TUMTraf V2X Cooperative Perception Dataset

Walter Zimmer!
Xingcheng Zhou!

!Technical University of Munich

f

Roadside camera

Truck

Trailer

Van .. :
Motorcycle “{

Bus
Pedestrian

Bicycle

Gerhard Arya Wardana'
Rui Song!?

Suren Sritharan'
Alois C. Knoll!

2Fraunhofer IVI

https://tum-traffic-dataset.github.io/tumtraf-v2x

Z 5 i
/ ‘ Vehicle camera |/

~ o D
Roadside (4
cameras

kY

Figure 1. Visualization of 3D box labels and tracks in our TUMTraf V2X Cooperative Perception Dataset. The top part shows the
labels projected into the four camera images. The part below shows a point cloud from two LiDARs with 3D box labels of the same scene.

Abstract

Cooperative perception offers several benefits for en-
hancing the capabilities of autonomous vehicles and im-
proving road safety. Using roadside sensors in addition to
onboard sensors increases reliability and extends the sensor
range. External sensors offer higher situational awareness
for automated vehicles and prevent occlusions. We propose
CoopDet3D, a cooperative multi-modal fusion model, and
TUMTraf-V2X, a perception dataset, for the cooperative 3D
object detection and tracking task. Our dataset contains
2,000 labeled point clouds and 5,000 labeled images from
five roadside and four onboard sensors. It includes 30k 3D
boxes with track IDs and precise GPS and IMU data. We la-
beled eight categories and covered occlusion scenarios with
challenging driving maneuvers, like traffic violations, near-
miss events, overtaking, and U-turns. Through multiple ex-
periments, we show that our CoopDet3D camera-LiDAR fu-
sion model achieves an increase of +14.36 3D mAP com-
pared to a vehicle camera-LiDAR fusion model. Finally, we
make our dataset, model, labeling tool, and dev-kit publicly
available on our website.

1 . Introduction

Cooperative perception involves the fusion of onboard sen-
sor data and roadside sensor data, and it offers several ad-
vantages for enhancing the capabilities of autonomous ve-
hicles and improving road safety. Using data from multiple
sources makes the perception more robust to sensor failures
or adverse environmental conditions. Roadside sensors pro-
vide an elevated view that helps to detect obstacles early.
Moreover, they are also beneficial for precise vehicle local-
ization and reduce the computational load of automated ve-
hicles by offloading some perception tasks to the roadside
sensors. Roadside sensors provide a global perspective of
the traffic and offer a comprehensive situational awareness
when fused with onboard sensor data. There are also fewer
false positives or negatives because cooperative perception
cross-validates the information from different sensors.

Infrastructure sensors can share perception-related infor-
mation with vehicles through V2X. Due to minimal delay,
and real-time capabilities, the infrastructure-based percep-
tion systems can further enhance the situational awareness
and decision-making processes of vehicles.

Intelligent Transportation Systems (ITS) like the Testbed
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Table 1. Comparison of 3D cooperative V2X perception datasets with our proposed TUMTraf-V2X Cooperative Perception dataset

(I=Infrastructure, V=Vehicle).

Dataset OPV2V V2XSet V2X-Sim V2V4Real DAIR-V2X- V2X-Seq TUMTraf-
[51] [49] [30] [52] C[57] (SPD)[59]  V2X (Ours)

Year 2022 2022 2022 2022 2022 2023 2024

V2X V2v V2v&l V2v&l v2v V2I V2I V2I

Real data - - - v’ v’ v’ v’

Annotation range 120 m 120 m 70 m 200 m 280 m 280 m 200 m

Day & night scenes - - - - v’ v’ v’

# object classes 1 1 1 5 10 9 8

Track IDs - - v’ v’ - v’ v’

HD Maps v’ v’ v’ v’ - v’ v’

# of sensors (1| V) -6 -6 5|7 -| 8t 2|3 2|3 5|4

Available worldwide v’ v’ v’ v’ - - v’

Traffic violations - - - - - - v’

Labeled attributes™ - - - - - - v’

OpenLABEL format - - - - - - v’

# Point Clouds 11k 11k 10k 20k 39k 15k 2.0k

# Images 44k 44k 60k 40k T 39k 15k 5.0k

# 3D Boxes 233k 233k 26k 240k 464k 10.45k 29.38k

Location CARLA CARLA CARLA USA China China Germany

T Image dataset has not been released yet.

* Value per vehicle. Multiple Conn. and Autom. Vehicles (CAVs) are used.

for Autonomous Driving [25] aim to improve safety by
providing real-time traffic information. According to [14],
testbeds extensively start using LiDAR sensors in their se-
tups to create an accurate live digital twin of the traffic.
Connected vehicles get a far-reaching view which enables
them to react to breakdowns or accidents early. ITS sys-
tems also provide lane and speed recommendations to im-
prove the traffic flow.

The key challenge with ego-centric vehicle datasets is that
there are many occlusions from a vehicle perspective, e.g.,
if a large truck in front of the ego vehicle obscures the view.
Roadside sensors located at a smart intersection provide a
broad overview of the intersection and a full-surround view.
Given the immense potential of ITS, there is a specific need
for V2X datasets. Despite the high costs associated with
collecting and labeling such datasets, this work addresses
this challenge as a crucial step toward realizing large-scale
ITS implementations.

Our contributions are as follows:

* We provide a high-quality V2X dataset for the coopera-
tive 3D object detection and tracking task with 2,000 la-
beled point clouds and 5,000 labeled images. In total, 30k
3D bounding boxes with track IDs were labeled in chal-
lenging traffic scenarios like near-miss events, overtaking
scenarios, U-turn maneuvers, and traffic violation events.

* We open-source our 3D bounding box annotation tool
(3D BAT v24.3.2) to label multi-modal V2X datasets.

* We propose CoopDet3D, a cooperative 3D object detec-

i# Total sensors from 2 CAVs.
Weather, time of day, orientation, number of LiDAR points

tion model, and show in extensive experiments and abla-
tion studies that it outperforms single view models on our
V2X dataset by +14.3 3D mAP.

* Finally, we provide a development kit to load the annota-
tions in the widely recognized and standard format Open-
LABEL [20], to facilitate a seamless integration and uti-
lization of the dataset. Furthermore, it can preprocess,
visualize, and convert labels to and from different dataset
formats, and evaluate perception and tracking methods.

2 . Related work

3D autonomous driving datasets are mainly categorized
based on the viewpoint. Table | highlights the main differ-
ences between our proposed dataset and other V2X datasets.

2.1. Single viewpoint datasets

Single viewpoint datasets are obtained from a single point
of reference, either an ego-vehicle or roadside infrastruc-
ture. Onboard sensor-based datasets like KITTI [19],
nuScenes [9], and Waymo [42] contain a diverse set of
sensor data collected from a moving vehicle equipped
with multiple sensors, including high-resolution cameras,
LiDARs, radars, and GPS/INS systems. These datasets
are abundant and provide many annotated data, including
bounding boxes, track IDs, segmentation masks, and depth
maps under different urban driving scenarios.

