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Preface of the editor

Artificial ground freezing (AGF) is a specialized technique used to temporarily improve the mechanical
properties of subsoil and ensure watertightness below the groundwater table in various geotechnical
applications, such as underpinning, tunnel excavation support, retaining walls, soil sampling, and waste
containment. The complexity of frozen soil structures and the need to consider multiple construction
phases often necessitate the use of numerical methods, particularly the Finite Element Method, along
with advanced constitutive models, to verify limit and serviceability states. The literature extensively
explores the rate- and temperature-dependent behavior of frozen granular soils. However, most pub-
lished studies focus on individual aspects of frozen soil behavior, such as the effects of temperature,
strain rate, confining pressure, loading history, or density on shear strength and creep. This lack of
comprehensive studies and experimental databases has hindered the development of advanced con-
stitutive models. Consequently, AGF designs are typically based on semi-empirical rules and simplified
constitutive models, which only rudimentarily account for the actual behavior of frozen soils, often over-
looking key influencing factors and primary features of their mechanical response. In practice, these
approaches lead to overly conservative and inefficient designs, making this environmentally friendly,
versatile, and (when paired with proper geotechnical monitoring) reliable soil improvement method less
competitive than other, less sustainable geotechnical construction methods. The primary motivation
behind Ulrich Schindler’s research was to create an improved platform and advanced tools for a more
efficient and sustainable design of AGF systems.

Ulrich’s research began with a simple constitutive model for frozen soils that I developed in 2006, based
on experiments from existing literature. Since this initial model did not account for confining pressure
effects and could not differentiate between tensile and compressive strengths, we initiated the develop-
ment of a new model in 2020 to address these limitations. Ulrich, who was then starting his research,
played an active role in the numerical implementation and validation of this new model. His principal
research accomplishment was the further development of this model, which he named EVPFROZEN,
to incorporate the effects of loading history and initial relative density on frozen soil behavior.

To achieve this, an expansion of the existing experimental database was essential. Ulrich independently
designed and executed a comprehensive experimental program, creating a globally unique dataset. He
meticulously analyzed the experimental data to uncover phenomenological relationships, which he used
to enhance the original constitutive model. The thorough validation of the enhanced model with exper-
imental data from the literature —including element tests (laboratory tests) and model tests (boundary
value problems)— and his recommendations for its practical application demonstrate Ulrich’s extraordi-
nary effort in assessing the model’s reliability and identifying its limitations. This commitment highlights
his dedication to top-tier fundamental research and his deep interest in providing essential information
for practical model application.

With the development, implementation, and validation of EVPFROZEN, Ulrich Schindler has made a
remarkable contribution to advancing the experimental investigation and modeling of the mechanical
behavior of frozen soils, particularly frozen granular soils.

Roberto Cudmani
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Abstract

Artificial ground freezing (AGF) is an advanced, sustainable, and environmentally friendly construction
technique that temporarily increases the subsoil’s stiffness and strength and provides water tightness.
It can be implemented effectively in urban conditions where the risk of using other subsoil improvement,
water tightening, and dewatering techniques can be high due to complex or partially unknown boundary
conditions and the consequences of damage. In particular, the significance of AGF is becoming ever
more germane as the design of new urban tunneling systems requires more complex geometries and
higher bearing capacities, which are limited with conventional construction methods. A crucial aspect
of the design and application of AGF measures is the basic and applied understanding of the essential
mechanical behavior of frozen soil bodies under shear and creep loading. In practice, oversimplified
and limited analytical and elastic approaches have largely been used to describe the complex behavior
of frozen soil bodies. In this context, the use of advanced constitutive models to simulate the me-
chanical behavior of frozen soils offers a unique and far-reaching potential. This approach facilitates
the development of tailored and more sustainable AGF engineering solutions, effectively reducing the
current consequence of over-engineering AGF measures due to the high safety factors imposed by
oversimplified practical methods. However, incorporating the experimentally observed complex frozen
soil characteristics into advanced constitutive models for practical purposes to predict their rate-, stress-
, and temperature-dependent shear and creep behavior is highly challenging. Besides, these practical,
well-established, and well-tested advanced models are also lacking due to gaps in frozen soil testing
and the development of reliable numerical frameworks.
This thesis presents experimental and numerical investigations aiming to fill these gaps and to provide
an advanced and enhanced constitutive model for the mechanical behavior of frozen granular soils. An
existing constitutive model proposed by Cudmani et al. (2023) served as a starting point and was ex-
tended in a first step to account for non-monotonic static loading. By conducting and comparing uniaxial
single-stage and multi-stage creep tests on frozen sand, the essential influence of the stress-strain his-
tory on the rate- and temperature-dependent behavior of frozen soils was revealed, and a concept for
converting multi-stage creep tests into their equivalent single-stage tests was proposed. The findings
were incorporated in the existing constitutive model to couple creep time and stress-strain history and,
thus, numerically account for non-monotonic static loading. After successfully testing and validating
the enhanced model, designated by the acronym EVPFROZEN, this thesis presents a second model
improvement of EVPFROZEN by including the influence of the initial relative density on the shear and
creep behavior of frozen soils. Based on our own comprehensive experimental database and data
from the literature, a linear, mostly rate- and temperature-independent relationship between shear and
creep strength and the initial frozen soil relative density was derived. Using this established relationship
helped to identify the affected constitutive equations that depend on the initial frozen soil relative den-
sity. As a result, the EVPFROZEN model framework has been extended with a simple linear approach
that combines shear and creep strength with relative density, thus predicting the mechanical behavior
as a function of the initial frozen soil relative density via two new model parameters. The effectiveness
of the extended EVPFROZEN model was supported by the back-calculation of freezing tests on two
different frozen sands covering a wide range of different initial frozen soil relative densities. Lastly, the
thesis focuses on the practical use of EVPFROZEN in finite element analysis (FEA) codes by testing the
model for frozen granular soils in both a shear and creep failure boundary value problem. The overall
good agreement between the experimental and numerical results further highlighted its practical advan-
tages and potential for AGF design, especially based on the extensive model response comparisons
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with common practical, simplified elastic approaches for simulating frozen soil bodies. In summary,
this thesis presents, through further development and extensive testing, a powerful numerical tool for
assessing the stability and predicting the deformations of frozen soils in engineering applications under
both monotonic and non-monotonic static loading.



Zusammenfassung

Die künstliche Baugrundvereisung bzw. das Gefrierverfahren (Artificial Ground Freezing, AGF) ist ein
vielseitiges, nachhaltiges und umweltfreundliches Bauverfahren zur temporären Erhöhung der Steifig-
keit und Festigkeit des Untergrunds und zur Abdichtung unterhalb des Grundwasserspiegels. Es kann
vor allem effektiv in innerstädtischen Gebieten eingesetzt werden, in denen das Risiko der Anwen-
dung anderer Baugrundverbesserungsmaßnahmen, Abdichtungs- und Entwässerungstechniken auf-
grund komplexer oder teilweise unbekannter Randbedingungen und Schadensfolgen verhältnismäßig
zu hoch ist. Baugrundvereisungen gewinnen hier zunehmend an Bedeutung, da die Planung neuer
innerstädtischer Tunnelsysteme komplexere Geometrien und höhere Tragfähigkeiten erfordert, die mit
konventionellen Bauverfahren nur begrenzt möglich sind. Entscheidend für die Bemessung und Anwen-
dung von AGF-Maßnahmen ist das grundlagen- und anwendungsorientierte Verständnis des maßge-
benden mechanischen Verhaltens von gefrorenen Erdkörpern unter Scher- und Kriechbeanspruchung.
In der Praxis wird das komplexe Verhalten von gefrorenen Erdkörpern bisher weitgehend mit verein-
fachten und begrenzten analytischen und elastischen Ansätzen beschrieben. In diesem Zusammen-
hang bietet die Anwendung höherwertiger Stoffmodelle zur Simulation des mechanischen Verhaltens
gefrorener Böden ein einzigartiges und weitreichendes Potenzial. Der Einsatz von höherwertigen Stoff-
modellen erleichtert die Entwicklung maßgeschneiderter und nachhaltigerer technischer Lösungen für
gefrorene Erdkörper und verringert damit die derzeitige Folge der Überdimensionierung von gefrorenen
Erdkörpern aufgrund hoher Sicherheitsfaktoren, die in der Baupraxis durch die Anwendung vereinfach-
ter Bemessungsmethoden notwendig werden. Die Berücksichtigung der experimentell beobachteten
komplexen Eigenschaften gefrorener Böden in höherwertigen Stoffmodellen für bautechnische Zwe-
cke zur Vorhersage ihres raten-, spannungs- und temperaturabhängigen Scher- und Kriechverhaltens
stellt jedoch eine große Herausforderung dar. Darüber hinaus gibt es einen Mangel an praktischen, gut
etablierten und getesteten Stoffmodellen aufgrund von Lücken in der experimentellen Untersuchung
gefrorener Böden und der Entwicklung fortgeschrittener numerischer Methoden.
In dieser Arbeit werden experimentelle und numerische Untersuchungen zur Schließung dieser Lücken
und zur Entwicklung und Anwendung eines verbesserten, höherwertigen Stoffmodells für das mechani-
sche Verhalten von gefrorenen granularen Böden vorgestellt. Als Ausgangspunkt diente ein vorhande-
nes Stoffmodell entwickelt von Cudmani et al. (2023), das zunächst zur Berücksichtigung nicht mono-
toner statischer Lasten erweitert wurde. Durch die Durchführung und den Vergleich von einstufigen
und mehrstufigen einaxialen Kriechversuchen an gefrorenem Sand wurde der wesentliche Einfluss
der Spannungs-Dehnungshistorie auf das raten- und temperaturabhängige Verhalten von gefrorenen
Böden aufgezeigt und ein Konzept zur Umrechnung von mehrstufigen Kriechversuchen in entsprechen-
de einstufige Versuche entwickelt. Die Ergebnisse wurden in das vorhandene höherwertige Stoffmo-
dell integriert, um Kriechzeit und Spannungs-Dehnungshistorie zu koppeln und so den Einfluss einer
nicht monotonen statischen Belastung im Modell zu berücksichtigen. Nach der erfolgreichen Über-
prüfung und Validierung des erweiterten Modells mit dem Akronym EVPFROZEN wird in dieser Arbeit
eine zweite Modellverbesserung von EVPFROZEN vorgestellt, die den Einfluss der anfänglichen La-
gerungsdichte auf das Scher- und Kriechverhalten von gefrorenen Böden berücksichtigt. Basierend
auf einem eigenen umfangreichen experimentellen Versuchsprogramm und Daten aus der Literatur
wurde ein linearer, weitestgehend raten- und temperaturunabhängiger Zusammenhang zwischen der
Scher- und Kriechfestigkeit und der anfänglichen Lagerungsdichte des gefrorenen Bodens abgeleitet.
Die Verwendung dieser grundlegenden Beziehung half bei der Identifizierung der relevanten Stoffmo-
dellgleichungen, die von der anfänglichen Lagerungsdichte des gefrorenen Bodens abhängen. Das
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Modell EVPFROZEN wurde daher um einen einfachen linearen Ansatz erweitert, der die Scher- und
Kriechfestigkeit mit der Lagerungsdichte kombiniert, um das mechanische Verhalten in Abhängigkeit
von der anfänglichen Lagerungsdichte des gefrorenen Bodens durch zwei neue Modellparameter ab-
zubilden. Die Genauigkeit der erweiterten Modellversion wurde durch die Rückrechnung von Frost-
versuchen an zwei verschiedenen gefrorenen Sanden mit sehr unterschiedlichen Lagerungsdichten
bestätigt. Darüber hinaus konzentriert sich die Arbeit auf die baupraktische Anwendung von EVPFRO-
ZEN mittels Finite-Elemente-Berechnungen (FEA), indem das Modell für gefrorene granulare Böden
sowohl in einem Randwertproblem unter Scher- als auch unter Kriechversagen getestet wird. Die ins-
gesamt gute Übereinstimmung zwischen experimentellen und numerischen Ergebnissen unterstreicht
die baupraktischen Vorteile und das weitreichende Potenzial für die Bemessung von AGF, insbesondere
auf der Grundlage der umfangreichen Vergleiche der Modellprognosen mit einem in der Praxis üblichen
vereinfachten elastischen Ansatz zur Simulation von gefrorenen Erdkörpern. Zusammenfassend kann
festgestellt werden, dass durch die Weiterentwicklung und umfangreiche Validierung des Stoffmodells
nun ein leistungsfähiges numerisches Werkzeug zur Beurteilung der Stabilität und zur Vorhersage der
Verformung von gefrorenen Böden in bautechnischen Anwendungen unter monotoner und nichtmono-
toner statischer Belastung zur Verfügung steht.
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1. Introduction

1.1. Motivation and knowledge gap

Artificial ground freezing (AGF) is an advanced, environmentally friendly, and versatile construction
technique, with its first application reports dating back to the construction of deep shafts more than
150 years ago (Orth 2018). Nowadays, AGF applications cover many more construction fields, such
as underpinning, tunnel excavation supports, impermeable walls for excavation pits, and sampling or
containment of hazardous waste. Indeed, the increasing demand and use of AGF in geotechnical ap-
plications mainly result from the much-needed renewal and extension of public transport infrastructures
due to the persistent challenge of climate change and the various structural changes in rural and urban
areas. Here, owing to its versatility and reliable quality control through temperature measurements,
AGF is often preferable to other available soil improvement techniques in urban situations with complex
boundary conditions (Harris 1995; Andersland and Ladanyi 2003). For instance, the intensive use of
AGF for the excavation of underground stations and cross passages under the Spree Canal (Berlin,
Germany), under the Suez Canal (Egypt), or for the Brenner Base Tunnel (Austria/Italy) has impres-
sively demonstrated the importance of AGF in modern tunnel construction (Classen et al. 2019; Phillips
et al. 2021; Casini et al. 2023).

In general, the AGF design involves both thermal and mechanical analysis (Cudmani and Nagels-
diek 2006; Pimentel et al. 2012; Casini et al. 2016). The thermal calculations primarily result in the
dimensioning of the freezing equipment and the expected freezing times. The mechanical analysis
is necessary to assess the fulfillment of the requirements of the frozen soil body in the limit and ser-
viceability states during the different construction stages. According to many studies in the literature
(e.g., Chen (2012); Doebbelin and Orth (2012); Russo et al. (2015); Zhou et al. (2022)), semi-analytical
and elastic approaches, some of them originally developed for AGF designs more than a century ago
(Domke 1915), are still commonly used to estimate the required frozen wall thickness, its stiffness and
stress state in AGF applications. However, these approaches are limited and often lead to economically
and sustainably unbalanced designs since high safety factors are involved to ensure the uncertainties in
terms of the simplified description of the rate-, stress- and temperature-dependent frozen soil behavior.
For instance, Ding et al. (2015), Pimentel and Anagnostou (2019), and Chen (2020) considered AGF
designs including safety factors over 3 up to more than 6, which resulted in relatively thick frozen soil
bodies compared to the tunnel excavation areas and overburden. Moreover, Sopko (2019) reported an
elastic model approach for the AGF design of cross passages in Seattle (USA), which led to a safety
factor of over 10 in relation to the short-term uniaxial compression strength. Indeed, Sopko admitted
that an advanced time-dependent finite element analysis (FEA) may have led to less over-engineering.
From a practical point of view, these and other examples clearly highlight the need to geotechnically
and economically improve AGF designs by means of the practical establishment of sophisticated, user-
friendly, and comprehensively validated constitutive models for frozen granular soils. These models can
more accurately and reliably capture the essential mechanical behavior of frozen granular soils, paving
the way for more sustainable, resource-efficient AGF design.

Xu et al. (2018) and Zhao et al. (2023) summarize the development of advanced constitutive mod-
els during the last few decades, which describe the complex rate-, stress- and temperature-dependent
mechanical behavior of frozen soils. Nevertheless, many models can only capture either the shear
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or creep behavior and cannot differentiate between compressive and tensile loading. In addition, few
models can account for the influence of the confining pressure on shear resistance and creep behavior.
The constitutive model proposed by Cudmani et al. (2023) intends to fill this gap and has already been
validated by element tests for predominantly monotonic uniaxial and triaxial loading under constant
temperatures. Even though this advanced constitutive model can capture several essential features of
frozen soil behavior, it still has several limitations and needs significant enhancement and validation,
e.g.:

• The consideration of stress-strain histories deviating from monotonic static loading (e.g., stepwise
loading or loading-unloading) on the mechanical behavior of frozen soils is still missing.

