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Abstract

Identifying genetic variants with high functional impact is essential for deciphering the
genetic underpinning of diseases. Despite the important role of aberrant gene expression
in diseases, the impact of genetic variants on gene expression in different tissues often
remains unknown. Detecting aberrantly expressed genes in RNA sequencing data of
affected tissues can aid in identifying disruptive large-effect variants. However, this
approach is limited to clinically accessible tissues such as skin or body fluids and does
not generalize to unseen variants.

Here I set out to predict rare variants associated with aberrant underexpression across
48 human tissues. To achieve this, I established the first systematic benchmark for ex-
pression outlier prediction by applying OUTRIDER, an aberrant expression caller using
RNA-seq count data, to 11,096 GTEx samples. I assessed and developed predictors that
use DNA sequence and optionally RNA sequencing data from clinically accessible tissues.
Although not developed for this task, existing methods such as LOFTEE, CADD, and
AbSplice-DNA exhibited mild predictive performance in predicting aberrantly underex-
pressed genes (0.5-1.5% average precision in median across tissue types).

Building on these results, I aimed to improve the prediction of underexpression outliers.
Therefore, I developed AbExp, a specialized tool for aberrant underexpression across hu-
man tissues that takes DNA sequence as input and predicts a continuous, tissue-specific
z-score of gene expression. By integrating various variant effect annotations with the
proportion of affected isoforms per tissue as well as considering tissue-specific gene ex-
pression variability, AbExp reaches an average precision of 9.1% in median across tissue
types, outperforming existing tools between 6-fold and 18-fold. Testing AbExp on inde-
pendent datasets confirmed the consistency of the performance improvements and per-
mitted the differentiation between pathogenic and benign variants with high precision.
Integrating AbExp predictions with gene expression measurements from clinically acces-
sible tissues yielded another two-fold enhancement in predicting tissue-specific aberrant
expression in non-accessible tissues.

Finally, I demonstrated how AbExp can improve rare variant gene association testing
as well as phenotype prediction on 40 blood traits from 200,000 individuals of the UK
Biobank. An AbExp-based association test identified 30% more trait-associated genes
compared to a LOFTEE-based burden test. In addition, AbExp scores significantly
improved phenotype prediction over LOFTEE in 50% of the traits, while never exhibiting
inferior performance.

In summary, the development of a DNA-sequence-based method for predicting aber-
rant gene expression in multiple tissues, which can also generalize to unseen variants,
represents a significant advancement in the ability to identify and understand the genetic
underpinnings of human traits and diseases.
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1 Introduction

The human genome is the blueprint for our lives. It contains all the necessary instruc-
tions on how we develop from a single fertilized egg cell into a complex organism con-
sisting of trillions of specialized cells. Our genome consists of 23 pairs of homologous
nuclear chromosomes and one set of mitochondrial DNA. Among nuclear chromosomes,
one pair consists of sex chromosomes, while the remaining 22 pairs are comprised of sex-
unspecific chromosomes, also called autosomes. The mitochondrial DNA and one copy
of each chromosome, including 22 autosomes and an X chromosome, are inherited from
our mother. The other half of chromosomes, including 22 autosomes and either an X or
a Y chromosome which determines sex, is inherited from our father. Each chromosome
is a packed, double-stranded molecule of deoxyribonucleic acid (DNA) representing a
sequence of cytosine (C), guanine (G), adenine (A), and thymine (T) nucleobases. En-
coded in a total sequence length of about 6 billion nucleobases, the DNA contains a set
of genes as well as regulatory elements that control when and how much each gene is
being expressed[3, 112]. While 99% of the DNA sequence is shared across humans, every
one of us has about 4-5 million variations in this sequence that distinguish us from the
average population[5] (see section 2.1). Genetic variants determine our individual traits
such as the color of our hair and eyes, whether we can digest dairy products as adults,
and even whether we enjoy drinking coffee[64, 103, 137].

1.1 Understanding variant impact is key to studying
human disease

Embedded within the DNA are also variations that affect or cause our susceptibility
to many diseases. Pinpointing these variants and understanding their biological impact
is an ongoing effort in genomic medicine for several reasons. First of all, understand-
ing one’s genetic predisposition allows for preventive measures and more tailored treat-
ments[50, 142]. By identifying who is at higher risk for certain diseases, healthcare
providers can recommend proactive lifestyle changes, such as dietary adjustments or
physical exercise, and more frequent screening for early detection. For example, testing
for high-impact variants in cancer driver genes, such as BRCA1 and BRCA2, can iden-
tify individuals at high risk for certain types of cancer [42, 99]. For such persons, regular
cancer screening can significantly enhance treatment efficacy and long-term prospects of
survival.

Genetic testing is also useful in the context of in-vitro fertilization. During the preim-
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1 Introduction

VKORC1

Reduced
Vitamin K

Oxidized
Vitamin K

Active 
clotting factors

Warfarin CYP2C9 Warfarin
degradation

Inactive
clotting factors

Figure 1.1: Warfarin mechanism of action. Warfarin works by inhibiting the activity of
a vitamin K-producing enzyme complex encoded by the VKORC1 gene. This inhibition in
turn reduces the activity of several blood clotting factors that depend on vitamin K for their
activation[113]. Additionally, Warfarin is metabolized in the liver by enzymes, one of which is
encoded by the CYP2C9 gene. Therefore, variants in the VKORC1 and CYP2C9 genes can
affect the concentration and efficacy of Warfarin[87].

plantation stage, embryos are tested for pathogenic (i.e. disease-causing) variations.
This testing is crucial for selecting embryos that are most viable and free of specific
genetic disorders, thereby enhancing the success rate and safety of in-vitro fertilization
procedures[40].

Furthermore, certain medications might be more effective or pose more risks depend-
ing on an individual’s genetic profile. A notable example is Warfarin, a commonly used
drug for blood thinning. Precise dosing is crucial with Warfarin: Even a slight overdose
can lead to bleeding, while too low a dose may not effectively prevent thrombosis. How-
ever, genetic variations in the VKORC1 and CYP2C9 genes can affect the efficacy and
duration of action of warfarin (see fig. 1.1) and therefore require a dosage adjustment
tailored to the patient’s specific genetic variants[87].

Another area where genetic factors significantly impact treatment outcomes is cancer
therapy. Influenced by genetic predisposition and environmental factors such as exposure
to carcinogens (e.g., chemicals, radiation), inflammation, and viral infections, cancer
arises from genetic and epigenetic alterations occurring in cells after birth, and each
cancer tumor has its own unique genetic profile that leads to its uncontrolled growth
[57]. Consequently, the success or failure of cancer treatment strongly depends on the
genetic profile of the tumor. For instance, while some types of tumors can be treated
successfully with drugs targeting the epidermal growth factor receptor (EGFR) gene,

2



1.1 Understanding variant impact is key to studying human disease

Figure 1.2: Distribution of reported cases among rare diseases in the Orphanet
knowledge base. The Orphanet knowledge base is a comprehensive, international database
that provides extensive information on rare diseases and orphan drugs[65].

mutations in another gene, KRAS, are known to confer resistance to these[152].
Understanding the genetic basis of diseases can also facilitate the development of

new medications. Genes that are affected by disease-associated variants might play
an important role in the disease and therefore can hold potential as targets for drug
development[41].

Even more relevant is the identification of high-impact variants for the diagnosis and
research of rare genetic disorders. Rare diseases are life-threatening or chronically debil-
itating conditions with a prevalence of less than 5 per 10,000 individuals[34].

Today we already know more than 10,000 rare diseases, with roughly 87% of them
having a known or suspected genetic basis[85]. Despite their rarity, rare diseases col-
lectively affect about 1 in 20 individuals, highlighting their significant impact on public
health. However, given their low prevalence with many rare diseases having less than ten
reported cases (fig. 1.2), rare diseases often receive less research attention and funding
compared to more common conditions[67], resulting in only 5% of rare diseases having
approved treatments as of today[38]. Identifying the disease-causing variants is not only

3
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relevant for the correct diagnosis of patients suspected of having a rare genetic disease
but also lays the foundation for understanding its molecular mechanisms and develop-
ing targeted therapies[134]. An example of a rare genetic disease is Duchenne muscular
dystrophy, a severe condition characterized by the progressive weakening and tearing
of muscle fibers that leads to premature death from cardiac and respiratory failure[28].
Duchenne muscular dystrophy is typically caused by pathogenic variants within the
X-chromosomal gene DMD. DMD encodes a structural protein called dystrophin that
prevents muscle fibers from tearing. Therefore, Duchenne muscular dystrophy can be
diagnosed early by screening for pathogenic variants within the DMD gene[28]. Further,
Duchenne muscular dystrophy is a so-called “recessive” disease, which means that one
non-affected copy of the gene is sufficient to not get the disease.

Therefore, the disease-causal gene defect might be inherited from an asymptomatic
mother[28]: Since women, unlike men, have two X chromosomes, the mother can carry
a defective copy of DMD on one X chromosome and a functional copy on the other X
chromosome. Identifying pathogenic variants in the mother’s DMD gene would enable
preventive measures to be taken in family planning, e.g. prenatal diagnostics for early
detection or in-vitro fertilization to prevent the inheritance of the disease.

1.2 Most high-impact variants are rare
Seeking to identify variants related to heritable traits and diseases, large genome-wide
association studies (GWAS) have identified thousands of common variants in the human
genome that are associated with diseases[133, 148]. GWAS link single genetic variants
to heritable traits by testing the association between the variant and the trait (fig. 1.3).

However, GWAS do not provide any information about the functional consequences of
the associated variants and their causality. On the contrary, GWAS usually identify many
co-occurring variants with the true causal variants, making it challenging to attribute the
observed association to a specific variant. Further, most of the variants found by GWAS
have only small effects on disease risk (fig. 1.4)[102]. Since selection removes variants with
large pathogenicity from the population[75], high-impact variants are generally very rare
in the population[131]. However, every human individual carries about 22,000 rare (i.e.
less than 1 in 10,000 alleles) or private (i.e. unique to the individual) variants (fig. 1.5),
and a single change at the wrong spot can cause a rare genetic disorder or increase the
predisposition to a disease like Alzheimer or cancer by orders of magnitude[16]. GWAS
require a large number of samples to find statistically significant associations between
genetic variants and traits. This large sample size is needed to ensure that the results
are not due to random chance. For rare variants, obtaining a sufficiently large cohort
of individuals who carry these variants can be challenging. The rarer the variant, the
more difficult it is to find enough individuals for a robust analysis. This limitation
makes GWAS less suitable for studying extremely rare variants, as the statistical power
to detect associations is significantly reduced. For novel variants that have never been

4



1.2 Most high-impact variants are rare

Chromosome

-lo
g 1
0(
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chr9:27,543,283:T>C

Disease / Control

GWAS

Sequence variation TAATAGTGTAATAAATGCAATAAAAGAAATACGTACTAGCT
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Variant
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Figure 1.3: GWAS links single genetic variants to heritable traits. The figure shows
an illustration of a genome-wide association study on a hypothetical disease. After genotyping
a large cohort of individuals with and without the disease, GWAS perform a statistical test for
each variant to assess its association with the disease, i.e. whether a certain genetic variant
(red) is significantly more common in individuals with the disease compared to healthy control
individuals[143]. GWAS can also test for association with quantitative traits, such as body
height, by evaluating the correlation between genetic variants and trait measurements across the
population.
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Figure 1.4: Variant effect size against variant allele frequency. High-impact variants
causing Mendelian, i.e. genetic, disorders are usually rare (upper left), while most GWAS findings
are associations of common variants with small effect sizes (lower right). The bulk of discovered
genetic associations lie on the diagonal denoted by the dashed lines. Taken from [16].© 2012
Bush, Moore. Licensed under CC BY.

observed before in the population, conducting a GWAS is impossible.
Rare variant burden testing overcomes the limited statistical power of GWAS in de-

tecting associations with rare genetic variants by aggregating rare variants within specific
genomic regions, such as genes, into a gene-wise burden score and then testing the as-
sociation between the burden score and some traits of interest[88]. This aggregation
increases the overall frequency of the “variant signal” in the dataset, which can enhance
the statistical power to detect an association, and reduces the multiple testing load. Rare
variant burden testing depends on having many likely impactful variants with similar
effects in the burden set (e.g. disrupting gene function which in turn increases the risk
for disease)[88]. In the past, people assumed an inverse relationship between the minor
allele frequency of the variant and its causality, i.e. the more rare a variant is, the higher
impact it has. However, as stated before, every human individual carries about 22,000
rare or novel variants and most of these are benign[101]. Recent studies try to identify
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1.2 Most high-impact variants are rare

Figure 1.5: Distribution of rare variants among 635 individuals. The median number
of rare variants per individual is 22,297 (red line). Numbers were calculated based on the GTEx
dataset (see chapter 3).
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potential high-impact variants and filter out low-impact variants by incorporating ad-
ditional annotations that assess the functional and molecular impact of the variants[88,
106].

1.3 Biology of high-impact variants
Genetic variants can affect genes mainly in two ways: Either they influence the function-
ality of the gene’s product or they disturb its regulation.

1.3.1 Coding variants
The function of a protein-coding gene is to produce messenger RNA (mRNA) that en-
codes the amino acid sequence of a protein (see section 2.2). If a variant changes the
encoded amino acid sequence, the resulting protein might not fulfill its purpose anymore.
The functional effect of protein-truncating variants is fairly well understood. Variants
like stop-gains, frameshifts (small insertions or deletions causing a shift in the coding
frame) or splice-site disruptions usually cause the truncation of the protein sequence by
introducing premature stop codons and therefore a putative loss of function[70]. Hu-
man cells recognize premature stop codons during protein translation in the mRNA and
degrade these faulty mRNA molecules in the nonsense-mediated decay (NMD) path-
way (see section 2.3). For missense variants (variants that result in a different amino
acid sequence without changing its length) it is more difficult to predict whether the
resulting protein is still functional, but recent advances in protein structure prediction
(AlphaMissense[19]) and sophisticated statistical modeling of protein sequence conser-
vation (Evolutionary model of Variant Effect, EVE[46]; PrimateAI-3D[49]) have led to
improved deleteriousness scores of missense variants.

1.3.2 Regulatory variants
However, protein-coding regions only cover 2% of the human genome. The vast majority
of the human genome consists of non-coding DNA, which does not code for proteins
but contains important regulatory regions that control when, where, and how much
ribonucleic acid (RNA) is expressed from a gene. The regulation of gene expression
happens at several stages, many of which can be influenced by genetic variation.

The first step in gene expression is making the DNA region accessible. DNA in eu-
karyotic cells is wrapped around histone proteins, forming a tightly packed structure
called chromatin (fig. 1.6). For a gene to be expressed, the chromatin structure must be
loosened or “opened” to allow access to the DNA sequence. Epigenetic modifications to
the histone proteins and the DNA itself can switch chromatin between open and closed
states, i.e. change which parts of the DNA are accessible[79]. The landscape of accessible
DNA varies between different cell types and is a key factor in determining which genes
are expressed in a particular cell[140].
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1.3 Biology of high-impact variants

Figure 1.6: An enhancer-promoter interaction within a topologically associating do-
main formed by CTCF and cohesin. RNA polymerase II (Pol II) is positioned on the
transcription start site of the promoter by the transcription preinitiation complex (PIC), which
is formed by various general transcription factors such as TFIIH. The preinitiation complex gets
stabilized by a mediator that is bound to the preinitiation complex and one or more transcrip-
tion factors (TF) occupying the enhancer. Taken with permission from [123]. © 2022, Springer
Nature Limited.
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The next step is the recruitment of RNA polymerase, the enzyme responsible for tran-
scribing DNA into RNA, in a transcription preinitiation complex. This recruitment is
regulated by specific DNA sequences known as promoters, located near the start of genes.
The preinitiation complex is formed by various promoter-binding general transcription
factors that position the RNA polymerase on the transcription start site (TSS) of the
gene. The RNA polymerase then moves along the DNA strand and transcribes its se-
quence into precursors of mRNA[56]. Genetic variants in the promoter sequence may
affect the binding of transcription factors and therefore the rate of gene expression. RNA
polymerase continues the transcription of DNA to mRNA until it reaches a polyadeny-
lation signal, a specific sequence that then prompts the addition of a poly(A) tail to the
mRNA transcript, eventually leading to the termination of transcription[141].

The preinitiation complex formation can be enhanced by other DNA elements called
enhancers or suppressed by elements known as silencers. In the DNA sequence, enhancers
and silencers can be located far from the gene they influence. The effect of enhancers and
silencers on a gene depends on their spatial proximity to the gene’s promoter, which is in-
fluenced by the formation of chromatin loops, so-called topologically associated domains
(see fig. 1.6)[123]. Enhancers stabilize the preinitiation complex through a mediator that
is bound to the preinitiation complex and one or more activating transcription factors
occupying the enhancer, thereby increasing the gene expression. Repressive transcrip-
tion factors that bind silencers can prevent enhancers from interacting with their target
promoter, or they can interact directly with the promoter, thereby repressing gene ex-
pression[115]. Transcription factors play an important role in gene expression regulation.
While general transcription factors are present in all cell types, activating and repressing
transcription factors are often expressed in a cell type dependent manner and repress
or activate gene expression accordingly[83]. Genetic variants in the transcription fac-
tor binding sites of enhancers can therefore lead to cell type dependent effects on gene
expression.

Further, genes often have multiple alternative transcription start and termination sites
that, together with alternative splicing, lead to the generation of tissue-dependent tran-
script isoforms[122]. Genetic variants that affect promoters, splice sites, and polyadeny-
lation signals can therefore cause tissue-dependent changes in isoform expression based
on the tissue specificity of these sites.

A final regulatory point of mRNA expression is the stability and degradation rate of
mRNA molecules[147]. The rate at which mRNA molecules degrade is influenced by
the binding of proteins and noncoding RNAs to certain sequences or structures within
the mRNA. These proteins and noncoding RNAs recruit specific enzyme complexes that
catalyze the degradation of the mRNA. Genetic variations can influence the stability of
mRNA by affecting its structure and binding sites for these RNA-binding proteins and
RNAs[90].
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1.3.3 Integrating genomics with transcriptomics to identify
high-impact variants

The effect of genetic variants, particularly on tissue and cell type specific gene expression,
are often not straightforward to determine. Understanding the specific impact of a vari-
ant can be challenging, and in many cases, remains unknown or not fully understood[76,
109, 151].

