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Editors’ Preface

In times of global challenges, such as climate change, the transformation
of mobility, and an ongoing demographic change, production engineering is
crucial for the sustainable advancement of our industrial society. The impact of
manufacturing companies on the environment and society is highly dependent
on the equipment and resources employed, the production processes applied,
and the established manufacturing organization. The company’s full potential
for corporate success can only be taken advantage of by optimizing the
interaction between humans, operational structures, and technologies. The
greatest attention must be paid to becoming as resource-saving, efficient, and
resilient as possible to operate flexibly in the volatile production environment.

Remaining competitive while balancing the varying and often conflicting
priorities of sustainability, complexity, cost, time, and quality requires constant
thought, adaptation, and the development of new manufacturing structures.
Thus, there is an essential need to reduce the complexity of products,
manufacturing processes, and systems. Yet, at the same time, it is also vital
to gain a better understanding and command of these aspects.

The research activities at the Institute for Machine Tools and Industrial
Management (iwb) aim to continuously improve product development and
manufacturing planning systems, manufacturing processes, and production
facilities. A company’s organizational, manufacturing, and work structures,
as well as the underlying systems for order processing, are developed under
strict consideration of employee-related requirements and sustainability issues.
However, the use of computer-aided and artificial intelligence-based methods
and the necessary increasing degree of automation must not lead to inflexible
and rigid work organization structures. Thus, questions concerning the optimal
integration of ecological and social aspects in all planning and development
processes are of utmost importance.

The volumes published in this book series reflect and report the results
from the research conducted at iwb. Research areas covered span from the
design and development of manufacturing systems to the application of
technologies in manufacturing and assembly. The management and operation
of manufacturing systems, quality assurance, availability, and autonomy are



iv

overarching topics affecting all areas of our research. In this series, the latest
results and insights from our application-oriented research are published, and
it is intended to improve knowledge transfer between academia and a wide
industrial sector.

Rüdiger Daub Gunther Reinhart Michael Zäh
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Abstract

Battery technology plays a key role in driving the automotive and energy sectors
toward achieving net-zero emissions. However, the production of lithium-ion
batteries, which are central to this transformation, poses significant challenges.
Electrode manufacturing, as the core of battery cell production, is a complex
process chain characterized by numerous interrelated variables. This complex-
ity, combined with high material costs, results in a costly scrap in battery cell
production. To achieve a cost-effective, quality-oriented optimization of the
process chain, a comprehensive understanding of the quality-relevant variables,
the existing interdependencies, and the collective impact on intermediate and
final product properties is essential. In light of recent advancements in digital-
ization and information technology, data-driven approaches have emerged as a
promising solution to address these challenges.

Within this context, this dissertation aims to facilitate the development of
data-driven models for the analysis of interdependencies in electrode manu-
facturing. For this purpose, a holistic framework is developed, encompassing
crucial aspects that include the identification of quality-relevant parameters,
the possibility of inline collection of the parameters, data generation and
evaluation, model development, and the derivation of insights. The overarching
objective is to enable a holistic, efficient, and quality-oriented analysis of
interdependencies in electrode manufacturing. The application of the proposed
framework is demonstrated through use cases based on data generated at a
research pilot production line.
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Chapter 1

Introduction

1.1 Motivation

With the rise of global warming and natural disasters, the United Nations
Framework Convention on Climate Change established the Paris Climate Agree-
ment. This international pact aims to combat climate change and accelerate
the necessary actions and investments for a sustainable, low-carbon future. It
involves both individual and collective commitments with the overarching goal
of limiting global warming to below 2 °C, preferably to 1.5 °C, compared to
pre-industrial levels. Achieving this ambitious target necessitates a substantial
reduction in greenhouse gas emissions, approximately 45 % below the 2010
levels, by 2030, and ultimately net-zero emissions by 2050. (UNITED NATIONS

2022)

One of the key contributors to a sustainable, low-carbon future is the
widespread adoption of electromobility. However, to make electromobility a
viable option for the broader population, there are still certain challenges that
need to be addressed, including improving the performance and affordability
of the Lithium-Ion Battery (LIB) cell technology as the key component (KWADE

et al. 2018, p. 290). A recent report published by BloombergNEF, highlighted
a disruption in the decreasing trend of battery prices, as the volume-weighted
average price of LIB cell reached an 11 % increase in 2022, marking the first
rise in a decade, driven primarily by the material costs (BLOOMBERG 2022). This
unexpected increase emphasizes the need for efficient and quality-oriented
production processes. Effective strategies to reduce costs and improve cell
quality are essential to accelerate the global transition toward electromobility
and ultimately contribute to achieving the net-zero vision.

Electrode manufacturing is a critical phase in battery cell production, deter-
mining the majority of the electrochemical and mechanical properties of the
cell. The process chain is inherently complex due to the large number of
parameters involved and their interdependencies. This complexity is further
compounded by the largely unknown relationships between individual pro-
cesses and the properties of the intermediate and final products. (GÜNTHER

et al. 2016)
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Over the last few years, various approaches have been adopted to address
this complexity and enhance the process understanding through analysis
of the existing cause-and-effect relationships. These approaches range from
expert-based methods (WESTERMEIER 2016), analytical (BILLOT 2021) and
simulation models (THOMITZEK 2022) to data-driven approaches (TURETSKYY

2022). Among these approaches, the data-driven solutions hold particular
significance due to their unique advantages, such as the ability to quantify
complex, nonlinear, and potentially unknown interdependencies as well as
enabling low-latency inline process monitoring and optimization (MUNIR et al.
2021; SHEN et al. 2007).

The development of data-driven solutions involves several critical steps. These
steps typically include identifying relevant parameters, generating and collect-
ing data, selecting appropriate methods for analysis, and ultimately developing
models to extract insights. A set of generic guidelines, such as Cross-Industry
Standard Process for Data Mining (CRISP-DM) (CHAPMAN et al. 2000) and
Knowledge Discovery in Databases (KDD) (FAYYAD et al. 1996), has been
proposed to structure the execution of data-driven projects. While such guide-
lines can support practitioners in developing data-driven solutions, they may
encounter certain limitations when dealing with highly complex use cases,
such as battery cell production. To address these limitations, practitioners
in specialized domains often need to augment the generic approaches with
domain-specific knowledge and expertise. These enhancements aim to elaborate
on the approaches, taking into account the unique requirements and challenges
of the domain, thus ensuring a more effective solution development.

1.2 Objective of the Dissertation

Given the existing challenges and the potential described, the overarching
objective of this dissertation is defined as follows:

To facilitate the development of data-driven models for a holistic, efficient, and
quality-oriented analysis of interdependencies in electrode manufacturing of LIB
cells

In this context, the term holistic refers to a comprehensive analysis en-
compassing two dimensions. Firstly, it covers the steps required for the
development of data-driven models, from the identification of quality-relevant
parameters to data generation, model development, evaluation, and derivation
of insights. Secondly, the focus of the dissertation extends beyond a single
process step or specific aspect, aiming to provide the foundation to explore
the cross-process interdependencies along the process chain. The efficiency
concentrates on the prioritization of quality-relevant parameters. This emphasis
is strengthened by incorporating methods that support an in-depth process
understanding while concurrently minimizing the number of experiments
required. By providing a holistic framework, the development and imple-
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mentation of data-driven models can be streamlined, with the ultimate goal
of enhancing process understanding and achieving improvements in product
quality.

1.3 Research Methodology and Structure of the Disserta-
tion

The research conducted within this dissertation was guided by the Design
Research Methodology (DRM), a framework conceived to facilitate the planning
and execution of research more effectively and efficiently (BLESSING and
CHAKRABARTI 2009, p. 14). In the following, a brief description of the four
main stages of DRM—Research Clarification, Descriptive Study I, Prescriptive
Study, and Descriptive Study II—along with their context in this dissertation, is
provided.

The objective of the Research Clarification stage is to identify evidence and
indications that support the objectives of the research. Based on the findings,
an initial description of both the existing and the desired situation is estab-
lished. (BLESSING and CHAKRABARTI 2009, p. 15) Within the analyzed context,
the complexity of electrode manufacturing, due to the manifold interdepen-
dencies, coupled with its relevance and impact on cell quality, underlines the
importance of the data-driven approaches and the objective of this dissertation.

In the Descriptive Study I, a more comprehensive analysis is conducted to
explore the current situation and identify the influencing factors (BLESSING and
CHAKRABARTI 2009, p. 16). This phase can be conducted using a review-based
or empirical approach. The latter is applied when the literature review reveals a
deficit in understanding the subject matter. (BLESSING and CHAKRABARTI 2009,
p. 80) The presented research work encompasses both methods and can be
classified as comprehensive.

The Prescriptive Study builds upon the findings of the previous stage and
proceeds to develop support in the form of knowledge, guidelines, methods,
or models aimed at impacting the influencing factors identified in Descriptive
Study I (BLESSING and CHAKRABARTI 2009, p. 141). In this context, the results
include a framework outlining the quality-relevant parameters, the possibility of
inline collection of the parameters, methods for data generation and evaluation,
modeling techniques, and data-driven models, along with relevant methods
to derive insights from these models. The application of the framework is
demonstrated exemplarily, focusing on the interdependencies that have not
been investigated in the literature.

The Descriptive Study II involves exploring the impact through application,
evaluation, and derivation of suggestions for improvement (BLESSING and
CHAKRABARTI 2009, p. 181). The proposed framework has been exemplarily
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implemented in a research pilot line for battery cell production, the application
is evaluated according to the defined requirements.

Consequently, among the seven types of research according to DRM, this
dissertation can be categorized as type 5 (BLESSING and CHAKRABARTI 2009,
p. 60). Guided by the outlined methodology, Figure 1.1 provides an overview of
the structure of the dissertation, considering the main DRM stages, the intended
objectives, and the adopted approaches for each stage. Chapter 1 presents
the motivation and the overarching objective of this dissertation. Chapters 2
and 3 aim to provide a more in-depth understanding of the current situation
and identify the research opportunities. Driven by the identified need, the
detailed objectives and requirements are established and presented as part of
the conceptual design in Chapter 4. The conceptual design builds the foundation
for the Prescriptive Study, with the aim of developing a comprehensive solution
that effectively addresses the detailed objectives and complies with the specified
requirements. In the context of the publication-based dissertation, Chapter 4
offers an overview of the proposed framework and the relevant publications,
while Chapter 5 provides a concise summary of the research findings. The final
stage of DRM involves evaluating the application of the proposed solution and
identifying improvement potentials, which are addressed in Chapters 6 and 7,
respectively.

Legend: Main process flow Possible iterations

Main stages and objectives Chapter

Adopted approach

Review-based

Comprehensive

Prescriptive Study

Comprehensive

Descriptive Study II

Initial

• Definition of the research problem and the 

objective

• Identification of the scope of the research

• Exploration of relevant topics for a better 

understanding

• Revision of the current state of the art and 

identification of research opportunities

• Development of a conceptual design

• Provision of a solution, in the form of 

guidelines or models, to address the research 

problem and the defined objective

• Evaluation of the developed solution

• Formulation of suggestions for improvement

Descriptive Study I

1. Introduction

2. Fundamentals

3. State of the Art

4. Conceptual Design

5. Synthesis of the 

Research Findings from 

the Publications

6. Discussion

7. Conclusion

Research Clarification

Figure 1.1: Overview of the structure of the dissertation, along with the corresponding
main stage in DRM, adapted from BLESSING and CHAKRABARTI (2009)
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Chapter 2

Fundamentals

In order to establish a foundational understanding of the subject matter,
this chapter begins by clarifying the essential terminology and methods in
Section 2.1. Subsequently, Section 2.2 explores the fundamental aspects of LIB
as a technology and the production process chain. Additionally, within the scope
of this dissertation, a synopsis of the methods used in the fields of Design of
Experiments (DoE) and data analytics, particularly Machine Learning (ML), is
provided in Sections 2.3 and 2.4, respectively.

2.1 General Terminology and Methods

2.1.1 Approach, Methodology, Framework, and Method

In this subsection, an overview of the general terms used in combination with a
problem-solving task is presented. ANDIAPPAN and WAN (2020) elaborated on
the different terminologies such as approach, methodology, and method that
are used in the process systems engineering field. Given the analyzed context in
this dissertation, the definitions are adopted as follows.

Approach

Approach is defined as "[. . . ] the basic philosophy concerning a given subject
matter. It is a way or direction used to address a problem based on a set of
assumptions." (HOFLER 1983, p. 71; ANDIAPPAN and WAN 2020, p. 551)

Methodology or Framework

Methodology refers to the overarching strategy employed to address a particular
problem and is seen as a crucial element required to realize an approach. It
serves "as a guideline, allowing the practitioner to make choices within a certain
set of rules and boundaries." Given this definition, methodology can be equated
with the term framework and is understood as a system of methods employed
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in conjunction with established rules or criteria. (ANDIAPPAN and WAN 2020,
p. 551)

Method

Method describes the practical steps required for the implementation of an
approach (HOFLER 1983, p. 71). While the terms method and methodology
are often used interchangeably, a clear distinction exists between the two.
ANDIAPPAN and WAN (2020) clarified this distinction by noting that "if a
practitioner engages with a method and follows it like a recipe regardless of
the situation, then it remains as a method. If the method is not regarded as a
formula, but as a guideline, then it would be clearly classified as a methodology
or a framework." (ANDIAPPAN and WAN 2020, p. 552)

2.1.2 Design Structure Matrix

The Design Structure Matrix (DSM) is a modeling tool utilized to represent
the elements of a system and their corresponding interactions (EPPINGER

and BROWNING 2012, p. 2). This method can help to understand a complex
system and is based on three main steps: (i) decomposing the system into its
constituent elements, (ii) identifying the relationships between these elements,
and (iii) defining the boundaries of the system under consideration (BROWNING

2001, p. 292). The DSM is presented as an M×M square matrix with identical
labels and order, which maps the interdependencies among the system’s M
elements. By systematically organizing these interactions, the DSM offers a
compact and efficient visualization of the system’s structure and interdepen-
dencies. (EPPINGER and BROWNING 2012, pp. 2–3)

2.1.3 MoSCoW Analysis

The MoSCoW analysis is a prioritization technique first introduced as a compo-
nent of the Dynamic Systems Development Method, a comprehensive frame-
work for rapid application development (CLEGG and BARKER 1994; STAPLETON

1997). The term MoSCoW is an acronym derived from the four prioritization
categories: Must have, which are fundamental requirements for the system;
Should have, important but not mandatory requirements; Could have, desirable
but not necessary requirements; and Would have or Won’t have this time, which
are requirements of the lowest priority (STAPLETON 1997, p. 29).

2.1.4 Mapping Study

A systematic literature review is conducted with the aim of answering a
particular research question that can be addressed empirically. In contrast,
a mapping study is adopted to explore a more extensive topic and classify
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the principal findings within a specific domain. (KITCHENHAM et al. 2011,
p. 639) The main steps involved in conducting a mapping study include
(i) determining the scope of the research, (ii) performing a literature search
to identify the primary studies, (iii) screening the studies for inclusion and
exclusion, (iv) establishing a classification scheme, and (v) extracting and
aggregating data (PETERSEN et al. 2008, pp. 2–5).

2.1.5 Production System and Scalability

A system can be defined as a collection of interconnected and purposefully
organized elements that continuously interact and collaborate. Similarly, a pro-
duction system is defined as structured assemblies of highly interdependent indi-
vidual functions, with the overarching objective of producing products. (WEST-
KÄMPER and ZAHN 2008, p. 28) The primary purpose of a production system is
to manufacture the correct products, both in type and quantity, at the right
time, with a specified quality, and at an acceptable cost. This underscores
the importance of precision in production processes, ensuring that products
align with demand specifications, are produced on time to meet market needs,
maintain consistent quality standards, and are produced cost-effectively to
ensure profitability and value to the business. (WESTKÄMPER 2006, p. 195)

In the context of battery cell production, it is important to recognize the
existence of three main production scales, each tailored to specific objectives
and distinguished by distinct characteristics. The lab-scale focuses primarily
on material development and formulation screening. This production system
is characterized by discontinuous manual processes and a wide variety of
materials and formulations. The pilot scale aims to evaluate the scalability of
the defined formulations, investigate the suitability of process parameters and
their interaction, and optimize the quality control measures. The production
system at this level features semi-continuous or continuous processes, often
incorporating semi-automated to automated machinery. This stage serves as
a vital bridge between the lab-scale and full-scale industrial production. In
industrial production, the primary focus lies in ensuring process robustness and
implementing automated defect detection. (KEPPELER et al. 2021)

2.1.6 Measuring Instrument and Characterization

A measurement system, often also referred to as a measuring instrument,
is defined as "a system that provides information about a variable being
measured." (MORRIS and LANGARI 2012, p. 4) In this context, the term char-
acterization, according to the National Materials Advisory Board, is defined as
"the description of those features of the composition and structure of a material,
including defects, that are significant for a particular preparation, study of
properties or use, and suffice for the reproduction of the material." (GROVES and
WACHTMAN 1986, p. 425) According to OBERKAMPF and ROY (2010, p. 373),
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characterization involves the measurement of the essential properties required
to describe or model a system.

The measuring instruments can be broadly divided into three categories: offline,
at-line, and inline. It is important to note that the first two terms are often
used interchangeably. An offline characterization refers to an analytical method
that necessitates the sampling and subsequent transportation of the sample
to a specialized device or laboratory. This approach typically demands highly
skilled personnel and occurs within centralized laboratory facilities. In offline
characterization, the sample is physically separated from the production process
and analyzed in a separate location, which may result in a time delay between
sampling and analysis, making active process adjustment during the process
infeasible. An at-line method involves manual or (semi)-automated sampling
and measurement conducted in close proximity to the production site. An inline
system is used to obtain information about process or product characteristics
directly and in real-time. In this approach, the measuring instrument is
seamlessly integrated into the product flow, allowing immediate and continuous
monitoring. (KESSLER 2012, pp. 15–17)

2.2 Lithium-Ion Battery

The LIB is classified as a secondary battery, also known as an accumulator,
designed for the generation of electrical energy (WINTER and BRODD 2004,
p. 4253). This implies that, in contrast to the primary battery, which is
intended for single use and must be discarded upon exhaustion, LIB has the
capability to be recharged and reused multiple times (WINTER and BRODD 2004,
p. 4247). This feature, combined with a number of advantageous characteristics
such as high energy density and long cycle life, turns LIB into a more
cost-effective and environmentally sustainable option for various applications
ranging from portable electronic devices to electric vehicles and renewable
energy storage systems.

2.2.1 Structure and Operating Principles of Battery Cell

The operating principle of the LIB is depicted in Figure 2.1, with a focus on the
smallest operational unit of the battery. This essential unit consists of several
critical components, each of which plays a significant role in the overall function
and performance of the battery. The electrodes consist of a layer of active
material coated onto a current collector (VUORILEHTO 2018, p. 23). According
to the German Institute for Standardization (DIN), the terminology for the
electrodes is based on the discharge process: with the positive electrode referred
to as the cathode, while the negative one is named the anode (DIN40729
1985, p. 3). The two electrodes are electrically isolated from each other
through a porous membrane called the separator. The separator prevents direct
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electrical contact between the electrodes while allowing the flow of ions. The
ion-conducting electrolyte serves as the medium for transporting lithium ions
between the electrodes during charge and discharge cycles. (LEUTHNER 2018,
p. 14) The process of lithium ions being inserted into the layered structure of the
electrode material is called intercalation, while the reverse process is referred to
as de-intercalation (VUORILEHTO 2018, p. 22).

