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ABSTRACT Serverless computing is a cloud computing paradigm that allows developers to focus
exclusively on business logic as cloud service providers manage resource management tasks. Serverless
applications based on this model are often composed of several fine-grained and ephemeral Function-as-a-
Service (FaaS) functions that implement complex business processes via mutual interaction and interaction
with Backend-as-a-Services (BaaS) such as databases. FaaS functions suffer from the cold start problem
because of the scale to zero instances feature. In this work, we use neural Temporal Point Processes (TPPs)
to model function invocations in FaaS compositions. A probability distribution over the time and class of
the following invocations for a given history of invocations is predicted using these probabilistic models.
The prediction can avoid cold starts by scaling functions in advance and reduce network load by optimizing
the function-server assignment. In this regard, we developed a python-based tool called TppFaaS on top
of OpenWhisk open-source serverless platform. TppFaaS uses the neural TPPs LogNormMix for modeling
the time using a log-normal mixture distribution and TruncNorm for predicting a single value for the time.
Furthermore, we built a custom trace data collector for OpenWhisk embedded into TppFaaS and created
datasets for multiple FaaS compositions to train and test our models. For datasets without cold starts, the
models achieved for most compositions a mean absolute error below 22ms and a percentage of correctly
predicted function classes above 94%.

INDEX TERMS Cloud computing, faas, faas composition, function-as-a-service, modeling, serverless
computing, temporal point process.

I. INTRODUCTION
With the advent of Amazon Web Services (AWS) Lambda
in 2014, serverless computing has gained popularity and
more adoption in different application domains such as
machine learning [1], [2], linear algebra computation [3],
[4], and map/reduce-style jobs [5]. Furthermore, nowadays,
it is implemented by every major cloud provider in services
like Azure Functions [6] and Google Cloud Functions [7].
Function-as-a-Service (FaaS), a key enabler of serverless
computing, allows a traditional application to be decomposed
into fine-grained, stateless, and ephemeral functions running
isolated in containers with a runtime on a FaaS platform [8].
A FaaS platform is responsible for providing resources,
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such as the containers, and auto-scaling the functions on
demand. Functions are triggered in an event-based fashion,
with various sources emitting the events. These include cloud
services such as databases or message queues, as well as
other FaaS functions of the application emitting events for
database or queue updates, as well as HTTP requests [9].
Since FaaS offerings such as AWS Lambda and Azure
Functions are based on a pay-per-use pricing policy, running
an application on a FaaS platform can therefore reduce
costs [10].

A FaaS application is often constructed as a composition of
multiple functions that abstracts some business process [11].
An example of such a composition can be seen in Figure 1,
in which multiple FaaS functions implement a webshop [12].
In it, each function fulfills a simple modular logic, with the
interaction between functions enabling a complex program.
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FIGURE 1. A webshop implemented as a composition of FaaS
functions [12].

Orchestration tools such as AWS Step Functions [13], Azure
Durable Functions [14], or OpenWhisk’s Composer [15]
facilitate building such compositions. These provide con-
structs to compose the functions into a control flow,
known from any imperative programming language. That
is, a developer can arrange the functions sequentially,
in parallel, or loops and integrate branching and conditional
logic. In addition, the function orchestrator performs other
important tasks such as state management, i.e., storing the
data communicated between functions, error handling, real-
time monitoring, logging, and much more [16]. With all
the described characteristics, the migration to FaaS offers
an attractive opportunity to break up traditional monolithic
applications into a composition of fine-grained and reusable
functions that scale independently and automatically and can
be arranged in a familiar imperative manner.

Despite having many advantages, serverless computing
suffers from some pain points that obstruct its wide
adoption [17], [18]. We explain two of them in the following
subsections:

A. COLD START PROBLEM
It is mainly connected with loading the FaaS function into
the main memory of the executing server and preparing
the execution environment for the target code (starting up
the VM/container, loading libraries, loading function code,
etc. forming the initialization time in Figure 2) [19], [20].
Several influencing factors increase the initialization time
of a function [21], [22], one of which is the choice of
programming language. While languages such as JavaScript
use an interpreter, Java requires a more complex JVM to be
set up in the container, leading to higher latency. Also, the size
of the function image has a decisive influence on the cold start
latency.

B. DATA-SHIPPING ARCHITECTURE
Also, critical in FaaS is the data-shipping architecture
criticized in [23]. In FaaS, functions are executed in
containers isolated from the data they need. In addition,
the functions are short-lived, so caching the state to serve
multiple requests is limited. Instead, the state is stored in
databases that must be queried regularly. Consequently, the

FIGURE 2. A cold start delays the execution of the function code.

data must be transported over the network to the function’s
location (shipping data to code). However, shipping code to
data would be much more efficient. This anti-pattern in FaaS
leads to higher latencies, load on the network, and thus higher
costs [23].

A Temporal Point Process (TPP) is a probability dis-
tribution over sequences of instantaneous points in time,
denoted as events, of variable length in an interval [0,T ] [24].
Since FaaS follows an event-based execution model, we can
model the events triggering the functions using TPPs.
Therefore, TPPs are perfect for modeling invocations in
FaaS function compositions by representing an executed
function composition by a sequence of events. If we consider
that a composition can contain structures such as loops,
branches, and conditions, the length of the sequence is also
variable. Such modeling of FaaS function compositions and
then a prediction can avoid cold starts by scaling functions
in advance and reducing network load by optimizing the
function-server assignment. Furthermore, it can also help in
optimizing the data-function placement. In this regard, this
work focuses on modeling FaaS applications in the form of
function compositions using neural temporal point processes
(TPPs). The key contributions of this work are as follows:

• We present a python-based tool called TppFaaS1 on
top of OpenWhisk open-source serverless platform for
modeling Serverless Functions Invocations via Tem-
poral Point Processes. TppFaaS uses the neural TPPs
LogNormMix for modeling the time using a log-normal
mixture distribution and TruncNorm for predicting a
single value for the time.

• We constructed four FaaS compositions with Tpp-
FaaS having different characteristics for evaluation of
TppFaaS. In particular:
1) the constructed applications exhibit different struc-

tural characteristics (sequence, parallel, tree and
fanout).

2) each of the applications is scaled in two variants:
small variant and large variant.

3) for each variant of the application, we implement a
randomized and a non-randomized variant. In the
non-randomized variant, the duration of the sleep
command for all functions is fixed with either
300, 400, or 500ms. In the randomized variant, the

1https://github.com/maSteinbach/TppFaaS
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FIGURE 3. Openwhisk high-level workflow [28].

duration is drawn from a gamma distribution for
each function invocation (§IV-A).

• We evaluate the prediction performance of LogNorm-
Mix and TruncNorm with multiple metrics using the
generated datasets without cold starts (§VI-A) and with
cold starts (§VI-B).

1) PAPER ORGANIZATION
Section II gives a high level workflow of the OpenWhisk
FaaS platform used in this work. We study the theory
of TPPs and introduce basic models such as the Hawkes
process, and neural TPPs such as introduce RMTPP and
LogNormMix in Section III. Ourmethodology and developed
tool TppFaaS and its components are described in Section IV.
Section V describes the various evaluation settings used in
this work, training models hyperparameters, performance
quality evaluation metrics and the benchmark applications
used in this work. In Section VI, our evaluation results on
the introduced performance quality metrics are presented.
Section VII describes some prior works in this domain.
Finally, Section VIII concludes the paper and presents an
outlook.

II. FaaS PLATFORM—OPENWHISK
In this section, we present high level workflow of the Open-
Whisk FaaS platform used in this work. OpenWhisk [25]
is an open-source FaaS platform developed by IBM that is
built on Kubernetes, which provides containers for function
invocations. It is also the platform that leverages IBM’s
FaaS offering IBM Cloud Functions [26]. In OpenWhisk’s
terminology, a function is called action and an invocation is
called activation. Actions can be created using OpenWhisk’s
CLI, SDK, or UI and invoked using the same tools as well as
by event triggers [27].

The procedure of a FaaS function invocation inOpenWhisk
starts with an HTTP request entering the OpenWhisk system
(shown in Figure 3) throughNgnix [29], an HTTP and reverse
proxy server whose primary purpose here is providing the
HTTPS protocol. The Ngnix server immediately forwards
the request to the controller, which is the system’s central
component and provides a REST API for creating entities
such as actions and for the invocation of them. Since
the forwarded request is a request for an invocation, the

controller performs authentication and authorization, i.e.,
it checks whether the user of the request has the privilege to
invoke the desired action. To do this, the controller queries
the OpenWhisk database CouchDB, where all the users’
authorizations are stored. If the authorization was successful,
the controller fetches the actual function code fromCouchDB
along with the default parameters of the action. The default
parameters are merged with the dynamic parameters attached
to the request. A load balancer integrated into the controller
has a global view of the availability of the Invokers and
selects one of them to execute the function code. The
controller communicates with the invokers via Kafka [30],
a distributed publish-subscribe messaging system. Therefore,
the controller publishes a message to Kafka addressed to the
selected invoker containing the action and its parameters.
Kafka ensures the persistence of the message even in case
of a system crash. It also buffers the message if the system
is under heavy load, in which case the message must wait
for other messages to be executed. After Kafka receives
the message, it returns the unique ActivationId to the user,
which can be used to retrieve the invocation’s result and
meta information from the OpenWhisk API. This immediate
termination of the HTTP request after Kafka receives the
message describes an asynchronous behavior. OpenWhisk
also provides a synchronous behavior where the client is
blocked until the invocation is finished. In this case, the
complete result of the invocation is returned, rather than just
the ActivationId. After the invoker has executed the action,
the result is written to CouchDB along with other meta
information and logs [28].

OpenWhisk records the invocation’s initTime and wait-
Time in the meta-information. The initTime is only present
in case of a cold start and describes the time required for
the function initialization. The waitTime describes the time
that elapsed from the receipt of the invocation request by the
controller to the provision of a container for execution by the
invoker. Therefore, the waitTime increases when the system
is under heavy load, and the message must wait in the Kafka
queue [27].

III. TEMPORAL POINT PROCESSES
A Temporal Point Process (TPP) is a probability distribution
over sequences of instantaneous points in time, denoted as
events, of variable length in an interval [0,T ] [24]. These
events are discrete events in continuous time. Discrete means
that events can be categorized into classes, often referred to
as event type or mark in the literature [31]. A realization of a
marked TPP model can be represented as an event sequence
x = {(t1,m1), . . . , (tN ,mN )}, where 0 < t1 < · · · <

tN < T represents event’s time (see Table 1) with N being
the number of events and is itself a random variable, and
mi represents an event type or a mark. In most applications,
the marks (m1, . . . ,mN ) are categorical, such that mi =
{1, . . . ,K }, although other representations are possible for
this. Furthermore, a TPP can also be represented by a list of
strictly positive inter-event times τi = ti − ti−1 ∈ R+, where
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TABLE 1. Symbols and definitions used in this paper.