• A calibrated model parameter set is only valid for a given initial frozen soil relative density (void
ratio) and degree of saturation.

• The implementation of the model in an FEA code and its extensive testing in boundary value
problems to achieve the next important step in validating the model for practical geotechnical and
tunneling scenarios has not yet been achieved.

1.2. Research goals

The mechanical behavior of frozen granular soils has been extensively investigated over the last decades,
as later described in Section 2. However, these studies, which have included various characteristics of
frozen soils (e.g., temperature, fines content, rate dependence, etc.), have mainly focused on the sep-
arate investigation of individual mechanical aspects, which often cannot be combined due to different
sample characteristics or incomparable testing material, testing equipment, and testing types. Indeed,
from a numerical point of view focused on the development of advanced constitutive models for frozen
soils, as a starting point, it is desirable to provide and use a sophisticated experimental database on a
single frozen soil material with well-defined soil properties and test conditions, continuously adding spe-
cific mechanical aspects and overall providing a database that reflects for numerous mechanical char-
acteristics for the same tested material. Despite the efforts made so far, we still miss comprehensive
experimental studies for a single frozen soil material combining a wide range of different characteristics
and influences on the mechanical behavior under static monotonic and non-monotonic compressive
loading, including small-scale and large-scale freezing tests. Such sophisticated experimental data are
essential for the development and comprehensive validation of constitutive models for frozen granular
soils. In contrast to the current trend of developing models for only one specific aspect of frozen soils,
frozen soil engineering requires constitutive models that capture all the fundamental features of frozen
soil behavior, preferably with a single model parameter set. Ideally, models should be applicable to var-
ious complex soil freezing scenarios, including both AGF and permafrost. As mentioned and discussed
above, the constitutive model for frozen granular soils recently proposed by Cudmani et al. (2023) can
potentially fill this gap, but it still needs significant enhancement and validation.

Therefore, the overarching goal of this dissertation is to overcome the in Section 1.1 mentioned
model limitations and gaps and to establish a well-tested and powerful numerical tool for as-
sessing the stability and predicting the deformations of frozen soils in engineering applications.
The planned experimental investigation under static monotonic and non-monotonic compres-
sive loading will also provide a significant extension to an existing experimental database for
frozen Karlsruhe medium sand. The use of both high-quality experimental databases and so-
phisticated data from the literature will ultimately result in a far-reaching enhancement, further
development, and validation of the existing advanced constitutive model proposed by Cudmani
et al. (2023). To achieve these ambitious goals, the following specific sub-goals are proposed:
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• Subgoal 1: Extension of an existing mechanical experimental database for frozen Karlsruhe sand
(medium sand) under single-stage loading to include multi-stage loading, performing uniaxial
creep tests at a constant temperature.

• Subgoal 2: Determine how multi-stage loaded and unloaded creep (varying creep stresses during
a test) affects the evolution of the axial strain rate and corresponding lifetime compared to single-
stage loaded creep (constant creep stress during a test).

• Subgoal 3: Development of a conceptual framework for comparing and describing multi-stage and
single-stage creep and application of these approaches to the constitutive modeling of frozen soil
mechanical behavior under non-monotonic static loading.

• Subgoal 4: Creating a novel mechanical experimental database for frozen Karlsruhe sand with
respect to the influence of the initial relative density on the shear and creep behavior based on
element tests at constant temperature and high degree of saturation.

• Subgoal 5: Identify qualitatively and quantitatively how the shear and creep strength are influ-
enced by the initial frozen soil relative density.

• Subgoal 6: Derive fundamental relationships between shear and creep strength and initial frozen
soil relative density and develop a numerical framework to account for their interactions and de-
pendencies.

• Subgoal 7: Investigation, enhancement, and further development of the existing constitutive
model proposed by Cudmani et al. (2023) based on our own experimental database and derived
conceptual frameworks of subgoals 1-6 as well as data from the literature.

• Subgoal 8: Extensive model testing and validation based on our own experimental database of
sub-goals 1 and 4 and data from the literature, including simulations of both element tests and
model tests.

1.3. Research methods

To overcome the limitations outlined in the main research objectives of this dissertation, a systematic
approach consisting of several experimental and numerical methodological steps is proposed.

1. Laboratory freezing tests
Since the available data from the literature are not sufficient to develop and validate novel con-
stitutive concepts to account for the influence of non-monotonic static loading and initial frozen
soil relative density on the mechanical behavior of frozen soils, it is first necessary to create a
novel, unique and comprehensive experimental database. Frozen Karlsruhe medium sand has
been chosen as the test material because preliminary studies by Eckardt (1979b); Orth (1986)
already exist for this material and, thus, the planned experimental program will further extend an
existing experimental database while setting new priorities. The use of both high-quality experi-
mental databases and sophisticated data from the literature provides the opportunity to reveal the
fundamental mechanical behavior of frozen soils under non-monotonic static loading and varying
initial frozen soil relative densities. Furthermore, the sophisticated experimental database is the
basis for both the development of conceptual frameworks and model improvements, as well as for
model validation.

2. Development of conceptual frameworks and formulation of constitutive equations
In parallel with the formulation of constitutive equations, conceptual and numerical concepts are
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developed that accurately represent the experimentally observed mechanical behavior. These
concepts are essential to ensure that the computational model faithfully represents the experi-
mentally observed frozen soil behavior. The derived constitutive equations are formulated as a
user-material subroutine; details see later in Section 3.8. This approach allows the model to be
easily modified, implemented, and tested in finite element analysis (FEA) codes.

3. Implementation and use of the model in a FEA code
After the implementation of the enhanced model as a user-material subroutine, the model can be
used in FEA codes. In this thesis, the commercial FEA code ABAQUS Standard has been used,
and thus, the framework of the user-material subroutine ’UMAT’ has been adopted. The model is
tested in ABAQUS for its robust and user-friendly ability to both back-calculate experimental freez-
ing tests for model validation purposes and solve complex boundary value problems. This step
is aimed at equipping the model for practical application in geotechnical and tunneling problems,
thus bridging the gap between basic research and engineering practice.

4. Model testing and validation
The final step is the extensive testing and validation of the model. Model validation involves the
back-calculation of small-scale (element) and large-scale (model) tests and the corresponding
comparison of experimental and numerical results.

1.4. Outline

This dissertation is divided into nine chapters, each addressing a specific aspect of the mechanical
behavior of frozen coarse-grained soils and the enhancement and use of an advanced constitutive
model for frozen granular soils. The structure is as follows:

Chapter 1: Introduction This chapter outlines the research problem and motivation and introduces
the research questions as well as research methods addressed in the following chapters.

Chapter 2: Literature The essential mechanical behavior of frozen coarse-grained soils is examined,
with a special focus on their shear and creep behavior. Moreover, the gaps in current scientific
knowledge are identified that this dissertation aims to fill.

Chapter 3: Methods This chapter describes the research methodologies employed, including the con-
stitutive model for frozen soils, the supporting equations, and the approach to calibrating material
constants.

Chapter 4: Multi-stage creep behavior of frozen Karlsruhe sand The influence of varying stress states
on the mechanical behavior of frozen sand is investigated experimentally and used to extend an
advanced constitutive model for frozen soils to account for multi-stage loading.

Chapter 5: Influence of relative density on the mechanical behavior: Experimental investigations
This chapter presents experimental investigations on the influence of the initial relative density of
frozen sands on their shear and creep strength.

Chapter 6: Influence of relative density on the mechanical behavior: Constitutive modeling This
section of the thesis addresses the consideration of the initial frozen soil relative density within the
extended and tested constitutive model. It includes a description of the calibration process and
the introduction of new model parameters, as well as the model validation.

Chapter 7: Using EVPFROZEN to design frozen soil bodies in boundary value problems The use
of the enhanced constitutive model in boundary value problems illustrates its advantages and ef-
ficiency in designing and analyzing frozen soil bodies in geotechnical engineering.
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Chapter 8: Recommendations and limitations for the use of the constitutive model This chapter of-
fers practical suggestions for using the enhanced constitutive model for frozen granular soils and
discusses its limitations, guiding future research and applications.

Chapter 9: Summary and conclusion The experimental and numerical results of this thesis are sum-
marized, and the main conclusions are reiterated.

1.5. Notation

In this thesis, second-order tensors are represented by bold letters and fourth-order tensors are rep-
resented by blackboard bold letters. δij is the Kronecker delta, for i = j, δij = 1, otherwise, δij = 0.
1 = δijei ⊗ ej denotes the second-order unit tensor, where ⊗ means the dyadic product of two tensors.
Trace of the stress tensor is denoted by tr (σ) = σ : 1. Here, ”‘:”’ (double dot product) denotes the inner
product with double contraction of two tensors. s = σ − 1

3tr (σ)1 denotes the deviator part of the stress
tensor and s2 = s2ijei ⊗ ej, s3 = s3ijei ⊗ ej. ∥σ∥ =

√
σ : σ means the Euclidean norm of stress tensor.

Roscoe’s variables p and q are defined as p = 1
3tr (σ) and q =

√
3
2s : s, respectively.

ε Total strain tensor
εel Elastic strain tensor
εv Viscous strain tensor
ε̇ Total strain rate tensor
ε̇el Elastic strain rate tensor
ε̇v Viscous strain rate tensor
ε1 Axial strain
ε̇1 Axial strain rate
εm Average axial strain at the lifetime of the frozen soil
ε̇α Reference strain rate
ε̇m Minimum creep rate / Minimum axial strain rate
ε̇m Minimum creep rate tensor
tm Lifetime of the frozen soil after which tertiary creep starts
θ Temperature in Celsius
t Actual testing time / Global total time
t0 Starting creep time
t∗ Transformed creep time
p Roscoe’s invariant representing mean pressure
q Roscoe’s invariant representing deviator pressure
σ1 Axial stress / Uniaxial creep strength
σc Uniaxial compression strength / Uniaxial peak shear strength
σt Uniaxial tensile stress
σt,u Uniaxial peak tensile strength
σcr Equivalent uniaxial creep strength after Cudmani et al. (2023)
σ Stress tensor
σ̇ Stress rate tensor
s Deviatoric part of stress tensor
Iσ Trace of stress
Nσ1 Number of load steps in an uniaxial multi-stage creep test
L Fourth-order isotropic elastic stiffness tensor
E Young’s modulus
ν Poisson’s ratio
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ϕ Lode angle
ρd Dry density of the frozen soil sample
γ Unit weight
w Gravimetric water content
Sr Degree of saturation
e Void ratio
ID Relative density
FR Nodal reaction forces
Emod Time-, stress- and temperature-dependent elastic deformation modulus
Emod Time-, stress- and temperature-dependent fourth-order elastic stiffness tensor
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2.1. Artificial Ground Freezing (AGF)

In the following, the advanced construction technique of Artificial Ground Freezing (AGF) is briefly sum-
marized based on the comprehensive descriptions and explanations by Harris (1995); Andersland and
Ladanyi (2003); Orth (2018); Alzoubi et al. (2020). AGF is an advanced, environmentally friendly, and
versatile construction method that temporarily stabilizes the subsoil and creates a watertight seal below
the groundwater table by converting pore water to ice, creating a temporary structural support consisting
of frozen soil bodies. Inspired by the natural phenomena of ground freezing in Arctic regions, Siebe Gor-
man & Co. pioneered the first instance of Artificial Ground Freezing (AGF) in 1862 in Swansea, South
Wales, UK (Harris 1995). Initially used in a coal mine shaft sinking project, this technology marked a
significant advance in mining operations. Later, Friedrich Poetsch, a German mining engineer, improved
the technology and patented it in 1883 (Poetsch 1886). AGF was chosen for its unparalleled safety in
constructing a 50-meter deep shaft in fully saturated sandy terrain. Originally developed in the 19th
century for the sinking of coal mines, AGF’s adaptability has led to its application in civil engineering,
environmental management, and more, including underpinning, tunnel excavation supports, imperme-
able walls for excavation pits, and sampling or containment of hazardous waste. Practical examples of
AGF are shown in Figures 2.1 and 2.2.
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ses“. Bild 2 zeigt einen Schnitt durch
das Rathaus mit den Tunnelbauwer-
ken und Bild 3 den Startschacht mit
dem Rathaus.

Um Schäden am denkmalge-
schützten historischen Rathaus zu ver-
meiden, mußten die infolge der ak-
tuellen Baumaßnahme zusätzlich zu
erwartenden Verformungen streng be-
grenzt werden, da sich bereits beim
Bau der U-Bahnlinien U3/U6 in den
1960er Jahren das Rathaus um bis zu
ca. 30 mm gesetzt hatte. Im Ausschrei-
bungsentwurf des Baureferats der

Stadt München war zu diesem Zweck
eine Hebungsinjektion vorgesehen. Es
war geplant, aus zwei Startschächten
heraus Manschettenrohre mit Hilfe
eines gesteuerten Bohrverfahrens fä-
cherförmig unter das Rathaus zu füh-
ren. Zur Wasserhaltung waren in ver-
schiedenen Höhenlagen Horizontal-
dräns entlang des Tunnels vorgese-
hen. 

Der zur Ausführung gelangte
Sondervorschlag der Firma Max Bögl
enthielt aus technischer Sicht drei
wesentliche Änderungen. An Stelle

der langen Horizontalbohrungen
wurden zwei Pilotstollen aufgefahren.
Von den Pilotstollen aus wurde zur
Sicherung der Firste und zur Begren-
zung derVerformungen ein Vereisungs-
schirm vorgesehen (s. blaue Fläche in
Bild 2). Schließlich wurden zur Was-
serhaltung überwiegend Vertikalbrun-
nen von der Geländeoberkante aus
eingesetzt. Durch die wissenschaft-
liche Begleitung des Projekts, ausge-
führt durch das Zentrum Geotechnik
der TU München, sollte die Einhal-
tung der für die Bauwerke verträgli-
chen Verformungen sichergestellt bzw.
optimiert werden. Schwerpunkt hier-
bei war es, aufbauend auf Laborver-
suchen und Rückrechnungen aus an-
deren Projekten die zu erwartenden
Frosthebungen infolge der Vereisung
sowie die Setzungen infolge des Vor-
triebs rechnerisch zu ermitteln und
hinsichtlich der zu erwartenden Ver-
formung des Rathauses zu beurteilen.
Weiterhin sollten anhand von baube-
gleitenden Kraft- und Verformungs-
messungen die Berechnungen über-
prüft und erforderlichenfalls Maß-
nahmen zur Reduzierung der Hebun-
gen bzw. Setzungen vorgeschlagen
werden.

2 Baugrund- und Grundwasser-
verhältnisse

Die Baugrundverhältnisse waren
durch die projektspezifischen Erkun-
dungen sowie durch die Ortsbrust-
aufnahmen beim Auffahren der Tun-
nel für die U3/U6 bereits bekannt.
Sie sind in Bild 4 schematisch darge-
stellt. Demnach folgen unter gering-
mächtigen Auffüllungen und quar-
tären Kiesen die tertiären Schichten.
Sie bestehen aus Wechsellagerungen
überwiegend dicht gelagerter Fein- bis
Mittelsande mit Tonen bzw. Schluffen
in halbfester bis fester Konsistenz.
Entsprechend ihrer Entstehung wei-
sen diese Schichten engräumlich teils
stark unterschiedliche Mächtigkeiten
auf. Die Sandschichten führen ge-
spanntes Grundwasser.

Da für den Vortrieb der Erweite-
rungstunnel die Grundwasserverhält-
nisse von ganz entscheidender Bedeu-
tung waren, wurden im Vorgriff zur
Baumaßnahme 8 Grundwassermeß-
stellen und 2 Tertiärbrunnen zur
Durchführung eines einmonatigen
Pumpversuchs errichtet. Nach den
Aufschlüssen und dem Pumpversuch

J. Fillibeck/Chr. Kellner/W. Rieken/St. Scharrer · Bahnsteigerweiterung der U6 unter dem neuen Rathaus in München – Spritzbetonvertrieb mit Vereisung

Bild 2. Schnitt durch das Rathaus mit Tunnelbauwerken
Fig. 2. Cross-section with town hall and tunnels

Bild 3. Blick auf einen Startschacht und die Rathausfassade
Fig. 3. Bird’s eye view of one access shaft and the cladding of the town hall
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(a) Use of AGF (blue) under the old town hall in
Munich (Germany) as a temporary support for a
tunnel excavation. Figure adapted from Fillibeck
et al. (2005).