On the other hand, roadside sensor-based datasets are
in the infancy stage. High-quality multi-modal (camera
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Figure 2. Our CoopDet3D framework is a multi-modal cooperative fusion system, comprising three distinct fusion pipelines. 1) The
roadside camera-LiDAR fusion pipeline fuses three camera images and one LiDAR point cloud by extracting features and transforming
them into a BEV representation. 2) The vehicle camera-LiDAR fusion pipeline fuses the vehicle camera feature map with the vehicle point
cloud feature map using a convolutional fuser. 3) The vehicle and infrastructure feature maps are then fused by applying an element-wise
max-pooling operation (Max Fuser). In the end, we use the TransFusion [2] 3D detection head to obtain 3D bounding box predictions.

and LiDAR) datasets are presented in [7, 15, 64], which
are obtained from Infrastructure Perception Systems (IPS).
Similarly, in [55], the authors provide a dataset consisting
of only images taken from different viewpoints and under
varying traffic conditions. These datasets provide a top-
down view of a crowded intersection under different condi-
tions and, as such, can overcome issues such as occlusions
created by other vehicles and thereby have a higher number
of object labels than onboard sensor-based datasets.

2.2. V2X datasets

V2X datasets exploit the information from multiple view-
points to gain additional knowledge regarding the environ-
ments. In this way, they overcome the limitations of single
viewpoint datasets such as occlusion, limited field of view
(FOV), and low point cloud density.

DAIR-V2X dataset family [57] is one of the foremost
cooperative multi-modal datasets introduced. It contains
three subsets: an intersection, a vehicle, and a cooperative
dataset. The cooperative dataset contains 464k 3D box la-
bels belonging to 10 classes, making it one of the largest
cooperative datasets. The V2X-Seq dataset [59] extends se-
lected sequences of the DAIR-V2X dataset with track IDs
and is partitioned into a sequential perception dataset (SPD)
and a trajectory forecasting dataset. Despite these, the lack
of specific information, such as the labeling methodology
used, the exact models of the sensors deployed, the distri-
bution of the classes, and the scenarios within the dataset,
leads to uncertainty in the extendability and application of
this dataset in varying conditions.

In V2V4Real [52], the authors propose a multi-modal
cooperative dataset focusing only on V2V perception. Two
vehicles equipped with cameras, LIiDAR, and GPS/IMU in-
tegration systems are used to collect multi-modal sensor
data for diverse scenarios. As opposed to all other V2X
datasets, this focuses on V2V perception, and though it is of
similar size to other cooperative datasets, it contains fewer
classes and 3D bounding box information.

Simulated multi-agent perception datasets have been
proposed in [30, 49, 51]. These datasets contain multi-
modal sensor data (camera and LiDAR) obtained from road-
side units (RSUs) and multiple ego vehicles, which enable
collaborative perception. They use a combination of sim-
ulators such as SUMO [35], CARLA [16], and OpenCDA
[51] for flow simulation, data retrieval, and V2X communi-
cation. However, the utility of the dataset is still limited due
to the simulated nature of the data, and its extendability to
real-life applications has not been studied in detail.

2.3. V2X perception models for object detection

The datasets presented above have been used to develop
various models for a wide variety of tasks, with the major-
ity focusing on 3D object detection. Different approaches
have been taken depending on the availability and chal-
lenges, and these methods are grouped based on the number
of nodes employed and the modalities used for detection.
Most 3D object detection models use multi-modal sensor
data obtained from a single point of view, which is often an
ego-vehicle. Due to the popularity and abundant availabil-
ity of vehicle datasets [9, 19, 42], most models use images,



point cloud data, or both modalities. Image-based models
were the pioneers in 3D object detection due to their low
cost and simplicity, and both vehicular camera-based mod-
els [26, 48] and infrastructure camera-based models [54]
have been proposed. LiDAR-based 3D object detection
models [27, 65] became popular since LiDAR point clouds
provide 3D depth information and are robust, especially in
adverse weather conditions and nighttime scenarios. Fusion
models combine the information obtained from both images
and point clouds and have been shown to outperform the
prior methods [63]. Single viewpoint fusion models use ei-
ther vehicular camera and LiDAR [34, 44, 53] or infrastruc-
ture camera and LiDAR [63] for 3D object detection.

Cooperative perception models, which use data from
multiple viewpoints, have been shown to overcome issues
related to occlusion, which were often present in vehicu-
lar sensor-based models. V2I cooperative perception mod-
els [3, 4, 21, 37, 46, 49, 58] use the sensor data from both
vehicles and infrastructure and V2V models [22, 41] com-
municate the sensor data between multiple vehicles. In this
work, our cooperative multi-modal dataset is one contribu-
tion among others. Thus, while most of the prior works
focus on unimodal cooperative perception using either Li-
DAR point clouds [3, 11] or camera images [22], we bench-
mark our dataset with CoopDet3D, a deep fusion based co-
operative multi-modal 3D object detection model based on
BEVFusion [22] and PillarGrid [3].

3. TUMTraf-V2X Dataset

Our TUMTraf V2X Cooperative Perception Dataset fo-
cuses on challenging traffic scenarios and various day and
nighttime scenes. The data is further annotated, emphasiz-
ing high-quality labels through careful labeling and high-
quality review processes. It also contains dense traffic and
fast-moving vehicles, which reveals the specific challenges
in cooperative perception, such as pose estimation errors,
latency, and synchronization. Furthermore, we provide sen-
sor data from nine different sensors covering the same traf-
fic scenes under diverse weather conditions and lighting
variations. The infrastructure sensors are oriented in all four
directions of the intersection to get a 360° view, which leads
to better perception results. Finally, it contains rare events
like traffic violations where pedestrians cross the road at a
busy four-way intersection while the crossing light is lit red.

3.1. Sensor setup

Our TUMTraf V2X Cooperative Perception Dataset was

recorded on an ITS system with nine sensors.

The infrastructure sensor setup is the following:

¢ 1x Ouster LiDAR OS1-64 (gen. 2), 64 vert. layers, 360°
FOV, below horizon config., 10 cm acc. @120 m range

* 4x Basler ace acA1920-50gc, 1920%x 1200, Sony IMX174
with 8§ mm lenses

Roadside LiDAR Vehicle LIDAR

Figure 3. Demonstration of a possible V2X occlusion scenario. A
pedestrian (blue) is crossing the road in front of the ego vehicle.
An occluded bicycle is marked in red. The recording vehicle with
the sensor setup is shown in the bottom left corner.