FIGURE 4. The conditional probability density function f ∗i (ti ), the
cumulative distribution function F ∗i (ti ), and the survival function S∗i (ti )
model the time of the next event ti for a given event history H(ti ) for a
TPP model [32].

t0 = 0 and tN+1 = T . Both notations are equivalent and
can be replaced with each other as desired. Finally, H(t) =
{(tj,mj)|tj < t} defines the history of past events for a given
event sequence x.
Each event time ti is a random variable, which is

modeled in an autoregressive fashion by the TPP model, i.e.,
conditioned on past events defined by the history H(ti) =
{t1, . . . , ti−1}. Modeling ti is equivalent to modeling the
inter-event time τi for a given H(ti) = H(ti−1 + τi). For the
sake of simplicity, in the following subsections we consider
an unmarked TPP such that x = {t1, . . . , tN }. The modeled
distribution of ti and τi, respectively, can be characterized for
a given H(ti) by one of the following three functions, also
illustrated in Figure 4:
• The conditional probability density function f ∗i (ti) =
fi(ti|H(ti)) determines the probability that the next event
for a given history H(ti) occurs in the interval [ti, ti +
dt). Similarly, the conditional density function f ∗i (τi) =
fi(τi|H(ti)) defines the probability, that the time until the
next event for a given historyH(ti) is within the interval
[τi, τi + dτ ).

• The cumulative distribution function F∗i (ti) =

Fi(ti|H(ti)) =
∫ ti
ti−1

f ∗i (u) du determines the probability
that the next event for a given history H(ti) occurs
before ti. Similarly, the cumulative distribution function
F∗i (τi) = Fi(τi|H(ti)) =

∫ τi
0 f ∗i (ti−1 + u) du is the

probability that the time to the next event for a given
historyH(ti) is less than τi.

• The complementary cumulative distribution function
S∗i (ti) = Si(ti|H(ti)) = 1 − F∗i (ti) =

∫
∞

ti
f ∗i (u) du,

also known as survival function, defines the probability
that the next event for a given history H(ti) occurs after
ti. Similarly, the complementary cumulative distribution
function S∗i (τi) = Si(τi|H(ti)) = 1 − F∗i (τi) =∫
∞

τi
f ∗i (ti−1 + u) du is the probability that the time to

the next event for a given history H(ti) is greater than
τi [32], [24].

Any of the functions f ∗i , F
∗
i , and S

∗
i can be used to model

the distribution of ti or τi. If one of the functions is known, the
other two can be derived from it [33]. There are many other
functions which can be used to model the distribution of ti or
τi, but a prominent one from the literature is the conditional
intensity function λ∗(t), which is often used in the literature
to describe TPP models.

Conditional intensity function λ∗(t) = λ(t|H(t)), another
way to model the event times of a TPP model, indicates the
probability of the next event occurring in the interval [t, t+dt)
conditioned on no event to have occurred in [ti−1, t), where
ti−1 is the time of the last event occurring before t [32].
Formally, this means:

λ∗(t)dt = P(event in [t, t + dt)|no event in [ti−1, t),H(t))

=
P(event in [t, t + dt)& no event in [ti−1, t)|H(t))

P(no event in [ti−1, t)|H(t))

=
P(next event in [t, t + dt)|H(t))
P(no event in [ti−1, t)|H(t))

=
f ∗i (t)dt

Si(t)
. (1)

For a better interpretation of the conditional intensity
function, we consider an alternative representation of the
TPP model in which it is defined as a counting process
N (t), counting the number of events up to time t . For an
infinitesimally time interval dt it holds that dN (t) = N (t +
dt)−N (t) ∈ {0, 1}, meaning that at most one event can occur
in [t, t + dt) [32]. From this follows:

E[dN (t)|H(t)] = 1 ∗ P(next event in [t, t + dt)|H(t))

+ 0 ∗ P(no event in [t, t + dt)|H(t))

= λ∗(t)dt. (2)

If the equation (2) is rearranged, the result is equation (3).

λ∗(t) = lim
dt→0

E[dN (t)|H(t)]
dt

, (3)

From equation (3), we derive that the conditional intensity
function specifies the expected number of events per time
unit [33], that is, the frequency rate per time unit, i.e.,
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λ∗(t) = events/second . The intuitive interpretation facilitates
the construction of TPP models with desired characteristics
by specifying the functional form of λ∗(t). When choosing
the functional form of λ∗(t), the only constraint is that for
any t and H(t), the two terms λ∗(t) ≥ 0 and

∫
∞

t λ∗(u) du =
∞ must be satisfied. In contrast, the conditional proba-
bility density function f ∗i (t) must be specified as a valid
probability distribution, such that

∫
∞

ti−1
f ∗i (u) du = 1 is

satisfied [32], [33].
If the conditional intensity function λ∗(t) is given, the

conditional probability density function f ∗i (t) can be derived
from it. From the definition of the survival function S∗i (t) we
know that S∗i (t) = 1− F∗i (t), thus

dS∗i (t)

dt
=

d
dt
(1− F∗i (t))

⇐⇒ −
dS∗i (t)

dt
= f ∗i (t). (4)

Plugging equation (4) into (1) then yields

λ∗(t) =
f ∗i (t)

S∗i (t)
= −

1
S∗i (t)

dS∗i (t)

dt
= −

d log S∗i (t)

dt
. (5)

The integration of both sides of equation (5) leads to

log S∗i (t) = −
∫ t

ti−1
λ∗(u) du

⇐⇒ S∗i (t) = exp(−
∫ t

ti−1
λ∗(u) du). (6)

The derived equation for the survival function from (6) is
plugged into (1), leading eventually to the formula for the
conditional probability density function [32]

f ∗i (t) = λ
∗(t) exp(−

∫ t

ti−1
λ∗(u) du). (7)

Furthermore, we introduce the hazard function φ∗i (t) =
φi(t|H(t)), another function to characterize a TPP and which
is related to the conditional intensity function λ∗(t) [24], [33].
While λ∗(t) describes the global intensity in the time interval
[0,T ], the hazard function φ∗i (t) is limited to the time interval
between two events (ti−1, ti], which is why the index i is
required. That is, for a sequence of N events, we obtain the
global intensity λ∗(t) by concatenating the hazard functions
φ∗1 , φ

∗

2 , . . . , φ
∗

N+1, i.e.,

λ∗(t) =


φ∗1 (t) if 0 ≤ t ≤ t1
φ∗2 (t − t1) if t1 < t ≤ t2
. . .

φ∗N+1(t − tN ) if tN < t ≤ T .

(8)

A. BASIC TEMPORAL POINT PROCESSES MODELS
In this section, we describe about the basic Temporal Point
Processes (TPPs) models.

FIGURE 5. The homogenous poisson process is the simplest TPP and is
defined by a constant conditional intensity function [34].

FIGURE 6. The inhomogeneous poisson process has a varying intensity
capable of reflecting global patterns [34].

1) HOMOGENEOUS POISSON PROCESS
The homogeneous Poisson process depicted in Figure 5 is
the simplest TPP model with a positive and constant event
rate µwhose event times are independent of the historyH(t),
i.e.

λ∗µ(t) = µ ≥ 0.

The conditional probability density function f ∗i (t) of the
process can be derived using equation (7), so that

f ∗i (t) = λ
∗(t) exp(−

∫ t

ti−1
λ∗(u) du)

= µ exp(−µ(t − ti−1))

⇐⇒ f ∗i (τ ) = µ exp(−µτ ). (9)

From equation (9), it follows that the inter-event times
τ follow an exponential distribution with parameter µ.
Therefore, we can alternatively define a homogeneous
Poisson process as a sequence of N i.i.d. exponentially
distributed random variables, i.e. (τi)i∈{1,...,N } [32], [35].

2) INHOMOGENEOUS POISSON PROCESS
Another basic TPP is an inhomogeneous Poisson process
depicted in Figure 6, where the event rate varies as a function
of time. The conditional intensity function λ∗(t) is specified
by any function parameterized by θ , resulting in

λ∗θ (t) = gθ (t) ≥ 0.

As with the homogeneous Poisson process, the event times
are independent of the history H(t) [32]. Therefore, these
TPP models (homogeneous and Inhomogeneous Poisson
Process) are suitable for modeling global trends such as
food orders in a restaurant where the event rate is spiked
around lunch and dinner time. We can model this pattern
by choosing an appropriate function gθ whose shape reflects
these trends [33].

3) HAWKES PROCESS
For both the homogeneous and inhomogeneous Poisson
processes, the event rate is independent of past events.
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FIGURE 7. The conditional intensity function of the Hawkes process
increases with each event that occurs and then slowly decays, resulting in
a temporally clustered distribution of events [34].

However, for many applications, the occurrence of an
event increases the probability of other events occurring
immediately afterward. So-called self-exciting processes can
simulate this behavior by increasing the conditional intensity
function λ∗(t) for each event that occurs by a certain amount.
The most famous of these processes is the Hawkes process,
whose intensity is defined by

λ∗(t) = λ0(t)+
∑

ti∈H(t)

κ(t − ti),

where λ0(t) > 0 is the base intensity and κ(t) > 0
is the kernel function. The base intensity captures events
triggered by external sources and is thus independent of
previous events. The kernel function models the dependence
on previous events and gives the Hawkes process its
characteristic self-excitation. The kernel computes for each
past event ti ∈ H(t) the quantitative influence on the
intensity at time t . To ensure that events further back in
time have less influence than recent events, a monotonically
decreasing function is usually chosen, such that the influ-
ence of a past event on intensity decays with increasing
temporal distance. The most popular function for this is the
exponential function, such that the kernel function is defined
by

κ(t) := α exp(−ωt),

where α ≥ 0, ω > 0 and α < ω applies [32], [35], [36]. The
parameter α scales the self-exciting behavior of the Hawkes
process, eliminating it with α = 0. The parameter ω affects
how fast the influence of a past event on the intensity at time
t decays with growing temporal distance, with a high value
for ω leading to faster decay.

Figure 7 shows a realization and the corresponding
intensity function of a Hawkes process with constant
base intensity, i.e. λ∗0(t) = µ, and exponential kernel
function. We can see that the intensity jumps with each
event by the amount α and decays exponentially with
increasing time until it returns to the value of the base
intensity.

B. NEURAL TEMPORAL POINT PROCESSES MODELS
Neural TPP models autoregressively predict the time ti
and mark mi of the next event by conditioning the
prediction on the history of past events H(ti). In [24],
the authors partition the prediction process of neural TPP
models (shown in Figure 8) into the following three
steps:

FIGURE 8. In a neural TPP, the distribution over the next event
Pi (ti ,mi |H(ti )) is parameterized with the RNN’s hidden state vector hi ,
which encodes the event history H(ti ) (therefore also called history
embedding) [24].

1) Each event (ti,mi) is mapped to a feature vector yi.
2) The historyH(ti) is encoded by the history embedding

vector hi, which is computed by sequentially feeding
y1, . . . , yi−1 into an RNN.

3) The conditional distribution over the next event
Pi(ti,mi|H(ti)) = P∗i (ti,mi) is parameterized by hi,
so Pi(ti,mi|H(ti)) = Pi(ti,mi|hi). P∗i can be defined
by f ∗i , F

∗
i , S
∗
i or φ∗i (see Table 1) [24].