(b) Frozen soil body (white) supporting a tunnel ex-
cavation. Figure adapted from RODIO Geotechnik
AG (2024).

Figure 2.1.: Examples of the practical use of AGF in geotechnical and tunneling scenarios. 1/2.
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(a) Frozen soil body (white) supporting a shaft construc-
tion. Figure adapted from Tunnel Business Magazine
(2024).
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(b) Frozen soil body (white) as a pit wall. Fig-
ure adapted from Orth (2014).

Figure 2.2.: Examples of the practical use of AGF in geotechnical and tunneling scenarios. 2/2.

As illustrated in Figure 2.3, there are two main types of AGF systems: indirect (closed-loop) and direct
(open-loop).

atmospheric pressure (101.325 [kPa]), as depicted in Fig. 4. As it
evaporates, it draws 199.18 [kJ·kg−1] of energy from its surroundings,
and around 133.13 [kJ·kg−1] of heat gain to heat up the cold gas to the
exhaust temperature of −70 [°C], this temperature is economically
favorable for the resultant nitrogen gas (Veranneman and Rebhan,
1979; Frivik, 1981). Furthermore, nitrogen is abundant; it is the main
component of air (78% by volume). Therefore, it has been utilized as a
cooling medium in AGF systems. To produce liquid nitrogen, an off-site
facility is required, where nitrogen is cooled down, liquefied, and se-
parated from other air constituents. The liquefied nitrogen is then de-
livered to the site and stored in an insulated storage vessel to be used in
the AGF process. On-site, the liquid nitrogen is circulated through a
network of freeze pipes. A pumping system is not a requirement; the
pressure of the liquefied nitrogen is sufficient to force the liquid
through the freeze pipes. It is unpractical, however, to collect the ni-
trogen and liquefy it again. The resultant gas is, therefore, exhausted to
the atmosphere. Due to its low temperature (−195.8 [°C]), nitrogen is
typically circulated between multiple freeze pipes before it is released
to the ambient. Two types of freeze pipes are used with the open-loop
AGF system: (i) regular bayonet tube freeze pipes where nitrogen ex-
tracts the heat from the ground through the wall of the freeze pipes, as
observed in Fig. 5ii) perforated freeze pipe, where nitrogen is directly
injected into the ground, as illustrated in Fig. 5(b). The usage of each
type depends on the ground structure - porous soil is the major pre-
requisite for the perforated freeze pipes.

The open-loop AGF system was used for the first time to stop a
sewage leakage in France in 1964 (Iskandar, 1986). Since then, the
system has been used in several applications. Due to the large tem-
perature gradient between the liquid nitrogen and the surrounding
ground structure, the open-loop system is mainly considered to reduce
the freezing time. Therefore, it is commonly used in emergency situa-
tions, such as hazardous-waste management (Gallavresi, 1981;
Iskandar, 1986, 1987; Simon and Cooper, 1996; Rifai et al., 2000;
Brown, 2004). Also, it is used to create strong structures for undisturbed
local sampling (Sego et al., 1994; Hofmann et al., 2000; Su et al., 2004;
Goel et al., 2004; Schmall and Braun, 2006; Esposito et al., 2013; Kim

Fig. 2. Schematic diagram of the AGF systems: (a) an indirect, closed-loop method using a cold, sub-zero brine; and (b) a direct, open-loop system using liquid
nitrogen as a cryogenic liquid refrigerant.

Fig. 3. Basic design considerations and the primary objectives of different types of AGF system.

Fig. 4. Pressure-enthalpy diagram of nitrogen showing the evaporation tem-
perature at ambient pressure.

M.A. Alzoubi, et al. Tunnelling and Underground Space Technology 104 (2020) 103534

3

Figure 2.3.: Schematic diagram of the AGF systems: (a) an indirect, closed-loop method using a cold,
sub-zero brine; and (b) a direct, open-loop system using liquid nitrogen as a cryogenic liquid refrigerant.
Figure reproduced with permission from Alzoubi et al. (2020).

The indirect system (Figure 2.3a) uses a mechanical chiller to cool a coolant, typically brine, which is
then circulated through freezing pipes in the ground. The heat extraction process continues as the brine
returns to the facility. The main components of the closed-loop system in Figure 2.3a) are a freezing
plant and a network of freeze pipes. Coolant brines are selected based on several factors, including
the capabilities of the freezing plant and economic considerations of brine solution concentrations. This
system is widely used for projects with different requirements and configurations, from shaft sinking to
tunneling, and can be adapted to the project size and subsoil conditions. In contrast, the direct system
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2.1. Artificial Ground Freezing (AGF)

(Figure 2.3b) uses a liquefied gas, such as nitrogen, which is pumped directly into the freezing pipes and
allowed to evaporate, drawing heat from the subsoil and releasing it into the atmosphere. Open-loop
AGF systems using liquid nitrogen are particularly effective due to the significant temperature gradient
between the nitrogen and the subsoil. This makes them suitable for situations where rapid freezing is
required, such as in emergency scenarios, relatively high groundwater velocities, or where immediate
strong structural support is needed.

As mentioned in Section 1.1, the AGF design involves both thermal and mechanical analysis (Cud-
mani and Nagelsdiek 2006; Pimentel et al. 2012; Viggiani and Casini 2015; Casini et al. 2016). The
thermal calculations primarily result in the dimensioning of the freezing equipment and the expected
freezing times. The mechanical analysis is necessary to assess the fulfillment of the requirements of
the frozen soil body in the limit and serviceability states during the different construction stages. In
terms of the mechanical analysis, Orth (2018) proposed the following practical procedure, including an
indirect consideration of the viscous behavior of frozen soils:
The load-bearing capacity, stability, and functionality of frozen soil bodies are verified by calculating de-
formations, taking into account the time-dependent behavior of the frozen soil. Deformation calculations
are significantly influenced by the mechanical behavior of frozen soils and the applied constitutive vis-
cous law. In the past, elastoplastic approaches predominated, with time- and temperature-dependent
cohesion and friction angles later incorporated. However, these simplified approaches typically provide
finite deformation values for any stress level and time span and do not account for the eventual fail-
ure of frozen soil under deviatoric stress. Hence, they are fundamentally conservative. According to
Orth (2018), for simple cases and preliminary estimates, calculations based on time- and temperature-
dependent cohesion as a strength parameter are often still sufficiently accurate. However, these elasto-
plastic approaches do not allow the prediction of deformation or control of the behavior of the frozen
soil body in service. Safety factors based on strain criteria should be soil- and temperature-specific, as
frozen soil lacks a defined failure stress. If specific deformation limits are required, Orth (2018) proposed
simplified elastic calculations with time- and temperature-dependent stiffness parameters to indirectly
account for the complex rate-, stress- and temperature-dependent mechanical behavior of frozen soils;
for details, see later Sections 2.2 and 7.4.3. These parameters are determined by a semi-analytical ap-
proach and decrease with increasing stress or time, eventually leading to unacceptable deformations.
According to Orth (2018), in this way, the consideration of time- and temperature-dependent stiffness
parameters inherently incorporates a failure criterion to account for the time-dependent stability of frozen
soil bodies. However, as highlighted by Orth (2018); Xu et al. (2018); Zhao et al. (2023), compared to
simplified analytical and elastic approaches, numerical calculations using finite element analysis (FEA)
in combination with advanced constitutive models for frozen soils allow for more accurate modeling of
the geometry and complex time-dependent mechanical behavior of frozen soils during different con-
struction stages. In this context, the use of advanced constitutive models for the mechanical design
of frozen soil bodies is not common practice so far, even though first approaches, such as Cudmani
and Nagelsdiek (2006); Nishimura et al. (2009); Viggiani and Casini (2015), have demonstrated their
potential to provide an optimized and resource-efficient AGF design (Orth 2018).
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2.2. Mechanical behavior of frozen coarse-grained soils

Parts of the work presented in this section have previously been published in similar form
in Cudmani et al. (2023); Schindler et al. (2023b,c,d, 2024). The author of this dissertation
contributed as a co-author to Cudmani et al. (2023) and as the first and corresponding
author to Schindler et al. (2023b,c,d, 2024).

2.2.1. In general

In general, frozen granular soil is a complex multiphase material consisting of four components: mineral
grains, unfrozen pore water, frozen pore water, and air voids (see Figure 2.4).

11

Frozen coarse-grained soils

• Creep process in the ice: rate-, stress- and temperature-dependent

• Micromechanical processes in the ice

• Interactions between the different components

after Orth (1986)

Frozen pore water (polycrystalline ice)

Air voids

Unfrozen pore water

Mineral grains

Grain to grain contact

Artificial Ground Freezing (AGF) in practice

Multi-stage creep Model tests Introduction void ratio Experiments ModellingThesis motivation

Figure 2.4.: Schematic representation of frozen granular soil. Illustration based on Orth (1986) and
adapted from Vogt (2015).

Particularly in frozen saturated coarse-grained soils with low fine content, only two components are
relevant as the grain skeleton is embedded in the ice matrix. The shear resistance of the frozen soil
results from a complex interaction between the grain skeleton and the ice matrix. On the one hand, the
ice hinders the dilatancy of the grain skeleton, leading to an increase in grain-to-grain contact forces
and shear resistance. On the other hand, the grains retard the development and spreading of cracks
in the ice matrix and enhance the shear resistance of the ice. These interactions depend on the gran-
ulometric properties of the soil, the density, the water -, ice-, and solid-content (volumetric composition
of the frozen soil), the temperature, and the stress state (Andersland and Ladanyi 2003; Arenson et al.
2007; Orth 2018). Probably, the most interesting and distinctive feature of frozen soils is their rate- and
temperature-dependence resulting from the viscous behavior of the ice. In the following, the main me-
chanical aspects of frozen coarse-grained soils at constant temperatures are analyzed and discussed.
The influence of temperature variations under transient heat flow on the mechanical behavior of frozen
soils is beyond the scope of this work. In addition, the mechanical behavior of frozen fine-grained soils is
also not the focus of this work. For example, for frozen fine-grained soils, the volumetric behavior during
freezing and thawing, such as the increase in the volume of frozen water compared to unfrozen water
(negative thermal expansion) and the formation of ice lenses, also affects the mechanical behavior of
these soils. Moreover, unfrozen pore water well below the freezing point at relatively low temperatures
and additional viscous properties of the unfrozen soil (e.g., creep of unfrozen clays) must be considered
for fine-grained frozen soils. Overall, these effects lead to some significant differences in the mechanical
behavior between coarse-grained and fine-grained frozen soils (Wijeweera and Joshi 1990, 1991; Wang
2017).

2.2.2. Uniaxial shear behavior

Orth (1985, 1986) investigated the influence of axial strain rate ε̇1 and temperature θ on the uniaxial
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compression strength σc of frozen Karlsruhe sand, a uniform medium quartz sand from the Rhine river
(Baden-Württemberg, Germany). The evolution of axial stress with axial strain for one axial strain rate
and different temperatures and one temperature and different axial strain rates are shown in Figure 2.5a
and 2.5b, respectively.
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(a) Tests at constant axial strain rate.
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(c) Dependency of uniaxial compression strength σc on axial strain rates ε̇1 and temperatures θ.

Figure 2.5.: Summary of uniaxial compression tests on frozen Karlsruhe sand. Data after Orth (1986).

Based on comprehensive experimental results of uniaxial compression tests, Orth (1985, 1986) de-
rived the relationship between the axial strain rate ε̇1, the temperature θ, and the uniaxial compression
strength σc of the tested frozen soil, summarized in Figure 2.5c. As can be seen, the increase in σc
is proportional to the logarithm of ε̇1. Moreover, the uniaxial compression strength σc of the frozen
soil increases with increasing strain rate and decreasing temperature. Equation 2.1 after Orth (1986)
describes the rate- and temperature-dependent uniaxial compression strength.

σc (θ) = σr (θ) + A (θ) ln

(
ε̇1
ε̇α

)
(2.1)

In Equation 2.1, ε̇α is a reference strain rate in units of %/min, θ is the temperature in degrees Cel-
sius (◦C), A(θ) is a temperature-dependent proportionality constant, and σc (θ) is the temperature-
dependent uniaxial compression strength at the reference strain rate ε̇α.
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In addition to the comprehensive study by Orth (1985, 1986), Figure 2.6 summarizes uniaxial compres-
sion tests for two different frozen sands obtained from the literature.

10
-4

10
-3

10
-2

10
-1

10
0

 10
1

 10
2

 

1

2

4

6

8
10

20

40 Upper strain rate 
limit

Upper strain 
rate limit

Figure 2.6.: Evolution of the uniaxial compression strength σc starting at low and moderate to relatively
high axial strain rates ε̇1. Silica sand data after Bragg and Andersland (1981) and medium sand data
after Zhu et al. (1988).

The silica sand data in Figure 2.6 show an initial linear increase in the logarithm of σc with the logarithm
of ε̇1 from relatively low to moderate strain rates of less than about 3 · 10−2 %/min. Then, the uniaxial
compressive strength σc remains approximately constant for a strain rate range from ε̇1 = 4 · 10−1 %/min
to ε̇1 = 101 %/min. This is true for tests at both −10◦C and −15◦C. Essentially, Zhu et al. (1988) re-
ported the same behavior for the uniaxial shear strength of frozen medium sand in terms of an upper
strain rate limit where σc appears to be independent of ε̇1. However, as can be seen in Figure 2.6, for
the medium sand tested, this upper strain rate limit started at about ε̇1 = 100 %/min and thus at higher
strain rates compared to the study by Bragg and Andersland (1981). Consequently, the comparison
of the test results for two different frozen sands in Figure 2.6 indicates that there is an upper strain
rate limit where the uniaxial compressive strength σc reaches its maximum rate-dependent value. This
strain rate limit appears to depend on the granulometric properties while being mostly independent of
temperature. As a result, the relationship proposed by Orth (1986) to describe rate- and temperature-
dependent uniaxial compressive strength using Equation 2.1 is limited to the strain rate range where σc
depends on ε̇1.

2.2.3. Uniaxial creep behavior

First, the essential uniaxial creep behavior is described and explained for single-stage loading conditions
and thus under a constant uniaxial creep stress. Then, the influence of multi-stage loading, and thus of
varying creep stresses, on the time-dependent deformation behavior is analyzed.
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2.2. Mechanical behavior of frozen coarse-grained soils

Single-stage loading

Figure 2.7 schematically shows the uniaxial creep behavior of frozen granular soils at uniform, constant
temperatures.

Figure 2.7.: Schematic illustration of the uniaxial creep behavior of frozen coarse-grained soils with the
minimum axial strain (creep) rate ε̇m, the corresponding frozen soil lifetime tm, and the average axial
strain εm.

In Figure 2.7, the axial strain ε1 increases with time. The axial strain rate ε̇1 first decreases (primary
creep) and then increases (tertiary creep) with time. The testing time at which the minimum axial strain
rate (or, in general, minimum creep rate) ε̇m (secondary creep) is reached and the tertiary creep begins
is called lifetime tm, according to Orth (1986); Cudmani et al. (2023). After reaching the lifetime tm,
frozen granular soils under constant load fail inexorably beyond this time (Orth 1986; Cudmani 2006).
Furthermore, the axial strain at the turning point corresponding to tm is defined as the average axial
strain εm = ε1 (tm). The following is a brief summary of the fundamental physical mechanisms that lead
to the well-known creep behavior of frozen soils schematically shown in Figure 2.7.
Andersland and Akili (1967) and Parameswaran (1980) first reported physical interpretations of the ex-
perimentally observed deformation behavior of frozen soils. Based on crystal mechanics, Orth (1985,
1986, 1988) comprehensively described and explained the underlying fundamental mechanisms that
lead to primary (decreasing creep rates), secondary (minimum creep rate), and tertiary (increasing
creep rates) creep. There are two physical processes in the ice that control the well-known rate-, stress-
and temperature-dependent frozen soil behavior: dislocation glide limited by discrete obstacles (thermal
activation) and diffusion. In addition, the simultaneous initiation and propagation of microcracks in the
ice matrix plays an important role. Dislocation glide limited by discrete obstacles and/or diffusion leads
to ice hardening and strengthens the frozen soil, whereas crack initiation and propagation weaken it.
Both strengthening and weakening processes occur simultaneously but are temporally distinct. During
primary creep, ice hardening dominates the behavior of the frozen soil, resulting in decreasing creep
rates. During secondary creep, i.e., when the minimum creep rate ε̇m is reached, the frozen soil reaches
its maximum creep resistance. Subsequently, cracking of the ice matrix becomes the dominant process
rather than ice hardening, resulting in continuously increasing creep rates and unstable frozen soil creep
behavior.

