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Abstract

Understanding human actions plays an important role in intelligent systems, partic-
ularly in the interdisciplinary domains of artificial intelligence (AI) and human-robot
collaboration (HRC). Understanding human behavior is a key prerequisite for de-
signing and developing systems that interact seamlessly with users. This work delves
into the significance of abstracting the human action space through graph represen-
tations, employing several attention mechanisms to dynamically adapt and refine the
relationships among graph nodes, which represent subjects and objects within the
graph structure.

The proposed framework introduces a novel approach that utilizes graph convolu-
tional networks (GCNs) to effectively parse spatial and temporal features embedded
within graph representations. By encapsulating action elements (human and ob-
jects) within a graph framework, our approach enables seamless switching between
classifiers and decoders, thereby facilitating the prediction of labels per clip and the
segmentation of sequences into distinct sub-actions. This adaptability and versatil-
ity enables the framework to respond to the complexity of tasks with precision and
agility. The fusion of graph representations with graph convolutional networks not
only enhances the interpretability and robustness of the model but also contributes
to a deeper understanding of the dynamics underlying human actions in diverse con-
texts.

Moreover, our study scrutinizes the uncertainty embedded within graph convo-
lutional networks, trying to bridge the gap between the controlled environment of
training datasets and the unpredictability of real-world scenarios. By illuminating
and addressing the uncertainties in human actions, our approach aims to facilitate
the development of real-time and robust models for human-robot interactions.

The experimental validation of our proposed model are conducted on challenging
public human daily actions datasets, as well as real-world datasets. The experimental
results underscore the effectiveness and generalizability of our framework, demon-
strating its superior performance in accurately recognize human actions across varied
contexts and scenarios. These findings not only validate the effectiveness of our ap-
proach but also demonstrate its potential applications across a spectrum of domains,
ranging from healthcare supervision systems to collaborative human-robot environ-
ments.

Overall, this research provides insight into an important topic of understanding
human actions within the context of intelligent systems. By leveraging graph rep-
resentations and graph convolutional networks, our framework not only enhances
the interpretability and robustness of human action recognition systems but also pro-
motes a deeper understanding of human action primitives. The insights gained from
our study of uncertainty quantification in graph neural networks have positive im-
plications for the design and development of intelligent systems that integrate seam-
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lessly with human activities.

Zusammenfassung

Das Verstdndnis menschlicher Handlungen spielt in intelligenten Systemen eine wichtige
Rolle, insbesondere in den interdisziplindren Bereichen der kiinstlichen Intelligenz
(KD und der Mensch-Roboter-Kollaboration (MRK). Das Verstindnis menschlichen
Verhaltens ist eine wichtige Voraussetzung fiir den Entwurf und die Entwicklung
von Systemen, die nahtlos mit Benutzern interagieren. Diese Arbeit befasst sich mit
der Bedeutung der Abstraktion des menschlichen Handlungsraums durch Diagramm-
darstellungen und nutzt mehrere Aufmerksamkeitsmechanismen, um die Beziehun-
gen zwischen Diagrammknoten, die Subjekte und Objekte innerhalb der Diagramm-
struktur darstellen, dynamisch anzupassen und zu verfeinern.

Das vorgeschlagene Framework fiihrt einen neuartigen Ansatz ein, der Graph
Convolutional Networks (GCNs) nutzt, um rdumliche und zeitliche Merkmale, die in
Graphdarstellungen eingebettet sind, effektiv zu analysieren. Durch die Kapselung
von Aktionselementen (Menschen und Objekte) in einem Diagrammrahmen ermoglicht
unser Ansatz einen nahtlosen Wechsel zwischen Klassifikatoren und Decodern und
erleichtert so die Vorhersage von Beschriftungen pro Clip und die Segmentierung
von Sequenzen in verschiedene Unteraktionen. Diese Anpassungsfahigkeit und Viel-
seitigkeit ermoglicht es dem Framework, prazise und agil auf die Komplexitdt von
Aufgaben zu reagieren. Die Fusion von Graphdarstellungen mit Graph Faltungsnet-
zwerken verbessert nicht nur die Interpretierbarkeit und Robustheit des Modells, son-
dern tragt auch zu einem tieferen Verstandnis der Dynamik bei, die menschlichen
Handlungen in verschiedenen Kontexten zugrunde liegt.

Dariiber hinaus untersucht unsere Studie die Unsicherheit, die in Graph Fal-
tungsnetzwerken verankert ist, und versucht, die Liicke zwischen der kontrollierten
Umgebung von Trainingsdatensitzen und der Unvorhersehbarkeit realer Szenarien
zu schliel3en. Indem wir die Unsicherheiten menschlichen Handelns beleuchten und
angehen, zielt unser Ansatz darauf ab, die Entwicklung robuster Echtzeitmodelle fiir
Mensch-Roboter-Interaktionen zu erleichtern.

Insgesamt liefert diese Forschung Einblicke in ein wichtiges Thema des Verstand-
nisses menschlicher Handlungen im Kontext intelligenter Systeme. Durch die Nutzung
von Graphdarstellungen und Graph Faltungsnetzwerken verbessert unser Framework
nicht nur die Interpretierbarkeit und Robustheit menschlicher Handlungserkennungssys-
teme, sondern fordert auch ein tieferes Verstandnis der Grundprinzipien menschlicher
Handlungen. Die Erkenntnisse aus unserer Untersuchung der Unsicherheitsquan-
tifizierung in graphischen neuronalen Netzen haben positive Auswirkungen auf den
Entwurf und die Entwicklung intelligenter Systeme, die sich nahtlos in menschliche
Aktivitaten integrieren lassen.
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Chapter 1

Introduction

Advances in robotics have revolutionized various aspects of human life, from industry
and healthcare to domestic and personal services. However, designing an intelligent
system that can safely and effectively operate alongside humans in unstructured en-
vironments requires a major leap forward in the capabilities of existing systems. The
ability to understand and predict human actions represents a critical aspect of this
leap. It forms the foundation for informed decision-making, enabling robots to an-
ticipate human actions, adapt to their preferences, and contribute constructively to
shared tasks.

1.1 Importance of Human Behavior Understanding

Understanding human actions in the context of interactions with robots holds sig-
nificant motivation and potential benefits across various domains. This motivation
comes from the desire to create more intuitive, adaptable, and efficient human-robot
collaborations and learning from demonstrations.

At the level of human-robot collaboration, human actions are a primary mode.
When robots can accurately recognize and understand human actions, they can bet-
ter interpret the intentions and needs of humans. This enables smoother and more
efficient communication between humans and robots, fostering a natural and in-
tuitive collaboration [KJM10]. In terms of coordinate quality, understanding human
actions allows robots to anticipate and synchronize their actions with human actions.
This coordination leads to more efficient and harmonious task execution, reducing
errors and optimizing workflow. For safety in a collaborative task, recognizing event
actions helps robots detect potential hazards, avoid collisions, and respond appropri-
ately to unexpected actions. This adaptability is crucial for maintaining a safe work-
ing environment [NK10]. Different individuals perform actions in different ways. By
understanding individual-specific action patterns, robots can tailor their responses to
specific users, creating a more personalized and comfortable interaction experience
[Ond+13]. Understanding human actions can also improve the efficiency of robots in
completing tasks. For example, a robot designed to assist people with disabilities can
be programmed to recognize and respond to specific movements or gestures made
by its user, allowing for a more personalized and efficient assistance experience.

Besides Human-Robot collaboration tasks, understanding human actions helps
robots learn from human demonstrations as well. By observing and analyzing human
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behavior, robots can develop a better understanding of how humans interact with the
environment and manipulate objects. Furthermore, robots can develop models that
accurately simulate human movements, such as walking, running, or lifting objects.
These models can be used to control the behavior of robots during collaboration
tasks or training simulations [KD18]. In addition to modeling human behavior, grad-
ual learning is another potential benefit of understanding human actions. Robots
can learn new tasks or behaviors by observing human actions, which simplifies the
training process and facilitates knowledge transfer. Humans often learn new skills
through a process called gradual learning, where they gradually refine their move-
ments and actions over time. By understanding this, robots can adapt their behavior
more effectively during training and improve their ability to learn from less-than-
ideal demonstrations [Kul+21]. Humans use a wide range of nonverbal cues, such
as facial expressions, body language, and tone of voice, to communicate emotions
and intent. By understanding these cues in human demonstrations, robots can de-
velop a better understanding of human emotions and respond appropriately during
interactions [Tro+21].

Furthermore, understanding human actions plays an important role in the con-
struction of a higher-level semantic map, particularly when it comes to building a
semantic map of a person’s daily schedule. The identification of recurring patterns
and routines in a person’s daily schedule contributes to the creation of a semantic
map. This map represents not only individual activities but also the broader struc-
ture of the daily routine. Armed with knowledge about a person’s daily schedule,
the robot can navigate proactively to support ongoing or upcoming activities. For
instance, it can prepare a workspace before the individual starts working or offer
assistance in the kitchen during cooking times. Finally, this ability contributes to
the formation of user-centered robotic system. The robot can align its behavior with
the user’s preferences and rhythms, offering personalized assistance and creating a
seamless integration into the user’s lifestyle.

Ethical concerns are important issues that cannot be avoided when designing
intelligent systems as well. By studying human behavior, developers can identify
potential ethical issues related to the use of robots. For example, they may explore
how robots should behave in situations where they must make decisions that could
impact human lives, such as in autonomous vehicles or military applications [JAT20].
However, this topic will not be addressed in this thesis.

1.2 Problems in Understanding Human Actions

Human action is a rich and complex pattern, influenced by many factors such as
speed, target objects, body conditions and environments. Recognizing and segment-
ing these activities are challenging due to their inherently dynamic, diverse, and
context-dependent nature. Traditional robotic systems, with their limited percep-
tion and rigid programming, are ill-equipped to comprehend this complexity. In this
section, the confronting challenges will be introduced.

The first step of an action recognition system is detecting the performer and re-
lated objects in different environments. Note that, for some specific actions, the scene
has impacts on the actions label. In this work, we define the location and structures
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in the environment as the background, and focus on the daily actions, which have
less relation to the background. A complex background can lead to confusion be-
tween the background and the action-related subject and objects. Therefore, accu-
rate recognition and segmentation require distinguishing the targets (subjects and
objects) from the surroundings. Traditional approaches either manually select inter-
esting areas and track feature points or focus on moving feature points [Sev+19;
Lad+20]. Both are not suitable for large-scale data. Recently, with the advantage of
Deep Learning, many promising object detection networks have been developed to
solve this challenge [Red+16; Lin+20]. These approaches utilize a bounding box to
cover the target, which diminishes the effect of the background on the result of action
recognition but does not remove it completely. More recently, pixel classification (im-
age segmentation) algorithms have been proposed for classifying pixels belonging to
different objects. This technique can be used to completely remove the background,
which requires high computational power. Since most of the human body can be
viewed as an articulated system with rigid bones connected by joints, which are not
sensitive to the background and the appearance of humans, action recognition us-
ing skeletal information has been widely investigated and attracted a lot of attention
[Shi+19b; YX1.18].

Besides distinguishing targets from the surroundings, capturing 3D information is
another challenge. Compared to 2D information, 3D information has more extensive
spatial features at the cost of higher time-consuming and manual labeling require-
ments. Most existing research methods still have an ill-posed , inverse problem that
extracts 3D information from monocular images [Zhe+20]. The emergence of Mi-
crosoft Kinect [Poh+16], and RealSense [Kes+17] cameras made multidimensional
observation of human events feasible without high processing loads on the system.
However, the noise of the depth measurement in these cameras has a significant
influence on the action understanding.

After motion information is captured by a perception system, extracting motion
features is the next step. In the current research work, various parameters such as
shape, trajectory, velocity, optical flow, and skeleton have been extensively employed.

Yamato et al. [YT12] integrated silhouette contour features with Hidden Markov
Models (HMM) for the purpose of action recognition. Carlsson et al. [LLS09] con-
ducted motion recognition by establishing a shape match between the key frame
extracted from the isochronous video and the stored action prototype. The shape
information is conveyed through the detected Canny edge data. The advantage of
using static contor and shape is intuitive, as numerous 2D image processing meth-
ods can be directly applied. However, a notable drawback lies in its dependency on
stable segmentation, making it sensitive to factors such as color, light, contrast, and
presenting challenges in handling occlusion issues.

Action trajectory is another import representation of motion. Usually the speed
and direction of the abrupt point in the trajectory are considered key indicators re-
flecting distinct movements. In earlier studies [Rah+14; RM16], the KLT tracker was
frequently employed for extracting trajectories, with descriptors such as HOF, HOG,
and velocity history being utilized. The limitation of relying on trajectory for action
identification lies in the challenge of obtaining an accurate trajectory. The difficulty
in precisely determining the trajectory constitutes a drawback in utilizing it for action
identification.



4 1 Introduction

Optical flow contains a lot of sports-related information, distinguishing itself as
one of the most crucial features distinct from static images. Efros [Ke+17] employed
the optical flow feature to discern actions within the line of sight. The similarity
between actions are measured by the histogram of optical flow (HOF), which is cal-
culated based on the "half-wave rectification" in four directions. The benefit of utiliz-
ing optical flow lies in its exemption from requiring background extraction, but the
drawback is its challenge in effectively managing background changes.

Recently, skeleton-based action recognition raised a lot attention, in which the
action perfromer is depicted as skeleton, and objects are reprensted by the 3D cen-
ter points [Xin+21]. Since most of human body can be viewed as an articulated
system with rigid bones connected by joints, a skeleton representation of human
body is an efficient way to simplify the scene. However, this method only focuses on
skeleton-related motion and is less accurate when dealing with complex movements,
especially interactions with the environment. In this study, we focus on recognizing
daily actions, where background has less influence on action labels.

Analyzing the spatial and temporal information to obtain the action label is an-
other challenge. The human action recognition can be regarded as a data classifica-
tion problem. It demands the development of advanced algorithms that can accu-
rately interpret human behaviors from sensory data, and predict action labels. Most
existing methods can be clustered into following categories: key frame based ap-
proach, probabilistic based approach, and data driven approach categories.

In the realm of pattern classification, the most straightforward approach for com-
paring static templates with current samples is through the template matching method.
Due to variations in the duration of identical actions, it is necessary to adjust samples
in the time dimension. Dynamic Time Warping (DTW) stands out as the most typ-
ical method for addressing this requirement [WW17; Tan+18]. The advantages of
template matching include simplicity in implementation and swift recognition speed.
However, its reliance on the feature space of one or several fixed points to describe
the dynamic system limits its ability to accurately reflect the distribution properties of
dynamic systems within the feature space. On the other hand, approaches based on
probability and statistical models align more consistently with the overall dynamic
process of action change.

For the method using probability and statistics, at any moment, a system can be
characterized as existing in several independent states. The system transitions to the
next state at any given time based on the probability associated with the continuous
state. The Hidden Markov Model (HMM) stands out as the most widely employed
probabilistic model. The probability and statistics-based method exhibits exceptional
robustness to slight variations in the temporal and spatial dimensions of action se-
quences [YT12]. However, it is sensitive to the quality and quantity of training data.
This method faces challenges when encountering diverse and complex real-world
scenarios, as they heavily depend on the assumptions made during the modeling
process.

Most data driven methods use Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs) to model respectively human skeleton spatial structure
and temporal dynamics. However, both cannot fully represent the spatial and tem-
poral features of the human skeleton at the same time [YXL18]. In these networks,
the skeleton input is usually processed as a pseudo-image or sequence of joint coordi-
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nate vectors, ignoring the spatial connections between the skeleton joints [Shi+ 19b].
RNNs are additionally limited by the short memory in analyzing global temporal fea-
tures. Moreover, it is hard to generalize the graph structure of skeleton data to any
random form of skeleton using previous methods.

Recently, the advent of Graph Convolutional Networks (GCNs) has presented a
potential solution to address pertinent challenges in spatial and temporal feature
representation. Within the GCN framework, spatial characteristics are encapsulated
by a spatial graph, comprising joints (vertices) and their inherent interconnections
(edges). Likewise, temporal attributes are elucidated through a temporal graph,
wherein each vertex is linked to its neighbors across consecutive frames by temporal
edges, as articulated in the work by Yan et al. [YXL18].

Traditionally, spatial and temporal edges are delineated based on natural anatom-
ical connections, such as the linkage between the elbow and wrist or the shoulder.
However, this conventional approach proves inadequate when applied to activities in-
volving interplay among distinct body parts, exemplified by actions like drinking and
eating. These activities exhibit robust correlations between disparate body segments,
such as the hands and head. To overcome this limitation and effectively capture the
dynamic relations inherent in diverse actions, there arises a necessity for an adaptive
mechanism within the computational model. Such an adaptive mechanism would
facilitate the nuanced extraction of dynamic relations, especially in scenarios where
conventional, static anatomical connections fall short, thereby enhancing the model’s
capacity to discern and represent intricate patterns of human activities.

Within the realm of human activities, the phenomenon of human-object interac-
tions (HOIs) intricately intertwines with the surrounding environment and the ob-
jects present within the scene. The imperative task of recognizing HOIs in video
sequences stands as a foundational pursuit in comprehending human activities. This
involves the meticulous segmentation and recognition of sub-activities on a per-frame
basis, achieved through a comprehensive analysis of the interactive relations man-
ifesting between humans and objects [Mor+21]. When humans and objects are
represented simplistically through skeletal configurations and center points, these
representations inherently give rise to a relation graph that spans both spatial and
temporal dimensions. This graph serves as a descriptive framework elucidating the
relative positions of human and object entities, as well as the dynamic interplay un-
folding throughout the duration of the activity. Capitalizing on the advancements in
deep learning within the domain of computer vision, the establishment of a spatial
relation graph becomes a tractable endeavor through the adept detection of humans
and objects within the scene. Nevertheless, despite the strides made in spatial re-
lation graph construction, unraveling the temporal structure governing sub-actions
within a complex task remains a formidable challenge. The intricate temporal dy-
namics inherent in such scenarios pose a substantial hurdle, necessitating further
advancements in computational methodologies to recognize and represent the tem-
poral intricacies of human-object interactions during multifaceted activities.

Currently, the available graph convolutional networks (GCN) [YXL18; Shi+19b]
primarily focus on the overall prevalent action being executed, in which only a single
action is performed in one set of clips. Leveraging cascaded structures, these method-
ologies effectively extract and concentrate spatio-temporal features. However, their
application is conventionally confined to the task of assigning action labels to spec-
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ified segments [PD+20; XB22a]. The pertinent question arises: can the gleaned
spatio-temporal information be harnessed to elucidate the temporal structure inher-
ent in activities, specifically, the segmentation of actions?

The quality of an action recognition system relies on the identification of cues that
define the label of an action, as well as the spatial-temporal relations demarcating
the boundaries between consecutive actions in a task. The proposed approach repre-
sents activities in spatio-temporal graphs, where the joints of a human skeleton and
the center points of bounding boxes enclosing the objects are graph nodes and graph
edges represent the active relations between nodes. The delineation of sub-activities
occurs through frame-wise analysis of the evolving connections among graph nodes,
as elucidated by Xing et al. [XB22b]. An influential solution employed in process-
ing dynamic Human-Object Interaction (HOI) graph relations is the Attention-based
Graph Convolutional Network (GCN). This adaptive mechanism dynamically updates
inter-node correlations through an attention mechanism, iteratively parsing features
across spatial and temporal dimensions [DWA19; Mor+21]. Combining with a de-
coder, the processed graph features are further upsampled to the original time scale,
and then the graph sequences are classified and segmented frame by frame [XB22b].
However, the persistent challenge lies in surmounting segmentation inaccuracies and
mitigating over-segmentation within the temporal dimension, constituting a focal
point for ongoing research efforts.

Understanding Human-Object Interactions requires not only the precise recogni-
tion and segmentation of interaction relations on a per-frame basis but also an assess-
ment of prediction uncertainty. In critical applications such as robots or autonomous
vehicles, safety is essential. Understanding and quantifying for uncertainty helps
develop systems that can operate safely, minimizing the risk of accidents or errors.
The existing methods [XB22b; Mor+21] show promising performance in terms of
recognition accuracy and preventing boundary shifts and over-segmentation. Never-
theless, conventional learning-based models often manifest overconfidence in wrong
predictions, a characteristic that proves disadvantageous in real-world scenarios char-
acterized by unforeseen circumstances, such as noise and unknown data. Decision
making systems that take network predictions as input need to make choices based
on incomplete or noisy information. Uncertainty quantification provides a framework
for making decisions that take into account the confidence or uncertainty associated
with different pieces of information. For robots operating in human environments,
understanding and managing uncertainty is crucial for effective collaboration. It
helps in developing systems that can communicate their intentions and make de-
cisions that align with human expectations. The presence of these unpredictable
factors increases both the risk and complexity of model deployment. Therefore, the
imperative arises for the integration of mechanisms capable of detecting novel hu-
man actions, thereby enhancing the adaptability and robustness of our model in the
face of diverse and unexpected real-world scenarios.

Another pivotal facet of human-robot interaction pertains to the identification
of trigger events necessitating a response from the robot [LPO7; Tur+08; Fan+09].
Typically, these events manifest as unforeseen actions or motions executed by the
human subject, potentially prompting additional learning of new motions or invoking
emergency responses in the event of accidents. In this work, we specifically focus on
the prevalent event of detecting instances where people experience fall, arising from
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conditions such as tripping or compromised health.

Beyond the detection of event actions, the endeavor to acquire and establish a
structured representation of these actions is both essential and intricate. Notably,
different actions may share common start and end positions, as well as exhibit sim-
ilar pose transformations and rotations, exemplified by actions such as lying down
and falling. However, their latent temporal feature diverge significantly. Modeling
latent spatio-temporal structures of actions is one of the most widely-used techniques
for action recognition, and representation [Rab89; WM10; TFK12]. A latent spatio-
temporal structure comprises two integral components: an action unit with spatial
information and a temporal model. The action unit encapsulates the sequential and
constituent elements of the action, while the temporal feature delineates the mag-
nitude of the transition from the previous state to the subsequent state [Qi+ 18].
In the specific context of the fall-down event, the temporal feature manifests as a
discernible, abrupt change in the skeletal height [Ma+14].

The challenges of human action understanding can be briefly summarized as fol-
lows:

* Efficiently extract motion targets (subjects and objects) from the image.

* Adaptively update the dynamic relations between human body parts, and be-
tween human and objects.

* Accurately recognize human actions and human-object interactions in a clip or
framewise.

* Reduce segmentation errors and over-segmentation in the temporal dimension.

* Measure the novelty of predictions and distinguish in-distribution and unknown
data.

* Robustly detect event action under the noise in the depth measurement.

 Establish structure representation of the trigger event that can lead to an emer-
gency situation.

By tackling these challenges, this thesis aims to make a significant contribution
to the field of robotic vision. The objective is to empower robots with the ability to
recognize, segment, and respond appropriately to human activities, thereby facilitat-
ing more effective collaboration between humans and robots. Beyond the scope of
robotics, the methodologies and insights gleaned from this research could have far-
reaching implications, potentially catalyzing advancements in other domains such as
intelligent systems, healthcare technology, and autonomous vehicles. In essence, the
motivation for this work is to bring us closer to the vision of intuitive, adaptive, and
intelligent robotic companions seamlessly integrated into our daily lives.

1.3 Proposed Solutions and Contributions

To effectively extract targets from images, we employ a human pose estimator and
an object detector for object bounding box detection. Subsequently, the identified
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2D information, such as skeleton nodes and center points, is projected into 3D space
along the depth direction.

To dynamically update the evolving relations, we propose an adaptive solution:
attention mechanism. Originating from the domain of Natural Language Processing
(NLP), the attention mechanism has demonstrated success in discerning potential
relationships between words situated at varying positions [Vas+17]. For a similar
purpose, we introduce two distinct spatial attention mechanisms, namely simple at-
tention and hybrid attention mechanisms. These mechanisms have the capability
to generate novel edges between highly correlated vertices during the training pro-
cess, thereby autonomously adapting to diverse graph representations of actions and
distinct input streams.

In conjunction with the innovative attention mechanism, we introduce a novel
graph convolutional network known as the Hybrid Attention-based Graph Convolu-
tional Network (HAGCN). This network incorporates two distinct attention mecha-
nisms tailored for diverse input data. Specifically, the Relative Distance (RD) atten-
tion mechanism is particularly beneficial for the bone stream, while the Relative An-
gle (RA) attention mechanism proves advantageous for action classification related
to the joint stream. The resultant model undergoes evaluation on two widely recog-
nized public datasets for human action recognition: NTU-RGBD [Sha+16b] and Ki-
netics Skeleton [Kay+17]. Impressively, our model demonstrates robust performance
on both datasets, affirming its efficacy in the realm of human action recognition.

Regarding the question of action segmentation, we find that it is similar to the
difference between image classification and segmentation. In image classification, a
cascade structure is commonly employed, facilitating the extraction of global high-
level features to classify the entire image as a whole [KSH12]. Conversely, in image
segmentation, the emphasis lies in discerning distinctions between pixels by upsam-
pling the cascaded features back to the original scale [Wu+19a].

In this thesis, we introduce a Pyramid Graph Convolution Network (PGCN) de-
signed to enhance HOI recognition and segmentation. This is achieved by integrating
the cascaded graph convolutional network with a novel temporal upsampling mod-
ule, referred to as temporal pyramid pooling (TPP). To address the dynamic interac-
tive relations between humans and objects, we incorporate a spatial attention mech-
anism within the Graph Convolution Network (GCN). This mechanism dynamically
generates new edges between strongly correlated vertices throughout the course of
the activity. The efficacy of PGCN is substantiated through its demonstrated frame-
wise recognition and segmentation capabilities, showcasing superior quantitative and
qualitative performance on two challenging human-object interaction datasets.

To enhance Human-Object Interaction (HOI) recognition and segmentation, we
present the Temporal Fusion Graph Convolutional Network (TFGCN). Comprising
an attention-based graph convolutional encoder and a newly devised Temporal Fu-
sion (TF) decoder, this novel architecture aims to improve overall performance. The
TF decoder leverages multiple parallel temporal-pyramid-pooling blocks to extract
global features and enrich temporal characteristics by fusing high-dimensional fea-
tures from the encoder with processed low-dimensional features. Experimental re-
sults on public datasets demonstrate superior performance in terms of recognition
accuracy and the mitigation of boundary shifts and over-segmentation.

Despite these advancements, conventional learning-based models exhibit a ten-
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dency to be overly confident in erroneous predictions. Real-world scenarios often
involve unexpected situations, such as noise and unknown data, heightening the
risks and complexities of application. Consequently, the detection of novel human
actions becomes imperative for the effective implementation of our model.

Multi-object tracking algorithms provide valuable insights into addressing the
problem, commonly assigning IDs by evaluating the distance between representation
features and the existing feature space [WB18]. In essence, this approach necessi-
tates the model to be distance-aware within the representation space, as articulated
below:

allx—x"llxy<llgk)—gx) g < Bllx—x"llx (1.1
where g means the graph convolutional layer and maps the input data from man-
ifold X (input space) to the representation space G (feature space), x and x’ are two
different inputs. The parameters a and f are the lower and upper bounds with a
constraint of 0 < a < . In this bi-Lipschitz condition, the upper bound affects the
sensitivity of hidden representations to the novel observations (out-of-distribution,
OO0D), and the lower bound guarantees the distance in hidden representation space
for meaningful changes in the input manifold [Liu+20a].

Traditional cascaded convolutional networks provide an upper bound for the
hidden representation space distance through normalization and activation func-
tions [RHK18]. However, they suffer from the problem of exploding and vanishing
gradients.

Residual connections demonstrate the capability to address gradient issues [VWB16],
but they exhibit an expanded bound range and result in indistinguishable features
within the representation space for Out-of-Distribution (OOD) detection. To main-
tain the meaningful isometric property in our deterministic model, we introduce a
Spectral Normalized Residual (SN-Res) connection. This connection imposes an up-
per Lipschitz constraint on the residual flow. We construct an Uncertainty Quantified
Temporal Fusion Graph Convolution Network (UQ-TFGCN) with this innovative de-
sign, wherein the hidden representation space is confined within a reasonable region.
Subsequently, the final label and similarity of unknown data are predicted through
maximum likelihood in a Gaussian Process (GP) kernel.

To robustly detect event action under the noise in the depth measurement, we
employed a gradual filtering processing on skeleton sequences extracted from RGB
images using a lightweight Deep Learning toolbox with aligned depth information.

For the latent action unit extraction, Sparse Coding Dictionary (SCD) is a well-
known approach [Chi+13; BDB18; Mai+10]. This method approximates a given
video sequence Y by the manipulation of a low-rank dictionary D and its coefficient
matrix X. Online Dictionary Learning is one of the most successful SCD methods and
is widely used in the field of action recognition. As fall event detection represents an
extreme case within action recognition, we consider the ODL algorithm as a baseline
method in this study. Its cost can be expressed in the least squares problem with a
regularizer as follows:

N

1
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where F means Frobenius norm, N is the number of action unit and A is the reg-



10 1 Introduction

ularization parameter. Unfortunately, in the presence of outliers, Eq (1.2) provides
a poor estimation for D and X [Yan+20]. The performance is worse for the 3D
skeleton-based human fall event detection because the 3D skeleton has more outlier
sources, such as skeleton estimation and depth measurement.

In this study, an attempt to improve event detection latency and temporal reso-
lution is presented and performed in the example of fall detection. We separate the
fall event into five latent action atoms "standing", "bending knee", "opening arm", "knee
landing" and "arm supporting".

Overall, all technical contributions are listed as follows:

* We introduce a novel adaptive mechanism that integrates a spatial Hybrid At-
tention (HA) layer, incorporating a mixture of relative distance and relative
angle information. Within the framework, the relative distance attention con-
tributes more to the bone stream-related action recognition and the relative an-
gle attention provides more beneficial for the classification of the joint stream
related action.

