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Abstract—As the demand for automated vehicle testing on
proving grounds grows, the need for comprehensive and reliable
environment monitoring systems becomes increasingly important.
In highly dynamic driving test scenarios, long-range perception
is essential for detecting dangers and hazards, ensuring the safety
of both the test vehicle and other people on the track. However,
determining an appropriate sensor setup can be challenging due
to the complexity of sensor perception limitations. Perception
limitations depend on the sensor characteristics and the environ-
ment. In this work, we propose a new approach to automatically
evaluate sensor performance for high dynamic driving to improve
the safety and efficiency of automated testing on proving grounds.
Our approach involves estimating the detection range of common
sensor technologies and analyzing the performance of sensor
systems under various environmental conditions. By evaluating
sensor performance in advance and comparing different sensor
setups on tracks with a high-speed profile, we are able to identify
critical track sections with higher collision risks and safeguard
tests accordingly. This study emphasizes the importance of ad-
vanced environmental monitoring and sensor analysis in ensuring
the safety and efficiency of automated vehicle testing.

Index Terms—Sensor Performance, Criticality Assessment,
High Dynamic Test, Automated Vehicle Testing, Ray-cast

I. INTRODUCTION

Automated vehicle testing on proving grounds is becoming
increasingly popular as it allows for efficient and safe test-
ing of vehicles [1]. Automated testing enables the repetitive
execution of more complex and demanding tests, while also
increasing safety by removing the need for passengers in test
vehicles. It also reduces the risk of health issues for test drivers
caused by high levels of physical and mental stress.

The vehicles can be controlled using robots with powerful
pedal and steering wheel actuators. Thus, automated high-
speed testing on proving grounds offers significant benefits,
such as increased consistency, accuracy and efficiency, while
minimizing human error [2]. The robotic systems integrated
into the test vehicles are used to apply the required high
steering torques and brake pedal forces, especially during
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highly dynamic tests. With the ability to program precise test
scenarios, including velocity profiles and trajectories, accurate
and reproducible results can be obtained.

For high-speed testing, the ability to perceive potential
hazards from a distance is critical for ensuring safety. Pre-
series sensors in test vehicles cannot be relied upon, as they
are often not designed for such safeguards and have not
been thoroughly tested. Selecting appropriate additional sensor
equipment is crucial in minimizing costs and ensuring safe
automated driving operations. Furthermore, an evaluation of
sensor performance in relation to specific test execution is
also important in selecting an appropriate sensor setup. This
includes assessing factors such as sensor range, measurement
inaccuracies and the ability to capture a picture of the relevant
driving environment.

Considering the relevant factors can be a complex task
as the limitations of sensors can vary. Different types of
sensors can have vastly different ranges and capabilities [3].
Depending on the speed and the vehicle, the test specifications
may also affect sensor performance. Therefore, it is necessary
to thoroughly evaluate sensor limitations in order to ensure
accurate data collection and to make accurate conclusions
about the performance of the sensor systems during tests,
which is still challenging.

This study contributes a new approach for evaluating and
comparing the performance of sensor systems in different
environmental conditions when testing robot-guided vehicles
on proving grounds. By identifying critical test track sections,
with a high risk of collision, we aim to improve the repro-
ducibility and reliability of automated vehicle testing, while
also reducing the risk of accidents.

These critical sections require further surveillance, either
coming from infrastructure or test vehicles. Hereby, a method
for automatically evaluating onboard sensors on proving
grounds is presented, enabling a safe and effective environ-
mental monitoring system for a wide range of scenarios.



II. RELATED WORK

The performance of sensor systems is critical to the safety
and reliability of autonomous vehicles (AV) on the road. To
ensure the success of AVs, it is important to optimize the
performance of sensor systems and to accurately detect and
classify objects in the environment.