Depending on the application and requirements, various active materials are
applied. For the cathodes, the most common materials are Lithium Iron Phos-
phate (LFP), Nickel Manganese Cobalt (NMC), and Nickel Cobalt Aluminum
(NCA) (GRAF 2018). For the anodes, potential materials include graphite,
Lithium Titanite (LTO), and graphite-silicon composites. Graphite is widely used
due to its prolonged life cycle and safety characteristics. Silicon composites
are anticipated to gain significance in the future due to their higher energy
density. However, this will only be possible if the existing challenges regarding
life cycle and safety are effectively addressed. (WURM et al. 2018)

In addition to the active material, schematically shown in Figure 2.1, con-
ductive additives and binders are the necessary inactive components of the
electrode. While the active material is mainly responsible for energy storage,
the conductive additives and binders are crucial for electron transport and
maintaining the mechanical integrity of the electrode, respectively (LIU et
al. 2011, p. 214). The mechanical integrity encompasses the cohesion of the
electrode particles and their adhesion to the current collector. In the case of
conventional electrode manufacturing, solvents are additionally required to
produce a homogeneous, coatable mixture. (VUORILEHTO 2018, p. 23)

Lithium ion

AnodeCathode

A

e-e-

Li+

SeparatorAluminum Copper

Electrolyte

Active material for positive electrode (e. g. NMC) 

Active material for negative electrode (e. g. Graphite)

Ion transport

Legend:

Figure 2.1: Structure and operating principle of a LIB cell, shown during the discharge
process, adapted from LEUTHNER (2018, p. 15)
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2.2.2 Main Characteristics of Battery Cell and Electrode

The LIB cell, along with its main component, the electrode, can be characterized
by several factors. This subsection briefly describes the main characteristics that
are relevant to this dissertation.

Capacity, Discharge Capacity, and Nominal Capacity

The capacity denotes the overall quantity of electric charge that can be
exchanged between the electrodes within a battery. This capacity is influenced
by several factors, such as the discharge current, the cut-off voltage, the
temperature, and both the type and quantity of active material. It is typically
expressed in Ah or mAh. (LEUTHNER 2018, p. 16) Accordingly, the discharge
capacity specifies the total amount of electric charge that a battery can deliver
from a fully charged state. Additionally, according to DIN40729 (1985, p. 10),
the term nominal capacity is used to report the capacity of the battery based on
specific conditions defined by the manufacturer, such as the temperature.

Energy

The energy of a battery reflects the amount of electric charge that can be stored
and is the product of capacity and average discharge voltage (LEUTHNER 2018,
p. 16). The gravimetric energy density refers to the energy that can be stored per
unit weight of a material (LIN et al. 2018, p. 3) and is expressed in Wh kg−1. A
higher gravimetric energy density means that the material can hold more energy
for its weight, which is particularly important for battery applications where
weight is a critical factor.

Power

The power indicates the speed at which a battery can supply energy. It
is calculated by multiplying the current and voltage, for instance, during
discharge, and is expressed in W (LEUTHNER 2018, p. 16). The power density
quantifies the amount of power that a battery can deliver relative to its unit of
volume or mass (WU 2015, p. 8). It is labeled as volumetric power density when
expressed per unit volume, and as gravimetric power density when expressed per
unit mass.

C-Rate

The C-rate represents the rate at which a battery is charged or discharged
relative to its nominal capacity. This measure offers a standardized approach
to compare the performance of batteries, regardless of their individual capac-
ities. A discharge rate of 1C indicates that the discharge current will deplete
the battery in 1 hour, whereas a 2C discharge rate implies the battery will be
discharged in half an hour. (WU 2015, p. 6) The C-rate is calculated as the ratio
of the current I to the nominal capacity Cn, as shown in Equation 2.1.
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C-rate=
I

Cn
(2.1)

Internal Resistance

The internal resistance is a comprehensive term used to describe the total
resistance within a battery (WU 2015, p. 6). This resistance can be broken
down into four components: electric resistance Rc, electrolyte bulk resistance
Rsol, ionic resistance in pores Rion, and charge transfer resistance for lithium
intercalation Rct (OGIHARA et al. 2012, p. 1034).

Mass Loading

The mass loading refers to the amount of material applied per unit area of the
electrode (LIN et al. 2018, p. 2). The mass loading of the active material is a
crucial parameter in battery design as it directly impacts the capacity of the
battery. At small production scales, the mass loading is typically expressed in
mg cm−2, while at the industrial scale, g m−2 is commonly adopted.

Density

The density of the electrode, ρ, refers to its volumetric mass density, which
can be determined by calculating the composite density of the coated ma-
terials (SMEKENS et al. 2016, p. 2). The composite density is calculated by
considering the density of each material and its respective fraction in the
electrode formulation and is usually expressed in g cm−3 (SANTEE et al. 2014,
p. 66).

Porosity

The porosity represents the estimated theoretical void space within the materials
applied to the current collector, quantified as a percentage of the total volume of
the electrode (SANTEE et al. 2014, p. 66). Various methods, including mercury
intrusion porosimetry, can be employed to determine porosity. Alternatively,
porosity can also be estimated based on the main physical properties of the
electrode (FROBOESE et al. 2017). Specifically, porosity ε can be calculated using
the bulk density ρbulk and the composite density of electrode ρcom, as shown in
Equation 2.2. The bulk density of the electrode is derived from the mass loading
of the coating Mcoating and its thickness dcoating.

ε= 1−
ρbulk

ρcom
= 1−

Mcoating

dcoating ·ρcom
(2.2)
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Tortuosity

The tortuosity quantifies the degree of elongation of the transport path, Lp,
through a porous structure compared to the straight-line distance or the length
of the control volume, Lcv. It represents the porous structure of the electrode
and its impact on ionic diffusion and is expressed as follows: (TJADEN et al.
2016, pp. 45–46)

τ=
Lp

Lcv
(2.3)

In battery production, a common simplification is adopted to describe the
correlation between tortuosity and porosity, as shown in Equation 2.4. This
approach, with the exponent α equal to 0.5, was originally postulated for
spherical particles and is known as the Bruggeman relation. (BRUGGEMAN 1935;
LANDESFEIND et al. 2016)

τ= ε−α (2.4)

It should be noted that there are several limitations to this simplification,
particularly when considering the complex structure of the electrode, which
includes a variety of materials with different particle sizes and shapes (TJADEN

et al. 2016, p. 49). However, a set of existing studies has often featured modified
versions of the Bruggeman relation (MAYILVAHANAN et al. 2021). Several exper-
imental methods, including the use of Electrochemical Impedance Spectroscopy
(EIS) (LANDESFEIND et al. 2016), have been introduced in the literature to
assess tortuosity (HAWLEY and LI 2019, p. 19).

Adhesion

The term adhesion describes the interfacial bonds formed when two distinct
solid surfaces are brought into contact. In practical terms, the adhesion strength
can be quantified by the mechanical load necessary to break or separate the
assembled entities. (SCHULTZ and NARDIN 2003, p. 53) In battery production,
the adhesion strength, also known as pull-off strength, is an important mechan-
ical property that represents the maximum force needed to detach the coating
from the underlying substrate foil, typically expressed in kPa. This property
significantly impacts the performance and durability of the cell. (HASELRIEDER

et al. 2015, pp. 1–2) Furthermore, it holds a significant role in ensuring the
processability of the electrode throughout the production process chain.

2.2.3 Battery Cell Production Chain

The LIB production process can be broadly divided into three phases: electrode
manufacturing, cell assembly, and cell finalization (PETTINGER et al. 2018,
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p. 212). Among these, electrode manufacturing is considered the core phase of
the process chain, as the majority of the properties that determine the electro-
chemical performance of a LIB cell are established during this phase (GÜNTHER

et al. 2016, p. 307). As this dissertation focuses on electrode manufacturing, an
overview of the main process steps in this phase is provided below, followed by
a brief introduction to the main steps involved in cell assembly and finalization.

Mixing

The first step in conventional solvent-based electrode manufacturing is to mix
the electrode components—active material, conductive and binding agents,
additives, and solvent—with the primary objective of producing a homogeneous
mixture known as slurry. An important aspect that is established during
mixing is the slurry formulation, which indicates the mass ratio of the various
components used in the mixture. (PETTINGER et al. 2018, pp. 213–214) The
characteristics of the slurry have an irrevocable impact not only on the
cell properties, but also on the processability of the slurry in subsequent
processes (KAISER et al. 2014, p. 697).

Coating

In the coating process, the produced slurry is applied onto the current collector.
Various technologies can be used for this purpose, including doctor blade, slot
die, and comma bar coating. The coating may be applied in a continuous
form or intermittently. Moreover, both sides of the current collector can be
coated either simultaneously or in subsequent steps. Achieving a consistent and
uniform coating is a key requirement in this process step, particularly in terms of
thickness and mass loading. (PETTINGER et al. 2018, p. 214) Among the existing
technologies, slot die coating stands out for its precision and is considered the
most relevant technology for large-scale production. However, this precision
is accompanied by increased complexity. Within a certain process window for
slot die coating, an undesirable quality issue known as edge elevation can
occur. (SCHMITT et al. 2013, p. 32)

Drying

Following the coating process, the wet film should be dried immediately.
Different technologies are used for this purpose. On pilot and industrial
production scales, this process is carried out continuously using a set of dryers in
a roll-to-roll machine (KAISER et al. 2014, p. 701). The temperature profile set
for the dryers has a critical effect on the adhesion strength of the coating to the
substrate foil (PETTINGER et al. 2018, p. 214). Extreme drying conditions can
lead to migration of binding agents toward the coating surface, an undesirable
phenomenon known as binder migration (HAGIWARA et al. 2014; LIM et al.
2013).
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Calendering

The produced coating layer has high porosity. Calendering is the subsequent
process used to achieve improved energy density, enhance the contact between
the particles, and reduce the electric resistance. (KAISER et al. 2014, p. 703) This
process involves passing the electrode between two rollers to decrease its
thickness. It is imperative to maintain an optimal load during calendering,
as applying excessive pressure might result in failures such as foil tearing or
particle cracking. (PETTINGER et al. 2018, p. 215)

The produced coils can be trimmed to a certain width based on the product
specification, a process referred to as slitting. Depending on the cell type, the
manufactured electrodes undergo further processing during cell assembly. The
cell assembly usually takes place in a dry room, which maintains a dew-point
temperature ranging from -40 °C to -65 °C. This controlled environment is
crucial to prevent any moisture-related issues that could compromise cell
performance. As a preparatory step, the electrodes are first dried in a vacuum
dryer to ensure the removal of any residual moisture before being transferred
to the dry room for further processing. (PETTINGER et al. 2018, p. 215) Based
on the final dimensions of the battery cell, the electrodes are precisely cut
to match the specific formats. The assembly process to build the Electrode
Seperator Composite (ESC) varies depending on the type of the battery
cell. For the common large-format cells, the processes are winding, stacking, or
z-folding. (KURFER et al. 2012, p. 2) Subsequently, the ESCs are welded to tabs,
connecting electrodes of the same type, and placed in a cell housing, which is
then sealed. The cell is filled with electrolyte, aiming for a homogeneous wetting
of the pores of the electrodes. (PETTINGER et al. 2018, pp. 217–218)

Following the cell assembly, the cells go through formation as the final step in
production. During formation, the cell is initially charged, typically at a low
current, to properly form the protective Solid Electrolyte Interphase (SEI) layer
on the anode side. This procedure serves as a preliminary assessment of the
electrochemical performance of the battery. (PETTINGER et al. 2018, p. 219)
After formation, a series of charging and discharging cycles can be executed to
age the cells. This procedure helps to identify cells that demonstrate reduced
performance. (KWADE et al. 2018, p. 294)

2.3 Design of Experiments

This section aims to introduce the fundamental concepts and methods used
in the DoE. This includes an overview of the common techniques and their
potential. Additionally, strategies for evaluation and enhancement of the design
are discussed, ensuring that the most reliable and informative results can be
obtained from the experimental procedure.
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2.3.1 Objectives, Approach and Common Design Types

In today’s highly competitive market landscape, production companies en-
counter relentless demands to enhance both the quality of their products and
the efficiency of their production processes. However, achieving these improve-
ments cannot rely solely on the analysis of historical production data. The
limitation arises from the complex and multifaceted interdependencies between
product properties, process parameters, and quality management practices. In
the dynamic landscape of production, making alterations to a product property
or process parameter can lead to significant ramifications. (KLEPPMANN 2016,
p. 1) To understand the impact of such modifications and the underlying
cause-and-effect relationships in a system, it is essential to conduct systematic
and purposefully designed experiments. While the mere observation of a system
or process can provide preliminary insights and generate various theories or
hypotheses about its operating principle, it is only through rigorous experimen-
tation that these theories can be solidified and validated. (MONTGOMERY 2012,
p. 1)

Objectives of DoE

DoE is a robust statistical method that facilitates the systematic examination
of the various factors influencing a production system. By adopting DoE,
researchers and practitioners can efficiently explore multiple variables simul-
taneously to understand their interrelationships and their collective impact on
a system’s response. Beyond its significant advantages in terms of cost and
resource savings, this method deepens process understanding and assists in re-
fining the production system parameters for improved outcomes. (KLEPPMANN

2016, pp. 4–5)

Approach

The fundamental phases in the conduction of a DoE include planning, ex-
ecution, data analysis, and conclusion (ROMÁN-RAMÍREZ and MARCO 2022,
p. 4). During the planning phase, the problem statement and the objective of the
study are formulated. This is followed by choosing a response variable, selection
of factors, and levels. (MONTGOMERY 2012, pp. 14–16) The response variable
captures the output or result of the experiment and is central to understanding
the behavior of the system. The factors are defined as the input variables that
are deliberately changed or set in the experiment, these are commonly the
variables assumed to have the highest impact on the system’s response. Once
the factors are defined, it is imperative to establish the values or settings that
each of these factors will have during the experiment. These predefined values
or settings are termed as levels. (KLEPPMANN 2016, pp. 12–14) The final aspect
of the planning phase of a DoE involves choosing an appropriate design type
and subsequently generating a design plan that outlines how the experiments
will be conducted. The DoE plan consists of experimental runs, also referred
to as configurations, representing unique combinations of the levels within
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the experimental space. Based on the generated plan, the experiments are
conducted, and the results are evaluated. From the results of the experiments,
conclusions are drawn, and any necessary subsequent actions or adjustments to
the study are identified. (MONTGOMERY 2012, pp. 19–20)

Common Design Types

The type of experimental design chosen is often directly correlated with the
specific objectives of the study. A brief overview of several common design
types is provided below, highlighting their unique characteristics and applica-
tions. (MONTGOMERY 2012, p. 14)

Factor screening is a widely adopted technique, particularly when dealing with
a novel system about which there is minimal prior knowledge. The primary
objective of this method is to identify the most influential factors and under-
stand their combined effects on the desired response(s). Unlike the traditional
One-Factor-At-a-Time (OFAT) approach, which is not only resource-intensive
but also overlooks potential interactions between factors, the screening method
ensures a more comprehensive analysis. (MONTGOMERY 2012, p. 14) Fractional
factorial design is recognized as a common screening method (ROMÁN-RAMÍREZ

and MARCO 2022, p. 2).

Optimal design, which can be categorized under Response Surface Methodology
(RSM) (ANDERSON-COOK et al. 2009, p. 630), is a type of design that is
used when a fundamental understanding of the system exists. Instead of
solely identifying influential factors, the objective shifts toward fine-tuning
these factors. The overarching goal of optimization is to pinpoint the settings
of the factors that lead to the desired response(s). (MONTGOMERY 2012,
pp. 14–15) RSM encompasses various design techniques with their distinct
objectives and characteristics (ANDERSON-COOK et al. 2009; CHENG 1996). For
instance, two of these techniques are the G-optimal and I-optimal designs. In
the G-optimal design, the model developed from the generated data strives
to minimize the maximum prediction variance within the design space. On
the other hand, the I-optimal design is structured to produce a model that
results in the smallest average prediction variance across the design space. Thus,
while G-optimal focuses on reducing peak variance, I-optimal seeks to optimize
average prediction accuracy. (ROMÁN-RAMÍREZ and MARCO 2022, p. 5)

Robust design, commonly referred to as the Taguchi method, was introduced
by Genichi Taguchi in the 1980s (MYERS et al. 2016, p. 619). This type of
design aims to identify the optimal settings of controllable factors within a
process to enhance its resilience against uncontrollable or noise factors, thereby
minimizing variations in the system’s response (MONTGOMERY 2012, p. 15).

In the design methods described above, the factors and their levels are
independent of each other. However, there is another type of design known
as mixture design, with the factors defined as components of a mixture. As a
result, the levels of the factors are interdependent; changing the proportion of
one component inevitably affects the proportions of the others. (MONTGOMERY
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2012, p. 530) Such designs are relevant, for instance, when analyzing different
formulations in battery production to investigate the impact of variations in
components such as active material, binder, and additives.

2.3.2 Common Statistical Methods for Design Evaluation

In this subsection, an overview of commonly used methods for evaluating the
design and its predictive capability is provided, with a particular focus on those
relevant to this dissertation.

Correlation Matrix

A correlation indicates an association between two variables but does not
establish causation or specify the nature of their interdependence. The strength
and direction of this relationship can be quantified using the correlation
coefficient. The Pearson correlation coefficient, often referred to simply as the
correlation coefficient, is a unitless metric that measures linear dependencies
between variables. This coefficient ranges from -1 to 1, with values close
to the extremes indicating strong negative and positive correlations, respec-
tively. (SCHIEFER and SCHIEFER 2018, p. 90) An absolute correlation coefficient
below 0.3 suggests a weak linear correlation, whereas values between 0.3 and
0.7 can be classified as moderate (RATNER 2009, p. 140). When analyzing
numerous factors, the correlation matrix is adopted, providing a comprehensive
overview of the correlation coefficients for each possible pairing of the analyzed
factors (SIEBERTZ et al. 2017, p. 64).

Coefficient of Determination

The R-squared value, often referred to as the coefficient of determination R2,
quantifies how much of the variance in the dependent variable y can be
accounted for by the independent variables in a model. Essentially, R2 measures
the degree to which the regression predictions align with the actual data
points. A perfect fit, where the model predictions precisely match each data
point, corresponds to an R2 value of 1. (MYERS et al. 2016, p. 26) When
considering yi as the observed data point and ŷi as the corresponding predicted
value, the calculation of R2 follows Equation 2.5, with ȳ representing the mean
value of the observed data points (SIEBERTZ et al. 2017, p. 237).

R2 = 1−

∑N
i=1(yi − ŷi)2
∑N

i=1(yi − ȳ)2
(2.5)

Variance Inflation Factor

In regression analysis, it is crucial to understand the nature and significance of
the relationship between the independent factors and the response variable.
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However, when there is a high degree of correlation among the predictor
variables, a phenomenon known as multicollinearity arises. This can complicate
the analysis, as it becomes challenging to distinguish the individual influence
of each factor on the response due to their overlapping effects. (KUTNER et al.
1983, pp. 278–279)

The Variance Inflation Factor (VIF) is a metric employed to detect multicollinear-
ity in regression analysis. It quantifies how much the variance of an estimated
regression coefficient increases when predictors are correlated. For a given
predictor x i , its VIF is computed based on R2

i , the coefficient of determination
obtained when predicting x i using all other predictor variables x j in the model,
as shown in Equation 2.6. (MYERS 1990, p. 127)

V I Fx i
=

1
1− R2

i

(2.6)

A VIF value exceeding 10 indicates a problematic level of multicollinearity,
suggesting that the predictor variables might be highly correlated. In some
conservative analyses, a threshold of 5 is defined as acceptable. (SIEBERTZ et
al. 2017, p. 65)

Fraction of Design Criterion

The Fraction of Design Space (FDS) is a valuable tool in design evaluation,
offering insights into the predictive capability of the design within its allocated
space. The FDS plot visually represents the portion of the design space that
is captured and provides information regarding the associated variance or
prediction error. (ZAHRAN et al. 2003, p. 380)

This visualization can be used to compare different designs, assess their robust-
ness, and pinpoint areas with insufficient experimental data (OZOL-GODFREY et
al. 2008, p. 218). Such areas indicate where additional runs might be required
for enhanced understanding or optimization.