Figure 2.8 summarizes the above schematic and theoretical explanations of the creep behavior of frozen
coarse-grained soils, showing experimental results from Orth (1986) of uniaxial creep tests on frozen
Karlsruhe sand for different axial stresses and temperatures.
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(c) Axial strain rate over time.

0 3 6 9 12 15

0

0.02

0.04

0.06

0.08

(d) Average axial strain εm at the turning point
t = tm.

Figure 2.8.: Summary of uniaxial creep tests on frozen Karlsruhe sand. Data after Orth (1986).

As can be seen in Figure 2.8c, Orth (1986) found out that the lifetime tm is inversely proportional to the
minimum creep rate ε̇m and can be described by the relationship in Equation 2.2, where c is a material
constant.

tm = c/ε̇m (2.2)

Based on the results shown in Figure 2.8d, Orth (1986) concluded that the average axial strain εm at
the turning point t = tm is roughly independent of the temperature θ and the axial stress σ1, which was
confirmed by other studies such as Ting et al. (1983). In addition, Orth (1986, 1988) experimentally
observed and physically explained that the volumetric deformations during primary creep are mostly
purely deviatoric, similar to the creep characteristics of pure ice with a corresponding Poisson ratio of
ν ≈ 0.5 (Schulson and Duval 2009). Moreover, based on the relationship between the uniaxial creep
strength/stress σ1, the temperature θ, and the minimum creep strain rate ε̇m shown in Figure 2.9, the
minimum creep strain rate increases with increasing uniaxial stress σ1 at constant temperature, which
can be expressed by the Equation 2.3 (Orth 1986).

σ1 (θ) = σα (θ) + B (θ) ln

(
ε̇m
ε̇α

)
(2.3)
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Figure 2.9.: Relationship between creep strength σ1 and minimum creep rate ε̇m for frozen Karlsruhe
sand. Data after Orth (1986).

In Equation 2.3, ε̇α is a reference strain rate (ε̇α = 1.0 %/min), θ represents the temperature in Cel-
sius (◦C), B (θ) is the temperature-dependent proportionality constant, and σα (θ) is the temperature-
dependent uniaxial stress at the reference strain rate.

Multi-stage loading

Eckardt (1979a,b, 1982) extensively investigated and compared the creep behavior of frozen medium
sand samples under uniaxial single-stage and multi-stage loading. The granulometric properties (grain
size distribution) and state variables (void ratio, degree of saturation, water content, and dry density)
of Eckardt’s tested frozen medium sand were very similar to the freezing tests by Orth (1986), who in-
vestigated frozen Karlsruhe sand in the same frost laboratory at the University of Karlsruhe (Germany).
Figure 2.10 shows an excerpt of these uniaxial single-stage and multi-stage creep tests reported by
Eckardt (1979b).
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Figure 2.10.: Uniaxial single-stage and multi-stage creep tests on frozen medium sand. Data after
Eckardt (1979b).

According to Eckardt (1979a,b, 1982), in the single-stage creep test, the load was increased mono-
tonically to the desired value and then maintained constant. In the multi-stage creep tests, Eckardt
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applied the same final load as in the single-stage creep tests, but this was achieved stepwise. In each
loading step, creep was allowed during a period before the next load increment was applied. Eckardt
observed primary (decreasing creep rates), secondary (nearly constant creep rates), and tertiary creep
(increasing creep rates) based on the evaluation of the changing slope of strain evolution in both single
and multi-stage creep tests. Moreover, as can be seen in Figure 2.10, the different strain evolutions
resulting from the single-stage and multi-stage creep tests evidenced the influence of the stress and
strain history on the creep behavior. In fact, by comparing the strain evolution at the final creep stress
level in multi-stage tests with the equivalent single-stage test, Eckardt (1979a,b, 1982) also concluded
that during secondary creep, the strain evolution of both test types is similar and thus independent of
the stress-strain history. Nevertheless, the evaluation of creep strain rates for different stress histories
supporting this conclusion is missing in this study. During the preparation of this thesis, Staszewska
(2022) presented uniaxial multi-stage creep tests on frozen fine sand, including the evaluation of creep
rates.
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(b) Stepwise loading and unloading

Figure 2.11.: Comparison of the axial strain rate ε̇1 between uniaxial single-stage (ST) and multi-stage
(MT) creep tests on frozen fine sand. Data after Staszewska (2022).

However, as can be seen in Figure 2.11 and also acknowledged by Staszewska (2022), the creep
rate comparison and interpretation of single- and multi-stage tests by Staszewska (2022) is subject
to uncertainties due to scattering possibly related to the use of different sample preparation methods,
specimen dimensions and specimen characteristics, i.e., relative frozen soil densities. Therefore, the
equivalence of single-stage and multi-stage loading regarding the creep behavior of frozen soils has not
been conclusively clarified. Indeed, numerous studies like Andersland and Akili (1967); Vyalov et al.
(1989); Zhou et al. (2020) have contributed to the understanding of the complex mechanical behavior
of frozen soils depending on the stress and strain history. However, the influence of the stress and
strain history on the rate-, stress-, and temperature-dependent mechanical behavior of frozen soils is
not yet fully understood. In this dissertation, the multi-stage creep behavior of frozen sand has been
extensively investigated. These results are presented later in Section 4.

2.2.4. Influence of confining pressure on the shear and creep behavior

In general, confinement enhances the shear and creep strength of frozen soils compared to uniaxial
conditions. On the one hand, it suppresses microcracks in the ice, thereby inhibiting and slowing the
growth of these weakening cracks, resulting not only in higher shear strengths but also in longer frozen
soil lifetimes during creep. In addition, confinement induces additional frictional effects from the grain
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structure, similar to the well-known confinement influence on unfrozen soil shear strength. Figure 2.12
illustrates the influence of increasing mean pressure p on the peak shear strength qu obtained from
triaxial compression tests at constant axial strain rate and temperature.
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Figure 2.12.: Peak shear strength qu vs. mean
pressure p at constant axial strain rate ε̇1. Ot-
tawa sand data after Chamberlain et al. (1972);
Parameswaran and Jones (1981) and fine sand
after Qi and Ma (2007).
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Figure 2.13.: Pressure dependence of ice melting
temperatures. Data after Marcolli (2017).

First, in Figure 2.12, the shear strength qu increases continuously with increasing p. At a certain stage,
the maximum value of qu is reached, and then qu decreases. Gudehus and Tamborek (1996) physi-
cally argued that this observed shear strength reduction at high confinements is mainly related to the
pressure-dependent reduction of the freezing point, which affects the melting point of ice, as summa-
rized in Figure 2.13. As a result, this freezing point reduction leads to ice softening and, simultaneously,
a reduction of the shear resistance between the ice matrix and the grain skeleton.
In terms of the creep strength under confinement, Figure 2.14 compares uniaxial and triaxial creep test
results. Here, the minimum creep rate ε̇m strongly decreases with increasing confinement at constant
deviatoric stress q compared to uniaxial loading conditions. As ε̇m decreases under confinement, the
corresponding frozen soil lifetime tm becomes significantly longer compared to 1D conditions (Gudehus
and Tamborek 1996).
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Figure 2.14.: Evolution of the minimum creep rate ε̇m dependent on the mean pressure p observed in
uniaxial and triaxial creep tests. Ottawa sand data from Andersland and Alnouri (1970) and Karlsruhe
sand from Orth (1986); Gudehus and Tamborek (1996).
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2.2.5. Influence of the initial frozen soil relative density

As one of the first experimental studies, Goughnour and Andersland (1968) investigated the influence
of increasing sand fraction in ice-sand mixture specimens for saturated conditions (constant degree of
saturation) on the shear strength by uniaxial compression tests. They started with pure ice samples and
then tested mixed ice-sand samples with increasing percentages of sand by volume Vsand so that the
total sand content in the samples increased under saturated conditions. Figure 2.15 includes some of
these test results and their corresponding mechanical interpretation by Ting et al. (1983).
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Figure 2.15.: Increase of uniaxial compression strength σc with increasing sand volume Vsand of frozen
saturated Ottawa sand specimens. Test data (symbols) after Goughnour and Andersland (1968) and
their interpretation (lines) after Ting et al. (1983). Figure reproduced after Ting et al. (1983) and partially
modified.

Even with low volume percent of sand Vsand in the sample, the uniaxial compression strength σc was
higher than that for pure ice (Vsand = 0), but increased relatively slowly, indeed, linearly with Vsand.
Up on a certain point of about 40% sand by volume, σc increased more steeply with Vsand, indicating
an influence change of Vsand on the shear strength. According to Goughnour and Andersland (1968),
the ice-sand mixed samples with Vsand ≥ 40 % were characterized as sand dominated rather than ice
dominated. This implies that the majority of the mineral grains were already in contact with each other,
forming a frozen sand sample where the frozen soil void ratio at about Vsand = 50 % is close to the
maximum void ratio for that sand. Thus, Vsand = 50 % leads to an initial relative density of the frozen
soil of ID ≈ 0. In this dissertation, the frozen soil relative density ID is defined according to DIN EN ISO
14688-2:2020-11, i.e., Equation 2.4.

ID = (emax − e) / (emax − emin) (2.4)

In Equation 2.4, e is the void ratio of the frozen soil and emax and emin are the respective maximum
and minimum void ratios of the soil based on their determination according to DIN 18126 (2022-10).
As can be seen in Figure 2.15, Goughnour and Andersland (1968) and Ting et al. (1983) still assumed
mostly linear relationships between σc and the initial relative density of the frozen soil ID, although the
available amount of experimental data for this range was very limited to support this assumption. How-
ever, based on the experimental results of Goughnour and Andersland (1968), Baker (1979); Baker and
Konrad (1985) performed additional uniaxial compression tests on the same frozen Ottawa sand, focus-
ing on testing frozen samples with initial relative densities varying from loose to dense. Their studies
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basically confirmed the previously assumed linear relationship between increasing frozen soil relative
density ID and uniaxial compression strength σc under saturated conditions (for their test results, see
Section 5.2.1).
Apart from experimental investigations, Ting et al. (1983) provided first approaches in physics and soil
mechanics describing the influence of ID on its shear and creep strength. Although using a relatively
small number of test data, their interpretation led to an initial model of thought describing key relative
density dependent mechanisms affecting the shear and creep strength of frozen soils. These mech-
anisms, as listed in Figure 2.15, included pure ice strength, ice strengthening, soil strength, and the
interaction between the ice matrix and the granular skeleton, especially through dilatancy effects and
structural hindrance.

Apart from the proposed model of thought in terms of the shear and creep strength of frozen soil
affected by its sand fraction, Ting (1981); Ting et al. (1983) provided unique experimental data on the
creep behavior of frozen fine sand dependent on its initial relative density. Figure 2.16 depicts these
uniaxial creep tests, i.e., the evolution of the axial strain rate ε̇1 over time.
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Figure 2.16.: Uniaxial creep tests on frozen Manchester fine sand with different initial relative densities
ID. Data after Ting (1981).

The creep test results in Figure 2.16 indicate that increasing initial frozen soil relative densities ID result
in a disproportionately decrease in minimum creep rates ε̇m and significantly longer frozen soil lifetime
tm at constant axial stress and temperature. According to Ting (1983), this is due to a significant
increase in the structural hindrance of the increased mineral grain content and, thus, slower crack
propagation within the ice matrix. Because Ting (1981, 1983) only investigated the influence of ID on
creep behavior at a single stress level and temperature, no fundamental relationship was established
between creep strength (stress) σ1, minimum creep rate ε̇m, and lifetime tm. In fact, many studies such
as Hooke et al. (1972); Zhu and Carbee (1987); Andersen et al. (1995); Da Re et al. (2003); Li et al.
(2003); Arenson et al. (2004); Du et al. (2016); Zhang et al. (2017); Niu et al. (2022) have contributed
to a better understanding of the initial relative density on the mechanical frozen soil behavior. However,
most of these studies have focused on the shear strength, conducting uniaxial and triaxial compression
tests at different initial relative densities ID. The important link and combination of shear and creep tests
with the same material under varying ID is often missing. Therefore, the influence of ID on the rate-,
stress-, and temperature-dependent shear and creep strength of frozen soils is not yet fully understood
and will be investigated in detail in this dissertation (see Sections 5 and 6).
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2.2.6. Relaxation behavior

Another important viscous characteristic of frozen soil is its relaxation behavior. Hindred deformation
leads to a relatively rapid decrease in stress in frozen soils, as shown by the relaxation tests on frozen
sand in Figure 2.17.
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(a) Karlsruhe sand at −10◦C.
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(b) Ottawa sand at −5◦C.

Figure 2.17.: Relaxation tests on frozen sand with different initial axial stresses and axial strains. Karl-
sruhe sand data after Orth (1986) and Ottawa sand after Ladanyi and Benyamina (1995).

As can be seen, the relaxation tendency of frozen soils, i.e., the time-dependent incremental and abso-
lute stress decrease, depends on the initial stress level and the corresponding temperature before axial
deformation is hindered.
From a practical point of view, when using frozen soil bodies as temporary construction support, it
should be noted that frozen soil bodies do not continue to carry loads once a temporary or permanent
support (e.g., tunnel lining) is installed, which simultaneously prevents the free deformation behavior of
the frozen soil. Here, the deformation hindrance leads to pronounced relaxation processes in the frozen
soil and, thus, leads to a significant decrease in stress within the frozen soil body (Orth 2018).

2.2.7. Tensile loading

Despite the well-studied shear and creep behavior of frozen soils under compressive loading, compar-
atively fewer studies under tensile loading are available in the literature. Exceptionally, and due to the
limited data available, the essential mechanical behavior of frozen soils under tensile loading and its
main differences from compressive loading are summarized using tensile test data from the literature
on both frozen fine-grained and coarse-grained soils. Note, however, that the mechanical behavior of
frozen fine-grained soils is generally outside the scope of this dissertation.

Uniaxial tensile shear strength

Figure 2.18 shows the results of the uniaxial tensile (peak) shear strength σt,u of various frozen soils at
temperatures ranging from just below 0◦C to −20◦C. Note that the plotted σt,u in Figure 2.18 include
tests with different strain rates. Below, we will discuss and explain the negligible effect of strain rate on
tensile shear strength.
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Figure 2.18.: Comparison of the peak uniaxial tensile strength σt,u at different temperatures. 1 direct
tensile test; 2 indirect tensile test.
FS 1a: Haynes et al. (1975); Haynes and Karalius (1977). FS 1b/1c: Yuanlin et al. (1987). Silica sand:
Bragg and Andersland (1981). Sand: Shen et al. (2022). Ice (a): Akagawa and Nishisato (2009). Ice
(b): Schulson and Duval (2009).

Considering the tensile shear strength of pure ice, it can be concluded that in the investigated range, the
ice tensile strength is mostly temperature-independent and ranges between 1MPa and 1.5MPa. In fact,
based on the comparison in Figure 2.18, we conclude the tensile strength of frozen soils is mostly sig-
nificantly higher than that of pure ice. Indeed, we observe a notable scatter in the test results, which, in
general, is a well-known effect in soil testing under tensile loading (e.g., Perras and Diederichs (2014)).
Moreover, the results of σt,u for different frozen soils over a wide temperature range do not indicate a pro-
nounced temperature-dependence, which is consistent with the relatively low temperature-dependence
of the tensile strength of pure ice (compare the blue symbols in Figure 2.18). The comparison of the
uniaxial compression and tensile strength of frozen Fairbanks silts in Figure 2.19 additionally confirms
that, in principle, the tensile strength of frozen soils is less temperature-dependent than the compression
strength.
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Figure 2.19.: Comparison of average uniaxial compression σc (filled symbols) and uniaxial tensile
strength σt,u (open symbols) for frozen Fairbanks silt. Data after Haynes and Karalius (1977).

