-processing services
available on the Internet.”

A preview summary could be that CPPS as the previous
generation for Intelligent Manufacturing Systems (IMS) and
future automation [2], [5]. Thus recent works show that the
most significant contributions of CPPS are the following [1],
[6], [7], [16]–[18]:

 Vertical and horizontal integration through value and smart

networks.

 Manufacturing devices are intelligent to acquiring

information from their environs and act autonomously

(smartness).

 Cooperation and collaboration will be some inherited skills

to use connections to the other system actors (including

human beings).

 Reaction properties towards internal and external changes

or failures (robustness).

 Optimal decision making for energy and resource

efficiency.

Along last decade, in the selected projects from Table I,
classified in Table II, they have been developed CPPS
demonstrators, Smart manufacturing approaches, Electric Grid
applications or Architectures installed in industrial
environments. The Table II also categorizes these selected
CPPS projects agreeing to ISA 95 standard levels. As surveyed
in [17], the ISA 95 levels could be classified according to
Device Level (L1); Supervisory Control And Data Acquisition
or SCADA Level (L2); Manufacturing Operations
Management or MOM Level (L4); and the Enterprise or ERP
Level (L4).

TABLE II. CATEGORIZATION OF SELECTED CPPS PROJECTS

III. APPROACHES REVIEW FOR CPPS

After the first classification of existing CPPS projects, in

the previous section, manufacturing concepts, CPPS

approaches, and its general characteristics are discussed in this

chapter.

A. Concepts of Architecture, Methodology, and Standard in

Manufacturing Approaches

For this paper, an approach is defined as a set of
architectures, methodologies and/or standards that follow a
common scheme. In the case of architectures, they are
considered only as structures of static modeling systems. Most
of these are frameworks patented by their authors and often do
not have the procedural information to carry out their
implementation (methodology). A methodology determines a
series of steps to be taken to improve productivity in
development and quality systems (generally for engineering
software). It also indicates how it will perform the process in a
systematic, predictable and repeatable way. Both an
architecture and the methodology can be endorsed by
international institutions which generate standards. Depending
on the nature of the organization, a standard in manufacturing
may be a private or open type.

In the ideal case, architecture can be promoted by its
methodology to carry out its implementation, and they both can
be standardized. However, in the reviewed authors' academic
literature (e.g. [7], [10], [17]), architectures, methodologies,
and standards are mutually exclusive characteristics. In fact,
not all architectures, nor methodologies in manufacturing
systems are supported by international standards.

In summary, a manufacturing approach is a collection of
architectures, methodologies, or standards that are part of a
similar paradigm but do not maintain the same structural,
dynamic, and procedural properties.

B. Manufacturing Approaches for CPPS

This section will give an overview of traditional

manufacturing approaches and their particularly comprised

points. After that, agents based schemes will be introduced

with their characteristics.

1) Traditional Hierarchical Approach

Most of the traditional manufacturing systems belong to
this classification. These are implemented using centralized
and staggered control techniques, and present good responses
regarding outputs due to their optimization capability. Such
methods typically follow a rigid multilevel structure, which
prevents them from reacting agilely to possible variations.

Hierarchical architectures are similar to that pyramid
Computer Integrated Manufacturing (CIM). In this, the
different levels cannot take the initiative; therefore, the system
is vulnerable to disturbances and autonomy, and its reactions to
disturbances are weak. This rigidity increases the costs of its
development produces a system problematic to maintain [5].

A significant example is a norm applied to batch processes,
called ISA-88, which corresponds to hierarchical schemes due
to its centralized nature. This standard does not present a
solution to the automation system, but it refers to an ordered
method for thinking, working and communicating. It has a
hierarchy characteristic between control levels of devices and
equipment. It also contains models and terminology that allow
analyzing the organization.

2) Heterarchical Approach based on Multiagent System

Heterarchical manufacturing techniques introduce a proper

response to the requirements of flexibility and agility. These

designs provide an excellent performance against changes and

can be continuously adapted to their environment. Systems are

fragmentations of small and completely autonomous units.

The independent components, called agents, are the main

part of this architecture, and they obtain cooperation skill

through negotiation protocols structures. Multi-agent system

(MAS) approach prohibits all types of hierarchy to give all the

power to the necessary modules. By eliminating hierarchical

relationships in the system, the modules cooperate as equals,

generating a flat architecture rather than assigning

subordination and supervisory relationships.

Gaia is a particular example tailored to the analysis and

design of MAS [8]. Gaia is a general methodology that

supports both levels of the individual agent structure and the

agent society in the MAS development process [9]. In this

methodology, MAS looks like a system constituted of a

conglomeration of autonomous interactive agents that exist in

an organized society in which each agent plays one or more

specific roles. Gaia structures MAS regarding a role model,

based on the roles that agents have to play within the

heterarchy and the interacting protocols between such

different characters. Functions include the following

attributes: responsibilities, permissions, activities, and

protocols.

3) Hybrid Approach Based on Hybrid Systems

Another main approach similar to MAS is a holonic (or
holon based) manufacturing system (HMS) by P. Leitão, H.
Van Brussel, and P. Valckenaers [8], which consists of
autonomous, intelligent, flexible, distributed, co-operative
holons. Multiagent systems (MAS) and holonic MAS (HMAS)
may comprise complex systems. Getting started with such
hybrid architectures can be challenging to implement CPS.

The design enables the product cases to drive their

production; consequently, coordination through holons can be

completely decentralized. In contrast to many decentralized

setups, the manufacturing based on holarchies (levels of

holons) predicts future behaviors and proactively uses actions

to prevent impending difficulties from occurring.

Hence, one of the most hopeful features of HMS is that

they symbolize a transition between fully hierarchical and

heterarchical systems. Review literature of HMS indicates that

the ADACOR (ADAptive holonic COntrol aRchitecture for

distributed manufacturing systems) is one of the most

remarkable for HMSs. ADACOR architecture identifies four

types of basic holons: Product holon (PH), Task holon (TH),

Operational holon (OH), and Supervisor holon (SH) [8]. It is a

holonic design that offers an adaptive manufacturing control

approach scales from a stationary state to a transient state, in

typical and unexpected conditions, respectively, combining

the benefits of hierarchical and heterarchical control structures

applying some adaptive elements.

Finally, a classification of the approaches is provided, to
identify levels of ISA 95 (y-axis Fig. 2) and on the Z-axis real
time requirements for important works in CPPS. Also, Fig. 2
shows the classification into hierarchical, heterarchical and

hybrid on the x-axis and arranges a selected Architectures,
Methodologies, and Standards, which could be applied in the
development of CPPS according to the proposed classification.

Fig.2. Classification of agent-oriented architectures, methodologies, and standards for CPPS approaches

IV. REQUIREMENTS FOR CPPS

Main requirements need to be satisfied before obtaining the

vision of integration and convergence of the IIoT, and in this

way, all its benefits can be achieved [4], [6]. In particular, it is

important to consider that even in highly developed countries

there are asymmetries on the degree of digitalization of

manufacturing, and even within the same organization, there

are areas which have been highlighted on automation from

others [7]. To overcome these challenges and to homogenize a

comparison, in this section, requirements for future

manufacturing architectures and CPPS necessities are derived.

A. CPPS Minimal Conditions (Requirement 1)

Some studies have been conducted to investigate the

conditions to discover the necessary technical characteristics

for CPPS, realizing a CPS architecture that could couple

various industrial production facilities [6]. Consequently,

several fundamental properties of a CPPS were recognized

that could be summarized into four main groups of following

elements:

1) Independence architecture model (R1.1)

Modules could be simple to integrate with open

architecture and platform independent implementation. From

the numerous varieties of automation system items that need

to be able to play in CPPS, network requirements concerning

the computing devices for which a necessary examination

arises. For example, Programmable Logic Controllers (PLC)

are frequently used in industry. Thus, these devices need to be

considered as one platform type to integrate into the agent-

based CPPS. Nevertheless, independence of architecture

means that CPPS is not limited to this class of devices.

However, expanding the different platform should always be

possible to maintain data transfer for more multiple kinds of

applications.

2) Open communication protocol for IIoT (R1.2)

This requirement is related to standardization and is

pointed out by the industry as a major distinctive for the

manufacturing acceptance of any technology (open

architecture). There could be easy and quick abilities to switch

between open protocols for IIoT (e.g. OPC-UA). Due to the

importance of the communication in this ubiquitous

networking era, many kinds of components, layers, and

protocols are required to have OPC-UA standard features in a

manufacturing control systems.

3) Levels of automation are enabled from ISA 95(R1.3)

All levels of automation are allowed (ISA 95) depending

on the scenario in which the CPPS is applied. Various parts of

a manufacturing system may have to be connected to the

network. It means, in a simple automation system, only overall

production equipment, and their respective information

element systems need to be linked to the CPPS network. Then,

to be applicable in several different scenarios, a CPPS should

not be limited to a particular hierarchy level of a

manufacturing system. For this, the connection of random

system components should be feasible independently of their

locations in a plant hierarchy or global context of ISA level.

4) Easy to adapt the system to future products (R1.4)

It will be necessary to have easy adaptation the system to

future products (Smart products). According to that

information and the knowledge regarding their techniques, the

production facilities can reason about circumstances for

executing the processes and, based on results, return the

product with either an offer or rejection.

Behind a pure syntactical correspondence of the received

operation report and the models that describe production

capabilities, the application of semantic technologies enables a

semantic checking and hence enhanced possibilities of uniting

the different entities of a CPPS. The communication necessary

for switching the request, offers or refusals, is realized by

information that is either published by global data inside of the

CPPS or sent directly to the other entities of the system in a

Machine to Machine (M2M) communication manner.

B. Intelligent Characteristics Attributes (Requirement 2)

1) Autonomy (R2.1)

Autonomy could be achieved by deducing behaviors of the

CPPS on agents from its experience, and processes. Agent-

based approaches support the success, called Plug and Work

production systems, where various elements are joined to a

complete production system without hand-operated

configuration efforts. The primary goal of these developments

is the creation of a basically soft agent platform that presents

guidelines and facilitates a fast, platform-neutral

implementation of the agent technology.

2) Communication and ontology (R2.2)

Communication is necessary to speak same languages and

common agent ontology. In general cases, agents may

communicate to achieve goals or due to selected event.

Considerations of inter-agent communication include which

protocol to use, how to define a domain –in terms an agent

from another field can understand– and how competent could

be the communication technique.

3) Cooperation (R2.3)

Cooperation is crucial to enable developing mutually

acceptable goals. Cooperative skills for CPPS offer necessary

elements and subsystems to connect an intelligent network.

CPPS networks will be based on the context within and across

all levels of production, from processes through machines up

to ERP systems.

Manufacturing control systems require autonomous entities

to be classified in hierarchical and heterarchical structures for

cooperation. Cooperation requirement is related to the kind of

behavior that the control unit at factory level should exhibit.

Manufacturing control based agent are regularly handling a

high number of duplicated events, which are known but

random. This flow of events should be processed in an

efficient manner with temporal constraints and agent

collaboration.

The administration of the agent events can consequently be

determined apriori by routines, while the beginning and

execution of these routines should be performed in a real-time

collaboration technique. The size of the event set and their

activity patterns increase over time.

4) Pro-activity (R2.4)

The agent is capable of achieving his assigned goal. It

means that MAS must have skills to take the initiative not

solely motivated by events, also adapt itself generating

"rational" actions to succeed goals. This suggests some degree

of Pro-activeness (e.g. it tracks its’ own agenda). For CPPS

researchers, this is a defining attribute of an agent.

C. Formalized Modeling Terms (Requirement 3)

Innovative approaches to abstractions (formalisms) and

architectures are necessary to enable control, communication

and computing integration. CPPS implementation implies the

rapid design and to be developed. They should admit the

combination and interoperability of heterogeneous systems

that formed the CPSs in a modular, practical and hardy

manner.

1) Using standard language (R3.1)

The models for CPPS require internationals standards

which are the base for the expansion of standard lines between

SCADA, MES and ERP levels systems. Formalism such as the

Unified Modeling Language (UML) helps to structure and

comprehend information from manufacturing architectures

through understandable models.

Other modeling languages have been proposed to model a

CPS in [18], called Systems Modeling Language (SysML).

SysML has been established in automation systems based on

UML to support Model-Based Systems Engineering (MBSE).

A related semantic is Automation Markup Language

(AutomationML), and it is one of the imminent upcoming

open standard series (IEC 62714) for the description of

production plants and their components. For Plug and Work

concept, AutomationML defines the contents, which is

exchanged between the parties and systems complex.

It requirement helps to model plants and plant components

with their skills, topology, interfaces, and relations to others,

geometry, dynamics and even logic and behavior.

2) Level of abstraction for overview (R3.2)

There could be a different degree of abstraction for

applying the model in CPPS. The conventional approaches

and methods for manufacturing system modeling, such as

CIM, are mainly based on a top-down scheme. The user’s

requirements and the general conceptual design constitute the

whole set of modeling limitations. With these approaches,

very rigid hierarchical architectures are built.

Other non-traditional designs were differentiated as being

bottom-up structure. Nonetheless, in line with the order of the

complexity of the distributed system made up by a network of

smart entities, IMS modeling requires several development

methods. It includes bottom-up and top-down integration,

depending on the level being formed. It is not mandatory to

define the whole set of constraints at the origin. A mixed

construction process allows the generation of reconfigurable

and scalable structures.

3) IDE coverage and complexity (R3.3)

The model must provide details to facilitate the

implementation in Integrated Development Environment

(IDE) and platforms. In traditional automation systems, there

are only a few languages including the languages defined in

IEC 61131-3. These languages were developed for IDE with a

focus on automation systems. Depending on a proper runtime,

tools could be often programmed in C or assembly language.

With the increase of mobile devices, such as smartphones or

tablet PCs playing an important part in CPPS, the range of

different languages and platforms gets even wider. Every

platform uses its runtime, and again even the various

programming languages.

For example, instance applications for Android

applications use a Java framework; hence, they have to be

written in Java language. Another example is Firefox OS,

which is in progress and it uses JavaScript language in

combination with Hyper Text Markup Language (HTML) for

mobile applications. could be required to find devices with

this IDE to apply CPPS there soon.

D. Systems and Human Integration Needs (Requirement 4)

1) Open systems to different systems domain (R4.1)

It is open to different kind of systems area (e.g. energy,

manufacturing, or process). Due to the broad diversity of

industrial process systems, the development custom or tailored

solutions has to be reduced. On the contrary, an architecture

for agent-based CPPS should apply to a variety of situations,

i.e. different kind of products and processes. For this reason,

the MAS architecture, protocols, and messages for CPPS

should be independent of a particular application.

2) Hybrid topologies (R4.2)

It is necessary to include hybrid topologies to enlarge and

downsize the production system because many different

architectures can be present in a CPS. It means that various

manufacturers may integrate several designs. A specialized

engineering or development tool is established for every

element in a CPS. The developers are used to their respective

devices and have their skill in its approach. It should be

possible to continue developing in the similar languages.

Because of this, devices with different runtime systems have

to be mixed into a CPS.

3) Social norms considering human factors (R4.3)

CPPS must provide social norms to execute MAS

considering human factors. Also, if all data and information

available concerning a CPPS and its products, production

facilities, and architecture is modeled and semantically

represented, the preparation of this knowledge for human

personnel or customers remains an essential issue. It must

include concepts that support the engineering of CPPS and

their system entities (e.g. intelligent products and production

facilities) as well as mechanisms to preprocess the relevant

process data during production for human operators, support

personnel and even for the customers of the produced goods.

This information will provide opportunities for individual

arrangements (e.g. age or user level distinguished visualization

and interaction mechanisms) as well as integrations with

regularly used especially mobile devices and humans [6].

V. AOSE STRENGTHS TO IMPLEMENT CPPS

MAS or Agent-based approaches signify a natural method

of realizing CPPS [6]–[8], [17]. The important concept of

MAS is Agent Oriented Software Engineering, and there are

several AOSE methodologies, which are at least ten years old

[5]. Indeed, the decision of an AOSE methodology depends on

the MAS demands, in this case, CPPS requirements expressed

in section III.

Considering requirements from part III, this article will

now examine the different methodologies of reported in the

dedicated literature of AOSE. The goal of this revision is to

determine to what extend these procedures into account the

requirements for implementing CPPS. Firstly, this section

presents a brief summary of the various methods (more details

can be found in [8], [9]). Finally, this chapter will make a

comparison discussion based on the requirements it has cited

in Chapter III.

A. Main Agent Oriented Software Engineering (AOSE)

Previously selected ones of AOSE for the CPS event-

driven multi-agent model, a comparison should be performed

based on the following evaluation criteria, grouped into four

main categories: CPPS Minimal Conditions, Intelligent

Characteristics Attributes, Systems and Human Integration

Needs. Table III presents the comparison between AOSE

approaches that could be used in a real CPPS implementation.

Table III. MAIN AOSE STRENGTHS ORDERING

B. Discussion

The analysis of Table III allows extracting some important

conclusions related to the adoption of AOSE to develop CPPS.

In the CPPS Minimal Attributes (R1), the area of interest

covered by the Independence architecture model requirement

(R1.1) is entirely covered. However, on the same item, there is

a little coverage of the ISA 95 Levels for vertical integration

automation (R1.3). It means that AOSE methodologies must

help to increment integration of separate system components

regardless of their location in a plant hierarchy (or global

context of ISA level).

The second general distinctive is that Intelligent

Characteristics requirement (R2) has coverage satisfactorily.

However, Pro-activity requirement (R2.4) is not available for

many AOSE yet. It is necessary to consider improving AOSE

technologies to have skills with more initiatives achieving

their assigned goal.

In the same line, there is good coverage in the Formalized

Modeling Terms requirement (R3) for AOSE methodologies.

Conversely, there is low Level of Abstraction for an Overview

element (R3.2); then, AOSE requires a different development

formal method, bottom-up and top-down depending on the

degree being formed.

Another observation is that Systems and Human

Integration Needs (R4) are the least covered because main

parts of this specification are not included yet. In fact, both

Hybrid Topologies (R4.2) and the Social Norms Considering

Human Factors needs (R4.3) are weak in the selected AOSE

methodologies. That can be given by the complexity of human

behavior and its corresponding integration into the

manufacturing system in a predictable way.

At last, an essential issue when reviewing the selected

AOSE methodologies for CPPS is that the majority group

show at least 50% coverage of the requirements (R1-R4), on

average. Nevertheless, there are some requirements (R1.3,

R3.2, and R4.3) that need urgent attention since they are not

considered by most of the AOSE methodologies.

In summary, it is important to note from Table III that we

can conclude the adoption of AOSE to apply CPPS combined

with other approaches with different architectures,

methodologies, and international standards could improve all

the coverage of requirements from section III.

VI. CONCLUSION AND ROADMAP

The comparison reported in this paper analyzes the

combined strength of approaches for implementing CPS in

manufacturing. As contained in the context, a CPPS could be

considered as a system of multiple agents with a precise

technique called MAS or hybrid HMAS. CPPS would have

better flexibility, adaptability, and proactivity due to agent-

based negotiation and holarchies. In the MAS approach,

essential issues to be applied on CPPS are AOSE

methodologies. Future work could address the main AOSE

benefits and problems for CPPS and extend this to evaluate

results through metrics. Metrics are crucial to obtain benefits

with clearness and to compare offers from different CPPS

providers. For example, flexibility is one of the upper goals of

CPPS, and it will require metrics to estimate reliable results.

References

[1] T. U. M. IAS, “Institute of Automation and Information Systems,”

2014. [Online]. Available: http://i40d.ais.mw.tum.de/. [Accessed: 24-
Mar-2017].

[2] K. J. Saumeth C., F. Pinilla T., A. Fernández A., D. J. Muñoz A., and

L. A. Cruz S., “Sistema Ciber-Físico de una CNC para la producción
de circuitos impresos,” in IV Congreso Internacional de Ingeniería

Mecatrónica y Automatización - CIIMA 2015, 2015, vol. 1a.edición,
pp. 154–155.

[3] T. Sanislav and L. Miclea, “An agent-oriented approach for cyber-

physical system with dependability features,” 2012 IEEE Int. Conf.
Autom. Qual. Testing, Robot. AQTR 2012 - Proc., pp. 356–361, 2012.

[4] M. Riedl, H. Zipper, M. Meier, and C. Diedrich, Automation meets

CPS, vol. 46, no. 7. IFAC, 2013.

[5] L. A. Cruz Salazar and O. A. Rojas Alvarado, “The future of

industrial automation and IEC 614993 standard,” in 2014 3rd

International Congress of Engineering Mechatronics and
Automation, CIIMA 2014 - Conference Proceedings, 2014, pp. 1–5.

[6] B. Vogel-Heuser, C. Diedrich, D. Pantförder, and P. Göhner,

“Coupling heterogeneous production systems by a multi-agent based
cyber-physical production system,” Proc. - 2014 12th IEEE Int. Conf.

Ind. Informatics, INDIN 2014, pp. 713–719, 2014.

[7] P. Leitão, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart Agents in Industrial Cyber-Physical Systems,”

Proc. IEEE, vol. 104, no. 5, pp. 1086–1101, 2016.

[8] J. Debenham and A. Prodan, Industrial Applications of Holonic and
Multi-Agent Systems, vol. 8062, no. August. 2013.

[9] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Jasss,

vol. 18, no. 1, pp. 1–17, 2015.

[10] L. Ribeiro, J. Barata, M. Onori, and J. Hoos, “Industrial Agents for

the Fast Deployment of Evolvable Assembly Systems,” Ind. Agents

Emerg. Appl. Softw. Agents Ind., pp. 301–322, 2015.

[11] D. Gorecky, S. Weyer, A. Hennecke, and D. Zühlke, “Design and

Instantiation of a Modular System Architecture for Smart Factories,”

IFAC-PapersOnLine, vol. 49, no. 31, pp. 79–84, 2016.

[12] T. Schwartz et al., “Hybrid teams of humans, robots, and virtual

agents in a production setting,” Proc. - 12th Int. Conf. Intell. Environ.

IE 2016, pp. 234–237, 2016.

[13] R. Dumitrescu, C. Jürgenhake, and J. Gausemeier, “Intelligent

Technical Systems,” pp. 24–27, 2012.

[14] D.- Karlsruhe, “Department of Measurement and Control Universit ¨
at Karlsruhe,” Measurement And Control, 2009. [Online]. Available:

http://www.uni-kassel.de/maschinenbau/institute/isac/mrt.html.

[Accessed: 15-Mar-2017].

[15] A. K. R. Venkatapathy, M. Roidl, A. Riesner, J. Emmerich, and M.

ten Hompel, “PhyNetLab: Architecture design of ultra-low power

Wireless Sensor Network testbed,” IEEE 16th Int. Symp. A World
Wireless, Mob. Multimed. Networks, pp. 1–6, 2015.

[16] L. Monostori et al., “Cyber-physical systems in manufacturing,”

CIRP Ann. - Manuf. Technol., vol. 65, no. 2, pp. 621–641, 2016.

[17] Y. Lu, K. Morris, and S. Frechette, Current Standards Landscape for

Smart Manufacturing Systems. 2016.

[18] P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T.
Tomiyama, and S. Achiche, “Design, modelling, simulation and

integration of cyber physical systems: Methods and applications,”

Comput. Ind., vol. 82, pp. 273–289, 2016.

A p p e n d i x A . I n c l u d e s m a i n c o n t r i b u t i o n p a p e r s (P u b . I - V) | 73

Publication II (MASplatform)

Copyright © 2018 International Federation of Automatic Control (IFAC). Reproduced with

permission from Luis Alberto Cruz Salazar, Felix Mayer, Daniel Schütz and Birgit Vogel-

Heuser, “Platform Independent Multi-Agent System for Robust Networks of Production

Systems.”

IFAC-PapersOnLine 51/11 (2018), pp. 1261-1268.

https://doi.org/10.1016/j.ifacol.2018.08.359

IFAC PapersOnLine 51-11 (2018) 1261–1268

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2018.08.359

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2018.08.359 2405-8963

Platform Independent Multi-Agent System

for Robust Networks of Production Systems

Luis Alberto Cruz Salazar*, Felix Mayer**, Daniel Schütz**, Birgit Vogel-Heuser*

*Automation and Information Systems (AIS), Technical University

of Munich (TUM) (e-mail: luis.cruz@tum.de)

**GEFASOFT GmbH, Munich, Germany.

Abstract: The production of customized products requires a flexible production process. Cyber-Physical

Production Systems (CPPS) are currently seen as one possibility to achieve this goal, since flexibility for

the production processes can be achieved by enabling cross-company collaboration. However, to fully

implement CPPS for heterogeneous production systems an application and hardware platform

independent, robust, and distributed software solution is required. This paper proposes a novel design and

implementation for a Multi-Agent System (MAS), that can be used to create application independent

CPPS. To support a variety of hardware platforms, the MAS was designed as a lightweight

implementation in the programming language ANSI C. The proposed concept was evaluated by different

use cases and experiments, which, in a first step, evaluated the efficiency of design and implementation.

Keywords: Automation, Cyber-Physical Systems (CPS), Multi-Agent Systems, Production control.

1. INTRODUCTION

Individually made products help companies to set themselves

apart from competitors and satisfy customers' need for

individuality. Consequently, small lot sizes and

customization are current trends in production. Both trends

demand high flexibility and adaptability of production

systems. The coupling of different locally distributed

production systems enables, e.g., scenarios for collaborative

manufacturing of customized products and exploration of

new possible processes, which emerge from the

collaboration. The connection of multiple plants' sensors can,

e.g., provide opportunities for a cross production system

diagnosis, i.e., the identification under which conditions a

certain type of sensor is most likely to exhibit failures. One

approach to dynamically connect different systems in order to

realize different use cases is the utilization of Service-

Oriented Architectures (SOA)(Jammes and Smit, 2005). In

SOA, every function of a given system is exposed by the

system itself as a remotely callable service. The application

of software agents and Multi-Agent Systems (MAS) (Leitão,

Marik and Vrba, 2012) is another solution for a network of

dynamically connected remote systems. MAS can increase

flexibility and fault tolerance while retaining simplicity and a

higher degree of autonomy for the participating entities.

This paper proposes a generic MAS platform, whose agents

can be deployed on a great variety of different computational

devices, in order to fulfil different use cases inside a network

of locally distributed production facilities. The architecture of

this platform is derived from the already existing standard of

the Foundation for Physical Agents (FIPA) for MAS. In

contrast to other platforms like the Java Agent DEvelopment

Environment (JADE) (Bellifemine, Poggi and Rimassa,

2001), the proposed platform is intended to be lightweight

and able to connect different heterogeneous production

systems as well as their components, e.g., small sensors, in

order to realize a network of Cyber-Physical Production

System (CPPS) for arbitrary use cases. CPPS constitute a

specialization of the concept of Cyber-Physical Systems

(CPS), which are often defined as “integrations of

computation with physical processes” (Lee, 2008). Inside a

CPPS network, cyber representations (C), e.g., agents, of

controlled physical entities or systems (P), e.g., a plants or

sensors, in a production environment (P) connect to other

related entities to form a bigger system (S) and realize

different industrial related use cases.

The distributed intelligence and decision finding inside MAS

renders the management of uncertainties and dynamics inside

a CPPS network, as the complexity of a central node would

be exceedingly high otherwise. Another challenge is to

support the implementation on devices with merely limited

computing resources. This requires a suitable and flexible

architecture for software agents as well as resource-friendly

communication protocols and messages. The approach

recognizes five requirements for the realization of a CPPS

(sec. 2). Based on these requirements, the paper proposes an

approach separated into a concept for a logical architecture, a

concept for the software architecture, and a concept for

protocols and messages (sec. 4). These three concepts already

partially satisfy a subset of the imposed requirements by

design. The fulfilment of the other requirements is evaluated

using an operating agent-based CPPS network (sec. 5). The

paper concludes with a summary and an outlook.

2. REQUIREMENTS OF AN AGENT-BASED CPPS

This section derives the requirements for an agent-based

network of locally distributed CPPS before related work is

analysed regarding these requirements in sec. 3.

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 1287

Platform Independent Multi-Agent System

for Robust Networks of Production Systems

Luis Alberto Cruz Salazar*, Felix Mayer**, Daniel Schütz**, Birgit Vogel-Heuser*

*Automation and Information Systems (AIS), Technical University

of Munich (TUM) (e-mail: luis.cruz@tum.de)

**GEFASOFT GmbH, Munich, Germany.

Abstract: The production of customized products requires a flexible production process. Cyber-Physical

Production Systems (CPPS) are currently seen as one possibility to achieve this goal, since flexibility for

the production processes can be achieved by enabling cross-company collaboration. However, to fully

implement CPPS for heterogeneous production systems an application and hardware platform

independent, robust, and distributed software solution is required. This paper proposes a novel design and

implementation for a Multi-Agent System (MAS), that can be used to create application independent

CPPS. To support a variety of hardware platforms, the MAS was designed as a lightweight

implementation in the programming language ANSI C. The proposed concept was evaluated by different

use cases and experiments, which, in a first step, evaluated the efficiency of design and implementation.

Keywords: Automation, Cyber-Physical Systems (CPS), Multi-Agent Systems, Production control.

1. INTRODUCTION

Individually made products help companies to set themselves

apart from competitors and satisfy customers' need for

individuality. Consequently, small lot sizes and

customization are current trends in production. Both trends

demand high flexibility and adaptability of production

systems. The coupling of different locally distributed

production systems enables, e.g., scenarios for collaborative

manufacturing of customized products and exploration of

new possible processes, which emerge from the

collaboration. The connection of multiple plants' sensors can,

e.g., provide opportunities for a cross production system

diagnosis, i.e., the identification under which conditions a

certain type of sensor is most likely to exhibit failures. One

approach to dynamically connect different systems in order to

realize different use cases is the utilization of Service-

Oriented Architectures (SOA)(Jammes and Smit, 2005). In

SOA, every function of a given system is exposed by the

system itself as a remotely callable service. The application

of software agents and Multi-Agent Systems (MAS) (Leitão,

Marik and Vrba, 2012) is another solution for a network of

dynamically connected remote systems. MAS can increase

flexibility and fault tolerance while retaining simplicity and a

higher degree of autonomy for the participating entities.

This paper proposes a generic MAS platform, whose agents

can be deployed on a great variety of different computational

devices, in order to fulfil different use cases inside a network

of locally distributed production facilities. The architecture of

this platform is derived from the already existing standard of

the Foundation for Physical Agents (FIPA) for MAS. In

contrast to other platforms like the Java Agent DEvelopment

Environment (JADE) (Bellifemine, Poggi and Rimassa,

2001), the proposed platform is intended to be lightweight

and able to connect different heterogeneous production

systems as well as their components, e.g., small sensors, in

order to realize a network of Cyber-Physical Production

System (CPPS) for arbitrary use cases. CPPS constitute a

specialization of the concept of Cyber-Physical Systems

(CPS), which are often defined as “integrations of

computation with physical processes” (Lee, 2008). Inside a

CPPS network, cyber representations (C), e.g., agents, of

controlled physical entities or systems (P), e.g., a plants or

sensors, in a production environment (P) connect to other

related entities to form a bigger system (S) and realize

different industrial related use cases.

The distributed intelligence and decision finding inside MAS

renders the management of uncertainties and dynamics inside

a CPPS network, as the complexity of a central node would

be exceedingly high otherwise. Another challenge is to

support the implementation on devices with merely limited

computing resources. This requires a suitable and flexible

architecture for software agents as well as resource-friendly

communication protocols and messages. The approach

recognizes five requirements for the realization of a CPPS

(sec. 2). Based on these requirements, the paper proposes an

approach separated into a concept for a logical architecture, a

concept for the software architecture, and a concept for

protocols and messages (sec. 4). These three concepts already

partially satisfy a subset of the imposed requirements by

design. The fulfilment of the other requirements is evaluated

using an operating agent-based CPPS network (sec. 5). The

paper concludes with a summary and an outlook.

2. REQUIREMENTS OF AN AGENT-BASED CPPS

This section derives the requirements for an agent-based

network of locally distributed CPPS before related work is

analysed regarding these requirements in sec. 3.

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 1287

Platform Independent Multi-Agent System

for Robust Networks of Production Systems

Luis Alberto Cruz Salazar*, Felix Mayer**, Daniel Schütz**, Birgit Vogel-Heuser*

*Automation and Information Systems (AIS), Technical University

of Munich (TUM) (e-mail: luis.cruz@tum.de)

**GEFASOFT GmbH, Munich, Germany.

Abstract: The production of customized products requires a flexible production process. Cyber-Physical

Production Systems (CPPS) are currently seen as one possibility to achieve this goal, since flexibility for

the production processes can be achieved by enabling cross-company collaboration. However, to fully

implement CPPS for heterogeneous production systems an application and hardware platform

independent, robust, and distributed software solution is required. This paper proposes a novel design and

implementation for a Multi-Agent System (MAS), that can be used to create application independent

CPPS. To support a variety of hardware platforms, the MAS was designed as a lightweight

implementation in the programming language ANSI C. The proposed concept was evaluated by different

use cases and experiments, which, in a first step, evaluated the efficiency of design and implementation.

Keywords: Automation, Cyber-Physical Systems (CPS), Multi-Agent Systems, Production control.

1. INTRODUCTION

Individually made products help companies to set themselves

apart from competitors and satisfy customers' need for

individuality. Consequently, small lot sizes and

customization are current trends in production. Both trends

demand high flexibility and adaptability of production

systems. The coupling of different locally distributed

production systems enables, e.g., scenarios for collaborative

manufacturing of customized products and exploration of

new possible processes, which emerge from the

collaboration. The connection of multiple plants' sensors can,

e.g., provide opportunities for a cross production system

diagnosis, i.e., the identification under which conditions a

certain type of sensor is most likely to exhibit failures. One

approach to dynamically connect different systems in order to

realize different use cases is the utilization of Service-

Oriented Architectures (SOA)(Jammes and Smit, 2005). In

SOA, every function of a given system is exposed by the

system itself as a remotely callable service. The application

of software agents and Multi-Agent Systems (MAS) (Leitão,

Marik and Vrba, 2012) is another solution for a network of

dynamically connected remote systems. MAS can increase

flexibility and fault tolerance while retaining simplicity and a

higher degree of autonomy for the participating entities.

This paper proposes a generic MAS platform, whose agents

can be deployed on a great variety of different computational

devices, in order to fulfil different use cases inside a network

of locally distributed production facilities. The architecture of

this platform is derived from the already existing standard of

the Foundation for Physical Agents (FIPA) for MAS. In

contrast to other platforms like the Java Agent DEvelopment

Environment (JADE) (Bellifemine, Poggi and Rimassa,

2001), the proposed platform is intended to be lightweight

and able to connect different heterogeneous production

systems as well as their components, e.g., small sensors, in

order to realize a network of Cyber-Physical Production

System (CPPS) for arbitrary use cases. CPPS constitute a

specialization of the concept of Cyber-Physical Systems

(CPS), which are often defined as “integrations of

computation with physical processes” (Lee, 2008). Inside a

CPPS network, cyber representations (C), e.g., agents, of

controlled physical entities or systems (P), e.g., a plants or

sensors, in a production environment (P) connect to other

related entities to form a bigger system (S) and realize

different industrial related use cases.

The distributed intelligence and decision finding inside MAS

renders the management of uncertainties and dynamics inside

a CPPS network, as the complexity of a central node would

be exceedingly high otherwise. Another challenge is to

support the implementation on devices with merely limited

computing resources. This requires a suitable and flexible

architecture for software agents as well as resource-friendly

communication protocols and messages. The approach

recognizes five requirements for the realization of a CPPS

(sec. 2). Based on these requirements, the paper proposes an

approach separated into a concept for a logical architecture, a

concept for the software architecture, and a concept for

protocols and messages (sec. 4). These three concepts already

partially satisfy a subset of the imposed requirements by

design. The fulfilment of the other requirements is evaluated

using an operating agent-based CPPS network (sec. 5). The

paper concludes with a summary and an outlook.

2. REQUIREMENTS OF AN AGENT-BASED CPPS

This section derives the requirements for an agent-based

network of locally distributed CPPS before related work is

analysed regarding these requirements in sec. 3.

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 1287

Platform Independent Multi-Agent System

for Robust Networks of Production Systems

Luis Alberto Cruz Salazar*, Felix Mayer**, Daniel Schütz**, Birgit Vogel-Heuser*

*Automation and Information Systems (AIS), Technical University

of Munich (TUM) (e-mail: luis.cruz@tum.de)

**GEFASOFT GmbH, Munich, Germany.

Abstract: The production of customized products requires a flexible production process. Cyber-Physical

Production Systems (CPPS) are currently seen as one possibility to achieve this goal, since flexibility for

the production processes can be achieved by enabling cross-company collaboration. However, to fully

implement CPPS for heterogeneous production systems an application and hardware platform

independent, robust, and distributed software solution is required. This paper proposes a novel design and

implementation for a Multi-Agent System (MAS), that can be used to create application independent

CPPS. To support a variety of hardware platforms, the MAS was designed as a lightweight

implementation in the programming language ANSI C. The proposed concept was evaluated by different

use cases and experiments, which, in a first step, evaluated the efficiency of design and implementation.

Keywords: Automation, Cyber-Physical Systems (CPS), Multi-Agent Systems, Production control.

1. INTRODUCTION

Individually made products help companies to set themselves

apart from competitors and satisfy customers' need for

individuality. Consequently, small lot sizes and

customization are current trends in production. Both trends

demand high flexibility and adaptability of production

systems. The coupling of different locally distributed

production systems enables, e.g., scenarios for collaborative

manufacturing of customized products and exploration of

new possible processes, which emerge from the

collaboration. The connection of multiple plants' sensors can,

e.g., provide opportunities for a cross production system

diagnosis, i.e., the identification under which conditions a

certain type of sensor is most likely to exhibit failures. One

approach to dynamically connect different systems in order to

realize different use cases is the utilization of Service-

Oriented Architectures (SOA)(Jammes and Smit, 2005). In

SOA, every function of a given system is exposed by the

system itself as a remotely callable service. The application

of software agents and Multi-Agent Systems (MAS) (Leitão,

Marik and Vrba, 2012) is another solution for a network of

dynamically connected remote systems. MAS can increase

flexibility and fault tolerance while retaining simplicity and a

higher degree of autonomy for the participating entities.

This paper proposes a generic MAS platform, whose agents

can be deployed on a great variety of different computational

devices, in order to fulfil different use cases inside a network

of locally distributed production facilities. The architecture of

this platform is derived from the already existing standard of

the Foundation for Physical Agents (FIPA) for MAS. In

contrast to other platforms like the Java Agent DEvelopment

Environment (JADE) (Bellifemine, Poggi and Rimassa,

2001), the proposed platform is intended to be lightweight

and able to connect different heterogeneous production

systems as well as their components, e.g., small sensors, in

order to realize a network of Cyber-Physical Production

System (CPPS) for arbitrary use cases. CPPS constitute a

specialization of the concept of Cyber-Physical Systems

(CPS), which are often defined as “integrations of

computation with physical processes” (Lee, 2008). Inside a

CPPS network, cyber representations (C), e.g., agents, of

controlled physical entities or systems (P), e.g., a plants or

sensors, in a production environment (P) connect to other

related entities to form a bigger system (S) and realize

different industrial related use cases.

The distributed intelligence and decision finding inside MAS

renders the management of uncertainties and dynamics inside

a CPPS network, as the complexity of a central node would

be exceedingly high otherwise. Another challenge is to

support the implementation on devices with merely limited

computing resources. This requires a suitable and flexible

architecture for software agents as well as resource-friendly

communication protocols and messages. The approach

recognizes five requirements for the realization of a CPPS

(sec. 2). Based on these requirements, the paper proposes an

approach separated into a concept for a logical architecture, a

concept for the software architecture, and a concept for

protocols and messages (sec. 4). These three concepts already

partially satisfy a subset of the imposed requirements by

design. The fulfilment of the other requirements is evaluated

using an operating agent-based CPPS network (sec. 5). The

paper concludes with a summary and an outlook.

2. REQUIREMENTS OF AN AGENT-BASED CPPS

This section derives the requirements for an agent-based

network of locally distributed CPPS before related work is

analysed regarding these requirements in sec. 3.

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 1287

Platform Independent Multi-Agent System

for Robust Networks of Production Systems

Luis Alberto Cruz Salazar*, Felix Mayer**, Daniel Schütz**, Birgit Vogel-Heuser*

*Automation and Information Systems (AIS), Technical University

of Munich (TUM) (e-mail: luis.cruz@tum.de)

**GEFASOFT GmbH, Munich, Germany.

Abstract: The production of customized products requires a flexible production process. Cyber-Physical

Production Systems (CPPS) are currently seen as one possibility to achieve this goal, since flexibility for

the production processes can be achieved by enabling cross-company collaboration. However, to fully

implement CPPS for heterogeneous production systems an application and hardware platform

independent, robust, and distributed software solution is required. This paper proposes a novel design and

implementation for a Multi-Agent System (MAS), that can be used to create application independent

CPPS. To support a variety of hardware platforms, the MAS was designed as a lightweight

implementation in the programming language ANSI C. The proposed concept was evaluated by different

use cases and experiments, which, in a first step, evaluated the efficiency of design and implementation.

