
Hardening Joins with Suboperator Decomposition
Altan Birler

Technische Universität München

altan.birler@tum.de

Alfons Kemper

Technische Universität München

kemper@in.tum.de

Thomas Neumann

Technische Universität München

neumann@in.tum.de

ABSTRACT
Join ordering and join processing has a huge impact on query

execution and can easily a�ect the query response time by orders

of magnitude. In particular, when joins are potentially growing

n:m joins, execution can be very expensive. This can be seen by

examining the sizes of intermediate results: If a join query produces

many redundant tuples that are later eliminated, the query is likely

expensive, which is not justi�ed by the query result. This gives the

query a diamond shape, with intermediate results larger than the

inputs and the output. This occurs frequently in various workloads,

particularly, in graph workloads, and also in benchmarks like JOB.

We call this issue the diamond problem, and to address it, we

propose the diamond hardened join framework, which splits join

operators into two suboperators: Lookup & Expand. By allowing

these suboperators to be freely reordered by the query optimizer,

we improve the runtime of queries that exhibit the diamond prob-

lem without sacri�cing performance for the rest of the queries. Past

theoretical work such as worst-case optimal joins similarly try to

avoid huge intermediate results. However, these approaches have

signi�cant overheads that impact all queries. We demonstrate that

our approach leads to excellent performance both in queries that

exhibit the diamond problem and in regular queries that can be

handled by traditional binary joins. This allows for a uni�ed ap-

proach, o�ering excellent performance across the board. Compared

to traditional joins, queries’ performance is improved by up to 500x

in the CE benchmark and remains excellent in TPC-H and JOB.

1 INTRODUCTION
The join operation is the cornerstone of relational data processing.

Its e�ciency is crucial for the performance of analytical workloads.

In particular, when queries contain joins that are potentially grow-

ing n:m joins, execution can be very expensive. However, users

seldom write queries that produce large outputs; most tuples that

are produced as intermediate results in such queries are either �l-

tered out or aggregated before the end of the query. These queries’

runtimes are therefore not justi�ed by their results: The slowness

of query execution is often not intrinsic to queries themselves, but

rather a result of ine�ciencies in how joins are performed and

optimized. We visualize this problem in Figure 1, where the in-

termediate results of a query have a diamond shape, with small

inputs coming in, growing into large intermediate results, and then

shrinking back to the actual output. Such queries occur in real life,

in relational benchmarks like JOB [20] and graph benchmarks such

as LDBC SNB BI [37], Graphalytics [17], and CE [6].

Let us give an example from healthcare informatics of a query

exhibiting the diamond problem. We want to �nd patients who

have been administered two drugs which have a known adverse

interaction. To compute the query, we might �rst �nd all pairs of

drugs that have been administered to the same patient, then �lter

the pairs that have a known interaction. Or, we might �nd drugs

small inputtim
e

large intermediate result

small output

produced data

excess

Figure 1: The diamond problem: Queries with small inputs
and outputs may produce large intermediate results.

that have been administered to one patient, �nd all other drugs

that have known interactions, and then check if the patient has

also been administered the interacting drugs. Regardless of our

approach, the intermediate results may be quite large, potentially

quadratic in size, even though the �nal result is likely to be small.

Avoiding the diamond problem is intrinsically linked to tackling

robustness; if we can limit the sizes of intermediate results, we can

keep the query’s runtime bounded and predictable. There has been

much recent interest on tackling robustness by optimizing for the

worst-case. However, these approaches have signi�cant overheads

that often makes them too expensive to replace traditional binary

join processing. In this work, we propose diamond hardened joins.

Through the decomposition of joins into two suboperators Lookup

& Expand, one shrinking and one growing, and reordering these

suboperators independently, we improve the runtime of queries that

exhibit the diamond problem by eliminating tuples as early as possi-

ble. This approach provides great worst-case performance without

sacri�cing the average-case: Our framework not only provides best

in class performance for classical relational workloads, it is able

to handle graph workloads and cyclic queries that have histori-

cally been di�cult for relational databases to optimize and process.

Compared to traditional joins, the Lookup & Expand framework

improves query performance by up to 500x in the CE benchmark,

while still delivering excellent performance in TPC-H and JOB.

Our contributions are as follows: (1) We introduce Lookup &

Expand decomposition, and show that it can be used to process U-

acyclic queries optimally. (2) We prove that simple ternary joins are

enough to achieve worst-case optimality for a large class of cyclic

queries. We introduce a ternary Expand operator, which allows

the diamond hardened join framework to tackle cyclic predicates.

We empirically demonstrate that our approach is more e�cient

compared to generic n-ary worst-case optimal joins. (3) We dis-

cuss a low risk approach to eager aggregation, and demonstrate

its e�ectiveness on graph pattern matching queries with count(*)
aggregates. (4) We show how Lookup & Expand decomposition,

with careful handling of NULL values, enables many more reorder-

ings of outer-join plans compared to binary joins. (5) We propose a

strategy for optimizing Lookup & Expand plans.

We present our work in �ve sections. In Section 2, we discuss

related research in addressing robustness and tackling the diamond

problem. In Section 3, we introduce Lookup & Expand (L&E) de-

composition, formalize its semantics, and demonstrate how it can

be used to tackle the diamond problem. In Section 4, we provide a

more in-depth treatise of the speci�c cases exhibiting the diamond

problem and how diamond hardened joins provide an e�cient and

simple solution. We discuss how we are able to tackle acyclic predi-

cates, cyclic predicates, aggregations, and outer-joins. After all the

details are presented, we describe further implementation details

and the optimization of L&E plans in Section 5. Finally, in Section 6,

we present the results of our experiments, showing that L&E de-

composition provides excellent performance on both relational and

graph queries compared to binary and worst-case optimal joins.

2 RELATEDWORK
Signi�cant advancements have been made in making query execu-

tion robust. Semi-join reduction [4, 36] and the Yannakakis algo-

rithm [43] apply redundant semi-join �lters early, before executing

potentially growing join operators. These techniques bound the

intermediate result sizes for acyclic queries, guaranteeing optimal

runtime. Zhu et al. [45] have proposed new metrics for robustness

which they have improved on by applying semi-join reduction in the

acyclic star query graph setting. However, there are cyclic queries

where any plan of binary joins produces intermediate results that

are quadratic in size compared to both the outputs and inputs.

Worst-case optimal joins (WCOJs) [14, 19, 29, 30, 35, 38], in contrast,

can guarantee optimal runtime on worst-case input. Thus, they can

be orders of magnitude faster than binary joins. However, they

also require signi�cant implementation e�ort, cause regressions

on simpler queries, and are nontrivial to integrate into an existing

optimizer [14, 23]. When we run the TPC-H SF 10 benchmark with

our research system Umbra, we �nd that WCOJs slow down overall

runtime 6 times compared to binary joins. Free Joins [40] promise

to unify binary joins andWCOJs in one algorithm, but are currently

limited to left-deep trees and a single-threaded implementation.

Similarly to how semi-join reduction executes redundant semi-

join �lters early before joins, eager aggregation [9, 13, 41] executes

redundant aggregates early before a global grouping, potentially

signi�cantly reducing intermediate result sizes. Factorization [31],

in contrast, is a lazy variant of both semi-join reduction and eager

aggregation. Both these techniques try to avoid huge intermediate

results. However, instead of trying to �lter and aggregate early,

factorization delays the materialization of full join results.

The diamond hardened join framework allows the optimizer

to exploit the implicit factorized representation that a classical in-

memory binary hash join produces during execution. The end result

is a simple technique with great power: Increased performance for

worst-case queries with top performance in common queries.

3 APPROACH
In this section, we discuss the intuition behind Lookup & Expand

decomposition and how this technique leads to more robust query

plans. We start by discussing the fundamental di�culty of ordering

joins and then describe how Lookup & Expand decomposition

addresses this di�culty.

3.1 Making Join Ordering Robust
In a �rst approximation, query optimizers minimize total data move-

ment, which can be approximated by the sum of intermediate result

sizes of operator (a.k.a. the �>DC cost function [8]). If a highly se-

lective �lter is executed at the end of a query (top of the query

plan), the optimizer tries to push the �lter down as far as possi-

ble, so that fewer tuples are propagated all the way up the plan.

In essence, the optimizer pushes down shrinking operators that

produce a smaller output than their input and pushes up growing

operators that produce a larger output than their input. This gives

us the following rule of thumb: An optimizer tries to push down
cheap shrinking operators and push up growing operators.

What kind of an operator is a binary join, in particular, a binary

hash join? Binary hash joins build a hash table on one input and

probe the hash table with the other input, producing all matching

pairs
1
. The hash table build is expensive. The probe is relatively

cheap (usually much cheaper than a group-by). However, the probe

may be growing or shrinking; each tuple may �nd zero, one, or

many matches in the hash table. Thus, it is hard to know when to

push down a join; pushing a join down might speed up the plan

signi�cantly or make it signi�cantly slower. The following code

demonstrates a typical binary hash join in pseudocode:

1 # Hash table build

2 ht = {}

3 for k, v in buildInput:

4 ht[k] = v

5

6 # Hash table probe

7 for k, v in probeInput:

8 iterator = ht.find(k) # Lookup

9 if not iterator.done ():

10 do: # Expand

11 produce(k, *iterator)

12 iterator.step()

13 while not iterator.done()

We propose to split binary hash join probes into two subopera-

tors, Lookup and Expand. Lookup �nds the �rst match in the hash

table. Expand iterates over the rest of the matches. Now, we have

two operators that are easy to categorize. Lookups are cheap shrink-

ing operators. Expands are growing operators. Lookups should be

pushed down while Expands should be pushed up.

3.2 Lookup & Expand Decomposition
In this section, we start with descriptions and pseudocode for the

Lookup & Expand (L&E) operators. Then, we will formalize the

semantics of a L&E plan by introducing a new notation.

In a join query, if a tuple is ever going to be �ltered out, we

want it to be �ltered out as soon as possible. Thus, we propose

to decompose joins in such a way that the operation of "looking

for the �rst match if it exists" is separated into a distinct operator

Lookup, which can be independently reordered. The remaining

operation "iterating over all matches (given a reference to the �rst

match)" is designated as the Expand operator. Lookup and Expand

combined together make up a single binary join.

We present the operators in produce/consume [26] pseudocode:

1
There are, of course, many variants to the binary hash join. We focus on the build &

probe variant, commonly preferred in modern relational systems for its performance.

2

1 def lookup_consume(produce , tuple , hashTable):

2 # Look for the key in the hash table

3 iterator = hashTable.find(tuple.key)
4 if iterator.done ():

5 return
6 # Return tuple and iterator over matches

7 produce(tuple , iterator)

8

9 def expand_consume(produce , tuple):
10 # Extract the iterator from the tuple

11 currentMatch = tuple.iterator
12 do: # Loop over all matches

13 produce(tuple , *currentMatch)

14 currentMatch.step()

15 while not currentMatch.done()

⨝
R RR R1 12 2

≡ Lookup

Expand

Figure 2: Binary hash join and equivalent Lookup & Expand.

The Lookup operator checks for a match and produces a single

iterator for all matches. The Expand operator uses the iterator from

the input to iterate over all matches. When using an in-memory

hash-table, the iterator is analogous to a memory span pointing to

matching hash table entries. What is the cost of storing this addi-

tional attribute? In a pipelined query engine [27], this attribute is

often not copied to main memory; it is simply passed from Lookup

to Expand in a register or cache. The machine code executed in the

end will be exactly equivalent to that of a binary hash join. In Fig-

ure 2 we show a binary join and the equivalent L&E decomposition.

The left side of the join is designated as the probe side.

