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Abstract

Musculoskeletal tumours represent a rare and heterogeneous group of diseases, posing
significant challenges for early and precise diagnosis. Current diagnostic procedures
necessitate interdisciplinary examinations, that require the expertise of specialists and
advanced imaging technologies. The rarity and intricate variability of these conditions,
combined with a lack of standardized, digital data repositories, significantly degrade
the quality of data available for analysis. This situation impedes the effective deploy-
ment of machine learning methods. However, the timely aggregation of comprehensive,
prospective datasets is impractical owing to their low incidence. This elevates the
significance of leveraging retrospective data as indispensable resource. This disser-
tation endeavours to develop innovative approaches that exploit retrospective data
for the accurate assessment of musculoskeletal tumours, addressing these challenges.
It focuses on employing state-of-the-art machine learning models to enhance diag-
nostic accuracy, optimise radiological workflows, and integrate multimodal datasets
to unlock the latent potential within clinical systems. The research analyzed clinical
and imaging data from 1962 to 2021, primarily unstructured, from Klinikum rechts
der Isar. The data preparation process involved meticulous cleaning and verification,
with the collaboration of radiologists and surgeons. The dissertation is based on four
core publications. An initial review article highlights the challenges and limitations of
applying machine learning in diagnosing musculoskeletal malignancies, advocating
for improved data collection frameworks and international networks to advance or-
thopaedic oncology. Key methodological and application-related developments include
the successful utilization of transfer learning with a dataset of 42,608 tumour-associated,
unstructured X-ray images, addressing data insufficiency; the development of a novel
sorting algorithm with a 96.6% accuracy in classifying radiographs into 28 anatomical
regions, thus potentially optimising workflows; and a recommender-based approach
that incorporates extensive experience lying dormant in clinical systems to link new
patients to previous patients while classifying tumours with a mean accuracy of 92.86%
across ten entities, outperforming current state-of-the-art models by over 30 percentage
points. By leveraging real-world clinical data, this work navigates the constraints of
small datasets and data quality, paving new avenues for the early and precise diagnosis
of musculoskeletal tumours, optimizing radiological practices, aiding non-specialist
clinicians, and ultimately promoting more effective, patient-centred care.
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Zusammenfassung

Muskuloskelettale Tumoren stellen eine seltene und heterogene Gruppe von Krankheiten
dar, die erhebliche Herausforderungen für eine frühe und präzise Diagnose mit sich
bringen. Aktuelle Diagnoseverfahren erfordern interdisziplinäre Untersuchungen,
die das Fachwissen von Spezialisten und fortgeschrittene Bildgebungstechnologien
benötigen. Die Seltenheit und komplexe Variabilität dieser Zustände, kombiniert
mit einem Mangel an standardisierten, digitalen Datenbanken, mindern signifikant
die Qualität der verfügbaren Daten für Analysen. Diese Situation behindert den ef-
fektiven Einsatz von Methoden des maschinellen Lernens. Jedoch ist die zeitnahe
Sammlung umfassender, prospektiver Datensätze aufgrund ihrer geringen Inzidenz
nicht praktikabel. Dies hebt die Bedeutung der Nutzung retrospektiver Daten als
unverzichtbare Ressource hervor. Diese Dissertation strebt die Entwicklung innovativer
Ansätze an, die retrospektive Daten für die genaue Bewertung muskuloskelettaler
Tumoren nutzen und diese Herausforderungen angehen. Sie konzentriert sich auf
den Einsatz modernster maschineller Lernmodelle, um die diagnostische Genauigkeit
zu erhöhen, radiologische Arbeitsabläufe zu optimieren und multimodale Datensätze
zu integrieren, um das latente Potenzial innerhalb klinischer Systeme zu erschließen.
Die Forschung analysierte klinische und bildgebende Daten von 1962 bis 2021, über-
wiegend unstrukturiert, vom Klinikum rechts der Isar. Der Datenbearbeitungsprozess
umfasste eine sorgfältige Reinigung und Überprüfung in Zusammenarbeit mit Ra-
diologen und Chirurgen. Die Dissertation basiert auf vier Kernpublikationen. Ein
einleitender Übersichtsartikel beleuchtet die Herausforderungen und Einschränkungen
des Einsatzes maschinellen Lernens bei der Diagnose muskuloskelettaler Malignome
und spricht sich für verbesserte Datenerfassungsrahmen und internationale Netzwerke
aus, um die orthopädische Onkologie voranzubringen. Zu den wichtigsten methodis-
chen und anwendungsbezogenen Entwicklungen gehören die erfolgreiche Nutzung
von Transferlernen mit einem Datensatz von 42.608 tumorassoziierten, unstrukturierten
Röntgenbildern, die Datenknappheit adressieren; die Entwicklung eines neuartigen
Sortieralgorithmus mit einer Genauigkeit von 96,6% bei der Klassifizierung von Rönt-
genbildern in 28 anatomische Regionen und somit eine potenzielle Optimierung der
Arbeitsabläufe; sowie ein empfehlungsbasierter Ansatz, der umfangreiche Erfahrungen,
die in klinischen Systemen ruhen, nutzt, um neue Patienten mit vorherigen Patienten
zu verknüpfen, während Tumoren mit einer durchschnittlichen Genauigkeit von 92,86%
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Zusammenfassung

über zehn Entitäten klassifiziert werden und damit aktuelle Modelle um mehr als 30
Prozentpunkte übertreffen. Durch die Nutzung realer klinischer Daten navigiert diese
Arbeit durch die Einschränkungen kleiner Datensätze und Datenqualität und ebnet
neue Wege für die frühe und präzise Diagnose muskuloskelettaler Tumoren, optimiert
radiologische Praktiken, unterstützt Nichtspezialisten und fördert letztendlich eine
effektivere, patientenzentrierte Versorgung.
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1. Introduction

1.1. Orthopaedic Oncology

Orthopaedic oncology is a speciality of orthopaedic surgery that focuses on the di-
agnosis, treatment and care of bone and soft tissue tumours. These tumours can
arise in various anatomical sites, including bone, muscle, tendon, ligament and other
connective tissues [26]. The primary goal of orthopaedic oncology is to provide optimal
care for patients with musculoskeletal (MSK) tumours, aiming for both limb salvage
and optimal long-term functional outcomes [27]. This requires a multidisciplinary
approach involving collaboration between orthopaedic surgeons, medical oncologists,
radiologists, pathologists and other medical professionals [1]. The specialty encom-
passes a wide range of surgical techniques, including tumour resection, reconstruction
and limb-sparing procedures tailored to the individual needs of the patient and the
characteristics of the tumour [27].

Imaging plays an important role in the diagnosis of bone and soft tissue tumours. For
the assessment of bone lesions for example, the most common imaging modalities used
are standard radiographs, computed tomography (CT) and magnetic resonance imaging
[28]. Even recently, the Musculoskeletal Tumour Society and American Academy
of Orthopedic Surgeons working group affirmed plain radiography as the initial
screening for possible bone tumours [28, 29]. Patients with a suspected malignant
lesion should be referred to an MSK tumour centre based on their radiograph only to
avoid delaying treatment. The additional diagnostic information provided by CT and
magnetic resonance imaging (MRI) is moderate (for early assessment!) and should not
delay medical care. The relevance of further imaging studies should be determined at a
referral centre before a biopsy is performed [28].

Experts in tumour centres are trained to make precise diagnoses through a combi-
nation of clinical assessment, imaging studies and histopathological analysis. They
use advanced imaging techniques such as MRI, CT and positron emission tomogra-
phy (PET) to accurately locate and characterise the tumours. They also play a crucial
role in post-operative management by monitoring patients for signs of therapy effec-
tiveness, recurrence or metastasis. Through continuous research and technological
advances, orthopaedic oncology is constantly evolving and improving outcomes such
as survival rate and quality of life of patients affected by bone and soft tissue tu-
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1. Introduction

mours. Nevertheless, for several reasons (discussed in the following sections), more
advanced approaches for e.g. image analysis or processing of complex multimodal
data is required.

Figure 1.1.: Exemplary radiological (a-c) and pathological (d) imaging data of a mus-
culoskeletal tumour patient: a) preoperative x-ray, b) preoperative MRI, c)
CT-guided needle biopsy, d) histology.

1.1.1. Clinical Features of Musculoskeletal Tumours

MSK tumours have a variety of clinical features that can vary depending on tumour
type, location, and stage [26]. Recognising these clinical features is critical for early
detection, precise diagnosis, and appropriate treatment of MSK tumours. The following
chapter discusses the clinical manifestations commonly seen in patients with MSK
tumours.

Picci et al. [26] describe the symptoms in their book Diagnosis of Musculoskeletal
tumours and tumour-like Conditions with the first case from 1900 and more than 47,000
cases overall as follows: Pain and swelling are among the most common symptoms of
MSK tumours. The pain can range from mild discomfort to severe, persistent pain and
may be limited to the tumour site or radiate to neighbouring tissue. Swelling is another
common feature, often associated with increased vascularity and oedema within the
tumour. Patients with MSK tumours often report the presence of a palpable mass or
lump. The mass may be firm and immobile and gradually increase in size. Depending
on the origin of the tumour, it may be localised in the bones, soft tissues, or both.
MSK tumours may feel painful, especially when pressure is applied directly to the
tumour or during movement. Tenderness may be accompanied by localised warmth or
erythema in some cases. Tumours affecting the bones often cause bone pain, which can
be severe and worsen at night. This pain can be localised or radiate along the affected
bone. In addition, the weakened bone structures due to tumour infiltration can lead to

2



1. Introduction

pathological fractures even with minor trauma. As MSK tumours grow and progress,
they can lead to functional impairment in the affected area. Patients may experience
restricted joint movement, muscle weakness, and difficulty in performing activities
of daily living. In some cases, MSK tumours may be associated with constitutional
symptoms such as fatigue, unwanted weight loss, and night sweats. These systemic
symptoms are more common in aggressive or metastatic tumours. Tumours that are
close to nerves or compress neural structures can cause neurological deficits. Depending
on the location and size of the tumour, patients may experience sensory disturbances,
muscle weakness, loss of reflexes, or even paralysis.

These entities are often detected incidentally due to lack of specific symptoms and
their non-specific presentation [30, 31]. A typical scenario is that a child has injured
himself/herself while playing and a possible mass is discovered during the subsequent
routine X-ray examination to check the bone structure. Certainly, this is not an ideal
way to identify MSK malignancies.

1.1.2. Diagnostic Workflow at Tumour Centre

The diagnostic workflow for MSK tumours involves a comprehensive evaluation that
includes clinical assessment, imaging studies, biopsy, histopathological analysis and
multidisciplinary discussions (=weekly tumour board). This systematic approach
ensures precise diagnosis, staging and prognostic evaluation and facilitates appropriate
treatment planning for patients with MSK tumours [26, 27, 32].

1. Clinical assessment: The diagnostic workflow begins with a thorough clinical
examination, including a detailed history and physical examination. The doctor
assesses the patient’s symptoms, duration of symptoms, associated risk factors
and any history of cancer or genetic syndromes. The physical examination is
primarily concerned with determining the location, size, consistency, painfulness
and patient mobility with tumour.

2. Laboratory tests: Laboratory tests complement the diagnostic process by provid-
ing additional information. Blood tests, including complete blood count, liver
function tests, renal function tests and tumour markers (such as alkaline phos-
phatase, lactate dehydrogenase or prostate specific antigen) can be performed to
assess general health, organ function and potential markers of tumour activity.
Further evaluation through laboratory tests is still under research [19].

3. Imaging examinations: Imaging plays a crucial role in the diagnosis of MSK
tumours. Various imaging techniques are used to assess the location, size and
morphology of the tumour and its relationship to neighbouring tissue. Commonly

3
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Figure 1.2.: Example protocol from weekly MSK tumour board meeting.
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1. Introduction

used imaging techniques include X-rays, CT, MRI and PET. X-rays provide
valuable information about bone lesions, while CT and MRI provide detailed
anatomical imaging of both bone and soft tissue tumours. PET scans help assess
metabolic activity and detect possible metastases. Nuclear imaging techniques
are also used in some specialised centres. However, their diagnostic value has yet
to be proven [26].

4. Staging and prognostic evaluation: After diagnosis, the tumour is staged to
determine its extent and possible spread. Staging helps to make treatment
decisions and provides prognostic information. Different staging systems are used
for MSK tumours, e.g. the TNM classification system (tumour, node, metastases).
Prognostic factors such as tumour grade, size, histological subtype and molecular
markers are also taken into account to estimate the patient’s overall prognosis.

5. Biopsy and histopathological analysis: A definitive diagnosis of MSK tumours
is made by biopsy, where tissue samples are taken for histopathological analysis.
Depending on the nature and location of the tumour, different biopsy techniques
such as needle biopsy, CT guided needle biopsy, incisional biopsy or excisional
biopsy may be used. The tissue samples taken are sent to a pathologist who
examines them under the microscope to determine the histological type, grade
and other important features of the tumour.

6. Genetic testing: In some cases, genetic testing may be warranted to identify
specific genetic alterations or mutations associated with certain MSK tumours.
This information can provide valuable insight into tumour behaviour, prognosis
and possible treatment options.

7. Multidisciplinary team discussion: The complexity of diagnosing and especially
treating MSK tumours often requires a multidisciplinary approach. A team of
orthopaedic surgeons, oncologists, radiologists, pathologists and other specialists
review the patient’s clinical data, imaging results and histopathological findings.
This joint discussion helps formulate an precise diagnosis, determine the stage of
the tumour and develop an individualised treatment plan.

1.1.3. Obstacles in Tumour Assessment

The diagnosis of MSK tumours faces obstacles related to late detection, heterogeneous
subtypes (>100 subtypes according to WHO [33]), need for multimodality assessment
[1], susceptibility to diagnostic errors [34], limited experience of general practition-
ers [35, 29], low incidence [26] and specific challenges in paediatric cases [36, 5].
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Overcoming these barriers requires increased awareness, specialised training, multi-
disciplinary collaboration, access to advanced diagnostic resources and development
of new methodologies for precise diagnosis, ultimately leading to better patient
outcomes in the diagnosis and treatment of MSK tumours.

• Late detection and delayed referral: MSK tumours often present with non-
specific symptoms, leading to delayed recognition and up to 12 months delayed
referral to specialised centres [35]. Patients may initially associate their symptoms
with more general MSK conditions, which leads to late consultation with a doctor.
Late recognition and referral to a specialised centre can lead to advanced disease
stage and limited treatment options, negatively impacting patient outcomes [29].

• Heterogeneous subtypes and clinical presentations: MSK tumours encompass
a wide range of histological subtypes with different clinical presentations. The
variability of tumour types and their presentations can complicate diagnosis, as
symptoms may overlap with benign disease. Differentiation between malignant
and benign lesions requires specialised expertise and accurate histopathological
analysis [33].

• Multimodal assessment: Accurate diagnosis of MSK tumours often requires a
multimodal assessment that includes clinical data, imaging studies and histopatho-
logical analysis. Interpretation and correlation of data from different modalities
such as radiographs, CT scans, MRI, PET scans and biopsy results requires exten-
sive expertise and access to sophisticated imaging techniques that only specialised
tumour centres have, but that general practitioners and hospitals in less developed
and wealthy countries, for example, usually do not [1, 26, 34].

• Error-prone diagnostic process: The diagnostic process for MSK tumours is
error-prone and can lead to misinterpretation. False-negative or false-positive
results can occur, leading to incorrect diagnoses and inappropriate treatment
decisions. The complexity of diagnosing MSK tumours, combined with the rarity
of these tumours, increases the risk of diagnostic errors [34].

• Limited experience of general practitioners: General practitioners may have
limited experience in diagnosing MSK tumours due to the low incidence and
specialisation of these tumours. As a result, early detection and precise diagnosis
of these tumours can be challenging in general care. Referral to specialised
tumour centres is critical to ensure precise diagnosis and appropriate treatment
[37, 1, 4, 7].

• Low incidence and familiarity: MSK tumours are relatively rare compared
to other cancers, making them less familiar to healthcare providers. The low
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incidence can lead to a lack of awareness and expertise, resulting in delayed
or overlooked diagnoses. Better education and awareness, as well as access to
specialised tumour centres, are essential to address this challenge [26, 1].

• MSK tumours in children: MSK tumours are one of the most common cancers
in children. Diagnosing tumours in paediatric patients requires additional consid-
erations as tumour types, presentation and treatment methods differ from those
in adults. Specialised paediatric oncology and age-specific therapeutic protocols
are necessary to provide optimal care for paediatric MSK tumours [5, 36].

1.2. Deep Learning for Image Analysis

1.2.1. A Brief History of Deep Learning: Pioneers, Milestones, and Evolution

Deep learning (DL), a subset of machine learning (ML), has gained tremendous pop-
ularity and attention in the 21st century due to its ability to solve complex tasks
across various domains, such as image and speech recognition, natural language
processing (NLP), and reinforcement learning [38]. DL is based on artificial neural
networks (ANNs), computational models inspired by the structure and functioning
of the human brain [39]. The concept of ANNs dates back to the 1940s, with the
pioneering work of Warren McCulloch and Walter Pitts. In their seminal 1943 pa-
per [40], they proposed a simplified model of biological neurons and demonstrated
that these artificial neurons could perform logical computations. This work laid the
foundation for further research in the field of artificial intelligence (AI) and neural
networks. In 1958, Frank Rosenblatt introduced the perceptron [41], an early ANNs
that could learn to classify linearly separable patterns through supervised learning.
Despite the perceptron’s initial promise, Marvin Minsky and Seymour Papert’s 1969
book, “Perceptrons” [42], demonstrated its limitations and criticized its inability to
solve more complex, non-linear problems. This critique contributed to the decline in
neural network research for a period of time, known as the “AI Winter.”

Interest in neural networks was revived in the 1980s, fueled by the development
of the backpropagation algorithm by Geoffrey Hinton, David Rumelhart, and Ronald
Williams [43]. This algorithm allowed for efficient training of multi-layer perceptrons,
overcoming the limitations highlighted by Minsky and Papert. Yann LeCun’s work
in the late 1980s and early 1990s led to the development of the convolutional neural
networks (CNNs), a key milestone in DL. CNNs are characterized by their ability to
process grid-like data, such as images, by incorporating convolutional layers that can
learn local features, thus enabling the automatic extraction of hierarchical features.
LeCun’s LeNet-5 architecture, developed for handwriting recognition, exemplified the
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potential of CNNs [44].
Recurrent neural network (RNNs) [45], which possess the ability to process sequences

of data, were introduced by John Hopfield and David Rumelhart in the 1980s. Later, in
1997, Sepp Hochreiter and Jürgen Schmidhuber proposed the long short-term mem-
ory (LSTM) architecture [46], addressing the vanishing gradient problem in RNNs
and enabling the processing of longer sequences. The advent of powerful graphical
processing units (GPUs), big data, and improved algorithms spurred the resurgence
of DL in the 21st century. In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton achieved a groundbreaking result in the ImageNet Large Scale Visual Recognition
Challenge using a deep CNNs called AlexNet [47]. This event marked the beginning
of the modern DL era. Recent years have witnessed the development of more ad-
vanced DL architectures, such as residual neural networks (ResNets) [48], generative
adversarial networks (GANs) [49], and transformers [50], which have driven significant
breakthroughs in various domains.

1.2.2. State-of-the-art in Deep Learning

Deep Learning has made significant advances in image analysis, revolutionising com-
puter vision tasks and achieving excellence in several areas. In this section, the current
state of the art in DL for image analysis will be described and the key techniques and
models that have advanced the field will be highlighted.

CNNs have been instrumental in making breakthroughs in image analysis. CNNs use
convolutional layers that enable hierarchical feature extraction, allowing the network
to capture spatial and compositional information in images. Architectures such as
ResNet [48], Inception [51] and EfficientNet [52] have pushed the boundaries of CNNs
performance and achieved high accuracy in tasks such as image classification.

Transfer learning and pre-trained models have played a crucial role in image analysis
tasks, especially when there is limited labelled data. Pre-trained models trained on large
image datasets such as ImageNet [53, 47] have learned extensive feature representations
that can be fine-tuned for specific tasks. This approach has greatly reduced the need
for extensive labelled data and computational resources, and allows researchers and
practitioners to efficiently build powerful models. Common pre-trained models include
VGGNet [54], ResNet [48] and EfficientNet [52]. Pre-training followed by fine-tuning
has proven effective in improving performance also on various language tasks.

DL has led to remarkable advances in object detection and localisation, enabling
accurate identification of objects in images in real time. Architectures such as Faster
R-CNN [55] and YOLO [56] have pioneered object recognition by combining Region
Proposal Networks and convolutional features to recognise and classify objects. These
models have applications in autonomous driving, surveillance systems and object
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recognition.
Semantic segmentation is about labelling objects and their boundaries at the pixel

level within an image. DL has made significant progress in this area, with models
such as U-Net [57], SegNet [58] and DeepLab [59] achieving remarkable performance.
These models use fully convolutional architectures and skip connections to capture
fine-grained details and spatial relationships, enabling accurate segmentation of objects
in images. Semantic segmentation has applications in medical imaging, autonomous
systems and augmented reality.

Generative models, especially GANs and variational autoencoders (VAEs), have
demonstrated their capabilities in image synthesis tasks. GANs produce realistic images
by training a generator network to produce patterns that fool a discriminator network,
leading to visually compelling results. Models such as DCGAN [60] and StyleGAN
[61] have achieved impressive results in image synthesis and enable applications for
artistic style transfer, image-to-image translation and data augmentation.

DL models have also made progress in tasks that involve the fusion of image and
language. Image labelling models generate natural language descriptions of images,
while visual question answering models answer questions based on visual content.
Approaches such as Show and Tell, Show, Attend and Tell, and bottom-up and top-down
attention mechanisms have improved the quality and accuracy of generated captions.
Visual question answering models combining CNNs with recurrent networks have
achieved impressive results in answering questions about images.

BERT [62] is an example of a pre-trained language model that can be fine-tuned for
tasks such as answering questions and classifying sentences. large language models
(LLMs) such as generative pre-trained transformer (GPT) trained on large web corpora
have achieved peak performance in translation, question answering, essay writing and
program generation. Research has also focused on fine-tuning and transfer learning to
improve performance on specific tasks with smaller datasets. LLMs are not the focus of
this dissertation, but are still worth mentioning due to the enormous impact in society
and research at this time.

As DL models are used in critical applications, it is crucial that they are robust
against outside attacks and ensure interpretability of the models. Researchers are
actively working to develop robust models that are resistant to interference from
attackers in order to improve the reliability and security of the models. Efforts are also
being made to improve the interpretability of DL models to enable better understanding
and confidence in the decisions made by these models.

9



1. Introduction

1.2.3. Current Limitations and Implications for Medicine

While it is crucial for research in this field to understand the extensive possibilities
of modern DL methods, it is at least as crucial to know their limitations. In a field
as specific and highly sensitive as medicine, certain limitations come with specific
implications. The following section discusses the current limitations and specific
implications for the field of medicine.

Data dependency and labelling

Models require large amounts of labelled data for training in order to effectively learn
and generalise from underlying patterns in the data [54, 53, 48]. However, in medical
domains, such as rare diseases (e.g. MSK tumours) or special patient populations,
it can be particularly difficult to obtain large annotated datasets due to limited data
availability. This scarcity of labelled data makes it difficult to develop and deploy
accurate and reliable models in various medical applications. The implications of this
limitation are multi-faceted. First, the lack of sufficiently labelled data may limit the
performance and generalisability of DL models in medical scenarios [63]. Without
access to representative and diverse datasets, models may not be able to capture the
full spectrum of disease conditions, resulting in suboptimal diagnostic accuracy and
treatment recommendations. Second, the process of labelling medical data requires
a significant amount of expertise and time on the part of professionals [3]. Manual
annotation is often required to ensure accuracy and reliability of the labels. The labour-
intensive nature of this task can slow down the development and use of AI models in
medicine, making it difficult to keep up with rapidly evolving medical knowledge and
new healthcare demands. In addition, the limited availability of labelled data in certain
medical fields can lead to unbalanced datasets in which certain classes or conditions
are underrepresented [1, 3]. This can lead to biased model performance, potentially
aggravating inequalities in healthcare and jeopardising the equitable provision of
health services. Constraining data dependency and labelling in DL for medicine is
critical. Innovative approaches such as transfer learning, active learning and data
augmentation can help alleviate the problem of data scarcity by effectively using
existing labelled data and generating synthetic data to complement the training process
[6, 5, 2]. Collaborative efforts between healthcare institutions, researchers and regulators
are essential to facilitate data sharing and create standardised datasets that benefit the
development of AI models in medicine.
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Lack of explainability

DL models are characterised by their complex and hierarchical structures, consisting of
numerous interconnected layers. While these models can achieve remarkable accuracy
in various medical tasks, such as diagnosing diseases or predicting treatments, the lack
of explainability poses a challenge when it comes to understanding how and why the
models arrive at their decisions [64, 65]. This limitation has several implications for
the field of medicine. In healthcare, trust and acceptance of computer models are of
utmost importance. Medical professionals and patients must have confidence in the
decisions made by AI models. The lack of explanation can affect the trustworthiness of
these models, as their internal workings remain opaque, even for experts. Without clear
explanations, medical professionals may continue to be reluctant to rely on DL models
for critical decision-making processes, potentially limiting their use in clinical practice.
Furthermore, models have the potential to provide valuable decision support in the
clinical setting. However, without clear explanations of their predictions, it becomes
difficult for healthcare professionals to assess the validity and reliability of the model
recommendations [66]. Explainability is particularly important when it comes to patient-
specific medical interventions, as it helps clinicians understand the rationale behind the
model’s suggestions and adjust treatment accordingly. The lack of explainability raises
ethical concerns, especially in sensitive medical scenarios. When DL models are used
to make decisions with significant consequences for patients, such as treatment plans
or allocation of healthcare resources, the ability to provide transparent explanations
becomes essential. Explainability is crucial to ensure fairness, avoid bias and meet
legal and ethical requirements related to accountability and transparency in medical
decision-making. In medicine, it is important to understand the factors and features
that contribute to the predictions of an AI model. Without explainability, it becomes
difficult to assess the safety and reliability of the model’s results. In cases where
DL models are used for critical tasks such as detecting adverse events or predicting
patient outcomes, the inability to explain their decision-making process can hinder the
identification of potential risks or errors.