Keywords: Automation, Cyber-Physical Systems (CPS), Multi-Agent Systems, Production control.

1. INTRODUCTION

Individually made products help companies to set themselves

apart from competitors and satisfy customers' need for

individuality. Consequently, small lot sizes and

customization are current trends in production. Both trends

demand high flexibility and adaptability of production

systems. The coupling of different locally distributed

production systems enables, e.g., scenarios for collaborative

manufacturing of customized products and exploration of

new possible processes, which emerge from the

collaboration. The connection of multiple plants' sensors can,

e.g., provide opportunities for a cross production system

diagnosis, i.e., the identification under which conditions a

certain type of sensor is most likely to exhibit failures. One

approach to dynamically connect different systems in order to

realize different use cases is the utilization of Service-

Oriented Architectures (SOA)(Jammes and Smit, 2005). In

SOA, every function of a given system is exposed by the

system itself as a remotely callable service. The application

of software agents and Multi-Agent Systems (MAS) (Leitão,

Marik and Vrba, 2012) is another solution for a network of

dynamically connected remote systems. MAS can increase

flexibility and fault tolerance while retaining simplicity and a

higher degree of autonomy for the participating entities.

This paper proposes a generic MAS platform, whose agents

can be deployed on a great variety of different computational

devices, in order to fulfil different use cases inside a network

of locally distributed production facilities. The architecture of

this platform is derived from the already existing standard of

the Foundation for Physical Agents (FIPA) for MAS. In

contrast to other platforms like the Java Agent DEvelopment

Environment (JADE) (Bellifemine, Poggi and Rimassa,

2001), the proposed platform is intended to be lightweight

and able to connect different heterogeneous production

systems as well as their components, e.g., small sensors, in

order to realize a network of Cyber-Physical Production

System (CPPS) for arbitrary use cases. CPPS constitute a

specialization of the concept of Cyber-Physical Systems

(CPS), which are often defined as “integrations of

computation with physical processes” (Lee, 2008). Inside a

CPPS network, cyber representations (C), e.g., agents, of

controlled physical entities or systems (P), e.g., a plants or

sensors, in a production environment (P) connect to other

related entities to form a bigger system (S) and realize

different industrial related use cases.

The distributed intelligence and decision finding inside MAS

renders the management of uncertainties and dynamics inside

a CPPS network, as the complexity of a central node would

be exceedingly high otherwise. Another challenge is to

support the implementation on devices with merely limited

computing resources. This requires a suitable and flexible

architecture for software agents as well as resource-friendly

communication protocols and messages. The approach

recognizes five requirements for the realization of a CPPS

(sec. 2). Based on these requirements, the paper proposes an

approach separated into a concept for a logical architecture, a

concept for the software architecture, and a concept for

protocols and messages (sec. 4). These three concepts already

partially satisfy a subset of the imposed requirements by

design. The fulfilment of the other requirements is evaluated

using an operating agent-based CPPS network (sec. 5). The

paper concludes with a summary and an outlook.

2. REQUIREMENTS OF AN AGENT-BASED CPPS

This section derives the requirements for an agent-based

network of locally distributed CPPS before related work is

analysed regarding these requirements in sec. 3.

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 1287

1262 Luis Alberto Cruz Salazar et al. / IFAC PapersOnLine 51-11 (2018) 1261–1268

(R1) Application independence: Due to the broad variety of

industrial production process classes, the development of

multiple custom-tailored solutions has to be considered not

feasible. To the contrary, an architecture for agent-based

CPPS networks should be applicable for a variety of

scenarios, i.e., different production processes. Consequently,

the basic MAS architecture, protocols and messages, should

be independent of a specific application.

(R2) Level independence: Depending on the scenario, in

which the CPPS network is applied, different parts of an

automated production system may have to be connected to

the network. For example, in a simple production scenario

only overall production facilities and their respective

automation / IT systems need to be connected to the CPPS

network. However, for a diagnosis scenario, that considers

multiple plants inside a CPPS network, also field-level

devices may be relevant. Consequently, an agent-based CPPS

should not be limited to a specific hierarchy level of a

production automation system.

(R3) Platform independent implementation: From the great

variety of automation systems' components, that need to be

able to participate inside a CPPS network (cp. R2),

restrictions and requirements regarding the computing

devices arise. For the automation of overall production plants

Programmable Logic Controllers (PLC) are predominantly

used in industry. Consequently, these platforms need to be

considered as one important device type. However, due to the

required level-independence of the approach (cp. R2), it must

not be limited to this class of devices. Especially for small

sensors often cost efficient and not very powerful hardware is

used, in order to reduce the overall cost of the components.

Consequently, basic software and data for the MAS need to

be small and lightweight, i.e., resource-friendly concerning

permanent and non-permanent memory, CPU, and

bandwidth.

(R4) Robustness against errors: Typical problems found in

large networks include connection loss, unsteady bandwidth,

and load problems. During runtime, unforeseen problems and

changes may occur, e.g., failure of machinery, new urgent

tasks or maintenance. These may lead to unavailability of the

corresponding system. The local problem may also affect the

whole network, e.g., by delaying production. Thus, intelligent

software and intelligent communication, e.g., broadcast as

well as point-to-point messages with dynamic routing, should

be used. In some cases, e.g., permanent unavailability of

production systems or connected components, the CPPS has

to reconfigure itself to ensure overall availability and

continuation of the production. The same holds true for

orderly joining and leaving systems at runtime. In all cases,

the MAS must react to these dynamic conditions in an

appropriate way, i.e., it must be robust against (unforeseen)

reconfiguration requests, especially against reconfiguration of

the network, i.e., participants joining and leaving.

(R5) Decentralization: Not only the CPPS as a whole, but

also subsets have to deal with temporary network connection

loss. This means, the CPPS may split in smaller parts for a

limited amount of time prior to re-connection. During this

time, participating remote systems and system components

must not be incapable of action. Thus, a central management

node with all required knowledge as well as implemented a

priori calculations is not suitable. Instead, critical information

should be distributed between multiple nodes, so that access

is ensured as far as possible and decisions can be made

dynamically.

3. RELATED WORKS

To persist in today's global markets, information must flow

between all layers of a company and even between

collaborating companies. This requires new approaches to

communication and production. Some work is done at

comparing the HTTP protocol to Modbus (Jestratjew and

Kwiecien, 2013) at PLC level. HTTP is considerable lower,

mainly due to slow string processing on PLCs. A common

way to access the factory floor is using gateways. In (Sauter

and Lobashov, 2011) an overview of suitable high-level

protocols to access automation data via gateways is

presented. One possible implication is a reconfigurable

sensor interface (Tao et al., 2014). This work also presents

new design method, but only focuses on the perception layer

of the IoT architecture (R2). A work concerning groups and

grouping of devices is also described in (Vicaire et al., 2012).

The work uses a central middleware (R5), programmed in

JAVA (R3). An approach for agent-based gateway

implementations is presented in (Faul, Jazdi and Weyrich,

2016)but not evaluated regarding its resource efficiency and,

thus, its platform independence (R3). In the context of

Industry 4.0 recently a number of architectures have been

presented based on the paradigms SOA (Moghaddam, Silva

and Nof, 2015), MAS (Alexakos and Kalogeras, 2015;

Hoffmann, Meisen and Jeschke, 2017), Internet of Things

(IoT) (Sauer, Hausten and Hofstedt, 2016), or CPS in general

(Bagheri et al., 2015), which did not investigate a specific

implementation's resource efficiency in detail (R2, R3). This

also holds for the works presented in (Quintanilla et al.,

2016), which propose a holonic architecture for CPPS,

although they evaluate the need for communication (i.e.,

number of messages exchanged) in a simplified production

scenario. For simulation real-time models, the author in

(Aksyonov et al., 2015) describes the integration problem on

a basic class of models further extended by the intelligent

distributed agents (R5). The main model consists of agent

resources conversion process with support for MAS

modelling, in combination with discrete-event modelling and

the ontology of the system.

In (Girbea et al., 2014) it is focused on designing a SOA

additionally capable of real-time operation. This is achieved

using a priori algorithms and is thus not suitable for

dynamically changing environments (R4). Other approaches

use SOA for diagnosis (Calvo et al., 2012) and the concept

presents a possible architecture and diagnosis algorithms

without implementation. A different possible implementation

language for SOA is IEC 61499, e.g., proposed in (Barata,

Cândido and Feijao, 2008) in combination with a message

broker. A runtime based on a formal mapping between SOA

and IEC 61499 is proposed in (Delamer and Lastra, 2006). In

contrast to other programming languages, IEC 61499 only

runs on special hardware or with dedicated runtimes (R3).

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1288

 Luis Alberto Cruz Salazar et al. / IFAC PapersOnLine 51-11 (2018) 1261–1268 1263

However, this excludes, e.g., small 8-bit micro-controllers.

An approach to enable reconfiguration is to use a (central)

middleware to orchestrate a SOA. One such approach is the

iLand project (Calvo et al., 2012; García-Valls, Rodríguez-

López and Fernández-Villar, 2013). A-priori algorithms are

used to analyse the system and to calculate possibilities and

strategies in case of failure and other reconfiguration triggers.

Nevertheless, a priori calculations cannot be done in global

networks with unknown behaviour (R4). Additionally,

reconfiguration and behavioural intelligence is accumulated

inside a central node running on powerful hardware (R2, R3,

R5). Other work often utilizes the Holonic Manufacturing

System (HMS) paradigm and corresponding reference

architectures like PROSA (Brussel et al., 1998). Although in

this and other works applying the HMS paradigm, e.g.,

ADACOR (Leitão and Restivo, 2006), central entities do

exist, the decentralization of the architectures decision

making can be adjusted by altering the controlling entities'

autonomy.

MAS are increasingly investigated in order to decentralize

automation, enhance flexibility of production plants and

realize advanced functionality (Brennan, 2007; Leitão, Marik

and Vrba, 2012). Enabling reconfiguration within a

production plants is the most common usage for software

agents and can be used e.g., to handle device failures,

structural changes or dynamic production planning (Lüder et

al., 2005). Also agents for the industry have been applied to

achieve other crucial properties of CPPS such as complexity

management, intelligence, modularity, robustness, adaptation,

and responsiveness (Leitão and Karnouskos, 2015; Cruz S.

and Vogel-Heuser, 2017). Thanks to these benefits,

increasing adoption of MAS in manufacturing have been

demonstrated via important industry initiatives and projects

results with agents in smart production, smart electric grids,

and scheduling and logistics optimization (R1, R2, R3)

(Leitão et al., 2016). There are resource-efficient agent

systems available (Theiss et al., 2008) that, however, do not

support PLCs and other small devices (R3). Enabling

reconfiguration on automation hardware, e.g., in context of a

transportation system, is also possible (Vallée et al., 2011). In

this work, a MAS is used to reconfigure a transportation

system during runtime, in case of failure of one of the

conveyor belts. This agent system is also implemented in the

programming language IEC 61499, so that additional

software or specialized hardware for running the code is

needed, thus excluding micro-controllers (R3). Other MAS

implemented in IEC 61499 are also aimed at modular

logistics systems (Yan and Vyatkin, 2013).

Other research on new approaches by using IEC 61499 as an

emerging standard for industrial automation is presented in

(Vyatkin, 2011). Other work targets the use of MAS in the

field of intelligent energy systems or smart grids (Vrba et al.,

2014). Apart from manufacturing industry, MAS are also

used in process industry, e.g., to control critical processes

(Metzger and Polakow, 2011). Another concept and

implementation for reconfiguration is presented in (Barata,

Cândido and Feijao, 2008). This research focuses on

challenges of the shop floor, especially addition and removal

of manufacturing components (modules) during runtime.

Communication is based on JADE, using JAVA and FIPA

ACL Messages. Thus, the platform independence is limited

(no small devices are supported) (R3). The IDEAS project

(Onori et al., 2012) uses specifically designed and produced

boards to bring agent technology to lower automation levels.

These boards are designed to support JAVA (JADE). Thus,

to deploy this agent system, specifically designed hardware

must be used small microcontrollers or other existing

automation hardware are not supported (R1, R2, R3).

4. CONCEPT OF AN AGENT-BASED CPPS

For the development of the proposed architecture, different

aspects have been taken into account. The aspect logical

architecture describes the relations between the agents and

how the MAS is set up. The aspect software architecture

describes measures taken in order to allow a wide variety of

hardware platforms, i.e., ensure platform independency. The

aspect MAS protocols and messages describes the design of

the data exchange between the connected agents. These

aspects play an essential role in realizing the overall features

of the proposed concept (cp. section 2).

4.1 MAS Logical Architecture

Derived from the already existing standard of the Foundation

for Physical Agents (FIPA) for MAS, the architecture shown

in Fig. 1 was developed for arbitrary use cases. All agents of

the CPPS are connected via a common network, e.g., the

global internet. The communication and collaboration is

realized by protocols and messages described in sec. 4.3. To

support a variety of different use cases (cp. R1), an agent of

the CPPS can have one of two characteristics: each agent

represents either a physical system (Fig. 1; 1, 2) or an

organizational entity (Fig. 1; 3), e.g., an agent fulfilling

diagnosis services (diagnosis agent) or introducing

production requests into the system (product agent). In the

first case, the agent manages the access of the CPPS network

to the production system (and vice versa) while, due to an

agent's inveterate autonomy, it can dynamically regulate this

access in accordance with the policies of the company which

owns the production system. Furthermore, these agents can

dynamically reconfigure their production system, e.g., in a

manufacturing-specific scenario, in order to realize a load

balancing of production orders inside the CPPS network.

Fig. 1. Logical Architecture of the MAS.

A CPPS network may consist of a varying number of this

type of agents. In order to support the easy migration of

existing arbitrary systems to network-enabled systems (cp.

R1, R2), an agent may be a dedicated part of the automation

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1289

(R1) Application independence: Due to the broad variety of

industrial production process classes, the development of

multiple custom-tailored solutions has to be considered not

feasible. To the contrary, an architecture for agent-based

CPPS networks should be applicable for a variety of

scenarios, i.e., different production processes. Consequently,

the basic MAS architecture, protocols and messages, should

be independent of a specific application.

(R2) Level independence: Depending on the scenario, in

which the CPPS network is applied, different parts of an

automated production system may have to be connected to

the network. For example, in a simple production scenario

only overall production facilities and their respective

automation / IT systems need to be connected to the CPPS

network. However, for a diagnosis scenario, that considers

multiple plants inside a CPPS network, also field-level

devices may be relevant. Consequently, an agent-based CPPS

should not be limited to a specific hierarchy level of a

production automation system.

(R3) Platform independent implementation: From the great

variety of automation systems' components, that need to be

able to participate inside a CPPS network (cp. R2),

restrictions and requirements regarding the computing

devices arise. For the automation of overall production plants

Programmable Logic Controllers (PLC) are predominantly

used in industry. Consequently, these platforms need to be

considered as one important device type. However, due to the

required level-independence of the approach (cp. R2), it must

not be limited to this class of devices. Especially for small

sensors often cost efficient and not very powerful hardware is

used, in order to reduce the overall cost of the components.

Consequently, basic software and data for the MAS need to

be small and lightweight, i.e., resource-friendly concerning

permanent and non-permanent memory, CPU, and

bandwidth.

(R4) Robustness against errors: Typical problems found in

large networks include connection loss, unsteady bandwidth,

and load problems. During runtime, unforeseen problems and

changes may occur, e.g., failure of machinery, new urgent

tasks or maintenance. These may lead to unavailability of the

corresponding system. The local problem may also affect the

whole network, e.g., by delaying production. Thus, intelligent

software and intelligent communication, e.g., broadcast as

well as point-to-point messages with dynamic routing, should

be used. In some cases, e.g., permanent unavailability of

production systems or connected components, the CPPS has

to reconfigure itself to ensure overall availability and

continuation of the production. The same holds true for

orderly joining and leaving systems at runtime. In all cases,

the MAS must react to these dynamic conditions in an

appropriate way, i.e., it must be robust against (unforeseen)

reconfiguration requests, especially against reconfiguration of

the network, i.e., participants joining and leaving.

(R5) Decentralization: Not only the CPPS as a whole, but

also subsets have to deal with temporary network connection

loss. This means, the CPPS may split in smaller parts for a

limited amount of time prior to re-connection. During this

time, participating remote systems and system components

must not be incapable of action. Thus, a central management

node with all required knowledge as well as implemented a

priori calculations is not suitable. Instead, critical information

should be distributed between multiple nodes, so that access

is ensured as far as possible and decisions can be made

dynamically.

3. RELATED WORKS

To persist in today's global markets, information must flow

between all layers of a company and even between

collaborating companies. This requires new approaches to

communication and production. Some work is done at

comparing the HTTP protocol to Modbus (Jestratjew and

Kwiecien, 2013) at PLC level. HTTP is considerable lower,

mainly due to slow string processing on PLCs. A common

way to access the factory floor is using gateways. In (Sauter

and Lobashov, 2011) an overview of suitable high-level

protocols to access automation data via gateways is

presented. One possible implication is a reconfigurable

sensor interface (Tao et al., 2014). This work also presents

new design method, but only focuses on the perception layer

of the IoT architecture (R2). A work concerning groups and

grouping of devices is also described in (Vicaire et al., 2012).

The work uses a central middleware (R5), programmed in

JAVA (R3). An approach for agent-based gateway

implementations is presented in (Faul, Jazdi and Weyrich,

2016)but not evaluated regarding its resource efficiency and,

thus, its platform independence (R3). In the context of

Industry 4.0 recently a number of architectures have been

presented based on the paradigms SOA (Moghaddam, Silva

and Nof, 2015), MAS (Alexakos and Kalogeras, 2015;

Hoffmann, Meisen and Jeschke, 2017), Internet of Things

(IoT) (Sauer, Hausten and Hofstedt, 2016), or CPS in general

(Bagheri et al., 2015), which did not investigate a specific

implementation's resource efficiency in detail (R2, R3). This

also holds for the works presented in (Quintanilla et al.,

2016), which propose a holonic architecture for CPPS,

although they evaluate the need for communication (i.e.,

number of messages exchanged) in a simplified production

scenario. For simulation real-time models, the author in

(Aksyonov et al., 2015) describes the integration problem on

a basic class of models further extended by the intelligent

distributed agents (R5). The main model consists of agent

resources conversion process with support for MAS

modelling, in combination with discrete-event modelling and

the ontology of the system.

In (Girbea et al., 2014) it is focused on designing a SOA

additionally capable of real-time operation. This is achieved

using a priori algorithms and is thus not suitable for

dynamically changing environments (R4). Other approaches

use SOA for diagnosis (Calvo et al., 2012) and the concept

presents a possible architecture and diagnosis algorithms

without implementation. A different possible implementation

language for SOA is IEC 61499, e.g., proposed in (Barata,

Cândido and Feijao, 2008) in combination with a message

broker. A runtime based on a formal mapping between SOA

and IEC 61499 is proposed in (Delamer and Lastra, 2006). In

contrast to other programming languages, IEC 61499 only

runs on special hardware or with dedicated runtimes (R3).

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1288

1264 Luis Alberto Cruz Salazar et al. / IFAC PapersOnLine 51-11 (2018) 1261–1268

software (Fig. 1; 1) as well as separate software on separate

hardware (Fig. 1; 2). It may represent a single device (Fig. 1;

4) as well as several devices (Fig. 1; 5). Application, level

and platform independence (cp. R1, R2, R3) as well as

migration are further increased by not setting a default for the

communication with attached physical systems (Fig. 1; 6).

Possible implementations are e.g., field bus protocols, OPC

or proprietary protocols. To support as many different

hardware devices as possible, the code that manages

communication with physical systems is released in separate

communication modules (cp. R3). This also allows future

implementation of further use cases (cp. R1). The operation

and reconfiguration (cp. R4) of the CPPS is based on a FIPA

compliant platform (Bellifemine, Poggi and Rimassa, 2001),

which requires three basic organizational entities, e.g., for

discovery purposes: an agent management system (AMS), a

message transport system (MTS) and a directory facilitator

(DF). Robustness against errors (cp. R4) can be enhanced by

using direct connections between agents. The AMS allows

the bidirectional mapping between IP-addresses and agents'

names. This enables direct communication between agents

(Fig. 1; 7) by e.g., requesting the IP-address of an agent

(identified by its name) and afterwards using this information

to establish a direct connection that does not depend on other

entities. Use-Case independence (cp. R1) can be enhanced by

keeping protocols and messages flexible. The MTS is a

directory of protocols and messages in a format based on

eXtensible Markup Language (XML), which are required to

participate in a use case. It can be extended and adapted to

specific use cases. The DF is a service that stores agents'

abilities, i.e., the production capabilities of a system. All

agents register themselves with these organizational entities

(Fig 1; 8) and are afterwards detectable by other agents by

name, ability or address. This also enables new agents or

systems to access to the CPPS network. In order to enable

high availability and independence from single nodes (cp.

R5) as well as easy handling of joining and leaving nodes

(cp. R4), the organizational entities also periodically check

all agents for availability to keep the directories up to date

(cp. R4). Similar to internet name services, the directories are

distributed in a cloud (Fig. 1; 9) among multiple nodes. This

also minimizes the time required for search requests because

of the proximity of the directory relative to the agent.

4.2 MAS Software Architecture

The presented logical architecture serves as a specification

for the MAS software architecture. From this and under

consideration of the requirements stated in sec. 2, the

software architecture for the agent-based CPPS shown in Fig.

2 was developed. To achieve application, level and platform

independence (cp. R1, R2, R3), several measures were taken.

For the organizational entities, i.e., the AMS, MTS, efficient

implementations in the programming language ANSI C were

developed according to the specified logical architecture.

Therefore, the implementations comprise declarations for the

particular directories as well as lookup functions. The

implementation of the basic agent is provided as an ANSI C

library, upon which an application specific executable

implementation can be built. All basic functionality is

exposed to the final executable in the form of multiple

interfaces that can be adjusted to the user's specific

applications and needs. By separating basic, i.e., the pure

administration of an entity inside the CPPS, and use case

specific behaviours, e.g., scheduling production orders to the

shop floor, the implementation can be used for a multitude of

use cases (cp. R1). To be able to distinguish between basic

functionality and use case specific functions, an appropriate

interface was developed. In detail, the agent interface and

class is responsible for overall intelligent behaviour, situation

awareness and runtime adaption of the single agent itself. The

implementation in the executable (AgentImpl), i.e., all agents

shown in Fig. 1, may be used by the developer of a specific

application in order to realize application specific properties

and functions, including all intelligence required to handle its

application specific tasks (cp. R1). For example, in a

manufacturing-specific scenario the AgentImpl would contain

the implementation to dispatch, monitor and reconfigure

running manufacturing tasks to the production units of a

plant. In contrast, the generic interface in the library (Agent)

defines all basic operations needed to participate in the MAS,

e.g., joining, registration and heartbeat monitoring. A

separate class (AgentConfig) handles initial configuration of

the agent, as well as its internal dynamic reconfiguration

during runtime (R4) inside the MAS network, e.g., when

communications need to be changed.

Fig. 2. Software Architecture of the MAS.

In order to represent the different abstraction layers of a

communication, i.e., hardware, protocol and message, a

hierarchical approach, from general to use case specific, was

selected. The interface class (IOInterface) and its realization

is responsible for handling connections to other agents and

the directory services, e.g., the DF (cp. Fig. 1, 7, 8). It

abstracts specific behaviours by handling communication

hardware and low-level protocol specific tasks, functions and

behaviours, e.g., creating and closing connections. Each

agent can have multiple communication interfaces

simultaneously, in order to support many different hardware

platforms (cp. R3). The actual realization inside the

executable implements the behaviour for a specific hardware

interface, e.g., TCP/IP (IOIfaceTCP). Information relevant

for an established connection to another agent is saved in a

dedicated class (IOConnection) one instance per connection.

The parser class (IOParser) handles the raw data stream

received through an interface and extracts messages out of it,

e.g., by handling packet fragmentation and finding message

boundaries. These messages can be basic messages for

managing the overall agent system, as well as use case

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1290

 Luis Alberto Cruz Salazar et al. / IFAC PapersOnLine 51-11 (2018) 1261–1268 1265

specific messages. A specific class inside the executable

(IOParserX) handles basic and use case specific protocols,

e.g., downloaded from the MTS. The handler class

(IOHandler) manages the incoming use case specific

messages and reacts according to the application specific

procedures, provided in the executable (IOHandlerY). In

summary, raw data is received via the IOInterface and split

into agent messages by the IOParser. Afterwards the

messages are processed by the IOHandler, i.e., appropriate

actions are executed.

To support different hardware platforms, the implementation

was developed to be platform independent (cp. R3), i.e., the

programming language was chosen appropriately. Widely

used languages for platform independent programming

include C and JAVA. Although there are JAVA runtime

environments (JRE) available for small devices, there is none

small enough to fit a small sensor's 8-bit micro-controller

together with the agent itself. Consequently, platforms based

on JAVA are not suitable. Much the same applies to C++.

Commonly used industrial automation devices as PLCs and

soft-PLCs predominantly support the programming

languages standardized by the IEC 61131-3. In addition, with

their programming environments a great variety of PLC

vendors provides support for programming PLCs in C.

Therefore, because of the broad support that also includes a

variety of PLCs, C was chosen as the programming language

to implement the agent-based CPPS network.

Implementations of different application specific systems can

be generated for a multitude of hardware platforms using the

corresponding ANSI C compilers. Therefore, specific

characteristics of the hardware platform, e.g., big-little endian

problem, are abstracted by the compiler. However, by using

ANSI C as the implementation language of the agents for the

CPPS network, the interfaces and classes are all implemented

as plain Cstructs. Inheritance is implemented similar to the

Linux kernel, i.e., realizations derive from these structs using

function pointers and the parent as first member.

4.3 MAS Protocol and Messages

The global internet as an omnipresent communication

medium suggests itself as a suitable solution for

communication between multiple production facilities. By

using the internet, the network layer of the OSI model is

fixed (IP). For the transport layer there are two possibilities,

namely TCP and UDP. In contrast to UDP, TCP is a

connection-oriented protocol that offers high reliability,

packet ordering and flow control. When using UDP-based

communication error checking, packet ordering etc. needs to

be done by the application, thus stressing CPU and memory

and increasing application size. Therefore, TCP was chosen

as the standard transport layer protocol. On top of TCP, the

protocols used on a higher level (process level) have to be

specified. This includes protocols for the application

independent agent system management, as well as protocols

for the application. Following the structure of the internet

protocol suite, the application specific protocols are

embedded in the platform protocol as the platform protocol is

embedded in TCP (transport layer). Likewise, also the

message format and message encoding have to be specified.

As the framework only provides basic functionality there is

also only a basic set of management functions used to

identify, search and connect agents. In a production scenario

these functions can be used either for (plant) agents to

register production capabilities, which their facilities offer or

for (product) agents to broadcast inquiries for offered

capabilities.

Because of the open software design of the agent system,

neither the message format nor protocols are static.

Nowadays, with the advent of the IoT, many systems use

HTTP as a primary protocol. Likewise, MQTT is popular for

small devices, but uses a publish/subscribe architecture that

needs a central node, just as OPC UA uses a client-server

architecture. To avoid the costs required for processing HTTP

headers (cp. R3) and still not needing a message broker (cp.

R5) or increasing size, a very small protocol was developed

that enables the agents to exchange arbitrary data. It uses a

fixed binary header, containing all needed information. This

includes e.g., size, so that also binary data is possible,

sequence number or conversation id and the actual data. The

header can easily be processed because of the fixed size and

positions. Since for the communication messages based on

XML are used, which are parsed by the corresponding

function of the receiving agent (cp. sec. 4.2), specific

characteristics of the hardware platforms, e.g., the big-little

endian problem mentioned earlier, are abstracted from by the

developed communication mechanism. Subsuming this

section, by the proposed logical architecture and software

architecture as well as the protocols and messages, a generic

MAS platform for networked CPPS was developed

considering multiple requirements. Due to the requirements

regarding platform and level independence, ANSI C was used

as the programming language for the platform.

5. USE CASES AND EVALUATION

Some of the requirements stated in sec. 2 are already partly

achieved by the design of the proposed architecture: The

suitability for different use cases (R1) is ensured by both the

logical and the software architecture. Level independence

(R2) and platform independence (R3) are partly achieved by

using a modular library and ANSI C. Using TCP/IP as

underlying communication protocol solves parts of the error

handling and recovery (R4) but also enables connections to

systems using other implementations. By distributing

organizational elements in the cloud, the MAS is

decentralized (R5). However, resource-friendliness (R3) and

the reconfiguration in case of joining/leaving agents (R4)

were further investigated by quantitative experiments. As a

first assessment of the platforms suitability, these

experiments measure the pure footprint of the platform.

5.1 Application Examples of the Agent-Based CPPS

To investigate the required application independency of the

approach (cp. R1), the proposed generic architecture for an

agent-based CPPS was applied in two different specific

application examples. At first, the agent-based CPPS was

used in an academic demonstrator that produces mass-

customized products, i.e., yoghurt.

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1291

software (Fig. 1; 1) as well as separate software on separate

hardware (Fig. 1; 2). It may represent a single device (Fig. 1;

4) as well as several devices (Fig. 1; 5). Application, level

and platform independence (cp. R1, R2, R3) as well as

migration are further increased by not setting a default for the

communication with attached physical systems (Fig. 1; 6).

Possible implementations are e.g., field bus protocols, OPC

or proprietary protocols. To support as many different

hardware devices as possible, the code that manages

communication with physical systems is released in separate

communication modules (cp. R3). This also allows future

implementation of further use cases (cp. R1). The operation

and reconfiguration (cp. R4) of the CPPS is based on a FIPA

compliant platform (Bellifemine, Poggi and Rimassa, 2001),

which requires three basic organizational entities, e.g., for

discovery purposes: an agent management system (AMS), a

message transport system (MTS) and a directory facilitator

(DF). Robustness against errors (cp. R4) can be enhanced by

using direct connections between agents. The AMS allows

the bidirectional mapping between IP-addresses and agents'

names. This enables direct communication between agents

(Fig. 1; 7) by e.g., requesting the IP-address of an agent

(identified by its name) and afterwards using this information

to establish a direct connection that does not depend on other

entities. Use-Case independence (cp. R1) can be enhanced by

keeping protocols and messages flexible. The MTS is a

directory of protocols and messages in a format based on

eXtensible Markup Language (XML), which are required to

participate in a use case. It can be extended and adapted to

specific use cases. The DF is a service that stores agents'

abilities, i.e., the production capabilities of a system. All

agents register themselves with these organizational entities

(Fig 1; 8) and are afterwards detectable by other agents by

name, ability or address. This also enables new agents or

systems to access to the CPPS network. In order to enable

high availability and independence from single nodes (cp.

R5) as well as easy handling of joining and leaving nodes

(cp. R4), the organizational entities also periodically check

all agents for availability to keep the directories up to date

(cp. R4). Similar to internet name services, the directories are

distributed in a cloud (Fig. 1; 9) among multiple nodes. This

also minimizes the time required for search requests because

of the proximity of the directory relative to the agent.

4.2 MAS Software Architecture

The presented logical architecture serves as a specification

for the MAS software architecture. From this and under

consideration of the requirements stated in sec. 2, the

software architecture for the agent-based CPPS shown in Fig.

2 was developed. To achieve application, level and platform

independence (cp. R1, R2, R3), several measures were taken.

For the organizational entities, i.e., the AMS, MTS, efficient

implementations in the programming language ANSI C were

developed according to the specified logical architecture.

Therefore, the implementations comprise declarations for the

particular directories as well as lookup functions. The

implementation of the basic agent is provided as an ANSI C

library, upon which an application specific executable

implementation can be built. All basic functionality is

exposed to the final executable in the form of multiple

interfaces that can be adjusted to the user's specific

applications and needs. By separating basic, i.e., the pure

administration of an entity inside the CPPS, and use case

specific behaviours, e.g., scheduling production orders to the

shop floor, the implementation can be used for a multitude of

use cases (cp. R1). To be able to distinguish between basic

functionality and use case specific functions, an appropriate

interface was developed. In detail, the agent interface and

class is responsible for overall intelligent behaviour, situation

awareness and runtime adaption of the single agent itself. The

implementation in the executable (AgentImpl), i.e., all agents

shown in Fig. 1, may be used by the developer of a specific

application in order to realize application specific properties

and functions, including all intelligence required to handle its

application specific tasks (cp. R1). For example, in a

manufacturing-specific scenario the AgentImpl would contain

the implementation to dispatch, monitor and reconfigure

running manufacturing tasks to the production units of a

plant. In contrast, the generic interface in the library (Agent)

defines all basic operations needed to participate in the MAS,

e.g., joining, registration and heartbeat monitoring. A

separate class (AgentConfig) handles initial configuration of

the agent, as well as its internal dynamic reconfiguration

during runtime (R4) inside the MAS network, e.g., when

communications need to be changed.

Fig. 2. Software Architecture of the MAS.

In order to represent the different abstraction layers of a

communication, i.e., hardware, protocol and message, a

hierarchical approach, from general to use case specific, was

selected. The interface class (IOInterface) and its realization

is responsible for handling connections to other agents and

the directory services, e.g., the DF (cp. Fig. 1, 7, 8). It

abstracts specific behaviours by handling communication

hardware and low-level protocol specific tasks, functions and

behaviours, e.g., creating and closing connections. Each

agent can have multiple communication interfaces

simultaneously, in order to support many different hardware

platforms (cp. R3). The actual realization inside the

executable implements the behaviour for a specific hardware

interface, e.g., TCP/IP (IOIfaceTCP). Information relevant

for an established connection to another agent is saved in a

dedicated class (IOConnection) one instance per connection.

The parser class (IOParser) handles the raw data stream

received through an interface and extracts messages out of it,

e.g., by handling packet fragmentation and finding message

boundaries. These messages can be basic messages for

managing the overall agent system, as well as use case

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1290

1266 Luis Alberto Cruz Salazar et al. / IFAC PapersOnLine 51-11 (2018) 1261–1268

The production facilities were represented by a varying

number (with minimum of three) operational laboratory

production plants of different German universities (Vogel-

Heuser et al., 2014). All the facilities were administered

resembled a network of locally distributed production sites,

connected by the internet, which offer the execution of sub-

processes, e.g., the processing of raw materials (yoghurt),

adding different flavours, or finishing or packaging the

yoghurt. Therefore, with the first implementation, facilities

for (batch) processes as well as discrete manufacturing were

controlled and linked by the MAS inside the CPPS network.

The second application example additionally considered

logistics between production facilities executed by mobile

robots. Here, the agent-based CPPS implemented a

distributed production environment on a trade show,

including multiple companies in different exhibition halls.

The manufacturing steps, available at the different facilities

contributed to the production of a bottle opener, which could

be customized by trade show visitors. The possibilities for an

application specific implementation (AgentImpl, cp. sec. 4.2)

of the developed generic platform were used by developers of

the different participating companies to implement on their

own hardware the functionality that was necessary to manage

the execution of production steps at the different facilities in

the exhibition halls. Thereby, different hardware platforms,

e.g., PC and PLC, were used. Due to the agent platform's

open protocol that builds on TCP/IP connections to other

implementations, e.g., based on C++, were enabled for this

application scenario. The transport of the give-away articles

between the different companies and exhibition halls was

done using small partly autonomous mobile robots that were

also represented by agents and were automatically embedded

in the overall process. In both use cases, the production

facilities were represented by autonomous agents that are

connected to the local hardware and accept new orders after

registering at the directory services. Since the customers'

orders for products need to be decomposed into multiple

different manufacturing tasks, to which the facility agents can

respond, a coordinator agent was implemented for this

purpose. The mobile robots are also represented by agents,

thus dynamically responding to transport requests. The agents

are running on diverse hardware platforms, e.g., PC and PLC,

under different operating systems, i.e., Windows and Linux.

Each use case has a dedicated set of messages for

communication, based on the lightweight protocol described

earlier. New orders are entered by the user via a web

interface and are afterwards distributed inside the production

network.

The two use cases show, that the MAS is able to physically

and logically connect multiple plants (high level) as well as

smaller devices via internet. The connected agents run on a

multitude of different hardware while the basic functions are

the same with all use cases. It is not necessary to provide a

central node for management or decision making purposes

besides the organizational entities, which mainly enable the

communication between the autonomous entities, and the

coordinator agent, which decomposes product orders into

manufacturing tasks. Consequently, although a high level of

autonomy may be implemented for the controlling entities,

compared to other works, the proposed architecture does not

fully support the implementation of heterarchic, e.g., (Rey et

al., 2013), or isoarchic, e.g., (Pujo, Broissin and Ounnar,

2009), architectures yet. Since the specific implementations

for the second application example, i.e., the industrial

production scenario on the trade show, were developed by the

companies themselves, no comprehensive experiments for a

quantitative evaluation with these scenarios could be

conducted. Consequently, as first step in this direction,

qualitative experiments using only the basic platform are

presented in the following.

5.2 Experiments for Quantitative Evaluation

To further examine the fulfilment of the requirements stated

earlier, different measurements were conducted in a

laboratory experiment. This includes the resource

requirements of an agent (cp. R3) and the suitability of the

approach for large, constantly changing networks (cp. R3,

R4). This was measured by obtaining timings during platform

runtime. A network consisting of agents running on different

platforms was set up. The different platforms included the

ARM platform as well as x86 (32bit and 64bit). The first

point that was investigated was the resource usage of a single

instance of an agent of the proposed approach (cp. Fig. 2,

AgentImpl) without application specific implementation

parts, i.e., the pure footprint of the agent platform. The

specific implementation of an agent's main() function is

strongly related to its role inside an agent system the

reconfiguration capabilities that have been implemented, and

its developer's skills. Consequently, in order to evaluate the

suitability of the proposed MAS platform, in a first step,

these parts of an agent's implementation were not considered.

Table 1 shows the resource usage (footprint) on an ARM

platform, running Arch Linux (3.6.11-12-ARCH+, GCC

4.9.2). The agent, together with the agent library, needs

approximately 23k bytes of permanent memory, e.g., flash

memory. In comparison, the Matrikon OPC UA Embedded

Server needs about 240k bytes of flash memory on an ARM

architecture, OPC UA server implementation were proposed

that require 116k bytes (Iatrou and Urbas, 2016), and a

typical MQTT implementation needs about 44k bytes.

Consequently, the resources needed for MAS platforms based

on standard issue OPC UA stacks, e.g., (Hoffmann, Meisen

and Jeschke, 2017), can be considered higher, although such

approaches are promising in terms of already available

technology. During execution, the heap usage of an agent is

about 3k bytes of memory per connection. This is due to the

fixed buffer sizes (2*1600 bytes) currently used and can thus

be drastically reduced by using dynamic memory allocation

for receiving and sending data. On a Windows platform, the

values differ: Disk usage is 52k bytes for the library and 10k

bytes for the agent. Values for the AMES framework (disk

size is not available due to unavailability of the AMES

platform), JADE (Bellifemine, Poggi and Rimassa, 2001) and

AKKA (Gupta, 2012) are given as additional references.

Both JADE and AKKA are very powerful JAVA libraries,

offering a wide variety of functionality, covering many

industrial and scientific aspects, thus further increasing size

and memory consumption. The comparison done shows the

suitability of the proposed MAS for resource-constrained

small devices. The values for AMES were taken from (Theiss

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1292

 Luis Alberto Cruz Salazar et al. / IFAC PapersOnLine 51-11 (2018) 1261–1268 1267

et al., 2008), whereas the values for JADE and AKKA were

measured on an Intel Core2 Quad with 8GB RAM, running

Windows 7 64bit. All values highly depend on the actual

platform, due to different instruction sets, library volume and

optimization possibilities. Especially the memory footprint

differs and can be further enhanced by increasing response

time. The table shows, that the executable's size is about 24k

(on ARM). Much of this size originates from the C library

that is used to e.g., create an entry point for the operating

system. On Linux, about half of the executable's size amounts

to these operating system functions. However, as a small

micro-controller typically, does not have an operating system,

this can be discarded in this case (R3).

Table 1. Resource Usage

Response time and typical internet characteristics, e.g.,

connection loss and joining/leaving nodes, were investigated

as part of the experiments as well. A varying number of

agents, i.e., connections to the network, joining and leaving at

random, were used. The agents ran on different hardware

platforms, communicating with each other. For the

measurements only a single directory (non-distributed)

service was used as a central node, running on an Intel Core 2

Duo 6600, with 4GB of RAM, with Windows 7 (64bit). Fig.

3 (left) shows the average time needed to process an order

request inside the CPPS, i.e., until all agents have bid and the

winner is selected from a varying number of agents, ranging

from 1 to 500. The agents are using a simple text-based

protocol with a typical message size of about 40 bytes. Such

an exemplary agent uses a dynamically linked list to find a

suitable offer for a request. On smaller platforms (ARM), due

to less processing power, it is more likely that network

packets drop or calculations take longer. On powerful

hardware (x86) the increase for the operation is not as

significant. The graph also shows that although agents join

and leave the network and the overall time increases, the

CPPS always reconfigures itself and a suitable solution for

production distributing is found (R4). Otherwise the timeout

for the order request would be reached at three seconds. Fig.