* We present a novel Pyramid Graph Convolution Network (PGCN) that lever-
ages a unique temporal pyramid pooling module, thereby extending the capa-
bilities of Graph Convolutional Networks (GCNs) for action segmentation tasks.

* We propose a Temporal Fusion Graph Convolution Network (TFGCN), which
incorporates a novel temporal feature fusion module to enhance the capabilities
of Graph Convolutional Networks (GCNs) to understand human-object interac-
tions.

* We extend the capabilities of the model by introducing a novel Spectral Nor-
malized Residual connection (SN-Res), which helps to preserve input distance
in the representation space and enables the model to estimate prediction un-
certainty.

* We propose a novel Gradual Online Dictionary Learning method that uses
Graduated Non-convexity (GNC) with Geman McClure (GM) cost function to
decrease outlier weight during training.

* Additionally, we design and implement a real-time system for understanding
human actions, thereby contributing to the safety in decision-making systems
and facilitating human-robot collaboration tasks.

To evaluate the proposed contributions, we conduct experiments on several chal-
lenging, public human daily action datasets, including two pure human action datasets:
NTU-RGBD [Sha+16b] and Kinetics Skeleton [Kay+17], two human-object interac-
tion datasets: Bimanual Actions dataset [DWA19], IKEA Assembly dataset [Ben+20].
Compared to other current action recognition and segmentation approaches, our
models achieve the best performance on all datasets in terms of accuracy, robustness,
and novelty estimation.
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1.4 Structure of the Thesis

The subsequent sections of this thesis are meticulously structured to provide a com-
prehensive exploration of the proposed framework. In Chapter 2, a brief review of
existing approaches in human action recognition, action segmentation, fall event de-
tection, uncertainty quantification, and human tracking techniques is presented. This
foundational overview establishes the context for our novel contributions by illumi-
nating the state-of-the-art methodologies in the relevant domains.

Chapter 3 serves as the center of our contributions, revealing the intricacies of
the proposed framework. It describes the utilization of graph representations for
abstracting the elements of human actions, the employment of graph convolutional
networks for human action recognition, the architecture for human activities seg-
mentation involving encoder-decoder structures, fall event detection through sparse
coding and dictionary learning, the incorporation of uncertainty measures for dis-
cerning novel human activities, human tracking facilitated by a multi-object tracking
approach with the Kalman-filter algorithm, and the realization of a real-time system
for comprehending human-object interactions.

The subsequent exploration in Chapter 4 provides a detailed account of the ex-
perimental validations performed to assess the effectiveness of the proposed model.
This chapter lists the experimental results, offering an in-depth analysis of the impact
of attention mechanisms, graph representations, encoder-decoder setups, and uncer-
tainty quantification techniques on the overall performance of the framework. Rigor-
ous experimentation and thorough discussions are presented, revealing the strengths
and limitations of each component, thus contributing valuable insights to the scien-
tific community.

Finally, in Section 5, a comprehensive summary is provided, outlining the sub-
stantive contributions of this study. Additionally, this section provides a discussion
of potential future research directions, building upon the identified shortcomings
and challenges encountered during this investigation. This forward-looking discus-
sion provides researchers and practitioners with a roadmap for future work in the
dynamic and evolving field of human action recognition in intelligent systems.
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Chapter 2

Related Work

In this chapter, we briefly review the existing works on human action recognition,
human activity segmentation, event detection and uncertainty quantification tech-
nique.

2.1 Human Action Recognition

Human action recognition can be categorized into two clusters: using appearance
feature and using skeletal information.

2.1.1 Action Recognition using Appearance Feature

Human action recognition using appearance feature relying on extracting motion
features from images. One of the most important feature is the change of silhouette.
Venkatesha and Turk [VT10] introduced a local shape descriptor to represent turning
change and distance cross the shape of the adjacent contour, as shown in bottom of
Fig 2.1. Ma et al. [Ma+14] extracted curvature scale space features from the sil-
houettes and mapped them into bag of words space and analyze the word pattern
in frequency domain. Horimoto et al. [HAT03] project hand shape to an eigenspace
with predefined eigen bases. With development of hardware, the contour is eas-
ily obtained by depth or event images. More recently, Antonik [Ant+19] utilized
the histograms of oriented gradients (HOG) algorithm to extract spatial and shape
information from motions and further classify these feature by a recurrent neural
network. Jalal et al. [Jal+12] generate descriptor from depth silhouettes using R
transformation, principle component analysis and linear discriminant analysis. Pliz-
zari et al. [Pli+22] introduced a channel attention network to extract motion features
from event image sequence.

Another important feature of motion is optical flow from adjacent images as it
is invariant to appearance, as demonstrated in top of Fig 2.1. Sevilla-Lara et al.
[Sev+19] has analyzed the influence of optical flow on the performance human ac-
tion recognition, and found that jointly learning optical flow and action minimizes
the action recognition error. Ladjailia et al. [L.ad+20] proposed an optical flow de-
scriptor by deriving features from the motion. De et al. [De +17] introduced a fall
down detection system which combines optical flow with depth contour.

13
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Figure 2.1: The optical flow (top) and the depth contour (bottom) of a walking example from MSRDaily-
Activity3D dataset [Wan+12].

2.1.2 Action Recognition using Skeletal Information

Since most of human body can be viewed as an articulated system with rigid bones
connected by joints, a skeleton representation of human body is an efficient way to
simplify the scene and action recognition, as shown in Fig 2.2.

Human action recognition using skeletal information can be categorized into two
clusters: handcrafted feature based methods and learning based methods. The first
method manually designs several features to model human body. Vemulapalli et
al. [VAC14] represented the action sequence as a curve in Lie group SE(3) x---x
SE(3), which can be mapped into its Lie algebra and form a feature vector. Hus-
sein et al. [Hus+13] constructed a matrix descriptor according to covariance of each
joints. Fernando et al. [Fer+15] adopted a ranking machine to extract the appear-
ance feature changing of frames evolves with time. In our previous work [Xin+21],
we modeled the fall down event with spatial action unit and temporal height change
of skeleton, which has a good performance on single event detection. However, these
methods are barely satisfied for large-scale multi-class action recognition, because of
the complexity of action space.

Recently, with the success of data driven methods, Deep Learning methods have
been widely applied in the field of human action recognition. These approaches are
mostly using Convolution Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). CNN-based methods convert each skeleton frame to a pseudo image using
designed transformation strategy [Li+21a]. Baradel et al. [BWM17] combined hu-
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Figure 2.2: Skeleton representation of action examples drinking (top) and watching time (bottom) from
NTU-RGBD dataset [Sha+16b]

man skeletal information with RGB images, which can offer richer contextual cues
for action recognition. The authors introduced also a spatial hands attention mech-
anism, which crops the image around hands. RNN-based methods emphasize the
temporal dynamics of skeleton joints [WW17]. Zhang et al. [Zha+17] proposed an
adaptive RNN model, which can adjust to the most suitable observation viewpoints
for cross-view action recognition. Si et al. [Si+19] reformed the input skeleton in-
formation into the graph-structured data through a graph convolutional layer within
the Long Short-Term Memory (LSTM) network.

However, both CNN-based and RNN-based methods cannot fully model human
action spatial features and temporal features [YXL18]. Both methods ignore the spa-
tial connections between joints, and RNN-based methods suffer from short-memory
in analyzing global temporal features.

2.1.3 Human-Object Interaction Recognition

As part of action recognition, the human-object interaction recognition task aims
at detecting the interaction label between human and object for a whole trimmed
action clip. Feichtenhofer et al. [FPZ16] introduced a two-stream 2D CNN that uti-
lizes features from both appearance in still images and stacks of optical flow. In a
more recent work [CZ17], authors proposed a two-stream inflated 3D CNN (I3D)
that improves the ability of 2D CNNs in extracting spatial-temporal features. Dreher
et al. [DWA19] presented a graph network that uses three multilayer perceptron
(MLP) blocks to update nodes, edges and aggregation features from graph represen-
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Figure 2.3: A sawing example of human-object interaction from the Bimanual Actions dataset [Kre+21]

tation of HOI. Authors also published their HOI dataset, namely Bimanual Actions
dataset. Asynchronous-Sparse Interaction Graph Networks (ASSIGN) [Mor+21] is
a recent attempt on the HOI recognition task. It used a recurrent graph network
that automatically detect the structure of interaction events associated with entities
of a sequence of interaction, which are defined as human and objects in a scene.
However, the short-term memory of recurrent networks limits their performance in
analyzing global temporal structures. In order to expand the receptive field, we
adopt dilated convolution layers [Wan+16] in the head of our temporal pyramid
pooling module, which constrains the implementation in real-time scenarios as it re-
quires relations from future. [Lag+23] exploited spatial and temporal hand-object
relations by leveraging an encoder-decoder framework with graph neural networks.
The network can recognize the hand action label and forecast the next motion by a
multilayer perceptron module. However, the authors represented human appearance
features by a single graph node, which weekends the performance of action recog-
nition. [Tra+23] modeled human-object interactions through a long-term activity
route (persistent process) and short-term sub-actions (transient processes). Instead
of recognizing action labels, authors focus on the 2D/3D trajectory prediction of the
whole activity. Besides single-person action recognition, multi-person involved HOI
understanding is another important task. To address the occlusion issue in multi-
person actions, [Qia+22] combined both visual and geometry HOI features together
and processed features through a Two-level Geometric feature-informed Graph Con-
volutional Network (2G-GCN). [Rei+22] represented individual actions as graph
nodes, interactions between people as graph edges, and finally extracted team in-
tentions from graph features.

Many existing recurrent networks showcase commendable real-time performance
but are constrained by limited short-term memory. To address this challenge, the
encoder-decoder structure emerges as a promising solution, offering a comprehen-
sive field of view. In contrast to multi-person intent recognition, single-person action
recognition represents a more fundamental and challenging task.

Inspired by the effective implementation of the temporal pooling decoder, this
study embraces the encoder-decoder structure to improve the performance of single-
performer action understanding. The approach entails extracting global features
through the temporal pooling module and subsequently fusing condensed features
into the temporally pooled features.
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2.2 Action Segmentation
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Figure 2.4: Action segmentation of an example of cleaning dishes from the Toyota Smart Home
dataset [Dai+22]

Different from action recognition with trimmed clip, action segmentation aims to
segment activity into sub actions by exploring the temporal structure [SWC16], as
shown in Fig 2.4.

As part of earlier works, the hidden Markov model (HMM) is often used to find
activity temporal structure. Yamato et al. [YOI92] applies a HMM framework to
segment human actions using binary silhouettes of human. Pantic et al.[PP06] in-
troduced a facial profile recognition scheme combining with HMM to segment facial
actions. Some other approaches [Z106; Xin+21] segment action using a sliding win-
dow and comparing the similarity between multiple temporal scales. More recently,
convolutional neural networks (CNNS) and recurrent neural networks (RNNs) were
main streams for action segmentation. For instance, Shou et al. [SWC16] proposed
a multi-stage CNN model to classify and localize sub-actions in untrimmed long se-
quence. Fathi et al. [FR13] segment human activities by identifying state changes of
objects and materials in the environment using a RNN model. Motivated by the suc-
cess of temporal convolution in Nature Language Process (NLP) area, many works
applied various temporal convolution networks for action segmentation task, such
as dilated temporal convolution [HGS19], encoder-decoder temporal convolution
[Lea+17]. Very recently, attention mechanism from transformer has been success-
fully applied to action segmentation [Zhe+21], due to its strong ability of extracting
global information. However, the attention mechanism requires known number of
involved objects and subjects to define the size of adjacent matrix.

2.2.1 Attention Mechanism
Attention based neural networks have been successfully applied in NLP and image

description. In the field of NLP, the multi head self-attention layer generates the
representation of a sequence by aligning words in the sequence with other words
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Figure 2.5: Comparison of traditional convolutional kernel (left) with graph kernel (right). In a traditional
kernel, the center node (dark blue) has a fix number of connected nodes (light blue), while while the
number of connected nodes in the graph kernel changes according to the defined adjacency matrix.

[Vel+18]. Vaswani et al. [Vas+17] employed a local attention mechanism on each
node and its neighbor pairs in parallel, so that the spatial feature from each neighbor
node is weighted by the relative relationship. Devlin et al. [Dev+19] extended a
self-attention layer bidirectionally, which can model many downstream tasks in text
processing.

In the field of image description, the attention mechanism is adopted to gener-
ate a learnable weight mask in spatial domain, which demonstrates the importance
of a region [Xu+15]. Liu et al. [Liu+17] adopted an attention correctness mech-
anism to generate the attention mask for a corresponding image area. Anderson
et al. [And+18] combined a top-down attention based CNN with a bottom-up Fast
R-CNN to determine feature weightings for each detected region.

As part of natural language, human actions also have strong attention relations
between different body parts, such as relative distances and relative angles. Inspired
by aforementioned great previous works, we attempt to improve the performance
of the graph convolutional networks on Human Action Recognition by designing a
novel attention mechanism.

2.2.2 Graph Convolutional Network

Recently, Graph Convolution Networks (GCN) designed for structured data repre-
sentation raise the attention. Compared to the traditional convolutional networks,
the GCN efficiently processes graph features according to a given adjacency matrix.
As shown in Fig 2.5, the convolutional kernel process feature in a fixed size, such
3 x 3, while the graph kernel process feature in dynamic sizes. A challenge for graph
convolutional networks is the manual definition of adjacency matrices. In the case
of human action recognition, the adjacency matrix can be easily obtained by natural
bone connections in human skeleton.

The Graph Convolution Networks (GCNs) can also be categorized into two clus-
ters: spatial and spectral. The spatial GCNs operate the graph convolutional ker-
nels directly on spatial graph nodes and their neighborhoods [Shi+19a]. Yan et
al. [YXL18] proposed a Spatial-Temporal Graph Convolutional Network (ST-GCN),
which extract spatial feature from the skeleton joints and their naturally connected
neighbors and temporal feature from the same joints in consecutive frames. Shi et
al. [Shi+19b] introduced a two stream Adaptive Graph Convolutional Network (2s-
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AGCN) based on ST-GCN, which not only extracts features from skeleton joints but
also considers the direction of each joint pair (bone information).

The spectral GCNs consider the graph convolution in form of spectral analysis
[Li+16]. Henaff et al. [HBL15] developed a spectral network incorporating with
graph neural network for the general classification task. Kipf and Welling [KW17]
extends the spectral convolutional network further in the field of semi-supervised
learning on graph structured data. [Lin+23] introduced a bi-stream (joint and bone)
spatial graph convolutional network to detect eye contact for conveying information
and intent in wild environments.

This work follows the spatial GCNs that apply the graph convolutional kernels on
spatial domain.

2.3 Exception Event Detection

# H ‘# d

Figure 2.6: An example of fall down from the NTU-RGBD dataset [Sha+16b].

With the rapid development of motion capture technologies, e.g., single RGB cam-
era systems [Rou+11; De +17; Hua+18; Mir+12; TP13], exception event detection
has recently received growing attention because of its importance in the health-care
area. An example of fall down is demonstrated in Fig 2.6.

For 3D event detection, RGBD cameras, e.g., Microsoft Kinect and Intel RealSense,
provide a significant advantage over standard cameras[WSZ19]. Nghiem et al. [NAM12]
proposed a method to detect falling down, based on the speed of head and body cen-
troid and their distance to the ground. Stone et al. [SS14] used Microsoft Kinect to
obtain person’s vertical state from depth image frames based on ground segmenta-
tion. Fall is detected by analyzing the velocity from the initial state until the human is
on the ground. In contrast with using depth images directly, Volkhardt et al. [VSG13]
segmented and classified the point cloud from depth images to detect fall events.

Since depth-based methods are sensitive to the error of shape and depth [WSZ19],
many researchers prefer 3D skeleton-based methods. Tran [LM+ 14] computed three
states (distance, angle, velocity) from Kinect’s 3D skeleton and applied support vec-
tor machine (SVM) to classify falling down action. Kong et al. [Kon+ 18] applied Fast
Fourier Transform (FFT) to classify the 3D fall event skeleton dataset. However, the
3D skeleton estimation using a monocular camera is an ill-posed and inverse problem
[Zhe+20].
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2.3.1 Spatio-Temporal Latent Action Unit Extraction

Based on sparse coding and dictionary learning method, falling down action can be
represented as a linear combination of dictionary elements (latent action units). Af-
ter Mairal et al. [Mai+10] proposed an Online Dictionary Learning algorithm. It
has attracted a lot of attention because of its robustness [Chi+13; Fer+17; Qi+18;
WSM14]. Ramirez et al. [RSS10] proposed a classic Dictionary Learning method
with Structured Incoherence (DLSI) considering the incoherence between different
dictionaries as part of the cost, which could have shared atoms between dictionary.
In against sharing dictionary, Yang et al. [Yan+11] presented Fisher Discrimina-
tion Dictionary Learning (FDDL) using both the discriminative information in the re-
construction error and sparse coding coefficients to maximize the distance between
dictionary. In other words, one training data should only be approximated by the
dictionary generated from its cluster. Kong et al. [KW12] separated the dictionary
into Particularity and Commonality and proposed a novel dictionary learning method
COPAR. With the similar idea, Tiep et al. [VM16] developed Low-Rank Shared Dic-
tionary Learning (LRSDL) that extract a bias matrix for all dictionary based on FDDL.
However, its performance is limited for action recognition because each action unit
should have a different action space. The results are discussed in the evaluation
chapter.

Recently, spatio-temporal deep convolutional networks [PCM20; Wen+19; YXL18;
CZZ720; Li+20a] have been widely applied for action recognition. The common prin-
ciple of these works is that using several continuous frames generate temporal infor-
mation around feature joints. However, the size of temporal block is a tricky problem
among different actions. Besides that, some events have a strict sequence, such as
fall down starts from standing (sitting) and ends on the ground. Most of the deep
learning networks cannot identify the sequence by summing all temporal blocks note.

2.3.2 Global Minimization with Robust Cost

Global minimization of ODL is NP-hard with respect to both outliers and chosen of
regularization parameters. RANSAC [FB81] is a widely used approach but does not
guarantee optimality and its calculation time increases exponentially with the outlier
rate [Yan+20]. The Graduated Non-convexity has also been successfully applied in
Computer Vision tasks to optimize robust costs [Nie95][RC90]. However, with a lack
of non-minimal solvers, GNC is limited to be used for spatial perception. Zhou et al.
[ZPK16] proposed a fast global registration method, which combines the least square
cost with weight function by Black-Rangarajan duality. Yang et al. [Yan+20] applied
this method to 3D point cloud registration and pose graph estimation.

2.4 Uncertainty Quantification

Most existing learning based classification methods have high accuracy in in-distribution
datasets, but suffer from overconfidence on out-of-distribution (OOD) data and barely
detect out-of-distribution samples, as demonstrated in Fig 2.7.
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Figure 2.7: A traditional network is trained on MNIST dataset [LeC+98] and predicts a T-shirt example
from the Fashion MNIST dataset [XRV17] as number 2.

Many promising works train Bayesian neural networks to approximate uncer-
tainty [AC17; Blu+15], but it is difficult to converge in a large range of data. [LPB17]
introduced a method that estimates the prediction uncertainty by ensembling predic-
tions from multiple models. [GG16] proposed Monte Carlo Dropout (MC-Dropout)
to approximate the Bayesian probability. Due to their reliability, these two methods
are usually considered as baselines for uncertainty quantification, although they are
time consuming.

Recently, deterministic network uncertainty quantification (DUQ) methods are
proposed to efficiently estimate the prediction uncertainty in a single forward pass.
The key factor is distance awareness in the representation space. [Van+20a] adopted
two sides Lipschitz constrains to enforce the gradient smoothness and sensitivity to
meaningful changes. Follow the two sides Lipschitz constrains, [Liu+20a] considered
the residual connections without kernels as natural low Lipschitz bound and use spec-
tral normalized kernel instead of normal convolutional kernels on the mainstream
to constrain the weight update max gradient and guarantee distance awareness in
feature space. However, the residual connections in GCNs have processing kernels
and shift the Lipschitz bounds to a higher range. More evidence are listed in the
experiment section. However, general Spectral Normalization models exhibit a sub-
stantial number of trainable parameters and necessitate considerable computational
resources.

In this study, we note that the inclusion of a residual connection plays a crucial
role in preserving input distances within proximity while also offering the advantage
of fewer trainable parameters compared to mainstream approaches. However, this
comes at the cost of an increase in the Lipschitz bounds. To augment the effectiveness
of distance awareness in the feature space, we introduce Spectral Normalization to
the residual connections (SN-Res). Further empirical evidence supporting this obser-
vation is presented in the experimental section.

To quantify uncertainty, the Gaussian Process has been widely employed. In
[Liu+20a], the Gaussian Process prior distribution was approximated by a learnable
neural kernel, and the likelihood was subsequently obtained through the Laplace ap-
proximation. While this approach enhanced the efficiency of likelihood computation,
it also compromised the accuracy of the likelihood.

In another work, [Li+21b] improved flash radiography reconstruction by iden-
tifying and removing outliers with high uncertainty, estimated using the Gaussian
probability density function with a mean of zero and a measured covariance ma-
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trix. Additionally, [Su+23] utilized a multivariate Gaussian distribution to estimate
the uncertainty of each corner of predicted bounding boxes in a LiDAR point cloud,
thereby enhancing the performance of object detection for autonomous vehicles.

Inspired by these previous works, we follow the uncertainty quantification tech-
niques for deterministic networks, and propose a novel efficient spectral normalized
residual connection to better balance the distance awareness and sensitivity of our
graph convolutional network.

2.5 Human Tracking

Traditional human tracking methods that rely on biological information, such as face
recognition [Wri+08] and iris recognition [Ma+04], are often infeasible in nursing
homes due to ethical issues. On the contrary, recognition methods based on visual
features are often more reliable than recognition methods based on biological infor-
mation. People’s appearance, such as items carried by a person or clothes of pedes-
trians, can be more reliably used for person re-identification. Note that we assume
people will not change clothes within a short period of time (3 — 10 minutes). Tradi-
tional methods rely on manual features and cannot adapt to complex environments
with large amounts of data. In recent years, with the development of deep learning,
a large number of deep learning-based person re-identification methods have been
proposed.

The task of human tracking mainly includes two steps: feature extraction and sim-
ilarity measurement. The traditional method is to manually extract image features,
such as HOG (Histogram of oriented gradient) [DTO5], SIFT (Scale invariant feature
transform) [Low99] and LOMO (Local maximal occurrence) [Lia+15]. After that,
use XQDA (Cross-view quadratic discriminant analysis) [Lia+15] or KISSME (Keep
it simple and straightforward metric learning) [Kos+12] to learn the best similarity
metric. However, the capability of traditional manual feature description is limited,
and it is difficult to adapt to large data tasks in complex scenarios. Moreover, in the
case of large amounts of data, traditional metric learning methods will also become
very difficult to solve.

Before the advent of deep learning technology, early person re-identification re-
search mainly focused on how to manually design better visual features and how
to learn better similarity measures. In recent years, with the development of deep
learning technology, deep learning based methods for re-identification have been
widely used. Unlike traditional methods, deep learning methods can automatically
extract better user image features and learn to obtain better similarity measures at
the same time. Of course, deep learning based person re-identification methods have
also experienced a from simple to complex development process. At first, researchers
mainly focused on using the network to learn the global features of a single frame
picture. According to the type of loss, it can be divided into representation learning
[BCV13] and metric learning [Kul+13] methods. After performance bottlenecks of
global features of a single frame picture, researchers begin to introduce local features
and sequence features to further research of person re-identification.

In recent years, deep learning represented by convolutional neural networks has
achieved great success in the field of computer vision, it defeat traditional methods
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in many tasks and even beyond the human level to some extent. On the problem of
person re-identification, deep learning based methods can automatically learn com-
plex feature descriptions, and use simple Euclidean distance to measure similarity
to achieve good performance [WBP17]. In other words, deep learning can achieve
the task of person re-identification end-to-end, which make the problem much more
easier. At present, the person re-identification method based on deep learning has
greatly surpassed the traditional method in performance. These advantages have
made deep learning popular in the field of person re-identification. A large number
of related research work has been published in high-level conferences or journals,
and the research on person re-identification has also entered a new stage.

However, the current research on person re-identification has many difficulties.
Firstly, the resolution of user images is low. Limited by the imaging quality of the
monitoring equipment and the distance between the user and the equipment, a large
part of the images are very blurry. Therefore, characteristic information needs to be
extracted, such as the clothing of the human body, posture and hairstyle. Secondly,
environment of monitor changes. Because different videos or images are taken at dif-
ferent locations and times, there are differences in the perspective, illumination, and
posture of pedestrians, and there will be huge deviations in the characteristic infor-
mation of the same user. Thirdly, pedestrians are blocked. In real scenes, pedestrians
are usually in an environment with a large flow of people and a complex background.
It is difficult to avoid the situation where the user parts are blocked [Ye+21].

User’s pictures taken by different cameras have problems such as low resolution,
viewing angle, illumination changes, and background occlusion, which will cause cer-
tain changes in the appearance characteristics of pedestrians. Another problem is that
due to the different viewing angles of the camera and the impact of light changes,
the appearance characteristics of different people are often more similar than the
appearance of the same person. These difficulties also make people re-identification
and general image retrieval problems different. In addition to expanding training
dataset and improving network structure, deep learning methods currently design
algorithms that can dedicate to person re-identification task in view of these difficul-
ties.






Chapter 3

Approach

This chapter introduces our methods in graph representation of actions, human
actions recognition, human-object interaction recognition and segmentation, emer-
gency event detection, and uncertainty quantification in learning-based models.

3.1 Graph Representation of Actions

Most of daily actions occur between body parts or between human and objects, re-
gardless of the background or appearance of people and objects, for example, the
action of drinking happens between hand, mouth and cup nodes. Furthermore,
most of human body can be viewed as an articulated system with rigid bones con-
nected by joints, which are not sensitive to the background and the appearance of
human [XB22b], [XB22a]. Therefore, action recognition using skeletal information
has been widely investigated and attracted a lot attention.

3.1.1 Graph Representation of Skeletal Information

Conventionally, raw skeleton data is presented as a sequence of vectors, with each
vector encapsulating a set of human joint coordinates in 2D or 3D. The definition of
a bone involves the difference between its two end joints. In a graph representation,
the joint and bone (spatial) information can be conceived as vertices, where their
inherent connections form edges, as illustrated in Fig. 3.1 (a). Besides joint and
bone information, we also generate their velocity (temporal) graph information, as
shown in Fig. 3.1 (b).

The traditional skeleton graph is based on the framework established by ST-
GCN [YXL18], which forms a graph using the inherent structure of the human body;,
illustrated in Fig. 3.1 (a) on the left. Nevertheless, this approach overlooks the ro-
bust connections between body parts that often exhibit significant movements, such
as hands, head, and feet.

Hence, we introduce additional connections between these body parts, as de-
picted in Fig. 3.1 (a) on the right. Each connection maintains the same incoming,
outgoing, and self-connecting edges as the traditional graph. All edges collectively
constitute a binary adjacency matrix Ainit, where aij = 1 signifies that vertices v,
and v; are connected. Thus, a spatial graph can be formally expressed as:

G=A-F, (3.1)
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Figure 3.1: lllustration of skeleton graph [XB22a]: (a) Left: Spatial graph with notes and edges (solid
arrow: outward edges; dash arrow: inward edges); Right: Additional connections between head, hands
and feet; (b) Temporal (solid blue) and spatial (dash black) edges of the left wrist node.

where F,, is the input skeleton feature map, G is the graph feature map and A is
column-wise normalization of A,,;,. The temporal graph is constructed by connecting
vertices and their neighbor pairs in consecutive frames in the same way, as shown in
Fig. 3.1 (b).

3.1.2 Graph Representation of Human-Object Interactions

Building upon the preceding explanation, we can seamlessly depict a human-object
interaction (HOI) scene through skeletons and center points of objects. This rep-
resentation accurately captures the intricate relationships between individuals and
objects, uninfluenced by texture information. The construction of an action graph
is subsequently delineated into three distinct components: the human (skeleton)
graph, the human-objects graph, and the objects graph.

All skeleton joints and object points serve as vertices in a graph, with their connec-
tions represented as edges between vertices. Each vertex possesses inward, outward,
and self-connecting edges [YXL.18]. The connections among skeleton joints are natu-
rally defined by the pose architecture, featuring inward connections from each joint
to adjacent joints that are closer to the center of the body, and outward connections in
the reverse direction. However, establishing connections related to objects (human-
objects and objects-objects) poses challenges due to the dynamic nature of the scene.
In this study, we assume the absence of initial connections between objects-objects
and between human-objects joints, as depicted in Fig. 3.2 (a).

All edges collectively constitute a binary adjacency matrix A, where a;; = 1 signi-
fies that vertices v; and v; are connected from i to j, as mentioned earlier. Given the
absence of initial connections between objects-related pairs of vertices, both inward
and outward edges remain unoccupied, as illustrated in Fig. 3.2 (b).

Given the initial adjacency matrix of HOI, a spatial scene graph feature map can
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Figure 3.2: The initial spatial relation graph of human-object interaction [XB22b]: (a) Spatial graph with
notes (blue) and edges (orange) on example of Bimanual Actions dataset [DWA19]; (b) Initial inwards
adjacent matrix with skeleton inward edges (blue block), empty human-objects (orange blocks) and
objects-objects edges (red block).

be obtained by the Eq. 3.1. Experimental evaluation of the effectiveness of graph
representations is introduced in Section 4.3 and 4.4.

3.2 Human Action Recognition using Graph Convolutional
Network

The utilization of skeletal information for action recognition has garnered significant
attention and has been extensively explored. This is due to the fact that the hu-
man body can be conceptualized as an articulated system, consisting of rigid bones
connected by joints. Such an approach is advantageous as it is less sensitive to back-
ground interference and the appearance variations of the human body [Shi+19b;
YXL18].