⨝
⨝

R
a

(a,b) (a)

(b)

b

R R
R

R

R R

R

R
1

1 1
2

3

2 2

3

3

≡ ≡

Figure 3: Threeway join, equivalent Lookup & Expand, and
Lookup pushdown.

Since we now have two distinct operators, the query optimizer

can reorder them independently, leading to more interesting plans.

Consider the leftmost join plan in Figure 3 where we build hash

tables on '2 (0) and '3 (1) and probe these hash tables with '1 (0,1)
on '1 .0 = '2 .0 and '1 .1 = '3 .1. L&E decomposition results in the

middle plan. After the decomposition, we can freely push down the

Lookups through the Expands, leading to the rightmost plan. This

change can be illustrated in the following pseudocode:

1 # Join pipeline before push -down

2 for t in R1:

3 iterator2 = ht2.find(t.a)

4 if not iterator2.done ():

5 do:
6 iterator3 = ht3.find(t.b)

7 if not iterator3.done ():

8 do:
9 produce(t, *iterator2 , *iterator3)

10 iterator3.step()

11 while not iterator3.done()

12 iterator2.step()

13 while not iterator2.done()

14

15 # Join pipeline after push -down

16 for t in R1:

17 iterator2 = ht2.find(t.a)

18 if not iterator2.done ():

19 iterator3 = ht3.find(t.b)

20 if not iterator3.done ():

21 do:
22 do:
23 produce(t, *iterator2 , *iterator3)

24 iterator3.step()

25 while not iterator3.done()

26 iterator2.step()

27 while not iterator2.done()

After the Lookups are pushed down, it is guaranteed that the

diamond problem is prevented. The execution starts with shrinking

operators (Lookups) and ends with growing operators (Expands).

There are no growing intermediate results which are then �ltered

out before the end of the query.

⨝
⨝

R
R R

R

R

R R

R

R
2

2 2
3

1

3 3

1

1

≡ ≡
a

(a,b)

(a)

(b)

b

Figure 4: Threeway join, equivalent Lookup & Expand, and
Expand pullup.

We want to show a second example that demonstrates the full

power of L&E decomposition. Consider the leftmost join plan in

Figure 4.We �rst join'2 (0,1) and'3 (1) on'2 .1 = '3 .1, build a hash

table on this result, and probe it with '1 (0) on '1 .0 = '2 .0. After

decomposition, we are left with the middle plan. Here, we cannot

push Lookups down as we did before, but we can pull Expands up

through a hash table build! The resulting plan is the rightmost plan.

'2 probes '3, remembers an iterator on '3, which is stored in the

hash table on '2 aside the tuples in-place of actual tuples from '3.

Later, we probe this hash table with '1, extract this iterator which

we then Expand at the very end. Notice how we have successfully

partitioned the plan, we have Lookups below and Expands above,

cheap shrinking operators below, growing operators above. Thus,

we have avoided a potentially very expensive hash table build on a

growing intermediate result and prevented the diamond problem.

3.3 Semantics
To more easily refer to Lookup & Expand plans, we introduce a new

notation. In particular, this notation needs to be able to encode the

intermediary state after a Lookup has been executed. Consider the

state after '2 probes '3 in Figure 4. We possess an iterator on '3,

but we do not have the actual tuples at hand. We need an Expand

operator to actually access attributes from '3. We denote this state

3

as '2 → '3 (pronounced as '2 looks-up '3)
2
. We refer to '2 as the

head. We are able to access attributes of the relations in the head

as they have been expanded. The outgoing arrows correspond to

iterators. After an expansion 4'3
('2 → '3) ≡ '2B'3 we can access

all attributes in '2 and '3. We will often omit trivial subscripts and

the join sign B when using our notation 4 ('2 → '3) ≡ '2'3.

We will also directly refer to sets of relations with joins implicit

4 (R1 → R2) ≡ R1 ∪ R2.

An L&E expression S is a relation; the operations Lookup &

Expand can be seen as extensions to relational algebra, they input

and output relations. The grammar for L&E expressions can be

stated as (→ has right-to-left precedence):

R := any set of relations including ∅ (1)

S := R | (S) | S → S | 4 (S) | ℎ403 (S) (2)

The following are result equivalences of L&E expressions:

R → ∅ ≡ R (3)

ℎ403 (R → S) ≡ R (4)

4R2
((R1 → (R2 → S2)) → S3) ≡ ((R1 ∪ R2) → S2) → S3 (5)

S1 → S2 → S3 ≡ S1 → (S2 → S3) (6)

(S1 → S2) → S3 . S1 → (S2 → S3) (7)

(S1 → S2) → S3 ≡ (S1 → S3) → S2 (8)

The Equations 3-5 are de�nitions, Equations 6 and 7 describe op-

erator precedence and Equation 8 demonstrates Lookup reordering.

We also use the shorthand 4∗ (S) to refer to expanding (entirely

with a sequence of expands such that all the contained relations

are in the head. The plans for Figure 3 and Figure 4 can be stated

as 4∗ (('1 → '2) → '3) and 4∗ ('1 → '2 → '3) respectively.
Note that an L&E expression corresponds to a factorized d-

representation [33] of the query, with the main di�erence being

that L&E expressions only factorize the build sides on the join pred-

icates. Lookups & Expands bridge the gap between relational query

processing and factorized query processing. If your database does

binary hash joins, you are already factorizing when you build a

hash table, you simply are not bene�tting from it, as the bene�ts

come from allowing the query optimizer to reorder Lookups.

4 THE DIAMOND PROBLEM
In this section, we discuss when the diamond problem can occur,

and how it can be alleviated using diamond hardened joins. The

diamond problem occurs when many tuples are generated as inter-

mediate results only to be eliminated later in joins or aggregated

together in a group-by. Tuples that are generated and then elim-

inated are called dangling tuples. How we can prevent dangling

tuples depends on the query’s predicate structure, speci�cally, its

acyclicity or cyclicity and the presence of reordering restrictions

due to outer-joins. In total, we have identi�ed four cases of the

diamond problem which we will analyze and address:

2
A lookup R2 → R3 is only valid i�. there is at least one join edge between the two

sets of relations, i.e. R2 → R3 is only valid if R2 B R3 is not cross-product.

(1) Acyclic predicates: When nonredundant predicates between

relations are acyclic, the diamond problem can be avoided by ag-

gressively pushing down additional semi-join �lters. L&E decom-

position can achieve the same result more e�ciently, as additional

�lters can be avoided by pushing down the Lookup suboperators.

(2) Cyclic predicates: When nonredundant predicates between

relations form cycles, any binary join plan, even with additional

semi-join �lters, is suboptimal. Worst-case optimal joins (WCOJs)

replace many binary joins with a single black-box multiway join

that is able to exploit per tuple runtime adaptivity to bound inter-

mediate result sizes to the worst-case output size. As WCOJs have

unique cost characteristics that are hard to estimate, integrating

them into query plans remains a challenge. The L&E framework

provides a simple solution, by introducing a ternary Expand op-

erator, that provides per-tuple runtime adaptivity, guaranteeing

worst-case optimality for a large class of queries.

(3) Queries with duplicate values: Duplicates can be eliminated

early with eager aggregation or delayed with factorization. The L&E

framework primarily focuses on the former, to avoid modifying

existing group-by operators.

(4) Reordering restrictions: In contrast to inner-joins, outer-joins

cannot be freely reordered without introducing costly compensa-

tion operators. By decomposing joins into null-handling Lookups

and simple Expands, the query optimizer can reorder the grow-

ing Expands without restrictions, and thus prevent the diamond

problem in many cases without additional costs.

We show that the L&E framework can unify the solutions to all

four cases of the diamond problem. In the following, we further

detail the issues with each case, and present how related work and

L&E decomposition can alleviate the problems.

4.1 Acyclic Queries & Full Semi-Join Reduction
When nonredundant predicates between relations do not form cy-

cles (i.e. the query is U-acyclic [11]), the diamond problem can be

avoided by aggressively pre�ltering relations with the domains

of other relations. This �ltering procedure is called full semi-join

reduction and was described by Bernstein and Chiu [4] and Yan-

nakakis [43]. L&E decomposition can achieve the same result with

two-phase plans, where the �rst phase of execution exclusively

consists of pushed down Lookups and the second phase exclusively

consists of Expands. The Lookup phase is exclusively shrinking,

and the Expand phase is exclusively growing, but bounded by the

query’s output size. As no dangling tuples could remain after the

Lookup phase, such a plan is instance optimal. Two examples of

two-phase plans can be seen in Figures 3 and 4. In both examples,

we were able to �nd a join order in which all the Lookups could

be pushed down below Expands. In fact, if a query is U-acyclic, we

will show that we can always �nd such a two-phase plan.

Acyclic queries are very common. All queries in JOB and almost

all queries in TPC-H are U-acyclic, implying that achieving a high

degree of robustness for a large set of relational queries is feasible.

1 -- Acyclic query:

2 select * from R, S, T

3 where R.a = S.a and S.a = T.a and R.a = T.a;

4 -- Join tree:

5 -- (R join S on (R.a = S.a)) join T on (R.a = T.a)

6 -- One predicate per join: acyclic.

4

7

8 -- Cyclic query:

9 select * from R, S, T

10 where R.b = S.b and S.c = T.c and T.a = R.a;

11 -- Join tree:

12 -- (R join S on (R.b = S.b)) join T

13 -- on (R.a = T.a and S.c = T.c)

14 -- The top join has two nonredundant predicates: cyclic

4.1.1 Constructing two-phase plans. In full semi-join reduction, the

base relations are �ltered by the contents of other relations in a spe-

ci�c order, which is given by the GYO ear removal algorithm [2, 44].

After two waves of �lters, forwards and backwards, it is guaranteed

that there is a join order that produces no dangling tuples, tuples

that are produced and later eliminated by other joins. While this

�ltering procedure is optimal up to a constant factor, the constant

factor due to executing additional �lters may be signi�cant.

Similarly, we can utilize the GYO ear removal algorithm to de-

termine an order for the �rst phase of Lookup operators. A relation

is an ear if all its join attributes (with remaining relations) are con-

tained in another relation. Everytime an ear is removed, we draw

an edge from the containing relation to the removed relation. We

repeat this process until there are no remaining relations
3
. The

resulting graph is a tree, and the edges represent Lookups of an L&E

expression. We follow with a sequence of Expand (4∗) operations to
compute the join result. The resulting plan is two-phase, and thus,

instance optimal up to a constant factor.

R R

R
R RR R

R
R

2 2

2

3 31 1

3

1

a ab b⇒ ⇒

Figure 5: Relations and join attributes, possible ear removal
order, and resulting two-phase L&E plan

In Figure 5, we demonstrate a possible execution of the algorithm

on the query from Figure 4. We start by removing '3 (1), whose join
attribute 1 is contained in '2 (0,1). We can then remove '2 (0,1),
as its remaining join attribute 0 is contained within '1 (0). '1, as
the only remaining relation, becomes the head of Lookup sequence,

resulting in the L&E expression 4∗ ('1 → '2 → '3).

4.2 Cyclic Queries & Worst-Case Optimality
When predicates were acyclic, we guarantee that we can always �nd

an L&E plan where all Lookup were pushed down below Expands.

Such two-phase plans guarantee that no dangling tuples remain

after the �rst phase, implying that they are instance optimal. Un-

fortunately, when predicates form cycles, we cannot guarantee that

such plans exist. In fact, binary joins (even with additional semi-join

�lters and/or L&E decomposition) are suboptimal for cyclic queries,

as they can produce intermediate results that are asymptotically

larger in size compared to both the inputs and output [30].

3
It is proven that a query is U-acyclic i�. only a single relation remains after all ears

are removed [2].

Worst-case optimal joins (WCOJs) guarantee worst-case opti-

mality, i.e. their runtime complexity is upper-bounded by the how

large the output could possibly be given the worst possible input.