Recently, statistical methods to call expression outliers from RNA sequencing (RNA-
seq) data[14, 89, 124, 126] applied to large cohorts and various types of human tissues
have enabled investigating the functional impact of variants on gene expression. By
measuring aberrantly over- or underexpressed genes, i.e. gene expression that deviates
strongly from normal patterns, and identifying rare genetic variants within these aber-
rantly regulated genes, algorithms can prioritize which variants may be the genetic cause
of these expression outliers[39, 93]. Rare expression outlier associated variants identi-
fied by these algorithms have further been shown to be predictive of strong effects on
phenotypic traits[132]. However, the requirement of sequencing the transcriptome in
all relevant tissues of an affected individual can be challenging. Besides the additional
costs for RNA-seq, diagnostics is often limited to clinically accessible tissues such as skin
or body fluids as obtaining samples from other tissues like the brain or lung is signifi-
cantly more invasive. Further, this approach does not generalize to unseen variants, as
evaluating the impact of a genetic variant requires sequencing the transcriptome of an
individual who carries it.

A key finding of integrative genomics and transcriptomics analysis is that certain
types of rare genetic variants are highly enriched in gene expression outliers (fig. 1.7)[39,
93, 149]. Splice, frameshift, and stop variants often lead to nonsense-mediated decay
of affected isoforms and are strongly enriched in underexpression outliers. Non-coding
promoter variants can affect gene expression in both directions and are enriched in
both over- and underexpression outliers. Among the structural variants, deletions and
translocations are more enriched in underexpression outliers, while duplications and
copy number variations are more common in overexpression outliers. These enrichment
patterns are conserved and can be found in different cohorts, such as in the GTEx
(Genotype-Tissue Expression) project[39, 93] and a mitochondrial disease study[149].
This raises the question of whether gene expression outliers might be predictable solely
from the DNA sequence.

A method to predict aberrant expression in multiple tissues using only DNA sequence
as input and generalizing to unseen variants could improve our ability to identify genetic
variants with a high impact. This would in turn aid in the identification of disease-
associated genes and pinpointing disease-causal variants in large genomic cohorts such
as the UK Biobank (see section 2.12.4).
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Figure 1.7: Proportion of gene expression outliers potentially explained by different
classes of rare variants in a cohort of 449 individuals and 44 tissues from GTEx v6p.
About half of the underexpression outliers can be explained by structural variants, non-coding
variants between 250 bp upstream to 750 bp downstream of the TSS that affect for example
transcription factor binding sites (TFBS), and variants associated with nonsense-mediated decay
(splice, frameshift, stop). Among the overexpression outliers, copy number variations (CNV)
and other structural variants, splice variants, and non-coding variants near the TSS can explain
about a quarter. Breakend: translocation. Figure from [92]. © Li et al., 2016. Licensed under
CC-BY-NC-ND 4.0.
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1.4 Aims and scope of this thesis
The overall aim of this thesis is to enhance the identification of high-impact variants
by assessing their effect on aberrant gene expression across human tissues and evaluate
whether these changes in gene expression affect human traits. The contribution of my
work is three-fold:

(i) Creating the first benchmark for aberrant gene expression across 48 human tissues
and testing the predictive value of existing variant annotation tools, (ii) the development
of AbExp, a method to predict aberrantly underexpressed genes in 48 human tissues
from DNA sequence, and (iii) improving rare variant association studies and phenotype
prediction with AbExp.

1.4.1 Benchmarking aberrant gene expression prediction in human
tissues

Before this work there was no algorithm predicting aberrant gene expression based on
an individual’s genome. Also, the performance of existing variant annotation tools in
the identification of gene expression outliers was not evaluated. To address this unmet
need, I developed the first benchmark for predicting aberrantly expressed protein-coding
genes by processing 11,096 RNA-seq samples with paired whole-genome sequencing data
from 633 individuals across 48 tissues from GTEx. Then I used this benchmark to
evaluate the performance of variant annotation tools attempting to solve similar tasks
on predicting underexpression outliers.

1.4.2 AbExp: Predicting aberrant gene underexpression across human
tissues

Given the lack of a specialized tool for aberrant expression prediction based on genetic
variants, I next developed AbExp, a non-linear model combining various variant and
tissue annotations to significantly improve the prediction of aberrant underexpression
outliers across 48 human tissues. I applied AbExp on independent datasets to assess the
generalizability of the predictions and the proficiency in distinguishing pathogenic from
benign variants. Finally, I combined AbExp scores with gene expression measurements
from clinically accessible tissues to predict aberrant expression in other tissues with
improved precision.

1.4.3 Improving rare variant association testing and phenotype
prediction with AbExp

Last, I demonstrate the application of AbExp in rare variant association testing and phe-
notype prediction of 40 blood traits in more than 200,000 individuals of the UK Biobank.
Based on whole-genome sequencing data, AbExp scores offered supplementary informa-
tion beyond the state-of-the-art putative loss of function classifier LOFTEE, improving
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the discovery of significant gene-trait associations as well as significantly enhancing phe-
notype prediction.

Most of the work presented in this thesis is published as a preprint[61].
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2 Background

2.1 Genetic variants
2.1.1 Types of genetic variants
Genetic variants can be categorised according to their length and their mechanism of
origin[81, 111]. Single nucleotide variants (SNVs), which represent changes to individual
base pairs in the reference sequence, and small base insertion or deletions (INDELs), i.e.
variants that change the length of the reference sequence, affect one to 50 base pairs in
a single event (fig. 2.1). Longer events are referred to as structural variants (SVs). Copy
number variations (CNVs) such as long deletions (DEL) and duplications (DUP) as well
as insertions (INS) are called imbalanced SVs as they change the length of the genome.
In contrast, inversions (INV) and translocations (TRA) are balanced SVs as they retain
the length of the genome.

2.1.2 Zygosity of variants
Variants can be present in two forms with respect to an individual’s paired chromosomes:
If the variation (allele) is present on only one of the two homologous chromosomes, the
individual is heterozygous for that genetic locus (“heterozygous variant”). If the same
variation (allele) is present on both homologous chromosomes at a particular locus, the
individual is homozygous for that genetic locus (“homozygous variant”)[3].

2.2 Central dogma of biology
The central dogma of biology describes the flow of genetic information from deoxyri-
bonucleic acid (DNA) over RNA to protein (fig. 2.2)[3]. Within DNA, specific segments
are called genes. Each gene provides instructions for creating a functional product, for
example, a protein.

The process begins with transcription, during which a gene’s DNA sequence is copied
to create a pre-mature messenger RNA (pre-mRNA). Transcription is initiated by the
binding of RNA polymerase. Beginning at the transcription start site (TSS), it reads the
template DNA strand in the 3’ to 5’ direction (fig. 2.2, red strand), while synthesizing
a complementary strand in the 5’ to 3’ direction (fig. 2.2, blue strand), translating
adenine to uracile (U), thymine to adenine (A), cytosine to guanine (G), and guanine to
cytosine (C). As the last step in transcription, a 5’ cap and a poly-A tail are being added.
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Indel

Structural Variation
Deletion Duplication

InsertionInversion

SNV

Translocation

Figure 2.1: Overview of types of genetic variation. The top chromosome denotes the
reference chromosome, while the variation is highlighted and shown below. Single nucleotide
variants (SNV) and small insertions and deletions (INDEL) represent changes that affect one to
50 base pairs in a single occurrence. Longer events are referred to as structural variants (SV).
These events include deletions (DEL), duplications (DUP), inversions (INV), insertions (INS),
translocations (TRA), and complex combinations of these basic variant types. Figure from [111].
© 2020 Nesta et al. Licensed under CC-BY-NC-ND 4.0.
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Figure 2.2: The central dogma of biology. DNA first gets transcribed into premature
messenger RNA (pre-mRNA), beginning at the transcription start site. Splicing removes introns
from the pre-mRNA, leaving a mature mRNA molecule from which proteins can be translated.
Finally, a ribosome binds and translates, beginning at an AUG start codon, the coding sequence
into a protein sequence until it reaches one of several stop codons, e.g. UGA.

Next, splicing removes introns and joins exons to form mature messenger RNA (mRNA).
Finally, ribosomes translate the mRNA sequence into a protein sequence. The ribosome
moves along the mRNA molecule in steps of three nucleotides called codons, beginning
at a start codon (AUG). Each codon corresponds to a specific amino acid, start, or
stop signal (fig. 2.3). Notably, the mapping of codons to amino acids is redundant,
i.e. multiple codons can encode the same amino acid. As each codon is exposed, a
complementary transfer ribonucleic acid (tRNA) molecule carrying the corresponding
amino acid enters the ribosome and pairs with the mRNA codon through base pairing.
The amino acid carried by the tRNA is added to the growing polypeptide chain through
peptide bond formation. When the ribosome encounters a UAA, UAG, or UGA codon,
translation terminates.

2.3 Nonsense-mediated decay of mRNA
Nonsense-mediated decay (NMD) is a quality-control mechanism in eukaryotic cells that
serves to degrade mRNA molecules containing premature termination codons (PTCs)[3].
PTCs are stop codons that occur prematurely within the coding region of mRNA, leading
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Figure 2.3: The standard RNA codon table organized in a wheel. The sequence is read
from 5’ to 3’ direction, e.g. AUG → Methionine. 64 possible codon combinations encode 22
different amino acids as well as the start and stop codon. Figure from [108] (public domain).

to the production of truncated or incomplete proteins. PTCs frequently result from
frameshifts, splice site disruptions, or missense mutations. NMD acts as a quality control
mechanism to prevent the translation of abnormal or potentially harmful truncated
proteins.

The process of NMD involves several steps. After splicing, exon junction complexes
(EJC) remain at the splice sites to mark successful splicing. When the first ribosome
starts translating the mature mRNA into a protein sequence, it strips off these EJCs.
If the ribosome reaches a premature termination codon (STOP) before stripping off the
last EJC, nonsense-mediated decay is induced by UPF proteins that recognize the EJC,
and the mRNA gets decayed (fig. 2.4).

Not all PTCs induce NMD[94, 95]. The NMD machinery typically fails to recognize
PTCs located more than 50 nucleotides upstream of the last exon-exon junction (“50bp
rule”). Additionally, PTCs in the last exon of a transcript do not activate NMD due
to the lack of exon junction complexes (“last exon rule”). For the same reason, also
transcripts with a single exon do not induce NMD. Furthermore, NMD is inhibited in
very long exons, generally exceeding approximately 400 nucleotides (“long exon rule”).
Moreover, PTCs positioned within 150 nucleotides from the start codon often do not
elicit NMD, likely due to translation re-initiation (“start-proximal rule”). Figure 2.5
shows an illustration of these rules.
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Figure 2.4: Overview of nonsense-mediated decay pathway. After splicing, exon junction
complexes (EJC) remain at the splice sites to mark successful splicing. During normal translation,
these complexes get stripped off by the ribosome (left side). If the ribosome reaches a premature
termination codon (STOP) before stripping off the last EJC, nonsense-mediated decay is induced
by UPF proteins that recognize the EJC, and the mRNA gets decayed (right side).
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e) Single exon
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c) Long exon

Cap AAAAA
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Cap AAAAA
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a) 50 bp upstream of last exon-exon junction
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Figure 2.5: Premature termination codons (PTCs) in certain regions of the gene
do not induce nonsense-mediated decay (NMD). Transcripts harboring PTCs within the
highlighted regions typically escape NMD. (a) 50 bp rule, (b) last exon rule, (c) long exon rule,
(d) start-proximal rule, (e) single exon.

2.4 Next-Generation Sequencing
Next-generation sequencing (NGS), also referred to as short-read sequencing[4], is a
technology for rapid and cost-effective sequencing of DNA and ribonucleic acid (RNA)
by simultaneously sequencing millions of DNA fragments in parallel[130]. The sequenc-
ing process begins by extracting DNA from the sample of interest. The DNA is then
fragmented into smaller pieces using various methods, such as sonication or enzymatic
digestion (fig. 2.6a). These fragments serve as the templates for sequencing.

Next, sequencing adapters are ligated to the ends of the fragmented DNA molecules
(fig. 2.6b). Adapters contain sequences that are complementary to those on the se-
quencing platform and enable the DNA fragments to bind to the surface of the sequenc-
ing platform. Adapters also contain sequences necessary for subsequent steps, such as
priming sites for PCR amplification, a barcode that identifies the fragment, and other
implementation-dependent elements.

Then, the DNA fragments with adapters attached are amplified using polymerase
chain reaction (PCR) and immobilized on a solid surface, such as a glass slide or a
flow cell (fig. 2.6c). This step increases the amount of DNA available for sequencing
and generates clusters of identical DNA fragments. PCR amplification is crucial for
ensuring that there is enough DNA for detection during sequencing and for improving
the signal-to-noise ratio.

Finally, the immobilized fragments are sequenced in an iterative cycle of nucleotide in-
corporation and imaging (fig. 2.6d). During each cycle, fluorescently labeled nucleotides
are added to the DNA fragments, and the incorporation of each nucleotide is detected
by imaging. The fluorescent signal is recorded and used to determine the sequence of the
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Figure 2.6: Next-generation sequencing. (a) First, the DNA is fragmented into smaller
pieces. (b) Next, the fragments get adapter sequences attached that typically contain priming
sites, fragment bar codes, and other implementation-dependent elements. (c) The fragments get
fixed to a surface (e.g. solid substrate or beads) and amplified by PCR. (d) Clusters of immo-
bilized fragments are sequenced in an iterative cycle of nucleotide incorporation and imaging,
sequencing typically between 75-300 nucleotides of the fragment ends.

DNA fragment. This cycle of nucleotide incorporation, imaging, and washing is repeated
multiple times to sequence millions of DNA fragments simultaneously, typically reaching
sequence lengths of about 300 bases.

These sequences read from the DNA fragment ends are called “reads”. DNA fragments
are typically sequenced from both ends by sequencing both complementary strands. This
allows the identification of pairs of reads from the same DNA fragment based on the
fragment barcode embedded in the adapter (“paired-end reads”). Paired-end sequencing
provides additional information about the DNA fragment, such as its length [63].

2.4.1 DNA-seq
RNA sequencing (DNA-seq) is used to analyze the genome, either specific regions like ex-
onic regions (Whole-Exome Sequencing) or all regions (Whole-Genome Sequencing). Af-
ter next-generation sequencing (NGS), the resulting fragment reads are typically aligned
to some reference genome (fig. 2.7a). While de novo assembly of the sequences is possi-
ble, it requires deep sequencing of the sample to gain enough coverage (i.e. number of
times a specific nucleotide in a DNA or RNA sequence is read, also called “read depth”).
It is less costly and faster to align against some shared high-quality reference genome
and also allows for easy detection of short sequence variants. For humans, there are
multiple versions of reference genomes, such as (sorted by age) GRCh37, GRCh38, and
T2T-CHM13[1]. Further, special tools can detect large structural variations within RNA
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Figure 2.7: Read sequence alignment to the reference genome. In both figures, stars
denote variants where the measured sequence differs from the reference sequence. The color of
the star denotes the strand. (a) Alignment of whole genome DNA sequencing reads. DNA-seq
reads cover nearly the whole genome. (b) Alignment of RNA sequencing reads. RNA sequencing
(RNA-seq) reads cover transcribed regions, and reads from spliced RNA can also skip intronic
regions (“split-read”, dotted lines). RNA-seq data aligns to transcribed regions of the genome,
providing information about RNA abundance, alternative splicing, and sequence variation within
these regions.

sequencing (DNA-seq) data[55] or detect variant phasing, i.e. variants that affect the
same strand[21].

2.4.2 RNA-seq
RNA sequencing (RNA-seq) is used to analyse the transcriptome by sequencing comple-
mentary DNA (cDNA) synthesized from RNA[63]. RNA-seq reads cover only transcribed
regions such as exons and introns (fig. 2.7b), providing information about gene expres-
sion levels (read coverage within the gene), alternative splicing events (split reads), and
sequence variants within the transcribed regions.

The number of fragments measured from a gene depends not only on the expression
level but also on its length and the sequencing depth. Longer genes will have more
fragments sequenced than shorter genes. Similarly, when comparing the number of
fragments between experiments, the number of measured fragments per gene depends
on the total amount of sequenced fragments. Normalization techniques such as TPM
(Transcripts Per Million) or FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) help mitigating these biases when comparing gene expression levels across
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samples or experiments[153]:
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(
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Here, i is a feature (e.g. gene or transcript), qi is the number of raw fragment counts of
the feature, and li is the length of the feature.
The FPKM measure can easily be converted to TPM:

TPMi =

(
FPKMi

∑j FPKMj

)
· 106 (2.3)

2.5 OUTRIDER: Aberrant gene expression calling
OUTRIDER (Outlier in RNA-Seq Finder) is a statistical method to detect gene ex-
pression outliers in RNA-seq datasets[14]. OUTRIDER uses a denoising autoencoder
to model RNA-seq fragment count expectations with a negative binomial distribution
(fig. 2.8). Once the expected counts are established, OUTRIDER identifies aberrantly
expressed genes whose observed read counts significantly deviate from these expecta-
tions.

Specifically, OUTRIDER models the probability of the observed fragment count xs,g

for every gene g in a sample s as:

P(xs,g|µs,g, θt(s),g) = NB(xs,g|µs,g, θt(s),g) (2.4)

where:

• µs,g is the expected fragment count

• θt(s),g is the dispersion parameter for the gene g in the tissue of sample s t(s)

OUTRIDER further outputs:

• the biological coefficient of variation:

BCVt(s),g =
1√

θt(s),g

(2.5)

• the log2-transformed fold-change of the observed fragment count compared to the
expected fragment count:

log2 FC = log2(x)− log2(µ) (2.6)
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Figure 2.8: Context-dependent outlier detection with OUTRIDER. “The algorithm
identifies gene expression outliers whose read counts are significantly aberrant given the covari-
ations typically observed across genes in an RNA-seq dataset. This is illustrated by a read
count (left panel, fifth column, second row from the bottom) that is exceptionally high in the
context of correlated samples (left six samples) but not in absolute terms for this given gene. To
capture commonly seen biological and technical contexts, an autoencoder models covariations in
an unsupervised fashion and predicts read-count expectations. Comparing the earlier mentioned
read count with these context-dependent expectations reveals that it is exceptionally high (right
panel). The lower panels illustrate the distribution of read counts before and after controlling for
covariations for the relevant gene. The red dotted lines depict significance cutoffs.” Taken with
permission from [14]. © 2018 American Society of Human Genetics.
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• the nominal p-value

• the False Discovery Rate using the Benjamini-Yekutieli method[11]

2.6 Precision-Recall Curve and Average Precision
A precision-recall curve is a graphical representation used in machine learning and in-
formation retrieval to evaluate the performance of a classification model, particularly
in binary classification tasks. It illustrates the trade-off between precision and recall at
different thresholds for a given classifier.

Precision (or Positive Predictive Value) describes the fraction of true positive predic-
tions among the total number of positive predictions (true positives + false positives).
Recall (or Sensitivity or True Positive Rate) describes the fraction of true positive pre-
dictions among the actual number of positive cases (true positives + false negatives).
By ranking the classifier predictions according to their confidence scores or probabilities,
one can compute the precision and recall at different thresholds. The precision-recall
curve illustrates this trade-off.