From a practical point of view, comparing the tensile strength σt,u and the compression strength σc
of frozen Fairbanks silt at θ >= −10◦C in Figure 2.19, we conclude that the ratio of ft/c = σt,u/σc is
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not constant for a given temperature. It rather depends on the considered rate-dependent compres-
sion strength σc and its corresponding axial strain rate ε̇1. For instance, assuming that the machine
speed (displacement rate) is approximately equal to the strain rate of the specimen, for the low machine
speed B = 0.0423 cm/s, the tensile strength is higher than the compressive strength at θ >= −10◦C.
In contrast, the compressive strength is always significantly higher than the tensile strength at the high
machine speed A.
The results in Figure 2.19 also show that σt,u is less affected by strain rate than σc. This substan-
tial difference in rate-dependent frozen soil shear strength between compressive and tensile loading is
physically reasonable since, according to Schulson et al. (1984); Schulson and Duval (2009), polycrys-
talline ice exhibits brittle behavior under tension and is largely rate-independent within the typical frozen
soil strain rate test range of ε̇ ≥ 10−4 %/min, as shown in Figure 2.20.
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Figure 2.20.: Tensile strength vs. strain rate for fresh-water single crystals and for fresh-water granular
polycrystals of 1 mm grain size at −10◦C. Data after Duval et al. (1983); Schulson and Duval (2009).
Figure reproduced from Schulson and Duval (2009).

In the literature, experimental studies report rate-dependent tensile strength of frozen soils, e.g., Yuanlin
and Carbee (1985); Chen et al. (2011). Based on the results in Figure 2.20, the observed rate depen-
dence of frozen soil shear strength under tensile loading could be related to the rate effect on crack
propagation in the ice matrix and thus to a mechanical rate-dependent damage influence rather than a
physically based rate-dependent hardening process in the ice known from behavior under compressive
loading (compare Section 2.2.3). As shown in Figure 2.20, such physical processes do not appear to
govern in ice for the typical frozen soil strain rate test range of ε̇ ≥ 10−4 %/min. In fact, as the ice
crystals are torn apart under tension, no pronounced ice hardening due to dislocation glide limited by
discrete obstacles (thermal activation) and/or diffusion is expected because the crystal lattice structures
are not pushed against each other as under compressive loading.

To sum up, depending on the strain rate and temperature considered, the frozen soil tensile strength
can be considerably high or even close to the uniaxial compression strength. However, as the temper-
ature decreases and/or the strain rate increases, the tensile strength becomes significantly less than
the compressive strength. Moreover, in contrast to the shear behavior under compressive loading, the
tensile strength of frozen soils appears to be less rate- and temperature-dependent.
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2.2. Mechanical behavior of frozen coarse-grained soils

Uniaxial tensile creep strength

Although the experimental results and discussions in Section 2.2.7 indicate that in some cases, the
uniaxial tensile strength is higher than the compressive strength for frozen soils, from a practical point
of view in relation to the mechanical design of frozen soil bodies, the creep behavior and therefore the
service limit state is more important than the ultimate limit state. Based on the comprehensive exper-
imental data by Eckardt (1979b, 1982), we compare the creep behavior of frozen medium sand under
tensile and compressive loading and highlight their essential differences. In this context, Figure 2.21
depicts uniaxial creep tests for different axial compression (black lines) and tensile (red lines) stresses
at −5◦C and −10◦C.
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Figure 2.21.: Experimental results of uniaxial creep tests with frozen medium sand under compressive
and tensile loading. Data after Eckardt (1979b, 1982).

The results in Figure 2.21 show the typical creep behavior, characterized by a continuous increase in
axial strain over time under both tension and compression. However, a crucial observation is the time-
dependent evolution of creep deformation under tensile loading, which in two cases (σ1,c/t = 1.0 MPa
and σ1,c/t = 2.0 MPa) is notably faster than under equivalent compression stress state. This is illus-
trated by the sudden occurrence of creep failure in two tensile tests within a short period at −5◦C and
−10◦C, whereas no such failure is observed in the equivalent compressive creep tests. Furthermore,
the initial axial deformations during the load application (t < 10h) are higher under compression than
under tension. This indicates a higher initial frozen soil stiffness under tension than under compres-
sion. Nevertheless, as can be seen in Figure 2.21, the subsequent creep phase under compression is
significantly more ductile than that under tension, where it is predominantly brittle, with the potential for
sudden failure.
In summary, the creep strength under tensile stress is significantly lower than the creep strength at the
equivalent compressive stress state. Furthermore, the deformation behavior under tension appears to
be brittle, whereas the frozen soil exhibits largely ductile characteristics under compression. Note that
further experimental investigation of the frozen soil creep behavior under tensile loading is required to
better understand and quantify these complex mechanical processes and differences from the known
creep behavior under compression.
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2.3. Advanced constitutive models for the mechanical behavior of
frozen soils

According to Xu et al. (2018) and Zhao et al. (2023), there are many constitutive models to either pre-
dict the shear (Ghoreishian Amiri et al. (2016)) or the creep behavior (Ting (1981); Fish (1994); Xu
et al. (2017)). Nevertheless, there is a lack of sophisticated models able to capture the rate-, stress-
and temperature-dependent behavior of frozen soils, especially both the shear resistance and creep
behavior under compressive and tensile loading. In addition, only a few models in the literature take into
account the influence of the confining pressure on the shear resistance and creep behavior of frozen
soils. The model proposed by Cudmani et al. (2023) intends to fill this gap and is already validated for
predominantly monotonic loading by means of the back-calculation element tests, i.e., uniaxial and tri-
axial compression and creep tests. However, the consideration of stress-strain histories deviating from
monotonic loading (e.g., stepwise, loading-unloading) on the mechanical behavior of frozen soils is still
missing. In addition, the extensive testing of the model proposed by Cudmani et al. (2023) in boundary
value problems to achieve the next important step in validating the model for practical geotechnical and
tunneling scenarios is also missing. In fact, boundary value problems can present much more complex
frozen soil conditions, inducing spatially and temporarily varying stresses, strains, and temperatures,
for which the model validation using only single-element tests is limited. In this context, initially, an
important practical step for the use of advanced constitutive models is their implementation in a Finite
Element Analysis (FEA) code so that they can actually be tested within boundary-value problems. Fur-
thermore, it is necessary to compare advanced constitutive models with conventional approaches from
the literature to demonstrate their practical and economic advantages for future AGF design.

When comparing the advanced elastic-viscoplastic model proposed by Cudmani et al. (2023) with two
different elastic-viscoplastic frozen soil models by Xu et al. (2017); Ghoreishian Amiri et al. (2022), one
of the main advantages of the model by Cudmani et al. (2023) is the unambiguous model calibration
procedure and especially the number of material parameters and their validity of use. For example, the
proposed model after Cudmani et al. (2023) requires one set of model parameters for a wide range of
temperature and stress conditions. In comparison, the 1D-model proposed by Xu et al. (2017) requires
eight temperature-dependent parameters, one more than for the 1D model after Cudmani et al. (2023).
Furthermore, it appears that the model by Xu et al. (2017) cannot predict the shear and creep behavior
with the same parameter set.
Comparing the models by Cudmani et al. (2023) and Ghoreishian Amiri et al. (2022), it is concluded
that the shear and creep predictions of both models agree qualitatively. However, the model proposed
by Ghoreishian Amiri et al. (2022) requires 21 parameters, i.e., almost twice as many parameters as the
model by Cudmani et al. (2023). Furthermore, the parameters required to model shear behavior under
constant strain rate appear to be different from those required to model creep behavior.
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3.1. Testing material

This dissertation includes three different, mostly uniform sands:

• Karlsruhe sand (KAS) is a coarse to medium quartz sand from the Rhine River (Karlsruhe, Ger-
many); for details, see also Orth (1986).

• Ottawa sand (OTS) is a medium sand obtained from Ottawa (Illinois, USA); for details, see
Parameswaran and Jones (1981).

• Manchester fine sand (MFS) is a quartz and feldspar fine sand obtained from the banks of the
Merrimack River (New Hampshire, USA); for details, see Andersen (1991).

In this dissertation, frozen Karlsruhe sand (KAS) was experimentally investigated and tested, while
freezing tests on frozen Ottawa sand (OTS) and frozen Manchester fine sand (MFS) were adapted from
the literature. Figure 3.1 depicts the corresponding grain size distributions of all three materials.
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Figure 3.1.: Grain size distributions of the investigated frozen sands. Black lines: Karlsruhe sand (KAS);
Blue line: Ottawa sand (OTS); Red lines: Manchester fine sand (MFS).

As can be seen in Figure 3.1, there are slight differences in the size distributions dependent on the
literature reference. In particular, in this study, we tested frozen KAS and compared our testing results
with results reported by Orth (1986). Note that Orth’s tested KAS is finer (higher content of medium sand
fractions) compared to our tested KAS. Consequently, there are deviations between both materials of
KAS in terms of the granulometric properties, such as the minimum and maximum void ratio (emin/emax)
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and the grain density ρs, which should be taken into account for the evaluation and comparison of the
KAS testing results in the following sections. Figure 3.2 shows the particle shape of the tested KAS.

1.0 mm

Figure 3.2.: Particle shape of the tested Karlsruhe sand (KAS).

In addition to KAS, we evaluate comprehensive data from the literature for OTS and MFS. Table 3.1
summarizes additional granulometric properties of all three sands.

Table 3.1.: Granulometric properties of KAS, OTS, and MFS
Soil type emin / emax [-] d10/d30/d60 [mm] ρs [g/cm3]

KAS
This study 0.590/0.839 0.38/0.53/0.70 2.633

Orth (1986) 0.570/0.850 0.25/0.42/0.67 2.650
Parameswaran (1980); Baker and Konrad (1985)

OTS 0.514/0.811 0.20/0.30/0.40 2.670
Martin et al. (1981)

MFS 0.564/0.949 < 0.074/0.12/0.18 2.670
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3.2. Sample preparation

An appropriate, well-designed sample preparation process is essential as a basis for repeatable results
from laboratory tests. The objectives are a well-defined sample geometry and a homogeneous void ratio
distribution and grain structure. In the following, the sample preparation for the tested KAS samples is
briefly summarized. A polyamide box consisting of two identical polyamide-based half-shells was used
for sample preparation. As can be seen in Figure 3.3, the box had four molds. Each of the four molds
had a diameter of 50mm and a height of 180mm.

(a) (b)

Figure 3.3.: Polyamide box with four molds (two half shells) used for the sample preparation

The half-shells were connected with 15 screws, and silicone cord seals around the molds provided
watertightness. The tested KAS samples were prepared inside the molds using the water-sedimentation
method (WSM) described by Lade (2016). For this purpose, as shown in Figure 3.4a, dry KAS was
filled into a flat-bottomed flask (1000ml) and then mixed homogeneously with deaerated water. During
mixing, a muddy water film formed on the bottle neck (see Figure 3.4b), which needed to be removed
by deaerated water flushing (see Figure 3.4c) so that the sand flow was not impeded during the filling
procedure.

(a) Adding deaerated water to
the dry KAS

(b) Mixing and muddy water
film at the top

(c) Mixed sample and removed
muddy water film

Figure 3.4.: KAS mixing steps using a flat-bottomed flask for the application of the water-sedimentation
method (WSM) proposed by Lade (2016)
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Before filling the molds with saturated KAS, the half-shells were lubricated with silicone grease to im-
prove the extraction of the samples from the molds after freezing. Subsequently, the molds were entirely
filled up with deaerated water. Figure 3.5 describes the different steps of the mold filling process us-
ing the water sedimentation method (WSM). First, the flat-bottomed flask was placed upside down in
the mold (see Figures 3.5a and 3.5d) to prevent the uncontrolled trickling of sand. Using a stand, the
flat-bottomed flask was then raised continuously and slowly, allowing the sand to trickle evenly into the
mold while maintaining a drop height of zero (see Figure 3.5b-3.5c and 3.5e). The entire procedure was
consistently repeated to fill all four molds.

(a) (b) (c)

(d) (e)

Figure 3.5.: Water sedimentation to prepare the KAS samples

In accordance with Lade (2016), using WSM led to a mostly loose state of the samples since there was
no drop height and a relatively slow rising speed of the flask. In order to obtain the target value of the
specific initial frozen soil relative density for performing a certain test, the polyamide box was mounted
on a vibrating table, and a specific time of vibration was applied at a constant predefined amplitude, see
Figure 3.6.
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Figure 3.6.: Shaking table to additionally compact the sand samples inside the molds

In this thesis, we used varying vibration (compaction) times between 1 sec and 10 sec to cover the whole
range of the relative densities from very loose to very dense states. In fact, vibration times of more than
10 sec did not increase the relative density anymore but led to decomposition and a non-uniform grain
size distribution over the sample height. Thus, the vibration time was limited to a maximum of 10 sec.
Figure 3.7 illustrates the influence of the vibration time on the dry unit weight ρd and the relative density
ID of the KAS samples. Note that the definition of ID refers to the void ratio e in accordance with DIN
EN ISO 14688-2:2020-11.
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Figure 3.7.: Relationship between the vibration time and the dry unit weight ρd of KAS samples as well
as their relative density ID at Sr,mean ≈ 0.88.

As expected, the KAS sample dry unit weight ρd (Figure 3.7a) as well as their relative density ID (Fig-
ure 3.7a) increased with increasing vibration time. In fact, the non-linear relationship between vibration
time and ρd as well as ID resulted in a significant increase within the first 5 sec. After 5 sec of vibration,
the samples were mostly in a dense state and measured values of ρd and ID approached the maximum
value asymptotically at a vibration time of 10 sec. Nevertheless, as can be seen in Figure 3.7, there was
a certain scattering of the results due to different initial densities after the water sedimentation (see re-
sults for 0 sec vibration time), slight deviations in the compaction efficiency, and overall also inaccuracies
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in the determination of ρd and ID after the freezing test. In the beginning, we cut a few samples into
several sub-samples, each representing a certain height of the sample, and determined their grain size
distribution, water content, and dry density. The results for each sub-sample were similar, thus con-
firming the overall soil sample homogeneity and reproducibility using the selected preparation method.
Nevertheless, according to Lade (2016), it is difficult to achieve a full saturation of the soil samples by
using WSM alone. In this study, the specimens were not fully saturated and had an average saturation
degree of Sr ≈ 88 %. We acknowledge that the compaction method used did not allow us to accurately
achieve a target value of initial frozen soil relative density defined prior to sample preparation. How-
ever, it did allow for the possibility of producing a wide range of different sample relative densities from
very loose to dense/very dense, which was sophisticated for the goal of studying the essential macro-
mechanical effects of relative density on the shear and creep behavior of frozen soils.

Following the WSM and compaction of the samples by vibration, the specimens were frozen isotropi-
cally in a freezer to the target testing temperature. As mentioned, the samples had an initial height of
180mm. During the freezing process, excess pore water was expelled from the sample and accumu-
lated at the top edge, forming a pure ice layer. Therefore, after freezing and in accordance with Orth
(1986), the samples and their end plates were trimmed and smoothed out at the top and bottom to a
height of 100mm to remove the disturbed edges and the pure ice layer. At the end of the preparation
procedure, the tested samples were circular and had a diameter of about 50mm and a height of about
100mm. An example of a prepared sample after freezing and before testing is shown in Figure 3.8.

(a) (b)

Figure 3.8.: Example of a prepared frozen Karlsruhe sand sample with a diameter of about 50mm and
a height of about 100mm after freezing and before testing.

3.3. Testing equipment

The freezing tests were conducted in a cooling chamber at Zentrum Geotechnik of the Technical Uni-
versity of Munich, where temperature and humidity can be controlled. Consequently, the cooling of the
samples during the tests was realized by air temperature cooling of the specimens. In the cooling cham-
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ber, the average temperature precision during the tests was ±0.2◦C. Two different testing apparatus
were used for the freezing tests. At the beginning of the experimental program, freezing tests were
conducted at a temperature of −4.3◦C using a dead load oedometer test apparatus. Hence, for these
tests, the loading speed during the tests was relatively fast as the weight discs for the load application
were applied manually and instantaneously after each other. After completion of the freezing tests at
−4.3◦C, a conventional uniaxial load frame system of type UL 60 from Wille Geotechnik GmbH was
used because the maximum loads of the dead load oedometer tester were very limited compared to
the frozen soil strength, especially at temperatures between −10◦C and −20◦C. For testing, silicone
grease on a film of PTFE (Teflon layer) was used as lubrication between the specimen and the loading
plate and base pedestal to reduce friction. In addition, the samples were wrapped in a rubber cover to
prevent sublimation during the tests. Moreover, in all tests, the load application occurred after the sam-
ples were frozen, resulting in post-freezing confinement, as described by Nishimura and Wang (2019).
The experimental setups are shown in Figure 3.9.
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Dead load oedometer test apparatus

(a) Dead load oedometer test apparatus in the cooling chamber. (b) Test setup for the dead load oe-
dometer apparatus.