On the vehicle, the following sensors were used:

* 1x Robosense RS-LiDAR-32, 32 vert. layers, 360° FOV,
3 cm accuracy @200 m range

* Ix Basler ace acA1920-50gc, 1920x 1200, Sony IMX174
with 16 mm lens

¢ 1x Emlid Reach RS2+ multi-band RTK GNSS receiver

e 1x XSENS MTi-30-2A8G4 IMU

3.2. Sensor calibration and registration

We synchronize the cameras and LiDARs in the spatial and
temporal domain. First, we determine the intrinsic camera
parameters and the radial and tangential image distortions
by using a checkerboard target. We then calibrate the road-
side LiDAR with the roadside cameras by picking 100-point
pairs in the point cloud and camera image. Extrinsic param-
eters (rotation and translation) are calculated by minimizing
the reprojection error of 2D-3D point correspondences [36].
We follow the same procedure for onboard camera-LiDAR
calibration. Finally, we calibrate the onboard LiDAR to the
roadside LiDAR. This spatial registration is done by first
estimating a coarse transformation. We pick ten 3D point
pairs in each point cloud and minimize their distance using
the least squares method. Then, we apply the point-to-point
Iterative Closest Point (ICP) algorithm [5] to get the fine
transformation between the point clouds.

We label the vehicle and infrastructure point clouds af-
ter registering them. The coarse registration was done by
measuring the GPS position of the onboard LiDAR and the
roadside LiDAR. Then, we transform every 10th onboard
point cloud to the coordinate system of the infrastructure
point cloud. The fine registration was done by applying
the point-to-point ICP to get an accurate V2I transformation
matrix. All rotations of the point cloud frames in between
are interpolated based on the spherical linear interpolation
(SLERP) [40] method:

SLERP(qo,q1,t) = q0(q5 ' q1)", (1)



where gg and ¢; are the quaternions representing the rota-
tions of the start and end frames and ¢ € [0, 1]. Translation
vectors Ty and T'; were obtained using linear interpolation:

T(t) = To +t(T1 — Ty). 2

This dual interpolation strategy ensures that the estimated
transformations between the frames are smooth and ge-
ometrically accurate, thus adhering closely to the actual
movements of the vehicle over time.

3.3. Data selection and labeling

We selected the data based on challenging traffic scenar-
ios, like U-turns, tailgate events, and traffic violation ma-
neuvers. Besides the high traffic density of 31 objects per
frame, we selected frames with high-class coverage. We
selected 700 frames during sunny daytime and 100 frames
during cloudy nighttime for labeling. The camera and Li-
DAR data were recorded into rosbag files at 15 Hz and 10
Hz, respectively. We extracted and synchronized the data
based on ROS [38] timestamps and labeled it with our 3D
BAT (v24.3.2) annotation tool'. We improved the 3D BAT
[62] baseline labeling tool to label 3D objects faster and
more precisely with a one-click annotation feature. The an-
notators were instructed to label traffic participants while
examining the images. Objects are still labeled, even if they
have no 3D points inside, but are visible in the images. Ex-
tremities (e.g., pedestrian limbs) are included in the bound-
ing box, but side mirrors of vehicles aren’t. If a pedestrian
carries an object, that object is included in the bounding
box. If two or more pedestrians are carrying an object, only
the box of one will include the object. After labeling, each
annotator checked the work of other annotators manually
frame-by-frame. When errors were found, the original an-
notator was notified, and they fixed it. This helps ensure
that the labels in our dataset are high quality.

3.4. Data structure and format

We record eight different scenes, each 10 sec. long, from
vehicle and infrastructure perspectives using nine sensors
and split the data into a train (80%), val. (10%), and test
(10%) set. We use stratified sampling to distribute all sets’
object classes equally (see Fig. 6a). Labels are provided in
the ASAM OpenLABEL [20] standard.

3.5. Dataset development Kit

We provide a dev-kit to work with our dataset. In addition to
generating the data statistics, it provides modules for multi-
class stratified splitting (train/val/test), point cloud registra-
tion, loading annotations in OpenLABEL format, evalua-
tion of detection and tracking results, pre-processing steps
such as point cloud filtering, and post-processing such as

The tps://github.com/walzimmer/3d-bat

bounding box filtering. The statistics from Figures 4, 5, and
6 were created using our dataset dev kit. It also contains
modules to convert the labels from OpenLABEL to KITTI
or our custom nuScenes format with timestamps instead of
tokens and vice versa. This dev kit enables users of popular
datasets to migrate their models and make them compatible
with our dataset format. We release our dev kit> under the
MIT license and the dataset under the Creative Commons
(CC) BY-NC-ND 4.0 license.

Table 2.  Evaluation results (mAPggpy and mAPs;p) of
CoopDet3D on our TUMTraf-V2X test set in south2 FOV.

Config. mAPggv 1 mAP;p T
Domain Modality Easy? Mod.t Hardf Avg.?
Vehicle ~ Camera 46.83 3147 37.82 3077 30.36
Vehicle  LiDAR 85.33 8522 7686  69.04 80.11
Vehicle  Cam+LiDAR 84.90 77.60  72.08  73.12  76.40
Infra. Camera 61.98 31.19  46.73 40.42  35.04
Infra. LiDAR 92.86 86.17 88.07 7573 84.88
Infra. Cam+LiDAR 92.92 87.99 89.09 81.69 87.01
Coop. Camera 68.94 4541 4276  57.83 4574
Coop. LiDAR 93.93 92.63 78.06 7395 85.86
Coop. Cam+LiDAR 94.22 9342 88.17 79.94 90.76

Table 3. Evaluation results of infrastructure-only CoopDet3D vs.
InfraDet3D [63] on TUMTraf Intersection test set [64].

mAP3p 1
Config. FOV Mod. Easy? Mod.t Hardf Avg.t
InfraDet3D  south 1 LiDAR 75.81 47.66 4216  55.21
CoopDet3D south 1 LiDAR 7624 4823 3519  69.47
InfraDet3D  south2 LiDAR 38.92  46.60  43.86 43.13
CoopDet3D  south2 LiDAR 7497 5555 3996 69.94

InfraDet3D  south I Cam+LiDAR | 67.08 31.38  35.17 4455
CoopDet3D south 1 Cam+LiDAR | 75.68 45.63 45.63  66.75
InfraDet3D  south2 Cam+LiDAR | 58.38 19.73  33.08  37.06
CoopDet3D south2 Cam+LiDAR | 74.73 5346 41.96 66.89

Table 4. Ablation study on cooperative 3D object detection with
11 combinations of camera and LiDAR backbones. The best trade-
off between speed and accuracy is highlighted in gray.

Backbone Configuration

mAPggy T FPST VRAM]

VoxelNet non-deterministic + SwinT 93.47 630 6.69 GiB
VoxelNet non-deterministic + YOLOVS8 s 92.94 724 6.39GiB
VoxelNet Torchsparse + SwinT 93.51 8.84 4.61 GiB
VoxelNet Torchsparse + YOLOVS8 s 92.94 10.66 4.28 GiB
VoxelNet Torchsparse + YOLOVS s (retrained) 94.31 10.66 4.28 GiB
PointPillars 512 + Swin T 94.43 9.00 494GiB
PointPillars 512 + YOLOVS s 94.27 11.14 4.63 GiB
PointPillars 512 + YOLOVS s (retrained) 94.25 11.14 4.63 GiB
PointPillars 512_2x + Swin T 92.79 9.06 494 GiB
PointPillars 512_2x + YOLOV8 s 94.16 11.20 4.63GiB
PointPillars 512_2x + YOLOVS s (retrained) 94.22 11.20 4.63 GiB
zltitps ://github.com/tum-traffic-dataset/tum-traffic-

dataset-dev-kit


https://github.com/walzimmer/3d-bat
https://github.com/tum-traffic-dataset/tum-traffic-dataset-dev-kit
https://github.com/tum-traffic-dataset/tum-traffic-dataset-dev-kit

320

10% 4

3
"

# 3D box labels

10" 4

Night
11335

4976

3111

600

100

413

< . - .
& & & &
& &QX” A\ Q}\Q

# 3D points

—— 739

56

(a) Distribution of objects between day and night. (b) Avg. and max. num. of 3D points for each class.

