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Abstract

Optimizing system performance can be done in two ways. First, by buying better and
more efficient hardware. Second, improving the software, particularly the underly-
ing algorithms, can improve resource utilization and throughput. The key difference
between the two approaches is that hardware investment is a one-time improvement,
whereas software can be repeatedly improved. Therefore, software has a multiplicative
effect by simultaneously improving performance on old and new hardware.

As the Deep Learning (DL) field continues to expand, the techniques available for
training DL models are growing rapidly. While adding to the existing techniques to im-
prove performance may seem beneficial, we suggest an empirical approach. It involves
thoroughly examining each technique’s assumptions, testing it in real-world environ-
ments, and measuring system-level and application-level metrics. We have found that
adhering to this simple guideline is highly effective in uncovering inefficiencies and
validating existing research. Following this approach can lead to the development of
more efficient applications, enabling sustainable hardware utilization and improving
cost efficiency. Therefore, adopting this approach is crucial for advancing the research
field and enhancing our understanding of DL performance optimization.

This publication-based dissertation comprises two papers that argue for more effi-
cient resource utilization by challenging the status quo on common DL practices and
providing practical guidelines and future optimization potential. By applying an em-
pirical approach to tackling DL bottlenecks, this work helps to improve end-to-end
training times of DL systems by leveraging existing hardware focusing on both data
preprocessing and DL training.



Zusammenfassung

Die Optimierung der Systemleistung kann auf zwei Arten erfolgen. Erstens durch den
Kauf besserer und effizienterer Hardware. Zweitens kann durch die Verbesserung der
Software, insbesondere der zugrunde liegenden Algorithmen, die Ressourcennutzung
und der Durchsatz verbessert werden. Der Hauptunterschied zwischen den beiden
Ansätzen besteht darin, dass die Investition in Hardware eine einmalige Verbesserung
darstellt, während die Software wiederholt verbessert werden kann. Daher hat die Soft-
ware einen Multiplikatoreffekt, indem sie die Leistung auf alter und neuer Hardware
gleichzeitig verbessert.

Da sich das Feld des Deep Learning (DL) weiter ausbreitet, wachsen die verfügbaren
Techniken für das Training von DL-Modellen schnell. Auch wenn es vorteilhaft er-
scheinen mag, neue Techniken zu entwickeln, um die Leistung zu verbessern, schlagen
wir einen empirischen Ansatz vor. Dazu gehört eine gründliche Prüfung der Annahmen
jeder Technik, das Testen in realen Umgebungen und die Messung von Metriken auf
System- und Anwendungsebene. Wir haben festgestellt, dass die Einhaltung dieser ein-
fachen Richtlinie sehr effektiv ist, wenn es darum geht, Ineffizienzen aufzudecken und
bestehende Forschungsergebnisse zu validieren. Die Befolgung dieses Ansatzes kann
zur Entwicklung effizienterer Anwendungen führen, die eine nachhaltige Nutzung der
Hardware ermöglichen und die Kosteneffizienz verbessern. Daher ist die Anwendung
dieses Ansatzes von entscheidender Bedeutung, um das Forschungsfeld voranzubrin-
gen und unser Verständnis der DL-Leistungsoptimierung zu verbessern.

Diese publikationsbasierte Dissertation umfasst zwei Arbeiten, die für eine effizientere
Ressourcennutzung plädieren, indem sie den Status quo gängiger DL-Praktiken in Frage
stellen und praktische Leitlinien sowie künftiges Optimierungspotenzial bieten. Durch
die Anwendung eines empirischen Ansatzes zur Bewältigung von DL-Engpässen trägt
diese Arbeit dazu bei, die End-to-End-Trainingszeiten von DL-Systemen zu verbessern,
indem sie die vorhandene Hardware nutzt und sich sowohl auf die Datenvorverar-
beitung als auch auf das DL-Training konzentriert.
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1. Introduction

Efficient resource utilization is crucial in today’s world [Cli22]. Driven by the envi-
ronmental impact and costs, Deep Learning (DL) has been in need of performance
optimization due to its popularity and widespread usage [SGM19]. The field of DL
has made significant progress in increasing its utility to the general public, particu-
larly with Large Language Models (LLMs) and generative models. This new service
landscape is driven by large multi-modal models that must be cost-efficient to gen-
erate revenue [Ope22; Goo23]. At the heart of it all is the hardware utilization of
underlying accelerators [Sil+23; Iva+21; Jia+20], which strive to ensure the training of
larger and more powerful models to handle an ever-increasing volume of data [Hof+22].

While current research suggests that hardware and software innovations are roughly
equally responsible for performance improvements, software is heavily leveraging
compute-augmentic algorithmic advances rather than being more data-efficient [EB22].
For example, techniques such as quantization [Det+22] and sparse computation [DZ19]
are often only enabled by specialized hardware and are typically not applicable for
older accelerators as they lack the necessary underlying architecture. This emphasizes
performance optimization for new hardware while deprecating older and typically
more available hardware. While there is an argument to be made on energy efficiency
due to new hardware typically having a better performance-to-energy ratio, the re-
sources for manufacturing and purchasing have already been spent. As an example,
the T4 GPU [Tec18], while being five architectures behind the state-of-the-art (Turing
vs. Hopper), is still available on most cloud providers [EMJ23], which argues for its
longevity and cost-efficiency.

This work shifts the focus of performance optimization towards improving resource
utilization within DL systems, particularly with algorithmic advancement using older
hardware. While aiming to increase the DL training throughput, this work challenges
common DL practices by offering a new perspective on efficient hardware utilization. It
provides guidelines for previously overlooked optimization potential and for leveraging
existing hardware rather than upgrading it.
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1. Introduction

1.1. Motivation

In DL, hardware improvements and sheer compute quantity are big drivers for im-
proved performance, showcased by the investment into private datacenters [MET24;
Goo24; Mic23]. More specifically, current DL models have a weakness regarding their
architecture, as their algorithmic intensity limits their throughput. On a single GPU,
empirical evaluation has shown that many underlying DL operations are limited by
data movement rather than compute capabilities [Iva+21; DAW22]. This observation
also holds in distributed computing, showcased by the low compute utilization when
training large DL models [Cho+23]. Additionally, the emergence of foundation models
and their usefulness to the general public has led to a booming hardware market.
The beneficiaries of this trend are clear: the hardware manufacturers and institutions
that can afford to build data centers with the latest hardware. However, due to the
lack of funds, researchers and small businesses are missing out on an emerging field
and may not reap the benefits of this impactful technology. This situation leads to
an obvious conflict: institutions with large budgets have no interest in facilitating
easier entry into DL research, and hardware manufacturers have no interest in im-
proving their software, which diminishes their main selling point of better performance.

As members of the scientific community and the engineering field, we are respon-
sible for improving algorithmic development to provide fair access to technological
advances and affordability in research opportunities. Additionally, we should promote
the sustainable use of hardware resources, discourage large companies from dominating
research fields and monopolize the benefits of DL.

2



1. Introduction

1.2. Problem Statement

As the field of DL grows, the techniques applied keep increasing. For example, one
of the earlier success stories in DL, AlexNet (2012), used a training regime with a pre-
processing pipeline with augmentation and trained the model via Stochastic Gradient
Descend (SGD) [RM51] on a single consumer-grade GPU [KSH12]. In contrast, there
are many new techniques to train a DL model. For the training process, we can apply
distributed training via Distributed Data Parallel (DDP) [Li+20], Fully-Sharded Data
Parallel (FSDP) [Zha+23] and Hybrid-Sharded Data Parallel (HSDP) [Zha+22], memory
optimized training via the Zero Redundancy Optimizer (ZeRO) [Ras+20], sparisifica-
tion [DZ19], activation checkpointing [Ras+20], and quantization [Det+22]. For the
gradient calculation, we have a mass of optimizers and their specific parametrization to
choose from, e.g., SGD [RM51], Adam [KB14], AdamW [LH17], LAMB [You+19] and
different learning rate and momentum schedulers [Goy+17; Che+21]. For general model
performance, a model compilation step for both training and inference is introduced to
optimize further and fuse operations together [Niu+21].

We believe an empirical approach to performance optimization may be more effective
than adding to existing techniques. First, critically examining the assumptions of each
technique, checking for misconceptions, and designing a real-world testbed to validate
theoretical results. Second, it is important to ensure systems operate in real-world
environments rather than simulated ones. Third, rigorously measuring system-level
(e.g., FLOPS, memory bandwidth) and application-level metrics (e.g., throughput, data
ingestion rate). Based on our experience, adhering to these simple guidelines is bound
to reveal inefficiencies and confirm existing research, both of which are crucial for
advancing the research field and enhancing our understanding. By following this
approach, we can create more efficient applications, enable sustainable hardware uti-
lization, and improve cost-efficiency.

This work follows these guidelines in the context of end-to-end DL performance
optimization.
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1. Introduction

1.3. Contributions

This publication-based dissertation comprises two papers that argue for more efficient
resource utilization by challenging the status quo on common DL practices and provid-
ing practical guidelines and future optimization potential. By applying an empirical
approach to tackling DL bottlenecks, this work helps to improve end-to-end training
times of DL systems while using typically older and more available hardware. The
main contributions of this work are:

1. We present a study demonstrating how the intermediate materialization strategies
of preprocessing pipelines can significantly impact throughput. This highlights
the need to reevaluate pipeline optimization strategies, as the commonly used
“fully offline” and “fully online” preprocessing strategies may not be the most
efficient options. To demonstrate the generalizability of our findings, we tested
our claims on four DL domains and evaluated seven representative pipelines
under different setups of caching, compression, and parallelization capabilities.

2. We provide a new, cost-efficient approach for training DL models across multiple
continents and clouds, utilizing a decentralized middleware initially created to
enable collaborative DL training. By leveraging the global spot pricing market,
we demonstrate that we can improve performance and be more cost-efficient
by employing several low-cost VMs over multiple continents instead of more
centralized and powerful hardware. With the granularity metric, the ratio be-
tween computation and communication, we demonstrate how to evaluate the
suitability of models for distributed training under low bandwidths. Finally,
to provide guidance on using this training method in the real world, we argue
how to leverage different pricing structures of cloud providers for maximum
cost-efficiency.

4



1. Introduction

1.4. Outline

We begin this work by introducing our goals, the high-level motivation, and a concrete
problem statement. Then, we provide a brief introduction to the recent hardware and
software improvements, including popular techniques and the current challenges of
improving performance with different distributed processing approaches. The publica-
tions are then summarized to showcase our research contributions. Finally, we conclude
by discussing our contributions on a grander scheme.

Although I am the sole author of this dissertation, I use the plural pronoun “we”
throughout the manuscript to convey that my understanding is a result of the effort
of the global research community, my colleagues from our research group, and my
collaborators.

Parts of the content and contributions of this work have been published in:

A. Erben*, R. Mayer, J. Jedele, and H.-A. Jacobsen. “Where Is My Training Bottle-
neck? Hidden Trade-Offs in Deep Learning Preprocessing Pipelines.” In: Proceedings of
the 2022 International Conference on Management of Data. SIGMOD ’22. Philadelphia, PA,
USA: Association for Computing Machinery, 2022, pp. 1825–1839. isbn: 9781450392495.
doi: 10.1145/3514221.3517848 (*formerly Alexander Isenko)

A. Erben, R. Mayer, and H.-A. Jacobsen. How Can We Train Deep Learning Models
Across Clouds and Continents? An Experimental Study. 2023. arXiv: 2306.03163 [cs.LG]
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2. Methodology

This chapter gives an overview of the hardware and algorithmic progress since the rise
in popularity of DL, combined with relevant techniques that pushed the envelope of DL
performance optimization. As we already outlined our methodology in Section 1.2, we
highlight specific techniques relevant to understanding our approach and the current DL
performance optimization landscape. Section 2.1 explains the effect of DL on hardware
evolution and why the current progress only benefits specific optimization techniques,
further motivating our work. Section 2.2 presents key optimization techniques that
allow for the democratization of DL models by enabling the training of larger model
sizes and better utilization of the underlying hardware. Finally, Section 2.3 covers
the different ways to distribute the DL training process over multiple GPUs as it is a
necessary part of current training regimes.

2.1. Deep Learning Hardware Evolution

A few key metrics are important to understand how DL has gained popularity in recent
years. We show the evolution of NVIDIA GPUs since 2011, just before the publication
of AlexNet, with memory capactiy (Figure 2.1), floating point opertaions per second
(FLOPS) (Figure 2.2), memory bandwidth (Figure 2.3) and FLOPS to memory band-
width ratio (Figure 2.4).

We included some of the most popular GPUs from the consumer class (GeForce
and TITAN), the most powerful workstation GPUs (Quadro), and the most popular
data center GPUs (K40, T4, P100, V100, A100, H100) to get a feel for how the market
developed over time [Wik24]. All figures have three key markers included. First,
AlexNet in 2012, arguably a key milestone for the CV community due to its signif-
icant performance on the ILSVRC2012 dataset [KSH12]. Second, BERT in 2018, a
bi-directional, transformer-based NLP model that showcased the importance of differ-
ent pre-training tasks and reached state-of-the-art performance on GLUE, MultiNLI
and SQuAD [Dev+18]. Finally, the release of GPT-3 in 2020 by OpenAI, a decoder-only
transformer-based model with 175B parameters, which showed very strong resonance
with the general public regarding its usefulness [Bro+20]. This, and subsequent releases
by OpenAI generated additional interest in the hardware market.
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2. Methodology

Generally, all of the metrics we compare show exponential growth. However, some do
so more than others, which we want to showcase here.
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Figure 2.1.: Memory capacity in GB over time of NVIDIA GPUs on a logarithmic scale.
A linear trend is visible, meaning a roughly exponential improvement
over time. Until BERT, all market segments were close to each other, but
after BERT, the consumer GPUs are the only ones stuck at 24 GB memory
(GeForce 4090), while workstations reach 48 GB (RTX A6000) and datacenter
GPUs reach 147 GB (GH200 SXM).

The memory capacity of GPUs is increasing, although not as much as other components
(Figure 2.1). The best consumer GPUs are only allowed up to 24 GB (GeForce 4090),
while workstation GPUs have a capacity of up to 48 GB (RTX 6000 Ada). The latest
two releases of datacenter GPUs (A100 and H100) have 80 GB high-bandwidth memory
and are specifically designed for DL workloads. Even though memory capacity is a
significant limitation for the size of models that can be trained, we do not observe
extreme growth. The reasons for this is explained in the following paragraphs.

The number of FLOPS in DL hardware has steadily increased (Figure 2.2). Before
2017, FLOPS meant computation only in FP32, meaning that every floating point value
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2. Methodology
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Figure 2.2.: TFLOPS over time of NVIDIA GPUs on a logarithmic scale. Until BERT,
a slow linear trend is visible, but with the advent of Tensor Cores and
the Tensor FP16 datatype, an almost double exponential trend is visible.
While the FP32 throughput slowly increases on the same trajectory, smaller
datatypes push compute capabilities by two orders of magnitudes (H100
NVL FP32 vs. Tensor FP8 (2:1 Sparse)).

is stored in 32 bits. However, researchers have discovered that training with quanti-
zation [Det+22], meaning fewer bits, was not affecting performance significantly, so
NVIDIA invested in the first GPU with dedicated FP16 compute capabilities (V100),
which had 112 TFLOPS. This was achieved by incorporating dedicated Tensor Cores
designed for General Matrix Multiplication (GEMM), a key operation in DL models. In
2018, even consumer graphics cards started getting Tensor Cores with the GeForce RTX
2080, while workstation GPUs received Tensor Core support in 2020 with the RTXA6000.

Following this, there has been an exponential but slow improvement in FP32 compu-
tational capability, reaching the same Tensor FP16 performance of 2017 (H100 NVL
vs. V100). However, starting in 2022, a new optimization potential has emerged in the
form of structured sparsity. The Ampere architecture was the first to provide some
operations to support this, and the newest Hopper architecture now has full-fledged
support for a 2:4 sparsity pattern (where 2 out of 4 sequential values are zero). This
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2. Methodology

effectively doubles the throughput, as half of the input matrices are empty, resulting in
no less than 3958 Tensor FP16 TFLOPS (H100 NVL).

Both quantization and sparsity show many numerical opportunities for performance
optimization within DL training. Despite losing roughly half the precision and values,
models still perform well [DZ19]. The newest GPUs, the H100, even support FP8 and
INT8, which further reduces the storage consumption of floating point and integer
representations.
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Figure 2.3.: Memory bandwidth in GB/s over time of NVIDIA GPUs on a logarithmic
scale. Until GPT-3, a mostly linear trend is visible. With the popularity of
transformer architecture rising, memory bandwidth became an even higher
priority and improved by almost one order of magnitude (A100 SXM vs.
GH200 SXM).

While FLOPS were, and still are improving at a close to double exponential rate due to
recent advances in numerical stability and hardware manufacturing, memory band-
width has been increasing on a similar scale (Figure 2.3). This is because, currently,
at least half of the training time is spent on memory movement rather than computa-
tion [Iva+21]. Many DL operations, such as activations and element-wise operations
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2. Methodology

(e.g., vector addition), have a low arithmetic intensity, a ratio showing how much data
has to be moved compared to the amount of computing needed [Ofe+14].
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Figure 2.4.: FLOPS to memory bandwidth ratio over time of NVIDIA GPUs on a loga-
rithmic scale. While trends are visible, they are divided into the respective
compute types. FP32 is slowly improving on the same trajectory, with a
slight bias towards more memory bandwidth. Tensor FP16 is stalling due to
high investment into higher bandwidths rather than compute capabilities.
However, sparsity-based types play in their own league as they benefit both
compute and memory bandwidth capabilities.

GPUs, or any specialized accelerators, are specifically designed for GEMMs, as hav-
ing a runtime complexity of O(n2) which means that for every parameter n, we are
performing n2 computations and O(n) data movement. Unfortunately, many DL
training operations perform much smaller ratio, leading to memory bandwidth bot-
tlenecks [Jia+20]. As this obstacle is not trivial to circumvent algorithmically, heavy
investment into memory bandwidth was channeled, reaching currently up to 3.9 TB/s
and 7.8 TB/s with sparsity (H100 NVL). Arguably, with the meteoric improvement of
FLOPS, this is currently the largest bottleneck regarding DL training and inference per-
formance. To fully understand the gravity of how imbalanced both metrics have risen
while being on an exponential trend, Figure 2.4 shows the ratio of FLOPS divided by
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2. Methodology

the memory bandwidth. If we disregard the current potentially "lossy" computational
advancement with sparsity, the FLOPS to memory bandwidth ratio has slowed down
significantly in growth with Tensor FP16. Even consumer-level GPUs like the RTX 2080
from 2019 are close to the A100 and the newest chip, GH200 SXM.

The recent hardware upgrades seem to align with the significant points mentioned
in the figures, indicating that the bottlenecks and scalability issues described in this
section are not entirely new. While we only discussed NVIDIA-based hardware due to
its ubiquity and being one of the key players in the rise of DL, we have omitted other
companies also developing custom deep-learning chips. Although most of them are
still in the early stages and typically not available to the general public, it is evident
that hardware improvements are driving DL performance [IBM23; Goo15; Cer24; Int23].
As it currently stands, there will be ample competition in this market, further driving
hardware improvements.

Preparing for this future and simultaneously alleviating the memory bandwidth issues
can be done by a model compilation step, which we discuss in the next section.

2.2. Algorithmic Runtime Improvements

While researchers can rarely affect the design decisions of hardware manufacturers,
there are multiple ways in which algorithmic design decisions can utilize hardware
more efficiently. We cover some of the more popular techniques currently employed to
reduce memory pressure and improve hardware utilization.

Model Compilation

PyTorch model code is usually translated to C++ to call the CUDA runtime, enabling
the use of an NVIDIA GPU. However, developers of deep learning frameworks face the
challenge of balancing generalizability and performance optimization [GRK17]. They
must choose between manually optimizing performance for every single case by writing
low-level code or using general-purpose operations provided by vendor libraries such
as cuDNN. This can be time-consuming and not easily portable. Moreover, as described
earlier, some operations commonly used in deep learning, such as activation functions,
have a low arithmetic intensity and suffer from memory-bandwidth bottlenecks.

One solution to these problems is using a model compilation step, which can serve as
an intermediate language representation between PyTorch and vendor libraries. It can
also perform operator fusion due to static program analysis, allowing it to effectively
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CPU
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batch
#1 + #2
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CPU
Memory

GPU
Memory

Figure 2.5.: ZeRO-Offload training process with memory utilization. Legend: M =
model, A = activations, G = gradients, O = optimizer states (e.g., momen-
tum). The forward and backward steps are enumerated by “X.Y”, where
X is the model timestep, and Y is the minibatch counter. By utilizing the
Delayed Parameter Updates technique, the model update is performed on
the CPU and reduces the memory pressure of keeping the entire optimizer
state on the GPU.

execute functions without accessing memory due to their sequential nature.

PyTorch features like torch.compile [PyT23] fill this gap by using the Triton com-
piler [TKC19], which currently addresses some of the challenges regarding memory
bandwidth bottlenecks. While we did not employ these relatively new techniques in
our work, we are hopeful that they will enable building specialized code to run on
older accelerators much more efficiently.

ZeRO-Offload

Due to the rise of large transformer-based models in recent years [Sho+19; Hof+22], the
model states, consisting of the gradients, parameters, and optimizer states that are kept
in GPU memory, are becoming major bottlenecks for increasing model sizes.