One of the main challenges in evaluating advanced driver-
assistance systems (ADAS) sensor performance in highly
dynamic driving situations is the need for high accuracy [4]. In
these scenarios, the sensor may be exposed to rapid changes in
speed, traffic, weather and other environmental factors, which
can significantly affect sensor performance [5]. In order to
accurately assess the sensor’s capabilities in these situations,
a detailed analysis of its response to a wide range of inputs is
required [6]. This can be a time-consuming and labor-intensive
process, which may not be practical for many applications.

An example of the requirements and challenges of sensing
in high-speed situations are presented in the paper [7] during
the Autonomous Challenge at CES 2022. These vehicles were
equipped with LiDARs (light detection and ranging), RADARs
(radio detection and ranging) and cameras for opponent detec-
tion, but static obstacles on the track were not considered.

There have been numerous studies on the evaluation and
optimization of sensor systems for AVs, [4], [8], [9]. These
studies have focused on a variety of sensor types, including
LiDAR [10], RADAR [11] and camera [9]. In order to accu-
rately and reliably detect and classify objects, it is important
to consider the specific characteristics of the sensor modality,
such as its range, resolution and field of view (FoV) [12].

With optimized sensor systems, AVs may still encounter
situations where objects are not detected. In [7] it is shown that
LiDAR sensors can be affected by occlusions, shadows and re-
flections, which can lead to missed detections or false positives
in critical situations. Similarly [13] found that RADAR sensors
can be affected by noise, interference and multipath effects,
which can also lead to missed detections or false positives in
critical scenarios.

To address these challenges, researchers have proposed a
variety of methods for analyzing the limitations of sensor
systems and improving their performance in critical situations,
as shown in [9]. These methods include the use of simulations
to evaluate the performance of sensor systems under different
conditions [14], as well as the development of fault-tolerant
and redundant sensor architectures [15].

In [16] phenomenological sensor models are used for ana-
lyzing sensor performance. Phenomenological sensor models
are a class of models in which physical phenomena are
modeled. Based on the physical description of the sensor
characteristics, the signal-to-noise ratio is determined, which
can be used to estimate the probability of detection using
receiver operating characteristics curves. Different scenarios
were analyzed with regard to the detection probability of
objects in a simplified environment.

In [17], an optimization procedure is presented that eval-
uates the information content of point cloud-based sensor

models based on the entropy description. A ray-cast sensor
model is used to determine the detection performance of
sensors in a virtual environment by tracing rays from a defined
origin point and detecting intersections with objects within a
specified range. Based on this approach, a score is calculated,
which is used for optimizing the sensor position.

A method is proposed in [6] to fulfill the safety of the
intended functionality (SOTIF) [18] guidelines to ensure the
safety of the perception systems of AVs. In this work, the
uncertainty of the system is evaluated by empirically modeling
the relationship between the environment and the system itself
using a Bayesian network. In contrast, our proposed method
evaluates the uncertainty by estimating critical sections quan-
titatively, using vision limitations of specific sensor setups.

III. METHODOLOGY

In this chapter, we first present a criticality metric to
identify critical situations on the track. Then, we demonstrate
the approach based on a virtual environment and models to
estimate the sensing range. Finally, we present the complete
algorithm for the automatic analysis of sensor performance.
This approach aims to overcome the limitations of previous
analyses, which relies on simplifying assumptions that may
not accurately reflect real-world situations.

A. Criticality Definition

In situations with high collision risk, braking without any
avoidance maneuver is one option to avoid collisions in
high-dynamic automated driving as it is simple, reliable, fast
and safe. It does not require complex calculations of a new
trajectory or communication delays and avoids additional risks
due to an evasive maneuver. Therefore, for this application,
the robot-guided vehicle initiates emergency braking while
following the intended trajectory.

There are certain sections on the test track for robot-guided
vehicles where the range of perception of the onboard sensors
is not sufficient. In these sections, the distance the vehicle
must stop dgp is greater than the maximum distance dge; at
which a static target object can be detected for the first time by
the onboard sensors. In these situations, emergency braking is
not sufficient to avoid a collision. The criticality metric of the
situation can be calculated similar to the difference of space
distance and stopping distance [19] with

C'crit = dstop — dget (D

where C.y > Om indicates a collision with a static target
object.