(c) Load frame for performing the uni-
axial compression and creep tests
within a chamber of controlled tem-
perature and humidity.
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2 1: Frozen soil sample wrapped 

in a rubber cover

2: Polished and hardened steel 

plates with Teflon layer and 

silicon grease

3: Load cell

4: Displacement sensor as a 

linear encoder

5: Temperature sensor

(d) Frozen sand sample during uniaxial loading

Figure 3.9.: Experimental setups for testing frozen soil samples at Zentrum Geotechnik of the Technical
University of Munich.

A displacement sensor (model DIT 30 from RSF Elektronik) was used for the vertical displacement
measurement. According to the data sheet, it has a permissible deviation of ±1µm/m. The theoretical
resolution is up to 0.025µm. An A.S.T. KAS-E force sensor with a range of up to 60 kN was used to
measure the vertical force during the tests. For the sensors, deviations due to non-linearity, hystere-
sis, and creep, among other factors, are nominally included within 0.2% of the nominal value, which
corresponds to 0.12 kN for a 60 kN sensor.

32



3.4. Testing types

3.4. Testing types

In order to investigate the uniaxial shear and creep behavior under a constant degree of saturation, a
series of uniaxial compression and single-stage as well as multi-stage creep tests on frozen KAS were
performed at different temperatures between −4.3◦C and −20◦C. The uniaxial compression tests were
performed at a constant axial strain rate. For the uniaxial creep tests, Figure 3.10 illustrates the testing
procedure for single-stage and multi-stage loading.

a

b

a, b:
tests with a single 
creep stage

(a)

tests with three (multiple) 
creep stages

e
1
=2.5 %

e
1
=3.5 %

(b)

(c) Stepwise loading (solid lines) and stepwise un-
loading (dashed lines).

Last creep stage

a: Stepwise loaded

b: Stepwise unloaded

(d) Stepwise load-unload cycles.

Figure 3.10.: Test procedure for a) single-stage creep tests; b) multi-stage stepwise loaded creep tests;
c) comparison of multi-stage creep tests with stepwise loading and stepwise unloading; d) multi-stage
creep tests with combinations of stepwise loading and unloading.

In the single-stage creep test, vertical pressure was monotonically applied, and then the stress was
kept constant as the frozen soil samples crept. In contrast, the multi-stage creep test consisted of up to
three loading stages. After the initial loading stage, the second and third load increases occurred after
an axial strain ε1 = 2.5 % and ε1 = 3.5 %, respectively. In each step, the load was maintained constant,
and the creep deformations of the frozen soil samples were monitored. The axial strains chosen for
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the load increase in the multi-stage creep tests result from two different constraints. On the one hand,
the load increase should occur during primary creep (see Andersland and Ladanyi (2003)) and thus at
decreasing axial strain rates. Consequently, the selected axial strains at the load increases must be
smaller than the expected average axial strain εm at the turning point (secondary creep) before tertiary
creep begins. Here, literature data of frozen Karlsruhe sand from Orth (1986) indicated that εm was in
the range of 4− 6 %; see also Figure 2.8d in Section 2.2.3. On the other hand, sufficient creep time
is required during each loading stage to accurately determine and evaluate the axial strain rates. As
a compromise between these two constraints, we chose to increase the load in the multi-stage creep
tests at ε1 = 2.5 % and ε1 = 3.5 %.

3.5. Testing program

3.5.1. Uniaxial compression tests

In total, 58 uniaxial compression tests on frozen Karlsruhe sand (KAS) were performed under different
axial strain rates, temperatures, and initial frozen soil relative densities. The compression tests were
performed using the conventional uniaxial load frame system described in Section 3.3. The uniaxial
compression tests are listed in Table 3.2.

Table 3.2.: Uniaxial compression tests with frozen Karlsruhe sand (KAS) [1/2]
test no. Vibrating

time
ε̇1 σc εu ρd w e ID Sr

[sec] [%/min] [MPa] [%] [g/cm3] [%] [-] [-] [%]
−5◦C

0502-c 10 2.5 7.3 2.72 1.617 20.7 0.629 0.84 87
0505-c 0 2.5 7.2 1.59 1.458 26.7 0.806 0.13 87
0507-c 10 1 7.9 3.49 1.623 20.5 0.622 0.87 87
0508-c 0 1 6.2 2.85 1.445 26.6 0.822 0.07 85
0509-c 10 0.01 4.4 3.87 1.616 20.9 0.630 0.84 87
0510-c 10 1 7.1 2.39 1.612 21.0 0.633 0.83 87

−10◦C
0206-c 10 1 11.1 0.85 1.610 21.1 0.636 0.82 87
0208-c 10 0.1 8.5 2.86 1.611 21.0 0.634 0.82 87
0209-c 10 0.1 8.6 3.68 1.611 21.2 0.634 0.82 88
0211-c 10 0.01 7.5 3.59 1.651 20.0 0.595 0.98 89
0214-c 10 0.5 10.4 1.95 1.612 21.3 0.633 0.83 88
0215-c 10 0.003 6.5 4.43 1.613 21.4 0.632 0.83 89
0218-c 10 1 10.4 1.23 1.611 21.2 0.634 0.82 88
0219-c 10 0.8 11.0 1.70 1.617 21.1 0.629 0.84 89
0223-c 0 1 9.0 1.38 1.435 28.0 0.835 0.02 88
0224-c 0 1 8.8 2.23 1.422 28.4 0.852 -0.05 88
0225-c 0 1 8.5 2.50 1.424 28.6 0.849 -0.04 89
0226-c 0 0.1 6.8 2.98 1.412 29.4 0.865 -0.10 89
0228-c 0 0.1 7.3 2.72 1.438 28.2 0.832 0.03 89
0229-c 0 0.01 5.3 3.58 1.408 29.2 0.871 -0.13 88
0230-c 0 0.05 6.1 2.41 1.428 28.9 0.844 -0.02 90
0231-c 0 0.05 6.2 2.84 1.437 28.0 0.832 0.03 88
0234-c 1 0.5 8.9 1.40 1.451 27.6 0.814 0.10 89
0236-c 1 0.5 8.2 1.22 1.456 27.1 0.808 0.12 88
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3.5. Testing program

Table 3.2.: Uniaxial compression tests with frozen Karlsruhe sand (KAS) [2/2]
test no. Vibrating

time
ε̇1 σc ε1,u ρd w e ID Sr

[sec] [%/min] [MPa] [%] [g/cm3] [%] [-] [-] [%]
0240-c 2 1 10.1 1.63 1.530 24.5 0.721 0.47 90
0241-c 2 0.1 7.7 1.92 1.526 24.2 0.726 0.46 88
0243-c 10 1 10.9 1.76 1.605 21.5 0.641 0.80 88
0246-c 5 0.01 7.6 4.00 1.607 21.6 0.639 0.80 89
0256-c 1 0.1 7.7 2.26 1.486 25.8 0.771 0.27 88
0258-c 1 1 9.8 1.64 1.487 25.8 0.771 0.27 88
0259-c 3 1 10.6 2.08 1.548 23.5 0.701 0.56 88
0261-c 3 1 10.5 2.05 1.552 23.4 0.697 0.57 89
0264-c 3 0.1 8.5 3.91 1.552 23.3 0.696 0.57 88
0274-c 3 0.01 7.1 4.64 1.578 22.0 0.669 0.68 87
0275-c 1 0.01 6.0 4.06 1.509 24.8 0.745 0.38 88
0278-c 0 0.003 4.8 4.28 1.442 27.3 0.826 0.05 87

−15◦C
0301-c 10 1 13.8 1.81 1.605 21.2 0.640 0.80 87
0302-c 10 1 14.2 2.09 1.608 21.2 0.638 0.81 88
0304-c 10 1 13.7 2.25 1.617 21.2 0.629 0.84 89
0305-c 10 0.1 12.0 3.67 1.615 20.9 0.630 0.84 87
0306-c 10 0.1 12.0 4.55 1.624 20.7 0.621 0.88 88
0311-c 0 1 13.1 2.58 1.473 26.4 0.787 0.21 88
0312-c 0 0.1 10.7 2.89 1.470 26.5 0.791 0.19 88
0313-c 10 0.01 9.7 5.50 1.635 20.3 0.611 0.92 87
0314-c 10 0.1 11.9 4.03 1.614 21.2 0.632 0.83 88
0315-c 0 0.1 9.9 2.65 1.469 26.6 0.793 0.19 88
0317-c 0 1 12.6 1.75 1.445 27.1 0.822 0.07 87
0318-c 0 1 12.3 1.95 1.443 27.4 0.825 0.06 87
0319-c 0 1 12.3 2.19 1.452 27.0 0.813 0.10 87
0320-c 0 0.01 8.0 3.81 1.442 27.5 0.826 0.05 88
0321-c 0 -15 9.7 2.07 1.447 27.5 0.820 0.08 88

−20◦C
0405-c 10 0.1 14.5 5.24 1.631 20.3 0.614 0.90 87
0408-c 0 0.1 12.1 2.55 1.437 27.9 0.832 0.03 88
0409-c 10 0.01 12.4 5.91 1.641 19.7 0.605 0.94 86
0412-c 0 1 14.4 2.96 1.464 26.8 0.799 0.16 88
0413-c 0 0.01 9.4 3.49 1.424 28.4 0.849 -0.04 88
0417-c 10 0.1 11.3 2.46 1.437 27.9 0.833 0.03 88
0424-c 10 0.5 15.2 2.08 1.626 20.7 0.619 0.88 88
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3. Methods

3.5.2. Uniaxial single-stage and multistage creep tests

Tests using a dead load oedometer test apparatus

In total, six uniaxial single-stage and three multi-stage tests on frozen Karlsruhe sand (KAS) were per-
formed under different axial creep stresses with an approximately constant relative density and degree
of saturation at −4.3◦C. The tests were performed using the dead load oedometer test apparatus de-
scribed in Section 3.3. These uniaxial and multi-stage single-stage creep tests are listed in Tables 3.3
and 3.4.
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3. Methods

Tests using a conventional uniaxial load frame system

In total, 53 uniaxial single-stage and 23 multi-stage tests on frozen Karlsruhe sand (KAS) were per-
formed under different axial creep stresses, temperatures, and initial frozen soil relative densities. The
tests were performed using the conventional uniaxial load frame system described in Section 3.3. These
uniaxial and multi-stage single-stage creep tests are listed in Tables 3.5 and 3.6.
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3. Methods

3.6. Creep test data processing

For the uniaxial creep tests, the determination and evaluation of axial strain rates are very important to
understand and quantify the essential material behavior. In the tests, among others, the axial displace-
ment is measured and thus the axial strain ε1 of the specimens. The data of ε1 is then used to derive
the axial strain rate ε̇1 by dividing the strain increments ∆ε1 with the corresponding time increment ∆t,
see Equation 3.1.

ε̇1 =
∆ε1 (∆t)

∆t = 2 sec
(3.1)

In the tests, the measuring interval was two seconds, and thus, ∆t = 2 sec. However, as relatively small
axial displacements are measured in creep tests, the determination of ε̇1 with high-resolution and, thus,
short time interval results in fluctuations of ε̇1. In order to estimate and derive a clear trend of the time-
dependent evolution of ε̇1, it is common practice to smooth the data (Orth 1986; Staszewska 2022). In
this dissertation, MATLAB’s internal smoothdata function was used to smooth data using the Gaussian
method. This method uses a Gaussian moving average filter, which effectively applies a weighted
average to the data, with the weights distributed according to the Gaussian (normal) distribution. Central
to this approach is the Gaussian kernel, whose standard deviation determines the degree of smoothing.
Unlike simple averaging, this Gaussian filter assigns greater weights to central points within its window
and decreases symmetrically toward the edges, which helps preserve the characteristics of the original
data while reducing noise. This method is particularly useful in signal and image processing, where
it helps to clarify trends and patterns by smoothing out random fluctuations and noise in the data.
Figure 3.11 compares an unsmoothed and smoothed axial strain rate evolution over time belonging to
a uniaxial creep test on frozen Karlsruhe sand.
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Figure 3.11.: Example of smoothing the determined axial strain rate ε̇1 for the performed uniaxial single-
stage creep tests on frozen Karlsruhe sand at −15◦C.

As can be seen in Figure 3.11a, without smoothing the axial strain rate ε̇1, the determination of the
important minimum axial strain rate ε̇m and the corresponding lifetime tm is highly uncertain and, in
some cases, even impossible. Hence, smoothing of the data is necessary. When smoothing, note that
only the data of a single creep stage is smoothed, consisting of the load application phase and the
subsequent creep phase. The smoothed axial strain rates of each creep stage are then combined into
an overall data set. This is important for multi-stage creep tests to ensure that previous creep stages do
not affect the smoothing of the currently evaluated creep stage, while for single-stage creep tests there
is obviously only one smoothing set. In the following sections, only smoothed axial strain rate evolutions
are shown.
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3.7. Constitutive model for predominantly monotonic loading according to Cudmani et al. (2023)

3.7. Constitutive model for predominantly monotonic loading
according to Cudmani et al. (2023)

This section presents the development of an elastic-viscoplastic model to simulate the rate-,
stress- and temperature-dependent mechanical behavior of frozen soils under nearly mono-
tonic shearing. The main characteristics of the behavior of frozen soils are analyzed by
means of uniaxial and triaxial creep and constant strain-rate compression tests. The mean
pressure dependent model approach extends an existing model by Cudmani (2006) to ac-
count for the influence of the confining pressure on the mechanical behavior and to differen-
tiate between compressive and tensile strength and creep. After describing the model and
determining its parameters, the model performance is assessed by comparing the results
of experimental and numerical element tests. In spite of its simplicity, the proposed model
can realistically capture essential features of the rate-, stress- and temperature-dependent
behavior of frozen soils observed in the laboratory, including quasi-monotonic confined and
unconfined creep, compressive, and tensile strength. A distinguishing feature of this model
is the ability to predict creep failure and, related to it, the lifetime of the frozen soil, which is
the time at which creep failure starts.
The work presented in this section was published previously in similar form in Cudmani et al.
(2023). The author of this dissertation contributed to Cudmani et al. (2023) as a co-author.

As mentioned in Section 2.3, Cudmani et al. (2023) developed a constitutive model for predominantly
monotonic loading that takes into account the influence of the confining pressure and differentiates
between compressive and tensile strength and creep. The proposed model bases on the experimental
and theoretical findings on frozen Karlsruhe sand by Orth (1986). In this section, the model by Cudmani
et al. (2023) is explained in detail and the main equations of the model are presented.

3.7.1. One-dimensional model version after Cudmani (2006)

Figure 3.12 compares the relationships σc − ε̇1 (from uniaxial compression tests, see Equation 2.1) and
σ1 − ε̇m (from uniaxial creep tests, see Equation 2.3) in the same diagram.

10
-6

10
-4

10
-2

10
0

0
2

0

5

10

15

20

Figure 3.12.: Comparison of uniaxial compression strength (solid symbols) and uniaxial creep strength
(open symbols) and the unique and combined σc − ε̇1 and σ1 − ε̇m relationships assumed in the con-
stitutive model (solid lines). Frozen Karlsruhe sand data after Orth (1986).
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3. Methods

The σc − ε̇1 and the σ1 − ε̇m relationships are qualitatively and quantitatively similar, but not identical,
as the mechanical response of the ice matrix also depends on the previous deformation history, which
is different in both considered tests (Cudmani 2006). Nevertheless, from a practical point of view, it
is reasonable to assume a unique relationship to describe Equation 2.1 and Equation 2.3. As can
be seen in Figure 3.12, for temperatures in the range of −5◦C and −20◦C, which are relevant for
engineering applications of ground freezing, using Equation 2.3 to describe the relationship σc − ε̇1
causes an inaccuracy in the determination of σc of about 10 %− 15 %, which is acceptable for practical
purposes. Rewriting Equation 2.3, the minimum creep rate ε̇m can be shown to be a function of σ1 and
θ, see Equation 3.2.