To provide easier access to large DL models, one solution is to include the CPU
and the random-access memory (RAM) in the DL training process, called ZeRO-
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Offload [Ren+21]. We showcase the training process by incrementally going through it
step by step (Figure 2.5). During the forward and backward pass, the activations and
gradients are kept on the GPU as usual. However, when the update step is triggered,
the gradients are moved from GPU memory to CPU memory, with all the remaining
optimizer states (e.g., momentum, variance) and the model itself already there. So that
there is no idle time for the GPU, it simply trains further with the next minibatch and
a non-updated model at t = 0. This technique is called Delayed Parameter Updates
(DPU), and while changing the training process, it seems not to affect convergence
when introduced after a few iterations. This allows us to interleave GPU and CPU
computation to maximize their respective strengths. The CPU typically has a much
larger memory, making it easier to store model parameters and optimizer states, while
the GPU performs the fastest with the computationally intensive steps of the forward
and backward pass. Finally, after the CPU has finished with the update, it is typically
faster than the next t = 1 step on the GPU, so the t = 1 model and t = 2 gradients can
be exchanged.

By using ZeRO-Offload, one can enable much larger minibatch sizes and larger models,
as only the activations and gradients are stored in an intermediate way on the GPU
memory without keeping the entire optimizer state. This democratizes DL applications
by allowing people to utilize their existing and powerful hardware in a way that allows
them to increase their model sizes by up to 10× on a single GPU. The DPU technique
employed here is a key component of the decentralized framework we used in our
contributions, enabling the overlapping of computation and communication when
training over long distances.

13
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GPU 1 Forward Backward UpdateMinibatch

Figure 2.6.: Single GPU training process. Neither training nor model data leaves the
device.

2.3. Distributed Deep Learning

There are many ways to improve DL training time by utilizing additional hardware. A
popular abbreviation is 3D-parallelism, which stands for the three types of parallelism
that can be used: model, data, and pipeline parallelism. This section describes each
of them, their advantages, disadvantages, and their scalability potential. We use a
Graphics Processing Unit (GPU) as an example of an accelerator due to its ubiquity.
However, it can be replaced by any processing unit that implements a fast general
matrix multiplication, e.g., Tensor Processing Units (TPU) [Goo15].

To set a baseline, Figure 2.6 shows a single GPU model training setup, which consumed
a minibatch of varied size, performs a forward pass, calculates the loss (not shown
due to negligible computation time), calculates the gradients based off of the loss
and activations in the backward step and updates the weights w.r.t. the gradients.
This process can be repeated as often as needed until a desired loss is reached. A
limiting characteristic of this process is the sequential nature of the steps, i.e., one can
only interleave the forward and backward pass calculation for the same data point by
changing the algorithmic basis. Moreover, this operates typically at near maximum
memory capacity and is limited due to memory bandwidth, as there are benefits to
larger model sizes for model accuracy [Hof+22].

Data Parallelism

Data parallelism is the simplest type of parallelism that stores the same model on all
GPUs and performs the same training cycle with different minibatches (Figure 2.7). To
keep the model consistent between GPUs, the calculated gradients after the backward
pass are summarized via an AllReduce operation. This allows the update step to
happen in the same fashion as in the single GPU scenario. An example of this is
PyTorch DDP [Li+20].
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GPU 2 Forward Backward AllReduceMinibatch
#2

GPU 1 Forward Backward AllReduceMinibatch
#1

Update

Update

Gradients

Figure 2.7.: Data parallelism on two GPUs. Each GPU consumes their own data and
averages the gradients from both minibatches to keep the model consistent
over training steps.

Advantages:

• It is typically trivial to use and implement without major architectural require-
ments from the model or hardware.

• The throughput improvement potential is high because it is a trivially paralleliz-
able process with a single barrier after the backward pass.

Disadvantages:

• No inherent support for heterogeneous hardware in compute and network con-
nectivity, as the AllReduce call will be waiting for the slowest GPU.

• Can only be leveraged if the optimizer and model work with the increased
minibatch size. If the original minibatch size is divided, the speedup can be
limited due to a larger communication time.

• It can only trivially be applied to models that fit onto a single GPU. While it is
possible to utilize model and pipeline parallelism, it has compounding negative
effects regarding its minibatch size and further scalability.

• Without specialized techniques, the inter-GPU bandwidth must be very large to
show positive throughput effects, e.g., > 200 GB/s.

Scalability potential: Adding more GPUs will scale well until the communication time
between the GPUs outweighs the calculation time benefits. Typically, the smaller the
model parameter count, the fewer GPUs can be added in this fashion. Network band-
width between nodes is the most limiting factor when going beyond a single multi-GPU
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GPU 2 Forward Backward

GPU 1 Forward BackwardMinibatch
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Time
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Figure 2.8.: Inter-layer parallelism on two GPUs. Only a single minibatch is consumed
and the activations is forwarded between GPUs until it fully completes the
model and starts backpropagation, reversing the data communication with
gradients. Then, all GPUs have their respective gradients and can update
to keep the model consistent.

node (e.g., DGX-3) and assuming the setup is suited for further parallelization. Cable
lengths between nodes and racks will increase and drop the bandwidth significantly to,
typically, 10-200 Gb/s.

Model Parallelism

Model parallelism can be performed in two ways: inter-layer and intra-layer.

Inter-layer model parallelism splits the model into multiple parts by the layer order,
e.g., GPU 1 stores the model layer-[0,1] and GPU 2 stores layer-[2,3] (Figure 2.8). By
the sequential nature of the training process, almost no throughput improvements can
be gained with this technique, as GPU 1 has to finish processing fully before GPU
2 can start. The only performance benefit is the parallel update step on both GPUs,
which, however, is typically overshadowed by the communication times between the
GPUs. This parallelization technique aims to train larger models that do not completely
fit onto a single GPU. As the model is split into parts (and with techniques such as
ZeRO [Ras+20], so is the optimizer state), the memory utilization is reduced by the
same ratio.

Advantages:

• Enabling the training of larger model sizes is essential to improving DL results.
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• It enables larger minibatch sizes due to the reduced memory pressure, which
creates more flexibility around optimizer parametrization and potentially faster
training times.

Disadvantages:

• The decision as to how to split the model is non-trivial, as models are not typically
easily dividable into N equally computationally expensive chunks. Due to this
restriction, it is typically only applicable to homogeneous devices as this removes
hardware capabilities from the equation.

• Without exceptionally good interconnectivity between the GPUs, this can signifi-
cantly reduce throughput.

Scalability potential: Just adding additional computing capabilities will reduce
throughput due to increased communication time without changing the training pro-
cess. However, if a higher minibatch size is enabled by applying intra-layer parallelism,
there is a potential for an improved end-to-end performance. Specifically, this can have
large effects on throughput under the guidance of recent work that focuses on large
minibatch size training [Goy+17]. Additionally, the model performance can increase
significantly by enabling larger model sizes.

Intra-layer model parallelism (also called tensor parallelism) splits the model into
multiple parts on a layer-basis, e.g., for all layers, GPU 1 stores the columns [0,N]
from a single layer and GPU 2 stores the columns [N + 1,M] (Figure 2.9). N is the
split point (or multiple points) and is determined by the number of GPUs the model
is being split between, and M is the total number of columns of the weight matrix of
each layer. By dividing the work on a per-layer basis and using the same minibatch
as input, the outputs of each partial layer computation must be summarized with an
AllReduce operation to be functionally identical to single GPU training. The same
process of communicating and processing is applied for the backpropagation step until
it finishes, and the gradients can be locally updated to the layer partitions. Typically,
this parallelization strategy is used in addition to sharding the activations and optimizer
state to reduce duplicate information on individual GPUs’ high-bandwidth memory.
Examples of these are Fully-Sharded Data Parallel [Zha+23], Hybrid-Sharded Data
Parallel (HSDP) [Zha+22], and ZeRO-3 [Ras+20].
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Figure 2.9.: Tensor parallelism on two GPUs. The forward and backward steps are
enumerated by “X.Y”, where X is the model timestep, and Y is the mini-
batch counter. Splitting the model horizontally allows each GPU to keep
part of each model layer. The reduced parameter count reduces memory
pressure, and consistency is guaranteed by communicating the activations
and gradients after each layer, respectively.

Advantages:

• Enables large models to be trained due to reduced memory pressure.

• It is easier to split into computationally equal shards by using layer columns
instead of layers themselves.

Disadvantages:

• It is hard to understand due to interleaved, fine-grained communication and
computation steps, which opens up scheduling and memory management issues.

• Similar to inter-layer parallelism, it also requires very good interconnectivity due
to increased communication requirements.

• Even with easier sharding strategies, it is not trivial to support heterogeneous
hardware.

Scalability potential: Compared to inter-layer parallelism, it enables better throughput
improvements through easier sharding strategies. As communication still plays a big
role in enabling this type of parallelization, the current trend moved to use HSDP
to perform tensor parallelism on an intra-node setting (e.g., 800 GB/s interconnects)
and data parallelism on inter-node (e.g., 200 Gb/s interconnects). While it is currently
state-of-the-art in training DL models, it is heavily based on hardware capabilities and
is still bottlenecked by memory and network bandwidth.
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Figure 2.10.: Pipeline with inter-layer parallelism on two GPUs. The forward and
backward steps are enumerated by “X.Y”, where X is the model timestep,
and Y is the microbatch counter. By utilizing inter-layer parallelism and
splitting the minibatch into microbatches, the amount of work which leads
to a lower latency with GPU 1, reducing the idle-time of GPU 2. However,
without additional techniques, the idle-time of GPU 1 is increasing, also
called an “idle bubble”.

Pipeline Parallelism

The idea of pipeline parallelism is derived from many kinds of pipelines we encounter,
such as instruction pipelines in computer architecture and assembly lines in factories. If
work can be divided into smaller parts, the latency of the pipeline can be improved as
the idle time of all workers is minimized. This can be applied to a model training process
with inter-layer parallelism by splitting the minibatch into microbatches (Figure 2.10).
While the idle time of GPU 2 is being reduced, an idle bubble still exists while
GPU 1 waits on GPU 2 to finish processing the last micro-batch. To reduce this
idle time, there are multiple techniques from PipeDream [Nar+19], GPipe [Hua+19],
and others [Nar+21], e.g., by allowing a model from timestep t − 2 to run inference on
a micro-batch of timestep t which removes the idle bubble completely.

Advantages:

• Improves throughput, and, combined with other types of parallelisms, can poten-
tially combat their disadvantages.

• Enables larger model sizes to be trained using additional hardware while improv-
ing throughput compared to naive inter-layer parallelism.

• Communication load is typically lower than intra-layer parallelism.

Disadvantages:
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• Minibatches have to be splittable into microbatches. This may be hard to get right
due to the parametrization of the training run.

• Ramp-up and -down phases are necessary until a stable GPU utilization is reached
and is limiting throughput at those times.

• Communication load is typically higher than data parallelism.

Scalability potential: Scalability is ensured as long as the model is splittable into
arbitrarily small shards and the minibatch similarly into micro-batches. However,
only the model’s size is scaled, not its training speed. While one can argue about the
improved performance of larger models on certain tasks, it is not suited for improving
throughput while staying on the same hardware without modifying the underlying
training algorithms.
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3. Summary of Publications

This publication-based dissertation comprises the following publications:

Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning
Preprocessing Pipelines

A. Erben*, R. Mayer, J. Jedele, and H.-A. Jacobsen. “Where Is My Training Bottleneck?
Hidden Trade-Offs in Deep Learning Preprocessing Pipelines.” In: Proceedings of the
2022 International Conference on Management of Data. SIGMOD ’22. Philadelphia, PA,
USA: Association for Computing Machinery, 2022, pp. 1825–1839. isbn: 9781450392495.
doi: 10.1145/3514221.3517848 (*formerly Alexander Isenko)

How Can We Train Deep Learning Models Across Clouds and Continents?
An Experimental Study

This paper is accepted as peer-reviewed conference paper at the Proceedings of the VLDB
2024, Volume 17 and currently in the process of being published.

A. Erben, R. Mayer, and H.-A. Jacobsen. How Can We Train Deep Learning Models Across
Clouds and Continents? An Experimental Study. 2023. arXiv: 2306.03163 [cs.LG]
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3. Summary of Publications

3.1. Where Is My Training Bottleneck? Hidden Trade-Offs in
Deep Learning Preprocessing Pipelines

This chapter is published as a peer-reviewed conference paper at ACM SIGMOD 2022
with the Artifacts Available, Artifacts Evaluated and Results Reproduced badges.

A. Erben*, R. Mayer, J. Jedele, and H.-A. Jacobsen. “Where Is My Training Bottle-
neck? Hidden Trade-Offs in Deep Learning Preprocessing Pipelines.” In: Proceedings of
the 2022 International Conference on Management of Data. SIGMOD ’22. Philadelphia, PA,
USA: Association for Computing Machinery, 2022, pp. 1825–1839. isbn: 9781450392495.
doi: 10.1145/3514221.3517848 (*formerly Alexander Isenko)

Full text version enclosed: Appendix A

Artifacts: https://github.com/cirquit/presto

Synopsis: Improving preprocessing performance is paramount when GPU resources
are costly and rare. Increasing data quantities make this an even more pressing issue,
as they introduce high storage consumption costs and are not trivial to manage in a
distributed environment.

By using intermediate strategies that materialize the preprocessing pipeline partially,
we are able to showcase how common preprocessing practices, e.g., full materialization,
are not the best-performing approach. Additionally, we survey the optimization po-
tential for seven representative preprocessing pipelines from four domains (computer
vision, natural language processing, non-intrusive load monitoring, and automatic
speech recognition), covering compression, parallelization effectiveness, and different
caching approaches. Finally, we provide a system, PREprocessing Strategy Optimizer
(PRESTO), which can automatically decide on materialization strategy for a given
pipeline and dataset based on our insights and profiles.

Contributions: The thesis author implemented and developed the approach. They
executed the experiments, conducted the analysis and extracted general insights. Finally,
they wrote the paper.
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3.2. How Can We Train Deep Learning Models Across Clouds
and Continents? An Experimental Study

This chapter is accepted as peer-reviewed conference paper at the Proceedings of the
VLDB 2024, Volume 17 and currently in the process of being published.

A. Erben, R. Mayer, and H.-A. Jacobsen. How Can We Train Deep Learning Models
Across Clouds and Continents? An Experimental Study. 2023. arXiv: 2306.03163 [cs.LG]

Full text version enclosed: Appendix B

Artifacts: https://github.com/cirquit/hivemind-multi-cloud

Synopsis: Decentralized systems provide an almost unlimited potential for scala-
bility and enable the democratization of applications. Within Deep Learning, this was
unthinkable due to current frameworks being unable to cope with interruptable peers
and needing homogeneous, high-performance hardware. This is becoming a reality
with Hivemind, the first-of-its-kind collaborative DL framework.

By utilizing Hivemind, we showcase how spot instances distributed over the entire
globe and belonging to different cloud providers can be leveraged to be both faster and
cheaper compared to more centralized hardware setups. We establish a lower bound
on model sizes suitable for training over continents in low-bandwidth (< 1 Gb/s) and
high-latency (> 150 ms) environments and provide guidance on estimating a model’s
scalability potential. By performing real-world experiments on three cloud providers
and four continents, we prove that leveraging the global spot price market for cost-
efficient multi-, hybrid-cloud, and geo-distributed DL training is possible.

Contributions: The thesis author conceived, implemented and developed the approach.
They executed the experiments, conducted the analysis and extracted general insights.
Finally, they wrote the paper.
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4. Discussion

This chapter discusses our results in the larger context of DL performance optimizations.
By pursuing an empirical approach to find optimization potential, we assess its poten-
tial and review related approaches. We conclude this chapter by showcasing that while
current performance optimization techniques have their place, they do not replace our
algorithmic-centric view, which offers additional benefits for accessibility to the DL field.

Our work on preprocessing pipelines showcases different tradeoffs in multiple DL
domains and highlights the importance of profiling rather than applying best practices.
Even with storage layers that enable multi-threaded read access and allow for > 10 Gb/s
read speeds, we still saw a surprising impact of storage consumption on all parts of the
preprocessing pipeline. The multi-threading capabilities and the final data provisioning
rate of the storage hardware, the interconnects, the deserialization process, and the
pipeline itself were massively affected by an increase and decrease in total storage
consumption. While utilizing multiple workers to process the data in parallel seems
like an obvious choice for a trivially parallelizable problem, it is not a silver bullet. We
encountered various issues, from significant overheads of thread initialization due to
small sample sizes to native and unoptimized implementations that do show speedup
but fall short to single-threaded third-party implementations. Finally, by leveraging
general-purpose compression, which is not specifically designed for de-/compression
speeds or maximum space-saving, we found performance potential under some cir-
cumstances.

Many studies have dealt with performance optimization within data provisioning
[Kak+19; Zhu+18; Moh+20; Kan+20]. Our work stands out due to our initial set of as-
sumptions. We utilize consumer-grade hardware without access to abundant amounts
of memory, which may absolve any intermediate materialization strategy by caching
the entire dataset in memory. Additionally, we do not use accelerators to offload
the preprocessing steps, which creates higher memory pressure on an already scarce
resource while performing DL training. Finally, we kept the pipelines functionally
consistent and did not employ techniques that modified the data in any way, making
them more generally applicable.
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4. Discussion

Our work on decentralized DL training over multiple continents and different clouds
provides a novel contribution to the field of DL training that enables a new, cost-efficient
way of training models on spot instances. We provide a first step into making dis-
tributed DL training geographically scalable [VT16]. While there is related work on
decentralized Stochastic Gradient Descend [Lia+17], training with unreliable peers
in a collaborative setting [Dis+21] and training large models via model and pipeline
parallelism in a decentralized setting [Rya+23; Yua+22], we are the first to show that
relatively small models can still benefit from this approach. The intuition behind
training in low-bandwidth and high-latency environments is that larger models are
much easier to train efficiently due to their high computational requirements. With a
technique like Delayed Parameter Updates [Ren+21], the computation and communi-
cation steps can be overlapped, allowing longer communication times if computation
time increases. However, due to the square-cube law [Rya+23], decreasing the model
parameter count reduces the computational complexity in a quadratic fashion (due to
matrix multiplication being a O(n2) operation, and the communication complexity in
a linear fashion (O(n)). We define the lower bounds of model sizes that can still be
efficiently trained in these environments by utilizing the granularity metric, providing
a reference evaluation from training on four continents, and showing the scalability
potential of structuring such a training run most cost-efficiently. As training foundation
models is (at least currently) not a common nor cheap task, we enable users to leverage
competing cloud providers and their spot pricing structures to train more specialized,
smaller models and provide a cheaper entry to the benefits of the field of DL. With this
work, we provide one of the building blocks to move DL training to the domain of Sky
Computing, specifically combined with cloud broker systems like SkyPilot [Yan+23],
initially proposed by the work on Conductor [Wie+10].
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5. Concluding Remarks

In order to improve resource utilization and end-to-end DL training time, this work
presented optimization potential in both data preprocessing pipelines and DL model
training. The ideas provided in this work stem from an empirical approach to tackling
performance optimization within DL. By utilizing problem settings inspired by actual
real-world usage and evaluating our techniques on a wide range of domains, we show-
case their applicability and resilience to the fast-paced DL research field.

With techniques to find the optimal materialization strategy for preprocessing pipelines,
we have helped to improve hardware utilization as the DL training ingestion rate can be
limited by preprocessing throughput. We kept the pipeline functionally identical and
showcased the tradeoff between storage consumption and throughput. Additionally,
we evaluated general-purpose techniques, such as compression and caching, on their
applicability to multiple domains.

By utilizing a collaborative DL framework to enable multi- and hybrid-cloud training
on spot instances over different cloud providers, we provide the basis for DL training
to step into Sky Computing. We fill the gap of understanding as to when models
are suited for training under such network-constrained situations and show that even
relatively small models still experience an improvement in throughput when trained in
this fashion. Our work shows that training over multiple continents is possible, and
by utilizing brokers between cloud providers with support for spot VMs [Yan+23], we
open the possibility to enable auto-migrated, decentralized DL training for the best
spot prices in the world. This helps both the cloud providers, as they can provide
a new service with older hardware, and the users, as they have a new possibility to
choose much cheaper hardware at varying training speeds. By having the ability to
avoid vendor lock-in with different cloud providers, being resilient to interruptions,
and having the option to migrate while training leads to increased competition and
lower prices.
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ABSTRACT
Preprocessing pipelines in deep learning aim to provide sufficient
data throughput to keep the training processes busy. Maximizing re-
source utilization is becomingmore challenging as the throughput of
training processes increases with hardware innovations (e.g., faster
GPUs, TPUs, and inter-connects) and advanced parallelization tech-
niques that yield better scalability. At the same time, the amount of
training data needed in order to train increasingly complexmodels is
growing. As a consequence of this development, data preprocessing
and provisioning are becoming a severe bottleneck in end-to-end
deep learning pipelines.

In this paper, we provide an in-depth analysis of data prepro-
cessing pipelines from four different machine learning domains. We
introduce a newperspective on efficiently preparing datasets for end-
to-end deep learning pipelines and extract individual trade-offs to
optimize throughput, preprocessing time, and storage consumption.
Additionally,weprovide anopen-source profiling library that can au-
tomatically decide on a suitable preprocessing strategy to maximize
throughput. By applying our generated insights to real-world use-
cases, we obtain an increased throughput of 3× to 13× compared to
an untuned systemwhile keeping the pipeline functionally identical.
These findings show the enormous potential of data pipeline tuning.
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1 INTRODUCTION
Deep learning (DL) models are used in multiple areas, ranging from
e-mail spam filtering [10] in natural language processing (NLP) to
image segmentation tasks for autonomous driving [33] in computer
vision (CV). The improvement of these models is not only based on
more advanced architectures or algorithms [50, 80, 86], but also on
increased quality and quantity of training data [16, 23, 48, 53, 80].
Having more training data usually proves to be beneficial to the
model performance [7].

Figure 1: Storage consumption of real-world CV and NLP
datasets over time on a logarithmic scale. CV: [16, 22–24, 29,
45, 47, 53, 83], NLP: [1, 11, 12, 14, 67, 92, 98].