Track length [in m]

160

80 4
404
20
104

o
L

%,
N

S
& @
&

™
&
& ©

(c) Avg. and max. track length for all classes.

Figure 4. Our TUMTraf-V2X dataset (version 1.0) contains 25k 3D box labels in total and is balanced among eight different object classes.
(a) Cars (11,203) and pedestrians (4,781) are highly represented in the dataset. (b) 3D box labels contain on average 590 points inside,
which shows the density of the labeled objects. The BUS class has the highest point density. (c) All traffic participants are tracked for 26
m on average. Buses have the highest average track length of 43 m, whereas the CAR class contains the max. track length of 173.95 m.
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Figure 5. Our dataset was recorded at a crowded intersection with many left and right turns. (a) Most of the vehicles (6,160) are driving in
the east direction (0 degree). (b) 3D boxes were labeled up to 200 m range and are very dense between 10 and 60 m. (c) The visualization
of BEV tracks shows where pedestrians and bicycles are crossing the road.
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Figure 7. Qualitative results on the TUMTraf-V2X Cooperative Perception test set. The first row shows the inference results of the onboard
(vehicle-only) camera-LiDAR fusion with 23 detected objects. In the second row, the results of the cooperative vehicle-infrastructure
camera-LiDAR fusion are visualized. Here, the 25 traffic participants could be detected with the support of roadside sensors.

4 . Benchmark

We propose CoopDet3D, an extension of BEVFusion [34]
and PillarGrid [3] for deep cooperative multi-modal 3D ob-
ject detection and benchmark it on our dataset.

4.1. Evaluation metrics

The accuracy is measured in terms of the mean average pre-
cision (mAP). Two types of mAP measures are used: BEV
mAP considers the BEV center distance, and the results are
obtained using the same evaluation methodology used in
BEVFusion, which in turn uses the evaluation protocol of
nuScenes [9]. Similarly, the 3D mAP measure considers
the intersection in 3D, and the results are obtained using the
evaluation script of our TUM Traffic dataset Devkit. The
runtime is evaluated using frames per second (FPS) as the
metric and the results were obtained by measuring the time
needed by the model to run one full inference, including
data preprocessing and voxelization. The first five iterations
are skipped as a warmup since they are usually consider-
ably slower than the average. Finally, the complexity of the
model is measured in terms of the maximal VRAM usage
across all GPUs during training and testing.

4.2. CoopDet3D model

Our CoopDet3D uses a BEVFusion-based backbone for
camera-LiDAR fusion on the vehicle and the infrastructure
sides separately to obtain the vehicle and infrastructure fea-
tures. The best backbone for image and point cloud fea-
ture extraction was chosen through multiple ablation stud-
ies. Then, inspired by the method proposed by PillarGrid
[3], an element-wise max-pooling operation is proposed to
fuse the resulting fused camera-LiDAR features of vehicle
and infrastructure together. Finally, the detection head from
BEVFusion is used for 3D detection from the fused feature.

The architecture of CoopDet3D is shown in Fig. 2.

First, we disable the camera feature extraction nodes and
train the LiDAR-only model for 20 epochs. Then, we use
pre-trained weights for the cooperative model and fine-tune
the entire model for eight further epochs. Hyperparameter
tuning revealed that the default hyperparameters of BEV-
Fusion [34] gave the best results, and such were not modi-
fied. The preprocessing steps are also the same as the BEV-
Fusion, but we change the point cloud range to [—75, 75]
in the x- and y-scale and [—8, 0] in the z-scale since the
dataset used in this case is different. Furthermore, we use
3x NVIDIA RTX 3090 GPUs with 24 GB VRAM for train-
ing and a single GPU for evaluation. We open-source our
model and provide pre-trained weights?.

4.3. Experiments and ablation studies

The objective of these experiments is to highlight the im-
portance of our V2X multi-viewpoint dataset as opposed to
single-viewpoint datasets. As such, we conduct multiple ex-
periments and ablation studies with data obtained from each
viewpoint and compare the results on the proposed model.

Cooperative perception compared to single-viewpoint
We conduct multiple experiments with all possible com-
binations of a) viewpoints: vehicle-only, infrastructure-
only, cooperative, and b) modalities: camera-only, LIDAR-
only, and camera-LiDAR fusion. Table 2 shows the mAP
achieved by CoopDet3D for each of these combinations.
We observe that the results follow a general pattern of
cooperative performance being better than infrastructure-
only, which is, in turn, better than vehicle-only. Further-
more, fusion models perform better than LiDAR-only mod-
els, which in turn are better than camera-only models. Fig-
ure 7 shows qualitative results between our vehicle-only

3https ://github.com/tum-traffic-dataset/coopdet3d
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camera-LiDAR fusion model and our cooperative vehicle-
infrastructure camera-LiDAR fusion model. Again, we ob-
serve from these samples that the cooperative perception
model is able to detect 25 traffic participants, whereas the
vehicle-only model is only able to detect 23 objects due to
occlusions and a limited field of view.

Deep fusion compared to late fusion

Next, we compare our proposed CoopDet3D model to
the current SOTA camera-LiDAR fusion method on the
TUMTraf Intersection test set [64], InfraDet3D [63]. The
proposed method uses deep fusion, whereas the InfraDet3D
method is a late fusion method. Table 3 shows the per-
formance of our model against InfraDet3D, and the results
show that the proposed deep fusion method outperforms
the SOTA late fusion model in all metrics, except in the
hard difficulty in LiDAR-only mode. Furthermore, Figure
8 shows two sample images taken during day and nighttime,
wherein deep fusion again outperforms late fusion. South 1
and South 2 refer to sensors covering different FOVs.

We note that these experiments were conducted in an
offline setting, disregarding other considerations for sim-
plicity. However, when deploying it in real life, factors
such as the transmission bandwidth should also be consid-
ered. Since we observed that deep feature fusion generally
leads to higher efficacy, the V2I transmissions should con-
tain these features instead of infrastructure bounding boxes.

Model performance with different backbones

As an ablation study, we present the results of the experi-
ments to find the best backbone and model configuration for
the cooperative camera-LiDAR fusion model. For the cam-
era backbone, SwinT [33] and MMYOLO’s [13] implemen-
tation of YOLOvS [24] were considered. For the LiDAR
backbone, VoxelNet [61] and PointPillars [27] were consid-
ered. In addition, VoxelNet was implemented with two dif-
ferent backends, namely SPConv v2 and Torchsparse [43].
For PointPillars, two grid sizes are considered 512 x 512 for
both train and test grids (PointPillars 512) and 512 x 512
train grid with 1024 x 1024 test grid (PointPillars 512_2x).
The results of these experiments are shown in Table 4.