While the worst-case result size can be signi�cantly higher than the

result size of most queries, WCOJs can empirically demonstrate bet-

ter performance compared to binary hash joins with skewed data.

However, WCOJs can be di�cult to implement and integrate into an

existing optimizers [14]. They are also signi�cantly more ine�cient

compared to binary joins in queries with low skew [15], thus they

cannot replace binary joins altogether. The diamond hardened join

framework provides us with an elegant way of integrating worst-

case optimality into join plans with the help of a ternary Expand

(Expand3) operator. We will begin with an intuitive explanation of

the problem with cyclic queries, present classical WCOJs and their

issues, prove that ternary joins are good enough for a large class of

queries and then conclude with our solution: Expand3.

In Section 1, we gave an example of a cyclic query involving

drugs and drug interactions. Here, we will give a di�erent exagger-

ated example of a cyclic query to demonstrate why binary joins are

suboptimal. Consider the follows relation on the social media web-

site X (formerly known as Twitter). This relation is highly skewed.

One of the most popular accounts @elonmusk is followed by 150M

other accounts, while many lurker accounts have 0 followers, even

though they likely follow popular accounts like @elonmusk
4
. The

query "Give me all pairs (a, b) of followers for @USER" may result in

(150")2 rows if @USER is @elonmusk, which would be infeasible

to compute. However, the result for the query "Give me all pairs

(a, b) of followers for @USER where a follows b" is signi�cantly

smaller. The result size will be at most bounded by the size of the

follows relation. So what query plan is optimal for this query? For

@lurker, we want to �rst �nd his follower pairs (of which there are

zero), and for each pair ask whether they follow each other. For

@elonmusk, the same strategy completely blows up computation

costs, thus we want to iterate over the follows relation, and for

each pair ask if both follow @elonmusk.

For a given user we can decide which execution plan is the

best. What should we do if we receive a query with no speci�ed

user? "Give me all triplets of users (a, b, c) where a follows b, a

follows c, and b follows c". This query is signi�cantly more di�cult

to answer e�ciently as, ideally, we would use di�erent execution

plans for each 2 . This is the fundamental advantage that WCOJs

bring. Rather than having one �xed plan, they allow for per-tuple

runtime adaptivity, choosing the execution strategy based on the

number of join partners a particular tuple has.

WCOJs are formally de�ned as attribute based joins, rather than

relation based. When computing a query with result attributes (a,

b, c), they �rst compute all the (a)s, then (a, b)s, and then (a, b, c)s,

extending the result one attribute at a time rather than one relation

at a time until they compute the full query result. The particular way

in which WCOJs extend their result sets gives them their runtime

adaptivity. Assume we have three relations R(a, b), S(b, c), and T(c,

a) which we want to join naturally (on attributes with the same

names). Also assume that we have available a superset of the result

projected onto attributes 0 and 1: � (0,1) ⊇ Π0,1 (' B (B)). How

4
The SNAP Twitter follower network dataset [21] provides a snapshot from 2010.

There, maximum number of followers is around 3 million, minimum is 0, median is 7.

5

can we e�ciently extend this result to contain the attribute 2? For

every tuple (0,1), we query the matching 2 values in (and the

matching 2 values in) . The intersection of these two sets of 2 gives

us all possible 2 values corresponding to each tuple (0,1). There
are many strategies for computing intersections e�ciently. The

key requirement is that, for worst-case optimality, the operation

must take time on the order of the size of the intersection [30]. One

solution is to have hash tables on (and) with keys 1 and 0 and

values as hash sets of 2 . We query the hash tables, iterate over the

smaller hash set and query the larger hash set, giving us constant

time per elements in the intersection result.

1 def intersect(htR : Dict[a, c], htS : Dict[b, c], a, b):

2 cR = htR[a] # Join order R, S

3 cS = htS[b] # Join order S, R

4 if cR.length < cS.length:

5 # Join order R, S

6 for c in cR:

7 if cS.contains(c):

8 produce(a, b, c)

9 else:
10 # Join order S, R

11 for c in cS:

12 if cR.contains(c):

13 produce(a, b, c)

The logic in both branches is the same as hash join lookups,

the di�erence being that we can switch the join order based on

the number of elements contained in the corresponding sets. Such

runtime adaptivity does not exist in classical relational processing.

In Subsection 4.2.5, we will introduce the Expand3 operator which

enables runtime adaptivity on a relation granularity (as opposed to

attribute granularity), leading to worst-case optimality for a large

class of queries.

4.2.1 Theoretical Power of Worst-Case Optimal Joins. WCOJs not

only have empirical bene�ts when joining skewed data, they also

have better worst-case runtime complexity than binary hash joins.

Consider the extremely skewed symmetric relations'(0,1) = ((1, 2)
=) (2, 0) = ((1) × [1, =]) ∪ ([1, =] × (1)). ' is a set of unidirectional

edges between = nodes, the node 1 is connected to all = nodes while

all the other nodes are only connected to themselves. The natural

join query & (0,1, 2) = '(0,1) B ((1, 2) B) (2, 0) has result size
O(#). However, binary hash joins take O(# 2) time, regardless of

the join order, as the size of any binary join is O(# 2). WCOJs, in

contrast, guarantee O(# 1.5) time for a query of this structure re-

gardless of the content of the relations. For this particular instance

of relations, many WCOJ algorithms can even compute the result

in O(#) time [30].

For the cyclic join of three relations, WCOJs seem to be a clear

win. How generalizable is this win? Does it hold for more com-

plex query structures or di�erently skewed data? WCOJs are not

instance-optimal, their runtime complexity is only guaranteed to

be on the order of the worst-case result size. Their advantages

against binary hash joins weaken as the number of relations and

attributes increase and the di�erence between actual output size

and worst-case output size grows.

4.2.2 Upper Bounds for Join Result Size. A tight upper bound for

(set-semantics) join result sizes was discovered by Atserias, Grohe,

and Marx [1]. We will henceforth refer to this bound as the AGM

bound. Since we are only dealing with equality predicates, it is

more practical to refer to equivalence classes of attributes instead

of individual attributes from individual relations. For example, the

join query 'B'.0=(.0(B(.0=) .0∧(.1=) .1) is a join query with three

relations and two attributes (attribute equivalence classes) 0 and

1. Given a set of attributes A = {01, 02, ..., 0<}, a vector of domain

sizes corresponding to each attribute E = (E1, E2, ..., E<), relations
R = {'1, '2, ..., '=}, their cardinalities 2 = (|'1 |, |'2 |, ..., |'= |), and
a fractional edge cover weight to each relationF = (F1,F2, ...,F=),
the AGM bound is given by the following dual linear programs:

maximize

E

∏
0 9 ∈A

E 9

subject to |'8 | ≥
∏

0 9 ∈A('8)
E 9 ∀'8 ∈ R

= minimize

F

∏
'8 ∈R

|'8 |F8

subject to 1 ≤
∑

8:0 9 ∈A('8)
F8 ∀0 9 ∈ A

We will explain the �rst linear program in prose, as it is intuitive

to understand. We assume both the relations and the query result

are cross products of their attributes’ domains. For every attribute08 ,

pick a domain size |�0 9
| = E 9 , such that we maximize the size of the

query result (by trying to pick large attribute domain sizes), while

not exceeding individual relation sizes. This gives us the worst-case

(set-semantics) query instance and (allowing the “domain sizes” to

be rational numbers) a tight upper bound on the result size. Atserias

et al. [1] give an entropy based proof of the upper bound while Ngo

et al. [30] give an inductive proof.

Worst-case optimal joins guarantee, for a given query, a runtime

complexity on the order of the AGM bound. Binary hash-joins, in

contrast, can have runtime complexity on the order of the cross-

product of the input relations, potentially much higher than the

AGM bound. However, WCOJs tend to have higher constant over-

head as they materialize and build complex index structures on all

inputs, to enable e�cient intersection operations. The Free Join

algorithm [40] comes closest to bridging the gap, as it can represent

plans that combine worst-case optimality and binary hash-joins,

avoiding complex index structures in many cases. Our Expand3

operator, which we will present in Subsection 4.2.5, is theoreti-

cally less powerful than Free Join for left-deep trees, but supports

bushy plans, is simpler, and, as we will demonstrate, enough for

worst-case optimality for a large class of queries. Still, as a general

rule, non-binary hash joins should only be used when the diamond

problem is present, where intermediate results are larger than the

query result due to dangling tuples as otherwise their overhead is

not worth it. Nevertheless, it is hard to guarantee that the diamond

problem is not present, as estimates can contain large errors. Thus,

pessimistic optimizers tend to prefer WCOJs over binary hash joins.

We have shown how to construct a worst-case join query in-

stance by picking attribute domains. We would like to point out that

the worst-case instance does not su�er from the diamond problem

and produces no dangling tuples; binary joins are worst-case opti-

mal here. Thus, counterintuitively, worst-case optimal joins should
not be used with worst-case inputs. There are many such surprising

6

queries where WCOJs are not bene�cial compared to binary joins,

which we will discuss in the following subsection.

4.2.3 When Achieving Worst-Case Optimality is Easy. We would

like to demonstrate a few examples where WCOJs produce little

or no bene�t over binary joins. Based on these examples, we will

propose ternary joins, which, combined with binary joins, can

produce worst-case optimal plans for a large class of queries.

Consider the triangle query '(0,1) B ((1, 2) B) (2, 0). For sim-

plicity, assume that all relations have size # . If we optimize the

AGM minimization linear program, we will �nd that the optimal

fractional edge cover is 0.5 for all relations resulting in the worst-

case result size of # 1.5
. Binary join, in contrast, takes O(# 2) time

in the worst case, as any join of two relations may have quadratic

size. WCOJs are clearly bene�cial.

Now consider the quadrangle query '(0,1)B((1, 2)B) (2, 3)B
* (3, 0). The optimal fractional edge cover is either 0.5 for all rela-

tions or (1, 0, 1, 0) (symmetric covers are omitted). Regardless, the

worst-case result size is # 2
. What is the runtime complexity for

binary joins? It can also be # 2
; we �rst join two relations each 'B(

and)B* . Each takes O(# 2) time. Then we join these intermediate

results together, where both the input and output are O(# 2). Thus
the total runtime is O(# 2). There is a worst-case optimal binary

join plan for quadrangle queries.

R

RR

R
R

2

34

5

1

⨝ ⨝

R

R R

1

4,5 2,3

⇒

Figure 6: Pentagon query transformed into a triangle query

Finally consider the pentagon query '(0,1)B((1, 2)B) (2, 3)B
* (3, 4) B + (4, 0). The worst-case result size is # 2.5

. All binary

join plans might take O(# 3) time for a query; they are not worst-

case optimal. What about a ternary join? We can join together

(B) and* B+ , which leaves us with three relations ', ((B)),
and (* B+), which we can join with a ternary join. This idea is

illustrated in Figure 6. If we can assume that the ternary join is

worst-case optimal, the entire query runs in O(# 2.5) time, same

as a 5-way worst-case optimal join. There is a combined binary &

ternary join plan that is worst-case optimal
5
.

Binary joins are worst-case optimal for all n-gon queries where =

is even. Binary joins combinedwith a �nal ternary join is worst-case

optimal for all n-gon queries. In the upcoming section, we show

that, allowing for arbitrary combinations of binary and ternary

joins, a large class of queries can be answered with worst-case

optimal runtime, without the need for larger multiway joins.

4.2.4 Ternary Joins are Enough for Many �eries. In the examples

of the previous subsection, the fractional edge cover weightF was

0.5 for all relations. In fact, the query graphs where F is one of

5
For the ternary join to be strictly worst-case optimal as we have described here,

it needs to carefully manage duplicates in all inputs and the attributes 2 and 4 , the

attributes used by the initial joins. The intermediate results can be projected onto

their remaining edges Π1,3(B) and Π3,4(B) and the attributes 2 and 4 can be

joined in after the ternary join is executed. It is hard to determine when additional

projections are bene�cial in practice; ternary joins have some overhead even without

it. Our implementation of Expand3 ignores these issues.