The process to train a DL model consists of repeatedly iterat-
ing over the entire training dataset, measuring up to hundreds of
iterations depending on the task at hand and the model complex-
ity [34, 69, 72, 81]. Popular datasets show exponential storage con-
sumption increaseover time (Fig. 1),whichmakesdatapreprocessing
harder, as local processing is not viable anymore due to memory lim-
itations. Both distributed storage solutions [90] aswell as distributed
processing [5, 25, 55, 87, 95] can lead to newdifficultieswith network
I/O and latency, which makes data preprocessing an integral part
of the end-to-end DL pipeline. A Google study on their cluster fleet
showed that the preprocessing pipeline takes more than a third of
the total preprocessing time for 20% of their jobs [59].

Optimizing the model training is an active research topic that
focuses on decreasing the total training time and increasing the data
ingestion rate of the training process. There are many methods on
training performance optimization and model optimization for both
single GPU [30, 56, 85] and multi-GPU setups [36, 38, 74, 77] which
allow for horizontal scaling with more hardware [63]. Recent hard-
ware innovations help with improved model performance (cf. Fig. 3).
Therefore, it is essential to optimize preprocessing pipelines to keep
up with the training process speed.
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Thepreprocessingpartof aDLpipelineconsistsofmultiple succes-
sive data transformation steps applied to the initial dataset until the
final data representation matches the model input dimensions. This
transformation can be performed once before the training or in every
iteration while the training is happening. For example, CV pipelines
from DLmodels that established new landmarks at their respective
times [34, 49, 78, 81, 96] follow a common pattern of preprocessing
steps: read the image from a storage device, decode it into an RGB
matrix and resize the image to fit the model input dimensions. These
steps can be followed by data augmentation, e.g., pixel-centering,
random-cropping or a rotation, depending on the particular use-case.
Preprocessing the full dataset once before training is viable if one
wants to avoid the processing overhead in every iteration.

However, the final data representation and the storage device
can negatively affect the preprocessing throughput. The training
process’s data ingestion can be throttled by I/O bottlenecks when
loading the preprocessed data. The storage consumption typically
increases at later preprocessing steps, as the corresponding data rep-
resentationsoften store data inefficiently to facilitate processing (e.g.,
JPG[89]vs. anRBGmatrix). This additional storage consumptioncan
beadetermining factor that slowsdown thefinal throughput.Thefile
system, storage device, and the data loader from the DL framework
may not be able to read the data fast enough (cf. Section 4).

We propose a new, more flexible way to look at DL preprocessing
pipelines, where the decision for each preprocessing step to apply
it once or in every iteration can be made freely based on quantifiable
trade-offs. Such quantification can be provided by profiling.

Concate-

nated Decoded Resized Pixel


CenteredDataset Random

Cropped

Figure 2: CV preprocessing pipeline
To motivate this new view on preprocessing pipelines, we per-

formed experiments using different configurations of a CV pipeline
(Fig. 2)1. Performing all preprocessing steps at once increases the
throughput by 5.4× compared to at every iteration (Tab. 1). However,
this increases storage consumption by more than 10×. In contrast,
preprocessing the dataset once just until the resize step results in a
16.7× throughput increasewhile increasing the storageconsumption
only by 3.4× compared to processing all steps at every iteration.

Preprocessing strategy Throughput in samples
s Storage Consumption in GB

all steps at every iteration 107 146
all steps once 576 1535
until resize step, once 1789 494

Table1:Trade-offsfortheCVpipelineatdifferentpreprocess-
ing strategies.

When comparing the data processing rate of a popular CVmodel,
ResNet-50, to the different preprocessing strategies on state-of-the-
art GPUs, we see that stalls on the A10, A30, and V100 can be pre-
vented by using the optimal strategy (Fig. 3). In multi-node training
setups and when using specialized hardware (TPUs), increasing
preprocessing throughput demands becomes even more evident.

The idea of opening up the preprocessing pipeline and the re-
sulting trade-offs have not been explored yet in a comprehensive
1The only step which has to be applied every iteration is random-crop, as it is not
deterministic (dotted line).

fashion. This void prevents ML practitioners from optimizing their
end-to-end DL pipelines. They lack guidance in how to do that, as
well as tooling support to automate such optimizations.

Figure 3: Throughput of ResNet-50 [34] for different hard-
ware configurations. Black lines show the preprocessing
throughput for the different strategies fromTab. 1. GPU pro-
filing data fromNVIDIA [63] and TPUv3 by Ying et al. [93].

In this paper, we close this research gap by performing a compre-
hensive analysis of preprocessing pipelines from a broad range of
different ML domains. In doing so, we present practical insights into
the pipelines themselves as well as the methodologies to analyze
bottlenecks and an automated tool to perform profiling of arbitrary
pipelines. This opens up a new dimension in end-to-end ML system
optimizations,whichwasnot considered inpriorworks that targeted
the pipeline optimizationwith respect to themodel accuracy [43, 58].

Our contributions are:

(1) We profile seven different real-world pipelines and de-
fine the trade-offs and characteristics that allow practitioners
to improve existing pipelines by optimizing at the location
with the greatest impact on the training throughput. This
way, we could improve training throughput by up to 3-13×
compared to fully preprocessing once.

(2) Weprovide lessons learned,wherewe summarize theprob-
lems and unexpected findings we encountered that can
limit pipeline throughput. For example, we found that storage
consumption can affect the throughput negatively in different
ways. These insights can be used to clear up commonmiscon-
ceptions, and practitioners can be more aware of the impact
the preprocessing pipeline has on the training performance.

(3) Wepresent an open-sourceprofiling library that automates
the decision of which preprocessing strategy to pick based
on a user-defined cost model.

Our paper is organized as follows. In Section 2, we introduce a
general model and terminology of preprocessing pipelines. The ex-
perimental setup and the library design are explained in Section 3.
We present our pipeline analysis and our findings in Section 4. Our
derived insights are summarized in Section 5. Related work is re-
viewed in Section 6. Other approaches for pipeline optimizations are
discussed in Section 7 and we conclude the paper in Section 8.

2 PREPROCESSING PIPELINES
We begin by describing the set of problems one faces when prepar-
ing a dataset for the training process. This includes determining the
hardware requirements, the decision ofwhere to preprocess the data,
andwhen to preprocess, both of which decisions affect the training
throughput in multiple ways.
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The preprocessing pipeline can be split into steps which are ran
once (S1−Sm), called “offline” henceforth, and steps which are per-
formed every iteration (Sm+1 −Sn), called “online”. The set of pre-
processing steps depends on the dataset and the model input, but
generally, any transformation is a step, like cropping an image or
encoding a word. A preprocessing strategy is processing up to (and
including) a step offline, and the remainder of thepipeline is executed
online. Such a split is accomplished by inserting a save step which
encodes and writes the data to disk (after Sm), and a load step that
reads that data from disk (before Sm+1).

Preprocessing

Computed
every iteration

once

Training

Storage

Dataset

Figure 4: General DL preprocessing setup with different the-
oretical throughputsT1−T4 between the preprocessing steps
S1−Sn.

We conceptually divide the entire DL training process into three
parts - the unprocessed dataset, the preprocessing pipeline, and the
training (Fig. 4). They are all connected by four theoretical through-
puts (T1−T4), which can become processing bottlenecks.
T1 is the read throughput from the dataset to the processing units

which handle the offline preprocessing. This throughput is
determined by hardware capabilities, such as storage devices,
interconnects, processing capabilities, and software capabil-
ities, such as file systems or DL frameworks.

T2 is the write throughput from the offline computed preprocessing
step(s) (S1 − Sm) to a storage node. It is dependent on the
throughput of each step, the interconnect to the storage node,
and its write speed.

T3 is the read throughput from the storage node to the processing
units which handle the online preprocessing (Sm+1−Sn) and
is subject to the same restrictions asT1.

T4 is the final preprocessing throughput when the data is ready to
be fed into the training process. It is restricted byT3, the on-
line step(s) performance, and the interconnect to the training
process. AsT4 limits the achievable training throughput, it is
the most important to optimize.

In practice, it is often impossible to know the actual performance
of future DL models or preprocessing pipelines. Only partial bench-
marks are available to approximate the training throughput of popu-
lar DL models [63]. Even worse, there is no comprehensive through-
put analysis of preprocessing pipelines, so one has to estimate the
resultingT4 throughput of a pipeline manually for every single de-
ployment to prevent bottlenecks. Such an estimation is difficult to
make, as there are many complexities involved.

One of those is the data encoding after step Sm, which serializes
the entire dataset and places it on a storage device. The current de-
fault way to serialize datasets in two popular DL frameworks is the

“pickle” encoding for PyTorch [68], and Protobuf [26] for Tensor-
Flow [2]. Both encodings are not optimized for tensor data and may
perform poorly. Applying an optimized compression algorithmmay
be useful but also introduces an additional online decompression
step that may affect theT4 throughput.

The deserialization throughput (T1 andT3) depends not only on
the encoding but also on the storage solution and its interconnect
to the nodes that run the preprocessing pipeline. A common storage
solution in virtualized environments is Ceph [90], an object-based
storage system. Such a complex and distributed system’s perfor-
mance depends on the storage hardware and the computing power
andmust be evaluated on a case-by-case basis.Without benchmarks
for specific hardware setups, it is unclear how to split the pipeline
to achieve the maximum throughput [58, 71].

Another variable to consider is the offline preprocessing time, as
this may delay the training start. Long preprocessing times can be
prohibitive if not amortized by faster training.

Additionally, some preprocessing steps that feature data augmen-
tation (e.g., random-cropping for images) or shuffling the dataset
have to be done online because their results are not deterministic
and can not be cached for future epochs.

Some preprocessing steps decrease the dataset size and can make
it fit in memory, which would be beneficial over multiple epochs to
remove network read effects. However, preprocessing steps can also
be computationally expensive and would better be processed offline
which can increase throughput, even if they increase the dataset size.
Both scenarios can benefit the throughput, but it is not obvious to
determine without profiling whether caching a dataset or removing
a CPU bottleneck is more effective at increasing throughput.

In conclusion, deciding how to split a preprocessing pipeline into
offline and online steps is a complex problem. The importance of the
trade-offs may depend on individual scenarios, such as preexisting
hardware or framework dependencies, which can not be chosen
freely. To solve this problem and provide guidance and best practices
to ML engineers and users, a comprehensive analysis of common
DL pipelines is needed that provides a structured overview of the
pipelines’ performance and insights about the individual steps’ trade-
offs. It is also necessary to evaluate whether profiling a small sample
of the entire dataset is sufficient to estimate the total processing
time, storage consumption, andT4 throughput. This could reduce
profiling overhead. Finally, a software solution should automate the
profiling to quickly generate insights for a specific setup to optimize
any given pipeline.

3 EXPERIMENTS
We analyze four different ML domains to showcase trade-offs in
preprocessing pipeline optimizations: CV, NLP, Audio, and non-
intrusive load monitoring (NILM). We evaluate the pipelines with in
total seven different datasets in order to compare the impact of dif-
ferent encodings and image resolutions on the respective pipeline’s
performance. Every pipeline is based on common preprocessing
steps from popular models and datasets in their respective domains.
We assume that the training throughput is unbounded for our anal-
ysis, as we are interested in maximizingT4 irrespective of the actual
model. This section showcases the design of our profiling library,
the individual pipelines and defines the experimental setup.
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3.1 PRESTO Library
After initial manual profiling attempts, we decided to create the
Preprocessing StrategyOptimizer (PRESTO) library that automates
the generic pipeline profiling process. The library can be used with
any preprocessing pipeline written with the TensorFlow tf.data
API [59], and hence, is readily applicable to different use cases.

PRESTO contains a Strategywrapper class that splits the pre-
processing pipeline at any given step into an offline and online part.
This is done by inserting a serialization and loading step at the split
positionwith the TFRecord format, a wrapper around the Protobuf
encoding [26] for TensorFlow. Additional parameters include the
parallelism, sharding, caching behavior, and compression format, as
well as the temporary logging directory.

The strategy wrapper class executes the entire preprocessing
pipeline through the tf.dataAPI.We simulate the training process
by accessing the sample tensor’s shape member to measure the pre-
processing throughputwithout training an actualmodel. This allows
us to profile the preprocessing pipeline’s throughput by calling the
profile_strategy() function. It accepts two parameters which
have to be set manually: sample_count and runs_total. While it
is useful to get an initial understanding of a pipeline’s performance
with less samples, some bottlenecks only show after local caches are
full or a network link is used to its maximum capacity, so that we
recommend profiling with the entire dataset.

Profiling focuses on three key metrics - preprocessing time, stor-
age consumption and throughput - which can be easily tracked by
internal Python code. For more in-depth information, dstat is exe-
cuted in parallel and provides specific system-level information, like
disk read/write loads and network traffic in case of network storage.
These stats and additional metadata, like a unique hash and the split
position, are returned as Pandas dataframes [91].

After the profiling is finished, the StrategyAnalysis class sum-
marizes the findings and provides a semi-automatic way to pick
the best strategy based on an objective function. The function nor-
malizes the individual metrics to the range of [0,1] based on their
minimum andmaximumvalues andmultiplies them by user-defined
weightswp,s,t . Let preprocessing time be p, storage consumption s,
and throughput t as vectors of the respective values for all strategies:

f (wp ,ws ,wt ,p,s,t)=wp×|p|+ws×|s|+wt ×|t|
The weightswp,s,t are can be defined manually, based on the user’s
objective. As an example, we want to find the optimal strategy to
apply hyperparameter tuning on a model before a deadline. That
means we want a low preprocessing time and the highest possible
throughput, while the storage consumption is irrelevant. In this case,
the weights would look as follows:

(wp ,ws ,wt )= (1,0,1)
On the contrary, if we have access to a cluster with a lot of compute
power and are not in a race against time, it will be preferable to sort
only by throughput (wp,s =0,wt =1), which is a good default config-
uration. This procedure can be applied to every strategy, which can
have different parallelization, sharding and compression options and
lead to new trade-offs. More complex objective functions can feature
cloud providers’ processing and storage prices. We presume that
renting a low-cost VM and profiling the different strategies could
probe the infrastructure, i.e., network bandwidths. This allows us

to extrapolate the processing performance by tensor-specific CPU
benchmarks like PASTA [52] for high-cost VMs.We provide our li-
brary as an open-source project at https://github.com/cirquit/presto.
3.2 Pipelines
We profiled seven pipelines from four different domains and de-
signed them to represent popular DL models. Table 2 shows the
seven datasetswe used to profile the pipelineswith their storage con-
sumption, sample count, and format.Thedatasets andpipelines show
a variety of common formats, and different intermediate sizes, e.g.,
the NLP pipeline has a strategy that increases the initial storage con-
sumption by 64×, whileNILMhas a strategy that decreases the initial
storage consumption by a factor of 12× (Fig. 6). The pipelines were
implemented with the tf.dataAPI [59] which automates pipeline
execution and allows us to parallelize computations easily.We define
a sample in this context as data that is used as input for a DL model.

Thenamingof the steps in thepipelines followsa commonpattern.
First, the data is read from disk (unprocessed). After reading the
dataset fromdisk, a concatenation step transforms the input files into
a singleTFRecordbinary inorder toallowforefficient sequential read
access (concatenated). The concatenation step was technically not
feasible for theAudiopipeline, andwasomitted for theNILMpipeline
as the raw data was already stored in concatenated binary form.
Then, the data is decoded into a tensor format (decoded). Finally,
additional transformation steps can be applied to bring the data
into a format suitable for the training process. Generally, the steps
have two characteristics: the online processing time and the relative
increase or decrease of storage consumption. We explain the trade-
off between these two characteristics in Sec. 4.1, which can change
for the same step just by using different datasets, e.g., decoding can
increase or decrease the storage consumption depending on the
initial file encoding (e.g., JPG vs. PNG).

The performance of preprocessing steps depends not only on
the implementation of the step itself, but also on its position in
the pipeline and on the input data. We specifically showcase this
behaviour in Sec. 4.6 by changing the position of a new step in an
existing profiled pipeline.

Dataset Pipeline
Sample
Count Size in GB

Avg. Sample
Size inMB Format

ILSVRC2012 [75] CV 1.3M 146.90 0.1147 JPG
Cube++ JPG [19] CV2-JPG 4890 2.54 0.5203 JPG
Cube++ PNG [19] CV2-PNG 4890 85.17 17.4176 PNG
OpenWebText [1] NLP 181K 7.71 0.0427 TXT
CREAM [40] NILM 268K 39.56 0.1477 HDF5
Commonvoice (en) [6] MP3 13K 0.25 0.0197 MP3
Librispeech [66] FLAC 29K 6.61 0.2319 FLAC

Table 2: Metadata of all profiled datasets.

3.2.1 CV. We profile three datasets with the CV pipeline (Fig. 2)
to analyze the performance under different image resolutions and en-
codings. ILSVRC2012 [75] is a low resolution, JPG encoded subset of
ImageNet [16] and is a popular and commonly acknowledgeddataset
for visual object recognition. Cube++ is a high-resolution dataset
and comes in two flavors: as 16-bit encoded PNGs and JPGs [19].
The difference in storage consumption between the two encodings
allows for a direct comparison of the decoding performance. The
images from Cube++ are roughly 5× larger than in ILSVRC2012,
which allows to analyze how much the image resolution affects
the throughput of each strategy. Details of this pipeline have been
discussed in Section 1.
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3.2.2 NLP. The NLP pipeline (Fig. 5a) is based on GPT-2 [73],
a popular transformer-based model which tries to predict the next
word based on the textual input. We used the dataset from the corre-
sponding open-source implementation [1] of OpenWebText, which
was replicated from the GPT-2 paper. Our version of the dataset is
an early iteration and takes up 8 GB compared to the most current
one at 12 GB. The dataset consists of HTML content from scraped
URLs that have been upvoted on Reddit, a social media platform, as
an indicator of human interest and intelligible content. It is stored
as multiple text files.

The preprocessing starts with reading text files (concatenated)
and decoding the actual textual content (decoded) with the same
HTML parsing library (newspaper [64]) as GPT-2. Each word is en-
coded into an int32 via Byte Pair Encoding [76] (bpe-encoded),
which is then looked up in a word2vec embedding [57] that returns
a float32 tensor of dimension 1× 768 (embedded). This vector is
stacked for every word in the text, resulting in an n×768 tensor, the
final model input. These preprocessing steps’ complexity depends
on the tokenization model and the final embedding, making their
performance hard to predict.

BPE

Encoded

Embed-

dedDataset Concate-


nated Decoded

(a) NLP

Spectrogram

 EncodedDataset Decoded

(b) MP3 + FLAC

Aggre-

gatedDataset Decoded

(c) NILM

Figure 5: Preprocessing pipelines

3.2.3 Audio Processing. For the audio pipelines, we took inspi-
ration from Baidu’s Deep Speech model [3, 31]. Deep Speech is an
RNN-basedmodel that translates spoken audio samples to text. Both
preprocessing pipelines (Fig. 5b) decode the compressed audio sig-
nal into the raw waveform (decoded) of the size l × r , where l is
the sample duration in seconds and r is the sampling rate encoded
as int16. The waveform is transformed using a short-time Fourier
transform (STFT) with a window size of 20 ms and a stride of 10 ms.
The spectrogram is then transformed using an 80-binmel-scale filter
bank, leading to a size l−20ms+10ms

10ms ×80 tensor encoded as float32
(spectrogram-encoded). The difference between the pipelines is
their respective input format (MP3 vs. FLAC). In contrast to some
implementations [31], we do not convert the data to mel-frequency
cepstral coefficients (MFCCs) because it has been found thatDLmod-
els work as well or better without this transformation [35, 70, 79].

As datasets, we use the Mozilla Commonvoice 5.1 English cor-
pus [6] for MP3 files and the Librispeech dataset [66] for FLAC files.

3.2.4 NILM. Oursignalprocessingpipeline isbasedonMEED[39],
a state-of-the-art event detection model used for non-intrusive load
monitoring of electrical data. The task is to classify individual appli-
ances based on the aggregated voltage and current readingmeasured
on a building’s mains. These datasets typically have a very high fre-
quency, e.g., 6,400-50,000 Hz [4, 40, 46] to provide information on
subtle changes that can be useful for appliance identification.

We used CREAM [40], a component-level electrical measurement
dataset for two industrial-grade coffeemakers encoded as HDF5 files
per hour. CREAM contains two datasets from two different coffee

machines (X8 and X9), from which we used the larger X8 dataset
because it takes upmore than double the storage consumption of X9,
i.e., totals 744 hours of 6.4 kHz sampled current and voltage. This
dataset’s fundamental difference to the other datasets is the float64
encoding, which is favorable for NILM tasks [41] but introduces
additional storage consumption.

The pipeline starts by reading HDF5 files and extracts the volt-
age and current signals from them (decoded). They are sliced in
10-second windows, which results in a 2×64.000 tensor of float64.
Then, three aggregated values are computed: the reactive power [8],
the root-mean-square of the current, and its cumulative sum [39, 84,
99] (aggregated). These aggregation operators work with a dataset
period length of 128, which results in a tensor of size 3×500 encoded
as float64.

3.3 Experimental Setup
We execute our experiments on a virtual machine with 80 GB DDR4
RAM, 8 VCPUs on an Intel Xeon E5-2630 v3 8x@2.4 GHz with an
Ubuntu 18.04 image on our OpenStack cluster. Our Ceph cluster,
backed byHDDs, is used as a storage device via cephfs, with a 10 Gb/s
uplink and downlink. This storage is used for both storing the inter-
mediate dataset representations as well as the unprocessed datasets.
We repeat each experiment five times and we drop the page cache
after every run to remove memory caching effects except for explic-
itly marked caching experiments. All experiments are run with 8
threads except for explicitly marked scalability experiments with a
sharded dataset so that every thread has an assigned individual file
to read in parallel. All experiments are executed with Python 3.7 and
TensorFlow 2.4. Specific library versions are available in our GitHub
repository.