To summarize the overall performance of the classifier across all possible thresholds,
one can calculate the area under the precision-recall curve (AUPRC), also known as the
ap[154]:

P =
TP

TP + FP
(2.7)

R =
TP

TP + FN
(2.8)

AP = ∑
n
(Rn − Rn−1)Pn (2.9)

Here, TP is the number of true positive predictions, FN is the number of false negative
predictions, P is the precision and R the recall. The average precision metric provides
a single numerical value that quantifies the classifier’s ability to balance precision and
recall across all threshold levels.

2.7 Supervised learning
Supervised learning is a fundamental concept in machine learning where the objective
is to develop a predictive model that maps input features to output labels based on
example input-output pairs (“training data”), aiming to accurately predict the target
labels for new, unseen data.

Let us assume we would like to predict N observed values Y based on a matrix of N

25



2 Background

observed values of D independent predictor variables X:

Y =

 y1
...

yN

 ∈ RN (2.10)

X =

 x1,1 . . . x1,D
... . . . ...

xN,1 . . . xN,D

 = (x1, . . . , xD) ∈ RN×D (2.11)

The goal of supervised learning is to develop a predictor which accurately models the
relation between X and Y, such that it can be applied to predict target labels for new,
unseen data.

2.7.1 Linear regression
Linear regression models the relationship between Y and X using a linear equation[60]:

Y = β0 +
D

∑
d=1

βdxd + ε (2.12)

Here, β ∈ RD represents a vector of coefficients, and ε ∈ RN represents a vector of
normally distributed errors. fig. 2.9 shows an illustration of a linear model with one
predictor variable x1.

The goal of linear regression is to estimate the coefficient vector β̂ that minimizes
the difference between the observed values of Y and the values predicted by the linear
model Ŷ = β0 + ∑D

p=1 βpXp. This is often done using the method of least squares, which
minimizes the residual sum of the squared differences between the observed values yi ∈ Y
and and predicted values ŷi ∈ Ŷ:

β̂ = arg min
β

RSS(β)

= arg min
β

(
N

∑
i=1

(yi − ŷi)
2

)

= arg min
β

(
N

∑
i=1

(yi − β0 −
D

∑
j=1

β jxij)
2

)
(2.13)

Assuming that X has full column rank, i.e. that the columns of X are linearly inde-
pendent, it is possible to obtain an analytic solution for ˆbeta:

β̂ = (XTX)−1XTY (2.14)

This equation is also known as the ordinary least squares (OLS) estimator.
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a b

N(0, 2)

Figure 2.9: Illustration of a linear regression model with one predictor variable. y,
observed values; ŷ, model prediction; β0, intercept; β1, model weights; ε, normally distributed
error between y and ŷ. (a) Scatter plot of y against x with a linear equation shown as red curve
and errors ε highlighted as blue vertical lines. (b) Density histogram of errors ε. The black curve
shows the probability density function of a normal distribution with a mean at 0 and a standard
deviation of 2.
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2.7.2 Logistic regression
Logistic regression is a variant of linear models used for binary classification tasks, where
the observed values Y are categorical and have only two possible outcomes, typically
represented as 0 and 1[12].

In logistic regression, the goal is to model the probability that a given observation be-
longs to a particular category. The logistic function, also known as the sigmoid function
σ, is used to map the linear combination of the independent variables to the range (0,
1). The logistic function is defined as:

P(Y = 1|X) = σ

(
β0 +

D

∑
d=1

βdxd

)

=
1

1 + e−(β0+∑D
d=1 βdxd)

(2.15)

, where P(Y = 1|X) is the probability that the observed values Y equal 1 given the
values of the independent predictor variables X.

The loss function typically used in logistic regression is the categorical cross-entropy
loss function. Given a binary classification problem where the true class labels are
yi ∈ {0, 1} and the predicted probabilities of class 1 are P(yi = 1|Xi) = ŷi, the aim is
to minimize the categorical cross-entropy loss function with respect to β:

β̂ = arg min
β

CCE(β)

= arg min
β

1
N

N

∑
i=1

(−yi log(ŷi)− (1 − yi) log(1 − ŷi)) (2.16)

The logistic loss function penalizes the model more heavily when the predicted probabil-
ity deviates from the true label:

• If yi = 1, the loss function penalizes the model more when ŷi is close to 0.

• If yi = 0, the loss function penalizes the model more when ŷi is close to 1.

Unlike ordinary linear regression, there is no analytical solution for ˆbeta. Instead, the
loss function needs to be minimized with iterative approaches such as gradient descent
or iterative reweighted least squares[12].

2.7.3 Elastic Net Regularization
Elastic Net regularization is a technique used in regression analysis and machine learning
to prevent overfitting and improve the generalization performance of the model. It
combines the penalties of both Lasso (L1 regularization) and Ridge (L2 regularization)
regression methods[155].
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Figure 2.10: Contour plot of least squares cost function and various regularization
methods for a two-dimensional model. The orange elliptical contours show the loss for
settings of a two-dimensional model in terms of its parameters β1 and β2, with β̂ denoting the
optimal solution without regularization. The red (a), blue (b), and purple (c) regions show the
various penalty terms. By introducing regularization, the optimal solution is being constrained
towards the origin (all zero β vector). Increasing λ strengthens the regularization, leading to
smaller penalty term regions. The green point represents the optimal regularized parameters,
found at the geometric minimal intersection between the penalty region and the parameter
contour. In contrast to L2 regularization, solutions obtained through L1 regularization often
tend to “slide to the corners”, aligning with the axes and causing subsets of the β vector to
become exactly zero.

Elastic Net regularization can be added to an arbitrary cost function by incorporating
penalty terms for both the L1 (Lasso) and L2 (Ridge) norms of the model parameters.
Let us assume we want to regularize some cost function L(β). The general form of the
cost function with Elastic Net regularization J(β) can be expressed as:

J(β) = L(β) + λ1

D

∑
d=1

|βd|+ λ2

D

∑
d=1

β2
d (2.17)

Here, ∑D
d=1 |βd| denotes the L1 norm or Lasso penalty term, which penalizes the absolute

values of the coefficients. ∑D
d=1 β2

d denotes the L2 norm or Ridge penalty term, which
penalizes the squared values of the coefficients. λ1 and λ2 control the strength of the
Lasso and Ridge penalties, respectively.

Lasso regression tends to produce sparse models by driving some coefficients to exactly
zero, effectively performing feature selection. Ridge regression tends to shrink the coef-
ficients towards zero without eliminating them entirely, which helps reduce the impact
of multicollinearity. Elastic Net regularization combines the advantages of Lasso and
Ridge regression (see also fig. 2.10).
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2.7.4 LightGBM: Gradient boosting decision trees
Light Gradient Boosting Machine (LightGBM) is an open-source gradient boosting
framework that uses tree-based learning algorithms to solve supervised learning tasks,
particularly classification and regression problems, with a focus on fast and efficient
training[74].

Decision tree methods construct a hierarchical tree structure where each internal node
represents a decision based on the value of a specific feature or attribute, and each leaf
node represents the predicted outcome or class label[60]. Internal nodes of the tree
represent decisions that recursively partition the feature space by splitting it along the
axes of the input variables. This partitioning process continues until a stopping criterion
is met. Leaf nodes of the tree represent the outcome or class label within each region
created by the splits. To make predictions, decision tree methods assign a constant
value to each leaf node. For regression problems, this constant value is typically the
mean or median of the target variable within the region. For classification problems, it
may be the most frequent class label. Decision trees are popular due to their simplicity,
interpretability, and ability to handle non-linear relationships and interactions between
variables.

Gradient boosting is a non-linear machine learning technique that sequentially adds
weak learners to an ensemble to produce a strong learner, where each weak learner
corrects its predecessor[48]. The term “gradient” in gradient boosting refers to the
optimization technique used to minimize the loss function by iteratively fitting new
models to the residuals of the previous models.

Training an ensemble model of gradient-boosted decision trees begins with initializing
the ensemble with a simple model, usually a single decision tree or a constant value
representing the target variable’s initial approximation. Gradient boosting then builds
the ensemble model sequentially by adding new decision trees to correct the errors made
by the existing ensemble. Each new model is trained on the residuals (the differences
between the predicted values and the actual target values) of the current ensemble.
Figure 2.11 shows an example of this gradient boosting procedure.

For regression problems, LightGBM uses by default the Mean Squared Error (MSE)
between N observed values yi ∈ Y and predicted values ŷi ∈ Ŷ as loss function:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.18)

Gradient-boosting decision trees are non-linear models that can theoretically approx-
imate any function by adding a large enough amount of weak learners to the ensemble.
This involves the risk of overfitting by adding too many or too complex decision trees
to the ensemble. LightGBM has several configurable parameters that control the com-
plexity of the model, the regularization applied, and the training process to prevent
overfitting and improve generalization:
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Figure 2.11: Building an ensemble model of decision trees with gradient boosting.
The aim is to create an ensemble model F which predicts a target variable y from an input
variable x. The ensemble is initialized (F0) with a first estimator, which can be an initial weak
learner or the average of the prediction target y. Then, based on the residual errors in the
previous iteration (ri-1), additional weak estimators (fi) are trained and added to the ensemble
model, iteratively refining its predictions.

31



2 Background

• num_leaves: Maximum number of leaves in one tree. A higher value can make
the model more complex and may lead to overfitting.
Default: 31.

• n_estimators: Number of boosting iterations (trees) to be run in the gradient
boosting model.
Default: 100.

• max_depth: Maximum depth of the tree. A smaller value limits the complexity of
the model and helps prevent overfitting. A value of -1 means there is no limit to
the depth.
Default: -1.

• min_child_samples: Minimum number of data points required in a child (leaf)
node. If a split results in a child node with fewer samples than min_child_samples,
the split is not considered.
Default: 20.

• min_child_weight: Minimum sum of instance weight (hessian) needed in a child
(leaf) node.
Default: 0.001.

• min_split_gain: Minimum loss reduction required to make a split. If the gain is
lower than min_split_gain, the split is not performed.
Default: 0.

• reg_alpha: L1 regularization term on weights. This adds a penalty to the absolute
value of coefficients to prevent overfitting.
Default: 0.

• reg_lambda: It is the L2 regularization term on weights. This adds a penalty to
the square of coefficients to prevent overfitting.
Default: 0.

2.8 Likelihood Ratio Test
A likelihood ratio test is a statistical hypothesis test used to compare the goodness of fit
of two competing statistical models, typically nested within each other. The likelihood
ratio test assesses whether adding additional parameters to a simpler model significantly
improves its fit to the data[35].

Let us assume, we would like to know whether some outcome variable Y is linearly
dependent on a predictor variable xi ∈ X (section 2.7.1). Therefore, our null hypothesis
H0 is that there is no linear relationship between the outcome variable Y and the pre-
dictor variable xi, i.e. the coefficient of xi in the linear regression model is zero (βi = 0).
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Correspondingly, our alternative hypothesis Ha is that there is a linear relationship, i.e.
βi ̸= 0. In other words, we want to test whether a “full” model with estimated pa-
rameters β̂ is fitting Y significantly better than a “reduced” model with parameters β̂0

excluding one or more of predictor variables:

H0 :
∣∣β̂ − β̂0

∣∣ = 0 (2.19)
Ha :

∣∣β̂ − β̂0
∣∣ > 0 (2.20)

To conduct this hypothesis test, we can use the likelihood ratio test (LRT) as our
statistical method. The likelihood ratio test compares the likelihood of the data under
the full model L0(β) to the likelihood under the reduced model La(β).
In the context of linear regression, the likelihood function represents the probability
of observing the given set of observed values Y given the predictor values X and the
parameters of the model β as the product of the individual error probabilities[12]:

L(β) =
N

∏
i=1

N(ϵi|µ = 0, σ2)

=
N

∏
i=1

N(yi − ŷi|µ = 0, σ2)

=
N

∏
i=1

1√
2πσ2

exp

(
− (yi − β0 − ∑D

d=1 βdxid)
2

2σ2

)

= (2πσ2)−N/2 exp

(
−

N

∑
i=1

(yi − β0 − ∑D
d=1 βdxid)

2

2σ2

)
(2.21)

Here, N(ϵi|µ = 0, σ2) denotes the probability of the normal distributed error term,
and σ the variance of the error term. Smaller errors will be closer to zero and thus
are more likely than larger error terms. Figure 2.12 shows an illustration of this idea.
Notably, maximizing the likelihood L(β) is equivalent to minimizing the RSS (see also
section 2.7.1).

The test statistic of the LRT is −2 ln(Λ), where Λ denotes the likelihood ratio between
H0 and Ha:

−2 ln Λ = −2 ln
L0

La

= −2 · [ln(L0)− ln(La)]

= 2 · [ln(La)− ln(L0)] (2.22)

Ha has to be at least as likely as H0, therefore, the value range of −2 ln(Λ) is in the
range of [0,+∞). The higher the difference between H0 and Ha, the more significant is
the difference. According to the Wilks theorem[146], if H0 holds true, this test statistic
will be asymptotically χ2-distributed if the number of observations approaches ∞, with
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N(0, 2.0)

N(0, 7.4)

a b

Figure 2.12: Example of two alternative models fitting some observed values y. (a)
Observed values y against a predictor variable x, with y = β0 + β1x + ϵ. The red curve shows the
null hypothesis of y being independent of x. The blue curve shows the alternative hypothesis of
y being linearly dependent on x. (b) Density histogram of model errors ϵ for null and alternative
hypothesis from (a). The dashed lines show a normal distribution fitted to the observed errors.
The closer the error is to 0, the higher its probability.

a degree of freedom d f equal to the number of additional parameters used by the full
model:

−2 ln Λ ∼ χ2
∆d f ,

∆d f = d fHa − d fH0 (2.23)

Therefore, a χ2 test can be used to check if there is a significant difference between H0

and Ha[116]. H0 will be rejected with a significance level α if (−2 ln Λ) is higher than
the (1 − α) quantile of the χ2

∆d f distribution:

α = P(X > −2 ln Λ | H0)

= χ2
∆d f (X > −2 ln Λ)

= 1 − χ2
∆d f (X ≤ −2 ln Λ)

= 1 − CDFχ2
∆d f

(−2 ln Λ) (2.24)

⇒ (1 − α) = CDFχ2
∆d f

(−2 ln Λ) (2.25)

Here, CDFχ2
∆d f

(x) denotes the cumulative distribution function of a χ2 distribution with
∆d f degrees of freedom.
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Figure 2.13: Variant consequences calculated by Ensembl VEP. Figure from [33]. ©
EMBL-European Bioinformatics Institute. Licensed under Apache 2.0.

2.9 Ensembl VEP
Ensembl Variant Effect Predictor (VEP) is a tool developed by the Ensembl project
that predicts the functional consequences of genetic variants (mutations) in genomic
data. It is widely used in genomics research and clinical genetics to interpret the impact
of genetic variations on genes, transcripts, and proteins. VEP takes genetic variants,
such as single nucleotide variants (SNVs), insertions, deletions, and structural variants,
and annotates them with information about their potential effects on genes and gene
products according to the Sequence Ontology[30]. This includes predicting whether a
variant affects protein-coding regions (e.g., missense, nonsense, frameshift mutations),
splice sites, regulatory elements, and other genomic features. Figure 2.13 shows an
overview of the annotated consequences in Ensembl VEP version 108.

VEP can be extended with plugins to include additional variant annotations, such
as LOFTEE or CADD. Notably, VEP offers a plugin to identify stop-gained variants
that escape NMD, based on the rules outlined in section 2.3. In particular, the NMD
plugin of VEP will assign the sequence ontology term “NMD_escaping_variant”, if a
stop-gained variant is located on the last coding exon of a transcript, within the last 50
bp of the penultimate coding exon of a transcript, within the first 100 bp of the coding
sequence of a transcript, or within an intronless transcript[32].

2.10 LOFTEE
The Loss-Of-Function Transcript Effect Estimator (LOFTEE) is a tool designed to pre-
dict a high-confidence subset of loss-of-function variants within protein-coding genes,
particularly those likely to induce nonsense-mediated decay[70].
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To distinguish between “high-confidence” (HC) and “low-confidence” (LC) variants,
LOFTEE applies a series of filters. For stop-gained and frameshift variants, it consid-
ers factors such as proximity to transcript ends and splice site characteristics. Variants
that are near the end of transcripts or land in exons with non-canonical splice sites may
be flagged as “low-confidence”. Similarly, for splice-site variants, LOFTEE filters out
variants that only affect splicing of untranslated regions (UTRs) or are not predicted to
affect a donor site. It also considers evolutionary aspects and intron characteristics to fil-
ter out certain variants. In addition to assessing known LoF-inducing variants, LOFTEE
also makes predictions of other splice (OS) variants that may cause LoF by disrupting
normal splicing patterns. It uses logistic regression models to evaluate whether variants
significantly disrupt extended splice sites and SVM models to predict variants creating
de novo donor splice sites leading to frameshifts.

2.11 Combined Annotation Dependent Depletion (CADD)
Combined Annotation Dependent Depletion (CADD) is a tool designed to estimate the
deleteriousness of genetic variants in the human genome[77]. It integrates diverse anno-
tations from genomic features and functional elements to assign a variant-specific score,
which reflects the predicted impact of the variant on protein function, gene expression,
and regulatory elements. It was trained on a binary distinction between simulated de
novo variants and variants that have arisen and become fixed in human populations.

As input features, CADD utilizes annotations obtained using Ensembl VEP (sec-
tion 2.9), conservation and selection scores, epigenetic information, and other anno-
tations available for subsets of variants. Examples of annotations include transcript in-
formation like distance to exon-intron boundaries, DNase hypersensitivity, transcription
factor binding, expression levels in commonly studied cell lines and amino acid substi-
tution scores for protein coding sequences[120, 121]. Notably, CADD v1.6 introduced
additional splicing annotations from SpliceAI[66] and AbSplice-DNA[144] to improve the
improved the prediction of splicing effects[120].

2.12 Datasets
2.12.1 GTEx
The Genotype-Tissue Expression (GTEx) project is a large-scale genome and transcrip-
tome sequencing study to investigate gene expression and regulation and its relationship
to genetic variation across different human tissues[23, 53]. As part of the GTEx project,
samples were therefore collected from various tissues obtained post-mortem from more
than 800 healthy donors, followed by sequencing the genomes of the donors and the tran-
scriptomes of the tissue samples. Figure 2.14 shows an overview of the tissue sampling
sites used in the GTEx project.