{0, 0.5, 1} are exactly the query graphs where binary and ternary

joins are worst-case optimal (with an additional restriction to be

elaborated later). We have empirically veri�ed all queries in the CE

benchmark [6] to possess this condition. Nonetheless, this property

is quite abstract. To give a better intuition of queries possessing

this property, we also prove that all queries with binary edges in

fact result in fractional edge cover weights in {0, 0.5, 1}.

Lemma 4.1. If all attributes are present in at most 2 relations, there
is an optimal fractional edge cover with weights in {0, 0.5, 1}.

We give the proof for Lemma 4.1 in the appendix. Note that

Lemma 4.1 is su�cient but not necessary for amenable weights.

While queries tend to have transitive predicates such as '.0 =

(.0 =) .0, we observe that such predicates in real queries often

lead to acyclic structures and rarely to complex cyclic structures.

A counterexample cyclic query where attributes occur 3 times is

'(0,1, 2) B ((0,1, 3) B) (0, 2, 3) B* (1, 2, 3). If user queries have
such structures, fractional edge cover weights may be distinct from

{0, 0.5, 1}, and full multiway joins may have better runtime.

Lemma 4.2. If there is an optimal fractional edge cover with weights
F in {0, 0.5, 1}, there is a plan with binary/ternary joins and semi-join
reductions that computes the query result in worst-case optimal time,
as long as the |'max | ≤ |'min |2 where 'max is the largest and 'min
the smallest relations with fractional cover weights 0.5.

We give a constructive proof for Lemma 4.2 in the appendix.

It is rare for the relation sizes to be so signi�cantly di�erent. Ad-

ditionally, it becomes less likely that the fractional cover values

for 'max and 'min are both 0.5 as their di�erence grows. We have

empirically veri�ed that every query in the CE benchmark ful�lls

the condition of Lemma 4.2.

In summary, we have shown for a large class of queries that a

combination of ternary and binary joins is worst-case optimal. If

the query does not contain these properties, ternary & binary joins

may still be worst-case optimal, or the performance advantage of

full WCOJs over ternary & binary joins may be quite limited.

4.2.5 Ternary Expand (Expand3). Wehave shown that ternary joins

are often good enough for worst-case optimality. They are also

easier to understand and simple to implement in the framework

of Lookup & Expand operators. In the following, we will describe

the ternary Expand (Expand3) operator that, combined with two

Lookups, implements a ternary worst-case optimal join. We base

ternary-join on Algorithm-2 from Ngo et al. [30], opting to do

intersections based on hashing.

Consider the cyclic query '(0,1)B((1, 2)B) (2, 0). The Lookup
& Expand plan for this query might look like 4) (4((' → () →)).
Note howwe expand before the second lookup as both' and (share

predicates with) . If we avoid the inner expansion (' → () →) ,

our intermediate result contains ' with two iterators, one for (and

one for) . Expand3 takes these two iterators, and computes their

intersection on the predicate (.2 =) .2 . The resulting plan looks

like 43(,) ((' → () →)).
Ngo et al. [30] show that, for this plan to be worst-case optimal,

the intersection must be computed in time in the order of minimum

iterator length. Expand3 picks the iterator referring to the smallest

number of tuples, and makes hash-lookups into the tuples referred

7

to by the other iterator. To facilitate these lookups, we build two

hash tables on (and) each, primary hash tables on (.1 and) .2 and

secondary hash tables on (.{1, 2} and) .{2, 0}. The primary hash ta-

bles are used within the Lookup operators while the secondary hash

tables are used within Expand3 for the intersection. The operation

of Expand3 is illustrated in the following pseudocode:

1 def expand3(r, iteratorS , iteratorT ,

2 secondaryTableS , secondaryTableT , produce):

3 if iteratorS.length < iteratorT.length:

4 iteratorSmall = iteratorS

5 secondaryTable = secondaryTableT

6 primaryKey = r.a

7 else:
8 iteratorSmall = iteratorT

9 secondaryTable = secondaryTableS

10 primaryKey = r.b

11 for v in iteratorSmall:

12 secondaryKey = v.c

13 for vp in secondaryTable [(primaryKey , secondaryKey)]:

14 produce(v, vp)

4.2.6 Summary. To handle cyclic queries, we introduce the Ex-

pand3 operator which, combined with Lookup & Expand, is enough

to achieve worst-case optimality in almost all queries. This opera-

tor is simple to implement, as it reuses much of the logic already

present for hash-joins, similar to Lookup & Expand. It is also sim-

pler to integrate into a Lookup & Expand plan, as one Expand3

just replaces two normal Expands in cases where there are cycles.

The existing bene�ts of pushed-down Lookups remain. We prove

that a mixture of binary and ternary joins can provide worst-case

optimality for almost all queries.

In summary, we preserve the great average-case performance of

binary joins, improve on it with Lookup & Expand separation, and

further guarantee worst-case optimality in most cases by introduc-

ing Expand3. We have our cake and eat it too.

4.3 Queries with Duplicates & Factorization
Many queries produce intermediate results with lots of duplicate

attribute values. This is inherent in how joins work; they build

cross-products out of matching pairs of tuples. When we process

duplicate values, we essentially do repeated work that could have

been avoided. However, duplicate removal itself can be a very ex-

pensive operation. Thus, a balance needs to be struck between

avoiding duplicates and not taking on too much additional cost.

There are multiple approaches to dealing with duplicate val-

ues. Factorization [32] avoids duplicate values caused by implicit

cross-products. The factorized representation is denormalized; an

attribute may contain a multiset of values. Such a denormalized

tuple represents all tuples resulting from the cross-products of the

attribute multisets. For example, we can represent the tuples (1, 3),
(1, 4), (2, 3), (2, 4) with a single factorized tuple ({1, 2}, {3, 4}). For
the result, the factorized tuples are �attened (normalized). If the

query contains a group-by, the aggregation can be performed di-

rectly on the factorized representation, avoiding the �attening step.

Duplicate values are often produced as a result of n:m joins.

A join hash table build factorizes its build input on the join key.

However, most query execution engines do not bene�t from this

factorization, as they directly materialize all join partners, �attening

the factorization. The Lookup operator avoids this. The iterator that

a Lookup operator produces represents the multiset of matching

values from the build side of the join. Until the corresponding

Expand is executed, the query remains in a factorized form. In this

sense, L&E decomposition is an implementation of factorization.

A Lookup operator only factorizes one input, the build input.

The probe input remains �at. One could potentially also factorize

the probe side. For the join '(0,1) B ((1, 2) such a factorized L&E

plan might look like (Γ1 (') → ') → (. We believe the additional

cost from materializing and hash partitioning the probe input '

will likely not be worth the trouble in most cases. Hash table build

is expensive while hash table probes are cheap. To execute a build

on the larger probe side to potentially reduce the cost of future

probes is a di�cult trade-o�. We also have avoided implementing

additional operators that can work directly on factorized represen-

tations. Instead, we rely on techniques such as eager aggregation.

4.3.1 Eager Aggreation. Join and aggregate queries that produce

intermediate results with duplicate values are amenable to eager ag-

gregation. Eager aggregation refers to computing partial aggregates

before some joins are executed to reduce the cost of all proceeding

joins. For example, the query Γ1;sum(2) ('(0,1) B ((1, 2)) might be

eagerly aggregated by initially aggregating partial results on (:

Γ1;sum(2′)
(
' B Γ1;sum(2) :2′ (()

)
.

Eager aggregation can be done by applying transformative rules

that push the top group-by down a join tree [41]. Another way

to approach eager aggregation is to look at a join plan, �nd the

intermediate results that contain a lot of duplicates and place group-

by operators at exactly those positions with corresponding keys

and aggregates as proposed by Fent et al. [13].

The group-by operator is a costly operator, thus relying on car-

dinality estimation to decide where to place additional group-bys

leads to issues. In contrast, a group-join operator merges a join

and a group-by in one operator, avoiding high costs. Inspired by

the group-join [13], a robust and low-risk approach to eager ag-

gregation is to extend the hash table build of joins (Lookups) to

support e�cient non-strict eager aggregation
6
. This avoids extra

materialization costs and in turn reduces the risk of introducing an

expensive group-by operator with questionable bene�t.

4.3.2 Factorization vs. Semi-Join Reduction and Eager Aggregation.
Factorization and full semi-join reduction address the diamond

problem in a very similar way even though the techniques them-

selves are quite di�erent. Semi-join reduction eliminates dangling

tuples eagerly by executing �lters. Factorization (and Lookup &

Expand plans described in Section 3) delays the expansion (or �at-

tening, in factorization terminology) of dangling tuples, allowing

them to be eliminated in the plan before they lead to large interme-

diate results. And if the query contains a group-by on top, the join

result, in many cases, does not need to be expanded, thus avoiding

large intermediate results. Eager aggregation, in contrast, eagerly

pushes down the aggregation, eliminating duplicate values as soon

6
Non-strict eager aggregation refers to the fact that duplicates may still remain after

eager aggregation without sacri�cing correctness, as the �nal group-by at the top

of the join tree is guaranteed eliminate all duplicates in the end. Consider the query

‘select k, count(*) from R group by k;‘ where relation ' contains the values 1, 2, 2, 2, 2.

A strict aggregation would produce the value-count pairs (1, 1) and (2, 4) , while a
non-strict eager aggregation would be allowed to produce (1, 1) , (2, 3) , (2, 1) where
the value 2 is still duplicated, but the total sum of the counts for 2 still adds up to 4.

Non-strictness allows for simple and e�cient eager aggregation implementations.

8

as possible. Factorization represents a lazy alternative to the ea-

ger optimizations of semi-join reduction and eager aggregation.

Lookup & Expand joins, in contrast, represent a practical middle

ground between laziness and eagerness.

4.4 Reordering Restrictions & Compensation
A query optimizer for SQL needs to deal with outer-, semi-, and anti-

joins as well as inner joins. While inner joins are both commutative

and associative, this does not hold for other join types. Thus, a

query optimizer needs to consider reordering restrictions when

generating result equivalent plans.

The worst o�ender for reordering restrictions are outer-joins.

They are hard to reorder as they can produce null values. Outer-

joins can also result in the diamond problem, as they may be grow-

ing as well as shrinking. Thus, we would like to apply Lookup &

Expand decomposition for outer-joins. Interestingly, if we make

Lookup the null-producing operator, and keep Expand simple, this

allows us to freely push Expands up join trees. Even though we

do not have full reorderability for all operations
7
, we are able to

produce plans with many more orderings for Expands.

We de�ne two additional parameters for Lookup, whether it

“produces-nulls” and/or “produces-all”. (1) A produce-null Lookup,

after �nding matches for all tuples in the left side, produces null

tuples with iterators to unmatched tuples on the right. The hash

table build reserves space in the tuple storage for markers to mark

matched tuples. (2) A produce-all Lookup does not �lter out un-

matched tuples on the left, but instead, produces themwith iterators

pointing to null right-side tuples.