4 ANALYSIS
By profiling the preprocessing pipelines, we aim to provide insights
about how to pick the optimal preprocessing strategy for a specific
set of hardware, the datasets, and the characteristics of each pipeline.
The goal is to maximize the T4 throughput (Fig. 4) while keeping
the storage consumption and offline preprocessing time low. Our
analysis is focused on four core aspects:
Storage Consumption versus Throughput: Ahigh storage con-

sumption can render extensive offline preprocessing useless
or even counterproductive to achieve high throughput. This
has two causes. First, the dataset may be split into many files,
and the storage does not respond fast enough to random
read access, leading to a storage bottleneck. Secondly, spe-
cific preprocessing steps (e.g., normalizing an integer range
to floating points) inflate the data volume. This can lead to
a lower throughput because the saved preprocessing time
is outweighed by the increased data ingestion time (see Sec-
tion 4.1).

Caching: AsaDLtrainingprocess typically iteratesover thedataset
multiple times, there can be an increased throughput due to
caching effects after the first epoch. However, this effect de-
pends on whether the preprocessed training data fits into
memory. Further, reading the cached dataset frommemory
can help to isolate processing bottlenecks from storage bot-
tlenecks (see Section 4.2).
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Compression: Compression provides a way to trade off CPU over-
head for en-/decode steps against smaller storage consump-
tion. We profile each strategy with GZIP [17] and ZLIB [18]
compression and show under which circumstances compres-
sion improves the throughput (see Section 4.3).

Parallelization Capabilities: Preprocessing steps can hinder per-
formance if multi-core CPUs are not utilized effectively. Scal-
ability bottlenecksmay have a substantial impact on through-
put. We compare the speedup of each preprocessing step un-
der multi-threading and system-level caching in Section 4.4.

We also touch on shuffling (see Section 4.5) and discuss how to in-
troduce new steps to an already profiled CV pipeline based on a case
study in Section 4.6.

Threads Files per Thread Bandwidth Latency IOPS
1 1 219 MB/s 4−10µs 53400
8 1 910 MB/s 4−10µs 222000
1 5000 6.6 MB/s 4−10µs 1629
8 5000 40.4 MB/s 4−10µs 9853

Table 3: fio profile of our storage cluster

4.1 Storage Consumption versus Throughput
We profiled the throughput and storage consumption for all strate-
gies of each pipeline in Figure 6. The theoretical network read speed
to the HDD-backed Ceph storage cluster is capped at 1.25 GB/s
(10 Gb/s) due to hardware limitations, but the actual rates differ
based on the access pattern. To provide a pipeline-independent
measurement, we profiled four workloads with the fio tool [21]
to simulate both sequential and random file access with 5000 files
of 0.2 MB each and with one 5 GB file, which is comparable to our
unprocessed and concatenated strategies. Additionally, we tested
the single-threaded performance compared to 8 threads with the
same workload per thread. Table 3 shows that reading sequentially
is 33× faster for single- and 22× faster for multi-threaded execution.
While our single-threaded bandwidth is limited to 219 MB/s, the
multi-threaded execution is close to the hardware capwith 910 MB/s.
This helps to explain our main observations:

Pipeline Throughput in SPS Network Reads inMB/s
unprocessed concatenated unprocessed concatenated

CV 107 962 (±3) 12 (±16) 111
CV (SSD) 588 944 (±8) 68 (±15) 108
CV2-JPG 88 288 (±11) 46 (±72) 110
CV2-PNG 15 21 (±37) 270 (±54) 390
NLP 6 6 (±0.2) 0.21 (±1.5) 0.26
NLP (SSD) 3 3 (±0.2) 0.17 (±1.2) 0.16

Table 4: Throughput and average network read speeds for
strategies with concatenation.

(1) Concatenating can increase throughput significantly.
An I/O bottleneckmay arisewhen the storage cannot saturate the

hardware bandwidth basedon the data access pattern.Out of the four
pipelines which have a concatenated strategy (CV, CV2-JPG, CV2-
PNG, andNLP),we see that all CV-based pipelines have a throughput
increase between 1.4× and 9× compared to the unprocessed strat-
egy (Table 4). The individual differences in the throughput can be
explained by the dataset size and the average storage consumption
of a sample (Table 2). Due to the CV samples being smaller than the
CV2-JPG samples, CV achieves 962 SPS compared to 288 SPS while
having a similar network read speed of approximately 110 MB/s. The

CV2-PNG dataset has a sample storage consumption of 17.4 MB and
the network read speed increases from 270 MB/s to 390 MB/s with
concatenation.

Contrary to CV-based pipelines, theNLP pipeline does not benefit
from concatenating as the throughput stays at 6 SPS, indicating a
CPU bottleneck. This bottleneck is resolved in the decoded strategy,
where throughput increases significantly (Fig. 6d).

As an HDD-based storage solution is particularly vulnerable to
randomaccess bottlenecks,we additionally profiled theperformance
of the CV and NLP pipeline on an SSD-backed Ceph cluster. The CV
unprocessed strategy had a throughput of 588 SPS, which is almost
6× faster than theHDDexperiments.However, at theconcatenated
strategy, both HDD and SSD reach roughly the same throughput
(962 SPS vs. 944 SPS), i.e., at sequential access the SSD-backed stor-
age is not faster. For NLP, the SSD storage did not provide a better
throughput as it still faces the CPU bottleneck at the concatenated
strategy.
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(c) CV2-PNG
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Figure 6: Storage con-
sumption (left y-axis) for
each dataset representa-
tion compared to the T4
throughput (dotted line,
right y-axis).

(2) The maximum throughput of a strategy is influenced
by its storage consumption.

When the CPU performance in combination with a storage setup
can saturate the hardware bandwidth (i.e., in our case, read data
with 1.25 GB/s), then a maximum theoretical throughput can be
calculated by dividing the bandwidth by the storage consumption per
sample. This theoretical throughput is based on two steps. First, one
reads a sample from the storage into memory. Second, one applies
the online transformation steps in succession until the sample can
be fed into the training process. The total time of these two steps
defines the pipeline’s throughput (i.e., samples per second), hence
also the network read speed (i.e., MB per second). In our case, the ac-
tual throughput we can achieve is bound by the multi-threaded read
performance to our cluster, which is at 910MB/s with eight threads
(Table 3). This profiled network read speed provides a baseline of the
maximum possible throughput. The goal of every strategy should be
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to have a short enough transformation step to achieve this baseline
read speed. In turn, if transformation steps are too long, such that the
maximum read cannot be reached, we can assume a CPU bottleneck.

A characteristic result of how storage consumption affects the
throughput of strategies can be seen in the CV, CV2-JPG, CV2-PNG
and NLP pipelines (Fig. 6a, 6b, 6c, 6d), where the last strategy has the
least amount of online processing to do, but performs worse than its
corresponding preceding strategy. An excellent example of this is
the CV pipeline. At the last strategy, pixel-centered, we have an
average network read speed of 585 MB/s and need to read 1.4 TB of
data. This stands in contrast to theprevious strategy,resized,which
has a lower network read speed of 470 MB/s, but only needs to read
347 GB. Therefore, the resized strategy has a more than 3× greater
throughput of 1789 SPS compared to pixel-centered (576 SPS),
even though resized applies more processing steps online. The
cause of the increased storage consumption is that pixel-centered
converts each pixel from an uint8 to a float32which effectively
quadruples the storage consumption. All our CV-based pipelines
share this characteristic at different magnitudes, which results in
the resized strategy having the best throughput.

The NLP pipeline has a similar issue with the embedded step,
which slows down the throughput from1726 SPSwith bpe-encoded
to 131 SPSwith embedded (a factor of 13×). Applying the embedding
step online is very computationally intensive, which yields a data
ingestion of only 6 MB/s for bpe-encoded. One could think that
preprocessing this step offline should improve performance. But
this is not the case, because the storage consumption increases from
647 MB to 491 GB, such that the benefit of processing the embedding
step offline is outweighed by the increased time to read the dataset.

The remaining pipelines, NILM, MP3 and FLAC (Fig. 6e, 6f, 6g),
share the common characteristic that the last preprocessing step is
the most computationally expensive one, which leads to the best
throughputwhenprocessedoffline.While theyall havedifferent stor-
age consumption, none of the pipelines approaches the maximum
possible network read speeds at their respective last strategy.

On first sight, this is counter intuitive. In the last strategy, there
is almost no processing to be done except for decoding the read data.
Why do these strategies not approach the network read limit? A
deeper investigation leads to our following observation.
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Figure 7: Profiling a synthetic 15 GB dataset with different
datatypes and sample sizes.

(3) A high storage consumption per sample allows for eas-
ier I/O bandwidth saturation.

A deserialization step is applied onto every sample which is read
from the storage to transform it from a bytestream into a tensor. We
observed that an increasing sample size positively influences the
I/O bandwidth of reading and deserializing. To provide a basis to
our observation, we conduct an experiment with synthetic data that
shows the effect of different sample sizes on the online processing
time of reading and deserializing. We evaluate sample sizes from

0.01 MB to 20.5 MBwith doubling increments while keeping a total
storageconsumptionof15 GBforbothuint8andfloat32datatypes
which are common in our real-world pipelines. To keep the same
total storage consumptionwith different sample sizeswe adapted the
sample count, which ranged from 732 (20.5 MB) to 1.5M (0.01 MB)
samples. Figure 7 shows the result that reading the same amount of
data with different sample sizes has a major effect on the processing
time. A dataset consisting of large (20.5 MB) samples takes less than
half the processing time of small (≤ 0.08 MB) samples. At a sample
size of 0.01 MB, it takesmore than 11× longer to process the 15 GB of
data compared to 20.5 MB samples. Finally, the different data types
do not have an impact on the processing time, as both uint8 and
float32 show similar results.

A good example for this observation is the comparison of the
decoded strategybetweenCV (Fig. 6a) andCV2-JPG (Fig. 6b). The av-
erage sample size is 13 MB for the decoded strategy of CV2-JPGwith
a network read speed of 828 MB/s, which indicates an I/O bottleneck.
However,with the same strategy, theCVpipeline has a sample size of
0.6 MBand the average network read rate is at 491 MB/s,which is not
even close to ourmaximum bandwidth. Notably, the CV pipeline has
a lower computational load compared to CV2-JPG and has to read
fewerdata fromstoragewitheachsampledue to thesmall sample size.
But it still does notmanage to saturate the I/O bandwidth. Therefore,
the CV decoded strategy suffers from a CPU bottleneck. To further
validate our assumption, we profiled the CV pipelinewith 16 threads
which increased the network read speed by 64 MB/s and improved
the throughput by 142 SPS. The additional multi-threading also in-
creased the throughput by 583 SPS and 100 SPS for the resized and
pixel-centered, respectively. All last strategies like aggregated
(Fig. 6e), spectrogram-encoded (Fig. 6f, 6g), and embedded (Fig. 6d)
share that characteristic and do not saturate the I/O bandwidth
(96 MB/s, 317 MB/s, 564 MB/s and 315 MB/s respectively).

4.2 Caching
DL training jobs typically runovermultiple epochs,whichmeans the
dataset is read multiple times and could benefit from being cached
in memory after the first epoch. We evaluated the throughput of all
pipelines over two epochs for all strategies. In this set of experiments,
we do not flush the page cache after the first epoch. Our observations
are as follows:

(1) Caching is not beneficial when the storage consump-
tion is higher than the availablememory.

If the data set is too large for the memory, the dataset is read com-
pletely from the storage at every epoch. Hence, throughput is not
increased by caching. All strategies that have a storage consumption
higher than 80 GB (Fig. 6) have the same throughput over all epochs
(Fig. 8).

(2) Caching does not remove CPU bottlenecks.
Assuming that the dataset fits into memory, caching can only im-

prove throughput significantly if there isnoCPUbottleneck.Reading
data frommemory ismuch faster than from remote network storage,
but the impact of fast data access can become insignificant when
followed by computationally expensive preprocessing steps. An ex-
cellent example of this is the NLP pipeline (Fig. 8d). The first two
strategies unprocessed and concatenated have the same through-
put of 6 SPS over all epochs because decoding is very compute in-
tensive while the datasize is relatively small (7.7 GB). Then, after
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decoding the data (594 MB), we face a new computationally expen-
sive step, byte-pair encoding,which transforms the text into integers
and increases the storage consumption to 647 MB. This is followed
by the embedding step, which also takes much time. All of these
strategies face aCPUbottleneckwhile having a storage consumption
that allows the data to be cached. Finally, at the embedded strategy,
the dataset only needs to be read from the storage, but grows in size
to 490.7 GB, such that caching has no impact on throughput.

SimilarCPUbottlenecks can also be observed in theunprocessed
strategies of CV2-PNG, NILM, MP3 and FLAC (Fig. 8c, 8e, 8f, 8g),
the concatenated strategies of CV2-{JPG,PNG} (Fig. 8b, 8c) and
the decoded strategies of MP3 and FLAC. The remaining strategies
(resized, pixel-centered, aggregated, spectrogram-encoded)
benefit from caching themost as they have low storage consumption
and are not followed by computationally expensive steps. However,
caching improves the throughput with differing factors (1.1×-4.2×),
which results in the next observation.

unprocessed
concatenated decoded resized pixel-

centered

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 in

 S
am

pl
es

 p
er

 S
ec

on
ds

107

962
746

1,789

576

126

957
753

1,808

580

Epoch
0
1

(a) CV
unprocessed

concatenated decoded resized pixel-
centered

0

1000

2000

3000

Th
ro

ug
hp

ut
 in

 S
am

pl
es

 p
er

 S
ec

on
ds

88 288
64

1,571

643
302 308 198

2,541

2,044
Epoch

0
1

(b) CV2-JPG

unprocessed
concatenated decoded resized pixel-

centered

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
 in

 S
am

pl
es

 p
er

 S
ec

on
ds

15 21 73

1,786

631

18 21 208

3,285

2,201

Epoch
0
1

(c) CV2-PNG
unprocessed

concatenated decoded bpe-
encoded embedded

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 in

 S
am

pl
es

 p
er

 S
ec

on
ds

6 6
251

1,726

1315 6
252

1,764

138

Epoch
0
1

(d) NLP

unprocessed decoded aggregated
0

2000
4000
6000
8000

10000
12000

Th
ro

ug
hp

ut
 in

 S
am

pl
es

 p
er

 S
ec

on
ds

42 55

9,053

43 55

9,890Epoch
0
1

(e) NILM
unprocessed decoded spectrogram-

encoded

0

2000

4000

6000

8000

10000

Th
ro

ug
hp

ut
 in

 S
am

pl
es

 p
er

 S
ec

on
ds

37 205

5,220

188 210

8,429Epoch
0
1

(f) MP3

unprocessed decoded spectrogram-
encoded

0

2000

4000

6000

Th
ro

ug
hp

ut
 in

 S
am

pl
es

 p
er

 S
ec

on
ds

15 47
1,436

38 47

5,989Epoch
0
1

(g) FLAC

Figure 8: Effects of
caching on T4 through-
put for all pipelines.

(3)System-levelcachingperformanceisaffectedbythestor-
age consumption per sample.

While cached data removes the performance impact of remote
storage, the preprocessed dataset still has to be fetched frommem-
ory and deserialized. We confirmed this by comparing the trace
log between epochs. To examine the memory bandwidth, we used
sysbench [20] to profile our memory which resulted in 166 GB/s.
This should theoretically yield a multiplicative increase in through-
put, which we do not achieve because we are not close to the max-
imum I/O bandwidth (cf. Sec. 4.1 observation (3)).

We investigate this observation by profiling synthetic float32
datasetswithdifferent samplesizeswithbothsystem-andapplication-
level caching (Fig. 9). At the lower end of storage consumption,
starting with 0.16 MB per sample, reading smaller samples takes in-
creasingly longer. The smaller the sample size, the more processing
time the deserialization takes, which lessens the final throughput of
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Figure 9: Online processing time for different caching levels
and sample sizes of a synthetic 15 GB dataset.

the cached dataset. At 0.04 MB and lower, the processing time when
data is cached in memory (sys-cache) is comparable to the case
where data is on storage (no-cache), nullifying the effects of caching.

Our real-world experiments show the same behaviour. The stor-
age consumption per sample forMP3 is 0.08 MB at the spectrogram
-encoded strategy, while having a relative throughput increase of
1.6× (Fig. 8f) with caching. Meanwhile, the FLAC pipeline has a
storage consumption of 0.4 MB per sample with the same strategy
and increases its throughput by 4.2× (Fig. 8g) with caching. The
NILM pipeline shows almost no increase in throughput (1.1×) over
multiple epochs (Fig. 8e) as the sample size is only 0.012 MB.

While this is interesting, system-level caching via the page cache
is somewhat unsatisfactory, since one wants to cache the tensor
data and not be bottlenecked by the deserialization. The TensorFlow
function tf.data.Dataset.cache caches the deserialized tensors
in memory, avoiding deserialization overheads. This leads us to our
fourth observation.

Pipeline System-level Application-level Sample Size
CV2-JPG 3.3× 15.2× 1.18 MB
CV2-PNG 3.5× 14.5× 1.18 MB
FLAC 4.2× 8.0× 0.41 MB
MP3 1.6× 2.2× 0.08 MB
NILM 1.1× 1.4× 0.01 MB

Table 5: Throughput increase for different caching level com-
pared to no caching of of each pipeline’s last strategy.

(4)Application-level caching ismoreefficient thansystem-
level caching, but is still affected by the storage consumption
per sample.

To understand how application-level caching affects the perfor-
mance, we profiled all pipeline’s respective last strategies, as well as
our synthetic 15 GB datasets again with application-level caching.
The results of the synthetic datasets in Fig. 9 (app-cache) show
that application-level caching is faster, but there is the same pattern
of increasing processing time with a smaller sample size. The on-
line processing time with application-level caching consists solely
of reading the samples from memory. We can calculate the time
spent on deserialization by subtracting the app-cache time from
sys-cache time. By dividing with the sys-cache time, we can get
the percentage of the time spent on deserialization. For the sample
sizes 20.5 MB to 5.1 MB we spend 94-98% time on deserialization
( 4.8−0.14.8 ), compared to 14-18% for 0.08 MB to 0.01 MB ( 167.3−138.3167.3 ).
Hence, the largest relative gains with application-level caching can
be achieved with large sample sizes.
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Our real-world pipelines have shown a similar throughput im-
provement compared to system-level caching when the dataset fits
into memory (Tab. 5). The decline in throughput improvement with
both caching levels is directly correlated with a smaller sample size.
The last strategies of the CV and NLP pipelines failed to run with
application-level caching as the dataset did not fit into the cache (cf.
Sec. 4.2 (1)).

4.3 Compression
Storageconsumptionhasshowntobean important factor for through-
put. Compression adds a new possibility to decrease storage con-
sumption at the cost of an offline compression step and an online
decompression step. For compression to provide a benefit, the gains
of decreased data size must outweigh the computational overheads.
A commonmetric to evaluate compression on storage consumption
is the space saving percentage. For example, if the size did not change
after compression, the space saving is 0%. When it changes from
originally 5 GB to 1 GB, the space saving is 80%. We omitted the
unprocessed strategy for all pipelines because accessing single files
is bound by the randomaccess performance of the storage (cf. Sec. 4.1
(1)) and compression does not help with this issue. The results of
our compression experiments are shown in Fig. 10. We make the
following observations:

(1)Highspacesavingsdonotguarantee improved through-
put.

Space saving affects the throughput positively for some, but not
all strategies. All CV-based pipelines had an increase in throughput
with compression between 1.6× and 2.4× atpixel-centeredwhere
space saving is between 73% and 93% (Fig. 10a, 10c, 10e). In this case,
the faster read time in total was beneficial compared to the cost of
the additional decompression step.

In contrast, the strategies of the NLP pipeline have a space saving
between 28% and 80%, but none of them had a throughput increase
(Fig. 10g). The reason for that is that every strategy was bound
by a computationally expensive CPU step except the last strategy
embedded. At embedded, the dataset is only read from disk and de-
serialized, but the space saving of 28% was not enough to benefit the
total throughput.

The same effect becomes visible when comparing the strategies
decodedandresizedbetween theCV2-PNGandCV2-JPGpipelines
(Fig. 10c, 10e). The only difference between the pipelines is the encod-
ing of the images, with JPG being a lossy storage format, while PNG
is lossless. The CV2-PNG pipeline has a better space saving with
compression with the decoded strategy (83%) compared to CV2-JPG
(41%). This results in a throughput increase by 1.5× for CV2-PNG
compared to the 89% throughput deterioration at CV2-JPG. The
resized strategy with the PNG images has a space saving of 81%
and improves the throughput by 1.3×, while JPG only saves 24% of
space and reduces the throughput to 96%. The compression artifacts
introduced by the lossy JPG encoding affect the space saving of both
GZIP and ZLIB negatively.

1Unfortunately, after one full run with each compression library (GZIP, ZLIB) for each
strategy of theCVpipeline, ourCEPHstorage systemwas reconfiguredwhich led to non-
comparable results of the respective repeat runs. Hence, for these specific experiments,
we only report results of one run (instead of the average of five runs, as in all other
experiments).
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Figure 10: Left column: Storage consumption compared toT4
throughput (dotted lines) with compression. Right column:
Offline (grey hatched bars) and online processing time (col-
ored) with compression.

All the other pipelines, NILM, MP3 and FLAC, slow down with
compression and have a varying space saving between 0.3-41.2%
(Fig. 10i, 10k, 10m). When comparing the different compression
types, ZLIB was slightly faster and had a comparable space saving to
GZIP, except for NLP’s bpe-encoded, where it was slightly slower
compared to GZIP.