3 (middle) shows the average workload of the directory

service, expressed in time needed to handle a single agent

(connection) in relation to the overall number of agents

connecting to the network ranging from 1 to 800. The

workload rises continuously with the number of agents

present in the network from approximately 0.3ms at one

connection to approximately 2.5ms at 800 connections. The

rise results from additional lookups and interruptions as Fig.

3 (right) shows that the time needed to process the raw data

packets without handling the action involved can be assumed

nearly as constant for a number of agents ranging from 1 to

500. This also shows that the reconfiguration of the CPPS, in

case of joining and leaving nodes, does not affect the time

needed to process single requests. Thus, the CPPS stays

operational (R4). A comparison with OPC UA shows that

typical servers are limited to about 100 connections. A

comparison with MQTT message brokers shows, that

performance heavily depends on the implementation.

Subsuming, the results of the evaluation experiments imply

that the generic MAS platform can be considered suitable for

the imposed requirements (cp. section 2). The evaluation of

the resource usage (cp. Table 1) shows that the agent

implementation is small enough to be deployed on micro-

controllers and other small hardware (R2, R3). Also, the

response and reconfiguration time of the CPPS is not affected

by joining or leaving nodes but only by the total number of

connected agents (cp. Fig. 3, left and middle) and, thus, the

CPPS is flexible enough to handle dynamic environments

(R4). Even with a high number of agents implemented on

less powerful hardware, a production order can be processed

in less than 2.5 seconds by the basic agent platform (cp. Fig.

3, left), a time that can be considered appropriate for

production order dispatching.

6. SUMMARY AND OUTLOOK

Small lot sizes are a common trend in the production industry

due to the demand for customized products. Likewise,

dynamic global markets and new technologies pose new

challenges for companies. Using a CPPS can help with

attaining a higher level of flexibility and adaptability,

especially when such a system allows for migration of

existing facilities. By distributing intelligence and decision-

making, individual circumstances of a plant can be respected

and fault tolerance increases. MAS offer a way to implement

a distributed intelligent system that is adaptable and highly

flexible. This paper proposes an approach that is separated

into three aspects: the logical architecture, the software

architecture, and the protocols and messages of agent-based

CPPS network. A subset of the imposed requirements was

fulfilled by the particular design of the three aspects. To

further evaluate all the requirements and especially the ones

not satisfied by design, measurements of a basic operating

agent-based CPPS network were conducted. The evaluation

showed that the basic MAS can be deployed on small devices

and that timely reconfiguration without influences on other

participants is possible.

Fig. 3. Time to complete order requests (left), to process a connection (middle), and to process a package (right)

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1293

The production facilities were represented by a varying

number (with minimum of three) operational laboratory

production plants of different German universities (Vogel-

Heuser et al., 2014). All the facilities were administered

resembled a network of locally distributed production sites,

connected by the internet, which offer the execution of sub-

processes, e.g., the processing of raw materials (yoghurt),

adding different flavours, or finishing or packaging the

yoghurt. Therefore, with the first implementation, facilities

for (batch) processes as well as discrete manufacturing were

controlled and linked by the MAS inside the CPPS network.

The second application example additionally considered

logistics between production facilities executed by mobile

robots. Here, the agent-based CPPS implemented a

distributed production environment on a trade show,

including multiple companies in different exhibition halls.

The manufacturing steps, available at the different facilities

contributed to the production of a bottle opener, which could

be customized by trade show visitors. The possibilities for an

application specific implementation (AgentImpl, cp. sec. 4.2)

of the developed generic platform were used by developers of

the different participating companies to implement on their

own hardware the functionality that was necessary to manage

the execution of production steps at the different facilities in

the exhibition halls. Thereby, different hardware platforms,

e.g., PC and PLC, were used. Due to the agent platform's

open protocol that builds on TCP/IP connections to other

implementations, e.g., based on C++, were enabled for this

application scenario. The transport of the give-away articles

between the different companies and exhibition halls was

done using small partly autonomous mobile robots that were

also represented by agents and were automatically embedded

in the overall process. In both use cases, the production

facilities were represented by autonomous agents that are

connected to the local hardware and accept new orders after

registering at the directory services. Since the customers'

orders for products need to be decomposed into multiple

different manufacturing tasks, to which the facility agents can

respond, a coordinator agent was implemented for this

purpose. The mobile robots are also represented by agents,

thus dynamically responding to transport requests. The agents

are running on diverse hardware platforms, e.g., PC and PLC,

under different operating systems, i.e., Windows and Linux.

Each use case has a dedicated set of messages for

communication, based on the lightweight protocol described

earlier. New orders are entered by the user via a web

interface and are afterwards distributed inside the production

network.

The two use cases show, that the MAS is able to physically

and logically connect multiple plants (high level) as well as

smaller devices via internet. The connected agents run on a

multitude of different hardware while the basic functions are

the same with all use cases. It is not necessary to provide a

central node for management or decision making purposes

besides the organizational entities, which mainly enable the

communication between the autonomous entities, and the

coordinator agent, which decomposes product orders into

manufacturing tasks. Consequently, although a high level of

autonomy may be implemented for the controlling entities,

compared to other works, the proposed architecture does not

fully support the implementation of heterarchic, e.g., (Rey et

al., 2013), or isoarchic, e.g., (Pujo, Broissin and Ounnar,

2009), architectures yet. Since the specific implementations

for the second application example, i.e., the industrial

production scenario on the trade show, were developed by the

companies themselves, no comprehensive experiments for a

quantitative evaluation with these scenarios could be

conducted. Consequently, as first step in this direction,

qualitative experiments using only the basic platform are

presented in the following.

5.2 Experiments for Quantitative Evaluation

To further examine the fulfilment of the requirements stated

earlier, different measurements were conducted in a

laboratory experiment. This includes the resource

requirements of an agent (cp. R3) and the suitability of the

approach for large, constantly changing networks (cp. R3,

R4). This was measured by obtaining timings during platform

runtime. A network consisting of agents running on different

platforms was set up. The different platforms included the

ARM platform as well as x86 (32bit and 64bit). The first

point that was investigated was the resource usage of a single

instance of an agent of the proposed approach (cp. Fig. 2,

AgentImpl) without application specific implementation

parts, i.e., the pure footprint of the agent platform. The

specific implementation of an agent's main() function is

strongly related to its role inside an agent system the

reconfiguration capabilities that have been implemented, and

its developer's skills. Consequently, in order to evaluate the

suitability of the proposed MAS platform, in a first step,

these parts of an agent's implementation were not considered.

Table 1 shows the resource usage (footprint) on an ARM

platform, running Arch Linux (3.6.11-12-ARCH+, GCC

4.9.2). The agent, together with the agent library, needs

approximately 23k bytes of permanent memory, e.g., flash

memory. In comparison, the Matrikon OPC UA Embedded

Server needs about 240k bytes of flash memory on an ARM

architecture, OPC UA server implementation were proposed

that require 116k bytes (Iatrou and Urbas, 2016), and a

typical MQTT implementation needs about 44k bytes.

Consequently, the resources needed for MAS platforms based

on standard issue OPC UA stacks, e.g., (Hoffmann, Meisen

and Jeschke, 2017), can be considered higher, although such

approaches are promising in terms of already available

technology. During execution, the heap usage of an agent is

about 3k bytes of memory per connection. This is due to the

fixed buffer sizes (2*1600 bytes) currently used and can thus

be drastically reduced by using dynamic memory allocation

for receiving and sending data. On a Windows platform, the

values differ: Disk usage is 52k bytes for the library and 10k

bytes for the agent. Values for the AMES framework (disk

size is not available due to unavailability of the AMES

platform), JADE (Bellifemine, Poggi and Rimassa, 2001) and

AKKA (Gupta, 2012) are given as additional references.

Both JADE and AKKA are very powerful JAVA libraries,

offering a wide variety of functionality, covering many

industrial and scientific aspects, thus further increasing size

and memory consumption. The comparison done shows the

suitability of the proposed MAS for resource-constrained

small devices. The values for AMES were taken from (Theiss

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1292

1268 Luis Alberto Cruz Salazar et al. / IFAC PapersOnLine 51-11 (2018) 1261–1268

However, since this first experiments only provide a

quantitative evaluation for the basic platform, in the next

steps further experiments need to be conducted that provide

implementations, which are realistic for industrial

applications.

In summary, the design and implementation for an agent-

based CPPS network proposed in this paper is a possibility to

easily connect devices and let them participate in a global

intelligent network. The applied MAS is platform

independent, resource-friendly and thus suited for a wide

variety of devices and use cases. By the proposed

implementation in the programming language C, the

approach is portable but not limited to Programmable Logic

Controllers, as it would be the case with the programming

languages of the IEC 61131-3. The use of intelligent,

proactive and autonomous agents yields benefits such as

inner and outer reconfigurability, robustness against

perturbations and high overall flexibility. The MAS is

scalable and adaptable to users' needs as well as suitable for

high-level and low-level use cases. Future work includes the

improvement of the programming of the application specific

tasks and intelligence, possibly by using model-based

approaches. This includes the evaluation of the MAS design

and implementation with PLCs as the targets for the

deployment of the agents. Other work will improve the

protocols currently used in the communication between

agents in order to support open standards such as JSON or

HTTP and it will especially improve security aspects such as

authentication and encryption that were considered only

marginally in the current implementation. In the case of the

open source framework AKKA, actors would be on the same

level of implementation since is possible to provide basic

communication and agent (-like) classes. Since AKKA runs

on JAVA8 or later versions this could implement actor driven

design attributes and is now extensively used in the industry

increasing the fault tolerance and reactiveness of systems.

 REFERENCES

Aksyonov, K. et al. (2015). Simulation of the real-time simulation systems

and its integration with the automated control system of an enterprise. in

2015 IEEE International Symposium on Robotics and Intelligent Sensors.

Alexakos, C. and Kalogeras, A. P. (2015). Internet of Things integration to a

Multi Agent System based manufacturing environment. in IEEE ETFA.

Bagheri, B. et al. (2015). Cyber-physical Systems Architecture for Self-
Aware Machines in Industry 4.0 Environment. IFAC-PapersOnLine.

Barata, J., Cândido, G. and Feijao, F. (2008). A multiagent based control

system applied to an educational shop floor. Robotics and Computer-

Integrated Manufacturing, 24(5), pp. 597–605.

Bellifemine, F., Poggi, A. and Rimassa, G. (2001). JADE: A FIPA2000

Compliant Agent Development Environment. in Proc. Int. Conf. on
Autonomous Agents.

Brennan, R. W. (2007). Toward real-time distributed intelligent control: A

survey of research themes and applications. IEEE Trans. Syst., Man,

Cybern. A: Syst., Humans, 37(5), pp. 744–765.

Brussel, H. Van et al. (1998). Reference architecture for holonic

manufacturing systems: (PROSA). Computers in Industry, 37(3), pp. 255.

Calvo, I. et al. (2012). Ubiquitous Computing and Ambient Intelligence. in.
Springer Berlin Heidelberg, pp. 282–289.

Cruz S., L. A. and Vogel-Heuser, B. (2017). Comparison of Agent Oriented
Software Methodologies to Apply in Cyber Physical Production Systems.

in 2017 IEEE 15th International Conference on Industrial Informatics.

Delamer, I. M. and Lastra, J. L. M. (2006). Service-Oriented Architecture for

Distributed Publish/Subscribe Middleware in Electronics Production.
IEEE Trans. Ind. Inf., 2(4).

Faul, A., Jazdi, N. and Weyrich, M. (2016). Approach to interconnect
existing industrial automation systems with the Industrial Internet. in

IEEE ETFA.

García-Valls, M., Rodríguez-López, I. and Fernández-Villar, L. (2013).

iLAND: An Enhanced Middleware for Real-Time Reconfiguration of

Service Oriented Distributed Real-Time Systems. IEEE Trans. Ind. Inf.

Girbea, A. et al. (2014). Design and Implementation of a Service-Oriented
Architecture for the Optimization of Industrial Applications. IEEE Trans.

Ind. Inf., 10(1), pp. 185–196.

Gupta, M. (2012) Akka Essentials. Packt Publishing Ltd.

Hoffmann, M., Meisen, T. and Jeschke, S. (2017). OPC UA Based ERP

Agents: Enabling Scalable Communication Solutions in Heterogeneous

Automation Environments. in Intern. Conf. on Practical Applications of
Agents and Multi-Agent Systems (PAAMS).

Iatrou, C. P. and Urbas, L. (2016). Efficient OPC UA binary encoding
considerations for embedded devices. in IEEE INDIN.

Jammes, F. and Smit, H. (2005). Service-oriented paradigms in industrial

automation. IEEE Trans. Ind. Inf., 1(1), pp. 62–70.

Jestratjew, A. and Kwiecien, A. (2013). Performance of HTTP Protocol in

Networked Control Systems. IEEE Trans. Ind. Inf., 9(1), pp. 271–276.

Lee, E. A. (2008). Cyber Physical Systems: Design Challenges. IEEE Int.

Symp. on Object Oriented Real-Time Distributed Computing.

Leitão, P. et al. (2016). Smart Agents in Industrial Cyber Physical Systems.

Proceedings of the IEEE, 104(5), pp. 1086–1101.

Leitão, P. and Karnouskos, S. (2015) Industrial Agents: Emerging
Applications of Software Agents in Industry.

Leitão, P., Marik, V. and Vrba, P. (2012). Past, present, and future of

industrial agent applications. IEEE Trans. Ind. Inf., 9(4), pp. 2360–2372.

Leitão, P. and Restivo, F. (2006). ADACOR: A holonic architecture for agile

and adaptive manufacturing control. Computers in Industry, 57(2).

Lüder, A. et al. (2005). Distributed Automation: PABADIS versus HMS.

IEEE Transactions on Industrial Informatics, 1(1), pp. 31–38.

Metzger, M. and Polakow, G. (2011). A survey on applications of agent

technology in industrial process control. IEEE Trans. Ind. Inf., 7(4).

Moghaddam, M., Silva, J. R. and Nof, S. Y. (2015). Manufacturing-as-a-
Service—From e-Work and Service-Oriented Architecture to the Cloud

Manufacturing Paradigm. 15th IFAC Symposium onInformation Control

Problems inManufacturingINCOM 2015, 48(3), pp. 828–833.

Onori, M. et al. (2012). The IDEAS project: plug & produce at shop-floor

level. Assembly Automation, 32(2), pp. 124–134.

Pujo, P., Broissin, N. and Ounnar, F. (2009). PROSIS: An isoarchic structure
for HMS control. Engineering Applications of Artificial Intelligence.

Quintanilla, F. G. et al. (2016). Implementation framework for cloud-based
holonic control of cyber-physical production systems. in IEEE INDIN.

Rey, G. Z. et al. (2013). The control of myopic behavior in semi-

herterarchical production systems: A holonic framework. Engineering

Applications of Artificial Intelligence, 26(2), pp. 800–817.

Sauer, P., Hausten, T. and Hofstedt, P. (2016). Using internet of things

technology to create a really platform independent robotics framework. in
IEEE ISSE.

Sauter, T. and Lobashov, M. (2011). How to Access Factory Floor

Information Using Internet Technologies and Gateways. IEEE Trans. Ind.

Inf., 7(4), pp. 699–712.

Tao, F. et al. (2014). CCIoT-CMfg: Cloud Computing and Internet of
Things-Based Cloud Manufacturing Service System. IEEE Trans. Ind.

Inf., 10(2), pp. 1422–1435.

Theiss, S. et al. (2008). AMES - A Resource-Efficient Platform for Industrial

Agents Department of Computer Science Dresden University of

Technology. IEEE WFCS, pp. 405–413.

Vallée, M. et al. (2011). Decentralized reconfiguration of a flexible
transportation system. IEEE Transactions on Industrial Informatics, 7(3).

Vicaire, P. A. et al. (2012). Bundle: A Group-Based Programming
Abstraction for Cyber-Physical Systems. IEEE Trans. Ind. Inf., 8(2).

Vogel-Heuser, B. et al. (2014). Coupling heterogeneous production systems

by a multi-agent based cyber-physical production system. IEEE INDIN.

Vrba, P. et al. (2014). A Review of Agent and Service-Oriented Concepts

Applied to Intelligent Energy Systems. IEEE Trans. Ind. Inf., 10(3).

Vyatkin, V. (2011). IEC 61499 as enabler of distributed and intelligent

automation: State-of-the-art review. IEEE Trans. Ind. Inf., 7(4), pp. 768.

Yan, J. and Vyatkin, V. (2013). Distributed Software Architecture Enabling

Peer-to-Peer Communicating Controllers. IEEE Trans. Ind. Inf., 9(4).

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1294

A p p e n d i x A . I n c l u d e s m a i n c o n t r i b u t i o n p a p e r s (P u b . I - V) | 82

Publication III (MASpatterns)

Copyright © 2019 Springer Nature. Reproduced with permission from Springer Nature, Luis

Alberto Cruz Salazar, Daria Ryashentseva, Arndt Lüder and Birgit Vogel-Heuser, “Cyber-

physical production systems architecture based on multi-agent’s design pattern—comparison of

selected approaches mapping four agent patterns.”

International Journal of Advanced Manufacturing Technology 105/9 (2019), pp. 4005-4034.

https://doi.org/10.1007/s00170-019-03800-4

ORIGINAL ARTICLE

Cyber-physical production systems architecture
based on multi-agent’s design pattern—comparison of selected
approaches mapping four agent patterns

Luis Alberto Cruz Salazar1,2 & Daria Ryashentseva1 & Arndt Lüder3 & Birgit Vogel-Heuser1

Received: 3 September 2018 /Accepted: 17 April 2019
The Author(s) 2019

Abstract
The growing complexity of production systems requires appropriate control architectures that allow flexible adaptation during
their runtime. Although cyber-physical production systems (CPPS) provide the means to copewith complexity and flexibility, the
migration with existing control systems is still a challenge. The term CPPS denotes a mechatronic system (physical world)
coupled with software entities and digital information (cyber part), both enabling the smart factory concept for the Industry 4.0
(I4.0) paradigm. In this regard, design patterns could help developers to build their software with common solutions for
manufacturing control derived from experiences. We provide a description and comparison of the already existing multi-agent
systems (MAS) design patterns, which were collected and classified by introducing two classification criteria to support MAS
developers. The applicability of these criteria is shown in the case of specific example architectures from the lower and higher
control levels. The authors, together with experts from the German Agent Systems committee FA 5.15, gathered more than
twenty MAS patterns, evaluated, and compared four selected patterns with the presented criteria and terminology. The main
contribution is a CPPS architecture that fulfills requirements related to the era of smart factories, as well as the Reference
Architectural Model I4.0 (RAMI 4.0). The conclusions indicate that agent-based patterns greatly benefit the CPPS design. In
addition, it is shown that manufacturing based on MAS is a good way to address complex requests of the CPPS development.

Keywords Cyber-physical production systems . CPPS . Design patterns . Distributed control systems . Industry 4.0 . MAS .

Multi-agent systems . RAMI 4.0

1 Introduction

Commonly, companies widen their product portfolio and at-
tempt to shorten their production time to increase revenue and

market presence. These actions may indirectly increase the
complexity of the production process. At the same time, the
Industry 4.0 (I4.0) paradigm tries to meet the emerging DIN
SPEC 91345 norm [1], regarding the Reference Architectural
Model I4.0 (RAMI 4.0) inside the factory and migrate from
conventional automation systems to cyber-physical produc-
tion systems (CPPS) [2], and their admitted standards [3, 4].
The term CPPS denotes a mechatronic system coupled to
smart entities that enable the smart factory and machines tools
of I4.0 concept [5, 6]. The application of the distributed con-
trol theory based on the multi-agent systems (MAS) is
employed [7, 8] to cope with CPPS challenges. Since it is
not always straightforward to create such a system from
scratch, ready-made solutions, such as design patterns, based
on the experience of specialists from different fields are re-
quired. In order to reduce the time, cost, and risk of developing
a new design, MAS developers shall understand these pre-
pared solutions in an easy way. Also, as the MAS were not
often implemented in the industry due to the limited

All author are members of the technical committee FA 5.15 “Agent
systems” of the Society Measurement and Automatic Control (GMA)
within the Society of German Engineers (VDI) and German Electrical
Engineers (VDE), and National Member Organizations (NMO) of IFAC
and the IEEE-IES Technical Committee on Industrial Agents (TC-IA)

* Luis Alberto Cruz Salazar
luis.cruz@tum.de

1 Institute of Automation and Information System, Technical
University Munich, Garching, 85748 Munich, Germany

2 Universidad Antonio Nariño, Bogotá, Colombia
3 Institute of Ergonomics, Manufacturing Systems and Automation,

Otto-von-Guericke University, Magdeburg, Germany

https://doi.org/10.1007/s00170-019-03800-4
The International Journal of Advanced Manufacturing Technology (2019) 105:4005–4034

/Published online: 201926 July

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-019-03800-4&domain=pdf
http://orcid.org/0000-0001-8386-5568
https://orcid.org/0000-0002-9554-6983
https://orcid.org/0000-0001-6537-9742
http://orcid.org/0000-0003-2785-8819
mailto:luis.cruz@tum.de

understanding [8, 9], to increase their acceptation, the pre-
pared patterns can help.

Design patterns provide a means of identification and con-
sideration of broader success aspects in particular problems
[10]. They are described as an abstraction of the system devel-
oping process, since they are based on already working solu-
tions. The abstraction focuses on the essential aspects captured
by the pattern [11]. Therefore, design patterns due to the prop-
erties of the agents [9] provide increased connectivity between
control levels of the automation pyramid, to ease the migration
to the CPPS. As the MAS have a flexible programmable and
dynamic architecture [8], patterns could provide the support of
properties such as reusability, flexibility, adaptability, and
modularity, which will satisfy the requirements of CPPS [3,
12], following the future needs of the automation [13, 14].

1.1 Contribution to the industrial automation

The idea of this paper is to provide engineers and programmers
with existing patterns based on the MAS structures, which will
help improve their design efforts and therefore increasing the
efficiency of the manufacturing process control, and decreasing
the development design cost (reusability [15]). Based on prior
experiences, design patterns are delivered to address MAS into
different levels of the automation hierarchy (low/high level)
with real-time and non-real-time control systems, mainly indus-
trial controllers’ technologies, e.g., Programmable Logic
Controller (PLC). Furthermore, design patterns enable MAS
developers to easily have the same understanding of the solu-
tion system’s design [15–17]. Thus, ready-made templates are
designed to simplify the comparison of MAS alternative solu-
tions [17]. Other benefits of this contribution are the following:

1. Awell-discussed survey/summary at least in agents work-
ing group of the German IFAC NMO GMA FA 5.15 is
presented.

2. Mapping of analyzed MAS functional requirements to
sub-agents’ patterns was provided.

3. Proposed sub-agent patterns for MAS technology in in-
dustrial environments are extendible; further extended de-
signs are possible for more use cases.

4. The proposed sub-agent patterns will reduce the time and
cost efforts, as the proposed pattern is a “ready-made”
solution.

5. The identified design patterns are the basis for the devel-
opment of agent-based CPPS and for their structural rep-
resentation. However, the contribution does not consider
an explicit MAS architecture (with final requirements) for
the application of an individual CPPS or system domain.

6. The proposed sub-agent patterns support integration and
development of MAS for different automation levels
based on ISA 95 and RAM I4.0.

Existing control architectures are frequently based on the de-
veloper’s experience from every single domain, but MAS devel-
opers are often unaware of the benefits of design patterns.
Therefore, this manuscript provides 13 criteria (see Section 3),
as a key result from a preliminary classification of differentMAS
and their evaluation in various domain solutions, as shown in
[18]. Thereby, thiswork aims at finding and validating the criteria
required for pattern creation enabling the migration to CPPS:

& Using relevant requirements of the CPPS from Ribeiro
and Hochwallner [12].

& Aligned with smart agent proposals for industry from
Leitao et al. [9].

& Aligned with the RAMI 4.0 model [1].

Based on the essential properties of MAS [8], this paper
gives a deep classification and analysis of the collected MAS
with the derived criteria, which will help for further pattern
development, and suggestion of agent-based CPPS
architecture.

1.2 Research questions and hypotheses

Despite the fact that theMAS application has not been popular
in industry, nowadays, its admission is acceptable [8, 9] and
the MAS applicability is more extensive than over the last
years [8, 9, 18]. Moreover, the existence of patterns will ease
the perception and comprehension for the MAS developers.
Design patterns based on MAS for manufacturing would en-
able rapid application in industry [17]. Besides, the agent-
based architectural solutions usually possess the characteristic
of “plug and produce” use and are applicable in many do-
mains after simple parameter adjustment [19]. In addition,
they are suitable for different control layers regarding the au-
tomation pyramid that will allow the creation of versatile ap-
proaches regarding CPPS [9]. It is a big challenge to charac-
terize a universal design that applies to the logical architecture
and to software abstractions. Therefore, in this work, the target
of design patterns concerns a functional system level as a
MAS logical architecture that does not deal with software
level abstractions. However, relevant information to logical
architecture and software could be addressed by the final de-
sign proposal. Consequently, this work addresses four general
research questions (RQ1-RQ4) connected to eight research
hypotheses (RH1.1-RH4.2), as shown in Table 1.

The manuscript is structured as follows: Section 2 reviews
the state-of-the-art of the collected MAS patterns for
manufacturing systems. Section 3 introduces the discussion
about the classification criteria to compare MAS approaches
for the further elaboration of the patterns. Section 4 evaluates
the four different MAS approaches applying the 13 classifica-
tion criteria. In Section 5, common functional requirements of
MAS patterns are presented. Finally, Section 6 represents the

Int J Adv Manuf Technol (2019) 105:4005–40344006

agent-based CPPS architecture aligned with RAMI 4.0 model.
This work is summarized within the conclusion in Section 7.

2 Related work

As described in the previous section, this paper presents select-
ed MAS ready-made solutions to give support to developers,
so they can easily produce new control systems [15, 17]. It
helps to avoid the common design mistakes during the sys-
tem’s development phase [8]. The new solution should support
among others reusability, flexibility, modularity, as defined in
[8, 20]. TheMAS approaches are classified in order to facilitate
the migration from the conventional automation systems to the
CPPS. Therefore, authors use a template that consists of a list
of classification criteria validated by experts in the German
community FA 5.15 (see Section 3). Because all approaches
were created to be used in different domains and different
layers of the automation pyramid, a notable part of them are
concentrated to provide the flexibility or changeability (FC) of
the system. Others concentrate on other features such as reli-
ability (RL), adaptability or agility (AA), reconfigurability
(RC), and dependability (DP). All of these characteristics are
enlisted and described in Table 2, according to [8, 12, 20, 21].

The comparison of existing systems architectures and their
focuses—regarding specific CPPS and RAMI 4.0 require-
ments—are collected and presented in Table 3; as shown,
almost all architectures concentrate on providing flexibility
for the automation systems. Table 3 also compares the struc-
ture for CPPS approaches regarding the control distribution’s
classes from Trentesaux [22]. The CPPS structures can be
classified between Classes 0 and III according to their control
and decision-making mechanism, as the following list:

& Class 0. Centralized control systems (e.g., CIMOSA [23])
& Class I. Fully hierarchical control system (e.g., acquire,

recognize, and cluster architecture for SoA or ARC-SoA
[24])

& Class II. Semi-heterarchical control system (e.g.,
ADACOR [25] architecture)

& Class III. Fully heterarchical control system (e.g., D-MAS
architecture [26])

Any MAS may be used regardless of its class, since all
MAS were proposed for different use cases, e.g., for the in-
dustry, smart grids, etc. [9] and be applied for the purpose of
satisfying the CPPS and RAMI 4.0 requirements (see Section
2.1). In fact, these approaches apply methods and techniques
such as the Industrial Internet of Things (IIoT), decision-mak-
ing mechanisms, semantic models, process synthesis, and op-
timization [18].

The German committee FA 5.15 initiated the idea of this
work, where 20 different agent-based approaches were col-
lected inside of the group discussions. Additionally, each
FA-author had a direct access to the evaluation of the pattern
and gave feedback. Therefore, authors do not claim that the
collected list of MAS is holistically completed, as it focuses
just on German applications for production systems.
However, the list of MAS can be further extended to consider
other applications. At the moment, it covers the different fields
of application from software and manufacturing domains:
smart grids, logistics, geography and image process applica-
tions, etc.

Wannagat [27] presents a MAS implementation concept
for handling a faulty sensor or an actuator for automation
systems. This architecture provides the flexibility, reliability,
and reconfigurability for the production systems. The work of

Table 1 Research questions and related hypotheses

Research questions Hypotheses Proof

RQ1—How are the MAS patterns for CPPS
depicted and what criteria are used to describe them?

RH1.1—classification criteria for MAS approaches delivers valid and
decidable information for their evaluation

D

RH1.2—MAS approaches for CPPS can be classified and identified
with similar design pattern’s terms (e.g., names, functionalities, etc.)

E

RQ2—For which domains of CPPS are the
MAS patterns designed and applicable?

RH2.1—MAS approaches have application in diverse domains with
different goals and benefits (e.g., flexibility, adaptability, etc.)

D

RH2.2—CPPS are applicable in every domain in appliance with the
real-time requirements of MAS approaches

E

RQ3—Which MAS design patterns for CPPS are reusable? RH3.1—there are reusable MAS patterns with functional and non-functional
requirements for CPPS design

E

RH3.2—MAS components follow specific sub-agents, which have
particular aims and are reusable for CPPS design

E

RQ4—How do the MAS design patterns develop
into a CPPS aligned with RAMI 4.0?

RH4.1—it is possible to harmonize different MAS approaches to
obtain a simple CPPS architecture aligned with RAMI 4.0

E

RH4.2—MAS patterns provide Industry 4.0 component’s properties and
specific information to its administration shell

E

D, insights gained from documents and feedback of MAS patterns’ authors; E, insights gained by the validation analysis of this manuscript’s authors

Int J Adv Manuf Technol (2019) 105:4005–4034 4007

Schütz [28], based on Wannagat, proposes a heterarchical
approach about a PLC-Agent-System with individual knowl-
edge-based agents. Main features of the approach are flexi-
bility and reconfigurability. The MAS of Ulewicz [7] repre-
sents an abstract architecture concept for plants inside indus-
trial automation. Its focus is on providing flexibility and reli-
ability and it has been applied on real industrial context,

validated by industrial experts. Legat [15] proposed an
agent-based architecture for handling unforeseen failures;
the main features of this approach are flexibility and
reconfigurability [29].

The approach of Rehberger [19] is designed for achieving
both flexibility and availability during run-time (for coping
with unknown product recipes and breakdowns of sub

Table 3 Related work focusing on providing benefits and regarding CPPS and I4.0 requirements

Author(s) Characteristic benefit Classification CPPS requirement RAMI 4.0 requirement

FC RL RC AA DP Scope Class Req.
1.1

Req.
1.2

Req.
1.3

Req.
1.4

Req.
1.5

Req.
2.1

Req.
2.2

Req.
2.3

Req.
2.4

Req.
2.5

ADACOR (Leitão and
Restivo, 2006) [25]

• • • HMS architecture II + ++ ++ + + – – ++ – –

Andrén et al., 2013 [30] • MAS for smart grid III + + ++ + – + – – – –
Cruz S. et al., 2018 [31] • • • CPPS architecture II ++ ++ ++ ++ ++ – – ++ – –
Fischer et al., 2018 [32] • • MFS agent-based III ++ + + + – – – + – –
Karnouskos and De

Holanda, 2009 [33]
• MAS for smart grid III + + ++ ++ – – – ++ – –

Leitão et al., 2016 [9] • • • • MAS for industry III ++ ++ ++ ++ + – – – – –
Lüder et al., 2017 [16] • • MAS for industry III + + ++ – – – – ++ – –
Lüder et al., 2017 [34] • MAS for industry III + + ++ ++ – + + + + +
Nieße, A., 2015 [35] • MAS for smart grid III + + ++ ++ ++ + + ++ + +
PROSA (Brussel et al.,

1998) [36]
• • • HMS architecture II + ++ ++ + + – – ++ – –

Regulin et al., 2016 [37] • MFS agent-based III + ++ ++ + – – – – – –
Rehberger et al., 2017

[19]
• • MAS for industry III + + + ++ – – – + – –

Ribeiro and
Hochwallner, 2018
[12]

• • • • CPPS architecture III ++ ++ ++ ++ + + + ++ + –

Ryashentseva, 2016 [38] • • MAS for industry III + + ++ ++ + – – ++ + -
Schütz et al., 2011 [28] • • MAS for industry III ++ ++ ++ ++ + – – + – –
Theiss and Kabitzsch,

2017 [39]
• MAS for industry III + + ++ ++ + – – + – –

Ulewicz et al. [7] • • MAS for industry III + ++ ++ + – – – + – –
Vogel-Heuser et al., 2014

[40]
• MAS for industry III + ++ ++ + + – – + – –

Wannagat, 2010 [27] • • • CPPS architecture III + + ++ + – – – + – –

Notation: ● Applicable; ++ High; + Medium; – Low

Table 2 Description of characteristics for CPPS [8, 12, 20, 21]

Feature Description

Flexibility/changeability [12, 21] (FC) It is often the grade to which a product or system can be used with effectiveness, efficiency, freedom from risk,
and satisfaction in contexts beyond those initially specified in the requirements

Reliability [21] (RL) A set of attributes that bear on the capability of software to maintain its level of performance under stated
conditions for a stated period of time (four attributes: maturity, fault tolerance, recoverability, reliability
compliance)

Reconfigurability [20] (RC) A system designed at the outset for rapid change in structure, as well as in hardware and software components,
in order to quickly adjust production capacity and functionality within a part family in response to sudden
changes in market or regulatory requirements

Adaptability/agility [8, 12] (AA) The capability of surviving and prospering in a competitive environment of continuous and unpredictable
change by reacting quickly and effectively to changing markets, driven by customer-designed products and
services

Dependability [20] (DP) The set of independent production events (ES) that completely defines the available production processes in a
production system. Their number could be given by an equation in [20]

Int J Adv Manuf Technol (2019) 105:4005–40344008

modules) as well as adaptability during engineering (MAS
with exchange-/adaptable knowledge base in form of a dis-
crete and continuous plant model). The works of Fischer [32]
and Regulin et al. [37] present MAS control approaches en-
hancing the flexibility and reconfigurability of material flow
systems (MFS). All of them focus on the flexibility and de-
pendability features. Hoffmann’s approach [41] is proposed to
reach the customized products and production configuration
providing dynamic reconfiguration, production fault compen-
sation, and predictive maintenance. The next approach of
Pech [42] enables flexibility and adaptability for the user in-
teraction and query formulation for information retrieval.

The approach of Ryashentseva [38] presents a supervisor-
based and self-adapting architecture with the focus to realize
reconfigurability and adaptability of the production system.
Lüder et al. [16] propose the resource allocation and the re-
source access design patterns for manufacturing systems. He
focuses on reliability, adaptability, and flexibility properties.
Based on this proposal of the ready-made pattern for resource
processing, the possibility of pattern elaboration for the CPPS
is suggested in this paper [16]. Its literature review was based
on a Google Scholar search (exploiting the terms
“manufacturing system,” “agent,” and “control”) and have
limited the works published the last 10 years after 2006 [8,
16]. Summarizing the MAS for manufacturing, a variety of
agent-based methodologies exist for the model-based devel-
opment of software for manufacturing [32, 43]. Surrounded
by their last 100 most recent results, just 19 papers have been
selected, since other papers were not in the production system
control field with architecture representation. Other surveys
about the design patterns for distributed automation have been
analyzed in [11, 17].

Meanwhile, diverse agent-based approaches intending to
provide manufacturing control for CPPS, based on Agent
Oriented Software Engineering (AOSE), have been presented.
The most relevant point of views from the authors are listed
and compared in [4], such as Gaia, MaSe, and other method-
ologies. Holonic Manufacturing Systems (HMS) are also con-
sidered for distributed control systems, in [25, 36, 44, 45].
Finally, MAS approaches also enable to boost energy efficien-
cy via smart grids, as shown in [30, 33, 46].

This section concludes that control decisions and the over-
all intended behavior of different MAS approaches listed are
described. In addition, their integration in the automation pyr-
amid has been specified, and the different control decisions
are outlined. Each industrial agent mapped to a control pyra-
mid layer designated, to which the agent belongs and has a
control decision and specific features (e.g., flexibility). Based
on this research and preliminary work of Lüder et al. [16], the
next chapter presents the development of the classification
criteria in order to evaluate the collected MAS patterns.
Further, in the paper, it will be used to evaluate four different
approaches [16, 27, 38].

2.1 Requirements regarding CPPS and RAMI 4.0

Adapted from Ribeiro and Hochwallner [12] concepts, re-
quirements are understood as explicit conditions which must
be represented by system in order to fulfill a specification, or a
standard.

For an agent-based CPPS, aligned from [4, 12, 31, 40],
there are five key requirements: the application independence
(Req1.1), meaning that a MAS and its protocols and messages
should be independent of a specific application. The level
independence (Req1.2) referring that all levels of automation
for ISA 95 (see Section 5.6) are available depending on the
scenarios in which the CPPS will be applied. Platform inde-
pendent implementation (Req1.3) implying that modules are
effortlessly integratedwith independent implementation (open
technologies). Robustness against errors (Req1.4) meaning
MAS must react to faults and dynamic conditions in an ap-
propriate way, i.e., it must be robust against unforeseen.
Decentralization (Req1.5) means that MAS have to deal with
temporary network connection loss and critical data should be
distributed between multiple nodes.

Regarding the RAMI 4.0 model (see Section 6), there are
other five crucial requirements for the I4.0 components con-
cept [47]. The sub-models (R2.1) shall support various engi-
neering disciplines. The system boundary (R2.2) implies that
a sub-model describes the relationships between the RAMI
4.0 layers. The nestability principle (R2.3) for the specific
engineering discipline shall have its own organizing principles
for the relevant resources (assets in hierarchy dimensions).
The virtual representation (R2.4), an administration shell,
can denote a digital active with their parts. Finally, the func-
tional properties (R2.5) require that the manifest has an exter-
nally accessible set of meta-models describing its functional
and non-functional properties.

3 Classification criteria for MAS patterns
(RQ1)

In this section, the classification criteria for the MAS design
patterns are described. It is based on preliminary consider-
ations that were briefly discussed in the previous section. As
specified in the state of the art, there are many different design
solutions for the control of the manufacturing systems with
MAS architectures. However, the application and thereby the
evaluation of the design pattern criteria will be shown in the
next section that is based on only four MAS field approaches.
Accordingly, the adapted SLR method of outlining and
obtaining design patterns [10], usually applied in the area of
software for mechatronics systems, is presented here. To ex-
tend the work done by Lüder et al. [16], a bottom-up approach
is proposed in this paper. The adaptation of the design pattern
is based on distributed automation systems [17] and

Int J Adv Manuf Technol (2019) 105:4005–4034 4009

developed by the classification criteria from Lüder et al. [16]
and Leitao et al. [8] and Ribeiro and Hochwallner [12].
Finally, thirteen criteria were proposed (cp. Table 4) to classify
MAS architectures’ patterns. These patterns were introduced
and evaluated by the members of the German FA 5.15 work-
ing group.

The industrial automation field should support the devel-
opers to create new functionalities based on different common
parts and experiences, to fulfill requirements from the previ-
ous section (see Section 2.1). Consequently, different kinds of
design patterns were to support engineers in solving the re-
spective problems and obtain solutions with common
methods.

One of the main contributions of this paper is the compila-
tion of the criteria for the MAS design pattern template (cp.
Table 4). First, the template introduces the pattern category,
pattern type, pattern name, pattern description, context, solu-
tion, and implementation used for the distributed systems pat-
tern in [17]. Second, the template adds MAS-architecture,
knowledge base and processing, real-time properties, depend-
ability, learning, MAS-autonomy, and others.

In addition to the criteria of the MAS pattern (Table 4), a
classification of each sub-agent pattern of the MAS

architecture is developed. These supplementary criteria de-
scribe in details the features of each sub-agent in order to
better understand MAS architecture and better compare their
identifying patterns. Then, Table 5 extends the patterns de-
scription criterion from Table 4, according to the following
items: sub-agent name, main functionality, ISA 95 level (au-
tomation level), real-time capability, source type info, commu-
nication base, key properties, and related work.