36



2.12 Datasets

Created by Mariya Kahn and the GTEx Portal team

Pituitary

Spinal cord (cervical c-1)

Amygdala

Putamen (basal ganglia)

Caudate (basal ganglia)

Cortex / Frontal Cortex (BA9)

Cerebellum / Cerebellar Hemisphere

Substantia nigra

Hippocampus

Nucleus accumbens (basal ganglia)

Hypothalamus

Anterior cingulate cortex (BA24)

Adrenal Gland

Liver

Kidney - Cortex

Kidney - Medulla

Nerve - Tibial

Artery - Tibial

Whole Blood

Cells - EB V-transformed lymphocytes

Testis

Prostate

Bladder

Colon - Sigmoid

Colon - Transverse

Cells - Cultured fibroblasts

Vagina

Uterus

Ovary

Fallopian Tube

Small Intestine - Terminal Ileum

Adipose - Visceral (Omentum)

Stomach

Lung

Heart - Left Ventricle

Esophagus - Mucosa

Esophagus - Muscularis

Esophagus - Gastroesophageal Junction

Thyroid

Heart - Atrial Appendage

Minor Salivary Gland

Spleen

Cervix - Ectocervix

Cervix - Endocervix

Breast - Mammary Tissue

Pancreas

Adipose - Subcutaneous

Muscle - Skeletal

Skin - Not Sun Exposed (Suprapubic)

Artery - Aorta

Artery - Coronary

Skin - Sun Exposed (Lower leg)

Figure 2.14: Tissue sampling sites used in the GTEx project. Obtained with permission
from [54]. © 2021 Broad Institute of MIT and Harvard.
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The Genotype-Tissue Expression (GTEx) Project was supported by the Common
Fund of the Office of the Director of the National Institutes of Health, and by NCI,
NHGRI, NHLBI, NIDA, NIMH, and NINDS and provides raw and processed data at
https://gtexportal.org/. Note that raw sequencing data as well as genotypes are only
available after application through dbGaP.

2.12.2 Answer ALS
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing the degen-
eration of motor neurons. Patients with ALS suffer from progressive muscle weakness
which leads to paralysis and ultimately death from respiratory failure[58]. In Europe,
ALS occurs with a frequency of 2-3 cases per 100,000 individuals. Although there are
possible therapies to slow down disease progression, as of today, ALS disease cannot
be cured and typically ends with death from respiratory failure after 24-48 months. A
popular exception was the astrophysicist Stephen Hawking, who lived with ALS for 55
years after his initial diagnosis[118].

The Answer ALS Research Program is a comprehensive research initiative aimed at
uncovering the biological mechanisms underlying ALS[10]. To this end, the Answer
ALS program provides a biological and clinical resource of patient iPSC-derived motor
neurons, and longitudinal clinical and smartphone data from over 1,000 patients with
ALS. Induced pluripotent stem cells (iPSCs) are pluripotent stem cells that are generated
directly from adult blood cells. These iPSCs can derive into any of the cell types that
make up the body, such as motor neurons. In the Answer ALS program, patients
provide a blood sample from which iPSC-derived motor neurons are generated. These
iPSC-derived motor neurons are then analysed with a multi-omics approach including
whole-genome sequencing, RNA transcriptomics, ATAC-sequencing and proteomics.

2.12.3 Mitochondrial disease dataset
Mitochondrial diseases are a group of genetic disorders that result from abnormalities in
mitochondria[52]. Mitochondria are membrane-bound cell organelles responsible for pro-
ducing ATP (adenosine triphosphate) through oxidative phosphorylation of glucose[3].
ATP is the central unit that powers chemical reactions within our cells. Symptoms of
mitochondrial disorders can vary widely and may include muscle weakness, vision and
hearing problems, developmental delays, neurological issues, and organ dysfunction. The
severity and specific symptoms of mitochondrial disorders depend on which cells and or-
gans are affected and to what extent mitochondrial function is impaired. Mitochondrial
diseases can be caused by genetic variation in both nuclear and mitochondrial DNA. It is
estimated that between 5 and 20 out of 100,000 individuals are affected by mitochondrial
diseases[52].

The mitochondrial disease dataset used in this work is described in Yépez et al.
(2022)[149] and contains whole-exome sequencing and skin fibroblasts transcriptome se-
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quencing data of more than 300 individuals suspected to suffer from a mitochondrial
disease.

2.12.4 UK Biobank
The UK Biobank is a large-scale biomedical database and research resource that in-
cludes genetic, clinical, and lifestyle information from around 500,000 participants in
the United Kingdom[136]. It aims to improve the prevention, diagnosis, and treatment
of various diseases by providing researchers with access to health records, questionnaires,
and genome sequence data of the participants.

In this work, I used data from about 200,000 individuals for whom both whole-exome
sequencing and microarray genotyping data were available at the time of the study[138].
Note that, as of today, there are whole-exome and additionally whole-genome sequencing
data for more than 490,000 participants available in the UK Biobank[91].

2.12.5 ClinVar
ClinVar is a freely accessible public archive of reports on the relationships among hu-
man variations and phenotypes, with supporting evidence[86]. It aggregates information
about genomic variation and its relationship to human health, including interpretations
of the clinical significance of variants. ClinVar provides classifications for the clinical
significance of genetic variants, ranging from pathogenic (causing or contributing to dis-
ease), likely pathogenic, benign (not associated with disease), likely benign, uncertain
significance, and others.

2.12.6 GnomAD
The Genome Aggregation Database (gnomAD) is a comprehensive resource that ag-
gregates and harmonizes exome and genome sequencing data from a wide range of
large-scale sequencing projects[70]. It contains data from both population-based and
disease-focused studies, providing information on genetic variants observed in diverse
human populations. gnomAD is widely used by researchers and clinicians to assess the
frequency and distribution of genetic variants across different populations and to identify
rare variants associated with diseases. Figure 2.15 shows an overview of the number of
whole-exome and whole-genome sequencing samples included in different GnomAD re-
leases as well as its predecessor, ExAC. Note that ExAC and the GnomAD v2 release are
mapped to the GRCh37 reference sequence while newer releases are mapped to GRCh38.
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Figure 2.15: Sample size across major ExAC/gnomAD releases. Figure from [135]
(public domain).
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3 Benchmarking aberrant gene
expression prediction in human tissues

3.1 Motivation
Aberrant gene underexpression is typically indicative of severely impaired or lost function.
The development of algorithms prioritizing variants as potential genetic causes of gene
expression outliers identified in RNA-seq samples has revealed that underexpression
outliers are frequently associated with rare genetic variants (see section 1.3.3). However,
before this work there was no algorithm predicting aberrant underexpression of genes
based on an individual’s genome. Also, the performance of existing variant annotation
tools in the identification of gene underexpression outliers was not evaluated. To address
this unmet need, I developed the first benchmark for predicting aberrantly expressed
protein-coding genes in human tissues. Then I used this benchmark to evaluate the
performance of existing variant annotation tools on predicting underexpression outliers
(fig. 3.1). I focused specifically on underexpression outliers, as these can be expected
to have severely impaired or lost function, whereas the functional consequence of an
overexpression outlier is less clear and could potentially result in a gain of function.

3.2 A benchmark for tissue-specific aberrant expression
prediction

To create the benchmark, I used gene expression outlier calls from the Genotype-Tissue
Expression (GTEx) project. GTEx provides a large resource of whole-genome sequencing
and RNA expression data from a wide range of organs and body parts (section 2.12.1).
In its version 8 release, it provides more than 17,000 RNA-seq samples (see section
section 2.4.2) of 948 assumed healthy individuals, collected postmortem from 54 different
tissues. Most of these individuals also have paired whole-genome sequencing data (see
section section 2.4) available.

I downloaded the GTEx RNA-seq read alignment files in the BAM format from dbGaP
(phs000424.v8.p2). GTEx v8 provides variant calls for SNVs and small INDELs, but
not for structural variants. Since previous studies showed that structural variants can
potentially explain a large proportion of outliers (section 1.3.3), I selected 635 whole-
genome sequences from GTEx version 7 (dbGaP entry phg000830.p1), an older release
aligned to the GRCh37 reference genome for which structural variant calls are available
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DNA

Predict

RNA

Figure 3.1: A benchmark for aberrant gene expression prediction across human
tissues. The aim is to predict whether protein-coding genes are aberrantly underexpressed
across human tissues based on DNA and, optionally, RNA-seq data of clinically accessible tis-
sues. Therefore, I created a benchmark for aberrant underexpression prediction by processing
11,096 RNA-seq samples from 633 individuals across 48 tissues from GTEx. Figure created with
BioRender.com.
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from Ferraro and colleagues[39].

3.2.1 Expression outlier calling
As a first step, it was necessary to identify gene expression outliers in the GTEx
dataset. To this end, Vicente A. Yépez applied the aberrant expression module of
DROP v1.1.0[150] based on OUTRIDER (section 2.5)[14], separately for each tissue in
the GTEx dataset. First, in every RNA-seq sample, the number of fragments (read pairs)
per gene was counted by assigning a fragment to a gene if and only if the read pair was
entirely aligned within the gene. This means that the same fragment might be assigned
to more than one gene. Definitions for gene regions were taken from the GRCh38 pri-
mary assembly release 34 of the GENCODE project[45]. Genes with less than 1 fragment
per kilobase of transcript per million mapped reads (FPKM, see section 2.4.2) in 95%
or more of the samples in a tissue were considered insufficiently expressed in that tissue
and were removed from further analysis. The aberrant expression module of DROP then
applied OUTRIDER, a statistical method designed for identifying genes with abnormal
expression in RNA-seq datasets. To ensure sufficient statistical power, we excluded tis-
sues with less than 100 RNA-seq samples from OUTRIDER analysis. Therefore, six
tissues were excluded from OUTRIDER analysis (bladder, endocervix, ectocervix, fal-
lopian tube, kidney medulla, and kidney cortex). I further labeled all observations with
a False Discovery Rate (FDR) less than 20% as gene expression outliers as this relaxed
FDR cutoff of 20% turned out to help by leading to more robust evaluations and models.
Using this FDR, OUTRIDER identified 42,727 underexpressed and 70,978 overexpressed
genes as significant outliers, across 48 tissues from 946 individuals.

3.2.2 Filtering of expression outliers
To filter the expression outlier calls, I first subsetted them to protein-coding genes and
removed all individuals without whole-genome sequencing data. Next, I tried to reduce
the proportion of data points that could not be detected as outliers due to a lack of
statistical power. An empirical investigation determined that, when applying an FDR
cutoff of 5%, recovering half of the transcriptome-wide two-fold reduction outliers re-
quires an expected fragment count (µs,g) of at least 450[149]. Therefore, I removed all
observations for which OUTRIDER reported an expected fragment count of less than
450. Also, I removed RNA-seq samples with more than 50 outliers. Samples with a
high number of outliers could indicate cases where OUTRIDER was unable to fit the
data accurately, or these are samples with globally affected gene expression, leading to
widespread aberrant expression across the genome. Such expression aberrations are not
predictable based on local sequence variation alone. Filtering samples with more than
50 outliers removed only 0.9% of samples (fig. 3.2), but reduced the total number of
outliers by 10.6%.

The final dataset contained 17,637 underexpression outliers, 25,939 overexpression
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3 Benchmarking aberrant gene expression prediction in human tissues

Figure 3.2: Only 0.9% of GTEx transcriptome sequencing samples have more than
50 outliers. The figure shows the cumulative proportion of RNA-seq samples (y-axis) that
have at most a given number of outliers (x-axis) in the GTEx dataset. The vertical dashed line
denotes the 50 outlier cutoff, which 99.1% of samples passed (horizontal dashed line).
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3.2 A benchmark for tissue-specific aberrant expression prediction

outliers, and 100,281,961 non-outliers in 11,096 RNA-seq samples from 633 individuals
across 48 tissues (table 3.1). This corresponds to about 1.6 underexpression and 2.3
overexpression outliers per RNA-seq sample. The class imbalance between outliers and
non-outliers was large, with an outlier frequency of only 0.04% among observations.
Underexpressed outliers appeared in 5,428 distinct genes and overexpressed outliers in
8,016 distinct genes. With a total of 1,744 samples, the majority of RNA-seq samples
originate from brain tissues, closely followed by 1,219 samples from skin tissues (fig. 3.3).
In contrast, the median number of samples per tissue type in the GTEx dataset is only
246.

90% of the overexpression outliers and 78% of the underexpression outliers are single-
tons, i.e. only aberrantly expressed in a single tissue (fig. 3.4). Further, most tissues
have in median two overexpression and two underexpression outliers per sample, with
median numbers ranging between one and three outliers of a certain kind (fig. 3.5a).
This observation also holds when comparing samples across tissue types (fig. 3.5b).

The decision against the version 8 genome release of GTEx reduced the number of
expression outliers by about 20%. However, this decision enabled the inclusion and
consideration of structural variants in the benchmark.

3.2.3 Rare variant filtering
Given the low prevalence of expression outliers (0.04% of observations), I reasoned that
variants with an allele frequency above 0.1% are unlikely to cause an expression outlier.
Therefore, I removed SNPs and short INDELs if they had a minor allele frequency in
the general population ≥ 0.001 based on the Genome Aggregation Database (gnomAD
v2.1.1, see section 2.12.6) and were found in at least 2 individuals within GTEx. I
also removed variants that were supported by less than 10 reads and did not pass a
conservative genotype-quality filter of GQ > 30. For structural variants, I only filtered
for the number of occurrences in the GTEx dataset and kept those present in less than
two individuals.

Further, I focussed on cis-regulatory variants by considering variants located within
the gene and up to 5,000 bp around the gene to fully cover promoter and transcription
termination regions, resulting in a total of 8.2 million rare variants. 59% (10,429) of
underexpression outliers and 43% (11,144) of overexpression outliers harbor rare vari-
ants within ± 5,000 bp of the gene (fig. 3.6a). Therefore, with this set of variants, the
maximum achievable recall is limited to 59% of the underexpression outliers. Consider-
ing only singleton outliers, i.e. genes in individuals that are aberrantly expressed in a
single tissue only, 40% of the overexpression singletons and 44% of the underexpression
singletons harbor rare variants with 5,000 bp of the gene (fig. 3.6b).
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3.2 A benchmark for tissue-specific aberrant expression prediction

Figure 3.3: Most RNA-seq samples in the GTEx dataset are from skin or brain
tissues. The figure shows the number of samples per tissue (a) and tissue type (b). In total,
there are 11,096 RNA-seq samples in the GTEx dataset.
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3 Benchmarking aberrant gene expression prediction in human tissues

Figure 3.4: 90% of the overexpression outliers and 78% of the underexpression out-
liers are singletons. The figure shows the cumulative proportion of individuals and genes
(y-axis) that are an outlier in at most a given number of tissues (x-axis) in the GTEx dataset.
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3.2 A benchmark for tissue-specific aberrant expression prediction

Figure 3.5: In most tissues, samples have in median two underexpression and two
overexpression outliers. The figure shows the outliers per tissue (a) and tissue type (b) in
the GTEx dataset, colored by the outlier type.
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3 Benchmarking aberrant gene expression prediction in human tissues

Figure 3.6: Not all outliers can be explained by variants within gene regions. (a)
Proportion of overexpression outliers, underexpression outliers and non-outliers harboring rare
variants within ± 5,000 bp of the gene. (b) Fraction of singletons harboring rare variants within
± 5,000 bp of the gene.
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3.3 Performance of variant annotation tools in aberrant expression prediction

3.2.4 Benchmark task and evaluation metric
The benchmark task is to predict whether some protein-coding gene is aberrantly un-
derexpressed in a certain human tissue, based on the rare variants of the individual.
Due to the large class imbalance in the expression outlier benchmark dataset, I chose to
evaluate models using precision-recall curves and summarize them with the area under
the precision-recall curve (AUPRC, see section 2.6).

3.3 Performance of variant annotation tools in aberrant
expression prediction

After creating the benchmark dataset, I set out to test whether existing variant annota-
tion tools that were not specifically designed to predict aberrant underexpression could
provide informative signals.

3.3.1 Enrichment of variant consequences
As a first step, I evaluated whether certain types of variant consequences are enriched
among expression outliers. To this end, I first calculated the consequences of all rare
variants using Ensembl VEP (section 2.9) v108 and removed any annotations that do
not affect the canonical transcript of a gene, as annotated by VEP. Then, I determined
the proportion of genes that are affected by variants with a certain consequence among
outlier classes (fig. 3.7a).

Among underexpression outliers, I discovered a strong enrichment of frameshifts, vari-
ants affecting start and stop codons, and splicing variants which are associated with
triggering nonsense-mediated decay of the transcript (section 1.3). Another category of
variants frequently observed among underexpression outliers were variants affecting the
5’ UTR, a region that is important for transcription initiation (section 1.3).

The enrichment of missense variants and 3’ UTR variants was less strong. Missense
variants affect the protein sequence without changing its length. Although missense
variants mainly affect the functionality of the protein, changes in the encoded protein
sequence can also lead to ribosomal stalling and mRNA degradation by the ribosome-
mediated quality control and therefore a reduction in gene expression levels[125]. The
3’ UTR contains signals that are important for transcription termination (section 1.3).
However, while missense variants and 3’ UTR variants were found more frequently among
underexpression outliers than in other classes, these types of variants were also present
in many overexpression outliers and non-outliers.

A particularly strong enrichment for underexpression outliers was found in transcript
ablations, which were inferred from the structural variant deletion calls. Out of 320
observations harboring transcript ablations from 43 GTEx individuals, 199 observations
from 33 individuals were underexpression outliers. None of the overexpression outliers
were harboring a transcript ablation. Transcript ablations typically delete the whole
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3 Benchmarking aberrant gene expression prediction in human tissues

Figure 3.7: Enrichment of various variant annotations in expression outliers across
tissues. In total, there are 17,637 underexpressed genes (red), 25,939 overexpressed genes (blue),
and 100,281,961 non-outliers (gray) across all tissues. (a) Proportion of underexpression outliers,
overexpression outliers, and non-outliers with a rare variant of a given annotation. Error bars
mark 95% binomial confidence intervals. (b) Distribution of gene-level CADD scores among
genes with CADD-annotated variants. (c) Distribution of gene-level AbSplice scores among
genes with AbSplice-annotated variants. For all boxplots: Box label, sample size; center line,
median; box limits, first and third quartiles; whiskers span all data within 1.5 interquartile ranges
of the lower and upper quartiles.
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3.3 Performance of variant annotation tools in aberrant expression prediction

transcript from the sequence and therefore are expected to have a large impact on gene
expression.

Overall, these findings align with previous studies (see section 1.3.3).

3.3.2 LOFTEE
Furthermore, I explored the use of LOFTEE, a tool designed to predict a high-confidence
subset of loss-of-function variants, particularly those likely to induce nonsense-mediated
decay. LOFTEE implements various filters, such as excluding stop-gained and frameshift
variants that are within 50 bp of the end of the transcript as these typically escape
nonsense-mediated decay, or variants that only affect splicing in untranslated regions.