(2) Offline compression andwrite time can be volatile.
When compressing a dataset, the processing time is increased

by the compression algorithm, and decreased by the lower write
time due to lower storage consumption. The balance between these
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steps is not predictable from our observations, as the CV2-PNG
pipeline shows (Fig. 10f). With the concatenated strategy and a
space saving of only 0.3%, it takes 9.6× longer to save the dataset to
storage. The strategy decoded has a space saving of 83% and takes
13.5× longer for offline processing. The next strategies, resized and
pixel-centered, have a space saving of 80%-93% and only take 1.08-
1.1× longer. Compared to a slightly worse space saving of 74% with
the pixel-centered strategy at the CV2-JPG pipeline (Fig. 10d), the
offline processing time is increased by 6.1×.

Generally, we see examples of a high space saving and no effective
increase in offline processing time in NLP (Fig. 10h), a low space
saving with a higher offline processing time in NILM (Fig. 10j) and
CV2-PNG concatenated (Fig. 10f), and low space saving with no
effective increase in offline processing time in MP3 (Fig. 10l), FLAC
(Fig. 10n), and CV concatenated and resized (Fig. 10b). Space sav-
ing does not seem to be a good predictor at how the compression
will affect the offline processing time.

4.4 Parallelization Capabilities
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Figure 11: Reading a synthetic 15 GB dataset with different
sample sizes to comparemulti-threaded scalability.

Weanalyzed the parallelization capabilities of each pipeline under
multi-threading, as this is one of the best practice recommendations
to speed up data pipelines and remove I/O bottlenecks [27]. We
compared the speedup of each strategy by running it with 1, 2, 4,
and 8 threads over two epochs with system-level caching enabled
(Fig. 12). The profiling was done with a fraction of the dataset (up
to 8000 samples) so that the second epoch could be fully cached for
each pipeline to compare the speedup with system-level caching.
Wemake the following observations:

(1)Asmall storage consumptionper samplehindersmulti-
threaded performance.We know from the previous Sections 4.1
and4.2 that a small storageconsumptionper sampleaffects theonline
preprocessing time negatively. However, how does it affect multi-
threaded execution? To analyze this, we reused the same synthetic
15 GB float32 dataset with different sample sizes to compare their
multi-threaded read and deserialization time. The results in Fig. 11
show a similar trend as before, with a speedup of close to 1× for the
0.01 MB sample sizes. Thismeans that processing small sampleswith
a single thread takes equally long as with eight threads. We traced
the issue down to an increased amount of context switches with
smaller sample sizes (100,000 per second at 0.01 MB compared to
5,000 per second for 20.5 MB). Additionaly, as we extracted from the
trace log, every thread only processes a single sample at a time and
is finished faster with smaller sample sizes before being scheduled
again. Scheduling a thread to process a new sample induces so much
overhead that multi-threading can not be effective at small sample
sizes.

A good example from our real-world pipelines is NILM (Fig. 12i)
at the aggregated strategy, which has no effective speedup due
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Figure 12: Speedup at 8000 samples. Left column:No caching.
Right column: System-level caching.

to a sample size of 0.01 MB. Even when reading the dataset from
memory (Fig. 12j), there is virtually no change in speedup. Every
last strategy from each pipeline has as slightly worse speedup when
reading frommemory (sys-cache) than when reading from storage
(no-cache) (Fig. 12). The reason for this is that memory provides a
higher bandwidth, so reading data is fast, even with a single thread.
Therefore, the effect of context switches is highlighted even more
compared to the case where the slower network read speeds affects
the total processing time additionally.
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(2) Inefficient preprocessing can reduce multi-threading
scalability.

While most of the scaling issues like bpe-encoding in NLP can
be explained with a small sample size (0.003 MB), we also observed
slowdowns (speedup <1.0), which have a different root cause. This
happens with the first two strategies of NILM (Fig. 12i, 0.15 MB and
0.98 MB) and NLP (Fig. 12g, 0.04MB), which are not alleviated by
reading frommemory (Fig. 12j, 12h, respectively). This points to a
processing issue. One thing that both unprocessed, concatenated
(NLP) and decoded (NILM) have in common, is that they are us-
ing external Python libraries like NumPy and newspaper wrapped
in a tf.py_function, while all the other preprocessing steps are
provided by the TensorFlow library.
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Figure 13: Speedup of applying RMS to a synthetic 15 GB
dataset with different sample sizes implemented in NumPy
and TensorFlow.

To test how external libraries affect the throughput, we created a
new preprocessing step which applies the root-mean-square (RMS)
function with a period of 500 over the entire sample, leaning on
a similar computation from the NILM pipeline. We implemented
this step both with NumPy and TensorFlow, and we profile our syn-
thetic datasets with steps applied online individually. The results
in Fig.13 show that the NumPy implementation has the same slow-
down as NILM andNLP for all sample sizes, whereas the TensorFlow
implementation shows a speedup between 4-8× for eight threads.
However, while the NumPy implementation does not scale, it is still
2.9× faster with a single-threaded processing time of 650 seconds
compared to TensorFlow’s 1905 seconds with eight threads at the
20.5 MB sample size. In otherwords, it pays off to use the less scalable
but more efficient implementation in NumPy instead of the native
implementation in TensorFlow.

(3)Randomfile access performance canaffect the speedup.
Wehave already discussed the impact of concatenation in Sec. 4.1 (1)
and how random file access can hinder achieving high throughput
and bandwidth utilization. By running the multi-threading exper-
iments with system-level caching enabled, we can isolate the effect
of random file access on speedup. For example, the unprocessed
strategy of the MP3 pipeline (Fig. 12k) has a speedup of 2× when
reading from storage with eight threads, versus a speedup of 6×
when reading from memory (Fig. 12l). This shows that decoding
does in fact scale well. The same effect changes the speedup of the
FLAC pipeline from 4× (Fig. 12m) to 6×with eight threads (Fig. 12n).

4.5 Shuffling
A common technique in DL is to change the order of the dataset in
every epoch, so the optimizers do not see the same gradients inmini-
batches. There are a few different approaches to shuffling the dataset,
which include sampling from the datasetwith- orwithout replace-
ment [15, 32, 94]. Irrespective of which algorithm is used to modify

the order of the dataset, it is a verymemory-intensive problem, as the
entire dataset has to be loaded into RAM. One solution is to create
a buffer that fits into the memory and use awith-replacement sam-
pling strategy to iterate over the entire dataset in a pseudo-random
fashion [28], similar to reservoir sampling [88].

We implemented and profiled this approachwithmultiple sample
counts, which confirms the naive assumption that the per-sample
processing time for shuffling is constant. That means that shuffling
has a linear relation to storage consumption and is not specific to a
pipeline or dataset. The difference in per-sample processing time be-
tween shuffling and not shuffling for each sample size is (±0.5) 9.6ms
on average. An additional characteristic is that the initial call to allo-
cate a buffer is amortized with a bigger sample size, which manifests
itself in the increasingly faster per-sample time with incremented
sample sizes.

PRESTO’s profiling can help to find the optimal place in the
pipeline where shuffling should be applied. As the storage consump-
tion of a strategy does not affect the runtime of shuffling, we do not
recommendmaking shufflingpart of the strategy selection.However,
once a strategy is determined, we suggest to shuffle after the online
pipeline step that yields the smallest data size. If we consider a fixed-
size buffer for shuffling, the highest number of samples can be fit into
the buffer when the size of the data sample is smallest. The higher
the number of samples in the buffer, the higher the entropy; this, in
turn, leads to a better approximation of the “true” gradient [44, 60].

4.6 Modifying the Pipeline
Weaddedanadditionalpreprocessingstep to theCVpipeline toshow-
case how the trade-offs can shift in an already profiled pipeline. We
decided on adding a step that converts images fromRBG to greyscale
because this is a common preprocessing step that affects the storage
consumption and is not obviously compute intensive. To evaluate
how an additional step will affect the pipeline performance, we
profiled two setups: before and after the pixel-centered strategy.
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Figure 14: Storage consumption (left y-axis) and throughput
(right y-axis, dotted line) comparison of adding a greyscale
transformation before and after the pixel centering.

Before discussing the results, we explain the characteristics of
the new applied-greyscale strategy and compare it to resized.
Converting a 3-channel image to greyscale should decrease the stor-
age consumption by 3×, because we only need a single channel
with the same datatype. The resized strategy reduces the size by
2.4× for the CV dataset, which is dependent on the average image
resolution. Adding greyscaling will also affect the throughput of
pixel-centered as the final storage consumption will be reduced
as well.

The results in Fig. 14 show the effect of the additional greyscale
step on the storage consumption and throughput. First of all, apply-
ing the greyscale step before thepixel-centered strategy increases
themaximumthroughput of thepipelineby2.8×, from1513 SPSwith
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resized (Fig. 14b) to 4284 SPS with applied-greyscale (Fig. 14a).
While the last strategy of both setups performs similary, applying
preprocessing steps that reduce the storage consumption consec-
utively increases the throughput for intermediate strategies. We
additionally evaluated a setup where the resize and greyscale steps
are interchanged before the pixel centering, but there was no signifi-
cant difference in performance to Fig. 14a. The second setupwith the
last strategy applied-greyscale increases the throughput from
534 SPS at pixel-centered to 1384 SPS by reducing the data size
from1.4 TB to463 GB.This supportsourobservation (2) fromSec. 4.1
that steps which reduce storage consumption should be investigated
with priority when searching for the best performing.

5 LESSONS LEARNED
We find it important to summarize our findings more generically for
both DevOps and ML practitioners so that they can use the PRESTO
library and the generated insights for future analysis. These lessons
are based on the analysis in Section 4.

(1)Storageconsumptionisanimportantcharacteristicwhen
estimating throughput. We gravely underestimated the effect of
storage consumption before conducting this study. The impact of
storage consumption is a multi-faceted one, as it affects the storage
hardware, its interconnects, the deserialization process and multi-
threading capabilities. A small total storage consumption performs
best if not throttled by a CPU bottleneck, and steps that reduce data
size should be prioritized when searching for the best performing
strategy.However, small sample sizes (≤ 0.08 MB) increase theonline
processing time dramatically irregardless of reading from storage
or frommemory and can be a reason for an underutilized I/O band-
width. These two observations combined are the reason why fully
preprocessed datasets did not yield the best throughput in 4 (CV,
CV2-PNG, CV2-JPG, NLP) out of 7 pipelines.

(2) Multi-threading usually improves throughput, but the
speedup can be limited for various reasons. Parallel execution
of a pipeline is not a silver bullet when trying to speed up prepro-
cessing. First of all, various issues can impede parallel speedup, such
as calling external Python libraries or dealing with extremely short-
running preprocessing tasks at small sample sizes. But even when
parallel speedup of a strategy is reasonably good, a different strategy
with a lower data volume to be read from storagemay performmuch
better.

(3) It isrecommendedtouseapplication-levelcachingwhen-
ever possible. Whenever the dataset fits into memory, application-
level caching increased the throughput in our experiments by up to
15×with a high sample size. Application-level caching improved the
throughput compared to system-level caching by a factor of 1.3-4.6×,
and should be preferred as the deserialization of cached files can
slow down the pipeline.

(4) Compression can be useful when not facing a CPU bot-
tleneck. Compression can increase the throughput by a factor of
1.6-2.4× under few conditions: a high enough space saving of 73-
93% and the absence of computationally expensive processing steps.
However, estimating the space saving, as well as the decompres-
sion time is hard. Additionally, applying compression can increase
the offline processing time between 1.1× and 13.5× compared to no
compression. The overheads of compression should be taken into
account and carefully weighted against I/O savings.

6 RELATEDWORK
I/O profiling was already done in a micro-benchmark for Tensor-
Flow by Chien et al. [13] which focused on different file systems and
the check-marking functionality. In their experimental setup with
AlexNet [49], the training data prefetching eliminated the effective
preprocessing time, similar toourCVpipelinewith theunprocessed
strategy.

OneAccess, a unified data loading layer, functions as middleware
for preprocessing and helps to run ML jobs on multiple nodes more
efficiently by removing duplicate processing for hyperparameter
tuning [42]. We have observed similar results where packing the
dataset helps by allowing sequential data access, but their prepro-
cessing seems to be done fully offline. Their sample lifecycle concept,
which plans to store the data for a certain amount of time in antic-
ipation of re-use, is a perfect fit for PRESTO’s strategy optimization
to select the lowest storage consuming dataset representation.

Anexampleof improved I/Oefficiency inDLforhigh-performance
computing (HPC) is the framework DeepIO by Zhu et al. [97] which
optimizes data loading to improve the training throughput. This
framework could be used to complement our methodology to mit-
igate I/O bottlenecks.

Model throughput, which is coupled with GPU utilization, has
been identified as an essential topic in the MLOps community [37,
59, 65]. Microsoft pointed out in a study [37] that underutilization of
GPUs inmulti-tenant settings is a problem for cloud providers. They
evaluated how job locality and human errors can lead to unneces-
sarily idling resources. IBM implemented their FUSE-based [82] file
system for object storage to improve the I/O loads in their IBMFabric
forDeep Learning services [65]. Additionally, they deployed caching
mechanisms to improve long-term read throughputs if the dataset
fits into memory. These studies touch on different pain points of the
cloud providers as they start to recognize the potential of improv-
ing the deployment and resource usage of end-to-end DL pipelines,
which integrate the previously overlooked preprocessing phase.

Another work in that direction is a recent NVIDIA study [63]
which profiled the end-to-end training and inference time for mul-
tiple frameworks and models on their GPU and TPU servers. They
highlight the benefits of different hardware solutions but do not
take the preprocessing pipeline into account as they preprocess the
dataset only once completely.

Relocating the preprocessing to more specialized hardware can
increase performance and adds additional resources to the prepro-
cessing profiling. NVIDIA’s Data Loading Library (DALI), a Python
library [61], provides commonpreprocessing steps for images, video,
and audio formats,which canbeused as a drop-in replacement for na-
tivepipelines that canbeexecutedon theGPU.DALIhas shownto im-
prove the performance of multiple end-to-end DL pipelines [58, 62].
PRESTO can be applied on a DALI-enhanced pipeline, andwhile this
mayshift the trade-offs, it is essential tonote thatadditional resources
also introducecomplexities likebandwidth restrictions, limitedmem-
ory sizes, and in this case, double-use for preprocessing as well as
training.DLmodels are stored inGPUmemory for forward and back-
ward passes, interfering with the improved preprocessing execution
due to restricted memory size and computational capabilities when
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executed in a pipelined fashion. The cost and ubiquity of CPU pro-
cessing shouldbeweighedcarefully againstGPUsandwhen indoubt,
be optimized in an end-to-end manner with tools like CoorDL [58].

Our work focused on the trade-offs between storage consump-
tion, throughput, and preprocessing time, while Mohan et al. [58]
analyzed different types of stalls and focused on dividing the entire
end-to-end DL pipeline into data fetches, preprocessing rate, and
GPU processing rate. They have shown how to efficiently use the
OS-level cache to improve fetch stalls while increasing the total
time-to-accuracy on two 24 core machines with 8 GPUs and 500 GB
RAMwith an HDD and an SSD local storage. While our focus was
more on consumer-level hardware, which does not allow this level
of caching, we had a similar observation that the decoding step in
CV is very inefficient and that slow preprocessing can bottleneck
the training performance on the GPU.We provide a solution to one
of their discussion points on mitigating the increased storage con-
sumption due to decoding with a suitable strategy, which can cache
the entire dataset even more efficiently combined with CoorDL.

Relocating the preprocessing onto an accelerator is also done in
SMOL, a system that prepares the most efficient strategy on how to
preprocess visual data and train a model in an end-to-end fashion
while keeping the accuracy fixed [43].We reproduced similar prepro-
cessing bottlenecks regarding our image pipeline. However, while
SMOL uses data compression steps and other techniques to speed
up the data processingwhile providing the samemodel accuracy, we
focused entirely on the preprocessing pipeline. Some of our insights
can be incorporated into SMOL, such as partially preprocessing a
pipeline for a specific set of hardware, allowing better throughput
based on the presence of hardware en-/decoders or having addi-
tional compression in the preprocessing pipeline to increase the final
throughput. Supplementing SMOL with our analysis of common
preprocessing steps could enable it to work on non-image data.

7 DISCUSSION
While our analysis provides some key insights about how to profile
and configure a preprocessing pipeline, we want to highlight some
settings which could benefit from further research.

Datasets can grow over time. The results from PRESTOwhen
profiling a pipeline and a static dataset should provide valuable in-
sights if the dataset grows in the future. One exception is when
the data representation of the newly added data is not compat-
ible with the previous dataset, e.g., adding 4k images to a VGA-
resolution dataset, which may slow down parts of the pipeline in
unpredicted ways and result in different trade-offs. TensorFlow Ex-
tended (TFX) [9] is anMLplatform to train anddeploymodels,which
can be used to keep track of this shift in the dataset.

Storage bandwidth has shown to be a bottleneck for other
similarMLOps studies [43, 58, 59].We have shown that compres-
sion is a promising tool tomitigate storage-related bottlenecks but its
efficacy is limited. Compression that is optimized to store tensor-like
data could potentially provide even better throughput and space
saving. Our recommended strategies from CV and NLP are integer
tensors, but NILM, MP3, and FLAC use floating-point tensors with
32 and 64 bit, which suggests that different compression algorithms
have to be considered depending on the data representation [51, 54].
When applied carelessly, compression can have severe effects on the

entire online processing. PRESTO can be used to study the effect of
compression in more depth.

Distributed computing for preprocessing. A common solu-
tion to speed up the execution jobs is using multiple worker nodes
with frameworks likeApacheBEAM[5] or Spark [95]. Preprocessing
a dataset is a trivially parallelizable task by splitting the dataset into
equal chunks for every worker to process simultaneously, except for
shuffling or similar global dataset operators.While it is easy to follow
PRESTO’s recommendation and apply the offline transformation
steps until the desired data representation is met, there are more
complexities involved, like thedata locality toworkers, the locality of
theworkers to the training process, the amount of workers available,
the interconnects, and the scheduling algorithm that supervises the
job execution. This distributed setting will benefit from PRESTO’s
analysis, as storage consumption is correlated with the network
bandwidth usage, and finding a strategy that has a good speedupwill
be even more effective with multiple workers. These insights may
help to improve data management and scheduling. Nevertheless,
additional profiling should be done to further optimize the pipeline
execution for the specific cluster-computing framework.

Applicability for concurrent training. When considering a
setup with a shared preprocessing pipeline between multiple dis-
tributed training jobs, such as in hyperparameter tuning, all of our
insights are applicable, as the throughputT4 can be fanned out to all
training jobs. However, this setup adds load onto the network be-
tween the preprocessing node and the training nodes, which would
not happen when running the preprocessing locally on the same
machine that performs training. If the network can not handle the
duplicated load of fanning out the preprocessed data per training
job, it will become a new bottleneck.

8 CONCLUSIONS
This paper presents an analysis of seven concrete DL pipelines based
on their typical preprocessing steps from CV, NLP, NILM, and the
Audio domain. We provide a profiling library, PRESTO, that helps
with detecting bottlenecks and automatically decide which prepro-
cessing strategy is the most efficient based on an objective function.
We show that not preprocessing the dataset before training is never
the best solution for all pipelines, and fully preprocessing can affect
the final preprocessing throughput negatively due to problems re-
lating to I/O and storage consumption. Alternatively, we propose
different strategies that increase the CV pipeline throughput by 3×
and NLP by 13× while reducing their storage consumption com-
pared to the fully preprocessed dataset. We provide insights into
how storage consumption, different caching level and compression
affect the preprocessing pipeline and how they can pinpoint where
bottlenecks are formed. While multi-threading could be an effective
way to speed up preprocessing, we show that using an intermediate
preprocessing strategy is significantly more impactful to reduce
processing time. Finally, we provide an intuition about profiling the
preprocessing pipelines effectively by summarizing the generated
insights to mitigate future bottlenecks in deep learning pipelines.
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ABSTRACT
This paper aims to answer the question: Can deep learning models
be cost-efficiently trained on a global market of spot VMs spanning
different data centers and cloud providers? To provide guidance, we
extensively evaluate the cost and throughput implications of train-
ing in different zones, continents, and clouds for representative CV,
NLP andASRmodels. To expand the current training options further,
we compare the scalability potential for hybrid-cloud scenarios by
adding cloud resources to on-premise hardware to improve training
throughput. Finally, we show how leveraging spot instance pricing
enables a new cost-efficient way to trainmodels withmultiple cheap
VMs, trumping both more centralized and powerful hardware and
even on-demand cloud offerings at competitive prices.