The stopping distance results in dgop = dreact + dbrake- The
reaction time distance d., depends on the latency of the
sensor data processing and the actuators, as well as the time
until a braking torque is applied to the wheels. The braking
distance dpaxe 1S the distance the vehicle travels from the
moment the brakes are applied to the moment it comes to a
stop and is influenced by speed, road and braking conditions.
According to [20] the braking distance can be determined with

dbrake = 27 (2)
Hg



where v is the vehicle speed, g is the force of gravity and p is
the coefficient of friction of the tires. The coefficient u depends
on various factors such as tires, weather conditions and road
surface and can vary significantly. On proving grounds, these
factors can be measured and a more accurate estimate of the
braking distance can be obtained.

The detection range dg.; needs to be determined taking into
account various influencing factors and is therefore usually
complex to calculate. We present our method for determining
dget in the following.

B. Detection Range

Object detection algorithms rely on the information content
of sensor data to recognize objects. However, physical sensor
limitations can affect not only the quality and quantity of data
that a sensor can provide, but also the information content
[21] of the data, which can affect the performance of these
algorithms. These limitations include:

« Resolution: Resolution refers to the ability of a sensor
to distinguish between closely spaced objects or details.
A sensor with a higher resolution will be able to detect
smaller or more closely spaced targets, while a sensor
with a lower resolution will have a more limited detection
range.

o Sensor FoV: Sensor FoV is the extent of the observable
world that is seen by the sensor. A sensor with a wider
FoV will be able to detect more of the environment,
for example in a curve at one time, while a sensor
with a narrower FoV may miss important details of the
surroundings.

o Operational sensor range: Most sensors have a limited
range within which they can detect or measure a target.
The maximum range is often different from the oper-
ational range, which is the range over which the sensor
can provide useful or accurate data. The operational range
may be much shorter than the maximum range due to
factors such as sensor noise, resolution, accuracy, or other
limitations.

¢ Occlusion: Occlusion refers to the presence of an object
or obstacle that blocks or partially blocks the view of a
target. In the case of a detection system, occlusion can
prevent the detector from detecting the target or can make
it more difficult for the detector to locate the target.

All of these factors together can affect the overall range of a
sensor and the sensor’s ability to detect specific objects. Other
factors, such as the wavelength of the energy being detected
or the directivity of the sensor, can also have an impact on
the range of a sensor. It is important to keep in mind that the
specific limitations of a sensor will vary depending on the type
of sensor and the environmental conditions.

In our approach, similar to [22], we use a virtual envi-
ronment with a ray-cast sensor model to account for the
various physical factors that can limit the range of a sensor.
Using a ray-cast sensor model [23] allows us to simulate
the propagation of the sensor’s signal and to consider the
limitations of the sensor’s FoV and operational range by

parametrizing the sensor model. The number of rays and the
distance at which the ray hits the target can then be used
to further analyze the detection performance. In addition, the
ray-cast sensor model is suitable for simulating ADAS sensor
types, such as LiDAR, RADAR and camera, due to its similar
characteristics as described in [17].

Our approach includes also a 3-dimensional (3D) repre-
sentation of the track. The 3D environment model contains
relevant objects that may obstruct the line-of-sight of the
ray-cast sensor representing the onboard sensors. These may
include walls, buildings, partitions, elevations and changes in
the course of the track. This approach allows for the testing
of various scenarios and conditions in a simulated setting,
which can provide a more accurate prediction of the sensor’s
performance.

The ray-cast sensor provides a point cloud 7 with 3D
coordinates for each ray that encountered an object. The
resolution of an object is determined by the points in the point
cloud O C T that correspond to the object. The occlusion or
coverage t.,y of an object can be evaluated using bounding
boxes.