For this proposal paper, an approach is demarcated as a
set of architectures, methodologies, or standards, which
follow a common scheme. In the case of architectures, these
are considered single structures of static system model. The
aspect MAS architecture describes the associations be-
tween different types of agents (or sub-agents) and includes
the MAS set-up [31]. In addition, most of the MAS are not
patented by their authors and usually do not have the prac-
tical data to carry out their implementation (i.e., clear meth-
odology). In this case, MAS methodology should deter-
mine the best steps to follow in order to improve reusability
in development and quality systems (usually used for soft-
ware engineering as AOSE [4]). A good methodology
should indicate how the MAS would satisfy all its process
in a systematic, predictable, and repeatable way. In the end,

Table 4 Criteria to classify MAS architectures/patterns

Criteria Descriptions Examples options

Pattern category Favorable function patterns: system properties that can
be realized by employing MAS, i.e., increased
flexibility and adaptability

Flexibility pattern, adaptability pattern, reliability
pattern, reconfigurability pattern

Pattern type Name of the pattern type: technology-independent task
of the MAS (categorized)

Fault-tolerant sensors

Pattern name Name of the MAS pattern Soft sensor

Pattern description Description of the logic structure (which
components/agents does the pattern contain?)

MAS with 4 sub-agents, which enable identifying
faulty sensors and automatically replacing themwith
soft sensors based on models

Context/area of application Application context of the pattern Various domains, e.g., logistics, process engineering

MAS-architecture Approach for realization of the agents’ behavior Reactive/cognitive/hybrid

Solution Graphical depiction of the MAS-Architecture Depiction of the MAS’ components (notation class
diagram)

Knowledge base and processing How is the knowledge stored? Models, rules. How is
the knowledge processed? With which methods?

Model from engineering, ontology, meta model data
structure. Inference mechanisms for ontologies

Learning/knowledge acquisition Methods and techniques for learning
abilities/knowledge base

Machine learning, neuronal networks

Implementation Technological realization of the MAS (platform,
languages)

Model: SysML, programming language IEC 61131-3

Real-time properties Timeliness and concurrency requirements Usage replacement sensor < 2 PLC-cycles < 40 ms

Dependability Requirements towards reliability, availability,
maintainability, security or safety

Soft sensor can replace sensor with a reliability of x%

MAS-autonomy Autonomy/independence in decision making Replacement of sensor not autonomously, since
number of replaceable sensors is limited

Others Additional author’s comments (remarks, clarifications,
etc.)

Int J Adv Manuf Technol (2019) 105:4005–40344010

an ideal final stage of the MAS design phase would be its
standardization (creation of norm). International institu-
tions such as ISO, ASME, IEC, IEEE, and others might
endorse both, MAS architectures and methodologies, as a
current standard for smart manufacturing as supported by
experts [3, 4, 21].

The evaluation of the criteria proposed in this section is
introduced as follows based on MAS approaches for
manufacturing.

4 Evaluation of four selected MAS
architectures applying criteria classification
(RQ2)

This section presents the application of the criteria for MAS
design patterns discussed in the previous section (cp. Tables 4
and 5).

The general patterns’ analysis starts from the lowest layer
of the traditional automation pyramid, applied (see Section
5.6) in the logistics domain, manufacturing execution systems
(MES). The first architecture of Wannagat [27] concentrates
on the field level control and presents a MAS architecture for
hard real-time and dependability, applied to PLC controllers
(the most popular in industrial environments). Based on that,
many other authors continue to build their MAS architectures
on it (Folmer [48], Schütz [28], Rehberger [19], and Ulewicz
[7]). Second author Fischer [32] also applied MAS for hard
real-time including control level to put adaptability, flexibility,
and dependability attributes into MFS. In this case, new com-
ponents based on metamodeling can be added. The reflection
of this idea can be found in other researches such as Priego et
al. [49] and Hanisch et al. [50]. A third work by Ryashentseva
[38] represents a MAS approach focused on the real-time
capabilities for self-reconfigurability of production plants,
and has implemented supervisory control theory (SCT) in-
creasing self-adaptability. This approach covers the middle
and low levels of the automation pyramid from the coopera-
tion with legacy systems on field control level and

communication with MES. Finally, Lüder et al. [16] propose
the fourth MAS approach, which includes design patterns
considering different levels of manufacturing, even upper-lev-
el MES.

In this paper, the authors choose the following three basic
terms in order to facilitate the discussion of the following
MAS approaches: i) From the VDI standard 2653 sheet 1, a
sub-agent is an encapsulated entity (of software, hardware, or
both) with specific goals inside the whole MAS architecture.
The sub-agent endeavors to reach his goals with autonomy
and by interacting with its environment and among other
sub-agents [18]. ii) From Ribeiro and Hochwallner [12], a
module is “tightly coupled within and loosely connected to
the rest of the system.” Hence, a module is a MAS software
component that does not have dynamic characteristics and
intelligent properties like a sub-agent (e.g., autonomy, mes-
sage interactions, and cooperativeness). However, it can de-
termine specific functions, methods, or routines which are
often part of or used by sub-agents (e.g., control module
[28]). iii) Adapted from the ISO/IEC 2382-1, a database
(DB) is a collection of data ordered giving to a conceptual
structure relating the features of the info and the associations
among their corresponding entities, supporting one or more
request areas and accessible in various ways. Mostly, a DB in
MAS architectures is an organized collection of data for the
module’s interactions. It is stored and accessed electronically
as the “yellow pages” for services exposed to other sub-agents
[7, 32].

Below, the following abbreviations will be used in the cor-
responding figures: resource agent (RA), coordination process
(CP), knowledge base (KB), and communication interface
(CI).

4.1 Design pattern for the resource agent

The RA architecture presented in [27] provides an agent-based
interface for technical components in the field control level
(see Fig. 1).

Table 5 Criteria to classify the patterns description (sub-agents)

Criteria Descriptions Examples options

Sub-agent name The name of the sub-agent (or acronym) Coordination agent, resource agent

Main functionality The main functionality of the sub-agent with text descriptions Communication entity among other sub-agents

ISA 95 level Action’s automation levels L2, L1–L3. See Section 5.6

Real-time capability Requires or not hard real-time execution for its functionality Yes, No

Source type info. Sub-agent’s info. source (data/hardware/both) Data/hardware/both

Communication base Communication-based concept/theory/protocol (direct or indirect) Control net protocol—CNP, ACL, FIPA specification

Key properties Social primary properties or abilities Autonomous: control over its behavior

Related work Has a preliminary design? Author name, standard

Int J Adv Manuf Technol (2019) 105:4005–4034 4011

A RA has four main modules with specific characteris-
tics. One of these is the Control Module that is connected
with the I/Os (sensors and actuators signals) of the plant
hardware. From this module, the data of the control vari-
ables are sent to the actuators and the information from the
sensors is measured. A Diagnosis Module detects failures
within the sub-agent’s status, which identifies the existing
situation based on the sensor data (signals measurements or
other sub-agents’ messages from Agent Interaction). Table
6 shows the design pattern for the RA in production plants
[19, 28].

Incoming sensor measurements are processed in order to
detect sensor failures. In this case, the Diagnosis module
connects to the Knowledge base module, and it specifies
the system model to the corresponding technical device.
Afterwards, each sub-agent reviews the parameters of
the technical specific system from the MAS architecture.
It also preserves the processes inside the explicit limits.
Redundant sensor measurements are calculated using ana-
lytics. These “virtual” data from I/Os provide for the fault
state based on the Diagnosis module (a result of the com-
pensation failures). Finally, the Planning module contains
local goals and negotiates time schedules for message
exchange with other sub-agents. Additional three basic en-
tities from FIPA standard have discovery dedications: a
sub-agent called Agent Management System (AMS), the
Message Transport System (MTS), and the Directory
Facilitator (DF). Robustness against errors should be

enhanced by using direct connections between sub-agents.
The AMS allows the bidirectional mapping between IP-ad-
dresses and sub-agents’ identifications. In addition, the RA
contains communication interfaces to update error status
through message interactions, delivered to sub-agents in
higher heterarchy levels (e.g., AMS).

Table 7 shows the list of identified sub-agents for the MAS
based on the RA pattern in [27].

4.2 Design pattern for plug and produce of MFS

Fischer presents a MAS architecture in [32] that provides ba-
sic entities (sub-agents and modules) for the coordination of
an entire MFS. Figure 2 illustrates the general implementation
scenario of the approach based on Fischer’s static graphic
models. Table 8 shows the design pattern for MFS according
to Fischer’s MAS architecture [32].

This MAS approach is self-motivated in only one of
the MFS’s modules. It contains the sub-agent called
AMS, the DF, and the MTS, all of them from FIPA stan-
dard. These are used in the same manner as presented by
Wannagat et al. [19, 28] in Section 4.1. Fischer’s pattern
focuses on the MFS, but both patterns (Fischer-Wannagat)
are used for the real-time intelligent conveyors’ re-
routing. AMS comprised of methods for registering or
deregistering a module from/to the MAS. The DF allo-
cates orders to the agreeing module and sub-agents by
a l l o c a t i n g t h e e q u i v a l e n t p r i n c i p l e s i n t h e

Fig. 1 Identifications of RA
pattern inWannagat’s architecture
[27]

Int J Adv Manuf Technol (2019) 105:4005–40344012

Communication Agent. The Order Agent executes the re-
ceived module’s demands. It manages whether the module

could fulfill the demanded order and, if that is possible, it
supplies the order into a list containing scheduled re-

Table 7 Identification of sub-agents patterns for the resource agent as used by Wannagat [27]

Sub-agent name Main functionality ISA 95
level

Real-time Source type
info.

Communication base Key properties Rel. work

Resource agent Deliberates and reasons
about the demanding
task to answer to the
PM with an offer

L0–L2 Yes Hardware Fieldbus IEC 61158
Industrial Ethernet,
EtherCAT

Autonomy,
reactiveness

[7, 19, 28,
32]

Agent interaction Allows remuneration
between software
objects at runtime
depending on the
current situation set

L0–L2 Yes Data/hardware Cooperativeness

Communication
agent

Coordinates the
message-based
communication
between the agents
on a single PLC or
net PLC

L0–L2 No Data Cooperativeness,
reactiveness

Agent management
system

Contains methods for
de/registering module
to/from the system

L2 Yes Data FIPA specification Cooperativeness,
proactiveness

Process agent Supervises and handles
global tasks that
concern the whole
system (e.g., check
global errors)

L0–L2 No Data Cooperativeness,
proactiveness

Table 6 Reconfiguration of faulty devices MAS (Wannagat [27]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility, reliability, and reconfigurability

Pattern type MAS implementation concept for faulty sensor or actuator identification in automation systems

Pattern name Agent@PLC

Pattern description Main part is the resource agent (RA), and three more sub-agents. See Table 7.

Context/area of
application

Solution adapts the actual values with appropriate changes instead of using worst-case values in predefined replacements.
The process operation time will be longer under the prerequisite that the process operation is still beneficial with reduced
precision, speed, etc. This leads to higher availability in different context and domains

MAS-architecture Hybrid-pattern replaces faulty sensor value with virtual one, calculated based on other sensor’s and model’s information
(MDE based calculation). The faulty sensor has to be identified. The possible decrease in correctness is identified; the
virtual sensor is used until the real one is available again

Solution See Fig. 1

Knowledge base and
processing

Object-oriented and agent-based concepts (OOP) and Systems Modeling Language (SysML)

Learning/knowledge
acquisition

Possible, filtering wrong values

Implementation IEC 61131-3

Real-time properties Hard real-time capable thanks to the resource agents’ behavior into physical plant devices such as PLC

Dependability Higher degree of dependability of the MAS–failures of plant components detected by virtual sensors

MAS autonomy It is half-half dependable–individual control agents represent and control technical plant units (e.g., machines) to allocate
their services encapsulated [28]

Others Application uses three different type virtual sensors

Int J Adv Manuf Technol (2019) 105:4005–4034 4013

quests. There is also a System Agent with two main re-
sponsibilities. First, it provides the module report checked
in the module’s knowledge base to the Coordinator.

Secondly, it processes from Order Agent requests. The
Coordinator is the highest authority of the system that
initiates the registration or deregistration of modules and

Fig. 2 Identification of MFS
patterns in Fischer’s architecture
[32]

Table 8 Design pattern for MFS (Fischer [32]), according to the introduced classification

Criteria Descriptions

Pattern category Reconfigurability and flexibility (changeability) pattern

Pattern type Agent control approach enhancing the flexibility and reconfigurability of MFS

Pattern name Plug and produce of MFS

Pattern description There are five sub-agents with FIPA specifications. See Table 9

Context/area of application Logistic domain

MAS-architecture Reactive

Solution See Fig. 2

Knowledge base and processing 1) MAS system: agent is implemented with the module’s control code on an individual PLC. 2) Coordinate
system approach: use of two different types the module and global coordinates system

Learning/knowledge acquisition No

Implementation Sub-agents: FIPA and ADS (automation device specification) protocols, implemented in IEC 61131-3. Low level:
IEC 61131-3, object-oriented extension

Real-time properties Yes, since PLCs are hard real-time systems they have to ensure constant cycle times to read/write/process all the
MFS signals

Dependability No

MAS autonomy Half-half autonomy thanks to acting individual agents, which are capable of communicating to give a task, but, a
coordinator connects the MAS to superordinate levels

Others Re-routing considers not only transportation abilities but also manipulations, which need to be performed in order
to fulfill an order correctly

Int J Adv Manuf Technol (2019) 105:4005–40344014

the recalculation of the system KB at startup or when the
system configuration changes. Table 9 shows the list of
sub-agents for the MAS architectures for MFS design pat-
tern [32].

A Control Agent directly communicates with the field con-
trol level through Program Organization Units (POUs), and
represents the lowest entity in the MAS heterarchy [15]. A
POU gets information or module requirements for founding

Table 9 Identification of sub-agents patterns for MFS as used by Fischer [32]

Sub-agent name Main functionality ISA 95
level

Real-
time

Source type
info.

Communication base Key properties Rel. work

Agent
management
system

Contains methods for
de/registering module
to/from the system

L2 Yes Data FIPA specification Cooperativeness,
proactiveness

FIPA, [7, 37]

Coordinator agent Initiates add or removal
modules (highest
authority)

L2 No Data Automation device
specification (ADS)
protocol

Autonomy,
proactiveness

Communication
agent

Transfers and receives
information of agents via
ADS and Ethernet
communication

L0–L2 Yes Data/hardware Cooperativeness,
reactiveness

Order agent Manages the incoming
module sub-orders

L0–L1 Yes Hardware Cooperativeness

System agent Module description and
processes sub-orders
provides

L2 Yes Hardware Cooperativeness

Control agent Communicates with the
control POUs to get
data/starts actuators
connection to the
hardware

L0–L1 Hardware Reactiveness

Fig. 3 Patterns for self*-control MAS in Ryashentseva’s architecture [38]

Int J Adv Manuf Technol (2019) 105:4005–4034 4015

the module’s KB. Individually, one of the sub-agents and
modules recorded above are implemented as an individual
Function Block (FB) into PLC software and a device. The

module’s capabilities and agents are bounded by techniques
given to the equivalent FB following object-oriented exten-
sions with IEC 61131-3 languages [15].

Table 10 Agents pattern for self*-control architecture (Ryashentseva [38]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility pattern

Pattern type Supervisor-based self-adapting architecture

Pattern name Agents and SCT based self*-control architecture for production systems

Pattern description Pattern consists of five sub-agents. See Table 11

Context/area of
application

Applicable in different context and domains

MAS-architecture Hybrid (the high-availability agent reacts on the failures of the other sub-agents proactively, while other agents operate
reactively)

Solution See Fig. 3

Knowledge base and
processing

Meta-model and ontology/inference machine and meta-model

Learning/knowledge
acquisition

Learning is possible: fuzzy-model is located in supervisor agent and can be learned through the experience of rescheduler
agent and executive agent

Implementation Modeled by SysML, implement with FIPA standard

Real-time properties Hard real-time capabilities since the executive agent exchanges data with sensor, actuator and other hardware agents (e.g.,
PLC); Other sub-agents in real-time are working on a request, selecting a suitable resources

Dependability MAS is valid to provide higher reliability, reconfigurability, security and safety

MAS autonomy Knowledge base is edited autonomously; reconfiguration is not autonomously

Others Domain specific knowledge and model are editable during run-time

Table 11 Identification of sub-agents patterns for self*-control as used by Ryashentseva [38]

Sub-agent
name

Main functionality ISA 95
level

Real-time Source type
info.

Communication base Key properties Rel. work

Executive
agent, EA

Exchanges data with sensor, actuators
and other hardware agents (e.g.,
PLC), safety maintenance (with SA)

L0–L1 Yes Data/hardware FIPA specification Cooperativeness [7, 16, 32]

Supervisor
agent, SA

Communicates ERP/MES and
peripheral systems, process
optimization, decision making,
resources’ plans (with DA)

L2–L4 Yes Data/hardware FIPA specification Cooperativeness [32, 51,
52]

Dispatcher
agent, DA

Dispatches the system (with HAA);
knowledge base (resources,
services, modes); provides the
control rules, plan services and
resources (with the EA and SA)

L1–L2 Yes Data/hardware FIPA specification Cooperativeness,
reactiveness

[27, 32]

High
availability
agent, HAA

Provides safety maintenance (with
EA); fault tolerance: back-up
controller; security: leakage
protection; safety: system work
check; dispatcher of the crossed
tasks (DA)

L0–L1 Yes Data/hardware FIPA specification Cooperativeness,
autonomy

[16]

Rescheduler
agent

Implementation resources
configuration (with SA/DA); KB
tuning (DA); mode identification
together with EA and SA

L1–L2 Yes Data/hardware FIPA specification Cooperativeness,
autonomy

[16, 27,
51, 53]

Int J Adv Manuf Technol (2019) 105:4005–40344016

4.3 Design pattern for agents with self*-control

The MAS architecture with self-control from Ryashentseva [38]
consists of five logically and physically separated sub-agents

cooperatively performing different tasks (see Fig. 3). The tasks
of each sub-agent in this pattern are evenly allocated between
them, describing all the necessary functions and properties of the
cyber physical control system, e.g., from the field level, where

Table 12 Design pattern for resource access (Lüder [16]), according to the introduced classification

Criteria Descriptions

Pattern category Flexibility, adaptability, and agility pattern

Pattern type Resource access pattern enables coordination of resources and decoupling of control layers. A structure of
interacting resource related agents is applied enabling processing capability aggregation

Pattern name Resource access design pattern

Pattern description Two mandatory types of sub-agents: the resource related agent and order agent. See Table 13

Context/area of application For any production system control and its architecture representation

MAS-architecture Hybrid

Solution See Fig. 4

Knowledge base and processing Ontology/processing: sub-agents types will execute a negotiation process based on a contract net protocol

Learning/knowledge acquisition No

Implementation Implementation of production process related capabilities and their control; FIPA specifications

Real-time properties Yes, hard real-time capability through to the resource related agent type

Dependability Medium maintainability since the product type information agent stores detailed info about the product ordered,
the maintenance actions and others

MAS Autonomy By one sub-agent type providing decision support

Others Representation of the forming of agent coalition and physical resource access, which are required for production
process execution

Fig. 4 Resource access design pattern from Lüder et al. [16]

Int J Adv Manuf Technol (2019) 105:4005–4034 4017

the communication with legacy systems is considered, to the
highest levels of automation pyramid, where the availability of
resources is also considered to produce the highly customized
product. For example, the High-Availability Agent is responsible
for safety and security functions, whereas the Rescheduler Agent
is in charge of data processing inside the process control. This
last sub-agent also ensures the availability of all necessary re-
sources of the system. The Supervisor Agent performs supervi-
sory tasks concerning data processing in the MAS and process
optimization. Table 10 shows the pattern and Table 11 shows the
list of sub-agents of the MAS self*-control architecture [38].

The Dispatcher Agent manages access to the system
functions and deals with the knowledge base to ensure
sustainable control. The Executive Agent is used to com-
municate with and control the legacy systems that are used
now in the industry. This MAS control architecture con-
tributes to high product customization and quality due to
its low development and implementation costs. The univer-
sal features of the proposed control system make its oper-
ation and adaptability feasible for different uses in the
industry.

4.4 Resource access design pattern

The resource access design pattern presented by Lüder et al.
[16] is shown in Fig. 4. It consists of a Resource Related
Agent that provides process-related capabilities to the global
MAS by registering them with the Resource Capability
Monitoring Agent. Control devices (e.g., PLC, RNC, CNC,
etc.) typically implement the single resource-related parts of
the manufacturing process. These execute control modules
and software with hard real-time reaction (often < 1 s). One
category of the Resource Related Agent is the Field Control
Agent that provides fundamental means to access and directly
interact with the field control level by applying timing restric-
tions. The second sub-agent is the Aggregating Agent, which
has not a direct access to the field control level, but it is also
able to organize actions of other resource related agents by
integrating them in a higher-level action. This sub-agent gains
more multifaceted abilities by controlling the coordinated ap-
plication of the underlying abilities.

Table 12 shows the design pattern of the resource access in
production plants [16]. Table 13 shows the list of sub-agents
used by Lüder et al. in this pattern [16].

The classification criteria for MAS manufacturing control
from the Section 3 have been applied. The four patterns used
in this classification were selected based on preliminary work
of authors in [18], which demonstrated that patterns could be
identified despite their different terminology. By applying the
classification to 20 different MAS (see Section 5.6), there is a
necessity to differentiate the classification of sub-agents of
each MAS architecture. In the following section, the patternsTa

bl
e
13

Id
en
tif
ic
at
io
n
of

su
b-
ag
en
ts
pa
tte
rn
s
fo
r
re
so
ur
ce

ac
ce
ss

as
us
ed

by
L
üd
er

et
al
.[
16
]

Su
b-
ag
en
tn

am
e

M
ai
n
fu
nc
tio

na
lit
y

IS
A
95

le
ve
l

R
ea
l-
tim

e
S
ou
rc
e
ty
pe

in
fo
.

C
om

m
un
ic
at
io
n
ba
se

K
ey

pr
op
er
tie
s

R
el
.w

or
k

O
rd
er

ag
en
t

A
llo

ca
te
s
of

or
de
r
re
la
te
d
ac
tio

ns
le
ad
in
g
to

an
or
de
r
re
la
te
d
sc
he
du
le

L
2–
L
4

N
o

D
at
a

FI
PA

sp
ec
if
ic
at
io
n

A
ut
on
om

y,
pr
oa
ct
iv
en
es
s

F
IP
A
,[
38
],

w
or
ks

in
[1
6]

Pr
od
uc
tt
yp
e
in
fo
rm

at
io
n
ag
en
t

St
or
es

de
ta
ile
d
in
fo

ab
ou
tt
he

pr
od
uc
to

rd
er
ed
,t
he

m
ai
nt
en
an
ce

ac
tio

ns
to

be
ta
ke
n,
da
ta
to

be
co
lle
ct
ed
,e
tc
.

L
2–
L
4

N
o

D
at
a

FI
PA

sp
ec
if
ic
at
io
n

C
oo
pe
ra
tiv

en
es
s

A
lg
or
ith

m
pr
oc
es
si
ng

ag
en
t

(d
ec
is
io
n
su
pp
or
ta
ge
nt
)

E
xe
cu
te
s
of

m
at
he
m
at
ic
al
al
go
ri
th
m
s
re
qu
ir
ed

to
ca
lc
ul
at
e
sc
he
du
le
pr
op
os
al
s,

co
st
s
or

ot
he
r
ne
go
tia
tio

n
re
le
va
nt

va
lu
es

L
2–
L
4

N
o

D
at
a

FI
PA

sp
ec
if
ic
at
io
n

C
oo
pe
ra
tiv

en
es
s

Sy
st
em

st
at
e
m
on
ito

ri
ng

ag
en
t

(d
ec
is
io
n
su
pp
or
ta
ge
nt
)

Pr
ov
id
es

or
de
r
an
d
re
so
ur
ce

ag
en
ts
da
ta
ab
ou
tt
he

cu
rr
en
ts
ta
te
of

th
e
ov
er
al
l

sy
st
em

s
an
d
its

pa
rt
s
(r
es
ou
rc
e
av
ai
la
bi
lit
y,
al
lo
ca
tio

n,
et
c.
)

L
2–
L
4

N
o

D
at
a

FI
PA

sp
ec
if
ic
at
io
n

C
oo
pe
ra
tiv

en
es
s

R
es
ou
rc
e
ca
pa
bi
lit
y
m
on
ito

ri
ng

ag
en
t

C
ol
le
ct
s
an
d
di
st
ri
bu
te
s
re
so
ur
ce

ca
pa
bi
lit
y
de
sc
ri
pt
io
ns

re
qu
ir
ed

to
id
en
tif
y

re
so
ur
ce

ag
en
ts
ap
pl
ic
ab
le
fo
r
a
ce
rt
ai
n
ac
tio
n
fo
r
an

or
de
r

L
2–
L
4

N
o

D
at
a

FI
PA

sp
ec
if
ic
at
io
n

C
oo
pe
ra
tiv

en
es
s

R
es
ou
rc
e
re
la
te
d
ag
en
t

Ta
ke
s
al
lr
es
ou
rc
e
al
lo
ca
tio
n
re
la
te
d
de
ci
si
on
s
le
ad
in
g
to

a
re
so
ur
ce

re
la
te
d

sc
he
du
le

L
1–
L
3

Y
es

D
at
a/
ha
rd
w
ar
e

FI
PA

sp
ec
if
ic
at
io
n

C
oo
pe
ra
tiv

en
es
s,

re
ac
tiv

en
es
s

A
gg
re
ga
tin

g
ag
en
t(
re
so
ur
ce

re
la
te
d
ag
en
t)

C
oo
rd
in
at
es

sk
ill
s
of

ot
he
r
re
so
ur
ce

re
la
te
d
ag
en
ts
to

m
or
e
co
m
pl
ex

sk
ill
s

L
1–
L
3

Y
es

D
at
a

FI
PA

sp
ec
if
ic
at
io
n

C
oo
pe
ra
tiv

en
es
s,

au
to
no
m
y

Fi
el
d
co
nt
ro
la
ge
nt

(r
es
ou
rc
e

re
la
te
d
ag
en
t)

Pr
ov
id
es

ba
si
c
sk
ill
s
by

di
re
ct
ly

ac
ce
ss
in
g
an
d
in
te
ra
ct
in
g
w
ith

fi
el
d
co
nt
ro
l

de
vi
ce
s

L
0–
L
2

Y
es

H
ar
dw

ar
e

FI
PA

sp
ec
if
ic
at
io
n

C
oo
pe
ra
tiv

en
es
s,

au
to
no
m
y

Int J Adv Manuf Technol (2019) 105:4005–40344018

included in MAS approaches will be classified further based
on similar function terminologies and automation levels.

5 Common functionalities and automation
level patterns (RQ3)

In this part, the application of the introduced approaches in
Section 4 and their pattern identification are discussed.

Abstracting a logical composition of CPPS and the scope of
its application’s environment suggest the practice of composi-
tional architecture [5, 40, 54, 55]. CPPS functions with services
can be implemented by recombining the features of the differ-
ent types of sub-agents or components inside the MAS ap-
proach. Regarding the design patterns from the MAS models
analyzed, the authors of this manuscript showed in Section 4
that the approaches do not follow the same structure with com-
parable heterarchy (agent’s hierarchy) of the MAS, although
these are similar in certain functional respects. The heterarchy
refers to the field of application of the sub-agents in the auto-
mation levels (e.g., often associated by ISA 95 levels).

Functionalities refer to the sub-agents’ services (functional
requirements) and the quality of them (non-functional require-
ments) [21]. The flexibility of manufacturing systems is real-
ized by an agent-based control. To apply the agent-based con-
trol in practice, it requires a balance between modular and
integral MAS designs. According to Ribeiro in [5], the
MAS’s structure types regarding the modularity can be de-
fined as modular MAS and integral MAS. The modular archi-
tecture is composed of hybrid modules interconnected to re-
spectively well-defined interfaces. The integral architecture
contains multiple functions, and interacts with many agent
interfaces and often has no discernable modules.

As already mentioned in Section 1.1, the superficial MAS
pattern description does not satisfy the aim of this paper to
create a ready-made solution. Consequently, it is necessary to
identify more specified pattern definitions. Based on the anal-
ysis of the collected approaches, this section focuses on the
common sub-agents and their action fields, which are usually,
applied in the MAS architectures. The next section introduces
patterns called resource access, knowledge base, coordination
process, and communication interface. According to the anal-
ysis, the identifiedMAS solutions are aligned with these func-
tion terminologies—as part of functional requirements—al-
though sometimes with different names.

5.1 Resource access common function

Resource Access (RA*) is a common function closely related to
the hard real-time capabilities of the MAS. For example,
Wannagat’s Resource Agent (Section 4.1) is a type of a modular
architecture. Its four modules contain limited application cases
and the RA modules interact over specific interfaces (e.g.,

Agent Interaction interface or Communication agent). RA is very
similar to the MFS architecture from Fischer (see Figs. 1 and 2),
and also to another work of MFS in [37]. A sub-agent module
from Fischer, called Application agent, encompasses the system
behavior. However, a MAS architecture includes other three sub-
agents with additional modules: order agent, system agent, and
control agent. Fischer’s architecture can be considered as a mod-
ular architecture based on agents’ entities and modules.
Furthermore, this MAS has crucial similarities with the RA of
Wannagat [19, 28]. Instead, Ryashentseva (see Fig. 3) and Lüder
et al. (see Fig. 4) approaches are integral architectures where the
MAS have similar sub-agent types: the executive agent and the
field control agent. Both provide basic abilities and interact with
all components and real-time devices in the field control level,
respectively.

All specified behaviors of the MAS architectures and their
interactions across the defined interfaces are identical.
Besides, the goals of resource agent, application agent, exec-
utive agent, and field control agent include direct connectivity
with the field control level to get data from sensors and actu-
ators in order to manage the incoming module orders.

5.2 Coordination process common function

The MAS architectures from Ryashentseva and Lüder et al.
present production processes with related capabilities to coor-
dinate an overall system by managing the internal components,
such as a supervisor agent, rescheduler agent, and resource
capability monitoring agent. These types of sub-agents are gen-
erally located higher in theMAS heterarchy and are parts of the
Coordination Process (CP) pattern function. CP defines the
boundaries for the sub-agents’ operations and reconfigurations
in order for them to stay within the adequate limits (e.g., re-
strictions of RA). The description of Fischer’s MAS architec-
ture has three main entities: the AMS, DF, and the specific
Coordinator Agent (see Section 4.2). RA from Wannagat has
an exclusive sub-agent for the coordination process and its
functionality is covered by the Diagnosis module and
Planning module (see Section 4.1). All the sub-agents shown
in this section could be grouped into the CP function, since
these are based on FIPA standard and contain methods for de/
registering modules from/to any MAS approach [7, 19, 38].

5.3 Knowledge base common function

Another crucial MAS pattern is the Knowledge Base (KB).
For Wannagat, there is a KB module, which includes an ex-
plicit system model of the consistent technical component as
local knowledge. Fischer uses the same pattern divided in the
System KB and the Module KB. In the case of the integral
architectures, there are clear examples with Ryashentseva (see
Fig. 3) and Lüder et al. (see Fig. 4) approaches, since both are
just based on agents’ entities with specific tasks. Another

Int J Adv Manuf Technol (2019) 105:4005–4034 4019

similarity of the self-control architecture is the presence of the
Dispatcher Agent. This sub-agent is comparable to the KB
characteristics of the Resource Related Agent. In general,
the KA should contain an explicit system model of the corre-
sponding technical component as local knowledge. The com-
ponents (sub-agents, modules, and databases) composing the
KB function are able to check whether the values of the pa-
rameters of the technical systems and processes do not violate
the predetermined constraints [7, 28, 38].

5.4 Communication interface common function

The Communication Interface (CI) function enables and ab-
stracts communication in between all components (sub-
agents, modules, databases, etc.) of all ISA 95 levels.
Different platforms via open communications interfaces
(e.g., industrial Ethernet, Profibus) and appropriate communi-
cation protocols (e.g., based on JADE, applying JAVA and
FIPA ACL Messages [31, 39, 56]) have to be accepted by
the CI function. These communication interfaces are also used
for sending errors and state messages to the sub-agents ranked
higher [15, 19, 28, 32, 38]. For example, the Communication
Agent, from Fischer, transfers and receives information of

sub-agents via ADS protocol (ADS, automation device spec-
ification) and Ethernet communication [7, 32]. Tasks of the CI
function are compared with the specific goals of the interfaces
from RA, which are called Agent Interaction and Status. From
Ryashentseva (see Fig. 3) and Lüder et al. (see Fig. 4) ap-
proaches, there are additional sub-agents called High
Availability Agent and Aggregation Agent with special pre-
dictive abilities for maintenance purposes. However, in com-
parison with the Wannagat and Fischer design patterns,
Ryashentseva and Lüder et al. do not clearly define the sub-
agent designated to the CI function.

5.5 Summary of the common functionalities

Comparing the designed patterns in Wannagat, Fischer,
Ryashentseva, and Lüder et al., Fig. 5 shows a summary of
them regarding the common functional requirements
discussed in this section. The four circles represent the KP,
CP, CI, and RA* as well as based on the internal MAS com-
ponents (sub-agents, databases, and modules). In Fig. 5, it is
shown that RA*, CP, and KB are often implemented by the
authors (more MAS components elements are inside the cir-
cles) than CI, which was considered only by Wannagat and

Fig. 5 Summary of the comparison of Wannagat, Fischer, Ryashentseva, and Lüder et al. MAS approaches to map common functional requirements

Int J Adv Manuf Technol (2019) 105:4005–40344020

Fischer. Additionally, some MAS components (e.g., high
availability agent) do not assign a functional pattern, but these
can apply appropriate quality controls (non-functional
requirements).

5.6 Automation levels and features of sub-agents
patterns

This part explains the most important patterns and their fea-
tures. Sub-agents have been specified and applied in the auto-
mation levels mapped into the ISA 95/IEC 62264 standard,
with open software and technologies application. The stan-
dard follows the traditional automation pyramid (five levels:
L0-L4) where the Plant Level (L0) is the lowest level. The
identified sub-agent patterns show some random elements
with proprietary interfaces that are often used in the industrial
control (e.g., mostly PLCs implementing IEC 61131-3 lan-
guages programs). Next, Device Level (L1) includes the most
popular sub-agent called RA. The components of this level
have typically control devices’ Reaction time (10 ms < RCτ <
1 s). From the functional point of view, RA covers the com-
ponents of a manufacturing system in the real world (L0), with
the lowest RCτ (partially < 1 ms). RA is also a part of the

SCADA Level (L2), with both hard and soft real-time capa-
bilities (1 s < RCτ < 60 s). The Process Agent is the most
popular sub-agent for the MES Level (L3), with medium re-
action time (1 h < RCτ < 1 day). PA sub-agent pattern usually
supervises the execution of a production recipe/plan, and in-
teracts with RAs and AMSs to achieve this goal. In contrast to
AMS, PA is not responsible for the technical system but for
the production recipe, since it usually requires non real-time
capabilities. The MOM/MES functionalities are often results
of negotiations/collaborations among different RAs, AMSs,
and PAs. In this manner, human operators can revise produc-
tion orders and rescheduling decisions that result in those ne-
gotiations. Another popular sub-agent here is the
Communication Agent (often in L1-L3) that converts propri-
etary interfaces into multiple protocols. If for example some of
the RAs request has to be linked to upper automation levels,
they usually communicate via CA in protocols such as ADS,
OPC UA, and FIPA specifications. Figure 6 shows the orga-
nization of the sub-agents in the automation pyramid for the
Industry 3.0 and its migration to the adapted “diabolo” archi-
tecture [57] for Industry 4.0.

The left part of Fig. 6 shows traditional automation levels
with all identified sub-agents. The vertical integration of this

Part a) Part b)

Fig. 6 Migration from the traditional levels of the automation pyramid
(part a) to the “diabolo” [57] topology (part b). @: Sub-agent pattern;
AMS, agent management system; CA, coordination agent; CBM,
condition based monitoring; CMC, collaborative manufacturing
community; CPPS, cyber physical production system; DMC,
decentralized manufacturing community; DSS, decision support system;
H, horizontal integration; IIoT, industrial internet of things; KPI, key

performance indicator; L, life-cycle integration; MAS, multi-agent
system; MES, manufacturing execution systems; MOM, manufacturing
operations management; OEE, overall equipment effectiveness; PA,
process agent; PHM, prognostics and health management; QMS,
quality management system; RA, resource agent; RCS, resilient control
system; RT, real-time; SAP, systems applications products; SCADA,
supervisory control and data acquisition; and V, vertical integration

Int J Adv Manuf Technol (2019) 105:4005–4034 4021

pyramid is one of the essential challenges for the dynamic
evolution of Industry 4.0 [57]. Therefore, the right part intro-
duces the adapted Distributed Architecture to Bolster

Lifecycle Optimization or “diabolo” from [41]. This part of
Fig. 6 shows the crucial functions of an MES within the top
cone and device level processes (real and non-real-time) on

Table 14 List of sub-agents patterns for MAS architectures extended from [18]
Pa

tte
rn Sub-agent name ++Resource

Agent (RA)
++Process Agent
(PA)

++Agent
Management
System (AMS)

+Communication
Agent (CA)

Others
(no pattern)

Common functionality KB, RA* KB, CP KB, CI, CP KB, CI KB

ISA 95 level 0–2 2–3 1–2 1–3 0–4

Type of agent [8]

(reactive or proactive)
epocsSAMevitcaernetfOevitcaorpnetfOevitcaorpnetfOevitcaernetfO

M
ai
n
au

th
or

la
st
na

m
e

Badr –RA ±Job@ ±Service@ – Job group@ Smart

manufacturing

Brehm et al. ++(RA || field
related@)

– ++Gateway@ ++Broker@ Operator@
(HMI)

Energy systems

Cruz et al. ++RA ++(Product@ &

diagnosis@)

++AMS – – Smart

manufacturing

Fischer ++(Control@ &

order@ &

system@)

++Coordinator@ ++AMS ++CA – MFS

Folmer ++Control@ +Process@ +System@ ++CA – Smart

manufacturing

Legat ++Execution@ ++(Supervision@ &
reconfiguration@)

++AMS – – Smart
manufacturing

Lüder et al. ++(RA || field

related@-RRA)

++Decision

support@-DSA

++(Order@ &

product type
info related@)

– Resource

capability
monitoring@,

(type of DSA)

Smart

manufacturing

M. Hoffmann +(Autonomous@ ||
transport@-

specific)

++ (Coordination@
|| manufacturing,

specific@)

– +Customer@ ERP
Interface@

Smart
manufacturing

Nieße A. +Control@ +Planning@ – – – Energy systems

P. Hofmann +Control@ – +Rule set

adaptation@

– Image

object@

Image

processing

Pech ±User@ ±Query

management@

±Query@ ±Ontology@ Information

retrieval@

Information

processing

Rauscher – ±(Coordination@ &
rule instantiation@)

±Model
related@

– Rule@ Information
processing

Regulin et al. +Module@ ++Coordinator@ ++AMS – – MFS

Rehberger ++RA ++Product
management@

– +@interaction – Smart
manufacturing

Ryashentseva ++(Executive@ &

rescheduler@ &
dispatcher@)

++Supervisor@ – – High

availability@,
HAA

Smart

manufacturing

Schütz ++RA ++PA ++(Control

strategy@ &
system@)

++(CA ||

@interaction)

– Smart

manufacturing

Theiss +Plant@ ++(Test

coordination@ &
monitoring@)

±Analysis@ +Test@ – Communication

agent

Ulewicz ++(Hardware@ &

system@)

– ++AMS ++(CA &

system@)

– Smart

manufacturing

Vogel-Heuser et al. ++Plant@ ++(Coordination@

& customer@)

++AMS – – Smart

manufacturing

Wannagat ++(RA ||
control@)

++(PA & system@) ++AMS ++(CA ||
@interaction)

CPPS plant@ Smart
manufacturing

Notations: same colors mean these are following a similar pattern with these degrees of “likeness”: ++High; +Medium; ±Low; −Very low or nothing.
Symbols for logical representations are & (and) sub-agent are complementary; || (or) sub-agent are similar. The names are reduced replacing “agent”
word by the “at” sign (@). References of the works are: Badr [58]; Brehm et al. [59]; Cruz et al. [31]; Fischer [32]; Folmer [48]; Legat [53]; Lüder et al.
[16]; M. Hoffmann [41]; Nieße A. [35]; P. Hofmann [52]; Pech [42]; Rauscher [51]; Regulin et al. [37]; Rehberger [19]; Ryashentseva [38]; Schütz [28];
Theiss [39]; Ulewicz [7]; Vogel‐Heuser et al. [40] and Wannagat [27]

Int J Adv Manuf Technol (2019) 105:4005–40344022

the bottom of the diabolo. Direct and indirect communication
ways are enabled in the bottom of the cone of the diabolo. The
agent-based CPPS architecture with the four patterns (RA, PA,
CA, and AMS) attempts to harmonize the data exchange be-
tween these two cones (e.g., using modeling language for
technical specifications and evaluation of the processes and
resources by Overall Equipment Effectiveness).