2.3.3 Design Augmentation

Following the introduction of different evaluation methods, this subsection
offers an overview of possible techniques that can be employed to enhance the
design. By refining the design space, the results achieved from the evaluation
methods can be improved, and the data generated can be used for a more
accurate and extensive modeling of the system.

One potential approach to counteract issues such as high VIF is to extend the de-
sign plan, a procedure often referred to as design augmentation. By conducting
additional runs subsequently, more comprehensive coverage of the design space
can be achieved. (KLEPPMANN 2016, p. 275) Design augmentation can also be
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considered as a strategic method when consolidating historical datasets. These
datasets, often stemming from diverse experiments or studies, may encompass a
broad spectrum of analyzed factors. In such scenarios, the significance of design
augmentation becomes more pronounced, as it ensures that the consolidated
data is not only cohesive but also remains representative and relevant. There
are various methods to achieve this objective. For instance, the fold over is a
type of design augmentation method, in which the levels of one or all factors
are reversed, essentially creating a mirrored version of the original design. Such
adjustments allow for the systematic and efficient isolation and examination
of the effects of certain variables. (KLEPPMANN 2016, pp. 275–276) Another
possibility to enhance the design space is by incorporating center points. These
points, typically positioned at the midpoint of the design dimensions, enable the
detection of curvature or linearity in the response. When significant deviations
from the predictions of a linear model are observed at these center points, the
presence of curvature is suggested. Consequently, by augmenting the design,
models can be refined for a more accurate representation of the system’s
behavior. (KLEPPMANN 2016, p. 277) Additionally, a set of methods exists
under the overarching term space-filling design. These methods employ various
criteria aimed at ensuring a consistent and uniform distribution of design points
throughout the experimental space. (LU and ANDERSON-COOK 2021, p. 1740)
One of the methods in this category is the Maximin distance design. This method
aims to achieve the broadest possible spread of points by identifying sparse
regions and maximizing the minimum distance between any two design points,
thereby ensuring an optimal coverage of the space. (LU and ANDERSON-COOK

2021, p. 1743)

2.4 Data Analytics

The term Business Intelligence (BI) was first introduced in 1958 as a system
designed to improve business decision-making by leveraging data-processing
machines using fact-based information (LUHN 1958). The primary goal of BI
is to transform raw data into actionable insights. This is accomplished using a
variety of tools and formats, such as visualizations, reports, and dashboards,
all designed to support organizations in understanding their performance and
making evidence-based decisions. In the late 2000s, the concept of business
analytics emerged, capturing the core aspect of BI, the analytical process (DAV-
ENPORT et al. 2006). With the exponential growth of digitalization, the concept
of (big) data analytics has gained prominence. The term refers to a subset
of technologies within BI that relies mainly on advanced statistical analyses
and pattern recognition (CHEN et al. 2012, p. 1174). The U.S. Department
of Commerce’s National Institute of Standards and Technology (NIST) defines
analytics as "the systematic processing and manipulation of data to uncover
patterns, relationship between data, historical trend and attempts at prediction
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of future behaviors and events." (NATIONAL INSTITUTE OF STANDARDS AND

TECHNOLOGY - BIG DATA PUBLIC WORKING GROUP 2019, p. 6)

Considering the potential value and complexity associated with data analytics,
the Gartner Analytics Ascending Model outlines four distinct levels of maturity,
as illustrated in Figure 2.2 (LANEY et al. 2012). While slight variations of
this model can be found in the literature (DAVENPORT 2013; SCHUH et al.
2017; SIVARAJAH et al. 2017; BELHADI et al. 2019), the fundamental concept
remains consistent. The first stage with the lowest level of complexity is
descriptive analytics. This level focuses on providing a retrospective view of the
existing state of the system. This is achieved by employing statistical analysis,
generating comprehensive reports, and monitoring Key Performance Indicators
(KPIs). Progressing to the next level, diagnostic analytics aims to investigate the
reasons behind certain trends or observations. An in-depth understanding of the
system is generated by predictive analytics, wherein ML models, drawing upon
historical data, are commonly utilized to forecast the system’s potential future
states or outcomes. Building upon the solutions from predictive analytics that
provide insights, prescriptive analytics employ techniques such as simulation or
optimization to facilitate the adaptation and fine-tuning of the system. (BELHADI

et al. 2019, p. 3; DAVENPORT 2013, p. 13)
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Figure 2.2: The Gartner Analytics Ascending Model, illustrating different stages of data
analytics, adapted from LANEY et al. (2012)

In the field of data analytics, the terms Data Mining (DM), Artificial Intelligence
(AI), and ML are frequently used interchangeably. In order to provide a solid
foundation for this dissertation, a brief description of these terms is provided in
the following.
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DM is primarily concerned with extraction of meaningful patterns from existing
large datasets (FAYYAD et al. 1996, p. 28). DM can be divided into two
main categories: descriptive and predictive. Descriptive DM delves into existing
datasets to uncover unexpected structures or clusters, while predictive DM,
bearing a resemblance to ML, relies on developing models tailored for precise
prediction. (IZENMAN 2008, p. 5)

AI, a term first introduced by John McCarthy in 1955, represents a specialized
branch of computer science. Its primary objective is to enable machines to
imitate human cognitive functions. Although McCarthy is credited with coining
the term, the foundational concept can be traced back to Alan Turing (TURING

1950). (BUCHANAN 2005)

While AI aims to equip machines with human-like intelligence, enabling them
to think rationally and solve problems, ML as a subset evolved out of AI,
allows computers to learn without the need for explicit programming (SAMUEL

1959, p. 535). In a complementary view, MITCHELL (1997, p. 2) states that
if a computer program is designed to improve its performance measure for a
specific set of tasks based on its experiences, it is said to be learning from those
experiences. Given the descriptions provided, this dissertation primarily centers
on ML. Hence, the relevant methods and concepts in this field are presented in
the following subsections.

2.4.1 Terminology and Types of Machine Learning

This subsection serves as a foundational introduction to the key terminology
used in the field of ML. Furthermore, an overview of the primary categories of
ML is provided.

For the development of ML models, data plays a key role. The collected data
is referred to as a dataset, in which each individual data point, also termed
as sample, provides a detailed description of a specific event or object. These
descriptions, which are assigned to each data point, are commonly referred to
as features or input variables. (ZHOU 2021, p. 3) An outlier within a dataset
is a data point or observation that significantly deviates from the rest of the
data samples. An outlier can either indicate abnormal system behavior or result
from recording errors, especially those caused by faulty sensors. It is essential
to identify and eliminate such data points to ensure the reliability of the final
result. (ALPAYDIN 2014, p. 199)

An algorithm is a systematic and structured set of instructions and computa-
tional techniques designed to transform a given set of inputs into a desired
output (ALPAYDIN 2014, p. 2). In the context of ML, the algorithm serves as
the foundation for developing a mathematical model or approximation of a
function, with the core task of drawing valuable conclusions or insights from
a dataset (ALPAYDIN 2014, p. 3). The process of employing ML algorithms to
construct models from data is often termed learning or training. In this phase,
a particular dataset, referred to as the training dataset, is used to instruct the
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algorithm, allowing it to identify patterns, relationships, and insights within the
information provided. (ZHOU 2021, p. 3)

Hyperparameters are adjustable settings that can be used to control the per-
formance and behavior of a complex algorithm (GOODFELLOW et al. 2016,
p. 118). Hyperparameters can be configured using various approaches. One
possibility involves a trial-and-error process, often necessitating domain-specific
expertise. In the case of more complex analyses, this approach is known to
be time-consuming and error-prone. (BISCHL et al. 2023, p. 2) An alternative
strategy is based on heuristics. In this approach, a range of hyperparameters is
systematically tested by defining a grid of values for each hyperparameter and
evaluating the performance of the model for each combination. This grid search
allows for a thorough exploration of the hyperparameter space. Another effec-
tive technique is random search, which is frequently used in scenarios involving
higher-dimensional hyperparameter optimization. In contrast to structured grid
search, random search is based on the random selection of combinations of
hyperparameters for evaluation. (BISCHL et al. 2023, pp. 7–8)

Depending on the nature of the data being analyzed and the objective of the
study, ML techniques can be broadly divided into two major categories: su-
pervised and unsupervised learning. In supervised learning, the objective is to
predict the value of an output, also referred to as the target variable, based
on a set of input variables. The term supervised captures the core of this
approach, as it implies that the learning process is guided and supervised by
the presence of the target variable, also referred to as the labeled output. In
the case of unsupervised learning, there is no target variable available, but the
objective is to describe the associations, patterns, and clusters among the input
variables. (HASTIE et al. 2009, p. 2) As the field of ML has evolved over the
years, additional branches have emerged alongside these two main categories,
including semi-supervised learning (VAN ENGELEN and HOOS 2020, p. 374). The
objective of this dissertation is to analyze and understand the interdependencies
in electrode manufacturing and their influence on intermediate and final
product quality. Given that the product properties are treated as labeled target
variables, the scope of this dissertation falls under the category of supervised
ML.

If the target variable in a supervised learning scenario consists of numerical
values, the problem is typically referred to as regression. In a regression task, the
goal is to predict a continuous and quantitative output. Conversely, when the
output variable is characterized by discrete categories or classes, supervised ML
falls under the domain of classification, with the aim of predicting a predefined
set of categories. (HASTIE et al. 2009, p. 10)

2.4.2 Machine Learning Regression Algorithms

In the context of this dissertation, the problem under investigation is treated as
a regression task, primarily concerned with predicting a continuous numerical
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target variable. Hence, in this subsection, a brief description of the supervised
ML regression algorithms relevant to this dissertation and their working
principle is presented.

Linear Regression

The Linear Regression (LR) algorithm is regarded as one of the most fundamental
techniques in the field of ML, given that numerous powerful nonlinear models
are derived from LR by incorporating multi-layer structures or high-dimensional
mappings (ZHOU 2021, p. 58). The basic concept of this algorithm is to establish
a linear relationship between input and output variables. Depending on the
number of these variables, LR can be further categorized into distinct types.

The Multiple Linear Regression (MLR) is defined as an LR model based on various
input variables, as shown in Equation 2.7. While y stands for the output, also
termed as the dependent variable, x i represents the independent variables,
where i is the number of independent variables, ranging from 1 to p, each
contributing to the prediction. The term e is an unobservable random variable,
also referred to as the error component. The coefficients for each independent
variable are shown by βi , indicating the strength and direction of their influence
on y, while β0 represents the intercept, serving as the baseline of the regression
model. (IZENMAN 2008, p. 108)

y = β0 +
p
∑

i=1

βi x i + e (2.7)

Polynomial Regression

The Polynomial Regression (PolyR) is a type of regression model in which the
relationship between the independent variables and the dependent variable is
represented by an nth-degree polynomial. In the case of two independent vari-
ables, Equation 2.8 shows a second-degree polynomial, providing an example
that includes two-factor interaction. (WALL and AMEMIYA 2007, p. 326)

y = β0 + β1 x1 + β2 x2 + β3 x2
1 + β4 x2

2 + β5 x1 x2 + e (2.8)

Decision Tree

The Decision Tree (DT) is a versatile algorithm used for both classification
and regression purposes (BREIMAN et al. 1984). Building a DT involves
repeatedly splitting the dataset, where at each split, the data is divided into
two groups. This division aims to maximize the consistency of each group with
respect to the target variable. To predict values, a regression model is applied
to each node during this process, resulting in a tree structure that helps make
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predictions based on the input data. (DE’ATH and FABRICIUS 2000, p. 3178)
A DT consists of internal decision nodes and terminal or leaf nodes. A decision
node is a point where the dataset is divided into branches based on certain
conditions or criteria related to the independent variables. A leaf or terminal
node represents the ultimate outcome for a specific path of the DT. (ALPAYDIN

2014, pp. 213–214)

Random Forest

The Random Forest (RF), introduced by BREIMAN (2001), is a tree-based
ensemble learning algorithm. It is constructed from a substantial ensemble of
decorrelated DTs. The ensemble approach combines the predictions of these
trees to achieve robust and accurate results through averaging. (HASTIE et al.
2009, p. 587)

eXtreme Gradient Boosting

Based on the foundational gradient tree boosting technique, which seeks to
synthesize predictions from a collection of models to create a more robust
and precise model (FRIEDMAN 2001), CHEN and GUESTRIN (2016) introduced
eXtreme Gradient Boosting (XGBoost) as a scalable ML algorithm for tree
boosting. Both RF and XGBoost are considered methods designed to enhance
the performance of the model by leveraging simple base models. Nevertheless,
they function on distinct principles, as illustrated in Figure 2.3. While RF
relies on the construction of multiple independent DTs, the XGBoost builds
trees subsequently, with each new tree correcting its predictions based on the
residuals from the previous iteration. (NATRAS et al. 2022, p. 9)

Random Forest

Data

1st tree nth tree

.

.

.

Prediction 1 … Prediction n

Average of all predictions

Data

eXtreme Gradient Boosting

1st tree nth tree

.

.

.

Prediction 1 Prediction n

Summation of all predictions

…

(a) (b)

Figure 2.3: Overview of the working principles of (a) RF and (b) XGBoost, adapted from
NATRAS et al. (2022)
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Support Vector Machine

The Support Vector Machine (SVM), introduced by BOSER et al. (1992) with an
initial focus on classification tasks, is a powerful algorithm, available in both
linear and nonlinear versions (IZENMAN 2008, p. 369). The SVM regression
algorithm transforms the input variables into a high-dimensional feature space
and aims to find an optimal separating hyperplane that effectively describes the
newly established feature space (VAPNIK 1999, p. 133).

2.4.3 Metrics and Methods for Performance Evaluation

There is a diverse range of mathematical expressions, referred to as metrics,
that can be used to evaluate the performance of regressive models in ML. These
metrics provide quantifiable measures reflecting the effectiveness, accuracy, and
generalization capabilities of the ML models. (JOSHI 2020, p. 169) Aside from
R2, which was introduced in Subsection 2.3.2, there are additional metrics
relevant to this dissertation, which are presented in the following.

The Mean Absolute Error (MAE) is a metric used in statistics and ML to
measure the average magnitude of errors between predicted values ŷi and
actual observed values yi , according to the following Equation (JOSHI 2020,
p. 170).

MAE=
1
N

N
∑

i=1

|yi − ŷi | (2.9)

The Mean Squared Error (MSE) measures the average of the squared differ-
ences between predicted values and actual observed values. The inclusion
of the squared term in the MSE, as shown in Equation 2.10, leads to a
more pronounced penalty for larger errors, which are often associated with
outliers. (JOSHI 2020, p. 170)

MSE=
1
N

N
∑

i=1

(yi − ŷi)
2 (2.10)

Another common evaluation metric is Root Mean Squared Error (RMSE), which
calculates the error by taking the square root of the MSE, as shown in
Equation 2.11. The results have the same unit as the target variable and are
less sensitive to outliers. (JOSHI 2020, p. 171)

RMSE=

√

√

√ 1
N

N
∑

i=1

(yi − ŷi)2 (2.11)
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The range for MAE, MSE, and RMSE generally begins at a minimum value of 0 in
an ideal scenario, where the model’s predictions precisely align with the actual
values. There is no upper limit for these metrics, but lower values are indicative
of better model performance.

The primary goal of ML is not simply to reproduce the training data, but rather
to make accurate predictions for new cases. The measure of how effectively a
model trained on the training dataset, can accurately predict the target variable
for new, previously unseen instances is referred to as generalization. In essence,
generalization assesses the ability of the model to apply its learned patterns
and knowledge to new data points, which is a crucial aspect of evaluating its
performance and practical application. (ALPAYDIN 2014, pp. 38–39)

When dealing with a large dataset, a common approach to assess a model’s
generalization is to evaluate its performance on independent data, often
referred to as a validation set. Nonetheless, there are numerous scenarios
in which data availability is restricted. In such cases, a small validation set
can result in an imprecise assessment of the model’s predictive performance
due to increased noise. One practical solution to address this issue is the
cross-validation approach. This approach divides the available dataset into
two subsets: a training set, and a test set reserved for assessing the model’s
performance. Cross-validation involves iteratively partitioning the data into
separate training and test subsets. This process is conducted k times, where
k represents the number of iterations or partitions. Each of these subsets, often
referred to as a fold, is assessed once as the test set while the remaining
k-1 folds are used for training, as shown in Figure 2.4. This iterative process
offers a more robust estimation of the model’s generalization performance. In
the case of data scarcity, a simplified alternative involves employing a random
train-test split. While this method can be resource-efficient, it is important
to note that it introduces a certain degree of randomness. Consequently, the
effectiveness of the model’s evaluation may vary depending on the specific data
split employed. (BISHOP and NASRABADI 2006, pp. 32–33)

2.4.4 Key Challenges in Machine Learning

The potential of ML, particularly when dealing with complex systems such as
LIB production, is evident (LOMBARDO et al. 2021, p. 10953). However, there
are certain challenges that need to be considered throughout the development
and prior to deployment of data-driven models.