A minimal bounding box, the ground truth bounding box, is
placed around the reference object based on the ground truth
data, and another bounding box is created around O generated
by the ray-cast sensor model that corresponds to the reference
object. Since a sensor can only see certain sides of an object,
the others are in the invisible area of the sensor. To account
for this, the area of the bounding box around the object that is
visible to the sensor is compared to the corresponding area
of the bounding box around the entire object. The visible
and relevant area for detection is determined by selecting the
largest area Apc of the bounding box based on O.

The coverage of an object ¢,y by a sensor is then determined
by comparing the size of the corresponding areas of the ground
truth Agr and the point cloud based bounding box

Apc
teov = —— 3
Acr ©)

The size and shape of the bounding boxes depend largely
on the FoV and resolution of the sensor, as well as the position
and orientation of the object relative to the sensor. Fig. 1
illustrates the coverage determination based on the point cloud
of a target O.

The detection performance can be estimated by analyzing
the resolution of the target object and the level of cover-
age present in the data. High-resolution data provides more
detailed information about the target object, increasing the
chances of successful detection. However, occlusion can ob-
struct the view of the target object, making it more difficult
for the algorithm to accurately identify it, thus reducing the
detection performance.

In order to estimate an object detection performance, we
introduce a detection score

no

K=—
nr

: tcov (4)

with the number of points corresponding to the target object
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Fig. 1: The top graph presents a visual representation of
the point cloud data O acquired by a ray-cast sensor, which
corresponds to a target vehicle and its bounding boxes, as
determined by ground truth data and the point cloud. The target
vehicle is partially occluded by an obstacle. In the bottom
portion of the figure, the 2D projected coverage areas of the
bounding boxes for three relevant planes are depicted. Based
on the comparison of the maximum areas, the coverage of the
target is teoy = 80.17%.

no, the total number of points ny cast by the sensor model
and the coverage (3) of the target. This method can also be
applied to configurations with multiple sensors. When using
multiple ray-cast models, the combined detection score value
results from the superposition of the point cloud.

To determine detection of a target object, we impose a
threshold vy, for the detection score. The target object is
considered to be detected above this threshold x > .
Depending on the safety requirements, the threshold value can
be chosen; a high threshold value results in high detection
performance being considered.

In order to determine the detection range dge, a target object
is positioned in the virtual environment at different locations
relative to the sensor and evaluated. At the locations where
the detection score of the sensor is too low with x < vy, the
limit of the detection range is reached.

C. Automatic Sensor Performance Evaluation

Using the criticality metric (1), it is possible to identify
points on the track along a given trajectory p and a velocity
profile ¥; where the onboard sensors have insufficient range. To
thoroughly analyze a given trajectory, this process is repeated
at different positions. For this purpose, N waypoints W; with
i€ {1,---,N} are created at intervals of distance d,, along

—

input t Wi, N, tmax, Ut Vdss dsensor,rel
output: C_;
begin
forie {1,---,N} do
t+—i1+1;
ﬁsensor — Wz + dsensor,rel 5
Position target to Wy ;
Get point cloud T ;
Get O ;
Calculate & ;
t+—t+1;
while k > vy and t — i < 4, do
Position target to Wy ;
Get point cloud 7 ;
Get O ;
Calculate & ;
t+—t+1;
end
Determine dge, from W, to W, along p ;
Calculate C,; based on @; along p ;

end
return C_;,

end

the trajectory. These waypoints are used to position the sensor
Dsensor With a relative position J;ensoml to the waypoint W.

The parameter J;ensor,rel describes the sensor position and
orientation on the robot-guided vehicle, with the origin of the
vehicle coordinate system at W;. The position and orientation
of a sensor influence its field of view and thus the performance
of the sensor system, as [17] demonstrates. A sensor that is
positioned higher, for example on the roof of a vehicle, will
have a wider FoV compared to one that is positioned lower.