Many existing methods employ Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs) to model the spatial structure and temporal dy-
namics of human skeletons, respectively. However, both approaches often fall short
of fully capturing the concurrent spatial and temporal features of the human skele-
ton [YXL18]. In these networks, the skeleton input is typically processed either as a
pseudo-image or as a sequence of joint coordinate vectors, neglecting the inherent
spatial connections between skeleton joints [Shi+19b]. Additionally, RNNs face lim-
itations associated with short-term memory, hindering the comprehensive analysis
of global temporal features. Furthermore, prior methods struggle to generalize the
graph structure of skeleton data to accommodate diverse forms of skeletal configura-
tions.
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Recently, with development of Graph Convolutional Networks (GCNs), a com-
patible solution has been proposed. In GCNs, spatial features can be represented
by a spatial graph, which combines joints (vertices) and their natural connections
(edges). Similarly, temporal features are depicted by a temporal graph that connects
each vertex with its neighbors in consecutive frames using temporal edges [YXL18].
Typically, these spatial and temporal edges are defined by natural connections, such
as those between the elbow and the wrist or the shoulder, which remain consistent
across various actions. However, this approach is not well-suited for body-parts re-
lated activities, such as drinking and eating, which involve strong relations between
different body parts, like hands and the head. To extract dynamic relations in differ-
ent actions, there is a need for an adaptive mechanism.

In the field of Natural Language Processing (NLP), the attention mechanism has
been successfully employed to identify potential relations between words at differ-
ent positions [Vas+17]. Drawing inspiration from this, we introduce a hybrid spa-
tial attention mechanism in Graph Convolutional Networks (GCN) for a comparable
purpose. This mechanism facilitates the generation of new edges between strongly
related vertices during the training process, automatically adapting to distinct graph
descriptions of actions and different input streams.

3.2.1 Adaptively Update of Dynamic Relations between Nodes in Spatial
Dimension

Given the graph representation of actions with an initial adjacency matrix, we de-
fine natural spatial connections between nodes, such as body parts. However, the
predefined adjacency matrix is inadequate for handling dynamic relations during an
activity. Therefore, we introduce an attention mechanism to adaptively update the
initial adjacency matrix through the attention score map, as demonstrated in Fig 3.3.
The attention map can be generally calculated in the following manner:

£
N

where ¢ is an activation function, e.g., hyperbolic tangent function, a;; is an element
of the attention map A,,, and i, j are its index. f represents a vector of feature map,
and f means the average value of feature vector, and n serves as a normalization
factor, typically selected to be the length of the feature vector. Note that the selection
of activation function depends on the type of task. In the case of relative distance
attention mechanism (f, — fj), the attention scale values are constrained in the range
of [—1,1] by the hyperbolic tangent function, where larger absolute values represent
larger distance between the inputs, and 0 means the inputs are the same.

aij:¢( ) or ¢(fl_f)) (3.2)

A Simple Spatial Attention Mechanism

As crucial dynamic interaction information is absent in the constructed graph, we
propose a straightforward attention-based graph network. This network adaptively
updates the initial adjacency matrix through the attention score map. The attention
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Figure 3.3: General Structure of the Spatial Attention Mechanism: spatial graph convolutional layer with
the attention map A,;; and a trainable parameter a for adaptive update of the adjacency matrix A.

score is calculated using the dot product between nodes, as follows:

fi f7
My=—7=

where M is the attention mask map, f is the node feature vector and i,j are the
indices of nodes, and n serves as a normalization factor, typically selected to be the
length of the feature vector.

In this work, we find that feeding mask maps into a 1-dimensional convolution
layer contributes to the relationship learning process. As shown in Fig. 3.4, the input
feature map undergoes two parallel 2D convolution layers to produce two output
maps of the same size. The dot product of these maps is then processed by a 1D
convolution layer with a sigmoid activation function, extracting the attention mask.
The final attention map is generated through the combination of the attention mask
with the adjacency matrix, as follows:

3.3)

Afinari =M; + A= Wi(F{i ‘Fp)+ A 3.4

where M is the attention mask that is extracted by the 1D convolution kernel on the
dot product of feature maps F, and F,, W is the kernel weight, A is the adjacent
matrices and i is the index of the three connection types (inwards, outwards, self-
connecting) [Shi+19b]. In order to give more flexibility to the spatial graph, we set
adjacency matrices as learnable parameters with given initial values.

In this study, we have discovered that integrating mask maps into a 1-dimensional
convolution layer enhances the process of learning relationships. As illustrated in Fig.
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Figure 3.4: Structure of the Spatial Attention Mechanism [XB22a]: a simple attention mechanism with
an additional 2D convolutional layer.

3.4, the input feature map undergoes two parallel 2D convolution layers, generating
two output maps of the same size. The dot product of these maps is then processed
by a 1D convolution layer with a sigmoid activation function to extract the attention
mask. The final attention map is produced by combining the attention mask with the
adjacency matrix, as follows:

Afinari =M; + A = Wi(FlT,i ‘Fy )+ A, (3.5)

where M is the attention mask that is extracted by the 1D convolution kernel on
the dot product of feature maps F, and F,, W is the kernel weight, A is the adja-
cent matrices and i is the index of the three connection types (inwards, outwards,
self-connecting). To enhance the flexibility of the spatial graph, we have designated
adjacency matrices as learnable parameters, each initialized with predefined values.

The output feature map of the spatial attention layer is expanded to C,,, output
channels via an additional 2D convolution layer, and subsequently integrated with
the residual stream. This process can be mathematically articulated as follows:

Gi == COl’lVZd(Afinal’l- . Fin) + reS(Fin) (3.6)
where F,, is the input feature map, res is the residual layer, and G is the i—th output

graph feature map. The final block output feature map is obtained by summing the
outputs of all three types of connections as G = Z?:l G,
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Figure 3.5: Examples of Relative Distance and Relative Angle in the spatial domain over the (a) Joint
and (b) Bone streams [XB22a]. In the joint stream (a), the origin point is neck, j, and j, are the joint
vectors of shoulder and wrist. In the bone stream, b, and b,,, are bone connections of neck-shoulder
and elbow-wrist. The 0 is the relative angle, the d,,, is the relative distance

Hybrid Spatial Attention Mechanism

The attention layer relates different features of a same input and generates a mask
map that contains the importance of each element in feature map. The importance
(score) can be expressed as follows:

£5
Jn

where m is an element of mask map M, f; and f; are elements in the feature map,
and n is a normalizing parameter, it can be the length of a vector, when f; and f;
are column feature vectors. Given such a mask map, typically, a softmax function is
applied to normalize the scores into range [0, 1]. In this study, we observe that incor-
porating mask maps into a 2-dimensional convolution layer enhances the process of
learning relations.

In the spatial dimension, we adhere to the three types of spatial graph structures
outlined in 2s-AGCN [Shi+19b], which are generated by identity, inwards, and out-
wards adjacency matrices, respectively. On each graph, we employ a newly designed
hybrid attention layer to extract spatial attention information. The hybrid attention
comprises two branches: Relative Distance (RD) attention and Relative Angle (RA)
attention, each offering substantial advantages for the bone stream and joint stream,
respectively.

For both attention branches, the input feature map undergoes initial compres-
sion in the channel dimension through a 2D convolutional kernel. This compression
serves to reduce the computational load for attention, enhance feature distinctions

m;; = score(f;, f;) = (3.7)
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Figure 3.6: lllustration of the spatial hybrid attention convolution layer [XB22a], where blue stream (top)
is “Relative Distance" attention branch and red stream (bottom) represents ‘Relative Angle" attention
branch. C;,, C;,ter and C,,; stand for input, inter and output channel, respectively. V and T represent
the spatial and temporal size of feature (attention) map. “mean" is an average process in temporal
dimension.

between channels, and facilitate the generation of a unique attention map for each
channel. In this study, the compression ratio is set at C,,,.,./C;, = 8. To ensure sta-
ble attention across different distributions of input action cases, Batch Normalization
(BN) is typically employed before calculating the attention score. However, this prac-
tice can compromise model performance with small-batch sizes, as such batches may
not provide a representative distribution of examples [Iof17]. Consequently, we opt
for the Layer Normalization (LN) function, allowing each input case to standardize
only within its own batch.

As illustrated in Fig. 3.6, the compressed feature map is normalized using the
Layer Normalization function for each batch. Subsequently, it is inputted into the
respective attention function along with its transposed feature map. This process can
be expressed as follows:

F=LN(W.,X+B,) (3.8)

where W, € R! and B, € R'*! are parameters of the feature compression kernel, LN
is the Layer Normalization function, and X are the input feature map, and F are the
compressed feature map.

As the attention score is computed between nodes, let us exemplify our attention
mechanism by considering two node feature vectors, denoted as f; and f;, extracted
from the compressed feature map F. These vectors are of size 1 x T.

Relative Distance attention: The RD attention information is derived from the relative
distance between nodes, formulated as follows:

agp,i; = tanh((f; — f;)), with i,j € [1,V] (3.9

where ag, is an element of RD attention mask Ay, tanh is the Hyperbolic Tangent
activation function, f is the average value of feature vector f over temporal dimen-
sion, i,j are the indices of nodes. The final RD attention mask Az, is with size of
V xV x Ciper, Where C,,,., is the number of channel.

Relative Angle attention: The RA attention information is acquired through the channel-
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wise dot product between node feature vectors, formulated as follows:

aRA’l'j = tanh(f;T . fl)

= tanh(|f,|| f;|cos(0)), with i,j €[1,V] (3.10)

where the 6 is the angle between two vectors. Note that we simplify the dot product
attention in Eq. 3.7 by removing the scale 1/+/n, since n is the number of nodes and
it is constant. Equation 3.10 yields an RA attention mask of the same size as the
RD mask. As demonstrated in the examples presented in Fig. 3.5, it is evident that
relative distance and relative angle mechanisms focus on distinct features in joint
and bone streams. For certain actions, such as drinking or eating, vector pairs with
small relative distance (head-wrist) should exert a significant influence on action
prediction. In such cases, the relative angle mechanism directs attention to these
pairs, given that cos6 ~ 1. Conversely, for other actions like stretching or celebrating,
the relative distance attention should play a dominant role in determining attention
values.

Since the two attention mechanism (RA and RD) have different effects on differ-
ent actions, we adopt a learnable parameter a to combine them. The sum hybrid
attention score A, are formed by the following equation:

As aforementioned, the predefined adjacency matrix serves as a local attention
map, and the spatial attention mechanism adapts to various input action classes,
thereby enriching the local attention into a global map. Consequently, the ultimate
attention map is produced through the combination of the hybrid attention mask
with the adjacency matrix, formulated as follows:

Afinal :Ah +Al :ARD+a'ARA+Ai (312)

Note that the initial graph mask A, is added in channel-wise, since it is of size
V x V x 1, while the size of the attention masks are V xV x C,,,.

In addition to the two introduced attention mechanisms, we have incorporated
several other widely adopted attention approaches, including 2s-AGCN [Shi+19b]
and CTR-GCN [Che+21]. Further details can be explored in the respective original
papers. Experimental evaluation of the effectiveness of different attention mecha-
nisms are introduced in Section 4.3 and 4.4.

3.2.2 Temporal Graph Convolutional Layer

Following the spatial processing, the features of distinct nodes are grouped per frame,
and this grouped feature is subsequently processed in the temporal dimension. In
this study, we incorporate two distinct temporal graph convolution layers. Initially,
we adhere to the ST-GCN [YXL18] approach, employing a 2D convolution kernel with
asize of K, x 1 on C x T x V feature maps, where K, is set to 9 in this work.

The dynamic feature undergoes further processing in the temporal dimension,
where we employ a single 2D convolutional kernel with a size of 9 x 1. However, a
fixed-size kernel has limitations when processing long activities due to its restricted
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Figure 3.7: Multi-scale temporal graph convolutional layer: four dilated convolutional kernel with different
dilation size; a max-pooling branch provides the max feature; additional residual connection offers the
raw feature from the input. All feature maps from parallel branches are concatenated (cat) into the final
output.

receptive field. To address this, we introduce another multi-scale temporal graph con-
volutional layer. Illustrated in Fig 3.7, this layer consists of six parallel branches. Four
dilated convolutional layers with varying dilation sizes enable the capture of tempo-
ral features within a larger receptive field. Additional max-pooling and a residual
connection are incorporated to extract the maximum value and raw features from
the input. In this study, the four dilation sizes are chosen as 1,2,3,5. Experimental
analyse of temporal convolutional layers is introduced in Section 4.3 and 4.4.

3.2.3 Hybrid Attention Graph Convolutional Network

Given the defined spatial and temporal layers, a hybrid attention-based graph con-
volutional block is constructed. As depicted in Fig 3.8 (a), spatial (Conv,) and tem-
poral (Conv;) layers are succeeded by a batch normalization layer (BN) and a ReLU
activation function. A residual connection is also incorporated alongside the Spatial-
Temporal block.

After many tests of training time, number of parameters and accuracy perfor-
mance, we select the optimal architecture, which has 10 basic blocks with output
channels sized as 64, 64, 64, 64, 128, 128, 128, 256, 256, 256 respectively, as il-
lustrated in Fig 3.8 (b). A BN function is applied initially to normalize the input
data. Subsequently, a global Average Pooling (Avg pool) layer is employed to pool
the feature map and reshape it to a uniform size. To mitigate overfitting, an addi-
tional dropout layer is introduced with a dropout rate of 0.1. Finally, at the end of
the network, a Softmax function is applied for the final prediction.

Experimental analysis of the hybrid attention graph convolutional network on
human action recognition datasets, the effectiveness of temporal graph convolutional
layers, and the adaptability of attention mechanisms are introduced in Section 4.3.
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Figure 3.8: lllustration of hybrid attention based graph convolutional network [XB22a]: (a) Hybrid at-
tention based graph convolutional block unit consisting of spatial convolutional layer (Conv_S), Batch
Normalization (BN), temporal convolutional layer (Conv_T), concatenate function (Cat) and ReLU ac-
tivation function; (b) Hybrid attention based graph convolutional network that consists of 10 HA-GCN
blocks, where the input channel, output channel and stride parameters are listed besides the block, such
as 3,64, 1 mean 3 input channel, 64 output channel, and 1 stride, respectively, 2x and 3x represent 2
and 3 same blocks, and Avg_pool is the average pooling function.

3.3 Human Activities Segmentation using Encoder-Decoder
Structure

As integral components of human activities, human-object interactions (HOIs) bear
close connections to the surrounding environment and the objects within a scene.
The recognition of HOIs in videos stands as a foundational task in comprehending
human activities. This involves segmenting and recognizing sub-activities per frame
by scrutinizing the interactive relationships between humans and objects [Mor+21].
When humans and objects are represented simply by skeletons and center points,
these relationships inherently create a graph structure in both spatial and temporal
dimensions, effectively capturing the relative positions and dynamic interactions dur-
ing the activity. With the advancements in deep learning within the field of vision,
constructing a spatial relation graph becomes more accessible through the detection
of humans and objects in scenes. However, unveiling the temporal structure of sub-
actions in a complex task remains a challenging endeavor.

Currently, existing graph convolutional networks, including the aforementioned
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studies, predominantly concentrate on recognizing the overarching, prevalent action
being executed. In these approaches, only a single action is performed in one set of
clips. Such methods commonly leverage cascaded structures and effectively extract
and concentrate spatio-temporal features. However, their scope is constrained to the
task of assigning action labels to the provided segments [PD+20; XB22a]. The ques-
tion arises: Can the extracted spatio-temporal information be harnessed to explore
the temporal structure of activities, specifically for action segmentation?

In addressing this question, we draw parallels to the distinction between image
classification and segmentation. Image classification typically employs a cascade
structure, extracting global high-level features to classify the entire image [KSH12].
On the other hand, image segmentation concentrates on discerning pixel-level dis-
tinctions by upsampling the cascaded features back to the original scale [Wu+ 19a].

3.3.1 Pyramid Graph Convolutional Network

The concept behind the Pyramid Graph Convolutional Network (PGCN) is inspired
by upsampling methods used in image semantic segmentation tasks. In both image
segmentation and action segmentation, the shared objective is to predict each ele-
mental unit of the input data. This involves extracting various levels of semantic
features and subsequently mapping these features back to the input data to construct
a segment map. The fundamental idea of PGCN is to downsample the large-scale
data to distill valuable spatial information, typically with a smaller temporal scale.
Subsequently, the distilled information is upsampled back to the same temporal scale
as the input, a structure commonly referred to as an encoder-decoder.

Encoder

Given that the constructed graph lacks important human-object interaction infor-
mation, we introduce an attention-based graph network. This network adaptively
updates the initial adjacency matrix through the attention score map. The attention
score is computed through the dot product between nodes, as follows:

M _f)
ij — \/ﬁ

where M represents the attention mask map, f denotes the node feature vector, and
i,j are the indices of nodes, and n serves as a normalization factor, typically selected
to be the length of the feature vector.

In this study, we observe that incorporating mask maps into a 1-dimensional con-
volution layer enhances the relationship learning process. As depicted in Fig. 3.4, the
input feature map undergoes parallel processing through two 2D convolution layers,
generating two output maps of identical size. The dot product of these maps is then
passed through a 1D convolution layer with a sigmoid activation function to extract
the attention mask. The final attention map is created by combining the attention
mask with the adjacency matrix, formulated as follows:

(3.13)

Afinai =M; + A= Wi(FlT,i -Fy) + A (3.14)
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Figure 3.9: Framework of temporal pyramid pooling decoder with three input graph feature
maps [XB22b]: G*, G” and G'°, where TP i is temporal pooling block with output size i.

where M represents the attention mask extracted by the 1D convolution kernel ap-
plied to the dot product of feature maps F, and F,. W denotes the kernel weight, A
signifies the adjacency matrices, and i stands for the index of the three connection
types (inwards, outwards, self-connecting). To introduce greater flexibility to the spa-
tial graph, we designate adjacency matrices as learnable parameters with predefined
initial values.

The output feature map of the spatial attention layer undergoes expansion to
C,,: output channels via an additional 2D convolution layer, and subsequently, it is
integrated with the residual stream. This process can be mathematically expressed
as follows:

Gi = CODV2d(Afinal,i : Fin) + l’eS(Fm) (3.15)

where F;, is the input feature map, res is the residual layer, and G is the i —th output
graph feature map. The final block output feature map is obtained by summing the
outputs of all three types of connections as G = 2?21 G,

In the temporal dimension, we adhere to the ST-GCN [YXL18] approach, employ-
ing a 2D convolutional kernel with a size of K, x 1 on C x T x V feature maps, where
K, is set to 9 in this work.

With the defined spatial and temporal layers, an attention-based graph convo-
lutional block is established. In the encoder, we employ 10 basic blocks connected
through the standard cascade structure, as introduced in [YXL.18; Shi+19b].

The encoder is constructed by concatenating the 10 aforementioned basic spatial-
temporal graph convolutional blocks with different channel sizes.

Temporal Pyramid Pooling Decoder

Given the introduced encoder, three graph feature maps G;, = G* G’,G!° from the
4th, 7th, and 10th blocks are collectively fed into the temporal upsampling module,
encompassing diverse levels of semantic information. Since these feature maps have
varying sizes, we standardize the number of channels using a 2D convolutional kernel
and interpolate all feature maps to the initial time scale, concatenating them along
the channel dimension. Subsequently, segmentation feature extraction is carried out
through four parallel dilated convolution operations [Wan+16], as outlined below:

G,y = U, 0(Gy, ,W? +BY) (3.16)
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where G,,, is output graph feature map, G;,, is upscaled input graph feature map,
u? | indicates the concatenation operation with 4 streams, o is the ReLU activation
function, Wf and Bf are parameters of i-th dilated convolutional kernel.

To capture a global contextual prior for prediction, a temporal pyramid pooling
module is employed before the predictor. In semantic segmentation tasks for images,
global average pooling is commonly used as the global contextual prior. However,
in the context of action segmentation, features in temporal and spatial dimensions
must be treated differently. As the final segmentation is in the temporal dimension,
i.e., a sequence of predicted labels per frame, four pyramid temporal average pooling
blocks of varying scales are initially applied along the temporal dimension to extract
a segment prior with multiple receptive fields.

Given the time series dilated graph feature map Gout € R¥*" with N spatial nodes
and T frames, it can be represented as a set of time segments at level i denoted as
Gout = G1,---,Gi. A temporal filter with an average pooling operator is applied to
each time segment [tmin, tmax], yielding a single feature vector for each segment
as follows: L

Z max g;

t .
O(G;) = ————— 3.17
( l) tmax — tmin ( )
Subsequently, a convolutional layer is applied in the spatial dimension to extract
global spatial information across different temporal scales, as follows:

Fout = O-(Goutws + Bs) (318)

where W, € R*! and B, € R*! are parameters of the spatial convolutional kernel,
and k x 1 indicates the kernel size.

The four low-dimension output feature maps are upsampled directly using bilin-
ear interpolation to match the temporal and spatial lengths of the original feature
maps. Finally, the feature maps from the four different levels are concatenated with
the residual feature map. Once the feature map, containing global contextual priors
with various scales and framewise local features, is obtained, a convolution-based
predictor is employed to generate framewise interaction labels. The framework is
depicted in Fig. 3.9.

3.3.2 Temporal Fusion Graph Convolutional Network

The efficacy of an action recognition system hinges on its ability to identify cues
defining action labels and the spatial-temporal relations demarcating consecutive ac-
tions within a task. We represent activities using spatio-temporal graphs, wherein the
joints of a human skeleton and the center points of bounding boxes encompassing ob-
jects serve as graph nodes, and graph edges delineate active relations between nodes.
Sub-activities are recognized and segmented frame-wise by analyzing dynamic con-
nections between graph nodes [XB22b]. An Attention-based Graph Convolutional
Network (GCN) stands out as one of the most widely applied solutions for process-
ing dynamic Human-Object Interaction (HOI) graph relations. It adaptively updates
node correlations through an attention mechanism, iteratively parsing features in
spatial and temporal dimensions [Kre+21; Mor+21]. When combined with a de-
coder, the processed graph features are further upsampled to the original time scale,
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Figure 3.10: Dynamic relations (depicted by dashed arrows) exist between the body parts and objects
involved in the action of drinking, with the human represented by a skeleton and objects represented by
square boxes. The highlighted time bar signifies active participation in the interaction by either objects
or skeleton joints.

and then the graph sequences are classified and segmented frame by frame [XB22b].
Nevertheless, overcoming segmentation inaccuracies and over-segmentation in the
temporal dimension remains a challenging hurdle for researchers.

To enhance HOI recognition and segmentation performance, we introduce a novel
Temporal Fusion Graph Convolutional Network (TFGCN) comprising an attention-
based graph convolutional encoder and a newly designed Temporal Fusion (TF)
decoder. The innovative decoder extracts global features through multiple parallel
temporal-pyramid-pooling blocks and augments temporal features by fusing high-
dimensional features from the encoder with processed low-dimensional features. Ex-
perimental results on public datasets demonstrate superior performance in terms of
recognition accuracy and mitigation of boundary shifts and over-segmentation.

Similar to the PGCN, the fundamental concept behind the Temporal Fusion Graph
Convolutional Network is inspired by image segmentation approaches that predict
the semantic meaning of each pixel unit by extracting global spatial features and
mapping them to the corresponding spatial positions. However, in our case, we
feed the graph representations of Human-Object Interactions (HOI) into the network
instead of images, as graph representations are insensitive to background and ap-
pearance noise. Our Temporal Fusion Graph Convolutional Network processes graph
features not only in the spatial dimension but also in the temporal dimension, as
illustrated in Fig 3.10. Dynamic relationships are evident in the process of drinking.
The pertinent targets, including objects and skeleton joints, are highlighted along the
time axis to depict sub-actions. Specifically, the right wrist node sequentially interacts
with the bottle and cup node. In the final phase of the action, the cup node concur-
rently engages with both the right wrist and nose. These features are compressed into
a low temporal dimensional space by the encoder and then upsampled to the original
temporal dimension by the decoder.
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Figure 3.11: Basic block unit consisting of spatial convolutional layer, Batch Normalization, temporal
layer and ReLU activation function with a residual side branch.

Encoder

As shown in the Fig 3.4, the central principle of the attention mechanism involves
updating the predefined adjacency matrix by incorporating global correlations —the
attention map, which can typically be calculated as shown in Eq 3.2.

Given an input graph G;, € R%*7*V the spatial graph feature map G, € R
can be obtained by the following equation:

Cout XT XV

G, = Conv2d(G;,) - (aA, +A),

Vxv (3.19)
A AER

where C,,,, C,,;, T and V are input channel number, output channel number, temporal

size and spatial size, respectively. Note that the kennel size of the convolutional

kernel in spatial layer is 1 x 1, since the spatial features are processed by the attention

map and adjacent matrix.

The spatial graph feature undergoes further processing through a temporal graph
convolutional layer to yield the spatio-temporal processed feature map Gst, as il-
lustrated in Fig 3.11. An example of a simple temporal layer is the one used in
ST-GCN [YXL18], which employs a single 2D convolutional kernel with a kernel size
of 9 in the temporal dimension. The final output graph feature map Gout is then
obtained by merging the spatial-temporal processed feature map G,, with a residual
connection, formulated as follows:

Gout = res(Gin) + Gst (320)

For optimal performance, we evaluate the effectiveness of various popular attention-
based graph convolutional networks as encoders. ST-GCN [YXL18] is implemented as
a baseline without an attention mechanism. AGCN [Shi+ 19b] is a variant of ST-GCN
that integrates a product attention mechanism into the spatial graph convolutional
layer. In the case of PGCN [XB22b], the encoder passes the attention map through
an additional 1D convolutional layer to adjust its weights. CTR-GCN [Che+21] re-
fines the spatial attention mechanism in the channel dimension to learn different
dynamic features in each channel. HA-GCN [XB22a] proposes a hybrid attention
mechanism that combines product and subtract attention maps to enrich the dynamic
features of different input streams. In the temporal dimension, ST-GCN, AGCN, and
PGCN process features using a single 2D convolutional kernel, while HA-GCN and
CTR-GCN employ multi-scale temporal convolutional kernels as introduced in the
work [Liu+20b].

The encoder is formed by concatenating 10 aforementioned basic spatial-temporal
graph convolutional blocks with different channel size.
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Figure 3.12: Framework of temporal fusion decoder including three blocks: Temporal feature extractor,
feature fusion and classifier. The "Concate” block concatenates all feature maps from temporal pyramid
pooling (TPP) layers into one. "DS Conv” represents depth-wise 2D convolutional layer.

Temporal Fusion Decoder

To upsample the condensed features back to the original time scale and predict action
labels for each frame, we propose a novel temporal feature fusion decoder. As shown
in Fig. 3.12, the decoder feature map is subscribed separately by two blocks, namely
temporal feature extractor and feature fusion. The temporal feature extractor further
compresses and extracts temporal features through three serial linear bottleneck lay-
ers [San+18] and four parallel temporal pyramid average pooling [XB22b] blocks.
The outputs from the four averaged features are concatenated, processed through a
2D convolutional kernel, and merged with a temporal residual connection. In the
feature fusion block, the condensed feature is upsampled to the original time scale
using an interpolate module. Depth-wise separable convolutional (DS Conv) [Chol7]
and 2D convolutional layers are applied to process the interpolated features. In the
residual branch, the encoded condensed features are initially processed by a 2D con-
volutional kernel and interpolated to the same size as the main branch. The residual
connection integrates original high-dimensional features into the mainstream, fus-
ing them with the low-dimensional features, contributing to enhanced performance
accuracy.

Furthermore, owing to its excellent compatibility, we substitute the proposed de-
coder with two existing upsampling methods, i.e., Fast-FCN [Wu+19a] and Temporal-
Pyramid-Pooling (TPP) [XB22b]. Originally designed to address image segmenta-
tion tasks, Fast-FCN demonstrated promising results by jointly upsampling three pro-
cessed feature maps from different depths of the encoder. To adapt the model for ac-
tion segmentation tasks, we modify the joint upsampling module to upsample solely
along the time axis. TPP is another recent decoder that incorporates four parallel
temporal pyramid pooling modules after a joint upsampling block. Leveraging dilated
convolutional kernels with different scales, TPP exhibits a broad range of receptive
fields and delivers commendable performance in action segmentation.

In the classifier, the fused features are first compressed in the spatial dimension
by two depth-wise separable kernels, and subsequently, they are mapped to the class
space in the channel dimension.

Experimental analyses of different encoder-decoder setups on human action seg-
mentation datasets is introduced in Section 4.4.



42 3 Approach

3.4 Event Detection using Sparse Coding and Dictionary Learn-
ing

Another crucial aspect of human-robot interaction involves recognizing trigger events
that necessitate a response on the robot’s part [LPO7; Tur+08; Fan+09]. Typically,
such events involve unexpected actions or motions on the part of the human sub-
ject. These events might prompt additional learning of new motions or trigger an
emergency response in the case of accidents. In this study, we specifically focus on
the common event detection of humans falling down due to tripping or health con-
ditions.

Given that the majority of the human body can be considered an articulated sys-
tem with rigid bones connected by joints, human actions can be expressed as the
movement of the skeleton [Lie+19]. Existing skeleton-based event detection meth-
ods typically fall into two main categories: 2D skeleton-based approaches [LLL18;
Avo+19; Zhe+19] and 3D skeleton-based approaches [Min+18; Wu+19b; Zha+16].
In comparison to 2D skeleton-based methods, 3D skeletons provide more extensive
spatial information at the expense of increased time consumption and manual la-
beling requirements. Many existing research methods still face the challenge of an
ill-posed and inverse problem when attempting to extract 3D skeletons from monoc-
ular images [Zhe+20].