Before developing ML models, it is imperative to pay substantial attention to
the quality and the veracity of the available dataset. A misdefinition of the
problem or use of an inaccurate or biased dataset can easily lead to incorrect ML
predictions and misleading insights. DoE serves as a powerful statistical tool that
can effectively address this challenge by maximizing the statistical significance
of the data to be obtained and minimizing the number of experiments required
to analyze and understand the system. (LOMBARDO et al. 2021, p. 10918)
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Dataset

Legend:             Train dataset                    Test dataset

(a)

(b) Dataset

Figure 2.4: Possible methods for evaluating generalization in a supervised ML model
with limited data: (a) k-fold cross-validation, with k=5 and (b) random train-test split,
adapted from BISHOP and NASRABADI (2006, p. 33)

In terms of model generalization, there is often a trade-off between bias
and variance (HASTIE et al. 2009, p. 38). Variance describes the degree to
which the predictions made by a model would vary when it is trained using
a different training dataset. In other words, it measures how sensitive the
model’s performance is to the particular dataset on which it was trained. A
high variance implies that the model is overly influenced by the training data,
potentially making it less reliable when faced with new, unseen data. Bias, on
the other hand, is denoted as the error introduced when a complex system
or problem is approximated by a considerably simpler model. These simpler
models are typically characterized by limited flexibility, resulting in a higher
level of bias. (JAMES et al. 2013, pp. 34–35) A complex model characterized by
low bias and high variance indicates that the training dataset has been learned
in great detail, including the noise. This phenomenon is commonly referred to
as overfitting. Conversely, underfitting is observed when the variability of the
data cannot be captured by a model with high bias. (ALPAYDIN 2014, p. 82)
Figure 2.5 illustrates the concept of generalization, based on the example of
regression models, and highlights the two common issues of underfitting and
overfitting. To achieve a balance between a model’s complexity and its ability to
generalize effectively and reduce the risk of overfitting, several strategies can be
adopted, including the implementation of techniques such as regularization or
the incorporation of a cross-validation approach. (HASTIE et al. 2009, p. 400)

Another conflict arises when considering the trade-off between the flexibility
and complexity of an ML model and its potential for explainability and
interpretability (JAMES et al. 2013, p. 25). Models with higher flexibility often
possess the capacity to capture the complexity of a system more effectively.
However, gaining insight into the decision-making processes of such complex
models is challenging. Such models are often referred to as black boxes as it
is difficult to understand the reasons behind specific predictions or identify the
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Legend:             Data point                  Model fit
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Figure 2.5: Examples of regression model generalization, with (a) underfitting occurred
by a linear model, (b) good fit, and (c) overfitting by a high-degree polynomial model,
adapted from BADILLO et al. (2020, p. 876)

features influencing the outcomes. (LINARDATOS et al. 2020, pp. 1–2) Figure 2.6
illustrates the trade-off outlined for a set of common ML algorithms.
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Figure 2.6: Trade-off between the complexity of the model and its interpretability across
a set of common ML algorithms, adapted from JAMES et al. (2013, p. 25)

2.4.5 Explainable Machine Learning Methods

The ever-increasing demand for ML models, which not only offer high perfor-
mance and robustness but also provide trust and transparency for real-world
applications, has led to the revival of the field of eXplainable Artificial In-
telligence (XAI), alternatively referred to as eXplainable Machine Learning
(XML) (LINARDATOS et al. 2020, p. 2). The XML methods are designed to
offer insight into the decision-making and prediction processes of a model,
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effectively transforming what is often referred to as a black box model into a
glass box model (RAI 2020, pp. 137–138). Within the domain of XML, there
is a set of methods tailored to a particular family of algorithms, known as
model-specific methods. In contrast, there are also methods that are universally
applicable to any algorithm, and these are referred to as model-agnostic
methods. While certain methods offer explanations that encompass the entire
model, unveiling global effects, there are other methods that focus on revealing
local, instance-specific impacts. (LINARDATOS et al. 2020, p. 5) In the following,
a brief description of the XML methods relevant to this dissertation is presented.

Mean Decrease of Impurity

The Feature Importance (FI) based on Mean Decrease of Impurity (MDI) is an XML
method that evaluates the significance of features in the context of tree-based
algorithms. In DTs, as the main components of tree-based ensemble models, a
key aspect involves partitioning the dataset into subsets. The overarching goal
is to have the subsets that foster greater homogeneity and minimize impurity
with respect to the target variable. To assess the relevance of an input variable,
the decrease of impurity in the nodes is used as a measure. This calculation
involves the accumulation of impurity decrease at each node across the entire
forest, where a split based on the considered input variable has been executed.
In essence, it quantifies how much the input variable contributes to making
the subsets purer and in line with the target variable. (NEMBRINI et al. 2018,
pp. 3711–3712)

Permutation Feature Importance

The Permutation FI is a heuristic approach used to address bias in conventional
FI. This method is based on the assumption that the random importance of a
feature follows a specific probability distribution. The relevance of a feature is
evaluated by measuring how much the model’s prediction error increases after
permuting or shuffling the feature value. (LINARDATOS et al. 2020, p. 13)

SHapley Additive exPlanations

The SHapley Additive exPlanations (SHAP), an XML method inspired by the
Shapely values from the game theory, was initially introduced for tree-based
models (LUNDBERG et al. 2020, p. 56). This method provides insight into both
the global feature relevance and the local instance-specific contributions (LUND-
BERG et al. 2020, p. 61). For this purpose, the contribution of each feature
to the prediction of the target variable is calculated, considering all possible
combinations of features (FARAJI NIRI et al. 2023, p. 11).

Accumulated Local Effects

The Accumulated Local Effects (ALE) plot is a visualization method used to
interpret the impact of features on the model’s prediction (APLEY and ZHU
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2020, p. 1061). Taking into account the conditional distribution of features, ALE
plots are capable of dealing with correlated features. The method is based on
calculating the average impact of a specific feature of interest while mitigating
the influence of correlated features. (LINARDATOS et al. 2020, p. 14). ALE is
categorized as a model-agnostic method.
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Chapter 3

State of the Art

This chapter summarizes the relevant literature contributing to the objective
of this dissertation. The approach adopted, including the main research areas
identified as relevant for the literature review, is outlined in Section 3.1. The
subsequent sections (3.2 to 3.4) present a detailed analysis of the existing
studies, with each section focusing on a particular research area, accompanied
by a brief summary. Section 3.5 provides concluding remarks and delves into
possible research perspectives.

3.1 Literature Review Approach

In order to obtain a thorough overview of the relevant concepts in the
subject matter, a systematic concept-centric literature review was conducted. As
suggested by WEBSTER and WATSON (2002), this approach offers a set of
advantages when compared with a publication-centric one, including a more
comprehensive analysis and a holistic perspective on the relevant aspects within
the domain being analyzed. A systematic literature review can be broadly
divided into three major phases: review planning, search execution, and,
analysis and evaluation (KITCHENHAM et al. 2009, pp. 8–9). In the planning
phase, the objective and the scope of the literature review are defined. Within
the context of this dissertation, the scope was restricted to LIB electrode
manufacturing.

In line with the motivation and the overarching objective established in
Chapter 1, and guided by the adopted concept-centric approach, three main
research areas have been identified as relevant to enable a holistic, efficient,
and quality-oriented data-driven analysis of interdependencies in the electrode
manufacturing of LIB cells. These areas are briefly described below.

• Parameters and measurement solutions: Data is the backbone of any
data-driven solution. Therefore, this research area explores the literature
on quality-relevant parameters and available measuring systems for the
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characterization of (intermediate) products and data collection, which is
a prerequisite for the development of ML models.

• Data generation and evaluation: As outlined in Subsection 2.4.4, data
quality is a critical aspect in ML models. In this research area, the
extent to which data generation and evaluation methodologies have
been utilized in the existing literature related to data-driven studies in
LIB electrode manufacturing is explored.

• Data-driven models and derivation of insights: This research area is
centered on the investigation of the existing data-driven studies in
electrode manufacturing. The existing literature is analyzed considering
various aspects such as processes and parameters, materials, and the ML
techniques employed. With the overarching goal of comprehending the
existing interdependencies, enhancing process understanding, and con-
sequently product quality, there is a deliberate emphasis on extracting
insights from the developed models. Therefore, the use of XML methods
is additionally considered.

In all of the defined research areas, the methodological aspect of the existing
solutions is also taken into account. This emphasis on method-based solutions
not only fosters a profound understanding of the proposed solutions, but also
facilitates their adaptation and transfer as necessary. Figure 3.1 presents an
overview of the relevant research areas and their key elements, which have
been considered during the conduction of the literature review, with a focus on
LIB electrode manufacturing.

• Relevant parameters

• Digitalization

• Characterization methods

• Measuring instruments

• Data mining

• Machine learning

• Artificial intelligence

• Explainable machine learning

• Design of Experiments

• Design augmentation

• Data quality

• Consolidation of historical data

Parameters and 

measurement solutions

Data generation and 

evaluation 

Data-driven models and 

derivation of insights

Research areas

Key elements

Figure 3.1: Overview of the relevant research areas identified and their key elements
for the concept-centric literature review focused on LIB electrode manufacturing

Based on the identified research areas, an initial literature review was con-
ducted in January 2021, using the Scopus and Google Scholar databases. This
was followed by extensive mapping studies carried out as part of the solution
development, which were subsequently published. Detailed information on
the search strategies and the keywords used in the queries can be found
in HAGHI et al. (2022, p. 9) and HAGHI, HIDALGO, et al. (2023, p. 3). In
addition, there is a set of extensive literature reviews available for each of the
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research areas, which were adopted as reference points and are outlined in the
respective sections. To ensure a comprehensive literature review, a thorough
examination of the existing literature was conducted in March 2023. The results
are presented in the following sections.

3.2 Parameters and Measurement Solutions

In a comprehensive review, AYERBE et al. (2022) summarized the current status,
challenges, and future perspectives in the field of digitalization for battery
cell production. Within this context, data acquisition is identified as a key
component, given the high number of parameters required to monitor the
quality of both intermediate and final products (AYERBE et al. 2022, p. 3).

An early approach to address the challenge of managing a multitude of
parameters in battery cell production was introduced by WESTERMEIER et
al. (2013). Elaborating on the complexity of the process chain, a five-step
methodology for quality planning in LIB production chain was developed, con-
sisting of parameter identification, parameter classification, parameter selec-
tion, process chain DoE, and process chain optimization. In the first step for
parameter identification, the methodology involved an expert-based evaluation
of potential correlations between parameters, facilitated by the application of
Failure Mode and Effect Analysis (FMEA). (WESTERMEIER et al. 2013) In the
subsequent publication, based on multiple domain matrices, parameters were
classified into those with direct and indirect impact on the quality of the final
product (WESTERMEIER et al. 2014). The proposed methodology was detailed
and refined in the dissertation of WESTERMEIER (2016). The applicability of the
proposed solution was demonstrated on the LIB battery cell production adopted
as a use case, with a primary focus on the analysis of the cell assembly and
finalization processes. The results were obtained through interviews conducted
with 12 experts from research projects in the field of battery production;
further details on the profile of the experts were not provided. Although the
proposed solution meets its methodological requirements, there are still certain
limitations. One constraint arises from the necessity for experts to possess a
comprehensive cross-process understanding of the complex interdependencies
along the entire production process and the cumulative effects, particularly
when focusing solely on the quality of the final product. Additionally, one key
aspect that remains unaddressed throughout the methodology is the feasibility
of collecting the identified relevant parameters, ideally in real-time, through
appropriate measurement solutions. The framework does not take into account
the practical considerations of implementing measurement solutions, which are
essential to ensure the efficient application of the proposed methodology.

TURETSKYY, THIEDE, et al. (2020) introduced a data-driven concept for the
acquisition of relevant data, data management, and data analytics in battery
cell production. Building on this concept, the dissertation of TURETSKYY
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(2022) presented a holistic framework for data analytics in battery cell
production that integrated the required elements from CRISP-DM (CHAPMAN

et al. 2000) and incorporated them into the Cyber-Physical Production System
(CPPS), a methodology introduced by THIEDE (2018). The work presented
by TURETSKYY (2022) can be regarded as a significant contribution to the
current state of the art in this field. In this section, only the aspects related to
parameters and measurability are discussed, while the data analytics aspects
are explored in Section 3.4. The proposed framework was developed based
on the example of the Battery LabFactory Braunschweig. For this purpose, a
primarily expert-based analysis was conducted with the technical and scientific
staff of the facility to identify different parameters, data sources, and data types
available. (TURETSKYY, THIEDE, et al. 2020) The data management aspect,
including the definition of the data acquisition strategy, data consolidation, and
data storage, has been extensively elaborated (TURETSKYY 2022). However, the
underlying foundation, which relates to the relevance of the parameters, has
not been discussed.

In an extensive literature review, ZANOTTO et al. (2022) provided data
specifications for the development of computational models that can be used
as a digital twin of a battery production pilot line. The review presented an
overview of parameters classified into three categories based on their criticality
for model development. The models considered in this step included empirical,
physics-based, discrete, and ML models. Approximately 65 parameters were
identified for the electrode manufacturing. The reported parameters were likely
based on doctor blade coating, given that crucial details specific to slot die
coating—an industrially relevant technology—such as slot die angle or pump
flow rate, were not considered. Furthermore, the review included an assessment
of the measurability and accuracy of the sensor technology for the parameters. It
is important to highlight that the work presented by ZANOTTO et al. (2022) is
closely aligned with the solution developed in this dissertation and presented
in HAGHI et al. (2022), with both articles published simultaneously in July
2022. However, it is worth noting that the methodological aspect of the solution
presented by ZANOTTO et al. (2022) could benefit from additional clarity,
as the foundational details regarding the evaluation of the parameters, their
measurability, and accuracy are not explicitly provided.

In a recent publication, KAMPKER et al. (2023) highlighted the relevance of
parameters in the development of a digital twin in battery cell production.
Based on a literature review, an overview of process and product parameters
was provided. The findings were used to develop a digital battery product twin
concept using an information model. The relevance of the parameters or their
measurability was not discussed.

In two exclusive reviews, REYNOLDS et al. (2021) and ZHANG et al. (2022)
explored the possible measuring solutions in the coating and drying processes,
respectively. Underlying the need for a comprehensive overview of the existing
measurement options as a prerequisite for the development of data-driven
models, REYNOLDS et al. (2021) presented a summary of the slurry properties
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and the product and process parameters during the coating process. The review
provided an overview of possible measuring instruments, including exemplary
comparisons with the advantages and the disadvantages for two product
parameters, specifically the coating thickness and the quality of the coating
surface in the context of defect detection solutions (REYNOLDS et al. 2021).
However, the comparisons lacked quantitative data as a benchmark; instead,
qualitative aspects such as affordability and precision were mentioned as advan-
tages. ZHANG et al. (2022) presented a summary of the relevant parameters and
elaborated on their impact in the context of possible defects arising during the
drying process. The review included an overview of characterization methods,
their scale, and the possibility of inline or offline applications. Additionally, the
methods that are already in use in the drying process of LIB production were
highlighted.

In conclusion, the existing literature has addressed the topic of LIB electrode
manufacturing parameters to a certain extent. Some authors, such as WESTER-
MEIER (2016), have underscored the importance of evaluation of the parameters
based on their relevance. This is necessitated by the large number of parameters
involved and the inherent complexity of the process chain. It is worth noting
that the discussion around the measurability of these parameters has pre-
dominantly taken place in isolation within the current literature. The existing
analyses lack a certain degree of transparency, and the comprehensive literature
reviews fall short of addressing the entirety of the electrode manufacturing
process chain and the relevant parameters. These aspects underscore the need
for a more holistic and systematic examination of this research area.

3.3 Data Generation and Evaluation

The necessity of data quality in data-driven models and the advantages of DoE
methods in this context were elaborated in Chapter 2. In a comprehensive
review, ROMÁN-RAMÍREZ and MARCO (2022) analyzed the application of DoE
methods in various domains of battery research. While the review did not
focus exclusively on ML studies, the results were adopted as the foundation for
the literature review in this section. The review revealed that the application
of DoE methods, particularly in the context of slurry formulation, electrode
manufacturing, and cell production, has been rather strictly constrained, with
only 12 related studies identified (ROMÁN-RAMÍREZ and MARCO 2022, pp. 11,
13). From a methodological perspective, despite the higher efficiency offered
by optimal designs, in comparison with other DoE design types, these methods
have also received limited attention.

For a comprehensive analysis, an in-depth investigation of the data generation
and evaluation steps for the development of ML models in electrode manufac-
turing was additionally conducted. In the following, only the articles providing
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details on these two steps are discussed, while the aspects relevant to model
development are analyzed in Section 3.4.

FARAJI NIRI et al. (2021) investigated the impact of the coating parameters
on the physical and electrochemical properties of the electrode. The study
was based on DoE methods, conducted in two parts. In the first part, a
screening design was used to identify the main influencing parameters. The
target variables were electrode mass loading, thickness, and porosity, while the
analyzed factors included comma bar gap, web speed, drying temperature, air
speed, and coating ratio. The first phase consisted of 12 cathode configurations,
with a correlation matrix used to evaluate the data generated by the screening
design. Due to the strong correlation observed between the physical properties
of the electrode and the comma bar gap, web speed, and coating ratio, the
second DoE phase focused exclusively on these parameters. In this phase, the
Box-Wilson composite design was utilized as a method within the framework
of RSM, with five levels for each factor. This approach resulted in a total of 20
experimental runs. This dataset was subsequently adopted in a following article
by FARAJI NIRI, LIU, APACHITEI, et al. (2022) and supplemented by a series of
experiments carried out on the anode. In the case of the anode, a correlation
matrix between the input variables was used as a first step to restrict the number
of factors. Afterward, the RSM for the anode was conducted based on only the
comma bar gap and the coating ratio.

DUQUESNOY et al. (2021) examined the influence of the slurry formulation,
solid content, and coating gap on the heterogeneity of the electrode, taking into
account its mass loading and thickness. The reported parameters indicate that
a comprehensive experiment was carried out using a full factorial design. This
resulted in a total of 144 electrode configurations. Subsequently, a Principle
Component Analysis (PCA) was conducted to identify the interdependencies
among the input variables, and, if applicable, reduce the number of relevant
variables. This analytical method serves as a valuable tool to reduce the
dimensionality of the dataset while retaining the crucial information.

In a study focused on the calendering process, FARAJI NIRI, APACHITEI, et al.
(2022) analyzed the effects of mass loading, target porosity, calendering gap,
and rollers temperature on the electrochemical properties of the electrode. Us-
ing a DoE method, 18 experimental runs were defined and conducted. Given
that the pressure applied during the calendering was kept constant, it was
expected that the analyzed factors, in particular the calendering gap and the
target porosity, would show a high correlation when all other factors, such
as mass loading, remained unchanged. However, the study does not provide
further details on the DoE method adopted, the rationale behind the selection
of the factors, or the approach taken to address this aspect.

WANG et al. (2022) presented an XML-based study, investigating the impact
of slurry formulation and different binder types on the discharge capacity at
different C-rates. The data utilized in this study was sourced from the dataset
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originally published by RYNNE et al. (2019, 2020), which was generated using
a DoE method.

In a recent publication, DUQUESNOY et al. (2023) introduced an approach for
generation of a synthetic dataset from physics-based simulation models, which
was then used to train an ML model and make predictions concerning the
mesoscale properties of the electrode. While the study mentioned the use of
a DoE for data generation, it did not provide further details on this aspect.

A number of studies, such as SCHNELL et al. (2019), KORNAS et al. (2019), and
TURETSKYY, THIEDE, et al. (2020), have demonstrated the application of DM
methods using available historical datasets collected throughout the production
chain. Data evaluation was carried out as part of the data preparation process,
resulting in a reduction of the datasets. For instance, in the case of the article
presented by SCHNELL et al. (2019), out of 714 available data points, only
113 were identified as suitable for model development after data preparation.
However, these studies did not provide further details on the methods applied
to evaluate the data or the background of the historical data. Furthermore,
the use cases were presented with a certain degree of anonymity concerning
the parameters. This lack of transparency makes it difficult to gain a complete
understanding of the interdependencies between different factors, the range of
variations considered, and the statistical significance of the results.

In summary, it is evident that the topic of data generation and evaluation has
not received extensive attention in the existing data-driven literature. While
there are noteworthy examples in the field of formulation studies, such as the
data generated by RYNNE et al. (2019) and adopted by WANG et al. (2022) for
ML analysis, the application of process-based DoE has been limited. The only
examples in this field are presented by FARAJI NIRI et al. (2021) and FARAJI

NIRI, APACHITEI, et al. (2022), which predominantly focus on single process
steps. Remarkably, a comprehensive cross-process analysis of the electrode
manufacturing process chain, carried out efficiently through systematic data
generation, and potentially incorporating the use of DoE techniques, remains
a relatively unexplored area of research. Furthermore, in studies utilizing
historical data, an in-depth analysis of data quality, particularly with respect to
issues such as multicollinearity and possible measures to improve the dataset,
has been largely overlooked.