A target object is positioned along the preceding waypoints
W, witht € {i+1,i4+2, -+ ,i+ tmax}. The parameter ¢,y
describes the number of waypoints in the maximum FoV range
of a sensor. At each step, x of the sensor is determined and
compared to the threshold v4. From the waypoint, where the
detection score is below the threshold, the maximum detection
range of the sensor is reached. The procedure is described in
pseudocode in Algorithm 1.

The procedure presented can measure the criticality metric
along p, but also for a specific object, which is used to
calculate O. Different objects with difficult geometries, such
as vehicles, people, or detached vehicle parts on the lane, can
be evaluated for sensor performance.

The velocity profile 7, for the robot-guided vehicle along the
trajectory p is typically defined by the test specifications. The
trajectory also has an impact and can significantly influence the
criticality value. A trajectory that is reversed in the direction
of travel or that passes closer to adjacent buildings may result
in newly identified or relocated critical track sections.



N

-
;]

-

o
[

10000

o

8000

4000
Object Resolution (Bins) [pixel]

6000

Median of Cross-Entropy Loss [-]

0 2000

Fig. 2: Median values of cross-entropy losses over all de-
tected objects using YoloV4 as a function of resolution with
100pizxel bins. Over 85000 vehicles were evaluated based on
the PandaSet dataset. With increasing resolution, the cross-
entropy loss becomes smaller and thus demonstrates better
performance in terms of detection rate.

IV. EXPERIMENTS

In the first step, we show experimentally that the resolution
of objects in an image and the confidence score (CS) of an
image recognition algorithm are correlated. Then we evaluate
the recognition score for two distinct recognition algorithms
using the PandaSet dataset [24]. In the final experiment, we
apply the automatic sensor performance evaluation to a virtual
race track from a real proving ground.

A. Detection Score Evaluation

The performance of a sensor system with an object recogni-
tion algorithm is evaluated by the cross-entropy loss function
[25] E; = —p; - log(q;) for each object ¢ based on the ground
truth probability p, = 1 and the CS ¢, from the detection
algorithm. Then the median for the cross-entropy losses was
calculated for certain resolution ranges (bins).

The relationship between resolution and the cross-entropy
loss is illustrated in Fig. 2. Here we evaluate the performance
of the image recognition algorithm YOLOv4 [26] using the
PandaSet dataset. The illustration shows that as the resolution
of the object increases, the median of the cross-entropy losses
decreases, which improves the ability of the algorithm to detect
objects. Since image recognition performance also depends on
other factors, such as non-uniform lighting and low contrast,
there are variations in detection.

For an evaluation of (4), we compare the detection score
results with different detection algorithms, such as YoloV4
for a camera and the point cloud segmentation SalsaNext [27]
algorithm for a LiDAR sensor. We use also the PandaSet
dataset for the comparison. The detection score is determined
independently of the cross-entropy loss of the detection algo-
rithms.

Fig. 3 shows the result for a camera image and illustrates
the relationship between detection score and CS depending on
the object resolution.

. - A 5. 0.99309 / Ds: 0.007691
CS: 0.99926 / DS: 0.03122
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Fig. 3: Image of the PandaSet dataset with bounding boxes
for cars based on the YoloV4 algorithm. For simplicity, 3 out
of a total of 26 recognized cars are shown. The CS of YoloV4
and x (DS) are given for each of these objects. The detection
score here correlates with the CS depending on the resolution
of the respective object.
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Fig. 4: Relationship of the median distribution of x and the
cross-entropy losses for vehicle targets. Two distinct recogni-
tion algorithms are applied for image recognition and LiDAR
point cloud detection based on the PandaSet dataset. As
the cross-entropy loss decreases, indicating better recognition
performance,  increases. The detection score thus reflects the
performance of the recognition algorithm.

The analysis for the entire PandaSet dataset is shown in
Fig. 4. The graphs Fig. 4a and Fig. 4b illustrate the correlation
between « and cross-entropy loss, demonstrating the suitability
of the equation (4) as a method for calculating detection
performance for different sensor systems and detection algo-
rithms.