The list of all identified sub-agents is shown in Table 14
and organized in the automation pyramid of Fig. 6 (left side).
In the last case, the AMS is also the main pattern of the L1-L2
levels, since this sub-agent can be mapped in a bidirectional
way between sub-agents’ identifications. The AMS provides a
unified interface that makes it possible for every component of
the same type, regardless of the provider, to be reached with
the same protocol. A major requirement for the sub-agents
introduced in the L0-L2 levels is that they should be execut-
able in a hard real-time operating system and should follow the
hardware settings. The top-level (L4) of ISA 95 has the longest
reaction time for the ERP system with long-term schedules (8 h
< RCτ: < 1 week). L4 components should provide a human
interface and interface with eventually cloud services.

Regarding the sub-agents identified, there are not many sub-
agent types, which mainly provide patterns to create orders or
get status information about this level. An example out of the
patterns in the L4 is the ERP Interface Agent from Hoffmann
[41] that establishes via OPC an internal information exchange
with the ERP. More extended specifications and pattern descrip-
tions of these main sub-agents are scoped in the next section of
this paper.

6 Agent-based CPPS architecture for I4.0
component evaluation (RQ4)

The I4.0 focuses on key aspects of smart manufacturing that can
be explained as interactions between the following features [47,
60]: i) horizontal and vertical integration through value networks
and within a factory or production shop; ii) life cycle manage-
ment that refers the end-to-end engineering; iii) the human beings
coordinating the stream value; and iv) the security to achieve the
confidentiality, integrity, and availability of assuring data (trans-
fer and storage). Likewise, the mass personalization known as

Fig. 7 The landscape of the RAM I4.0’s axes and their optional norms

Int J Adv Manuf Technol (2019) 105:4005–4034 4023

the Additive Manufacturing can combine the smart manufactur-
ing to a paradigmmove for the I4.0 [61]. In order to facilitate and
promote the smart manufacturing aspects mentioned above,
RAMI 4.0 provides a flexible architecture based on functions
and information levels within 3D dimensions. As illustrated in
Fig. 7, there are different applicable standards [47], to follow the
guidelines in the RAMI 4.0 model.

The RAMI 4.0 model provides a structured view of the
multiple levels (even a specific Asset level) using an architec-
ture consisting of three axes (see Fig. 7). The aim of the model
is to create manageable segments (sub-models) by combining
the different axes at each point in the asset’s phases, to repre-
sent each relevant characteristic. The following items describe
the RAMI 4.0 axes distribution [47, 60]:

& The first axis is named the “Architecture hierarchy”. It is
based on the traditional IEC 62264-1 (ISA 95) and IEC
61512-1 (ISA 88) standards and their levels’ hierarchies.
The goal of this first axis is to define assets and their com-
binations with the necessary precision, since the description
of RAMI 4.0 is a purely logical one.

& The second axis is named the “Layers.” This one uses six
layers to represent the relevant information for the multiple
assets’ roles: Business, Functional, Information,
Communication, Integration and Asset.

& The third axis is named the “Product life-cycle.” Based on
IEC 62890, it represents the lifetime of an asset and the
value-added process.

In the next section, the authors of this paper address the
alignment of sub-agent patterns with the RAMI 4.0 model by
comparing only two dimensions. Many similarities can be
found between agent-based architecture for CPPS and the
RAMI 4.0; however, the Product Life-cycle axis is out of this
paper’s scope.

6.1 MAS architecture based on RAMI 4.0 model

Regarding the Layers axis, theMAS proposed based on patterns
should describe the I4.0 components in terms of properties, sys-
tem structures, specific data and functions, and their external
behavior. Since the present layers do not conform to the ISO-
OSI guidelines, it is not mandatory for a RAMI 4.0 layers to
provide the corresponding information. As a result, some layers
can also be ignored in specific domain systems that are not
applicable. A layer just characterizes parts of asset’s behaviors
and their connection between adjacent layers. A possible defini-
tion for the agent-based CPPS architecture is proposed in the
upcoming paragraphs.

An Asset is a physical/logical item having actual value to the
organization [34, 60] (e.g., products, equipment, software, hu-
man resource, standards, and documentation). In case of a phys-
ical asset, according to the IEC TS 62443-1-1, for industrial

control automation, the device under control can contain the
largest directly quantifiable value. The Asset Layer is the lowest
level of the RAMI 4.0 model because it reflects the physical
components, administrated by other upper layers, which are in
the cyber world.

The Integration Layer is a type of adaptation for the transition
among physical and cyber worlds. The main aim of this layer is
to convert a physical variable into a digital one. The resulting
data is converted according to specific formats. Therefore, the
Resource Agent is the most significant entity in this layer. For
example, RAs have the adequate subroutines to send and receive
data for a controller to regulate the speed in a conveyor (sub
function). Additionally, operator interactions could take place
in this layer, e.g., via Human Machine Interfaces (HMIs).

TheCommunication Layer covers connection lines according
to the guidelines of I4.0. This layer distributes information to
other I4.0 components and receives data back from them. The
base of the Communication Layer absolutely follows the seventh
ISO/OSI layer’s guidelines [47]. ACommunicationAgent, using
a uniform data presentation contained by the CPPS, can stan-
dardize the communication methods. In addition, CAs provide
services for control in the route of the adjacent Information
Layer. The definition of communication technologies within
I4.0, such as Machine-to-Machine (M2M) and Machine-to-
Business (M2B), e.g., the OPCUA (IEC 62541), clearly applies
to direct communication [34]. Other communication protocols,
such as FIPA specifications or MQTT, are much more flexible;
therefore, they enable indirect communication [31, 34]. For this
layer, the patterns AMS, DF, and MTS from FIPA can support
the Communication Layer and will be further explained in the
Functional Layer. For an agent-based CPPS architecture, the
scalability and the interoperability of industrial communication

Fig. 8 Agent-based CPPS architecture aligned into two axes of RAMI
4.0

Int J Adv Manuf Technol (2019) 105:4005–40344024

networks (IEC 61784) are decisive for numerous smart compo-
nents and functions as well (e.g., RFID sensors).

The Information Layer defines the information for signifi-
cant functions and data storage sites of a particular asset (i.e.,
the Cloud) [47]. The PA could be a logic abstraction for a
product in this layer. Since the PA holds its own information
of procedures and plans, it is responsible for coordinating its
own production. The PA pattern is a special entity of the agent-
based CPPS, which orchestrates the execution of processes
steps (with cooperative skills to interact with RAs, CAs, and
AMSs sub-agents). The Information Layer is important to un-
derstand the different partial models of all the sub-agents, in-
cluding existing data exchange formats for each specific case.
To fulfill the contents of this layer, its 4.0 implementation
should be based on models integrating different fields with
reliable and standard methods. Here, RAMI 4.0 suggests
Automation Markup Language (AutomationML) specifica-
tions, which trace a modular document structure with the
aim to join the diverse and modern engineering tools in their
heterogeneous disciplines (e.g., mechanical engineering and
electrical designs). Thus, for information models, the
AutomationML can enhance or adapt the existing XML-based
data formats, integrating AML and OPC (DIN SPEC 16592),
or using IEC 62424 (CAEX topology), ISO PAS 17506
(Collada), IEC 61131 (PLC open XML). It is also possible
to use engineering and designing tools, e.g., ISO/IEC 19514
(UML/SysML) [34]. For the semantics of AutomationML, the
standard’s properties from ISO 13584-42/IEC 61360 (eCl@ss:
classification and product description) with the Common Data
Dictionary (IEC 61360 CDD) can be applied. All of the above
comply with the standard for the Digital Factory (IEC 62832).

The Functional Layer follows the rules of I4.0 by assigning
all logical functions and services of the assets. These technical
functionalities get data from the Information Layer and depos-
it them back in the same layer, as methods and decision-mak-
ing logic (e.g., mathematical functions) [34, 47]. According to
the use case, these methods can also be executed in other
lower layers such as the Integration, Communication Layer
or Asset Layer. Therefore, AMSs have a fundamental role in
this layer, since it contains methods for registering and
deregistering modules to and from the system. Other leading
patterns are the knowledge base modules because they allow
the RAs or PAs to check whether the parameters of the tech-
nical systems and processes are kept within the predetermined
functional limits.

The Business Layer is the highest level that defines the
pertinent business procedures with their structure require-
ments and the business-related features of the assets
(e.g., regulations, legislative requests, contracting, and licens-
ing) [60]. This layer does not refer to any concrete systems
such as the ERP, since the Functional Layer (in the factory
plant context) usually sets the ERP’s functions. Since no

pattern was found that could fulfill the Business Layer’s re-
quirements, this layer will not be further researched in this
paper.

Each sub-agent located in the agent-based CPPS architec-
ture, as Fig. 8 shows, is not required to have a fixed location in
the RAMI 4.0 layers.

Given the model associates multiple layers in two dimen-
sions, each MAS component pattern is a primary part with a
specific role in its respective layer, but they are possibly joined
with the other adjacent layers, as described above.

There is another important second axis fromRAMI 4.0, the
Architecture hierarchy that represents the hierarchy position
of functionalities and responsibilities within the factories/
plants. This functional hierarchy is not only the equipment
classes or the automation levels of the classical pyramid. As
mentioned above, this axis follows the ISA 95 and ISA 88
standards to realize the classification within the plant (see Fig.
8) [47]. However, RAM I4.0 considers other levels to cover as
many areas as possible from traditional industry to the new
factory automation. New terms based on ISA 95 levels (see
Section 5.6) are established such as the Enterprise Level (L4),
Work Unit Level (L3), Station Level (L2), and Control Device
Level (L1). I4.0 considers other multiple equipment or sys-
tems within the factory because not only the controllers are
decisive for this one. Therefore, the Field Device Level (L0)
has been added below the Control Device Level, and it is a
practical level of a smart field device (e.g., an MAS RFID
intelligent sensor [62]). Moreover, not only the plant and its
equipment are essential in I4.0, but also the products to be
factory-made itself. Then, RAMI 4.0 adds the Product Level
as the lowest level that allows standardized consideration of
the product to be mass-produced and the manufacturing capa-
bility (with their relationships).

An addition has also been made at the highest end of the
Architecture hierarchy axis. The two ISA/IEC standards cited
only define the levels within a plant (see Section 5.6).
However, I4.0 goes further by describing group corporations,
interdependencies, and net of factories (e.g., alliance with out-
er engineering companies and component suppliers/cus-
tomers). Consequently, the Connected World Level has been
added to observe above and outside the Enterprise Level.
Regarding the heterarchy sub-gent’s patterns in this axis, their
locations are based on the first (Lo) to last (L4), as ISA 95
automation levels mention. Consequently, the Connected
World and the Product levels are out of the agent-based
CPPS architecture proposed in this paper.

6.2 Design pattern for the administration shell

For this section, from [1, 34], there are specific terms as im-
portant definitions for I4.0:

Int J Adv Manuf Technol (2019) 105:4005–4034 4025

& The Industry 4.0 component (henceforth, I4.0 component)
is a “globally uniquely identifiable participant with com-
munication capability consisting of administration shell
and asset within an I4.0 systemwhich there offers services
with defined QoS (Quality of Service) characteristics.”

& The administration shell is the “virtual digital and active
representation of an I4.0 component in the I4.0 system and
contains the manifest and the component manager.”

& The Manifest is an “externally accessible defined set of
meta-information, which provides information about the
functional and non-functional properties of the I4.0
component.”

& The component manager is “the organizer of self-manage-
ment and of access to the resources of the I4.0 component…”

Looking to fulfill the requirements for the CPPS and the
RAMI 4.0 (see Section 2.1), a general organization for the ad-
ministration shell based on the MAS can be developed. For this,
the I4.0 components for the CPPS proposed display an abstract
form that defines real objects. For example, these could be a
valve as a control element, a pipe as the controlled process, a
sensor as a measuring element, and a PLC’s algorithm as a con-
troller, etc. MAS architecture should be based on design patterns
described above, in both ways, physical (assets) to the cyber

(digital data). Moreover, Information and Communication
Technology (ICT) needs to increase additionally regarding the
appropriate smart manufacturing aspects such as the horizontal/
vertical integrations, product life-cycle, human’s interaction and
others, as mentioned at the beginning of this chapter. As shown
in Fig. 9, the administration shell contains the “Header” and the
“Body” parts. Both in order to provide better identification via
asset(s) designations [34, 47, 60].

The intention of this section is to describe a general imple-
mentation of I4.0 components using a sub model design with
the identified MAS patterns. A basic application of an I4.0
component is based on the suggested international standard
of AutomationML, as a method for the Information Layer, and
OPC UA for the Communication Layer. Both together could
realize the Body of the administration shell of the I4.0 com-
ponents with an agent-based CPPS architecture. For the
Header part, the CPPS provides an adequate unique identifi-
cation of the I4.0 component by a server. Also, the data rep-
resentation and its function access should be integrated.
According to RAMI 4.0 suggestions [47, 60], a unique iden-
tification of the object could be using a UUID (Universally
Unique Identifier) or URIs (Unique Resource Identifiers, e.g.,
for RDF). The AutomationML concept specifies every object
with a UUID that could be kept as long as the object exists.

Fig. 9 CPPS’s administration
shell for I4.0 components
(adapted from [60])

Int J Adv Manuf Technol (2019) 105:4005–40344026

For communication, the I4.0 component provides access to
technical functions pre-realized in the AMS sub-agent (with
their respective DFs and MTSs), in order to enable the access
to the representation of any asset’s information.

The Body part of the administration shell contains structured
sub-models which might denote information and functions [34].
A standardized format eCl@ss, which is based on IEC 61360, is
suggested to describe the data and functions in a diverse and
harmonize format. The features of all sub-models, in conse-
quence will always develop a comprehensible table of contents
(each I4.0 component and its respective associated manifest and
administration shell). As a prerequisite for required semantics,
the Header shall individually recognize administration shells,
Assets, Sub models and their properties globally.

This paper’s approach assumes that a physical asset type of
interest is controlled by open controller architecture (e.g.,
PLC) that implements lower level programing codes (e.g.,
IEC 61131-3). As the MAS design patterns are shown (see
Section 5), the sub-agents of the different assets type can be
located on all ISA 95 automation levels. Hence, for the oper-
ation of an I4.0 component, it has to be clearly specified,
which technical functions are provided by the component
and their configurations limits. For the PLC implementation
example, adequate variables for the code should be accessible
via functions with multiple OPC UA servers interlinked and
following a service-oriented architecture (SoA), proposed in
[34]. As a result, the administration shell of a I4.0 component
consists of multiple sub models (first is the MAS architecture)
and a nonempty set of interl inked designs (e.g. ,
AutomationML projects, mechanical computer-aided designs
or CADs, interconnecting FBs/POUs models, UML classes
diagrams, and others [47]).

Other standards can be applicable to MAS patterns and
aligned to RAMI 4.0 with multiple aims (see Fig. 7): The
VDMA 24582 (condition monitoring) for maintenance pur-
poses into the Asset Layer and Integration Layer. The ISO/
IEC 27000 for the security of management systems. The IEC

62443 used for the network system security and IEC 62351
for secure authentication [63]. The IEC 61511 applies the
functional safety and the IEC 62061/ISO13849 relates the
machinery safety. Software quality can be valued by ISO/
IEC 25010 and the ISO/IEC 25023 (SQuaRE method) [21].
Semantic web stack can follow the W3C consortium defini-
tions such as SPARQL, RIF/SRWL, RDF/S, and OWL.
Energy efficiency can refer to the ISO/IEC 20140. Finally,
configuration and programing typical tools are based on
C++ plugins for control languages (e.g., mostly in IEC
61131-3 or IEC 61499 [13, 14], IEC 61804 (FBs for process
control or electronics), and the IEC 62453 (Field device tool,
FDT).

6.3 Discussion of the CPPS and RAMI 4.0 requirements
evaluation

The majority of the requirements specified in Section 2.1 are
already partly completed by the design pattern of the proposed
MAS architecture. First, for the CPPS requirements (Req1.1-
Req1.5), the compatibility to different applications (Req1.1) is
warranted by the open software MAS architecture (see Section
5). Level independence (Req1.2) and platform independence
(Req1.3) are partly achieved by applying four types of sub-
agents: the RAs, PAs, CAs, and AMSs (see Section 5.6).
Using the TCP/IP as fundamental communication protocols,
(e.g., OPC UA) can solve parts of handling and recovery errors
(Req1.4), and allows the CPPSs networks to be accessed by
other applications. By distributing organizational sub-agents in
the cloud (e.g., the PAs, and AMs), the agent-based CPPS is
decentralized (Req1.5), as shown in Section 5. However, the
multiple platform acceptation (Req1.3) and the reconfiguration
of sub-agents (Req1.4) should be further examined by quanti-
tative experimentations. As a first assessment of the platforms
suitability, some experiments with these CPPS requirements
were measured into multiple platforms in [31].

Table 15 Research questions, hypotheses (see Table 1), and their evaluation

Research question Hypothesis Status result Proof section related

RQ1 (how describe MAS patterns?) RH1.1 (valid classification criteria) True 3

RH1.2 (similar design MAS pattern’s terms) True 4, 5

RQ2 (for which CPPS domains?) RH2.1 (different goals and benefits) True 2, 4

RH2.2 (only real-time requirements) Partially true 4, 5

RQ3 (which MAS patterns are reusable?) RH3.1 (functional–and non–requirements) Partially true 5

RH3.2 (specific sub-agents) True 5

RQ4 (how to aligned CPPS to RAMI 4.0?) RH4.1 (simple CPPS aligned to RAMI 4.0) Partially true 6

RH4.2 (administration shell capable) True 6

Int J Adv Manuf Technol (2019) 105:4005–4034 4027

Regarding the RAMI 4.0 requirements, the proposed I4.0
components support multiple engineering disciplines and
norms (Req2.1). For example, the MAS architecture is focus
on the software components (sub-agents’ patterns); it is also
possible to associate the physical connections of assets via
CAD diagrams, according to functional considerations of
AutomationML, as Section 6 mentioned. The MAS systems
boundaries (Req2.2) and nestability (Req2.3) principles for the
I4.0 components are aligned by the MAS’s organization in the
axis of layers and Architecture axis, respectively (see Section
6.1). The general administration shell model of Section 6.2
partially gets the virtual representation of I40 components
(Req2.4) and its functional properties (Req2.5), as shown in
Section 6.2. However, the agent-based CPPS architecture did
not specify non-functional requirements (Req2.5) yet, such as
precise quality characteristics (non-functional requirements)
or evaluation metrics attributes (e.g., degree to which the
sub-agents cover all their tasks and objectives). The summary
of the hypotheses evaluation according to the fourth research
questions (RH1.1-RH1.4) is shown in Table 15.

From the eight hypotheses (see Table 1), five are true, and
three are partially true, considering the evaluation of this man-
uscript’s authors, and the FA 5.15 expert discussions. These
results are extended by fulfilling preliminary requirements

(see Section 2.1) and represent the related sections of this
manuscript, as shown in Table 15.

6.4 Comparison of the agent-based CPPS architecture
to other approaches

Considering the two essential architecture types from
Trentesaux [22] (hierarchical and heterarchical interaction
entities), CPPS can be described through different designs
with advantages and disadvantages of the distributing control
decisions (see Section 2). Explicitly, hierarchy could be seen
as a type of “vertical control distribution”while heterarchy is a
type of “horizontal control distribution” [64]. The type of
architecture will define the quality characteristics of the
production system. Traditional approaches are included into
the Class 0 and Class I types of architectures, respectively
centralized and fully hierarchical. What is common in these
two architecture types is that they both have a main decision
node, where the planning and information processing are
concentrated [65]. These classes show better optimization
qualities, but a slow response and low tolerance to faults and
expansibility [65]. Thus, it is possible to construct a CPPS
architecture typology that is inspired by Computer
Integrating Manufacturing or CIM (e.g., [23]). The CPPS of

Table 16 Different classes of CPPS approaches

Name of the
architecture/author

CPPS approach Sub-agent pattern

Resource agent (RA) Process agent (PA) Agent management system
(AMS)

Communication agent
(CA)

Class 0: Centralized control systems

CIMOSA [23] Based on CIM +Resource −Capability set −Organization unit –

Class I: Fully hierarchical control system

ARC-SoA [24] SoA and CPS +Data adaptor −Data client agent – +Shared variable engine

iLand [66] SoA +Service manager +Control manager −Application manager +Communication
middleware

Lee et al. [54] Industrial CPS +Snapshot collection −Similarity
identification

−Synthesis optimized future
steps

–

Class II: Semi-heterarchical control system

ADACOR [25] HMS +Operational holon ++Product holon +Supervisor holon –

IDEAS [8] MAS ++Machine resource
agent

++Product agent +AMS +Transportation system
agent

Pollux [67] Hybrid control ++Resource decisional
entity

++Local decisional
entity

++Global
decisional entity

–

PROSA [36] HMS +Resource holon ++Product holon +Order holon –

This paper’s authors MAS ++Resource agent ++Process agent ++AMS +Communication agent

Class III: Fully heterarchical control system

D-MAS [26] MAS ++Delegate ant MAS ++Delegate MAS – ++Smart messages entity

Ueda legacy [68] Bio-inspired +Service +Service engineering – –

Notation of degrees of “equivalence”: ++High, +Medium, −Low/nothing

Int J Adv Manuf Technol (2019) 105:4005–40344028

Class 0 and Class I (one-level heterarchy) are applicable
for CIM, since these are based on pure hierarchical interac-
tions (e.g., [24]). On the opposite side, Class III uses full
heterarchical interactions to lead mostly distributed architec-
tures (e.g., [26]).

Class II CPPS architectures, being semi-heterarchical, can
be positioned in between because they can integrate both hi-
erarchical or heterarchical interactions (e.g., [25])—assimilat-
ing both advantages and certain disadvantages. The main

advantages of the hierarchical type are the robustness, predict-
ability, and efficiency. Then, in the CPPS approaches of Class
II, local decisions are made taking into account global criteria
and these are distributed to different controllers. Despite their
advantages, traditional methods do not show the capability of
adaptation due to the rigidity of the control architecture that as
a result weakly responds to changes. Such types of production
systems will not show the capabilities of responsiveness, flex-
ibility, and reconfigurability [65]. Therefore, an advantage of

Table 17 Advantages and disadvantages of CPPS classes [22, 64, 65]

Main features of CPPS approaches Classes

0-I II-III

Have short reaction delays (reducing long-term instability (e.g., bullwhip effect in supply chains) – ++

Make easier the procedures to initialize and reconfigure (plug and produce systems capability) and breakdowns recovery – ++

Increase product traceability and allow “smart” products (more active life cycle, e.g., distribution, logistics, inventory, generation,
design, effectiveness, and agility)

– ++

Permit robustness with external/internal unexpected changes to return on long-term investments (opposite to CIM scheme) – ++

Can include the lack of predictability, analytical solutions, and poor ability to define optimal loadings (e.g., cause deadlocks) – ++

Facilitate supply chain collaboration mechanisms (business agility). Systems can co-exist with several hierarchies ++ +

Optimize resources utilization (system extensions and unforeseen modifications are facilitated). – ++

Enable flexibility and reactivity to disturbances (Fault tolerant) – ++

Address a global optimization of the decision-making ++ –

Allow a limit complexity and facilitate system implementation ++ +

Get poor ability to extend the system, and make unforeseen modifications (additions are difficult to make) ++ –

Have poor reliability (paralysis of the levels below a point of failure) and poor fault tolerance ++ –

Notation of applicability: ++High, +Medium, −Low

Fig. 10 The robot integrated agent network “RIAN” (adapted from [69])

Int J Adv Manuf Technol (2019) 105:4005–4034 4029

the proposed agent-based CPPS architecture can be found
according to the classification of [64]. The proposed architec-
ture is classified as Class II type, since sub-agent interconnec-
tion is not strongly associated (not Class III), while there is at
least a strong sub-agent connection (not Class I) [64]. For
example, a unique RAs’ network (Class III) of the CPPS could
be a Class II control system with supervisory level sub-agents
(with PA or AMS). Other CPPS approaches [22, 64, 65] can
also support advantages of Class II as well as MAS, bionic,
bio-inspired (e.g., [68]), and holonic. Among the last named
CPPS approaches, the PROSA [36] and ADACOR [25] are
the most relevant architectures. In principle, each holon shall
represent a logical unit of the manufacturing system, while the
sub-agent patterns could help its actual implementation [8,
65].

In heterarchical control systems (Classes II or III), long-
term optimization could be hard to get and to validate, while
with traditional classes (Classes 0 or I), short-term optimiza-
tion is easier to obtain [64]. In the Class III type, as long as all
the entities (e.g., agents) get the equal level of autonomy, an
adequate level of performance can be attained, but there is no
global view of the system [65]. As these features are disad-
vantages of Class III—even for MAS approaches of Class
II—the proposed agent-based CPPS architecture cannot claim
to be exempt from this problem and only an adequate AMS’s
global response to it could address the issue.

Table 16 summarizes different CPPS approaches examples
which allocate control decisions from centralized control

systems (Class 0 and Class I) aiming to design non-centralized
control systems (Class II and Class III). This table compares
components of different CPPS approaches with patterns of
this paper’s proposed CPPS architecture.

Table 17 compares advantages and disadvantages of hier-
archy (Classes 0/I) and heterarchy (Classes II/III) of CPPS
approaches (based on [22, 64, 65]).

6.5 Use case evaluation with an I4.0 demonstrator

The “Robot Integrated Agent Network” (RIAN) completes
the evaluation of the proposed agent-based CPPS architecture.
The RIAN demonstrator was presented at Automatica fair in
an industrial environment [69]. The purpose of the demonstra-
tor was to crosslink heterogeneous production equipment and
robots in a network for common customized production.
RIAN was the result of a collaboration of the academy
(Technical University of Munich “TUM” and Brandenburg
Technical University of Cottbus “BTU”) with different indus-
try partners [69], which applies the reference architecture of
the MyJoghurt I4.0 demonstrator [40]. With RIAN I4.0 dem-
onstrator, the users could customize the bottle opener (with
freely definable lettering) online and choose a delivery time
depending on available production capacity (IIoT-HMI inter-
face). A chain of production stations composed of autono-
mous and operator-controlled mobile transport robots defines
RAIN. These stations cover the production line for the indi-
vidualized bottle opener consisting of the following: cutting

Fig. 11 Interaction in the agent-
based CPPS network (adapted
from [69])

Int J Adv Manuf Technol (2019) 105:4005–40344030

by laser simulation (CPPS A), injection molding (CPPS B),
engraving-laser (CPPS C), packaging (CPPS D), and custom-
er delivery by a Mobile transport robot (CPPS E), depicted in
Fig. 10 (adapted from [69]).

Starting from the warehouse, mobile robots transport
pieces between stations of the production process.
Intermediate robot stations have hardware interfaces, which
ensure the exact positioning of pieces or their detection by
vision sensors. All CPPS communicate via an agent-based
CPPS network in order to exchange necessary processing
steps as well as clearances for manipulation. The current pro-
duction progress is traceable for the client, for the maintenance
and operating personnel. This is possible due to the aggregat-
ed reports of the individual sub-agent patterns (RAs, PAs,
CAs, and AMS) into an external server (at TUM Garching
near Munich), as shown in Fig. 10.

All CPPS A-E include RAs with goal-orientation algo-
rithms (even with artificial intelligent) to achieve PAs orders.
Inside the Mobile transport robots (CPPS E) and the Packing
station (CPPSD) exists a hardwareMAS interface (MAS ITF)
and agents (CAs) which ensure by computer vision systems
the exact positioning of the products (PAs) in the plant (see
Fig. 10). An agent (PA) assigns initial orders to the transport
robot (RA) from the storage and links the information about
the process steps and the corresponding features of the prod-
ucts. RIAN defines a distribution of production phases for

multiple participating companies and technologies (Req1.1-
Req1.3).

All CPPS interactions are connected to the local hardware
and accept new orders (PAfinal) after registering at the directo-
ry services (from AMS, MTS, and DF). Since the customers’
orders for products need to be decomposed into multiple dif-
ferent manufacturing tasks, to which the facility agents can
respond, various CPPS aligned with the proposed architecture
were implemented for this purpose (see Fig. 11).

A key benefit of the agent-based CPPS approach in the con-
text of I4.0 is the linkage of heterogeneous controls. RIAN
enables suitable controls to cooperate with adequate operating
systems of various robot vendors (e.g., Raspberry Pi with
Raspbian-Linux, Reiss robotics (now KUKA), robot controller
with VX Works, FANUC robot controller with FANUC OS).

Both the implementation on suitable controls as well as on
external computers is possible by using manufacturer provid-
ed interfaces. These interfaces enable data exchange between
agents (CAs) and controls on the field level (RAs). Thus, the
cost of changes in the software on the proprietary controls is
minimized.

The configuration, changes, and adaptation of the control
software (reconfigurability and reusability) are manageable by
calling functions according to each manufacturer specification
(CPPS) and adapting parameters or variables at runtime
(Req1.4). An agent (AMS) retrieves status information from

Fig. 12 The I4.0 components of the RIAN demonstrator

Int J Adv Manuf Technol (2019) 105:4005–4034 4031

all controllers containing the state of the plant and the process-
ing progress. Based on this information, it decides the strategy
of a production unit (Req1.5). Besides the agent (PAs) exten-
sive knowledge about the process data, there exists an encap-
sulation to the overall network information (AMS). Over
LAN, Wi-Fi, or mobile data connections, the current produc-
tion time and the price of the service are provided for all
participating agents (RAs, PAs, CAs, and the AMS), as shown
in Fig. 10. An Internet server is required for linking various
transport and production units via the Internet. The server (in
addition to the infrastructural facilities) also creates agents
instances (e.g., PAs) accessible on the cloud. Therefore, dif-
ferent hardware platforms, e.g., PC and PLC, are connected
via the Internet. The open protocol of the MAS platform
(based on TCP/IP) enables connect ions to other
implementations (e.g., based on C++).

In Fig. 12, the agent-based CPPS architecture is shown
considering the Functional and Communication Layers (re-
garding RAMI4.0) of RIAN. The proposed architecture was
used to implement a distributed production environment on
Automatica fair [69] as a collaboration of multiple companies
(e.g., Martin Engineering, Schunk, Beckhoff, and others) in
different exhibition halls (A4, A5, and B5). By using the pro-
posed MAS approach, companies were able to realize the
communication, design, and application with a specific imple-
mentation of different hardware and software platforms. Each
hall represents an administration shell of an I4.0 component
(CPPS A-E). In the industrial context, each hall could be rep-
resented by different worldwide plants, which collaborate in a
unique production process (see Fig. 12).

The industrial partner of RIAN confirmed that they were
amazed by the effectiveness and ease of the collaboration [69].
They implemented all necessary functionality needed to man-
age the production steps at the different facilities in the exhi-
bition halls. The RIAN implementation required less than 3
months with less of four to six developers per academic and
industrial partner.

7 Conclusion

Design patterns can help the MAS developers to set up their
architectures with prepared solutions also for manufactur-
ing control. They could design their own MAS in accor-
dance with accepted MAS patterns in industry to ease the
application of CPPS. Classification criteria also could aid in
the initial information organization of design pattern, since
there are many different approaches for MAS and automa-
tion domain.

Thanks to the preliminary analysis [18], and based on
works by Lüder et al. [16] and Leitao et al. [8], this paper’s
authors have developed 13 classification criteria for MAS pat-
terns. More than 20 MAS patterns were classified with the

derived criteria for MAS revealing different terminologies,
as well as new criteria to classify sub-agents. A CPPS archi-
tecture for manufacturing control for I4.0 components—re-
garding the RAMI 4.0—based on four sub-agents, was iden-
tified from the analysis of design patterns. They are as follow-
ing, Resource Agent (RA), Process Agent (PA), Agent
Management System (AMS), and the Communication Agent
(CA). According to the proposed design pattern, these sub-
agents should be considered mandatory for the agent-based
CPPS architecture, since each of them fulfills fundamental
functionalities. Regarding functional requirements identified,
these are grouped into a Resource Access (RA*), Knowledge
Base (KB), Coordination Process (CP), and Communication
Interface (CI). All sub-agents often use the Knowledge Base
in order to infer formal methods for its implementation. The
Resource Access is a very necessary functional requirement to
acquire and process data from physical resources with hard
real-time capabilities; as well, the RA typically covers the
lowest 0–2 automation levels. The Coordination Process con-
tains procedures and sub-agents’ delimitations for managing
MAS in a higher hierarchy. This functionality is usually in-
cluded in AMS on L1-L2 and PA on L2-L3 automation levels.
The CI enables open communication between automation
levels with multiple data formats, supporting the AMS’s and
CA’s (L1-L3) tasks. CI’s functionalities are frequently repre-
sented in all automation levels.

The proposed pattern of the four sub-agents can deliver
relevant MAS features for developers in order to support
new sub-models’ designs with similar solutions. In addition,
the pattern provides a proper information in order to reduce
time to compare similar researches. This pattern provides
MAS architecture that can help to cope with production com-
plexity and adaptively as required by CPPS.

This document addresses the industrial sectors in multiple
production systems domain: discrete manufacturing, continu-
ous process, hybrid production. In addition, it takes into con-
sideration the specificities of different MAS application (e.g.,
material flow systems, real-time capabilities, agent communi-
cations, and smart grids) and serves the needs of the RAMI 4.0
involving several partners and normativity.

To identify more patterns and to allow easier identification
of such a pattern, in the future, the other 16 patterns from the
FA 5.15 need to be analyzed with their authors support.
Especially, non-functional requirements will be part of the
further work of this manuscript’s authors, since these require-
ments remaining can map quality attributes to the identified
and newly MAS patterns.

Acknowledgments The authors especially thank the members of the
technical committee 5.15 “Agent systems” of the Society Measurement
and Automatic Control (GMA) within the Society of German Engineers
(VDI) and German Electrical Engineers (VDE) for their close assistance.
Also, regarding the specific feedbacks, this manuscript’s authors would
like to highlight the contribution of the colleagues: Aicher T., Badr I.,

Int J Adv Manuf Technol (2019) 105:4005–40344032

Brehm R., Bruce-Boye C., Fischer J., Hoffmann M., Hofmann P., Pech
S., Rauscher H., Redder M., Rehberger S., Schütz D., Theiss S., and
Ulewicz S. Finally, Luis Alberto Cruz Salazar thanks the Colombian
government grant of the department of science COLCIENCIAS –under
grant “Convocatoria 756 Doctorados en el exterior”– and the Antonio
Nariño University under grant “Programa de Formación de Alto Nivel -
PFAN”.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. DIN (2016) Reference Architecture Model Industrie 4.0
(RAMI4.0). https://www.din.de/en/wdc-beuth:din21:250940128

2. Cheng Y, Zhang Y, Ji P et al (2018) Cyber-physical integration for
moving digital factories forward towards smart manufacturing: a
survey. Int J Adv Manuf Technol:1–13

3. Lu Y, Morris K, Frechette S (2016) Current standards landscape for
smart manufacturing systems. Natl Inst Stand Technol NISTIR
8107:39

4. Cruz SLA Vogel-Heuser B (2017) Comparison of agent oriented
software methodologies to apply in cyber physical production sys-
tems. In: 15th international conference on industrial informatics,
INDIN. IEEE. Emden, Germany, pp 65–71. https://doi.org/10.
1109/INDIN.2017.8104748

5. Ribeiro L (2017) Cyber-physical production systems’ design chal-
lenges. In: IEEE 26th International symposium on industrial elec-
tronics, ISIE, pp 1189–1194

6. Xu X (2017) Machine Tool 4.0 for the new era of manufacturing.
Int J Adv Manuf Technol 92:1893–1900

7. Ulewicz S, Schütz D, Vogel-Heuser B (2013) Flexible real time
communication between distributed automation software agents.
In: 22nd international conference on production research, ICPR
22, pp 1–7

8. Leitão P, Karnouskos S (2015) Industrial agents: emerging applica-
tions of software agents in industry, 1st edn. Elsevier, Amsterdam

9. Leitão P, Karnouskos S, Ribeiro L et al (2016) Smart agents in
industrial cyber physical systems. Proc IEEE 104:1086–1101

10. Juziuk J, Weyns D, Holvoet T (2014) Design patterns for multi-
agent systems: a systematic literature review. In: Agent-oriented
software engineering: reflections on architectures, methodologies,
languages, and frameworks, pp 79–99

11. Lüder A, Peschke J, Sanz R (2010) Design patterns for distributed
control applications. In: Kühnle H (ed) Distributed manufacturing:
paradigm, concepts, solutions and examples. Springer London,
London, pp 155–175

12. Ribeiro L, Hochwallner M (2018) On the design complexity of
cyber-physical production systems. Complexity 2018:1–13.
https://doi.org/10.1155/8503

13. Cruz SLA, Rojas AOA (2014) The future of industrial automation
and IEC 614993 standard. III international congress of engineering
mechatronics and automation. CIIMA.:1–5. https://doi.org/10.
1109/CIIMA.2014.6983434

14. Dai W, Vyatkin V (2013) A component-based design pattern for
improving reusability of automation programs. In: IECON proceed-
ings (industrial electronics conference). pp 4328–4333

15. Fuchs J, Feldmann S, Legat C, Vogel-Heuser B (2014)
Identification of design patterns for IEC 61131-3 in machine and
plant manufacturing. In: IFAC-PapersOnLine. pp 6092–6097

16. Lüder A, Calá A, Zawisza J, Rosendahl R (2017) Design pattern for
agent based production system control—a survey. In: 13th IEEE con-
ference on automation science and engineering, CASE. pp 717–722

17. Eckert K, Fay A, Hadlich T, et al (2012) Design patterns for dis-
tributed automation systems with consideration of non-functional
requirements. In: IEEE International conference on emerging tech-
nologies and factory automation, ETFA. pp 1–9

18. Vogel-Heuser B, Ryashentseva D, Cruz S. LA, et al (2018)
Agentenmuster für flexible und rekonfigurierbare Industrie 4.0/
CPS-Automatisierungs-bzw. Energiesysteme (agent pattern for
flexible and reconfigurable industry 4.0/CPS automation or energy
systems). In: VDI-Kongress automation. VDI Verlag GmbH,
Düsseldorf, pp 1119–1130

19. Rehberger S, Spreiter L, Vogel-Heuser B (2017) An agent-based
approach for dependable planning of production sequences in auto-
mated production systems. At-Automatisierungstechnik 65:766–778

20. Farid AM, Ribeiro L (2015) An axiomatic design of a multiagent
reconfigurable mechatronic system architecture. IEEE Trans Ind
Informatics 11:1142–1155. https://doi.org/10.1109/TII.2015.
2470528

21. HaouesM, Sellami A, Ben-Abdallah H, Cheikhi L (2017) A guide-
line for software architecture selection based on ISO 25010 quality
related characteristics. Int J Syst Assur Eng Manag 8:886–909

22. Trentesaux D (2009) Distributed control of production systems.
Eng Appl Artif Intell 22:971–978. https://doi.org/10.1016/j.
engappai.2009.05.001

23. Kosanke K, Vernadat F, ZelmM (2015) Means to enable enterprise
interoperation: CIMOSA object capability profiles and CIMOSA
collaboration view. Annu Rev Control 39:94–101. https://doi.org/
10.1016/j.arcontrol.2015.03.009

24. Morgan J, O’Donnell GE (2015) The cyber physical implementa-
tion of cloud manufactuirng monitoring systems. In: Procedia
CIRP, vol 33, pp 29–34

25. Leitão P, Restivo F (2006) ADACOR: a holonic architecture for
agile and adaptive manufacturing control. Comput Ind 57:121–130

26. Holvoet T, Weyns D, Valckenaers P (2009) Patterns of delegate
MAS. In: SASO 2009—3rd IEEE international conference on
self-adaptive and self-organizing systems

27. Wannagat A (2010) Development and evaluation of agent-based
automation systems in order to increase the flexibility and reliability
of manufacturing plants. PhD thesis, Faculty of Mechanical
Engineering, Technical University of Munich

28. Schütz D, Schraufstetter M, Folmer J, et al (2011) Highly
reconfigurable production systems controlled by real-time agents.
In: IEEE international conference on emerging technologies and
factory automation, ETFA. pp 1–8

29. Legat C, Lamparter S, Vogel-Heuser B (2013) Knowledge-based
technologies for future factory engineering and control. In: Studies
in computational intelligence. pp 355–374

30. Andrén F, Stifter M, Strasser T (2013) Towards a semantic driven
framework for smart grid applications: model-driven development
usingCIM, IEC61850 and IEC61499. Informatik-Spektrum36:58–68

31. Cruz SLA, Mayer F, Schütz D, Vogel-Heuser B (2018) Platform
independent multi-agent system for robust networks of production
systems. IFAC-PapersOnLine 51:1261–1268. https://doi.org/10.
1016/j.ifacol.2018.08.359

32. Fischer J, Marcos M, Vogel-Heuser B (2018) Model-based devel-
opment of a multi-agent system for controlling material flow sys-
tems. Autom 66:438–448

33. Karnouskos S, De Holanda TN (2009) Simulation of a smart grid
city with software agents. In: UKSim 3rd Europeanmodelling sym-
posium on computer modelling and simulation, EMS. pp 424–429

Int J Adv Manuf Technol (2019) 105:4005–4034 4033

https://www.din.de/en/wdc-beuth:din21:250940128
https://doi.org/10.1109/INDIN.2017.8104748
https://doi.org/10.1109/INDIN.2017.8104748
https://doi.org/10.1155/8503
https://doi.org/10.1109/CIIMA.2014.6983434
https://doi.org/10.1109/CIIMA.2014.6983434
https://doi.org/10.1109/TII.2015.2470528
https://doi.org/10.1109/TII.2015.2470528
https://doi.org/10.1016/j.engappai.2009.05.001
https://doi.org/10.1016/j.engappai.2009.05.001
https://doi.org/10.1016/j.arcontrol.2015.03.009
https://doi.org/10.1016/j.arcontrol.2015.03.009
https://doi.org/10.1016/j.ifacol.2018.08.359
https://doi.org/10.1016/j.ifacol.2018.08.359

34. Lüder A, SchleipenM, Schmidt N, et al (2018) One step towards an
industry 4.0 component. In: 13th IEEE conference on automation
science and engineering, CASE. pp 1268–1273

35. Nieße A (2015) Verteilte kontinuierliche Einsatzplanung in
Dynamischen Virtuellen Kraftwerken (distributed continuous re-
source planning in dynamic virtual power plants). PhD thesis,
Faculty II—Computer Science. Economics and Law, Carl von
Ossietzky University of Oldenburg, Oldenburg

36. Brussel H Van, Wyns J, Valckenaers P, et al (1998) Reference ar-
chitecture for holonic manufacturing systems: (PROSA). Comput
Ind 37:255–274

37. Regulin D, Schütz D, Aicher T, Vogel-Heuser B (2016) Model
based design of knowledge bases in multi agent systems for en-
abling automatic reconfiguration capabilities of material flow mod-
ules. In: 12th IEEE conference on automation science and engineer-
ing, CASE. pp 133–140

38. Ryashentseva D (2016) Agents and SCT based self* control archi-
tecture for production systems. PhD thesis, Faculty of Mechanical
Engineering, Otto-von-Guericke University Magdeburg

39. Theiss S, Kabitzsch K (2017) A Java software agent framework for
hard real-time manufacturing control. - Autom

40. Vogel-Heuser B, Diedrich C, Pantförder D, Göhner P (2014)
Coupling heterogeneous production systems by amulti-agent based
cyber-physical production system. In: 12th IEEE international con-
ference on industrial informatics, INDIN. pp 713–719

41. Hoffmann M (2017) Adaptive and scalable information modeling to
enable autonomous decision making for real-time interoperable facto-
ries. PhD thesis, Faculty of Mechanical Engineering, RWTH Aachen

42. Pech S, Göhner P (2010) Multi-agent information retrieval in het-
erogeneous industrial automation environments. In: Cao L, Bazzan
ALC, Gorodetsky V et al (eds) Lecture notes in computer science.
Springer Berlin Heidelberg, Berlin, pp 27–39

43. Shehory O, Sturm A (2014) Agent-oriented software engineering:
reflections on architectures, methodologies, languages, and frame-
works, 1st edn. Springer-Verlag Berlin Heidelberg, Berlin
Heidelberg

44. Cruz SLA (2018) Automatización Industrial Inteligente: Una
estructura de control desde el paradigma holónico de manufactura
(intelligent industrial automation: a control structure since the
holonic manufacturing paradigm). Editorial Académica Española,
Beau Bassin, Mauritius

45. Indriago C, Cardin O, Rakoto N, Castagna P, Chacòn E (2016)
H2CM: a holonic architecture for flexible hybrid control systems.
Comput Ind 77:15–28

46. Nieße A, Tröschel M, Sonnenschein M (2014) Designing depend-
able and sustainable smart grids—how to apply algorithm engineer-
ing to distributed control in power systems. Environ Model Softw
56:37–51. https://doi.org/10.1016/j.envsoft.2013.12.003

47. Platform Industrie 4.0 (I4.0) (2018) The structure of the administra-
tion shell: trilateral perspective from France, Italy and Germany. 64

48. Folmer J, Schütz D, Schraufstetter M, Vogel-Heuser B (2012)
Konzept zur erhöhung der flexibilität von produktionsanlagen
durch einsatz von rekonfigurierbaren anlagenkomponenten und
echtzeitfähigen softwareagenten (concept for increasing the flexi-
bility of production plants by using reconfigurable plant compo-
nents). In: Informatik aktuell

49. Priego R, Iriondo N, Gangoiti U, Marcos M (2017) Agent-based
middleware architecture for reconfigurable manufacturing systems.
Int J Adv Manuf Technol 92:1579–1590. https://doi.org/10.1007/
s00170-017-0154-z

50. Hanisch HM, Lobov A, Lastra Martinez JL et al (2006) Formal
validation of intelligent-automated production systems: towards in-
dustrial applications. Int J Manuf Technol Manag 8:75

51. Rauscher M (2015) Agent based consistency check of heteroge-
neous models in industrial automation. PhD thesis, Faculty 5.