The results show that only models that use any combi-
nation of VoxelNet Torchsparse, both PointPillars variants,
and YOLOVS are able to run above 10 FPS. From these con-
figurations, we choose PointPillars 512_2x with YOLOv8
as the best configuration for all the above experiments as it
achieves the best results across all the ablation studies. This
is a promising result since we also know that this backbone
configuration is able to run in real-time (11.2 FPS) on an
RTX 3090 without using TensorRT acceleration.

An interesting observation is that utilizing pre-trained
weights for transfer learning of YOLOVS is not always ben-
eficial, as the results from PointPillars 512 + YOLOVS s
show. This is likely because the pre-trained weights were

Figure 8. Qualitative results of our CoopDet3D (left) and the In-
fraDet3D (right) model on the TUMTraf Intersection test set dur-
ing day and nighttime. Detected objects marked with a red circle
were classified correctly by CoopDet3D.

from MS COCO [31], and they have a very different data
domain compared to our dataset. Since MS COCO is also
much larger than our dataset in terms of camera images, re-
training harms the performance of the model slightly.

In terms of efficiency, the goal of these experiments was
to verify that the proposed CoopDet3D model with the best
configuration provides the highest accuracy while also be-
ing able to run in real-time (minimum of 10 Hz). Further-
more, it should also be feasible to train the model on a high-
performance GPU and perform inference on a mid-range
consumer GPU deployable on an edge device. The results
concerning the VRAM usage during inference show that the
complexity of the model makes this feasible.

5 . Conclusion and future work

This work proposes the TUMTraf-V2X dataset, a multi-
modal multi-view V2X dataset for cooperative 3D object
detection and tracking. Our dataset focuses on challeng-
ing traffic scenarios at an intersection and provides views
from the infrastructure and the ego vehicle. To benchmark
the dataset, we propose CoopDet3D — a baseline model for
cooperative perception. Experiments show that cooperative
fusion leads to higher efficacy than its unimodal and single-
view camera-LiDAR fusion counterparts. Furthermore, co-
operative fusion leads to an improvement of +14.3 3D mAP
compared to vehicle-only perception, highlighting the need
for V2X datasets. Finally, we provide our 3D BAT v24.3.2
labeling tool and dev kit to load, parse, and visualize the
dataset. It also includes modules for pre- and postprocess-
ing and evaluation. Future efforts will integrate this plat-
form into online environments, enabling a broader range of
infrastructure-based, real-time perception applications.
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Figure 9. Visualization of our web-based 3D BAT (v24.3.2) labeling tool. It shows the registered point cloud and five camera images on
the top. On the left side, there are three helper views: top-down view, side view, and front view. The control pane on the right side contains
a download button, an undo button, a drop-down menu to switch between a perspective (3D) and orthographic (BEV) view, a slider to
change the point size, a drop-down menu to choose the dataset and sequence, some checkboxes for filtering the scene and hiding other
annotations, a button to copy labels to the next frame, an auto-label button, a button for active learning, an interpolation button, and a reset
button. In the bottom right corner, all labeled objects are displayed. Each object can be translated, scaled, and rotated using sliders or
keyboard shortcuts. The scaling of an object will change the dimensions in all frames.
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A . Task Definition
A.1. Detection and tracking

Detection and tracking are two crucial perception tasks for
autonomous driving. In 3D object detection, the surround-
ing objects are located with their 3D position, dimensions
(length, width, height), and rotation at each timestamp. In
multi-object tracking (MOT), the correspondences between
different objects are found across timestamps. Objects are
associated temporally and given a unique track ID. The
final detection and tracking output is a series of associated
3D boxes in each frame.

A.2. Cooperative fusion

The cooperative fusion approach combines data from sev-
eral sensors from different perspectives to optimize the de-
tection and tracking performance. Data from roadside cam-
eras and LiDARs is fused with onboard camera and LiDAR
sensor data to prevent occlusions.

B . Problem statement

We consider a cooperative perception system with road-
side and vehicle sensors symbolized by r s € [C, L] and
vs s € [C, L] notations, respectively. The cooperative sys-
tem introduced in this work uses three infrastructure cam-
eras rc; © € 1,2,3 where ¢ denotes the camera IDs, an in-
frastructure LiDAR r},, one onboard vehicle camera v and
one onboard LiDAR vj,. Consequently, the vehicle sensors
produce a set of images v;(#) and point clouds vp (%), and
the infrastructure sensors produce a set of images 7r;(t'),
and point clouds 7p(t'). Here, £ and ¢’ denote the vehicle
and infrastructure data timestamps respectively. Note that
a small synchronization error is still present though the in-
frastructure and roadside sensors are all synchronized to the
same NTP time server. The average difference in times-
tamps between these two systems E[f — '] is 24.91 ms and
the two data sources are matched in our proposed dataset
using the nearest neighbor matching algorithm.

The objective of cooperative 3D detection is to predict
3D bounding boxes of objects given a set of multi-modal
multi-viewpoint data. Our proposed cooperative detection
model takes the set of images and point clouds as the in-
put X(t) = [U](t), Up(t), T]l(t), T]Q(t), 7“13(75), Tpl(t)] at
a given time ¢ and predicts the 3D bounding boxes as the
output Y(t) Here, ¢ denotes the shared timestamp after the
matching algorithm. In addition to identifying the boxes’
position, dimensions, and orientation, the proposed model
also predicts the class of the corresponding object. Thus,
we can represent the task of 3D object detection as:

min [E
y; €Y (¢)

min dp (y;, ?]k)] 3)
Gk €Y ()

where Y (t) = [y1(t), y2(t), ...] is the set of ground truth 3D
box labels at time ¢, and Y () = [§1(t), §2(t), ...] are the
corresponding predicted 3D boxes. dg(y;, yx) is a parame-
terized discriminator function which measures the error be-
tween ground truth 3D label y; and the predicted 3D box

yr. Thus, our objective is to reduce the total error.

C . Data anonymization

We anonymize all our camera raw images I =
[vr, 711,712,713, T14] in the roadside and vehicle domain by
obfuscating all license plate numbers and faces. We use a
medium YOLOvS5 model [23] for this purpose, which was
pre-trained on 1080p images with labeled license plates and
faces. During training, mosaic augmentation was applied to
teach the model to recognize objects in different locations
without relying too much on one specific context. At infer-
ence, we downscale the input images I from a 1920 x 1200
resolution to 640 x 400 and pad the extra space to 640 x 640.
A score threshold of 0.1 worked best to detect all private in-
formation. We set the granularity of the blurring filter to a
blur size of 6 for the detected regions and set the ROI mul-
tiplier to 1.1.

D . Further related work

This section compares our proposed 3D BAT v24.3.2 anno-
tation tool and development kit to similar open-source tools.