With the introduction of Microsoft Kinect [Poh+16] and RealSense [Kes+17]
cameras has made multidimensional observation of human events feasible without
imposing high processing loads on the system. However, the noise inherent in depth
measurements from these cameras significantly impacts event detection. To address
this issue, we employed a gradual filtering process on skeleton sequences extracted
from RGB images using a lightweight Deep Learning toolbox with aligned depth
information.

In addition to detecting the event action, learning and establishing structure rep-
resentation of the action is also essential and challenging. Different actions may
share the same start and end positions and exhibit similar pose transformations and
rotations, such as lying down and falling down. However, their latent temporal fea-
tures are distinct. Modeling the latent spatio-temporal structures of actions is one of
the most widely-used techniques for action recognition and representation [Rab89;
WM10; TFK12]. A latent spatio-temporal structure consists of two parts: the ac-
tion unit with spatial information and the temporal model. The action units are the
sequences and constituent elements of the action. The temporal feature defines the
length of the step from the previous state to the next state [Qi+ 18]. For the fall-down
event, the temporal feature is the sharp height change of the skeleton [Ma+14].

For extracting the latent action unit, Sparse Coding Dictionary (SCD) is a well-
known approach [Chi+13; BDB18; Mai+10]. This method approximates a given
video sequence Y through the manipulation of a low-rank dictionary D and its co-
efficient matrix X. Online Dictionary Learning (ODL) stands out as one of the most
successful SCD methods and is widely employed in the field of action recognition.
Given that fall event detection is just one extreme case of action recognition, we con-
sider the ODL algorithm in this work as a baseline method. Its cost can be expressed
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Figure 3.13: Overview of human fall event detection training process using the gradual online dictionary
learning (GODL) [Xin+21].

in the least squares problem with a regularizer as:

N

1
DI —DX |2 +A X | (3.21)
X 2

where F means Frobenius norm, N is the number of action unit and A is the regu-
larization parameter. Unfortunately, in the presence of outliers, Eq (3.21) yields a
poor estimation for D and X [Yan+20]. This issue is exacerbated in the context of 3D
skeleton-based human fall event detection due to the increased prevalence of outlier
sources, such as skeleton estimation and depth measurement.

In this work, an attempt to improve event detection latency and temporal resolu-
tion is presented and performed at the example of fall detection. We separate the fall
event into five latent action atoms "standing", "bending knee", "opening arm", "Knee
landing" and "arm supporting".

3.4.1 Task Definition

Formally, let Y = {y;,..., .} denote a fall-down 3D pose sequence and y; is the j-th
column vector of skeleton joints. We assume that the sequence Y is segmented into
N sub-sequences {Y;,...,Yy} and each sub-sequence corresponds to an action unit
D, = {d,,...,d;}. Then the dictionary can be expressed as D = {D,,...,Dy} and their
coefficient matrix is defined as X = {X;,..., Xy }.

3.4.2 Prepossessing of Data

An overview of the fall event detection training process is shown in Fig 3.13. RGB
images are fed into a pose estimator to get 2D skeleton joints. Concurrently, depth
frames are aligned with RGB images, and 3D skeleton joints are derived by projecting
pixel positions to 3D space along with the aligned depth values. To account for
variations in the initial position from which a person may fall in image coordinates,
a normalization function is applied to maintain consistent skeleton magnitudes and
ratios for each direction: x € [0,1], ¥ € [0, ¥max/(Xmax — Xmin) s 2 € [0, Zmax/ (Xmax —
Xmin)]- To balance the impact of spatial and temporal information, we introduce a
weight parameter w,,, with a value of 0.1. It is defined as w;,, = p/v in the paper. A
K-means-based clustering method is employed to segment a sequence into N clusters.
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Algorithm 1: Gradual Online Dictionary Learning
Input : Fall-down 3D skeleton sequence Y
Output: Dictionary matrix D and coefficient matrix X
1 whilei <N do

2 | Initialization: w]® =17, yy=2xe?__ /c*, D", X ;
3 while y>1 do
4 Filter outlier from Y;: (- is column dot-production)
5 Y,=w'-Y; and 1, =Aw";
6 repeat
7 Update X with fixed D*;
8 Update ng) with fixed )A(Ek) ;
9 until end of ODL iteration or reach convergence;
10 Update weight vector:
11 for j «— ¢! to t™ do
12 w(l.k].) =argminO; ; + @,
’ wiel01] !
13 end
14 Update u=pu/1.4;
15 end
16 end

3.4.3 Train Phase

For each sub-sequence, we employ gradual online dictionary learning (GODL) to it-
eratively update the coefficient matrix X; and its action unit matrix D; until the cost
converges or the maximum iteration number is reached. The general framework for
GODL is outlined in Algorithm 16. The primary concept is to facilitate the itera-
tion process to automatically filter outliers, ensuring that the latent action units are
learned from inliers.

Graduated non-convexity is a widely used method for optimizing general non-
convex cost functions, such as the Geman McClure (GM) function. The GM function
is expressed as follows:

gule)=—— (3.22)

where c? is a given constant that is the maximum accepted error of inliers, u deter-
mines the shape of GM function and e? is Frobenius norm of error between training
sequence y; ; and approximation model DifciTJ. as follow:

2 I 5 =T 12 =T
ei,j _” yi,j _Dixi,j ”F +A ” xi,j ”

oy . 1 .end (3.23)
withi € [1,N], j € [t;, ]

At each outer iteration, a new u is updated, and we optimize Eq (3.24). The
solution obtained at each iteration serves as an initial guess for the next iteration.
The final solution is computed until the original non-convexity function is restored
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(u=1).
tf“d
i Y, T
VDieg\t’];c’li’jeX Z 8u (e('yi,j’ Dixi,j)) (3.24)
j=t]

We use the Black-Rangarajan duality to combine the GNC-GM function with weighted
ODL cost as follow:

rend
. =T
p o E O, j(w, ;,D;, xi’j) + <I>gu(wi,j) (3.25)
i > i,j .1
j=t

with weighted cost:

1. _ _ _
0, =w2, (5 17— D, 12 421157, 1)

1 _ _ 3.26
:E I WiiYij _Di(Wi,jxiT,j) ”?: + ( )

Awi,j Il Wi,jJ_CiT,j I

and penalty term:
q)gu == ‘u,icz(WiJ — 1)2 (3-27)

With simplified expression of x” = wx”, y7 = wx” and A, = wA, the Eq (3.26)
can be described as following:

Oy = 3 134, =D I+, 11 (3.28)
During the first inner iteration, all weights are set to 1. Throughout the inner
iterations, the weighted ODL is optimized with a fixed weight (w;;), and then we
optimize over w; ; with a fixed cost of ODL. At a specific inner iteration k within the
weighted sub-sequence Y;, we follow these steps:
1) Dictionary Learning: minimize the Eq (3.25) with respect to ng) and ch;.) with

fixed wgi._l). This problem is the original ODL, but with weighted training sequence:

N
_ 1 o o 5
VDiEIg}Vr)l(ieX; S I =D +2, 1% | (3.29)
In the ODL optimization, we first update the coefficient matrix Xi®) with the fixed
action unit Di*~Y (Sparse Coding). We assign the weight parameter to the training
sequence Yi and the coefficient matrix Xi). Then, we update the action unit Di©)
with the fixed weighted coefficient matrix Xi’) and the weighted input matrix ¥,
(Dictionary Learning):

* Assign Weight: ¥, = w! -Y; and A, = w] A, where - is column dot-production.

» Sparse Coding: we use Lasso-Fista algorithm to update )A(Ek) with fixed ng_l),
see [Mai+10].
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* Dictionary Learning: minimize the following equation with fixed )A(Ek):

® _ . k-1
D;” =argmin —2tr(El.TDl( )
VYD;eD

(k=1)g nT(k—1)
and F, = XOX"®

3 i i
2) Weight update: minimize the Eq (3.25) with respect to weight wgf‘j) with fixed

(k)

dictionary matrix ka) and coefficient vector x; ;.

end
ti

_T(k . k=1) (k) T(k
wi( ):argman{OiJ(wE’j ),DE ),xij )
w; ;€0,1] 4 (3.31)

—+1
j=t

(k=1)
+@, (w;; )}

Using introduced ODL function Eq (3.26) and penalty function Eq (3.27), the weight
update at iteration k can be solved in form as:

9 2
W2 ®) — (L) (3.32)

ij 2
WiC? + e

where el.zj is Frobenius norm of error between training sequence y,; ; and approxima-
tion model D;x; ;, see Eq (3.23).
In the implementation, we start with an initialization u, = 2 *e? _./c* with

i,end

e? = max e2. (3.33)

iend: . i
P vy jegnjeltd ]

At each outer iteration, update u, = u;_,/1.4 and stop when u, is blow 1, see
[Yan+20].

3.4.4 Inference Phase

In the inference phase, we assume that the error between sub-sequence Y; and the
model D;X; is normally distributed. Hence, the measured error e; between real-time
skeleton frames of a fall-down action and the action unit model should fall within
the confidence interval as follows:

|ei - ei,meanl
o(e;)

where e, ..., is the mean error of training set, o(e;) is the standard deviation of error
e; ,and a is an acceptance parameter.

Since the fall event has a strict order of sub-actions, progressing from "standing" to
"on the ground," each sub-action detection will be performed only when the previous
action is completed.

(3.34)
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In addition to action unit extraction, the temporal feature of falling down is cru-
cial as well. A fall is defined as an event that results in a person moving from a
higher to a lower level, typically rapidly and without control. From this definition,
we can infer that the action "fall down" involves a rapid change in a person’s height
over a very short time. For the height change, we don’t need all the skeleton infor-
mation; only the skeleton information in the y-direction is necessary, as shown in the
following equation:

h=y! —y! (3.35)

min
where y is the value of skeleton in y axis, h means the height of skeleton and T is the
width of time interval shifted from beginning of video to end. Since the first action
unit is "standing", we define its height as an initial value h;,;,. The height change of
fall event inside a time interval should meet following two conditions:

(3.36)

h
ipit _ ,
b <0.5, h'isend of interval.

{ ® 5 0.9, R isbegin of interval.

where these thresholds are obtained through experiments.
Experimental analyses of fall event detection using the proposed Gradual Online
Dictionary learning method is presented in Section 4.5.

3.5 Understanding Human Activity with Uncertainty Measure
for Novelty

Understanding Human-Object Interactions plays a crucial role in intelligent systems,
particularly for robots learning from demonstrations and collaborating with humans.
This entails not only the recognition and segmentation of interaction relations per
frame but also the quantification of prediction uncertainty.

The proposed PGCN and TFGCN have substantially enhanced the performance
of action recognition and segmentation. Nonetheless, learning-based models often
exhibit overconfidence in incorrect predictions, whereas real-world scenarios involve
numerous unforeseen situations, including noise and unknown data. These factors
heighten the risk and complexity of application. Consequently, the detection of novel
human actions becomes imperative for the implementation of our model.

Multi-object tracking algorithms provide inspiration for addressing the problem,
often assigning IDs based on the distance between representation features and the
existing feature space [WB18]. In essence, this necessitates the model to be distance-
aware in the representation space [Liu+20a], as articulated below:

allx—x"|lx<Il g(X)/— g(x) g (3.37)

< Bllx—x"|lx
where g means the graph convolutional layer and maps the input data from manifold
X (input space) to the representation space G (feature space), x and x’ are two
different inputs. The parameters a and 3 are the lower and upper bounds with a
constraint of 0 < a < f. In this bi-Lipschitz condition, the upper bound affects the
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sensitivity of hidden representations to the novel observations (out-of-distribution,
0OOD) and the lower bound guarantees the distance in hidden representation space
for meaningful changes in the input manifold [Liu+20a].

Traditional cascaded convolutional networks establish an upper bound for the
hidden representation space distance through normalization and activation func-
tions [RHK18]. However, they encounter challenges related to exploding and van-
ishing gradients.

Residual connections demonstrate the capability to mitigate gradient-related is-
sues [VWB16], but they can result in a broader range and less distinguishable fea-
tures in the representation space for out-of-distribution (OOD) detection. To main-
tain a meaningful isometric property in our deterministic model, we introduce a
Spectral Normalized Residual (SN-Res) connection, imposing an upper Lipschitz con-
straint on the residual flow. We construct an Uncertainty Quantified Temporal Fusion
Graph Convolution Network (UQ-TFGCN) using this innovative approach, wherein
the hidden representation space is confined to a reasonable region. Consequently, the
final label and similarity of unknown data are predicted through maximum likelihood
in a Gaussian Process (GP) kernel.

3.5.1 Research Background of Uncertainty Quantification

Deep neural networks are designed to mimic the way how human brain works, by
processing complex information through multiple layers of interconnected nodes.
Each node in a neural network (NN) performs simple mathematical operations on
its inputs and then passes the results to the nodes in the next layer. Macroscopically,
the whole network can be considered as a model f,(x) controlled by 6, including the
weights and bias parameters of all network nodes. During training, f,(x) is feed by
a dataset D = (X,Y) = (x,,y,)"_,, in which x, is the input n-th data and Y is the
corresponding output n-th label. The network is then supervised to map data from
an input dataset to a given output dataset, i.e., find the optimal 6* for f,,(X) =Y,
such that output result Y converges to given labels Y. After training on the whole
dataset D, during the inference process (also stated as the prediction process), the
trained network gives y = f,,(x), in which x is a new input data sample and y is the
corresponding prediction.

During the training and prediction process, the factors affecting the prediction
results appear in two main areas: the model and the data. Uncertainty in most
research is thus distinguished into model uncertainty and data uncertainty.

Model Uncertainty

Model uncertainty, also known as epistemic uncertainty [HW21; KG17] or knowl-
edge uncertainty [MG18], signifies that the model’s own estimation during the fitting
process of input data may be inaccurate, or the model used to represent the fitting
process is constrained. This limitation can arise from factors such as incomplete or
insufficient training data, deficiencies in the training process, perturbations during
training, etc., and is independent of the specific input data provided. The factors in-
fluencing model formation can be categorized based on the learning process. During
the training process, insufficient training data, network structure, and network pa-
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rameters can impact model uncertainty by influencing the training outcomes, specif-
ically the final model’s performance. In the inference process, out-of-distribution
(OOD) data can affect model uncertainty by yielding suboptimal predictions from
the pre-trained model.

Effect of Network Structure The term "network structure" encompasses various
elements in the design and construction of a model, including the model architec-
ture, layer specifications, activation functions, loss functions, and optimization tech-
niques. These elements collectively define the complexity and expressive capacity of
the model, influencing its ability to capture the underlying patterns present in the
data. Key components of network structure also involve considerations such as reg-
ularization methods, dropout, early stopping, and other architectural features that
contribute to the overall design and functionality of the neural network.

If the network structure is overly simplistic or lacks the required complexity, it
may result in underfitting the data, leading to increased epistemic uncertainty. In this
scenario, the model struggles to capture the underlying patterns within the data, re-
sulting in inaccurate predictions. Conversely, an excessively complex network struc-
ture may lead to overfitting, also contributing to elevated epistemic uncertainty. In
such cases, the model tends to memorize noise in the data rather than discerning the
general underlying patterns, hampering its ability to generalize effectively to new,
unseen data [LPB17; Guo+17].

Moreover, specialized network structures are designed to cater to specific sce-
narios. For instance, recurrent networks are often employed in natural language
processing, while convolutional networks are well-suited for tasks like image recog-
nition and segmentation.

Effect of Network Parameters Network parameters, also known as hyper-parameters,
encompass the settings adjusted during the training process, influencing aspects such
as model initialization and optimization. The uncertainty of a machine learning
model is subject to the influence of various network parameters, covering those
associated with the training process (e.g., batch size, learning rate, regularization
strength) and parameters tied to randomness (e.g., initialization, optimization pa-
rameters).

The learning rate dictates the speed at which the model adjusts its weights dur-
ing training. A higher learning rate can expedite convergence but might introduce
instability and elevate uncertainty. The batch size, representing the number of sam-
ples used in each training iteration, influences the stability of the learning process.
A larger batch size can enhance stability but may reduce sensitivity to individual
samples, potentially increasing uncertainty.

Regularization techniques, such as L1 and L2 regularization, dropout, and early
stopping, are employed to counteract overfitting in deep neural networks (DNNs).
Parameters like the regularization coefficient and dropout rate control the strength
of regularization. A higher level of regularization can amplify model uncertainty
by introducing more variability into predictions. For instance, a larger dropout rate
leads to varied updates for sets of nodes in each iteration, making it challenging to
rely on any specific set of weights.
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DNNs guide the network towards a local optimum by descending along the gra-
dient of the loss function, but the network often possesses more than one local mini-
mum. The stochastic optimization strategy employed by DNNs, along with the choice
of the loss function and initial values, can all influence the model. It is unlikely that
the network will converge to the same optimal solution, given the stochastic nature of
network training, involving random initialization, optimization, and regularization.
Networks arriving at the same optimal solution may exhibit different combinations
of parameters.

Effect of Insufficient Data Insufficient data, particularly in the case of unbalanced
training data, introduces challenges that can impact the effectiveness of the trained
model. It refers to a situation where the number of samples in each class or cate-
gory is not evenly distributed. This can have several effects on the model trained
on such data: Firstly, Models trained on unbalanced data often exhibit a bias toward
the majority class. This means that the algorithm tends to perform better on pre-
dicting the majority class, as it has more examples to learn from compared to the
minority class. Secondly, if the test dataset has a different class distribution than the
training dataset, for example, the test dataset is balanced, a model cannot generalize
well to this new distributed testing dataset. Thirdly because of the lack of minority
class data, the model will learn to fit noise in the data instead of a general pattern,
causing overfitting on this class. Gawlikowski et al. state another insufficient data
problem as distribution shift [Gaw+23]: During data acquisition, training data col-
lected should cover all real-world situations, so that the model can represent human
performance to overall real-world circumstances. But the real world environment is
constantly changing. It is called a distribution shift when the real world situation
changes compared to the training set. Neural networks are sensitive to distribution
shifts [Gaw+23].

Effect of Out-of-Distribution Data Out-of-distribution (OOD) data refers to data
that differs from the training data used to train the model. This can include data from
different sources, domains, or distributions. The impact of OOD data on uncertainty
can vary depending on the model’s nature and the OOD data.

In general, OOD data can elevate the uncertainty of a model’s predictions. This
is because the model has not encountered this type of data during training and may
struggle to handle it correctly. Consequently, the model may make inaccurate pre-
dictions or attribute high uncertainty to these predictions. For instance, consider a
researcher building a model to predict which animals pose a threat to life based on
a series of animal pictures. If the model is trained on pictures of lions and cats but
encounters a zombie during the prediction process, its uncertainty regarding zombies
would be very high, as it has not been exposed to them before. Introducing enough
zombie photos during training can reduce the model’s uncertainty accordingly.

In some cases, the increase in uncertainty due to OOD data can be advantageous.
For example, in safety-critical applications like autonomous driving, it is crucial for
the model to detect situations with high uncertainty and transfer control to a human
operator.
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Data Uncertainty

Data uncertainty, also referred to as aleatoric uncertainty [HW21; KG17], in DNNs
pertains to the uncertainty associated with the data used for training and testing
the network. This uncertainty may arise due to various factors, including noisy or
incomplete data, sampling bias, or measurement errors. Importantly, this type of un-
certainty cannot be diminished even with the collection of more data. For instance,
when a camera experiences slight shakes, resulting in blurred images, increasing the
number of photos cannot eliminate this data noise. Therefore, the typical approach to
addressing this issue involves enhancing the stability of the data collection process.
Kendall et al. [KG17] further categorize aleatoric uncertainty into homoscedastic
uncertainty, which remains constant for different inputs, and heteroscedastic uncer-
tainty, where some inputs may yield more noisy outputs than others. An example of
heteroscedastic uncertainty occurs in depth estimation, where moving figures might
have higher confidence compared to flat walls.

Another scenario of heteroscedastic uncertainty involves ambiguous training sam-
ples, which still originates from an in-distribution (ID) training dataset and, there-
fore, cannot be classified as out-of-distribution (OOD) epistemic uncertainty [CZG20].
For instance, in the MNIST handwritten single digits dataset, there are ambiguous
samples that cause confusion during the training process. These ambiguous samples
exhibit features that are closer to 4, resulting in elevated uncertainty in the training
outcomes for samples falling between the boundaries of 4 and 6.

3.5.2 Uncertainty Quantification by Ensemble and Dropout Methods

The ensemble method typically involves training multiple networks with different
initializations or network randomness on the same dataset. Each individual network
is trained to minimize the prediction error on the training data. Once the individual
networks are trained, their outputs are combined using a simple averaging or voting
mechanism to make the final prediction on the test data.

Similarly, MC-dropout incorporates multiple results from the same trained model
during inference. To ensure prediction accuracy, a small dropout rate, e.g., 5%, is
applied. In this work, we implement both methods as baselines. For dropout, we
apply output-layer dropout only during inference. Normally, to prevent overfitting,
researchers apply dropout during the training phase. However, our model is not
overfitting. In contrast, adding dropout during the training phase harms the model’s
performance, leading to underfitting. For models trained with the same structure,
the final prediction is obtained by averaging over all outputs, as follows:

N
Fou(X) = 1 D £10,0) (3.38)

where f;(X, 0,) is the predicted output from i-th network with parameter 6, . N is the
number of neural networks in the ensemble and F ( X)) is the final prediction of the
ensemble method. Then Uncertainty score function is applied to the aligned results
like the other methods.
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Figure 3.14: The Gaussian Process (GP) kernel collects high dimensional features from network before
predictor and gives predictions with probabilities.

3.5.3 Distance-aware Feature Space by Spectral Normalized Residual
Connection

In this section we introduce Uncertainty Quantified Temporal Fusion Graph Convolu-
tional Network (UQ-TFGCN) with Spectral Normalized Residual connection, which
balances the distance-preserving ability in representation space and high-accuracy
performance. The baseline is the introduced temporal fusion graph convolutional
network in Sec. 3.3.2.

In the development of activity segmentation networks, we observed that residual
connections enhance prediction performance by consolidating features. However, in
the process, the distance in representation space becomes blurred, further compro-
mising the ability to detect out-of-distribution instances. Therefore, we introduce a
Spectral Normalized Residual connection to replace the traditional residual connec-
tion in the graph convolutional models, where the main stream consists of cascaded
layers.

Proposition: Restricting the upper Lipschitz bound in residual connections is es-
sential to preserve feature space distances. The proof is in the appendix.

Considering a traditional residual connection using one convolutional kernel,
where r(x) = ¢(Wx + b), ¢, M and b are activation function, weight matrix and
bias respectively. We apply the spectral normalization on the weight matrix as fol-
lowing:

wW. =

sn

3.39
w c=>A ( )

{W -c/A c<A
where ¢ > 0 is a coefficient to adjust the norm bound of spectral normalization, and A
is the spectral norm, i.e. the largest singular value of the weight matrix W [Beh+19].
In doing so, we control the Lipschitz upper bound of the residual connection by ad-
justing the hyperparameter c, since:

llo(Ws,x + b)lliyp < [[Wsnx + bl

(3.40)
< ||Wsnx||lip < ||Wsn||sn <c

where ||-|l,;, means Lipschitz norm, .., [[Wy,x I, = || Wy, — We,x, |1/, =, ||, and
[| - ]l,, represents the spectral norm.
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3.5.4 Feature Space Distance Measurement using Gaussian Process

By implementing the aforementioned model, we obtain a distance-aware feature
space. We collect the high-dimensional features of all known data (trainset) out-
put by the second separable kernel in the classifier, as shown in Fig 3.14, and fit a
multivariate normal distribution per class to quantify the prediction distance in the
feature space, as follows:

F~N(WX), mweR” X eR™x (3.41)

where c is the channel dimension of feature map F, n is number of action categories,
wand X are the mean and covariance matrices, respectively.

In evaluation phase, we calculate the marginal likelihood of the unknown feature
representation f’ under the prior density F per class:

p(f)i =D p(F/If Do), i€[0,n—1] (3.42)
j

where p is the Gaussian log probability, ¢ is the number of channels, f’j and f1i, j are
the scalar elements of f’ and F, respectively. Since the log-probability does not have
the normalization ability like the softmax function, the predicted label is selected by
the one with the largest log probability and greater than a threshold. In doing so,
the certainty of the prediction is directly demonstrated by the log probability, and the
feature space distance is transformed into the log probability space distance.

In comparison, we utilize several existing measuring modules: the exponential
distance [Van+20a] and Laplace-approximated neural Gaussian process [Liu+20a].
Experimental analyses of the proposed uncertainty quantification method are intro-
duced in Section 4.6.

3.6 Multiple Objects Tracking

Tracking multiple targets, including both humans and objects, provides valuable in-
sights into user behavior within crowd dynamics. This is particularly crucial in the
field of healthcare, where elderly individuals may have diverse care needs. Develop-
ing an effective tracking algorithm is essential for understanding and detecting these
needs.

3.6.1 Human Tracking

As a sub-task of multiple object tracking, human tracking primarily addresses the
recognition and retrieval of individuals across different cameras and scenes. It em-
ploys computer vision technology to determine the presence of specific pedestrians
in an image or video sequence. This technology intelligently recognizes pedestrians
based on attributes such as clothing, posture, and hairstyle. Person re-identification
is widely recognized as a subproblem of image retrieval, enabling the retrieval of a
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Figure 3.15: The workflow of person re-identification on an example of the Multi-Object Tracking bench-
mark [Mil+16].

monitored user image across various devices. It serves to overcome the visual limi-
tations of fixed cameras and can be seamlessly integrated with person detection and
tracking technologies. Consequently, person re-identification finds extensive appli-
cations in intelligent video surveillance and security. In our case, this technology is
implemented to establish a personal schedule within the dynamics of a crowd.

The algorithm consist of four steps as follows:

1. Detection stage: as shown in Fig 3.15, an human detection algorithm analyzes
each input frame to identify where is human bounding boxes on image, also
known as ‘detections’.

2. Feature extraction stage: one or more feature extraction algorithms analyze
the detections and/or the tracklets to extract appearance, motion and/or in-
teraction features. Optionally, a motion predictor predicts the next position of
each tracked target;

3. Affinity stage: features and motion predictions are used to compute a similar-
ity/distance score between pairs of detections and/or tracklets;

4. Association stage: the similarity/distance measures are used to associate de-
tections and tracklets belonging to the same target by assigning the same ID to
detections that identify the same target.

Detection Stage

The prevalent approach in multiple object tracking (MOT) is tracking-by-detection,
leveraging the rapid advancements in object detection. Notably, object detection has
made significant strides, especially with the evolution of deep learning technology.
Tracking-by-detection involves detecting a set of bounding boxes from a video se-
quence, which are then utilized in the tracking process. During tracking, the current
detections are associated with their historical counterparts and assigned either an
existing ID or a new ID. Consequently, the quality of detection plays a crucial role in
determining the tracking performance.
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Within the detection-based tracking framework (tracking-by-detection), this study
compares various multiple object tracking methods. The evaluation of performance
metrics relies on the MOT Challenge [Mil+16], a standardized platform that not
only provides a unified verification video but also includes a specific type of detec-
tion method in the standard video at times. The performance metrics are based
on proved detections from MOT16 and MOT17, each generated by different detec-
tors. For instance, MOT16 utilizes DPM (Deformable Parts Model) [Fel+09] three
different detectors. Additionally, this study employs YOLO [Red+16], an end-to-end
detector, to acquire the detections. The specifics of each detector are elucidated in
the subsequent subsections in the order of DPM, Faster R-CNN, YOLO, and SDP.

The Deformable Part Models (DPM) [Fel+09], proposed by Felzenszwalb in 2008,
represents a fundamental and extensively employed traditional method in the field
of object detection, particularly before 2012. Prior to the advent of Convolutional
Neural Networks (CNN), DPM stood as the state-of-the-art object detector for several
years. Renowned for its robustness to object deformation, DPM has served as a foun-
dational component in numerous classification, segmentation, and pose estimation
algorithms. In both MOT16 and MOT17, DPM is utilized as the detector, and the
ensuing detection results play a pivotal role in the subsequent tracking phase of this
study.

The DPM algorithm represents an object as a combination of parts with a certain
spatial relationship between them. The workflow of DPM is that extract features from
the input image, make a corresponding model template for a certain component,
slide and calculate the score in the original image, and determine the target location
according to the distribution of score.

For the feature extraction part, the Histogram of Oriented Gradients (HOG) is
commonly used as a feature descriptor, in which the distribution of gradients or edge
directions are captured. These features are useful for object recognition because the
appearance and shape of an object can be characterized by the distribution of local
intensity gradients. The model template represents a certain part of the object, and
it is equivalent to a manual designed convolutional kernel. For example, if the object
to be detected is a person, the DPM model could have separate templates for the
head, torso, arms, and legs. The next step is to slide the model templates over the
feature map obtained from the input image. At each position, a score is calculated
based on the similarity between the model template and the feature map. This score
indicates how well the model template matches the local features of the image. The
position of the object in the image is determined based on the distribution of scores.
The location with the highest score is usually considered the position of the object.

Since the gradient direction calculated by the HOG is 0 to 180 degrees of insen-
sitive feature, a lot of feature information will be lost. The DPM implemented an
improved HOG, which extracts O to 360 degrees sensitive features and remove the
feature normalization of four corner neighboring cells. It first extracts the features
between 0 and 180 degrees to obtain the 4 x9 dimensional features which are spliced
to obtain 13 dimensional feature vectors, and then extract the features between 0 and
360 degrees to get the 18 dimensional feature vector, and add the two vectors to get
the final feature vector with size of 31.

Although the DPM is intuitive and simple, it is not universal, because the model
template used to detect people cannot be used to detect kittens or puppies. So when
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you do a detection of an object, you need to manually design the model template in
order to obtain a better detection effect which take a lot of time and work. Further-
more, it is not able to adapt to large rotations and has poor stability, which is the
general shortcoming of traditional hand-crafted object detection methods.