The following pseudocode illustrates these new parameters:

1 for left in tuplesLeft:

2 it = htRight.find(left.key)

3 if it.done ():

4 if produceAll:

5 produce(left , NULL)

6 else:
7 produce(left , it)

8 if produceNulls and not iterator ->matchMarker:

9 # First time , mark all matches

10 it2 = it.copy()

11 while not it2.done ():

12 it2 ->matchMarker = True

13

14 if produceNulls:

15 for right in tuplesRight:

16 if not right.matchMarker:

17 produce(NULL , right)

A left outer-join is decomposed into a produce-all Lookup and

an Expand. A right-outer join is decomposed into a produce-null

Lookup and an Expand. A full-outer join is decomposed into a

produce-null & produce-all Lookup and an Expand. The Expand

needs to handle NULL iterators by producing a right-side consisting

of NULL values. Under these de�nitions, Expands can be pushed

through produce-all and/or produce-null Lookups freely, thus the

optimizer can focus on reordering Lookups and execute the danger-

ous (for the diamond problem) Expands as late as possible (before

the attributes produced by the right side of the Expand are used).

7
For full reorderability, expensive compensation operators are needed [39].

L&E decomposition signi�cantly increases the possible reorder-

ings compared to binary hash joins. For example, for star queries,

all possible orderings for Expands can be generated. However, in

general, compensation operators [39] are needed for full reorder-

ability of outer-joins. Nonetheless, we see the extended outer-join

reorderability as an important added bene�t of the Lookup & Ex-

pand framework.

4.5 Summary
If the query plan is acyclic, there is an instance optimal L&E plan. If

the query plan is cyclic there is (most likely) a worst-case optimal

L&E plan. If the query contains duplicates, there aremany factorized

and/or eagerly aggregated L&E plans. If the query contains outer-

joins, there are L&E plans that allow for many reorderings not

possible with binary joins.

The search space for L&E plans contains many very powerful

plans and all their combinations. This is the search space in which

we will attempt to �nd the best plan, the plan we want to execute.

The upcoming Section 5 will describe how we conduct this search.

5 IMPLEMENTATION
5.1 Optimizing Lookup & Expand Plans
In this section, we review the principles of join ordering and pro-

pose an encoding for Lookup & Expand operator trees that makes

it easy to integrate them into an existing query optimizer. We are

proponents of constructive (bottom-up) dynamic programming

optimizers [24] due to their e�ciency, and base our ideas on ex-

tending such optimizers with physical properties such as groupings

and orderings [10]. In principle, there is nothing that prevents a

top-down [12] or transformative optimizer [16] from supporting

Lookup & Expand queries. Regardless, we base our following dis-

cussions on the DPhyp algorithm [25] for its e�ciency and ability

to handle reordering restrictions.

A query optimizer constructs many execution plans and tries to

�nd the plan that will most e�ciently compute the query. Given a

cost function that determines the e�ciency of a plan, an optimizer

tries to �nd the optimal plan of minimum cost.

Relational algebra queries exhibit the Bellman principle of op-

timality [3]: There is an optimal plan where all its subtrees are

optimal. Constructive (bottom-up) optimizers exploit the principle

of optimality by �rst �nding optimal plans for subqueries, which

are gradually combined together to build up the full optimal plan

that will compute the full query. We say that two plans with equiv-

alent output have equivalent state. Constructive optimizers avoid

generating too many plans by only storing one plan per unique

state, the plan with the lowest cost. For binary joins, this would

imply one plan per each set of relations.

The state of a L&E operator tree must also uniquely determine

its output. This state can be encoded using L&E expressions, which

were introduced in Section 3. To make sure that there is a bijection

between possible states and encodings, we can restrict ourselves

to only using minimized L&E expressions only consisting of sets

of relations and Lookups. An arbitrary L&E expression can be

minimized by combining matching Lookups and Expands.

4((' → () →) ⇒ '(→)

9

The resulting expression forms a tree of sets of relations. The nodes

are sets of relations and the edges are the Lookups.

As we now have a de�nition and an encoding for state, we can

easily extend a constructive optimization algorithm to support L&E.

A possibility is to generate all possible L&E plans. However, this

results in a huge search space with many suboptimal plans. In

situations where cardinality estimates are unreliable, a large search

space can work against the optimizer similar to the "�eeing from

knowledge to ignorance" problem [22]; the optimizer would pick

the most underestimated plan rather than the best plan. We instead

only allow the optimizer to reorder Lookups, and place Expands

based on two fundamental heuristics: (1) To prevent the diamond

problem, Expands should happen as late as possible
8
. (2) Too many

delayed Expands, especially ones with low multiplicity, lead to

pointer chasing and thus bad cache utilization. Thus, where we can

deem it safe, we can do Expands earlier in the plan.

The following pseudocode generates all L&E plans by iterating

over all connected component pairs of relations [25]:

1 for s1, s2 in connectedComponentPairs(query):

2 for p1 in plans[s1]:

3 for p2 in plans[s2]:

4 lookupPlan = p1 -> p2

5 plans[s1 + s2]. insert(lookupPlan)

6 for p in generateExpandPlans(lookupPlans):

7 plans[s1 + s2]. insert(p)

For every set of relations, we have a corresponding set of plans.

For every connected pair of sets of relations (in an order corre-

sponding to the principle of optimality), we iterate over all plan

pairs, connect them via a Lookup, and then generate all possible

expansions on top of those plans. Within the insert function, we

take care to only preserve the smallest plan if a plan of the same

state already exists.

We improve exhaustive enumeration by only reordering Lookups,

and greedily placing expands as in the following:

1 for s1, s2 in connectedComponentPairs(query):

2 for p1 in plans[s1]:

3 for p2 in plans[s2]:

4 req1 = computeBoundary(s1, s2)

5 req2 = computeBoundary(s2, s1)

6 lookupPlan = e(p1, req1) -> e(p2, req2)

7 plans[s1 + s2]. insert(lookupPlan)

Using computeBoundary, we compute all relations (boundary

nodes) in a �rst set that are connected to a second set over join con-

ditions. Before forming the lookupPlan, we make sure all boundary

nodes are available in the heads of both sides of the Lookup. In

other words, we delay expansions until the �rst moment they are

referenced by a join predicate, at which point they are required.

This generates safer plans, as the dangerous growing Expand op-

erators are executed as late as possible while Lookups �lter on all

available join conditions.

To improve plan runtime, we further re�ne the optimizer with

the ability to execute expands early before they are needed:

1 for s1, s2 in connectedComponentPairs(query):

2 for p1 in plans[s1]:

3 for p2 in plans[s2]:

4 req1 = computeBoundary(s1, s2)

8
To facilitate this, the cost function needs to underestimate the potential cost of

Expands. Our full cost function is given in the appendix.

5 req2 = computeBoundary(s2, s1)

6 left = e(p1, req1)

7 right = e(p1, req2)

8 left = earlyExpand(left , |left|, |right|)

9 right = earlyExpand(right , |right|, |left|)

10 lookupPlan = left -> right

11 plans[s1 + s2]. insert(lookupPlan)

While executing Expands as late as possible is great in theory

for preventing the diamond problem, this leads to plans with many

consecutive Expands at the very top. This leads to pointer chasing

which is di�cult for CPU prefetchers to handle e�ciently. Thus,

earlyExpand greedily decides whether to eagerly place Expands

on subplans. This decision is based on cardinality estimates.

We have discussed how to encode the state of Lookup & Expand

plans, how to integrate them into an existing constructive optimizer,

and discussed how we can intelligently restrict the search space of

the optimizer to generate plans with better robustness by reducing

the impact of cardinality estimation errors. In the following, we will

further detail the cost function we utilize for our operators. Finally,

we will take a look at how we support the Expand3 operator.

We have omitted implementation details such as removing re-

dundant predicates in cases where two join predicates might imply

a third. To eliminate redundant predicates, the optimizer should

keep track of the equivalence class of attributes, and make sure

the utilized equality predicates between equivalent attributes never

form a cycle. This is essential to prevent unnecessary expansion

resulting from our requirement that all relevant predicates are uti-

lized as early as possible. Consider '(0) B ((0) B) (0) with three

join predicates '.0 = (.0, '.0 =) .0, and (.0 =) .0. If we want

to lookup from ' to (→) , should the right side be expanded to

be able to apply the predicate '.0 =) .0? No, simply doing the

Lookup ' → ((→)) is enough as both '.0 = (.0 and (.0 =) .0

will have been applied, making '.0 =) .0 redundant. Note that, by

considering redundant predicates, we have implicitly ascertained

that this query is U-acyclic and not cyclic, in contrast to the query

'(0,1) B ((1, 2) B) (0, 2), where we would need an Expand on the

right side, which could be replaced by a Ternary-Expand as will be

discussed in Subsection 5.3.

5.2 Sideways Information Passing
Simply reordering Lookups does not eliminate the diamond prob-

lem, unless a two-phase plan is picked as described in Section 4. To

minimize the diamond problem in general, we can apply semi-join

�lters across the plan using sideways information passing [7, 18].

When constructing a hash table, we can build additional Bloom

�lters on di�erent sets of attributes, which can then be used to

eagerly �lter other intermediate results. Instead of following the

reverse GYO [44] order as in full semi-join reduction, we order the

hash table build operators by input cardinality and build �lters on

the inputs of smaller tables �rst, which are then employed to �lter

the inputs of larger tables, similar to how Yang et al. [42] determine

the topology of a predicate transfer graph. In a sense, by ordering

hash tables by size, we minimize the size of the largest hash table.

5.3 Supporting Ternary Expansion
The ternary Expand (Expand3) operator, which we need for worst-

case optimality, takes iterators from two Lookups and replaces two

10

Expands. As ternary joins are only useful for cyclic queries, our

optimizer only considers Expand3 at the moment a Lookup closes

a cycle. In Subsection 5.1, we brie�y discussed how we require

Lookups to check all predicates that touch relations on both its

inputs. To satisfy this requirement, we introduce Expands so that

all such required boundary relations are available at the heads of

input. We can exploit this behavior for cycle detection: We can

detect whether a Lookup closes a cycle by checking whether one of

the inputs contained boundary relations that we needed to expand,

i.e. we check whether one of the inputs has a topmost Expand

operator. In that case, we can remove that Expand and replace it

with an Expand3 that also expands on the topmost Lookup.

To illustrate how we detect cycle-closing Lookups, consider the

two queries&1 ≡ '(0)B ((0)B) (0) and&2 ≡ '(0,1)B ((1, 2)B
) (0, 2). For the �rst query, ' → (need not be expanded before

the �nal lookup (' → () →) as '.0 =) .0 ⇒ (.0 =) .0; we do

not need to look at (.0 as '.0 is in the head. Thus, we do not need

Expand3. However, for the second query, our strategy introduces

an expansion as both ' and (share nonredundant predicates with

) . This results in the plan 4((' → () →) . We can replace that

Expand with a topmost Expand3 43(,) ((' → () →)), preventing
the diamond problem potentially caused by the growing 4(.

6 EVALUATION
In this section we evaluate the e�ectiveness of Lookup & Expand

decomposition and show that Lookup & Expand (1) results in dra-

matic improvements up to 500x in n:m queries, (2) causes minimal

regressions in even the most benign queries. This demonstrates that

Lookup & Expand decomposition is a simple and e�ective approach

to improving the robustness of in-memory join processing.

We have implemented Lookup & Expand decomposition in the

compiling in-memory database Umbra [28] and compare it with

baseline Umbra, WCOJs due to Freitag et al. [14], and DuckDB [34]

v0.9.2 on a microbenchmark, the relational benchmarks TPC-H

Scale Factor 10, and JOB [20], and the CE graph benchmark [6]. The

TPC-H benchmark mainly consists of key-foreign key joins with

little to no skew in the data, thus we do not expect our optimiza-

tions to result in signi�cant improvements. The JOB benchmark

exclusively consists of U-acyclic queries, meaning that semi-join

�lters and Lookup & Expand decomposition are partially useful

in queries demonstrating the diamond problem, while WCOJs and

Expand3 will not be. The CE benchmark was designed to stress

test the cardinality estimators for graph databases and contains

a wide range of complex pattern matching queries, both acyclic

and cyclic. We have translated the queries to SQL to evaluate them

on relational databases
9
. We only evaluate the queries from CE

that have result size smaller than 10
9
. The queries in the original

benchmark can go up to 10
16
, and such large result sizes are not

feasible to compute without eager aggregation. We expect all our

optimizations to be useful on this benchmark, as it contains many

queries with complex structures and large intermediate results.