Generalisation to unseen or out-of-distribution data

DL models excel at learning patterns and making accurate predictions within the
constraints of the training data they have been given. However, when faced with
data that deviates significantly from the training distribution, such as new disease
manifestations or patient populations that were not adequately represented during
training, these models may have difficulty generalising effectively. This limitation has
several implications for the field of medicine. Models used for disease diagnosis are
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highly dependent on their ability to generalise well to unseen data. However, if a model
has not encountered certain disease variants or rare conditions during training, it may
not be able to accurately diagnose real cases. This limitation may affect the reliability
and effectiveness of DL models in clinical practice, leading to misdiagnosis or delayed
treatments. DL is increasingly used to assist in treatment planning and decision-making.
However, when patient-specific data are available that differ significantly from the
training distribution, such as comorbidities or unique genetic profiles, the model’s
recommendations may not be reliable or optimal. This limitation may hinder the
potential benefits of DL in personalised medicine, where tailored treatment strategies
are critical. The limited generalisability of DL models can affect their performance
and applicability in the real world [67]. Models that demonstrate high accuracy when
evaluated on benchmark datasets may underperform or exhibit unexpected behaviour
when used in real-world clinical settings. This limitation may hinder the adoption and
acceptance by healthcare professionals who need robust and reliable performance for
decision-making. Limiting generalisation to unseen or undistributed data in DL for
medicine is an active area of research. Efforts are being made to develop strategies
that improve model generalisation, such as incorporating diverse and representative
training data, data augmentation techniques and transfer learning approaches [6]. In
addition, advances in domain adaptation and robustness techniques aim to improve the
ability of DL models to deal with data distributions that deviate from the training data.

Integration into clinical workflow

Integrating DL models into the clinical workflow presents challenges, including inte-
gration with electronic health records, real-time decision making and clinical validation.
Integration should be seamless and practical to ensure that the models provide mean-
ingful and actionable insights for healthcare providers without disrupting established
clinical processes [68, 69].

Hardware resources

Training DL models, especially large-scale architectures, requires significant computa-
tional resources, including high-performance GPUs or specialised hardware [70]. This
need for computing power can be a significant barrier for researchers and organisa-
tions with limited access to such resources. Efficient model architectures and training
techniques are being explored to reduce the computational demands.
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Ethical and bias concerns

DL models, while powerful and versatile, are not immune to ethical concerns and
biases, particularly in the field of medicine [71]. These concerns stem from several
factors, including biased training data, opacity of model decisions, and the potential for
discriminatory outcomes [72]. These limitations have significant implications for the
responsible and equitable application of DL in medicine. AI can lead to discriminatory
results in medical applications if they are not properly screened for bias. For example,
a model trained on biased data may disproportionately misdiagnose or underdiagnose
certain groups of patients based on factors such as race, gender or socioeconomic status.
This can lead to unequal access to health resources, unequal treatment outcomes and
the perpetuation of systemic biases in healthcare [73].

In medicine, DL models often rely on sensitive patient data for training and inference.
Privacy concerns [74] and the need for informed consent are critical when using
these models. Appropriate measures must be taken to ensure patient privacy and data
protection, as well as transparent communication about the use of patient data for model
development and evaluation. Limiting ethical concerns and bias in DL for medicine
is imperative to address. This requires a multi-faceted approach that includes data
collection practices that prioritise diversity and fairness, robust strategies to detect and
mitigate bias in training data, transparency and explainability techniques to improve
model interpretability, and ethical guidelines for the development and use of DL
models in medicine [75]. In addition, interdisciplinary collaboration between computer
scientists, healthcare professionals, ethicists and policy makers is essential to establish
legal frameworks, standards and guidelines that promote fairness, transparency and
accountability in the development and use of DL models in medicine. Responsible
use of DL models can help mitigate biases, ensure equitable access to healthcare and
improve patient outcomes.

1.3. Subject of this Dissertation

The main topic of the present work was to find ways to cope with the data of MSK
tumour patients from several decades at Klinikum rechts der Isar and to develop
analysis and support tools mainly for diagnostic purposes based on state-of-the-art ML
methods for the purpose of decreasing the time to diagnosis. Due to the low incidence of
MSK tumours in general, very little data is available. In addition, the workflow for data
acquisition and processing for ML and other research areas require extensive domain
knowledge from different medical fields such as orthopaedics, radiology, and pathology.
This implies that data is heterogeneous and multimodal, which is another challenge for
ML applications and that interdisciplinary collaboration is crucial to develop clinically
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relevant research questions. Therefore, the four main chapters of this thesis contain the
following major contributions:

• Current State of Machine Learning for Musculoskeletal Tumour Diagnostics

• Handling Limited Datasets

• Leveraging Unstructured Data for Workflow Optimization

• Multimodal Data for Diagnostic Decision Support Tools

Figure 1.3.: proposed approach of deep learning methods for musculoskeletal tumour
diagnostics: the overall problem of musculoskeletal tumour diagnostic is
that early diagnostics is complex and delays occur. Deep learning models
can help based on retrospective data to handle limited data, optimise
workflows and finally build diagnostic support tools.
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2.1. Patient Cohort and Data

Source of data

The present dissertation relies solely on retrospective data; however, this data was
derived from real clinical sources. The clinical data utilized in this study was obtained
from our hospital information system (HIS), while the imaging data was retrieved
from our picture archiving and communication system (PACS). The dataset spans from
the initial entries dating back to 1962, although the quality and completeness of the
data significantly improved starting in 2004. This enhancement coincided with the
implementation of a new PACS at Klinikum rechts der Isar. The dataset encompasses
information until the year April 2021. It is important to note that follow-up data is
only available for patients who sought further treatment or passed away within our
hospital. Approximately 10% of the patients included in this study were referred to us
by general practitioners or originated from foreign countries, thus, these patients’ data
can be referred to as "external data".

All following studies were approved by the local ethics board and conducted as per
national and international guidelines. Informed consent was waived due to the studies´
retrospective and anonymised nature.

Patients

The patient cohort encompasses 8,377 patients with 8,922 cases (as of April 2021)
diagnosed with various types of bone and soft tissue tumours, comprising benign, in-
termediate, and malignant tumours. Here a case is representing a economic parameter
and is defined, among other things, by whether a patient was admitted on an outpatient
or inpatient basis. This potentially results in multiple cases being associated with one
patient if the admission status changes or a patient presents again at the hospital with
a new tumour entity. These patients were treated at Klinikum rechts der Isar. Because
it is a maximum care centre, it provides comprehensive care at various stages of the
patient’s life, including general population, primary care, secondary care and palliative
care. Detailed information regarding the patient population and tumour entities can be
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found in Table 2.1 and Table 2.2, providing a comprehensive overview of the dataset
and supporting the subsequent analyses conducted in this research. It is important to
note that due to the nature of our hospital as a centre for musculoskeletal tumours, our
dataset does not reflect the real ratio of benign, intermediate, and malignant tumours.
We have a significantly higher proportion of extremely rare malignant tumours, which
again reflects the great value of this dataset.

Entity incidence %
adamantinoma 8 0,09 %
angiosarcoma 37 0,41 %
aneurysmatic bone cyst 196 2,2 %
juvenile bone cyst 128 1,43 %
solitary bone cyst 62 0,69 %
breast carcinoma 1 0,01 %
bronchial carcinoma 1 0,01 %
bursitis 19 0,21 %
chondroblastoma 50 0,56 %
chondromatosis, synovial 95 1,06 %
chondrosarcoma 317 3,55 %
chordoma 28 0,31 %
clear cell sarcoma 11 0,12 %
cancer of unknown primary 2 0,02 %
dermatofibrosarcoma protaberans 24 0,27 %
desmoid (aggressive fibromatosis) 110 1,23 %
fibrous dysplasia 142 1,59 %
enchondroma 440 4,93 %
epithelioid sarcoma 21 0,24 %
Ewing’s sarcoma 150 1,68 %
cartilaginous exostosis 17 0,19 %
nodular fasciitis 50 0,56 %
fibroma 73 0,82 %
fibrosarcoma 26 0,29 %
ganglion 261 2,93 %
giant cell tumour 145 1,63 %
eosinophilic granuloma 72 0,81 %
hemangioendothelioma 5 0,06 %
malignant hemangioendothelioma 15 0,17 %
hemangioma 272 3,05 %
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hemangiopericytoma 8 0,09 %
epithelioid hemangiosarcoma 3 0,03 %
hematoma 28 0,31 %
Hodgkin’s lymphoma 11 0,12 %
leiomyosarcoma 124 1,39 %
leukemia 11 0,12 %
lipoma 537 6,02 %
lipoma arborescens 8 0,09 %
liposarcoma 357 4 %
lymphangioma 9 0,1 %
malignant fibrous histiocytoma 273 3,06 %
morbus Ledderhose 30 0,34 %
malignant peripheral nerve sheath 44 0,49 %
myofibblas 1 0,01 %
myositis ossificans 50 0,56 %
myxofibrosarcoma 115 1,29 %
myxoma 58 0,65 %
neurinoma 168 1,88 %
neurofibroma / neurofibromatosis 13 0,15 %
NHL of T-cell type 10 0,11 %
NHL of the B-cell type 161 1,8 %
non ossifying fibroma 81 0,91 %
osteochondroma 495 5,55 %
osteoid osteoma 91 1,02 %
osteomyelitis 195 2,19 %
osteosarcoma 259 2,9 %
other 692 7,76 %
Paget’s disease 4 0,04 %
plasmocytoma / multiple myeloma 190 2,13 %
primitive neuroectodermal tumour 15 0,17 %
prostate carcinoma 1 0,01 %
pseudotumour 34 0,38 %
pigmented villonodular synovitis 325 3,64 %
renal cell carcinoma 1 0,01 %
rhabdomyosarcoma (alveolar / embryonal) 39 0,44 %
not otherwise specified sarcoma 64 0,72 %
myofibroblastic sarcoma 13 0,15 %
alveolar soft tissue sarcoma 16 0,18 %
synovial sarcoma (monophasic / biphasic) 118 1,32 %
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solitary, fibrous tumour, 20 0,22 %
unknown 1472 16,5 %

Gender incidence %
female 2943 32,99 %
male 3114 34,9 %
other 0 0 %
unknown 2865 32,11 %

Localisation incidence %
abdominal wall 114 1,28 %
thoracic spine 62 0,69 %
cervical spine 26 0,29 %
dorsum 56 0,63 %
elbow 96 1,08 %
foot 602 6,75 %
forearm 234 2,62 %
hand 250 2,8 %
head-neck region 94 1,05 %
hips 160 1,79 %
knee 696 7,24 %
lower leg 980 10,98 %
os coccygeum 6 0,07 %
os sacrum 114 1,28 %
pelvis 538 6,03 %
shoulder 476 5,34 %
spine 114 1,28 %
thigh 1840 20,62 %
thoracic wall 203 2,28 %
unknown 1701 19,07 %
upper arm 610 6,84 %

Malignancy incidence %
benign 2608 29.23 %
intermediate 675 7.57 %
malignant 5639 63.20 %

Table 2.1.: Distribution of discrete parameters with incidence and percentage ratio.
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median interquartile range
age 46.00 35.00
year 2011.00 11.00

Table 2.2.: Distribution of continuous parameters with median and interquartile range.

Dataset

The underlying dataset of this dissertation consisted of clinical data in tabular form
and images in Digital Imaging and Communications in Medicine (DICOM) format.
The clinical data was unstructured and unlabelled, indicating that no verification
had been conducted to confirm the accuracy of e.g. associated diagnoses or TNM
classifications. Preliminary values for these clinical parameters were often based on
radiological assessments alone, with final values recorded separately. The tabular data
encompassed over 1,000,000 data points but had not been validated and was prone to
errors. Due to the prior mapping process of this data, which was conducted without
proper database methodology and by non-experts, we were not able to directly identify
the stage (e.g. pre-op or post-op) of the acquired parameters. Consequently, extensive
data cleaning and verification was necessary before utilizing the data. Furthermore,
due to the heterogeneity of MSK tumours, a more detailed analysis of each case was
required. Differentiating between primary tumours and recurrent tumours, as well as
determining the tumour location (e.g., spine or forearm), had important clinical impli-
cations. This information was solely available in textual formats, such as radiology and
pathology reports or tumour board protocols. The preparation of the data demanded
significant domain knowledge acquired over the years, with essential support from
MSK radiologists and tumour surgeons. The dataset comprised more than 250,000
x-ray images. However, crucial information such as the stage at which the imaging
examinations were conducted (e.g., pre-chemotherapy or preoperative) could only be
found in reports, necessitating the sorting of data from a clinical standpoint prior to
using it for ML purposes.

As already mentioned, more information was available in the form of medical reports
in the HIS. However, the interfaces to the clinical system were not accessible (for
privacy and internal compliance reasons), so each patient had to be manually reviewed
in the clinical system and the text analysed.
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2.2. Current State of Machine Learning for Musculoskeletal
Tumour Diagnostics

Methods

To achieve an overview of the current situation of machine learning applications in the
field of MSK research, especially in a diagnostic context, we conducted a scoping litera-
ture review according to the guidelines of the PRISMA statement [76]. The PRISMA
statement refers to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
It is a set of guidelines that provides a structured approach for reporting systematic
reviews and meta-analyses of healthcare interventions. The PRISMA statement was
developed to enhance the transparency, completeness, and accuracy of reporting in sys-
tematic reviews, thereby improving the quality of evidence synthesis. Studies meeting
the following criteria were included in this review:

• Primary malignant musculoskeletal tumours

• Application of Machine Learning or DL

• Imaging data or data retrieved from images

• Human or preclinical

• Written in English

• Original research articles

The following focus led to the exclusion of articles for this review:

• Metastases

• Histological data

• Secondary bone/soft tissue tumours

• Lymphoma

• Myeloma

• Benign, intermediate

• Review articles
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Articles that contained benign or intermediate lesions but focused primarily on e.g.
the detection of malignant lesions were included. In contrast, articles that did not
contain data on malignant lesions were excluded. The focus was on malignant lesions
because of their clinical relevance and difficulty in accurate assessment. In December
2021, a thorough literature search through MEDLINE (PubMed), CENTRAL (Cochrane
Library) and LISTA (EBSCO) was conducted. Grey literature was not considered. For
the systematic search, the following search terms were used without any filters or limits:

((Artificial Intelligence) OR (Deep Learning) OR (Machine Learning)) AND (ma-
lignant) AND (tumour OR neoplasm OR cancer) AND (musculoskeletal OR sarcoma
OR bone OR (soft tissue)) AND (imaging OR radiographic OR (computer-assisted)
OR (image interpretation)).

Study titles were reviewed and evaluated by an MSK radiologist, an orthopaedic
surgeon, and a data scientist at our institution using the above selection criteria (Fig-
ure 2.1). All discrepancies were resolved by consensus. The results were summarised,
and duplicates were discarded. All articles were initially screened for relevance by title
and abstract to assess the inclusion criteria. The three authors independently performed
a careful reading of the studies and extracted the data. The following information
was extracted from each article: title, author, year of publication, tumour entity group,
number of patients, malignancy, imaging modality, algorithm, model, task, applied
metric, outcome label and if or if not focused on diagnosis. For the synthesis, studies
with diagnosis-oriented tasks were further examined by retrieving the scores of the
most common metrics and the number of class labels to assess the number of samples
per class and illustrate a potential relationship between these parameters through linear
analysis and a correlation coefficient.

Scientific contribution

This review highlights that ML applications have yet to make a substantial impact on
imaging-guided diagnosis of MSK malignancies, primarily due to various data-related
challenges. Quality data availability is hindered by the lack of systematic and structured
data collection by research institutes, resulting in small and non-increasing datasets
for musculoskeletal malignancies. Even when patient data is available, it is often not
in a format suitable for data science. Additionally, the rarity of MSK malignancies
complicates the collection of adequate prospective data.

Interestingly, the review indicates that studies with fewer samples per class tend to
have slightly higher metric scores, contradicting the common assumption that more
data leads to better model performance. This anomaly may be influenced by a class
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Figure 2.1.: Selection process for final references [1].
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imbalance in the dataset, leading to falsely high metric values, and can also cause
overfitting and suboptimal results. Most studies’ problem definitions do not mirror
real-world clinical scenarios, and the limited data availability hinders the development
of more generalized models that address clinical needs. Although differentiating
tumour entities and assessing tumour malignancy are crucial steps, identifying potential
sarcomas poses the greatest challenge for MSK radiologists and orthopedic surgeons.
MRI is the preferred imaging modality for ML analysis of MSK malignancies due to
its superior soft tissue contrast and minimized radiation exposure. Radiomics, which
extracts quantitative features from imaging data, is also popular as it can mitigate
the limitations of small datasets and provide additional information. The review
acknowledges the infancy of ML research in MSK malignant tumours, with most
studies being in the early development stages, and highlights the heterogeneity in ML
algorithms, models, and outcome designations used in the studies.

The major contribution of this study was to underscore the critical importance of data for
the further development of ML for clinical image interpretation in MSK malignancies. It
emphasizes the urgent need to establish national and international networks, perform systematic
and structured data collection, and integrate multimodal data comparable to radiologists’
practice.

2.3. Handling Limited Datasets

Methods

The dataset used in this study comprised 42,608 unstructured radiographs from a MSK
tumour centre. These images, associated with sarcoma-related ICD codes, encompassed
various regions of the MSK system, including extremities and joints typically affected
by sarcomas, and images used for metastatic control and post-surgery or therapy
monitoring. The DICOM images, sourced from the local PACS system at Klinikum
rechts der Isar, spanned 25 years, exhibiting heterogeneity in quality, resolution, and
data corruption. The header information of the DICOM images was fully anonymised,
eliminating all meta-information for statistical analysis. A separate dataset of 63
images (22 acute osteomyelitis, 41 Ewing’s sarcoma) of patients under 18 was used for
evaluating the transfer learning approach, without additional restrictions on age, MSK
characteristics, or sex.

To classify MSK radiographs, a two-step DL algorithm was developed (Figure 2.2).
Initially, the unstructured dataset was clustered using DeepCluster, a self-supervised
model proposed by Caron et al. [77]. This innovative and scalable clustering ap-
proach for unsupervised learning of CNNs alternates between clustering the features
generated by the CNNs and updating the CNNs weights by using the cluster assign-
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ments as pseudo-labels in a discriminative loss. DeepCluster was evaluated using
different datasets, architectures, and tasks (classification, detection, segmentation, and
instance-level image retrieval), demonstrating its superiority over current state-of-the-
art methods in most applications, robustness to changes in image distribution, and
significantly better performance with deeper architectures such as VGG-16 [54] com-
pared to AlexNet [47]. The study also emphasized the importance of unsupervised
pre-training for complex architectures when limited supervised data is available, and
DeepCluster’s efficiency in instance-level image retrieval tasks, highlighting the crucial
role of pre-training in such applications. Overall, DeepCluster provides a robust and
efficient solution for unsupervised learning of CNNs, especially in domains with scarce
annotations.

In our study, k-means clustering was employed within DeepCluster to iteratively
group image features and use the resulting mappings as pseudo-labels for network
weight updates. The optimal number of clusters was determined through test runs
based on the highest classification scores before training. Subsequently, the cluster
assignments from the first step were used as "auxiliary" class labels for a classification
task, in which a ResNet50 [48] model was pre-trained. The dataset was partitioned
into training, validation, and hold-out test sets in 80%, 10%, and 10% proportions,
respectively, for both the pretraining and transfer learning phases. A cross-validation
approach was implemented to ensure robust results and prevent cross-contamination.
The transfer learning approach evaluation involved a two-entity classification task
with limited samples, and the dataset was divided in the same proportions as in the
pretraining phase. The models’ performance was evaluated based on accuracy scores.
For the upstream task (pretraining), a stack size of 512, a learning rate of 0.05, and 500
epochs were selected. This phase had an approximate runtime of 7.5 hours. For the
downstream task (transfer learning), a stack size of 4, a learning rate of 0.0001, and 100
epochs were chosen. The running time for all cross-validation folds was approximately
2 hours, and the inference step for all folds took about 7 minutes.

Scientific contribution

Our study represents a significant contribution to the field of DL applications in MSK
image analysis, primarily by demonstrating the effective initiation of transfer learning
using a state-of-the-art self-supervised model on a large dataset of 42,608 unstructured
X-ray images. This strategy led to an improvement in downstream classification tasks,
underscoring the potential of transfer learning to address the problem of insufficient
data in medical applications. Moreover, we tackled the limitations associated with
small datasets in orthopedic oncology by implementing data augmentation and transfer
learning techniques. These methods showed promise in supporting various image
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Figure 2.2.: Transfer learning approach through self-supervised pre-structuring of the
data to obtain auxiliary labels [2].
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interpretation tasks, thereby enhancing the performance of DL models. Our study
underscores the necessity for ongoing developments to increase the quality and quantity
of data for DL applications in medicine. Another key contribution is our observation
on the impact of pre-training with larger datasets. We found that pre-trained networks
effectively counteract the overfitting issue commonly encountered in non-pre-trained
networks. This observation highlights the positive influence of pre-training with larger
datasets and its potential to enhance the performance and generalizability of DL models.

The pretrained model developed in our study was also employed in a subsequent
study by Consalvo et al.[5]. This study found that even very small datasets resulted in
robust and stable results for image classification due to the domain-specific transfer
learning approach.

The major contribution of this study was the advancement of DL in medical image analysis
by showcasing the efficacy of transfer learning, addressing small dataset limitations through
innovative techniques, and emphasizing the importance of systematic data collection for achieving
clinically relevant results.

2.4. Leveraging Unstructured Data for Workflow Optimization

Methods

The study employed a two-phase DL framework to categorize a comprehensive dataset
of 42,608 unstructured and pseudonymized radiographs into 28 distinct anatomical
regions. The initial phase involved the utilization of DeepCluster [77], an innovative
clustering approach for the unsupervised learning of CNNs, to cluster the entire
dataset. This process involved alternating between clustering the features produced
by the CNNs and updating the CNNs weights by predicting the cluster assignments
as pseudo-labels in a discriminative loss. Subsequently, a senior radiologist identified
28 principal MSK classes from the clusters. This led to the exclusion of non-MSK
images, resulting in a ’MSK subset’ comprising 29,433 images retained for further
training. In the second phase, a cross-validated classification of the MSK subset was
performed. The classifier was trained to categorize images into one of the 28 pre-defined
anatomical regions, with the calculation of accuracy scores for both the validation and
hold-out test data. Two distinct accuracy scores were computed; one considering
only the class with the highest prediction probability and another considering the
two top predicted class labels. Additionally, Grad-CAMs were employed to visualize
the algorithm’s focus and predictions, indicating the regions of the images most
pertinent for classification. Several limitations of the SAM-X model were also addressed,
including the assumption that the input images correspond to one of the predefined
radiographic classes, and the employment of weak supervision. Weak supervision
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involves the use of imprecise (noisy) data for supervised learning, obviating the need
for the laborious task of manually labeling the entire dataset. To mitigate this, a
second accuracy score was calculated, considering the two predictions with the highest
probability. This demonstrated that the model did not weakly label based on any
incidental image features but labelled according to similar anatomical features.

Figure 2.3.: Illustration of the presented framework in two phases: clustering data with
a self-supervised model and training a network with human-annotated
clusters [3].

Scientific contribution

The scientific contribution of SAM-X lies in its ability to structure and annotate vast
amounts of images according to anatomical features, a task that is significantly more
efficient than manual human annotation. Utilizing the strengths of DeepCluster, we
developed a model that optimally organized images, demonstrating the potential
to optimize workflows for radiologists and other clinicians working with images.
This advancement represents a critical step toward managing the growing volume
of radiographic data and, consequently, improving the efficiency of MSK disorder
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assessments.
The major contribution of this study was the development of an innovative tool that can

expedite the classification of musculoskeletal radiographs, thereby saving significant time for
clinicians and contributing to the overall enhancement of radiological practice.

2.5. Multimodal Data for Diagnostic Decision Support Tools

Methods

Our single-center database was searched for patients treated for primary bone neo-
plasms from 2000 to 2021. Patients diagnosed with on of the ten most frequent tumours
in the database were included. Data curation and validation were performed by two
orthopedic residents, a senior MSK radiologist, and a data scientist. Data was presented
following STROBE guidelines [78]. The precision-at-k metric was used to evaluate the
recommender-systems clustering results. The dataset was divided into 80% training
and 20% test data, with final metrics calculated three times with randomly shuffled
data. Training and inference were conducted on a DGX Station A100 with four 80 GB
graphical processing units. Preprocessing and model implementation were performed
using Python 3.11.1 with PyTorch 1.13.1 and cuda toolkit 12.0. The proposed framework
Figure 2.4 aimed to identify the most similar cases from previous patients based on ra-
diographs relative to an undiagnosed image. Initially, baseline classification accuracies
for bone tumour entities were calculated using a standard [48] and a state-of-the-art
[50] DL model for multi-entity classification. Our approach involved two main steps:
(I) Emphasizing tumorous tissue over background or non-relevant tissue by creating
bounding boxes around the region of interest, either algorithmically [6] or through
manual cropping by a domain expert. A CNN [48] was then trained with the training
data in a supervised manner to extract meaningful image features for the respective
bone lesion classes. The trained model and extracted features from the training data
were saved, and image features of the test data were calculated by running the data
through the trained CNNs model. (II) We created a hash table. Instead of comparing
each set of new image features to the training data features, we used locality-sensitive
hashing (LSH), an approximate nearest-neighbor algorithm that reduces the compu-
tational complexity from O(N²) to O(log N). LSH generates a hash value for image
features by taking the spatiality of the data into account. Data elements that are similar
in high dimensional space have a higher chance of obtaining the same hash value [79].
Based on a hamming distance function, we computed the k-nearest neighbors with
respect to each target image. By assigning the k-nearest neighbors (train images) and
the target image (test image) to one cluster, we established a link between the undiag-
nosed patient and past patients from our database. Since local patient identifiers from

28



2. Materials and Methods

the training data patients are known, this allowed us to potentially link to experiences
from previous patients in our clinical systems, e.g. radiology reports, laboratory results,
therapy results, etc. Furthermore, we obtained a classification of tumour entities by
applying a majority vote to the entities of the images clustered to the target image.

Figure 2.4.: Flow chart of the proposed model – (I) preparing the images, training of the
convolutional neural network, saving the model and features, (II) calculating
the high dimensional distances with a distance function, adding a hash
tables, clustering of the most similar x-rays and calculating a precision-at-k
and a tumour entity classification with a majority vote of the k-clustered
images [4].

Scientific contribution

This study introduced a novel method for real-time classification of bone tumour
entities, showcasing a significant advancement over conventional and state-of-the-art
models. The innovative approach is grounded in the clustering of similar X-ray images
and the application of majority voting for final classification. A pivotal aspect of this
research is its ability to connect undiagnosed patients with the wealth of experience
and knowledge encapsulated in clinical systems. By clustering the most similar cases,
the algorithm leverages knowledge from past patient histories, thereby enabling precise
diagnoses. This integration with previous patient data and histories not only augments
the diagnostic process but also potentially revolutionizes the way physicians can
harness dormant information. Furthermore, the study’s methodology is transferable to
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other pathologies, indicating its potential versatility across various medical disciplines.
The research also tackled the universal challenges associated with limited data and
the diverse manifestations of tumours, proposing solutions that could influence the
diagnosis of rare and intricate diseases.