B. Setup Environment

In our experiment for evaluating the automatic sensor per-
formance analysis based on the table Algorithm 1, we are us-
ing CARLA 0.9.12 [28] and MATLAB R2021a. CARLA is an
open-source simulation environment for autonomous vehicle
testing. It provides a ray-cast model, simulation ground truth
data and allows for the creation of detailed 3D environments
based on the Unreal game engine [29]. Our algorithm is



TABLE I: Sensor Parameters

Sensor ap ay Resolution Max. physical range
LiDAR 25° 12° 833332pps® 300m
Camera | 86.6° | 86.6° | 2304000pizel —

2points per seconds

Ww;

dsensor.rel

Fig. 5: Sensor positions in (X,y) coordinates relative to the
vehicle coordinate system. LiDAR (FoV in yellow) and camera
(FoV in blue) are positioned on the roof of the robot-guided
vehicle.

implemented in Matlab and has an interface to interact with
CARLA, which is used to control the simulation environment
and collect sensor data.

In our simulation environment, a 3D model of a real
race track from a proving ground is used for analysis. The
model of the track contains high-speed sections, different types
of curves, an elevation profile, guard rails and buildings to
replicate the conditions of the actual track. The 3D model is
created based on an openDRIVE description [30].

For the evaluation of different sensor types and parameter-
izations, a long-range LiDAR with narrow horizontal FoV is
combined with a high-resolution camera with wide azimuth
and elevation angles, oy and avy respectively, as included in
Tab. I. The camera has a resolution of 1920 x 1200 pixels. Both
sensors are positioned at the same location on the roof of the
robot-guided vehicle for criticality comparison, as shown in
Fig. 5.

The trajectory p and velocity profile #; are based on a
measurement taken during a test on the track for future
automation. The test was driven counterclockwise with a
maximum velocity of 200% and high lateral and longitudinal
accelerations of up to 1g. The waypoint distance is set to
dyw = 8m for the analysis. To determine the stopping distance,
a dry road with a friction coefficient of ;1 = 0.96122 according
to [20] is assumed. The detection score threshold 4 = 0.001
is set to ensure robust detection.

C. Results and Discussion

In this chapter, we present the results of our sensor perfor-
mance analysis Algorithm 1 applied on a virtual race track
with a high dynamic driving profile. For this purpose, we
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Fig. 6: Top view of the race track and the criticality C; along
the trajectory based on a high dynamic drive. The criticality
is determined using sensors positioned on the vehicle. Based
on the criticality metric, LIDAR performs better on straight
sections. In contrast, the camera performs better on curves.

compare the detection performance of two different sensor
types for monitoring the environment of robot-guided vehicles
separately. Then we show the advantages of sensor fusion
based on the previous results.

The results of the analysis of the two individually considered
sensors are shown in Fig. 6 along the race track. These figures
illustrate the camera Fig. 6a and LiDAR Fig. 6b criticality
metrics.

In curves, the camera sensor has a higher detection range
along the trajectory than the LiDAR sensor, due to the wide
FoV ap, which reduces the occlusion caused by objects and
buildings. Furthermore, since the speed is lower in curves, the
limited camera detection range is sufficient. Nonetheless, the
LiDAR sensor cannot see around the corners due to narrower
FoV in curves.

The plots indicate the significant influence of velocity
profile on criticality. The criticality here depends on the speed
and thus, according to (2), on the quadratically increasing
braking distance. On long straight sections at high speeds, the
detection range is insufficient to recognize objects or hazards
in time. Compared to the camera in Fig. 6a, the LiDAR sensor
in Fig. 6b has lower criticality on straight sections and higher
velocities, due to the relatively higher point density for more
distant targets.

In the middle of the race track on short straights at low
velocities, the criticality metric remains high for both sensor
types due to the negative elevation of the track. The negative
elevation with —6%, starting on a plateau, poses a challenge
for the sensor systems as it makes it difficult to detect
objects that are obscured by the terrain. This highlights the
importance of considering the impact of elevation on the
sensor performance analysis of a given scenario.