While the first and second steps are similar for prominent
neural TPP implementations such as RMTPP [37], Ful-
lyNN [38], and LogNormMix [31], they differ significantly
in the third step. Therefore, in the following subsections,
we present the neural TPP models RMTPP [37] and
LogNormMix [31] in more detail.

1) RECURRENT MARKED TEMPORAL POINT PROCESSES
(RMTPP)
The RMTPP model was the first TPP to encode event history
by the hidden state hi of an RNN, thereby parameterizing the
distribution over the next event P∗i (τi,mi), i.e., Pi(τi,mi|hi).
The model assumes conditional independence between the
mark and inter-event time, such that Pi(τi,mi|hi) =

Pi(τi|hi)Pi(mi|hi). The mark distribution P∗i (mi) is defined
as a categorical distribution. The time distribution P∗i (τi) is
characterized by the hazard function φi(τi|hi) = exp(wτi +
vThi + b), where the vector v and the scalars b and w
are learnable parameters and the exp transformation guar-
antees the positivity constraint of the hazard function [37].
By applying equation (7), we can express φ∗i (τi) as a
conditional probability density function f ∗i (τi), which in
this case is a Gompertz distribution [31]. Because of the
simplicity of the hazard function, the integral

∫ τi
0 φ
∗
i (u) du of

the likelihood can be computed analytically. Unfortunately,
no closed-form formula exists for computing the mean
of the distribution, i.e., E

[
f ∗i (τi)

]
. Instead, an integral

must be solved numerically for its computation. However,
the model allows to draw samples analytically from the
distribution [37].

2) LogNormMix
As with RMTPP, the TPP LogNormMix [31] assumes
conditional independence between the mark and time such
that Pi(τi,mi|hi) = Pi(τi|hi)Pi(mi|hi). Similarly, the mark
distribution P∗i (mi) is defined as a categorical distribution.
The unique feature of LogNormMix is that it characterizes the
distribution over τi with the conditional probability density
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function f ∗i (τi), whereas most other TPP models use the
intensity for this purpose. This offers the advantage that we
can specify f ∗i with any positive PDF, thereby automatically
satisfying the condition of a valid distribution. LogNormMix
uses a mixture model to specify f ∗i as they are well suited
for low-dimensional density estimations [39] and therefore
in particular for modeling the one-dimensional inter-event
time τi. As a mixture distribution defined in (0,∞), LogNor-
mMix uses a mixture of K log-normal distributions defined
by

fi(τi|wi,µi, si) =
K∑
k=1

wik
τisik
√
2π

exp

(
−
(log τi − µik )2

2s2ik

)
(10)

The parameters of the mixture distribution are computed
using the hidden state hi of the RNN, i.e.

wi = Softmax(Vwhi + bw)

si = exp(V shi + bs)

µi = Vµhi + bµ (11)

where Vw, bw, V s, bs, Vµ, and bµ are learnable parameters
and the softmax and exp transformations enforce the
parameter constraints of the distribution. The model allows
the computation of the survival function S∗i (T ) of the
likelihood with a closed-form formula. The mean of the
distribution, i.e.,E

[
f ∗i (τi)

]
, can also be computed analytically

by taking the weighted mean of the component means.
In addition, we can also analytically draw samples from the
distribution [31].

We can efficiently train both models due to their likelihood
in closed-form. However, the multimodal log-normal mixture
distribution of LogNormMix providesmuch higher flexibility
in modeling f ∗i (τi) than the unimodal Gompertz distribution
of RMTPP. Using a log-normal mixture distribution allows
us the approximation of any distribution [31].

IV. TppFaaS—DEVELOPED SYSTEM
In this section, we introduce our developed system called
TppFaaS (see Figure 9), for modeling function invocations
in FaaS applications using temporal point processes (TPPs).
It is designed for applications running on OpenWhisk [25]
FaaS platform, which underneath uses Kubernetes cluster.
For modeling, trace data of application functions is collected
and is used for training TPP models. Based on these models,
predictions are carried out.

Additionally, for creating the dataset for training TPP
models, we created a component within TppFaaS called
Sampler. The Sampler is an automated pipeline for creating
simulated FaaS applications by specifying configuration
parameters. Here, an application is a function composition
in which sleep commands simulate the execution times
of the functions following a distribution. This simulated
application is deployed on the OpenWhisk FaaS platform.
For generating the traces, Sampler send user requests to the

FIGURE 9. TppFaaS is a system for modeling FaaS applications using
temporal point processes. For this purpose, trace data is collected from
an artificial FaaS application that the user can easily create via
configuration. The trace data is then used to train a TPP that models the
function invocations of the FaaS application.

deployed application (Step 1 in Figure 9). The OpenWhisk
executes the application. The OpenTelemetry library [40]
instruments the application’s functions, and exports a span
for each function invocation to the post-processing service
Trace Collector (Step 2). The Trace Collector enriches the
span with meta-information retrieved from the OpenWhisk
API (Step 3) and subsequently exports it to Zipkin [41] (Step
4). Here, the spans are aggregated into traces and then fetched
by the Sampler, which transforms the traces into a data
format suitable for the TPP models (Step 5). Once a trace
dataset is generated, we split it into a training and test dataset.
We use the training data to optimize the parameters of the TPP
model (Steps 6-7), which we then evaluate using the test data
(Step 8).

In the following subsections, we first describe how the
simulation of FaaS applications is carried out (§IV-A), and
then describe each component of TppFaaS in more detail.

A. SIMULATION OF FaaS APPLICATIONS
1) FaaS APPLICATIONS FUNCTION’s DURATION
SIMULATION
A FaaS application is a composition of multiple functions.
To simplify the construction of different compositions, each
function is simulated by a sleep command whose duration
is drawn from a probability distribution for each function
invocation. This approach was also followed in [11], in which
a composition was built that consisted of a sequence of
16 functions. The execution duration of each function was
drawn from an exponential distribution, where each function
had an individual parameterization of the distribution. The
parameters were chosen so that the distribution of the first
function had an expected value of 500ms and was increased
by 50ms for each subsequent even position and decreased
by 50ms for each subsequent odd position. The expected
values of the sequence were thus 500, 550, 450, 600, 400, . . . ,
150, 900ms. The function duration in this work is simulated
using a gamma distribution, since this distribution is the
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FIGURE 10. Effects of α and β on the gamma distribution.

generalization of the exponential distribution and thus offers
us higher flexibility with its two parameters α and β. For
α > 0, β > 0 and x ∈ (0,∞) the probability density
function of the gamma distribution is defined as

f (x) =
βα

0(α)
xα−1e−βx

The exponential distribution is a special case of the
gamma distribution at α = 1 and 0(1) = 1. To better
understand the effect of α and β, the gamma distribution is
visualized in Figure 10 for different parameterization. In the
top figure, α varies while β remains fixed, and we note
that, the lower the α, the more right-skewed the distribution
becomes. That is, the density mass shifts to the left and
gets a long flat sloping tail on the right side. Thus, if the
function duration is simulated with a strong right-skewed
gamma distribution, this leads increasingly to high outlier
values, which negatively affect the later evaluation of the
TPP model with respect to the mean absolute error (MAE).
In general, the more concentrated the distribution of function
durations is, the more accurately the duration until the next
function invocation τi (see Table 1) can be predicted. This
is because τi depends on the execution time of the previous
function. That is, if the distribution of the function duration
of the previous function is very flat, this will lead to an
equally flat distribution for fi,true(τi), the true distribution for
the duration until the next function invocation. If the TPP
model is evaluated using the absolute mean error between
the expected value of the modeled f ∗i (τi) (see Table 1) and
the true duration until the next function invocation τi, the
more spread out realizations of fi,true(τi) result in a larger
error. This highlights the dilemma between parameterization
of the functions and the success of the findings. However,
if the model is evaluated using the negative log-likelihood,
i.e., how similar the modeled distribution f ∗i (τi) is to the true
distribution fi,true(τi), this problem does not apply because
the TPP can also model a flat distribution due to its
flexibility.

TABLE 2. Effects of α and β on the entropy of the gamma distribution.

FIGURE 11. Exponential distributions based on [11] for the simulation of
the function duration having mean between 500ms and 900ms.

In the lower figure of Figure 10, we can observe the effect
of the parameter β on the distribution. We can see that a
lower β causes a shift of the density mass to the right, but
the skewness remains constant. Moreover, the distribution
becomes flatter and spreads out more. For the predictive
ability of the TPP model, this leads to the same issue as
described previously.

We can measure the concentration of the distribution’s
mass using the distribution’s entropy [42]. The higher the
entropy, the more uncertain is the value of a possible
realization of the distribution. That is, flat and widespread
distributions have higher entropy than spiky distributions.
We see the influence of the parameters α and β on the entropy
of the gamma distribution in Table2. If α increases and β
remains fixed, the entropy increases. This observation also
aligns with the graphs in Figure 10, in which the distributions
flatten for a higher α. In the opposite case, α remains fixed
and β increases, the entropy decreases and the distributions
become more peaked. In conclusion, we can assume that
using low entropy distributions for simulating the function
duration will reduce the MAE.

Figure 11 shows the exponential distributions used in [11]
for the simulation of the function duration, as well as their
entropies. Among all continuous distributions defined in
[0,∞), the exponential distribution for a given expected
value has the highest entropy [43]. For this reason, we will
not use this distribution for modeling the function duration.
Instead, we will rely on gamma distributions as in Figure 12,
whose parameterization result in lower entropies than in the
case of the exponential distribution. In [11], high entropies
are not an issue because their mechanism for reducing cold
starts is not based on predicting function invocations using
probabilistic models. Moreover, in our work, high entropies
are only problematic when the TPP is evaluated using the
MAE. In contrast, it should not be a problem for the TPP to
model the distribution of the duration until the next function
invocation f ∗i (τi) such that it resembles the true distribution
fi,true(τi).
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FIGURE 12. Gamma distributions with mean fixed at 300, 400 or 500ms.
It can be seen that the distribution deforms to a normal distribution and
the entropy decreases.

In the topmost figure in Figure 12, all distributions have
an expected value of 300ms. For an increasing α and β, the
distribution becomes more symmetric and peaked, while at
the same time, the entropy decreases. For a high α and β, the
distribution resembles a normal distribution. Analogously,
we can see this in the below figures, where the distributions
have an expected value of 400ms and 500ms, respectively.
We will simulate the functions of the FaaS applications used
in this workwith gamma distributions with expected values of
300ms, 400ms, and 500ms. Higher expected values again lead
to higher entropies and are therefore not used in this work.