ε̇m = ε̇α exp

[
C (θ)

(
σ1

σα (θ)
− 1

)]
(3.2)

In Equation 3.2, C (θ) is defined as C (θ) = σα/B (θ). Based on the test results of frozen Karlsruhe
sand and theoretical considerations, Orth (1986) proposed the following semi-empirical functions for σα
and C (θ), shown in Equations 3.3 and 3.4.

σα (θ) = α1 (−θ)α2 (3.3)

C (θ) =
K1

θ + 273.4
+ ln (ε̇α) (3.4)

In Equations 3.3 and 3.4, α1, α2 and K1 are material parameters. In Figure 3.13, the evolution of
normalized axial creep strain rate over normalized time ε̇1/ε̇m − t/tm for different temperatures are
shown.
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Figure 3.13.: Data of ε̇1/ε̇m − t/tm for uniaxial creep tests on frozen Karlsruhe sand. Evolution of the
piloted line according to Equation 3.5. Data after Orth (1986).

As can be seen, the normalized relationships can be described by a unique relationship. Taking into
account the mathematical conditions dε̇1/dt = 0 and dε̇1/dε̇m = 1 at t/tm = 1, Orth (1986) proposed
a function for the normalized curve shown in Equation 3.5.

ε̇1
ε̇m

= exp (−β) exp

(
β

t

tm

)(
t

tm

)−β

(3.5)

In Equation 3.5, β is a material parameter. Combining Equation 3.2, Equation 3.4 and Equation 3.5, the
semi-empirical one-dimensional creep model for frozen granular soils proposed by Orth (1986) can be
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3.7. Constitutive model for predominantly monotonic loading according to Cudmani et al. (2023)

derived according to Equation 3.6.

ε̇1 = ε̇α exp

[(
K1

θ + 273.4
+ ln (ε̇α)

)
·
(

σ1
σα(θ)

− 1

)]
exp(−β) exp

(
β

t

tm

)(
t

tm

)−β

(3.6)

Note that Equation 2.1 and Equation 2.3 lead to negative compressive strength at very low strain rates
and predict an unlimited increase of strength for very high strain rates. To overcome these limitations,
for the development of the constitutive model, it is preliminary assumed that Equation 2.1 and Equa-
tion 2.3 are only valid for strain rates in the range 1 · 10−4 %/min to 1 %/min and there is no strain-rate
dependence outside of this range (e.g., Bragg and Andersland (1981)), i.e., the strength remains con-
stant for ε̇1 < 1 · 10−4 %/min and ε̇1 > 1 %/min (see the solid lines in Figure 3.12). The application of
the model shall be also limited to temperatures lower than about −5 ◦C. For higher temperatures the
pore water might not be fully frozen and the mechanical behavior of the frozen soil for partially and fully
frozen pore water might be different, as suggested by the noticeable deviations between the relation-
ships σ1 − ε̇m and the σc − ε̇1 for −2 ◦C (see Figure 3.12) in comparison with the good agreement of
these relationships for lower temperatures.
Note that within this dissertation, the above-mentioned preliminary model constraints regarding the
strain rate limits and temperature limits proposed by Cudmani et al. (2023) are disregarded in the first
step. Instead, the model is further analyzed, tested, and discussed inside and outside these proposed
strain rate limits to clarify these possible model constraints, see the upcoming Sections 7.4.2 and 8.3.

Moreover, t in Equation 3.6 is the time after the application of the deviatoric stress q. The strain rate
in the experiments was evaluated for t ≥ 1 min after the application of q. Thus, Equation 3.6 is valid
for t ≥ 1 min. By integrating Equation 3.6 from t0 = 1 min to t, the absolute creep strain ε(t) deter-
mined experimentally is obtained. Based on the available experimental data, Equation 3.6 has been
confirmed for tm

t ≤ 104. For computation purposes, as long as experimental evidence about the rela-

tionship ε̇1

(
t
tm

)
for tm

t > 104 is missing, ε̇1
(

t
tm

)
= ε̇1

(
104
)

for tm
t > 104 can be assumed. Based on

the one-dimensional creep model (Equation 3.6), Cudmani (2006) proposed a simple 3D linear elastic-
viscoplastic model for frozen granular soils, assuming that the mechanical behaviour of frozen soils can
be represented by a rheological model of the Maxwell type: ε̇ = ε̇e + ε̇v.

σ̇ = L : (ε̇− ε̇v) (3.7)

In Equation 3.7, σ̇ is the stress rate tensor, ε̇ is the total strain rate tensor, ε̇v is the viscous strain rate
tensor, and L is the fourth-order isotropic elastic stiffness tensor according to Equation 3.8.

L = K 1⊗ 1+ 2G

(
I− 1

3

)
1⊗ 1 (3.8)

In Equation 3.8, K is the elastic bulk modulus and G is the elastic shear modulus, I is fourth order unit
tensor, which is defined as Iijkl =

1
2(δikδjl + δilδjk). The elastic bulk modulus and shear modulus can

be further expressed in terms of Young’s modulus E and Poisson’s ratio ν according to Equation 3.9
and 3.10.

K =
E

3(1− 2ν)
(3.9)

G =
E

2(1 + ν)
(3.10)

Assuming that the viscous strain rate is exclusively deviatoric, the following viscous strain rate tensor ε̇v
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3. Methods

was defined based on Equation 3.11:

ε̇v =

√
3

2
ε̇m exp (−β) exp

(
β

t

tm

)(
t

tm

)−β s

||s||
(3.11)

For the integration of Equation 3.11, the same initial time t0 = 1 min after the application of s as in
Equation 3.6 can be adopted. For the solution of boundary-value problems with quasi-monotonic load-
ing, e.g., for excavation supports or underpinning measures, t0 = 1 min is the time after a deviator
tensor s is induced in the frozen soil for the first time in a construction phase. Assuming that the initial
deviator of the soil s0 is carried by the granular skeleton, the deviatoric stress inducing shearing and
creep of the frozen soil is the difference s− s0. The one-dimensional model disregards the influence
of the mean pressure on the shear strength, the creep strain and the lifetime. Furthermore, it cannot
differentiate between compressive and tensile behavior. Therefore, Cudmani et al. (2023) improved the
constitutive model as explained in the following section.

3.7.2. Extension of the constitutive model to consider the effect of the
confining pressure

Figure 3.14 compares the creep behavior of confined and unconfined frozen soil samples under the
same deviator stress at θ = −10◦C.
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(c) Data of ε̇1/ε̇m-t/tm.

Figure 3.14.: Comparison of uniaxial and triaxial creep tests on frozen Karlsruhe sand. Data after Orth
(1986).

According to Orth (1986), the confining process for the triaxial tests was applied after freezing (i.e., post-
freezing confinement after Nishimura and Wang (2019)). As can be seen in Figure 3.14a and 3.14b,
the confined frozen soil samples show a smaller creep strain for a given time and a larger lifetime than
the unconfined samples. This indicates that the mean pressure enhances the shear resistance and
reduces the viscous deformation of frozen soils. As shown in Figure 3.14b, the relationship between the
lifetime tm and the minimum creep rate ε̇m for unconfined frozen samples (Equation 2.2) is also valid
for confined samples. Figure 3.14c shows the evolution of the normalized curves in the ε̇1/ε̇m-t/tm
spaces for both confined and unconfined samples. The relationship between ε̇1/ε̇m and t/tm defined
by Equation 3.5 for unconfined frozen samples is also valid for confined creep tests.

Equivalent stress states for unconfined and confined creep tests

The results from Figure 3.14b and 3.14c reveal that for identical minimum creep rates ε̇m the creep
behavior under confined and unconfined conditions are comparable. For example, the confined sample
with p = 4 MPa and q = 8 MPa and the unconfined sample with q = σ1 = 7 MPa share an identical
axial minimum creep rate (see Figure 3.14b). Consequently, the evolutions of the axial creep strain
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3. Methods

of both samples are also similar (see Figure 3.14a). Stress states, as (p, q) = (4 MPa, 8 MPa) and
(p, q) = (2.33 MPa, 7 MPa) leading to the identical ε̇m and thus to the identical tm, will be considered
as equivalent stress states.

General definition of the equivalent stress

To formulate the mean pressure dependent constitutive model, a general definition of equivalent stress
state is required. With this object, it is assumed that two stress states are equivalent in respect of
their creep behavior, if the Euclidean norms of their minimum creep rate tensor ||ε̇m|| are identical. By
replacing ε̇m with ||ε̇m|| in Equation 3.2, we obtain

||ε̇m|| = ε̇α exp

[
C (θ)

(
σcr

σα (θ)
− 1

)]
(3.12)

In Equation 3.12, σcr represents both the uniaxial stress leading to ε̇m =
√

2
3 ||ε̇m|| during creep and

the uniaxial strength in a strain-rate controlled compression test with ε̇1 =
√

2
3 ||ε̇m||. It is assumed that

equivalent stress states can be described by a family of surfaces in the stress space according to:

f (σ, ||ε̇m||, θ) = 0 (3.13)

For constant ||ε̇m|| and θ, Equation 3.13 describes a single surface in the stress space. Axisymmetric
creep tests with the condition σ1 ≥ σ2 = σ3 are placed on the compressive meridian of the surface. Par-
ticularly, for uniaxial creep (σ1 ≥ σ2 = σ3 = 0) with σcr = σ1, Equation 3.13 coincides with Equation 3.2,

i.e., σcr is both the axial stress leading to the minimum creep rate ε̇m =
√

2
3 ||ε̇m|| and the uniaxial com-

pressive strength for the strain-rate ε̇1 =
√

2
3 ||ε̇m||. According to the definition of the equivalent stress

states, frozen soil samples subjected to confined creep with stress states σ fulfilling Equation 3.13 show
the same evolution of creep deformation with time.

To describe the equivalent stress surface the following function is proposed:

f (σ, ||ε̇m||, θ) = f̂ (σ̂) = 0 (3.14)

Here, σ̂ = σ
σcr

(||ε̇m||, θ) denotes the stress tensor normalized by the uniaxial compressive strength
σcr (||ε̇m||, θ), where σcr can be determined from Equation 3.12. Equation 3.14 indicates that equivalent
stress surfaces with different ||ε̇m|| and θ will merge to a single surface, if they are normalized by
their corresponding σcr. Therefore, the function f̂ (σ̂) describes a unique normalized equivalent stress
surface, which is independent of ||ε̇m|| and θ:

f̂ (σ̂) = f̂

(
σ

σcr
(||ε̇m||, θ)

)
= 0 (3.15)

If Roscoe’s variables are used, the normalized equivalent stress surface can be further equivalently
expressed by Equation 3.16.

f̂ (σ̂) = f̂
(
p̂, q̂, ϕ̂

)
= 0 (3.16)

Here, p̂ = p
σcr

(||ε̇m||, θ), q̂ = q
σcr

(||ε̇m||, θ) and ϕ is the Lode angle defined by Equation 3.17.

ϕ =
1

3
arccos

(
3
√
3

2

J3

(J2)
3
2

)
(3.17)

48



3.7. Constitutive model for predominantly monotonic loading according to Cudmani et al. (2023)

In Equation 3.17, J2 = 1
2tr
(
s2
)

and J3 =
1
3tr
(
s3
)

are the second and third invariants of the deviator
stress tensor, respectively. Moreover, in this thesis, the mechanical sign convention is used, i.e., com-
pressive stress is negative and tensile stress positive. Therefore, the Lode angle for compressive stress
is ϕ = π

3 and for tensile stress, it is ϕ = 0.
If the function in Equation 3.16 is known, the equivalent stresses leading to arbitrary combinations of
||ε̇m|| and θ, or inversely for given θ and (p, q) the corresponding ||ε̇m|| can be determined.
To find an appropriate mathematical expression for f̂ (p̂, q̂, ϕ), the results of triaxial creep tests for frozen
Karlsruhe sand are plotted in the p̂− q̂ diagram in Figure 3.15.
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Figure 3.15.: Normalized stress states derived from triaxial creep tests on frozen Karlsruhe sand at
θ = −10◦C. Data after Orth (1986).

Orth (1986) conducted two triaxial creep tests series: 1) tests with p = 4 MPa and different q values
and 2) tests with q = 10 MPa and different p values at θ = −10◦C. Negative p values in Figure 3.15
correspond to a compression stress state, taking into account the mechanical sign convention. The
uniaxial strength σcr required to calculate p̂ and q̂ can be evaluated from Equation 3.12 for the test
specific values of ||ε̇m|| and θ.
According to experimental data found in the literature, e.g., Gudehus and Tamborek (1996); Baker et al.
(1981), the shear strength is highly nonlinear when the full mean stress range, including the compressive
and tensile regions, is considered. For this reason and to account for different shapes of the function
f̂ (p̂, q̂, ϕ), a four-parameter function according to Hsieh et al. (1982) is adopted, see Equation 3.18.

Aq̂2 +
(
Bcos

(
ϕ− π

3

)
+C

)
q̂ + Dp̂− 1 = 0 (3.18)

Here A, B, C, D are four fitting parameters, which determine the shape of the function. The equivalent
uniaxial creep strength σcr resulting from Equation 3.18 is:

σcr (p, q, ϕ) =
1
2

{[(
Bcos

(
ϕ− π

3

)
+C

)
q + Dp

]
+
√[(

Bcos
(
ϕ− π

3

)
+C

)
q + Dp

]2
+ 4Aq2

}
(3.19)

Introducing Equation 3.19 in Equation 3.12, the minimum creep rate for a general creep stress state
(p, q, ϕ) and the temperature θ can be obtained:

||ε̇m|| =
√

3

2
ε̇α exp

[(
K1

θ + 273.4
+ ln ε̇α

)(
σcr (p, q, ϕ)

σα (θ)
− 1

)]
(3.20)
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The creep strain rate tensor for a general stress state can be obtained from Equation 3.11 by replacing
ε̇m with ||ε̇m|| according to Equation 3.20:

ε̇v =
√

3
2 ε̇α exp

[(
K1

θ+273.4 + ln ε̇α

)(
σcr(p,q,ϕ)

σα(θ)
− 1
)]

exp (−β) exp
(
β t
tm

)(
t
tm

)−β
s

||s||
(3.21)

The lifetime tm in Equation 3.21 can be obtained by rewritting Equation 2.2 as

tm =

√
3

2
c/||ε̇m|| (3.22)

Assuming that the elastic part is pressure- and temperature-independent, the mean pressure dependent
constitutive model is defined by Equations 3.7 to 3.10 and Equations 3.19 to 3.22 in combination with
Equation 3.3.

3.7.3. Calibration of the model

Eleven material constants must be determined for the proposed constitutive model. The seven 1D
model parameters are E, ν, c, α1, α2, β and K1, while A,B,C, and D are the four 3D model parameters.
Following, the calibration procedure is explained in detail.

Determination of the 1D model parameters

At least two uniaxial creep tests and three uniaxial compression tests are required to determine the one-
dimensional model parameters. The uniaxial creep tests have to be performed at the same temperature
(e.g., −10◦C) but at different axial stress levels. The lifetime tm and the minimum creep rate ε̇m must
be achieved in the test, the stress levels must be selected accordingly. In addition, the three uniaxial
compression tests should be performed at three different temperatures in which one testing tempera-
ture is identical to the temperature of the unconfined creep tests (e.g., −5◦C, −10◦C and −20◦C). For
simplicity, it is recommended to perform the uniaxial compression test with a strain rate of ε̇1 = 1%/min
(equal to the reference strain rate ε̇α). Furthermore, it would be helpful to perform one uniaxial tensile
test with a strain rate equivalent to that of the uniaxial compression tests.

The Young’s modulus E and Poisson’s ratio ν can be determined from the initial slope of the curve
σ1 − ε1 and from the relationship between ε1 and ε3 obtained in the uniaxial compression tests. In ad-
dition, E and ν can be also determined from uniaxial creep tests, assuming that the elastic deformation
occurs instantaneously after application of the creep load. A mean value for Young’s modulus E of 500
MPa and Poisson’s ratio ν of 0.3 are adopted for frozen Karlsruhe sand based on the experimental data
from Orth (1986).