The major contribution of this study was the development of a real-time classification method
that leverages previous patient data and clinical knowledge to facilitate early and specific diagno-
sis, and notably, its capacity to link current cases with previous patient cases for comparison,
potentially impacting the diagnosis of rare and complex diseases across various medical fields.
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3.1. Cross-thematic discussion

The following section is structured following the Checklist for Artificial Intelligence in
Medical Imaging (CLAIM) [80] and Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) Statement: guidelines for reporting observational studies [78] and
will address the key findings, limitations, interpretation, similar studies and generalis-
ability.

The initial focus of this dissertation was to study MSK tumours, i.e., soft tissue and
bone tumours. However, in the end, most studies focused only on bone tumours, as the
clinical handling was different, and the potential within this subgroup was substantial.

The key findings from our studies are multifaceted and encompass several aspects.
(I) the rarity of data in the MSK tumour field implies that not many studies have been
conducted in this area [1]. As a result, most studies, including ours, have a "feasibility"
character. Essentially, these studies ascertained that it is feasible to develop models
or approaches that can aid in the classification and diagnosis of MSK tumours, even
given the paucity of available data. (II) our studies, among others, have employed
various technical approaches to address the challenges posed by limited, unstructured,
and poorly documented data. For instance, our innovative algorithm utilizes a hash-
based nearest-neighbour recommender approach and majority voting to classify bone
tumours based on similar cases from previous patient data. This approach not only
assists in managing limited data but also leverages dormant information in clinical
systems to facilitate precise diagnosis [4]. Additionally, workflow optimization and
structuring data are examples of technical approaches that can be employed to address
the issues of unstructured and poorly documented data [3]. (III) early and precise
diagnosis is of paramount importance for the effective treatment of MSK tumours.
Our studies demonstrate that DL models in fact have the potential to become valuable
support tools for non-tumour experts, young professionals, and general practitioners.
For example, our proposed algorithm achieved a classification accuracy of 92.86%
[4], significantly outperforming existing models and senior radiologists in a similar
task [81]. This indicates the potential of DL models to assist in the early and precise
diagnosis and analysis of MSK tumours. Moreover, while image-based approaches
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have proven effective, our not yet published study titled "Impact of metadata in bone
tumour classification" [7] underscores the importance of integrating multimodal data,
similar to the approach of expert clinicians. This includes not only image data but
also clinical and textual data, among others. Our studies contribute to ongoing efforts
to develop technical approaches that can aid in the early and precise assessment of
MSK tumours, despite the challenges posed by limited, unstructured, and poorly
documented data. While our novel algorithms demonstrate promising results and
outperform existing models, they also highlights the existing challenges, such as the
need for a comprehensive solution to the issue of limited and unstructured data, and
the necessity for further research and development to make DL models a valuable
support tool for a broader range of medical professionals. Finally, the integration of
multimodal data, as shown in our study, is crucial for improving the accuracy and
effectiveness of these models.

The major limitation of our applied research is that we did not exactly follow
the clinical gold standard for diagnosis, which might lead to limited acceptance by
clinicians. Since DL applications in orthopaedic oncology are still in their infancy and
there are several external limiting factors (time and political constraints, low incidence
etc.) [1], we were forced to break down problems from holistic to simplified clinical
questions. Therefore, we did focus solely on radiographs in [5] and [2]. Although plain
radiographs are crucial for the initial screening for a possible bone tumour [28, 29, 82,
83], further classification requires the inclusion of clinical data (and possibly additional
imaging) [84]. However, we hypothesize that some clinical information such as the
patient’s age, anatomical region, or tumour location is partially represented in the x-ray
images and therefore indirectly integrated into our prediction models. Nevertheless,
in [7] we intended to mimic the clinical workflow by including clinical metadata in
addition to radiographs in the evaluation of tumour entities, or in [4] we build an
unsupervised model and intended to rely on prior clinical knowledge and experience.
With these approaches we increased performance of our models and came a step closer
to clinical reality. Furthermore, in addition to technical progress, it should also be
noted that AI tools will only find their way into the clinic if they are accepted by the
medical professionals. Also MRI and CT play a crucial role in clinical diagnostics. These
modalities were not investigated further within this dissertation, because metadata
and radiography already held high potential. Nonetheless, these modalities will be
investigated in future studies. Another limitation arises from the limited dataset. While
a dataset with up to 10,000 patients and several thousand X-ray images represents a
considerable amount for the very low incidence of MSK tumours, in context of DL
the number is not particularly high. Further, to structure data according to clinical
features such as entity, status of therapy, etc., the sample size per class was mostly
lower than 500. In [6] we added a second, similar tumour entity for a segmentation
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task to increase dataset size. Our clinical experts expressed doubts as this contradicts
clinical approaches, where entities are treated and evaluated differently. However, we
managed to increase overall performance of the model. We hypothesize, while research
questions have to be designed carefully in close collaboration with clinical experts, in
such cases the priority should rather be on addressing data science obstacles such as
limited data than following the clinical guidelines to the last detail, especially in basic
research and feasibility studies. This assessment should be done depending on the task
at hand.

The proposed model’s results do not yet show direct clinical relevance, but the
increased accuracy achieved through state-of-the-art methodology shows promise.
Enriching the imaging dataset with clinical metadata brings AI models closer to the
approach of human experts. These promising results, along with other applications
of AI models in medicine, could raise awareness among domain experts. Optimal AI
model performance relies, amongst others, significantly on domain experts supporting
the collection of complete, accurate, and comprehensive medical data, as data quality
and quantity are vital factors.

Several prior studies have explored analysis and diagnostic tasks of MSK tumours
using imaging data [5, 81] or have demonstrated multimodal approaches for integrating
imaging and tabular data in medical classification [85, 86]. For instance, von Schacky et
al. [81] developed a multitask DL model capable of simultaneously detecting, segment-
ing, and classifying bone lesions, comparing its performance against radiologists of
varying experience levels. The overall task of classifying bone lesions and the specific
entities examined in their study were similar to those in our research. While their
model achieved a classification accuracy of 43.2%, a MSK radiologist achieved 58.6%
accuracy in classifying bone lesions on an entity level. Although our performances in
[7, 4] were significantly higher, von Schacky et al. had to contend with a lower sample
ratio per class, fewer patients, and thus a smaller overall dataset. Their study primarily
focused on a multitasking model and comparison with human experts, while our em-
phasis centered on integrating clinical metadata in conjunction with imaging data using
state-of-the-art techniques. Nonetheless, their study underscores the intricate nature of
accurately identifying bone neoplasms for both DL models and clinical professionals.
In a similar study, Liu et al. [85] proposed a deep learning-machine learning model
for classifying bone tumours using patient clinical metadata and radiographs. They
collected 982 radiographs from 643 patients, incorporating clinical metadata such as age,
gender, and location. Their approach involved using an Inception V3 model to process
imaging data and fusing its output with clinical features to train an XGBoost model.
Their fusion model achieved a top macro area under the curve of 0.872, outperforming
five radiologists (0.819). The main difference between their study and ours is their
focus on predicting tumour malignancy, while we aimed to classify two specific tumour
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entities [5] or ten tumour entities [7, 4]. The classification task differs due to the number
of classes and sample sizes. Our fusion approach [7] as well as our unsupervised
clustering of similar cases [4] captures both image and metadata information, while Liu
et al. combined DL model probabilities with metadata before using a secondary model.
We hypothesize that our approaches better align with the clinical algorithm used
by radiologists and surgeons, as it either distinguishes very specific entities (usually
differential diagnoses) or simultaneously evaluates and links metadata and imaging
data for comprehensive and accurate bone tumour assessment, leading to improved
performance. Xu et al. [86] presented a notable study that employed multimodal
data and a fusion approach for accurate differential diagnosis of skin tumours. They
introduced a transformer model capable of leveraging multimodality imaging and non-
imaging data to enhance diagnostic performance. Their approach involved integrating
a cross-modality fusion module with a transformer-based multimodal classification
system, enabling the fusion of data from multiple sources. The dataset used in their
study encompassed dermoscopy, clinical imaging, and patient metadata. To evaluate
the effectiveness of their proposed model, Xu et al. conducted experiments on both
a public dataset (Derm7pt, 1,011 cases) and an in-house dataset (5,601 cases). The
results were highly promising, surpassing the state-of-the-art performance with a 2.8%
increase and achieving an impressive accuracy of 88.5%, respectively. In comparison
to our models, the approach described by Xu et al. demonstrated the capability to
incorporate multimodal imaging in addition to metadata. While "remixing" metadata
within disease classes yielded positive results in their specific domain, we conjecture
that in our case, metadata and image features are closely intertwined and should not
be interchangeably treated. Nevertheless, it is important to note that no existing model,
to the best of our knowledge, has proposed a multimodal approach that integrates both
imaging and patient-specific metadata for bone tumour classification.

The generalizability of our studies is constrained by several key factors. Firstly, the
dataset, while considerable in its number of radiographs, remains limited due to the
rarity and heterogeneity of MSK tumours, with an average of 179 samples from the
studies [7, 4] per class being relatively low considering the diversity of MSK lesions
and the demands of DL applications. Secondly, the bulk of the data was collected from
a single centre, leading to a model trained and tested on data with similar imaging
devices and patient demographics, which could affect its performance when applied to
data with different characteristics. Thirdly, there has been no external validation of the
model, a crucial step in assessing its generalizability before it can be considered suitable
for clinical use. Lastly, our models were developed and tested on a limited number
of tumour entities (two in [5], ten in [7, 4]), leaving its performance on rarer tumour
entities or other types of bone pathologies unassessed. While these limitations restrict
the generalizability of the findings for clinical application, there is a positive aspect
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to consider. The technical approaches employed in the studies, such as the fusion of
a Multi-Layer Perceptron (MLP) and a transformer to cope with imaging and clinical
data [7], or the combination of feature extraction, clustering, and majority vote [4], may
be adaptable to other scenarios. This suggests that, although the findings may not be
immediately generalizable for clinical use, the technical side of the models might be
more broadly applicable, and therefore, may have a positive impact on other areas of
medical imaging and diagnostics. Therefore, while further validation on larger, more
diverse, and external datasets is necessary to assess the models´ generalizability and
suitability for clinical use, the technical approaches developed in our studies might still
offer valuable contributions to the field.

3.2. Future Work

Future work in ML for the analysis and diagnosis of MSK tumours should aim to build
on the foundation established in previous research while addressing identified limi-
tations. This includes developing more sophisticated ML and DL models, integrating
different types of data, improving data acquisition and management, and exploring
innovative ways to validate models.

Developing more advanced models: Although significant progress has been made in
using ML for tumour classification and diagnosis, there is still potential to develop more
sophisticated models. In addition to classification tasks, models could be developed to
predict prognosis, response to treatment, and risk of recurrence, which is especially
interesting for clinicians. Techniques such as transfer learning and self-supervised
learning can help overcome the challenge of limited datasets. Future work could also
explore the potential of combining different AI techniques, such as integrating CNNs
for image analysis with RNNs for sequential data analysis to analyse e.g. treatment
progress.

Integration of multimodal data: Future studies could aim to integrate multimodal
data, including radiographs, clinical metadata, histopathology data, and patient-
reported outcomes. This would improve the predictive power and clinical relevance of
ML models. As genomics plays an increasingly important role in cancer diagnosis and
treatment, incorporating genomic data into these models could further enhance their
ability to provide personalized diagnostic and therapeutic insights.

NLP applications: NLP has enormous potential in healthcare, particularly in ex-
tracting valuable information from unstructured textual data such as clinical notes,
radiology and pathology reports, tumour board protocols (Figure 1.2) or surgery re-
ports. For our future research, it could be useful to use NLP to extract and structure
information such as whether an imaging study was performed pre- or post-operatively,
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pre-chemo or post-chemo, etc.. In the context of MSK tumours, NLP could be used
to automatically extract and structure relevant clinical information (e.g. tumour size,
direction of tumour growth, visual appearance of the tumour, etc.), which could then
be fed into ML models to support image-based diagnosis. This could significantly
improve the efficiency and accuracy of the diagnostic process.

Improved data collection and management: A major challenge in this area is the
scarcity and heterogeneity of data. Building comprehensive, structured, and systematic
data collection systems and networks should be a priority for future work. This
could include collaboration between different, national and international healthcare
institutions and the development of standards for data collection and sharing.

Model validation and clinical translation: There is a need for rigorous validation of
ML models to determine their performance, reliability, and clinical utility. Future work
should aim to test models in real-world clinical scenarios and in different populations
and settings. In addition, it is important to explore how these AI systems can be effec-
tively integrated into clinical workflows and assess their impact on patient outcomes
and healthcare costs. Close collaboration with clinical experts is considered absolutely
crucial.

By addressing these areas, future work could significantly advance the application
of ML in the diagnosis and treatment of MSK tumours, with the potential to improve
patient outcomes and healthcare efficiency.

3.3. Conclusion

In conclusion, this dissertation has made significant progress in applying ML techniques
to the analysis and diagnosis of MSK tumours. Our proposed models, which exploit
methods of transfer learning, unsupervised learning and self-supervised learning have
shown promising ability to accurately classify tumours and efficiently cope with small
and manage large image datasets. In addition, our pioneering efforts to integrate clinical
metadata with radiographic data have led to significant improvements in diagnostic
performance, indicating the potential of multimodal learning approaches.

A major focus of our future work will be the integration of textual data. We see
NLP as an important tool for analyzing unstructured data, such as radiology reports,
clinical notes or tumour board protocols, and transforming them into valuable input
for our ML models. By incorporating this rich source of data, we can create a more
holistic picture of the patient, leading to an even more robust multimodal approach to
diagnosis. Our models have contributed significantly to potentially shortening the time
to diagnosis for MSK tumours. This progress is invaluable as earlier and more accurate
diagnoses directly lead to a better prognosis for patients. Patients can receive timely
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and appropriate treatment, leading to better health outcomes and a higher quality of
life through AI.
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4.1. Applications of machine learning for imaging-driven
diagnosis of musculoskeletal malignancies - a scoping
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Authors:

Florian Hinterwimmer, Sarah Consalvo, Jan Neumann, Daniel Rueckert, Rüdiger von
Eisenhart-Rothe, Rainer Burgkart

Journal:
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Synopsis:

Malignant tumours of the MSK system are extremely rare and diverse. They account for
only 0.2% of all human malignancies, but are more common in children and adolescents.
Early diagnosis is difficult due to their nonspecific clinical presentation and rarity.
Timely referral to specialized sarcoma centers is critical for accurate diagnosis and
improved patient prognosis. However, delays in diagnosis are common, due in part
to the limited experience of general practitioners with such cases. The morphologic
heterogeneity of MSK tumours complicates imaging and biopsy procedures. Biopsies
can be difficult in certain types of lesions, leading to low success rates and potential
complications. Adequate diagnostic biopsy is essential for proper treatment of MSK
tumours and is considered the first step in therapy. ML and DL techniques have shown
promise in various areas of medical research, but their application in orthopaedic
oncology is still limited. The lack of structured and systematic data collection systems
and the rarity and heterogeneity of sarcomas make it difficult to effectively apply
AI methods. While some methods have been developed to address limited datasets,
building appropriate structures and networks is critical. The aim of this review was to
assess the extent to which ML can aid image interpretation of malignant MSK tumours,
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particularly in diagnostic tasks. The review focused on identifying relevant studies that
used ML or DL techniques with image data from primary malignant MSK tumours.

A scoping review of the literature was performed based on specific eligibility criteria.
The search yielded 480 references, and after screening and assessment, 38 articles were
included in the final analysis. These articles were published between 1994 and 2021
and covered a range of ML and DL applications in MSK malignancy imaging.

The majority of studies (71.1%) were diagnosis-oriented and focused on classification
tasks. The median accuracy and area under the curve area under the curve (AUC) for
these studies were 0.88 and 0.92, respectively, but there was no significant correlation
between the metric values and the number of samples per class.

The review found that ML applications have not yet had a significant impact on the
diagnosis of MSK malignancies. The limited availability of quality data, especially in
structured and systematic formats, remains a major challenge. The rarity of sarcomas
and the limited amount of research in orthopaedic oncology contribute to the lack of
data. Imbalance of classes and limited dataset sizes may also affect the performance of
ML models. In addition, many studies do not reflect real-world clinical scenarios be-
cause they focus on specific tumour entities rather than detection of potential sarcomas.
The use of ML in imaging-based diagnosis of MSK malignancies is still at an early stage.
The scarcity and heterogeneity of data and other challenges hinder the application of
ML techniques in this field. Further efforts are needed to establish comprehensive data
collection structures and networks to advance the application of ML in orthopaedic
oncology.

Contribution of thesis author:

Florian Hinterwimmer was the principal investigator in this study and contributed at
least 50%.
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Abstract
Musculoskeletal malignancies are a rare type of cancer. Consequently, sufficient imaging data for machine learning (ML)
applications is difficult to obtain. The main purpose of this review was to investigate whether ML is already having an impact
on imaging-driven diagnosis of musculoskeletal malignancies and what the respective reasons for this might be. A scoping
review was conducted by a radiologist, an orthopaedic surgeon and a data scientist to identify suitable articles based on the
PRISMA statement. Studies meeting the following criteria were included: primary malignant musculoskeletal tumours, machine/
deep learning application, imaging data or data retrieved from images, human/preclinical, English language and original research.
Initially, 480 articles were found and 38 met the eligibility criteria. Several continuous and discrete parameters related to
publication, patient distribution, tumour specificities, ML methods, data and metrics were extracted from the final articles. For
the synthesis, diagnosis-oriented studies were further examined by retrieving the number of patients and labels and metric scores.
No significant correlations between metrics and mean number of samples were found. Several studies presented that ML could
support imaging-driven diagnosis of musculoskeletal malignancies in distinct cases. However, data quality and quantity must be
increased to achieve clinically relevant results. Compared to the experience of an expert radiologist, the studies used small
datasets and mostly included only one type of data. Key to critical advancement of ML models for rare diseases such as
musculoskeletal malignancies is a systematic, structured data collection and the establishment of (inter)national networks to
obtain substantial datasets in the future.
Key Points
• Machine learning does not yet significantly impact imaging-driven diagnosis for musculoskeletal malignancies compared to
other disciplines such as lung, breast or CNS cancer.

• Research in the area of musculoskeletal tumour imaging and machine learning is still very limited.
• Machine learning in musculoskeletal tumour imaging is impeded by insufficient availability of data and rarity of the disease.

Keywords Primary musculoskeletal malignancies . Imaging-driven diagnosis . Diagnostic imaging . Machine learning . Deep
learning
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MSK Musculoskeletal
SD Standard deviation
SVM Support vector machine

Introduction

Malignant tumours of the musculoskeletal system represent a
group of extraordinarily rare and heterogeneous tumour enti-
ties. For example, malignant bone tumours account for only
about 0.2% of all human malignancies, but they occur more
frequently in children (sixth most common cancer) and ado-
lescents (third most common cancer) [1–3]. In addition to the
pronounced rarity, the mostly unspecific history or clinical
presentation also complicates early diagnosis and often leads
to significant delays [3]. However, undelayed diagnosis is of
paramount importance in musculoskeletal tumours, as the di-
agnostic window also has a direct impact on resectability and
patient survival prognosis [2]. Thus, prompt referral to a spe-
cialised sarcoma centre is crucial when a malignant musculo-
skeletal tumour is suspected. However, delays of more than 12
months sometimes occur in clinical care reality, which can be
explained not least by the fact that a general medical practi-
tioner encounters only about three malignant musculoskeletal
tumours in his/her professional life [4].

Especially the morphologic heterogeneity within musculo-
skeletal tumours complicates imaging entity or malignancy
assessment and even limits the informative value of a biopsy.
In sclerotic, blastic or cartilaginous lesions, as well as in tu-
mours with a large necrotic area, retrieving adequate material
from a biopsy is extremely challenging and requires a high
degree of experience [5]. The rate of biopsy-related complica-
tions that adversely affect biopsy outcome or prognosis is
reported to be 15–20%, with up to 12 times higher rates in
non-specialist institutions [6]. Therefore, the importance of
adequate diagnostic biopsy cannot be overstated in musculo-
skeletal tumours, which is why biopsy is considered the “first
step of therapy” by many experts.

Image interpretation as a part of precision medicine plays
an increasingly important role in the future of orthopaedic
oncology, and novel, more comprehensive and specific ana-
lysis tools are urgently needed, especially for outpatient
clinics with limited experience and resources for detection
and interpretation of rare bone and soft tissue malignancies.
Machine learning (ML) and the subset deep learning (DL)
represent distinct applications of artificial intelligence (AI),
which evolved from pattern recognition and learning theory.
ML is just in its early stages in orthopaedics, and standardised
approaches are not yet established. While complex data ana-
lysis of cancerous tissue through AI and imaging data is al-
ready widely applied for research purposes in some cancers
(e.g. lung, breast or CNS cancer) [7], the application of these
methods in orthopaedic oncology research is still very limited

[8]. The fact that globally no far-reaching structures for sys-
tematic and structured data acquisition have yet been estab-
lished (to the best of our knowledge) and that sarcomas are
very rare and heterogeneous makes modern AI applications,
for which a sufficient and qualitative amount of data is crucial,
considerably more difficult. Although various methods for
dealing with limited datasets have been developed (data aug-
mentation [9], transfer learning [10], data simulation [11]),
there is no way around building up appropriate structures
and networks.

The main purpose of this reviewwas to investigate whether
ML can already substantially support image interpretation of
musculoskeletal (MSK) malignancies with a focus on diag-
nostic tasks and what the respective reasons for this might be.

Materials and methods

Eligibility criteria

A scoping review of the literature was performed to identify
ML applications in imaging of musculoskeletal malignancies
based on the PRISMA statement [12]. Studies meeting the
following criteria were included in this review:

& Primary malignant musculoskeletal tumours
& Application of machine learning or deep learning
& Imaging data or data retrieved from images
& Human or preclinical
& Written in English
& Original research articles

The following focus led to the exclusion of articles for this
review:

& Metastases
& Histological data
& Secondary bone/soft tissue tumours
& Lymphoma
& Myeloma
& Benign, intermediate
& Review articles

Articles that contained benign or intermediate lesions but
focused primarily on e.g. the detection of malignant lesions
were included. In contrast, articles that did not contain data on
malignant lesions were excluded. The focus was on malignant
lesions because of their clinical relevance and difficulty in
accurate assessment.

In December 2021, a thorough literature search through
MEDLINE (PubMed), CENTRAL (Cochrane Library) and
LISTA (EBSCO) was conducted. Grey literature was not
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considered. For the systematic search, the following search
terms were used without any filters or limits:

((Artificial Intelligence) OR (Deep Learning) OR
(Machine Learning)) AND (malignant) AND (tumour
OR neoplasmOR cancer) AND (musculoskeletal OR sar-
coma OR bone OR (soft tissue)) AND (imaging OR ra-
diographic OR (computer-assisted) OR (image
interpretation))

Study titles were reviewed and evaluated by an MSK radi-
ologist, an orthopaedic surgeon and a data scientist at our
institution using the above selection criteria. All discrepancies
were resolved by consensus. The results were summarised,
and duplicates were discarded. All articles were initially
screened for relevance by title and abstract to assess the inclu-
sion criteria. The three authors independently performed a
careful reading of the studies and extracted the data. The fol-
lowing information was extracted from each article: title, au-
thor, year of publication, tumour entity group, number of pa-
tients, malignancy, imaging modality, algorithm, model, task,
applied metric, outcome label and if or if not focused on di-
agnosis. For the synthesis, studies with diagnosis-oriented
tasks were further examined by retrieving the scores of the
most commonmetrics and the number of class labels to assess

the number of samples per class and illustrate a potential re-
lationship between these parameters through linear analysis
and a correlation coefficient. The level of evidence is level V.

Statistical analysis

Continuous data is reported as mean with standard deviation
(SD) or median with interquartile range (IQR), and the respec-
tive interval. Discrete data was reported as incidence and per-
centage share per entity. Due to the heterogeneous nature and
the limited amount of data, a non-parametric test was chosen to
calculate a correlation coefficient for metric values and number
of samples per class label for the diagnosis-oriented studies.

Results

Selection and methodological characteristics

The first search resulted in 480 references in the databases
mentioned above. One duplicate was discarded and 38 articles
subsequently met the eligibility criteria (Fig. 1) [8, 10, 13–51].
Table 1 displays the final selection of articles with authors and
continuous and discrete parameters. Final articles were pub-
lished between 1994 and 2021. All 38 articles addressed an

Number of articles found on 

MEDLINE (PubMed) 

478

Number of articles after applying

inclusion criteria on titles:

72

Number of final articles:

38

Excluded after screening titles:

407

Excluded after screening abstracts:

34

Removed duplicates:

1
Number of articles after searching

through databases:

479

Number of articles found on 

CENTRAL (Cochrane):

1

Number of articles found on 

LISTA (EBSCO):

1

Number of articles after applying

inclusion criteria on abstracts:

38
Excluded after screening full-texts:

0

Fig. 1 Selection process
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application of ML or DL with imaging data of MSK malig-
nancies. Three review articles were found and excluded from
statistical analysis [8, 14, 25]. 75.7% (28) of the studies were
conducted retrospectively, 8.1% (3) were conducted prospec-
tively and 16.2% (6) did not clearly state the study design.
60.5% (23) of the studies focused on bone, while 39.5%
(15) focused on soft tissue tumours. 50.3% of the cases in-
cluded were from patients with benign tumours, 3.0% were
from patients with intermediate tumours, 37.4% were from
patients with malignant tumours, 5.4% were from patients
with metastases, 3.6% were from patients without tumours
(healthy) and 0.5% did not provide any information. Further
details are reported in Tables 2 and 3.

Narrative review of best studies

Several studies have presented novel and interesting
implementations. However, we would like to highlight two
studies that, in our opinion, provide very intriguing frame-
works. Liu et al [35] demonstrated a ML-DL fusion model
that integrates not only imaging but also clinical data to assess
the malignancy of tumours. This approach is similar to the
diagnostic procedure a radiologist would use to diagnose
MSK lesions. A second noticeable study was published by
von Schacky et al [42]: they presented a multi-task DL model
that shows the potential of state-of-the-art DL by simulta-
neously detecting, segmenting and classifying image data.
To classify the DL results in the context of “man vs. machine,”
they were also compared with the results of radiologists of
different experience levels demonstrating strengths and limi-
tations of DL with limited data.