Besides the gamma distribution, the log-normal distribu-
tion, also defined in (0,∞), would be another candidate for
modeling the function duration. As mentioned above, the
duration until the next function invocation τi depends on
the function duration of the previous function. For example,
if we consider a FaaS application in which the functions are
invoked sequentially one after another, and if we also neglect
the overhead of OpenWhisk, then the end of a function
execution also signifies the start of the following function.
This would result in fi,true(τi) being equal to the distribution
of the function duration of the previous function. Thus,
the TPP that attempts to model fi,true(τi) indirectly models
the distribution of the function duration of the previous
function. If the function duration is simulated by a log-
normal distribution, then it would be too easy for our TPP
to model fi,true(τi), since it also uses a log-normal mixture
distribution for modeling (see §III-B2). However, is this
work, we also showcase the flexibility of the log-normal
mixture distribution. With this, it should be possible to model
any distribution, such as a gamma distribution.

2) FUNCTION COMPOSITION
We implement the FaaS applications to generate trace data
using JavaScript functions that we instrument with the
OpenTelemetry library [40]. This library provides tools for
generating and modifying spans by code and the ability
to post-process the generated spans and export them to
multiple destinations. An application is constructed as a
composition of n + 1 functions, where the function main is
the entry point of the composition and invokes one or more
subsequent functions. We denote the remaining functions of
the composition with f1, . . . , fi, . . . , fn. A function can invoke
one or more successor functions, allowing the construction
of simple or complex compositions such as sequences
or trees. A span represents the duration of a function
execution, making a trace a representation of all the function
executions in the composition. A composition is finished
after all branches of the composition have been executed. All
function invocations are made asynchronously, meaning that
a function does not wait for the completed execution of the
invoked following functions. Instead, it is terminated upon
invocation of the following functions. As discussed in §IV-A,
the logic of the functions f1, . . . , fi, . . . , fn consists only of
a sleep command whose duration is drawn from a gamma
distribution. This simple logic enables the functions to share
the same function code.

It is to be noted that, we can find conditional function
invocations in real-life applications expressed with an if-else
syntax. For example, a condition evaluated in function f1
can decide whether we invoke function f2 or function f3
next. For the sake of simplicity, we do not include such
conditional function invocations in this work. To cover
conditional function invocations, the input parameters to
the function would be required as another feature for
modeling.

We create compositions using the generic functions and
are individualized by different parameterizations. Using the
serverless framework [44] we can simplify the parameteriza-
tion as well as the lifecycle management of the composition.
We configure the functions and their parameters in a YAML
file named serverless.yaml. We show an example of such
a configuration in Listing 1, with a composition consisting
of five functions: main, f1, f2, f3, and f4. The handler
attribute (in line 8 or 15) specifies the function code.
Here, we reference the generic and configurable JavaScript
implementations, main and f. The two implementations
receive different parameters specified under the parameters
attribute. These parameters are passed to the function as
default parameters via the params parameter object upon
invocation. For the main function, the specification of the
address and authentication of OpenWhisk is required (in
line 10 and 11). These parameters are needed to initialize
the OpenWhisk client, which invokes the successor function.
The f functions also use this client, but get the required
parameters propagated from the main function via params.
Analogously, the collectorHost parameter (in line 12) is
propagated to the f functions. This parameter specifies the
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LISTING 1. Example configuration file for creating a variety of
compositions.

FIGURE 13. The owspanprocessor adapts start and endpoint of the
original span and adds further attributes.

address of the Trace Collector to which we export the spans
for post-processing. The main and f functions share the
nextFn parameter. This parameter specifies the successor
functions that theOpenWhisk client invokes after the function
execution finishes. If we specify multiple functions here as
in line 19, the client invokes these functions in parallel. The
specification of multiple functions enables the construction
of compositions with a tree-like function hierarchy, as is the
case in Listing 1. The function f, whose function duration
is simulated with a gamma distribution, is additionally
configured with the parameters of the distribution, alpha and
beta. In summary, the approach shown provides an easy way
to create diverse compositions.

B. TRACE COLLECTOR
We used the OpenTelemetry Collector Library [45] to
implement a custom collector2 that post-processes the spans

2https://github.com/maSteinbach/owtracecollector.git

produced by the instrumented FaaS application.We configure
the components of the collector within the YAML file. The
collector consists of one receiver, three processors, and one
exporter.

The spans produced by the instrumented FaaS application
are received over HTTP by the pre-implemented OLTP
Receiver [46], and forwards them to the first processor in
the pipeline, the batch processor. The Batch Processor [47]
aggregates the data to minimize later outgoing connections
from the exporter. It is configured with the parameters
send_batch_size and timeout. The former specifies the
maximum batch size. The parameter timeout specifies the
time after the batch is forwarded to the pipeline’s next step,
regardless of its size. The next processor in the pipeline,
the owspanprocessor, receives the aggregated spans. This
processor is developed by us using the OpenTelemetry
collector library and is configured with the host address of
OpenWhisk. The processor extracts the span’s activationId
attribute to retrieve meta-information about the span’s
associated function invocation from the OpenWhisk API.
The attributes extracted by the owspanprocessor measured in
milliseconds are: start, end, waitTime, and initTime.
• The start attribute is a Unix timestamp and is computed
by start := executionStart− initTime, where execution-
Start is a Unix timestamp specifying the start time of the
function code execution. That is, start already specifies
the start of function initialization for a cold function
invocation. This is unfortunately not evident from the
OpenWhisk documentation, but can be derived from the
source code [48] of OpenWhisk.

• The end attribute is a Unix timestamp and specifies the
end of function execution.

• The initTime attribute specifies the duration of function
initialization which applies only to cold function invo-
cations, making the attribute optional.

• The waitTime attribute specifies the OpenWhisk
caused delay occurring before the function initializa-
tion/execution [27].

As illustrated in Figure 13, the processor uses the extracted
attributes to adjust the start and end time of the span. On the
one hand, waitTime and initTime should be included in the
duration of the span. On the other hand, the start and end time
of the received span does not match the true start and end time
of the function invocation and should be adjusted with start
and end. Thus, the processor modifies the start and end time
of the span as follows:

spanStart := start−waitTime

spanEnd := end (12)

Additionally, the waitTime and initTime are added to the
modified span as attributes. In the pipeline’s next step, the
owspanattacher processor receives the spans. As shown in
Figure 14, the processor creates a child span for each of
the waitTime and initTime attributes, as well as a child span
executionTime that represents the function code execution.
The start time of the child span executionTime is computed
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FIGURE 14. The owspanattacher adds child spans for waitTime, initTime,
and executionTime.

with executionStart = start + initTime. The child spans are
not required for the later modeling and serve an exclusively
visual purpose. Therefore, this processor is optional and can
be removed from the pipeline if desired.

In the pipeline’s last step, the spans are exported to
Zipkin, a backend service that receives, validates, indexes,
and stores them aggregated into traces [49]. For exporting,
we specify a Zipkin Exporter with the address of Zipkin
in the collector configuration. The exporter transforms the
spans into the Zipkin data format and sends them to the given
address. We can use Cassandra as a backend database for
Zipkin.

C. SAMPLER
The Sampler is an automated end-to-end pipeline that
contains all the necessary steps for trace datasets generation
used to train and evaluate TPP models, such as deploying
the application, sending requests and collection of data. The
Sampler creates the datasets by sending n requests to the FaaS
application’s main function at irregular time intervals. The
main function represents the entry point of the application.
The time intervals between requests are drawn from a
continuous uniform distribution with an interval specified
by the user, who thus determines the load on OpenWhisk
and, indirectly, the number of cold starts. Another feature
of the Sampler is performing requests in batches, pausing
requesting after each batch for a user-specified duration. The
result is a dataset consisting of n traces whose format is
compatible with training a TPP model.

The first step of the pipeline validates the user-input
arguments, such as that the interval of the uniform distribution
is in the positive range. Next, it verifies that Node.js and
the Serverless Framework CLI are available. Using Node.js,
the pipeline installs the FaaS application’s dependencies,
such as the OpenTelemetry library. In the next step, the
application is deployed using the Serverless CLI, where the
OpenWhisk credentials are read from a configuration file
and provided to the CLI as environment variables. After
deploying the application, the sampler sends n requests to the
FaaS application’s main function at irregular time intervals,
whose durations are drawn from a uniform distribution
each time. For each request, OpenWhisk returns the unique
activationId of the main function invocation, which is
collected in the unfetched_ids array. Once the sampler has
sent all n requests, it may take some time to execute all
function invocations, depending on OpenWhisk’s load. With

FIGURE 15. The spans of the invoked functions f1 and f2 are mapped to
the 3-tuple events (e1) and (e2), which carry the inter-event time (τi ), the
function class (mi ), and the cold start feature (ci ). Given the cold
invocation of f1, we have (c1 = 1).

the activationIds returned by OpenWhisk, we can reference
any span associated with a main function invocation of the
generated n traces. The Zipkin API provide the ability to
filter traces by a single span attribute. Thus, iterating over
the activationIds of the unfetched_ids array and setting the
ID as a filter criterion, we fetch each trace of the n requests
from the Zipkin API. For each fetched trace that is complete,
the respective activationId is removed from the unfetched_ids
array. If the trace is incomplete, we keep the ID in the array
so that the trace can be retrieved again in the next loop. The
iteration stops if either the array unfetched_ids is empty or the
number of IDs in the array stagnates after several iterations.
The latter happens upon runtime errors of OpenWhisk so that
some traces are never completed. Zipkin returns the traces
as JSON, from which the sampler extracts the necessary
information and converts it to a format compatible with the
TPP model.

In order to convert the extracted spans into the TPP model
format compatible, we first decompose the span of a function
invocation into the three time rangeswaitTime, initTime (for a
cold start), and executionTime (see §IV-B). We map the span
to an instantaneous point in time, denoted as an event in the
context of TPPs. For the next invocation, we want to predict
the time at which its request arrived at the FaaS platform. The
FaaS platform could use the predicted time to upscale the
function upfront, allowing it to begin its execution without
delay. In reality, however, a cold start or platform-specific
issues, such as the creation of a Docker container, might delay
the function execution, which OpenWhisk captures through
the waitTime and initTime. So, to predict the time when the
request for the next function invocation arrives at the FaaS
platform, we need to subtract these delays from the actual
start of the function. Letwi be thewaitTime, ii be the initTime,
and xi be the start time of the function execution of the ith

invocation, then we define ti = xi − wi − ii as the mapping
of the span to an instantaneous point in time. The mapping is
visualized in the example in Figure 15, where the functions
main, f1, and f2 are invoked sequentially, with a cold start
occurring on f1. We represent the event of the ith invocation,
which we denote by ei, as either the 2-tuple (τi,mi) or 3-tuple
(τi,mi, ci). The attribute τi = ti − ti−1 ∈ R+ describes the
inter-event time from §III.We usemi ∈ N0, denoted as amark
in §III, to specify the class of the invoked function. The binary
attribute ci ∈ {0, 1} is an optional feature intended to enhance
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the predictive ability of the TPP model, indicating whether
the ith function invocation was a cold start. We compute the
feature with ci = wi > 0.

In the final steps of the pipeline, the sampler saves the
formatted trace dataset as a pickle and shuts down the
application.

D. TPP MODELS
In this section, we briefly describe the TPP models and their
purposes within TppFaaS for modeling functions invocations.