D.1. Annotation tools

This work proposes our annotation tool 3D BAT v24.3.2,
which supports combining LiDAR point clouds and simul-
taneously labels both the point clouds and images from mul-
tiple views.

3D BAT [62] is an open-source, web-based annotation
framework designed for efficient and accurate 3D annota-
tion of objects in LiDAR point clouds and camera images.
With this tool, 2D and 3D box labels can be obtained, as
well as track IDs. Its key features include semi-automatic
labeling using interpolation of objects between frames. La-
beled 3D boxes are automatically projected into all camera
images, which requires extrinsic camera-LiDAR calibration
data. Selected objects are displayed in a bird’s eye view,
side view, and front view, in addition to a perspective and
orthographic view.

SUSTechPoints [28] is a multi-modal 3D object annota-
tion tool. It first allows the addition of 3D bounding boxes
in point clouds and then updates them in six degrees of free-
dom. It furthermore allows updating bounding boxes’ type,
attributes, and ID to create labeled datasets for detection and
tracking tasks. It also allows users to visualize these boxes
projected onto multiple camera images and lets the user en-
able or disable the point clouds and images for clear visu-
alization. One major advantage of SUSTechPoints is that it



Table 5. Comparison of 3D annotation tools. O Feature provided O Feature unknown Q Feature not provided

Tool 3D BAT LATTE
[62] [45]

SARE [1]

SUSTech Label
POINTS[28] Cloud[39] [10]

ReBound 3D BAT

(Ours)*

PointCloud Xtremel
Lab[17] [18]
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Support V2X

2D/3D cam.+LiDAR fusion
Al assisted labeling
Batch-mode editing
Interpolation mode

Active learning support
Label custom attributes

3D tracking

Support multiple cameras
HD Maps

Web-based

3D navigation

3D transform controls

Side views (top/front/side)
Perspective view editing
Orthographic view editing
Object coloring

Focus mode

Support JPG/PNG files (@) (@)
Keyboard-only support - - -
Offline annotation support - - -
OpenLABEL support = = -

L
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0
Apach.

S S S TR C W

LA

2.0 2.0

2.0 2.0

*We use the latest release of 3D BAT version v24.3.2.

enables auto box fitting based on the point cloud shape, but
the accuracy of the fitted box is highly dependent on the
point cloud density.

labelCloud [39] is a domain-agnostic, lightweight tool
designed specifically to label 3D objects. It offers two la-
beling modes namely picking and spanning. In the picking
mode, objects with known sizes can be quickly adjusted.
The spanning mode simplifies labeling by reducing the pro-
cess to four clicks. Box dimensions and orientations of ob-
jects on flat surfaces can be efficiently defined.

ReBound [10] is an open source 3D bounding box anno-
tation tool designed to utilize active learning. It supports
loading, visualizing, and extending existing datasets like
nuScenes [9], Waymo [42] or Argoverse 2.0 [47]. Model
predictions can be analyzed and corrected in a 3D view and
exported to specific formats.

PointCloudLab [17] leverages virtual and augmented re-
ality (VR/AR) devices for 3D point cloud annotation. The
annotator utilizes the controller of a HTC Vive to perform
object-level annotations in the 3D point cloud. The immer-
sive visual aid accelerates the labeling speed, improves the
labeling quality, and enhances the labeling experience.

The Xtremel [18] labeling tool provides most of the

functionalities of SUSTechPoints. In addition to providing
automated 3D labeling, it also provides support for auto-
mated 2D detection and segmentation tasks. Furthermore, it
also supports multi-view point cloud data as the input. The
tool also provides an interface for identifying specific errors
in the labeling process, and a mechanism to evaluate differ-
ent models on the labeled dataset. Moreover, it uses modern
cloud-based standards, databases, Kubernetes for managing
containers, and GitLab CI automation.

D.2. Development Kits

OpenCOOD [50] is an open cooperative detection frame-
work for autonomous driving which supports popular sim-
ulated datasets such as OPV2V [51] and V2XSet [49]. Like
the development kit proposed in this work, OpenCOOD al-
lows data preparation, pre/post-processing, and visualiza-
tion. Furthermore, it also supports training and testing dif-
ferent benchmark models on these simulated datasets. How-
ever, the OpenCOOD development kit only currently sup-
ports simulated datasets. Its full functionality is also limited
to LiDAR-only cooperative perception, and images are only
used for visualization. V2V4Real [52] extends the Open-
COOD development kit, to support real-world data and ad-



Table 6. Tracking results of SORT and PolyMOT on drive_41. P = Precision, R = Recall, MT = Mostly Tracked, PT = Partially Tracked,

ML = Mostly Lost, FM = Track Fragmentations

Tracker IDPt IDRT IDF11 Recallf Precisiont

GT MT{ PIf ML] FP] EN] IDS] FM| MOTA{ MOTP]

SORT*[6]

36313 21.029 26.634  43.235 74.657 3400
PolyMOT [29] | 68.416 42.559 52.475 46.735 75.130 3400

5 18 11 499 1920 439 110 15.647 100.185
8 15 11 526 1811 13 30 30.882 102.288

* We modify the SORT tracker to track objects in 3D.

Figure 10. Point cloud registration results of an onboard LiDAR
point cloud (orange) and a roadside LiDAR point cloud (blue).

ditional perception tasks. Furthermore, data augmentation
is also an additional feature that can be enabled when train-
ing the model.

Furthermore, the DAIR V2X [57], proposes their own
development kit, which provides data visualization and
training tools. However, the access to the dataset is lim-
ited geographically. Other development Kkits, such as the
Nuscenes devkit [8] and Rope3D devkit [55], only support
unimodal or single-view point datasets.

In comparison, our proposed development kit allows all
the aforementioned functionalities in both image and Li-
DAR modes. Furthermore, our development kit contains
modules for multi-modal cooperative data augmentation,
while the model training and testing depend on the mmde-
tection framework [12].

E . Point cloud registration details

We first measure the GPS position (latitude and longitude)
of the onboard LiDAR and the roadside LiDAR and con-
vert it to UTM coordinates. For the coarse registration, we
transform every 10th onboard point cloud Py to the infras-
tructure point cloud Py coordinate system using the initial
transformation matrix shown in Eq. 4.

ri1 Tz T3ty
t
70 o1 T22 T23 1y (4)
r31 r3z2 133 U
0 0 0 1

The transformation matrix 73/ contains as 3x3 rotation
matrix R obtained by the IMU sensor and a 3x1 transla-

tion vector ¢ obtained by the GPS device. We then apply the
point-to-point ICP for the fine registration to get an accurate
V2I transformation matrix Ty .

Pyr=Pr& (Py-Tvr) )

Fig. 10 shows the point cloud registration results in two
colors. The vehicle point cloud is displayed in orange, and
the infrastructure point cloud is displayed in blue. We get
an RMSE value of 0.02 m, which shows how well the point
clouds were registered.