We have 4 aspects of our implementation that we individually

evaluate: (1) ht: Using a hash table with dense collision lists (adja-

cency array) instead of a chaining hash table (the default in Umbra).

This is the most fundamental optimization a database could do

9
Our reproducibility package contains all queries and datasets for all benchmarks.

for robustness against skew. This optimization will improve most

queries. (2) lookup: Lookup & Expand decomposition and Expand3

optimization. These optimizations target the diamond problem in

acyclic and cyclic queries. (3) SIP : Using additional Bloom �lters [5]

as in Section 5.2. Bloom �lters both increase the robustness of join

ordering through sideway information passing. Additionally, Bloom

�lters are more amenable to high performance vectorized �ltering

and lead to constant factor improvements in selective joins. (4) agg:
Using eager aggregation. This optimization mainly targets the CE

benchmark, which exclusively consists of count(*) graph pattern

matching queries with sometimes large result sizes. Eager aggrega-

tion also makes it feasible for Umbra to run through the entire CE

benchmark, including the queries with extremely large result sizes

(which we omit here to focus on the other optimizations).

All benchmarks have been evaluated on a Ryzen 5950X system

with 16 cores and 32 threads with 64GB of RAM. The databases

are allowed to use 50GB of RAM for queries. All queries are forced

to run in-memory. We repeat all query executions 10 times (upto

an hour) and show the minimum execution time. We disable index

nested loop join in Umbra and its variants to avoid that some queries

are dominated by index access costs instead of join costs.

6.1 Microbenchmark
L&E decomposition results in asymptotic improvements over binary

joins, meaning that we can construct queries where an L&E plan is

arbitrarily faster than any possible binary join plan. To demonstrate

this, we have constructed one acyclic and one cyclic query where

base table have sizes \ (#), L&E requires \ (#) time to execute, and

binary joins require \ (# 2) time to execute. With # = 5 · 104, we
�nd that lookup is over 900x faster than both ht and WCOJ on the

acyclic query. On the cyclic query, the speedup over ht and WCOJ
is around 200x and 7x respectively.

[0,1] is the range of integers from 0 to 1 inclusive. The acyclic

query is - (0,1) B . (1, 2) B / (2, 3) for the relations - = (1, 1) ∪
([1, #] × (2)), . = (1, 1) ∪ ((2) × [4, #]) ∪ ([3, #] × (3)), / =

(1, 1) ∪ ((3) × [1, #]). The cyclic query is '(0,1)B((1, 2)B) (2, 0)
for the relations ' = (=) = ((1) × [1, #]) ∪ ([1, #] × (1)).

6.2 Relational & Graph Benchmarks
In the TPC-H Scale Factor 10 benchmark, we observed the hash

table with dense collision lists results in a signi�cant improvement

of around 10% over the default chaining hash table, while the rest

of the optimizations do not result in signi�cant improvements or

regressions. WCOJs, in contrast, result in around a 6x slowdown

on total benchmark runtime.

11

Figure 7: Runtime improvement of individual queries with di�erent optimizations on the CE benchmark.

Figure 8: Runtime improvement of di�erent optimizations
over baseline Umbra on the JOB benchmark.

In Figure 8, we show the runtime improvement of each optimiza-

tion over the baseline Umbra implementation on the JOB bench-

mark. We observed that both the ht and the SIP �lters result in

noticeable improvements, while the rest of the optimizations do

not result in signi�cant improvements or regressions. We �nd that

SIP �lters are good enough and more advanced optimizations are

not useful on this benchmark. We found similar results for LDBC

SNB BI [37] SF 10: ht + SIP results in some improvements, while

the performance with the rest of the optimizations remains similar.

Figure 9: Runtime improvement of di�erent optimizations
over baseline in the CE benchmark.

In Figure 9, we show the runtime improvement of each optimiza-

tion over the baseline Umbra implementation on the CE benchmark.

In this benchmark we �nd that baseline Umbra is signi�cantly faster

than DuckDB and WCOJs and that our optimizations make Umbra

even faster. In Figure 7, we show the runtime improvement of each

optimization over the previous optimization. We �nd that simply

replacing the hash table with a skew optimized one results in the

biggest improvements overall. Lookup, Expand, and Expand3 sig-

ni�cantly improve performance for certain pathological queries.

The biggest wins are for cyclic queries, where dblp_cyclic_q9_06

improves by a factor of over 500x from 2s to 4ms. However, some

queries have also slowed down, watdiv_cyclic_q10_07 went from

1.8ms to 37ms, a slowdown of around 21x, due to bad plan choices

resulting from estimation errors. We also found that the total run-

times of ht + SIP and ht + lookup + SIP di�er by less than 1%. This

implies that the techniques we utilize, while improving pathological

queries, have constant overheads that are small but not insigni�-

cant. After all optimizations are applied, the total runtime of CE is

around 94x as fast as DuckDB
10
, around 206x as fast as WCOJs

11
,

and around 2.4x as fast as baseline Umbra.

Overall, we �nd that all our optimizations signi�cantly improve

the performance of some of the slowest queries, resulting in more

predictable performance for all queries. Among the optimizations,

Lookup presents the hardest trade-o�. The theoretical strength of

L&E is observable in some queries, but not all. Nevertheless, it is

not hard to �nd or construct queries where L&E with Expand3 is

exceptionally useful due to their runtime complexity. For example,

only WCOJs and Expand3 are able to execute the Graphalytics [17]

LCC query on the dota-league graph without running out of mem-

ory. We are also optimistic there is further room to optimize the

newly proposed operators.

7 CONCLUSION
We have proposed a simple and e�ective approach to improving

the robustness of in-memory join processing by decomposing joins

into two suboperators, Lookup & Expand. In contrast to existing

techniques for tackling robustness, our technique is able to im-

prove the performance of pathological queries by many orders of

magnitude while not regressing the performance of well behaved

queries. We have given a theoretical foundation for our approach,

by analyzing four categories of pathological queries and showing

that our approach is able to tackle each category. To further support

this theoretical foundation, we have demonstrated the strength of

our approach on a variety of benchmarks.

10
We exclude the 29 queries out of 3004 where DuckDB runs out of memory.

11
We exclude the 6 queries out of 3004 where WCOJs take over an hour.

12

REFERENCES
[1] Albert Atserias, Martin Grohe, and Dániel Marx. 2008. Size Bounds and Query

Plans for Relational Joins. In 2008 49th Annual IEEE Symposium on Foundations
of Computer Science. 739–748. https://doi.org/10.1109/FOCS.2008.43

[2] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the

Desirability of Acyclic Database Schemes. J. ACM 30, 3 (July 1983), 479–513.

https://doi.org/10.1145/2402.322389

[3] Richard Bellman and Stuart Dreyfus. 2010. Dynamic Programming. Vol. 33. Prince-
ton University Press. https://doi.org/10.2307/j.ctv1nxcw0f arXiv:j.ctv1nxcw0f

[4] Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using Semi-Joins to Solve

Relational Queries. J. ACM 28, 1 (Jan. 1981), 25–40. https://doi.org/10.1145/

322234.322238

[5] Burton H. Bloom. 1970. Space/Time Trade-O�s in Hash Coding with Allowable

Errors. Commun. ACM 13, 7 (July 1970), 422–426. https://doi.org/10.1145/362686.

362692

[6] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Ken Salem.

2022. Accurate Summary-Based Cardinality Estimation through the Lens of

Cardinality Estimation Graphs. Proceedings of the VLDB Endowment 15, 8 (April
2022), 1533–1545. https://doi.org/10.14778/3529337.3529339

[7] Ming-Syan Chen, Hui-I Hsiao, and Philip S. Yu. 1997. On Applying Hash Filters

to Improving the Execution of Multi-Join Queries. The VLDB Journal 6, 2 (May

1997), 121–131. https://doi.org/10.1007/s007780050036

[8] Sophie Cluet and Guido Moerkotte. 1995. On the Complexity of Generating

Optimal Left-Deep Processing Trees with Cross Products. In Database Theory —
ICDT ’95 (Lecture Notes in Computer Science), Georg Gottlob and Moshe Y. Vardi

(Eds.). Springer, Berlin, Heidelberg, 54–67. https://doi.org/10.1007/3-540-58907-

4_6

[9] Marius Eich, Pit Fender, and Guido Moerkotte. 2018. E�cient Generation of

Query Plans Containing Group-by, Join, and Groupjoin. The VLDB Journal 27, 5
(Oct. 2018), 617–641. https://doi.org/10.1007/s00778-017-0476-3

[10] Marius Eich and Guido Moerkotte. 2015. Dynamic Programming: The next

Step. In 2015 IEEE 31st International Conference on Data Engineering. 903–914.
https://doi.org/10.1109/ICDE.2015.7113343

[11] Ronald Fagin. 1983. Degrees of Acyclicity for Hypergraphs and Relational

Database Schemes. J. ACM 30, 3 (July 1983), 514–550. https://doi.org/10.1145/

2402.322390

[12] Pit Fender and Guido Moerkotte. 2013. Top down Plan Generation: From Theory

to Practice. In 2013 IEEE 29th International Conference on Data Engineering (ICDE).
1105–1116. https://doi.org/10.1109/ICDE.2013.6544901

[13] Philipp Fent, Altan Birler, and Thomas Neumann. 2023. Practical Planning and

Execution of Groupjoin and Nested Aggregates. The VLDB Journal 32, 6 (Nov.
2023), 1165–1190. https://doi.org/10.1007/s00778-022-00765-x

[14] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas

Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational Database

Systems. Proceedings of the VLDB Endowment 13, 12 (July 2020), 1891–1904.

https://doi.org/10.14778/3407790.3407797

[15] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas

Neumann. 2020. Combining Worst-Case Optimal and Traditional Binary Join
Processing. Technical Report TUM-I2082. Technische Universität München.

https://mediatum.ub.tum.de/1545314

[16] G. Graefe and W.J. McKenna. 1993. The Volcano Optimizer Generator: Extensi-

bility and E�cient Search. In Proceedings of IEEE 9th International Conference on
Data Engineering. 209–218. https://doi.org/10.1109/ICDE.1993.344061

[17] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-

Pérez, Thomas Manhardto, Hassan Cha�o, Mihai Capotă, Narayanan Sundaram,

Michael Anderson, Ilie Gabriel Tănase, Yinglong Xia, Lifeng Nai, and Peter

Boncz. 2016. LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis

on Parallel and Distributed Platforms. Proceedings of the VLDB Endowment 9, 13
(Sept. 2016), 1317–1328. https://doi.org/10.14778/3007263.3007270

[18] Zachary G. Ives and Nicholas E. Taylor. 2008. Sideways Information Passing for

Push-Style Query Processing. In 2008 IEEE 24th International Conference on Data
Engineering. 774–783. https://doi.org/10.1109/ICDE.2008.4497486

[19] Ahmad Khazaie and Holger Pirk. 2023. SonicJoin: Fast, Robust and Worst-case

Optimal. https://doi.org/10.48786/EDBT.2023.46

[20] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz,

Alfons Kemper, and Thomas Neumann. 2018. Query Optimization through the

Looking Glass, and What We Found Running the Join Order Benchmark. The
VLDB Journal 27, 5 (Oct. 2018), 643–668. https://doi.org/10.1007/s00778-017-

0480-7

[21] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data

[22] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and T. M. Tran. 2007.