1) LogNormMix: τi AS A LOG-NORMAL MIXTURE
DISTRIBUTION
We use the TPP model LogNormMix (§III-B2) to model
the duration until the next function invocation with the con-
ditional probability distribution f ∗i (τi), where f

∗
i is defined

as a log-normal mixture distribution. For this, we compute
the duration until the next function invocation, i.e., the
inter-event time τi, from the time points of the function
invocations ti. Since the inter-event times may take high
values, they are logarithmized and centered. The inter-event
time is combined with the function class attribute mi and
the optional cold start feature ci to yield the 3-tuple event
ei = (τi,mi, ci), which represents the function invocation
and is input to the RNN. We represent each function class
by a trainable 32-dimensional embedding vector. The vectors
are concatenated into an embedding matrix indexed by mi.
Analogously, we represent the two values of the cold start
feature, ci each, by a trainable 32-dimensional embedding
vector. The RNN ingests the event ei and produces a
hidden state vector hi ∈ R64 that encodes the history of
past invocations. An affine transformation and subsequent
softmax operation maps the vector hi to the parameters of
the log-normal mixture distribution. The softmax operation
forces the component weights of the mixture distribution to
sum to 1.

2) TruncNorm: τi AS A SINGLE VALUE
Instead of an entire probability distribution f ∗i (τi), a single
value for the inter-event time τi is sufficient for some
applications. For example, if the FaaS platformmust initialize
the function in advance to avoid a cold start, only the single
value τi is required. Thus, we need a point estimate of f ∗i (τi)
that maps the distribution to a single value. There are two
methods to obtain this point estimate. First, as in §IV-D1,
we can model f ∗i (τi) with LogNormMix, which provides us
with a log-normal mixture distribution for it. The expected
value of this mixture distribution, i.e. E

[
f ∗i (τi)

]
, can be

computed analytically and quickly, representing the desired
point estimate of f ∗i (τi). In the second method, we map
the hidden state vector hi of the RNN to a positive real
number representing the inter-event time τi using an affine
transformation and subsequent softplus operation. Instead of
softplus, we can use any other operation that enforces τi > 0,
such as the logarithm. We may also interpret this method as
a TPP that models the conditional probability distribution

f ∗i (τi) with a truncated normal distribution with constant
variance [50]. The normal distribution is ‘‘truncated’’ as it
is not defined in R as usual, but only in R+. The single
value for τi, obtained by the affine transformation of hi
and the softplus operation, is the expected value of this
distribution. In this work, we selected the second method
(which we refer to as TruncNorm) since, for a simple
point estimate, the high flexibility of the log-normal mixture
distribution is unnecessary for modeling f ∗i . Moreover,
we experienced more stable training with TruncNorm and a
faster decrease of the loss function, i.e., the mean absolute
error.

3) MARK MODELED WITH A CATEGORICAL DISTRIBUTION
We assume that the mark or function type mi and the
inter-event time τi of the ith function invocation are indepen-
dent. We define the distribution over mi as the categorical
distribution f ∗i (mi) = fi(mi|H(ti)) parameterized by the
vector π i. The value πi,c describes the probability that mi is
of class c. We obtain f ∗i (mi) by an affine transformation of the
hidden state vector hi produced by the RNN and a subsequent
softmax operation.

V. EVALUATION SETTINGS
This section describes the various evaluation settings used in
this work. First, we describe the benchmark applications used
in §V-A. Then we present the infrastructure settings on which
the evaluation is conducted in §V-B. Furthermore, we explain
the various datasets generated for evaluation in §V-C, and
training models hyperparameters in §V-D. Lastly, in §V-E,
we define the performance quality evaluation metrics used in
this work for evaluation of the results.

A. BENCHMARK APPLICATIONS
To generate trace datasets, we construct several instrumented
FaaS applications using the method described in §IV-A2.
That is, the applications are a composition of several artificial
functions whose execution time is simulated by a sleep
command. We configure the application in the YAML file
of the Serverless Framework. With it, we specify the call
graph, i.e., the structure of the composition that dictates in
which order the functions invoke each other. In addition,
we use the configuration to specify the duration of the sleep
commands of the individual functions. By adjusting these two
hyperparameters, the structure of the composition, and the
distribution of the function duration, we build applications
with unique characteristics that complicate the modeling of
the function invocations for the TPP model. In particular,
1) the constructed applications exhibit different structural
characteristics (sequence, parallel, tree and fanout), 2) each
of the applications are scaled in two variants: small variant
and large variant, and 3) for each variant of the application,
we implement a randomized and a non-randomized variant.
In the non-randomized variant, the duration of the sleep com-
mand for all functions is fixed with either 300, 400, or 500ms.
In the randomized variant, the duration is drawn from a
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TABLE 3. To simulate the functions, three gamma distributions with
mean values of 300, 400 and 500ms are used for the randomized FaaS
applications. The respective values of the parameters for α and β of the
gamma distribution are listed in this table.

FIGURE 16. The application sequence is a sequential composition of
11 functions invoked one after another.

gamma distribution for each function invocation (see §IV-A).
During configuration, we, therefore, assign each function one
of three gamma distributions with expected values of either
300, 400, or 500ms. The associated parameters α and β of
these distributions are listed in Table 3 and the associated
distributions are shown in Figure 12.

In the rest of the paper, we label the randomized
applications with the substring rand in the application name.
However, we do not distinguish between randomized and
non-randomized applications in the following figures of the
section. Therefore, when we refer to the duration of the
sleep command in the following, we also mean the expected
value of the gamma distribution. In the following subsections,
we present the four constructed FaaS applications: sequence,
parallel, tree and fanout. For each of these applications,
except for sequence, four variants exist. These include the
two variants for scaling the structural characteristic, i.e., small
and large, as well as a randomized and non-randomized
variant for each. The application sequence exists only in
the versions sequence and sequence_rand, since scaling the
simple structure does not provide any added value. All
applications consist of exactly onemain function andmultiple
f#. We study the applications with respect to the following
aspects: the structural characteristic, what challenges do this
pose for the TPP model, how is the structural characteristic
scaled, and how are the sleep commands of the functions
configured.

1) SEQUENCE APPLICATION
The sequence application shown in Figure 16 is the simplest
of the four applications. Its structure consists of 11 functions
that are invoked one after another. Due to the simplicity of
the structure, scaling of the sequence is not required. If the
TPP can model a sequence of 10 functions, it should also be
possible for 20 and more. Furthermore, there are no parallel
function executions in the structure. Therefore, the function
invocations mapped to the time axis always have the same
order. Thus, it should be straightforward for the model to

FIGURE 17. The application parallel_large consists of four function
branches that are executed in parallel.

FIGURE 18. A potential time sequence of the function calls of the
application parallel_large. The next function call f31 depends on the call
of f21, but between f21 and f31 the other function calls of f22, f23 and
f24 occur. This means, in order to model the call of f31, the model must
be able to store the information of f21’s call across multiple function
invocations. This is challenging for RNN-based models.

predict the class of the next invocation. The sleep commands
are configured with the cyclically increasing sequence of 300,
400, and 500ms. However, except for the sleep command of
the last function f10, which has a duration of 0ms. Since
no functions follow here, a simulated function duration is
unnecessary, and we omit it in favor of resource optimization.

2) PARALLEL APPLICATION
Figure 17 shows the large variant of the parallel application,
i.e. parallel_large. The structural characteristic here is the
parallel execution of four function branches. If we map the
function invocations to the time axis, their order may differ
for different traces. For example, a cool start for one function
may delay the executions of the successor functions of the
affected function branch, which would eventually affect the
order of the invocations of the entire composition. Smaller
deviations in the function duration, which we simulate with
the randomization of the application, might also cause this
effect. Uncertainty in the invocation order is a challenge for
the TPP model. We illustrate another challenge caused by
parallel function execution using Figure 18. This figure shows
a possible sequence of invocations of parallel_large mapped
to the time axis. Here, invocations from different function
branches are colored differently. In the scenario shown, the
functions from main to f22 have already been invoked, and
the next function invocation, here f31, should be modeled.
As illustrated in Figure 17, f31 is a successor function to f21,
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FIGURE 19. The application tree_large is a tree-shaped function
composition with a height of three.

so f31 is invoked as soon as f21 finishes execution. However,
we see in the figure that the invocation of f21 is relatively far
in the past, and in the meantime, the functions f23, f24, and
f22 have been invoked. Thus, the TPP model must memorize
the invocation of f21 over multiple invocations to model
the long-time dependency. This ‘‘looking far into the past’’
challenges TPP models based on an RNN architecture [51].

We scale the structure of the parallel application by the
number of parallel function branches. While parallel_large
has four of them with a total of 21 functions, parallel_small
has two with a total of 11 functions. The sleep com-
mands are configured to distribute the invocations of the
different branches evenly over time. As with the sequence
application, the last functions of the composition have a
simulated function duration of 0ms for resource optimization
reasons.

3) TREE APPLICATION
Figure 19 shows the large variant of the tree application,
i.e. tree_large, whose structure is a tree of height three.
Except for the main function, each function invokes two
successor functions in parallel. That is, the number of
functions executed in parallel doubles with each lower level
of the tree, giving us 12 parallel function executions at the
deepest level. With this high number of parallel executions,
the temporal order of the function invocations is particularly
uncertain. Moreover, the invocations for deeper levels occur
at increasingly shorter time intervals. We scale the structure
by the height of the tree. While tree_large has a tree height
of three with a total of 22 functions, tree_small has a tree
height of two with a total of 10 functions. An advantage
is that relatively many functions of the application do not
have a successor function; thus, we can specify their sleep
commands with 0ms.

4) FANOUT APPLICATION
Figure 20 shows the large variant of the application fanout,
i.e. fanout_large. Characteristic for the structure are the
two highly parallel function executions at functions f1
and f3. However, the functions are not invoked exactly
simultaneously. Instead, f1 invokes the functions from f21 to
f29 sequentially, with a time gap of about 20ms. Nevertheless,
many invocations occur with short time intervals, which
might be challenging for the TPP. Moreover, the FaaS

FIGURE 20. The distinctive feature of the application fanout_large are
the functions f1 and f3 with nine subsequent functions each.

platform may not follow the invocation order of functions
f21 to f29 defined by us. We scale the structure by changing
the degree of parallelism of functions f1 and f3. While in
fanout_large, functions f1 and f3 each have nine subsequent
functions, in fanout_small they each have five. Thus, the
total number of functions is 21 for fanout_large and 13 for
fanout_small. As with tree application, a relatively large
number of functions have no successor and, therefore,
a simulated execution time of 0ms.

B. INFRASTRUCTURE SETTINGS
Generating trace data with cold starts imposes high
demands on the infrastructure. To meet these, we host the
performance-critical components of the system architecture,
i.e., OpenWhisk, the Trace Collector, and Zipkin, onGoogle’s
Kubernetes Engine.3 Our Kubernetes cluster consists of nine
nodes, each with 32GiB ofmemory and a CPU (Intel Skylake
architecture) with nine virtual cores. So, in total, we have
72 CPU virtual cores and 288 GiB of memory at our disposal.
The sampler service requires only a few resources and runs
on a separate VM with two virtual cores.