3.4 Data-Driven Models and Derivation of Insights

In a critical review, LOMBARDO et al. (2021) explored the ML applications in
battery research, covering areas such as material design, cell production, as well
as cell diagnosis and prognosis. Among the 200 articles analyzed, only 6 % were
dedicated to electrode manufacturing and cell production (LOMBARDO et al.
2021, p. 10908). Similarly, in a comprehensive review, FARAJI NIRI et al. (2023)
investigated the application of XML methods in battery research, encompassing
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aspects from production to state and performance estimation. The findings re-
vealed that XML has emerged as a prominent trend across all research domains
in recent years (FARAJI NIRI et al. 2023, p. 30). However, it is important to
note that a significant proportion of the existing studies, particularly in the
battery production field, relied predominantly on the application of FI method,
analyzing only the global relevance of the parameters (FARAJI NIRI et al. 2023,
p. 27).

The findings presented by LOMBARDO et al. (2021) and FARAJI NIRI et al. (2023)
served as the foundation upon which a comprehensive literature review was
conducted. This section provides a summary of the relevant studies analyzing
the interdependencies in LIB electrode manufacturing. Some of the studies have
been consolidated, as they represent a cohesive investigation presented across
multiple consecutive publications. It is important to note that certain studies,
such as those focusing on the use of ML models for faster parameterization of
simulation models or those concentrating exclusively on the interdependencies
in cell assembly processes, were excluded from this analysis. In the conducted
mapping study, which is a part of the solution development in this dissertation
(see Chapter 5), an overview of ML-based studies along the entire process chain
is provided. Further details in this regard can be found in HAGHI, HIDALGO,
et al. (2023). The relevant studies in this section were analyzed from two
perspectives: production and data analytics. While the former investigated the
process steps analyzed, the target variables, and the production scale to assess
the potential for achieving a comprehensive understanding within electrode
manufacturing, the latter delved into the methodological considerations, in-
cluding aspects such as interpretability, to extract valuable insights from the
developed models.

THIEDE et al. (2019) demonstrated the application of a DM approach, followed
by the CPPS framework introduced in an earlier article (THIEDE 2018), to
predict the quality properties of a battery cell based on the parameters collected
along the process chain at pilot scale. The study utilized a dataset obtained
from 172 LIB pouch cells, considering parameter variations during calendering,
cutting, and z-folding. A multivariate regression model was used to predict
maximal capacity, capacity loss after 400 cycles, and formation loss after the
first cycle. The coefficients of the developed regression model were used as
indicators to identify the influencing factors, which were unfortunately reported
anonymously with only reference numbers.

CUNHA et al. (2020) analyzed the impact of slurry properties such as solid
content, on electrode characteristics, specifically porosity after drying and mass
loading. The study was based on a classification analysis, using DT, SVM, and
deep Neural Network (NN). With 82 different NMC cathode configurations,
the dataset generated at a pilot line included more than 600 data points.
Despite the use of complex models such as NN, the study did not delve into
the interpretability aspects. Based on the extensive dataset provided by CUNHA

et al. (2020), several subsequent studies have been published with a similar
objective, aiming to evaluate the performance of different models (LIU, YANG,
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et al. 2021; LIU, HU, et al. 2021; LIU, WEI, et al. 2021; LIU, LI, et al. 2021; CHEN

et al. 2021; LIU, PENG, et al. 2022). The majority of these studies included a set
of XML methods such as FI to quantify the impact of input variables.

DUQUESNOY et al. (2020) introduced a hybrid methodology based on the exper-
imental data used with physics-based models to generate mesoscale properties
of the electrode such as tortuosity. Subsequently, ML models were employed
to make predictions using the generated dataset. The experimentally obtained
dataset at pilot scale consisted of 54 data points based on 14 distinctive cathode
configurations. The analyzed parameters included active material content in
the slurry, electrode thickness, and calendering pressure. The Sure Independent
Screening and Sparsifying Operator (SISSO) was chosen as the ML algorithm
for the model development. The study did not include further analysis of the
impact of the parameters.

In a comprehensive study, DRAKOPOULOS et al. (2021) conducted an extensive
analysis of various parameters, including slurry formulation, mixing protocol,
coating gap, coating speed, drying temperature, and porosity. They investigated
the impact of these factors on the rheological properties of the slurry, the
adhesion strength of the electrode, and the electrochemical performance
using half-cells. The experimental dataset was based on 27 different anode
configurations produced at laboratory scale. This study stands out as one of the
most comprehensive cross-process analyses in the literature. However, there are
some limitations to consider. While it was acknowledged that no systematic
DoE approach was used for data generation, the article did not provide
further details on how a mixture design with variations in slurry formulation
was incorporated into process-focused experiments, such as those involving
alterations in the coating gap. The study adopted exclusively Alchemite™, as
the ML algorithm for the model development, without applying any other ML
algorithms or using XML methods. Given the large number of factors under
analysis, coupled with limitations in dataset size and transparency concerning
data generation, it remains challenging to draw robust and generalizable
conclusions from the findings. Additionally, it is worth noting that the scale-up
of the effect of the parameters from the isolated drying step at the lab-scale
to roll-to-roll drying, where a combination of web speed and temperatures
can affect electrode quality, is another crucial aspect that was not addressed.
This transition to a larger production scale may introduce complexities and
variations that were not captured in the lab-scale experiments. Hence, it is
essential to consider potential differences in outcomes between these two scales.

DUQUESNOY et al. (2021) investigated how variations in slurry formulation,
solid content, and coating gap impact electrode heterogeneity, taking into
account its mass loading and thickness. With a dataset consisting of 144
different cathode configurations produced at a pilot line, the study adopted
Gaussian Naive Bayes as the classifier. Probability plots were employed to
examine the classification results and to explore the analyzed interdependencies
and the associated results.
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Using a two-step DoE-based approach, FARAJI NIRI et al. (2021) analyzed
the impact of comma bar gap, web speed, and coating ratio on the relevant
physical properties of the electrode, specifically mass loading, thickness, and
porosity after the drying process. The produced cathodes were additionally
characterized electrochemically through rate capability tests performed on
half-cells. Based on a dataset derived from 32 electrode configurations and 115
coin cells, the study conducted a comparative analysis of various ML models
including SVM, LR, NN, DT and Gradient Boosted Trees (GBT). Furthermore,
the study examined how varying the number of folds in cross-validation affected
the performance of the SVM models. While this study did not utilize XML
methods to explore the significance of the parameters analyzed, in a subsequent
publication (FARAJI NIRI, LIU, APACHITEI, et al. 2022), the same dataset was
employed in conjunction with RF and GBT along with XML techniques. The
factor contribution analysis and FI were used for this purpose. The study
included additionally a dataset for anode production, analyzing the impact of
comma bar gap and coating ratio on the predefined target variables. This work
stands out as one of the few ML studies that provides data generated from
pilot-scale anode production, encompassing 25 distinct configurations. The
dataset from cathode production was also utilized in an XML study presented
by LIU, FARAJI NIRI, et al. (2022). This study aimed to explore the influence
of electrode mass loading, thickness, and porosity on discharge capacity,
gravimetric, and volumetric capacity. The analysis was based on RF as the
primary model, and the results were interpreted using feature interactions and
ALE plots. Additionally, the developed model was compared with LR, SVM,
and AdaBoost. Among these models, the ensemble methods, AdaBoost and RF,
exhibited the highest performance, achieving an R2 value of 0.98 in predicting
the volumetric capacity.

In an extensive lab-scale study, FARAJI NIRI, REYNOLDS, et al. (2022) inves-
tigated the impact of various parameters from mixing and coating processes
on cathode physical properties and areal capacity using half-cells. The study
encompassed variations in slurry properties such as density, viscosity, solid
content, and surface tension, coupled with adjustments in coating speed,
coating gap, and coating dry density, resulting in a total of 67 electrode
configurations. For model development, RF and GBT were employed. The
significance of the analyzed parameters were evaluated using MDI and ALE
techniques. The target variables analyzed included electrode wet thickness,
dry thickness, mass loading, coating density, porosity, and cell capacity. The
models exhibited varying performance for these target variables, with porosity
demonstrating the lowest R2 of approximately 0.58, while for wet thickness a
high R2 value of 0.94 was reported.

ROHKOHL et al. (2022) introduced a DM approach to streamline the setup
and optimization of continuous processes in battery cell production, using the
extrusion process as an example. The approach was based on three steps,
with each step built upon an AI model. In the first stage, based on the
domain knowledge, 15 parameters were identified that can affect the quality
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of the produced slurry. A DT model was developed to map the target product
characteristics to the corresponding process parameters to be set. In the second
step, a digital twin of the process was employed based on the set process
parameters and their expected distribution. This digital twin served as a
virtual representation of the process to identify the optimal process parameters
considering economic and environmental aspects. The last step involved the
process modeling and optimization. This step relied on the data collected
during production to continuously monitor the product quality while taking into
account certain process fluctuations. The last step was realized by developing
an NN model using a 10-fold cross-validation approach to predict the shear
viscosity at specific shear rates. This work stands out as the only study in the
field of ML-based battery research to analyze the extrusion process, utilizing
anode production data collected at a pilot line.

Using a dataset generated through DoE, WANG et al. (2022) investigated the
effect of slurry formulation and different binder types on the rate capability
of the battery cell at different C-rates. The study included the analysis of
both LFP and LTO electrodes, produced at a lab-scale. For the electrochemical
characterization half-cells were used. From the data analytics perspective,
XGBoost was adopted for the model development in combination with XML
methods. Furthermore, models were created based on SVM, NN, and DT to
evaluate their performance in comparison to XGBoost. Both NN and XGBoost
exhibited the highest performance in predicting the discharge capacity at a high
C-rate, achieving an impressive R2 value of 0.92. It is worth noting that the
RMSE for NN was slightly larger than that for XGBoost.

FARAJI NIRI, APACHITEI, et al. (2022) analyzed the impact of product and
process parameters in the calendering process on the cell impedance and
capacity. Utilizing a dataset consisting of 18 different cathode configurations,
resulting in a total of 54 half-cells, the discharge capacity at different cycles
within a 50-cycle range and the area-specific impedance were predicted using
the Extra Trees algorithm. The study encompassed a comprehensive analysis of
feature contributions through various XML methods, including FI, SHAP, and
ALE plots.

In a recent publication, DUQUESNOY et al. (2023) presented an ML-based
optimization approach facilitated by synthetic data generated by physics-based
simulation models. The simulation models were based on a number of param-
eters along the electrode manufacturing, including slurry formulation, solid
content and compaction rate during the calendering process, enabling the
estimation of the mesoscale properties of the electrode such as tortuosity. It
should be noted that certain factors, such as drying temperature, were not
considered in these physics-based models. The synthetic data generated by the
simulation models for cathodes was utilized to train an ML model. For this
purpose, the SISSO algorithm was adopted using a random test-train split.
Based on the developed ML model, a Bayesian multi-objective optimization
was conducted to determine the input space for the optimal mesoscale target
variables. The results were visualized using a partial dependence plot. To
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validate the developed approach, the proposed parameters were adopted to
produce electrodes, which were subsequently characterized. Since the model
initially lacked certain key parameters, such as drying temperature, these were
adjusted by domain experts. The results demonstrated a reasonable agreement
between the predicted and the measured values.

The dissertation of TURETSKYY (2022), which was based on a number of
relevant articles including TURETSKYY, WESSEL, et al. (2020), TURETSKYY,
THIEDE, et al. (2020) and TURETSKYY et al. (2021), aimed to develop a concept
for data analytics in battery production systems. As outlined in Section 3.2,
data acquisition and management, focusing on different data sources, formats,
and types, was defined as one of the key aspects that were addressed in the
dissertation. Concerning data analytics, three use cases were introduced to
demonstrate the capabilities of data-driven models. These included production
quality planning, implementation of quality gates in the production process, and
optimization of processes for energy efficiency. The first two defined use cases
were considered relevant in this section and were analyzed further. As noted
by TURETSKYY (2022), these two use cases addressed the same question from
a data analytics perspective, aiming to identify the factors influencing battery
cell performance. The primary distinction between the use cases lay solely in
their industrial deployment (TURETSKYY 2022, p. 155). The first use case was
presented in detail, using data derived from 191 LIB pouch cells, encompassing
1029 intermediate product features prior to data preprocessing and cleaning.
Further details on the number of different configurations included in the
dataset were not disclosed. An Analysis of Variance (ANOVA) was conducted,
leading to the selection of maximum capacity, self-discharge, and State of
Health (SoH) after 400 cycles as the target variables. Subsequently, a Pearson
correlation analysis was carried out, using a threshold of 0.64, to identify
highly correlated features, which were then removed. This process resulted in
a total of 35 intermediate product features. Following this, a feature selection
process, informed by domain know-how, resulted in choosing 10 intermediate
product parameters for model development. These features included cathode
solid content, cathode electric resistance, remaining electrolyte per thickness,
cathode chamfer width and heat-affected zone, electrode porosity volume ratio,
electrode overlapping rate, anode delamination area, cathode chamfer angle,
amount of active material in the cathode, and the ratio of theoretical capacity
of cathode to anode. The algorithms employed included LR, NN, SVM, RF,
and XGboost. Among these, the last two models demonstrated the highest
performance, yielding an R2 value of approximately 0.86 when employing
a cross-validation approach. However, despite a slightly lower R2, NN was
chosen over these models for further analysis. This choice was rationalized
by the lower interpretability associated with the tree-based models. To en-
hance understanding of the developed model and provide decision support, a
variance-based sensitivity analysis was performed as a statistical technique. This
method provides insight into the global impact of the input variables. While the
work presented by TURETSKYY (2022) has made a significant contribution to the
field of data analytics in battery production, particularly through the systematic
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application of DM methods, it is important to highlight some remaining open
aspects. The use case presented has shown the complexity involved in tackling
high-dimensional problems and the necessity of feature reduction to develop
an appropriate model using historical data. However, it is crucial to point out
that the chosen threshold for the Pearson correlation value can be considered
relatively critical, as it suggests the presence of highly correlated features within
the dataset. Additionally, considering the final parameters selected for model
development, it can be noted that the complexity associated with digitalization
or the possibility of inline collection of the parameters was not taken into
account. Moreover, the utilization of XML methods, particularly at the local
level for deriving insights, was not considered.

To sum up, it is evident that data-driven approaches have received increasing
attention over the last few years. From the production perspective, individual
process steps have been the primary focus of most studies, while the inves-
tigation of interdependencies along the process chain, as demonstrated by
the research works of DRAKOPOULOS et al. (2021) and TURETSKYY (2022),
represents a distinct subset. The drying process, particularly at the pilot scale,
has received limited attention, despite its status as an energy-intensive and
quality-critical process step. The majority of studies have centered solely on
the physical properties of the electrode, such as mass loading, thickness,
and porosity. Subsequent to these, there are studies that have also included
electrochemical characterization, enabling analysis of the impact of product
and process parameters on cell performance. The mechanical property of the
electrode, which is a key factor not only influencing the final cell performance
but also the processability of the electrode throughout the process chain, has
been the subject of investigation in only one study. From the data analytics
perspective, the majority of studies have focused on evaluating the suitability
of different algorithms for modeling purposes. However, the application of XML
methods to extract insights from data-driven studies, particularly in the context
of cross-process analyses with complex models, has remained limited.

3.5 Concluding Remarks and Research Opportunities

The literature review presented in Sections 3.2, 3.3, and 3.4 has reaffirmed
the complexities involved in the field of data-driven analysis of battery cell
production and summarized the existing contributions toward efficient, intel-
ligent, and quality-oriented production. However, considering the objective of
this dissertation, there are still certain research opportunities that should be
explored and addressed.

Most of the previous research has primarily concentrated on individual steps
involved in the data-driven analysis of the interdependencies in electrode
manufacturing. These studies often centered on either the data generation
and model development phases or, alternatively, just the development of
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models using historical datasets. A significant research opportunity lies in the
development of a holistic framework that can provide guidelines to understand
the process chain as a fundamental prerequisite for adopting data-driven
models. This framework should extend beyond a basic understanding of the
various process steps in the electrode manufacturing. It should also include
the identification of parameters that are critical for maintaining product
quality, explore methods for data generation and evaluation, and enable a
comprehensive cross-process analysis. From an applicability perspective, an
essential consideration involves the possible measurement solutions for the
parameters identified as relevant. The inline collection of these parameters is
vital to ensure the long-term viability and sustainability of ML applications in
industrial production settings.

The majority of the existing data-driven studies have included a comparison of
different modeling techniques. Hence, from the modeling perspective, a practi-
cal guide covering different algorithms, dataset sizes, and analyzed aspects can
be highly beneficial. Such a guideline can serve as a valuable reference point
for researchers and practitioners, offering insights into data-driven techniques,
streamlining the modeling process, and ensuring best practices.

Furthermore, with the overall objective of extracting valuable insights from
data-driven analysis, two critical dimensions should be taken into account.
The first dimension involves a comprehensive assessment of data quality and
addressing potential correlations between different features within the dataset.
Neglecting this aspect can introduce inaccuracies and misinterpretations into
the analysis, potentially leading to misleading results. Therefore, a research
opportunity is to provide a blueprint for data generation and evaluation and to
demonstrate the possible measures for improving data quality, especially when
multicollinearity is present in the dataset. A statistically reliable and insightful
dataset establishes the foundation for further in-depth analysis. The second
dimension focuses on deriving insights from data-driven models. Considering
the complexity of the process chain and the models developed in the existing
literature, there is an inevitable need for interpretability of the ML models. The
XML methods offer a pathway to navigate the complexity of modern industrial
processes, data-driven decision-making, and process optimization by providing
insights at both global and local levels.
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Chapter 4

Conceptual Design

Following the overarching objective formulated in Chapter 1, along with the
current state of the art explored in Chapter 3, the following phase according
to DRM is the Prescriptive Study, starting with the conceptual design. Hence,
this chapter begins by establishing the detailed Sub-Objectives (SOs) and
the requirements necessary to meet these SOs in Section 4.1. Subsequently,
Section 4.2 provides an overview of the proposed framework, which aims
to facilitate holistic, efficient, and quality-oriented data-driven analysis of
interdependencies in LIB electrode manufacturing.

4.1 Sub-Objectives and Requirements

Based on the research opportunities summarized in Section 3.5, four key SOs
were defined using a deductive approach. The SOs aim to guide and facilitate
the realization of the primary research goal of this dissertation, providing a
structured and systematic framework for comprehensive data-driven analysis in
electrode manufacturing.

SO1. Identification of quality-relevant parameters and measuring instruments

To establish a holistic framework applicable across different production
lines, the first SO involves systematically identifying the quality-relevant
parameters. This is followed by an overview of possible measuring
instruments that can be used to characterize intermediate products as
quality indicators along the process chain.

SO2. Mapping of potential modeling techniques

To provide practitioners with a comprehensive reference for data-driven
modeling techniques and their associated facets, this SO aims to outline
the modeling techniques employed and the aspects analyzed in the
existing literature for LIB production.
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SO3. Methods for data generation and evaluation

Following the identification of quality-relevant parameters, two use cases
can be considered. The first one is based on the generation of a dataset,
while the second use case evaluates the potential for consolidating and,
if necessary, enhancing historical data.

SO4. Development of data-driven models and derivation of insights

Building on the results of the first three SOs, this step focuses on the
exemplary development and evaluation of data-driven models using both
newly generated and historical datasets. Additionally, it aims to provide
comprehensive insights into the interdependencies within electrode
manufacturing through the application of XML methods.