In-depth investigation of diagnosis-oriented tasks

Twenty-seven (71.1%) of the studies were diagnosis-oriented
and mainly aimed at classification tasks [10, 13, 15, 16, 18,
19, 22, 23, 26, 28, 29, 32–37, 39, 40, 43–49, 51]. A median

accuracy (Acc) of 0.88 with an interval of [0.71; 0.99] was
found. For the area under the curve (AUC), the median result-
ed in 0.92 with a corresponding interval of [0.64; 0.98]. For
the number of labels, a median of 2 with an interval of [2;3]
was found. Further details are shown in Table 4.

Figure 2 demonstrates the findings of a linear analysis of
the metric values Acc and AUC on the vertical axis and the
quotient of total number of cases and number of labels per
class (= mean number of samples per class). Further, a corre-
lation coefficient for each metric and the mean number of
samples per class was calculated. The number of studies ex-
amined is limited, and the data found show considerable het-
erogeneity. Subsequently, a Spearman’s rank-order correla-
tion coefficient, which is a measure for linear correlation be-
tween two datasets and does not assume that both datasets are
normally distributed, was applied.We chose |ρ| > 0.5 to infer a
significant direct or indirect correlation between two parame-
ters for this study. The correlation coefficient for Acc and
AUC against the mean number of samples per class resulted
in ρ = − 0.204 / ρ = − 0.153, respectively. Therefore, both
results represent no significant correlation coefficient.

Discussion

The most important finding of the presented review was that
imaging-driven diagnosis for MSK malignancies does not yet
experience significant impact byML applications and this has
several reasons associated with data.

The main issue might be the availability of data. In most
research institutes, a systematic and structured collection of
quality data does not yet seem to take place or has only re-
cently been introduced. This can be derived from the fact that
datasets in general are comparably small and dataset size is not
increasing yet. Consequently, even if according patient data is
existing, this does not necessarily imply data is present in a
format, validity, accessibility, consistency and completeness

Table 2 Continuous parameters with interval, median, mean IQR, and standard deviation

Continuous parameters

Parameter Interval Median IQR Mean Std

Year of publication [1994; 2021] 2020 3 2018 6

Number of patients/cases [1; 1565] 132.0 180.5 292.0 392.0

Healthy [0; 381] 0.0 0.0 10.6 62.6

Benign [0; 1061] 38.0 154.2 154.8 248.3

Intermediate [0; 169] 0.0 4.6 9.3 32.0

Malignant [12; 478] 69.5 79.5 115.1 113.4

Metastases [0; 317] 0.0 4.3 17.1 60.4

IQR interquartile range, std standard deviation
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feasible for data science. In addition, sarcomas are a very rare
entity of cancer, which does not allow for fast gathering of
sufficient prospective data. Terenuma et al [41] developed a
technique to obtain multiple images from a single patient,
which is from a data science perspective very intriguing, but
does not provide enough data for a clinical application and is
not generally transferable to any other study. Several mathe-
matical techniques to cope with limited data have emerged
(e.g. transfer learning [10], data augmentation [9]).
However, these techniques can at this point only support an
AI task, but not solve the issue of limited data. For rare

Table 3 Discrete parameters with incidence and percentage share per
entity

Discrete parameters

Parameter Entity Σ %

Study design

Retrospective 28 75.7%

Prospective 3 8.1%

Unknown 6 16.2%

Task

Classification 33 80.5%

Segmentation 6 14.6%

Object detection 2 4.9%

Model

AlexNet 1 1.9%

LogitBoost 2 3.8%

Support vector machine 14 26.4%

U-Net 1 1.9%

Efficient-Net 2 3.8%

Logistic regression 2 3.8%

Adaboost 1 1.9%

Random forests 12 22.6%

VGG19 1 1.9%

k-nearest neighbour 1 1.9%

Neural network 4 7.5%

LASSO 1 1.9%

VGG16 2 3.8%

Decision tree 2 3.8%

XGBoost 1 1.9%

Inception v3 2 3.8%

SegNet 1 1.9%

Mask RCNN 1 1.9%

Generalised linear model 1 1.9%

ResNet-50 1 1.9%

Diagnosis oriented

Yes 27 71.1%

No 11 28.9%

Outcome label

Segmented tumour 6 14.6%

Tumour entities 7 17.1%

Tumour occurrence 1 2.4%

Histopathological grading 5 12.2%

Radiotherapy response 2 4.9%

Chemotherapy response 3 7.3%

Malignancy 15 36.6%

Staging 1 2.4%

Prognosis 1 2.4%

Tumour group

Bone tumour 23 60.5%

Soft tissue tumour 15 39.5%

Table 3 (continued)

Discrete parameters

Parameter Entity Σ %

Imaging modality

MRI 22 55.0%

CT 7 17.5%

X-ray 10 25.0%

US 1 2.5%

Radiomic data

Yes 16 42.1%

No 22 57.9%

Algorithm

Supervised 37 97.4%

Unsupervised 1 2.6%

Reinforcement 0 0.0%

Applied metric

Accuracy 29 25.4%

Sensitivity 25 21.9%

Specificity 23 20.2%

AUC 28 24.6%

Jaccard index 1 0.9%

Intersection over union 2 1.8%

Dice score 6 5.3%

LASSO Least Absolute Shrinkage and Selection Operator

Table 4 Continuous parameters of diagnosis-oriented studies with
interval, median, mean and standard deviation

Continuous parameters of diagnosis-oriented parameters

Parameter Interval Median IQR Mean std

ACC [0.71; 0.99] 0.88 0.07 0.87 0.07

AUC [0.64; 0.98] 0.92 0.14 0.88 0.09

Number of labels [2; 3] 2 0 2.19 0.39

IQR interquartile range, std standard deviation
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diseases, building networks and databases on a national or
even international basis might be a future solution. Another
reason might be the considerably limited amount of research
in the field of orthopaedic oncology, which can again partly be
explained by insufficient data. With the respectively adapted
search term, more than 1300 articles can be found for lung
malignancies and even more than 2200 articles for breast ma-
lignancies, while only 480 articles were detected for MSK
malignancies (initial search, each in December 2021). ML in
general is still in its infancy, but more so in MSK and ortho-
paedic oncology.

A further finding was presented by synthesising the rela-
tionship of number of cases and number of labels per class
against the metric values. In the research field of AI, it is
common knowledge that the amount of data has profound
impact on the model performance [10, 11, 52]. Nonetheless,
Fig. 2 tells a different story. The median number of samples
per class resulted in 75 and 59.3% of the diagnosis-oriented
studies had less than 100 samples per class. Further, the mean
metric scores of studies with fewer than 100 samples per class
(Acc 0.86, AUC 0.89) were slightly higher than those of stud-
ies with more than 100 samples per class (Acc 0.85, AUC
0.86), as indicated by the linear regression lines in Fig. 2.
This would suggest that less data leads to higher results. One
explanation for these unexpected results could be the class
imbalance: several studies developed models to classify tu-
mour malignancy, for example [15, 18, 19, 22, 26, 28, 32,
33, 35, 36, 39, 40, 44, 45]. Benign MSK tumours occur more
often than malignant MSK tumours, which results in a class
imbalance in the dataset. Such an imbalance can lead to spu-
riously highmetric values, especially for AUC. A detailed and
interdisciplinary interpretation of results with regard to

composition of data is crucial. Another issue associated with
limited datasets and class imbalance is that specific classes of
data might be sparse. Therefore, overfitting may occur, result-
ing in suboptimal results.

Yet another indication is that problem statements of most
studies do not reflect real clinical scenarios. Most studies aim
at distinguishing two to three specific tumour entities [10, 16,
34, 43, 46–48] or assessing tumour malignancy [15, 18, 19,
22, 26, 28, 32, 33, 35, 36, 39, 40, 42, 44, 45]. If one fed a third
entity to a two-entity classifier, the model would try to fit the
third entity into one of the first two entity classes. While con-
fining a tumour entity from another is an imperative step in
tumour assessment, nonetheless, most sarcoma diagnoses are
incidental findings, and in daily practice, MSK radiologists
and orthopaedic surgeons are first confronted with detecting
a potential sarcoma at all [1, 4, 53].Whereas von Schacky et al
[42] aimed at differentiating various tumour entities, thus
modelling a more realistic clinical scenario, the results were
only moderate. More general models are needed to comply
with clinical needs and difficulties. However, we hypothesise
that this is again very difficult to achieve due to the very
limited amount of data available and probably also closely
related to the distribution of the data. Naturally, the quality
and problems of AI models cannot be assessed by dataset size
and data distribution alone, but data undoubtedly have major
impact on the overall performance and clinical relevance.

No biopsy-focused studies

The most applied outcome labels among the 38 investigated
original research articles were tumour malignancy (15,
36.6%) [15, 18, 19, 22, 26, 28, 32, 33, 35, 36, 39, 40, 42,

Fig. 2 Distribution of final metric
scores against the mean number
of samples per class label
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44, 45], tumour entities (7, 17.1%) [10, 16, 34, 43, 46–48] and
segmented tumour (6, 14.6%) [16, 27, 31, 41, 46, 50]. A
distinct finding of this review is that although a biopsy is a
crucial step in the diagnostic process of MSK malignancies,
there is no study focused on radiological images and biopsies.
Retrieving relevant biopsy material—for example, via CT-
guided needle biopsy—is a highly complex task and requires
significant experience. From this, it could be derived that ML
research in the field of MSK malignancies is currently not
mainly oriented on medical needs, but models and research
questions are built around available data. This underlines that
ML is still in its very infancy in MSK tumour research.

MRI and radiomics

MRI is the most popular kind of imaging data for ML analysis
at this point (55.0%, 22). This might be explained by the fact
that MR imaging plays a fundamental role in the assessment
of sarcomas due to superior soft tissue contrast and the desire
to reduce unnecessary radiation dose. But also, from a data
science perspective, this is comprehensible: with one patient,
multiple 2D data samples (or one 3D data sample) are pro-
duced. Additionally, various image planes and weightings are
possible. This suggests that less patients are necessary to ac-
quire more data.

Likewise, radiomics appears to be on demand. 42.1% of
articles (16) utilised radiomic data [15, 17, 19, 21, 23, 27, 28,
33, 34, 37, 43, 45–48, 51], while only 17.5% (7) integrated
CT, 25.0% (10) X-ray and 2.5% (1) US. With radiomics, a
large number of quantitative features can be extracted from
imaging data. These are combined with other patient data and
can be mined with modern techniques of e.g. bioinformatics
and data science. In consequence, the popularity of radiomics
might be associated with the capability to extract additional
information from images and therefore tackle the issue of
small datasets.

Limitations

This review article has several limitations. The major limita-
tion is the early stage of the examined studies. Because ML in
orthopaedic oncology is still in its infancy, most studies are
also at an early stage, making it difficult to examine the impact
of the studies presented and assess their quality. Most studies
were not published until 2021. Further, the mean number of
cases per study is 292. While a limited number of cases is
related to the type of entities studied [53], the number is very
small in the context of ML applications. These facts underline
the early stage of the studies. Another limitation is the overall
heterogeneity of the examined studies. We restricted the tu-
mour entities and the type of data by the eligibility criteria.
However, we did not impose any restrictions on ML algo-
rithms, models, or tasks. Thus, the studies presented three

distinct algorithm types, 20 different models and nine groups
of outcome labels for various tasks.

Conclusion

In conclusion, for a rare disease, there are very limited amounts
of data and no established large-scale networks betweenmultiple
national and international facilities yet. The impact of imaging-
driven ML research in other disciplines is already present [52].
Also, several studies presented in this review demonstrated that
ML can selectively support imaging-driven diagnosis for MSK
malignancies. However, until statistically robust results can be
achieved and clinically relevant models to cope with heteroge-
neous cases an orthopaedic surgeon or MSK radiologist encoun-
ters on a regular basis can be developed, data quality and quantity
have to be improved. An expert radiologist from a specialised
centre has seen thousands of images in his/her professional life
and incorporates meta data as well as other factors into his/her
decision-making process. In contrast, the presented studies only
workedwith 1 [41] up to 1576 [16] casesmostly focusing on one
single kind of data and imaging modality.

The key to bring ML to a level where it can substantially
impact clinical image interpretation in the diagnosis of MSK
malignancies is data: establishing national and international
networks, implementing a systematic and structural data ac-
quisition and finally integrating multimodal data comparable
to expert radiologists.
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Synopsis:

In our study, we investigated the use of transfer learning with MSK radiographs to
support classification tasks, specifically to distinguish Ewing’s sarcoma from acute
osteomyelitis in pediatric patients. We recognized the challenge of limited data in rare
diseases and investigated whether transfer learning could solve this problem. Previous
studies have demonstrated the effectiveness of transfer learning in various applications,
including medical image interpretation. However, to our knowledge, no model has
been pretrained specifically for MSK features in radiographs.

Our dataset consisted of 42,608 pseudonymized radiographs collected over a 25-year
period from a MSK tumour center. The images included different MSK regions and
had varying data quality, resolution, and sources. For analysis, we used a separate
dataset of 63 images (22 acute osteomyelitis, 41 Ewing sarcoma) from pediatric patients.
Our algorithm followed a two-step deep learning framework. In the first step, we
employed a self-supervised model called DeepCluster to group the unstructured data
into multiple clusters. DeepCluster used k-means to cluster the feature embeddings
and used the resulting mappings as labels to update the network weights. The optimal
number of clusters was determined through several test runs. In the second step, the
cluster assignments served as "auxiliary" class labels for pretraining a ResNet50 model.
We split the data for pretraining, validation, and hold-out testing. For the downstream
classification task, we evaluated the pretrained model on a limited sample dataset and
implemented cross-validation for statistical robustness.

Our results showed that the self-supervised clustering and subsequent transfer
learning approach significantly improved the downstream classification accuracy. We
achieved 89.6% accuracy in validation and 70.8% in testing, outperforming the accu-
racy of an untrained network (81.5%/54.2%) and an ImageNet pre-trained network
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(81.5%/54.2%). The improvement was substantial, with a difference of 4.4 and 17.3
percentage points, respectively.

Our study has demonstrated the potential of using a large dataset of unstructured
radiographs for transfer learning. In the field of orthopaedic oncology, where data is
often limited, this approach can overcome the challenge of insufficient data for deep
learning applications. While collecting more high-quality data remains critical for
improving DL in medicine, techniques such as data augmentation and image synthesis
can also support image interpretation tasks. We also found that pretraining with a larger
dataset reduced classification overfitting problems. However, we acknowledge that our
dataset is still relatively small compared to commonly used pretraining datasets such
as ImageNet, and further validation is needed to establish general validity. Although
we have achieved a significant improvement in accuracy results, our results are not
yet clinically relevant. Systematic and structured data collection is essential for further
development of deep learning applications. In conclusion, our study demonstrated the
effectiveness of transfer learning on MSK radiographs, particularly in distinguishing
between Ewing’s sarcoma and acute osteomyelitis. Transfer learning proved to be a
powerful technique even with limited datasets. However, it is not an overall solution,
and structured data acquisition remains critical to achieving clinically relevant results
in deep learning applications.
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Abstract: Ewing sarcomas are malignant neoplasm entities
typically found in children and adolescents. Early detection is
crucial for therapy and prognosis. Due to the low incidence
the general experience as well as according data is limited.
Novel support tools for diagnosis, such as deep learning mod-
els for image interpretation, are required. While acquiring suf-
ficient data is a common obstacle in medicine, several tech-
niques to tackle small data sets have emerged. The general
necessity of large data sets in addition to a rare disease lead
to the question whether transfer learning can solve the issue
of limited data and subsequently support tasks such as dis-
tinguishing Ewing sarcoma from its main differential diagno-
sis (acute osteomyelitis) in paediatric radiographs. 42,608 un-
structured radiographs from our musculoskeletal tumour cen-
tre were retrieved from the PACS. The images were clus-
tered with a DeepCluster, a self-supervised algorithm. 1000
clusters were used for the upstream task (pretraining). Fol-
lowing, the pretrained classification network was applied for
the downstream task of differentiating Ewing sarcoma and
acute osteomyelitis. An untrained network achieved an accu-
racy of 81.5%/54.2%, while an ImageNet-pretrained network
resulted in 89.6%/70.8% for validation and testing, respec-
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tively. Our transfer learning approach surpassed the best result
by 4.4%/17.3% percentage points. Transfer learning demon-
strated to be a powerful technique to support image interpreta-
tion tasks. Even for small data sets, the impact can be signifi-
cant. However, transfer learning is not a final solution to small
data sets. To achieve clinically relevant results, a structured
and systematic data acquisition is of paramount importance.

Keywords: transfer learning, self-supervised learning, radio-
graphs, sarcoma

1 Introduction

Ewing sarcomas are highly malignant tumour entities that oc-
cur predominantly in children and adolescents. Early detec-
tion and differentiation from other entities, especially acute
osteomyelitis, are critical for therapy and prognosis and thus
patient survival [17]. Because of the low incidence, experi-
ence especially in outpatient clinics is usually limited, so the
chance of early detection is low [18]. Hence, new sophisticated
diagnostic support tools are required. Deep learning (DL) has
achieved great success in image interpretation in many other
disciplines [11]. However, a common obstacle to the applica-
tion of DL in medicine is the availability of a sufficient amount
of data. Several techniques to cope with small data sets, such
as data augmentation [15, 16], data synthesis, or transfer learn-
ing, have emerged. The general need of DL models for suffi-
cient (training) data poses a challenge in the context of rare
diseases. The question arises whether transfer learning can
solve the problem of limited data and support specific tasks
such as distinguishing Ewing sarcoma from acute osteomyeli-
tis in pediatric radiographs. The presented study investigated
if and how 42,608 unstructured radiographs can be integrated
in a transfer learning approach to support minimal data sets
in a classification task. In summary, we make the following
contributions:
1. We demonstrate a novel transfer learning approach specif-

ically developed with musculoskeletal radiographs by
subsequent training of an already ImageNet-pretrained
model.

2. We leverage a state-of-the-art self-supervised model to
obtain weak auxiliary labels from 42,608 unstructured ra-
diographs.
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3. We underline the importance of sufficient data by showing
that transfer learning is a powerful technique, but not a
sole solution to limited data sets.

1.1 Related work

Transfer learning was first proposed in 1976 by Bozinovski
and Fulgosi [4]. Since then, it has found various applications
and shown great impact [2–4, 6–8]. The most popular transfer
learning models are pretrained on ImageNet [8]. While these
models are trained on every day images such as landscape-
, cat- and dog-images, the pretraining still shows significant
improvement also in medical image interpretation. Recently,
several transfer learning approaches in the context of Covid19
detection and classification tasks have been published [2, 7].
These studies, due to the nature of the disease, focus on thorax
images. However, to our knowledge, no model generally pre-
trained for musculoskeletal features in radiographs has been
demonstrated.

2 Materials and methods

2.1 Data sets

The data set consisted of 42,608 unstructured, pseudonymised
radiographs from a musculoskeletal tumour centre. All images
belonged to patients with sarcoma associated ICD codes. Sar-
comas typically occur in extremities and joints. Additionally,
the data set contained images, which were initiated to check
for metastases or monitor progress after surgery or therapy.
Therefore, it is to be expected that any possible musculoskele-
tal region is included. The DICOM images were retrieved from
the local PACS (Picture Archiving and Communication Sys-
tem) at Klinikum rechts der Isar (Munich). The imaging data
was gathered over the past 25 years and contained corrupted
and false data as well as heterogeneous data quality, reso-
lution and external images. The DICOM header information
was fully blinded, so that no meta-information for statistical
analysis remained. For assessment of the transfer learning ap-
proach, a second data set consisting of 63 images (22 acute os-
teomyelitis, 41 Ewing sarcoma) from patients under 18 years
of age was used. No further restrictions regarding age, muscu-
loskeletal features or sex were made.

2.2 Model training

Model training and inference was conducted on a DGX
Station A100 with four 80GB graphical processing units

(Nvidia Corporation, Santa Clara, CA), 64 2.25 GHz cores and
512 GB DDR4 system memory running on a Linux/Ubuntu
20.04 distribution (Canonical, London, UK). Preprocess-
ing and model implementation were performed in Python
3.9.6 (https://www.python.org/) using PyTorch 1.9.0 and cuda
toolkit 11.1 (https://pytorch.org/). The pretrained model of this
study will be provided upon publication.

2.3 Algorithm

We developed a two step deep learning framework to pretrain
a classification network on an upstream task and subsequently
evaluate it on a downstream task with different data from
the same domain (musculoskeletal radiographs). In step one,
the unstructered data set was clustered by a self-supervised
model [5] into several clusters: DeepCluster presents a self-
supervising approach to learning image representations. It it-
eratively groups features using k-means and uses the subse-
quent assignments as labels to update the weights of a net-
work. The optimal number of clusters was determined through
test runs measured by highest pretraining classification scores.
In step two, the cluster assignments were used as "auxiliary"
class labels for a classification task, whereby a ResNet50 [13]
was pretrained. The data split for pretraining was 80%, 10%,
10% for training, validation and hold-out testing. Next, the
pretrained model was applied to a two-entity classification
task with limited samples for both entities with a data split
of 80%, 10%, 10% for assessment of the transfer learning ap-
proach. To provide statistical robust results and avoid cross-
contamination, a cross-validation was implemented. Accuracy
values were calculated to evaluate the results. Figure 1 dis-
plays the workflow including the five steps from unstructured
data to the final pretrained model.

2.4 Hyperparameters and runtime

For the upstream task a batch size of 512, a learning rate
of 0.05 and 500 epochs were chosen. The runtime was ∼7.5
hours. For the downstream task a batch size of 4, a learning
rate of 0.0001 and 100 epochs were chosen. The runtime for
the all cross-validation folds was ∼2 hours. The inference step
for all folds took ∼7 minutes.
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Fig. 1: Illustration of workflow with respective data samples.

Tab. 1: Classification results of Ewing sarcoma vs. acute os-
teomyelitis

Model Val Acc Test Acc

ResNet50 81.5 % 54.2 %
ResNet50 pretrained (ImageNet) 89.6 % 70.8 %
ResNet50 pretrained (our approach) 94.0 % 88.1 %

3 Results

3.1 Upstream task: from clustering to
pretraining

The highest pretraining classification scores were achieved
with 1000 clusters. The clustering of 42,608 images into 1000
clusters resulted in a normalised mutual information of 0.930.
The smallest cluster was comprised of 2, the largest of 135
image samples with a first quartil of 20, a median of 46 and a
third quartil of 55. The pretraining of the ResNet50 achieved
an accuracy of 86.7%/80.0% for validation and testing respec-
tively.

3.2 Downstream task: final classification

An untrained network achieved an accuracy of 81.5%/54.2%,
while an ImageNet-pretrained network resulted in
89.6%/70.8% for validation and testing in the downstream
task, respectively. Our transfer learning approach surpassed
the best result by 4.4 and 17.3 percentage points (table 1).

4 Discussion

The most important finding of this study was that 42,608 un-
structured radiographs can be utilised for transfer learning by
leveraging a modern self-supervised model, thus significantly
improving downstream classification tasks.
The obstacle of insufficient data for state-of-the-art deep learn-
ing applications is very common in medicine and especially
in a field, such as orthopaedic oncology, where incidence is
low and consequently data is limited. While collecting more
quality data is probably the most effective way to improve
deep learning applications in medicine, new techniques also
need to be (further) developed. For example data augmentation
[15, 16] or image synthesis [14] have shown to support various
image interpretation tasks. We developed a transfer learning
approach specified for radiographs with bone and soft tissue
tumours. Most certainly though, our pretrained network will
also improve other tasks working with radiographs of human
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patients.
Another noticeable finding is that the not-pretrained network
seemed to be overfitting and both pretrained networks seemed
to mitigate this effect, thus, underlining the positive impact of
pretraining with bigger data sets.
The major limitation of this study is that in contrast to the com-
mon data sets applied for pretraining (for example ImageNet
[8], currently more than 14 million images), our data set is
still comparably small. Therefore, the overall validity is still
to be proven. However, for the particular task of distinguish-
ing radiographs of Ewing and acute osteomyelitis patients, we
achieved noticeable improvement. Although we were able to
increase accuracy scores significantly (1), we did not reach
clinically relevant results, yet. In the future, systematic and
structured data collection will be of utmost importance for the
improvement of DL applications.

4.1 Conclusion

Transfer learning has proven to be a powerful technique for
supporting image interpretation tasks. Even for very limited
data sets, the impact can be significant. However, transfer
learning is not an overall solution for small data sets. To
achieve clinically relevant results, structured and systematic
data collection is of paramount importance.

Author Statement
Research funding: The author state no funding involved. Con-
flict of interest: Authors state no conflict of interest. Informed
consent: Informed consent has been obtained from all indi-
viduals included in this study. Ethical approval: The research
related to human use complies with all the relevant national
regulations, institutional policies and was performed in accor-
dance with the tenets of the Helsinki Declaration, and has been
approved by the authors’ institutional review board or equiva-
lent committee.

References

[1] Aiello, M., C. Cavaliere, A. D’Albore and M. Salvatore (2019).
"The challenges of diagnostic imaging in the era of big data."
Journal of clinical medicine 8(3): 316.

[2] Al-Rakhami, M. S., M. M. Islam, M. Z. Islam, A. Asraf, A. H.
Sodhro and W. Ding (2021). "Diagnosis of COVID-19 from
X-rays using combined CNN-RNN architecture with transfer
learning." MedRxiv: 2020.2008. 2024.20181339.

[3] Banerjee, I., A. Crawley, M. Bhethanabotla, H. E. Daldrup-
Link and D. L. Rubin (2018). "Transfer learning on fused
multiparametric MR images for classifying histopathologi-

cal subtypes of rhabdomyosarcoma." Comput Med Imaging
Graph 65: 167-175.

[4] Bozinovski, S. and A. Fulgosi (1976). The influence of pat-
tern similarity and transfer of learning upon training of a base
perceptron B2.(original in Croatian: Utjecaj slicnosti likova
i transfera ucenja na obucavanje baznog perceptrona B2).
Proc. Symp. Informatica.

[5] Caron, M., P. Bojanowski, A. Joulin and M. Douze (2018).
Deep clustering for unsupervised learning of visual features.
Proceedings of the European conference on computer vision
(ECCV).

[6] Chhikara, P., P. Singh, P. Gupta and T. Bhatia (2020). Deep
convolutional neural network with transfer learning for detect-
ing pneumonia on chest X-rays. Advances in Bioinformatics,
Multimedia, and Electronics Circuits and Signals, Springer:
155-168.

[7] Das, N. N., N. Kumar, M. Kaur, V. Kumar and D. Singh
(2020). "Automated deep transfer learning-based approach
for detection of COVID-19 infection in chest X-rays." Irbm.

[8] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei
(2009). Imagenet: A large-scale hierarchical image database.
2009 IEEE conference on computer vision and pattern
recognition, Ieee.