We train our TPP models on a single-node cluster
with 754 GiB of memory and two Intel Cascade Lake
processors (Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz)
with 22 cores each.

C. DATASET GENERATION
We generate datasets with 1000 traces each for all variants
of the four applications sequence, parallel, tree, and fanout
described in §V-A. The parallel, tree, and fanout applications
each exist in a small and large variant, identified by the
substring small and large, respectively, in the application
name. In addition, each small and large variant and sequence
exist in a randomized and non-randomized variant. For each
of these variants, we generate a dataset with and without
cold starts. In the former, the cold invocations account for
exactly 30% of the total invocations. To generate such a
dataset, we create 400 traces with almost exclusively cold
invocations and 1000 traces with almost exclusively warm

3https://cloud.google.com/kubernetes-engine

9072 VOLUME 10, 2022



M. Steinbach et al.: TppFaaS: Modeling Serverless Functions Invocations via Temporal Point Processes

invocations.We then incrementally substitute the warm traces
with cold traces until the 30% of cold invocations is reached.
We generate the datasets using the Sampler from §IV-C,
which sends requests to a given application. The duration
between requests is drawn each time from a continuous
uniform distribution whose interval bounds are specified by
the parameters l (lower bound) and u (upper bound). Thus,
the specification of the interval influences the request rate
and thus the load on OpenWhisk. A higher request rate
increases the load on OpenWhisk, which responds by scaling
up the functions, causing cold starts. These interval limits
are accordingly to generate datasets with or without cold
starts.

For the datasets without cold starts, the choice of l and
u is simple. Here, we just need to ensure that the request
rate specified by l and u does not exceed the capacity of
OpenWhisk. The maximum request rate depends on the
nature of the FaaS application. Therefore, we choose a
higher rate for the small application variants, consisting of
fewer functions, than for the large ones with more functions.
If the request rate is below capacity, OpenWhisk can prevent
requests from queuing by scaling the functions to adapt to
the load. OpenWhisk performs the scaling relatively fast,
so that the proportion of cold starts of the total invocations
is negligible, with less than one percent.

Generating datasets with almost exclusively cold starts is
more challenging because we have to choose the request
rate with l and u so that OpenWhisk scales the functions.
If the sampler sends requests at a constant rate to a FaaS
application, OpenWhisk starts scaling up the functions until
it can serve each future request with a warm function instance
without delay. As a result, even with a high request rate,
cold starts only occur at the beginning, until OpenWhisk has
adapted to the load. To avoid it, we set the request rate high
enough that OpenWhisk cannot adapt to the load over the
entire request period, and therefore also scale the functions
over this period. However, we reach the limit of our hardware
resources after a certain time, which prevents further scaling.
From this point on, more and more requests start to queue
up at OpenWhisk, which thus have to wait longer and longer
for a free function instance. The waitTime, which captures
this waiting at OpenWhisk, therefore increases continuously
and reaches high values of up to several minutes. To mitigate
the problem of a continuously increasing waitTime for a
constant high request rate, we execute the Sampler’s requests
in batches. That is, the Sampler sends b requests to the FaaS
application at a constant rate and then waits for w seconds
before sending the next b requests. The size of the batch b and
the duration of the pause between batches w are parameters
of the Sampler. This approach prevents the accumulation
of more and more requests at OpenWhisk and thus the
continuous increase of the waitTime. If we choose b not too
large and w not too small, all requests are already served by
a function execution before the next batch of requests arrives
at OpenWhisk. However, a too small batch size will prevent
OpenWhisk from scaling, and thus no cold starts will occur.

FIGURE 21. Distribution of the inter-event time τi for i ∈ {1, . . . ,N − 1} in
the generated datasets without cold starts, where N is the number of
functions of the FaaS composition.

Therefore, we choose the batch size b large enough to trigger
scaling.

The chosen parameters of the l, u, w, and b for each
dataset are shown in the Table 4. For the datasets without
cold starts, no batching of the requests is required, so we do
not need to specify the w and b parameters here. Based on
the selected parameters, distribution of the inter-event time
τi for i ∈ {1, . . . ,N − 1} in the generated datasets for
the applications without cold starts is shown in Figure 21,
Figure 22 for random variant and with 30% cold starts is
shown in Figure 23, where N is the number of functions of
the FaaS composition.

D. TRAINING DETAILS AND MODEL PARAMETERS
We partition the 1000 traces of each dataset into 600 for
training and 200 each for validating and testing the TPP
model. The training set is used to optimize the model
parameters, the validation set is used for evaluation during
training, and the test set is used for the final evaluation.
To obtain averaged results, we train and evaluate with each
dataset using ten different dataset splits. For each split,
we train two TPPmodels, LogNormMix and TruncNorm (see
§IV-D2). We optimize the former with the loss functionLNLL
and the latter with LMAE. Both loss functions evaluate the
prediction of the next function class mi with the negative
log-likelihood (NLL), but differ in the evaluation of the
predicted τi. As shown in §IV-D1 and §IV-D2, LogNormMix
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TABLE 4. The parameter configurations of the Sampler from IV-C which were used to generate the datasets for the 14 applications. For each application,
one data set without and one data set with almost exclusively cold function calls were generated.

FIGURE 22. Distribution of the inter-event time τi for i ∈ {1, . . . ,N − 1} in
the generated random variant datasets without cold starts, where N is
the number of functions of the FaaS composition.

predicts τi with the conditional probability distribution f ∗i (τi),
whereas TruncNorm provides a concrete value for τi, which
we denote with τ predi . The loss function LNLL evaluates the
distribution f ∗i (τi) using the NLL, whereas the loss function

FIGURE 23. Distribution of the inter-event time τi for i ∈ {1, . . . ,N − 1} in
the generated datasets with 30% cold starts, where N is the number of
functions of the FaaS composition.

LMAE computes the mean absolute error (MAE) for τ predi .
To derive LNLL, we denote by x = {e1 = (τ1,m1), . . . , eN =
(τN ,mN )} an event sequence representing a trace of
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invocations. The likelihood of the trace is defined by

p(x|θ ) =
N∏
i=1

[
f ∗i (τi,mi)

]
S∗N+1 (13)

Assuming that the inter-event time τi and mark mi are
independent, we obtain our loss function:

p(x|θ ) =
N∏
i=1

[
f ∗i (τi,mi)

]
S∗N+1

=

N∏
i=1

[
f ∗i (τi)f

∗
i (mi)

]
S∗N+1

LNLL(θ ) = − log p(x|θ )

= −

N∑
i=1

[
log f ∗i (τi)+ log f ∗i (mi)

]
− log S∗N+1

(14)

The model parameters are optimized by minimizing the
loss function. For this, we use the optimization algorithm
Adam [52] with a learning rate of 10−3 and minibatch
size of 64. We train LogNormMix and TruncNorm up
to 2000 and 4000 epochs, respectively, where an epoch
describes the iteration over the entire training data. If the
loss does not decrease after 100 and 200 epochs, respectively,
with respect to the validation set, we abort the training and
pick the model with the lowest loss with respect to the
validation set. To reduce the effect of overfitting, we apply L2
regularization with 10−5 on the model parameters. To model
f ∗i (τi), LogNormMix uses a log-normal mixture distribution
with K = 64 components. According to [31], the parameter
K does not have much impact on the performance of the
model, which is why we do not test any other values. As RNN
architecture, we use a gated recurrent unit (GRU) [53]
with a hidden state vector in R64. As described in §IV-D1,
we represent the mark mi and the cold-start feature ci with
embedding vectors in R32.

E. PERFORMANCE QUALITY MEASURES
The TPP LogNormMix predicts the conditional probability
distribution f ∗i (τi) over the inter-event time τi and the
conditional categorical distribution f ∗i (mi) over the marks
mi. We use the negative log-likelihood (NLL) to evaluate
the predicted distributions with respect to the test dataset
x = {(τ1,m1), . . . , (τN ,mN )}. Using NLLtime, NLLmark, and
NLLtotal, we evaluate the distribution over τi, mi, and both
variables, respectively. TheNLL qualitymeasures are defined
as follows:

NLLtime = −
1
N

N∑
i=1

log f ∗i (τi)− log S∗N+1

NLLmark = −
1
N

N∑
i=1

log f ∗i (mi)

NLLtotal = NLLtime + NLLmark (15)

It is worth noting here that a single NLL value has little
explanatory power. That is, we cannot evaluate whether a
value is ‘‘good’’ without referring to other values. For this
reason, the relative differences between the NLL values for
different datasets is analyzed [31].

The accuracy is another quality measure that evalu-
ates LogNormMix’s predictive capability of the mark mi.
It describes the fraction of correctly predicted marks, such
that 1.0 is the optimal and 0.0 is the worst value for this
metric.We obtain the predicted class cpred of the markmi with

cpred = argmax
c

πi,c, (16)

where πi,c describes the probability that the ith function
invocation is of class c (see §IV-D3). We expect a cor-
relation between the measure NLLmark and the accuracy.
The accuracy measure evaluates the TPP according to its
capability to predict a single class for the next function
invocation. The FaaS platform can use the prediction to scale
the corresponding class in advance.

The TPP TruncNorm predicts a single value for the
inter-event time τi and also, like LogNormMix, a conditional
categorical distribution over mi (see §IV-D2). We evaluate
the predicted value for the inter-event time, denoted as τ predi ,
by computing the mean absolute error

MAE =
1
N

N∑
i=1

|τi − τ
pred
i | (17)

for the test dataset. Besides the mean value of the absolute
errors, the distribution of the errors is interesting. This give us
information if the time predicted for the invocation was too
early or too late. Therefore, we compute for the test dataset
the errors using the following equation:

Ei = τ
pred
i − τi, i ∈ {1, . . . ,N } (18)

and visualize their distribution. Here, a negative value
indicates that the predicted time was too early.

Like LogNormMix, TruncNorm also predicts a distribution
over the mark mi. However, in contrast to LogNormMix,
we do not evaluate this distribution because the results of the
two TPPs would be similar. The reason for this is that both
predict their mark distribution conditionally independent of
the time. Therefore, the distribution is only conditioned on
the history embedding hi produced by an RNN in both TPPs.

VI. RESULTS
We evaluated our TPP models LogNormMix (§IV-D1) and
TruncNorm (§IV-D2) with respect to various applications
(§V-A), which differ in structure, number of functions, and
randomization of the function’s sleep command. In this
section, we present the results of both the datasets (with
and without cold starts). We evaluated predicted distributions
with the negative log-likelihood (NLL) and predicted single
values with the mean absolute error (MAE). For both
quality measures, lower values are better and zero is
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FIGURE 24. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) and inter-event time prediction (NLLtotal) with
respect to the test dataset, with a lower value being better and zero being
optimal. The datasets have no cold starts.

FIGURE 25. LogNormMix evaluated via the negative log-likelihood of the
inter-event time prediction (NLLtime) with respect to the test dataset,
with a lower value being better and zero being optimal. The datasets have
no cold starts.

optimal. As described in §V-E, a single NLL value has
little explanatory power. Instead, the differences between
values for different applications are of interest. In contrast,
a singleMAE value is meaningful and evaluable even without
comparison to other values.