To generate LOFTEE annotations for rare variants, I used the LOFTEE plugin for
VEP and removed all LOFTEE variants affecting non-canonical transcripts (canonical
as annotated by VEP).

In the GTEx dataset, I found that over 17% of aberrantly underexpressed genes had a
LOFTEE-positive, a stark contrast to non-outliers where less than 1% had a LOFTEE
variant (fig. 3.7a).

3.3.3 AbSplice
The splice sites employed by LOFTEE and VEP are derived exclusively from the genome
annotation. Consequently, these tools do not take into account any splice sites that are
not annotated in the reference genome. However, standard genome annotations are not
tissue-specific and the splicing events can vary significantly between different tissues or
developmental stages[9]. Also, many weak splice sites, i.e. sites that are spliced at a
low level, are missing from standard genome annotations. However, these sites can be
activated by genetic variants, leading to the formation of novel exons[26, 82].

AbSplice is a recent tool that predicts aberrant splicing across tissues using a more
comprehensive map of splice sites, including unannotated weak splice sites, and their
tissue-specific usage[144]. I contributed to the development of AbSplice in data cura-
tion, validation, formal analysis, and visualizations. For a comprehensive and logically
articulated thesis, I here summarize the results of AbSplice.

Using 16,213 RNA-seq samples of the Genotype-Tissue Expression (GTEx) dataset,
spanning 49 tissues and 946 individuals, we established a comprehensive benchmark
for predicting variants leading to aberrant splicing in human tissues, spanning over 8.8
million rare variants (fig. 3.8a). We then evaluated the predictive performance of two
state-of-the-art sequence-based splicing models, MMSplice[20] and SpliceAI[66](fig. 3.8b).
MMSplice predicts quantitative usage changes of predefined splice sites within a 100-bp
window of a variant. SpliceAI predicts the creation or loss of splice sites within a 50-bp
window of a variant, independent of gene annotations. The performance evaluation re-
vealed limited performance of both models, with an overall precision of 8% for MMSplice
and of 12% for SpliceAI at 20% recall (fig. 3.9).
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3 Benchmarking aberrant gene expression prediction in human tissues

Figure 3.8: Study design and main findings of AbSplice. The aim is to predict whether
rare variants are associated with aberrant splicing across 49 human tissues. (a) A comprehensive
benchmark for aberrant splicing was established by processing GTEx samples with a recently
published aberrant splicing caller[105]. Based on this benchmark, predictors could be assessed
and developed that take as input DNA sequence and, optionally, RNA-seq data of clinically
accessible tissues. (b) Benchmarking revealed modest performance of currently used algorithms
based on DNA only, a substantial performance improvement when integrating these models
with SpliceMap, a quantitative map of tissue-specific splicing we developed in this study, and
further improvements when also including direct measures of aberrant splicing in accessible
tissues. Figure created with BioRender.com.
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Figure 3.9: AbSplice outperforms state-of-the-art splicing models in predicting aber-
rant splicing. (a) Precision-recall curve comparing the overall prediction performance on all
GTEx tissues of SpliceAI, MMSplice using GENCODE annotation, AbSplice-DNA, gene-level
aberrant splicing P-values in fibroblasts, and AbSplice-RNA, which integrates AbSplice-DNA
features with features from RNA-seq from fibroblasts. (b) Distribution of the AUPRC of the
models in c across tissues (n = 49). Center line, median; box limits, first and third quartiles;
whiskers span all data within 1.5 interquartile ranges of the lower and upper quartiles; P values
were computed using the paired one-sided Wilcoxon test.

Next, we set out to improve on predicting aberrant splicing across human tissues
(fig. 3.8b). Based on GTEx, we created a tissue-specific splicing annotation (SpliceMap)
of acceptor and donor splice sites and their usage (Ψre f , reference level of the percent
spliced-in value for a particular splicing site) in 49 human tissues. We then trained
AbSplice-DNA, a model integrating SpliceMaps with MMSplice and SpliceAI, to predict
aberrant splicing across tissues. This led to a threefold increase of precision at the same
recall, with a significantly higher AUPRC consistently across tissues (fig. 3.9). These
performance increases replicated in two independent cohorts.

Additionally, we found that RNA-seq from clinically accessible tissues complements
DNA-based splicing predictions when incorporated into an integrative model AbSplice-
RNA, increasing precision to 60% at 20% recall.

While investigating false positive predictions, we suspected that some of these might
actually be correct. When aberrant splicing isoforms trigger nonsense-mediated mRNA
decay, these isoforms barely have any reads in RNA-seq data and hence are typically
not detected by aberrant splicing callers. However, the extent to which aberrant splicing
causes nonsense-mediated mRNA decay was not clear at that time. Therefore, I now in-
vestigated the enrichment of gene-level AbSplice-DNA scores, generated by Nils Wagner,
among underexpression outliers in GTEx.

I found that AbSplice-DNA scores were in median 10 times higher among underexpres-
sion outliers than among non-outliers and overexpression outliers (fig. 3.7b), suggesting
an effect of aberrant splicing on aberrant gene expression. About 28% (5,004) of the
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3 Benchmarking aberrant gene expression prediction in human tissues

underexpression outliers harbored an AbSplice-DNA annotated rare variant.

3.3.4 CADD
Another tool that could potentially be predictive of expression outliers is CADD[77, 120,
121], a tool to estimate the deleteriousness of a genetic variant. It was trained on a
binary distinction between simulated de novo variants and variants that have arisen and
become fixed in human populations (see section 2.11). The advantage of CADD is that
it can score any possible human SNVs or small INDELs.

To obtain CADD scores, I applied the CADD plugin of VEP to all SNVs and INDELs
in the GTEx dataset and max-aggregated all variant scores within ± 5,000 bp of each
gene. While 10,429 underexpression outliers had at least one rare variant within this
range, the CADD plugin only reported scores for 9,568 genes. This deviation is due to
some variants not being available in the precomputed set of CADD scores that the VEP
plugin uses to annotate variants.

I found that the gene-level CADD scores are in the median about 13 times higher in
underexpression outliers than in non-outliers and overexpression outliers (fig. 3.7c).

3.3.5 Performance comparison of LOFTEE, AbSplice, and CADD on
aberrant underexpression prediction

In GTEx, all three tools show mild predictive performance (fig. 3.10). LOFTEE-positive
variants recalled 16.7% of the underexpression outliers at a precision of 9.7%, with a
median AUPRC across tissue types of 1.1%. CADD, with a median AUPRC of 0.9%,
never passes this level of precision. At a low recall rate of 0.1%, AbSplice reaches a peak
precision of 31.6%, suggesting that the most extreme splicing outliers indeed can lead to
aberrant underexpression of genes. However, AbSplice is overall the worst-performing
model, reaching only 0.5% AUPRC in median across tissue types.

3.4 Summary
In conclusion, I created a new benchmark for aberrant expression prediction based on
GTEx. I found that the variant annotation tools LOFTEE, AbSplice and CADD show
strong enrichment in underexpression outliers. However, the predictive value of these
models is limited.
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Figure 3.10: Performance of various variant annotations in underexpression predic-
tion. (a) Precision-recall curve for all tissues combined. LOFTEE shows up as a single point
because it is a binary filter. (b) Distribution of average precision (AUPRC) across 26 GTEx tis-
sue types. P-values were obtained using a paired Wilcoxon test. Center line, median; box limits,
first and third quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and
upper quartiles.
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4 AbExp: Predicting aberrant gene
underexpression across human tissues

4.1 Motivation
Given the limited performance of existing variant annotation tools, I wanted to develop
a specialized method that can improve the prediction of underexpression outliers. In this
section, I will describe the development of AbExp, a model combining various variant and
tissue annotations to significantly improve the prediction of aberrant underexpression
outliers across 48 human tissues based on genetic variants (fig. 4.1).

4.2 Training and evaluation procedure
One observation in the GTEx dataset is a combination of a gene in an individual and
tissue. The aim is to predict whether this observation is an underexpression outlier, based
on a set of (gene-level) features. To avoid overfitting on individual-specific variants,
I split all 633 individuals of the GTEx dataset into six cross-validation groups with
approximately equal numbers of underexpression outliers and tissues (fig. 4.2). To train
and evaluate a prediction model, the model was trained six times on five of these folds
and evaluated on the held-out fold, each time using a different held-out fold as the
validation set. Precision recall curves were then derived from the predicted scores of
the six validation folds. AUPRC distributions were calculated across 26 tissue types to
group together highly similar tissues, notably many regions of the brain (see also fig. 3.3).
This grouping by tissue type avoids reporting inflated performance driven by a set of
highly similar tissues.

The here described training and evaluation procedure was used for all the models
presented in this chapter.

4.3 Integrating rare variant annotations to predict
underexpression outliers across tissues

I started with training a simple tissue-independent model integrating CADD, LOFTEE,
and VEP consequences of rare variants. I did not include transcript ablations inferred
from structural variants as structural variant calls are often not available and I wanted
to investigate their effect separately.
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Figure 4.1: Improving aberrant underexpression prediction in human tissues. By
assessing various variant and tissue annotations, it became evident that predictions could be
significantly enhanced by weighting variant effects with tissue-specific isoform proportions and
incorporating the expression variability of a gene. Further integration of expression measure-
ments from clinically accessible tissues led to another two-fold improvement. Figure created
with BioRender.com.
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(tissue, individual, gene) Features
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6-fold cross 
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Figure 4.2: Cross-validation scheme. One observation in the dataset is a combination
of a gene in an individual and tissue. The aim is to predict whether this observation is an
underexpression outlier, based on a set of (gene-level) features. The whole dataset is split into six
cross-validation folds with approximately equal numbers of underexpression outliers and tissues.
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4.4 Accounting for tissue-specific isoform expression

4.3.1 Calculation of gene-level features
Following the same procedure as in chapter 3, I used Ensembl VEP with LOFTEE
and CADD plugins to annotate consequences, identify LOFTEE-positive variants, and
predict CADD scores of all rare variants within 5,000 bp of genes. Then I removed any
annotations that do not affect the canonical transcript of a gene (canonical as annotated
by VEP).

4.3.2 Quantitative prediction of outlier state
Using these features, I trained a non-linear regression model to quantitatively predict the
gene expression z-score, a value describing how many standard deviations the observed
expression level deviates from the average population. While the prediction task is
a binary classification of underexpression outliers, predicting the underlying standard-
normal distributed z-scores (fig. 4.3) led to better models, as it allowed to overcome
the large class imbalance between underexpression outliers and non-outliers by learning
moderate effects that do not necessarily lead to significant outliers.

To obtain the gene expression z-scores, I quantile-mapped the OUTRIDER-fitted frag-
ment count distributions (eq. (2.4)) to the standard normal distribution as follows:

z-score = CDF−1
N(0,1) (CDFNB(x|µ, θ)) (4.1)

, where CDF−1
N(0,1) is the inverse cumulative distribution function of the standard normal

distribution and CDFNB(x|µ, θ) the negative-binomial cumulative distribution function.
An illustration of this quantile mapping can be seen in fig. 4.4.

As model architecture, I used a non-linear gradient-boosted decision trees model [59]
from the LightGBM[74] framework with default parameters (see section 2.7.4).

Evaluating the performance of this model on held-out data showed that the predicted z-
scores consistently outperformed ranking based on CADD scores (fig. 4.5a). Furthermore,
the integrative model achieved the same precision at the same recall as filtering by
LOFTEE variants, with the added benefit of providing a continuous score that allows
the selection of more stringent cutoffs to yield a higher precision (up to 13%, fig. 4.5a).
Across tissue types, this first integrative model significantly outperformed CADD and
LOFTEE according to the average precision (fig. 4.5b).

4.4 Accounting for tissue-specific isoform expression
As described, the predictions of this first integrative model were tissue-independent:
LOFTEE, CADD and VEP consequences provide the same effect annotation for a given
transcript isoform, regardless of the tissue. Also, the considered canonical transcript
isoforms were not tissue-specific. Therefore, the feature set for a gene of an individual
does not differ between tissues and, consequently, neither do the predictions of this first
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a

b

Figure 4.3: Gene expression z-scores are standard-normally distributed. (a) His-
togram of 100,325,537 measured z-scores. The black curve shows the density of a standard-normal
distribution. (b) Boxplot of measured z-scores among overexpressed outliers, non-outliers, and
underexpressed outliers.
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population averageobservedpopulation averageobserved

5% 5%

Figure 4.4: Quantile-mapping of OUTRIDER-fitted fragment count distribution to
standard normal distribution. (a) Example of OUTRIDER-fitted fragment count distribu-
tion with a population average (blue dashed line) of µ = 450 and a dispersion of θ = 10. An
observed fragment count of 242 (red dashed line) or less would be estimated to be present in less
than 5% of the population (red area). (b) Observed (red dashed line) and expected (blue dashed
line) fragment counts from (a) mapped to the standard normal distribution. The red area marks
5% of the population having an observed fragment count of 242 or less. This translates to a
z-score of -1.96.
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4 AbExp: Predicting aberrant gene underexpression across human tissues

Figure 4.5: An integrative model outperforms both LOFTEE and CADD on predict-
ing underexpression outliers. (a) Precision-recall curve for all tissues combined. LOFTEE
shows up as a single point because it is a binary filter. (b) Distribution of average precision
(AUPRC) across 26 GTEx tissue types. P-values were obtained using a paired Wilcoxon test.
Center line, median; box limits, first and third quartiles; whiskers span all data within 1.5 in-
terquartile ranges of the lower and upper quartiles.
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4.4 Accounting for tissue-specific isoform expression

integrative model. However, variants can have tissue-dependent effects as the transcript
isoforms of a gene are often expressed at different proportions across tissues[25].

4.4.1 Calculation of transcript isoform proportions in each tissue
To investigate the effect of tissue-specific isoform expression in GTEx, I first estimated
the expression proportion of an isoform i in a tissue t as the median TPM proportion
across individuals among all isoform of the same gene g:

proportion(i, t) = medians∈individuals

(
tpm(i, t, s)

∑x∈isoforms(g) tpm(x, t, s)

)
(4.2)

, with tpm(i, t, s) as the transcript-level TPM obtained from GTEx v8 (dbGaP Accession
phs000424.v8.p2).

An example for the impact of tissue-specific isoform expression in GTEx can be seen in
fig. 4.6. Here, ENST00000358514, the canonical transcript of PSMB10 according to the
MANE annotation[107], was estimated to generate only about 4% of PSMB10 total gene
expression in putamen. The vast majority (91%) of PSMB10 gene expression in putamen
was attributed to another transcript, ENST00000570985. Conversely, in fibroblasts, the
canonical transcript contributed to nearly 48% of the total gene expression. Exon 4 is not
included in the transcript ENST00000570985 but is included in the canonical transcript
ENST00000358514, explaining why a frameshift variant in exon 4 was associated with
a high impact on gene expression in cultured fibroblasts but showed a limited effect in
putamen (fig. 4.6a,b).

When investigating the amount of total gene expression contributed by canonical tran-
scripts (using MANE-select[107] as the canonical transcript definition) across genes and
tissues, I found that, in general, only 30% of the canonical transcripts contributed to
more than 90% of the total expression of their gene and as much as 18% of the canon-
ical transcripts contributed to less than 10% of their gene’s total expression (fig. 4.7).
Therefore, when considering only the variant consequence assigned to a single transcript
isoform, relevant information is lost even if the isoform is annotated as the canonical
one.

4.4.2 Calculation of gene-level features
To address this issue, I created a tissue-specific feature set by weighting isoform-specific
variant annotations such as the VEP consequences and LOFTEE classification by the
proportion of affected isoforms i per gene g and tissue t:

wv(t) = ∑
i∈isoforms(g)

proportion(i, t) · δv affects i (4.3)

, where δv affects i is 1 if the variant affects the isoform, otherwise 0, and proportion(i, t)
as defined in eq. (4.2). All resulting variant annotations were then max-aggregated per
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Figure 4.6: Tissue-specific isoform expression in PSMB10 leads to tissue-specific
aberrant gene expression. (a) Sashimi plot of PSMB10 for two individuals, one carry-
ing no rare variant in this region (control, upper tracks), and one carrying a heterozygous
frameshift variant (dashed line and lower tracks), in cultured fibroblasts (top) and putamen
(bottom). The frameshift variant is located on exon 4 which is included on the canonical tran-
script (ENST00000358514) but not on transcript ENST00000570985. On the right, the barplots
show the transcript expression proportions on each tissue on average across GTEx. (b) Fold
change of gene expression against normalized gene expression rank for PSMB10 in fibroblasts
and putamen (basal ganglia) brain tissues. PSMB10 is an expression outlier (red) in individual
2 in fibroblast but not in putamen, consistent with the rare variant triggering nonsense-mediated
decay and leading to a strong gene expression reduction in the tissue for which the exon 4-
containing transcript is the major isoform.

66



4.4 Accounting for tissue-specific isoform expression

Figure 4.7: Most canonical transcript isoforms contribute only a fraction of the
total gene expression. The figure shows the cumulative fraction of genes (y-axis) for which
the canonical transcript (MANE-select) contributes to more than a given proportion (x-axis) to
the total gene expression. The data is aggregated over all tissues and restricted to the expressed
genes per tissue.
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50%0% 100%

Transcript proportion of 
total expression in tissue t

 30%

 60%

 10%

wv=2 = 30%+10%
    = 40%

wv=1 = 60%+10%
    = 70%

Variant 1:
Stop-gain

Variant 2:
Stop-gain

Transcript isoforms of gene g

Stop-gain consequence score for individual i having both variants:
    consequence_score(i, g, t) = max(wv=1, wv=2) = 70%

Figure 4.8: Illustration of stop-gain consequence score calculation for two variants.
Variant 1 causes a stop-gain in wv=1 = 70% of all expressed isoforms, variant 2 in wv=2 = 40%
of all expressed isoforms. Therefore, the stop-gain consequence score for this individual i in gene
g and tissue t is 70%.

gene g, individual i, and tissue t across variants with a certain consequence v:

consequence_score(i, g, t) = maxv∈variants(i,g) wv(t) (4.4)

Figure 4.8 shows an illustration of how this consequence score is being calculated for two
stop-gain variants.

Training a model using these tissue-specific weighted annotations more than tripled
the precision for the highest scoring predictions and significantly increased the average
precision by 55% to reach 2.7% in median across tissue types (fig. 4.9).

4.5 Incorporating the tissue-specific gene expression
variability

OUTRIDER not only models the mean expression levels of genes but, similar to other
statistical models for RNA-seq data, it also includes a measure of gene expression vari-
ability known as the biological coefficient of variation (see section 2.5). In the GTEx
dataset, this biological coefficient of variation captures the expression variability of genes
per tissue across the population.