The Faster R-CNN [Ren+15] is one of the three detectors of MOT17. It is the
most classic network in the R-CNN series which is also the benchmark work of the
two-stage method of object detection. The faster R-CNN is the first end-to-end, and
the first near-realtime deep learning detector. By sharing convolutional features with
the down-stream detection network, the region proposal step is nearly cost-free. The
learned Region Proposal Network (RPN) also improves region proposal quality and
thus the overall object detection accuracy. An RPN is a fully convolutional network
that simultaneously predicts object bounds and confidence scores at each position.
Note that the input of the RPN network is the feature map extracted by the feature
extraction network in the Fast R-CNN from the original image. The RPN first predicts
multiple region proposals at each feature point on the feature map, where the sliding
window locates. The specific method is to map each feature point back to the center
point of the receptive field in the original image as a reference point, and then select
k anchors with different scales and aspect ratios around this reference point. In the
Faster R-CNN, there are 3 scales multiply 3 aspect ratios totally 9 possible anchors.
After the sliding window processing and intermediate layer, each feature map will
have a channel number 256.

Scale Dependent Pooling and Cascaded Rejection Classifiers (SDP-CRC) [YCL16] is
one of the three detectors used in MOT17 challenge. The SDP-CRC proposes a ob-
ject detection method with both accuracy and efficiency. The SDP stands for scale-
dependent pooling, which is used to improve accuracy. The CRC stands for cascaded
rejection classifiers, which is used to improve efficiency. SDP-CRC is built based on
Fast R-CNN but has made certain improvements to the shortcomings of Fast R-CNN.

Firstly, Fast R-CNN can not detect small objects well, which is due to the fact
that Fast R-CNN only pools from the last convolutional layer to get the information
of bounding box. Secondly, multi-scale input fundamentally limits the applicability
of very deep architecture due to memory constraints and additional computational
burden. Thirdly, pool a number of region proposals and feed them into fully con-
nected layers with high dimension are time consuming and redundancy. Therefore,
SDP-CRC Figure 3.14 uses the convolutional features of every layers to reject easy
negatives with cascaded rejection classifiers and evaluate surviving proposals using
scale dependent pooling to increase performance in both accuracy and efficiency.

The SDP divides the input region of interests (Rols) into 3 different groups (small
region, mid region and large region) according to their scale and give these input
Rols into different SDP layers. For example, if the height of a proposal region is be-
tween 0 to 64 pixels, the features on the third convolutional layer (such as Conv3
in VGG) are used. If the height of a proposal region is larger than 128 pixels, the
features of the last convolutional layer (for example, Conv5 in VGG) are used. These
three branches (Conv3, Conv4, and Conv5) project Rols into a high dimensional fea-
ture map and feed these projection into a pooling function. Each branch contains
two subsequent fully connected layers, ReLU activation and Dropout layers, which
regress bounding box and obtain class score. The advantage of this structure is that
more information mainly for small objects can be saved. Instead of artificially re-
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sizing the input images, the SDP selects a proper feature layer to describe an object
proposal. It reduces computational cost and memory overhead. The CRC is designed
to further reduce the number of proposals. Instead of directly fusing the features of
each layer, the SDP-CRC establish it’s own classifiers of every different feature layers.
According to the principle of boosting classifiers, SDP-CRC can quickly negate an easy
negative thanks to the previous base layer is a weak classifier. The scale-dependent
pooling (SDP) improves detection accuracy especially on small objects by fine-tuning
a network with scale-specific branches attached after several convolutional layers.
The cascaded rejection classifiers (CRC) effectively utilize convolutional features and
eliminate negative object proposals in a cascaded manner, which greatly speeds up
the detection while maintaining high accuracy.

YOLO [Red+16] is employed as a detector in this work as well, which is able to
give the object detection results for the following part of object tracking. It is the
most classic network in the field of object detection which is also the benchmark
work of the one-stage method. Differently from R-CNN series, YOLO series detect
object as a regression problem based on deep learning. YOLO series do not show
the process of obtaining the proposal region, but use the entire image as the input,
and then obtain the location and category of the bounding box through a regression
process.

Feature Extraction and Motion Prediction Stage

Feature extraction refers to the process of transforming unrecognizable original data
into features that can be recognized by the algorithm. For example, a picture is
composed of a series of pixels (original data), these pixels themselves cannot be used
directly by the algorithm. But if these pixels are converted into a matrix (numerical
features), then the algorithm can use them. A feature is a piece of information related
to solving a computing task related to a certain application. Features may be specific
structures in the image, such as points, edges, or objects. Features may also be the
result of general neighborhood operations or feature detection applied to the image.
In this work, a novel convolutional neural network (CNN) is introduced to generate
feature descriptor. The final results is compared with a traditional algorithm (the
HOG descriptor).

The CNNs descriptor: as shown in Table 3.1, the proposed CNN architecture is
based on Deepsort [WBP17] with residual connections. It consists of two convo-
lutional layers and followed by six residual blocks. The global feature map with
dimension 128 is computed in dense layer 10. According to person re-identification,
we can add a linear layer as the classifier to cluster different people. Except the CNN
architecture with 128 dimension, architectures with 32, 64, 256 dimension are also
evaluated on Market-1501 [Zhe+15] and Mars [Zhe+17] datasets.

The HOG descriptor. The basic idea of this algorithm is implementing the HOG
method to generate its gradient features and to cluster through a Support Vector
Machine (SVM). The detection window is scanned at all positions and scales of the
entire image, and non-maximum suppression is performed on the output pyramid
used to detect the target. In reality, targets will appear in different environments,
and the lighting will be different. Color space normalization is to normalize the color
information of the entire image to reduce the impact of different lighting and back-
grounds. In order to improve the robustness of detection, Gamma and color space
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Table 3.1: Overview of the CNN architecture with 128 dimension.

Layer name Kernel size/stride Output size

Conv 1 3x3/1 32 x 128 x 64
Conv 2 3x3/1 32 x 128 x 64
Max Pool 3 3x3/2 32 x 64 x 32
Residual 4 3x3/1 32 x 64 x 32
Residual 5 3x3/1 32 x 64 x 32
Residual 6 3x3/2 64 x32x 16
Residual 7 3x3/1 64 x32x 16
Residual 8 3x3/2 128 x 32 x 8
Residual 9 3x3/1 128 x 32 x 8
Dense 10 128

Batch norm 128

normalization are introduced as preprocessing methods for feature extraction. HOG
also evaluated the expression of different image pixels, including gray space, and
finally verified that RGB and LAB color space can make the detection results roughly
the same and can have a positive impact. On the other hand, in their research,
the author used two different Gamma normalization methods on each color chan-
nel, taking the square root or using the logarithmic method, and finally verified that
this preprocessing has almost no effect on the detection results. Furthermore, Gaus-
sian smoothing cannot perform on the image, because the smoothing will reduce
the recognition ability of the edge information of the image and affect the detection
result.

Kalman filter is implemented to predict the next position of each tracked target.
Kalman filter is widely used in the fields of unmanned aerial vehicle, autonomous
driving, satellite navigation, etc. In simple terms, its function is to update the pre-
dicted value based on the measured value of the sensor to achieve a more accurate
estimation. Suppose we want to track the position change of the car, Kalman fil-
ter is divided into two processes: prediction and update. Prediction process: when
a small car is moved and its initial positioning and moving process are Gaussian
distributions, the final estimated position distribution will be more scattered, whic
leads to less accurate. Update process: when a small car is observed and positioned
by the sensor, and its initial positioning and observation are Gaussian distribution,
the position distribution after observation will be more concentrated, which is more
accurate.

In the tracking phase, the following two states of track need to be estimated:
mean and covariance values. Mean is the position information of the target, which is
composed of the center coordinates of the bounding box (c,, c,), the aspect ratio r =
height/width, the height h, and the respective speed change values. It is represented
by an 8-dimensional state vector as x = [c,,c,, T, h,V,,V,,V,, ], each speed value is
initialized to 0. Covariance value represents the uncertainty of the target location
information, represented by an 8 x 8 diagonal matrix. The larger the number in the
matrix, the greater the uncertainty, and it can be initialized with any value. Assume
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that person move with constant acceleration, the state vector is estimated as follows:

x, =Ax, 4 (3.43)
P, =AP,_,A"+Q (3.44)

where A is the state-transition model and describe the state changes, e.g., ¢, , =
Cx,t—l + Vx,t—lAt'

In the update phase, the Kalman gain, the optimal state x and the convariance
matrix P are obtained as follows:

K,=PH'[HP,H" +R]™ (3.45)
x, =x,+KJ[y—Hx,] (3.46)
P, =[I—K,H]P, (3.47)

where y is measurement of [cx,cy,r,h]. R is the noise matrix of the detector, which
is a 4 x 4 diagonal matrix. The values on the diagonal are the two coordinates of the
center point and the noise of the width and height, which are initialized with any
value, and the noise of the width and height are generally greater than the noise of
the center point. This equation first maps the covariance matrix P,to the detection
space, and then adds the noise matrix R.

Affinity Stage

In the affinity stage, the similarity or distance score between the predicted states and
newly arrived measurement are calculated. The most classic affinity method is the
Hungarian algorithm. In this work, we improve Hungarian algorithm by design an
optimal cost matrix between the detections and the trackers.

The squared Mahalanobis distance (covariance distance) is used to measure the
distance between the predicted Kalman states and newly arrived measurements as
Equation 3.48. Since both are represented by Gaussian distribution, it is very suitable
to use Mahalanobis distance to measure the distance between the two distributions.

d" = (d;—y;)S;'(d; —y,) (3.48)

where (y;, S;) are the projections of the i-th track distribution into measurement
space and d; is the j-th bounding box detection.

The reason why Euclidean distance is not used is that the spatial distribution of d
j and y i are different. The calculation result of Euclidean distance ignoring the spa-
tial distribution cannot accurately reflect the true distance between these two. The
Mahalanobis distance takes state estimation uncertainty into account by measuring
how many standard deviations the detection is away from the mean track location.
An indicator is used to denote the similarity as follows:

where t is manual selected threshold value. When the detection and tracker is ad-
missible, the value is equal to 1. However, there is no upper limit to the value range
of the Mahalanobis distance, which is not conducive to determining the threshold.
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Therefore, the connection between Mahalanobis distance and Chi-square distribu-
tion is utilized to determine the threshold. The Mahalanobis distance meets the 95%
confidence threshold in different dimensional states according to different dimen-
sion of states. For dimensions 1—9, there are thresholds 3.842, 5.992, 7.815, 9.4877,
11.070, 12.592, 14.067, 15.507, 16.919. The speed state is not considered during the
comparison, so there are only four dimensions left, namely the threshold is 9.4877.
The Mahalanobis distance is a suitable correlation measure when motion uncer-
tainty is low. However, the Kalman filter’s predicted state distribution only provides a
rough estimate of the object’s location. In particular, unaccounted camera motion can
introduce rapid displacements in the image plane, making the Mahalanobis distance
a rather uninformed metric for tracking through occlusions. Therefore, we integrate
a second metric into the assignment problem, as shown in Equation 3.50. The cosine
distance is used to measure the smallest distance of the appearance features between
the i-th tracker 7" and j-th detection fJ in appearance space, which assign the ID
more accurately.
d/, = min{1—f]t} | for &, € T'} (3.50)

where f] is the feature vector of the detected bounding box processed by the net-
work. t; is an element of i-th tracker 7', and each tracker save the last 100 asso-
ciated feature vectors. The feature vector is saved based on the similar indicator as
Equation 3.49 with threshold t = 0.2.

The final distance between detection and tracker is obtained by combing the Ma-
halanobis distance and feature distance as follows:

dy; = Ad7+(1—A)d], (3.51)

The influence of each metric on the combined association cost can be controlled
through the hyperparameter A. In experiments, A = 0 is a reasonable choice when
the camera movement is large. Because the camera shakes, the uniform motion
model based on Kalman’s prediction does not work well, so the Mahalanobis distance
actually has no effect. But note that the Mahalanobis gate is still used to disregard
infeasible assignments of possible object locations, which are inferred by the Kalman
filter.

Association Stage

After the distance is obtained, the Hungarian algorithm is utilized to find the best
associated pairs between detection and trackers. However, it fails when a person
is covered by another person for a long time. Therefor, a new matching strategy is
introduced in this work - cascade matching.

The cascade matching strategy can improve the matching accuracy and is dedi-
cated to solve the situation that the target is occluded for a long time. In order for
the current detection to match the track that is closer to the current moment, the
detection will give priority to the track that has a shorter disappearance time when
matching. From the trajectory with missing age= 0 (the ones are matched in every
frames and never lost) to the trajectory with missing age= 70 (the trajectory have lost
for 70 frames that is the maximum missing time), the detection results are matched
one by one. In other words, the trajectory that has not been lost will given priority
to match, and the trajectory that has been lost for the longest time is matched last.



3.6 Multiple Objects Tracking 61

In the final matching stage, there will be a IOU matching between unconfirmed
tracks and unmatched detection, unmatched tracks, which are the results of the
matching cascade. This helps to solve the problem for the sudden changes of ap-
pearance, which caused by partial occlusion with static scene geometry. This extra
IOU matching between the detection and tracks can increase robustness against er-
roneous initialization.

Compare to the cascade matching strategy, the IOU matching is aimed to deal with
overlapping. More specially, when two targets are entering an overlapping situation,
the IOU matching method selects detection with a similar scale to the tracker. So
only the front target is tracked and covered target does not affect the assignment
cost matrix.

3.6.2 Objects Tracking

Besides re-identify person, the related objects information is important as well. Some
practices of 3D object tracking have been developed over the past three decades. For
example, the work [ZWZ19] track objects by registering point cloud with meshed
CAD model. However, the method relying on a high quality point cloud or a short
distance between objects and depth camera. Many other researchers focus on ex-
tracting 2D features from detected bounding boxes and assign the corresponding ID
based on feature distance [WB18]. These methods normally have a promising per-
formance in the scene with less occlusions. When occlusions occurs, the ID of two
targets are easily exchanged because their features overlap. For the calibrated cam-
eras, there is an option to combine 2D image information and 3D points of the same
scene.

Depth-based tracking has become more popular in the last decade, as RGB-D de-
vices became more available. Depth maps are powerful in the area of feature extrac-
tion, considering the price-quality ratio. Depth images contain relevant information
about the distance to the scene objects from a viewpoint, geometrical relations in the
scene and shape features. This data provides multiple opportunities for 3D modeling,
simulations, etc. However, the disadvantage of this method in a single depth channel
lies in an inability to receive information about the objects from other angles and
perspectives.

Similar to task of person re-identification, YOLO [Red+16] is applied to detect
objects. The algorithm is used every time a new frame is captured. Nonetheless,
object detectors, even the best ones, are not perfect and cannot detect all objects
continually. In every object detector, there is a backbone network, which is respon-
sible for extracting features of each detected objects [Li+20b]. Additionally, there
may be objects, that need to be detected according to the task. However, it is possi-
ble that the backbone network of an object detector is not trained to recognize them.
These are the reasons why a user should give a number of frames as a parameter
—frame_number. It represents a number of times when undetected objects should be
chosen manually. After the first selection of undetected objects, the user is asked if in
the rest of frames, the objects do not change their coordinates. If the user is confident
in this fact, the rest of the frames are simply demonstrated after that. Otherwise, the
process should be repeated. This step is needed to create a stable base for the recall
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Figure 3.17: A local coordinate on human body from front (right) and 45° side (left) views, where X, Y,
and Z; are the x, y, and z axes respectively.

step and the next algorithm, called Kalman filtering.

A Kalman filter helps to predict the next position of objects. It could be the case
that an object was not correctly detected or an object cannot be seen in the frame,
e.g., a moving ball is hidden under or behind another object for a few frames and ap-
pear again. Therefore, the Kalman filter helps to estimate its position and to compare
the predicted position with new observation. Instead of observing the bounding box
states in the task of person re-identification, here the 3D center position is tracked by
the Kalman filter. In the words, the state vector is x = [C,,C,, C4, V,,V,,V4]. The rest
stages are same as the task of person re-identification.

Experimental analyses of multi-object tracking algorithms are presented in Sec-
tion 4.2.

3.7 Real-Time System of Understanding Human-Object In-
teraction

This section describes a real-time system of using our HOI model. Designing a real-
time human action recognition system involves considering various factors to ensure
its effectiveness, such as RGB frames, depth frames, field of view (FoV), frame rate
and accuracy. A high-quality RGB camera provides a rich information of human mo-
tion. Additional depth information enables the system to understand the 3D structure
of the scene. The accuracy of the depth sensor is crucial for correctly understanding
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the spatial relationships between different objects and body parts in the scene. To
cover the entire area where human actions need to be recognized, an appropriate
field of view need to be ensured. This involves using a wide-angle lens to capture a
broader scene. To enable real-time processing, a high frame rate need to be achieved.
The frame rate should be sufficient to capture fast-paced human actions without sig-
nificant latency. Aim for at least 30 frames per second (fps) or higher.

As shown in Figure 3.16, the real-time system takes RGB and depth frames from
a depth camera as the input and estimate human pose and track objects features.
These features will be stored in an array and fed into a pre-trained HOI model with
the encoding-decoding process to get its action prediction and segmentation results.
Experimental evaluation of the real-time system on the real world dataset is intro-
duced in Section 4.7.

For the human pose estimation part, an open source skeleton estimation tool-
box[Cao+19] is employed to extract 2D skeleton information from a single frame.
For the multiple objects tracking, an object detector [Red+16] is used to detect the
position of object candidates, and a Kalman filter is combined with a CNN-based
classifier to find correspondences for each detected object. For the human-objects
interaction model, we utilize our uncertainty quantified temporal fusion graph con-
volutional network, which can predict action labels with novelty. Note that the ex-
tracted pose and object information is in 2D space, and our model requires 3D input.
Therefore, we first project all 2D information along the depth direction to a 3D space
in the camera coordinate. Then the local coordinates on the human body are estab-
lished based on the 3D skeletal information, where the origin point the neck joint,
the z direction is from the mid-hip to the neck joint, the y direction is from the neck
to the left shoulder, and x is the cross product of the y and z axes, as shown in the
Fig. 3.17. All joints position information is transformed to the new coordinate.






Chapter 4

Experiments

This chapter presents the experimental setup and results. The setup includes hard-
ware, datasets and the evaluation metrics, and results list the performance of dif-
ferent methods in multi-objects tracking, action recognition, action segmentation,
event detection, uncertainty quantification and real-time system for understanding
of human-object interaction.

4.1 Experimental Setup

4.1.1 Hardware

Depth cameras play a pivotal role in capturing accurate 3D information for under-
standing human behavior. The cameras under investigation in this work are the Intel
RealSense D415, D435, D455, L515, Microsoft Kinect v2, and Azure Kinect. The com-
parison is based on key technical specifications, performance metrics, and features of
each camera.

Table 4.1: Comparison of popular existing depth cameras.

Cameras Intel D415 Intel D435 Intel D455 Intel L515 Kinect v2 Azure Kinect
Depth technology Active IR Stereo Active IR Stereo Active IR Stere LiDAR Time-of-Flight Time-of-Flight
Depth resolution 1280 x 720 1280 x 720 1280 x 720 1024 x 768 512 x 424 512 x 512
Depth frame rate (fps) 90 90 90 90 30 30

Depth FoV (°) 65 x 40 87 x 58 87 x 58 70.4 x 56.2 70.6 x 60 70.6 x 60
Depth range (m) 0.5—-3 0.3—3 0.6—6 0.3—9 0.5—4 0.3—5

Depth accuracy 2% at 2 m 2% at2m 2% at 4 m 5to 14 mmat9m? 1.5% at4m 1% at4 m
Aligned max resolution 848 x 480 848 x 480 848 x 480 1024 x 768 512 x 424 640 x 576
Aligned frame rate (fps) 30 30 30 30 30 30

Cost ($) 272 334 419 589 199 399

As demonstrated in Table 4.1, depth cameras can be clustered into three classes
according to depth technologies: active infrared (IR) stereo, LiDAR and Time-of-
Flight.

Active infrared stereo: Active infrared stereo systems use two infrared cameras
to capture stereo images and compute depth based on the disparity between cor-
responding points in the images. While they provide depth information in a high
frequency, their accuracy is slightly lower compared to LiDAR and ToF technologies,
especially in complex or dynamic environments. Active infrared stereo systems are of-
ten more cost-effective compared to LiDAR and ToF solutions. They use off-the-shelf

65
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components and relatively simple algorithms for depth computation, contributing to
their affordability. The Intel RealSense D series use this technology.

LiDAR: LiDAR technology is known for its high accuracy in capturing 3D spatial
information. It uses laser pulses to measure distances with exceptional precision,
making it suitable for applications that require detailed and accurate depth percep-
tion. LiDAR systems are generally more expensive due to the complexity of com-
ponents, including lasers, mirrors, and precise timing mechanisms. This has been
a limiting factor for their widespread adoption, especially in consumer applications.
This technology is implemented in the Intel RealSense L515 camera.

Time-of-Flight (ToF): ToF technology measures the time taken for a light signal
to travel to an object and back, providing depth information. ToF sensors can of-
fer good accuracy, which is slightly lower than that of LiDAR, especially in longer
ranges. However, it takes a long warm-up time to achieve such accuracy in Kinect
cameras [Kur+22]. ToF sensors are more cost-effective than LiDAR systems. They
can be integrated into various devices like smartphones, gaming consoles, and con-
sumer electronics, making them more accessible to a broader range of applications.

While LiDAR and Time-of-Flight technologies offer higher accuracy, active in-
frared stereo systems can provide a balance between accuracy, frequency of oper-
ation, and cost-effectiveness. In this work, we select Intel RealSense D series camera
as our perception sensors.

4.1.2 Datasets

NTU-RGB+D [Sha+16b] stands out as one of the largest and most demanding 3D
action recognition datasets, comprising 56,000 action clips featuring 3D skeleton
data across 60 action classes. The performances are enacted by 40 volunteers and are
captured by three cameras from distinct horizontal angles: —45°, 0°, and +45°. Each
clip involves at most 2 subjects. The dataset authors recommend two benchmarks
for evaluation: 1) cross-view (X-View). This benchmark comprises 37,920 videos for
training and 18,960 videos for validation. The training set is captured by cameras 2
and 3, while the validation set is captured by camera 1. 2) cross-subject (X-Sub).
This benchmark includes 40, 320 videos for training and 16, 560 videos for validation.
The two sets involve performances by different subjects. In this study, we adhere to
the recommended benchmarks: cross-view (X-View) and cross-subject (X-Sub).

To further evaluate the performance of the proposed model, we partitioned the
X-View dataset into two subsets: Body Parts Related (BPR) and Pose Related (PR)
validation datasets. The BPR action classes encompass numbers 1, 2, 3, 4, 6, 10, 13,
14, 15, 16, 17, 18, 19, 20, 21, 28, 34, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, while
the remaining classes constitute the PR dataset.

Fall event dataset: To distinguish fall-down events from similar actions, we cu-
rated a test dataset by extracting 420 sitting-down and 405 ground-lift 3D skeleton
examples from the NTU-RGBD dataset [Sha+16b]. Additionally, we included 280
skeleton examples from 46 different actions in the test dataset.

Following the recommendations in the NTU-RGBD dataset [Sha+16b], we adhere
to cross-subject (CS) and cross-view (CV) evaluation criteria to benchmark our model
against other popular existing methods. For CS evaluation, the subjects are divided
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into training and testing groups, with training subjects assigned the IDs 2, 3, 5, 7, and
8. In CV evaluation, training utilizes samples from camera views 2 and 3, consisting
of one front view and two side views. The testing set comprises samples from camera
view 3, encompassing diagonal views.

Kinetics [Kay+17] stands as a more challenging human action recognition dataset,
boasting 300,000 videos spanning 400 action classes sourced from YouTube. Each
clip in Kinetics lasts around 10 seconds. The dataset provides solely raw video clips
without accompanying skeleton information. At most two people are selected in the
multi person videos based on the average joint confidence. The dataset is divided
into a training set (240,000 clips) and a validation set (20,000 clips). In this study,
we use 2D skeleton dataset (240,000 clips for training, 20,000 clips for validating)
that generated by Yan et al. [YXL18] using the OpenPose toolbox [Cao+19].

Bimanual Actions Dataset [Kre+21] was meticulously curated for the purpose
of human-object interaction detection in a third-person perspective. Comprising 540
recordings, with a cumulative runtime of 2 hours and 18 minutes, this dataset offers
framewise predictions for 12 objects (in the form of 3D bounding boxes) and 6 sub-
jects (depicted through 3D skeletons). Notably, the dataset encompasses both hands
of the subjects, categorizing them into one of 14 possible interaction categories. Each
recording captures a solitary individual engaged in the execution of a complex daily
task within one of the two predefined environments: a kitchen or a workshop. For
benchmarking purposes, the dataset’s creators recommend the leave-one-subject-
out cross-validation approach, where records from one subject are reserved for vali-
dation, and the recordings from the remaining subjects are utilized for training.

The IKEA Assembly Dataset [Ben+20] stands out as a notably challenging and
intricate human-object interaction dataset, boasting a comprehensive collection of
16,764 annotated actions. Each action is accompanied by an average of 150 frames,
contributing to a cumulative duration of approximately 35.27 hours. The dataset’s
creators have introduced a rigorous cross-environment benchmark, wherein the test
environments are deliberately distinct from those present in the training set, and
vice versa. The training set encompasses 254 scans, while the test set comprises 117
scans.

In this study, we assess the efficacy of the proposed action recognition model on
the NTU-RGBD and Kinetics datasets. The proposed action segmentation models
undergo evaluation on the Bimanual Actions and IKEA Assembly datasets. Addi-
tionally, uncertainty quantification experiments are carried out on these two datasets.
Furthermore, an event detection experiment is executed using the Fall event dataset.

For the NTU-RGB+D dataset, we maintain the same input data size as in [Shi+ 19b],
with a maximum of 2 persons per sample and a frame limit of 300. In the case of the
Kinetics dataset, we generate samples with 150 frames and 2 persons each, applying
slight random rotations and translations. For the Bimanual Action dataset [DWA19],
we utilize the centers of 3D object bounding boxes and 3D human skeleton data
provided by the authors [DWA19]. In the ablation study, subject 1 is left out for vali-
dation, and in the comparison with other methods, we adopt a leave-one-subject-out
cross-validation approach. In the IKEA Assembly dataset [Ben+20], we use the pro-
vided centers of 2D object bounding boxes and 2D human skeleton data, following
the cross-environment benchmark.

TUM HOI Dataset. In addition to publicly available human-object interaction
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Figure 4.1: Examples of preparing breakfast in standing and sitting from the TUM HOI dataset.

datasets, we have curated our own kitchen action dataset. To account for the impact
of human posture on action recognition, participants were instructed to carry out a
"making breakfast" task in two distinct poses: standing and sitting, as illustrated in
Figure 4.1. Considering the variability in human poses during real-world tasks, par-
ticularly between standing and sitting, is crucial, as these different postures can affect
action recognition. Factors such as occlusion of body parts and action distortion may
vary with pose. In the standing pose segment, six subjects performed the task with
ten repetitions each. The recording involved eight objects from five distinct classes
(milk, cereal, bowl, cup, and bottle), with cups and bottles serving as non-interacting
elements. While milks, cereals, and bowls directly interacted with subjects, a single
video sample did not feature multiple objects from the same class simultaneously.
Throughout the capture process, all tasks were executed against a consistent back-
ground (lab) and under the same camera configuration (approximately 1.75 meters
in height). In this segment, the video samples typically lasted around 12 seconds,
with the actions being demonstrative in nature. Due to the standing pose, occlusion
of body parts was nearly nonexistent, as depicted in the top two rows of Figure 4.1.

In the sitting part, six subjects participated in the recording, performing the task
six times each while in a sitting pose. The recording involved the use of eleven
different items, including two milks, three cereals, two bowls, two cups, and two
bottles. Similar to the standing part, cups and bottles serve as noise, while milks,
cereals, and bowls interact with the subjects. This time, multiple objects of the same
class are allowed to be used simultaneously, as illustrated in the figure. The actions
took place in two distinct environments (lab and family kitchen), each equipped with
unique camera setups (approximately 1.05 m in the lab and approximately 1.15 m
in the kitchen). The actions closely resemble real-life scenarios, with two subjects
authentically performing the actions in a family kitchen setting.
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Because of the sitting pose and the numerous objects on the table, occlusions
between body parts are common. Moreover, real-life actions usually include many
subconscious minor movements, such as hand adjustments due to the weight of milk
while pouring or slight shaking when pouring cereal. These subconscious move-
ments are typically absent in demonstrative actions, as depicted in Figure 4.1 in the
bottom two rows. Overall, the complexity of this part is higher due to the presence
of occlusions and the replication of real-life actions.

For ground truth annotations, the collected dataset includes both spatial and tem-
poral information. Temporally, the dataset provides the start and end frames for each
action, defining the action segment points, and assigns an action label to each atomic
action. In real-life scenarios, many actions involve the collaboration of both hands,
and a single action label may not suffice to describe a bimanual action. Similar to the
Bimacs dataset [DWA19], this dataset also includes action labels for both the left and
right hands. The actions are categorized into nine classes: idle, approach, retreat,
take, place, hold, pour, screw, and fold. All action labels are manually annotated by
the same individual to ensure consistency and avoid biases introduced by different
annotators.

For spatial information, the dataset includes skeleton data and bounding boxes for
objects. The skeleton data are obtained through OpenPose [Cao+19], as discussed in
detail in the next section. Regarding the bounding boxes of objects, a semi-automatic
annotation algorithm is employed (see Algorithm 1). This algorithm combines pre-
trained YOLO [Red+16], a Kalman filter, and Apriltag [Ols11]. Subsequently, it uses
16,663 images labeled by the algorithm and 5,374 images labeled manually to re-
train a YOLO network. Finally, the entire dataset is annotated using the re-trained
model.