A. PREDICTIONS ON DATASETS WITHOUT COLD STARTS
In this section, we present the results of prediction on dataset
without cold starts.

1) LogNormMix VIA NLLtotal
LogNormMix predicts a distribution for the inter-event time
τi and for the mark mi, i.e., for the functional class. Using
NLLtotal from equation (15), we evaluated both distributions
combined and present the results in Figure 24. Looking at
the NLL measures NLLtotal,NLLtime, NLLmark in Figure 24,
Figure 25 and Figure 26, we notice that NLLtime has a
much higher proportion of NLLtotal than NLLmark. For
example, the application tree_large_rand has a value of about
3.8 for NLLtotal. From this value, about 3.25 accounts for
NLLtime and about 0.55 for NLLmark. Thus, we can infer
that it is much more challenging for LogNormMix to predict
the time than the functional class. Future research should
therefore prioritize improving the prediction of the inter-event
time τi.

2) LogNormMix VIA NLLtime
We evaluated the inter-event time with NLLtime from
equation (15) and show the results in Figure 25. We draw the
following conclusions:

a: DIFFERENCES BETWEEN RANDOMIZED AND
NON-RANDOMIZED APPLICATIONS
A look at the metric NLLtime in Figure 25 shows that LogNor-
mMix performed better for non-randomized applications than
for randomized ones. This was expected since the function
duration was drawn from a gamma distribution instead of
being constant. When we look at the distributions of the
inter-event time τi in Figure 21 and Figure 22, we see that
the distributions for randomized applications have a higher
variance than for non-randomized ones. This higher variance
makes predictionmore challenging for the TPPs. The fact that
the function duration is drawn independently of the gamma
distribution also impairs the prediction. In a real-world
application, some dependence between function execution
times can be assumed. For example, if the execution time
of a function is longer than usual due to a high load on
the FaaS platform, it is likely that subsequent functions
will also execute longer than usual. The information about
the overload would be encoded in the resulting higher
inter-event times, thus improving time prediction of the
TPP.

Furthermore, we see in Figure 25 that the results for appli-
cations with a small proportion of parallel functions suffered
particularly from randomization. For example, this is evident
for the applications sequence_small, which has no parallel
functions, and fanout_large, which has a high proportion
of parallel functions. While the TPP performed marginally
worse in the non-randomized case for sequence_small than
for fanout_large (difference of approximately 0.25), this
difference is much more significant in the randomized case
(difference of approximately 3). This is because in sequence,
each function has a successor that is invoked after a sleep
command completes. This means that there is a randomized
sleep command between every two invocations, which makes
the predictions more difficult. In contrast, the parallel
functions in fanout (e.g., functions f21 to f29 in 20) are
invoked as a sequence without any intermediate randomized
sleep commands, so the results in fanout are less affected
by the randomization. This is also illustrated in 22, where
we see in the diagram of sequence_rand that the inter-event
time distributions for all i have high variance. In comparison,
in the diagram of fanout_large_rand, only the distributions
of τ2, τ11 and τ12 have high variance. The other distributions
with a low variance refer to parallel functions (e.g., f21 to
f29). Transferring this knowledge to real-world scenarios,
we can say that applications with parallel functions without
uncertainty between invocations, e.g., caused by a database
query with high variance in execution time, facilitate time
prediction.

b: DIFFERENCES BETWEEN SMALL AND LARGE
APPLICATIONS
It is interesting that in Figure 25 the result for the
applications parallel_small and parallel_large are equal in
the non-randomized case, but the result for parallel_large is
slightly better in the randomized case. This contradicts our
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FIGURE 26. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) prediction (NLLmark) with respect to the test
dataset, with a lower value being better and zero being optimal. The
datasets have no cold starts.

assumption (presented in Figure 18) that a higher number
of parallel function branches would affect the prediction
performance for the inter-event time. Moreover, we see in
Figure 25 that LogNormMix performed better for tree_large
than for tree_small in the non-randomized case and that
the results of both applications are equal in the randomized
case. This indicates that a higher tree depth has no negative
influence on the prediction performance. In addition, we see
in Figure 25 that the prediction performance for fanout_large
was better than for fanout_small, which is due to the higher
proportion of parallel functions. This also shows us that
scaling the number of parallel functions in the application
structure does not harm the time prediction performance of
the TPP.

3) LogNormMix VIA NLLmark
In addition, we evaluated the function class distributions
separately with NLLmark from equation (15) and show the
results in Figure 26. The NLLmark measure in Figure 26
shows that LogNormMix performed well for the majority
of the applications, i.e., the values are close to zero.
However, exceptions are the results for tree_large and
the randomized versions of parallel and tree. A drop in
performance between the small and the large versions can
be observed for the two latter applications, parallel and
tree. Characteristic for the structure of these applications
is a high number of parallel function branches. This
indicates that the function class prediction is challenging
for applications with this structure. Thus, the assumption
in Figure 18 holds for function class prediction, in contrast
to the time prediction as described previously. Since the
function class order is the same for all traces, LogNormMix
performed best for the application sequence with a near-zero
NLL value.

4) LogNormMix VIA ACCURACY
Another measure that evaluates the performance in terms
of the function class prediction is the accuracy from
equation (16). The measure is defined in the range [0.0, 1.0],
where 1.0 is the best (all classes were predicted correctly)
and 0.0 is the worst. We show the results of LogNormMix
with respect to this measure in Figure 27. The results of
the accuracy in Figure 27 reflect the results of the NLLmark

FIGURE 27. LogNormMix evaluated via the accuracy of the mark (function
class) prediction with respect to the test dataset, with a higher value
being better and 1.0 being optimal. The datasets have no cold starts.

measure, though the values are more interpretable. We see
that LogNormMix achieved an accuracy close to 1.0 for
the majority of the applications, meaning that almost all
invocations were classified correctly. Analogous to NLLmark,
LogNormMix achieved worse results for the randomized
versions of parallel and tree. However, an accuracy of above
0.93 was still achieved for tree_large, parallel_small_rand,
and tree_small_rand, which is acceptable. An accuracy of
about 0.8 for parallel_large_rand and tree_large_rand, on the
other hand, could further be improved by collecting more
data.

5) TruncNorm VIA MAE
TruncNorm predicts a single value for the inter-event
time τi. We evaluated this prediction using the MAE from
equation (17) and show the results in Figure 28. Figure 28
shows the results of TruncNorm’s inter-event time predictions
in terms of the mean absolute error. The results are similar
to those for the NLLtime measure, i.e., they exhibit the same
patterns: better results for non-randomized applications than
for randomized ones, smaller drop in performance due to
randomization for applications with a higher proportion of
parallel functions (e.g., tree and fanout), and no negative
impact on the results when scaling the application structure
from small to large. For the non-randomized applications,
all MAE values are below 20ms, which is reasonable
given the duration of the sleep command of 300s to
500ms. This also applies to the randomized applications,
excluding the applications parallel and sequence. For these
two applications, the values of about 40 and 60ms can be
improved by providing more features for the TPP in future
work.

6) TruncNorm VIA Ei
In addition, we calculated the errors Ei from equation (18)
for the entire test dataset and visualize their distribution in
Figure 29. Here, lower absolute values are better and zero
is optimal. The error distributions of the inter-event time
predictions in Figure 29 show that TruncNorm performed
well for most applications. However, analogous to the
results for the mean absolute error, the performance for the
randomized versions of sequence and parallel was relatively
poor. Here, the error distributions have higher variances
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FIGURE 28. TruncNorm evaluated via the mean absolute error (MAE) of
the inter-event time prediction with respect to the test dataset, with a
lower value being better and zero being optimal. The datasets have no
cold starts.

FIGURE 29. TruncNorm evaluated via the distribution of the errors
between the predicted and true inter-event time (Ei = τ

pred
i − τi ) with

respect to the test dataset, with a lower absolute value being better and
zero being optimal. A negative value indicates that the predicted time for
the invocation was too early. The datasets have no cold starts.

than for the other applications. Notably, all distributions are
symmetric and centered in zero.

B. FUNCTION PREDICTION ON DATASETS WITH COLD
STARTS
This section repeats the evaluation from §VI-A but with
the difference that 30% of the function invocations were
cold starts. Another difference is that we trained and
evaluated the models twice for each application. Once the
cold start feature ci ∈ {0, 1} was included in the event
representation, i.e. (τi,mi, ci), and once it was not, i.e.
(τi,mi). The feature indicates whether the ith invocation was a
cold-start.

1) LogNormMix VIA NLLtime
We evaluated the inter-event time with NLLtime from
equation (15) and present the results in Figure 31. The
results regarding NLLtime in Figure 31 are similar to the
results for this measure without cold starts in Figure 25, yet
with slightly poorer performance. However, one difference is
that LogNormMix also performed relatively poorly for the
non-randomized versions of the applications sequence and
parallel. At the same time, this was not the case for the
datasets without cold starts. Looking at the inter-event time
distributions in the cold start datasets, illustrated in Figure 23,
we see that they have a high variance for the applications
sequence, parallel_small, and parallel_large. This obviously
affects the prediction performance. In comparison, the
inter-event time distributions in the datasets without cold

FIGURE 30. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) and inter-event time prediction (NLLtotal) with
respect to the test dataset, with a lower value being better and zero being
optimal. 30% of the invocations were cold starts, where for each
application, the TPP was trained and evaluated once with the cold start
feature ci enabled and once with it disabled.

FIGURE 31. LogNormMix evaluated via the negative log-likelihood of the
inter-event time prediction (NLLtime) with respect to the test dataset,
with a lower value being better and zero being optimal. 30% of the
invocations were cold starts, where for each application, the TPP was
trained and evaluated once with the cold start feature ci enabled and
once with it disabled.

starts, illustrated in Figure 21, have almost no variance.
The high variance of the inter-event time distributions is
caused by the high variance of the waitTime distributions
shown in Figure 32. These very high waitTime values,
up to 10 seconds, are caused by the high load imposed on
OpenWhisk to enforce cold starts. Furthermore, it can be
seen in Figure 31 that the enabled cold start feature slightly
improved the prediction results. However, the improvement
is marginal as the major uncertainty in inter-event time
prediction comes from the waitTime values with high
variance. The feature does provide the information that a
cold start occurred and that a higher inter-event time can
be expected, but due to the high variance of the waitTime,
prediction is still challenging.

2) LogNormMix VIA NLLmark
Looking at the results of the NLLmark measure in Figure 33,
it is noticeable that they are slightly worse than the results for
the datasets without cold starts in Figure 26. This implies that
the function class prediction was also affected by the higher
variance of the inter-event time (see Figure 23) caused by the
higher variance of thewaitTime (see Figure 32). Similar to the
results without cold starts, LogNormMix performed worse
for the applications parallel and tree due to their structure with
parallel function branches. Enabling the cold start features
led to improvements, but as with the results for the NLLtime
measure, these were marginal.
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FIGURE 32. Distribution of the waitTime wi for i ∈ {1, . . . ,N} in the
generated datasets with 30% cold starts, where N is the number of
functions of the FaaS composition.