Aligned with the defined SOs, a set of requirements was formulated. Origi-
nating from the field of software engineering, according to the International
Organization for Standardization (ISO), a requirement is described as "a
statement which translates or expresses a need and its associated constraints
and conditions" (IEEE/ISO/IEC 29148 2018, p. 4). Requirement definition
is a precise and careful examination of the specific needs that a system or
solution is expected to meet, its attributes or constraints. This step plays a
key role in establishing the foundation for the subsequent phase of solution
development. (ROSS and SCHOMAN 1977, p. 6) Various approaches can be
employed to derive requirements. The requirements presented below, denoted
as R1, R2, and so forth, were formulated using the conventional techniques
according to NUSEIBEH and EASTERBROOK (2000, p. 40), relying primarily on
the analysis of the existing literature and the identification of potential use
cases. While certain requirements are specific to individual SOs, some should
be considered throughout the solution development phase and across multiple
SOs. The relevant SOs are additionally noted for each requirement.

R1. Definition of the characteristics of the production system, the process
technologies considered, and the boundaries | SO1

R2. Integration of domain know-how as part of a holistic methodology | SO1
and SO2

R3. Provision of an overview of product and process parameters in electrode
manufacturing | SO1

R4. Consideration of the relevance of the parameters from the quality
management perspective | SO1

R5. Consideration of the digitalization aspect and the complexity involved in
collecting the parameters for data-driven analysis | SO1

R6. Enabling a holistic cross-process analysis along the process chain | SO1,
SO3, and SO4

R7. Consideration of the size of dataset when selecting potential ML tech-
niques for analysis of interdependencies | SO2
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R8. Consideration of possible use cases concerning data availability and
quality | SO3

R9. Visualization of data-driven models in a comprehensive and interpretable
form | SO4

R10. Quantification of the analyzed interdependencies and their impact on
(intermediate) product properties | SO4

R11. Realization of a modular methodology, adjustable based on the objective
of the analysis | SO1, SO2, SO3, and SO4

R12. Ensuring transparency and transferability by elaborating on methods and
techniques adopted in each phase | SO1, SO2, SO3, and SO4

4.2 Overview of the Proposed Framework

Based on the formulated SOs and requirements, this section provides
an overview of the framework proposed to facilitate the development of
data-driven models for a holistic, efficient, and quality-oriented analysis of
interdependencies in electrode manufacturing. The framework is built on the
foundation of five distinct publications listed below, each of which addresses
specific SOs.

I. Haghi, S., Summer, A., Bauerschmidt, P., Daub, R. "Tailored Digitaliza-
tion in Electrode Manufacturing: The Backbone of Smart Lithium-Ion
Battery Cell Production". In: Energy Technology 10 (2022) 10, 2200657
pp. 1-19. DOI: 10.1002/ente.20220065

II. Haghi, S., Leeb, M., Molzberger, A., Daub, R. "Measuring Instruments for
Characterization of Intermediate Products in Electrode Manufacturing
of Lithium-Ion Batteries". In: Energy Technology 11 (2023) 9, 2300364
pp. 1-13. DOI: 10.1002/ente.202300364

III. Haghi, S., Hidalgo, M. F., Faraji Niri, M., Daub, R., Marco, J. "Machine
Learning in Lithium-Ion Battery Cell Production: A Comprehensive
Mapping Study". In: Batteries & Supercaps 6 (2023) 7, e202300046
pp. 1-14. DOI: 10.1002/batt.202300046

IV. Haghi, S., Keilhofer, J., Schwarz, N., He, P., Daub, R. "Efficient
Analysis of Interdependencies in Electrode Manufacturing Through Joint
Application of Design of Experiments and Explainable Machine Learn-
ing". In: Batteries & Supercaps 7 (2024) 2, e202300457 pp. 1-18 DOI:
10.1002/batt.202300457

V. Haghi, S., Chen, Y., Molzberger, A., Daub, R. "Interdependencies in
Electrode Manufacturing: A Comprehensive Study Based on Design Aug-
mentation and Explainable Machine Learning". In: Batteries & Supercaps
7 (2024) 5, e202300556 pp. 1-11 DOI: 10.1002/batt.202300556
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Figure 4.1 provides an overview of the proposed solution from the research
perspective, structured according to the defined SOs and the corresponding
publications. This structured representation is intended to facilitate a clear
understanding of the alignment of the solution with the defined SOs and the
contributions of each publication to the overarching objective.

Evaluation of parameters based on relevance and complexity

Measuring instruments and the possibility of inline collection of parameters

Machine learning algorithms and evaluation metrics in battery cell production

Generation of a new dataset

Consolidation of historical data and evaluation of data quality 

Publication I

Publication II

Publication III

Publication IV

Publication V

1

2

3

Legend:           Sub-Objective

Development of 

data-driven models and 

derivation of insights

4

Figure 4.1: Overview of the proposed solution from the research perspective, structured
according to the defined SOs and the corresponding publications

To address the initial SO and the corresponding requirements, in Publication I
(HAGHI et al. 2022) a reference process encompassing the selected process
technologies was defined, followed by an overview of product and process
parameters in electrode manufacturing. Utilizing a thorough two-step approach,
involving both literature review and expert interviews, these parameters were
evaluated concerning their relevance from the quality management perspective
and the level of complexity associated with the digitalization.

Expanding on the findings of the initial publication and addressing the first
SO, Publication II (HAGHI, LEEB, et al. 2023) offered a detailed comprehensive
assessment of potential measuring instruments for the characterization of
intermediate products in the electrode manufacturing. For this purpose, a
market analysis was conducted to gain insights into the available measuring
instruments and pinpoint the parameters that are currently exclusively measur-
able using offline methods.

In alignment with the second SO, which aims to provide practitioners with
an overview of ML techniques used in battery cell production along with
best practices, a comprehensive mapping study was conducted as part of
Publication III (HAGHI, HIDALGO, et al. 2023). The results not only highlighted
the most commonly used algorithms and evaluation metrics, but also offered
an overview of aspects that have received limited attention, including specific
process steps and parameters.
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To address the third and fourth SOs, which encompass topics such as data gen-
eration, evaluation, and model development, two use cases were defined. The
first use case, outlined in Publication IV (HAGHI, KEILHOFER, et al. 2024),
demonstrated an efficient analysis of interdependencies using a limited set of
newly generated data. The second use case was based on the assumption of
having access to historical data and showcased the methods used to assess
data quality prior to model development. Design augmentation was adopted
to enhance the data quality, ultimately enabling a comprehensive analysis of
interdependencies in electrode manufacturing, achieved through the utilization
of XML methods. The approach and findings were documented in Publication V
(HAGHI, CHEN, et al. 2024).

While the first three publications were methodologically defined and developed
based on a reference process and established criteria, the last two were demon-
strated through experimental analysis conducted at the battery pilot production
line available at the Institute for Machine Tools and Industrial Management
(iwb) at the Technical University of Munich. The use cases exemplified the
required methods and approach, utilizing the technology available at the
research production line of the iwb, specifically a roll-to-roll doctor blade
coating machine with three infrared dryers. The research gaps identified in the
conducted mapping study (HAGHI, HIDALGO, et al. 2023) were also considered
by the demonstrated use cases, ensuring that not only the methodology but also
the research opportunities from a production perspective were addressed.

Figure 4.2 offers an overview of the proposed framework from the user’s per-
spective, accompanied by respective sections summarizing the key findings for
each step. The proposed framework can support users in selecting the relevant
parameters depending on the objective of the analysis, while also considering
the possibility of inline data collection. This is followed by the selection of
potential data-driven techniques, including the ML algorithms. The framework
covers two use cases for model development based on data availability. While
the initial steps have a certain level of abstraction, the modeling step and
associated methods were concretely demonstrated through empirical analysis,
utilizing data generated at a research pilot line.

Abstraction

Concretization

Selection of the 

relevant 

parameters

Consideration 

of inline data 

collection 

possibilities

Selection of 

data-driven 

techniques 

Section 5.1 Section 5.2 Section 5.3 
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Section 5.4 

Use case 2: Development of data-driven 

models using historical data

Use case 1: Development of data-driven 

models using newly generated data

Figure 4.2: Overview of the proposed framework from the user’s perspective
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Chapter 5

Synthesis of the Research Findings from
the Publications

This chapter provides a brief overview of the methods used and the key findings
of the publications that address the SOs of this publication-based dissertation.
Each publication is summarized in a dedicated section (Sections 5.1 to 5.5). A
detailed account of the author’s contributions to each publication can be found
in Appendix B.

5.1 Publication I: Evaluation of Parameters Based on Rel-
evance and Complexity

The overall objective of Publication I was to develop a tailored digitaliza-
tion concept in electrode manufacturing. Following the introduction of key
terms, including digitalization and traceability, the article emphasized that
the realization of smart data-driven production with a high degree of data
granularity is associated with substantial costs. This is particularly significant in
electrode manufacturing, where processes are predominantly continuous and
large volumes of time-series data are generated. This consideration served as
motivation for the evaluation and prioritization of the parameters.

Following establishment of the requirements and definition of the scope and
scale of the production system, including the considered process technologies
such as slot die coating (HAGHI et al. 2022, pp. 2–3), a two-step approach was
introduced. In the first step, a comprehensive mapping study was conducted
to prioritize the parameters based on the existing interdependencies described
in the literature. For this purpose, the DSM was used. The first step in the
development of the DSM involved the literature-based identification of the
product and process parameters as the matrix elements. Subsequently, the
matrix was populated with data obtained from the conducted mapping study,
which examined the literature over a ten-year period. In total, approximately
200 relevant articles were identified, analyzed, and incorporated into the
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matrix. The development of the DSM was based solely on the interrelationships
between the parameters, without necessarily suggesting a cause-and-effect
relationship. This approach assumed that a parameter with a high number of
interdependencies can be considered relevant from the quality management
perspective, highlighting the need for monitoring. The parameters within each
process step were classified into two categories based on the number of
interdependencies: highly relevant and less relevant.

In the second step of the proposed approach, a problem-centered semi-
structured interview method was adopted. A total of 12 interviews were
conducted with experts coming from prominent research institutes, each with
substantial experience in a particular process of LIB electrode manufactur-
ing. The workshops were tailored to each specific process and conducted
individually. Detailed information on the expert profiles, the structure of the
expert interviews, and the methods employed, can be found in HAGHI et al.
(2022, pp. 11–12). The MoSCoW method, as introduced in Section 2.1, was
adopted to evaluate the parameters. The experts categorized the parameters
into four groups by considering two dimensions: parameter importance as well
as the complexity and effort involved in digitalization. When assessing the
importance of the parameters, aspects such as the influence of a parameter
on the intermediate or final product, as well as on subsequent process steps
and their associated parameters, were considered. Concerning the complexity
involved in the digitalization, several factors, including the possibility of inline
measurement, calibration effort, accuracy, and associated cost, were taken into
account.

The final assessment of the parameters was based on the results of the
conducted mapping study and the expert interviews. For this purpose, the
importance of the parameters was evaluated using the results of DSM
and MoSCoW analyses. In instances where discrepancies arose between the
literature-based and expert-based evaluations, priority was given to the latter,
as there are certain parameters that are considered relevant but have not yet
been extensively analyzed in the literature. Based on the complexity aspect
evaluated by the experts, a final evaluation and prioritization of the parameters
was followed, resulting in the assessment of over 100 parameters. The coating
and drying processes accounted for the majority of parameters categorized as
must in the MoSCoW analysis.

In summary, Publication I addressed SO1 by providing a novel systematic
approach for the identification of quality-relevant parameters in electrode
manufacturing. The complexity associated with the collection of the parameters
was qualitatively assessed through expert interviews. This publication estab-
lished a comprehensive methodology that incorporated both expert knowledge
and a systematic approach to extract insights from the existing literature.
The result can serve as a guideline for the selection and prioritization of
critical parameters, thereby contributing to more efficient and quality-oriented
electrode manufacturing.
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5.2 Publication II: Measuring Instruments and the Possi-
bility of Inline Collection of Parameters

While the first publication addressed the topic of digitalization and the
possible measurement strategies primarily through a qualitative, expert-based
approach, Publication II aimed to conduct a comprehensive market analysis
of potential measuring instruments. This analysis focused specifically on the
characterization of intermediate products in electrode manufacturing. Inter-
mediate products can serve as quality indicators for both the setup process
parameters and the final product properties. By characterizing and monitoring
intermediate product parameters, valuable insights can be gained from the
production processes, revealing the complex interdependencies.

For a systematic evaluation of possible measuring instruments, a three-step
approach, according to CAULFIELD et al. (2019, p. 7), was adopted. In the first
step, the evaluation criteria and the boundary conditions were defined. The
evaluation criteria included aspects such as measurement range, investment
cost, and measurement strategy, indicating the possibility of inline or offline
data collection. The boundary conditions and the considered product param-
eters were adopted from the previous publication (HAGHI et al. 2022). In
the second step, a market analysis was conducted to identify the potential
measuring instruments available on the market. This led to the identification
of more than 40 suppliers, who were subsequently contacted. In the final
step, a desk-based evaluation of the measuring instruments was performed
based on the defined evaluation criteria, using the product catalogs and data
sheets provided by the suppliers. Six distinct categories were established for
the assessment of the investment cost as one of the evaluation criteria. Further
detailed information in this regard can be found in HAGHI, LEEB, et al. (2023,
p. 4). The results of the comprehensive market analysis revealed that certain
product parameters in electrode manufacturing can currently only be acquired
using offline characterization methods. For example, adhesion strength, a
mechanical property of the electrode considered highly relevant from the
quality management perspective, can only be measured through destructive
offline techniques. To address such cases, the research community is currently
exploring two strategies: the indirect assessment of such properties using
innovative inline characterization methods such as spectrophotometry (WEBER

et al. 2023), and the application of data-driven models (DRAKOPOULOS et al.
2021). By developing a comprehensive ML model based on the key product
and process parameters that can be collected inline, there is potential to
reduce the frequency and sample size needed to apply offline characterization
methods. Ultimately, this paves the way for quality-oriented and efficient
production.

Publication II extended the findings of the first publication by providing a
more in-depth quantitative analysis of the measuring instruments available
on the market for the characterization of intermediate products in electrode



54 5 Synthesis of the Research Findings from the Publications

manufacturing. Based on the findings of the first two publications, SO1 was
fully addressed. By presenting a comprehensive overview of both product and
process parameters, highlighting their relevance from the quality management
perspective, and exploring the possibility of collecting these parameters inline,
the first two publications established a solid foundation for the development of
data-driven solutions.

5.3 Publication III: Machine Learning Algorithms and Eval-
uation Metrics in Battery Cell Production

Publication III was dedicated to conducting a mapping study focused on
the ML methods employed in the context of battery cell production. Based
on a thorough examination of the ML application landscape in battery cell
production, the study not only provided insights into potential use cases, but
also extracted and synthesized the critical information such as the commonly
adopted algorithms and evaluation metrics. The overarching objective was to
derive best practices and assist practitioners with effective knowledge transfer.

For this purpose, a comprehensive mapping study was carried out based on the
main steps introduced in Section 2.1. In total, 215 publications were retrieved,
examined, and shortlisted, resulting in 38 articles that were identified as
relevant and subsequently subjected to comprehensive analysis. Further details
in this regard can be found in HAGHI, HIDALGO, et al. (2023, p. 3). The relevant
articles were analyzed from two perspectives. The first perspective delved into
the production aspect, exploring process steps, product and process parameters
used as input variables, target variables, the materials analyzed, and the
production scale. When interdependencies were examined in conjunction with
electrochemical characterization at the cell level, the type of cell—coin, pouch,
or prismatic—was also incorporated into the analysis. The second perspective
focused on the ML aspects and included considerations such as the algorithms
employed, the evaluation metrics, and the size of the dataset.

The results indicated that a significant portion of the studies primarily utilized
supervised ML to assess how product and process parameters affected cell
characteristics. Following this, some articles delved into analyzing the impact
of parameters on intermediate product properties. Approximately 60 % of the
studies concentrated on electrode manufacturing, with the majority of them
focusing on cathodes. The datasets used in the ML studies were predominantly
generated at pilot production lines. However, for the characterization of the
produced electrodes, coin cells, both in half-cell and full-cell formats, were
mostly employed. Among the cell characteristics, the discharge capacity at
various C-rates and the capacity loss after a certain number of cycles have been
the most extensively studied parameters. In these investigations, common input
variables included intermediate product parameters such as active material
weight, electrode thickness, and porosity. As elaborated in Section 3.4, the
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findings revealed an uneven distribution of research attention among different
process steps in data-driven studies. Notably, the drying process has been less
explored, specifically at the pilot scale.

Regarding modeling techniques, the most frequently used algorithms were NN
and RF, with SVM being the next most popular choice. In terms of evaluating the
developed models, common metrics included R2, RMSE, and MAE. The mapping
study also aimed to investigate the interplay between the number of input vari-
ables, the size of the dataset, and the algorithms adopted. For this purpose, only
studies that offered detailed information on dataset configurations and unique
instances, including replicates, were considered. Nevertheless, the outcome did
not reveal any discernible pattern or overarching principle, suggesting that a
trial-and-error approach is frequently employed in algorithm selection.

The mapping study also highlighted the aspects that demand greater attention.
These aspects encompass the adoption of best practices for documenting and
publishing ML models, along with the incorporation of XML methods. The latter
is particularly relevant due to the findings of the study, which revealed that the
prevailing algorithms commonly employed in battery cell production are often
quite complex. Consequently, this complexity may impact their trustworthiness
and hinder their successful deployment in large-scale production environments.

The conducted mapping study addressed SO2 by offering a comprehensive
overview of the most commonly adopted algorithms and techniques, serving
as valuable reference points. Furthermore, the study unveiled research gaps
from both production and ML perspectives. While the primary objective of the
subsequent publications was to showcase the required methods for data-driven
analysis of interdependencies in electrode manufacturing, they also committed
to actively address and bridge the identified research gaps.

5.4 Publication IV: Data-Driven Analysis of Interdependen-
cies Using Newly Generated Data

Building on the results of the initial three publications, Publication IV aimed
to address the first use case of SO3 and develop data-driven models within the
context of SO4. Taking into account the existing literature on formulation and
mixing (see Section 3.4), this study narrowed its scope to a specific single slurry
formulation, with the objective of providing a systematic approach for analyzing
the impact of quality-relevant parameters in electrode manufacturing.

The use case involved employing the I-optimal method to generate a new
dataset. The choice of this method was driven by two main considera-
tions. Firstly, the I-optimal design enables a comprehensive evaluation of the
impact of input variables on the response, encompassing both quantitative
and qualitative aspects. It allows for the identification of optimal regions
while simultaneously minimizing the average prediction variance across the
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entire experimental space. Secondly, the application of the I-optimal method
addressed a research gap highlighted in Chapter 3, concerning the currently
limited utilization of optimal design methods in battery cell production. As
outlined in Section 4.2, for the experimental analysis, the process technology
available at the pilot production line at the iwb, had to be taken into con-
sideration. Accordingly, the results of Publication I were utilized and adapted
to determine the quality-relevant parameters to be incorporated into the DoE.
One of the ultimate objectives of the study was to determine the impact of
the quality-relevant parameters on the cell properties. Intermediate product
parameters can be considered as the main quality benchmarks at different stages
of the process chain, ultimately influencing the final cell properties in large-scale
production. To ensure a consistent foundation for the analysis of multiple
aspects, the intermediate product parameters were considered as factors for
DoE. It should be noted that, depending on the objective of the analysis, the
results of Publication I can guide the selection of suitable parameters. For
instance, in a Taguchi design, the quality-relevant process parameters could be
considered as factors. Table 5.1 offers an overview of the product parameters
that were rated as highly relevant in both the literature-based approach and the
expert interviews, as documented in the results of HAGHI et al. (2022), along
with their complexity with respect to digitalization.