The collected dataset comprises a total of 96 video samples (36 for sitting and 60
for standing), encompassing 60,732 frames (21,872 frames for standing and 38,860
frames for sitting). Figure 4.3 provides the statistical overview of the collected
dataset. In the standing part, video durations vary between 200 and 500 frames,
with the majority concentrated around 400 frames. Conversely, the sitting part ex-
hibits a significant increase in video duration, ranging from 600 to 2000 frames, with
the majority centered around 1000 frames. This duration discrepancy arises from the
fact that actions in the standing part are mostly demonstrative and therefore faster,
while actions in the sitting part are real-life actions with a slower tempo. Although
the action distribution is similar in both parts, variations exist among different ac-
tions, such as the idle duration being approximately 3 times longer than the place
duration in both standing and sitting parts.

Market-1501 [Zhe+15] serves as a large-scale public benchmark dataset for per-
son re-identification. It comprises 1501 identities captured by six different cameras,
with a total of 32,668 pedestrian image bounding-boxes obtained through the De-
formable Part Models (DPM) pedestrian detector. On average, each person has
around ~ 3 images from each viewpoint. The dataset is partitioned into two seg-
ments: 750 identities for training and the remaining 751 identities for testing. The
official testing protocol involves selecting 3,368 query images as the probe set to
identify the correct match among 19, 732 reference gallery images.

MARS (Motion Analysis and Re-identification Set) [Zhe+17] stands out as an-
other extensive video-based person re-identification dataset, expanding upon the
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Figure 4.2: Statistics of the TUM HOI dataset: Row 1: frames distribution of different actions in stand
(left), sit (middle) and total (right). Row 2: duration distribution of records in stand (left), sit (middle) and
total (right).

Market-1501 dataset. It has been curated from six nearly synchronized cameras, en-
compassing 1,261 distinct pedestrians captured by at least 2 cameras. The dataset’s
challenge is amplified by variations in poses, colors, illuminations of pedestrians, and
poor image quality, posing difficulties for achieving high matching accuracy. Addi-
tionally, the dataset deliberately includes 3,248 distractors to enhance realism. To
automate the generation of tracklets (mostly 25 — 50 frames long), Deformable Part
Model (DPM) and GMMCP tracker were employed.

MOT challenge. The MOT17 dataset [Mil+16] is employed as the evaluation
dataset for person re-identification. It comprises 14 video sequences, with 7 desig-
nated as training sets with annotations, and the remaining sequences serving as test
sets.

4.1.3 Evaluation Metrics

To assess the efficacy of the proposed components in action recognition tasks, we
introduce an influence ratio metric as follows:

*

Accy —Acc;

“4.1)

fa/s = Accg —Accy
where Acc and Acc* represent the accuracy of the proposed model and baseline, re-
spectively, J denotes the joint input stream, and B represents the bone input stream.
Assuming the improvement is positive, the proposed model is more promising for
the joint input stream when r;,;; > 1 and better for the bone stream otherwise. In
the case of a negative influence ratio, i.e., performance drop ratio, the removed com-
ponent is more beneficial to the joint stream when r;; > 1 and better for the bone
stream otherwise.

We evaluate the proposed model on two tasks: HOI framewise recognition and
temporal segmentation. For framewise recognition, we utilize two main evaluation



4.1 Experimental Setup 71

metrics, namely F1-score and F1@k, while for segmentation, we employ the F1@k
metric. The Fl-score is formulated as: F1 = m, where tp denotes true
positive predictions, and fp and fn represent false positive and false negative pre-
dictions, respectively.

For the F1@k score, we employ common values of k = 0.10, 0.25, and 0.50. In
this context, the determination of true or false positives for each predicted segment
involves comparing the intersection over union (IoU) with a threshold 7 = k/100.
Incorrect predictions and missed ground-truth segments are categorized as false pos-
itives and false negatives, respectively. Additionally, for the multi-class prediction
task, both micro-average and macro-average over F1-scores of all classes are adopted
as the framewise recognition metrics. In the experiment comparing popular methods
on the IKEA Assembly dataset, we utilize topl and macro-recall metrics to evaluate
models.

In assessing fall event detection, a traditional binary classification task, we employ
accuracy, recall, and precision as performance metrics.

For measuring the performance of out-of-distribution (OOD) detection, we utilize
the area under the receiver operating characteristic (AUROC) and the area under the
precision-recall curve (AUPRC). Since the softmax output can lose the true feature
distance due to normalization, we use Gaussian log probability values from the mul-
tivariate model as the measurement score for AUROC and AUPRC. As recommended
in the work by Nixon et al. [Nix+19], we incorporate static calibration error (SCE),
adaptive calibration error (ACE), and thresholded adaptive calibration error (TACE)
to evaluate calibration error, with the threshold set at 0.01. Additionally, we compare
the popular expected calibration error (ECE), although it is originally designed for
binary classification methods.

The models and experiments are implemented using the PyTorch deep learning
framework, utilizing a single NVIDIA-2080-ti GPU. The optimization strategy em-
ploys the widely used stochastic gradient descent (SGD) with Nesterov momentum
(0.9), and cross-entropy serves as the loss function for gradient backpropagation.

For the Bimanual Actions dataset [Kre+21] and IKEA Assembly dataset [Ben+20],
the training process spans 60 epochs. The initial learning rate is set at 0.1 and is di-
vided by 10 at the 20th and 40th epochs. For the task of action segmentation, a
train and test batch size of 16 is chosen due to the large input size. The weight de-
cay is set to 0.0002. In the case of action recognition, a batch size of 16 is used for
training, while a batch size of 128 is applied for testing. The weight decay for action
recognition is set to 0.0001.

For the NTU-RGBD [Sha+16b] and Kinetics [Kay+ 17] datasets, the learning rate
is initially set to 0.1 and is reduced by a factor of 0.1 at the 60th and 90th epochs.
The training process spans a total of 120 epochs.

In the context of the person re-identification task, traditional metrics focus on
different types of errors, primarily including Mostly Tracked (MT) trajectories and
Mostly Lost (ML) trajectories. In addition to these error metrics, the multiple object
tracking accuracy (MOTA) and multiple object tracking precision (MOTP) are utilized
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to assess accuracy performance:

2 (m + fp, + mme,)

Ztgt

MOTA=1-—

2 d;
Zz Ct

where m,, fp,, and mme, represent misses, false positives, and mismatches for time
t, respectively. The sum of these values is divided by the total number of objects
g:. Additionally, d| denotes the distance between an object and its corresponding
hypothesis, while ¢, indicates the number of matches for time t. MOTP evaluates
the tracker’s ability to estimate precise object positions. However, these two met-
rics alone are insufficient for evaluating performance in preventing ID swapping.
Therefore, identification false negative (IDFN), identification false positive (IDFP),
and identification true positive (IDTP) are employed to compute identification pre-
cision (IDP), identification recall (IDR), and the corresponding F1 score IDF1. More
specifically:

4.2)

MOTP =

4.3)

IDTP
IDP = (4.4)
IDTP + IDFP
IDTP
IDR = (4.5)
IDTP + IDFN
2xIDTP
IDF1 = (4.6)

2xIDTP+IDFP+IDFN

For the real-time system introduced in Section 3.7, we utilize the OpenPose [Cao+19]
open-source toolbox to extract 2D skeleton information from a single frame. Multiple
objects tracking is achieved by employing YOLO [Red +16] for detecting the position
of object candidates. To establish correspondences for each detected object, a Kalman
filter is integrated with our CNN-based classifier. For the human-objects interaction
model, we leverage our uncertainty-quantified temporal fusion graph convolutional
network, capable of predicting action labels with novelty.

4.2 Multiple Objects Tracking

This section introduces the experimental results of multiple objects tracking ap-
proaches 3.6 in person re-identification sub-task. All models are trained on Market-
1501 [Zhe+15] and Mars [Zhe+17] datasets, and tested on the MOT17 [Mil+16]
benchmark.

4.2.1 Comparison of Detectors
The efficacy of detection results significantly influences the Multiple Object Track-

ing (MOT) metrics. MOT17 offers diverse detection results obtained through three
distinct detectors: DPM [Fel+09], Fast R-CNN [Ren+15], and SDP [YCL16]. This
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Table 4.2: Different detectors with CNN based feature extraction on the MOT17 benchmark [Mil+16]

Detector ¢ Size? Evaluation Metrics (%) ¢
D F S 32 64 128 256 IDF11 IDPT IDRT MOTAT MOTP| MTT ML]
X X 39.4% 67.9% 27.7% 30.5% 22.0% 82% 55.7%
X X 55.9% 77.9% 43.5% 49.3%  13.4% 19.8% 28.9%
X X 65.6% 79.8% 55.6% 64.6% 15.4%  34.2% 22.0%
X X 39.7% 69.3% 27.8% 30.4% 21.9% 7.7%  56.4%
X X 54.9% 76.9% 42.6% 49.3% 13.3% 19.4% 29.9%
X X 66.1% 80.8% 56.0% 64.4% 15.4%  33.3% 22.7%
X X 38.5% 67.9% 26.9% 30.2% 21.9% 6.6% 56.8%
X X 54.1% 76.1% 41.9% 49.2% 13.3% 18.7% 29.9%
X X 64.0% 78.6% 54.0% 64.1% 15.3% 32.8% 23.4%
X X 34.3% 57.5% 24.4% 30.1% 22.3% 8.2% 54.6%
X X 50.7% 70.0% 39.7% 49.1% 13.6% 21.8% 27.1%
X X 59.3% 71.2% 50.9% 64.8% 15.6% 37.4% 19.6%

¢ D represents the DPM [Fel+09], F is the Fast-RCNN [Ren+15] and S is the SDP [YCL16], the
CNN model are trained on the Market-1501 [Zhe+15] and Mars [Zhe+17] dataset.

b The size of output dimension.

¢ The best results comparing all modifications are in bold; The best results between detectors with
the same output dimension are underlined.

section aims to assess the impact of detector performance on MOT metrics. The out-
comes of the different detectors are summarized in Table 4.2. Notably, the SDP detec-
tor excels across all metrics, particularly demonstrating a 30% higher MOTA than the
DPM detector. Moreover, the Faster R-CNN detector achieves a MOTA performance
of 49.2%, nearly 19% higher than the DPM detector. Surprisingly, the dimension size
of the output layer has minimal impact on the results. Based on these experimental
findings, two promising detectors, namely Fast R-CNN [Ren+15] and SDP [YCL16],
are chosen for further analyses.

4.2.2 Comparison of Feature Extractors

To scrutinize the impact of the feature extraction phase, two methods: CNN-based
and the HOG algorithm, are compared, varying the feature dimensions. Table 4.3
presents the outcomes of different feature extraction approaches when coupled with
the Fast R-CNN and SDP detectors. The results underscore that the use of CNN
feature extraction yields superior identification performance compared to the HOG
method. For instance, the IDF1 of CNN with 128 dimensions is 38.5%, representing
an almost 5% increase over the IDF1 achieved by the HOG feature.

However, the traditional feature extractor demonstrates robustness in terms of
MT and ML. For example, the MT of HOG with 128 dimensions is 8.4%, nearly 2%
higher than the corresponding CNN feature. Notably, the disparity between CNN-
based features and HOG-based features with 256 dimensions is not as pronounced
as observed with 128 dimensions.

Under the assumption that human appearance features change gradually during
motion, an additional uniform filter is incorporated to extract stable features from
recent observations. This involves implementing a sliding window with a size of
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Table 4.3: Different feature extractors on the MOT17 benchmark [Mil+16]

Extractor Detector ¢ Size ? Evaluation Metrics (%) ©

CNN HOG F S 128 256 IDF17 IDPT IDRT MOTAT MOTP| MTT ML

X X X 54.1% 76.1% 41.9% 49.2% 13.3% 18.7% 29.9%
X X X 49.8% 68.7% 39.0% 49.1% 13.6% 21.8% 27.3%

X X 64.0% 78.6% 54.0% 64.1% 15.3% 32.8% 23.4%
X X X 58.5% 70.2% 50.2% 64.6% 15.7% 36.8% 18.7%

X x X 50.7% 70.0% 39.7% 49.1% 13.6% 21.8% 27.1%
X X X 50.7% 70.1% 39.7% 49.3% 13.6% 21.4% 27.3%

X X X 59.3% 71.2% 50.9% 64.8% 15.6% 37.4% 19.6%
X X X 589% 70.8% 50.4% 64.7% 15.6%  36.6% 19.4%

@ F is the Fast-RCNN [Ren+15] and S is the SDP [YCL16], the CNN model are trained on the
Market-1501 [Zhe+15] and Mars [Zhe+17] dataset.

b The size of output dimension.

¢ The best results comparing all modifications are in bold; The best results between feature ex-
tractors are underlined.

Table 4.4: Different feature extractors on the MOT17 benchmark [Mil+16]

Filter Detector ¢ Size ® Evaluation Metrics (%) °

w/o w F S 64 128 IDF17 IDP7 IDRT MOTAT MOTP| MT1T ML |

X X X 549% 76.9% 42.6% 49.3% 13.3% 19.4% 29.8%
X x x 55.00 77.2% 42.7% 49.3%  13.3%  19.6% 29.7%

X X X 541% 76.1% 41.9% 49.2% 13.3% 18.7% 29.8%
X X X 54.7% 76.8% 42.4% 49.2% 13.3% 18.7% 29.8%

x x x  66.1% 80.8% 56.0% 64.4% 15.4%  33.3% 22.7%
X X X 66.1% 80.7% 55.9% 64.4% 15.3% 32.6% 22.2%

X X X 64.0% 78.6% 54.0% 64.1% 15.3% 32.8% 23.4%
X x X 66.9% 81.9% 56.5% 64.3% 15.3% 32.6% 23.4%

@ F is the Fast-RCNN [Ren+15] and S is the SDP [YCL16], the CNN model are trained on the
Market-1501 [Zhe+15] and Mars [Zhe+17] dataset.

b The size of output dimension.

¢ The best results comparing all modifications are in bold; The best results between feature ex-
tractors are underlined.

t = 30 in each tracker to capture the last 30 frames’ features for the same target. The
results are detailed in Table 4.4. The application of the uniform filter demonstrates a
discernible improvement in terms of IDF1, IDP, and IDR scores. However, its impact
is negligible on MOTA, MOTP, MT, and ML, as the tracking algorithm heavily relies
on the Kalman filter.

The integration of the uniform filter contributes to a smoother feature representa-
tion, facilitating the preservation of continuous features for the same target. In other
words, it mitigates ID switching when the target is tracked by the Kalman filter.

4.3 Action Recognition

As introduced in Section 3.2, we propose several adaptively attention mechanisms to
update the dynamic relations and temporal convolutional layer to extract temporal
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Table 4.5: The performance in terms of accuracy of HA-GCN with RA attention and RD attention
layer![XB22a].

Methods ' Accuracy Influence ratio
Joint stream Bone stream rs/B
AGCN* 93.7% 93.2% —
AGCN 93.9% 93.5% 0.67
AGCN (plus) 95.0% 94.7% 0.86
RD-GCN 95.6% 95.2% 0.95
RA-GCN 95.1% 95.4% 0.64
HA-GCN (single T) 95.2% 94.9% 0.94
HA-GCN (full) 95.8% 95.5% 0.88
HA-GCN (w/o0 RA) 86.6% 93.6% 4.84
HA-GCN (w/o0 RD) 94.6% 85.2% 0.12

* means using the original graph, and the rest experiments are conducted with new designed
graph. AGCN is a single stream of 2s-AGCN. The AGCN “plus" implements an additional con-
volutional layer after generating the attention graph. The “single T” HA-GCN uses the temporal
convolutional layer from AGCN instead of 4 parallel dilated convolutional layers. The model
without RA (w/o RA) turns off the RA branch in the test phase, and its influence ratio (perfor-
mance drop) is calculated in the respect to the full model, as the same as the model without RD
branch(w/o RD).

features in the task of human action recognition. This section introduces the ex-
perimental results of human action recognition task on NTU-RGBD [Sha+16b] and
Kinetics [Kay+17] datasets.

4.3.1 Ablation Study

We examine the contribution of proposed components to the recognition perfor-
mance with the X-View benchmark on the NTU-RGB+D dataset.

Qualitative results: The baseline comprises a single stream of 2s-AGCN (AGCN),
boasting accuracies of 93.7% and 93.2% for the joint and bone input streams, respec-
tively. Through the incorporation of our newly designed graph, featuring connections
between the head, hands, and feet, slight enhancements are observed 0.2% for the
joint stream and 0.3% for the bone stream. Notably, the new graph exerts a more
pronounced impact on the bone stream, as the introduced edges effectively augment
the number of bones in the skeleton map.

Subsequent experiments build upon the new graph, revealing another noteworthy
discovery: introducing the final graph mask into an additional convolutional kernel
yields significant improvements in prediction results. The enhanced outcomes are
detailed in the third row of Table 4.5, showcasing an increase of 1.3% and 1.5%,
respectively, over the original AGCN.

As introduced in Section 3.2.1, our model incorporates two types of attention
mechanisms: RD and RA. These attention layers are individually added to the attention-
based graph convolution network. The performance of RD-GCN and RA-GCN on
different input streams is presented in the fourth and fifth rows of Table 4.5. The
results demonstrate that both RD and RA attention layers contribute positively to
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Figure 4.3: Qualitative results of hybrid attention mask and final identity output of 10-th spatial graph
attention layer for different actions. Both have size of 25 x 25, where 25 is number of skeleton
joints [XB22a].

skeletal action recognition performance. The combination of both attention layers
achieves the best overall performance, as indicated in the last row of Table 4.5. How-
ever, the distinct contributions of RA and RD attentions to different input streams
remain unclear. This can be observed in the close influence ratio r;, which is 0.95
for RD-GCN and 0.67 for RA-GCN.

To further investigate the individual impact of each attention branch, we conduct
tests by deactivating one attention branch at a time during the test phase. The re-
sulting top-1 accuracy on the X-View benchmark is presented in the last two rows of
Table 4.5. Turning off the RA attention branch (w/o RA) leads to a more significant
performance degradation in the joint stream compared to the bone stream (9.8% vs.
1.9%). Conversely, turning off the RD attention branch (w/o RD) results in a more
substantial performance drop in the bone stream compared to the joint stream (2.2%
vs. 10.3%). This outcome confirms that in the complete model, RD and RA attention
mechanisms are more favorable for the bone stream and joint stream, respectively.
Further evidence supporting this conclusion is available in the quantitative results.

In addition to comparing spatial convolutional layers, we extend our evaluation to
include two variants of the temporal convolutional layer: a single convolutional layer
and a multi-scale temporal layer. The single convolutional layer, as utilized in ST-GCN
[YXL18] and 2s-AGCN [Shi+19b], employs a convolution kernel with a size of 9 x 1
to extract features from adjacent frames in the temporal domain. On the other hand,
the multi-scale temporal layer employs four parallel dilated convolutional kernels,
each with different dilation sizes, providing a broader receptive field in the temporal
dimension.

The results of the single temporal convolutional layer are presented in the sixth
row of Table 4.5 after HA-GCN (single T). In comparison to HA-GCN (single T),
the full HA-GCN model utilizing the multi-scale temporal layer exhibits a substantial
performance improvement for both input streams.

Qualitative results: The attention mask and final output of the 10th spatial hy-
brid attention layer are illustrated in Fig 4.3 for three action examples. In the scenario
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Bone Stream

RD mask RA mask RD mask RA mask
Prediction: False Prediction: True Prediction): True Prediction: False

0 5 10 15 20 o 5 10 15 20

Hybrid mask Final mask Hybrid mask Final mask
Final Prediction: True Final Prediction: True

Figure 4.4: Qualitative outcomes of hybrid attention masks are illustrated in the context of the "putting on
a shoe" example, utilizing joint and bone input streams [XB22a]. The top row showcases video images
synchronized with the skeleton. In the middle row, both RD and RA attention masks for joint and bone
input streams are presented alongside their corresponding action predictions. The final row exhibits the
hybrid and ultimate attention mask, as well as the conclusive prediction.

of "watching time," where the subject raises their right forearm, the attention mask
effectively highlights the right hand joints (11,23,24). Conversely, during the "eat-
ing" action utilizing the left hand, the attention mask assigns greater importance to
the joints (7,21,22) corresponding to the left hand. In actions involving both hands,
such as the "drinking" example depicted at the bottom of Fig 4.3, the attention mask
appropriately emphasizes the positions of both arms.

The final identity output attention mask is presented on the right side of Fig 4.3,
representing the sum of the attention mask and the identity adjacent matrix. This
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Table 4.6: Comparisons of accuracy (%) with popular existing methods on the NTU-RGB+D [Sha+16b]
cross-view and cross-subject dataset (Top-1) [XB22a]

Methods X-View X-Sub 2
Lie Group [VAC14] 52.8 50.1
Deep-LSTM [Sha+16a] 67.3 60.7
VA-LSTM [Zha+17] 87.7 79.2
TCN [KR17] 83.1 74.3

Synthesized CNN [LLC17] 87.2 80.0
3scale ResNet 152 [Li+17] 90.9 84.6

ST-GCN [YXL18] 88.3 81.5
2s AS-GCN [Li+19] 94.2 86.8
2s AGCN [Shi+19b] 95.1 88.5
2s AGC-LSTM [Si+19] 95.0 89.2
4s Directed-GNN [Shi+19a]  96.1 89.9
4s Shift-GCN [Che+20] 96.5 90.7
4s CRT-GCN [Che+21] 96.8 92.4
PoseC3D! [Dua+21] 97.1 94.1
l, Pose based [Dua+21] 93.7 -

1s HA-GCN (ours) 95.8 89.4
2s HA-GCN (ours) 96.6 91.5
4s HA-GCN (ours) 97.0 92.1

! The model used additional texture information, the pose based result is presented in the next
line.
2 X-View and X-Sub are the cross-view and cross-subject benchmark respectively.

combined output provides a comprehensive view of the attention-weighted features
and their integration with the underlying structural information.

In Fig. 4.4, we present the hybrid attention masks and their predictions of the
“Putting on a shoe" example. It is obvious that RA and RD focus on different char-
acteristics. In the joint stream in the Fig.4.4, RD exhibits a pronounced correlation
among nodes 1 to 6 (spine mid, neck, head, shoulder left, elbow left, wrist left). This
correlation, resembling the action of "Taking off a shoe," results in a false prediction.
In contrast, RA is more attentive to the entire body nodes, successfully rectifying the
prediction by amalgamating the attention masks.

In the bone stream, RA concentrates solely on the influence of nodes 2 and 3,
while RD encompasses the entirety of bone nodes and places emphasis on nodes
2 and 3. This nuanced focus ultimately corrects the prediction of the action class.
These qualitative results further underscore the complementary nature of the two
attention mechanisms.

4.3.2 Comparison with State-of-the-Art

In order to verify the performance of the attention based model, we conducted a per-
formance comparison with established skeleton-based action recognition methods on
both the NTU-RGB+D dataset and Kinetics dataset. The outcomes of these compar-
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Table 4.7: Comparisons of accuracy (%) with popular existing methods on the Kinetics [Kay+17]
datasetl(Top-1 and Top-5) [XB22a]

Methods Top-1 (%) Top-5 (%)
Deep-LSTM [Sha+16a] 16.4 35.3
TCN [KR17] 20.3 40.0
ST-GCN [YXL18] 30.7 52.8
2s AGCN [Shi+19b] 36.1 58.7
PoseC3D [Dua+21] 38.0 59.3
1s HA-GCN (ours) 35.1 58.0
2s HA-GCN (ours) 37.4 60.5
4s HA-GCN (ours) 38.2 61.1

! The pose data of Kinetics dataset is generated by OpenPose [Cao+19].

isons are detailed in Table 4.6. The methodologies under consideration include Lie
Group [VAC14], Deep-LSTM [Sha+16a], VA-LSTM [Zha+17], TCN [KR17], Synthe-
sized CNN [LLC17], 3scale ResNet 152 [Li+17], ST-GCN [YXL18], 2s AS-GCN [Li+19],
2s AGCN [Shi+19b], 2s AGC-LSTM [Si+19], 4s Directed-GNN [Shi+19a], 4s Shift-
GCN [Che+20], CRT-GCN [Che+21] and PoseC3D [Dua+21]. 1s is only using joint
data as the input. 2s means two streams that include joint and bone data. 4s is using
four streams of input data, which are joint, bone, joint motion and bone motion,
respectively.

Our model consistently demonstrates robust performance on both datasets, with
the 4-stream model surpassing the previously leading pure skeleton-based approaches
on the NTU RGBD X-View benchmark and Kinetics skeleton dataset. It is essential to
note that PoseC3D incorporates not only skeletal information but also texture infor-
mation, making it unfair to compare directly with other pure skeleton-based meth-
ods. Consequently, we present its performance in pose-based recognition separately
in Table 4.6.

The main reason of worse performance of all models on Kinetics Skeleton dataset
is the limitation of the dataset itself, which exclusively provides 2D skeletal infor-
mation, in contrast to the 3D skeletal data available in the NTU-RGBD dataset, as
indicated in Table 4.7. This discrepancy underscores the critical importance of incor-
porating multi-dimensional information for effective action recognition. Notably, the
results, particularly in terms of the Top-5 metric, highlight the promising advance-
ments achieved by our method in enhancing human action recognition, even in the
face of the challenges posed by a dataset with limited skeletal dimensions.

4.4 Action Segmentation

As introduced in Section 3.3, we propose two novel action segmentation approaches.
This section evaluate two introduced models (PGCN and TFGCN) in human action
segmentation task on the Bimanual Actions [Kre+21] and IKEA Assembly datasets [Ben+20].
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Figure 4.5: Normalized confusion matrix of PGCN [XB22b] for the top prediction of accumulative frame-
wise classification correctness over all folds on Bimanual Actions dataset [DWA19].

4.4.1 Ablation Study

Pyramid Graph Convolutional Network

We investigate the impact of the proposed components on framewise Human-Object
Interaction (HOI) recognition and segmentation by conducting experiments with the
exclusion of subject 1 on the Bimanual Actions dataset [Kre+21]. The baseline for
comparison is the single joint stream of 2s-AGCN [Shi+19b].

To optimize the performance of the attention unit, we assess its effectiveness
across spatial, temporal, channel dimensions, as well as their various combinations.
Additionally, we compare the proposed Temporal Pyramid Pooling module with the
baseline FastFCN [Wu+19a].

The results of ablation studies are presented in Table 4.8, quantifying the per-
formance of each configuration through F1 and F1@k scores. Notably, the F1@k
scores in the right column of the table unmistakably demonstrate that the inclusion
of the temporal pyramid pooling block yields improvements in relation segmenta-
tion across all specific settings. Consequently, we incorporate the temporal pyramid
pooling block in the subsequent experiments involving combined attention layers.
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Table 4.8: The F1 score of framewise prediction and F1@k score of action segmentation using original
baseline model and models with different modifications in each unit [XB22b]

Encoder ® Decoder ? Evaluation Metrics (%) ¢

S T C TPP Fast-FCN F1macro F1micro F1@10 F1@25 F1@50
- - - - X 65.28 80.01 66.51 62.44 51.37
- - - X - 65.17 81.80 86.36 83.66 71.84
X - - - X 70.92 83.09 70.38 66.26 66.27
X - - X - 81.50 86.92 88.38 85.06 73.88
- X - - X 75.93 83.42 67.83 63.51 52.68
- X - X - 77.26 84.94 78.77 75.46  61.43
- - X - X 70.16 83.56 74.16 70.55 58.92
- - X X - 67.39 82.50 88.23 84.86 74.10
X X - X - 80.29 85.25 84.38 81.46 68.55
X - X X - 69.65 80.57 84.09 81.07 66.99
T X - 71.42 82.75 85.36 8145 69.21
X X X X - 72.39 83.63 85.68 81.94 70.86

@ We compare the performance of attention layer in the encoder setup on different dimensions, namely spatial (S), temporal
(T) and channel (C).

b The decoder is the common Fast-FCN [Wu+19a] when there is no temporal pyramid pooling block.

¢ The best results comparing all modifications are in bold; The best results between TPP and Fast-FCN in the decoder setup
are underlined

Analyzing the F1 scores in the middle column, it becomes evident that all pro-
posed components contribute to enhancing the baseline model AGCN [Shi+19b] in
framewise recognition. Furthermore, since the spatial attention unit extracts the ba-
sic features representing spatial distribution and relations of nodes per frame, model
with spatial attention unit demonstrates superior performance across all model con-
figurations.

The temporal attention unit focuses on extracting temporal relations between
consecutive frames, proving beneficial for action recognition involving known seg-
ments rather than action segmentation itself. Meanwhile, the channel attention layer
emphasizes the importance of distinguishing between channels, facilitating the clas-
sification of an entire clip of a single action rather than segmentation. Notably, the
performance of combined models is adversely affected by suboptimal attention lay-
ers, specifically the temporal and channel attention layers.

In addition to F1 scores, we evaluate the Top-1 accuracy of the proposed model
on Bimanual Actions dataset [Kre+21]. Fig. 4.5 depicts the normalized confusion
matrices for the top prediction. A significant source of confusion for the classifier
is predicting hold when the actual action is cut. This misprediction arises from us-
ing wrist joints to represent hands, which exhibit a limited range of motion and can
be mistakenly associated with holding a knife. Consequently, the action cut, charac-
terized by a larger range of motion, is seldom misidentified as hold. Additionally,
confusion occurs between actions such as approach, retreat, lift, and place, primarily
due to unstable object bounding boxes stemming from the object detection method.
Notably, approach and retreat actions, often executed rapidly (sometimes within 5
frames), contribute to confusion. An illustrative example is provided in the qualita-
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tive results. Addressing these challenges would require stable object detection and
pose estimation methods, although this aspect is not the primary focus of our work
and remains unexplored.