FIGURE 33. LogNormMix evaluated via the negative log-likelihood of the
mark (function class) prediction (NLLmark) with respect to the test
dataset, with a lower value being better and zero being optimal. 30% of
the invocations were cold starts, where for each application, the TPP was
trained and evaluated once with the cold start feature ci enabled and
once with it disabled.

3) LogNormMix VIA ACCURACY
Analogous to the drop in performance for NLLmark due
to cold starts, this is also the case for the results with
the measure accuracy in Figure 34. Especially, the results
for the non-randomized versions of parallel and tree were
affected by the high variance of waitTime. For example,
the results for parallel_small and tree_small decreased by
approximately 0.06 and 0.08, respectively, compared to the
results for the datasets without cold starts in Figure 27.
The highest decrease in accuracy of approximately 0.11 was
experienced for the application parallel_large. Even though
the performance generally decreased due to the cold starts,

FIGURE 34. LogNormMix evaluated via the accuracy of the mark (function
class) prediction with respect to the test dataset, with a higher value
being better and 1.0 being optimal. 30% of the invocations were cold
starts, where for each application, the TPP was trained and evaluated
once with the cold start feature ci enabled and once with it disabled.

the results are still good. Thus, the accuracy for paral-
lel_large_rand and tree_large_rand decreased by only about
0.03 and 0.05, respectively. Similarly, parallel_small_rand
and tree_small_rand decreased by about 0.03 and 0.06,
respectively. The accuracy for all versions of fanout decreased
by at most 0.03.

4) TruncNorm VIA MAE
Similar to the decrease in performance with respect to
NLLtime due to the cold starts, a decrease in performance
with respect to the mean absolute error in Figure 28 is also
observed. The high variance of the waitTime in the cold start
datasets significantly affected the prediction performance
of TruncNorm, resulting in MAEs of more than 400 ms.
Compared to the results for the datasets without cold starts
in Figure 28, where the MAE was below 20 ms for most
applications, this is a significant increase. The MAE is
especially high for the applications sequence and the small
versions of parallel, with values between 1000 and 1500ms.
This could be related to the fact that the structures of these
applications have a low proportion of parallel functions.
Therefore, as seen in Figure 23, most of the inter-event
time distributions have a high variance. In contrast, the
performance of TruncNorm is relatively good for the large
versions of parallel. This is surprising since LogNormMix
struggled to predict the time for these applications, as can
be seen in Figure 31. We can also observe that the cold start
feature improves the prediction performance, especially for
the small versions of sequence and parallel.

5) TruncNorm VIA Ei
The error distributions of the inter-event time predictions
in Figure 36 show that TruncNorm achieved good results
for most applications, i.e., absolute values close to zero.
Analogous to the results with mean absolute error in
Figure 35, the performance for the small versions of parallel
and especially sequence is relatively poor as the error
distributions have high variance. Furthermore, the error
distributions show that most of the errors were negative.
By the definition Ei = τ

pred
i − τi, a negative error signifies

that the predicted time for the invocation was too early. This
is since the high waitTime delayed the invocation.
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FIGURE 35. TruncNorm evaluated via the mean absolute error (MAE) of
the inter-event time prediction with respect to the test dataset, with a
lower value being better and zero being optimal. 30% of the invocations
were cold starts, where for each application, the TPP was trained and
evaluated once with the cold start feature ci enabled and once with it
disabled.

FIGURE 36. TruncNorm evaluated via the distribution of the errors
between the predicted and true inter-event time (Ei = τ

pred
i − τi ) with

respect to the test dataset, with a lower absolute value being better and
zero being optimal. A negative value indicates that the predicted time for
the invocation was too early. 30% of the invocations were cold starts,
where for each application, the TPP was trained and evaluated once with
the cold start feature ci enabled and once with it disabled.

C. TRAINING DURATION
Table 5 and Table 6 show the training duration of the TPP
models LogNormMix (§IV-D1) and TruncNorm (§IV-D2)
for different datasets using the technical infrastructure from
§V-B. The training duration was measured in process time
(see Table 5) and in number of epochs (see Table 6), where
an epoch describes one iteration over the entire training
dataset. Each measured value is the average of ten training
iterations with different train/validation/test dataset splits
(§V-D). We trained LogNormMix using the loss function
LNLL from equation (14), which evaluates the prediction for
the inter-event time τi with the negative log-likelihood, and
TruncNorm with the loss function LMAE from equation (17),
which evaluates the prediction for τi with the mean absolute
error. We trained both models on datasets that contained no
cold function invocations and on datasets with 30% of the
invocations being cold starts (see V-C). We can provide the
TPP with the optional feature ci, which indicates whether
the current invocation was a cold start. We trained with each
cold start dataset twice, once with the feature enabled and
once with it disabled. In this way, we also separated our
measurements of the training duration.

VII. RELATED WORK
With the advent of serverless computing, there is a significant
amount of research aimed at optimizing cloud computing

resource utilization [54]–[57]. There has been some work
on the performance profiling of various FaaS platforms.
Wang et al. [58] performed an in-depth study of resource
management and performance isolation with three popu-
lar serverless computing providers: AWS Lambda, Azure
Functions, and Google Cloud Functions. Their analysis
demonstrates a reasonable difference in performance between
the FaaS platforms. Furthermore, Shahrad et al. [59] studied
the architectural implications of serverless computing and
pointed out that exploitation of system architectural features
like temporal locality and reuse are hampered by the
short function runtimes in FaaS. Chadha et al. [60] examine
the underlying processor architectures for Google Cloud
Functions (GCF) and determine the optimization of FaaS
functions using Numba can improve performance by and save
costs on average.

Many approaches have been proposed to reduce the
occurrences of cold starts. A solution to reduce cold starts is
presented in [11]. The developer defines here in a configura-
tion file which function classes communicate with each other.
A middleware acts as an early warning mechanism and is
deployed together with the FaaS application.When a function
is invoked, the middleware sends so-called hinting messages
to the subsequent functions defined in the configuration
file. Thus, these are initialized early and cold starts are
avoided. The FaaS orchestration platform OpenWhisk [25]
also follows a pooling approach by consistently providing a
pool of so-called stem cell containers. These consist only of a
base image, i.e., without function code and libraries, enabling
faster function initialization. AWS Lambda employs a fixed-
time ‘‘keep-alive’’ policy to keep resources in memory after
function executions [61]. Lin and Glikson [22] reduces cold
starts by providing a pool of already initialized functions
of a certain class. This pool can be used in case of
upscaling. Oakes et al. [62] reduces the size of the function
deployment by separating function and library code. Libraries
are deployed separately and can be used bymultiple functions
concurrently. Defuse in [63] leverages the dependencies
among serverless functions to schedule them directly. While
these described approaches are often based on pooling or
faster function initialization, our approach tries to reduce cold
starts by predicting function invocations using TPPs. This
approach also has the advantage that the predictions can be
used to optimize the function-server assignment.

Pawlik et al. [64] state that to assess the feasibility of
running an application on the FaaS platform, we have to
determine the SLO of the application. This can be achieved by
constructing a reliable performance model capable of analyz-
ing a function performance, which requires knowledge about
the performance of the infrastructure. Cloud service providers
abstract details such as the number of cores, memory avail-
able, and network I/O capacity in the underlying hardware,
usually limiting the available information to function time
limit, maximum memory. The allocated memory also affects
the provisioned CPU quota [65]. In our previous work [66],
we developed a tool for estimating the maximum number of
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TABLE 5. Training times of the TPP models LogNormMix and TruncNorm measured in process time (seconds).

TABLE 6. Training times of TPP models LogNormMix and TruncNorm measured in the number of epochs.

requests amicroservice can handle when it is sandboxed. This
capacity estimation of microservices enables us to ensure
the flexibility of the capacity planning for a microservices
application.While these approaches work at the level of func-
tion modeling, but with TppFaaS we are modeling the FaaS
application and user-workload invocations, which allows to
better optimize the function-server assignment and anomalies
detection.

VIII. CONCLUSION AND FUTURE SCOPE
This work has shown that neural temporal point pro-
cesses (TPPs) effectively model the time and class of
function invocations in FaaS compositions. For this purpose,
we introduced TppFaaS, a system for implementing FaaS
compositions and generating data from them that can be
used to train and test neural TPPs. In this data, function
invocations are represented by the timing of their function
trigger events. In addition, the data containsmeta-information

such as the function class and the cold start initialization
time. Using TppFaaS, we implemented multiple versions
of FaaS compositions with a sequential, parallel, and tree-
shaped structure. The versions differed in the randomization
of the function’s sleep command and the number of
functions. Based on the compositions, datasets with and
without cold starts were generated. With these datasets,
we trained and tested the two TPPs LogNormMix and
TruncNorm.

It was shown that both models managed to capture the
latent temporal dynamics of the different FaaS compositions.
We observed that the performance of the time prediction
was not affected by scaling the composition structure.
Moreover, the function class prediction proved to be more
challenging for compositions involving parallel executed
function branches. For datasets without cold starts, the TPPs
performed well with respect to all measures. Here, LogNorm-
Mix achieved an accuracy of over 0.94 for most applications,
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i.e., the class of 94% of the invocations was predicted
correctly. Also, the mean absolute error of TruncNorm’s time
prediction was below 22ms for most applications. However,
the predictions for the datasets with cold starts were more
challenging. Here, TruncNorm achieved a mean absolute
error between 200 and 750ms for most applications. The high
errors resulted from the high variance of the waitTime, which
measures the time an invocation request waits for execution in
the internal OpenWhisk system. In addition, LogNormMix’s
function class prediction performance declined for the cold
start datasets. Nevertheless, an accuracy above 0.85 was
achieved for most applications, which is still satisfactory.
The cold start feature, which indicates whether a cold start
occurred, improved the results only marginally. This is
because the most uncertainty in the prediction is caused by
the high variance of the waitTime and not by the variance of
the cold start initialization time. Future work may therefore
provide additional features to the TPP to assist in the
estimation of the waitTime. Such as the number of invoker
resources or the number of invocation requests waiting in
the OpenWhisk system. In general, predicting the time was
more difficult than predicting the functional class for datasets
with and without cold starts. Therefore, future work should
prioritize improving the prediction of the time rather than the
functional class.

Further future work could involve the application of
the probability distribution predicted by LogNormMix for
anomaly detection. In FaaS compositions, anomalies can
occur in the form of abnormally short or long function
executions or unexecuted functions. A trace containing such
an anomaly would have a lower probability with respect
to the probability distribution predicted by LogNormMix.
In order to capture anomalies in execution duration, the time
at which a function ends must also be recorded. Thus, each
function invocation is represented by the trigger event and
the event marking the end of execution. Another idea for
future research might be the inclusion of conditional function
invocations. Here, the input object of the function could be
encoded as a vector representation provided to the TPP as a
feature. Similarly, when a function performs a database query,
the SQL statement could be encoded as a vector using natural
language processing. This could assist the TPP in estimating
the execution time of the query.
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