While defects in both coating process, mainly caused by slot die coating
or inhomogeneous slurry, and subsequent calendering process are relevant
topics, a conscious decision was made to exclude these aspects from the
scope of analysis within the DoE. Several considerations and contextual factors
influenced this choice. The primary goal of the DoE-based study was to provide
a focused and precise examination of the key factors influencing product quality
throughout the electrode manufacturing. To achieve this, it was imperative to
restrict the number of variables under investigation. Furthermore, there are
extensive studies in the literature dedicated exclusively to the examination of
defects in both coating process (BARET DE LIMÉ et al. 2022) and calendering
process (GÜNTHER et al. 2020).

As outlined in SO4, the objective of the study was to gain insight into existing
cross-process interdependencies through the application of XML methods.
Consequently, it was crucial to ensure the independence of the input variables.
As a solution, the input variables were narrowed down to the electrode porosity
after calendering and mass loading, effectively eliminating the third dependent
variable, the electrode thickness. Similarly, due to the existing linear correlation
between wet film thickness and mass loading, only the latter was included in
the analysis. Due to the considerable complexity associated with the digitization
of adhesion (HAGHI, LEEB, et al. 2023) and the challenges in determining
appropriate levels to be included in the DoE, the temperature of the second
dryer was chosen as an influential factor affecting adhesion. This choice was
guided by insights derived from the literature concerning different mechanisms
during the drying process (KUMBERG et al. 2019, pp. 1–2).
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Table 5.1: Overview of the intermediate product parameters evaluated as highly
important and their complexity in terms of digitalization, based on the results of HAGHI

et al. (2022), adapted from HAGHI, KEILHOFER, et al. (2024, p. 2)

Process Intermediate product parameter Importance Complexity

Coating
Wet film thickness High Low

Quality of wet film High High

Drying

Adhesion High High

Electrode thickness High Low

Mass loading High Low

Porosity High High

Quality of electrode (defects) High High

Calendering

Electrode thickness High Low

Porosity High High

Adhesion High High

Quality of electrode (defects) High High

Consequently, the primary factors selected for analysis included mass loading,
second dryer temperature, and porosity after calendering. These factors formed
the basis for generating an I-optimal design. The DoE plan, consisting of
17 different electrode configurations, was generated using Design-Expert®
software. To guarantee the absence of significant multicollinearity within
the dataset, the VIF was employed as an evaluation metric. The produced
anodes were characterized mechanically, and electrochemically. The mechanical
characterization included adhesion measurements, while the electrochemical
characterization was based on EIS using symmetric cells and the rate capability
test performed on full coin cells. For detailed information on the analyzed
ranges, the configurations, the experimental setup, and the characterization
methods, please refer to HAGHI, KEILHOFER, et al. (2024, pp. 3–5).

Following a detailed description of the data preprocessing and cleaning phase,
the study introduced three scenarios for the development of data-driven models.
The first scenario was based on sample-specific product parameters considered
in the DoE and drying temperature. The second scenario utilized averaged
corresponding process parameters, while the last scenario incorporated both
process parameters and intermediate product parameters collected during
the process. The primary aim of the study was to employ XML methods to
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uncover interdependencies in electrode manufacturing and assess the influence
of various parameters on intermediate and final product properties. Hence, it
was essential to ensure the independence of input variables. Notably, the last
scenario did not meet this requirement and was not considered in conjunction
with XML methods. This becomes apparent when considering factors such
as coating gap as a process parameter, which correlates with intermediate
product parameters such as electrode wet mass loading and dry mass loading,
which were collected inline. However, this scenario was included to investigate
the significance of inline measuring instruments and their contribution to the
development of high-performing ML models. In the first two scenarios, the
suitability of potential input variables was assessed using a correlation matrix
with a predefined threshold of 0.3 for the Pearson correlation value.

Guided by the findings of the conducted mapping study (HAGHI, HIDALGO, et
al. 2023) and given the size of the dataset, which ranged from approximately
50 to 85 data points, with a minimum of three samples considered for each
configuration, RF and SVM were chosen for model development. Furthermore,
the study incorporated simpler algorithms, including MLR and PolyR. The
model development was based on an 80-20 split, with the test data points
being randomly selected. Therefore, to mitigate potential overfitting issues
associated with RF, XGBoost was employed in specific instances. A number of
target variables were explored, including physical properties such as electrode
thickness and mass loading after drying, as well as tortuosity, adhesion strength,
ionic resistance, discharge capacity, and gravimetric capacity at different
C-rates. For the evaluation of the developed models, R2 and RMSE were
employed. These evaluation metrics were reported for both the training and
test datasets, serving as benchmarks for assessing the generalization of the
developed models. Additionally, the ratio of MSE for the training dataset to
MSE for the test dataset was taken into consideration as an indicator of
generalization.

The study included an additional verification step to evaluate the methodology
employed and the models developed. This verification approach involved
comparing the predictions made by the model with the tortuosity estimates
derived from the adjusted Bruggeman relationship (see Section 2.2). The results
demonstrated strong overall agreement. For further details, please refer to
HAGHI, KEILHOFER, et al. (2024, pp. 11–12).

In terms of interpretability, an assessment of global FI was conducted using
the MDI method. To gain a more profound understanding of the developed
models and the analyzed interdependencies, SHAP plots were used to provide
instance-level explanations. Additionally, the results of the XML methods were
compared with the normalized coefficients derived from the developed MLR
models. This comparative analysis aimed to investigate the level of agreement
between these methods, considering that they were derived from models with
varying degrees of complexity and performance. As an illustrative example,
Figure 5.1 offers an overview of the results for ionic resistance and tortuosity
as target variables, derived from the developed XGBoost and MLR models. It
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should be noted that in terms of R2 values, the XGBoost models outperformed
the MLR models for both target variables. While the developed MLR model
demonstrated high predictive performance for ionic resistance, achieving an
average R2 value of approximately 0.86 between the training and test datasets,
it is noteworthy that the results derived from the normalized coefficients (cf. 5.1
(b)) diverged from those obtained by the MDI method (cf. 5.1 (a)). Specifically,
mass loading was identified as the least influential parameter impacting ionic
resistance based on the coefficients of the developed MLR model. In contrast,
for tortuosity, both methods yielded consistent parameter rankings, identifying
porosity as the most significant parameter and drying temperature as the least
influential one (cf. 5.1 (c), (d)). The observed discrepancy in the case of ionic
resistance underscored the possible limitations of MLR and the importance of
applying multiple techniques, both from a modeling and interpretation perspec-
tive, to achieve a holistic understanding of the analyzed interdependencies.

(a) (b)
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Figure 5.1: Exemplary results of the applied XML method and the MLR coefficients,
revealing the influence of the analyzed features on the ionic resistance (top) and the
tortuosity (bottom), adapted from HAGHI, KEILHOFER, et al. (2024, p. 12)

Publication IV addressed SO3 and SO4, based on a use case involving the
systematic, efficient generation of a new dataset. Such use cases become
particularly relevant when introducing new materials or undertaking specific
optimization studies. The results can be summarized from three main perspec-
tives. In terms of the production aspect, the possibility of predicting physical
parameters such as mass loading has been investigated. Such ML models can be
used to support practitioners in finding the appropriate process parameters in
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the ramp-up phase for a predefined intermediate product parameter, or can be
adopted in combination with an inline control system to dynamically adjust the
process parameters as part of a prescriptive analytics. Additionally, the study
explored the potential for predicting parameters that, according to the current
state of the art (HAGHI, LEEB, et al. 2023), cannot be measured in real-time dur-
ing the production, showcasing the ability to estimate these parameters based
on data collected inline. Moreover, the impact of quality-relevant parameters
on cell performance was investigated. Through the definition of three distinct
scenarios and a comparison of model performance, the research work explored
the relevance of sensor data and sample-specific parameters, thus highlighting
the valuable contributions of digitalization and tracking and tracing systems
in the field of battery cell production. From a methodological perspective, the
study can be considered as one of the early endeavors to provide a novel
systematic framework for conducting efficient, quality-oriented cross-process
analyses throughout the electrode manufacturing process chain. Addressing the
research gaps identified in the conducted mapping study (HAGHI, HIDALGO, et
al. 2023), the article aimed to offer detailed insights into the steps required to
perform such analyses effectively. From the ML perspective, the study explored
the capabilities of various algorithms, ranging from complex models such as
SVM and RF to simpler approaches such as MLR. The results revealed that
for a set of target variables, such as mass loading or discharge capacity at
lower C-rates, simple algorithms yielded commendable performance. On the
contrary, when dealing with intricate and multifaceted phenomena such as
adhesion or discharge capacity at higher C-rates, complex models proved to be
more effective. With the overall objective of providing insight into the existing
interdependencies, XML methods were adopted, offering both global and local
explanations for the analyzed aspects.

5.5 Publication V: Data-Driven Analysis of Interdependen-
cies Using Historical Data

Publication V aimed to address SO3 and SO4 by focusing on a use case that
involved the consolidation of historical data. The overarching objective was to
demonstrate the essential methods required to assess data quality when dealing
with historical data, and the possible measures to enhance data quality for
comprehensive analysis prior to model development.

The article emphasized that historical data, particularly when originating from
pilot line production, stems from a collection of studies, each designed with
specific objectives and analyzed in a particular context. Therefore, historical
data of this nature may encompass biases or discrepancies that can have a
considerable impact on the development of the model and the subsequent
insights derived from it. Consolidation of such data extends beyond mere
aggregation; it necessitates a comprehensive understanding and evaluation
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of the dataset. When deemed appropriate, adjustments or refinements to the
experimental space may be essential to ensure the reliability of the data
and its relevance for model development. The use case presented aimed to
simultaneously address the research gap identified in the mapping study from
a production perspective, enabling a comprehensive analysis of interdependen-
cies in the drying process, along with the closely related process steps of coating
and calendering.

The historical data consisted of two datasets generated at the pilot production
line at the iwb, which employed a roll-to-roll coating machine with three
infrared dryers. The first dataset resulted from the analysis presented in Publi-
cation IV, while the second dataset featured variations in mass loading, porosity,
and temperature of the first dryer. In each dataset, the remaining drying
conditions, including the web speed and temperature of the other two dryers,
were held constant. However, it is worth noting that these conditions differed
between the two datasets. This range of variations within the historical dataset
was expected to allow a holistic analysis of the influence of various parameters,
including first and second dryer temperatures and drying web speed. To verify
this potential, an initial assessment of data quality was conducted using the
Pearson correlation analysis of the potential input parameters. The result re-
vealed a strong correlation between the drying web speed and the temperature
of the first dryer, with an absolute coefficient value of 0.73. This suggests
that the historical data, in its existing state, lacks the capability to represent
these parameters independently. To address the existing multicollinearity in
the dataset and enable a comprehensive analysis of the considered parameters,
design augmentation was adopted. By conducting additional runs using space-
filling design augmentation approach, a more comprehensive coverage of the
design space was achieved, resulting in the generation of an enriched dataset
for in-depth investigation of the effects of individual parameters. The design
augmentation was conducted using Design-Expert® software, resulting in a
final dataset of 40 distinct electrode configurations. For further details on the
analyzed ranges, the historical and augmented datasets, please refer to HAGHI,
CHEN, et al. (2024). Figure 5.2 presents the correlation matrices before and
after the design augmentation. This visual comparison highlights the impact
of the additional runs, which effectively balanced the dataset and eliminated
critical strong correlations present in the historical data. In addition to the
correlation matrix, VIF and FDS were adopted as quality indicators to evaluate
the prediction capability of the dataset. Through a comparative analysis of these
measures, the study highlighted the improvements achieved, particularly in the
case of the correlation coefficients and VIF values, as a direct outcome of the
design augmentation techniques applied.

Following the comprehensive data quality assessment and improvement, this
study aimed to explore the existing interdependencies between key product and
process parameters in electrode manufacturing, with electrode adhesion and
cell characteristics, adopted as target variables. Building upon the insights de-
rived from the preceding study and the outlined scenarios (HAGHI, KEILHOFER,
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Legend: Correlation coefficient
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Figure 5.2: Correlation matrices based on (a) historical dataset, and (b) augmented
dataset for potential input parameters considered for model development, adapted from
HAGHI, CHEN, et al. (2024, pp. 3–4)

et al. 2024), this article integrated sample-specific product parameters, in-
cluding mass loading and porosity, in conjunction with process parameters,
such as drying temperatures and drying web speed, as input variables for
model development. ML models were developed and evaluated using a 5-fold
cross-validation approach.

The final dataset consisted of approximately 125 data points. Given the size
of the dataset and the relatively large number of input variables, in conjunction
with the chosen cross-validation approach, RF and SVM were selected for model
development. The developed models were evaluated using R2, RMSE, and MAE.
The evaluation metrics were reported based on the average values computed
across the folds.

In terms of interpretability, three methods were adopted. The permutation FI
method, known for its robustness in handling correlated features, was used to
provide a global understanding of the analyzed parameters. In addition, SHAP
and ALE plots were employed to offer detailed, instance-level explanations. Fig-
ure 5.3 provides a representative illustration of the results obtained from the
adopted permutation FI and SHAP analyses for the developed RF model predict-
ing adhesion strength. The permutation FI highlights the relative significance
of each parameter and their contributions to the adhesion strength. Whereas
the SHAP plot not only quantifies the importance of each parameter, with the
most influential parameter listed at the top of the plot, but also provides insight
into the direction in which these parameters impact the adhesion strength (cf.
5.3 (b)). Both methods identified porosity as the most influential parameter
when analyzing adhesion strength. A low porosity, indicating a high compaction
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rate, was found to positively impact adhesion strength. Mass loading was
identified as the second influential parameter. Concerning the drying process,
within the analyzed ranges, the temperature of the first dryer demonstrated the
highest impact on adhesion strength, followed by the drying web speed and
the temperature of the second dryer. It is worth noting that since the presented
global ranking does not exist in the literature, only certain aspects, such as the
correlation between mass loading and adhesion, could be verified based on the
existing experimental-based studies, often conducted using the conventional
OFAT approach. Notably, the results for these specific aspects were consistent
with those reported in the literature. For detailed analysis and interpretation of
the findings, please refer to HAGHI, CHEN, et al. (2024).
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Figure 5.3: Exemplary results of the applied XML methods, illustrating the impact
of input features on adhesion as a target variable in the developed RF model, using
(a) permutation FI and (b) SHAP plot, adapted from HAGHI, CHEN, et al. (2024, p. 7)

Publication V addressed SO3 and SO4 by examining a use case involving the
utilization of historical data for a comprehensive analysis of interdependencies
in electrode manufacturing. This demonstrated use case encompassed various
aspects, spanning from methods for assessing data quality and enhancing
predictive capabilities through design augmentation, to model development,
and derivation of valuable insights. The enriched dataset obtained through the
design augmentation, in conjunction with the use of XML methods, facilitated
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a comprehensive, in-depth analysis of various critical parameters within the
drying process, a field that has previously remained largely unexplored in
data-driven battery production studies. The developed models, particularly the
RF, demonstrated good performance, with an average R2 value of 0.72, 0.97,
and 0.87 for adhesion strength, discharge capacity at 0.1C, and discharge capac-
ity at 5C, respectively. However, it should be noted that this performance was
slightly lower than the results presented in Publication IV. This difference can
be attributed to the chosen cross-validation approach and the comprehensive
analysis that involved various input variables in Publication V. Through the use
cases presented in Publications IV and V, the last two SOs of this dissertation
were effectively and comprehensively addressed.
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Chapter 6

Discussion

This chapter focuses on the evaluation of the proposed framework. Section 6.1
assesses the practical application of the framework and its contribution to the
current state of the art. This evaluation is considered as part of the Descriptive
Study II within the context of DRM. For this purpose, the exemplary application
of the framework, which was based on the data generated at the LIB pilot
battery production line of the iwb, was taken into account. Furthermore, Sec-
tion 6.2 delves into a discussion concerning the transferability and limitations
of the framework.

6.1 Evaluation of the Proposed Framework

Emerging from the domain of software engineering, verification and validation
are considered as pivotal elements in the system development process. Veri-
fication primarily assesses whether the system has been constructed correctly
throughout the development process, while validation encompasses a range
of activities to ensure that the correct system has been built. (IEEE/ISO/IEC
29148 2018, p. 7) The exemplary ML models developed were subjected
to verification through formal analysis and a number of methods, including
comparison with the modified Bruggeman estimation, existing literature, and
cross-validation approach, as detailed in Sections 5.4 and 5.5. Nonetheless,
it is essential to carry out a thorough and holistic evaluation of the proposed
framework, considering the defined objective and requirements.

6.1.1 Evaluation of Application

In a series of publications, PEDERSEN et al. (2000) and SEEPERSAD et al.
(2006) proposed a framework for the validation of engineering design methods.
This framework encompasses two primary aspects: structural validity and
performance validity, both to be evaluated from theoretical and empirical
perspectives. Structural validity assesses the internal consistency of the methods
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and their underlying assumptions within the intended domain of application.
From an empirical perspective, it is important to consider the relevance of the
exemplary use case adopted to evaluate the framework. Performance validity
involves a quantitative evaluation based on an exemplary use case. Further-
more, the theoretical perspective as part of the performance validity considers
evaluating the framework beyond the exemplary use case. Through these two
aspects, the efficiency and effectiveness of the proposed solution, based on the
defined objectives, can be evaluated. (PEDERSEN et al. 2000) Figure 6.1 provides
an overview of the adopted approach and the key aspects assessed, serving as a
guideline for the evaluation of the proposed framework in this dissertation.

Structural validity Performance validity

Theoretical Theoretical

EmpiricalEmpirical

Evaluation and validation of the framework with respect to the 

defined objective

Effectiveness:
A qualitative evaluation of the 

framework

Performance of the 

framework beyond the 

exemplary use case

Performance of the 

framework based on the 

exemplary use case

Efficiency:
A quantitative evaluation of the 

framework

Correctness of adopted 

methods both separately 

and integrally

Relevance of the exemplary 

use case adopted to 

evaluate the framework

Figure 6.1: Overview of the adopted validation approach, adapted from PEDERSEN et al.
(2000, p. 6)

From the structural perspective, the methods adopted within the proposed
framework, including mapping studies combined with DSM, MoSCoW analysis,
and the DoE techniques, are widely recognized and accepted in fields such as
complexity management and process analysis. To underscore their effectiveness
as an integrated system, the structural validity of these adopted methods was
demonstrated through a practical use case presented in Publication IV. This
use case was built upon the foundational insights and research findings from
the initial three publications. Considering the empirical aspect of the structural
validity, in line with the defined requirements outlined in Chapter 4, the first SO
was addressed using a broadly applicable reference process chain. This ensured
the relevance and effectiveness of the proposed solution across a range of
scenarios and contexts in electrode manufacturing. For the model development
phase, two distinct use cases were defined to represent possible relevant
scenarios. By providing a detailed description throughout the development
process, transparency was ensured so that the proposed framework and the
adopted methods could be adjusted as necessary.
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From the performance perspective, the proposed framework addressed
the overall objective of the dissertation, enabling a holistic, efficient,
and quality-oriented analysis of interdependencies in electrode manufactur-
ing. Based on the results of the first two publications, the cross-process
analysis conducted in the first use case was restricted to three quality-relevant
parameters. By employing an optimal DoE method, the number of required
experiments was minimized to 17 runs. It should be noted that within the
analyzed context, considering the factors and their defined levels, a total of
64 experimental runs would have been needed for a conventional full factorial
design. The proposed framework streamlined the investigation of existing
interdependencies in electrode manufacturing by identifying quality-relevant
parameters, integrating DoE methods to generate insightful data efficiently, and
incorporating XML methods. This comprehensive methodology enhanced the
analysis of interdependencies, leading to the development of high-performing
data-driven models, while at the same time reducing the experimental cost
and effort. Through the integration of existing knowledge, collected from the
conducted mapping studies and expert interviews, along with the inclusion
of data generated at a pilot production line, the domain-specific theoretical
performance validity of the proposed framework was addressed, extending
its application beyond a specific use case and ensuring a certain degree of
generality and transferability. Nevertheless, it is important to acknowledge that
the performance evaluation was restricted to one specific pilot line. Hence, from
the DRM perspective, the approach adopted for this stage represents an initial
assessment rather than a comprehensive one.