[9] Ghesu, F. C., B. Georgescu, A. Mansoor, Y. Yoo, D. Neu-
mann, P. Patel, et al. (2022). "Self-supervised Learn-
ing from 100 Million Medical Images." arXiv preprint
arXiv:2201.01283.

[10] Nguyen, X.-B., G. S. Lee, S. H. Kim and H. J. Yang (2020).
"Self-supervised learning based on spatial awareness for
medical image analysis." IEEE Access 8: 162973-162981.

[11] Rajpurkar, P., E. Chen, O. Banerjee and E. J. Topol (2022).
"AI in health and medicine." Nat Med 28(1): 31-38.

[12] Willemink, M. J., W. A. Koszek, C. Hardell, J. Wu, D. Fleis-
chmann, H. Harvey, et al. (2020). "Preparing medical imaging
data for machine learning." Radiology 295(1): 4-15.

[13] He, K., X. Zhang, S. Ren and J. Sun (2016). "Deep residual
learning for image recognition". Proceedings of the IEEE
conference on computer vision and pattern recognition.

[14] Cao, B., H. Zhang, N. Wang, X. Gao and D. Shen (2020).
Auto-GAN: self-supervised collaborative learning for medical
image synthesis. Proceedings of the AAAI Conference on
Artificial Intelligence.

[15] Chlap, P., H. Min, N. Vandenberg, J. Dowling, L. Holloway
and A. Haworth (2021). "A review of medical image data
augmentation techniques for deep learning applications."
Journal of Medical Imaging and Radiation Oncology 65(5):
545-563.

[16] Gao, Y., V. Ghodrati, A. Kalbasi, J. Fu, D. Ruan, M. Cao, et
al. (2021). "Prediction of soft tissue sarcoma response to
radiotherapy using longitudinal diffusion MRI and a deep
neural network with generative adversarial network-based
data augmentation." Med Phys 48(6): 3262-3372.

[17] Picci, P., M. Manfrini, D. Donati, M. Gambarotti, A. Righi, D.
Vanel et al. (2020). Diagnosis of Musculoskeletal Tumors and
Tumor-like Conditions Clinical, Radiological and Histological
Correlations - The Rizzoli Case Archive: Clinical, Radiologi-
cal and Histological Correlations - The Rizzoli Case Archive.

[18] Clark, M. A. and J. M. Thomas (2005). "Delay in referral to a
specialist soft-tissue sarcoma unit." Eur J Surg Oncol 31(4):
443-448.

cdbme_2022_8_2.pdf   12 8/29/2022   5:45:22 PM

12



4. Publications

4.3. SAM-X: sorting algorithm for musculoskeletal x-ray
radiography

Authors:

Florian Hinterwimmer, Sarah Consalvo, Nikolas Wilhelm, Fritz Seidl, Rainer Burgkart,
Rüdiger von Eisenhart-Rothe, Daniel Rueckert, Jan Neumann

Journal:

European Radiology

Synopsis:

In our study, we addressed challenges of MSK diseases and their impact on individuals,
healthcare and society. These diseases cause pain, limit movement and reduce the
quality of life of those affected. Medical imaging plays a critical role in the diagnosis
and treatment of these conditions, and with advances in AI and neural networks, the
potential exists for improved radiological examinations. However, the complexity of
medical imaging and the increasing amount of data present challenges to radiologists
and AI systems. To effectively analyze and understand radiological data, we propose
a sorting algorithm called SAM-X for MSK radiographs. This algorithm aims to
automatically classify and organize large image datasets based on anatomical features
to facilitate data analysis.

We explore the use of self-supervised models and modify an existing model called
DeepCluster for our classification task. This model uses a k-means clustering algorithm
to group image features and uses the resulting labels to update network weights. By
incorporating human interaction through weak semantic label assignment, we minimize
the need for time-consuming annotation by domain experts. We collected a dataset of
42,608 pseudonymised radiographs from a MSK tumour centre. These images were
collected over a 25-year period and varied in quality, resolution, and source. Our
dataset included different MSK regions, anatomic variations, and medical implants.
For evaluation, we used statistical measures of analysis such as normalised mutual
information (NMI) and precision metric. The first clustering phase achieved an NMI
of 0.930, and an experienced radiologist identified 28 main MSK classes from the
clusters. Non-MSK images were discarded, giving us a subset of 29,433 images for
further training. In the second phase, we trained a CNNs using the weak semantic
labels assigned in the previous phase. The weights of the network were updated based
on the labels provided, resulting in a cross-validated classification accuracy of 96.2%
for validation data and 96.6% for hold-out test data. Accuracy increased to 99.7%
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when the top two predicted class labels were considered. To gain insights into the
decision-making process of the AI model, we implemented Grad-CAMs that highlight
relevant information for classification. The degree CAM results confirmed that the
algorithm focuses on anatomical regions that are relevant to each class.

Our study demonstrates the effectiveness of the SAM-X sorting algorithm for MSK
radiographs. It achieves high accuracy and reliability in categorizing radiographs based
on anatomical features. The algorithm correctly identifies and categorizes different
pathologies and appearances within the same anatomical region. The integration of AI
systems and neural networks in medical imaging holds great potential for improving
clinical routine and research. The human-in-the-loop setup, as demonstrated in our
study, enables active collaboration between humans and AI systems. Radiology is at
the forefront of adopting new imaging technologies, and our proposed algorithm can
improve workflow efficiency and productivity in the face of increasing data volumes.
By categorizing radiographic images by anatomical features, we provide a valuable
tool for managing and analysing large amounts of image data. This approach is
consistent with the classification of MSK disorders based on anatomical locations. It
also complements existing research on categorizing MSK disorders for occupational
health care, surveillance, or research purposes.

While similar content-based image retrieval models have been proposed in other
medical fields, our SAM-X algorithm fills a gap in categorizing MSK radiographs. We
are aware of the limitations of our study, such as the assumption that any input image
is in fact a radiographic image and related to the defined radiographic classes. In
conclusion, our sorting algorithm for MSK radiographs, SAM-X, provides an effective
and efficient framework for automatic classification and inference in large images.
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Abstract
Objective To develop a two-phased deep learning sorting algorithm for post-X-ray image acquisition in order to facilitate large
musculoskeletal image datasets according to their anatomical entity.
Methods In total, 42,608 unstructured and pseudonymized radiographs were retrieved from the PACS of a musculoskeletal
tumor center. In phase 1, imaging data were sorted into 1000 clusters by a self-supervised model. A human-in-the-loop radiol-
ogist assigned weak, semantic labels to all clusters and clusters with the same label were merged. Three hundred thirty-two non-
musculoskeletal clusters were discarded. In phase 2, the initial model was modified by “injecting” the identified labels into the
self-supervised model to train a classifier. To provide statistical significance, data split and cross-validation were applied. The
hold-out test set consisted of 50% external data. To gain insight into the model’s predictions, Grad-CAMs were calculated.
Results The self-supervised clustering resulted in a high normalized mutual information of 0.930. The expert radiologist iden-
tified 28 musculoskeletal clusters. The modified model achieved a classification accuracy of 96.2% and 96.6% for validation and
hold-out test data for predicting the top class, respectively. When considering the top two predicted class labels, an accuracy of
99.7% and 99.6% was accomplished. Grad-CAMs as well as final cluster results underlined the robustness of the proposed
method by showing that it focused on similar image regions a human would have considered for categorizing images.
Conclusion For efficient dataset building, we propose an accurate deep learning sorting algorithm for classifying radiographs
according to their anatomical entity in the assessment of musculoskeletal diseases.
Key Points
• Classification of large radiograph datasets according to their anatomical entity.
• Paramount importance of structuring vast amounts of retrospective data for modern deep learning applications.
• Optimization of the radiological workflow and increase in efficiency as well as decrease of time-consuming tasks for radiol-
ogists through deep learning.
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Abbreviations
AI Artificial intelligence
CBIR Content-based image retrieval
DL Deep Learning
NMI Normalized mutual information
PACS Picture Archiving and Communication System

Introduction

Musculoskeletal diseases present a daily and also a global
challenge for today’s healthcare systemwith far-reaching eco-
nomic burdens to society and consequences to each individual
who is affected by this disease. Finally, they result in pain and
restriction of motion and interfering with the individuals’
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quality of life [1]. Presenting a diverse group with respect to
their pathophysiology, most conditions are, at least in part, clas-
sified according to the anatomical entity in which they are locat-
ed. Hence, anatomy is being a crucial organizing principle for
such diseases [2]. Accompanied by the ever-ongoing process of
improving medical imaging with rapid changes and innovation
[3], the recent dawning era of artificial intelligence (AI) and
artificial neural networks will potentially lead to an increase of
radiology exams. This will be especially true for medical imag-
ing since it presents a cornerstone in the daily clinical routine
and the workflow of shared care of patients with musculoskel-
etal diseases. Along the journey of new AI technologies, a vari-
ety of medical applications related to medical imaging has been
noticed with the majority focusing on a head-to-head compari-
son of AI with humans [4]. However, modern imaging is more
likely to involve human-in-the-loop setups, where humans ac-
tively collaborate with AI systems and provide oversight. When
facing an increase of image data, the complexity of the radiology
imaging workflow and corresponding amount of data promotes
the need for possibilities to understand and use radiology data
for gaining new knowledge and insights [5]. The complexity of
medical imaging technologies implements the challenge for ra-
diologists and neural networks to capture all details of each
dataset, potentially reversing the hoped-for effect of reducing
medical costs and time consumption when combining the
workflow of human-AI collaboration. In order to avoid trade-
offs to manage complex datasets in an active collaboration of
humanswithAI systems [6], pre-sorting algorithms according to
the anatomical entity can be helpful to categorize large amount
of image data, thus resulting in a more effective data analysis.

Multiple supervised, unsupervised, as well as self-
supervised models have emerged [7–11] over the past years.
These models could be utilized for sorting data. However,
supervised learning requires a significant amount of anno-
tated data and therefore demands for a substantial amount of
time of a domain expert [12, 13]. In contrast, unsupervised
and self-supervised models eliminate the need for time-
consuming annotations, but clustering data follows mathe-
matical rules such as similarity measures and consequently
does not necessarily cluster data according to specific needs.
In this study, we focus on utilization and modification of an
established self-supervised model to categorize data effec-
tively and efficiently according to specific requirements,
while still keeping the demand of human interaction at a
minimum. DeepCluster [8] demonstrates a self-supervising
approach for learning image representation. The model iter-
atively groups features using a standard k-means clustering
algorithm and uses the subsequent labels as supervision to
update the weights of the network.

Therefore, in the present study, we propose a sorting algo-
rithm for musculoskeletal X-ray radiography (SAM-X), a
novel framework to support automatic classification and rea-
soning in the context of large image datasets.

Materials and methods

Dataset

The local institutional review and ethics board approved this
retrospective study (N°48/20S). The study was performed in
accordance with national and international guidelines.
Informed consent was waived for this retrospective and
anonymized study.

In total, 42,608 unstructured and pseudonymized radio-
graphs were retrieved from the local Picture Archiving and
Communication System (PACS) from a musculoskeletal tu-
mor center (Klinikum rechts der Isar, Technical University of
Munich) with sarcoma-associated ICD codes in DICOM for-
mat. The image data were collected over the past 25 years and
contained heterogeneous data quality, resolution, and external
images (~20%).Metadata such as DICOMheader information
or diagnoses are not yet validated and therefore not yet
available.

All radiographs have been obtained through standard radi-
ography techniques according to the body part imaged and in
accordance with the radiographic manual procedures of our
institution. Based on the aforementioned sarcoma-associated
ICD code selection, data were acquired on potentially various
points in time of the respective therapy status. Due to the
various radiographic appearances and ubiquitous locations
of sarcomas, our dataset includes a variety of all body parts,
including potential anatomic variations, prosthetic devices,
and medical implants. Figure 1 demonstrates examples from
the dataset.

Statistical analysis

The result of the initial clustering (phase 1) was assessed
through a normalized mutual information (NMI) metric.
NMI is a variant of a measure commonly used in information
theory, called mutual information. Mutual information indi-
cates the “amount of information” that can be extracted from
one distribution with respect to a second one. The results of
sorting the images in the classification task were measured
with an accuracy score calculating the amount of correctly
assigned images with respect to all images from the hold-out
test set. Additionally, the accuracy for considering the two
most probable prediction labels was computed. Since meta-
information is not yet available, no distribution analysis of
sex, gender, diagnoses, etc. was conducted.

Model training

Model training and inference were conducted on a DGX
Station A100 with four 80-GB graphical processing units
(Nvidia Corporation, Santa Clara), 64 2.25-GHz cores,
and 512-GB DDR4 system memory running on a Linux/
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Ubuntu 20.04 distribution (Canonical). Preprocessing and
model implementation were performed in Python 3.9.6
(https://www.python.org/) using PyTorch 1.10.2 and cuda
toolkit 11.3 (https://pytorch.org/). The trained classification
model will be available on GitHub (https://github.com/)
upon publication.

Algorithm

A two-phase deep learning framework was developed
consisting of a self-supervised model, human interaction

through weak, semantic label assignment, and implementation
of a supervised learning task for final training (Fig. 2).

In phase 1, the 42,608 unstructured and pseudonymized
X-ray images from a musculoskeletal research storage were
clustered into 1000 clusters by application of DeepCluster
[8]. Following, a senior radiologist identified several mus-
culoskeletal labels by screening the results from phase 1.
Each of the 1000 clusters was either assigned a class label
or discarded, since the images were not applicable for the
task at hand (e.g., not a musculoskeletal X-ray such as up-
per gastrointestinal series/barium swallow, mammogra-
phy). Clusters with the same class label were merged, so

Fig. 1 Exemplary data sample showing various anatomical entities from the initial unstructured data collective

Fig. 2 Illustration of the presented framework in two phases: clustering data with a self-supervised model and training a network with human-annotated
clusters
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consequently “weak” (noisy) classes emerged. In phase 2, a
convolutional neural network was trained on the emerged
classes as weak, semantic labels: to accomplish an optimal
training and update of the network’s weights, the created
labels were “injected” into the same self-supervised model.
The auxiliary labels for each training iteration from k-
means became obsolete, since we provided the labels. It
became a supervised task and the network’s weights were
trained with respect to our classification requirements. In
order to provide statistical significance and avoid cross-
contamination, the data was split into training, validation,
and hold-out test sets with a respective split ratio of 6-2-2,
hence a 5-fold cross-validation was implemented. Half of
the hold-out test set consisted of external imaging data to
provide an independent and unbiased test set and increase
significance of the results.

Plausibility

To add plausibility and additional insight into the AI model,
Grad-CAMs were implemented in the final inference step
[14]. Grad-CAMs utilize the gradient information from the
last convolutional layer of a deep learning network to under-
stand specific neurons and their impact for decision-making.
The result is a colored heat map, which is co-registered to the
original input image and indicates where the algorithm found
relevant information for the task at hand. This technique was
applied to acquire a better understanding where the algorithm
detects relevant information. To provide a higher expressive-
ness, the Grad-CAM results were averaged from the 5-fold
cross-validation.

Results

In phase 1, an NMI of 0.930 in clustering the entire dataset
was reached. Subsequently, a senior radiologist identified the
following 28 main musculoskeletal classes: abdomen, ankle,
calcaneus, cervical spine, clavicula, elbow, femur, finger, foot,
forearm, hand, hip, humerus, knee, lower leg, lumbar spine,
paranasal sinus, patella, pelvis, ribs, sacrum, shoulder, skull,
spine, thoracic spine, thorax, whole leg (standing), and wrist.
In total, 13,175 non-musculoskeletal images from three hun-
dred thirty-two clusters were discarded and a “musculoskele-
tal subset” of 29,433 images remained for further training.
Table 1 shows the final classes with the number of images
per class and percentage share with respect to the musculo-
skeletal subset.

In phase 2, a cross-validated classification accuracy of
96.2% for validation and 96.6% for hold-out test data was
accomplished, when only considering the class with the
highest prediction probability. When considering the top two
predicted class labels, an accuracy of 99.7% and 99.6% for

validation and testing was reached, respectively. Figure 3
shows examples of the final predictions of the knee cluster.

Furthermore, Fig. 4 displays the results of the cross-
validated Grad-CAMs for the classes pelvis (1a, 1b) and
shoulder (2b, 2b). Purple pixels indicate that the algorithm
did not find any relevant information in these pixels in contrast
to red pixels, where most relevant information was detected.

Discussion

In the present study, we demonstrate a sorting algorithm for
musculoskeletal X-ray radiographs (SAM-X) to categorize
images according to their anatomical entity. Based on a two-
phase deep learning framework, 42,608 unstructured and

Table 1 Final classes with the respective number of image samples and
percentage share

Distribution of 28 classes

Class Number of images in %

Abdomen 495 1.7%

Ankle 1033 3.5%

Calcaneus 177 0.6%

Cervical spine 3521 12.0%

Clavicula 100 0.3%

Elbow 186 0.6%

Femur 4270 14.5%

Finger 288 1.0%

Foot 904 3.1%

Forearm 192 0.7%

Hand 345 1.2%

Hip 1529 5.2%

Humerus 811 2.8%

Knee 3815 13.0%

Lower leg 1406 4.8%

Lumbar spine 564 1.9%

Paranasal sinuses 257 0.9%

Patella 269 0.9%

Pelvis 2134 7.3%

Ribs 88 0.3%

Sacrum 96 0.3%

Shoulder 1577 5.4%

Skull 79 0.3%

Spine 821 2.8%

Thoracic spine 814 2.8%

Thorax 3209 10.9%

Whole leg 212 0.7%

Wrist 241 0.8%

Total 29,433 100.0%
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pseudonymized radiographs have been categorized into a
total of 28 anatomical regions. Cross-validated accuracy
of 96.2% for validation and 96.6% for hold-out test data
indicated a high accuracy and excellent reliability. The
aforementioned final predictions of the knee cluster demon-
strate that even very different pathologies and appearances
of knees were correctly identified and categorized. Further,

the calculated Grad-CAMs display the algorithms focus for
predicting a specific class and help to unravel the black-box
nature of DL methodology. These results underline the
plausibility and robustness of the predictions: the algorithm
primarily focused on anatomical regions, which are signif-
icant for the respective class and would also have been used
by radiologists to determine the class.

Fig. 3 Illustration of the final knee class showing the correct anatomical entity (knee) despite underlying heterogeneous pathologies

Fig. 4 Grad-CAM examples
from the classes pelvis (1a and
1b) and shoulder (2a and 2b)
displaying the pixel areas, which
were relevant for the algorithm to
predict the according classes
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Today, the emerging use of medical AI systems and neural
networks presents an important, yet “still in the making” op-
portunity for our daily clinical routine and research. Radiology
has always been at the front line of evolution in medical imag-
ing since the introduction of digital imaging systems [15],
teleradiology [16], computer-aided diagnosis tools [17], AI sys-
tems, and machine learning methods have emerged in the age
of digitization. Ultimately, this has led to a significant increase
of radiology examinations [17, 18]. Despite the broad use of
previous research projects to analyze AI and humans in a head-
to-head comparison [4, 9], promoting a potential level of lack-
ing trustworthiness in these new technologies, future use is
more likely practicing the human-in-the-loop setup used in
our study as well, providing the possibility of humans actively
collaborating with AI systems. Due to the complexity of clin-
ical radiology examinations, accompanied by the amount of
data linked to each examination, radiological daily operation
may become inefficient, requiring tools to improve daily
workflow and productivity [19]. Even more, with respect to
image research, the most time-consuming part will become
dataset building, potentially being the bottleneck [7] between
data collection and creation of structured vs. unstructured data.
Also, with respect to musculoskeletal disorders, radiologists,
clinicians, and researchers face a diverse group of underlying
pathologies which, in the setting of the aforementioned increas-
ing number of radiology examinations and large image
datasets, may benefit from pre-sorting algorithms to maintain
order and effectivity. Although the aforementioned technolo-
gies have emerged, up to date, radiography still plays an essen-
tial and fundamental role for diagnosing, differentiating, and
assessing the onset as well as progression of various musculo-
skeletal diseases [20, 24].

Mainly to harmonize occupational exposures and to flourish
study comparison in meta-analyses for the use in occupational
healthcare, surveillance, or research [25], the principle of cate-
gorizing musculoskeletal disease has already been widely used
in the setting of identifying potential etiological or work-related
factors that may lead to the onset or worsening of musculoskel-
etal disorders [26, 27]. However, case categorization in the
setting of research or daily clinical routine needs to consider
feasibility and the availability of resources. Hence, Dionne et al
[28] proposed a minimal and optimal case definition for cate-
gorizing musculoskeletal diseases depending on its research
purpose to promote balanced results. In contrast to the afore-
mentioned studies, focusing on the preceding etiological aspect
of musculoskeletal diseases, the sorting algorithm proposed in
our study steps in to manage post-image acquisition of muscu-
loskeletal diseases, and yet is in line with the aforementioned
approach of Dionne et al since our proposed pre-sorting algo-
rithm based on the anatomical entity provides a minimal still
optimal tool for classifying radiographs in the assessment of
musculoskeletal diseases. Since the expansion of radiological
exams is most likely to generate large volumes of information

and in order to establish a common hub to facilitate such large
image datasets with potentially underlyingmusculoskeletal dis-
eases, the data in our study were categorized according to their
anatomical entity since most musculoskeletal diseases are, at
least in part, classified according to the anatomical entity in
which they are located [2].

To the best of our knowledge, no framework for curating
and categorizing medical radiographs by musculoskeletal char-
acteristics has yet been proposed. However, related problems
have been addressed. In 2005, Lehmann et al [29] proposed
automatic categorization of medical images into 80 classes,
e.g., by imaging modality and biological system in the context
of content-based image retrieval (CBIR). Uwimana et al [30]
also demonstrated a content-based image retrieval model by
establishing links between low-level features of images and
high-level features of text codes. Gál et al [31] proposed a
CBIR model with a multidisciplinary approach to solve the
classification problem by combining image features, metadata,
textual, and referential information. More recently, Guo et al
[32] presented an interactive algorithm for dermatological im-
age quantification that combines computation, visualization,
and expert interaction. The most comparable study was pro-
posed by Kart et al [33]: DeepMCAT, an unsupervised cluster-
ing approach also based on DeepCluster [8]. An end-to-end
training automatically categorizes large-scale cardiac MR im-
ages into 13 classes without any annotation. The main differ-
ences with the method presented by Kart et al are that we
integrated weak annotation to train the CNN according to our
requirements and we aim to categorize X-ray images into 28
classes. However, we hypothesize that our approach generally
can achieve high results due to the implementation of powerful
state-of-the-art self-supervised methodology while keeping the
demand of human interaction at a limit and being adaptable to
other requirements with only minor adjustments.

We acknowledge that our study has several limitations.
Firstly, the classifier did assume an input of images that relate
to one of the (pre)defined radiographic classes. Images that
would have been derived of a different image modality, such
as ultrasound or cross-sectional imaging, and falsely merged
to our SAM-X model, would not be detected as such but
forced into one of the classes. However, this is a common
issue with AI classification models and needs to be addressed
in the future. Secondly, weak supervision is an approach of
machine learning that uses imprecise (noisy) data for super-
vised learning usually by bypassing the time-consuming task
of hand-labelling the whole dataset [34] for example through
obtaining weak labels with clustering methods. Assuming that
some images were “incorrectly” clustered even though the
region of interested is present in the image (e.g., shoulder
and clavicula or femur and knee), it is reasonable to consider
multiple labels for a single image. To address this issue, we
calculated a second accuracy score and considered the two
predictions with the highest probability (as presented in the
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“Results” section). The respective scores for validation and
testing reached 99.7% and 99.6% (in comparison to a single
label 96.2 and 96.6). These numbers indicate that the model
did not weakly label with respect to any incidental image
features such as background or artefacts, but did indeed label
according to similar anatomical features.

In conclusion, to facilitate the increasing amount of
radiology examinations, accompanied by large image
datasets, we propose a precise human-in-the-loop sorting
algorithm for classifying radiographs in the assessment of
musculoskeletal diseases according to the anatomical en-
tity in which they are located. For dataset building, the
algorithm proposes to be an efficient and time-saving tool
in the setting of post-image acquisition.
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Synopsis:

Accurate classification of bone tumours is crucial for determining the appropriate
course of treatment and improving patient outcomes. However, this task is challenging
due to the diverse manifestations of MSK tumours and limited availability of data.

This study aimed to develop a novel algorithm for real-time classification of prede-
fined bone tumour entities and linking undiagnosed patients with previous patient
histories based on radiographic features. The algorithm combines DL, a hash-based
nearest-neighbor recommender approach, and majority voting for simultaneous classi-
fication of multiple bone tumours. By doing so, it leverages dormant information in
clinical systems, facilitates comparison with previous patient encounters, and ultimately
impacts the diagnosis of rare and complex diseases across different medical fields. The
study involved the retrospective curation of patient data from 2000-2021, encompassing
809 patients and 1792 radiographs representing ten different types of tumours. Two
classification models were initially implemented to establish baseline results. Then, a
novel method was proposed that involves extracting image features using DL, cluster-
ing the k-most similar images to a target image using a hash-based nearest-neighbor
recommender approach, and then performing simultaneous classification by majority
voting.

The results indicated that the proposed model achieved a precision-at-k of 62.58%
and a mean classification accuracy of 92.86% for the optimal configuration, significantly
outperforming the state-of-the-art models that only achieved 54.10% and 62.80% re-
spectively. This underscored the potential of the proposed approach to navigate the
challenges associated with MSK tumours and limited data availability, thereby enabling
early and precise diagnoses.

The proposed framework offers an accurate and efficient approach to bone tumour
classification by effectively dealing with limited and unstructured data and complex
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classification problems. It provides real-time feedback for bone tumour assessment and
leverages previously collected knowledge based on previous patient journeys. This
approach not only revolutionizes the way physicians can harness dormant information
but also suggests potential versatility across various medical disciplines. Furthermore,
it lays the foundation for assisting general practitioners and young physicians in
challenging situations, ultimately impacting the diagnosis of rare and complex diseases
across different medical fields.
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Recommender‑based bone tumour 
classification with radiographs—a link 
to the past
Florian Hinterwimmer1,2*   , Ricardo Smits Serena1,2, Nikolas Wilhelm1, Sebastian Breden1, Sarah Consalvo1, 
Fritz Seidl3, Dominik Juestel3,4,5, Rainer H. H. Burgkart1, Klaus Woertler6, Ruediger von Eisenhart‑Rothe1, 
Jan Neumann6 and Daniel Rueckert2 

Abstract 

Objectives  To develop an algorithm to link undiagnosed patients to previous patient histories based on radiographs, 
and simultaneous classification of multiple bone tumours to enable early and specific diagnosis.