PVLDBReference Format:
Alexander Erben,
RubenMayer, and Hans-Arno Jacobsen. . PVLDB, 17(1): XXX-XXX, 2023.
doi:XX.XX/XXX.XX
PVLDBArtifact Availability:
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1 INTRODUCTION
Deciding whether to invest in on-premise hardware or move to the
cloud for deep learning (DL) is not easy. Wanting to scale existing
infrastructure means paying upfront, as combining cloud and on-
premise is not an optionwith popularDL frameworks due to needing
a dedicated high-bandwidth interconnect. To enabled model- and
data-parallelism, current state-of-the-art accelerators have band-
widths of 900 GB/s for intra-node [18] and 25 Gb/s for inter-node
setups [25, 38]. Due to the initial investment of the cloud providers
in the accelerators, they naturally want to reap profit bymaximizing
resource utilization. Therefore, it is common to have "spot" pric-
ing, which offers the VMs at a strongly reduced rate, typically at
a 40-90% discount (Table 1), but with the drawback that the VM
can be terminated at any time if another customer is willing to pay
the on-demand price [32]. Unfortunately, popular DL frameworks
have not been developed with failure semantics in mind and cannot
adequately deal with peers that fail [11].While services like Amazon
Sagemaker [13] and projects like Skypilot [43] offer automatic job
migration in case of VM termination, they are limited to single-node
training due to the bandwidth requirements between accelerators.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Type
Cloud GC AWS Azure

T4 Spot 0.180 $/h 0.395 $/h 0.134 $/h
T4 On-Demand 0.572 $/h 0.802 $/h 0.489 $/h
Traffic (inter-zone) 0.01 $/GB 0.01 $/GB 0.00 $/GB
Traffic (inter-region) US 0.01 $/GB 0.01 $/GB 0.02 $/GB
Traffic (inter-region) EU 0.02 $/GB 0.01 $/GB 0.02 $/GB
Traffic (inter-region) ASIA 0.05 $/GB 0.01 $/GB 0.08 $/GB
Traffic (inter-region) OCE 0.08 $/GB 0.01 $/GB 0.08 $/GB
Traffic ANY-OCE 0.15 $/GB 0.02 $/GB 0.08 $/GB
Traffic (between continents) 0.08 $/GB 0.02 $/GB 0.02 $/GB
Table 1: Average us-west cloud pricing in April ’23.
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Figure1:Cost to throughput tradeoffforConvNextLargeatdif-
ferent instance types.Our training setups (circled) are cheaper
(8xT4) and faster (8xA10) than the centralized offering (DGX-
2).

Butwhat ifwe coulduse spot pricing for long-running, distributed
jobs and reduce bandwidth requirements to leverage multiple low-
cost GPUs? This could be possible through a framework for collabo-
rativeDL training,Hivemind [39], which inherently dealswith peers
that can stop running at any time. While there is research on how
Hivemindcanbeused for trainingonspotVMs [16, 36, 37], it doesnot
compare the cost-throughput tradeoff for different cloud offerings or
perform ablation studies on geographic distribution or model sizes.

To motivate this new possibility, we trained the ConvNextLarge
model [28] on the Imagenet1Kdataset [14] ondifferentGoogleCloud
hardware (T4’s and DGX-2), and on the very competitively priced
A10 from LambdaLabs (see Section 6 for the full experimental de-
scription). Figure 1 shows the training throughput and the costs per
1 million processed samples for each setup. The single node (1xT4,
1xA10, DGX-2) experiments show the current state-of-the-art cost-
throughput ratio for training on GC and LambdaLabs. The DGX-2
node is the fastest, with a throughput of 413 SPS, but it also costs
$6.30/h ($4.24/1M samples), shown by the horizontal and vertical
lines. The single-accelerator experiments (1xT4, 1xA10) have a better
cost-throughput ratio ($0.62/1M samples and $0.9/1M samples), but
have a much lower throughput of 80 and 185 SPS, respectively. How-
ever, when using our approach of distributing the training between
multiple GPUs with Hivemind (circled), we make training possible
that is both faster (8xA10, 621 SPS, $2.15/1M samples) and cheaper
(8xT4, 262SPS, $1.77/1Msamples) thanusing theDGX-2. Every cloud



provider deals differentlywith how they price spot instances andnet-
work traffic (cf. Table 1) and has varying interruption rates for differ-
entaccelerators [22].Beingable tochoose thebestoptionwasnotpos-
sible before, and having the option to combine older, more available
GPUs is a net benefit for both consumers and cloud providers alike.

We aim to develop guidelines and help practitioners assess under
which conditions they can cost-efficiently speed up their training
tasks with spot instances. To be able to do this, they need a precise
definition of the model size at which geo-distributed spot training
becomes viable, what hardware can be used for it, and what the
minimum bandwidth and latency are. We close this research gap by
performing a comprehensive analysis of multiple DL tasks from CV
and NLP, breaking down how time is spent in each epoch, and com-
paring them to non-distributed runs to quantify the advantages and
disadvantages of distributed spot training.Wedeterminewhichmod-
els scale with additional spot instances and which cannot be scaled
without running into a communication bottleneck or resource ineffi-
ciencies. To quantify total training cost, we assess cost-effectiveness
and evaluate a hybrid or multi-cloud approach with popular cloud
providers through training on up to four continents. For comparison
of the models’ scalability and to showwhich of them can be trained
in a distributed fashion,we introduce the granularitymetric, the ratio
of calculation to communication time, and show how it can be used
for predicting performance with different hardware setups. Finally,
we summarize our lessons on how to design geo-distributed spot
training and what to watch out for when evaluating the feasibility
of such a training regime. Our contributions are:

(1) We analyze the impact of multi-cloud training with
spot and on-demand instances from Google Cloud
(GC), Microsoft Azure, AmazonWeb Services (AWS),
andLambdaLabsoncost-efficiency.Whilewefindperfor-
mance penalties due to remote versus on-premise compute
resources, the throughput still scaleswith increased comput-
ing power. By leveraging multiple spot instances with one
T4 GPU each, we can be more cost-efficient than a DGX-2
node or the very competitively priced A10 offerings from
LambdaLabs.

(2) We investigate the suitability of geo-distributed train-
ing for various CV and NLPmodels and hardware con-
figurations on up to four continents.Not surprisingly,
the more parallelizable and the larger the task, the better the
performance. Moreover, we verify the scalability claims of
the related work and define additional constraints, such as
theminimumgranularity for effective training. This enables,
for the first time, distributed training of smaller million-
parameter models (12M-560M) over <1 Gb/s bandwidth and
>150ms latency networks.

(3) We evaluate two different hybrid-cloud experimental
setups with consumer- and server-grade on-premise
hardware and try to improve the throughput with a band-
width of, at worst, 50 Mb/s to the cloud resources. While we
show that it is possible to improve throughput even at these
constraints, local cloud offerings are better suited formodels
that show limited suitability for distributed training.

(4) We summarize our findings of training in a geo-distributed,
multi-cloud environment. We propose the granularity
metric to compare model suitability for distributed

spot training and estimate training performance with ad-
ditional spot VMs. This provides guidance on the trade-off
between performance and cost when using geo-distributed
spot instances. To apply our findings, we perform a case-
study on a state-of-the-art model from the ASR domain and
achieve speedups on low-end hardware.

2 DEEP LEARNINGON SPOT INSTANCES
In this section, we describe how the Hivemind framework works
and how it can enable distributed spot training.
2.1 Hivemind
Hivemind [39] is aPyTorch-based [31] frameworkdeveloped initially
to enable collaborative DL training where participants could donate
their heterogeneous hardware to train a single model together in
a data-parallel fashion. Its main difference to other state-of-the-art
distributed training frameworks, such as PyTorch DDP [25] and
DeepSpeed [34], is that it runs in a decentralized fashion and can
handle peers that drop out at any stage of the training. It does sowith
two features: a distributed hash table [30] (DHT) which spans over
all participatingpeers formetadata storage, such as trainingprogress
and peer health, and a gradient averaging algorithm that is designed
to reduce the impact of lost gradients. A key difference to other dis-
tributed training frameworks is the definition of a hivemind epoch,
which is the number of samples that must be aggregated before an
averaging step is performed. This sample count is called the target
batch size (TBS),which corresponds to theminibatch size in standard
DL training. The DHT is used for coordination, and shortly before
the TBS is predicted to be reached, the peers start to form the initial
groups for averaging. The time allocated for group forming is called
matchmaking time and typically runs asynchronously to the training
(cf. Section 3). The individual peer gradients are accumulated locally
and sent to the other peers via an adaptive all-reduce algorithm
(MoshpitSGD [37]). The next hivemind epoch starts after each peer
applies the accumulated gradients to the local model. The advantage
of Hivemind for geo-distributed training comes from cumulating
different techniques, such as Delayed Parameter Updates [35], big-
batch training [44] and aggressive communication quantization [15].
All of these combined reduce time and frequency of the communica-
tion rounds, which in turnmakes training on heterogeneous devices
and low-bandwidth networks possible.

2.2 Distributed Spot Training
In this paper, we focus only on models that fit into the memory of
a single GPU, as we are interested in utilizing data parallelism on
cheaper andmore readily available hardware. However, our insights
are applicable to larger models with techniques such as ZeRO of-
floading [35], more aggressive quantization [41] and even model
parallelism [36]. The current options for data parallelism are either
using multiple GPUs on the same node (e.g., a DGX system with
eight GPUs) or having multiple nodes with a GPU each in the same
high-bandwidth network (>25 Gb/s) to minimize communication
time. The latter does not work on cheap but interruptable instances,
while the former has some use in the form ofAmazon Sagemaker but
is limited to a single node and is typically very pricey (spot pricing for
DGX-2 is $6.30/hversus8xT4at $0.72/honGC).However, usingHive-
mind, a new training scenario becomes feasible: Distributed training
in a decentralized fashion on interruptable VMs with bandwidths of
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<1 Gb/s. Since spot instance prices change hourly depending on the
time of day and zone availability [22], and can vary widely between
cloud providers (cf. Table 1), training between continents and in
multiple clouds could potentially be more cost-effective than using
a single, more computationally powerful node at spot prices.

With the newly added training setups from Figure 1 (circled), it
was not previously possible to choose the best option, and having
the option to combine older, more available GPUs is a net benefit for
both consumers as well as cloud providers. Our paper shows that
it is possible to train on multiple clouds across multiple continents
and provides guidelines on how to accomplish this cost-efficiently.

3 MODEL SUITABILITY
Model Params
ResNet18 [20] 11.7M
ResNet50 [20] 25.6M
ResNet152 [20] 60.2M
WideResNet101_2 [46] 126.9M
ConvNextLarge [28] 197.8M

(a) CV

Model Params
RoBERTaBase [27] 124.7M
RoBERTaLarge [27] 355.4M
RoBERTaXLM [12] 560.1M

(b) NLP

Table 2: Model suitability parametrization.
Selecting suitable models with a big enough parallel workload

is essential to ensure successful distributed spot training. To cover
a wide range of established models, we drew from MLCommons’
comprehensive DL training benchmark [29]. We used models from
the CV and NLP domains and gradually increased their size and
TBS to increase the parallel compute amount (Table 2). As discussed
inSection2, theTBSmaybe exclusively responsible for the success of
distributed training and was chosen to cover both medium and large
batches (8K, 16K and 32K). These minibatch sizes start to become
more common due to the LAMB optimizer [44], which works well
enough for both smaller (512) and huge batches (64K) and should be
representative of state-of-the-art workloads. For a represenatative
experimental study with a minibatch size of 256 on the automatic
speech recognition model (Whisper [33]), please refer to Section 11.
All experiments were runwith FP16 precision, as the target T4 GPUs
have a considerable improvement in FLOPs compared to FP32 (8:1).

For CV, we take five models from the extended ResNet family,
starting with the smallest one, ResNet18 (RN18), ResNet50 (RN50),
ResNet152 (RN152), WideResNet101_2 (WRN101) and ConvNext-
Large (CONV), which is almost 20 times larger than RN18. These
models were popularized due to their ability to help with the vanish-
ing gradient problem by using residual connections between layers.
Currently, they are not only used for classification, but can serve as
an embedding of images by removing the classification head [17, 40].
For the dataset, we use Imagenet1K [14] and train the classification
task, which tries to assign one of 1000 classes to each image.

ForNLP, we selected three models from the BERT family:
RoBERTaBase (RBase), RoBERTaLarge (RLrg), and RoBERTaXLM
(RXLM). We used the same configuration as the original models and
trained them onmasked languagemodeling, a common pre-training
task. RoBERTa models were a replication study of BERT but with
a focus on better hyperparameter tuning, leading to state-of-the-
art results and proposed using much higher minibatch sizes than
previously common. The text dataset is March ’22Wikipedia [19].

When we run our experiments in a multi-cloud environment on
spot instances, we cannot plug in proprietary cloud storage or wait

for the dataset to download, as the instances can be terminated any-
time. To simulate a real-world deploymentwith a non-public dataset,
we chose an independent S3 storage provider, Backblaze (B2) [3].
Backblaze has replicated data centers that can better serve requests
from anywhere worldwide, guaranteeing a reasonable ingress rate
from every continent. Additionally, the cost is very manageable at
$0.01/GB rate for egress and $0.005/GB/month for storage. A de-
tailed analysis of the costs incurred for the experiments can be found
in Section 5.We access the datasets on-demand via shards in the tar
formatwith theWebDataset library [9].We choseWebDataset due to
its features like automatic local caching, streaming decompression,
streaming preprocessing, and having an easy to work with archive
format that allows representing thedata in its original format. Finally,
for the Hivemind parameterization, we enabled delayed parameter
averaging (DPU) [35] to enable simultaneous gradient communi-
cation and computation at the expense of a round of staleness. We
selected FP16 compression for peer-to-peer communication.

Experimental design. First, we must verify that our models are
suitable for cloud training. For this purpose, we evaluate them on
the powerful Ampere GPUs first - if they scale there without facing
a communication bottleneck, they should also scale on the slower
T4, which is common at GC, AWS, and Azure. We use the LambdaL-
abs [7] for these experiments, which gives us on-demand A10 GPUs
for just $0.60/hour, but currently offer their services only in the US
West region. All experiments are performed on the 515.65.01 driver,
CUDA 11.6, and PyTorch 1.13.1. We profiled a network bandwidth
of 3.3 Gb/s and a latency of 0.3 ms between the Lambda VMs.

To establish a fair baseline, we train all models from Table 2 on
a single GPU that achieves large minibatch sizes through gradient
accumulation. Processes logs systemmetrics every second and evalu-
ates the training performancewhenever a batch is processed. Finally,
all multi-GPU experiments are monitored with a training monitor
that scrapes the DHT every second to log the peer state and training
progress synchronously.

(1) Hivemind penalty. Using Hivemind as middleware to share
gradients and keep a fully decentralized architecture running harms
performance compared to single-node training. We can compare
the effects of Hivemind training by looking at three metrics: base-
line, the single GPU throughput, hivemind local, normalized GPU
throughput without the averaging step, and hivemind global, the
actual normalized GPU throughput. When comparing the baseline
and local speed in Figure 2 for a setup with two GPUs, running Hive-
mind reaches at best 78% (RN152) and at worst 48% (CONV) of the
baseline performance. Unsurprisingly, the larger the model size, the
worse the penalty gets due to the increased size of the accumulated
gradients (GAC) over each step. However, the baseline also applies
gradient accumulation to reach the target minibatch size without
the performance drop. After isolating the respective function calls,
there seems to be a slight inefficiency in howGAC is implemented in
Hivemind versus the native PyTorch call. We are working with the
maintainers to fix this issue [6]. On the other hand, the disadvantage
of synchronization isminimal under the perfect conditions of a good
interconnect. The global speed in Figures 2a and 2b only degrades
at best to 97% (CONV) to at worst to 87% (RBase) compared to the
local throughput, meaning that the communication under these con-
ditions only accounts for a fraction of the total training time. This
degradation is inversely correlated to the model size due to larger
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Figure 2: Hivemind penalty on normalized throughputs.

models training quadratically longer per parameter, but the commu-
nication only increases linearly [36].While an implementation issue
currently affects performance, and the worst total performance drop
is at 47% (CONV baseline vs. global), scaling is still possible with a
ratio of roughly 2:1 of GPUs to throughput. We further refine this
ratio in the following section by comparing which models are most
suitable to be trained in a distributed environment.

(2) Less suitable models for distributed spot training.While
training billion-parameter NLPmodels scale well due to the "square-
cube" law, the minimummodel size is not yet fully defined [36]. The
reason is that many factors play a role in whether a model is suited
for geo-distributed training. On the one hand, a small model results
in small gradients exchanged between peers, so the averaging step
is fast. On the other hand, a small model will also reach the TBS
faster than larger models, which may lead to a low speedup if the
calculation time is disproportionally lower than the communication
time. We found the granularity metric [21], typically used in high-
performance computing, practical to attach a comparable value to
each setup toquantify the ratioof the calculationandcommunication
time (Equation (1)). The higher the granularity, the more paralleliz-
able the task, as more calculation can be distributed between peers,
ensuring a good speedup. It is important to note that this metric
depends on themodel and the hardware being used. The communica-
tion time is affected by the parameter count, and the calculation time
is affectedby the layer typeof theparameters (including feedforward,
convolution, and transformer). Therefore, the calculation time can
decrease with improved hardware, which we evaluate in Section 6.

𝐺 =
𝑇calc
𝑇comm

(1)

Another parameter that affects the calculation time is theTBS that all
peers work to accumulate. There is a practical limit to the TBSwhere
a model is still trainable, which is currently at 64K with the LAMB
optimizer [44]. This limits thepossibility of improving the speedupof
smallmodelsby increasing thebatch size,meaning that at somepoint,
the speed will be limited by the communication time (Equation (2)).

lim
𝑇calc→0

samples
𝑇comm+𝑇calc

=
samples
𝑇comm

(2)

It is important to remember that just increasing the TBS to create
more 𝑇calc can have a grave effect on training performance if the
optimizer is not adequately selected and configured.

Our experimental results in Figure 3 show the practical implica-
tions of this observation. For the 2xGPU experiments in Figures 3b
and 3d, we can see the effect of a TBS increase which improves the
total throughput. Doubling the TBS equals cutting down the per-
sample communication cost by two,which leads to the slight increase
in performance visible in both CV and NLP experiments. However,
the smallestmodels, RN18 and RBase, fluctuate significantly at a TBS
of 8K due to a minimummatchmaking time of 5 seconds. Whenever
all peers accumulate theTBS in less than5 seconds, the asynchronous
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Figure 3: Throughput comparison between single GPU base-
lines and the Hivemind runs with two GPUs.
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(b) NLP
Figure 4: TBS vs. total training time on 2xA10s. Granularity is
shown above each bar. Dotted lines separate differentmodels.

thread that matches the peers in groups to perform the all-reduce
may still need to finish. This results in an unstable averaging time,
which limits the scalability of small models with a small TBS.

To illustrate how the TBS and model size affect the individual
timings, we visualize the total training time split up into the calcu-
lation and communication time in Figure 4. CVmodels are generally
computationally more expensive and have a higher granularity than
NLPmodels, which have slightly longer averaging rounds due to the
much larger model sizes (cf. Table 2). When comparing the models
at the same TBS (e.g., 32K), there is an inconclusive relation between
runtime and parameter count. Some models increase their runtime
with parameter countw.r.t. smallermodels (RN50 to RN152, RBase to
RLrg), while others decrease their runtime (RN152 toWRN101, RLrg
to RXLM). This performance is due to not all layer parameters con-
tributing similarly to computational complexity. Depending on the
specificarchitecture, evenmodelswithmoreparameters canbe faster
to train due to amore efficient architecture, such as theWRN101 [46].

The communication time between different TBS sizes stays the
same, barring the two matchmaking time exceptions (RN18, RBase),
as the gradients are accumulated before being sent. For all other
models, doubling the TBS leads to exactly double the amount of
work and doubles the granularity. With a TBS of 32K, all models
have a granularity of at least 4.2 (RXLM) and at most 21.6 (CONV),
which show strong scaling potential. Therefore, we decided to use
a TBS of 32K for all following experiments to ensure that the setup
scales before introducing bandwidth and computational limitations.

Summarizing, whether a model is scalable without network band-
width limitations dependson theminimumtime to reach theTBSand
on the granularity. Tuning the TBS is possible to a certain extent but
depends on the specific training task and optimizer configuration.

(3)Per-GPUspeedupdecreaseswith lowgranularity.Toeval-
uate the scalability with additional hardware, we profile all models

4



1 2 3 4 5 6 7 8
A10 Count

0

1000

2000

3000

4000

Sa
m

pl
es

 p
er

 S
ec

on
d Model

RN18
RN50
RN152
WRN101
CONV

(a) CV
1 2 3 4 5 6 7 8

A10 Count

1000

2000

3000

Sa
m

pl
es

 p
er

 S
ec

on
d

Model
RBase
RLrg
RXLM

(b) NLP
Figure 5: Throughput comparison from 1 to 8 A10 GPUs.
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Figure 6: Multi-GPU scalability at 32K TBS. Granularity is
shown above each bar.Dotted lines separate different models.

on 2,3,4, and 8 GPUs with a TBS of 32K. Figure 5 shows the through-
put for all models in the different hardware scenarios. Generally, all
models scale well regardless of size, with the best speedup of 4.37x
(RN152) and the lowest at 2.29x (RXLM) with 8 GPUs. There is a
visible trend in the per-GPU contribution to the speedup ( speedup#GPUs ).
The more GPUs we add, the lower the contribution, e.g., RN18 goes
from 0.7 to 0.4 with two to eight GPUs, respectively. This decrease is
likely to continue due to a granularity of 1.0 at 8 GPUs (Figure 6a), as
doubling theGPUswould, at best, increase the throughput by 33% by
halving the calculation time. However, themore computationally ex-
pensive themodels are, the slower the per-GPU contribution falls off
and the larger the granularity is (RN152, CONV). This does not hold
true for our NLPmodels (Figure 6b); while they have increasingly
moremodel parameters, the only difference between the two biggest
models, RLrg and RXLM, is the vocabulary size increase of 50K to
250K. Due to how embedding layers are lookups, the forward pass is
not affected by the increased embedding size, but the backward pass
is. This results in a smaller increase of the calculation time while
communication increases linearly with the number of parameters.

Additionally, we see the drop in throughput when comparing
the single GPU and dual GPU experiments for most larger models
(Figure 5),which stems fromobservation (1)of theHivemindpenalty.

We also observe that with each subsequent doubling of GPUs,
the calculation time is halved, while the communication increases
sub-linearly due to the more efficient group-based all-reduce of
MoshpitSGD [37]. For example, the averaging step for the RXLM on
2xA10 takes 5 secondsperGPU (10s total),while the 8xA10averaging
step takes 1.8 seconds per GPU (14.4s total).