Table 4.9: Ablation study of duration of samples and the sampling gap on the TUM HOI dataset. Each
duration is combined with three different sampling gaps *.

Duration Gap Top-1acc (%) F1 macro (%) F1@10 (%) Fl@25 (%) F1@50 (%)

5 77.29 77.58 88.28 84.25 72.26
30 10 77.11 76.70 87.52 83.67 71.78
15 73.36 74.02 85.25 79.79 67.90
5 75.46 75.61 85.39 82.01 68.13
60 10 78.00 77.84 88.49 85.82 74.53
15 75.22 75.29 86.86 83.20 71.60
5 76.55 76.55 86.92 82.56 71.22
90 10 77.20 76.86 86.68 83.57 72.65
15 76.36 76.43 86.54 82.04 70.20
5 77.07 76.95 88.00 84.15 73.65
120 10 76.67 76.51 86.29 83.08 71.60
15 74.70 75.55 87.87 82.46 69.40
5 76.22 76.71 84.89 80.75 70.13
150 10 73.89 74.12 85.19 79.92 66.92
15 75.82 75.77 87.45 82.40 71.12
5 75.16 75.77 83.20 79.49 66.49
180 10 75.23 76.10 86.30 80.44 69.49
15 76.33 76.72 86.30 82.45 69.04

* The employed network architecture is AGCN+FastFCN with modified graph connection. The best performance of each
metric is in blod.

The choice of sample duration and sampling gap can significantly influence model
performance. A shorter sample duration and smaller sampling gap can provide more
training data for the model, which potentially benefit the model. However, a shorter
sample duration implies that each training sample contains less temporal informa-
tion, while a shorter sampling gap results in higher similarity between training sam-
ples, both of which could adversely affect the model’s performance. To determine the
optimal combination of sample duration and sampling gap, experiments with varying
setups are conducted on the TUM HOI dataset. The sample duration ranges from 30
frames to 180 frames, with the sampling gap varying between 5 and 15 frames. The
results of these experiments are presented in Table 4.9.

As indicated in Table 4.9, experimental results demonstrate that a sample du-
ration of 60 frames outperforms all other durations across all metrics on the TUM
HOI dataset. Specifically, with a sampling gap of 10 frames, it achieves the highest
performance in top-1 accuracy at 78.00% and F1 macro at 77.84%.

As observed, when the sampling gap is fixed, the F1@k performance for longer
sample durations (150 and 180 frames) is noticeably reduced compared to shorter
durations (30, 60, and 90 frames). This discrepancy may be attributed to the fact that
shorter sample durations typically involve fewer action switches, leading the model
to segment actions less frequently and thereby suppressing over-segmentation.

Interestingly, for sample durations less than 120 frames, the poorest results con-
sistently occur with a sampling gap of 15 frames. However, with increasing sample
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duration, the critical sampling gap diminishes (e.g., 10 frames for 150 frames and 5
frames for 180 frames). This suggests that the similarity between training samples
is not a dominant factor when the sample length is short. For instance, with a sam-
ple duration of 30 frames and a gap of 5 frames, the similarity between two adjacent
samples is 83.33%. Conversely, as the sample length increases, smaller sampling gaps
result in significantly higher similarity (e.g., 97.22% for a duration of 180 frames and
a gap of 5 frames), potentially increasing the risk of overfitting due to overly similar
samples.

This work also investigates the influence of different kinds of loss functions. A
cross-entropy loss L., for multi-class classification, a temporal smoothing loss £, for
reducing over-segmentation errors, and a boundary alignment loss £,, for addressing
the shift-segmentation errors serve as candidates. Different combinations of these
loss functions are compared, considering the multiple hyper-parameters associated
with temporal smoothing loss (Lts) (i.e., A and 1) and boundary alignment loss
(Lba) (i.e., A, k, and y). To streamline the experiment, an optimal combination of
hyper-parameters is selected, specifically (A = 0.15 and 7 = 4).

As shown in Table 5.5, hyper-parameters a, k and y have different impact on the
model performance. The best result is achieved by the combination y = 0.1, k = 13
and a = 1. Experimentally, the increase of a reduces the performance (both accuracy
and F1 scores) significantly, whereas the value of y has no significant impact on per-
formance (except the F1@10). Besides, the top-1 accuracy increases gradually as the
kernel size increases. Considering that adding the temporal smoothing loss £,, may
have a different impact on the results, removing the combinations with significantly
lower accuracy in Table 5.5, this thesis combines the remaining combinations with
L., and L., to find the optimal loss function. As observed in Table 5.6, the increase of
y can not produce favorable results, and although it slightly improves performance
on the F1@10 and F1@25 compared to £, alone, the results on top-1 accuracy and
on F1 macro are notably lower. Also, without £,,, the combination of classification
loss and temporal smoothing loss is not sufficient, only a marginal improvement on
F1@10, but leads to performance decreases across all the other metrics compared to
the classification loss alone. When the kernel size is between 9 and 11, compared to
the original loss, all can obtain a noticeable boost on F1@k but accompanied by a
tiny drop on top-1 accuracy and on F1 macro. Here, this thesis chooses kernel size
9 for the boundary alignment loss since it has almost no reduction in top-1 accuracy
(merely 0.06%). The final loss function is £, + 0.15£,, + 0.1L,,.

Temporal Fusion Graph Convolutional Network

To assess the contribution of each module within the proposed decoder, we conducted
an ablation study on the Bimanual Actions dataset [DWA19]. Various configurations
were individually integrated into the decoder, encompassing variations with or with-
out global feature extraction, temporal feature fusion, and the classifier modules. The
results of the ablation study are presented in Table 4.10.

All three proposed modules significantly contribute to the performance of action
recognition and segmentation. Notably, the classifier exerts the most substantial in-
fluence on performance, acting as the final layer crucial for mapping feature maps
to predictions. Additionally, global feature extraction, with its wide field of view,
leads to notable improvements in both action recognition and segmentation. How-
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Table 4.10: Ablation study of introduced modules in the decoder on the Bimanual Actions
dataset [DWA19].

GFE* TFF Cl Evaluation Metrics - Bimanual Actions dataset? (%)
w/ow w/ow w/ow ToplT Flmacrol F1@107 Fl@257 F1@507

X X X 78.69 79.23 - - -
x X x 79.85 80.28 89.73 88.11 79.36
X X X 80.15 80.08 88.66 86.23 77.29
X X X 81.80 82.56 90.49 87.99 78.92
X X X 82.97 83.73 88.52 86.63 77.23
X X X 86.11 86.61 90.48 89.09 80.43
x X X 84.21 85.04 87.83 85.48 76.66
X X x  89.06 89.24 93.82 92.27 85.34

@ The configurations are denoted as: “GFE" = global feature extraction; “TFF" = temporal feature fusion; “CL" = classifier;
“w" = with; “w/0" = without. In setups without the temporal feature fusion module, the interpolate function is employed
for upsampling. In configurations lacking a classifier, the spatial dimension is eliminated through averaging.

b The experiments are conducted on the subject 1 testset of the Bimanual Actions dataset [DWA19]. The best results across
all configurations are in bold; The best results for each setup with or without the Classifier are underlined.

ever, relying solely on temporal feature fusion does not contribute significantly to en-
hancement; in the absence of global features, it primarily upsamples the condensed
features of the encoder to the original time scale. The synergy of these two modules
achieves optimal performance across configurations, with or without the classifier.

To determine the optimal encoder-decoder combination, we explore various pop-
ular existing Graph Convolutional Networks (GCNs), including ST-GCN [YXL18],
AGCN [Shi+19b], CTR-GCN [Che+21], HA-GCN [XB22a], and PGCN [XB22b] as
encoders. These encoders are combined with Fast-FCN [Wu+19a], TPP [XB22b],
and the proposed Temporal Fusion (TF) decoders. Table 4.11 illustrates that our TF
decoder outperforms the other two decoders across various configurations based on
all evaluation metrics. Notably, the configuration of CTR-GCN [Che+21] combined
with TF achieves the highest performance in terms of accuracy, F1 macro, and F1@k.

However, it is clear that the novel decoder significantly increases the number of
parameters, resulting in heightened computational demands and increased hardware
costs during application. From this perspective, the CTR-GCN [Che+21] encoder ex-
hibits promising performance, having the fewest parameters among all encoders.
Consequently, the setup combining CTR-GCN [Che+21] as the encoder and TF as
the decoder forms the backbone of our Temporal Fusion Graph Convolutional Net-
work (TFGCN).

To analyze the influence of the residual connections on the feature space distance
preserving and to evaluate the performance of the proposed Spectral Normalized
Residual (SN-res) connection, we execute the experiments concerning three setups,
namely without residual connections, with normal residual connections and with
Spectral Normalized Residual connections. Table 4.12 summarizes the ablation stud-
ies, including Gaussian process (GP) configurations. By comparing the metrics pro-
duced by the Gaussian process and the softmax, it is clear that Gaussian process facil-
itates significantly less multi-class calibration errors, namely TACE, ACE and SCE. In
contrast, the configurations of softmax have less Expected Calibration Error (ECE),
because the ECE heavily relies on the overconfident probability of the predicted class
from softmax.

The results in Table 4.12 confirm that the residual connection is of high signifi-
cance for accurate predictions and accuracy-related performance, such as F1 macro
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Table 4.11: Comparison of encoder-decoder setups on the Bimanual Actions dataset [Kre+21]%.

Encoder? Decoder Top 1 F1 micro Fl@10 Fl@25 F1@50 #
Fast-FCN 78.97 82.05 71.58 68.34 58.13 4.5M
ST-GCN TPP 78.88 82.18 83.42 80.01 69.40 5.1 M
TF 81.67 84.20 85.53 82.61 71.57 21.8M
Fast-FCN 79.03 81.98 73.70 69.99 59.89 4.9M
AGCN TPP 84.13 85.48 85.93 83.61 74.56 5.4M
TF 84.66 87.10 88.51 85.79 75.92 22.2M
Fast-FCN 79.52 81.94 64.97 61.83 52.35 2.8M
CTR-GCN  TPP 84.70 87.33 86.03 84.02 75.36 3.4M
TF 89.06 89.24 93.82 92.27 85.34 20.1M
Fast-FCN 85.43 87.30 80.91 78.61 70.59 2.8M
HA-GCN TPP 84.81 87.08 81.47 78.83 71.08 3.4M
TF 85.46 87.64 91.08 88.75 77.59 20.1M
Fast-FCN 80.13 82.65 70.06 66.37 56.37 4.9M
PGCN TPP 84.86 86.75 88.58 85.82 76.40 5.4M
TF 86.44 88.55 89.58 86.94 76.96 20.1M

@ The experiments are conducted on the subject 1 testset of the Bimanual Actions dataset [Kre+21]. The best results cross
all setups are in bold. The best results of decoder setup are underlined. # is number of parameters.

b The compared encoders: STGCN [YXL18], AGCN [Shi+19b], CTR-GCN [Che+21], HA-GCN [XB22a], PGCN [XB22b].
The decoders include: Fast-FCN [Wu+19a], TPP [XB22b], and the proposed TF.

Table 4.12: Ablation study of the Spectral Normalized Residual connection and the Gaussian process
in terms of action segmentation on the Bimanual Actions dataset [Kre+21].

Res? GP Evaluation Metrics - Bimanual Actions dataset (%)
w/o0 w SN w/o w Top117 F1 macro 7 Fl@10 7 Fl@25 17 F1@50 7
X X 73.69+1.81 74.24+£1.79 86.02+1.01 8251+1.20 71.26%+1.58
X x 7546%+1.82 76.78+1.79 86.17£1.01 82.61+1.19 69.67+1.57
X X 89.34+0.57 89.52+0.59 93.29+0.67 92.17£0.75 85.08+1.17
X x 89.34+0.57 89.54+0.59 93.30+£0.64 92.17+0.71 85.10+1.14
X X 88.14+£0.30 88.66+0.29 92.73+0.29 91.72+0.36 84.51+£0.53
X x 88.44+0.29 88.89+£0.29 93.31+0.29 92.18+0.33 84.76+0.53
¢ The configurations are denoted as: “Res" = Residual connections; “SN" = spectral normalized; “w" = with; “w/0" =

without; “GP" = Gaussian process kernel. The configuration without Gaussian process kernel is using softmax to output
prediction.

and F1@k. Moreover, the results of standard deviation demonstrate that the residual
connections increase the model stability.

The normalized confusion matrices of for the top prediction from the proposed
TFGCN is presented in Fig 4.6. The primary challenge lies in accurately predicting
actions such as approach, lift, retreat, and place, particularly in scenarios involving
interactions with diverse objects. This challenge is further compounded by the use of
unstable object detection methods. Additionally, the actions of approach and retreat
often occur instantaneously, sometimes within a span of just 5 frames. Another note-
worthy observation is the misclassification of "hold" when the actual action is "cut".
This misclassification arises from using "wrist" joints to represent "hands," resulting
in a limited resolution of motion detection and a potential misunderstanding of the
action as "hold." These challenges could be alleviated through the implementation of
stable object detection and pose estimation methods.

However, our primary focus is not on developing a flawless algorithm for object
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Figure 4.6: Normalized confusion matrix of TFGCN for framewise prediction of accumulative classifica-
tion correctness over the subject 1 testset on the Bimanual Actions dataset [Kre+21]

detection and pose estimation. Instead, our emphasis is on the feature map’s ability
to effectively represent input noise (input distance) and how to quantify prediction
uncertainty.

4.4.2 Comparison with the State-of-the-Art

Pyramid Graph Convolutional Network

The proposed PGCN model is compared with the state-of-the-art action recogni-
tion and segmentation methods on Bimanual Actions [Kre+21] and IKEA Assembly
datasets [Ben+20]. The methods used for comparison include the model proposed
by Dreher et al. [DWA19], Independent BiRNN, Relational BIRNN, ASSIGN [Mor+21]
and several popular graph convolutional networks: ST-GCN [YXL18], AGCN [Shi+19b]
and CTR-GCN [Che+21] combining with two decoders, namely FastFCN [Wu+19a]
and the proposed temporal pyramid pooling (TPP) module.

The performance metrics, specifically the F1 score and F1@k, on the Bimanual
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Table 4.13: Comparison of framewise action recognition of PGCN [XB22b] with state-of-the-art methods
on Bimanual Actions dataset [Kre+21]

Model F1 macro (%) F1 micro (%)
Dreher et al. [DWA19] 63.0 64.0
AGCN+FastFCN 65.3 80.0
AGCN+TPP 65.2 81.8
ST-GCN +FastFCN 68.7 82.5
ST-GCN+TPP 69.3 82.7
CTR-GCN+FastFCN 71.1 82.3
CTR-GCN+TPP 72.0 82.9
Independent BiRNN [Mor+21] 74.8 76.7
Relational BiRNN [Mor+21] 77.5 80.3
ASSIGN [Mor+21] 79.8 82.6
PGCN (Ours) 81.5 86.9

Table 4.14: Cross validation results of action segmentation in comparison with state-of-the-art methods
of PGCN [XB22b] on Bimanual Actions dataset [Kre+21]

Model F1@10 (%) Fl1@25 (%) F1@50 (%)
Dreher et al. [DWA19] 40.6+7.2 34.8+7.1 22.2+5.7
Independent BiRNN [Mor+21] 74.8+7.0 72.0+£7.0 61.8+7.3
CTR-GCN+FastFCN 74.9 £ 8.1 72.2+8.7 66.6+11.4
Relational BiRNN [Mor+21] 77.7+£3.9 75.0+ 4.2 64.8+£5.3
ASSIGN [Mor+21] 84.0+2.0 81.2+2.0 68.5+3.3
CTR-GCN+TPP 84.8+3.2 82.1£4.0 73.5+5.6
PGCN (Ours) 885+1.1 85.5+2.0 77.0+£3.4

Actions dataset [Kre+21] are detailed in Table 4.13 and Table 4.14, respectively.
The Progressive Graph Convolutional Network (PGCN) surpasses both the state-of-
the-art models and baseline approaches across all configurations of the F1 and F1@k
measures. For instance, the F1 macro and micro scores exhibit improvements of 1.7%
and 4.3%, respectively.

Additionally, it is noteworthy that the proposed Temporal Pyramid Pooling Block
significantly enhances F1@k scores, showcasing improvements of 4.5%, 4.3%, and
8.5% when compared to the ASSIGN method. This underscores the efficiency of
the temporal pyramid pooling block in action segmentation. The ASSIGN method
employs a Bi-directional Gated Recurrent Unit to amalgamate information from con-
secutive frames, but this approach has limitations in extracting temporal informa-
tion, resulting in shift-segmentation. On the other hand, alternative methods using
separate segmentation labels lack temporal information, leading to instances of over-
segmentation. Further supporting evidence for these observations is evident in the
qualitative results.

Table 4.15 presents the top-1 accuracy, micro-recall and F1@k score on IKEA
Assembly dataset [Ben+20]. In terms of top-1, and all three F1@k scores, PGCN



88 4 Experiments

Table 4.15: Framewise recognition and segmentation results in terms of top-1 accuracy, macro-recall,
and F1@k of PGCN [XB22b] on IKEA Assembly dataset [Ben+20]

Model top1 macro Fl@ (%)

10 25 50
HCN [Li+18] 39.15 28.18 - - -
ST-GCN [YXL18] 43.40 26.54 - - -
multiview+HCN [Ben+20] 64.25 46.33 - - -
ST-GCN+TPP 68.92 25.63 6692 59.66 41.33
AGCN+TPP 70.53 27.79 76.32 69.85 52.14
CTR-GCN+TPP 78.70 37.98 78.84 72.68 54.40
PGCN (Ours) 79.35 38.29 81.53 76.28 58.07

outperforms all other popular methods. This reinforces the notion that our approach,
incorporating spatial attention and temporal pyramid pooling modules, provides a
more competitive framework for recognizing and segmenting actions on a per-frame
basis. It’s important to note that the macro-recall for all methods is compromised
due to the uneven distribution of the dataset [Ben+20].

Temporal Fusion Graph Convolutional Network

To demonstrate the efficiency and robustness, we compare the performance of the
proposed TFGCN with other popular existing methods on two challenging dataset
in the field of Human-Object-Interaction recognition and segmentation, i.e., BimActs
[Kre+21] and IKEA Assembly [Ben+20] datasets.

First, the quantitative experiment of action recognition and segmentation are con-
ducted on both the BimActs [Kre+21] and IKEA Assembly [Ben+20] datasets, and
the corresponding results are meticulously listed in Table 4.16 and Table 4.17, re-
spectively.

From Table 4.16, it is easy to see that our model achieves the best performance
cross all of the metrics on the Bimanual Actions dataset [Kre+21]. Especially, the
proposed Temporal Fused Graph Convolutional Network (TFGCN) improves signifi-
cantly the performance in terms of average F1@k score (by 6.2%, 6.4% and 8.4%)
compared to the PGCN, which confirms its efficiency for action recognition and seg-
mentation. In addition, the F1@k standard deviation of our results is also the small-
est, which indicates that the model is also robust.

The experimental results on Table 4.17 demonstrates that the proposed TFGCN
outperforms the-state-of-art methods in terms of Top1 recognition accuracy and f1@k
segmentation score. While the PIFL [Yan+23] demonstrates superior performance
on the IKEA Assembly dataset, it is important to note that direct comparisons with
other methods may be unfair. This disparity stems from the fact that PIFL extracts
appearance features through an I3D model, rather than leveraging the provided ob-
ject detection results from the dataset. Nevertheless, this underscores the importance
of comprehensive instance information in the context of action determination. Note
that the multiview HCN [Ben+20] achieves the best performance in terms of macro-
recall, since it utilizes several images from different view in the same time.
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Table 4.16: Comparison of cross-validation results of TFGCN with state-of-the-art methods on the Bi-
manual Actions dataset [Kre+21]“

Model Accuracy® F1 macro Fl@ (%)

(%) (%) 10 25 50
Dreher et al. [Kre+21] 63.0 64.0 40.6£7.2 34.8+7.1 222+5.7
H20+RGCN [Lag+23] 68.0 66.0 - - -
Independent BiRNN [Mor+21] 74.8 76.7 74.8+70 72070 61.8+7.3
Relational BiRNN [Mor+21] 77.5 80.3 77.7£3.9 75.0£4.2 64.8+5.3
ASSIGN [Mor+21] 82.3 78.8 84.0+2.0 81.2+2.0 68.5+3.3
2G-GCN [Qia+22] — — 85.0+2.2 82.0+£2.6 69.2+3.1
PGCN[XB22b] 86.8 83.9 88.5+1.1 855+2.0 77.0+34
TFGCN (Ours) 89.4 89.6 94.3+1.2 92.2+1.6 86.1+29

@ The models are cross validated on the leave-one-subject-out benchmark, the best results of each class are in bold. The F1
micro and macro results are averaged, F1@k are listed with mean and standard deviation.

4.4.3 AQualitative Results
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Figure 4.7: Comparison of the qualitative results of PGCN [XB22b] on Bimanual Actions dataset
[Kre+21] for a sawing example
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Figure 4.8: Comparison of the qualitative results of PGCN [XB22b] on IKEA Assembly dataset [Ben+20]
for an assembly side table example

We present the detail outputs of PGCN model and related methods using exam-
ples from Bimanual Actions [DWA19] and IKEA Assembly dataset [Ben+20]. Fig. 4.7
shows a straightforward example of sawing in Bimanual Actions [DWA19], where
both PGCN and ASSIGN have a stronger ability to prevent over-segmentation com-
pared to Relational BiRNN. Our PGCN achieves more precise segmentation than AS-
SIGN, which even recognizes correctly the frame index between Approach and Hold
(0 frame error) in the given example. As aforementioned, the potential for false
predictions is evident, especially towards the end of both the ground-truth and pre-
dictions, where even slight movements can lead to inaccuracies.
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Table 4.17: Action recognition and segmentation results of TFGCN in terms of top-1 accuracy, macro-
recall, and F1@k on the IKEA Assembly dataset [Ben+20]

Model Accuracy Macro-recall Fl@ (%)

(%) (%) 10 25 50
HCN [Li+18] 39.15 28.18 - - -
ST-GCN [YXL18] 43.40 26.54 - - -
multiview+HCN [Ben+20] 64.25 46.33 - - -
ST-GCN+TPP [XB22b] 68.92 25.63 66.92 59.66 41.33
AGCN+TPP [XB22b] 70.53 27.79 76.32 69.85 52.14
MGAF [KJH21] 72.40 49.10 — — —
CTR-GCN+TPP [XB22b] 78.70 37.98 78.84 72.68 54.40
PIFL* [Yan+23] 84.60 62.00 — — -
PGCN [XB22b] 79.35 38.29 81.53 76.28 58.07
TFGCN (Ours) 80.39 39.77 83.99 80.04 68.00

* The model extracts appearance features by an I3D [CZ17] model instead of using the provided object detection results
from the dataset.

Besides the simple example, Fig. 4.8 presents a segmentation example of the in-
tricate assembly side table task within the IKEA Assembly dataset [Ben+20]. Here, we
compare the qualitative performance of methods employing the same decoder and
different encoders. It can be seen that our PGCN model prevents under-segmentation
better than other models with the same decoder, which further demonstrates the ef-
fectiveness of our spatial attention unit. Across tasks ranging from simple to complex,
our model consistently demonstrates robust and high-performance results.

4.5 Event Detection

In this section, I present the experimental results of the proposed event detection
algorithm (Section 3.4) on the NTU RGB+D dataset [Sha+16b]. First, it introduces
the dataset for training and evaluation. Second, it displays the tendency of weight
parameter with an increasing number of iteration in the training phase and demon-
strates how the dimension of action units influences the prediction performance.
In the end, we compare our method with other existing well-performed dictionary
learning methods on the NTU RGB+D dataset [Sha+16b].

4.5.1 Validating the Effectiveness of GODL

To substantiate the resilience of GODL to outliers, we monitored the changes in the
weights of six skeletons (w) throughout the training of the first action unit, as illus-
trated in Fig 4.9 (a). The plot reveals the weight dynamics of these skeletons during
the initial sub-sequence "standing" across iterations in the GODL program.

Notably, the weights of outliers (skeletons 5 and 6) exhibit a more pronounced
decreasing trend, while those of inliers (skeletons 1 to 4) change at a slower pace.
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Figure 4.9: Examples from the work [Xin+21]. (a) Example of six skeletons, two of which are deformed
(two on the right). (b) The weight tendency of six skeletons in the first action unit "standing” over iteration
(c) the histogram of weight value and its cumulative distribution at the last iteration. (d) The recall with
different action unit dimension.

By the conclusion of the iteration, outliers are assigned values of 0.547 and 0.717
respectively, whereas the inliers maintain higher values, specifically 0.9847, 0.8564,
0.9604, and 0.9142 for skeletons 1 to 4.

Fig 4.9 (b) presents the histogram of weights and their cumulative distribution at
the final iteration. Notably, a swift 90% of skeletons possess weights exceeding 0.6,
signifying a substantial influence on the cost function. Consequently, these skeletons
are categorized as inliers, while the remaining 10% with lower values are identified
as outliers.

Given that the dimension of each action unit significantly impacts prediction per-
formance, we evaluate recall performance across 6 different settings to identify the
optimal dimension for each action unit. The dimensionality of the dictionary is
closely tied to the complexity of the action unit. For instance, the first three dic-
tionaries (D,, D,, and D;) have fewer dimensions than the last two dictionaries (D,
and Dg), reflecting the simplicity of action units such as "standing", "bending knee",
and "opening arm" compared to "knee landing" and "arm supporting".
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Figure 4.10: The comparison of robustness under different noise level [Xin+21].

The recall initially increases with dimensionality before reaching the optimal
point, as the initial dimensions may not be sufficient to adequately represent the
action space. Beyond the optimal point, the recall diminishes with increasing di-
mensionality due to overfitting. Fig 4.9 (c) visually depicts the dimension selection
process for each action unit. The optimal combination of dimensions identified is
4,5,6,10,13.

4.5.2 Evaluation of Fall-Down using Action Unit and Temporal Structure

The evaluation system comprises two distinct components: the action unit model and
the temporal model. In the action unit model, the error (e) between the 3D skeleton
frames y and the action unit model is considered within a confidence interval. If the
error falls within this range, the corresponding action unit is deemed successful, and
the evaluation proceeds to the next action unit. This process repeats until all action
units have been evaluated.

In the temporal model, the height change of the incoming skeleton must satisfy
two conditions. Only when both the action unit and temporal conditions are met, is
the action classified as a true fall.

The evaluation results are available in Table 4.18. In comparison to the other four
state-of-the-art Dictionary Learning methods, our GODL model attains the highest ac-
curacy and precision. While both FDDL [Yan+11] and LRSDL [VM16] demonstrate
commendable recall performance, their precision lags behind by 8% ~ 10% com-
pared to our method. Furthermore, in contrast to the baseline ODL [Mai+ 10], our
approach exhibits superior performance across all evaluated aspects.

To underscore the robustness of our method, we intentionally introduce noise into
the training data and subsequently compare the performance with other methods. As
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Table 4.18: Performance Comparison with existing Dictionary Learning methods [Xin+21]

Method Accuracy (%) Recall (%) Precision (%)
ODL [Mai+10] 98.86+0.29 02.40+1.63 95.36+2.37
DLSI [RSS10] 08.71+0.28 92.21+2.79 94.01+2.77
FDDL [Yan+11] 98.25+1.34 95.77+3.65 87.23+5.75
LRSDL [VM16] 08.11 +£0.75 96.79+2.10 85.29+4.15
GODL (our) 99.00+0.36 94.23+2.6 95.62+1.53

The best results of each class are in bold.

Table 4.19: Performance Comparison with existing Deep Learning methods (CV + CS) [Xin+21]

Method Accuracy (% CS) Accuracy (% CV)
ST-GCN [YXL.18] 97.03 £0.83 97.45+1.11
Biomechanic, RNN [XZ18] 97.40+1.25 97.20+1.79
Thining, DNN [TH19] 99.20+1.10 99.20 +1.56
GODL (our) 98.41 £ 0.04 99.03 £ 0.15

The best results of each class are in bold.

depicted in Fig 4.10(a), the accuracy, precision, and recall of the methods are show-
cased across varying noise ratios (2% ~ 10%). While some methods may outperform
ours in terms of recall and precision, our method consistently maintains a high level
of accuracy even as the noise increases. This substantiates that our method exhibits
greater robustness compared to the other four methods.

By adjusting the drop rate of the training set based on the weight distribution
depicted in Fig 4.9 (b) and maintaining a fixed acceptance parameter a, we system-
atically varied the drop rate from 0% to 20% in increments of 5%. Each experiment
was repeated 24 times, and the comparative results are illustrated in Fig 4.10 (left:
accuracy error, middle: precision error, right: recall error).

As the drop rate increases, progressively more skeletons with low weights are
excluded. The accuracy error of the ODL algorithm initially decreases until the drop
rate reaches 10% but rises thereafter. In contrast, our method, GODL, maintains
an accuracy error around 2% throughout the varying drop rates. From Fig 4.10,
it is evident that the ODL method is more sensitive to changes in the training set.
With the full dataset, ODL exhibits 0% average precision error and a recall error of
47.47%. However, as the drop rate reaches 20%, the precision error exceeds 11%,
and the recall error falls below 4%.

Conversely, GODL demonstrates greater robustness, with an average precision
error fluctuating within the range of [1.72%, 3.30%] and an average recall error re-
maining in the range of [2.59%, 5.07%].