Computer Science, Electrical Engineering and Information
Technology, University of Stuttgart, Stuttgart

52. Hofmann P (2017) A fuzzy belief-desire-intention model for agent-
based image analysis. In: Ramakrishnan S (ed) Modern fuzzy con-
trol systems and its applications. IntechOpen, Rijeka

53. Legat C, Vogel-Heuser B (2014) A multi-agent architecture for
compensating unforeseen failures on field control level. In:
Studies in computational intelligence. pp 195–208

54. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems. Manuf Lett

55. Monostori L (2014) Cyber-physical production systems: roots, ex-
pectations and R&D challenges. Procedia CIRP 17:9–13

56. Komma VR, Jain PK, Mehta NK (2011) An approach for agent
modeling in manufacturing on JADETM reactive architecture. Int J
Adv Manuf Technol 52:1079–1090. https://doi.org/10.1007/
s00170-010-2784-2

57. Vogel-Heuser B, Kegel G, Bender K, Wucherer K (2009) Global
information architecture for industrial automation. Atp 1:108–115

58. Badr I (2011) Agent-based dynamic scheduling for flexible
manufacturing systems. PhD thesis, Faculty 5. Computer Science,
Electrical Engineering and Information Technology, University of
Stuttgart, Stuttgart

59. BrehmR, RedderM, Flaegel G,Menz J, Bruce-Boye C et al (2019) A
framework for a dynamic inter-connection of collaborating agentswith
multi-layered application abstraction based on a software-bus system.
In: Czarnowski I., Howlett R., Jain L., Vlacic L. (eds) Intelligent
Decision Technologies 2018. KES-IDT 2018 2018. Smart
Innovation, Systems and Technologies, vol 97. Springer, Cham

60. Platform Industrie 4.0 (I4.0) (2017) Relationships between I4.0
components—composite components and smart production

61. Yao X, Lin Y (2016) Emerging manufacturing paradigm shifts for
the incoming industrial revolution. Int J Adv Manuf Technol. 85:
1665–1676. https://doi.org/10.1007/s00170-015-8076-0

62. Barenji RV, Barenji AV, Hashemipour M (2014) A multi-agent
RFID-enabled distributed control system for a flexible manufactur-
ing shop. Int J Adv Manuf Technol 71:1773–1791

63. Vargas C, Langfinger M, Vogel-Heuser B (2017) A tiered security
analysis of industrial control system devices. In: 15th international
conference on industrial informatics, INDIN. pp 399–404

64. Frayret JM et al (2004) Coordination and control in distributed and
agent-based manufacturing systems. Prod Plan Control 15:42–54.
https://doi.org/10.1080/09537280410001658344

65. Leitão P (2009) Agent-based distributed manufacturing control: a
state-of-the-art survey. Eng Appl Artif Intell 22:979–991. https://
doi.org/10.1016/j.engappai.2008.09.005

66. Garcia Valls M, Lopez IR, Villar LF (2013) ILAND: an enhanced
middleware for real-time reconfiguration of service oriented distrib-
uted real-time systems. IEEE Trans Ind Informatics. 9:228–236.
https://doi.org/10.1109/TII.2012.219866

67. Jimenez JF, Bekrar A, Zambrano-Rey G, Trentesaux D, Leitão P
(2017) Pollux: a dynamic hybrid control architecture for flexible job
shop systems. Int J Prod Res. 55:4229–4247. https://doi.org/10.
1080/00207543.2016.1218087

68. Váncza J, Monostori L (2017) Cyber-physical manufacturing in the
light of professor Kanji Ueda’s Legacy. In: Procedia CIRP

69. Vogel-Heuser B, Bauernhansl T, ten HM (2017) Handbuch
Industrie 4.0 Bd.2 (manual of industry 4.0 Vol.2), 2nd edn.
Springer Berlin Heidelberg, Berlin, Heidelberg

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Int J Adv Manuf Technol (2019) 105:4005–40344034

https://doi.org/10.1016/j.envsoft.2013.12.003
https://doi.org/10.1007/s00170-017-0154-z
https://doi.org/10.1007/s00170-017-0154-z
https://doi.org/10.1007/s00170-010-2784-2
https://doi.org/10.1007/s00170-010-2784-2
https://doi.org/10.1007/s00170-015-8076-0
https://doi.org/10.1080/09537280410001658344
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1109/TII.2012.219866
https://doi.org/10.1080/00207543.2016.1218087
https://doi.org/10.1080/00207543.2016.1218087

A p p e n d i x A . I n c l u d e s m a i n c o n t r i b u t i o n p a p e r s (P u b . I - V) | 113

Publication IV (MARIANNE)

Copyright © 2022 The Authors. Reproduced with permission from Luis Alberto Cruz Salazar,

and Birgit Vogel-Heuser, “A CPPS-architecture and workflow for bringing agent-based

technologies as a form of artificial intelligence into practice.”

at – Automatisierungstechnik. 70/6 (2022), pp. 580-598.

https://doi.org/10.1515/auto-2022-0008

at – Automatisierungstechnik 2022; 70(6): 580–598

Applications

Luis Alberto Cruz Salazar* and Birgit Vogel-Heuser

A CPPS-architecture and workflow for bringing
agent-based technologies as a form of artificial
intelligence into practice
Eine CPPS-Architektur mit Umsetzungsleitfaden um agenten-basierte Technologien als Form
Künstlicher Intelligenz in die Anwendung zu bringen

https://doi.org/10.1515/auto-2022-0008
Received January 31, 2022; accepted April 22, 2022

Abstract: Due to the increase in Artificial Intelligence in
theproduction systemsdomain, Industry 4.0 (I4.0) experts
must collaborate with autonomous systems. Industrial AI
raises several concerns about existing standards, which
provide guidelines and design patterns. One way to real-
ize I4.0 systems are Industrial Agents (IAs) due to their in-
herent autonomy and collaboration. Multi-Agent Systems
(MASs) are well suited for realizing distributed AI in I4.0
components. Considering the properties of IAs and exist-
ing standards, an MAS architecture is presented for flex-
ible and intelligent Cyber-Physical Production Systems.
The article compares I4.0 standardization efforts relevant
to adaptAI in the formof IAs, illustrates how IAdesignpat-
terns can be used, and introduces the Multi-Agent aRchi-
tecture for Industrial Automation applying desigN patterNs
practicEs “MARIANNE”. An implementation guideline is
presented to put this CPPS into practice.

Keywords: Artificial Intelligence, Cyber-Physical Produc-
tion Systems, Industrial Agents, Multi-Agent Systems

Zusammenfassung: Aufgrund der Zunahme künstlicher
Intelligenz im Produktionssystembereich müssen Indus-
trie 4.0 (I4.0) Experten mit autonomen Systemen zusam-
menarbeiten. Industrielle KI wirft Fragen zu bestehenden
Standards auf, die Richtlinien und Entwurfsmuster bereit-

*Corresponding author: Luis Alberto Cruz Salazar, Institute of
Automation and Information Systems, Department of Mechanical
Engineering, TUM School of Engineering and Design, Technical
University of Munich, Munich, Germany, e-mail: luis.cruz@tum.de,
ORCID: https://orcid.org/0000-0001-8386-5568
Birgit Vogel-Heuser, Institute of Automation and Information
Systems, Department of Mechanical Engineering, TUM School of
Engineering and Design, Core Member of MDSI and Member of
MIRMI, Technical University of Munich, Munich, Germany, e-mail:
vogel-heuser@tum.de, ORCID:
https://orcid.org/0000-0003-2785-8819

stellen. Eine Möglichkeit, KI in I4.0-Systemen zu realisie-
ren, sind aufgrund ihrer inhärenten Autonomie und Zu-
sammenarbeit industrielle Agenten (IAs). Multi-Agenten-
Systeme (MASs) sind gut geeignet, um verteilte I4.0-
Komponenten zu realisieren. Unter Berücksichtigung der
Eigenschaften von IAs und bestehender Standards wird
eine MAS-Architektur für flexible und intelligente Cyber-
Physical Production Systems (CPPS) vorgestellt. Der Ar-
tikel vergleicht I4.0-Standardisierungsbestrebungen, die
für die Adaption von KI in Form von IAs relevant sind,
zeigt auf, wie KI-Entwurfsmuster verwendet werden kön-
nen und stellt die Multi-Agent aRchitecture for Industri-
al Automation applying desigN patterNs practicEs „MARI-
ANNE” vor. Es wird ein Implementierungsleitfaden vorge-
stellt, um dieses CPPS in die Praxis umzusetzen.

Schlagwörter: Cyber-physische Produktionssysteme, In-
dustrielle Agenten, Künstliche Intelligenz, Multi-Agenten
Systeme

1 Motivation

Artificial Intelligence (AI), in the context of Industry 4.0
(I4.0), opens up the possibility to solvemachine tasks pre-
viously considered to be only performable by humans: in-
terpreting natural language or visual data, identifying de-
sign patterns, and making autonomous decisions [19, 21].
In I4.0, interconnections between machines, smart sen-
sors, actuators, are becoming more common. The net-
worked entities, also known as Cyber-Physical Produc-
tion Systems (CPPSs), or industrial Cyber-Physical Systems
(CPSs) [24], initially commenced as automated Production
Systems (aPSs) in various manufacturing domains. The
CPPSs consist of CPSs applied in aPS domains to link
physical and virtual objects (real world and information-
processing) through constantly, and oftentimes globally,

Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/auto-2022-0008
mailto:luis.cruz@tum.de
https://orcid.org/0000-0001-8386-5568
mailto:vogel-heuser@tum.de
https://orcid.org/0000-0003-2785-8819

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 581

interconnected information networks [24]. Typical intelli-
gence concepts enabling CPPSs are “agent” entities that
are often related to AI, referring to a smart, self-contained
software program [14]. Agent-based definitions, typolo-
gies, methodologies, technologies, standards, platforms,
design patterns, and programming language approaches,
such as Agent-Oriented Software Engineering, have all
evolved throughout time [6]. Multi-Agent Systems (MASs)
consist out of Industrial Agents (IAs) that have been touted
as a viable and feasible answer for a series of new in-
dustrial challenges over the years [6, 14, 17]. However,
there is no deep analysis of IA’s levels of intelligence, nor
their direct correspondence to AI applied in I4.0. Addition-
ally, combining AI through Machine Learning (ML) into
IAs has made it possible to achieve CPPS’ learnability and
reconfigurability [21], which are necessary properties to
deal with I4.0 issues. Furthermore, the deployment of au-
tonomous and collaborative manufacturing entities with
enhanced self-capabilities, such as self-optimization, self-
awareness, and self-monitoring, is a priority for CPPS [21].
Industrial AI via IAs is viewed as an essential technology to
accomplish these capabilities anddisrupt thewayaPSpro-
cesses and business models are structured as part of the
I4.0 paradigm [6, 14, 17]. AI is a sub-discipline of software
engineering, capable of implementing IA characteristics
traditionally associated with human intelligence, such as
autonomy, reactiveness, reasoning, predictiveness (learn-
ing), and self-improvement [26]. Despite this, there is no
widely acknowledged, precise, and standardized defini-
tion of Industrial AI [21].

Notwithstanding the ostensible benefits of these In-
dustrial AI systems – CPPS implemented by IAs – the cost
of factory transformation, insufficiently qualified people
in essential AI technologies, a lack of design processes,
and reusable MAS applications continue to make it diffi-
cult for industries to implement I4.0 concepts. For this rea-
son, in recent years, IAworking groups, TC-IA1 by the IEEE
P2660.1 and theGerman IFACNMOGMAFA5.152 VDI/VDE,
have addressed these challenges by establishing design
patterns and best practices. Two relevant standards, the
“IEEE Recommended Practice for Industrial Agents: Inte-
gration of SoftwareAgents andLow-Level AutomationFunc-
tions” [11] and the “2653 Sheet 4: Multi-agent systems in in-
dustrial automation – Selected patterns for field level con-

1 TC-IA refers to the IEEE-IES Technical Committee on Industrial
Agents.
2 FA 5.15 “Agent systems” is aGermanworking group (GMA). English:
Society of German Engineers VDI, and German Electrical Engineers
VDE. VDI/VDE is known as a National Member Organization (NMO)
of IFAC.

trol and energy systems” [30], suggest methods for devel-
oping IAs. The combination of these standardization ef-
forts with models that reflect IA design concepts [1, 3–
5, 8, 9], and also with established notions such as the
Product, Process, Resource (PPR) concept, and I4.0 stan-
dardization efforts, specifically RAMI4.0, is crucial though
and requires an integrated architecture. Hence, this arti-
cle makes three contributions. First, it examines how an
agent-based CPPS can be combined with relevant Refer-
ence Architecture Model I4.0 “RAMI4.0” [7] and the PPR
model (Con1). Second, an MAS architecture for CPPS de-
rived from IA patterns is presented (Con2). Third, to im-
prove industrial applicability, a guideline is provided in
order to facilitate the IAs and AASs implementation into
hybrid CPPS platforms (Con3).

This manuscript is structured as follows: Section 2 ex-
plains IAs’ requirements and introduces the state of the art
regardingMASs in I4.0. Section 3 contains themain contri-
bution of this work and presents an agent-based CPPS and
its definitions. Section 4 describes the MAS’ implementa-
tion by applying an I4.0 scenario and Section 5 discusses
findings from the evaluation. The paper concludes with a
summary and an outlook.

2 State of the art

This section introduces related work regarding Industrial
Agents, their standardization, and approaches for combin-
ing them in an MAS for I4.0. Different viewpoints are de-
cided by current I4.0 experts, leading to multiple models
and meaning various descriptions of the target system [3].
Regarding agent-based CPPS, the two IAs standards are re-
lated here, showing diverse IA pattern types that the MAS
community analyzed from several functionality points of
view.

2.1 Industrial agents for I4.0:
categorization, modeling, and
standardization

Industry 4.0 and CPPS often refer to the MAS approach
[6, 14, 17, 24], and to the Asset Administration Shell (AAS),
which is one of the main specifications of the RAMI4.0 [7].
The AAS, together with an IA, allows smart access to as-
set resource information, aswell as connectivitywith other
I4.0 components [6]. Applying Information Technology (IT)
for I4.0 is notable and able to deploy the Digital Twin

582 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

(DT) concept [22]. Leveraging DTs’ technologies, specifi-
cally, the AAS to realize an MAS, increases the flexibility
and adaptability of aPS [31]. In another hand, an IA is an
intelligent entity used for distributed problem-solving in
automation, typically characterized as autonomous, col-
laborative, and communicative [11]. Implementing IA tech-
nology within multiple automation fields (e. g., planning,
scheduling) has been studied for several years. For exam-
ple, many international projects foster research on future
factories that use IAs, e. g., in smart production, smart
logistics, smart grids [17]. In contrast, using IAs in the
field at the process level (supervision and control) is com-
paratively novel research considering hard/soft real-time
needs [6, 11, 30]. A specific requirement is that an IA must
be autonomous [10, 11, 30]. It may work in an organized
way with other external agents, even humans [11]. IAs
could be applied to apply the Human-in-the-loop concept
in I4.0 [14], where the plant floor operators can act and in-
teracts as agents in the CPPS. All instances should con-
sider different amounts of data and ensure a timely re-
sponse in order to react to workwith agents’ decisions and
actions. The above characteristics divide IAs into multiple
categories, as shown in the following subsections.

2.1.1 Traditional types of IAs by response time and
behavior

For most agent-based automation developers, it is well
known that agent features are mainly based on classifi-
cations. These grouping methods – often called design
patterns – generate relationships and approximate com-
mon functionalities at different automation levels [6]. An
IA also provides the intelligence for the sensors/actuators
to have Low-Level Control “LLC” (with soft or hard real-
time) or provides the support that helps foster a desirable
collaboration withManufacturing Execution System (MES)
and the Enterprise Resource Planning (ERP) levels. Both
ERPandMESarepart ofHigh-Level Control “HLC” andusu-
ally do not require real-time capabilities. Therefore, there
are initially numerous categories, including the Reactive
Agent and the Deliberative Agent definitions [17].

Unland [29] defines a Reactive Agent as a “simple”
agent because this type does not dealwith a representative
world (modeling), nor does it apply complex reasoning.
The Deliberative Agent is often semantically on a higher
level than “reactive” and “proactive” [29], since this type
is synonymous with “Strategy & Goals” and can involve
functions based on (but not limited to) probabilities, logi-
cal deduction, knowledge-based reasoning, among other

inference mechanisms [32]. The Deliberative Agent’s be-
havior and common architectures are reasonably more so-
phisticated than the ones of Reactive Agents. This IA type
is most prevalent, even if the internal processes of delib-
erative software are more complicated, which increases to
their timeand resource consumption.However, in contrast
to a human operator, a Deliberative/Proactive agent “un-
derstands,” only a small part of the entire world, i. e., data
acquisition is restricted by non-biological sensors. Never-
theless, it alwayshaswide-ranging, real-world knowledge.
In the industry, Reactive Agents are implemented in vari-
ous ways, including mapping between situations and ac-
tions. Their connectionways canbe [6]: first directwith the
same network domain, i. e., synchronous connection web
service or OPC UA [34]; second, indirect across different
network domains., i. e., asynchronous FIPA (see ACL Mes-
sage Structure Specification [10]). From those definitions,
Deliberative Agents are moderately flexible when imme-
diately acting upon their environment. They can, on the
other hand, become substantially more complicated and
slower in their reactions. Instead, the Reactive Agent’s be-
havior includes a faster response to relevant stimulations
from its environment, as input produces output by sim-
ple situation-action associations that are frequently imple-
mented, whilst ignoring the rest of the perceived history
(also namely simple Reflex Agents [26]). Hence, the Reac-
tive Agent requires fewer resources than the Deliberative
Agent, and it reacts more quickly.

Nevertheless, on the negative side, the Reactive Agent
is not as dynamic and flexible as the Deliberative Agent
that can usually behave proactively. In other research,
Russell and Norvig [26] consider the behavior of Reactive
Agents to be generally not (much) worse than the one of
Deliberative Agents (also namely Rational Agent [26]). Un-
der certain conditions, proactiveness would imply agent
reactiveness, so IAs react to a state change to achieve a goal
[5].

New advances in IA’s classification considering multi-
ple smartness dimensions should be an interesting topic
for distributed AI researchers, but up to now, it has been
avoided. Two reasons for improving IA typologies are:
firstly, to prevent the AI effect, meaning the IA technolo-
gies that were once thought to be intelligent will be-
come outdated as systems are becoming increasingly ca-
pable. One example would be providing adaptability to
predictability in CPPS architectures that need to be scaled
up [24]. Secondly, this IA categorizationdepends on the ex-
istence or not of the normalized IAs. For instance, if a CPPS
architecture includes reactive or proactive IAs, this is a tra-
ditionalMAS [29]. In contrast, IA classificationbasedon its

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 583

capabilities is more precise, since an IA may handle sev-
eral functions borrowed from advanced AI characteristics,
e. g., learnability [14]. Therefore, Section 2.1.2 proposes a
new IA categorization regarding specific requirements in
the same section and complements it with the traditional
agent types.

2.1.2 Modern classes of IAs (by AI characteristic and IA
capability)

This section proposes combining the traditional types of
IAs with means of modern categorization by Industrial AI
definitions related to I4.0 prerequisites. Summarizing Sec-
tion 2.1.1, the traditional typology refers to response time3

andmain behavior (or feature) by three types of IAs, as fol-
lows (those are adapted from [26, 29]):
– Reactive IA, that reacts to perception [29].
– Proactive IA, that performs initiative actions [29].
– Deliberative IA (henceforth “Predictive IA”), that an-

ticipates by learning tasks. Here, we refer to predic-
tive learning to specify the learning agent that can be
formed or not formed from a traditional IA (reactive or
proactive ones) [26].

One prerequisite for the I4.0 is the formal specification of
capabilities and skills [34]. The I4.0 Platform defines a Ca-
pability as an “implementation independent potential of an
Industrie 4.0 component to achieve an effect within a do-
main” [23]. Also, they describe that a Skill “can be made
executable via services” [23]. On the other hand, the Com-
petence of a system is the “ability to apply knowledge and
skills to achieve intended results” (this taxonomy is stan-
dardized by the ISO/IEC/IEEE 24765 [12]). Skills are also
adopted from the IAs community to denote one of theMAS
self-contained software functionalities [11]. Therefore, in
this paper, capabilities state competencies, just as skills
state functionalities (set of functions to provide IA ser-
vices).

Typically, systems capable of Industrial AI implement
minimal AI characteristics like autonomy (C1) and reac-
tiveness (C2). In various I4.0 use cases, the system auton-
omy is provided by auto-adjusting aPS. A more detailed
description can be found in [19]. As a result, in Indus-
trial AI, the degree of autonomy of equipment or processes
is higher or lower according to the I4.0 scenarios [32]. In

3 Response time, or Time response refers here to the how long is
the time taken by the Industrial Agent to respond to a certain task
(adapted from the IEEE 2660.1 guideline [11]).

the case of reactiveness, for most AI techniques, reactive
control is sensor-driven, and it is the most appropriate for
low-level actions [26], i. e., hard and soft real-time. More-
over, Industrial AI frequently requires proactive (C3) and
predictive (C4) capabilities [21], both are reasoning char-
acteristics, but the last one is the most complex Indus-
trial AI characteristic since it requires learning from the
past (as discussed in Section 2.1.1). On one side, reasoning
generates global solutions to complex tasks using plan-
ning [26], i. e., models for decision making (C3) or models
learning fromexperience/predicteddata (C4).On theother
side, proactiveness (C3) logically implies reactiveness (C2)
[5]. Consequently, Industrial AI often uses reactive meth-
ods for LLC anddeliberative/reasoning techniques for HLC
[26] (see IAs’ definitions in Section 2.1.1). Finally, the hu-
man cooperativeness characteristic (C5) increasingly con-
sider human-machine integration as a fundamental de-
sign principle of CPPSs [14]. However, IA is still far from
an entirely symbiotic human and AI interaction, meaning
there are a poor relationship, co-existence, and collabora-
tion among humans (C4) and IAs [13]. Therefore, concepts
like predictability (C4), as well as the involvement of the
Human-in-the-loop (C5), are the most critical capabilities
to be achieved in Industrial AI systems [21]. Predictability
(C4), applying ML, is one of the AI characteristics through
which IAs provide CPPS to achieve learnability [21]. Pre-
dictive learning is a termused to describe an unsupervised
ML system that can anticipate characteristics of its chang-
ing states [26].

A summary of the Industrial AI characteristics dis-
cussed above is enlisted in Table 1.

2.2 Standardizing industrial agents

Derived from the Industrial AI characteristics (see Section
2.1.2. Table 1), the authors determined four IA classes with
specific capabilities potentially interesting for the devel-
opment of MASs. As listed in Table 2, Class I refers to Phys-
ical access agent, Class II to Organizational agent, Class
III to Interface agent, and Class IV to Human agent. Each
Industrial AI characteristics supports the IA classes by
implementing their capabilities. This means that differ-
ent Industrial AI characteristics implementations can be
mapped to each IA class’s capability (at least one skill
to each class). Moreover, skills and capabilities differ in
the level of implementation [23]: while skills offer details
of asset-dependent descriptions [22] (e. g., Common Data
Dictionary/ECLASS/IEC 61360, OPC UA/IEC 62541 meth-
ods), capabilities are independent formal abstractions of

584 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

Table 1: Definitions of Industrial AI characteristics.

Industrial AI characteristic Characteristic definition

C1. Autonomy [19] Degree to which an industrial system can independently master uncertain conditions in a delimited and
automated manner achieving its objectives systematically, i. e., without external or human intervention

C2. Reactiveness [26] Degree to which an industrial system can respond to a request for the processing of its environment
information (observation and communication responsiveness in real-time)

C3. Proactiveness [5] Degree to which an industrial system takes the initiative for deciding and processing information whilst
pursuing a goal (reasoning for deliberative tasks).

C4. Predictability4 [24] Degree to which an industrial system can predict (predictive capability [25]) the next outcomes of actions
given the actions in the previous tasks and the self-learning (from past information).

C5. Human cooperativeness [14] Degree to which an industrial system can apply the Human-in-the-loop concept

Table 2: Industrial Agents, their main competencies and examples.

IA class IA’s competence/capability (capable of) Instantiation (a particular example)

I. Physical access agent Abstracting and connecting heterogeneous
production equipment with the MAS

This IA acts as a digital representation of a physical object
ranging from a single product (or a service) to an
enterprise network at the hierarchy axis [2]. This IA class
also has access to assets’ main functionalities and is
building on the normalized Resource Agent (see VDI/VDE
2653-4 guideline [30])

II. Organizational agent Offering various services into an integrated and
united execution model that can support
managing and organizing the operation of the
MAS and its IAs (see FIPA Agent Management
Specification [10])

This IA type is often concerned with non-physical entities,
e. g., orders, production plans, production schedules,
among others [29]. The typical instances of this IA class
are the normalized Agent Management System and the
Process Agent (see VDI/VDE 2653-4 guideline [30])

III. Interface agent Providing effective communication between the
IAs converting property interfaces into multiple
protocols

An IA class’ instantiation is the normalized
Communication Agent (see VDI/VDE 2653-4 guideline
[30]), and this may, for example, interconnect IAs and LLC
automation functions based on the IEEE 2660.1 interface
practice [11]

IV. Human agent Allowing humans to act as agents in the MAS
interacting with others agents/systems among
the automation levels

This IA type should be able to achieve the concept for
Human-in-the-loop in I4.0 [14]

the asset application functionalities and that can be ex-
pressed in different ways, e. g., Knowledge Base (KB) for-
malismsbyWebOntology Language,UnifiedModeling Lan-
guagemodels UML/SysML/IEC 19514 [1].

Classes I and II (physical and organizational agents)
cover most traditional IA types also normalized by the
VDI/VDE 2653-4 guideline [30]. Those agents are named
Resource Agent (RA), Process Agent (PA), and Agent Man-
agement System (AMS). The Physical access agent is de-
rived from the RA to access the capabilities of physical re-

4 There aremany definitions to Predictability referring to CPS, as dis-
cussed by Sun et al. [28]; however, we adapted this IA characteristic
based on “the ability to anticipate the behavior of a system”definition
presented by Lee [16]. Additionally, in our approach, the agent-based
CPPS needs to be predictable (able to be predicted) to be learnable.

sources, i. e., abstracting and connecting heterogeneous
production equipment with the MAS [30]. The AMS is part
of the Foundation for Physical Agents “FIPA” (see Agent
Management Specification [10]), while the typical Class III
(interface agent), as the Communication Agent (CA), is ad-
dressed by the IA interfacing patterns of the IEEE 2660.1
guideline [11]. The main definitions from both IA stan-
dards and FIPA elements concerning this work are de-
scribed in Section 3. The IEEE 2660.1 interface practices –
related to Class III agent – are clustered by location (the
place where the HLC/LLC are hosted), i. e., on-device or
hybrid; and the interactionmode dimensions (the way the
HLC/LLC interact), i. e., tightly coupled or loosely coupled
[11]. Thus, the CA accounts for the wide range of IA’s inter-
facing techniques, divided into those two levels of abstrac-
tion. In contrast to the other IA classes (I-III), and due to

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 585

its complexity, Class IV (human agent) is not standardized
yet. One reason is probably the different approaches from
MAS developers to describing intelligence resulting from
a Human-in-the-loop between processes and a human be-
ing.

As CPPSs are complex, modeling them from different
viewpoints helps cut the overall complexity. Taking this
into account, CPPS developers demonstrated that integra-
tion with legacy IT systems (e. g., ERP, MES, PLM appli-
cations) must be addressed proactively [21]. Thus, agent-
based CPPSs typically encompass multiple data sources,
which are able to get reusable information to successfully
deploy distributed AI applications at a large scale, i. e.,
System of a System concept [14]. A relevant modeling re-
quirement for I4.0 is the RAMI4.0 capability, specifically in
the AAS concept. Thus, here RAMI4.0 capability refers to
that MAS architectures should accomplish the developed
I4.0 reports with various models, providing the basis for
expanding new I4.0 components, as the Details of the As-
set Administration Shell report version 3.0 [22]. Therefore,
in order to improve I4.0 semantics, a CPPS should consider
RAMI4.0 as a design principle rather than I4.0 conceptual
standard. This means that CPPSs need an integral under-
standing of the AAS context, where the details of the I4.0
component enables binding semantics, clearly identifying
its assets, sub-models and properties in a constantly read-
able directory [22]. Interestingly, MAS authors using the
AAS and OPC UA [20, 34] added flexibility by the Plug &
produce concept (similar to Plug & play and Plug & work
terms [23]) in various I4.0 scenarios. MASs enable I4.0 sce-
narios such as Adaptable Factory, Order Controller Prod-
uct, and Self-organizing Adaptive Logistics extended by the
authors in [32].

Summarizing, the variety and heterogeneity of avail-
able standardization efforts hinders the efficient and in-
teroperable design of agent-based CPPSs, i. e., applying
the details of the AAS, RAMI4.0 capability, I4.0 compo-
nents and I4.0 scenarios concepts. To address these issues,
the interconnections between the AAS and the respective
models need to be identified, which allows the creation
of an MAS architecture compatible with current I4.0 ap-
proaches.

2.3 Selected MASs for Industry 4.0

This section analyzes existing MAS from different I4.0
research groups in order to have a wide range of ap-
plication domains and points of view. The selected re-
searches are named with acronyms or the prominent au-
thors’ last name. The I4.0 architectures are selected based

on the representative aspects of the aPS domain and the IA
classes identified, as follows: Class I for field-level control,
PROPHESY-CPS [20] and Zimmermann et al. [34]; Class
I-II for discretemanufacturing,H-Entity [5] and SemAnz40
[9]; Class I-III for pattern-based CPPS, Cruz et al. [6], FAPS
[8] and MOSAIK [4]; and finally, covering Class I-IV for In-
dustrial CPS, Ribeiro et al. [24].

When comparing the selected architectures (cp. Table
3), it becomes apparent that aPS domains focus on reac-
tiveness (C1) and proactiveness (C2). Regarding the man-
ufacturing domain, the SemAnz40 [9] defines the KBs to
support semanticmodeling of a reactive aPS (C2). From the
relevant designs for I4.0, Ribeiro et al. [24] propose a CPPS
with strongly human cooperativeness (C5), according to
five scale levels of requirements, including adaptability,
convertibility, integrability and other requirements; each
requirement is described with an obligation grade from
three options: shall (must), should (optional), and will
(may). Its industrial CPS focuses on local autonomy (C1)
and basic protocols, changing its structure dynamically to
cover, among others, predictability (C4) [24]. Although no
reusable patterns are considered in most selected works,
by contrast, MOSAIK [4] determined selected patterns fo-
cusing on the role played by theObjectManagement Group
(e. g., UML/SysML) and AutomationML as exchange stan-
dards for CPPS engineering.

Finally, the creators of promising MASs for CPPS fo-
cus on their natural autonomy, reactiveness, and proac-
tiveness, but their different objectives affect the level of ab-
straction of the model, even in the same application do-
main. For instance, MOSAIK [4] is a self-organized MAS
consistingof different agents or “artifacts”within theman-
ufacturing domain – particularly architectures based on
the cloud,Web of Things, and Industrial Internet of Things
technologies. MASs, by their very nature, have often high
autonomy (C1) and reactiveness characteristics (C2), as
demonstrated by IA researchers [6, 14, 17, 24]. However,
MAS architectures have not advanced in the learnability
of the agents (C4), and few works consider the design pat-
terns practices [4, 34], which use human analyses (C5) to
improve reusability among other benefits [11, 30]. In gen-
eral,most of the representative CPPS approaches shown in
Table 3 are missing predictability characteristics (C4) and
the RAMI4.0 capability. Therefore, in order to fulfill those
requirements, this paper proposes the Multi-Agent aR-
chitecture for Industrial Automation applying desigN pat-
terNs practicEs (MARIANNE) following the IA’s normalized
guidelines [11, 30], and addressed by standardized defini-
tions of its classes (see Section 2.2).

Exploring the state-of-the-art, the authors considered
exemplary MASs extended from [3], as given in Table 3.

586 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

Table 3: Selected MAS architectures for Industry 4.0. Extended from [3].

Cruz et al. [6] FAPS [8] H-Entity [5] PROPHESY-
CPS
[20]

Ribeiro et al.
[24]

SemAnz40
[9]

MOSAIK [4] Zimmermann
et al. [34]

Industrial AI
characteristic
(C1–C5)

C1 Auto.
C2 React.
C3 Proact.
C5 Human
coop.

C1 Auto.
C2 React.
C3 Proact.

C1 Auto.
C2 React.
C3 Proact.
C4 Predict.

C2 React.
C3 Proact.
C4 Predict.

C1 Auto.
C2 React.
C3 Proact.
C4 Predict.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

IA’s classes
(patterns)

I-III (RA, PA,
CA, AMS)

I, III (RA, PA,
CA, AMS)

I-II (RA, AMS) I (RA) I-IV (RA, PA) I, II (RA, PA,
AMS)

I-III (RA, PA,
CA)

I (RA)

RAMI4.0
capability

Partially Yes No Yes Partially Partially No Partially

PPR structure Resource Resource Process
Resource

Resource Process
Resource

Process
Resource

Product
Resource

Resource

They are categorized by the Industrial AI characteristic
achieved, the IAs applied,RAMI4.0 capability, and thePPR
(from the VDI/VDE 3682 guideline) structure correspon-
dence (see details in Section 2.1 and Section 2.2).

Regarding the combination of RAMI4.0, PPR, and IAs
suitability for applying CPPSs (Con1), the authors of this
study intend to extend preliminary work [6]. One signifi-
cant differentiation is the development of the DT by AAS
together with IAs for a CPPS (see Sec. 4). Another criti-
cal factor from this paper is integrating and evaluating
an MAS architecture using the existing IA pattern stan-
dards (see Sec. 5). However, to the best of their knowledge,
DTs and IA design patterns, specifically the AAS, have
not yet been combined into an agent-based CPPS architec-
ture. Hence, there is a need for an architecture that sup-
ports developers in explaining (Con2) and implementing
MASs (Con3). AnMAS architecture and its implementation
guideline in the CPPSs context shall be developed here.

3 Architecture and implementation
workflow for agent-based CPPSs

This section describes a newly developed architecture for
an MAS, improving semantic consistency by combining
standardized entities. Each component definition and the
code implementation described here is freely available on
the GitHub Agent 4.05 project under the GPL v3.0 license.
Meta-elements follow the UML class diagram (MOF 2.0),

5 MARIANNE codes into the Agent 4.0 project: https://github.com/
siulzurc/agent4.0/tree/main/src/MARIANNE

and similar to other IA authors [4], the word “entity” is
used as a synonym for “UML object” to avoid misunder-
standing with a real object participating in an action. In
general, many details such as the unique identifier or ID,
name, and description of each entity are not considered to
make the MAS architecture easily comprensible.

3.1 Comparing models for I4.0/CPPS

MARIANNE is an agent-based architecture proposed for
the manufacturing domain. This MAS is based on various
notions, which are partially standardized in I4.0 works.
The architecture proposed focuses not only on describ-
ing the IA patterns introduced in the VDI/VDE guidelines
(2653, 3682) but also on relationships with RAMI4.0 [7],
i. e., I4.0 concepts and the AAS concept. MARIANNE asso-
ciates relevant and traditional aPS domain concepts, i. e.,
ISA-88 (IEC 61512-1) scenarios. For an overview of MARI-
ANNE’s key concepts and how they relate to models de-
veloped in the context of I4.0, such as RAMI4.0, but also
the PPR concept, see Table 4.

Preliminarily, detailed analyses in Table 4 about ex-
isting models’ classes for I4.0 should be executed regard-
ing various aspects, such as function hierarchy levels, in-
formation classes, level of detail, specific application do-
main, among others, defined by [3]. In essence, a core
model for I4.0 would allow for the creation of a modeling
language with standardized concepts and terminologies,
specifically based on the RAMI4.0/AAS and the PPR mod-
els. For instance, functional hierarchy levels can be real-
ized via the I4.0 component in RAMI4.0/AAS, and via Re-
sources in the PPR model. Using the MARIANNE classes
related to the standards such as those mentioned, partic-

https://github.com/siulzurc/agent4.0/tree/main/src/MARIANNE
https://github.com/siulzurc/agent4.0/tree/main/src/MARIANNE

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 587

Table 4: Relationship and comparison between models’ classes for Industry 4.0.