Materials and methods  For this retrospective study, data from 2000 to 2021 were curated from our database by two 
orthopaedic surgeons, a radiologist and a data scientist. Patients with complete clinical and pre-therapy radiographic data 
were eligible. To ensure feasibility, the ten most frequent primary tumour entities, confirmed histologically or by tumour 
board decision, were included. We implemented a ResNet and transformer model to establish baseline results. Our method 
extracts image features using deep learning and then clusters the k most similar images to the target image using a hash-
based nearest-neighbour recommender approach that performs simultaneous classification by majority voting. The results 
were evaluated with precision-at-k, accuracy, precision and recall. Discrete parameters were described by incidence and per‑
centage ratios. For continuous parameters, based on a normality test, respective statistical measures were calculated.

Results  Included were data from 809 patients (1792 radiographs; mean age 33.73 ± 18.65, range 3–89 years; 443 
men), with Osteochondroma (28.31%) and Ewing sarcoma (1.11%) as the most and least common entities, respec‑
tively. The dataset was split into training (80%) and test subsets (20%). For k = 3, our model achieved the highest 
mean accuracy, precision and recall (92.86%, 92.86% and 34.08%), significantly outperforming state-of-the-art models 
(54.10%, 55.57%, 19.85% and 62.80%, 61.33%, 23.05%).

Conclusion  Our novel approach surpasses current models in tumour classification and links to past patient data, 
leveraging expert insights.

Clinical relevance statement  The proposed algorithm could serve as a vital support tool for clinicians and general practi‑
tioners with limited experience in bone tumour classification by identifying similar cases and classifying bone tumour entities.

Key Points 

• Addressed accurate bone tumour classification using radiographic features.

• Model achieved 92.86%, 92.86% and 34.08% mean accuracy, precision and recall, respectively, significantly surpassing 
state-of-the-art models.

• Enhanced diagnosis by integrating prior expert patient assessments.
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Florian Hinterwimmer
florian.hinterwimmer@tum.de
Full list of author information is available at the end of the article
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Introduction
Bone tumours are a group of rare and diverse types of neo-
plasms [1–4]. The vast majority of primary bone tumours are 
benign, whereas malignant primary bone tumours account 
for 0.2% of all malignancies in adults [3, 5]. It is crucial to 
diagnose bone tumours early, as this directly affects the 
patient’s prognosis and curability [1]. Hence, prompt referral 
to a specialised tumour centre to determine tumour malig-
nancy, establish a specific diagnosis and initiate early treat-
ment is essential [6]. Unfortunately, delays of more than 1 
year often occur in clinical practice, partly due to the lack of 
specific symptoms in the early stages and the fact that non-
oncologically trained orthopaedic surgeons [4, 7, 8], primary 
care physicians or paediatricians only encounter about three 
malignant musculoskeletal (MSK) tumours in their profes-
sional career and therefore lack the experience in unequivo-
cally identifying these complex tumour entities [7].

Imaging is crucial in diagnosing bone tumours [5]. The 
Musculoskeletal Tumor Society and American Academy of 
Orthopedic Surgeons recommend radiographs as the ini-
tial screening tool [5, 8]. While CT and MRI provide addi-
tional diagnostic information, they should not delay initial 
medical care [5]. Definitive diagnosis typically requires a 

combination of imaging, histopathologic findings and clini-
cal presentation, with further detailed imaging assessments 
recommended at specialised MSK tumour centres [9].

Diagnostic imaging is rapidly advancing with sig-
nificant technological and market growth, leading to 
an increase in imaging data [10–12]. In MSK radiol-
ogy and orthopaedic oncology, precision medicine and 
image interpretation are increasingly critical. Despite 
the growing use of artificial intelligence (AI) and deep 
learning (DL) in cancer research, their application in 
MSK tumour research remains limited [2, 13]. How-
ever, these advanced data analysis techniques hold 
promise for revolutionising MSK tumour diagnostics 
and enhancing healthcare delivery [14].

As AI technologies evolve, various medical imag-
ing applications are being developed, often focusing 
on comparing AI’s performance with that of human 
experts in tasks like pathology classification [15–17]. 
Among these, recommender systems (RS) offer a novel 
approach, primarily suggesting options based on user 
preferences, bypassing extensive algorithm training 
[18]. While traditionally used in commercial settings, 
RS are increasingly recognised for their potential in 
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medical decision-making, such as recommending drug 
therapies or identifying similar patient cases based on 
medical history and imaging data [19, 20].

MSK tumour centres have extensive knowledge and 
experience lying dormant in their hospital information 
system (HIS) and picture archiving and communication 
system (PACS) based on patients treated for MSK tumours 
in the past. In this study, we present a DL-based algorithm 
that recommends similar patients based on clustering of 
radiographic features, draws on the extensive experience 
dormant in clinical systems based on previous patient his-
tories and simultaneously classifies multiple bone tumour 
pathologies to enable early and specific diagnosis.

Materials and methods
The local institutional review and ethics board approved 
this retrospective study (no. 48/20S). The study was per-
formed in accordance with national and international 
guidelines. Informed consent was waived for this retro-
spective and anonymised study. The general structure of 
the manuscript follows the Checklist for artificial intelli-
gence in medical imaging (CLAIM [21]).

Eligibility criteria
For this single-centre study, we conducted a search through 
the database of our MSK tumour centre. All patients treated 
for primary bone neoplasms (based on the according ICD 

codes) between 2000 and 2021 were screened. Patients with 
the following primary tumours were selected, as these are 
the most frequent ones in our database: aneurysmal bone 
cyst (ABC), chondroblastoma, chondrosarcoma, enchon-
droma, Ewing sarcoma, fibrous dysplasia, giant cell tumour, 
non-ossifying fibroma (NOF), osteochondroma and osteo-
sarcoma. The diagnosis of malignant lesions was verified by 
histopathology as standard of reference. Benign and inter-
mediate lesions were either verified by histopathology, if 
available, or discussed in the local tumour board and clas-
sified according to radiological features known from the 
literature [22]. The clinical and imaging data were retrieved 
from our HIS and PACS, respectively. To ensure the feasi-
bility of the proposed model, the ten most frequent entities 
were considered. Any tumour representation in the radio-
graphs was eligible. Forty-four patients with inadequate 
imaging (no pre-operative/pre-therapy radiographs), two 
patients with incomplete clinical data and 31 patients lost 
to follow-up were excluded. Subsequently, 809 patients 
with 1792 respective radiographs were found (Fig. 1). The 
curation and validation of the data were conducted by two 
orthopaedic residents (S.C., S.B.) and a senior MSK radiolo-
gist (J.N.), respectively, with support of a data scientist (F.H.).

Demographics and statistical evaluation
Descriptive data is presented according to the Strengthen-
ing the Reporting of Observational studies in Epidemiology 

Fig. 1  Flow diagram showing the application of eligibility criteria to create a final dataset
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(STROBE [23]) guidelines. Discrete parameters were 
described by incidence and percentage ratios. For contin-
uous parameters, based on a Shapiro-Wilk normality test, 
respective statistical measures were computed.

The mean classification accuracy, precision and recall 
of the baseline models are calculated based on their per-
formance on the test data. In our multiclass setting, clas-
sification accuracy is calculated as the ratio of correctly 
predicted instances to the total number of test data 
instances. Precision and recall are measured for each 
class individually and then averaged: precision is the 
ratio of true positive predictions of each class to all pre-
dictions made for that class, and recall is the ratio of true 
positive predictions of each class to all actual instances 
of that class in the test data. The RS clustering results 
are assessed using a precision-at-k metric, which calcu-
lates the proportion of relevant items within the top-k 
recommendations. To compute the final classification 
accuracy, precision and recall of the proposed model, 
we compared the correct predictions obtained through a 
majority vote from the k-closest images in the RS against 
the labels of the respective target images in the test 
data. About 10% of the total dataset represents external 
imaging data obtained from other institutions and inte-
grated into our Health Information System (HIS) and 
Picture Archiving and Communication System (PACS). 
The dataset is divided into training (80%) and test data 
(20%), with the metrics being calculated solely on the 
test data. This test subset exclusively contains patients 
with a single image to avoid any overlap with the train-
ing dataset. The dataset was stratified based on the types 
of bone tumours, ensuring that each tumour type was 
proportionally represented in both the training and test 

subsets. The final metrics, including classification accu-
racy, precision and recall, were determined three times 
using randomly shuffled data, and the corresponding 
mean values were calculated. In addition, the normality 
of the distribution of performance results was assessed. 
Based on the outcome of normality tests, suitable statis-
tical methods were chosen to evaluate the significance of 
model performance metrics.

Model training
Model training and inference was conducted on a DGX 
Station A100 with four 80 GB graphical processing units 
(Nvidia Corporation), 64 2.25 GHz cores and 512 GB 
DDR4 system memory running on a Linux/Ubuntu 20.04 
distribution (Canonical). Preprocessing and model imple-
mentation were performed in Python 3.11.1 (https://​
www.​python.​org/) using PyTorch 1.13.1 and cuda toolkit 
12.0 (https://​pytor​ch.​org/).

Algorithm
The general concept of the proposed framework is shown 
in Fig.  2: identification of the most similar cases from 
previous patients based on radiographs with respect to 
an undiagnosed image. First, to create baselines for bone 
tumour entity classification, we calculated classification 
metrics by straightforward application of a standard 
[24] (baseline 1) and a state-of-the-art [25] (baseline 2) 
DL model to a multi-entity classification task. For the 
implementation of our proposed approach, we performed 
two main steps: (I) to emphasise on tumourous tissue 
rather than background or non-relevant tissue, we created 
bounding boxes around the region of interest, which 
can be accomplished algorithmically [26] or through 

Fig. 2  General concept of the proposed method—clustering new patients with previous patients based on radiographs to identify similar cases 
and classify tumour entity (PACS, picture archiving and communications systems; HIS, hospital information system)



Page 5 of 10Hinterwimmer et al. European Radiology	

manual cropping by a domain expert (Fig. 3). We employ 
the model from baseline 1. The trained model as well as 
the extracted features from the training data was saved. 
After training was completed, we calculated the image 
features of the test data by running the data through the 
trained convolutional neural network model. (II) We 
created a hash table. Instead of comparing each set of 
new image features to the training data features, we used 
locality-sensitive hashing (LSH), an approximate nearest 
neighbour algorithm that reduces the computational 
complexity from O(N2) to O(log N). LSH generates a 
hash value for image features by taking the spatiality of 
the data into account. Data elements that are similar in 

high dimensional space have a higher chance of obtaining 
the same hash value [27]. Based on a hamming distance 
function, we computed the k-nearest neighbours with 
respect to each target image. By assigning the k-nearest 
neighbours (from training images) to one cluster along 
with the target image (test image), we established a link 
between the undiagnosed patient and past patient cases 
stored in our database. Since local patient identifiers from 
the training data patients are known, this allowed us to 
potentially link to experiences from previous patients in 
our clinical systems, e.g. radiology reports, laboratory 
results and therapy results. Furthermore, we obtained 
a classification of tumour entities by applying a majority 

Fig. 3  Exemplary creation of bounding boxes focusing the tumourous tissue by the segmentation algorithm of Bloier et al [26]: (a) initial image, (b) 
segmented tumour, (c) calculated bounding box, (d) bounding box with 15% margin to assure all tumour tissue is captured, (e) cropped image

Fig. 4  Flow chart of the proposed model—(I) preparing the images, training of the convolutional neural network, saving the model and features; 
(II) calculating the high dimensional distances with a distance function, adding a hash tables, clustering of the most similar x-rays and calculating 
a precision-at-k and a tumour entity classification with a majority vote of the k-clustered images
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Table 1  Distribution of continuous and discrete characteristics (IQR interquartile range)

Characteristic Shapiro Wilk test Median IQR # %

Patients

  Age W (809) = 0.94, p < .001 30.00 30.00 – –

Entity

  Aneurysmal bone cyst (ABC) – – – 49 6.06%

  Chondroblastoma – – – 18 2.22%

  Chondrosarcoma – – – 124 15.33%

  Enchondroma – – – 181 22.37%

  Ewing sarcoma – – – 9 1.11%

  Fibrous dysplasia – – – 31 3.83%

  Giant cell tumour – – – 51 6.30%

  Non ossifying fibroma (NOF) – – – 33 4.08%

  Osteochondroma – – – 229 28.31%

  Osteosarcoma – – – 84 10.38%

Gender

  Female – – – 366 45.24%

  Male – – – 443 54.76%

Location – – –

  Clavicula – – – 7 0.87%

  Columna vertebralis – – – 4 0.49%

  Femur – – – 297 36.71%

  Fibula – – – 42 5.19%

  Humerus – – – 124 15.33%

  Manus – – – 62 7.66%

  Os ilium – – – 24 2.97%

  Os ischii – – – 8 0.99%

  Os pubis – – – 11 1.36%

  Os sacrum – – – 1 0.12%

  Patella – – – 7 0.87%

  Pes – – – 42 5.19%

  Radius – – – 12 1.48%

  Scapula – – – 17 2.10%

  Tibia – – – 146 18.05%

  Ulna – – – 5 0.62%

Table 2  Tumour entity classification results—mean of accuracy, precision and recall with standard deviation

Baseline 1: ResNet50 Baseline 2: Transformer Our approach

Accuracy

  Training 77.01 ± 1.11 82.37 ± 2.20 –

  Validation 58.69 ± 3.04 69.54 ± 2.87 –

  Test 54.10 ± 2.91 62.80 ± 1.90 92.86 ± 0.59
Precision

  Training 79.10 ± 0.76 80.44 ± 2.29 –

  Validation 60.23 ± 2.09 67.91 ± 1.39 –

  Test 55.57 ± 2.00 61.33 ± 2.10 92.86 ± 0.59
Recall

  Training 28.26 ± 0.41 30.23 ± 0.99 –

  Validation 21.53 ± 1.12 25.52 ± 0.81 –

  Test 19.85 ± 1.07 23.05 ± 0.70 34.08 ± 2.76
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vote to the entities of the images clustered to the target 
image. Figure 4 illustrates the proposed approach.

Results
Dataset
The mean age of patients was 33.73 with a standard devia-
tion of 18.65 and a range of 3 to 89. Osteochondroma was 

the most common entity, accounting for 28.31% of the total 
dataset, while Ewing sarcoma was the least frequent entity 
representing only 1.11% of the dataset. The gender was close 
to similarly distributed (males 54.76%, females 45.24%) with 
a slight tendency towards males. The most frequent location 
of tumour occurrence was the femur with 36.71%, while a 
tumour only occurred once at the os sacrum representing 
0.12% of the whole dataset. Further details of the continuous 
and discrete characteristics are displayed in Table 1.

Model performances
For both baseline models, we conducted extensive hyper-
parameter tuning to optimise their performance as well as 
a fivefold cross-validation. Key hyperparameters adjusted 
included learning rate, batch size and number of training 
epochs. Additionally, we employed several data augmen-
tation techniques (rotations, horizontal and vertical flip-
ping) to enhance the dataset and prevent overfitting. The 
optimised values for each hyperparameter were as fol-
lows: learning rate 0.003/0.0025, batch size 8/8 number 
of training epochs 85/77 and probability for applying data 
augmentation 0.3/0.3 respectively for the ResNet and the 
transformer model. We accomplished a mean test accu-
racy/precision/recall of 54.10%, 55.57% and 19.85% with a 
pretrained ResNet32 [24] model and 62.80%, 61.33% and 
23.05% with a state-of-the-art Vision Transformer model 
[25, 28] for classifying the tumour entities on a test split. 
For our proposed method, the respective precision-at-k 
for k = 1/3/5/7 was 65.46%/62.58%/62.06%/61.48%. The 

Table 3  Statistical significance of model performance 
metrics—ANOVA results demonstrate the overall significance 
of differences in accuracy, precision and recall among all tested 
models. Tukey’s HSD (Honestly Significant Difference) post hoc 
analysis further identifies the specific pairwise comparisons 
that are statistically significant. The p values indicate that the 
performance of ‘Our Approach’ is significantly different from 
both baseline models, and there is a significant difference in 
performance between the two baseline models

ANOVA Tukey’s HSD 
post hoc test

p values of test metrics

  Accuracy < 0.0001 –

  Precision < 0.0001 –

  Recall < 0.0001 –

p values of model comparison

  Baseline 1: ResNet50 vs. Baseline 2: 
Transformer

– 0.0035

  Our approach vs. Baseline 1: ResNet50 – 0.001

  Our approach vs. Baseline 2: Transformer – 0.001

Fig. 5  Examples of osteochondroma X-rays showcasing the model’s ability to accurately cluster different appearances of the same tumour entity. 
The target image is marked with a black frame, while correctly matched images are highlighted with a green frame
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classification metrics based on the described majority vote 
on the clustered images was 65.46%/92.86%/92.13%/92.01%. 
For k, only odd values were used to facilitate meaningful 
calculation of the majority vote. No higher value than seven 
was chosen because the lowest number of entity samples 
was only nine (Ewing sarcoma) and, therefore, consider-
ing only odd values, a maximum of seven samples could be 
assigned. Table 2 displays the results for the two baseline 
models as well as the result of the best configuration.

Initial Shapiro-Wilk tests were performed to assess the 
normality of the distribution of model performance metrics. 
The results suggested a normal distribution for most met-
rics, providing a basis for the use of parametric tests. Conse-
quently, ANOVA was utilised to analyse the significance of 
differences in model performance, revealing significant dis-
parities across the models (p < 0.0001 for all metrics, thresh-
old at p = 0.05). Despite the limited sample sizes, ANOVA 
was considered appropriate due to the normality of the data 
and the robustness of this test under certain conditions. Fol-
lowing the ANOVA, Tukey’s HSD (Honestly Significant Dif-
ference) post hoc tests were conducted for pairwise model 
comparisons, which identified statistically significant dif-
ferences, indicating that our approach significantly out-
performed the baseline models (Table  3). Figures  5 and 6 
show examples of correctly mapped osteochondromas and 
osteosarcomas from different patients and visually different 
appearances. The first images (1a, 2a, 3a, 4a - black) show 
the target images and the second to fourth images (1b-1d, 

2b-2d, 3b-3d, 4b-4d - green) in each row show the corre-
spondingly clustered images.

Discussion

The main result of this study was that we were able to develop 
an algorithm for real-time classification of ten preselected pri-
mary bone tumour entities that significantly outperformed a 
widely used [24] and a state-of-the-art model [25] and those 
shown in similar studies [17, 19] by circumventing the prob-
lem of confounding factors through clustering of the k most 
similar radiographs to a target image rather than classifying all 
different appearances and different anatomical structures of 
the same tumour pathology into one class. Further, identifying 
the most similar cases also allows large amounts of knowledge 
and experience lying dormant in clinical systems, such as pre-
vious diagnoses, treatments, etc., to be attributed to new and 
undiagnosed patients, potentially supporting an early and spe-
cific diagnosis. We hypothesise that the poor performance of 
the baseline models as well as the poor scores for recall across 
all approaches originate in overfitting due to limited available 
data and even more so because of significant class imbalances.

Similar studies were published [17, 19]. For example, von 
Schacky et al [17] presented a multitask DL model for simul-
taneous detection, segmentation and classification of bone 
lesions and compared the results with those of radiologists 
with different levels of experience. The general task of classify-
ing bone lesions as well as the investigated entities are similar 
to our study. Their model achieved a classification accuracy 

Fig. 6  Examples of osteosarcoma X-rays illustrating the model’s effectiveness in clustering diverse manifestations of the same tumour entity. The 
target image is enclosed in a black frame, and correctly clustered images are indicated with a green frame
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of 43.2%, whereas a radiology resident achieved 44.1% and 
an MSK fellow radiologist 58.6% in classifying bone lesions 
by entity. While our metric scores are significantly higher, 
von Schacky et al had to cope with a lower ratio of samples 
per class. A major problem for the DL model probably was 
that bone tumour entities can occur in different anatomical 
regions and demonstrate different appearances. Therefore, 
a DL model has to classify the same pathology with different 
anatomical and visual features into the same class to predict 
correctly. As illustrated in Figs. 5 and 6, our model was able 
to bypass this issue by clustering only the k most similar cases 
and calculating the final prediction of the entity based on a 
majority vote. Their study underlines the complexity of pre-
cise identification of bone neoplasms for DL models as well 
as for human experts. Despite the widespread use of previ-
ous research projects analysing AI and humans in a direct 
comparison [16], the future use of AI to support instead of 
replacing medical experts is more likely. Another similar study 
was recently published by Kuanr et al [19]. The main concept 
behind their study was to identify similar COVID-19 patients 
based on comparably homogenous chest radiography by 
applying feature extraction accomplished by a DL model. The 
approach of comparing similar patients based on x-ray images 
is similar to that of our study. However, by implementing a 
majority vote on top of the clustered images for final metric 
calculation, we additionally demonstrated a classification for 
multiple entities and heterogenous pathologies. To the best of 
our knowledge, no study has yet shown a RS approach with 
majority vote to conclude in a classification of several bone 
tumour entities or link to previous sarcoma patient data.

The general approach of utilising retrospective datasets, 
training a DL model to extract meaningful image features 
and clustering similar cases based on imaging data with a 
nearest neighbour model is adaptable to other pathologies 
and scenarios as well. However, we hypothesise that the 
heterogeneity and multiple manifestations of bone tumours 
are one of the main reasons why we have achieved such a 
significant improvement with our algorithm compared to 
conventional classification approaches. It has been shown 
before that ensemble methods tend to give better results 
when the models and datasets have a large variety [29]. For 
tumour entities that occur more frequently in the same 
anatomic region, a classical approach would yield better 
results to begin with. Nevertheless, the concept of find-
ing similar cases to compare with previous treatments of 
patients may be relevant to any other pathology.

The major limitation of this study is that we did not 
consider clinical data in the assessment of the tumour 
entity. Although plain radiographs are crucial for the ini-
tial screening for a possible bone tumour [5, 8, 30, 31], 
further classification requires the inclusion of clinical 
data (and possibly additional imaging) [9]. However, we 
hypothesise that some clinical information such as the 

patient’s age, anatomical region, or tumour location is 
partially represented in the x-ray images and therefore 
indirectly integrated into our prediction model. Inclusion 
of clinical data and other bone tumour entities will be 
explored in future studies. Another limitation arises from 
the limited data set. While 1792 radiographs are a con-
siderable number for the rare entities of MSK tumours, 
a mean of 179 samples per class is rather low in view of 
the heterogeneity of MSK lesions and additionally in the 
context of DL applications. Although approximately 10% 
of the data set consists of external radiographs from gen-
eral practitioners, external radiologists, etc. uploaded to 
our clinical systems, another limitation is that the model 
needs to be tested on external data to further assess gen-
eralisability [32] before suitability for clinical use can 
be evaluated [33]. Although we managed to circumvent 
problems with confounding factors, the fact that most of 
the data were collected in a single centre could still affect 
the robustness of the model: different image characteris-
tics associated with different radiographic devices or dif-
ferent patient characteristics could cause this.

In conclusion, we have demonstrated a way to deal with 
limited data and complex classification problems, providing 
a real-time feedback for bone tumour assessment. The pro-
posed framework can link undiagnosed patients with previ-
ous experience and knowledge lying dormant in our clinical 
systems. Additionally, we have used AI methodology to lever-
age previously collected knowledge based on previous patient 
journeys, allowing us to draw on human experts to potentially 
assist general practitioners and young physicians in difficult 
situations and enable early and specific diagnosis.
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Abbreviations

AI artificial intelligence

ANNs artificial neural networks

AUC area under the curve

CNNs convolutional neural networks

CT computed tomography

DICOM Digital Imaging and Communications in Medicine

DL deep learning

GANs generative adversarial networks

GPUs graphical processing units

GPT generative pre-trained transformer

HIS hospital information system

LLMs large language models

LSTM long short-term memory

LSH locality-sensitive hashing

ML machine learning
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Abbreviations

MRI magnetic resonance imaging

MSK musculoskeletal

NLP natural language processing

NMI normalised mutual information

PACS picture archiving and communication system

PET positron emission tomography

ResNets residual neural networks

RNNs recurrent neural network

VAEs variational autoencoders
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Abstract. Background/Aim: Ewing sarcoma is a highly
malignant tumour predominantly found in children. The
radiological signs of this malignancy can be mistaken for
acute osteomyelitis. These entities require profoundly different
treatments and result in completely different prognoses. The
purpose of this study was to develop an artificial intelligence
algorithm, which can determine imaging features in a common
radiograph to distinguish osteomyelitis from Ewing sarcoma.
Materials and Methods: A total of 182 radiographs from our
Sarcoma Centre (118 healthy, 44 Ewing, 20 osteomyelitis)
from 58 different paediatric (≤18 years) patients were
collected. All localisations were taken into consideration.
Cases of acute, acute on chronic osteomyelitis and
intraosseous Ewing sarcoma were included. Chronic
osteomyelitis, extra-skeletal Ewing sarcoma, malignant small
cell tumour and soft tissue-based primitive neuroectodermal
tumours were excluded. The algorithm development was split
into two phases and two different classifiers were built and

combined with a Transfer Learning approach to cope with the
very limited amount of data. In phase 1, pathological findings
were differentiated from healthy findings. In phase 2,
osteomyelitis was distinguished from Ewing sarcoma. Data
augmentation and median frequency balancing were
implemented. A data split of 70%, 15%, 15% for training,
validation and hold-out testing was applied, respectively.
Results: The algorithm achieved an accuracy of 94.4% on
validation and 90.6% on test data in phase 1. In phase 2, an
accuracy of 90.3% on validation and 86.7% on test data was
achieved. Grad-CAM results revealed regions, which were
significant for the algorithms decision making. Conclusion:
Our AI algorithm can become a valuable support for any
physician involved in treating musculoskeletal lesions to
support the diagnostic process of detection and differentiation
of osteomyelitis from Ewing sarcoma. Through a Transfer
Learning approach, the algorithm was able to cope with very
limited data. However, a systematic and structured data
acquisition is necessary to further develop the algorithm and
increase results to clinical relevance. 

Ewing sarcomas (ES) represent 7-10% of all bone malignancies
and have the second highest incidence after osteosarcomas (1).
The main differential diagnoses of Ewing sarcoma are acute
osteomyelitis (OM) and Langerhans Histiocytosis. Acute
osteomyelitis is a severe bone infection which most often has a
haematogenous origin (2). Other causes can be trauma, surgery,
or contiguously infected soft tissue. It occurs in 8 out of
100,000 children per year in high-income countries, yet it is
extremely common in developing countries as well. Male
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children are affected twice as often as female children (3).
Clinical and laboratory exams might be normal. Blood cultures
and biopsy samples are positive for bacteria in only 32-62% and
40-60%, respectively. Staphylococcus aureus, β-haemolytic
Streptococcus, Streptococcus pneumomiae, Escherichia coli and
Pseudomonas aeruginosa are the most common bacteria
involved in this acute bone infection (4). The symptoms include
pain, ROM (Range of Motion) limitations and fever (5). After
all, with proper treatment, the outcome for OM is usually good.
Conservative treatment with antibiotics is effective in 90% of
the early diagnosed paediatric cases (5, 6).  