In addition to its robustness, GODL exhibits superior average performance com-
pared to ODL. The results presented in Table 4.18 illustrate that the average accuracy
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Figure 4.11: Visualization of prediction process [Xin+21].

of GODL is 98.45%, surpassing the baseline ODL by 3.88% over 24 experiments. Par-
ticularly noteworthy is the average precision of GODL, reaching 96.6%, showcasing
a remarkable improvement of over 13% compared to ODL.

In addition to comparing with dictionary learning methods, we also evaluate our
results against state-of-the-art deep learning-based fall-down detection methods, as
summarized in Table 4.19. While deep learning-based methods exhibit slightly higher
precision, our approach demonstrates more stable prediction results. Moreover, our
method encodes spatial-temporal information, making it more interpretable than
end-to-end deep learning methods. This interpretability is not achievable in end-
to-end deep learning approaches, as they can only detect the fall-down action after
it occurs.

In contrast to other spatial-temporal methods, our approach can discern which
step of the fall-down action is in progress, as illustrated in Fig 4.11.
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4.6 Uncertainty Quantification

As introduced in Section 3.5, we propose a novel uncertainty quantification method
to preserve distance into the feature representation space. This section introduces the
experimental result of uncertainty quantification of the introduced temporal fusion
graph convolutional network (Section 3.3).

4.6.1 Ablation Study

Table 4.20: Ablation study of the Spectral Normalized Residual connection and the Gaussian process
in terms of uncertainty quantification on the Bimanual Actions dataset [Kre+21].

Res* GP Evaluation Metrics - Bimanual Actions dataset? (%)
w/o w SN w/o w ECE] TACE] ACE| SCE]
X X 13.98+1.33 11.59+£0.42 90.56+0.09 91.42+0.08
X x 2098+1.74 249+0.14 81.61+£0.93 82.43+0.94
X X 8.21+0.21 2.15+0.12 91.75+0.02 92.62+0.02
X x 10.47+£0.34 0.70+£0.03 30.98+0.36 31.69+0.36
X X 8.49+0.21 2.59+0.08 91.66+0.02 92.57+0.01
X x 11.24+£0.19 0.76£0.02 34.57+0.32 35.28=+0.33
w/o w SN w/o w AUROC!1 AUPRC! 1 AUROC 21 AUPRC? 1
X X — — — —
X x 93.04+7.75 90.76+9.05 41.11+7.89 44.61+5.31
X X — — - —
X x 72.82+£3.41 68.08+3.75 83.74+1.11 84.37+1.26
X X — — — —
X X 99.39+£0.97 99.13+1.00 90.19+0.92 92.07 £0.93

@ The configurations are denoted as: “Res" = Residual connections; “SN" = spectral normalized; “w" = with; “w/0" =
without; “GP" = Gaussian process kernel. The configuration without Gaussian process kernel is using softmax to output
prediction.

b The evaluation results are averaged over 10 seeds. The best results cross all configurations are in bold; The best results for
each setup with or without Gauss Process kernel are underlined. The evaluation metrics {AUROC!, AUPRC!} and {AUROC?,
AUPRGC?} are using the IKEA Assembly dataset and Noisy BimActs as OOD respectively.

n insightful observation from Table 4.20 is that the introduction of residual con-
nections results in a smaller feature space distance (AUROC'! and AUPRC') between
the Bimanual Actions test set (in-distribution) and the IKEA test set (out-of-distribution).
Simultaneously, it leads to a larger feature space distance between the noisy Biman-
ual Actions (Noisy BimActs) test set and the original test set. These observations
validate that the inclusion of residual connections shifts the bi-Lipschitz bounds to
a higher range, thereby increasing the distance to meaningful changes in the input
manifold while reducing sensitivity to out-of-distribution samples. It’s essential to
note that we consider the noisy BimActs dataset to encompass meaningful changes in
the input manifold, given that it retains 50% of the original data.

The imposition of Spectral Normalized Residual connections establishes an upper
constraint on the Lipschitz bound, thereby improving Out-of-Distribution (OOD) de-
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(a) Left: Original Bimanual Actions dataset (BimActs) [Kre+21].
Middle: Noisy Bimanual Actions dataset. Right: IKEA Assembly dataset [Ben+20]
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(b) Gaussian log probability distribution. Left: Without residual connections.
Middle: With normal residual connections. Right: With Spectral Normalized Residual connections

Figure 4.12: The log-probability distribution of feature space on the Bimanual Actions dataset [Kre+21],
noisy Bimanual Actions dataset and the IKEA ASM [Ben+20] datasets.

tection while preserving sensitivity to manifold changes. The outcomes are visually
evident in Fig 4.12, where the representation of feature space density is presented
in Gaussian log-probability space. Nevertheless, it is evident that spectral normaliza-
tion involves a trade-off between maintaining feature space distance and achieving
high accuracy. As depicted in Table 4.12, the accuracy performance of the model
with spectral normalization is 1% lower compared to the model with normal residual
connections, even though its AUROC and AUPRC achieve the best results.

These observations prompt us to delve deeper into the analysis of the spectral
normalization function’s coefficient value in a quantitative way. A comparison of
the results in Table 4.21 reveals that a higher coefficient value contributes to im-
proved recognition and segmentation accuracy but results in a reduced feature space
distance when detecting out-of-distribution instances. Conversely, lower coefficients
exhibit the opposite trend. Notably, when the coefficient is too small, such as 1, the
model converges to a local minimum, significantly diminishing both accuracy and the
preservation of distance in the feature space. This trade-off is consistent with our hy-
pothesis that spectral normalization maintains isometric properties within the model,
albeit at the expense of the nonlinear mapping capabilities inherent in the learning
method. We assert that this compromise is warranted in order to attain a more
thorough comprehension of motion dynamics. The adjustment of the coefficient is
contingent on the specific task at hand. For instance, in tasks such as image classifi-
cation and segmentation, similar values can be applied since both involve mapping
the pixel range [0,255] to the respective number of classes. Conversely, the range
of human motion is inherently uncertain prior to its occurrence and differs across
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Table 4.21: Comparison of coefficient values in spectral normalization function of TFGCN on the Biman-
ual Actions dataset [Kre+21].

¢ ToplT Flmicro? F1@107 TACE| ACE| SCE] AUROC!'T AUPRC!?
1 87.06 87.75 91.32 0.86 37.11 37,83 97.12 96.58
2 8824 88.77 92.63 0.78 34.86 35.29 99.94 99.88
3 88.44 88.89 93.31 0.76  34.57 35.28 99.39 99.13
4 88.68 89.02 93.59 0.75 3237 33.17 89.81 87.21
5 89.27 89.60 94.37 0.71 32.20 32.91 85.26 76.39

c is the coefficient parameter. The experiments are conducted on the leave-subject-one-out testset of the Bimanual Actions
dataset [Kre+21]. The evaluation experiments are performed with Gaussian Process and the results are averaged over 10
seeds. The best results cross all setups are in bold.

Table 4.22: Uncertainty quantification performance on the Bimanual Actions dataset® [Kre+21].

Method Accuracy T F1 macro T Fl1@10 17 F1@25 7 F1@50 7 #Parameters
MC-Dropout 88.32+0.21 88.81+0.20 93.87+0.20 92.45+0.23 84.45+0.38 —
Ensemble 88.09+0.69 88.56+0.67 92.96+0.68 91.65+0.80 83.65+1.20 —

DUQ? [Van+20b] 83.55+1.06 83.91+1.06 91.22+0.66 89.04+£0.86 81.12+1.3 20,264,026
SNGP¢ [Liu+20a] 87.63+0.21 88.27+0.16 91.64%+0.35 90.17+0.43 83.03+0.44 21,207,998

UQ-TFGCN 88.44+0.29 88.89+0.29 93.31+0.29 92.18+0.33 84.76+0.53 20,261,282

Method TACE] ACE] SCE| AUROC ' 1 AUPRC! 1 AUROC % 1 AUPRC? 1
MC-Dropout 0.77+£0.01 34.12+0.23 34.83+0.23 99.95+0.02 99.89+0.02 78.00+0.09 81.38+0.08
Ensemble 0.79+0.05 14.97+0.55 15.77+0.56 99.81+0.22 99.68+0.33 86.29+2.61 88.76+2.17

DUQ? [Van+20b] 90.27+0.15 90.27+0.15 90.57+0.15 83.58+3.98 80.96+5.56 52.86+7.43 57.00+8.98
SNGP¢ [Liu+20a] 90.78+0.03 90.78+0.03 91.13+0.03 93.16+3.44 84.67+791 79.17+1.89 78.03%+1.55
UQ-TFGCN 0.76 £0.02 34.57+0.32 35.28+0.33 99.39+0.97 99.13+1.00 90.19+0.92 92.07+0.93

@ The evaluation results are based on the Bimanual Actions dataset leave-subject-one-out testset and are averaged over 10
seeds. The best results cross all configurations are in bold. The evaluation metrics {AUROC!, AUPRC!} and {AUROGC?,
AUPRC?} are using the IKEA Assembly dataset and Noisy BimActs as OOD respectively.

b The Radial Basis Funtion (RBF) kernel [Van+20b] is implemented to measure the distance to class centroids.

¢ The Laplace-approximated Neural Gaussian Process [Liu+20a] is utilized instead of our Gaussian Process.

various motion tasks.

Another interesting observation is that substituting normal residual connections
with Spectral Normalized Residual connections in UQ-TFGCN results in a decline in
accuracy and F1 score performance, reaffirming the disruptive impact of spectral nor-
malization. The potential advantages of Spectral Normalized Residual connections
may not be fully realized in these two experiments, as most existing recognition and
segmentation models typically overlook the assessment of feature distance.

4.6.2 Comparison with State-of-the-Art

To assess the performance of distance-awareness in the feature space, we conduct an
out-of-distribution (OOD) detection experiment and compare the results with other
popular deterministic network uncertainty quantification methods, namely, SNGP
[Liu+20a] and DUQ [Van+20b]. It’s important to note that SNGP [Liu+20a] and
DUQ [Van+20b] were not originally designed for action recognition and segmenta-
tion. Consequently, we implement their feature space measuring mechanism instead
of Gaussian Process (GP) in our model. Additionally, we utilize the MC-Dropout and
ensemble methods as baselines, with a dropout ratio of 10% for MC-Dropout, and
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Figure 4.13: Comparison of AUROC with increasing of noise intensity in the Bimanual Actions Dataset
[Kre+21] over different uncertainty quantification methods: Ensemble, MC-Dropout, SNGP and ours.

three ensembled models for the ensemble method.

As depicted in Table 4.22, the proposed method outperforms all other listed meth-
ods in terms of accuracy, AUROC, and AUPRC in the OOD detection on the noisy
BimActs dataset. While both SNGP and DUQ exhibit higher efficiency, leveraging
approximations like a Laplace process (SNGP [Liu+20a]) or an initially provided co-
variance scale (DUQ [Van+20b]), our model collects features from the training set
and builds a multivariate Gaussian model, yielding superior performance. The co-
variance values of the Gaussian model range from 0.001 to 15.00 across different
action categories. In contrast, DUQ relies solely on the initially provided covariance
scale, contributing to its comparatively poorer performance. The efficacy of inte-
grating spectral normalization (SN) into the residual connection is exemplified by
the minimal number of parameters in our model. It is noteworthy that each model
employed in the MC-Dropout and Ensemble methods shares an identical parameter
count with our model.

An interesting observation is that randomly dropping features in MC-Dropout
leads to a diminished OOD detection performance, indicating that our model is sen-
sitive to known feature spaces. These findings motivate further exploration into the
effects of different noise types and intensities.

Given the inevitability of noise in real-world scenarios, assessing OOD detection
on noisy datasets highlights the practical advantages of maintaining distance in the
feature space. To compare the impact of three common real-world noises—namely
impulse noise, Gaussian noise, and Poisson noise—we present the corresponding re-
sults for different noise intensities in Fig 4.13. Recognizing that each noise type
operates on a distinct intensity scale, we select three increasing unit intensities for
varied noises.

For impulse noise, we introduce one unit of intensity by setting 10% of the test
set to zeros. Gaussian noise sees an increase in unit intensity set at 0.1 variance of
the test set. Meanwhile, Poisson noise experiences an increase in unit intensity set
at an expected value and variance of 1000mm. As depicted in Fig4.13, our model
consistently exhibits the highest AUROC in the presence of Gaussian and impulse
noise, approaching the performance of the MC-Dropout method in Poisson noise.
These results underscore the robustness of our model in preserving feature space
distances under diverse noise conditions.
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4.6.3 AQualitative Results
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Figure 4.14: Qualitative results for action recognition and segmentation of the left hand in an example of
sawing a wooden wedge from the Bimnual Actions dataset [Kre+21]. The probability, generated by our
UQ-TFGCN model, is visually represented in a grayscale bar, and brighter grayscale values correspond
to lower predicted probabilities.
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Figure 4.15: Qualitative uncertainty estimation and activity segmentation results of assembly side table
example from the IKEA Assembly dataset [Ben+20]. Distinct actions are distinguished using various
colors. A brighter grayscale value indicates a lower predicted probability.

We present detailed outputs, including the probabilities generated by our model
and comparable methods, using examples from the Bimanual Action dataset [Kre+21].
Fig 4.14 illustrates an example involving left-hand actions during the sawing activity.
A notable achievement of our model is its precise predictions of the start and end of
segments, correctly identifying the frame indices for the retreat segment in the exam-
ple. This underscores our model’s significant improvement in preventing both shift-
and over-segmentation. Additionally, our model outperforms other methods in action
recognition accuracy. In this example, both ASSIGN [Mor+21] and PGCN [XB22b]
incorrectly predict a place action, while our model successfully predicts a hold action
consistent with the ground truth.

Another impressive achievement is that, in addition to predicting the action la-
bel, our model also outputs the predicted probability. As depicted at the bottom
of Fig 4.14, this probability reflects the similarity between the current feature and
known features from the training set, enhancing the interpretability of the model’s
predictions. Instances of incorrect predictions often occur at the junction of two sub-
actions, where the probability is low, as the features at such moments deviate from
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Table 4.23: Ablation study of the online sampling duration and gap. Each duration is combined with
four different sampling gaps. The model is trained on our TUM-HOI data and evaluated on the subject 1
testset.

Duration Gap Evaluation metrics on the TUM-HOI dataset* (%)

30 60 90 120 1 10 20 30 Topl Flmacro F1@10 F1@25 F1@50 time (ms) |

X X 72.97 73.58 82.42 79.79 72.81 18.60

X X 72.72  73.37 82.27 79.21 72.15 18.68

X X 72.51 73.23 82.38 79.01 71.83 20.36

X x 7257 73.20 82.68 79.59 71.71 19.59

X X 74.74 74.93 83.53 80.85 72.41 17.46

X X 74.64 74.82 83.46 80.64 71.99 17.83

X X 74.68 74.85 83.44 80.90 71.99 18.31

X X 7453 74.79 83.70 81.14 72.33 20.75

X X 74.55 74.96 84.12 81.26 71.25 18.37

X X 74.56 75.00 84.36 81.45 71.16 18.65

X X 74.47 74.96 84.40 81.63 71.48 19.54

X x 74.58 75.07 84.74 81.74 71.90 20.11

X X 74.67 74.95 84.19 81.07 70.32 18.08

X X 74.71 75.01 84.24 81.14 70.28 18.19

X X 74.85 75.18 84.30 81.20 70.74 19.17

X X 74.82 75.19 84.35 81.55 70.92 18.99

* The best results cross all configurations are in bold; The best results for each gap setup with the same duration are
underlined.

the distribution centers of both actions. Predictions with low probabilities in a contin-
uous action indicate potential noise in the input, such as incorrect object detection. In
this example, we select three representative frames within a continuous hold action,
showcasing predictions with high (black), medium (gray), and low (white) probabil-
ities. Frames with high probability correspond to precise object location and correct
labels, while frames with medium and low probabilities indicate either mislabeled or
missing objects.

Another qualitative result of a complex assembly side table task from the IKEA
Assembly dataset [Ben+20] is demonstrated in Fig. 4.15. It can be seen that the
proposed temporal fusion (TF) decoder has a better performance in preventing shift-
and over-segmentation compared with Fast-FCN [Wu+19a] and temporal pyramid
pooling (TPP) [XB22b] decoders.

4.7 Real-Time System for Understanding of Human-Object
Interaction

As demonstrated in Section 3.7, the real-time system has an object detector and
human pose estimator. Here, we employ YOLO [Red+16] as an object detector and
OpenPose [Cao+19] as the pose estimator. However, the performance of the YOLO is
unstable in a varying environment. Therefore, an Apriltag [Ols11] marker is attached
on each object to enhance the unique features. The results are demonstrated on the
Figure 4.16
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Table 4.24: Cross validation on different testset of the TUM-HOI dataset.

Subject Top1 (%) F1micro (%) F1@10 (%) F1@25 (%) Fl1@50 (%)

1 77.94 77.84 89.61 86.92 76.16
2 78.67 79.83 92.67 89.59 83.06
3 76.22 76.10 87.57 84.66 73.71
4 69.93 69.80 87.07 83.51 70.49
5 80.76 81.05 91.64 89.80 81.98
6 75.40 76.55 88.97 84.85 74.83

76.49+6.80 76.86+7.20 89.59+4.04 86.55+4.87 76.70+8.93

Considering the necessity of employing a sliding window to sample captured in-
puts for diverse application requirements in the implemented real-time system, this
study delves into the analysis of the online sampling duration and sampling gap’s
impact. As presented in Table 4.23, longer video sequences contribute to enhanced
model performance, indicating that increased temporal information is provided by
extending the video duration. However, beyond 60 frames, the performance im-
provement diminishes, particularly in terms of F1@10 and F1@25, showing only
marginal increases.

Furthermore, compared to the results obtained from complete video sequences
with a top-1 accuracy of 77.94%, the performance of video clips is notably reduced.
This reduction is attributed to the duplicate counts of misclassifications during the
evaluation of results from video clips.

In addition, the impact of sampling gaps is found to be minor, irrespective of
the length of video sequences. Regarding runtime, the video duration exhibits no
significant influence on the model’s running speed when the input is within 120
frames. In conclusion, based on the findings from the TUM-HOI dataset, this study
recommends a video duration of 120 frames and a sampling gap of 20 frames as an
optimal combination, yielding the best performance in terms of top-1 accuracy.

In addition to the ablation study conducted on the Subject 1 test set, a cross-
validation experiment encompassing all subjects was performed on our TUM-HOI
dataset. As illustrated in Table 4.24, the mean values of the cross-validation results
are not significantly different from the outcomes of the previous experiments focused
on Subject 1. However, the relatively large standard deviations can be attributed to
the challenges posed by the Subject 4 test set.

Subject 4 presents challenges due to being smaller in stature compared to other
subjects, potentially leading to model confusion. Additionally, the subject performs
real actions in a real kitchen during the sitting part, introducing complexity through
subtle subconscious actions.
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Figure 4.16: Comparison of the results of objects information from YOLO and YOLO + Apriltag. The left
column shows the results from the YOLO and the right column is results of combining YOLO and Apriltag
tracker. Each row presents a typical error type of object detection (left) and the results after correcting
by marker features (right). Row 1: miss detection. Row 2: misclassification. Row 3: wrong detection of
non-existing objects.



Chapter 5

Summary

This work introduces several novel methods for human action recognition, human-
object interaction (HOI) detection and segmentation, event detection, and uncer-
tainty quantification, which provides a foundation for applications in healthcare,
human-robot collaboration, and beyond.

5.1 Conclusion of Proposed Methods

Firstly, the graph representation of action-related subjects and objects serves as a key
mechanism to reduce noise and simplify the action recognition process.

Hybrid Attention: the introduction of a Hybrid Attention-based Graph Neural
Network (HA-GCN) stands as a significant improvement in skeleton-based human
action recognition. This novel approach combines a newly designed graph structure
with a hybrid attention mechanism to efficiently extract and merge attention cues
from different input streams. The hybrid attention layer includes two branches: rela-
tive distance and relative angle attention mechanisms. These branches work together
within the spatial layer to seamlessly fuse attention cues using trainable parame-
ters, thereby enriching the network’s ability to recognize complex actions. Experi-
ments on two large-scale datasets confirms the effectiveness of the hybrid attention
model in enhancing the performance of multi-stream skeletal action recognition. Ad-
ditionally,enhancements to the initial adjacency matrix, especially the incorporation
of connections between heads, hands, and feet, help capture significant dynamic in-
teractions between body-parts, thus strengthening the action recognition process.

However, the graph neural network requires structured data, necessitating a fixed
number of nodes within the network architecture. Therefore, the introduction of new
nodes requires the network to be retrained, representing the limitations of the current
framework.

Pyramid Graph Convolutional Network: in addition to pure-human action recog-
nition, a novel Pyramid Graph Convolutional Network (PGCN) is introduced for un-
derstanding human-object interaction relation sequences through action recognition
and segmentation. This method integrates a spatial attention graph convolutional
encoder and a temporal pyramid pooling decoder, forming a symbiotic relationship
where each component complements the other. The spatial attention mechanism
provides the decoder with high-level spatial relationships between graph nodes (hu-
man and objects), while the temporal pyramid pooling decoder helps upsample these

103
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spatial features to the original temporal scale and subsequently predict frame labels.
Experiments on two HOI datasets with different input formats (2D and 3D) demon-
strate that PGCN has a general capability that can be applied to other structurally
represented domains.

As can be seen from the introduced networks, the attention mechanism has been
proven to be beneficial to the update of node relationships in a graph representa-
tion. However, different attention mechanisms have varying effects on different input
types, e.g., joint position and bone connection. Therefore, achieving optimal results
requires iterative exploration over multiple trials to find the most effective attention
mechanism for a given task.

In the context of action segmentation, the importance of the decoder exceeds
that of the encoder, since the encoder only provides compressed features, while the
decoder is responsible for upsampling these features back to the original time scale.
This observation highlights the critical role of the decoder in reconstructing tempo-
rally coherent action sequences from compressed feature representations.

Temporal Fusion Graph Convolutional Network: most of shift- and over- seg-
mentation errors are caused by the decoder, which emphasizes the need for enhanced
feature upsampling and improved action class detection. In doing so, a novel decoder
equipped with a temporal fusion module is introduced, aiming to mitigate such er-
rors and improve the accuracy of action segmentation. The integration of the new
decoder with the temporal fusion module requires increased parameters and com-
putational requirements. Despite this disadvantage, the inference process can still
segment actions online even on standard desktop hardware, which confirms the util-
ity of the proposed framework.

The proposed Temporal Fusion Graph Convolutional Network is evaluated on
two public challenging human-object interaction datasets. The experimental re-
sults demonstrate that introducing the condensed features into the final upsampled
feature map through residual connections can significantly improve the accuracy.
In other words, the upsampling process inherently introduces uncertainty into the
predictions. Exploiting residual connections effectively mitigates this uncertainty,
thereby improving the overall accuracy performance of the network.

Spectral Normalization Residual connection: nevertheless, the network with
residual connections still cannot differentiate between unknown and known data,
resulting in a situation where different inputs are mapped to the same space. There-
fore, a spectral normalized residual connection is introduced to preserve input dis-
tance in feature space and to recognize the novelty of input. The analysis of param-
eter quantities offers convincing evidence in favor of the efficiency of the proposed
SN-res method. While spectral normalization helps maintain meaningful isometric
properties, it does exhibit a trade-off in accuracy. In the context of safe collaboration
between humans and robots, the prediction of uncertainty is more important than
accuracy. Therefore, efforts to effectively measure uncertainty levels are critical to
foster trust and facilitate seamless interactions between human and robotic agents.
Results obtained from public Human-Object Interaction (HOI) datasets, featuring
two distinct data formats (2D and 3D), demonstrate the general capability of our
model. This versatility suggests potential applications in other domains represented
with similar structural frameworks.

Gradual Online Dictionary Learning: In addition to daily action recognition,
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a novel event detection method is addressed for an emergency situation, notably
fall-down incidents. The proposed approach leverages a robust latent action unit ex-
traction technique called Gradual Online Dictionary Learning (GODL). It outperforms
existing dictionary learning methods and end-to-end deep learning methods in terms
of robustness and average accuracy. Unlike other spatial-temporal methods, the pro-
posed approach exhibits the unique capability to determine the specific phase of the
fall-down action in progress. Therefore, it can not only detect fall-down activity but
also predict and prevent it. This ability is especially useful in healthcare scenarios
where nurses cannot supervise elderly patients all the time. Since the method has
the ability to extract action unit, it can also be utilized in industry areas for robot
learning from demonstration. An action unit can be seen as an action primitive and
mapped to corresponding robot actions.

Real-time system: the final contribution of this research is the development of
a novel real-time system designed to understand human-object interaction, thereby
laying the foundation for effective human-machine collaboration. Most currently
available HOI detection methods usually process the entire collected video or skele-
ton sequences offline. To tackle this problem, this research introduces a real-time
system that receives RGB frames and depth frames from an RGB-D camera as in-
put and outputs frame-wise action labels for left and right hands in real-time. This
system enables robots to collaborate with humans during a task, rather than after-
ward. An improved YOLO method combined with markers is developed to enhance
the multi-objects tracking algorithm.

In summary, this research represents significant contributions in the field of hu-
man action recognition, providing novel methods that address complexities inher-
ent in multi-stream input, spatio-temporal information extraction, and real-time pro-
cessing. The effectiveness of the proposed methods is confirmed by their enhanced
performance on different datasets, emphasizing their potential applicability in other
fields characterized by structural representation.

5.2 Future Work

Currently, our focus is primarily directed towards the relatively large movements of
human body skeletons. A good extension of this work involves combining hand skele-
tal points and eye movements, as they have valuable insights into the recognition and
comprehension of fine motions.

Expanding upon the trajectory of the ongoing research, a promising area for fu-
ture investigation lies in minimizing errors in the action segmentation process. As
aforementioned, discrepancies within the action segmentation process are mainly
caused by the decoder network. Therefore, an important goal of future work is to
design and implement novel decoder architectures. One promising approach is to
provide the decoder with multiple potential anchors, each adapting to different ac-
tion lengths during the decoding stage. Training the network under the constraints
of non-overlapping and gap-less anchor connections is expected to correct segmen-
tation errors.

The of attention mechanisms has yielded clear benefits in updating relationships
between nodes. However, the effectiveness of different attention mechanisms varies
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depending on the input data relationships. Hence, well-designed attention algo-
rithms has the potential to manage dynamic relationships within a network. More-
over, manual predefinition of the number of nodes limits the scope of the attention
mechanism to existing nodes. A proficient attention algorithm should possess the
flexibility to accommodate varying numbers of graph nodes, thereby ensuring the
design of a multi-functional attention mechanism.

Furthermore, the impact of object detection and human pose estimation results
on action recognition outcomes underscores the importance of refining these algo-
rithms. Notably, spectral normalization has been observed to compromise the nonlin-
ear mapping capabilities of the proposed model. Therefore, future efforts can provide
insights into the neural network mapping process and explore strategies to mitigate
this deleterious effect.

The applicability of this work can be extended to the areas of human-robot col-
laboration and learning from demonstration. Since this work extracts human action
unit, an intelligent robot can learn skills by projecting human actions into robot ac-
tion space. Therefore, developing well-designed projection capabilities is a critical
next step in promoting learning from demonstrations. Exploring the identification
and tracking of multi-person participation behaviors is another important task to be
explored. This task requires systems that can identify and monitor different indi-
viduals and their associated behaviors. Furthermore, in the context of human-robot
collaboration, developing vision-based decision-making strategies becomes an im-
portant frontier. This requires predicting potential subsequent actions by observing
ongoing actions and detecting novelty, allowing the robot to autonomously decide
whether to perform the next task or seek human intervention. Additionally, we are
planning to enhance the capabilities of our models through active learning based on
novelty detection results, thus continuing the trajectory of innovation and progress
in this field.



Appendix A

Appendix 1

Considering a graph convolutional layer g(x) with residual connections: g(x) =
r(x)+m(x) where m represents main stream and composed of several hidden layers,
r is residual branch and x is input. Assume that the upper Lipschitz boundaries of
main and residual streams are initially defined by the normalization and activation
functions Vx, denoted as f3,, and f, respectively. The lower boundaries for both
streams are defined as the extremum 0. Note that in practice, the feature distance is
unequal to 0 due to non-zero weights and biases in the convolution kernels. Simplify
the processing functions to be g, ,, r;, and m,, where 1 and 2 mean with input x,
and x, respectively, we get:

[[m, —m,||

0< < B (A.1)
|[2¢5 — 4|

o<zl 4 A.2)
[[2¢g — 4|

where we simplify the symbol of Lipschitz norm as || - ||.
Additional residual connections shift the range to a higher values as following:

|Iry — 1|l =llg —m; — (g —m, )|
=l|go— &1 + (m; —m,)||
<llg1 — &Il + [[m; —m,||
<I|lg>— &l + Brllxs —x1]l,

(A.3)

where the last line follows by the bound assumptions Yx, we get the lower bound
range of g(x):

|1y =110l = Brllxy —x11[ < 182 — &1l (A.4)
||y — 1]
_ﬂmsm_ﬂmg(ﬂr_ﬂm)
sl (A-5)
< 8 — & .
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The upper bound can be easily obtain by:

18> — &1l <||r2—r1|| + [|my —m,||
[y — x| — []2; — x4]| (A.6)
<(B; + B)-
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From Eq. A.5, it can be seen that the upper bound of residual stream shifts the
feature space distance to a higher range, when 8, > f,,. In fact, the main stream
produces a fine feature maps through several cascaded layers, while the residual
outputs coarse features, which means that the Lipschitz upper bound of the feature
space distance in the residual connection is larger than that of the main stream, i.e.,
B. > B,.- Note that when . < f3,,, the feature space distance automatically satisfies
the constraint, since —f3,, < ., —f,, < 0 and 0 < ||g, — g;||. Hence, constraining the
Lipschitz upper bound of residual connections is crucial to preserve distance in the
representation space.
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