In summary, all models show a speedup but have a decreasing
per-GPU contribution due to smaller granularity with more GPUs.
Therefore, the larger the model and TBS, the greater the scaling
potential. High granularity is a good indicator of scalability, and
since the communication time only increases linearly with addi-
tional peers (cf. Section 2.1), knowing the initial calculation time is
a good indicator of future throughput. Under the optimal conditions
of good compute performance and an interconnect with relatively
high bandwidth, scalingwas not a problem. Butwhat happens under
less favorable conditions in geo-distributed settings?

Exp. Name Resources Total
A-{1,2,3,4,6,8} {1, 2, 3, 4, 6, 8}xUS 1,2,3,4,6,8

B-{2,4,6,8} {1, 2, 3, 4}xUS + {1, 2, 3, 4}xEU 2,4,6,8
C-{3,6} {1, 2}xUS + {1, 2}xEU + {1, 2}xASIA 3,6
C-{4,8} {1, 2}xUS + {1, 2}xEU + {1, 2}xASIA + {1, 2}xAUS 4,8

Table 3: Geo-distributed experiments on GCwith T4 VMs.
4 GEO-DISTRIBUTED PERFORMANCE
As spot prices for the same hardware differ depending on the re-
gion, zone, and time of day [22], it might be a good idea to use VMs
across different data centers. However, is the connectivity between
regions and continents good enough to enable distributed deep learn-
ing? To explore this question, we decided to conduct three types of
experiments (Table 3):
(A) Intra-zone Can we scale if the VMs are co-located in the same

zone (us-central-1)?
(B) Transatlantic Can we scale when we combine VMs from two

regions (US and EU), and what happens when the compute
is unevenly distributed across regions?

(C) Intercontinental Can we scale if we combine VMs from four
continents (US, EU, ASIA, AUS)?

Experimental design. Based on the insights from Section 3, we
decided to use the largestmodels (CONV, RXLM) for all further cloud
experiments in Sections 4 to 6, with the TBS of 32K as a baselinewith
good scaling properties. We abbreviate themwith their respective
domain names (CV, NLP). We used Google Cloud [4] for all exper-
iments in this section, as they were the first to give us access to
all necessary zones. The default networking solution in GC is the
"Premium Tier", which tries to use a Google-owned network instead
of the public internet. We measured the throughput and latency
between all zones via iperf and ping and report the average of 5
consecutive runs in Table 4. Unsurprisingly, the diagonal shows that
the local connectivity between zones runs at almost 7 Gb/s with a
latency of 0.7ms, probably due to the hypervisors being in the same
data center.While the up- and downloadwere perfectly symmetrical
in all setups, the throughput dropped to <210 Mb/s for all non-local
connections. The US-based data center is located in Iowa and is best
connected with at least 120 Mb/s to the remaining regions, namely
Belgium in the EU (6,911km), Taiwan in ASIA (11,853km), and Syd-
ney in Australia (AUS, 14,555km), presumably due to the physical
distance. The lowest bandwidth and highest latency connections are
between the EU region and ASIA and AUS, reaching around 80Mb/s
and 270ms. We decided to use the n1-standard-8 template with
eight cores, 30 GBmemory, and a T4 GPU, as the smaller image with
15GBwas insufficient tomeet thememory requirements for gradient
application on the CPU with the biggest models. The experiment
naming in this section is prefixed with the type of location (A), (B)
or (C) and the number of VMs, e.g., A-4 is the intra-zone experiment
with 4VMs. The full experimental description is specified in Table 3.

From
To US EU ASIA AUS

US 6.90 0.21 0.13 0.12
EU 0.21 6.81 0.08 0.07
ASIA 0.13 0.08 6.79 0.16
AUS 0.12 0.07 0.16 6.84
(a) Single streamTCP throughput in Gb/s.

From
To US EU ASIA AUS

US 0.66 103.11 157.09 176.19
EU 103.14 0.65 253.10 271.98
ASIA 157.08 253.09 0.72 131.45
AUS 175.98 272.08 131.42 0.64

(b) ICMP latency inms.

Table 4: Throughput and latency between GC zones.
(A) Intra-zone scalability. Figure 7 shows the result of the intra-

zone experiments, which we used as a baseline to compare geo-
distributeddeployments to.As the scalabilityof theCVandNLPmod-
elswas already shownwithmuchbetter hardware and slightlyworse
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Figure 7: (A) Intra-zone performance for CV and NLP.

network connectivity (cf. Section 3), the scalabilitywith the T4GPUs
is not too surprising. We do not see an improvement in throughput
for twoGPUs for eithermodel due to theHivemindpenalty discussed
in Section 3. However, starting with three GPUs, we see an increase
in throughput with a maximum speedup of up to 3.2x CV and 2.75x
for NLP at eight GPUs. CV’s per-GPU speedup ( speedup#GPUs ) is almost
linear (0.43, 0.42, 0.43, 0.41, 0.41), while NLP starts dropping off faster
(0.51, 0.47, 0.45, 0.40, 0.34) for 2, 3, 4, 6 and 8 GPUs, respectively. The
reason for this is the NLP granularity of 1.15 with 8 GPUs indicating
an almost equal part in communication and calculation (Figure 7b)
due to the much longer averaging round related to the model size
(198M vs. 560M parameters). The peak network bandwidth utiliza-
tionbetweenpeerswas atmost a symmetric 1.1Gb/swhile averaging
and 33 Mb/s ingress while training due to data loading. This means
that the network bandwidth of 7 Gb/s was not a limiting factor.

(B) Transatlantic scalability.We scale when computing hard-
ware is local.However,what happenswhen there is cheap capacity in
another region? In this case,we study the throughput of experiments
with resources in the us-west and eu-central regions (B-2,4,6,8).

The B-2 experiment has one VM in the US and one in the EU,
achieving a virtually identical throughput of 68.4 (US-EU) versus 70.1
(US) at CV (Figure 8a). Our maximum peak egress rate of 250 Mb/s
doesnot affect theCVexperiments,while theUSexperiments peaked
at 1.1 Gb/s. The reduction in bandwidth penalizes NLP harder, where
weare 16%slowerwith177.3 SPS (US-EU) compared to the intra-zone
experimentwith 211.4 SPS (US). The resulting increased communica-
tion can be easily seen in the granularity analysis in Figure 8b (NLP
A-2,4,6,8 vs. B-2,4,6,8). As only communication time increases in the
NLP (B) experiments compared to (A), a granularity of≫1 indicates
good scalability: Adding twomore GPUs to the B-6 experiment with
a granularity of 1.03 results in a throughput increase of 15% (B-8)
relative to the baseline. Meanwhile, adding twomore GPUs to the
B-2 experiment with a granularity of 2.21 results in a throughput
increase of 77% (B-4) relative to the baseline.

In the B-4 experiment, we look atwhat happenswhenwe increase
the number of VMs to four, with two in the US and two in the EU.
Nothing surprising happens with CV, as the workload continues to
be mostly computation, with a throughput of 135.8 (B-4), only 3%
slower than the intra-zone experiment with 140.4 SPS (A-4). How-
ever, atNLP, things getmore interesting aswenowhavemoreoverall
communication with four peers, but they can average locally first
and only later transmit across the Atlantic. However, compared to
their A-counterparts, we do not see a difference in relative scalability
with either B-4, B-6, or B-8. This means that training across regions
(B) is slower, but the contribution per GPU decreases at the same
rate as in training within a zone (A). The per-GPU speedup with ad-
ditional hardware reduces at the same rate for either setup (between
0.05 and 0.06). This results in two observations: First, communica-
tion overhead scales linearly with the number of peers. Second, we
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Figure 8: (B) Transatlantic performance for CV and NLP.
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Figure 9: (C) Intercontinental performance for CV and NLP.

only have to pay the penalty for transatlantic training once. How-
ever, we cannot expect a significant improvement in communication
efficiency when we increase the amount of available local resources.

Summarizing, with an transatlantic setup, CV achieves a virtually
identical maximum speedup of 3.2x with 8 GPUs compared to A-1
(B-8 is 2% slower than A-8), while NLP is more affected by lower
network bandwidth and only achieves a speedup of 2.15x (B-8 is
22% slower than A-8). The transatlantic training penalty is applied
once; however, it does not affect the relative scaling with additional
compute resources.

(C) Intercontinental scalability. To takegeo-distribution to the
extreme, we spawnVMs in up to 4 regions: USA, EU, ASIA, and AUS,
to see howmuch worse bandwidth affects the training throughput
(C-3,4,6,8 in Table 3).

How does the intercontinental penalty investigated in (B) affect
deployments with a single GPU on each continent? Comparing the
A-3 and C-3 experiments with three local versus three fully remote
GPUs, CV is only 5% slower, whileNLP suffers a 34% drop in through-
put (Figure 9a) and does not even reach the baseline single GPU
performance (A-1). The peak egress for each region was 318, 258,
and 237 Mb/s for the US, EU, and ASIA, respectively. Since our band-
width measurements were 210 and 130 Mb/s from the US to the EU
and ASIA, respectively (Table 4), this suggests that the averaging
was done over the US node and not an N-to-N all-reduce (a detailed
analysis of how averaging affects bandwidths is discussed in Sec-
tion 6). Thus, the limiting factor was the US-ASIA connection at
130 Mb/s rather than the 80 Mb/s from EU-ASIA. The same trend
continues with the C-4 run, which adds AUS as a continent with one
additional VM. As we know from the transatlantic experiments (B)
that an additional continent has a detrimental effect on throughput,
which, for the four continents experiment, C-4, results in a 9% slower
throughput for CV and 36% slower for NLP compared to theA-4 runs
(Figure 7a). Again, the US VM is used as an averaging intermediary
with a peak egress of 365 Mb/s, while the other continents are be-
tween 318 and 330 Mb/s. When comparing the two continents (B-4)
versus four continents (C-4) experiments, oneGPUoneachcontinent
(C-4) is slower by 6% for CV and 20% for NLP compared to two GPUs
on two continents (B-4). This reinforces that local hardware should
be preferred whenever possible. However, we are always faster than
the baseline (A-1), starting from 4GPUs in both the transatlantic and
intercontinental settings. While these experiments were specifically
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Figure 10: Multi-cloud performance for CV and NLP.

designed to be a worst-case scenario, what about a more balanced
GPU distribution with at least two GPUs in each region?

When comparing the C-6 experiment with two GPUs in three
continents to the local A-6 experiments, the throughput slowdown
is almost identical (CV 7%, NLP 35%) as with C-4 (CV 9%, NLP 36%)
to A-4. Scaling further to twoGPUs in four continents, C-8 is slightly
slower at NLP (41%) compared to C-4 (36%) to their respective local
runs (A-8andA-4), due to thedecreasinggranularityof 0.4 (Figure9b).
The small granularity removes the additional gain of fourmoreGPUs
since the task is no longer suitable for distributed training. However,
as the CV task is still at a granularity of 3.33 on C-8, it reaches a
speedup of 3.02x, only 7% slower than the fully local A-8 experiment.
Thepeakegressof678Mb/swasalsoreachedononeUSVM,while the
remaining VMswere between 450 and 550Mb/s. These observations
show that adding another continent does not significantly reduce
throughputwhen training on three continentswith at least twoVMs.

In summary, while local compute is the best choice for maximum
throughput, for highgranularity tasks likeCV, evendistributingVMs
over four continents only slows down performance by 7%. However,
intercontinental training leads to a significant penalty on a taskwith
lower granularity, like NLP, resulting in a performance drop of 41%
(C-8) compared to the fully local experiment (A-8). Finally, each addi-
tional region introduces a constant penalty that is not amortized by
adding local hardware, which should be considered when running
geo-distributed training setups.

5 MULTI-CLOUD PERFORMANCE
Using multiple cloud providers makes sense if we want to use re-
sources cost-effectively and have additional reliability. In our sce-
nario, we are interested in what throughput per $ can be expected
and if any barriers prevent multi-cloud training. However, one can
also consider the data center’s carbon footprint, which can change
depending on the season and time of day [5].

From
To GC AWS Azure

GC 6.35 1.52 0.45
AWS 1.81 4.87
Azure 0.47 7.63
(a) Single streamTCP throughput in Gb/s.

From
To GC AWS Azure

GC 0.71 15.3 51.22
AWS 13.85 0.15
Azure 49.80 1.56

(b) ICMP Latency inms.

Table 5: Averagemulti-cloud throughput and latency.

We have compiled the current prices for spot and on-demand in-
stances for T4 GPUs with 8 CPU cores and the egress costs for three
well-knowncloudproviders,GC[4],AWS[1], andAzure [8] (Table 1).
There are two different pricing concepts. On the one hand, there are
GC and Azure, which offer relatively cheap instances, with 69% and
73% savings over on-demand pricing, respectively, and relatively
expensive egress charges between continents of up to $0.15/GB. On
the other hand, there is AWS, where the spot instance is only 51%

cheaper than the on-demand instance and more than twice as ex-
pensive as GC or Azure. However, the egress fees here are much
cheaper at only $0.02/GB. Because of the additional offerings around
compute, such as networking, identity and cost management, and
tooling, it is not easy to fairly compare cloud providers. Therefore,
we will limit ourselves to network and VM costs.

With the multi-cloud experiments from this section, we want to
evaluate the following scenarios: First, partially switching from one
provider to another without stopping the training. Second, scaling
resources in the same region when one of the cloud providers is
already at capacity for spot-priced VMs or the current price is too
high [23].We know from Section 4 that scaling resources in the same
location can significantly improve performance, which may only be
possible using additional cloud providers.

Experimental design. To enable a fair comparison between the
cloud providers, we rented hardware most similar to each other in
the same region. We used each provider’s default settings and only
changed hardware specs. For GC, it is the same instance as in Sec-
tion 4. At AWS, it is a g4dn.2xlargewith eight cores and 32 GB in
the us-west-2c region. Unfortunately, we had tomake two compro-
mises with Azure. There was only the combination of four cores and
30 GB RAM (NC4as_T4_v3), and there were no T4 GPU resources
available in the us-west, so we had to fall back to us-south-2.

The network profiling between all cloud providers in Table 5
shows that their intra-cloud connectivity is comparably fast with 6.4,
4.9, and 7.6 Gb/s for GC, AWS, and Azure, respectively. All connec-
tions are mostly symmetric, with inter-cloud connectivity between
GCandAWSprovidingup to 1.8Gb/s and apingof 15.3ms, indicating
that while they are likely not in the same data center, they are close
to each other and connected to the same Internet exchange point.
However, connectivity to Azure could be better since it operates in
a different zone, with a bandwidth of 0.5 Gb/s and a ping of 51ms.

Our experimental setup consists of four GPUs with equal contri-
butions from each cloud provider. D-1 is the baselinewith four GPUs
at GC, D-2 with two GPUs each at GC and AWS, and D-3 with two
GPUs at GC and Azure. We compare moving two VMs to a different
cloud provider to see the impact on cost and throughput.

(1) No inter-cloud throughput penalty. Figure 10 shows the
throughput and granularity of eachmulti-cloud experiment. CV and
NLP runs have essentially identical throughput regardless of the
combination of cloud providers. Only the D-3 experiments show a
very slight slowdown in communication time, reflected in the lower
granularity score (Figure 10b) of 12.72 in CV and 1.99 in NLP com-
pared to theD-1 baseline scores of 14.48 and 2.73, respectively.Actual
throughput was between 1-2% slower than the baseline, which is
negligible and only related to the slightly worse connection to the
Azure data center. These results confirm our observation from Sec-
tion 4 that network connectivity determines scalability, and one can
easily train in a multi-cloud scenario.

(2)ExternalegresscostscanovershadowVMcosts.Onedraw-
back to training in multiple regions or zones is that egress traffic can
incur additional costs dependingon the cloudprovider.Wehave sum-
marized the cost of egress trafficwithin a zone (intra-zone), between
zones in each region (inter-zone), and between continents in Table 1.
Notably, any traffic to Oceania (Australia, New Zealand, and oth-
ers, abbreviated as OCE) generates the highest cost of $0.15/GB for
GC.We have broken down the costs for the multi-cloud experiment

7
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(a) Intra- and inter-zone in the US region (D-2/3).
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(b) Intercontinental in the US, EU, ASIA and AUS (C-8).

Figure 11: Costs breakdown for D-2/3 and C-8 experiments.

in Figure 11a on an hourly per-VM basis. With only four peers in the
D-1/2/3 experiments, we have an N-to-N communication, i.e., each
peer sends its gradients to every other peer. This means that 1

3 of
the egress was internal to the partner VM in the same cloud, and the
remaining 2

3 went to the remaining two peers in the other cloud.
First, loading data from Backblaze costs $0.01/GB from anywhere

in theworld,which gives us a rate of $0.144/h for theCVand $0.083/h
for the NLP experiments. Even when CV throughput is less than
half of the NLP model (Figure 10a), images are much larger than
text, resulting in a higher data rate. While this is close to the spot in-
stance costs of GC ($0.18/h) and Azure ($0.134/h), these are one-time
costs until the entire dataset is downloaded and retrieved from the
disk cache, assuming large enough local storage. A more detailed
comparison of cloud provider storage offerings is beyond our scope,
but current prices range from $0.02/GB to $0.14/GB in various GC
regions, making our setting (B2) competitive.

Second, the external egress costs for the NLP experiments are
very high compared to the other costs. They are 2.2x higher than the
spot instance for GC and 5.7x higher for Azure, as the traffic costs
in the US zone are $0.01/GB and $0.02/GB, respectively. The Azure
cost is even higher ($0.763/h) than the on-demand instance price
of $0.489/h. The CV experiments are much less affected due to the
smaller model size, but Azure still manages to almost match its spot
instance price of $0.134/h with the external egress cost of $0.115/h.

Finally, the total compute cost, including egress and data loading
in thismulti-cloud constellation, is the sumof all the cloud providers’
prices times the number of VMs used. For the CV experiments, GC,
AWS, and Azure cost $0.762/h, $1.192/h, and $0.363/h, respectively,
making the combinationofGCwithAzure 42%cheaper thanGCwith
AWS. For the NLP experiments, GC, AWS, and Azure cost $0.835/h,
$1.05/h, and $0.973/h, respectively, and GC combined with Azure is
better than GC with AWS by a smaller margin of 3.9%. However, the
intercontinental network egress prices for both GC and Azure are
up to 15 times higher than the inter-zone prices, so what about the
cost-effectiveness compared to geo-distributed experiments?

(3) Geo-distributed egress can incur most of the cost. To
illustrate the cost of intercontinental training, we use our C-8 exper-
iment with two VMs in four continents from Section 4 to plug the
cost for each cloud provider. The egress costs are calculated slightly
differently than in the D-2 and D-3 experiments because four groups
of two VMs average locally and then distribute the gradients across
the other groups. This results in 8
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Figure 12: Baseline egress rate on 2-8 A10 GPUs.

between each group), 6
20 intercontinental egress calls (two calls be-

tween three regions), and 6
20 AUS egress calls (three regions share

their gradients with AUS and vice versa).
Figure 11b shows the resulting egress traffic cost per VM. The

high cost between continents scales to a multiple of the remaining
cost for CV and NLP with GC and Azure. For NLP, the external
egress cost for GC is $4.329/h, more than 90% of the total cost per VM
($4.804/h). EvenwithAzure having amoremoderate rate of $0.02/GB
for intercontinental communication and only $0.08/GB for OCE
traffic, it still results in $1.882/h external egress cost ($2.101/h total).
This is incontrast toAWS,whichhasacapof$0.02/GBtoany location,
resulting in the best total cost of $1.376/h perVM. The relatively high
AWS instance cost compares favorably to the other cloud providers
regarding geo-distributed training. Keeping egress traffic in mind
whendeciding to scale to other continents is essential, as it can be the
most significant part of the total cost. This raises another question:
If egress traffic matters so much, how does model size affect it?

(4) Smallmodels have lower egress rates than largermodels.
Model size affects two parts of the distributed training time. First,
larger models tend to have slower averaging rates, but more data
movement costs due to their size. However, largermodels are also av-
eraged less frequently because they take longer to perform a step. To
analyze this,we review the experiments in Section 3,wherewe evalu-
ate different model sizes and GPUs counts. Figure 12 shows the aver-
age egress rate over each experiment’s runtime for both CV andNLP
from two to eightA10GPUs. The trend is clear: the smaller themodel,
the lower the egress rate for all GPUs (e.g., RN18 vs. RN50). This is
surprising, as the "square-cube" law[36] states thatwith adecrease in
parameters, thecalculation timewill decreasequadraticallywhile the
communication time decreases linearly. This means that with a suffi-
ciently small model, most of the training will consist of communica-
tion time, and the egress rate would increase, as it is defined through
parameter count
calculation time . However, we find that even with our smallest model,
RN18, with 11.7M parameters and eight A10 GPUs, we are still not at
the point where the communication time takes up most of the time.

In summary, multi-cloud training is generally possible and can
be cost-effective when keeping the egress costs and granularity in
mind. Regardless of the cloud provider, staying in the same region is
preferred, with the US having the most favorable egress price offers.
A significant portion of the cost may be hidden in egress costs, ac-
counting for more than 90% of the total cost in our NLP experiments
in GC and Azure. Based on the additional egress costs alone, renting
on-demand hardware may be more advantageous than using spot
instances between different regions. CV training is generally more
calculation- than communication-heavy, resulting in slightly higher
data-loading but fewer egress costs. However, from our experiments,
this is a favorable trade-off because data-loading is much cheaper
than egress costs.
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Figure 13: Hybrid-cloud experiments for the (E) setting.

6 HYBRID-CLOUD PERFORMANCE

From
To EU T4 US T4 US A10

RTX8000 0.45 0.06 0.05
DGX-2 (8xV100) 0.55 0.08 0.07

(a) Single streamTCP throughput in Gb/s.

From
To EU T4 US T4 US A10

RTX8000 16.73 150.80 159.05
DGX-2 (8xV100) 16.19 150.27 158.54

(b) ICMP Latency inms.