F . Dataset labeling

We provide a web-based labeling platform 3D BAT v24.3.2
to facilitate the development of V2X perception. It provides
a one-click annotation feature to fit an oriented bounding
box to a 3D object. It contains an interpolation mode that
reduces the labeling time significantly and lets the user visu-
alize the HD Map, which is highly beneficial for positioning
3D box labels accurately within lanes. The user interface of
3D BAT v24.3.2 is split into two main views: the upper
portion displays the camera images captured by both infras-
tructure and vehicle-mounted cameras, while the lower por-
tion renders the registered point cloud data obtained from
the roadside and onboard LiDARSs. The annotator first navi-
gates the point cloud to identify objects of interest. Upon se-
lecting an object, boxes are enclosed around it. These boxes
are color-coded according to the object category (e.g., car,
truck, trailer, van, motorcycle, bus, pedestrian, bicycle, and
others) to allow for easy differentiation. After placing the
3D bounding box, they cross-check the predicted 2D bound-
ing boxes in the camera images to ensure their correctness.
Additional attributes can be modified and specified for each
object on the right-hand side.

G . Implementation details

Here, we provide detailed information about the train-
ing schedule and the hyperparameters. We train our
CoopDet3D model in two stages. In stage one, we pre-train
the PointPillars backbone on onboard and roadside point
clouds for 20 epochs. Then, in stage two, we finetune the
model for eight further epochs on cooperative camera and
LiDAR data. For the detection head, we use TransFusion
[2] to obtain 3D bounding box predictions. To calculate
the matching cost C\,qtch, it uses a weighted binary cross



Figure 11. Tracking results on drive 42 test sequence of the TUMTraf-V2X dataset. From top to bottom: CoopDet3D detections,
CoopDet3D detections tracked by SORT, CoopDet3D detections tracked by PolyMOT, ground truth. a-c) Tracking results projected into
roadside camera images. d) Tracking results visualized in vehicle camera. e) Visualization of tracks in a point cloud and the HD map. f)
Bird’s eye view projection of tracks in a point cloud and the HD map. g) Visualization of all detected classes and their tracks on an HD

map.

Table 7.  Evaluation results (mAPggy and mAPsp) of
CoopDet3D on our TUMTraf-V2X test set in southl FOV.

Config. mAPggv T mAP3p 1
Domain Modality Easy! Moderate! Hard{ Avg.t
Vehicle ~ Camera 46.83  39.31 12.42 429 35.02
Vehicle  LiDAR 85.33  77.30 3126  53.76  76.68
Vehicle ~ Cam+LiDAR 8490 77.29 3429 3971 76.19
Infra. Camera 61.98 41.13 15.64 1.35  37.09
Infra. LiDAR 92.86  82.16 45.14 46.56  81.07
Infra. Cam+LiDAR 9292 8543 49.10 49.56 84.13
Coop. Camera 68.94  52.04 29.26  10.28 49.81
Coop. LiDAR 9393 84.61 50.00 53.78 84.15
Coop. Cam+LiDAR 94.22  84.50 51.67 55.14 84.05

entropy loss L5, a weighted L; loss for the 3D box re-
gression L,..4, and a weighted IoU loss L,y [60] (see Eq.
6).

Cmatch = )\1£cls + )\QETEQ + )\3£10U7 (6)

where: A1, Ao, A3 are the coefficients for the individual cost
terms. Given all matched pairs, a focal loss [32] is com-
puted for the final classification. A penalty-reduced focal
loss [56] is used for the heatmap prediction.

We use the following hyperparameters for training: the
AdamW optimizer with a learning rate of 1 x e¢~* and a
weight decay of 0.01, a batch size of 4, a dropout rate of
0.1, the ReLU activation function, and cyclic momentum.
We use the BEV encoder to transform the image into a
BEV representation of 512 x 512 size. The point clouds
are cropped to the following range: [—75,75] m for the X
and Y axis, and [—8, 0] m for the Z axis. For training, we
use 3 x NVIDIA RTX 3090 GPUs.

H . Metrics

This section presents the evaluation metrics for two main
tasks in V2X perception, i.e. the Cooperative 3D Ob-
ject Detection (C3DOD) task and the Cooperative Multi-
ple Object Tracking (CMOT) task. Notably, we adopt the
mainstream metrics for the cooperative perception evalu-
ation to make fair comparisons with the vehicle-only and
infrastructure-only algorithms.

H.1. 3D Object Detection

As the most commonly utilized metric in 3D object detec-
tion tasks, mean Average Precision (mAP) (Eq. 7) takes the
mean value of Average Prevision (AP) generally over the
categories C of interest. We follow the approach of posi-
tive sample matching, introduced in nuScenes [9], leverag-
ing 2D distance thresholds D on the ground plane between
ground truth and prediction center positions, instead of us-
ing the intersection over union (IoU), to define a match (true
positive). We match predictions with ground truth objects
with the smallest center distance up to a certain threshold.
For a given match threshold we calculate the Average Preci-
sion (AP) by integrating the recall-precision curve for recall
and precision > 0.1. We finally average overmatch thresh-
olds of D = {0.5,1,2,4} meters and compute the mean
across all classes.

1
mAP = Grm >N AP, )

ceC deD
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Figure 12. Visualization of drive_07 of the TUMTraf-V2X dataset. In this example, the ego vehicle is occluded by two busses and two large
trucks. The roadside sensors enhance the perception range, making traffic participants behind the buses visible. In total, this ten-second-
long sequence contains 2,790 labeled 3D objects during the daytime.
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Figure 13. Visualization of drive_12 of the TUMTraf-V2X dataset. This sequence with 3,273 3D boxes shows multiple occlusion scenarios.
In one scenario a truck is occluding multiple pedestrians. The roadside sensors can perceive the objects behind the truck so that the ego
vehicle becomes aware of them.
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Figure 14. Visualization of drive_15 of the TUMTraf-V2X dataset. In this drive, a bus is occluding a car which the roadside sensors can
perceive. This is the largest sequence during daytime with 3,442 labeled 3D objects.



Total 3D box labels: 3084

29 gqgop.. 000 514 785

C}SN QQ$ \\)@Q‘ s? & @VV%
& S
& & &
&

-
ot

Latitude [m]
o
=}

o
St

o

Longitude [m]

Figure 15. Visualization of drive 22 of the TUMTraf-V2X dataset. In this drive, many vehicles are performing a U-turn maneuver and
occlude some pedestrians waiting at a red traffic light. The pedestrians are within the field of view of the roadside sensors and can be
perceived. This sequence contains 3,084 labeled 3D objects.
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Figure 16. Visualization of drive 26 of the TUMTraf-V2X dataset. In this drive, multiple trucks and trailers occlude traffic participants.
These traffic participants are visible from the elevated roadside cameras and LiDAR mounted on the infrastructure. This sequence contains
2,888 labeled 3D objects.
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Figure 17. Visualization of drive_33 of the TUMTraf-V2X dataset. In this scenario, a truck is occluding multiple objects that can be
perceived by the roadside camera and LiDAR. Here, 2,154 3D objects were labeled.
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Figure 18. Visualization of drive_41 of the TUMTraf-V2X dataset. In this example, a motorcyclist is overtaking the ego vehicle that gives
way to pedestrians crossing the road. This sequence contains 3,400 labeled 3D objects.
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Figure 19. Visualization of drive_42 of the TUMTraf-V2X dataset. This night scene contains a traffic violation and is the largest sequence
in the dataset, with 3,933 3D objects. A pedestrian runs the red light after a fast-moving vehicle has crossed the intersection.