I hypothesized that the same fold changes in expression might be considered outliers
for genes with low expression variability, but not for those with high variability. Indeed,
the smallest fold-change among outliers observed in the GTEx dataset decreased with
the biological coefficient of variation, as shown in fig. 4.10a. Therefore, a certain reduc-
tion in gene expression might cause aberrant expression in one gene or tissue, but not in
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4.5 Incorporating the tissue-specific gene expression variability

Figure 4.9: Accounting for tissue-specific isoform expression improves predictions.
(a) Precision-recall curve for all tissues combined. LOFTEE shows up as a single point because
it is a binary filter. (b) Distribution of average precision (AUPRC) across 26 GTEx tissue types.
P-values were obtained using a paired Wilcoxon test. Center line, median; box limits, first and
third quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and upper
quartiles.
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4 AbExp: Predicting aberrant gene underexpression across human tissues

another. For example, a 30% reduction in LTBP3 expression in the tibial artery was suf-
ficient to be considered an outlier. In contrast, a 30% reduction in OR2W3 expression in
blood would not result in an outlier, as OR2W3 showed a larger expression variability in
blood, ranging from 10% to 230% (fig. 4.10b). OR2W3 is one of the over 800 human ol-
factory receptor genes whose defect is usually benign[127]. In contrast, LTBP3 is a gene
whose dysfunction is associated with dental anomalies and short stature[29]. Therefore,
it is not surprising that gene expression levels in OR2W3 exhibit a wider physiological
range than in LTBP3. Overall, genes with lower expression variability were more geneti-
cally constrained in the human population (i.e. harbored fewer loss-of-function variants,
fig. 4.10c), in agreement with previous studies on primates[36].

To take this variability in gene expression into account, I first considered modelling
expression fold-changes of variants and deriving a z-score ẑ from the OUTRIDER-fitted
negative binomial distribution by estimating the observed count x̂ as a product of the
expected read count µ and the predicted fold-change f̂c:

x̂i,g,t = µg,t · f̂ci,g,t (4.5)
ẑi,g,t = CDF−1

N(0,1)

(
CDFNB(x̂i,g,t|µg,t, θg,t)

)
(4.6)

, where CDF−1
N(0,1) is the inverse cumulative distribution function of the standard normal

distribution and CDFNB(x|µ, θ) the negative-binomial cumulative distribution function.
This approach assumes that a variant affects the gene expression fold-changes indepen-
dently of the expression variability. In other words, a heterozygous high-impact variant
that completely perturbs the expression of one copy of the gene is assumed to reduce
the gene expression by a fixed fraction, e.g. 50%, regardless of the expression variability.
However, when testing this assumption using variants likely triggering NMD, I noticed
that fold-changes of the same class of variants were correlated with expression variabil-
ity (fig. 4.11). An explanation for this correlation between fold-changes and expression
variability could be that genes with low expression variability are subject to regulatory
buffering mechanisms[7, 31].

Therefore, I chose a more general modeling approach by providing the biological coef-
ficient of variation as an additional input feature to the non-linear model predicting the
z-score. This model increased the performance by more than 50% to 4.0% average preci-
sion (median across tissue types, fig. 4.12). These findings demonstrate the importance
of considering gene expression variability in the prediction of aberrantly expressed genes,
and that the use of z-scores for predictions provides more relevant insights for variant
interpretation than relying solely on fold-change.

4.6 Contribution of aberrant splicing and transcript
ablations

As shown in chapter 3, tissue-specific aberrant splicing predictions from AbSplice-DNA
were strongly enriched in underexpression outliers and predictive for underexpression
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4.6 Contribution of aberrant splicing and transcript ablations

Figure 4.10: The outlier state depends on the tissue-specific biological coefficient of
variation. (a) Biological coefficient of variation (BCV) against expression fold change across
all genes and tissues. Highly variable genes require a larger fold change to be called an outlier.
(b) Fold change of gene expression against normalized gene expression rank for LTBP3 in tibial
artery, an autosomal recessive gene whose defect can lead to dental anomalies and short stature
21, and for OR2W3 in blood, an olfactory gene whose defect should not impair the viability of an
individual 22. Expression outliers are highlighted in red. LTBP3 is tightly regulated with a fold
change range of ± 20% among non-outliers. The individual marked in red carries a heterozygous
frameshift variant that associates with 30% reduction and which is detected as an outlier. In
contrast, OR2W3 shows very large variations where individuals with 30% reductions are not
outliers. (c) BCV versus loss of function observed/expected upper bound fraction 17 (LOEUF)
across all genes and tissues. Genes with a high LOEUF are more tolerant to loss of function.
The black line shows a running median between LOEUF and BCV. The autosomal recessive gene
LTBP3 has a low LOEUF, denoting a low loss of function tolerance. In contrast, the olfactory
gene OR2W3 has a high LOEUF, denoting a large loss of function tolerance.
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4 AbExp: Predicting aberrant gene underexpression across human tissues

Figure 4.11: Fold-changes of the same class of variants are correlated with expression
variability. This figure shows the distribution of gene expression fold changes among genes in
different deciles of expression variability, given that the gene is affected by some rare variant
consequence (e.g. frameshift, LOFTEE). Denoted in the facet title are Spearman’s r between
fold-changes and BCV as well as its significance. Center line, median; box limits, first and third
quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and upper quartiles.
The higher the coefficient of variation, the larger the gene expression impact of the variants
tends to be. If a gene has rare variants with multiple consequences, they will appear in all the
corresponding panels.
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4.6 Contribution of aberrant splicing and transcript ablations

Figure 4.12: Incorporating the tissue-specific gene expression variability improves
predictions. (a) Precision-recall curve for all tissues combined. LOFTEE shows up as a single
point because it is a binary filter. (b) Distribution of average precision (AUPRC) across 26
GTEx tissue types. P-values were obtained using a paired Wilcoxon test. Center line, median;
box limits, first and third quartiles; whiskers span all data within 1.5 interquartile ranges of the
lower and upper quartiles.
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4 AbExp: Predicting aberrant gene underexpression across human tissues

Figure 4.13: AbExp combines various variant and tissue annotations to predict aber-
rant gene expression and outperforms LOFTEE by about sevenfold. (a) Precision-
recall curve for all tissues combined. LOFTEE shows up as a single point because it is a binary
filter. (b) Distribution of average precision (AUPRC) across 26 GTEx tissue types. P-values
were obtained using a paired Wilcoxon test. Center line, median; box limits, first and third
quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and upper quartiles.

outliers. Therefore, I next integrated AbSplice-DNA scores as additional feature to the
model. This led to a significantly improved model performance of 4.9% average precision
in median across tissue types (fig. 4.13).

Another type of variants that exhibited a strong enrichment in underexpression out-
liers was transcript ablations derived from structural deletion variants. Including these
variants into the model yielded a large gain in precision among the top-ranked predictions
and increased the average precision to 9.1% in median across tissue types.

In the following, I refer to this model which integrates all features mentioned so far
as AbExp. AbExp takes as input a set of variants within 5,000 bp of any annotated
transcript of a protein-coding gene and returns a predicted z-score for each of the 48
tissues. As a high-confidence cutoff, I suggest a cutoff of AbExp < −3.4 corresponding
to 50% precision and 8.5% recall on the benchmark data, and a low-confidence cutoff of
AbExp < −1.3 corresponding to 20% precision and 19.1% recall.
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4.7 AbExp performance replicates on independent datasets

4.7 AbExp performance replicates on independent datasets
Next, I evaluated whether the underexpression prediction performance of AbExp repli-
cates on two independent datasets. The first dataset consisted of individuals suspected
to be affected by a mitochondrial disorder[82] with whole-exome sequencing data paired
with RNA-seq from fibroblasts (see section 2.12.3). The second dataset consisted of
whole-genome and RNA sequencing measurements in amyotrophic lateral sclerosis (ALS)
patients and healthy controls from the AnswerALS research project[10] (see section 2.12.2).

Structural variant calls, and thus transcript ablation calls, were not available on either
dataset.

4.7.1 Outlier calling and rare variant filtering
Both the mitochondrial disease dataset and the ALS dataset were processed similar to the
GTEx dataset. First, I filtered gene expression outlier calls obtained with OUTRIDER
for a sufficiently large expected number of fragments (µ > 450) and removed samples
with more than 50 outliers. Next, I filtered variants for a genotype quality ≥ 30 and read
depth ≥ 10 reads. I subsetted rare variants based on the gnomAD population with a
minor allele frequency ≤ 0.001. Finally, I applied AbExp to the rare variants for outlier
prediction and kept for each gene, tissue and individual the lowest AbExp score.

The mitochondrial disease dataset[149] consisted of 311 whole-exome sequencing sam-
ples paired with RNA-seq from fibroblasts. Thus, I used AbExp predictions from fibrob-
lasts for evaluation. After filtering, this dataset contained 501 underexpression outliers
across 299 samples.

For the amyotrophic lateral sclerosis (ALS) dataset, I downloaded 244 transcriptomes
with matched whole-genome sequencing data from https://dataportal.answerals.org[10].
The data consisted of 205 cases diagnosed with amyotrophic lateral sclerosis and 39
control samples. RNA-seq measurements were obtained from iPSC-derived spinal motor
neurons, specialized nerve cells located in the spinal cord. Therefore I used AbExp
predictions for the tibial nerve, considering it the most relevant tissue type, for the
evaluation. After filtering, the dataset contained 739 underexpression outliers across
244 samples. A detailed overview of how many samples, genes, etc. remained after each
filtering step in both datasets can be seen in table 4.1 and table 4.2.

4.7.2 Performance evaluation
In both the mitochondrial disease and ALS datasets, AbExp significantly outperformed
the baseline methods CADD and LOFTEE (fig. 4.14). On GTEx, AbExp had performed
two or three times better than LOFTEE and CADD in average precision, without tak-
ing transcript ablation annotations into account. In the context of the mitochondrial
disease and ALS datasets, AbExp without transcript ablation annotation not only en-
abled slightly better precision at the same recall compared to LOFTEE filtering but also
provided a continuous score that facilitated achieving much higher precisions. Notably,
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4 AbExp: Predicting aberrant gene underexpression across human tissues

Figure 4.14: Performance of AbExp replicates on independent datasets. (a) Left:
Distribution of average precision (AUPRC) across five cross-validation folds in the mitochondrial
disease dataset. Center line, median; box limits, first and third quartiles; whiskers span all data
within 1.5 interquartile ranges of the lower and upper quartiles. P-values were obtained using a
paired Wilcoxon test. Right: Precision-recall curve on the whole mito-disease dataset. LOFTEE
as a binary predictor is shown as a single point. (b) Left: Distribution of average precision
(AUPRC) across five cross-validation folds in the ALS dataset. Center line, median; box limits,
first and third quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and
upper quartiles. P-values were obtained using a paired Wilcoxon test. Right: Precision-recall
curve on the whole ALS dataset. LOFTEE as a binary predictor is shown as a single point.
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4.8 Analysis of AbExp scores

the recall for all methods was twice as low on the ALS dataset than in the GTEx and
the mitochondrial disorder dataset. This could be caused by poorer expression outlier
calls, a stronger role of epigenetic and trans-regulatory effects, or a combination of these
possibilities.

4.8 Analysis of AbExp scores
4.8.1 AbExp predicts on average 1.2 high-confidence and 5.7

low-confidence underexpressed genes per individual
In diagnostics, researchers must prioritize their analysis and select the most likely causal
variants for further analysis. Therefore, a large number of predicted outliers could be
a disadvantage. In the GTEx benchmark dataset, I observed on average 13.6 genes
underexpressed in at least one tissue (fig. 4.15). A reasonable predictor should predict
a comparable number of underexpression outliers. Indeed, AbExp predicts on average
1.2 high-confidence and 5.7 low-confidence outliers which is considerably lower than the
number of measured underexpressed genes (fig. 4.15).

4.8.2 AbExp predictions are tissue-specific
Tissue-specific expression outliers are outliers that are aberrantly expressed in some
but not all tissues. If AbExp can predict tissue-specific underexpression outliers, it
should therefore be able to predict underexpression outliers in fewer tissues than the
gene is expressed in. On average, a gene is expressed in 27.5 tissues (fig. 4.16a). AbExp
predicts, on average, 17.0 underexpressed tissues per gene with high confidence and 20.9
underexpressed tissues per gene with low confidence, provided that the gene is predicted
as underexpressed in at least one tissue (fig. 4.16a). Notably, 15% of all genes predicted
to be underexpressed exhibit underexpression across all tissues with high confidence,
while 29% demonstrate this pattern with low confidence (fig. 4.16b), although these
percentages might be slightly skewed by genes that are expressed only in a single tissue
(fig. S1). Therefore, the predictions of AbExp are indeed tissue-specific.

4.8.3 25-45% of AbExp high-confidence predictions can not be
explained with LOFTEE

For a more holistic overview of what type of variants AbExp considers to be important,
I predicted AbExp scores for all rare GTEx variants and selected for all gene, individual,
and tissue combinations the variants with the lowest AbExp score. Further, I removed
predictions of non-expressed genes (genes with less than 1 FPKM in 95% or more of the
samples in a tissue, see section 3.2.1).

Based on these predictions, I examined the fraction of variant types among AbExp-
predicted high-impact variants in GTEx (fig. 4.17). About 25% of predicted low-confidence
underexpression outliers are LOFTEE-negative variants and, thus, can be explained
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4 AbExp: Predicting aberrant gene underexpression across human tissues

Figure 4.15: AbExp predicts on average per individual 1.2 low-confidence and 5.7
high-confidence genes to be underexpressed in at least one tissue. Fraction of indi-
viduals (x-axis) having at most a given number of genes underexpressed in at least one tissue
(y-axis). The black curve shows the observed underexpressed genes per individual as identified
with OUTRIDER, and the red and blue curves the number of underexpressed genes per individ-
ual as predicted by AbExp with different cutoffs. Horizontal dashed lines denote the mean of
the equally colored curves.
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4.8 Analysis of AbExp scores

Figure 4.16: AbExp predictions are tissue-specific. (a) Fraction of underexpressed genes
(x-axis) which are underexpressed in at most a given number of tissues (y-axis). The red and
blue curves show the number of underexpressed genes per individual as predicted by AbExp with
different cutoffs. The black curve shows the number of tissues expressed per gene. Horizontal
dashed lines denote the mean of the equally colored curves. (b) Fraction of genes that AbExp
predicts to be underexpressed in all tissues at different cutoffs.
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4 AbExp: Predicting aberrant gene underexpression across human tissues

Figure 4.17: Fraction of variant types among AbExp high-impact predictions.

with AbExp but not with LOFTEE. Interestingly, this fraction is higher among high-
confidence predictions, with 45% of these being LOFTEE-negative variants. Also, other
variant types that LOFTEE does not consider, such as UTR variants, stop-loss vari-
ants, and transcript ablations, are more prevalent in high-confidence predictions than in
low-confidence predictions.

4.8.4 AbExp correlation with measured expression varies
Upon comparing predicted and observed z-scores across various types of variants, I
discovered that the Pearson correlation between them varies based on the type of variant
(fig. 4.18). Notably, stop-loss variants and transcript ablations exhibit a high correlation,
whereas missense variants, upstream gene variants, and downstream gene variants show
minimal correlation (R2 < 0.005), suggesting poor prediction accuracy for these types
of variants.
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4.8 Analysis of AbExp scores

Figure 4.18: Gene expression z-score versus AbExp-DNA predictions for various
types of variants. The red lines show a linear regression between predicted and observed
z-scores for the corresponding variant category. N denotes the number of variants of a certain
type, R2 denotes the Pearson correlation among these.
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4 AbExp: Predicting aberrant gene underexpression across human tissues

4.8.5 AbExp predicts pathogenic variants with high precision
An important application of AbExp is the identification of high-impact variants with sig-
nificant pathogenicity. To assess the efficacy of AbExp in distinguishing pathogenic from
benign variants, I annotated known pathogenic, likely benign, and benign variants from
the ClinVar database with both AbExp and CADD (see section 2.12.5). Importantly, I
used the official CADD pipeline to annotate all variants, including those with missing
pre-computed scores. Variants classified as both likely benign and benign were retained
solely as likely benign within the dataset. Furthermore, for each variant, I retained only
the minimum predicted AbExp score across all tissues.

In median, AbExp predicts pathogenic variants to cause gene underexpression by −1.3
standard deviations relative to the average population (fig. 4.19a). AbExp scores of likely
benign and benign scores, conversely, are close to zero in the median. CADD scores are
in median 8-17 times higher in pathogenic variants than in likely benign and benign
variants. In comparison, AbExp scores are in median about 173-266 times higher in
pathogenic variants than in likely benign and benign ones. Notably, AbExp annotated
about 7% more variants than CADD.

Furthermore, employing a high-confidence threshold, AbExp successfully recalls 16.2%
of all pathogenic variants with 99.6% precision. With a low-confidence threshold, Ab-
Exp achieves a recall rate of 49.7% for all pathogenic variants with 98.1% precision
(fig. 4.19b). At both recall rates, CADD is less precise than AbExp, with reaching
only 99.0% precision at 16.2% recall and 96.1% precision at 49.7% recall. This result
emphasizes the ability of AbExp to discriminate pathogenic from benign variants with
high precision. Nonetheless, CADD achieves a slightly higher average precision of 84.8%
overall, compared to AbExp reaching 81.5% average precision.

4.9 The AbExp variant effect prediction pipeline
To simplify the application of AbExp, I developed a software pipeline to calculate AbExp
predictions which can be found at https://github.com/gagneurlab/abexp. The input to
this pipeline is (a set of) VCF files, a reference genome, and gene annotations. After
setup and the configuration of file paths, the pipeline will annotate all variants with
AbExp scores and return a table with the following columns:

• chrom: chromosome of the variant

• start: start position of the variant (0-based)

• end: end position of the variant (1-based)

• ref: reference allele

• alt: alternate allele
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4.9 The AbExp variant effect prediction pipeline

Figure 4.19: AbExp predicts pathogenic variants with high precision. (a) Distribution
of CADD scores and minimum AbExp scores across tissues for pathogenic, likely benign, and
benign variants from the ClinVar database. Box label, sample size; center line, median; box
limits, first and third quartiles; whiskers span all data within 1.5 interquartile ranges of the
lower and upper quartiles. (b) Precision-recall curve for distinguishing pathogenic from likely
benign and benign variants using AbExp and CADD in ClinVar variants. Dashed vertical lines
show the high-confidence and low-confidence thresholds of AbExp.

85



4 AbExp: Predicting aberrant gene underexpression across human tissues

• gene: the gene affected by the variant

• tissue: GTEx tissue, e.g. “Artery - Tibial”

• tissue_type, GTEx tissue type, e.g. “Blood Vessel”

• abexp_v1.0: The predicted AbExp score

• a set of features used to predict the AbExp score

Further information on setup, configuration, and application can be found in the README.md
file of the pipeline repository.