How can the
(1–3) model
realize or define
the (a–i)?

Metamodel criteria*

a.
Functional
hierarchy
levels

b.
Engineer.
Process
steps

c.
Technical
flow sorts

d.
Material

e.
Information
classes

f.
Discipline
range

g.
Level of
detail

h.
aPS type

i.
Specific
application
domain

Vi
as

of
th
e
im
pl
em

en
ta
tio

n

1. RAMI4.0/
AAS

I4.0-
component

AAS:
sub-model
element
collection

Asset AAS:
sub-model
element

AAS:
property or
range

AAS:
sub-models

I4.0-system I4.0-
component

2. PPR model Resource Process Product
Process

Product Process

3. MARIANNE
(this work)

Physical
access
agent,
Interface
agent

Organiza-
tional
agent

Process
energy

Organiza-
tional
agent

Human
agent,
Cognitive
modeling

Knowledge
base

Module:
Unit,
Equipment,
Control

Application Operation
Mainte-
nance
Planning
Scheduling

*Source: metamodeling aPS criteria from [3].

ularly ISA-88 modules (Unit, Equipment, and Control), a
core model might be efficiently linked, mapped, or even
utilized to generate new viewsmerging aspects of existing
ones [3]. Through reviewing the criteria of the models in
Table 4, CPPS developers could work out the properties of
the target I4.0 model, employ the existing ones, or extend
them.

3.2 MARIANNE architecture
The following sections describe the notions used in MAR-
IANNE that are also used in existing standardization ef-
forts. Second, an implementation guideline for the MAS
is provided to integrate the agent-based patterns that one
can develop to instantiate the architecture.

3.2.1 Concepts used in MARIANNE that are related to
standardization efforts

The main decisional elements from MARIANNE are ex-
plained in this section. This MAS architecture is composed
of four IA classes that cover the main I4.0 concepts (see
Table 4): I4.0 component (can be the Class I or III), As-
set (managed by the Class II), and AAS (generated by the
Class IV). Each IA is a virtual decision-making entity that
can sense, process, store, or act on any CPPS shop floor.
The IA structure used was proposed by Wannagat et al.
[33], and it was employed in MARIANNE IAs. Figure 1 il-
lustrates an overview of the MARIANNE’s architecture in
the GitHub project (see. Section 3) that is implemented
in Python (.py), AASXexplorer (.aasx), Node-RED (.json),

and TwinCAT (.tnzip) files, available online. Design pat-
tern identification by [6] organizes the MARIANNE control
through their IAs (cp. Figure 1, left). For instance, the entity
Status information function provides current IA state rep-
resentations. This entity relates to other IA modules such
as the Unit, Equipment and Control from the ISA-88 model
(cp. Figure 1, right).

The normalized definitions (classes) refer to the gen-
eral overview based on the primary static information of
the models for I4.0 (see Section 2.3). Consequently, a fur-
ther (sub-)class defined byDIN 40912 is contained inMAR-
IANNE to cover the main RAMI4.0 aspects, e. g., for im-
plementing the AAS [22] report, version 3. Hence, systems
implemented according to MARIANNE can be applied to
achieve I4.0 systems (usually connected to cloud service
providers). However, this class can also contain elements
that donot achieve I4.0 requirements and are therefore not
I4.0 components [7]. I4.0 system description contains an
I4.0 component and its primary dependent representation
of the RAMI4.0, i. e., Asset and AAS entities. Like the DT
concept, an AAS is a digital representation of a resource
that refers to assets [8]. Here, MARIANNE has IAs (as a
type of distributed AI) that can encapsulate an Asset as a
value for an organization [7]. MARIANNE reaches the In-
dustrial AI characteristics (C1-C5, see Section 2.1.2) through
IA competencies (cp. Table 2). A Competence entity refers
to skills that depend on at least one softwareModule–MAS
software can be divided into a set of skills [34]. An IA’s
module refers to common functionalities presented as pat-
terns [6] and is extended by the IA’s level of intelligence
and AI characteristics. Then, to implement IA skills, exter-
nal or internalmodules that referencemathematical equa-

588 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

Figure 1:MARIANNE UML Component diagram. Codes for 1) PADE; 2) AASX Package Explorer; 3) Node-RED; and 4) TwinCAT.

tions (e. g., Control, Reasoning, or Learning) or logical de-
scriptions (e. g., ISA-88 physical model: Unit, Equipment,
Module) are integrated. Another function pattern in MAR-
IANNE is the Knowledge Base, a type of Database that en-
ables AIs of the consistent technical component descrip-
tions as local knowledge [6]. Applying KBs enables smart
manufacturing in a formalized way; however, there are
no standardized MAS ways for generating them [31]. For
instance, module entities implement logical production
functionalities on different field-level devices, e. g., Pro-
grammable Logic Controllers (PLCs), Raspberry Pi, indus-
trial computers. The control or KB entities can model fur-
ther data to describe the hardware, e. g., the platform in-
formation, or define the information models. Here, IA’s
modules for logical purposes are written in various in-
dustrial programming languages, e. g., the IEC 61131-3, IEC
61499, Structured Text, C++/C#. Respective variables in
PLCopen XML store local input and output devices’ infor-
mation in different levels of granularity, as given in [34].

Further building blocks to be reused from existing
standardization efforts are essential for application in the
CPPS domain. Here, an Application entity is a software
functional unit [12] but refers to a specific solution of
an agent-based CPPS to communicate efficiently, intelli-
gently, collaboratively, and conform to a goal-oriented ap-
proach [11]. According to various application types, MAS
developers consider that IAs are interacting with physi-
cal types of equipment to perform control functions in the
CPPS domain. Typical aPS application types are Opera-
tion,Maintenance,Planning, and Scheduling. However, the

PPR is also contained inMARIANNE to describe the funda-
mental domain of the CPPS, e. g., the type of process (Con-
tinuous, Discrete, or Batch).

Process, Product, and Resource from the VDI/VDE
3682 guideline are essential for the MAS architecture. Like
an I4.0 component (consisting of an AAS and an asset
[7]), a product is processed by a resource within a process.
Here, a process is responsive to IA functionalities to make
specific executions, deliberating which strategies will ap-
ply and which products or services they will offer. Re-
source entities generate a lot of data and specify the func-
tions required to obtain products or services. The resource
featureswhether thedesiredprocess steps canbe executed
(procedures to transform/transport/store the material/en-
ergy/information). Besides products, MARIANNE also cov-
ers a Service entity, considered as ITIL6 4, as “a means
of enabling value co-creation by facilitating outcomes that
customers want to achieve, without the customer having to
manage specific costs and risks”.

3.2.2 IA types and reusable IA patterns

This work focuses on using design patterns in Model-
Driven Engineering (MDE) for MASs, e. g., using
UML/SysML in CPPS [1]. Recently, agent-based design pat-

6 ITIL, is formerly an Information Technology Infrastructure Library.
The 4th edition in 2019, focuses on fostering digital transforma-
tion, AI, cloud computing, and DevOps detailed practices (source:
www.ibm.com).

http://www.ibm.com

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 589

terns for the industry have been discussed and approved
by VDI/VDE-GMA FA 5.15 and IEEE TC-IA members, pro-
moting standardized guidelines [30] and [11], respectively.
The first guideline is integrated into the MARIANNE archi-
tecture by introducing classes of IA patterns. For the sec-
ond guideline, MARIANNE’s requirements for the types of
IEEE 2660.1 interface practices are discussed, and quali-
tative evaluation from TC-IA guidelines are provided [11].
Software IA must recognize and efficiently handle the in-
terface and functionality of industrial devices (LLC/HLC)
[11]. Therefore, the MARIANNE architecture integrates the
four IA classes proposed (cp. Table 2): human-, interface-,
physical access-, andorganizational agents. Those classes’
definitions and their capabilities (see Section 2.1.2) are not
fully standardized yet in the context of industrial MASs
for I4.0. Instead, to be able to abstract in different levels,
agent classes of the MARIANNE architecture contain ex-
isting IA agent patterns (inheritance relation): RA is an
instance of the Class I; PA and AMS are instances of the
Class II; and CA is an instance of the Class III (see Section
2.2). The Physical access agent, through RAs, access the
capabilities of physical resources connecting shop floor
equipment with the MAS [30]. The Organizational agent
can support the general management of the MARIANNE
and its Scheduling, i. e., it is a PA or an AMS. The Inter-
face agent handles communication entities such as the
communication adapter to provide requirements for dif-
ferent intercommunication systems with the MAS. The CA
is an instance of this IA class, which considers the cat-
egorization based on the agent patterns interfaces, i. e.,
interaction mode and location (see Section 2.2, cp. Table
2). Consequently, a CA can derive four communication in-
terface practices [11]: i) Tightly Coupled Hybrid, ii) Tightly
Coupled On-device; iii) Loosely Coupled Hybrid; and iv)
Loosely CoupledOn-device. These interfaces vary depend-
ing on the location of the CA control (i. e., LLC/HLC), as
well as from its IEEE 2660.1 interface practice [11]. Finally,
the Human agent entity is able to apply the Human-in-
the-loop concept [14], e. g., through the human factor or
cognitive modeling entities.

3.3 MARIANNE’s implementation guideline

For an asset or the whole MAS, the CA provides the com-
munication adapters and cohesions to the outside world.
The CA enables different communication means, e. g.,
among plants, between AMSs, or provides the HumanMa-
chine Interface (HMI). For the latter, the CA can be imple-
mented in Node-RED, while PADE [18] is used for other IA

patterns with an interactive interface. PADE7 has a sim-
ilar structure to JADE but uses Python, making IA’s im-
plementation more versatile [18]. Regarding the abstract
DT concept, according to the online glossary of Platform
Industrie 4.0,8 the AAS concretes its implementation [8].
Other options to implement DTs are the DTDL and Web of
Things [4]. As a guideline, MARIANNE’s implementation
flowchart is shown in Figure 2, focusing in the AAS devel-
opment.

For systems, where real-time capabilities are critical,
the IA classes which control the CPPS, are generated pro-
gramming the LLC, i. e., by the IEC 61131-3/C++ languages
(cp. Figure 2, Case 1). For higher-level applications, where
real-time capabilities are not as critical, IAs can be im-
plemented using a high-level programming language such
as Python (cp. Figure 2, Case 2). Here, additional steps
are required to match the HLC to the CPPS. For managing
the AAS used for this approach, web flow-based program-
ming, e. g., Node-RED, can be applied to manage the AAS
depending on theAAS tools available. In the authors’ com-
prehension, hybrid DT application is acceptable since dif-
ferent DT approaches represent the complexity of asset be-
havior [8]. A hybrid DT application refers here to the com-
bination of equipment used in direct connection with sim-
ulation technologies and with sub-models integrated into
the forms of AAS. Therefore, in this work, the applied AAS
and simulation are symbiotically united. The structure of
AASs is defined and aimed at developing interoperable
DTs [22]. Following this reference, MARIANNE uses the
AAS, which has the two main parts,Manifest and Compo-
nent manager, together with theirHeader and Body [6, 22].
Here the body has various sub-models for each CPPS’ AAS.
DT developers can use various techniques to help them
create DTs. Since IAs cover advanced skills (typically an
AAS’s property/operation [22]) passive AAS are sufficient.
Thus, the AASXPackage Explorer for the AAS creation and
external management is used to create the DT. The Python
package PyI40AAS allows editing the AAS file and mov-
ing skills [31]. REST utilities and dynamic flow program-
ming practices are the foundations and embrace another
technical directionwhere browser-based interfaces are the
foundations. As a result, MARIANNE architecture com-
plies with current web technology developments as part
of IT software applications using Node-RED, i. e., based on
Node.js. In this case, NOVAAS is used as a runtime for the
AAS [20].

7 PADE project: https://github.com/grei-ufc/pade
8 Plattform Industrie 4.0: https://www.plattform-i40.de

https://github.com/grei-ufc/pade
https://www.plattform-i40.de

590 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

Figure 2:MARIANNE’s guideline implementation flowchart and its relationships.

4 Exemplary implementation for
the demonstrator plant xPPU

This section presents an MAS implementation based on
MARIANNE using the eXtended Pick&Place Unit (xPPU)
[1]. As shown in Figure 3 (bottom right), in this context,
the CA control can have a part of the same computational
platform (on-device, i. e., PLC) or another type of Opera-
tion Technology “OT” (hybrid, i. e., Raspberry Pi, or PC).
Typical communication protocols accepted for the I4.0
paradigm, such as Ethernet/EtherCAT, OPCUA, or Profinet
[11], are implemented (cp. Figure 3, center and top).

The xPPU control application is contained in three pri-
mary devices: a PLC, a Raspberry Pi, and a PC with their
KB (cp. Figure 3, top) to provide multiple IA pattern inter-

faces andmultiple communication protocols. Thus, all IAs
within the MAS as introduced in [31] are associated with
the corresponding asset, including a KB. For coding the
IA interfaces (on-device, i. e., PLC) in LLC, the IEC 61131-3
standard was implemented. To program similar IAs and
interfaces in HLC (hybrid, PC, and Raspberry Pi), Node-
RED/NOVAAS and Python/PADE were applied (cp. Figure
3, bottom). The HLC directly applies control on the LLC
(tightly coupled), or brokers can intermediate the inter-
face (loosely coupled). When LLC/HLC within a CA com-
piles and is deployed as a single set of binaries, it cre-
ates a tightly coupled and on-device design scenario. For
instance, with in/output device entity, RAs (cp. Figure 3,
bottom right) connect the sensors and actuators of assets

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 591

Figure 3: General landscape of the I4.0 scenario proposed with their I4.0 components and their IT/OT technologies.

[6] and connect the CPPS to offer services and thus create
products.

In general, MARIANNE addresses the main I4.0 con-
cepts, and the IAs’ skills can be implemented in the form
of OPCUAmethods, function blocks, and PLCopenXML as
given in [34]. The PA (cp. Figure 4, bottom right) can store
customers’ orders and their execution plan [15], while in-
formation of all active IAs is managed by the AMS [10]
(cp. Figure 4, top left). The structural software design in
an I4.0 scenario must also be modular to comply with the
adaptability requirements of hardware modules. Connect-
ing IAs, messages, or upgrades can also be intuitively sent
to all MAS using a shared communication network. A com-
munication channel via the OPC UA protocol is chosen to
connect to other systems unifying the data exchanged. Ad-
ditionally, the data live dashboard and GUI function work
as the HMI by a set of web interfaces in Node-RED, as
shown in Figure 4 (Part 1 and Part 2).

Additionally, IT nodes using technologies like Long
Range Wide Area Network (LoRaWAN) can be subse-
quently integrated into theMARIANNE throughother com-
patible communicationmethods, such as theHTTP (REST)
or Message Queuing Telemetry Transport (MQTT), and
mapping the data into objects for model-based structures,
i. e., it is as applied in OPC UA. All communication proto-

cols options for this architecture can be related to the OSI
model.

4.1 Implementing MARIANNE for an
intelligent light barrier

Figure 5 shows the division of the xPPU in modules using
the SysMLblockdefinitiondiagram (bdd, cp. Figure 5, cen-
ter). The agent-based CPPS architecture can be hierarchi-
cally structured through OMAC State Machines (for HLC)
and the lowest three levels of the ISA-88 physical model
(for LLC): unit module, equipment module, and control
module [1]. The xPPU unit module consists of two equip-
mentmodules, the stamping part and the sorting part. The
stamping part is composed of a stack, a crane, and stamp
control modules. The sorting part consists of a conveyor
control module (cp. Figure 5, right).

For each orderedWP a PA is created, and then thisWP
is transported through the stamping plant to the sorting
plant. The crane, which is equipped with a vacuum suc-
tion cup, picks up theWPs from the xPPU’swarehouse and
transports them either to the sorting plant or to the stamp-
ing plant, representing the processing station of the CPPS.
On the stamping plant, a shifting table (crane) transports
the WP under the stamp, where it is then imprinted with

592 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

Figure 4: Dashboard and interfaces (GUI) of the implementation: 1) xPPU’s NOVAAS dashboard, 2) CPPS’ HMI in Node-RED.

Figure 5: IAs and the SysML block definition diagram of separating the xPPU’s HLC/LLC into modules. Adapted from [1].

an adjustable pressure (stack). The crane afterward trans-
ports the WP to the sorting plant. From here, the WP can
be sorted into one of the three ramps that form its final pro-
cess (cp. Figure 5, right). The first two ramps are equipped
with pushers and sensors for material detection. The third
ramp is positioned at the end of the conveyor belt and re-
ceives the WPs that have not been separated beforehand.
Combining three light (binary) sensors LS1-LS3 (cp. Figure
5, right)makes it possible to determine the condition of the
three different material cylinders (WPs).

In this context, physical access- and interface- agent
classes are assigned to the individual CPPS modules (cp.
Figure 5, left), with a distinction beingmade between RAs,
PAs, and the AMSs, as is also the case in [6]. The WPs are

initially assigned to an organizational agent class using
PAs. As a result, these PAs define required services to pro-
duce variousWPs (metallic, plastic, etc.). If the present RA
cannot provide the required service, the PA’s offer is sent
to the next connected RA, who proceeds in the same way.
For instance, someRAs include the crane and the conveyor
belt for WP’s transportation service. If the service is un-
available at the present transport RA, the request is sent
to all connected transport RAs until the required service is
found. In this case, for each offer request, a response will
be sent. The possible processing time (to produce a WP)
is adjusted based on the response time (IA real-time) of
the available transport RAs, managed by PAs and AMSs.
It means the fewer failures in the transport RAs (minor

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 593

IA time responses), the better the processing time perfor-
mance.

The KB of the RAwithin the conveyormodule includes
analytical dependencies between the installed actuators
and sensors. RAs can learn individual parameters at run-
time to substitute missing actual values through mathe-
matical estimations. An example is an agent-based sen-
sor for a light barrier which is located in Ramp 1. The con-
veyors’ drive is provided with an initial speed value (set
value) in the primary state. Then, the WPs traveled dis-
tance and time are used to estimate an achieved speed (ac-
tual value). As a result, the initial speed is compared to the
estimated actual speed, providing an error margin (%). If
the error value is reasonable, the estimated speed is accu-
rate enough and can be accepted. The most accurate es-
timated value decides the amplification factor for Ramp 1.
However, a unique feature among the decision-making RA
is the position-WP function block,which continuously cal-
culates theWP’s location on the conveyor based on the es-
timated speed and defined distance, e. g., LS1 to Ramp 1.
In case of an erroneous position value of the limit switch
sensor, the WP location will be replaced by the estimated
position in the RA function block. To estimate an accurate
final position, at least one of the positioning sensors of the
entire sorting plant must be functioning.

The PA includes – but is not limited to – information
directly and permanently associated with the WP, such as
thematerial type, theprocessing time, or even the absolute
conveyor position during the transfer; all these variables
can be estimated by RA’s function block. Corresponding
ISA-88 modules were previously implemented by Bareiss
et al. [1]. The present light barrier sensor is based onWan-
nagat et al. [33] and the level of abstraction that is part of
this work; however, it uses a much more complex labo-
ratory model that results in two main contributions. The
first contribution implements the PA’s call for proposal
(CFP), using Contract Net Protocol – by PADE – that was
implemented according to FIPA (see Contract Net Interac-
tion Protocol Specification [10]). The second contribution is
the implementation of xPPU sub-models embedded into a
single AAS to increase interoperability.

4.2 IA patterns

Summarizing, as seen in Figure 6, the manufacturing
process is often defined by order generation and execu-
tion (typical RAs and PAs interactions). Addressed by the
VDI/VDE 2653-4 guideline of IA patterns, the RAs repre-
sent physical access (in/output devices) and keep its sta-
tus information function synchronized with the input of

Figure 6: Sequence diagram to detail the IA patterns interactions
in the CPPS network. CFP means “Call For Proposal” and refers to
FIPA (see FIPA Iterated Contract Net Interaction Protocol Specification
[10]).

the appropriate device (sensor data). An AMS is responsi-
ble for providing a single interface accessible for any IAs,
using the same protocol, despite the CA provider. The AMS
pattern, in most situations, keeps track of all involved and
related IAs and their messaging addresses, as described in
the preliminary research about IA patterns [6]. The AMS
typically supervises a white pages service, maintaining a
directory of IA references, and containing the two typi-
cal FIPA management components (see FIPA Agent Man-
agement Specification [10]): Directory Facilitator (DF), and
Message Transport Service (MTS). An AMS, together with
DF/MTS, often communicates with RAs and PAs to accom-
plish general MAS goals [6, 30]. Unlike the AMS, the PA
is responsible for the manufacturing recipe rather than
the technological structure since it naturally includes non-
real-time capability [6]. Some MAS architectures replace
the PA with a Product IA type, as Kovalenko et al. [15].

5 Evaluation of the MARIANNE
architecture and its agents’ AI
capabilites

This section gives an overview of the MARIANNE evalua-
tion, providing details about the contributions and the In-

594 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

dustrial AI characteristics covered through the IAs in the
xPPU demonstrator results.

5.1 MARIANNE IAs and their Industrial AI
characteristics

For a qualitative evaluation, we relied on IAs applied in
the implementation described in Section 4.1. Those IAs are
evaluated using fourwords to indicate a degree for a scale:
shall, should, may, and can, as presented in the IEEE Rec-
ommended Practice for IAs [11]. That degree of obligation
is an enumeration with five possible levels of Industrial AI
characteristics related to IAs, analyzed in Section 2.1.2 (see
Table 1), i. e., level indicates the number of AI characteris-
tics required to apply a function or skills. The degree val-
ues of each IA are proposed by the authors’ and justified
by literature, with the following words’ semantics:
Level 5. Shall indicates “mandatory requirements strictly

to be followed in order to conform to the standard and
from which no deviation is permitted” [11].

Level 4. Should indicates “that among several possibil-
ities one is recommended as particularly suitable,
without mentioning or excluding others; or that a cer-
tain course of action is preferred but not necessarily
required” [11].

Level 3. May indicates “a course of action permissible
within the limits of the standard” [11].

Level 2. Can indicates “statements of possibility and ca-
pability, whether material, physical, or causal” [11].

Level 1. Usually not (authors’ semantic) indicates the
minimum level of an Industrial AI characteristics’
achievement.

According to the analyses from this study, currentMAS im-
plementation reaches different Industrial AI levels (C1-C4),
while IAs -can apply various functions with a specific de-
scription, as given in Table 5. Each of the first IA func-
tion descriptions (cp. Table 5, items 1.1, 2.1, 3.1, and 4.1)
is drawn from the authors’ evaluation of the actual im-
plementation (cp. Section 4); the other skills come from
the authors’ analyses of the IA concepts and their cited
sources.

In the current implementation, the MAS is initiated
by the AMS, and it perceives the skills of other IAs. The
AMS can restart IAs and update their environment mod-
els autonomously (C1). A faster reaction is achieved for
field-level control (C2), as the RAs can implement several
resources, i. e., conveyor, crane, etc. Proactiveness is sup-
portedbyPAs that applyCFPs todetermineand recalculate
necessary RAs in case of broken resources (C2), i. e., the

agent-based soft sensors to increase availability. However,
the physical resources of the RAs cannot be changed by
theMAS itself, this can only be achieved by human actions
(C5). IAsmake decisions based on their environmentmod-
els (C2-C3) created from the AAS and update if the xPPU
models change. MARIANNE is not built to support the col-
laboration of RAs into the same order (only overall pro-
duction process) because PAs usually request single pro-
cesses. A general overview of the IAs evaluation concern-
ing Industrial AI characteristics is given in Figure 7.

5.2 The MAS evaluation

The MARIANNE architecture comprises design patterns
that are structured by four IA classes (Con2). The IAs
applied for the xPPU are proposed and evaluated ad-
dressing VDI/VDE 2653-4 and IEEE 2660.1 standards [11,
30]. MARIANNE does not focus only on IAs but also
RAMI4.0 (Con1), which should be robust, comprehensive,
extendible, and meet I4.0 modeling requirements accu-
rately, i. e., AAS concept (see Section 2.3). Our industry
experts and IAs focus group members confirmed the util-
ity of the agent-based design patterns concerning the IA
classes [30] (Con2). In addition, MAS models show chang-
ing numbers of different semantics for CPPS entities and
variable levels of abstraction, i. e., hierarchical structure
by ISA-88 physical model (see Section 4.1). The authors
of this work confirm that, to the best of their knowledge,
all identified MARIANNE entities fall within the scope of
standard taxonomies (see Section 3.2), ensuring compre-
hensiveness and consistency. Besides, MARIANNE sup-
ports the development of appropriate RAMI4.0 modeling
approaches, i. e., AAS compatible (see Section 3.3). This
work materializes the levels of abstraction of our IAs into
a final implementation (see Section 4), following inter-
national standardizations (see Sections 2.2 and Section
3.2). Lastly, summarizing the MAS architecture guideline
(Con3), the application shows how RAMI4.0 – which rec-
ommends OPC UA as the bridge between IT/OT [20, 22] –
enables vertical and horizontal communicationwithin the
xPPUdemonstrator for itsHLC/LLC (see Section 3.3).More-
over, everything wrapped by the AAS concept is not lim-
ited to OPC-UA but encourages standard web technologies
and IT, particularly by REST/JSON standards within Node-
RED (NOVAAS application). This adaptation facilitates the
integration of OT into IT while taking advantage of the In-
dustrial AI maturity and steadiness of IA solutions, tools,
and applications within IT areas, i. e., PADE plus NOVAAS.

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 595

Table 5: IA functions related to Industrial AI characteristics.

Item
No.

IA’s function (skill) description Industrial AI characteristic* C1–C2
(see Section 2.1.2, Table 1) evaluation

Au
to
no
m
y

Re
ac
tiv
en
es
s

Pr
oa
ct
iv
en
es
s

Pr
ed
ic
ta
bi
lit
y

Hu
m
an

co
op
er
at
iv
en
es
s

1. RA (Reactive, Class I), standardized
1.1 RA may be able to replace sensors data with soft sensors in order to increase

reliability/availability of the MAS. See Section 4.1
● ● ●

1.2 RA can represent and control technical plant components such as equipment (often
hard/soft real-time capability) [6, 30], as well as the resource allocation and its
capabilities as services, e. g., the ProductionService’s action in [8]

● ●

1.3 RA can define its actions in a particular context at runtime utilizing its KB, e. g., for
controlling and reconfiguring material flow systems [6]

● ●

1.4 RA can be able to carry out real-time execution in the plant floor like planning process,
transport, processing workpiece, machining, among others [15]

● ●

1.5 RA usually not have full autonomy due to the submissive heterarchy (it is often located
in the lowest MAS’s hierarchy) [6, 30], i. e., instead of negotiating IAs, a more
hierarchical structure with dominant and submissive IAs might be more suited at the
field-level [31]

●

2. PA (Proactive, Class II), standardized
2.1 PA may supervise the execution of a production recipe/plan the collaboration and

negotiation of other IAs, e. g., RA, AMS, in order to complete its goals (often
non-real-time capability). See Section 4.1

● ● ●

2.2 PA may represent the products that need to be processed [15] ● ● ●
2.3 PA can use graph-search and interaction with the underlying MAS as KB to run a

discrete reasoning process to produce optimal production plans [6, 30]
● ●

2.4 PA can apply a systematic, model-based optimization method during the
decision-making process [15]

● ●

2.5 PA usually are not responsible for the technical system but for the production recipe
since it usually requires non-real-time capabilities [6, 30]

●

3. CA (Reactive, Class III), standardized
3.1 CA may coordinate the message-based communication among other IAs, e. g., on

single or multiple platforms (PLCs, PCs, Raspberry Pis) across the field bus, including
people interfaces (HMI). See Section 4

● ● ●

3.2 CA can convert proprietary interfaces into multiple protocols, e. g., communication
interface by TCP/IP (often real-time capability) [6, 30]

● ●

3.3 CA usually is not limited to direct communication but also by patterns interfaces [11] ●
3.4 CA usually does not have a deterministic behavior communication because message

stacks inside CA possibly will overflow. More details of this experiment are described
in [27]

●

4. AMS (Proactive, Class II), standardized
4.1 AMS shall assume essential functions to coordination, control, and supervision for the

IAs by maintaining a table (white pages) that contains their proper identifiers (often
non-real-time capability). See Section 4.2

● ● ● ● ●

4.2 AMS can manage the operation of the MAS [10, 30], e. g., the creation, deletion,
migration of IAs to and from the MAS [6, 18]

● ●

4.3 AMS can try to restart agents when they fail [18] ● ●
4.4 AMS usually is not outside the IA’s network because of its authority, as only one exists

in a single MAS [10, 18]
●

*Industrial AI characteristics that support the IA main task; ●: needed

596 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

Figure 7: Industrial agents applied in MARIANNE architecture and their level of Industrial AI characteristics (see Table 5).

6 Summary and outlook

AI is an area of study aimed at understanding and creat-
ing intelligent systems that fall into the criteria of think-
ing or behaving logically or humanly [26]. In the I4.0 con-
text, Industrial AI is a technological means of attaining
a certain level of autonomy and other AI characteristics
like reactiveness, proactiveness, predictability, and hu-
man cooperativeness [19, 21]. This paper presented various
technologies for improving aPS to complement CPPS ser-
vices, e. g., using the IA design patterns’ potential. MDE
for I4.0 and applications have received a lot of research
and development attention. MDE can simplify the com-
prehension of the CPPSs and consequently enable access
to an I4.0 scenario. This work examined various IT/OT-
technologies and introduced an agent-based CPPS with IA
topologies and development platforms. Thus, the MARI-
ANNE architecture is proposed, which combines specific
research efforts on how the RAMI4.0 concept might be
used to address the agent-based CPPS with the IA classes.
The PA generates a high-level production plan comprised
of executable skills for each RA. AMS contains (poten-
tially numerous) production process sequences for a spe-
cific product. The CA allows multiple types of communi-
cation among agents, systems, plants, and users of the
CPPS by developing GUIs and HMIs. MARIANNE provides
a broad overview of how recent advances in these IA de-
sign patterns can be linkedwith other components such as
in/output devices, modules, KBs, applications, and other
I4.0 components. Those IT/OT integration technologies
havemotivated affordable Industrial AI gadgets and linked
CPPS services to expand the potential of IT/OT-based ser-
vices. These developments could provide deeper insights
into best IA design patterns practices and enable I4.0 tech-
nologies further. This study is the first MAS research con-
ducted on a CPPS by IA design patterns aligned with the

VDI/VDE 2653-4 and IEEE 2660.1 standards, to the best of
our knowledge.

Definitions and classifications of MAS models charac-
teristics currently lack reusability, semantic interoperabil-
ity, and require more attention in other application do-
mains and I4.0 standardization (see Section 2.2). There-
fore, future IA researchers can face those requirements ap-
plying MARIANNE to perform a deep analysis of agent-
based CPPS features in the next steps. Furthermore, stan-
dardized taxonomies and IA design patterns can relate
to MARIANNE and migrate aPS to multiple domains, im-
proving semantics and a shared understanding of CPPS
(see Section 3.2). Evaluating further aspects of the MARI-
ANNEapproach is subject to upcomingworks andpublica-
tions. MARIANNE can also be applied to the smart grid do-
main by the IA patterns, as shown in the VDI/VDE 2653-4.
For example, using more libraries on PADE capable of the
MOSAIK [4, 18], and IT/OT platforms available for energy
systems [30]. Additionally, to achieve full interoperability,
a normalized way of information exchange between HLC
and LLC was necessary, as it is a formalized way of invok-
ing the LLC services into PLC and functions from the HLC
by the IAs.Here theDT, throughapro-activeAAS, provided
the standardizedway to support information and structure
communication between the IAs and thus interoperabil-
ity. Combining the ECLASS standard could ensure seman-
tic interoperability between IAs (see Section 2.2) [31]. How-
ever, the effort for creatingAASsmanuallywould increase,
even though there are various open tools available, e. g.,
the AASX Package Explorer, PyI40AAS.

In the future, it can be expected that new IAs will be
muchmore potent than reactive and deliberative ones. For
example, it adds learning strategies from analytics, data
mining, and ML as a potential benefit of advanced AI [14].
Additionally, the incorporation of modern ML technolo-
gies in a new type of IA should be researched to increase
the Overall Equipment Effectiveness of a CPPS. Learning

L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 597

methods for IAs have the advantage of generating Predic-
tive Agents and Learnability Agents, which are initially en-
abled to operate in unknown environments. This type of
agent becomes more capable than its fundamental knowl-
edge using the mathematical analysis of ML.

Funding: The authors acknowledge the financial support
by the Bavarian State Ministry for Economic Affairs, Re-
gional Development and Energy (StMWi) for the Light-
house Initiative KI.FABRIK (Phase 1: Infrastructure as well
as the research and development program under grant
no. DIK0249).

References

1. Bareiss, P., D. Schutz, R. Priego, M. Marcos and B.
Vogel-Heuser. 2016. A model-based failure recovery approach
for automated production systems combining SysML
and industrial standards. In: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 1–7, doi: 10.1109/ETFA.2016.7733720.

2. Baumgartel, H. and R. Verbeet. 2020. Service and Agent based
System Architectures for Industrie 4.0 Systems. In: NOMS
2020–2020 IEEE/IFIP Network Operations and Management
Symposium, pp. 1–6, doi: 10.1109/NOMS47738.2020.9110406.

3. Cha, S., B. Vogel-Heuser and J. Fischer. 2020. Analysis
of metamodels for model-based production automation
system engineering. IET Collab. Intell. Manuf. 2(2): 45–55,
doi: 10.1049/iet-cim.2020.0013.

4. Charpenay, V. et al.2021. MOSAIK: A Formal Model for
Self-Organizing Manufacturing Systems. IEEE Pervasive
Comput. 20(1): 9–18, doi: 10.1109/MPRV.2020.3035837.

5. Cossentino, M., S. Lopes, G. Renda, L. Sabatucci and F. Zaffora.
2019. A metamodel of a multi-paradigm approach to smart
cyber-physical systems development. CEUR Workshop Proc.
2404: 35–41.

6. Cruz S., L. A., D. Ryashentseva, A. Lüder and B. Vogel-Heuser.
2019. Cyber-physical production systems architecture
based on multi-agent’s design pattern—comparison
of selected approaches mapping four agent patterns.
Int. J. Adv. Manuf. Technol. 105(9): 4005–4034,
doi: 10.1007/s00170-019-03800-4.

7. DIN SPEC. 2016. 91345:2016-04 Reference Architecture
Model Industrie 4.0 (RAMI4.0). Berlin, Germany,
doi: 10.31030/2436156.

8. Gangoiti, U., A. López, A. Armentia, E. Estévez and M. Marcos.
2021. Model-Driven Design and Development of Flexible
Automated Production Control Configurations for Industry 4.0.
Appl. Sci. 11(5: 2319, doi: 10.3390/app11052319.

9. Hildebrandt, C. et al.2017. Semantic modeling for collaboration
and cooperation of systems in the production domain.
In: 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–8,
doi: 10.1109/ETFA.2017.8247585.

10. IEEE. 2005. Foundation for Intelligent Physical Agents FIPA –
Specifications. Retrieved 15 Mar. 2022, from: http://www.fipa.
org/repository/standardspecs.html.

11. IEEE. 2021. IEEE Recommended Practice for Industrial
Agents: Integration of Software Agents and Low-Level
Automation Functions. IEEE Std 2660.1–2020, 1–43,
doi: 10.1109/IEEESTD.2021.9340089.

12. ISO/IEC/IEEE International Standard – Systems and software
engineering–Vocabulary. 2017. ISO/IEC/IEEE 24765:2017(E),
pp. 1–541, doi: 10.1109/IEEESTD.2017.8016712.

13. Karnouskos, S. 2021. Symbiosis with artificial intelligence
via the prism of law, robots, and society. Artif. Intell. Law
doi: 10.1007/s10506-021-09289-1.

14. Karnouskos, S., P. Leitão, L. Ribeiro and A.W. Colombo.
2020. Industrial Agents as a Key Enabler for Realizing
Industrial Cyber-Physical Systems: Multiagent Systems
Entering Industry 4.0. IEEE Ind. Electron. Mag. 14(3): 18–32,
doi: 10.1109/MIE.2019.2962225.

15. Kovalenko, I., D. Ryashentseva, B. Vogel-Heuser, D. Tilburyand
K. Barton. 2019 Dynamic Resource Task Negotiation to Enable
Product Agent Exploration in Multi-Agent Manufacturing
Systems. IEEE Robot. Autom. Lett. 4(3): 2854–2861,
doi: 10.1109/LRA.2019.2921947.

16. Lee, E. A.. 2010. Predictability, repeatability, and models
for Cyber–Physical systems. In: Invited talk, Workshop on
Foundations of Component Based Design (WFCD) at ESWeek.

17. Leitão, P., S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser
and A.W. Colombo. 2016. Smart Agents in Industrial
Cyber–Physical Systems. Proc. IEEE 104(5): 1086–1101,
doi: 10.1109/JPROC.2016.2521931.

18. Melo, L. S., R. F. Sampaio, R. P. S. Leão, G. C. Barroso and
J. R. Bezerra. 2019. Python-based multi-agent platform for
application on power grids. Int. Trans. Electr. Energy Syst.
29(6): doi: 10.1002/2050-7038.12012.

19. Müller, M., T. Müller, B. Ashtari Talkhestani, P. Marks, N. Jazdi
and M. Weyrich. 2021. Industrial autonomous systems: a
survey on definitions, characteristics and abilities. Autom.
69(1): 3–13, doi: 10.1515/auto-2020-0131.

20. di Orio, G., P. Malo and J. Barata. 2019. NOVAAS: A Reference
Implementation of Industrie4.0 Asset Administration Shell
with best-of-breed practices from IT engineering. In: IECON
2019 – 45th Annual Conference of the IEEE Industrial Electronics
Society, pp. 5505–5512, doi: 10.1109/IECON.2019.8927081.

21. Peres, R. S., X. Jia, J. Lee, K. Sun, A.W. Colombo and J. Barata.
2020. Industrial Artificial Intelligence in Industry 4.0 –
Systematic Review, Challenges and Outlook. IEEE Access
8: 220121–220139, doi: 10.1109/ACCESS.2020.3042874.

22. Platform Industrie 4.0. 2020, Details of the Asset
Administration Shell – Part 1 The exchange of information
between partners in the value chain of Industrie 4.0 (Version
3.0RC01). Berlin, Germany, [Online]. Available from: https:
//www.plattform-i40.de/PI40/Redaktion/EN/Downloads/
Publikation/Details_of_the_Asset_Administration_Shell_
Part1_V3.html.

23. Plattform Industrie 4.0. 2022. Platform Industrie 4.0 Glossary.
Retrieved 10 Jan. 2022, from https://www.plattform-i40.de/
PI40/Navigation/EN/Industrie40/Glossary/glossary.html.

24. Ribeiro, L. and M. Hochwallner. 2018. On the Design
Complexity of Cyberphysical Production Systems. Complexity
2018: 1–13, doi: 10.1155/2018/4632195.

https://doi.org/10.1109/ETFA.2016.7733720
https://doi.org/10.1109/NOMS47738.2020.9110406
https://doi.org/10.1049/iet-cim.2020.0013
https://doi.org/10.1109/MPRV.2020.3035837
https://doi.org/10.1007/s00170-019-03800-4
https://doi.org/10.31030/2436156
https://doi.org/10.3390/app11052319
https://doi.org/10.1109/ETFA.2017.8247585
http://www.fipa.org/repository/standardspecs.html
http://www.fipa.org/repository/standardspecs.html
https://doi.org/10.1109/IEEESTD.2021.9340089
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1007/s10506-021-09289-1
https://doi.org/10.1109/MIE.2019.2962225
https://doi.org/10.1109/LRA.2019.2921947
https://doi.org/10.1109/JPROC.2016.2521931
https://doi.org/10.1002/2050-7038.12012
https://doi.org/10.1515/auto-2020-0131
https://doi.org/10.1109/IECON.2019.8927081
https://doi.org/10.1109/ACCESS.2020.3042874
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://doi.org/10.1155/2018/4632195

598 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

25. Robinson, A. R., P. J. Haley, P. F. J. Lermusiaux and W.G.
Leslie. 2002. Predictive skill, predictive capability and
predictability in ocean forecasting. In: Oceans’02 MTS/IEEE,
vol. 2, pp. 787–794, doi: 10.1109/OCEANS.2002.1192070.

26. Russell, S. and P. Norvig 2021. Artificial Intelligence A Modern
Approach, 4th ed. Pearson.

27. Schutz, D., M. Schraufstetter, J. Folmer, B. Vogel-Heuser, T.
Gmeiner and K. Shea. 2011. Highly reconfigurable production
systems controlled by real-time agents. In: ETFA2011, pp. 1–8,
doi: 10.1109/ETFA.2011.6058991.