Table 8. Evaluation results (mAPpgv) of the CoopDet3D and
CoopCMT model on our TUMTraf-V2X test set in south2 FOV.

Conﬁg. l’nAPBEv T

D i Modality CoopDet3D CoopCMT

Vehicle Camera 46.83 81.21 (+34.38)
Vehicle LiDAR 85.33 86.88 (+1.55)
Infra. Camera 61.98 79.50 (+17.52)
Infra. LiDAR 92.86 93.18 (+0.32)
Infra. Cam+LiDAR 92.92 93.63 (+0.71)
Coop. LiDAR 93.93 94.27 (+0.38)

H.2. Multi-object tracking

Multiple Object Tracking Accuracy (MOTA) and Multiple
Object Tracking Precision (MOTP) are the most widely
used metrics to evaluate tracking performance. MOTA
(Eq. 8) considers the main factors affecting tracking perfor-
mance including False Positives (FP), False Negatives (FN),
and ID Switches (IDS). GT; is the number of ground truth

objects at time .

S (FP, + FN, + IDS,)
2. G

MOTA=1- (8

MOTP (Eq. 9) is used to measure the precision of the
tracked object’s position, where d: and ¢, represent the dis-
tance between the predicted object and its actual position at
time ¢ and the number of matches at time ¢ respectively.

Zi,t dj
Dot

IDP and IDR are the ID precision and recall measuring the
fraction of tracked detections that are correctly assigned to a
unique ground truth ID. The IDF1 metric is the ratio of cor-
rectly identified tracked detections over the average num-
ber of ground truth objects (GT). The basic idea of IDF1
is to combine IDP and IDR into a single number. In ad-
dition, each trajectory can be classified as mostly tracked

MOTP = €))



(MT), partially tracked (PT), and mostly lost (ML). A tar-
get is mostly tracked if it is successfully tracked for at least
80% of its life span, mostly lost if it is successfully tracked
for at most 20%. All other targets are partially tracked.

I . Further experiments

We extend our experiments to consider multiple FOVs,
baseline models, and different tasks made possible through
the proposed TUMTraf-V2X dataset.

L.1. CoopDet3D

Previously we discussed the performance of the proposed
CoopDet3D model with PointPillars 512_2x and YOLOvS
backbones in South2 camera FOV. In Table 7 we show
the quantitative results of the same model in Southl cam-
era FOV. Like the South2 camera FOV, we observe that
the CoopDet3D cooperative model performs better than the
vehicle-only perception model (+7.47 3D mAP). Fig. 21
shows qualitative results of CoopDet3D on drive_42.

I.2. CoopCMT

In addition to CoopDet3D, we build another cooperative fu-
sion model: CoopCMT for benchmarking, based on cross-
modal transformers (CMT) [53]. Similar to the proposed
CoopDet3D model, the CoopCMT cooperative perception
model uses separate vehicle and infrastructure backbones
for feature extraction. Then, the extracted infrastructure
and vehicle deep features are concatenated using a Max-
Pooling layer (similar to PillarGrid [3]), and finally passed
onto the 3D detection head. Thus, this architecture is sim-
ilar to the CoopDet3D architecture, where the BEVFusion-
based backbones and head, are replaced with the corre-
sponding counterpart from the CMT model. Note, that since
transformer-based models require a large amount of data to
be trained, the infrastructure backbone was first pre-trained
on the TUMTraf Intersection dataset [64], and the vehicle
backbone was pre-trained on the nuScenes dataset [8], to fit
the domain. We compare the performance of the CoopCMT
model with CoopDet3D in Table 8 and see that it outper-
forms the CoopDet3D model in all domains and modalities.

From Table 8, we observe a general trend in which
the CoopCMT cooperative fusion model performs better in
terms of the m A Pg gy compared to the CoopDet3D model.
However, it must be noted that the CoopCMT model uses
a transformer-based architecture, and as such, the model
complexity is higher, resulting in slower inference time. For
future research, the CoopCMT model will be studied further
in terms of the model complexity and FPS to ensure that this
model can perform in near real-time and can be deployed on
edge devices.

1.3. 3D multi-object tracking

Next, we track the CoopDet3D detections in a post-
processing step using two different trackers: SORT [6] and
PolyMOT [29]. The quantitative evaluation results of 15
different metrics are listed in Table 6. We use a distance
threshold of 5 m for the SORT tracker. The PolyMOT
tracker performs best in all metrics except PT and MOTP.
Qualitative results are shown in Fig. 11.

J . Statistics of all drives

Detailed statistics of all labeled sequences are seen in
Figs. 12 to 19. The last driving sequence (drive_42) was
recorded during nighttime and contains a traffic violation
scenario in which a pedestrian is running the red light. All
other sequences contain daytime traffic with heavy occlu-
sion scenarios. We split our dataset into a training (80%),
validation (10%), and test (10%) set using stratified sam-
pling to get a well-balanced split. The distribution of object
classes of our training, validation, and test set is shown in
Fig. 20.

K . Detailed dataset visualization

We provide detailed dataset visualizations for different chal-
lenging traffic scenarios at an urban intersection, including
tailgating, overtaking, U-turns, traffic violations, and occlu-
sion scenarios. In one scene, a pedestrian runs a red light af-
ter a vehicle is crossing. We show each scenario’s surround-
view images, BEV projections on an HD map, point cloud
visualizations, and a class distribution plot. Visualization
videos for all labeled sequences are provided on our web-
site: https://tum-traffic-dataset.github.
io/tumtraf-v2x.

L . Failure cases and limitations

Failure cases are essential to understand the weakness of our
dataset and model and to provide some guidance for future
work. Note that, for brevity, we do not consider the network
communication latency between the sensors.

We have tested our CoopDet3D model in day and night sce-
narios in different weather conditions. Some future work
will include further tests under harsh weather conditions
such as heavy rain, snow, and fog. Apart from object detec-
tion, cooperative perception poses many other challenges
due to the asynchrony between the vehicle and infrastruc-
ture sensors, and the transmission delay further exacerbates
this issue. While the suggested model may not fully account
for these considerations, it is recommended that future re-
search focuses on addressing these challenges through ex-
tensive live tests.
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Figure 20. Distribution of our TUMTraf-V2X dataset (version 1.0) into a) training, b) validation, and c) test set. From top to bottom: We
show the distribution of object classes within each set with the average number of 3D box labels marked in red, the distribution of 3D
points for each category and each set, the labeled distance and class density for each object class and set, a histogram of 3D box densities

for each set, and a histogram of frame densities for each set.
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Figure 21. Qualitative results of CoopDet3D on drive_42 of our TUMTraf-V2X dataset of a night scene. We project the detections into
point cloud scans and camera images. Moreover, we visualize object tracks in a bird’s-eye view and an HD map. Finally, we show the
distribution of detections in a bar chart.
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