4.10 Integrating AbExp with gene expression
measurements from clinically accessible tissues

In rare disease diagnostics, RNA sequencing is gaining popularity as a complementary
assay to genome or exome sequencing, as it enables the direct measurement of aberrant
gene regulation in a tissue of interest[24, 47, 82, 100, 110, 149]. However, many rare
disorders are thought to originate from tissues that are difficult to access, such as heart or
brain. Obtaining samples from these tissues can be challenging due to the highly invasive
nature of the sampling process. A less invasive approach is to investigate aberrant gene
regulation in clinically accessible tissues (CATs) such as skin fibroblasts or blood, as these
tissues have been shown to share a substantial fraction of expressed genes with non-CATs
and are therefore likely to capture aberrant expression occurring in non-CATs[24, 47, 82].

In the event that gene expression measurements from clinically accessible tissues,
specifically skin-derived fibroblasts and blood, are available, I investigated their po-
tential informativeness for predicting expression outliers. Although these measurements
may not be directly transferrable to other tissues, there exists a certain degree of corre-
lation in gene expression across tissues (fig. 4.20), potentially allowing to explain gene
expression outliers in other non-accessible tissues.

To evaluate the predictive value of gene expression measurements from blood and fi-
broblasts, I removed the corresponding CAT along with related tissues from the predicted
tissues. Specifically, when using fibroblasts as CAT, I excluded the non-sun-exposed
suprapubic skin, sun-exposed lower leg skin, and cultured fibroblasts from the predicted
tissues. When using whole blood as CAT, I excluded whole blood and EBV-transformed
lymphocytes.

First, I used the OUTRIDER z-score in the CAT to rank underexpression outliers
in non-CATs. When skin fibroblasts were used as CAT, it resulted in a notably higher
AUPRC of 17.7% (median across tissue types), which is a significant improvement com-
pared to the 8.8% achieved by the genome-based predictor AbExp (fig. 4.21a). When
using whole blood as CAT (9.1% median AUPRC), there was no performance improve-
ment compared to AbExp (9.6% median AUPRC, fig. 4.21b).
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4.10 Integrating AbExp with gene expression measurements from clinically accessible tissues

Figure 4.20: Gene expression correlates between clinically accessible tissues and non-
accessible tissues. Heatmap shows the Pearson correlation of OUTRIDER z-scores between
clinically accessible tissues and other tissues in GTEx.
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4 AbExp: Predicting aberrant gene underexpression across human tissues

Next, I trained a model that integrates AbExp with gene expression in a CAT to
predict underexpression outliers. Contrary to the DNA-based models, I used a logistic
regression (section 2.7.1) for this model. The input for this regression included:

• a binary variable indicating whether the gene is expressed in the CAT

• the OUTRIDER z-score of the gene in the CAT

• the AbExp prediction for the target tissue

• all three interaction terms between those three variables.

I used the same cross-validation scheme as for the other DNA-based models.
By utilizing RNA-seq data from skin fibroblasts to predict aberrant underexpression

across all other tissues, the model achieved a median AUPRC of 19.5% across tissues
(fig. 4.21a). Using whole blood as CAT results in a slightly lower performance than with
using fibroblasts, reaching a median AUPRC of 16.1%. This is in line with previous
studies based on shared expressed genes[2, 149] and our work on predicting aberrant
splicing[144], where fibroblasts proved to be more informative than whole blood as fi-
broblasts express more genes.

In summary, these results demonstrate that integrating RNA-seq data from fibrob-
lasts with genomic variant annotations from AbExp significantly improves the model’s
performance, doubling the average precision compared to using genomic variants alone.

4.11 Summary
In this chapter, I introduced AbExp, a DNA-based model designed to predict aberrant
gene underexpression across human tissues. By integrating expression variability with
the effects of variants on isoforms and aberrant splicing in a tissue-specific manner, Ab-
Exp achieved an average precision of 9.1% in median across tissue types, outperforming
existing variant annotation tools between 6-fold and 18-fold. AbExp predicted on aver-
age 1.2 high-confidence and 5.7 low-confidence underexpressed genes per individual. The
performance of AbExp was validated through replication in two independent datasets
comprising patients with mitochondrial disease and amyotrophic lateral sclerosis, demon-
strating the model’s robustness and reliability. Also, AbExp scores distinguished benign
and pathogenic variants with high precision. Further integration of expression measure-
ments from clinically accessible tissues led to another two-fold improvement.
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4.11 Summary

Figure 4.21: Combining RNA-seq measurements from clinically accessible tissues
with AbExp improves the prediction performance. (a) Left: Distribution per predictor
(rows) of average precision (AUPRC) across 25 tissue types excluding skin tissues. Center line,
median; box limits, first and third quartiles; whiskers span all data within 1.5 interquartile ranges
of the lower and upper quartiles. P-values were obtained using the paired Wilcoxon test. The
“CAT gene expression” predictor ranks genes according to their OUTRIDER z-score in fibroblasts
RNA-seq data. Right: Precision-recall curve aggregated across the same GTEx tissues as in the
left panel. LOFTEE as a binary predictor is shown as a single point. (b) as in (a) using Whole
blood as CAT and all other tissues as non-CAT.
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5 Improving rare variant association
testing and phenotype prediction with
AbExp

5.1 Motivation
With the rise of large exome and genome sequencing biobanks, recent rare variant asso-
ciation testing (RVAT, see section 1.2) studies have identified gene-trait associations by
leveraging the occurrence of likely high-impact (e.g. LOFTEE-positive) variants within
genes, helping to pinpoint causal genes for traits[69, 145] and enabling improved pheno-
type predictions, particularly among individuals showing extreme phenotypes[43]. Im-
portantly, rare expression outlier associated variants identified by integrative genomics
and transcriptomics studies (section 1.3.3) have been shown to be predictive of strong
effects on phenotypic traits[132]. After having established AbExp, the question arises:
Can predicted aberrant expression of genes be used to predict human phenotypes?

In this chapter, I will demonstrate how AbExp and LOFTEE can be used in rare
variant gene association testing and phenotype prediction (fig. 5.1). In short, I first ap-
plied AbExp and LOFTEE to whole-exome sequencing data of 200,593 individuals from
the UK Biobank. The UK Biobank is a large-scale biomedical database that includes
genetic, clinical, and lifestyle information from about 500,000 participants in the United
Kingdom (see section 2.12.4). I then performed rare variant association testing on 40
blood traits to identify significant gene-trait associations with both LOFTEE and Ab-
Exp. Finally, I developed improved phenotype prediction models leveraging the scores
from trait-associated genes on a held-out test set. Figure 5.2 shows an illustration of the
data splitting.

5.2 Rare variant association testing
I used linear regression (section 2.7.1) on 40 different blood traits, including high-density
lipoprotein cholesterol, glucose, and urate levels, as a common framework for rare variant
association testing. Association between a trait and a gene was tested with a likelihood
ratio test (section 2.8) between a restricted linear regression model containing only co-
variates and a full model with additional burden scores of the gene (fig. 5.3). In all
regression models, I accounted for the effects of common genetic variation by including
sex, age, age2, age times sex, age2 times sex, the first 20 genetic principal components,
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Gene burden
scores

Rare variant
association

testing +

40 blood traits

Phenotype
prediction

model

+

Significant
gene associations

Rare variants
Assessment

AbExp

Figure 5.1: Rare variant association testing and phenotype prediction with AbExp.
First, AbExp was applied to whole-exome sequencing data of 200,593 caucasian unrelated indi-
viduals in the UK Biobank. Next, rare variant association testing was performed on 40 blood
traits to identify significant gene-trait associations in two-thirds of the dataset. Finally, improved
phenotype prediction models were built by leveraging scores from trait-associated genes on the
remaining third of the dataset.
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Rare variant association testing
Gene discovery on ⅔ of dataset

Phenotype prediction
5-fold cross validation on ⅓ of 
dataset

Individual Features

-1.2
+2.7

...

Measurement

...

Figure 5.2: Illustration of data splitting for rare variant association testing and
phenotype prediction.

and polygenic risk scores predicting the trait as covariates in the regression models. To
control for common variants near each gene, I further included lead trait-associating
variants within 250,000 bp of the tested gene as covariates.

To compare against a realistic baseline, I first performed RVAT using as a burden score
the number of rare LOFTEE putative loss-of-function variants in each gene, similar
to the Genebass study[69]. I then performed RVAT leveraging tissue-specific AbExp
predictions by considering the lowest AbExp-predicted z-score across all rare variants
for each of the 48 tissues. Additionally, to investigate the added value of tissue-specific
AbExp predictions, I compared this tissue-specific RVAT with aggregated RVATs using
the minimum and the median of the 48 values as burden scores (table 5.1).

5.2.1 UK Biobank genome and phenotype data
For this study, I used data from 200,593 caucasian unrelated individuals in the UK
Biobank (fields 22006 and 22011). All of these had genotypes available from both
exome-sequencing and microarrays as well as blood and urine measurements. While
exome sequencing reveals genetic variation in coding regions of the genome, the UK
Biobank consortium used microarray genotyping to specifically test for single nucleotide
variations at roughly 800,000 positions across the whole genome. To account for popula-
tion structure, I used genetic principal components derived from microarray genotyping
data (field 22009). As done in the Genebass study[69], I normalized all trait values using
inverse rank normal transformation. A detailed list of the used blood phenotypes can
be found in table 5.2.
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Restricted model: Regress out 
covariates that explain the trait based on 
age, sex, and common genetic variation

Full model including 
gene-level score

Trait ~ age + sex + genPC + LAV + PRS + score(gene)

Figure 5.3: Accounting for common variation in RVAT. Each gene-trait association test
is a likelihood ratio test between a restricted model containing only covariates and a full model
with additional burden scores of the gene. Covariates comprise sex, age, the first 20 genetic
principal components, lead trait-associating variants within ± 250,000 bp of the gene, and a
polygenic risk score predicting the trait.

Model Predictor variables Nr. of variables
LOFTEE Number of LOFTEE variants in the gene of

interest
1

AbExp all tissues The set of minimal AbExp scores across all
rare variants in the gene (0 in absence of any
rare variant) for each tissue

48

Minimum AbExp The minimum AbExp score across all rare
variants in the gene and across all tissues, 0
in absence of any rare variant

1

Median AbExp The median AbExp score across all rare vari-
ants in the gene and across all tissues, 0 in
absence of any rare variant

1

Table 5.1: Rare variant association test models.
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Trait PGS catalog ID UK Biobank field code
Alanine aminotransferase PGS001940 30620
Albumin PGS001886 30600
Alkaline phosphatase PGS001939 30610
Apolipoprotein A PGS001888 30630
Apolipoprotein B PGS001889 30640
Aspartate aminotransferase PGS001941 30650
C reactive protein PGS001946 30710
Calcium PGS001893 30680
Cholesterol PGS001895 30690
Creatinine PGS001945 30700
Cystatin C PGS001947 30720
Direct bilirubin PGS001942 30660
Eosinophill count PGS001172 30150
Erythrocyte distribution width PGS001908 30070
Gamma glutamyltransferase PGS001964 30730
Glucose PGS001952 30740
Glycated haemoglobin (HbA1c) PGS001953 30750
Haematocrit percentage PGS001925 30030
HDL cholesterol PGS001954 30760
IGF1 PGS001960 30770
LDL direct PGS001933 30780
Leukocyte count PGS001962 30000
Lipoprotein A PGS001963 30790
Lymphocyte percentage PGS001986 30180
Mean corpuscular haemoglobin PGS001989 30050
Mean corpuscular volume PGS001990 30040
Mean reticulocyte volume PGS000987 30260
Mean sphered cell volume PGS002008 30270
Monocyte count PGS001968 30130
Neutrophill percentage PGS001997 30200
Phosphate PGS001998 30810
Platelet count PGS001973 30080
Reticulocyte count PGS001528 30250
SHBG PGS001977 30830
Testosterone PGS001988, PGS001914 30850
Thrombocyte volume PGS001971 30100
Total bilirubin PGS001942 30840
Triglycerides PGS001979 30870
Urate PGS002010 30880
Vitamin D PGS001982 30890

Table 5.2: List of blood traits and corresponding PGS catalog IDs of polygenic risk
scores.
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5.2.2 Identification of lead trait-associated common variants
As a source of trait-associated common variants I used data from the Pan-ancestry
genetic analysis of the UK Biobank (Pan-UKBB)[114]. To identify independent lead
variants for every trait, Jonas Lindner used plink v1.9[18, 128] to clump variants with
an association p-value ≤ 0.0001 in 250 kbp windows with an LD threshold of r2 < 0.5
and then subsetted the imputed genotypes for these lead variants in a 250 kbp window
around each gene.

5.2.3 Application of polygenic risk scores
I selected polygenic risk scores from the PGS catalog database[84] and Jonas Lindner
applied these to the imputed genotypes using plink v2.0[18, 129]. If available, I selected
scores from a study by Privé et al.[119], otherwise from a study by Tanigawa et al.[139].
A list of PGS catalog IDs used for each trait can be found in table 5.2.

5.2.4 Variant filtering and annotation
Similar to the GTEx dataset, I filtered variants for a genotype quality ≥ 30 and read
depth ≥ 10 reads and subsetted rare variants based on the gnomAD population with
a minor allele frequency ≤ 0.001. I then annotated all rare variants using Ensembl
VEP[104] v108 with the LOFTEE plugin[70] and AbExp.

5.2.5 P-value calculation and calibration
I computed P-values for gene-trait associations using two-thirds of the dataset and ap-
plied Bonferroni correction to adjust for multiple testing. I considered gene-trait associ-
ations statistically significant if their Bonferroni-adjusted P-value was less than or equal
to 0.05. As the polygenic risk scores and lead variants were based on the UK Biobank
dataset, there is a possible data leakage that may have led to model overfitting. However,
this does not affect the comparison between restricted and full models since all compared
models always include the same set of features as covariates. P-value calibration was
tested by random shuffling of the phenotypes without replacement. I found that all
P-values were calibrated as can be seen in the quantile-quantile plots in fig. 5.4.

In total, I identified 28% more gene-trait associations using AbExp predictions in 48
tissues than with the LOFTEE-based model (fig. 5.5), demonstrating that AbExp can
improve RVAT-based gene discovery. Further, association testing using tissue-specific
predictions outperformed aggregated forms of the AbExp score in most cases by identi-
fying a greater number of gene-trait associations (fig. 5.5b).
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Figure 5.4: P-values of all models are calibrated. The figure shows a quantile-quantile
plot of p-values on phenotype-permutated data against a random uniform distribution across
all traits, facetted by the model. Models are calibrated when the data aligns closely with the
diagonal (red dashed line). Across all the four models and 40 traits, I found only two significant
associations on these permuted data, one for AbExp in the “Total bilirubin” trait and one for
LOFTEE in the “IGF1” trait.
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5 Improving rare variant association testing and phenotype prediction with AbExp

Figure 5.5: AbExp finds more significant gene-trait associations than LOFTEE. (a)
Number of genes associated with different traits discovered using AbExp in all tissues compared
to using LOFTEE. (b) Total number of significant gene-trait associations discovered by different
models.
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5.3 Phenotype prediction

5.3 Phenotype prediction
After demonstrating the enhanced sensitivity for gene-discovery of RVAT with AbExp, I
proceeded to evaluate its usefulness in phenotype prediction. For this purpose, I used the
remaining third of the dataset to construct gradient boosted decision trees (section 2.7.4)
to predict traits using AbExp scores and the number of LOFTEE variants identified in
the first two-thirds of the dataset.

5.3.1 Model training and evaluation
For a common variant-based model, I included as predictor variables sex, age, age2, age
times sex, age2 times sex, the 20 first genetic principal components, and a polygenic risk
score predicting the trait (see also section 5.2). I did not include lead trait-associated
variants as these would increase the number of predictor variables excessively. For the
AbExp-based models, I additionally included the lowest AbExp-predicted z-score across
all rare variants for each of the 48 tissues, for all trait-associated genes discovered during
RVAT. For the LOFTEE-based models, I used the number of rare LOFTEE-positive vari-
ants, for all trait-associated genes discovered during RVAT, in addition to the predictor
variables of the model based on common variants only.

For training, I split the remaining third of the dataset across individuals into five
cross-validation folds, ensuring an approximately equal distribution of measurements
(fig. 5.2). To train and evaluate a prediction model, the model was trained six times on
five of these folds and evaluated on the held-out fold, each time using a different held-out
fold as the validation set. For all prediction models, I used gradient-boosted trees[59]
from the LightGBM[74] framework with default parameters (section 2.7.4). Here, Jonas
Lindner helped with the implementation, investigation and visualization of the pheno-
type prediction models.

5.3.2 AbExp affects the prediction of extreme phenotypes
The predictions of the AbExp-based models rarely deviated from predictions of the
common variant-based models. For example, in Alanine aminotransferase less than
0.3% of all individuals had predictions differing by more than 1 standard deviation of the
population trait distribution (fig. 5.6a). Individuals with deviating predictions tended to
have trait values that deviated significantly from the population average, as can be seen
for Alanine Aminotransferase in fig. 5.6b. This suggests that the model incorporating
AbExp scores is particularly advantageous in predicting extreme phenotypes that cannot
be adequately explained by common variants alone.

In the evaluation on held-out data, the phenotype prediction model leveraging AbExp
scores significantly enhanced the explained variation (R2) in 50% of the traits compared
to the model relying on LOFTEE. There were no traits for which the AbExp-based
model would significantly reduce the observed R2 compared to the LOFTEE-based model
(fig. 5.7a). Moreover, when considering individuals deviating by more than one standard
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Figure 5.6: Inclusion of AbExp scores affects the prediction of low Alanine amino-
transferase levels. (a) Alanine aminotransferase level predicted using a model solely based
on common variants (y-axis) against predictions using a model based on common variants and
AbExp scores (x-axis). Individuals whose predictions differed by more than one standard devi-
ation of the population trait distribution are marked in orange. (b) Alanine aminotransferase
measurements against predictions based on common variants and AbExp scores. Orange data
points as in (a).
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Figure 5.7: AbExp improves phenotype prediction over LOFTEE. (a) Relative R2

increase between AbExp-based and LOFTEE-based predictions across traits. Traits with a
significant difference between both models are marked red (two-sided paired t-test, nominal
P < 0.05). Error bars show the standard deviation among 5 cross-validation folds. (b) Positive
bars show the number of individuals with an error reduced by at least one standard deviation in
the trait scale and therefore improved prediction, negative bars show the number of individuals
with an error increased by at least one standard deviation in the trait scale and therefore worse
prediction of the AbExp-based model (green) and the LOFTEE-based model (grey).
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deviation from the common variant-based model, the AbExp-based model exhibited
improved prediction for 784 individuals across 40 blood traits, while the LOFTEE-based
model only enhanced prediction for 259 individuals (fig. 5.7b).