However, Ewing sarcoma is a highly malignant blue round
cell tumour, 90% of whose cases occur in patients between
age 5 to 25. Worldwide, 2.9 out of 1,000,000 children per
year are affected by this malignancy, with a slightly higher
incidence in male patients (1.5 male: 1 female) (7). Children
usually present with load-independent local pain and ROM
limitation without a history of trauma, lasting for at least
four to six weeks. Ewing sarcoma treatment begins and ends
with chemotherapy. Surgery to remove the cancer is
normally performed after neoadjuvant chemotherapy.

Taking into consideration the completely contrasting
course of these two diseases, early diagnosis and referral to
a specialised centre is crucial for a successful treatment.
However differential diagnosis is extremely difficult.

Radiographs and MR images have a relatively low
diagnostic value in this crucial differential diagnosis (8, 9), if
not interpreted by a trained and experienced musculoskeletal
radiologist.

In brief summary, the symptoms, blood screening, as well
as the localisation (10) are extremely similar in both diseases.
The first radiological exam to conduct a differential diagnosis
apart from an ultrasound will be an X-ray. Even with this
imaging modality, the diagnosis will not be clear. Although
methods of nuclear medicine such as PET and SPECT are
currently the most accurate techniques, they are too elaborate
to be used in the phase of differential diagnosis and they are
usually not available for outpatient clinics (11, 12). 

In radiographs, both entities can present bone destruction
and periosteal reaction. The typical periosteal reaction
associated with Ewing sarcoma – lamellated, “onion skin” –
or “Codman’s triangle” can also be present in acute
osteomyelitis due to a subperiosteal abscess (4). Instead, MR
T1-weighted images in comparison with short tau inversion
recovery (STIR) showing sharp margins are one of the most
significant signs of Ewing sarcoma for the differentiation from
osteomyelitis (13). Hence, MRI, PET and SPECT are complex
techniques that are indicated when a solid suspicion is
provided or when the diagnosis is to be validated. The
resemblance of the radiological features as well as the clinical
course makes it demanding to distinguish these two entities. 

According to Bacci et al. (14), the overall delay between
initial symptoms and biopsy for Ewing sarcoma is

approximately four months. If we consider that the estimated
five-year survival for Ewing sarcoma patients shifts from 50-
70% in early diagnosed localised cases to 18-30% in
metastatic cases (15) and that unfortunately, 25% of all
Ewing sarcoma patients have a metastatic disease at the time
of diagnosis (16), four months “until” or “since” the first
diagnosis make a huge difference in the prognosis of these
young patients. To shorten the delay of referral to a
specialised centre, it is crucial to improve the ability of
outpatient clinics to address a suspicious case. In this
process, radiographs represent the first obligatory step. In
order to prevent delays and limitation of the prognosis, it is
decisive to develop a new form of assistance which can
support precision and accuracy of the diagnostic process. 

Image interpretation as a part of precision medicine will play
an increasingly important role in the future of orthopaedic
oncology and novel, more comprehensive and specific analysis
tools are urgently needed, especially for outpatient clinics with
limited experience and resources for detection and interpretation
of rare bone malignancies. Deep learning (DL) represents a
subset of Machine Learning and a distinct application of
artificial intelligence (AI), which evolved from pattern
recognition and learning theory. While complex data analysis
of cancerous tissue by AI models and imaging data is already
widely applied in some medical specialties (e.g. lung and breast
cancer), the application of these methods in orthopaedic
oncology is still very limited (17). The fact that globally no far-
reaching structures for systematic data acquisition have yet been
established and that sarcomas are very rare and heterogeneous
entities makes modern AI applications, for which a sufficient
and qualitative amount of data is crucial, considerably more
difficult. While this is a common obstacle – particularly in
medicine – several techniques to cope with limited data have
emerged. One popular technique is called data augmentation
(18), in which new data is created artificially by applying minor
transformations to initial data. Another even more powerful
method is Transfer Learning (19), where a model is developed
for a source task and then reused as a starting point for the
target task (Figure 1). 

The focus of this study was to develop a real-time support
tool for the detection and distinction between Ewing sarcoma
and acute osteomyelitis using a two-phase DL algorithm.

Materials and Methods

Data and ethics approval. The local institutional review and ethics
board (Klinikum rechts der Isar, Technical University of Munich)
approved this retrospective study (N˚48/20S). The study was
performed in accordance with national and international guidelines.
The study is a purely retrospective study in which all data are
already available and are collected in pseudonymised form with the
help of the musculoskeletal tumour database or by studying files.
To increase the quality of the presented observational study and its
prediction model, reporting was derived from the Transparent
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Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) guidelines (20) and the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) statement (21).

Eligibility criteria. All patients from our database with the according
ICD-10 code for OM and ES were selected. For all patients, the
diagnoses were validated through a histopathological examination
as reference standard. The data was retrieved from our hospital
information system (HIS) and the picture archiving and
communications system (PACS).
The following inclusion criteria were applied:
- patients younger than or equal to 18 years;
- intraosseous Ewing sarcoma;
- histopathologically confirmed cases of acute osteomyelitis or acute
on chronic osteomyelitis;
- images prior to treatment.
Patients older than 18 years, chronic osteomyelitis, extraosseous
Ewing sarcoma, malignant small cell tumour, soft tissue-based
primitive neuroectodermal tumours (PNET) cases were excluded.

Statistical analysis. For statistical analysis and evaluation, accuracy,
sensitivity, and specificity were computed for each phase, cross-
validated and interpreted by an orthopaedic surgeon (S.C.) and a
computer scientist (F.H.). The metrics were implemented using the
scikit-learn library (https://scikit-learn.org/stable/modules/model_
evaluation.html).

Considering that the control group was selected, only the patients
with acute osteomyelitis and Ewing sarcoma were included in the
statistical analysis. Nevertheless, a control group was needed to
develop an algorithm for detection of pathological cases in the first
place.

Except for the ‘Localisation’, none of the patient meta data is
normally distributed according to normality test by D’Agostino-
Pearson. Figure 2 shows a correlation matrix according to values of
Spearman’s rank-order correlation coefficient, which is a measure
for linear correlation between two datasets and does not assume that
both datasets are normally distributed. Only ‘Age’/‘Year’ of
diagnosis’ and ‘Sex’/‘Entity’ show a slight indirect correlation (|ρ|
>0.4). It is to be expected with small datasets that no high and stable
correlations can be found.

Consalvo et al: Algorithm for Detection and Differentiation of Ewing Sarcoma and Acute Osteomyelitis
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Model training. Model training and inference was conducted on a
DGX Station A100 with four 80GB graphical processing units
(Nvidia Corporation, Santa Clara, CA, USA), 64 2.25 GHz cores
and 512 GB DDR4 system memory running on a Linux/Ubuntu
20.04 distribution (Canonical, London, England). Preprocessing and
model implementation were performed in Python 3.9.6
(https://www.python.org/) using PyTorch 1.9.0 and cuda toolkit 11.1
(https://pytorch.org/).

The source code for this study is provided on GitHub
(https://github.com/FlorianH3000/ewing).

A supervised DL algorithm for image classification in two phases
was developed: phase 1 for detection of pathological cases and
phase 2 for differentiation of ES and OM cases. For both phases, a
ResNet (22) was selected. Beforehand, the model was pretrained on
42.608 sarcoma related X-ray images for Transfer learning. For
phase 1 and 2 a ResNet18 architecture was chosen. To tackle the
overall limited amount of data and integrate regularization,
extensive data augmentation was implemented to artificially create
more input data during training. In order to manage the class
imbalances in both phases, median frequency balancing was utilized
to weight the loss of classes accordingly and support the robustness
of the algorithm (23). A data split of 70%, 15%, 15% was applied
for training, validation, and testing, respectively. Since up to four
images from single patients were collected, the data split was
applied to patients in order to avoid cross-contamination and
therefore provide a higher statistical significance. An additional 6-
fold cross validation supported this task, while random chosen hold-
out test data for final evaluation remained untouched.

Plausibility. To provide plausibility and more insight into the AI model,
Grad-CAMs were implemented in the final inference step (24). Grad-

CAMs utilize the gradient information from the last convolutional layer
of a deep learning network to understand specific neurons and their
impact for decision-making. The result is a coloured heat map, which
is co-registered to the original input image and indicates where the
algorithm found relevant information for the task at hand. This
technique was applied to get a better understanding where the algorithm
detects relevant information. To provide a higher statistical significance,
the Grad-CAM results were averaged from the 6-fold cross validation.

Results

Dataset. A total of 115 patients treated in our institution for
OM or ES between 2000 and 2021 were retrospectively
reviewed. After applying the inclusion criteria, 74 cases were
excluded, and 41 cases remained. After screening the data,
another 14 cases were excluded due to insufficient or invalid
data. Ultimately, 27 cases, 9 with acute osteomyelitis and 18
with Ewing sarcoma were collected.

Additionally, 31 healthy cases were included in order to
balance the dataset and create a “control group”. These
patients were treated in our emergency room with a history
of acute trauma of a joint. The performed X-ray could
exclude any kind of fracture or bone anomalies so that these
cases were diagnosed as bruises or contusions. Consequently,
a “healthy group” without exposing children to X-ray
radiation for our study was obtained. The control group was
chosen with similar localisation to our “pathological group”.
Overall, 182 radiographs (healthy 118, 44 Ewing, 20
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osteomyelitis) from 58 patients were collected including data
from external imaging data (Figure 3).

Patient characteristics. The dataset including the healthy
control group, Ewing sarcoma and acute osteomyelitis consists
of 23 females (39.7%) and 35 males (60.3%). While 19 (32.8%)
of the patients were affected at their upper extremities, 35
(60.3%) were affected at their lower extremities and 4 (6.9%)

at other localisations. The average age of patients at the time of
the initial diagnosis resulted in 9.5 years with a variance of 27.6
and a standard deviation of 5.2 (Table I and Table II).

Model performance in phase 1. All results were cross-
validated. The first two-entity classification of the healthy
control group and the pathological group resulted in an
accuracy of 94.4%/90.6%, sensitivity of 90.0%/89.4% and
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Table I. Distribution of Ewing sarcoma (ES) and osteomyelitis (OM) dataset according to patient characteristics (sex and localisation).

                                                                                         Entity                                                              Sex                                            Localisation    

                                                                                                          #              %                                     #                %                                              #
                                                                                                                             
Pathological cases (ES & OM)      Acute osteomyelitis                   9          33.3%          Female              5            18.5%             Upper extr.             2
                                                                                                                                        Male                  4            14.8%             Lower extr.            6
                                                                                                                                                                                                  Other                      1

                                                        Ewing sarcoma                         18         66.7%          Female              3            11.1%             Upper extr.             6
                                                                                                                                        Male                 15           55.6%             Lower extr.            9
                                                                                                                                                                                                  Other                      3

                                                        Total                                          27        100.0%         Female              8            29.6%             Upper extr.             8
                                                                                                                                        Male                 19           70.4%             Lower extr.           15
                                                                                                                                                                                                  Other                      4

Control group (healthy)                  Total                                          31        100.0%         Female             15           48.4%             Upper extr.            11
                                                                                                                                        Male                 16           51.6%             Lower extr.           20
                                                                                                                                                                                                  Other                      0

                                                        
Complete dataset                            Pathological cases                    27         46.6%          Female              8            13.8%             Upper extr.             8
                                                        (relative to whole dataset)                                     Male                 19           32.8%             Lower extr.           15
                                                                                                                                                                                                  Other                      4

                                                        Control group                           31         53.4%          Female             15           25.9%             Upper extr.            11
                                                        (relative to whole dataset)                                     Male                 16           27.6%             Lower extr.           20
                                                                                                                                                                                                  Other                      0

                                                        Total                                          58        100.0%         Female             23           39.7%             Upper extr.            19
                                                                                                                                         Male                 35           60.3%             Lower extr.           35
                                                                                                                                                                                                   Other                      4

Table II. Age distribution of involved patients classified in Ewing sarcoma (ES) group and osteomyelitis (OM) group: pathological cases, control
group and complete dataset.

                                                                                                Entity                                                                             Age

                                                                                                          #                    %                  Average                Variance                Standard deviation

Pathological cases (ES & OM)       Acute osteomyelitis                 9                 33.3%                 13.6                        5.6                                2.4
                                                          Ewing sarcoma                      18                 66.7%                 12.8                      20.5                                4.5
                                                          Total                                        27               100.0%                 13.0                      15.7                                4.0
                                                                                                                                                                                            
Control group (healthy)                   Total                                        31               100.0%                   6.4                      16.6                                4.1
                                                                                                                                                                                            
Complete dataset                              Pathological cases                  27                 46.6%                 13.0                      15.7                                4.0
                                                          Control group                         31                 53.4%                   6.4                      16.6                                4.1
                                                          Total                                        58               100.0%                   9.5                      27.1                                5.2



specificity of 87.2%/91.0% for the validation and test split,
respectively (Figure 4). 

Model performance in phase 2. All results were cross-
validated. The second two-entity classification of OM and
ES cases resulted in an accuracy of 90.3%/86.7%, sensitivity
of 93.0%/100.0% and specificity of 84.4%/76.0% for the
validation and test dataset, respectively (Figure 5).

Grad-CAM results. Figure 6 and Figure 7 display the results
of Grad-CAM visualizations from the test dataset of each

entity. The displayed Figures show that the algorithm did in
fact find relevant information in very similar areas where a
trained radiologist or an orthopaedic surgeon would look at
when diagnosing a patient based on a radiograph.

Discussion

The most important finding of this study is that even with a
very limited amount of data, good results in detecting and
distinguishing Ewing sarcoma from acute osteomyelitis can
be achieved through data augmentation and particularly
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Figure 4. Prediction of performance in Phase 1.

Figure 5. Prediction of performance in Phase 2.



Transfer Learning. Nevertheless, to further increase the
results, a systematic and structured data acquisition is
necessary to gather sufficient data and improve the overall
accuracy.

Limitations. The main limitation of studying these entities is
the extreme rarity of Ewing sarcoma. This makes it very
challenging to acquire sufficient imaging data that could
enhance the accuracy and stability of the algorithm.
Additionally, in most centres data infrastructures are not yet
fully adapted to the needs of modern AI applications. Current
HIS and PACS systems were often initially set up years ago
and were not designed to retrieve data for AI research. Thus,

a considerable amount of data was lost over the years (14
patients excluded due to insufficient data).

While several precautions to provide statistical
significance were applied – such as cross validation, loss
weighting or incorporating Transfer Learning via pretrained
networks - limited amount of data for final validation and
testing might still bias the accuracy of the algorithm
compared to real-world scenarios. However, this issue can
most likely be addressed with further establishment of
collaboration of specialised centres, the according data
infrastructure, and therefore more sufficient datasets.  

Another limitation of this study is that the DL model did not
use demographics or other important patient characteristics as
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Figure 6. Grad-CAM of healthy (a/b) and pathological cases (c/d) in phase 1: Grad-CAM results displaying that the algorithm focused on pixels
similar to the areas a radiologist or orthopaedic surgeon would look at.



input. This study is supposed to be a feasibility study for
radiographs, ES and OM. Nevertheless, integrating meta
information into the algorithm is one of the next steps.

Interpretation of results. From a medical as well as a computer
science point of view, the performances are very promising
considering the complexity of the radiological manifestation
of the diseases and the very limited amount of available data.
Not only the overall accuracy, but the sensitivity and
specificity (also incorporating true positive rate and the true
negative rate), concluded in considerably high results.

The model accuracy obtained in the study of von Schacky
et al. (25) involving all primary bone tumours was comparable

with a musculoskeletal fellowship-trained radiologist (71.2%
and 64.9%, respectively) and even higher than the one
obtained by radiologic residents (83.8% and 82.9%;
respectively). Therefore, we can hypothesize that deep
learning algorithms, such as the one presented in this study,
can potentially become a significant support - particularly for
outpatient clinic doctors who do not have access to expert
orthopaedic tumour radiologists. The algorithm could help to
reduce the delay of referral to a specialised centre and improve
the overall survival of young patients. 

While this study demonstrates the feasibility of interpreting
X-ray images with ES and OM through DL and most likely
also surpasses the accuracy of outpatient clinics (no literature
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Figure 7. Grad-CAMs of an OM patient (a/b) and an ES patient (c/d) in phase 2: Grad-CAM results showing that for ES the algorithm did also
focus on similar areas a radiologist or orthopaedic surgeon would look at, but in the acute osteomyelitis case several areas were in focus of the
algorithm.



was found to underline this statement), however, statistical
robustness must be further investigated before a decision
support tool can be integrated into a clinical environment.

Interpretation of Grad-CAMs. While the significance and
validity of Grad-CAMs is for some tasks also controversially
discussed in the field of computer science, we still believe
that it is worth analysing and interpreting specific Grad-
CAM results. For example, Figure 7 (Grad-CAM c) shows
that the suspect region around the middle phalange of the 4th
finger was detected by the algorithm, but additionally several
other spots in the wrist area affected the algorithm’s
decision. Such findings can help to unravel the “black box”
behind state-of-the-art DL algorithms, might indicate new
ways to evaluate radiographs (and also other imaging
modalities) and on the long run assist the process of making
precise and fast diagnosis.

Future application. The primary application of the developed
algorithm is focused on outpatient clinics. While specialised
centres usually have several sarcoma experts as well as more
sophisticated imaging modalities, an outpatient clinic doctor
has to rely on his/her expertise and radiographic diagnostics
to conclude a first diagnosis and potentially refer a patient
to a specialised centre, while having seen only about three
musculoskeletal malignancies in his/her professional life
(26). In such a case, a support tool to highlight suspect cases
and even identify ES or OM could have a significant impact.

Conclusion

Radiography is a common and largely available imaging
technique that is often used for first clinical assessment.
Although radiographs only consist of two-dimensional
greyscale information, the high resolution and the
considerably standardised technique still make it a very
suitable input for modern algorithms. We believe that AI
algorithms can become a valuable real-time support for any
outpatient clinic involved in the crucial processes of
detecting and differentiating a case of acute osteomyelitis
from a possible case of an Ewing sarcoma. This allows for
a minimal loss of time between diagnosis and specific
treatment, which is crucial for patients with Ewing sarcoma.
While our algorithm was developed for a specific dataset, it
can function as a template for other entities with minor
adjustments, where a radiograph can be utilised for early and
precise detection for various diseases.
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Abstract: Bone tumours are a rare and often highly ma-
lignant entity. Early clinical diagnosis is the most important
step, but the difficulty of detecting and assessing bone ma-
lignancies is in its radiological peculiarity and limited expe-
rience of non-experts. Since X-ray imaging is the first imaging
method of bone tumour diagnostics, the purpose of this study
is to develop an artificial intelligence (AI) model to detect and
segment the tumorous tissue in a radiograph. We investigated
which methods are necessary to cope with limited and hetero-
geneous data. We collected 531 anonymised radiographs from
our musculoskeletal tumour centre. In order to adapt to the
complexity of recognizing the malignant tissue and cope with
limited data, transfer learning, data augmentation as well as
several architectures, some of which were initially designed
for medical images, were implemented. Furthermore, dataset
size was varied by adding another bone tumour entity. We ap-
plied a data split of 72%, 18%, 10% for training, validation
and testing, respectively. To provide statistical significance and
robustness, we applied a cross-validation and image stratifica-
tion with respect to tumour pixels present. We achieved an ac-
curacy of 99.72% and an intersection over union of 87.43%
for hold-out test data by applying several methods to tackle
limited data. Transfer learning and additional data brought
the greatest performance increase. In conclusion, our model
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was able to detect and segment tumorous tissue in radiographs
with good performance, although it was trained on a very lim-
ited amount of data. Transfer Learning and data augmentation
proved to significantly mitigate the issue of limited data sam-
ples. However, to accomplish clinical significance, more data
has to be acquired in the future. Through minor adjustments,
the model could be adapted to other musculoskeletal tumour
entities and become a general support tool for orthopaedic sur-
geons and radiologists.

Keywords: deep learning, sarcoma, bone tumour, detection,
segmentation

1 Introduction

Bone tumours are a rare disease overall [8], but are among the
most common cancers in children and adolescents (>10% of
all paediatric cancers). The complex and time-consuming di-
agnosis in a specialised centre includes clinical, radiological
and histopathological steps as well as the subsequent interdis-
ciplinary assessment in a specialised tumour board. A general
practitioner, on the other hand, usually has only X-ray diag-
nostics and, because of the incidence, statistically encounters
bone tumours less than three times in his/her professional life.
As a result, sarcomas are often misdiagnosed [8] and prognos-
tically essential time is lost, and patients are delayed in being
referred to specialised sarcoma centres. Hence, new and more
sophisticated techniques for early and reliable detection and
evaluation of bone tumours are urgently needed. Deep learning
(DL) is poised to reshape medicine and potentially improve
the experience of physicians as well as patients [9]. DL has
already had ample success in many medical disciplines [12].
In comparison, the impact and number of publications of DL
in orthopaedics are very limited [4, 11]. Most certainly this
can be explained by the low incidence of bone tumours (and
soft tissue tumours as well) and the lack of sufficient data in-
frastructures. While limited data is a common obstacle to DL
applications in medicine, even more so for image interpreta-
tion of bone malignancies. Thus, we developed a segmenta-
tion framework for heterogeneous and limited radiographs of
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bone tumours, focusing on Transfer Learning [2], data aug-
mentation [1, 3, 7] and leveraging various segmentation mod-
els [5, 10, 14] and configurations. In summary, we make the
following contributions:
1. We demonstrate a novel approach for bone tumour assess-

ment by detecting and segmenting malignancies with DL
and limited and heterogeneous radiographs.

2. We illustrate the impact of transfer learning, data augmen-
tation, different architectures and dataset size.

3. We provide a potential support tool to identify bone tu-
mours, not only for expert centres, but also potentially
targeting outpatients clinics and young physicians.

1.1 Related work

With the rise of DL, especially the task of segmentation [6] of
medical images became more and more popular over the past
decade [9]. Nonetheless, segmentation of bone tumours has
only been presented a few times. Zhang et al. [16] proposed
a multiple supervised residual network to segment osteosar-
comas in CT images with good results (Dice score 0.89). In
contrast, Schacky et al. [15] demonstrated a multi-task DL ap-
proach to classify, detect and segment bone tumours in radio-
graphs with fair segmentation performance (Dice score 0.6).
CT imaging is usually the imaging modality of choice for
bone pathologies, because it provides more detailed informa-
tion about the potential destruction of cortical bone. How-
ever, similar to Schacky et al., this study focused on detect-
ing and segmenting bone tumours in standardised radiographs
and identifying the most impactful methods for an imperfect
dataset.

2 Materials and Methods

2.1 Dataset

Fig. 1: Sample images before preprocessing.

We collected 531 preoperative radiographs from our mus-
culoskeletal tumour centre from paediatric sarcoma patients.
The dataset includes two subsets. The first subset with 44% of
the entire dataset contains osteosarcoma and the second subset
with 56% of the entire dataset contains chondrosarcoma. Typi-
cally, sarcoma occur in joints and long tubular bones and no re-
strictions regarding anatomical regions were applied. Also, the
images available are heterogeneous in character, as can be seen
in figure 1. They vary in dimension, resolution and data qual-
ity containing black or white background and marks. External
images were also included in the dataset. No meta-information
for statistical analysis was available and no further restrictions
regarding age, musculoskeletal features or sex were made. Ad-
ditionally, masks of the X-ray images including the location of
the tumour were created. The masks are a binarised representa-
tion of tumour tissue and healthy tissue which were manually
segmented by orthopaedic surgeons.

2.2 Model training

Model training and inference was conducted on a DGX
Station A100 with four 80GB graphical processing units
(Nvidia Corporation, Santa Clara, CA), 64 2.25 GHz cores and
512 GB DDR4 system memory running on a Linux/Ubuntu
20.04 distribution (Canonical, London, England). Preprocess-
ing and model implementation were performed in Python
3.8.5 (https://www.python.org/) using PyTorch 1.10.2 and
cuda toolkit 11.3 (https://pytorch.org/). The pretrained Con-
vNet model of this study will be provided upon publication.

2.3 Algorithm and experimental setup

Fig. 2: Illustration of workflow.

We developed a DL framework to train a segmentation
network and evaluate it through the metrics accuracy and in-
tersection over union (IoU). The dataset was preprocessed by
removing the background areas, padding to create a square
image, scaling to 256x256 and normalizing. The data split
for pretraining was 72%, 18%, 10% for training, validation
and hold-out testing, respectively. To provide statistical signif-
icance and robustness, images from all subsets were equally
distributed with respect to tumour pixels present. An addi-
tional 5-fold cross-validation supported the task.
The initial dataset contained only the images with osteosar-
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coma. As a baseline, we used U-Net-architecture as common
performance baseline with ResNet34 to train our neural net-
work and successively adapted several extensions to boost the
performance of the model as shown in figure 2. In the first
setup, instead of training from scratch, a pretrained model with
Imagenet weights was implemented. Afterwards, the impact
of data augmentation techniques was investigated in setup 2.
Therefore, the current best model of setup 1 was extended
by 12 different data augmentations including geometric trans-
formations, cropping, filtering and intensity operations. Then,
different data augmentation methods were combined by suc-
cessively extending the amount of data augmentations using
the operations with the highest IoU of the 12 data augmen-
tation methods first. Among other things, so-called unrealis-
tic data augmentations were used, which describe in particu-
lar operations that alter the images to such an extent that they
no longer correspond to a medically realistic X-ray image as
shown in figure 3 [3]. After determining the data augmenta-
tions leading to the highest IoU, we varied the model architec-
ture. Model architectures selected were UNet++, DeepLabv3,
DeepLabv3+ and MA-Net. In the last setup the data were du-
plicated by using the chondrosarcoma dataset to determine the
influence of the amount of data.

Fig. 3: Preprocessed sample image (a) and sample image with
excessive data augmentation (b).

3 Results

Tab. 1: Overall results of the test dataset.

Setup number Description Accuracy IoU

Baseline U-Net with ResNet34 99.51 % 73.78 %
Setup 1 Transfer learning 99.59 % 79.58 %
Setup 2 Data augmentation 99.62 % 82.70 %
Setup 3 Model architecture 99.64 % 83.39 %
Setup 4 Amount of data 99.72 % 87.43 %

Transfer learning improved the baseline results to an IoU
of 5.80% in setup 1 as shown in table 1. The best combination
of additional data augmentations from configurations selected
was the combined application of several affine transforma-
tions as shown in figure 1. In setup 3, we choose UNet++
architecture as model selected with the highest IoU compared
to the model architectures U-Net, MA-Net, DeepLabv3 and
DeepLabv3+. While MA-Net also had a relatively high IoU
and accuracy of 83.19% and 99.62%, DeepLabv3 only reached
an IoU 10.78% lower than UNet++. Through adding the chon-
drosarcoma images, we reached a final accuracy of 99.72%
and an IoU of 87.43%. A prediction of a sample image of the
final framework is shown in figure 4.