For a performance comparison, the proportion of non-
critical sections to the total track is considered, as well as



TABLE II: Sensor System Performance Metric

Sensor Non-critical Max. Max.
sections velocity Clerit
LiDAR 54.62% 18555 | 74.74m
Camera 52.88% | 129.05™ | 152.15m
LiDAR & Camera 85.75% 18555 | 74.74m
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Non-critical sections: Rely on LiDAR only

B Non-critical sections: Rely on camera & LIiDAR

B Critical sections: Camera & LiDAR are not reliable

Fig. 7: Top view of the race track with the critical and non-
critical sections. The non-critical sections are divided into
sufficient sensor performance for the camera and LiDAR
separately and in combination. Both sensors secure a large
portion of the track. The critical sections without sufficient
monitoring can be accurately identified.

the maximum possible vehicle speed in non-critical sections
and the maximum value of the criticality metric over the race
track. The lower the criticality metric in the case of a collision
for C.i > Om and under constant environmental conditions,
the lower the impact energy. The corresponding values are
listed in table Tab. II for the respective sensors.

The LiDAR sensor has performance advantages compared
to the camera for this race track and conditions. The higher
proportion of non-critical sections, a higher maximum speed
in non-critical sections and a lower maximum criticality dis-
tinguish it here.

Considering both sensors combined for perception, e.g.
by sensor data fusion, higher detection performance can be
achieved as the sensors complement each other on different
sections of the race track. For the combination of both sensors
the criticality is determined by CL; = min(CLPRR, CSamer)
This combination describes the upper bound of the criticality
and represents the minimum demand for a fusion of a sensor
system. A significantly higher proportion of non-critical sec-
tions, a higher maximum speed and a lower criticality metric
indicate that the sensor combination is preferable.

In Fig. 7, we illustrate the critical Cj; > Om and non-
critical Cgit < Om sections of the race track. The non-critical

sections are divided into sections where only one or both
sensors individually enable timely target detection. This allows
us to identify track sections where one sensor outperforms
the other, as mentioned earlier. As the figure demonstrates,
using a camera in curves and LiDAR on straight sections
effectively ensures safety. Combining the two sensors results
in a significant improvement in sensor performance in terms of
track coverage. Additionally, we have identified and precisely
located the critical sections.

Our analysis of sensor data for the race track allows us
to highlight the different strengths and weaknesses of the
sensors. By comparing the results of the two sensors separately
and in combination, we obtain reliable information about the
performance of the sensor systems, which can be used to
optimize and ensure the safety of the automated vehicle tests.
Critical sections can be systematically covered by additional
sensors, for example in the infrastructure, at a targeted location
and with low effort.

V. CONCLUSION AND FUTURE WORK

The analysis conducted in this study provides valuable
insights into the performance of sensor systems for monitoring
the environment of robot-guided vehicles. We proposed a new
approach to automatically evaluate different types of sensors
and by estimating the detection range based on the detection
score under different conditions, we can identify critical and
non-critical sections of a track. We have shown the strengths
and weaknesses of individual sensors for a race track from
a proving ground. Furthermore, our approach can be used to
easily assess the performance of combined sensor systems.

The results of the analysis demonstrate the importance of
considering factors such as speed, elevation and occlusion
when assessing the criticality of a given scenario. This re-
search provides a basis for the design and implementation of
automated testing systems in terms of safeguarding.

This study is part of a work to optimize automated testing
and increase the level of automation of test execution on
proving grounds, where more test variations with different
conditions, such as the impact of weather conditions, will be
investigated. For further research, the performance analysis can
be integrated into an automatic optimizer to find an optimal
sensor setup. Furthermore, our approach could also be applied
to worldwide scenarios, such as public roads, to analyze the
limitations of ADAS sensor systems in different environments.
In addition, the proposed method can be extended to calculate
the criticality for dynamic obstacles. Various methods of fusing
multiple sensors can also be explored for further analysis.
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