Table 6: Average hybrid-cloud throughput and latency.

Can augmenting on-premise hardware with cloud resources be
worthwhile to speed upDL training? In this section, we examine two
settings: (E),whereaconsumer-gradeGPU, theRTX8000, isdeployed
on-site, and (F), where a server-grade node, the DGX-2 (8xV100), is
deployed on-site. We vary the extra resources, between one to eight
T4 EU ({E,F}-A), T4 US ({E,F}-B) and A10 US ({E,F}-C) GPUs.

Experimental design. In both settings, we want to investigate
how to extend local hardware with cloud resources and when this
leads to better throughput. The cloud resources, in this case, are the
same US/EUGCT4 instances as in Section 4 and the US LambdaLabs
A10 GPUs from Section 3. We double the number of cloud VMs with
each increment, starting with one additional GPU (i.e., E-A-1) until
wehaveeightadditional cloudVMs(i.e.,E-A-8).Thisallowsus tocom-
pare the same hardware in the EU and theUS, and slightlyweaker, lo-
cal hardware (EUT4) and better, butmore distant hardware (USA10).

Both the (E) and (F) setups share the network uplink between 450
and 550 Mb/s to the EU datacenter in Belgium, as they are located
in the same building in Europe (Table 6). However, as this is not a
Google-owned datacenter, the traffic is partly going over the public
internet, which results in a lower bandwidth of 50 and 80 Mb/s to
the US-based VMs compared to 210 Mb/s between the US and EU
GC datacenters (Table 4a).

(E) Consumer-grade setting. The results follow the same trend
as in Section 4. The CV task has a higher granularity of 8.21 with
2 GPUs at E-A-1 than NLP (1.27) (Figures 13b and 13d), and scales
regardless of the location of the cloud resources (Figure 13a). We
almost match the baseline throughput of 195 SPS at 5 GPUs in all set-
tings for CV (E-A-4, E-B-4, E-C-4). The best throughput was reached
at E-C-8 with the US A10 GPUs with 429 SPS. For NLP, only the
E-A-8 experiment beats the baseline with a speedup of 1.29x and 556
SPS due to the low granularity and the intercontinental base penalty
for the US experiments.

Model
Setup RTX8000 E-A-8 E-B-8 E-C-8 8xT4 8xA10

CONV 194.8 316.8 283.5 429.3 261.9 620.6
RXLM 431.8 556.7 330.6 223.7 575.1 1059.9

Table 7: Hybrid- vs. cloud-only throughput for the (E) setting.
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Figure 14: Hybrid-cloud experiments for the (F) setting.

However, is combining on-premise and remote cloud resources
better than using the cloud without paying the intercontinental
bandwidth tax? To analyze this, we compare the (E) experiments
with the 8xA10 experiment from Section 3 and 8xT4 experiment
from Section 4 in Table 7. First, the 8xA10 experiments are the fastest
for both CV and NLP, which removes the respective hybrid-cloud
combination from contention (E-C-8). Second, the 8xT4 experiments
for NLP are faster than any other hybrid-cloud setup, making the
cloud-only solution favorable. Finally, while we always beat the
baseline 8xT4 CV throughput (261.9 SPS), but in the case of E-B-8
(283.5 SPS), just barely. The throughput of E-A-8 (316.8 SPS) makes
the hybrid-cloud setup the most favorable in terms of relative GPU
scaling (32.5 SPS per GPU), but it does not come close to the best
cloud-only throughput of 8xA10 with 620.6 SPS.

Summarizing, the cloud-only experiments are the fastest over-
all due to their single-GPU throughput and locality. Adding cloud
resources to on-premise hardware leads to a high communication
time, which is not compensated by the additional processing speed
of the GPUs. Proximity to the on-premise hardware is essential, as
the more local cloud resources (E-A-8) consistently resulted in a
better throughput than the same remote cloud resources (E-B-8).

(F) Server-grade setting. The baseline throughput is signifi-
cantly higher compared to the RTX8000, with amuchmore powerful
8xV100 DGX node to 413 SPS for CV and 1811 SPS for NLP (Fig-
ures 14a and14c) viaPyTorchdataparallelism[25]. This increases the
penalties from Section 3, leading to the only speedup from baseline
forCV in experiments F-A-8 (507 SPS) andF-C-8 (510 SPS). This is sur-
prising, as the older T4GPUs in the EUperform similarly to themuch
newerA10GPUs in theUS, showcasing the trade-off between slower,
local compute and faster, remote compute. The granularity of 2.46
for F-A-8 shows that there is enough calculation time to distribute,
while the F-C-8 experiments spend≈62%of the total training timeon
communication with a granularity of 0.57 (Figure 14b). The NLP ex-
periments never reach the baseline throughput of the 8xV100 due to
using most of the time for communication. The NLP F-B and F-C ex-
perimentsmainly consist of communication (Figure 14d)with a gran-
ularity of up to 0.02, which results in a nonlinear, unstable training
time due to theminimummatchmaking time issue (2) from Section 3.

In summary, the hybrid-cloud experiments conclude that while
on-premise hardware can be augmented with cloud resources, it
will likely be cost-efficient if all resources are on the same continent.
Using only cloud resources is more advantageous if the on-premises
hardware is not co-located.
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7 FURTHER INSIGHTS
Communication time can decrease with more peers. Let us
compare the granularity of the experiments for E-B (Figure 13b),
which uses T4 GPUs in the US as an additional cloud resource. Both
the computation and communication time decreasewith the number
of GPUs, even increasing the granularity from 1.98 at E-B-2 to 2.15
at E-B-4. This is surprising since, usually, with more peers, the com-
munication time should increase, and the US-EU communication
bottleneck should slow us down to the same extent as the E-B-1
experiment. This reduction is a Hivemind-specific anomaly, as it
uses a single TCP stream per peer. With TCP, there needs to be an
acknowledgment (ACK) of each packet by the receiving peer, which
is impacted by the connection’s latency. In our high latency network
between continents, the round trip time (RTT) of 300-318ms limits
the maximum bandwidth a single TCP stream to 50-80 Mb/s. How-
ever, a way to improve link utilization is to use multiple streams,
one for each peer, which we encounter in experiments E-(B|C)-2,4,8.
To verify the potential gains, we perform a microbenchmark of
the multi-stream bandwidth from the RTX8000 to the EU and US
data centers.Although there is wide variation, likely due to network
utilization, with 80 clients, we achieve a maximum bandwidth of
6 Gb/s within the EU and up to 4 Gb/s to the US.While larger peer
groups and, consequently, larger models benefit from multi-peer
communication by default and do not see significant changes in com-
munication time, small models in unevenly distributed VMs setups
can be disproportionately affected. The same trend can be observed
in all high latency experiments (i.e., between the EU and the US), e.g.,
E-B, E-C for CV and NLP (Figures 13b and 13d, and F-B and F-C for
CV (Figure 14b). In summary, uneven distribution of computational
resources in high-latency networks (e.g., intercontinental) can re-
duce communication time with Hivemind due to more parallelism,
lessening the impact of low bandwidth for a single data stream.

Cost analysis. The DGX-2 (8xV100) node from Section 6 rep-
resents server-grade hardware that could be used to train models.
However, how does it compare in throughput per $ to all of our dis-
tributed cloud experiments? The Figure 1 (CV) and Figure 15 (NLP)
show the complete cost analysis of theDGX-2, the 8xT4 experiments,
and the 8xA10 experiments for spot and on-demand pricing. We use
the internal egress costs from Figure 11a as a reference for the 8xT4
setup. For simplicity, we compare the spot pricing without inter-
ruptions, as we assume that a new VM can be spun up fast enough
not to affect the training throughput in the long run.Wemark the
centralized baseline (DGX-2) cost per 1M samples and the through-
put in samples per second with a horizontal and vertical line. This
means that we are cheaper to the left to the vertical line, and above
the horizontal line, we are faster (and vice versa). We circle the new

value propositions that we enable in both figures. Our hardware
setups have additional key characteristics: They are resilient by de-
fault to interruptions due to running in a decentralized fashion and
they enable the combination of more GPUs than cloud providers
offer in a single node. Currently, common hardware configurations
(DGX) allow up to eight GPUs connected via NVLink, andwith older
hardware, only up to 4xT4s connected via PCIe at 10 GB/s between
GPUs (with GC). We were able to combine eight single GPU nodes
from GC and LambdaLabs to create competing performance and
price setups without dedicated GPU interconnects.

A spot DGX-2 costs at the time of writing $6.30/h ($14.60/h on-
demand) in GC US, which makes it the best value proposition for
the low granularity NLP task. It is followed by the 8xA10, which
are 41% slower and 30% more expensive than the DGX-2 (Figure 15).
The 8xT4 experiments are even more expensive, as the internal
egress costs take up more than half of the costs, making them the
worst value proposition. However, for CV, we manage to provide
two new offerings: First, the 8xA10, which is both 50% faster and 49%
cheaper than the DGX-2, and 8xT4, which is 58% cheaper than DGX-
2, while being 37% slower (Figure 1). The CV model can be scaled
more easily due to its initially highgranularity,whichmakes the very
competitive offering of $0.6/h perA10 fromLambdaLabs an excellent
value proposition. However, while we only evaluated eight T4 GPUs
for our GC-based experiments, with a granularity of 5.19 (CV A-8
inFigure 7b), there is ample space to scale even further. It is important
to note that LambdaLabs does not charge for any data egress, but GC
does with $0.01/GB, and the 8xT4 experiment is still cheaper. While
LambdaLabs is often at capacity, Google Cloud positions itself as a
hyperscaler with the advantage of rarely being at max occupancy.

We also evaluated the performance of the 4xT4 PyTorchDDP [25]
for CVwith the best available multi-T4 node on GC (4xT4). The NLP
experiments ran OOM. Since the DDP 4xT4 runs on a single node, it
causes no interconnect costs and is priced at $0.96 per 1M samples at
spot pricing, while our 8xT4 setup costs $1.77 per 1M samples (84%
more expensive). However, the 8xT4 setup has a higher throughput
of 262 SPS (26% faster) compared to the 4xT4 node (207 SPS). This
higher speed is not available at the price point of the 4xT4 node.
Moreover, the 8xT4 setup has the potential for further scaling, which
we discussed in detail in Section 4.

In summary, the lower spot prices for older GPUs allow us to train
models more cost-efficiently when task granularity allows it and get
more value per $ when training on the 8xT4 or 8xA10 compared to
an DGX-2 node. Combining multiple nodes with single GPUs with
lower bandwidths enables scaling that was previously impossible to
achievewithout resorting tomuchmorepowerfulGPUs. Distributed
spot instance pricing opens up a new value proposition compared
to on-demand offerings that can even compete with the competitive
pricing of smaller cloud providers.

Spot VM Interruption Frequency. While we used low spot
prices as a cost-saving argument in our experiments, we did not
elaborate on the most significant drawback - the possibility of being
terminated by the cloud provider at any time. There is already some
research on how different cloud providers track the interruption fre-
quency and can be used for varying workloads to achieve a positive
$-per-throughput effect [23, 42, 43].

Interruptionaffects threeaspects:First, the interruption frequency
is defined by AWS as the number of VMs terminated in the last 30
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days, which is between 5 and 20% [2]. This value was not representa-
tive during our experiments with any cloud provider, as we noticed
that it is highly dependent on the time of day of the zone.

Second, the time needed to setup a VM until training starts. The
startup time of a VMdepends on the cloud provider (e.g., a preconfig-
ured image) and the one’s technology stack (e.g., Docker, Kubernetes,
Ansible). In our experience, VM startup time ranges between sec-
onds to minutes with manual deployment taking up to 10 minutes.
Although startup time can be improved, model training typically
takesmultiple hours or days, making it a less impactful optimization.

Third, the time required for the new peer to synchronize the train-
ing state with other peers. In our experience, this took at worst two
hivemind epochs due to the averaging starting before synchroniza-
tion is finished. While it is possible to create a hivemind epoch that
is short enough to prevent new peers from joining, this only hap-
pens with a low enough granularity where scaling is not beneficial
anymore as we are mostly communication bound.

Finally, while the VM setup and synchronization of the training
state take time, the interruption frequency significantly affects the fi-
nal throughput.We faced difficulties acquiring even a single spot VM
during our GC experiments during daylight hours. This highlights
the need for systems like SkyPilot [43], which utilizes automation to
deploy spot instances across various clouds and zones. In our case,
the interruption frequency can be used as a penalty on the training
throughput, i.e., a 5% interruption frequency over the entire training
time means roughly a 5% slower training.

8 LESSONS LEARNED
We find it important to summarize our findings more generically to
provide guidance for DL practitioners that want to perform distri-
buted spot training. These lessons are based on the Sections 3 to 6.

Small model training still scales.We have shown that models
between 12M-560M parameters can be trained in a decentralized,
distributed fashion achieving a speedup of up to 4.37x on eight
Ampere-GPUs. The limiting factor as to when a model is suitable
for (geo-)distributed training is the target batch size which all peers
need to accumulate until synchronization happens. We found a TBS
of 32K suitable to not only train in a single zone, but even see a
speedupwhen using VMs in four different continents. As long as the
optimizer canhandle big-batch training and the dataset is big enough
to accommodate large batches, the remaining issue to find the base
granularity of the model to decide how to scale it cost-effectively.
Finally, we found that small models induce less traffic over larger
models over time, even at a much higher averaging rate, making
them better suited for cost-efficient training than large models.

Egress costs can take upmost of the total cost. Egress pricing
for the NLP experiments overtook the spot and the on-demand costs
of T4 GPUs when training on four continents or even in two zones.
For example, RoBERTaXLM’s high throughput and parameter count
require more data to be sent between peers during averaging due to
smaller granularity. Under the current pricing models, AWS has the
best value for geo-distributed training, while GC and Azure are best
at training in a single zone. The biggest cost-saving potential lies in
cloud providers that do not charge for egress at all, like LambdaLabs.

Granularity is important to evaluate scalability.We found
that the ratio between calculation and communication time, gran-
ularity, is the most important metric to track when deciding on

distributed training suitability. It enables us to compare the scala-
bility potential between different models on the same hardware due
to summarizing their model size and throughput ratio. Additionally,
it gives a value to the cost-efficiency:With a granularity of exactly 1,
the potential speedup when doubling the number of VMs is, at best,
1.33x due to halving the calculation time. However, with a granu-
larity of 10, the speedup with double the VMs is, at best, 1.83x due
to the communication time playing a less significant role. With this,
we can estimate training performance with additional resources.

Geo-distributedmulti-cloud training is possible and is cost-
efficient.Evenwith the current teethingpains ofHivemind,wegot a
speedup in all of our experimental setups of intra-zone, transatlantic,
and intercontinental settings as long as the granularity of the task
permitted it. Using older and cheaper Tesla GPUs at spot pricing
is not only more cost-efficient than the DGX-2 offering, but even
trumps the competitive pricing model of LambdaLabs, all while in-
cluding egress costs. Our network profiling showed that the current
training limitations are not primarily the bandwidth but rather the
intercontinental latency and the task’s granularity. If the granularity
is already low at high bandwidth, it can only worsen when used in
a high latency, low bandwidth network. When considering both,
estimating the potential cost-savings of investing in a multi-/hybrid-
cloud scenario is possible.

9 RELATEDWORK
Decentralized deep learning. Training with unreliable peers has
been studied in a collaborative setting, resulting in the Distributed
Deep Learning in Open Collaborations (DeDLOC) [16] algorithm,
on which the Hivemind framework [39] is based. It can interpo-
late between traditional distributed DL algorithms like parameter
servers [24], decentralized SGD [26], or All-Reduce SGD [38]. We
used the Hivemind framework for all of our experiments, as it pro-
vided the base for training on spot instances in high latency, low
bandwidth networks.

SWARM [36] applies both previous techniques and adds model
parallelism to the mix by creating pipelines between nodes and re-
balancing them in case of failures. The authors find a crucial insight
in the "square-cube" law, which argues for better training scalability
with largermodel sizes; as the size increases linearly, so does the com-
munication time, while the calculation time increases quadratically.
We add to that by analyzing distributed training for smaller model
sizes that pose different trade-offs. We show that while the square-
cube law still holds for increasing model sizes, under consideration
of granularity, we can still train small models.

Decentralized deep learning on heterogeneous hardware with
slow interconnects can benefit the training of foundationmodels. To
achieve this, model and pipeline parallelism can be used in addition
to data-parallel training [45]. This is a complementary work to ours,
since we target smaller models and weaker hardware.

Deep learning on spot instances. DeepSpotCloud [22] is a
system that uses the AWS API to automatically migrate a DL task
with checkpointing whenever the spot instance is terminated. The
authors note that the volatility of GPU instance pricing and inter-
ruptions have a unique pattern compared to non-accelerated VMs,
and solve this by using intercontinental provisioning. We noticed
the same trends of high interruption ratios in our experiments. How-
ever, we have shown that geo-distributed training is possible until
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Figure 16: ASRmodel performance with TBS=256.

granularity permits it, which poses a possibility for ever-migrating
training between continents without checkpointing.

Amazon Sagemaker [13] is anAWS service that allows to perform
MLunderbudget constraints. For training, it supports spotVMmigra-
tion until a cost threshold is reached by checkpointing the progress.
However, it lacks the option of training on multiple spot VMs. It can
do either spot instance training on DGX-like nodes or combine mul-
tiple on-demand nodes with PyTorch DDP (or similar), but not both.
This eliminates the potential of accelerating the training process
withmoreGPUs that do not fit a single spot-provisioned hypervisor.

The analysis by Yang et al. [42] investigates maximizing a tar-
get accuracy from a spot pricing versus time perspective. Linear
programming was used to decide how to provision the VMs with
different cost-utility trade-offs.While this shows the potential of uti-
lizing multiple clouds and continents for non-distributed tasks, we
evaluated the distributed spot training problem from the throughput,
cost, and model size perspective on different hardware setups. By in-
cludingour insights, their technique for schedulingon spot instances
could be adapted to optimize the total throughput of all peers.

Skypilot [43] is a broker system where users can submit their
hardware requirements, and it tries to provision the necessary re-
sources on any supported cloud. It features a preemption analysis
that counts the number of interruptions in a zone and can decide to
migrate whenever they cross a certain threshold. We have shown
that multi-, hybrid-cloud, and geo-distributed training is possible,
and by combining our insights, it would open up auto-migrated,
decentralized DL training for the best spot prices in the world.

10 CONCLUSION
This paper analyzes multi- and hybrid-cloud training in a decentral-
ized fashion on spot instances. We define the lower bounds of model
sizes that canbe scaledcost-efficientlyusing thegranularitymetric to
estimate their suitability for distributed training in low-bandwidth,
high-latency situations. We show that training on multiple cloud
providers and four continents still scales with additional compute
resources. Alternatively to the current use of spot instances in DL,
we show the potential of using spot instances in a distributed, de-
centralized way by being more cost-efficient with eight T4 instances
over a DGX-2 from the same cloud provider while paying additional
egress costs. Finally, we provide an intuition about where costs in
such a training scenario come from and how different model sizes
from CV and NLP affect throughput and costs. Our work empowers
practitioners to utilize spot-priced instances for distributed deep
learning with relatively small models. Our insights show some po-
tential that can further improve distributed training performance,
such as optimizers with higher minibatch sizes and improvements
regarding the communication time with, e.g., better compression.
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11 APPENDIX: ASRCASE STUDY
We perform a case study on Automatic Speech Recognition (ASR) to
showcase spot training on weaker GPUs. Whisper [33] is a state-of-
the-art ASRmodel trained on 680,000 hours of labeled data to tran-
scribeaudio. It featuresdifferent sizes, from37.8Mto1.5Bparameters,
and was trained with a minibatch size of 256. We use the Common-
voice [10] dataset, preprocessed to Log-Mel spectrograms. In our
distributed experiments, we start with a TBS of 256 and increase to
512 and 1024 to combat potential granularity issues. Due to memory
constraints, only threemodel sizes (Tiny, Base, Small) were trainable
on the T4 GPU. Unfortunately, the original TBS of 256 was not large
enough to train the relatively small models due to their small granu-
larity (Figure 16). This leads to no performance benefits compared to
running on a single T4 GPU. In some cases, the low throughput and
non-deterministic communication time (8xT4 Tiny, 8xT4 Base) was
the result of some peers not being able to join due to never being able
to sync the current model state (cf. Section 7). The only model show-
ing scaling potential is WhisperSmall, with a granularity of 1.8 with
2xT4. However, when scaling the target batch size to 512 and 1024,
we see some benefit over the single GPU runs for theWhisperSmall
model (Figure 17). By effectively increasing the amount of computa-
tion by the factors of 2 and 4, we can generate a speedup of 1.27× and
2.2×with 8xT4’s for the TBS 512 and 1024, respectively. When com-
pared to other hardware setups, our A100 80GB GPU and the best
multi-T4 GPU on GC (4xT4) with Pytorch DDP (Figure 18) have al-
mostdouble the throughputat46SPSandareslightlyslowerat24SPS,
respectively, compared to our 8xT4 setup which runs at 28 SPS. This
outcome is not surprising due to the generational leap in architecture
for the A100 and the slower interconnect with our 8xT4 experiments
compared to a single 4xT4 node (see Section 3 for a detailed through-
put analysis). The proposed cost-throughput ratio ismixed: theA100
is at $12.19/1M samples, theDDP4xT4 is at $8.41/1M, and our 8xT4 is
at $14.53/1M.Our proposed setup is slightlymore expensive than the
A100, and it will not scale beyond eight T4 GPUs due a granularity
at 1.17, leaving the A100 as the fastest and the DDP 4xT4 setup as the
cheaper but slower alternative. Despite these results, our proposed
setup has several benefits, including resilience for spot interruptions,
interruption-free migration to the lowest cloud prices, and the pos-
sibility to scale the GPU count up as long as granularity permits it.
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