Fig. 4: Sample image with predicted and target mask.

4 Discussion

The main finding of this study was that significant results in
detecting and segmenting heterogeneous bone tumour appear-
ances in limited radiographs can be reached by implementing
several methods to fine-tune the algorithm and tackle the issue
of small datasets.
An improvement in accuracy and IoU could be achieved in
each setup through an extending framework. For this task, us-
ing a pretrained neural network and adding more data leads to
the biggest improvement of the segmentation task. It should
be emphasized that the added data is that of another entity.
Nevertheless, the datasets contain similar image features and
therefore lead to improved performance. Additionally, data
augmentation methods have shown to support image segmen-
tation tasks. Further, while in literature realism is a goal for

cdbme_2022_8_2.pdf   71 8/29/2022   5:45:27 PM

71



Bloier, Hinterwimmer et al., Bone tumour segmenter

many authors [1, 3], in our approach unrealistic data augmen-
tations through for example affine transformations lead to bet-
ter segmentation results than the realistic ones. However, the
use of more data augmentations is not guaranteed to be bene-
ficial as they might lead to poorer results. Choosing an appro-
priate model is crucial to get good segmentation results. In our
task, UNet++ [14] and MA-Net [5, 13] lead to the best perfor-
mance.
The major limitation of this study is the low amount of data
available, hence, robustness of the model has to be further val-
idated. In addition, the interpretation of the results must take
into account that there is no gold standard for segmentation la-
bels. Therefore, the segmentation labels need to be evaluated
by an interdisciplinary team.

4.1 Conclusion

Transfer learning and an increased quantity of data even from
another entity lead to the largest improvement of segmen-
tation results, while varying the model architecture leads to
the biggest differences in IoU and accuracy. In addition, un-
realistic data augmentation through affine transformations
supported the task. To achieve clinically relevant results, a
systematic and structured collection of data to increase dataset
size is of paramount importance.
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Abstract 41 

Objective: To propose a multimodal deep learning model that integrates clinical metadata and 42 

X-ray imaging to enhance the classification of primary bone tumours, while providing 43 

explainability through Shapley additive explanations. 44 

Methods: For this retrospective single centre study a dataset of 1,785 radiographs of 804 45 

patients from 2000 to 2020 was used. Additionally, the respective metadata was collected (age 46 

= patient’s age, site = affected bone, position = position of the tumour at the bone, gender = 47 

gender of the patient). The dataset encompassed ten selected tumour types and employed 48 

histopathology or tumour board decision as the reference standard. The proposed approach was 49 

based on the NesT image classification model and a multilayer perceptron with a joint fusion 50 

architecture. The study followed STROBE guidelines to present descriptive data, reporting 51 

discrete parameters using incidence and percentage ratio and continuous parameters using 52 

mean, standard deviation, median, and interquartile range, while the reporting and validation 53 

of the prediction model were based on TRIPOD statement. 54 

Results: The mean age was 33.62 ± 18.60 [SD] and 54.73% of patients were male. The 55 

multimodal deep learning model outperformed a state-of-the-art model (Vision Transformer) 56 

and similar studies in classifying primary bone tumours with 69.7% accuracy. SHAP values 57 

elucidated that age exerted the most substantial influence among the considered metadata. 58 

Conclusion: We developed a joint fusion approach outperforming state-of-the-art models and 59 

comparable studies by incorporating clinical metadata and imaging data into one model. 60 

Furthermore, we provide a magnitude of the impact of metadata through SHAP values. 61 

Clinical relevance statement: The developed algorithm for bone tumour classification, 62 

combining imaging data and clinical metadata, improves accuracy and aids timely referrals. It 63 

offers comprehensive assessment, assisting e.g. non-tumour experts in diagnosing bone 64 

tumours more effectively, with potential for precision medicine applications. 65 

 66 

Keywords: 67 

radiography, bone neoplasm, classification, deep learning, metadata, 68 



   
 

   

 

 69 

Key points: 70 

• The study introduces a model based on transformers and multilayer perceptrons (MLPs) 71 

for classifying ten primary bone tumour entities. 72 

• We found that including clinical metadata along with radiography significantly 73 

improved the classification accuracy of the bone tumour entities. This highlights the 74 

importance of incorporating patient-specific information alongside imaging data for 75 

more accurate classification. 76 

• While the results of the study showed promise in terms of increased accuracy, it is 77 

important to note that the model's results are not yet suitable for direct clinical 78 

application. Further refinement and evaluation are necessary before considering its use 79 

in a clinical setting. This highlights the ongoing nature of research and the need for 80 

extensive testing before deploying AI models in healthcare. 81 

 82 

Abbreviations: 83 

AI – artificial intelligence 84 

DL – deep learning 85 

NesT - Nested Hierarchical Transformer 86 

MLP – multilayer perceptron 87 

SHAP – Shapley additive explanations 88 

ViT – Vision transformer 89 

NLP – natural language processing 90 

 91 

Summary statement: 92 



   
 

   

 

We developed a novel joint fusion model that integrates imaging data and clinical metadata for 93 

bone tumour classification, improving performance and bringing us closer to gold standards of 94 

clinical diagnostic workflows. Further improvements and data collection can enhance the 95 

model's precision and make it a valuable tool for a range of medical professionals in bone 96 

tumour assessment. 97 

  98 



   
 

   

 

Introduction 99 

Bone tumors encompass rare lesions comprising various tumour entities [1-3], with the vast 100 

majority being benign [4]. Malignant primary bone tumours, though accounting for a mere 101 

0.2% of adult malignancies [4; 5], rank as the sixth most common cancer in children and the 102 

third most common in adolescents [1; 6]. Diagnosis in the early stages is challenging due to 103 

the absence of specific symptoms, resulting in significant treatment delays [3]. Timely referral 104 

to specialized tumour centres is crucial for comprehensive evaluation and differentiation 105 

between benign, intermediate, and malignant tumours [1]. Unfortunately, non-oncology-106 

trained medical professionals encounter only a few malignant primary bone tumours 107 

throughout their careers [7; 8], leading to potential delays of over a year and a lack of 108 

experience in identifying these complex tumour entities unequivocally. 109 

In 2018, the Musculoskeletal Tumor Society and American Academy of Orthopedic Surgeons 110 

Working Group recommended plain radiographs as the initial screening for bone tumours [5], 111 

including for children [9]. Even if only a radiograph is available, patients with suspected 112 

malignant lesions should be referred to musculoskeletal tumour centres to prevent treatment 113 

delays. The need for further imaging studies should be assessed at referral centres [5]. The final 114 

diagnosis relies on synthesizing clinical presentation, imaging features, and histopathologic 115 

findings if a specific radiologic diagnosis of a benign entity proves inconclusive [10]. 116 

The field of diagnostic imaging is rapidly advancing, with technology, innovation, and market 117 

expansion leading to increased production of imaging and clinical data [2; 11]. Precision 118 

medicine plays an increasingly important role in musculoskeletal radiology and orthopaedic 119 

oncology, necessitating advanced analysis tools [12; 13]. While artificial intelligence (AI), 120 

specifically Deep Learning (DL), is widely employed in lung, breast, and CNS cancer research 121 

[14], its application in musculoskeletal tumour research remains limited [2]. Nevertheless, 122 

these advanced data analysis techniques hold the potential to revolutionize the medical field, 123 

benefiting both physicians and patients [15]. 124 

In this study, we propose a DL model that emulates expert radiologists by incorporating clinical 125 

metadata alongside imaging data for diagnostic assessment and dataset enrichment. By doing 126 

so, our research question aligns closer with clinical reality: Can a state-of-the-art DL model 127 

accurately classify ten different bone tumour entities, leveraging the inclusion of clinical 128 

metadata from patients and providing insights into the significance of each clinical parameter? 129 



   
 

   

 

 130 

Methods 131 

This retrospective study (N°48/20S) was approved by the local institutional review and ethics 132 

board, following national and international guidelines. Informed consent was waived for this 133 

retrospective and anonymized study. 134 

 135 

Eligibility criteria 136 

In this single centre study, we screened our musculoskeletal tumour centre’s database from 137 

2000 to 2020 for patients treated for primary bone neoplasms based on ICD codes. The selected 138 

tumours were the most frequent in our database: Aneurysmal bone cyst (ABC), 139 

chondroblastoma, chondrosarcoma, enchondroma, Ewing sarcoma, fibrous dysplasia, giant 140 

cell tumour, non-ossifying fibroma (NOF), osteochondroma, and osteosarcoma. Malignant 141 

lesions were verified by histopathology, while benign and intermediate lesions were confirmed 142 

by histopathology or discussed in the local tumour board and classified based on radiological 143 

features [16]. Clinical and imaging data were retrieved from our HIS and PACS, respectively. 144 

The data curation and validation were performed by an orthopaedic resident, (SC) a senior 145 

musculoskeletal radiologist (JN), and a data scientist (MG). 146 

 147 

Patients 148 

We had access to a total of 42,608 radiographic images of bone tumours, tumour-like lesions, 149 

and their differential diagnoses, including e.g. osteomyelitis. However, approximately three-150 

fourths of the images were excluded as they were acquired post-surgery, after systemic therapy, 151 

or post-radiotherapy. The dataset ultimately included 1,785 images representing ten entities of 152 

benign, intermediate, and malignant bone tumours, after excluding 7,345 images that did not 153 

meet the criteria (e.g., exostosis, tumour-like lesions). Additionally, 995 images were discarded 154 

due to the absence of visible tumours (e.g., wrong angle, artefacts). These images were 155 

accompanied by patient metadata from 922 patients. Figure 1 displays the according flow 156 

diagram. 157 



   
 

   

 

Figure 1 - Flow diagram showing the application of eligibility criteria to create a final dataset. 158 

 159 

Statistical analysis 160 

Descriptive data follows STROBE guidelines [17], presenting discrete parameters as incidence 161 

and percentage ratio, and continuous parameters as mean, standard deviation, median, and 162 

interquartile range. The reporting and validation of the prediction model adhere to TRIPOD 163 

guidelines [18]. Statistical analysis was conducted by two data scientists (MG, FH). 164 

 165 

Image processing           166 

To accommodate the large size difference between radiographs and the standard DL model 167 

input size of 224 x 224 pixels [19; 20], we performed a ROI crop to remove non-relevant 168 

information. Segmentation masks, created by medical experts (SC, JN), were used for this 169 

dataset. An automated segmentation model by Bloier et al. [21] achieved a 99.72% accuracy 170 



   
 

   

 

in predicting these masks. The images were then cropped using a square bounding box around 171 

the segmentation mask, with a 15% padding for uncertainty. In the final preprocessing step, 172 

the cropped images were converted to standard grey scale and rescaled to 224 x 224 pixels. 173 

 174 

Model development 175 

Our approach combines imaging data and clinical metadata in a single deep learning model. 176 

Image features are extracted using a state-of-the-art classification network. Clinical data is 177 

processed through fully connected layers with ReLU activation functions and batch 178 

normalization, and the resulting features are concatenated. The final softmax layer provides a 179 

probability prediction for the entity. During training, the loss is propagated through the entire 180 

model, including the image and metadata networks. According to Huang et al. [22] our model 181 

configuration is classified as a joint fusion model that is independent of any specific image 182 

classification network, chosen because it weighs image and metadata equally. 183 

To compute baseline results, we implemented a XGboost [23] model for classification only 184 

with metadata. Further, to compute baseline results for solely imaging data, we compared a 185 

ResNet [19] model with the NestT [24] model. ResNet utilizes residual connections to build 186 

deeper and more powerful CNNs. NestT, on the other hand, is based on the ViT architecture 187 

from the NLP domain, which employs self-attention instead of convolutions [25]. ViT 188 

generally outperforms CNNs when datasets are large [26], while NestT performs well even 189 

with small datasets [24]. The model was trained using the Adam optimizer with specific 190 

parameters according to Kingma et al.'s paper [27]. The weights of the model were pretrained 191 

with the ImageNet dataset, and early stopping was implemented with a patience of 20 to prevent 192 

unnecessary training. 193 

 194 

The model training and inference were conducted on a DGX Station A100 equipped with four 195 

graphical processing units, 64 cores, and 512 GB system memory. The system ran on a 196 

Linux/Ubuntu 20.04 distribution. Pre-processing and model implementation were performed 197 

using Python 3.9.12, PyTorch Lightning 1.7.1, PyTorch 1.12.1, and the CUDA toolkit 11.3.1. 198 

The trained classification model will be made available on GitHub upon publication. 199 



   
 

   

 

 200 

Outcome and model evaluation 201 

For hyperparameter optimization, we compared the mean validation accuracy using 5-fold 202 

cross-validation. The standard deviation was assessed to evaluate model robustness. In our 203 

multi-class classification setting, we used macro averaging, which calculates metrics for each 204 

class separately and then averages them with equal weight. For evaluating individual class 205 

performance, we calculated a confusion matrix. To compare different model architectures and 206 

approaches, we assessed the mean test accuracy with 5-fold cross-validation. Additionally, we 207 

analysed the ensemble test accuracy, which combines all training data from the five cross-208 

validation folds. 209 

 210 

Model interpretation 211 

Understanding the reasoning behind a model's prediction is often crucial, but complex models 212 

can be difficult to interpret, posing challenges for humans. Deep learning models, in particular, 213 

are considered black boxes due to their nested nonlinear structure [28]. To address this issue, 214 

we implemented SHAP (SHapley Additive exPlanations) introduced by Lundberg et al. [29]. 215 

This method calculates the impact of features on individual model predictions. To assess 216 

overall performance, we computed average SHAP values across all test samples. As the 217 

DeepLiftShap approach does not support Vision Transformers (ViTs), we used the 218 

GradientShap algorithm to calculate SHAP values. For instance, the binary-encoded metadata 219 

gender is represented by two input features, whose sum yields the SHAP value. Similarly, 220 

SHAP values for tumour site and position at bone were computed using the same procedure. 221 

 222 

Results 223 

Dataset 224 

The patients' mean age was 33.62 ± 18.60. For more information, refer to Table 1. Among the 225 

entities in the dataset, osteochondroma was the most common (28.48%), while Ewing sarcoma 226 



   
 

   

 

was the least frequent (0.37%). This indicates an imbalanced dataset with significant variations 227 

in sample distribution. The gender distribution was relatively balanced, with females 228 

accounting for 45.27% and males for 54.73% of cases, slightly favouring males. The femur 229 

was the most common tumour site (36.82%), whereas the os sacrum had only one occurrence 230 

(0.12%) in the entire dataset. Additional discrete patient characteristics can be found in Table 231 

2. Figure 2 illustrates one example image per entity after pre-processing. 232 

 233 

234 
Figure 2 - Examples of radiographs of each entity: one example for each entity after pre-processing (cropping, rescaling). 235 

 236 

Model performance 237 

Table 3 presents the different tested models, including three “baseline” models (only meta- or 238 

only imaging data) and three models based on our proposed architecture. The XGBoost [23] 239 

model trained solely with metadata achieved an accuracy of 0.185. For image-only models, we 240 

compared ResNet18 [19] and NesT [24], with NesT achieving a higher accuracy of 0.628 ± 241 

0.019 compared to ResNet18's 0.541 ± 0.029. The NesT architecture with a small model size, 242 

a learning rate of α = 0.0005, and a batch size of 16 performed best. Concatenating the features 243 

from the NesT model and a separate MLP for metadata, we constructed our multimodal 244 

approach. The architecture is depicted in Figure 3. 245 

 246 



   
 

   

 

Figure 3 - Proposed multimodal model: metadata (clinical data) being processed through a multilayer perceptron, imaging data through 247 

common image classification networks and concatenation (fusion) of both in feature space before a final fully connected and softmax layer. 248 

 249 

With the multimodal model, we achieved an accuracy of 0.641. When optimizing the 250 

hyperparameters, we found that the encoding of the metadata had an impact on performance. 251 

For our final model, the features were coded as follows: 252 

• gender: binary [male, female] 253 

• age: ordinal [1,2,3 etc.] 254 

• site: one-hot [clavicle, femur, etc.] 255 

• position: one-hot [epiphysis, epi-metaphysis, metaphysis, meta-diaphysis, diaphysis] 256 

All shown results were obtained after hyperparameter tuning.  257 

 258 

Improvement through ensemble model 259 

The average accuracy results from cross-validation were presented. Combining all folds into 260 

an ensemble model improved the accuracy by summing up the logits of the five models and 261 

applying a softmax layer. The multimodal model showed the highest improvement, achieving 262 

a final accuracy of 0.697. 263 

 264 



   
 

   

 

Comparison of the performance of each entity 265 

Figure 4 shows a confusion matrix with the individual accuracy of each entity. Each test sample 266 

of Chondroblastomas and Ewing sarcomas were classified incorrectly. The best performance 267 

was observed for osteochondromas with an accuracy of 88% and Enchondromas with 75%. 268 

Figure 4 - Accuracy scores per entity and respective predictions: No Chondroblastoma or Ewing was classified correctly, therefore all metrics 269 

for these two entities were 0.00. Osteochondromas and enchondromas achieved the best performance with 88% and 75%, respectively. 270 

 271 

Explainability through SHAP 272 

We used the SHAP framework to evaluate the impact of metadata on the best-performing NesT 273 

model, as introduced by Lundberg et al. [29]. In Figure 5, the averaged SHAP results are 274 

visualized. 275 

 276 



   
 

   

 

Figure 5 - SHAP results for the best-performing NesT model: the contribution of the features of the tumor at the bone, gender = gender of the 277 

patient). 278 

 279 

Age was found to have the highest impact on the prediction, while the contribution of other 280 

metadata features was similar. Additionally, the influence of metadata on output predictions 281 

varied for each entity. Chondrosarcoma showed the highest SHAP value for age, while fibrous 282 

dysplasia had the lowest. To gain further insights, we examined the age distributions for these 283 

entities, comparing them with the rest of the dataset. Figure 6 illustrates the age distribution for 284 

fibrous dysplasia, and a similar comparison is made for chondrosarcoma. 285 

Figure 6 - Age distribution for two entities compared to the overall distribution of the other entities. Normalization is calculated separately for 286 

both groups (entity/not-entity), since the not-entity group contains many more samples. 287 

 288 



   
 

   

 

Discussion 289 

The main finding of this study was the successful development of a transformer and MLP-290 

based model for classifying ten primary bone tumour entities. Including clinical metadata along 291 

with radiography significantly improved the classification accuracy. While the results are not 292 

yet ready for clinical application, they highlight the potential of addressing the complex 293 

diagnostic classification task by increasing data quality and quantity. Integration of more 294 

comprehensive data, as suggested in literature [2; 5; 6], could further enhance the model's 295 

performance. Additionally, the implementation of SHAP helped provide insights into the 296 

impact of metadata and interpret the black-box nature of DL models. It is important to note that 297 

the age plot for fibrous dysplasia and other entities showed a significant intersection, making 298 

it challenging to extract information based on age alone for this entity. Conversely, the age plot 299 

for chondrosarcoma displayed a larger impact according to SHAP values, with less intersection 300 

with other entities (Figure 6b). This suggests that age is a useful feature for distinguishing the 301 

presence of chondrosarcoma. 302 

A major limitation of this study is the size of the dataset. While having 1,785 radiographs is 303 

significant for rare primary bone tumour entities, the average of 178 samples per class is 304 

relatively low considering the heterogeneity of bone lesions and the requirements of deep 305 

learning. This limited dataset results in class imbalance, which is common in medical datasets. 306 

The most common entity (osteochondroma) has 501 occurrences, while the least common 307 

entity (Ewing sarcoma) has only 6 occurrences. The underrepresentation of less frequent 308 

classes can lead to overfitting and poor generalization [26]. Another limitation is the lack of 309 

evaluation using external data. Although around 10% of the dataset consists of radiographs 310 

from external sources, such as general practitioners and external radiologists, it is necessary to 311 

test the model on additional external data to assess its generalizability [30]. This assessment is 312 

crucial before considering the model's suitability for clinical use [31]. 313 

Several prior studies have explored the classification of bone tumours using imaging data [12; 314 

13] or have demonstrated multimodal approaches for integrating imaging and tabular data in 315 

medical classification [26; 32]. For instance, von Schacky et al. [13] developed a multitask 316 

deep learning (DL) model capable of simultaneously detecting, segmenting, and classifying 317 

bone lesions, comparing its performance against radiologists of varying experience levels. The 318 

overall task of classifying bone lesions and the specific entities examined in their study were 319 

similar to those in our research. While their model achieved a classification accuracy of 43.2%, 320 



   
 

   

 

a musculoskeletal radiologist achieved 58.6% accuracy in classifying bone lesions on an entity 321 

level. Although our metric values were significantly higher, von Schacky et al. had to contend 322 

with a lower sample ratio per class, fewer patients, and thus a smaller overall dataset. Their 323 

study primarily focused on a multitasking model and comparison with human experts, while 324 

our emphasis cantered on integrating clinical metadata in conjunction with imaging data using 325 

state-of-the-art techniques. Nonetheless, their study underscores the intricate nature of 326 

accurately identifying bone neoplasms for both DL models and clinical professionals. In a 327 

similar study, Liu et al. [33] proposed a deep learning-machine learning model for classifying 328 

bone tumours using patient clinical metadata and radiographs. They collected 982 radiographs 329 

from 643 patients, incorporating clinical metadata such as age, gender, and location. Their 330 

approach involved using an Inception V3 model to process imaging data and fusing its output 331 

with clinical features to train an XGBoost model. Their fusion model achieved a top macro 332 

area under the curve of 0.872, outperforming five radiologists by 0.819. The main difference 333 

between their study and ours is their focus on predicting tumour malignancy, while we aimed 334 

to classify ten tumour entities. The classification task differs due to the number of classes and 335 

sample sizes. Our fusion approach captures both image and metadata information, while Liu et 336 

al. combined DL model probabilities with metadata before using a secondary model. We 337 

hypothesize that our approach better aligns with the clinical algorithm used by radiologists and 338 

surgeons, as it simultaneously evaluates metadata and imaging data for comprehensive and 339 

accurate bone tumour assessment, leading to improved performance. Xu et al. [34] presented a 340 

notable study that employed multimodal data and a fusion approach for accurate differential 341 

diagnosis of skin tumours. They introduced a transformer model capable of leveraging 342 

multimodality imaging and non-imaging data to enhance diagnostic performance. Their 343 

approach involved integrating a cross-modality fusion module with a transformer-based 344 

multimodal classification system, enabling the fusion of data from multiple sources. The 345 

dataset used in their study encompassed dermoscopy, clinical imaging, and patient metadata. 346 

To evaluate the effectiveness of their proposed model, Xu et al. conducted experiments on both 347 

a public dataset (Derm7pt, 1,011 cases) and an in-house dataset (5,601 cases). The results were 348 

highly promising, surpassing the state-of-the-art performance with a 2.8% increase and 349 

achieving an impressive accuracy of 88.5%, respectively. In comparison to our model, the 350 

approach described by Xu et al. demonstrated the capability to incorporate multimodal imaging 351 

in addition to metadata. While "remixing" metadata within disease classes yielded positive 352 

results in their specific domain, we posit that in our case, metadata and image features are 353 

closely intertwined and should not be interchangeably treated. Nevertheless, it is important to 354 



   
 

   

 

note that no existing model, to the best of our knowledge, has proposed a multimodal approach 355 

that integrates both imaging and patient-specific metadata for bone tumour classification. 356 

The framework with a transformer model and MLP, combined through feature join for image 357 

and metadata processing, is transferable to other scenarios where integration of different types 358 

of information is crucial for decision-making. The retrospective dataset, spanning 20 years and 359 

including diverse patient populations and imaging devices, ensures a lack of strong bias and 360 

good generalizability. However, although the dataset is considerable for rare bone tumours, it 361 

is not extremely large in terms of DL. To ensure broader generalizability, a larger dataset 362 

should be collected in the future. 363 

The proposed model's results do not yet have direct clinical relevance, but the increased 364 

accuracy achieved through state-of-the-art methodology shows promise. Enriching the imaging 365 

dataset with clinical metadata brings AI models closer to the approach of human experts. These 366 

promising results, along with other applications of AI models in medicine, could raise 367 

awareness among domain experts. Optimal AI model performance relies on domain experts 368 

supporting the collection of complete, accurate, and comprehensive medical data, as data 369 

quality and quantity are vital factors. 370 

In conclusion, we developed a novel fusion model, combining NesT and MLP, to integrate 371 

imaging data and clinical metadata for bone tumour classification. By enriching the imaging 372 

dataset with patient-specific clinical metadata, such as age, gender, tumour position, and site, 373 

we improved performance and surpassed similar studies. This approach aligns with current 374 

clinical diagnostic workflows, where imaging data and patient characteristics are evaluated 375 

together for tumour assessment. While the results are not yet suitable for clinical application, 376 

we believe that structured data collection can further enhance our model's performance, making 377 

it a valuable tool for radiologists, surgeons, and general practitioners in bone tumour 378 

assessment.  379 
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Figures and Tables 475 

• Figure 1 - Flow diagram showing the application of eligibility criteria to create a final 476 

dataset. 477 

• Figure 2 - Examples of radiographs of each entity: one example for each entity after 478 

pre-processing (cropping, rescaling). 479 

• Figure 3 - Proposed multimodal model: metadata (clinical data) being processed 480 

through a multilayer perceptron, imaging data through common image classification 481 

networks and concatenation (fusion) of both in feature space before a final fully 482 

connected and softmax layer. 483 

• Figure 4 - Accuracy scores per entity and respective predictions: No Chondroblastoma 484 

or Ewing was classified correctly, therefore all metrics for these two entities were 0.00. 485 

Osteochondromas and enchondromas achieved the best performance with 88% and 486 

75%, respectively. 487 

• Figure 5 - SHAP results for the best-performing NesT model: the contribution of the 488 

features based on the entity measured in SHAP values. The values are calculated based 489 

on the test dataset, taking the mean of the absolute values (age = patient’s age, site = 490 

affected bone, position = position of the tumor at the bone, gender = gender of the 491 

patient). 492 

• Figure 6 - Age distribution for two entities compared to the overall distribution of the 493 

other entities. Normalization is calculated separately for both groups (entity/not-entity), 494 

since the not-entity group contains many more samples. 495 

 496 

• Table 1: Distribution of continuous characteristics (std = standard deviation, IQR = 497 

interquartile range). 498 

• Table 2: Distribution of discrete characteristics with incidence and percentage ratio. 499 

• Table 3: Experiment results reporting the test accuracy with standard deviation. 500 
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