Consistent Selectivity Estimation via Maximum Entropy. The VLDB Journal
— The International Journal on Very Large Data Bases 16, 1 (Jan. 2007), 55–76.
https://doi.org/10.1007/s00778-006-0030-1

[23] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by

Combining Binary and Worst-Case Optimal Joins. Proceedings of the VLDB

Endowment 12, 11 (July 2019), 1692–1704. https://doi.org/10.14778/3342263.

3342643

[24] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and

One New Dynamic Programming Algorithm for the Generation of Optimal

Bushy Join Trees without Cross Products. In Proceedings of the 32nd International
Conference on Very Large Data Bases (VLDB ’06). VLDB Endowment, Seoul, Korea,

930–941.

[25] Guido Moerkotte and Thomas Neumann. 2008. Dynamic Programming Strikes

Back. In Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’08). Association for Computing Machinery, New York,

NY, USA, 539–552. https://doi.org/10.1145/1376616.1376672

[26] Thomas Neumann. 2011. E�ciently Compiling E�cient Query Plans for Modern

Hardware. Proceedings of the VLDB Endowment 4, 9 (June 2011), 539–550. https:

//doi.org/10.14778/2002938.2002940

[27] Thomas Neumann. 2011. E�ciently Compiling E�cient Query Plans for Modern

Hardware. Proceedings of the VLDB Endowment 4, 9 (June 2011), 539–550. https:

//doi.org/10.14778/2002938.2002940

[28] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System

with In-Memory Performance. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p29-neumann-

cidr20.pdf

[29] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-Case

Optimal Join Algorithms: [Extended Abstract]. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS
’12). Association for Computing Machinery, New York, NY, USA, 37–48. https:

//doi.org/10.1145/2213556.2213565

[30] Hung Q Ngo, Christopher Ré, and Atri Rudra. 2014. Skew Strikes Back: New

Developments in the Theory of Join Algorithms. ACM SIGMOD Record 42, 4

(Feb. 2014), 5–16. https://doi.org/10.1145/2590989.2590991

[31] Dan Olteanu andMaximilian Schleich. 2016. Factorized Databases. ACM SIGMOD
Record 45, 2 (Sept. 2016), 5–16. https://doi.org/10.1145/3003665.3003667

[32] Dan Olteanu and Jakub Závodný. 2012. Factorised Representations of Query

Results: Size Bounds and Readability. In Proceedings of the 15th International
Conference on Database Theory (ICDT ’12). Association for Computing Machinery,

New York, NY, USA, 285–298. https://doi.org/10.1145/2274576.2274607

[33] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Represen-

tations of Query Results. ACM Transactions on Database Systems 40, 1 (March

2015), 2:1–2:44. https://doi.org/10.1145/2656335

[34] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-

cal Database. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD ’19). Association for Computing Machinery, New York, NY,

USA, 1981–1984. https://doi.org/10.1145/3299869.3320212

[35] Tobias Schmidt. 2019. Index-Structures for Worst-Case Optimal Join Algorithms.
Bachelor’s Thesis. Technische Universität München.

[36] K. Stocker, D. Kossmann, R. Braumandi, and A. Kemper. 2001. Integrating

Semi-Join-Reducers into State-of-the-Art Query Processors. In Proceedings 17th
International Conference on Data Engineering. IEEE Comput. Soc, Heidelberg,

Germany, 575–584. https://doi.org/10.1109/ICDE.2001.914872

[37] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,

Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2022. The LDBC Social Network

Benchmark: Business IntelligenceWorkload. Proceedings of the VLDB Endowment
16, 4 (Dec. 2022), 877–890. https://doi.org/10.14778/3574245.3574270

[38] Todd L. Veldhuizen. 2013. Leapfrog Triejoin: A Worst-Case Optimal Join Algo-

rithm. https://doi.org/10.48550/arXiv.1210.0481 arXiv:1210.0481 [cs]

[39] TaiNingWang, Yunpeng Niu, and Chee-Yong Chan. 2023. Complete Join Reorder-

ing for Null-Intolerant Joins. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). 1734–1746. https://doi.org/10.1109/ICDE55515.2023.00136

[40] Yisu Remy Wang, Max Willsey, and Dan Suciu. 2023. Free Join: Unifying Worst-

Case Optimal and Traditional Joins. Proceedings of the ACM on Management of
Data 1, 2 (June 2023), 1–23. https://doi.org/10.1145/3589295

[41] Weipeng P. Yan and Per-Åke Larson. 1995. Eager Aggregation and Lazy Aggre-

gation. In VLDB’95, Proceedings of 21th International Conference on Very Large
Data Bases, September 11-15, 1995, Zurich, Switzerland, Umeshwar Dayal, Pe-

ter M. D. Gray, and Shojiro Nishio (Eds.). Morgan Kaufmann, 345–357. http:

//www.vldb.org/conf/1995/P345.PDF

[42] Yifei Yang, Hangdong Zhao, Xiangyao Yu, and Paraschos Koutris. 2024. Predicate

Transfer: E�cient Pre-Filtering on Multi-Join Queries. In 14th Annual Conference
on Innovative Data Systems Research, CIDR 2024, Chaminade, USA, January 14-17,
2024. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf

[43] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very
Large Data Bases, International Conference on Very Large Data Bases.

[44] C.T. Yu and M.Z. Ozsoyoglu. 1979. An Algorithm for Tree-Query Membership

of a Distributed Query. In COMPSAC 79. Proceedings. Computer Software and
The IEEE Computer Society’s Third International Applications Conference, 1979.
306–312. https://doi.org/10.1109/CMPSAC.1979.762509

13

https://doi.org/10.1109/FOCS.2008.43
https://doi.org/10.1145/2402.322389
https://doi.org/10.2307/j.ctv1nxcw0f
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.14778/3529337.3529339
https://doi.org/10.1007/s007780050036
https://doi.org/10.1007/3-540-58907-4_6
https://doi.org/10.1007/3-540-58907-4_6
https://doi.org/10.1007/s00778-017-0476-3
https://doi.org/10.1109/ICDE.2015.7113343
https://doi.org/10.1145/2402.322390
https://doi.org/10.1145/2402.322390
https://doi.org/10.1109/ICDE.2013.6544901
https://doi.org/10.1007/s00778-022-00765-x
https://doi.org/10.14778/3407790.3407797
https://mediatum.ub.tum.de/1545314
https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.14778/3007263.3007270
https://doi.org/10.1109/ICDE.2008.4497486
https://doi.org/10.48786/EDBT.2023.46
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1007/s00778-017-0480-7
http://snap.stanford.edu/data
https://doi.org/10.1007/s00778-006-0030-1
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/ICDE.2001.914872
https://doi.org/10.14778/3574245.3574270
https://doi.org/10.48550/arXiv.1210.0481
https://arxiv.org/abs/1210.0481
https://doi.org/10.1109/ICDE55515.2023.00136
https://doi.org/10.1145/3589295
http://www.vldb.org/conf/1995/P345.PDF
http://www.vldb.org/conf/1995/P345.PDF
https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf
https://doi.org/10.1109/CMPSAC.1979.762509

[45] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking

Ahead Makes Query Plans Robust: Making the Initial Case with in-Memory Star

Schema Data Warehouse Workloads. Proceedings of the VLDB Endowment 10, 8
(April 2017), 889–900. https://doi.org/10.14778/3090163.3090167

APPENDIX
7.1 Cost Function
For completeness, we want to brie�y discuss the cost function we

utilize. The cost function is dependent on the particular con�gura-

tion of a system and can thus be hard to generalize. To not over�t

to either our system or a particular benchmark, we have tried to

keep our cost function simple, if not minimal. Additionally, to allow

Expands to be greedily pushed up the plan tree, their costs may not

dominate the costs of entire plans, so that the exhaustive optimizer

can focus on reordering Lookups.

We have three fundamental operations with varying cost. The

hash table build, the hash table lookup, the expansion of matches.

In our implementation, the build is expensive, the hash table lookup

incurs two cache misses, and the expansion results in a cache miss

(reading the iterator) followed by sequential scan (outputting all

matches). Our cost functions listed below, contain hyperparameters

for the relative costs of these operations:

� (' → () = � (') +� (() + |' | + |(| · build overhead + |' → (|
� (4 (')) = � (') + |' | · expand overhead + log

2
(|4 (') |)

� (43(')) = � (') + |' | · expand overhead + 2 · log
2
(43(') |)

In our system, build overhead = 10 (or 9 if (is a base relation, as the

execution engine can do more aggressive optimizations by relying

on cardinality upper bounds) and Expand overhead = 0.25 (one

fourth the cost of a hash table lookup). The additional small log2

terms are there to ensure, even if expand overhead is set to 0, the

Expands are ordered logically amongst each other.

7.2 Proofs
Lemma 7.1. If all attributes are present in at most 2 relations, there

is an optimal fractional edge cover with weights in {0, 0.5, 1}.

Assuming all join attribute occurs in 2 relations, the linear pro-

gram (LP) for computing the upper bound for the logarithm of the

join query size is given:

, = minimize

F

∑
'8 ∈R

F8 log |'8 |

subject to 1 ≤ F81 +F82 ∀(81, 82) ∈ A
0 ≤ F8 ∀8

AssumeF is optimal and ∃8 : F8 ∉ {0, 0.5, 1}. We de�neF ′
where

F ′
8 =

0 ifF8 < 0.5

0.5 ifF8 = 0.5

1 ifF8 > 0.5

We will prove thatF ′
is both a valid solution and an optimal solu-

tion.

Validity

(1) All 8 where the weight has not been decreased (F8 ≥ 0.5)

cannot lead to a violation of the constraints.

(2) Consider a condition 1 ≤ F81 +F82 where weightF
′
81
has

been decreased to 0, i.e.F81 < 0.5. Since we assumeF is a

valid solution, this implies thatF82 > 0.5 and thusF ′
82
= 1.

Thus, 1 ≤ F ′
81
+F ′

82
holds.

Optimality

(1) As our linear program is a minimization, non-increasing

weights (F8 ≤ 0.5) do not lead to suboptimality.

(2) To address increasing weights, we will show that if F ′
is

suboptimal, then F must be suboptimal as well, leading

to a contradiction. De�ne positive vector 1 where 18 =

log |'8 |. The objective function of the linear program is1)F .

AssumeF ′
is suboptimal, i.e. 1)F ′ > 1)F . Given positive

small n > 0, we de�ne ΔF = F ′ −F and F ′′ = F − nΔF .

These de�nitions imply 1)F ′′ < 1)F . If we can show

thatF ′′
is a valid solution, this will imply thatF must be

suboptimal. In the following, we show that we can always

pick a small n > 0 where F ′′
is valid as all constraints

bound n from above.

(a) Constraint 1 ≤ F ′′
81
+F ′′

82
:

(i) If F81 ∈ {0, 0.5, 1} and F82 ∈ {0, 0.5, 1}, then
F81 = F ′

81
= F ′′

81
and F82 = F ′

82
= F ′′

82
and the

constraint holds, regardless of what n is. This

holds analogously forF82 .

(ii) If 1 > F81 > 0.5 and F82 = 1, then F ′
81

= 1,

F ′′
81
= F81 −n+n ·F81 andF

′′
82
= 1. The constraint

holds for 0 < n <
F8

1

1−F8
1

. Since

F8
1

1−F8
1

> 0, there

are valid n .

(iii) IfF81 = 1 and 1 > F82 > 0.5, then 0 < n <
F8

2

1−F8
2

analogously.

(iv) If 1 > F81 > 0.5 and F82 = 0.5, then F ′
81

= 1,

F ′′
81

= F81 − n + n · F81 and F ′′
82

= 0.5. The

constraint holds for 0 < n <
F8

1
−0.5

1−F8
1

. Since

F8
1
−0.5

1−F8
1

> 0, there are valid n .