Notably, the benefits of using AbExp scores were consistently evident even when elas-
tic net regularised linear regression (section 2.7.3) was used to predict phenotypes rather
than gradient-boosted trees, although this resulted in slightly less accurate predictions
of phenotypes (fig. S2). Here, elastic net regression models were trained using the Elas-
ticNetCV implementation of the Scikit-Learn framework[15], which uses grid search to
automatically determine the optimal hyperparameters.

5.4 Summary
In this chapter, I demonstrated how AbExp and LOFTEE can be used in rare variant
gene association testing and phenotype prediction on 40 blood traits in the UK Biobank.
AbExp-based methods detected more significant gene-trait associations and improved
the phenotype predictions of more individuals than LOFTEE-based methods, especially
in individuals with extreme phenotypes.
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6 Discussion

6.1 Benchmarking aberrant gene expression prediction in
human tissues

In the beginning of my thesis I have established the first benchmark for aberrant gene
expression across 48 human tissues and tested the predictive value of existing variant
annotation tools. I found that the variant annotation tools LOFTEE, AbSplice and
CADD showed an enrichment in underexpression outliers. However, the predictive value
of these models was limited, with models reaching between 0.5% and 1.1% average
precision in median across tissue types.

In the future, this benchmark will provide a solid foundation for the systematic com-
parison of variant annotation tools on their ability to predict underexpression outliers.
In particular, it would be interesting to benchmark methods explicitly developed for
predicting gene expression from DNA sequence, such as Enformer[6] or Borzoi[97]. En-
former was trained on 5313 different ENCODE and FANTOM5 tracks from human and
mouse, including ChIP-seq for hundreds of transcription factors, DNase-seq which mea-
sures genome accessibility; and cap-analysis of gene expression (CAGE) measurements.
Borzoi paired the training data from Enformer with human and mouse RNA-seq mea-
surements from the ENCODE project, as well as 2-3 replicates for each GTEx tissue.
While sequence-based models of cis-regulation are typically trained on the entire spec-
trum of expression levels, this work focused on extreme expression variations. Models
trained to predict gene expression globally might not fully capture these extremes. Fur-
thermore, the biological mechanisms underlying extreme expression variations may differ
from those leading to moderate ones.

This benchmark has limitations. As shown in fig. 3.6a, 41% of underexpression outliers
and 57% of overexpression outliers do not have rare variants within ± 5,000 bp of the
gene. While these outliers might be caused by variants outside of this region, they
could as well be caused by effects that a sequence-based model cannot explain, such as
environmental or epigenomic factors, or sequencing artifacts. It is also possible that there
are artifacts caused by the outlier caller. Further, I found that 90% of the overexpression
outliers and 78% of the underexpression outliers are singletons (fig. 3.4). With only 40-
44% of these singletons having a rare variant within 5,000 bp of the gene (fig. 3.6b), it
is unclear which of the singletons are caused by calling artifacts or other non-sequence
effects. Outlier calling might be improved by joint calling of all tissues, with the tissue as
a covariate, or by including environmental factors as covariates. Also, correlation with
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epigenomic measurements could allow to remove (non-)outliers from the benchmark that
might be caused by abnormal epigenetic states. Finally, this study primarily focuses on
underexpression outliers and excludes genes with a low expected expression rate. To
effectively benchmark overexpression outliers, it would be useful to keep such genes
since variants might activate gene expression.

6.2 AbExp: Predicting aberrant gene underexpression
across human tissues

Building on the benchmark results, I developed AbExp, a method to predict aberrantly
underexpressed genes in human tissues from DNA sequence by integrating existing vari-
ant annotations with tissue-specific gene expression variability and transcript isoform
composition. AbExp outperformed existing variant annotation tools between 6-fold and
18-fold in median average precision across tissues on this task, and this performance im-
provement was consistent across independent datasets. Combining AbExp scores with
gene expression measurements from clinically accessible tissues to predict aberrant ex-
pression in other tissues yielded a further performance increase by 2-fold over AbExp.

AbExp predicts a continuous, tissue-specific z-score of gene expression. On aver-
age, AbExp predicted 1.2 high-confidence and 5.7 low-confidence underexpressed genes
per individual. Even with a low confidence threshold, AbExp was able to distinguish
pathogenic variants from benign and likely benign variants in the ClinVar database with
a high precision of 98.1%. This highlights the potential of AbExp as a tool for the
prioritization of pathogenic variants.

The development of AbExp also revealed interesting insights into the underlying bi-
ology of gene expression outliers. While confirming the relevance of nonsense-mediated
mRNA decay among underexpressed genes[25], this work also highlighted the impor-
tance of taking tissue-specific transcript isoforms into account. Furthermore, the impact
of a certain type of genetic variant correlates with the expression variability of the gene
it affects. On one hand, the same change in gene expression is more likely to lead to an
expression outlier in a tightly controlled gene with low expression variability among the
population. On the other hand, the change in gene expression caused by a variant is not
uniform across genes. Instead, the same type of variant tends to change the expression
of genes with a low variability stronger than in other genes, suggesting that regulatory
buffering mechanisms partially recover gene expression in tightly controlled genes.

6.2.1 AbExp assumes that outliers are caused by rare variants within
gene regions

AbExp relies on a number of assumptions that do not necessarily hold. First, it assumes
that an underexpression outlier is caused by a rare variant. However, it is also possible
that an expression outlier is caused by a rare combination of two or more frequently
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occurring variants. Conversely, damage caused by one variant might be recovered by
another variant, e.g. two frameshift variants where one variant can restore the correct
reading frame after the other variant causes a disruption. Incorporating combinations of
variants would require a more complex model that also considers phasing of the variants.

Also, AbExp does not consider whether a variant is heterozygous or homozygous. In
theory, a variant should have twice the effect if it affects both copies of a gene. An
improved model might use this variant zygosity as additional information on outlier
prediction, assuming there is a sufficient number of homozygous variants in the dataset.
However, while individuals with a heterozygous high-impact variant might be viable due
to a second unaffected copy of the gene, homozygous high-impact variants might be
depleted in the population when both copies of the gene are affected, limiting the data
available for training.

Further, AbExp only considers variants within ± 5,000 bp of protein-coding genes.
This limited window misses longer-range interactions such as enhancers and silencers and
therefore variants possibly causing expression outliers. Predicting the gene expression
impact of enhancer and silencer variants requires evaluating whether the variant impairs
the enhancer or silencer and further the tissue-specific regulatory impact of the enhancer
on the gene of interest. While current sequence-based methods are in general unable to
accurately predict the gene expression effect of enhancer variants, combining these with
tissue-specific maps of enhancer-gene interactions might provide valuable information
for expression outlier prediction[72].

Finally, AbExp does not consider the effects of trans-acting gene regulation. For ex-
ample, aberrant expression of a specific transcription factor might affect gene expression
of a large number of other genes. Also, the cause of the observed expression buffering in
genes with a low expression variability is unclear. Modeling such effects would require a
very different approach that captures regulatory networks. In this context, it would also
be sensible to expand aberrant expression prediction to non-coding genes. Non-coding
RNA can control gene expression by attaching to coding RNA, along with certain pro-
teins, to break down the coding RNA. Non-coding RNA may also recruit proteins to
modify histones, changing the accessibility of other genes and therefore their expression
rate[68].

6.2.2 Additional annotations could improve AbExp
AbExp could be improved in multiple ways. As of now, the AbExp pipeline relies on
the CADD plugin within Ensembl VEP, which annotates only pre-computed CADD
scores, potentially overlooking annotations for rare variants. To ensure comprehensive
annotation of all rare variants, it would be necessary to directly predict CADD scores
using the original CADD pipeline.

Although AbExp considers structural variants, it only incorporates transcript abla-
tions caused by long deletions. However, as outlined in section 1.3.3, there are other
types of structural variants such as copy number variations that are strongly enriched
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among expression outliers. More types of structural variants could be interpreted with
specialized tools such as CADD-SV, a tool that scores the deleteriousness of large (>50
bp) deletions, insertions, and duplications[78]. Also, one could investigate the copy num-
ber frequency among the global population using the latest GnomAD v4 release[70, 73].
Another type of variant to consider are short tandem repeat (STR) variations, i.e. vari-
ations in the number of repeat units within STR regions of the genome. STR variations
have been associated with the expression of nearby genes in GTEx[44] and are a known
cause of rare diseases[37, 117].

Further improvements could be made in the interpretation of promoter variants. In
GTEx, I found 188 rare variants in a −100 to +50 bp window around the transcription
start sites in underexpressed genes, with an enrichment of up to 15% among rare pro-
moter variants (fig. 6.1). AbExp interprets the impact of these variants based on the
CADD score only, which is neither tissue-specific nor specialized to predict the impact on
gene expression. A recent study has shown that Enformer, a deep learning model that
predicts gene expression from DNA sequences by integrating long-range interactions,
accurately captures gene expression determinants in promoters on GTEx, suggesting
that the inclusion of Enformer predictions might improve the overall predictive value of
AbExp[72].

In GTEx, there is also a notable enrichment of rare variants within a certain distance
to transcription termination sites (fig. 6.2). In total, I identified 73 rare variants within
a 60 bp window upstream of the transcription termination sites of underexpressed genes,
with an enrichment of up to 27% among rare polyadenylation region variants. This
enrichment could be attributed to a major determinant of the polyadenylation cut site,
namely the presence of canonical sequence elements located approximately 50 base pairs
upstream of the cut site[13]. Variants destroying those sequence elements might impair
the successful transcription of these genes. One could explore whether these variants
predict underexpression, for instance, by incorporating a binary variable into AbExp
indicating the presence of a rare variant within a 60bp window upstream of the TTS.
Alternatively, sequence-based methods like APARENT and APARENT2[13, 96], which
quantitatively predict alternative polyadenylation, could be integrated as additional an-
notations in AbExp.

Although missense variants mainly affect the functionality of the protein, changes in
the encoded protein sequence can also lead to ribosomal stalling and mRNA degradation
by the ribosome-mediated quality control and therefore a reduction in gene expression
levels (fig. 6.3)[125]. We suspect that AlphaMissense[19], a recent model for predicting
the impact of missense variants, could be predictive of such effects. AlphaMissense scores
could be integrated into AbExp to test this hypothesis. Also, one could investigate the
predictive value of mRNA secondary structure prediction or codon optimality-mediated
decay[8, 51].
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Figure 6.1: Enrichment of rare promoter variants relative to the transcription start
site (TSS) in the GTEx benchmark dataset. The y-axis shows the proportion of rare
variants in a certain distance interval to the TSS (x-axis) among all rare variants within 2,000
upstream to 500 bp downstream of a TSS, grouped by underexpression outliers, overexpression
outliers, and non-outliers. Error bars mark 95% binomial confidence intervals.
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Figure 6.2: Enrichment of rare promoter variants relative to the transcription termi-
nation site (TTS) in the GTEx benchmark dataset. The y-axis shows the proportion of
rare variants in a certain distance interval to the TTS (x-axis) among all rare variants within ±
500 bp of a TTS, grouped by underexpression outliers, overexpression outliers, and non-outliers.
Error bars mark 95% binomial confidence intervals.
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Figure 6.3: Potential causes of ribosome stalling. Ribosome stalling can be caused by (a)
specific amino acid combinations, e.g. Prolin-Prolin pairs, (b) bad codon optimality, i.e. the
usage of rare codons, or (c) stem-loops or pseudoknots in the mRNA structure.

6.2.3 Aberrant expression prediction in more settings
AbExp predicts aberrant gene expression in 48 human tissues. Extending its predictive
ability to other tissues is comparatively simple as it does not require retraining of the
model. Instead, it would be theoretically sufficient to compute isoform composition,
average gene expression, coefficients of gene expression variation, and SpliceMaps based
on a representative set of RNA-seq samples. One could explore whether such custom
annotations influence performance, and how many tissue samples are required to obtain
a good reference for predicting aberrant expression in tissues that are not covered by
GTEx. For example, predictions in ALS might be improved by creating specialized
annotations for induced pluripotent stem cells, instead of using nerve tissue from GTEx
as a reference.

Further, the tissues measured in GTEx are mixtures of various cell types and there-
fore also the measured gene expression. For example, lung tissue is composed of various
cell types such as alveolar cells, bronchial epithelium, alveolar macrophages, endothe-
lial cells, and interstitial cells[71]. Developing a version of AbExp based on single-cell
transcriptomics measurements could refine its predictions to cell-type resolution.

Although expression patterns vary widely in different tissues and individuals, they
remain relatively stable in adulthood. However, gene expression patterns change during
development and play a central role in health and disease milestones, such as the onset
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or end of growth spurts, the onset of puberty, and the onset of child-specific conditions
and diseases that manifest later in life. The developmental Genotype-Tissue Expression
(dGTEx) project, an emerging resource of gene expression measurements among kids in
different developmental stages[27], could provide a valuable resource to study aberrant
expression patterns during human development.

AbExp could also be applied to somatic mutations in cancer tissues and cell lines,
potentially aiding in cancer type classification and driver gene discovery. Conversely,
cancer cells represent natural perturbation experiments and, thus, gene expression mea-
surements in cancer cell lines might be useful to further test and improve AbExp.

6.3 The UK Biobank rare variant association testing and
phenotype prediction study can be improved

Finally, in the third part of my thesis, I demonstrated the application of AbExp in
rare variant association testing and phenotype prediction on 40 blood traits of the UK
Biobank. AbExp scores offer supplementary information beyond the state-of-the-art
putative loss of function classifier LOFTEE, significantly enhancing rare variant gene
association testing as well as phenotype prediction.

While confirming that rare expression outlier associated variants are predictive of
phenotypic traits, this study goes beyond the state-of-the-art of Smail et al.[132] that is
restricted to rare variants found in GTEx. Since AbExp generalizes to unseen variants,
AbExp allowed to evaluate the gene expression impact of any variant within 5,000 bp
of genes in the UK Biobank. This is especially relevant concerning rare variant-based
studies, given that many rare variants, especially those unique to a single individual,
are unlikely to be found in GTEx. Expanding the analysis to include variants beyond
those found in GTEx increases the likelihood of detecting significant associations and
enhances the potential to accurately predict phenotypes.

While the UK Biobank case study was performed on a set of 200,000 whole-exome
sequencing samples, recent additions to the UK Biobank include whole-genome sequenc-
ing data for all 500,000 participants in the UK Biobank. Leveraging this additional data
would improve both gene discovery and phenotype prediction, not only due to the in-
creased sample size, but also due to the improved prediction of aberrant underexpression
as whole genome sequencing covers, in contrast to whole exome sequencing, also other
relevant regions such as deep intronic or promoter regions. The case study could also be
extended to include other traits such as diseases. Further, better modeling approaches
that also consider variant combinations might improve the detection of gene-trait asso-
ciations and phenotype prediction[22]. Finally, it would be interesting to study which
tissues showed the most significant gene-trait associations.

110



6.4 Conclusion and outlook

6.4 Conclusion and outlook
In summary, the development of a DNA sequence-based method for predicting aberrant
gene expression in multiple tissues, which can also generalize to unseen variants, rep-
resents a significant advancement in the ability to identify and understand the genetic
underpinnings of human traits and diseases. Hopefully, the benchmark and algorithms
presented in this study will encourage further research in this area and assist in devel-
oping and validating methods for predicting the impact of large-effect variants on the
human transcriptome.

Despite being a critical determinant of protein abundance, gene expression is not the
sole factor. To fully understand the functional impact of genetic variants on proteins, it is
necessary to consider also post-transcriptional effects, such as the availability of resources
for protein biosynthesis[98]. With the UK Biobank Pharma Proteomics Project (UKB-
PPP), a study of plasma proteomic profiles from 54,306 UK Biobank participants, arises
the unique possibility to investigate these effects. Similar to this study on aberrant gene
expression on GTEx, a comparable approach could be applied to the UKB-PPP dataset
using PROTRIDER, a specialized tool for detecting aberrant protein expression similar
to OUTRIDER[80]. Based on this, one could establish a benchmark to test and develop
tools predicting the impact of genetic variants at the protein level.

Besides proteins, cells also harbor other disease-relevant metabolites such as sugars,
fatty acids, lipids, and steroids. For example, the deregulation of metabolic pathways
plays an important role in oncogenesis[57]. Here, exploring aberrant metabolomic pro-
files, e.g. predicted from aberrant gene expression, could provide valuable insights[17].
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A Data and code availability

The aberrant expression benchmark dataset, isoform proportions, and the expected gene
expression in GTEx v8 are available as open-access in the Zenodo repository[62] with
DOI: 10.5281/zenodo.8427312.
A Snakemake pipeline to calculate AbExp predictions can be found at:

https://github.com/gagneurlab/abexp
See also section 4.9. The source code for the UK Biobank rare-variant association study
and phenotype prediction can be found in the following repositories:

• Main analysis pipeline: https://github.com/gagneurlab/abexp-ukbb-trait-analysis

• Variant clumping: https://github.com/gagneurlab/abexp-ukbb-variant-clumping

• Polygenic risk score calculation: https://github.com/gagneurlab/abexp-ukbb-prs
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Figure S1: Relationship between the fraction of predicted multi-tissue outliers and
the number of expressed tissues among AbExp low and high confidence predictions.
The color denotes the number of genes AbExp predicted with low or high confidence as under-
expressed in at least one tissue in the GTEx dataset. The x-axis shows the fraction of tissues
where the gene is predicted as underexpression outlier. The y-axis shows the number of tissues
the gene is expressed in. About 9-10% of the predicted genes are expressed in less than five tis-
sues, contributing 7-8% of genes predicted as underexpression outliers in at least 90% of tissues.
Notably, many high-confidence predictions are outliers in only few tissues.
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Figure S2: AbExp improvements over LOFTEE in phenotype prediction also holds
with elastic net regularised linear regression predictions. (a) Relative R2 increase be-
tween AbExp-based and LOFTEE-based predictions across traits. Traits with a significant dif-
ference between both models are marked red (two-sided paired t-test, nominal P < 0.05). Error
bars show the standard deviation among 5 cross-validation folds. (b) Positive bars show the
number of individuals with an error reduced by at least one standard deviation in the trait scale
and therefore improved prediction, negative bars show the number of individuals with an error
increased by at least one standard deviation in the trait scale and therefore worse prediction
of the AbExp-based model (green) and the LOFTEE-based model (grey). (c) R2 of gradient
boosted trees models against R2 of elastic net models across traits, when using AbExp scores
or LOFTEE. All data presented in this figure are computed on held-out folds of a 5-fold cross-
validation within a third of the UKBB data.
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