6.1.2 Fulfillment of Requirements

Following the evaluation of the application of the proposed framework, the
extent to which the requirements have been fulfilled is discussed in this
subsection.

R1. Definition of the characteristics of the production system, the process
technologies considered, and the boundaries: In compliance with this
requirement, a reference process chain was defined as part of Publica-
tion I. This process chain included common technologies, such as slot
die coating, and provided a detailed description of the characteristics
and boundary conditions of the production system. This initial step was
crucial to establish a solid foundation for the first two publications and
to ensure transparency throughout the developed framework (cf. R12).

R2. Integration of domain know-how as part of a holistic methodology: The
proposed framework comprehensively addressed various crucial aspects
involved in the development of data-driven models, ranging from the
identification of relevant parameters and the possibility of collecting
these parameters inline, to the selection of appropriate algorithms, data
generation, model development, and the derivation of insights. Through
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mapping studies, expert interviews, and market analysis, domain know-
how was systematically extracted, structured, and subsequently used to
provide guidelines within the holistic framework.

R3. Provision of an overview of product and process parameters in electrode
manufacturing: An overview of product and process parameters was
presented as part of Publication I. For this purpose, a literature-based
approach was adopted, guided by the defined reference process chain
(cf. R1).

R4. Consideration of the relevance of the parameters from the quality
management perspective: This requirement was fully addressed in
Publication I using a two-step approach. In the first step, a DSM was
developed based on the existing interdependencies identified through
an extensive mapping study. In the second step, valuable insights from
expert interviews were integrated into the assessment. Collectively,
these steps ensured a comprehensive evaluation of the relevance of the
parameters.

R5. Consideration of the digitalization aspect and the complexity involved
in collecting the parameters for data-driven analysis: Initially, this
requirement was addressed qualitatively during the expert interviews as
part of Publication I. In Publication II, the emphasis was shifted toward
providing quantitative results, which were obtained through market
analysis and a desk-based evaluation of possible measuring instruments.
The results of the evaluation included factors such as investment cost
and the possibility of collecting the parameters inline.

R6. Enabling a holistic cross-process analysis along the process chain: This
requirement was addressed through a holistic and comprehensive as-
sessment of product and process parameters in electrode manufacturing
in Publication I, along with the presentation of a demonstrated use
case with a specific objective and a detailed description of the param-
eter selection approach in Publication IV. Both data-driven use cases
presented were based on cross-process analyses, encompassing a set
of quality-relevant parameters from coating, drying, and calendering
processes.

R7. Consideration of the size of dataset when selecting potential ML
techniques for analysis of interdependencies: Publication III addressed
this requirement by conducting a comprehensive mapping study that
involved the extraction and aggregation of relevant information. It
is important to note that in certain aspects, such as the size of the
dataset and the selected algorithm in combination with the number
of features, no overarching pattern could be identified in the existing
studies. Nevertheless, the multi-perspective comparison provided a solid
starting point that can be utilized by practitioners in this field.

R8. Consideration of possible use cases concerning data availability and
quality: To address this requirement, the development of data-driven
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models was presented in two use cases, with the first one involving the
generation of a new dataset and the second one relying on the utilization
of historical data. To provide a comprehensive approach, the second
demonstrated use case highlighted poor data quality with interrelated
input parameters. This issue was effectively addressed through design
augmentation, resulting in an enriched dataset. The improvement in data
quality was evaluated using three methods, as discussed in Publication V.

R9. Visualization of data-driven models in a comprehensive and interpretable
form: The data-driven analyses presented in Publications IV and V were
complemented with XML methods to address this requirement. The
results included various visualizations such as SHAP plots.

R10. Quantification of the analyzed interdependencies and their impact on
(intermediate) product properties: The adopted XML methods provided
detailed insights into the impact of the analyzed parameters. The results
revealed not only the global ranking of the parameters, but also the
local impact and direction of their influence on the considered target
variables.

R11. Realization of a modular methodology, adjustable based on the objective
of the analysis: According to BALDWIN and CLARK (2003, p. 86), modu-
larity is a strategy to efficiently organize complex systems or processes. In
a modular approach, independent units or modules are developed
separately and can function cohesively as an integrated whole. The
modularity of the proposed framework was implicitly achieved as a
result of addressing SOs individually in separate publications. Each
publication focused on specific SOs, allowing for a modular approach to
the overall objective. The cohesiveness of the framework was successfully
demonstrated in Publication IV for a specific use case with a defined
objective. However, it is important to note that no additional evaluation,
specifically with respect to modularity, was conducted beyond this
demonstration.

R12. Ensuring transparency and transferability by elaborating on methods
and techniques adopted in each stage: This requirement was consis-
tently considered and addressed throughout the solution development
phase. This involved the adoption of recognized methods, elaboration
on the approaches and criteria used to conduct mapping studies and
extract information, outlining the profiles of the experts, and addressing
discrepancies when they occurred. From a data analytics perspective,
a detailed description of the selection of parameters to be considered
in the DoE method was disclosed, accompanied by information on the
distinct configurations and variations included in the dataset, the data
preprocessing and cleaning steps, the size of the dataset, the model se-
lection, the specific hyperparameters chosen, and the evaluation metrics
applied. All relevant software tools and methods, as well as the materials
and characterization techniques employed, have been disclosed in the
respective publications. These efforts were aimed at creating transparent
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documentation that ensures the adaptability and transferability of the
framework and facilitates an in-depth understanding of the methods and
techniques used at each stage.

6.1.3 Contribution to the State of the Art

As the requirements discussed in the previous subsection were mainly derived
from the existing literature, this dissertation is expected to make distinct
contributions to the state of the art. These contributions are briefly discussed
below.

From the methodological perspective, the proposed framework covered the
main steps involved in analyzing interdependencies based on data-driven mod-
els. These steps included identification of relevant parameters considering the
quality management and digitalization perspective, data generation, selection
of algorithms, development of models, and derivation of insights. Notably, this
dissertation did not delve into the topic of data acquisition and manage-
ment, as a comprehensive work on this subject was presented by TURETSKYY

(2022). Concerning the first SO, as outlined in Section 3.2, a study closely
aligned with the results of Publication I was simultaneously presented by
ZANOTTO et al. (2022). However, in terms of transparency and comprehen-
siveness, there are certain aspects where the study could potentially benefit
from further exploration. These aspects were fully addressed in Publications I
and II. The topic of measuring instruments has been investigated so far in
isolated studies, covering individual process steps, such as the review articles
presented by REYNOLDS et al. (2021) and ZHANG et al. (2022). Publication II
effectively addressed this gap by providing a quantitative evaluation of the
existing measuring instruments available on the market for the entire electrode
manufacturing process chain.

While there have been comprehensive literature reviews that have explored
the application of ML in the battery field, such as the work presented by
LOMBARDO et al. (2021), Publication III went beyond a literature review by
extracting and synthesizing the results of the conducted mapping study. The
article provided an extensive, multi-perspective comparison, highlighting the
most commonly adopted algorithms, evaluation metrics, and use cases. This
comprehensive mapping study contributed to the enrichment and consolidation
of the collective expertise in this domain. Furthermore, the article highlighted
both overarching and production-specific aspects that had remained largely
unexplored. These aspects have been considered and subsequently partially
addressed in the following use cases within the proposed framework.

As discussed in Section 3.3, there were only few data-driven articles in the
literature that relied on DoE methods for data generation. These articles
focused predominantly on individual process steps, as exemplified by the
work presented by FARAJI NIRI, APACHITEI, et al. (2022). Building upon
the findings of the first publication, Publication IV introduced a systematic
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approach for analyzing quality-relevant parameters. These parameters were
then incorporated into a process-focused DoE method, enabling an efficient
data generation and cross-process analysis. While a number of studies have
demonstrated the application of DM methods based on historical data, such
as the articles presented by SCHNELL et al. (2019) and THIEDE et al. (2019),
they have often lacked transparency in their data handling practices, including
the measures employed to assess data quality. In the use case presented
in the dissertation of TURETSKYY (2022), a correlation analysis was carried
out, using a threshold of 0.64 to identify highly correlated features, which
were then removed prior to model development. This threshold can still be
considered relatively high, indicating the presence of multicollinearity in the
dataset. To the best of the author’s knowledge, the existing literature on battery
production has largely overlooked the topic of common methods for evaluating
data quality and potential measures such as data enhancement through design
augmentation. Publication V addressed this aspect by exploring three evaluation
methods: Pearson correlation matrix, FDS, and VIF. The article demonstrated
the benefits of design augmentation and presented a comprehensive analysis of
quality-relevant parameters in electrode manufacturing. Leveraging an enriched
dataset and employing XML methods, Publication V simultaneously addressed
the research gap identified in the conducted mapping study from a production
perspective. It revealed the impact of various parameters in electrode manufac-
turing, including the drying process, on less explored target variables such as
adhesion strength as well as cell properties.

6.2 Transferability and Limitations

The evaluation of the proposed framework was primarily conducted based
on an empirical-inductive approach. Therefore, it is important to discuss its
transferability and limitations.

General approaches, such as CRISP-DM, offer a foundation for the development
of data-driven models, focusing mainly on the basic philosophy and generic
steps, regardless of the application field and domain-specific challenges. This
dissertation aimed to introduce a framework that goes beyond generic prin-
ciples by integrating domain-specific know-how, best practices, methods, and
guidelines that can be used to facilitate the analysis of interdependencies in LIB
electrode manufacturing. Consequently, the discussion on transferability will be
limited to the context of battery cell production. While the applied methods,
such as DSM to extract insights from the conducted mapping study or the
MoSCoW analysis, can be employed when considering other novel technologies,
such as extrusion or dry coating in battery production, it is important to
acknowledge that the list of parameters and the evaluation may need to be
adapted accordingly. In cases where limited knowledge is available in the
literature, the expert-based evaluation can be extended by the Delphi method
(LINSTONE, TUROFF, et al. 1975).
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As part of Publication IV, a systematic approach was introduced, based on a
predefined objective, to identify the quality-relevant parameters considered in
the DoE for data generation. However, the definition of the levels of certain
factors, particularly those related to the drying process, was mainly based
on domain know-how. As a result, a certain degree of process knowledge is
assumed for the empirical analysis. In cases where there is no knowledge of
the respective ranges, an initial trial-and-error approach may be necessary. This
need becomes even more pronounced when analyzing a large number of
interrelated parameters, as was the case in the conducted design augmentation.
The framework was based on the assumption that the process constraints are
known. These are, for example, the combination of the largest mass loading
with the lowest drying temperatures and the highest drying web speed possible,
while still ensuring the successful production of a thoroughly dried electrode. In
case of a lack of domain expertise, the efficiency of the proposed framework
may be compromised, necessitating a more extensive trial-and-error approach.
Furthermore, it is worth noting that the data generation step, guided by DoE
and design augmentation, was founded on the assumption of a single slurry
formulation, which can be considered a relevant assumption from an industrial
perspective. Consequently, aspects such as systematic integration of a mixture
design (cf. Section 2.3) with process-focused DOE to streamline data generation
were not included in the framework.

The demonstrated use cases were based on selective data generated at the LIB
pilot production line for analyzing interdependencies. The framework did not
address aspects such as the computational resources required, best practices
for managing larger datasets, and algorithm scalability in the context of ML
for mass production applications. Furthermore, it is essential to acknowledge
that, given the wide variety of algorithms available, the conducted mapping
study on ML applications in battery cell production should be considered
more as a starting reference point. It may not provide a comprehensive
overview of the optimal choices for all types of analyses and scenarios, as the
selection of algorithms may vary depending on the specific objectives and data
characteristics.

It should also be noted that the insights derived from the production per-
spective through XML methods, particularly the global parameter rankings in
combination with different sets of target variables, should be contextualized
within the boundaries of the examined ranges. For example, a broader range of
drying web speed or mass loading may result in different parameter rankings
concerning adhesion strength. However, in order to facilitate the development
of data-driven models and ensure the transferability of the generated results to
other pilot production lines using methods such as transfer learning, the col-
lected data, combined with the selected hyperparameters, were made publicly
available (HAGHI, KEILHOFER, et al. 2024; HAGHI, CHEN, et al. 2024). This
was intended to support and encourage the battery production community in
their efforts toward advancing the application of data-driven models, aiming for
sustainable, quality-oriented battery cell production.
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Chapter 7

Summary and Outlook

In this chapter, a summary of the work presented, including the key findings, is
provided in Section 7.1. Additionally, an outlook on potential further research
is offered in Section 7.2.

7.1 Summary

This dissertation aimed to contribute to the state of the art in battery cell pro-
duction, with a particular focus on the development of data-driven models for
analyzing interdependencies in electrode manufacturing. Chapter 1 provided
a brief motivation of the topic, including the overarching objective. Chapter 2
covered the fundamental concepts and background information necessary to
understand battery cell production. Additionally, the relevant methods in the
domains of DoE and ML were briefly introduced.

Following a systematic approach, Chapter 3 discussed the existing contributions
to the relevant research areas for the development of data-driven models in
battery cell production. These research areas included topics such as parameters
and measurement solutions, data generation and evaluation, and data-driven
models, along with the derivation of insights. In this chapter, each research
area was briefly summarized, and the research opportunities were outlined.

Building on the identified research opportunities, Chapter 4 provided an
overview of SOs and the requirements necessary to address the central objective
of this dissertation. Consequently, an outline of the proposed solution was pro-
vided, structured according to the defined SOs and the corresponding publica-
tions. In total, five publications formed the foundation of this publication-based
dissertation, which were listed in Section 4.2 and summarized in Chapter 5. The
summary included the primary methods applied, the targeted SO, and the key
findings. Publication I addressed SO1 by introducing a systematic two-step
approach based on a structured mapping study and expert interviews. The
results included the evaluation of parameters based on two dimensions:
their relevance from the quality management perspective and the level of
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complexity associated with their digitalization. Publication II further explored
the topic of digitalization, focusing specifically on measuring instruments and
the possibility of inline collection of intermediate product parameters. Through
market analysis, a desk-based evaluation of possible measuring instruments
was provided, considering factors such as measurement strategy, accuracy,
and capital cost. SO2 was addressed by conducting a mapping study that
explored the adopted ML methods in battery cell production, as detailed
in Publication III. By extracting and synthesizing the relevant information,
from both data analytics and production perspectives, the mapping study
provided a starting reference point for the selection of ML algorithms and
evaluation metrics. To address the research areas of data generation, evaluation,
development of data-driven models, and derivation of insights, two distinct
use cases were defined, each approaching SO3 and SO4 from different initial
conditions and perspectives. In Publication IV, a use case was presented for
the efficient generation of a new dataset to facilitate cross-process analysis.
Publication V was based on the assumption of the availability of historical
data and explored the possibility of consolidating the data, combined with
relevant methods for evaluation of data quality, as well as enhancing it through
design augmentation. The two demonstrated use cases were based on the data
generated at the pilot production line and included variations in the coating,
drying, and calendering processes. By employing XML methods, the studies
investigated the significance of the analyzed parameters and their influence on
the target physical and mechanical properties of the electrode, as well as the
cell properties.

Chapter 6 was dedicated to the discussion of the proposed framework. For this
purpose, the framework was evaluated based on its exemplary applications.
Furthermore, the extent to which the defined requirements were met and the
contribution of the framework to the current state of the art were elaborated.
The chapter concluded by discussing the transferability of the framework and
its limitations.

7.2 Outlook on Further Research

The proposed framework effectively addressed a number of research per-
spectives outlined in HAGHI, HIDALGO, et al. (2023). Nonetheless, there are
additional research opportunities that can leverage the presented framework to
further enhance the integration of ML technology into LIB production.

One potential research avenue involves delving into the adaptation of ML
models that were initially developed using data from a particular production
line. This research area could explore the essential steps required to implement
transfer learning and use these initial models as a foundational starting point
to guide the development of ML models intended for deployment in a different
production line.
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Considering the multi-scale nature of LIB, spanning from micro to meso and
macro levels, an additional promising future research field lies in the integration
of ML models with in silico approaches. This integration can bridge the different
scales within LIB systems and facilitate comprehensive optimizations across
these scales.

From the data analytics perspective, the presented use cases fall primarily
within the domain of predictive analytics. They involved modeling the essential
cause-and-effect relationships throughout the process chain and contributed
to a deeper understanding of the electrode manufacturing process chain and
the collective impact of various parameters on the intermediate and final
product properties. In this context, the logical next step is to progress toward
prescriptive analytics. This involves the development of data-driven inline
control and multivariable optimization systems. These systems cannot only
predict potential issues, but also suggest precise interventions to achieve
desired outcomes, ultimately enhancing process efficiency. By transitioning
from predictive to prescriptive analytics, it becomes possible to implement
more proactive and dynamic approaches to manage and improve the electrode
manufacturing process chain.
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ticularly in the electrode manufacturing and characterization, deserves special
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dissertation. These theses were carried out under the author’s substantial sci-
entific, technical, and content-related supervision. The author would like to
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collaboration.
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The author of this dissertation was the main contributor to all of the articles listed
above, taking a leading role in developing the concepts, selecting the methods,
visualizing the results, and drafting the manuscripts. Co-authors Matthias Leeb and
Josef Keilhofer, as colleagues and research associates at the Department of Battery
Production at the iwb, contributed respectively to Publications II and IV, primarily by
discussing and reviewing the results. Publication III was the result of a collaborative
effort during the author’s research stay at the University of Warwick. Dr. Marc Francis
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V. Hidalgo, research fellow at the University of Warwick, contributed to the concep-
tualization, formal analysis, and the initial drafting of the manuscript. Prof. James
Marco, in his role as the Energy Directorate of the Warwick Manufacturing Group,
supported the development of the concept and provided valuable guidance through
a detailed review of the manuscript. Prof. Mona Faraji Niri, assistant professor at
the University of Warwick, contributed to the manuscript review process. Armin
Summer, Philipp Bauerschmidt, Nico Schwarz, Annika Molzberger, Pengdan He, and
Yao Chen contributed in their roles as supervised students, when named as co-authors
in the respective publications. Their contribution mainly involved investigation and
data curation. Prof. Dr.-Ing. Rüdiger Daub made significant contributions to all of the
publications as the head of the iwb and the supervisor of this dissertation.

Table B.1 provides a summary of the author’s contributions to the publications, based on
the Contributor Roles Taxonomy (CRediT). Concept summarizes the conceptualization
and methodology aspects, according to CRediT. Realization includes investigation, for-
mal analysis, data curation, software, and validation, where applicable. Documentation
covers aspects such as visualization, and writing, including both the original draft as
well as review and editing.

Table B.1 Summary of the contributions of the author of this dissertation to the five
publications

Publication Concept Realization Documentation Averaged contribution

I 90 % 40 % 90 % 73 %

II 95 % 45 % 80 % 73 %

III 80 % 50 % 65 % 65 %

IV 90 % 70 % 85 % 82 %

V 100 % 70 % 95 % 88 %
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