28. Sun, B., X. Li, B. Wan, C. Wang, X. Zhou and X. Chen. 2016.
Definitions of predictability for Cyber Physical Systems. J. Syst.
Archit. 63: 48–60, doi: 10.1016/j.sysarc.2016.01.007.

29. Unland, R. 2015. Industrial Agents. In: Industrial Agents:
Emerging Applications of Software Agents in Industry, Elsevier,
New York, pp. 23–44.

30. VDI/VDE. 2021. 2653 Sheet 4: Multi-agent systems in industrial
automation – Selected patterns for field level control and
energy systems, [Online]. Available from: https://www.vdi.de/
richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-
in-industrial-automation-selected-patterns-for-field-level-
control-and-energy-systems.

31. Vogel-Heuser, B., F. Ocker and T. Scheuer, 2021. An approach
for leveraging Digital Twins in agent-based production systems.
Autom. 69(12): 1026–1039, doi: 10.1515/auto-2021-0081.

32. Vogel-Heuser, B., M. Seitz, L. A. Cruz S., F. Gehlhoff, A. Dogan
and A. Fay. 2020. Multi-agent systems to enable Industry 4.0.
Autom. 68(6): 445–458, doi: 10.1515/auto-2020-0004.

33. Wannagat, A. and B. Vogel-Heuser. 2008. Increasing
Flexibility and Availability of Manufacturing Systems –
Dynamic Reconfiguration of Automation Software
at Runtime on Sensor Faults. IFAC Proc. Vol.,
doi: 10.3182/20081205-2-cl-4009.00049.

34. Zimmermann, P., E. Axmann, B. Brandenbourger, K.
Dorofeev, A. Mankowski and P. Zanini. 2019. Skill-based
Engineering and Control on Field-Device-Level with OPC UA.
In: 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1101–1108,
doi: 10.1109/ETFA.2019.8869473.

Bionotes
Luis Alberto Cruz Salazar
Institute of Automation and Information
Systems, Department of Mechanical
Engineering, TUM School of Engineering
and Design, Technical University of Munich,
Munich, Germany
luis.cruz@tum.de

Luis Alberto Cruz Salazar, M.Sc., is graduated in Electronic Engi-
neering from the Universidad Antonio Nariño in 2011 and received a
master in Electronic Engineering from Universidad del Cauca (2017).
He is a Ph.D. candidate at the Institute of Automation and Infor-
mation Systems at the Technical University of Munich. His main
research interests are the design patterns for holons’ and agents’
development, as well as the Industry 4.0 by intelligent control soft-
ware in Cyber-Physical Production Systems

Birgit Vogel-Heuser
Institute of Automation and Information
Systems, Department of Mechanical
Engineering, TUM School of Engineering
and Design, Core Member of MDSI and
Member of MIRMI, Technical University of
Munich, Munich, Germany
vogel-heuser@tum.de

Birgit Vogel-Heuser, Prof. Dr.-Ing., is a full professor and director of
the Institute of Automation and Information Systems at the Techni-
cal University of Munich. Her main research interests are systems
engineering, software engineering, and modeling of distributed
and reliable embedded systems. She is core member of TUM’s MDSI
(Munich Data Science Institute), member of TUM’s MIRMI (Munich
Institute of Robotics and Machine Intelligence), member of the Ger-
man Academy of Science and Engineering, chair of the VDI/VDE
working group on industrial agents, vice chair of the IFAC TC 3.1
computers in control, and was coordinator of the Collaborative Re-
search Centre (CRC) 768: Managing cycles in innovation processes –
integrated development of product-service systems based on tech-
nical products.

https://doi.org/10.1109/OCEANS.2002.1192070
https://doi.org/10.1109/ETFA.2011.6058991
https://doi.org/10.1016/j.sysarc.2016.01.007
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://doi.org/10.1515/auto-2021-0081
https://doi.org/10.1515/auto-2020-0004
https://doi.org/10.3182/20081205-2-cl-4009.00049
https://doi.org/10.1109/ETFA.2019.8869473

A p p e n d i x A . I n c l u d e s m a i n c o n t r i b u t i o n p a p e r s (P u b . I - V) | 133

Publication V (Agent4.0)

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Reprinted, with

permission, from Luis Alberto Cruz Salazar, and Birgit Vogel-Heuser, “Industrial Artificial

Intelligence: A Predictive Agent Concept for Industry 4.0.”

IEEE 20th International Conference on Industrial Informatics “INDIN” (2022), pp. 27 32.

https://doi.org/10.1109/INDIN51773.2022.9976159

IEEE note: “In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of the Technical University of Munich’s products or

services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for

creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to

obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest Library,

or the Archives of Canada may supply single copies of the dissertation.”

Industrial Artificial Intelligence:

A Predictive Agent Concept for Industry 4.0

Luis Alberto Cruz Salazar1 (Student member, IEEE), Birgit Vogel-Heuser1,2 (Senior Member, IEEE)
1Institute of Automation and Information Systems, Department of Mechanical Engineering,

TUM School of Engineering and Design, Technical University of Munich (TUM)
2Core Member of MDSI and Member of MIRMI

(luis.cruz@tum.de; vogel-heuser@tum.de)

Abstract— “Artificial Intelligence in Industry 4.0”, a technical

report published by the working groups “Technological and

Application Scenarios” and “Artificial Intelligence” (AI) of the

Industry 4.0 (I4.0) platform, presents an innovative Industrial AI

concept. Above all, it concludes that I4.0 experts and scientists

must become accustomed to the behavior of autonomous AI-

controlled systems, collaborate with them and comply with

learnability requirements (predictability). Industrial AI instantly

raises a set of concerns about existing norms and new

standardizations. These frequently provide guidelines and, in some

cases, offer procedures and implementations using design patterns.

One way to produce AI in I4.0 systems is through Industrial Agents

(IAs) due to their natural autonomy and additional intelligent

characteristics, e.g., reactiveness, proactiveness, and human

cooperativeness. Multi-Agent Systems (MASs) are particularly

well suited for representing distributable AI that can develop I4.0

components being applied to various I4.0 scenarios. Considering

the properties of IAs and the corresponding standards, an MAS

architecture is used to understand the aspects of the flexible,

intelligent, and automated Cyber-Physical Production System

(CPPS). This article proposes a predictive IA for I4.0 (Agent4.0) to

an agent-based CPPS architecture, leveraging IA design patterns

and logical structure for implementing MAS. As a result, relevant

standardized IA design patterns for I4.0 show how MAS can be

created with the help of the Industrial AI requirements and

Agent4.0 skills (functions) identified.

Keywords— Agent4.0, Artificial Intelligence, Cyber-Physical

Production Systems, Industry 4.0, Industrial Agents

I. INTRODUCTION

Several industrial partners, academics, and researchers

speak about distributed Artificial Intelligence (AI) and its

potential benefits through Industrial Agents (IAs) in various

domains, e.g., Manufacturing, Logistics, Smart Grids [1], [2].

Nevertheless, what exactly is an agent for Industry 4.0 (I4.0),

and what are its AI characteristics?

From its Multi-Agent System (MAS) concept roots, an agent

is an entity that “just acts” since the word “agent” is derived

from the Latin verb “agere”, which means “to do” [3].

Meanwhile, recently in the I4.0 context, according to German

agents FA 5.15 VDI/VDE experts’ standardization, an IA

encapsulates hardware or software to reach objectives through

its autonomous behavior by interacting with its environment and

with other IAs [4], [5]. At the same time, TC-IA, by the IEEE

P2660.1 working group, normalized the IA as an intelligent,

agile, and robust software that describes and manages the

functionalities and capabilities of industrial units [6]. Moreover,

MAS experts define AI as supplemental technical systems with

the capacity to process tasks independently and efficiently [7].

Nonetheless, those definitions are limited; they do not

answer how the MASs acquire their intelligence and apply it to

I4.0. Then, there are multiple and generally accepted definitions

of both terms (agents and AI), which are ambiguous and far

from identical within their communities.

AI specialists usually use agents to describe technologies

that complete multiple tasks and can be trained with external

data (from sensors or databases). The acquisition of data and

Machine Learning methods like Artificial Neural Networks,

Fuzzy Logic, and Linear Regression can support decisions

derived from the information already known to the intelligent

system. Depending on the lower complexity of Industrial AI

characteristics such as autonomy and reactiveness, IAs

algorithms can execute the actions that are considered “the best”

for smart systems. However, most sophisticated learning

algorithms must enable intelligent systems to learn from

online/offline operations, e.g., predictability definition [3], [8].

Then, the trained models, data, and knowledge should be

extended and made reusable [7]. In order to train IA’s

Knowledge Base models, highly complex and comprehensive

data is required, resulting in a predictive IA [3].

This paper proposes a generic predictive IA concept for I4.0

(Agent4.0) that applies a supervised learning method to increase

the predictability of automated production systems. The

Agent4.0 can be implemented on a high variety of platforms

through an MAS architecture to fulfill industrial use cases and

increase interoperability. MAS can be applied to achieve a

network of agent-based Cyber-Physical Production Systems

(CPPSs) for I4.0 use cases. CPPSs are industrial Cyber-Physical

Systems that are usually defined as the integration of virtual

(software) with physical (hardware) processes [1]. The MAS

architecture is derived from the already existing IA standards of

VDI/VDE and TC-IA experts.

In contrast to other platforms such as the often-used Java

Agent Development Environment “JADE” [9], [10], the

proposed platform is the Python Agent Development “PADE”

framework [11]. PADE is a good alternative for IA’s

development and execution platforms, allowing MAS to be

written in a modern programming language by Python with an

object-oriented paradigm, simple learning, and resources for

distributed system development.

This work recognizes five Industrial AI characteristics for

realizing a CPPS (sec. II) and their related works (sec. III). The

study suggests an MAS including a logical architecture and

software tools (sec. IV). This MAS already partially meets the

AI requirements, and the others are assessed using a predictive

IA concept (sec. V). The last section (sec. VI) includes a

summary and an outlook.

II. INDUSTRIAL AI CHARACTERISTICS AND IA PATTERNS

This section summarizes five Industrial AI characteristics

(C1-C5) and exemplifies the main IA patterns extended from

[12]. After that, sec. III analyses their related work and gap.

(C1) Autonomy: An IA can independently master uncertain

conditions in a delimited and automated manner, achieving its

objectives systematically without external or human

intervention. VDI/VDE experts define the Resource Agent (RA)

that is often located in the lowest MAS’s hierarchy without full

autonomy due to their submissive heterarchy in the low-level

control [4], [5].

(C2) Reactiveness: An IA can respond to a request to process

its environment information from low- to high-level control

(observation and communication responsiveness in real-time).

MAS experts define the Communication Agent (CA) that may

convert proprietary interfaces into multiple protocols [4], [5],

e.g., a communication interface by TCP/IP (often reactive with

the real-time capability).

(C3) Proactiveness: An IA can take the initiative for deciding

and processing information whilst pursuing a goal (reasoning

for deliberative tasks). Kovalenko et al. define the Product

Agent that can apply a systematic, model-based optimization

method during the decision-making process to achieve a

common goal [9]. In some MAS compared in [4], [5], the

Product Agent is often replaced by the Process Agent (PA).

(C4) Predictability: An IA can predict the subsequent

outcomes of actions given the actions in the previous tasks and

the self-learning (from past information). The Learning agent

concept has a distinctive “learning element”. It is often non-real-

time [3], which is in charge of improving the agent’s

performance based on feedback and determining how the

element should be updated to perform CPPS better in the future;

see CPPS predictability definition in [8].

(C5) Human cooperativeness: An IA can apply the concept

of human-in-the-loop. Karnouskos et al. introduce that IAs may

be used to accomplish I4.0’s idea of human-in-the-loop, in

which shop-floor operators interact with their environment and

CPPS with the help of IAs [1].

A traditional IA typology refers to response time and main

behavior (or feature) by three types [12]: the Reactive IA (reacts

to perception), the Proactive IA (performs deliberative actions),

and the Predictive IA (anticipates by learning tasks). Here, four

IA classes are categorized regarding their main capabilities, and

Industrial AI characteristics are determined: Class I; Physical

access agent (abstracting and connecting heterogeneous

production equipment with the MAS), Class II; Organizational

agent (managing and organizing the operation of the MAS),

Class III; Interface agent (handling the interface and

functionality of low- and high-level control) and Class IV;

Human agent (acting humans as agents).

Figure 1 focuses on these IA classes (cp. center), integrating

the AI typology (response time and main behavior, cp. top) and

the level of Industrial AI characteristics (cp. bottom).

Fig. 1. Industrial agents’ classes: typology and levels of Industrial AI

characteristics C1-C5 (adapted from [12]). Inspired by the mindset state in terms
of challenge/skills levels from Csikszentmihalyi’s flow model.

III. RELATED WORKS

IAs are usually considered a type of distributed AI, but these

are considered to be autonomous and reactive software (cp. C1-

C2), as introduced in [6]. In contrast, Russell and Norvig

introduce the Rational Agent concept as part of their AI

categories (cp. C3), meaning it acts in order to achieve the best

result or the best-expected result in the case of ambiguity [3].

They developed a taxonomy for the following AI system’

categorization: i) thinking humanly, e.g., artificial neural

networks and other cognitive methods (cp. C4); ii) acting

humanly (cp. C5), e.g., humanoid robots with natural language

processing; iii) thinking rationally, e.g., expert systems or rules

of inference and optimization (cp. C4); and iv) acting rationally,

e.g., intelligent software agents that are expected to achieve

goals (cp. C1-C3).

While those definitions are helpful, they are far too general.

Analyzing the roots of the IAs concept and AI facilitates

contrasting both meanings with recent interpretations. Most

recently, the authors Kaplan and Haenlein redefined AI as the

ability of a system to understand external input accurately, learn

from it, and apply what it has learned to fulfill specified goals

and tasks through flexible adaptation (cp. C1-C4)[13].

Meanwhile, Lee et al. distinguish Industrial AI as a systematic

discipline that integrates technical elements such as analytics,

meaning not only the algorithm but also the algorithm’s

implementation modeling by humans (cp. C5) in certain settings

and for specific goals [14]. These authors demonstrate in which

ways Industrial AI enables the system to be self-aware, self-

adaptive, and self-configuring (cp. C1-C4), easing the adoption

of Digital Twins.

In order to address IA definitions, the root taxonomies of the

word “agent” are analyzed. Unland defines an IA as a software

entity that autonomously represents and manages industrial

units’ functionalities and capabilities (cp. C1) [6]. The same

author defines a deliberative and reactive agent as the extreme

points within the range for the smartness of IAs (cp. C2-C3). In

both cases, it is possible to replace or combine one deliberative

agent with many reactive agents without losing quality [15].

Gangoiti et al. [10] apply those types of IAs by JADE,

aiming at adding reactivity and flexibility to CPPS following

with the digital twin concept (cp. C2), i.e., by the Asset

Administration Shell (AAS). Another example is IntraMAS

[16], an intralogistics domain model that appears in different

forms according to the overall abstraction and proactive control

software (cp. C3). Those IAs developers focus on the domain of

CPPS to solve I4.0 issues such as autonomy, reactiveness,

human collaboration etc. (cp. C1-5).

Most of the preliminary IA design patterns identified are

standardized [4], [5], which are only reactive and proactive IAs

types (C2-C3), with poor information on predictive IAs (C4).

For instance, MAS experts mention this characteristic, but the

analyzed IAs patterns do not demonstrate it [4]. The deliberative

agents improve from their own experience or offline analyzed

actions, for example, the Learning agent concept [3] (cp. C4).

This distinction increases since probability is not predictability.

A classical demonstration explains how the probability that a

tossed coin will land up heads is 50%, but in no way can this

accurately predict the next flip [17]. In this case, humans can

train the agent to predict (cp. C5), on average, how many flips

out of 200 will be heads, but it would not be able to predict the

next flip. For this reason, a human applying typical machine

learning methods are able to get predictive systems (cp. C4).

Most AI researchers generally mean an “agent” to be a

computer system that, in addition to having the properties listed

above, is developed using theories that are more typically

encountered in humans (cp. C5); however, the IAs capabilities

are still missing, getting unclear clear IAs types differentiation,

i.e., level of IA’s autonomy (cp. C1) [7]. Because of these

definitions, it is viable that in a control system, a human agent

and traditional agent behaviors are defined by a goal-orientated

approach (cp. C5). An IA behavior represents a specific

combination of tasks, but these tasks are not unique. IAs,

therefore, are distinct entities with the ability to take a goal-

oriented approach with real-time capabilities (cp. C2) [4], [6].

IAs frequently complete goals with autonomy, similar to

humans, but (as far as recent experts demonstrate), they cannot

reach the full AI autonomy level yet (cp. C1)[7]. Leitão et al.

add modularity, flexibility, robustness, reconfigurability, and

responsiveness to the IAs characteristics (cp. C1-C4), which are

not entirely part of human behavior (cp. C5) [2]. For instance,

Minsky et al. assume the human and computer can be

“inextricably intertwined,” while the Human-computer

interaction field commonly refers to them as separate or

individual entities [18]. However, humans (operators,

developers) can be considered an external part of the MAS

regarding the present human agent class.

Thus, the related approaches gap shows that MAS should

consider more predictive agents (cp. C4) and human agents (cp.

C5). In this sense, IAs can avoid the AI effect, which means that

technology once thought to be intelligent will become outdated

as machines become increasingly capable. As a result, the next

sections present agent-based CPPS derived from IA patterns.

IV. IA PATTERNS AND THE PREDICTIVE IA CONCEPT

This section presents an agent-based CPPS concept focusing

on IA patterns and the fulfillment of the Industrial AI

characteristics introduced. The MAS architecture describes the

relations between its IAs and visualizes its design. The MAS

software subsection describes tools used in order to enable a

wide variety of platforms, ensuring CPPS’s platform

independence and interoperability.

A. MAS architecture derived from IA patterns

Derived from the Foundation for Physical Agents “FIPA”

[19], the VDI /VDE 2653-4 [4], and the IEEE P2660.1 [6]

norms, the MAS architecture shown in Fig. 2 was developed.

Compared to the traditional MAS, the most crucial distinction

in this paper’s approach is the “learning element” embedded in

Agent4.0 in collaboration with the Administration shell.

Fig. 2. Simple Logical Architecture of the MAS (extended from [20]). aPS,
automated Production Systems; AMS, Agent Management System; DT,

Directory Facilitator; KB, Knowledge Base; ML, Machine Learning; MTS,

Message Transport System.

Protocols and messages, specified in sec. V (cp. Table II),

enable IAs’ communication and collaboration. An IA of the

CPPS can have one of two aspects to autonomously support a

variety of different use cases (cp. C1): each IA represents either

a physical system (Fig. 2; 1) or an organizational entity (Fig. 2;

2, 4, 5) For instance, an AMS provides IAs diagnosis services

or introduces production requests into the system by managing

the PAs. RA usually represents a single device or a group of

devices (Fig. 2; 1). RAs and PAs (Fig. 2; 2) can be found in a

CPPS network in various numbers, modularizing software or

separating hardware, enabling real-time reactiveness (cp. C2),

and non-real-time proactiveness (cp. C3), respectively.

An AMS manages the IAs of the entire MAS and works with

the Message Transport System and the Directory Facilitator for

discovery purposes [19]. All IAs register themselves with these

organizational entities from FIPA (Fig 2; 8). The directory

facilitator is a “yellow pages” service that supplies IA’s skills

and states [5], [11], [19]. Even if major parts of the FIPA

standard are discontinued (deprecated or obsolete), AMS

together with message transport system and the directory

facilitator are still specifications considered stable and formally

published [19].

The AMS supports bidirectional IP-address-to-agent-name

mapping. This allows direct communication between agents

(Fig. 2; 7), e.g., asking for an IA’s IP address (identified by its

name) and then using that data to establish a direct connection

that is not dependent on other entities. By not defining specific

interface communication into CAs (Fig. 2; 3), application, level,

platform reactiveness (cp. C2) as well as AAS integration (Fig.

2; 5) are further enhanced. OPC UA (Fig. 1; 6) and other

adequate industrial communication protocols are examples of

possible implementations. To ensure high availability and

predictability from single IAs (cp. C5), Agent4.0 monitors all

RAs for availability on a normal behavior (cp. R4). The IAs

directories are in the cloud (Fig. 1; 9) over numerous nodes, like

internet name services. The logical structure here serves as a

reusable specification for applying MAS architecture to

extended CPPS domains, as given in [12]. The software used for

the agent-based CPPS presented in the next section was selected

as a result of this, considering the industrial AI needs (sec. II).

B. MAS software applied

The following technologies were chosen for the AAS

deployment based on the previous prerequisites: Node-RED as

integration middleware, Apache Kafka for the event/message-

based communication pattern, REST services for the Request-

Response communication IA patterns, and AutomationML as

the supporting format for NOVAAS [21]. The CPPS control

programs usually are performed at the low-level control of a

development system’s hierarchy. Because of the widespread use

of PLCs today, it seems reasonable to assume that they are being

used in the I4.0 era, as mentioned in [10].

I4.0 components are often founded on current PLC

programming technology that relies on typical IEC 61131-3 but

also distributed IEC 61499 standard. In addition, an AAS is

configured using OPC UA, one of the most recommended AAS

technologies [22] for AAS metamodel application. The AAS

has been generated by transforming each AAS I4.0

demonstrator into nodes (*.js), as proposed by the authors in

[21]. The OPC UA Server retains the description in OPC UA of

the AAS, representing the MAS control and the plant’s models

based on NOVAAS. Following the modeling, the PLCopen

XML file is created and imported into TwinCAT3; a PLC

integrated development environment. The IEC 61131-3

program is then designed, variables are connected to unique

in/external modules, and the application is ready to run on the

xPPU’s PLCs (i.e., real-time capable). The PLCs communicate

with the plant by EtherCAT and publish an OPC UA server to

contact the middleware, as introduced in [5]. In this scenario,

1myYoghurt’s web: http://i40d.ais.mw.tum.de

the middleware, which includes an OPC UA client and a web

server, is written in Java and runs on a Raspberry Pi. HTTP

requests from remote users may be activated until the

middleware is up and running. A web application through

NOVAAS provides an overview of the AAS representation into

the OPC UA client and gives the relevant description with

integrated header and body sub-models [21]. Selected open

sources and their graphical user interface recommendations for

digital twin development in this architecture (based on AAS) are

summarized in Table I.

TABLE I. OPEN SOURCE AAS DEVELOPMENT APPLICATIONS

Name Main feature Open access* project

AASX
Package

Explorer

Use C#, easy GUI, and
server with AAS

examples are available

https://github.com/admin-shell-

io/aasx-package-explorer

BaSyx
Use Eclipse, wide range

of functions/GUI

https://projects.eclipse.org/proje

cts/technology.basyx

NOVAAS Use Node-RED, GUI https://gitlab.com/novaas

PyI40AAS
Use Python and simple

pip, no GUI available

https://git.rwth-

aachen.de/acplt/pyi40aas
*A repository is available online to use it. GUI refers to graphical user interface.

V. USE CASE AND EVALUATION

This section discusses the proof of concept in detail (sec.

V.A) over scenarios of two agent-based CPPS demonstrators

with a common MAS architecture (cp. Fig. 2 adapting [5]).

After that, the main results are evaluated in sec V.B.

First CPPS is myYoghurt1 demonstrator and the scenario is a

revised solution by the authors in [20]. Second CPPS is the

Extended Pick and Place Unit (xPPU2) that comprises storage

of workpieces space, fabricating, and logistics. The scenario

depicts a single production line’s availability during processing

of various types of workpieces. Each order of the xPPU is

assigned to a new PA that coordinates the xPPU RAs [9]. The

xPPU contrasts in aspects like openness via different protocols

and modularity by hybrid platforms compared to myYoghurt

plant. Table II results from testing those CPPSs and the

applicable criteria based on [6]. Regarding IAs platforms, the

main advantage of a PADE over a JADE is that it can send

serialized objects (FIPA‐ACL messages) and has multi‐
platform interaction based on web technologies [11]. PADE, as

well the IA patterns implemented in this section are not limited

for manufacturing, but also extended for smart grids domain [4].

TABLE II. QUALITATIVE ASSESSMENT OF IAS INTERFACES OF THE CPPS

DEMONSTRATORS. EVALUATION BASED ON [6]

 Pattern criteria* myYoghurt [20] xPPU demonstrator

Location On-device Hybrid

Interaction mode Loosely coupled Tightly coupled

API client C++/C#, Java (JADE) REST/JSON, Python (PADE)

Channel FIPA-ACL, OPC UA HTTP, FIPA-ACL, OPC UA

Score* 2.56 3.20
*Criteria recommendation come from [6]. The score value is according to our expertise, providing

a qualitative assessment of the IEEE 2660.1 interface practice into the CPPSs.

IEEE 2660.1 interface practices categorize I4.0 plants for

example, regarding location (low/high-level control host),

interaction mode (low/high-level control interactions),

2xPPU’s web: https://www.mec.ed.tum.de/ais/forschung/demonstratoren/ppu

http://i40d.ais.mw.tum.de/
https://www.mec.ed.tum.de/ais/forschung/demonstratoren/ppu

application programming interface client, channel, score [6],

and capability of using hybrid industrial communication

protocols (e.g., Profinet, EtherCAT, among others), cp. Table II.

This feature enables mixing open communication approaches

by running tasks of an OPC UA server. Thus, a generic OPC

UA Client will access the OPC UA server navigating the two

AASs (from each plant) to learn more about the IEC 61131-3

code and the relationship among variables, in/output devices,

and IAs. Moreover, they control internal/external modules, i.e.,

fault diagnosis, control, etc. A web app has been created, which

provides an OPC UA Client to communicate with the OPC UA

Server, enabling the web application to provide a web user with

a summary of the whole MAS comprised of the PLC and

managed by the xPPU demonstrator, as given in [5].

A. Application Example of the Agent-Based CPPS

The application of an agent-based CPPS scenario is

summarized in this subsection. In the MAS, PAs have self-

initiated behavior that endeavors to define the required services

and resources to produce four types of workpieces: aluminum

metal (MetalA), bronze metal (MetalB), black plastic

(PlasticB), and white plastic (PlasticW). PAs take control of an

MAS situation, making early changes (cp. C2), requesting and

assigning RAs available to transport workpieces. An agent-soft

sensor application has been validated through the RAs of the

xPPU. RAs can replace autonomously individual parameters

(cp. C1) at runtime to substitute missing actual values through

mathematical estimations. For instance, a light barrier sensor for

workpiece location is found at the xPPU’s conveyors. In case of

failure, RAs react to get real-time data (cp. C2) with a calculated

accuracy value (values are given in percentage “%”) through the

workpiece’s velocity and travel time.

Agent4.0 is provided with a supervised machine learning

algorithm in the primary state to support (but not limited to)

long-term production tasks. Then, the workpiece features of

time, speed, weight, type of material, and distance traveled are

used to estimate a sensor accuracy value (actual value).

Agent4.0 uses Linear Regression, due to its low mathematical

complexity, to find out the best fitting line to represent the

relationship between these workpiece variables. Figure 3 is a

screenshot from the Orange tool for training the Agent4.0. In

practice, Linear Regression is helpful since RAs have an

extensive dataset, both in the number of rows and columns, that

may lead into a memory overflow (Fig. 3; right).

Fig. 3. Training Linear Regression model in Orange (Python-based platform)

for Agent4.0 (left) to predict data for sensor values accuracy (right).

Given that the machine learning representation is a linear

equation, solving it is as easy as solving an equation for a

specific set of inputs to make predictions. Agent4.0 can process

the data from RAs and obtain the prediction data accuracy (%)

of each agent-based sensor. Not only workpieces positions but

multiple methods are trained offline by human operators in

Agent4.0 (cp. C5) to predict other target values, e.g., the type of

material of the workpieces.

Fig. 4 plots the observations given through machine learning

by different figures’ colors; thus, a prediction is provided by the

black regression line. Most of the observations are close to the

regression line; hence we can say our Linear Regression is an

adequate model to make accurate predictions (see Fig. 4;

correlation coefficient “r” is 0.76). As a result, the initial sensor

value is compared to the predicted value, providing an error

margin. If the error value is reasonable (Fig. 4; range between

blue lines), the estimated sensor value is considered accurate

enough and accepted by the agent-based sensor.

Fig. 4. Linear Regression plot of the Agent4.0. Predicted value and the

correlated coefficient “r” (r>0.7 is considered a high correlation). The black line
is the best fit of data; blue lines are the confidence band, out of this are outliers.

Through the machine learning model, the Agent4.0 is able to

predict data such as the accuracy provided by the agent-based

soft sensor from RAs (Fig. 3; right), increasing their availability.

The proposed MAS architecture for CPPS was implemented in

a specific application scenario to examine the required

application and its Industrial AI characteristics (cp. sec. II).

Initially, an academic demonstration of mass-customized items

was employed to test the agent-based CPPS, i.e., by the xPPU

demonstrator.

B. Agent4.0’s Qualitative Evaluation

According to the analyses from this study, current MAS

implementation reach different Industrial AI levels (C1-C4) due

to Agent4.0 being able to apply various functions (skills) with

specific descriptions (cp. Table III and Fig. 5). The terms used

in Table III are based on the IEEE P2660.1 guideline [6];

should” indicates it is recommended to, “may” indicates it is

permitted to, and “can” indicates it is able to. Fig. 3 and Table

III, resume each Agent4.0 skill descriptions that are drawn from

the authors’ evaluation, extending the preliminary work in [12].

TABLE III. AGENT4.0’S INDUSTRIAL AI CHARACTERISTICS EVALUATION

Industrial AI characteristics

(C1-C5) evaluation

Agent4.0 function (skill*) description A
u

to
n

o
m

y

R
ea

ct
iv

en
es

s

P
ro

a
ct

iv
en

es
s

P
re

d
ic

ta
b

il
it

y

H
u

m
a

n

co
o
p

er
a
ti

ve
n

es
s

Agent4.0 should increase its initial Knowledge
Base competence because of the “learning

element” (often non-real-time). Sec IV.A
● ● ● ●

Agent4.0 may operate in a time-predictable

way, i.e., enabling short/medium/long-term

production tasks. Sec. V.A
● ● ●

Agent4.0 can predict data valuable to other IAs,

by a central learning module. Sec. V.A ● ●
Agent4.0 can apply a supervised learning

method, e.g., a Linear Regression algorithm, to

achieve its goals. Sec. V.B
 ● ●

Agent4.0 usually does not fulfill hard/soft real-

time requirements because predictability

implies learning from the past and being located
at the heterarchy top. Sec. II.C4

 ●

●: needed. *See other IAs’ skills in [12]

Fig. 5. Agent4.0 and its Industrial AI characteristics (cp. Table III).

VI. SUMMARY AND OUTLOOK

International MAS experts’ widespread adoption of the IAs

in the CPPS has contributed to the seemingly insurmountable

I4.0 paradigm by IA patterns standardization. However, those

patterns present a unique opportunity to measure Industrial AI

characteristics in agent-based CPPS, which have so far plagued

attempts to control how traditional automated production

systems and equipment are made. The preliminary standardized

IA patterns (RA, PA, CA, and AMS) demonstrate how to

achieve autonomy, reactiveness, and proactiveness, providing

Industrial AI in CPPS with platform independence. Meanwhile,

the main contribution of this paper shows the Agent4.0 concept

with an MAS architecture as the subsequent transformation of

IAs for a CPPS evolution in order to enhance predictability,

among other Industrial AI characteristics. Those industrial

needs should be achieved and measured using concepts for

predictive systems. The concepts in question enable MAS

developers to predict CPPS behavior uncertainties and thereby

decrease IAs’ obsolescence, i.e., avoiding the AI effect (concept

description at the end of sec. III). In this case study, the MAS

application resides in a cloud environment-based Node-RED

that is easily accessible with a network connection in order to

reveal KPIs like OEE. The main benefit of applying IAs and

reaching a high OEE is the ability to demonstrate CPPS

competitiveness by highlighting weaknesses. For instance, RA

increases the availability of the equipment by soft-sensors and

PA delivers high-quality products to its customers. From these

IA patterns, it is then possible to differentiate the Agent4.0 that

increases predictability and human cooperativeness by offline

training and predicting data trends within CPPS.

Regarding future work, using different machine learning

models for Agent4.0 as a resource to identify critical CPPS

situations in an unsupervised training environment could allow

automatically performed cost-opportunity analyses to decide

whether extra agent-based sensors should be included.

REFERENCES

[1] S. Karnouskos, P. Leitão, L. Ribeiro, and A. W. Colombo, “Industrial Agents as a Key

Enabler for Realizing Industrial Cyber-Physical Systems: Multiagent Systems

Entering Industry 4.0,” IEEE Ind. Electron. Mag., vol. 14, no. 3, pp. 18–32, Sep. 2020.

[2] P. Leitão, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W. Colombo, “Smart

Agents in Industrial Cyber–Physical Systems,” Proc. IEEE, vol. 104, no. 5, pp. 1086–

1101, May 2016, doi: 10.1109/JPROC.2016.2521931.

[3] S. Russell and P. Norvig, Artificial Intelligence A Modern Approach, 4th ed. Pearson,

2021.

[4] VDI/VDE, “2653 Sheet 4: Multi-agent systems in industrial automation - Selected

patterns for field level control and energy systems,” 2021. [Online]. Available:

https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-

industrial-automation-selected-patterns-for-field-level-control-and-energy-systems.

[5] L. A. Cruz S., D. Ryashentseva, A. Lüder, and B. Vogel-Heuser, “Cyber-physical

production systems architecture based on multi-agent’s design pattern—comparison

of selected approaches mapping four agent patterns,” Int. J. Adv. Manuf. Technol., vol.

105, no. 9, pp. 4005–4034, Jul. 2019, doi: 10.1007/s00170-019-03800-4.

[6] IEEE, “IEEE Recommended Practice for Industrial Agents: Integration of Software

Agents and Low-Level Automation Functions,” IEEE Std 2660.1-2020, Jan. 2021.

[7] Plattform Industrie 4.0, “Technology Scenario, Artificial Intelligence in Industrie 4.0,”

Berlin, Germany, 2019.

[8] L. Ribeiro and M. Hochwallner, “On the Design Complexity of Cyberphysical

Production Systems,” Complexity, vol. 2018, pp. 1–13, Jun. 2018.

[9] I. Kovalenko, D. Ryashentseva, B. Vogel-Heuser, D. Tilbury, and K. Barton,

“Dynamic Resource Task Negotiation to Enable Product Agent Exploration in Multi-

Agent Manufacturing Systems,” IEEE Robot. Autom. Lett., vol. 4, no. 3, Jul. 2019.

[10] U. Gangoiti, A. López, A. Armentia, E. Estévez, and M. Marcos, “Model-Driven

Design and Development of Flexible Automated Production Control Configurations

for Industry 4.0,” Appl. Sci., vol. 11, no. 5, p. 2319, Mar. 2021.

[11] L. S. Melo, R. F. Sampaio, R. P. S. Leão, G. C. Barroso, and J. R. Bezerra, “Python‐
based multi‐agent platform for application on power grids,” Int. Trans. Electr. Energy

Syst., vol. 29, no. 6, Jun. 2019, doi: 10.1002/2050-7038.12012.

[12] L. A. Cruz S. and B. Vogel-Heuser, “A CPPS-architecture and workflow for bringing

agent-based technologies as a form of artificial intelligence into practice,” - Autom.,

vol. 70, no. 6, pp. 580–598, Jun. 2022, doi: 10.1515/auto-2022-0008.

[13] A. Kaplan and M. Haenlein, “Siri, Siri, in my hand: Who’s the fairest in the land? On

the interpretations, illustrations, and implications of artificial intelligence,” Business

Horizons. 2019, doi: 10.1016/j.bushor.2018.08.004.

[14] J. Lee, M. Azamfar, J. Singh, and S. Siahpour, “Integration of digital twin and deep

learning in cyber‐physical systems: towards smart manufacturing,” IET Collab. Intell.

Manuf., vol. 2, no. 1, pp. 34–36, Mar. 2020, doi: 10.1049/iet-cim.2020.0009.

[15] P. Leitão and S. Karnouskos, Industrial Agents: Emerging Applications of Software

Agents in Industry, 1st Ed. Elsevier, 2015.

[16] J. Fischer, M. Marcos, and B. Vogel-Heuser, “Model-based development of a multi-

agent system for controlling material flow systems,” - Autom., vol. 66, no. 5, 2018.

[17] B. Leybovich, “Probability is not Predictability,” Towards Data Science, 2019.

https://towardsdatascience.com/probability-and-predictability-b3d7ebb6952e

(accessed Jan. 01, 2022).

[18] M. Minsky, R. Kurzweil, and S. Mann, “The society of intelligent veillance,” in 2013

IEEE International Symposium on Technology and Society (ISTAS): Social

Implications of Wearable Computing and Augmediated Reality in Everyday Life, Jun.

2013, pp. 13–17, doi: 10.1109/ISTAS.2013.6613095.

[19] IEEE, “Foundation for Intelligent Physical Agents FIPA,” 2005.

http://www.fipa.org/repository/index.html (accessed Feb. 06, 2022).

[20] L. A. Cruz S., F. Mayer, D. Schütz, and B. Vogel-Heuser, “Platform Independent

Multi-Agent System for Robust Networks of Production Systems,” IFAC-

PapersOnLine, vol. 51, no. 11, pp. 1261–1268, 2018, doi:

10.1016/j.ifacol.2018.08.359.

[21] G. di Orio, P. Malo, and J. Barata, “NOVAAS: A Reference Implementation of

Industrie4.0 Asset Administration Shell with best-of-breed practices from IT

engineering,” in IECON 2019 - 45th Annual Conference of the IEEE Industrial

Electronics Society, Oct. 2019, pp. 5505–5512, doi: 10.1109/IECON.2019.8927081.

[22] Platform Industrie 4.0, “Details of the Asset Administration Shell - Part 1 The

exchange of information between partners in the value chain of Industrie 4.0 (Version

3.0RC01),” Berlin, Germany, 2020.

	Cruz-ThesisPhD
	Main peer-reviewed publications
	Acknowledgments
	List of Abbreviations
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction and motivation
	1.1 Motivation for automated Production Systems with Multi-Agent Systems
	1.2 Why Industrial Agents and Cyber-Physical Production Systems?
	1.3 Delimitation and key differentiation of this thesis
	1.4 Scientific problem: issue statements
	Issue 1: Lack of a comprehensive overview and classification of MAS patterns in CPPS
	Issue 2: Challenge of reusability and extendibility of MAS design patterns for I4.0
	Issue 3: Integration of MAS design patterns with existing CPPS models and standards
	Issue 4: Implementing sub-agent patterns and AASs into hybrid CPPS platforms.

	1.5 Research questions, and main contributions
	1.6 Structure of this dissertation

	2. Research method and conceptual background
	2.1 Research method and strategy stages
	2.2 IA design pattern definition
	2.3 Requirements for MAS architectures for I4.0/CPPS
	2.4 Related work: how do IAs contribute to the CPPSs?

	3. Main contributions of IA design patterns to CPPS
	3.1 Contribution 1 (Con1): MAS criteria categorization
	3.2 Contribution 2 (Con2): IA pattern needs for I4.0
	3.3 Contribution 3 (Con3): agent-based CPPS scenarios
	3.4 Contribution 4 (Con4): MAS architecture with DTs
	3.5 Contribution 5 (Con5). IA patterns standardization

	4. Summary of publications
	4.1 Publication I: “Comparison of agent oriented software methodologies to apply in cyber physical production systems” (Cruz & Vogel-Heuser, 2017)
	Summary of Pub. I (ReqsForCPPS)
	Author’s contributions on Pub. I

	4.2 Publication II: “Platform Independent Multi-Agent System for Robust Networks of Production Systems” (Cruz S. et al., 2018)
	Summary of Pub. II (MASplatform)
	Author’s contributions on Pub. II

	4.3 Publication III: “Cyber-physical production systems architecture based on multi-agent’s design pattern—comparison of selected approaches mapping four agent patterns” (Cruz S. et al., 2019)
	Summary of Pub. III (MASpatterns)
	Author’s contributions on Pub. III

	4.4 Publication IV: “CPPS-architecture and workflow for bringing agent-based technologies as a form of artificial intelligence into practice” (Cruz S. & Vogel-Heuser, 2022a)
	Summary of Pub. IV (MARIANNE)
	Author’s contributions on Pub. IV

	4.5 Publication V: “Industrial Artificial Intelligence: A Predictive Agent Concept for Industry 4.0” (Cruz S. & Vogel-Heuser, 2022b)
	Summary of Pub. V (Agent4.0)
	Author’s contributions on Pub. V

	5. Discussion and outlook
	5.1 Main publications results related to the issues
	5.2 Fulfillment of the requirements and the covered CPPS challenges
	5.3 Conclusion and outlook

	6. References
	7. Appendix A. Includes main contribution papers (Pub.I-V)

	Publication I (ReqsForCPPS)
	Publication II (MASplatform)
	Publication III (MASpatterns)
	Publication IV (MARIANNE)
	Publication V (Agent4.0)