(v) If F81 = 0.5 and 1 > F82 > 0.5, then 0 < n <
F8

2
−0.5

1−F8
2

analogously.

(vi) If 1 > F81 > 0.5 and 1 > F82 > 0.5, thenF ′
81
= 1,

F ′′
81
= F81 − n + n ·F81 andF

′′
82
= F82 − n + n ·F82 .

The constraint holds for 0 < n <
F8

1
+F8

2
−1

2−F8
1
−F8

2

.

Since

F8
1
+F8

2
−1

2−F8
1
−F8

2

> 0, there are valid n .

(vii) 1 > F81 andF82 = 0 is impossible asF81 +F82 ≥
1.

(viii) 0.5 > F81 and 0.5 > F82 is impossible as F81 +
F82 ≥ 1.

(ix) If 1 > F81 > 0.5 and 0.5 > F82 > 0, thenF ′
81
= 1,

F ′′
81

= F81 − n + n · F81 , F
′
82

= 0, and F ′′
82

=

F82 + n ·F82 . If F81 +F82 = 1, then all n > 0 are

valid. Otherwise, similarly,

F8
1
+F8

2
−1

1−F8
1
−F8

2

< 0 < n .

(b) Constraint 0 ≤ F ′′
8
: We can always pick n > 0 small

enough such that this constraint is never violated. We

only need to analyze the case ΔF8 < 0 ⇐⇒ 0.5 <

14

https://doi.org/10.14778/3090163.3090167

F8 < 1. We know F ′′
8

= F8 − n + n ·F8 . This implies

0 < n <
F8

1

1−F8
1

. Since

F8
1

1−F8
1

> 0, there are valid n .

Since we can pick n small enough such thatF ′′
is valid and

1)F ′′ < 1)F ,F must have been suboptimal, contradicting

our initial assumption. This implies that ifF is optimal,F ′

also must be optimal.

Lemma 7.2. If there is an optimal fractional edge cover with weights
F in {0, 0.5, 1}, there is a plan with binary/ternary joins and semi-join
reductions that computes the query result in worst-case optimal time,
as long as the |'max | ≤ |'min |2 where 'max is the largest and 'min
the smallest relations with fractional cover weights 0.5.

Wede�neN(') as the set of relations that share an attribute with
'. Using N(') as a neighborhood function, we can interpret our

query is an undirected graph, where relations are nodes and there is

an edge between two relations if they share an attribute. Note that

we have thus swapped nodes and edges compared to the original

query hypergraph that is used for the linear program. There, nodes

were attributes and relations were edges. In the following, nodes

are relations and edges are between relations that share attributes.

We will build a plan only consisting of binary and ternary joins,

where every intermediate result size is O(, + ∑
8 |'8 |) where,

is the worst-case result size and

∑
8 |'8 | is the size of the input.

This plan will produce a superset of the actual join result. We will

assume that the size of the query is constant. Note that this plan

is simply a theoretical plan, never intended for execution as it will

potentially have very high actual costs.

The optimal solution to the linear program (fractional edge cover)

F , gives us an upper bound on the runtime of our plan, which can

be stated as

∏
8 |'8 |F8

. Thus we will also refer toF8 as the exponent

of '8 .

All exponents are in {0, 0.5, 1}
If all F8 were equal to 1, a trivial solution would be the cross

product of all relations. The cross product is trivially a superset of

the join result. Additionally, the runtime cost of the cross product

is on the order of O (∏8 |'8 |).
If all F8 are in {0, 1}, we can cross product only the relations

with exponent 1 to get a superset of the join result. Our result will

be a superset as it will contain all the attributes, otherwise the �rst

condition of the linear program would not hold.

If allF8 are in {0, 0.5, 1}, then our graph will contain connected

components with exponent 0.5, surrounded with neighbors who all

have exponent 1, interspersed another such components or relations

with exponents 0 or 1. In such a case, we want to compute local

results for all connected components with exponent 0.5 recursively

and cross product those results with the relations with exponents 1.

For this to work, we need to remove attributes from 0.5 components

that are connected to relations outside the component. This does

not prevent our approach from computing a superset of the join

result, the relations within a component may only be connected to

a relation with exponent 1 from the outside, a relation that we will

be later computing a cross product with.

Let us demonstrate this operation on a simple example. Assume

we have the relations '(0,1) B ((1, 2) B) (2, 0, 3) B * (3, 4) and
that the exponents of ', (,) are 0.5 while the exponent for * is

1. For this query, we would �rst compute the result for '(0,1) B

((1, 2) B) ′ (2, 0) worst-case optimally (where) ′ B Π2,0 ())), and
then compute the cross product of the result with U: ('(0,1) B
((1, 2) B) ′ (2, 0)) ×* (3, 4). The result is a superset of the original
join result, contains all necessary attributes, and can be computed

in time |' |0.5 |(|0.5 |) |0.5 |* |.
All that remains is a way to construct worst-case optimal plans

for components with exponents exclusively 0.5.

All exponents are 0.5
To compute the join result of connected components of relations

with exponent 0.5, we will decompose such a component in 3 parts,

whose results we will compute recursively. The three parts will be

joined back using a ternary join, the rest will be joined back using

cross products.

When we partition such a connected component and compute

the results for subcomponents recursively, we must be careful about

the attributes shared between subcomponents. For example, con-

sider the query '(0)B ((0) with both exponents equal to 0.5. If we

partition this query into two, ' and (, it is clear that it is impossible

to compute the result of individual partitions in times |' |0.5 and
|(|0.5 even thoughwe can compute the join result in time |' |0.5 |(|0.5.
As this example shows, after partitioning, we must assume that the

exponents of boundary nodes have become 1, before recursively

solving for the partition. By boundary nodes, we refer to nodes that

share an edge with outside their partition. Given a partition % , w

de�ne the boundary nodes as %̂ B % ∩ {E ∈ % |N (E) ∩ (+ \ %) ≠ ∅}.
After we partition our connected component, the exponents of

boundary nodes increase by 0.5. We must partition our graph in

such a way that this increase never results in intermediate result

sizes larger than our upper bound O(, + ∑
8 |'8 |). More formally,

given a 2-partitioning %1 ∪ %2 = + of the nodes + of our graph, we

must guarantee:

(1) %1 and %2 are connected

(2) ∏
8∈%1

|'8 |0.5 ·
∏
8∈%̂1

|'8 |0.5 +
∏
8∈%2

|'8 |0.5 ·
∏
8∈%̂2

|'8 |0.5

= O
(∏
8∈+

|'8 |0.5
)

The conditions can be reformulated for individual partitions as:

%1 is connected and

∏
8∈%̂1

|'8 |0.5 ≤
∏

8∈+ \%1
|'8 |0.5

or with 5 (S) B ∑
8∈S log |'8 |:

%1 is connected and 5 (%̂1) ≤ 5 (+ \ %1)
This condition generalizes analogously to 3-partitionings. Note that

if a partition only contains a single node, we will assume that our

condition trivially holds as the output size would not exceed the

input size.

If we de�ne the value of node 8 as log |'8 |, we can rede�ne our

problem as a graph partitioning problem. We need to �nd a 3-

partitioning of our graph such that the sum of the values of bound-

ary nodes of any partition may not exceed the sum of the values of

the rest of the nodes. After we �nd such a 3-partitioning, we can

compute join results for all partitions recursively, and join them

back together using a ternary join.

15

We �rst �nd the node 'max with the maximum cardinality and

look at the subcomponents connected with 'max, i.e. the disjunct

connected subcomponents we would get if we were to remove 'max

from the graph. 'max may be connected to an arbitrary number

of subcomponents, and each subcomponent may be connected to

'max through one or more relations.

If all subcomponents are connected to 'max over a single bound-

ary node, we can cut 'max, solve for each partition recursively, and

join all partitions instance-optimally using the Yannakakis algo-

rithm. The values of boundary nodes will never exceed 'max by

de�nition as each partition will have exactly one boundary node.

In the following we will focus on the nontrivial case where there is

at least one subcomponent that is connected to 'max over two or

more boundary nodes (which we will refer to as doubly-connected

subcomponents).

'max is connected to at least one subcomponent over two bound-

ary nodes. We start with the initial partition %1 with 'max and all

other nodes except an arbitrary doubly-connected subcomponent.

(1) We pick an arbitrary neighbor E ∈ N (%1) and de�ne %2
as all nodes only reachable over E from 'max. If %3 B + \
(%1 ∪ %2) is not connected, we try another neighbor. There

will always be a neighbor E such that %3 is connected and

nonempty.

(2) If 5 (%1 ∪ %2) > 5 (%̂3), we stop and return %1, %2, and %3.

(3) If not, we set %1 B %1 ∪ %2 and repeat.

The iteration is guaranteed to stop if |+ \ %1 | = 2, as 5 (%3) of a
single relation can never exceed 5 (%1 ∪ %2) which contains 'max.

This guarantees that we will always construct 3 partitions. The

condition will also hold for all resulting partitions:

(1) In the beginning, %1 either only contains the boundary node

'max or 5 (%1) < 5 (%̂3). If the iteration stops in the �rst

round, since |'max | ≤ |'min |2, the condition will hold for

%1, as there are at least two nodes outside of %1. In later

iterations, it will be guaranteed that 5 (%1) < 5 (%̂3).
(2) %2 only contains a boundary node E . Since E is de�nitely

smaller than 'max, the condition holds for %2.

(3) We only stop iterating if 5 (%1 ∪ %2) > 5 (%̂3). Thus, the
condition holds for %3.

What remains to show is that we can always �nd a neigbor E to

extend %1 such that %3 remains connected and nonempty.

For connectedness, assume that we have partition %1 and + \ %1
is connected. We pick arbitrary E ∈ N (%1) ∩ (+ \ %1) and de�ne

%2 as all nodes only reachable over E from %1 including E itself. If

%3 B + \ (%1 ∪ %2) is not connected, this must mean that there are

two nodes E ′ and G that are both neighbors of %1, and every path

between them contains a node in {E}∪%1. We know that we can �nd

such neighbors of %1, since %2, by de�nition, contains all nodes only

reachable over E from %1. If we pick E as a neighbor instead of E , we

would get a new partition %3. In this new partition, E and G would be

connected. Additionally, all nodes in the connected subcomponent

of G in %3 would still be connected in % ′
3
. By picking E instead of E ,

we have strictly increased the size of the connected subcomponent

containing G by at least 1 (as it now contains E as well). If there

still is a E ′ in the neighborhood of %1 that is not connected to G in

% ′
3
, we can pick it instead, again strictly increasing the connected

subcomponent’s size by at least 1. We repeat until we �nd a neigbor

such that all remaining neighbors stay connected.

For nonemptiness, initially, we know that + \ %1 is connected
to %1 with at least two boundary nodes. Assume that after in an

iteration, we pick E such that the number of boundary nodes reduces

to 1 = |%̂3 |. It is guaranteed that we will stop in this iteration,

as 5 (%1 ∪ %2) > 5 (%̂3) holds trivially since %1 contains 'max. So

the remaining relations will be connected to %1 over at least two

boundary nodes as long as the iteration continues.

16

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Making Join Ordering Robust
	3.2 Lookup & Expand Decomposition
	3.3 Semantics

	4 The Diamond Problem
	4.1 Acyclic Queries & Full Semi-Join Reduction
	4.2 Cyclic Queries & Worst-Case Optimality
	4.3 Queries with Duplicates & Factorization
	4.4 Reordering Restrictions & Compensation
	4.5 Summary

	5 Implementation
	5.1 Optimizing Lookup & Expand Plans
	5.2 Sideways Information Passing
	5.3 Supporting Ternary Expansion

	6 Evaluation
	6.1 Microbenchmark
	6.2 Relational & Graph Benchmarks

	7 Conclusion
	References
	7.1 Cost Function
	7.2 Proofs