Figure 3.16 summarizes the calibration procedure for the 1D model parameters for frozen Karlsruhe
sand.
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Figure 3.16.: 1D model parameter calibration of c, β, α1, α2 and K1 for frozen Karlsruhe sand. Data
after Orth (1986).

The parameter c is determined by fitting the Equation 3.22 to the tm and ||ε̇m|| data from the uniaxial
and triaxial creep tests shown in Figure 3.16a. For frozen dense Karlsruhe sand the value of c is 2.4%.
Parameters α1 (3.05 MPa/◦C) and α2 (0.59) are fitted by the relationship between reference stress σα
and temperature θ of uniaxial creep tests with Equation 3.3 shown in Figure 3.16b. The reference stress
σα plotted in Figure 3.16b was determined at a reference strain rate ε̇α of 1.0%/min. As mentioned at
the beginning of this section, at least three uniaxial compression tests (or uniaxial creep tests) at three
different temperatures are recommended to determine the reference stress σα. For frozen Karlsruhe
sand, five creep tests between −2◦C and −20◦C can be used. This significantly improves the accuracy
of the model calibration for α1 and α2.
The material constant β can be obtained by fitting the normalized creep curve (Equation 3.5) to the data
points. Taking a logarithm with a base of natural number e of both sides, Equation 3.5 can be rewritten
as:

ln

(
ε̇1
ε̇m

)
= β

[
t

tm
− ln

(
t

tm

)
− 1

]
(3.23)
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To fit β in the Equation 3.23, it is convenient to define two variables Xβ and Yβ , see Equation 3.24
and 3.25.

Xβ =
t

tm
− ln

(
t

tm

)
− 1 (3.24)

Yβ = ln

(
ε̇1
ε̇m

)
(3.25)

Figure 3.16c shows uniaxial creep test data in the Xβ - Yβ plane. The proportionality constant between
Xβ and Yβ is the parameter β. A mean value of 0.69 for the parameter β is adopted for frozen Karl-
sruhe sand. According to Orth (1986), K1 is a physically interpretable value in Kelvin [K] that can be
assumed to be a constant for temperatures below −5◦C. The parameter K1 is determined by fitting
the proportionality function B (θ) from uniaxial compression creep tests (if available, otherwise uniaxial
compression tests) with the Equation 3.4 shown in Figure 3.16d. For frozen Karlsruhe sand, K1 is 3817
K.

Determination of the 3D model parameters

The 3D material parameters A, B, C, D are required to define the shape of the equivalent stress surface
introduced to account for the effect of the confining pressure in the mean pressure dependent consti-
tutive model. The determination of the 3D model parameters requires at least two triaxial compression
tests, alternatively, two triaxial creep tests. Either way, both tests (creep or compression) have to be
performed at the same temperature (usually −10◦C). The tests shall cover the range of expected devi-
ator stresses and mean pressures in the engineering applications. In the case of triaxial compression
test, a axial strain rate equal to that used in the uniaxial compression tests (one-dimensional model) is
recommended. In order to determine the parameters A, B, C and D according to Equation 3.18, some
intermediate steps are necessary, which are explained below.

By applying the Lode angle for compressive meridian with ϕ = π
3 , the normalized compressive meridian

can be derived from Equation 3.18 leading to:

q̂compression =
1

2A

[
− (B + C) +

√
(B + C)2 − 4A (Dp̂− 1)

]
(3.26)

Similarly, applying the Lode angle for tensile meridian with ϕ = 0, the normalized tensile meridian can
be determined by:

q̂tension =
1

2A

−(1

2
B + C

)
+

√(
1

2
B + C

)2

− 4A (Dp̂− 1)

 (3.27)

To determine the parameters, it is reasonable to adopt some empirical relationships between shear
strengths under different conditions to constrain the shape of the normalized creep surface. It should
be noted that q̂ = 0, when p̂ = 1/D, where p̂ corresponds to hydrostatic tensile strength. For uniaxial
compression, the uniaxial strength corresponds to q̂ = 1 and p̂ = −1/3. Thus, the parameter 1/D
reflects the ratio of the hydrostatic tensile strength to the uniaxial compressive strength of the frozen
soil. Based on the finding of Sayles (1974) and Gudehus and Tamborek (1996), this ratio (= 1/D) can
be empirically set to 0.3. That means both of the normalized compressive and tensile meridians must
go through the empirical point (0.3, 0) as shown Figure 3.17.
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Figure 3.17.: Normalized creep surface with fixed and empirical points and the fitted curve (line) using
Equation 3.26 and 3.27. Positive p means tensile stress. Data after Orth (1986).

Furthermore, at least one data point on the tensile meridian is required to determine all the fitting
parameters A, B, C, and D. This point can be attained by assuming a constant ratio σt/σc between
the uniaxial compression (σc) and tensile strength (σt) of the frozen soil, determined under the same
strain rate and temperature, which is expected to vary between 0.05 and 0.3 according to data in the
scarce literature (Christ and Kim 2009). Since no tension tests were carried out for frozen Karlsruhe
sand, a value of σt/σc = 0.3 is assumed. Therefore, the normalized tensile meridian is constrained
to pass the point (0.1,−0.3) (Figure 3.17). Moreover, the compressive meridian must pass through a
fixed point of (−1/3, 1). With these three constraint points, the four parameters A, B, C and D can be
obtained by fitting Equation 3.26 and 3.27 to the experimental data, as is shown in Figure 3.17. A set of
compressive and tensile meridians of equivalent stress surfaces for different ||ε̇m|| in p− q space are
shown in Figure 3.18 for temperatures ranging from −5◦C to −20◦C.

53



3. Methods

-5 0 5

-15

-10

-5

0

5

10

15

(a)

-5 0 5

-15

-10

-5

0

5

10

15

(b)

-5 0 5

-15

-10

-5

0

5

10

15

(c)

Figure 3.18.: Compressive and tensile meridian of creep surface in p – q diagram (positive p means
tensile stress).

Summary of the 1D and 3D model parameters for frozen Karlsruhe sand

The calibrated material parameters for frozen Karlsruhe sand, related to an initial frozen soil void ratio
of e = 0.540 and a degree of saturation of Sr ≈ 0.90 according to the freezing tests by Orth (1986), are
summarized in Table 3.7.

Table 3.7.: Material constants for frozen Karlsruhe sand related to a initial frozen soil void ratio of
e = 0.540 and a degree of saturation of Sr ≈ 0.90 according to the freezing tests by Orth (1986).

One-dimensional model Three-dimensional model
E ν c α1 α2 β K1 A B C D

[MPa] [-] [%] [MPa/◦C] [-] [-] [K] [-] [-] [-] [-]
500 0.3 2.40 3.05 0.59 0.69 3817 2.11 -3.18 3.18 3.33
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3.7. Constitutive model for predominantly monotonic loading according to Cudmani et al. (2023)

3.7.4. Model validation

Triaxial compression tests

Figure 3.19 compares the experimental and numerical results of triaxial compression tests at −10◦C
for different confining pressures σ3 varying from 2MPa to 10MPa and a constant axial strain rate of
ε̇1 = 0.1 %/min.
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Figure 3.19.: Experimental and numerical results of triaxial compression tests with different confining
pressures σ3 at ε̇1 = 0.1 %/min and −10◦C. Data after Orth (1986).

Figure 3.20 shows the experimental and numerical results of triaxial compression tests at −10◦C with
a constant confining pressure of σ3 = 10 MPa for different ε̇1 varying from 0.005 %/min to 1.0 %/min.
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Figure 3.20.: Experimental and numerical results of triaxial compression tests with different axial strain
rates ε̇1 at σ3 = 10 MPa and −10◦C. Data after Orth (1986).

The predicted and measured shear resistance of the frozen Karlsruhe sand are in good agreement,
although the shear strength is slightly overestimated by the model. The shear strength of the frozen
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soil significantly increases with the confining pressure and with the axial strain rate. Furthermore, the
behavior predicted by the model before the peak is stiffer than observed in the experiments. Therefore,
the axial strain required to achieve the peak is smaller in the simulations than in the experiments. In
fact, the nonlinearity provided by the model via viscosity is insufficient to properly describe the actual
deformation behavior. Nonlinear elasticity or additional plasticity could be added to improve the pre-
dicted response. Whether the accuracy of the model prediction is acceptable from a practical point of
view cannot be generally assessed based exclusively on laboratory test results. The accuracy of the
solution of a particular boundary value problem ultimately depends on the ultimate limit state (ULS) and
service limit state (SLS) requirements of the frozen soil body.

Triaxial creep tests

The experimental and numerical results of the triaxial creep tests for different confining stresses σ3
varying from 1MPa to 4MPa with q = 10 MPa at −10◦C are compared in Figure 3.21.
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(b) Axial strain rate evolution over time

Figure 3.21.: Experimental and numerical results of triaxial creep tests with q = 10 MPa at −10◦C. Data
after Orth (1986).

The influence of confining pressure on the evolution of axial strain can be clearly recognized in Fig-
ure 3.21a. For identical temperature and deviator stress, increasing the confining pressure results in a
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3.7. Constitutive model for predominantly monotonic loading according to Cudmani et al. (2023)

longer lifetime tm (turning point in the curves) and a smaller creep strain of the frozen soil. As can be
seen in Figure 3.21a, the effect of the confining pressure on the evolution of the axial creep strain with
time is realistically captured by the model. Particularly, the model was able to predict the increase of the
lifetime with increasing confining stresses quite well, with exception of the creep test with a confining
pressure of σ3 = 4 MPa, for which the actual lifetime was slightly underestimated by the model.
Additionally, the experimental results in terms of the creep strain rate of the triaxial creep tests are
shown on the left side of Figure 3.21b. Similar to the one-dimensional case, the axial creep strain rate
initially decreases with time until a turning point associated with a minimum strain rate ε̇m is reached. As
explained in Section 2.2, the mechanical behavior of the frozen soil is regarded as stable at this stage.
After the turning point, the strain rate dramatically increases, and the frozen soil fails. As can be seen,
increasing confining pressures causes not only an increase of the lifetime tm but also a reduction of
minimum creep rate ε̇m. These essential features of the viscous behavior of frozen soils are reproduced
by the model, as is shown on the right side of Figure 3.21b.
Figure 3.22 compares the experimental and numerical results of triaxial creep tests with different devi-
ator stresses q varying from 7 to 10MPa and p = 4 MPa at −10◦C.
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Figure 3.22.: Experimental and numerical results of triaxial creep tests with p = 4 MPa at −10◦C. Data
after Orth (1986).
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The measured and predicted axial strain and axial strain rate evolution over time are shown in Fig-
ure 3.22a and 3.22b, respectively. Again, the influence of the confining pressure on the viscous re-
sponse of the frozen soil is satisfactorily captured by the model. For deviator stresses q larger than 7
MPa, the prediction is slightly better than for q = 7 MPa, for which the predicted axial strain is slightly
smaller than in the experiment.

For low confining stress states (p << 4 MPa), the response of the 1D model has already been tested
and validated during the extension of the railway system in Cologne (Cudmani 2006; Cudmani and
Nagelsdiek 2006). Nevertheless, the extended mean pressure dependent model shows that the shear
strength and the lifetime of frozen soils increase with increasing confining pressure. Therefore, tak-
ing into account the confining pressure in the constitutive model leads to a more realistic as well as
more economical and resource-efficient AGF design. This applies to both constructions near ground
level (e.g., urban tunnel constructions) and deep under the subsurface (e.g., shafts), for which the con-
sideration of the confining pressure is advantageous. Based on the comparison of experiments and
calculations for uniaxial tests presented by Cudmani (2006) and triaxial tests presented in this section,
it is concluded that the proposed model realistically captures the essential features of the temperature-,
stress- and rate-dependent mechanical behavior of the considered frozen soil. Thus, the predictive
capacity of the proposed model is validated.

Comparison of predicted shear and creep behavior under compressive and tensile loading

Although Section 2.2.7 describes that the mechanical differences between compressive and tensile
loading are complex and vary, especially between shear and creep behavior, this model comparison
aims to highlight the strengths and weaknesses of the current approach to tensile loading. It intends to
identify areas where the model prediction is appropriate and conservative (safe side) for practical use
with respect to tensile loading.

In Figure 3.23, the simulation results of uniaxial and triaxial compressive and tensile shear tests are
shown for an axial strain rate of ε̇1 = ±0.01 %/min at −10◦C. Negative strain and strain rate values
correspond to compressive loading, while positive values indicate tensile loading according to the me-
chanical sign convention.
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Figure 3.23.: Numerical results of unconfined and confined compression / tensile tests with a constant
axial strain rate ε̇1 = ±0.01 %/min at −10◦C.

As can be seen, the difference between compressive and tensile strength can be predicted with the

58



3.8. Numerical implementation and use of the advanced constitutive model

extended model. As assumed for the calibration of the model, the ratio of the uniaxial tensile to com-
pressive strength is 0.3. Furthermore, in both cases (compressive and tensile loading), the shear
strength increases with the confinement pressure.

Figure 3.24 shows the numerical results of unconfined and confined compressive and tensile creep
tests at −10◦C. Absolute values of the axial strain and strain rate during the tensile creep tests were
plotted for an easier comparison.
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Figure 3.24.: Numerical results of uniaxial and triaxial creep tests with constant deviator stress under
compressive and tensile stresses at −10◦C.

The evolution of axial strain over time under compressive stress is compared with that under tensile
stress for uniaxial creep tests with constant deviator stress of q = 2 MPa, as shown in Figure 3.24a
(open symbols). As expected, the axial strain under tension is much larger than under compression.
The predicted behavior resembles the actual behavior of frozen soils, which show a considerably longer
lifetime under compressive rather than tensile loading. In addition, it is interesting to note that the gap
between the ε1 − t curve under compressive and tensile loading is significantly reduced when a con-
fining pressure is applied. Furthermore, the enhancement of the lifetime provoked by the confining
pressure is more pronounced under tensile rather than compressive loading conditions.

In summary, however, the tensile shear and creep behavior presented here can only be evaluated quali-
tatively in comparison with the compressive behavior since no sophisticated experimental investigations
of the tensile behavior of frozen Karlsruhe sand are available.

3.8. Numerical implementation and use of the advanced
constitutive model

The advanced constitutive model for frozen granular soils introduced in Section 3.7 and its governing
equations have been implemented and tested in a MATLAB code. For a first step in testing and validat-
ing the model by back-calculating standard element tests such as uniaxial and triaxial compression and
creep tests, this was an acceptable and sufficient numerical approach. For the ambitious and complex
numerical goals within this dissertation, the previous numerical approach was no longer sophisticated
due to its limitations and restrictions. Following the suggestions of Gudehus et al. (2008), the consti-

59



3. Methods

tutive model defined by the Equations 3.7 to 3.10 and the Equations 3.19 to 3.22 in combination with
Equation 3.3 introduced in Section 3.7 has been implemented in the form of a ’user-defined material’
(UMAT) FORTRAN subroutine according to the definition of the FEA Code ABAQUS Standard, for de-
tails see Abaqus (2014). This allows the model to be used in a more advanced, user-friendly, and
flexible manner, especially in combination with commercial finite element analysis (FEA) codes. As a
result, the model is suitable for simulating element tests with complex stress and strain paths and, in
particular, boundary value problems. Within this dissertation, using the developed UMAT FORTRAN
code, element tests were calculated with IncrementalDriver according to Niemunis (2017), while bound-
ary value problems were simulated with the FEA code ABAQUS/Standard (Version 2017) of SIMULIA
(Dassault Systèmes).
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4. Multi-stage creep behavior of frozen
Karlsruhe sand

This chapter deals with experimental investigations consisting of single-stage and multi-
stage creep tests on frozen Karlsruhe sand under uniaxial loading. The comparison of the
different loading types reveals the influence of the stress-strain history on the rate- and
temperature-dependent behavior of frozen granular soils. We extend the constitutive model
for frozen soils proposed by Cudmani et al. (2023) to consider stepwise loading and creep
by coupling creep time with stress-strain history. Moreover, we simulate element tests and
compare the simulations with our own experimental data as well as data from the literature
to achieve the first step in validating the extended model. Overall, the good agreement
between the numerical and experimental results confirms the constitutive model’s ability to
capture the main features of the complex mechanical behavior of frozen granular soils for
single-stage as well as multi-stage loading under constant temperatures. Finally, for model
version comparison purposes, the multi-stage creep tests were also back-calculated with
the original model version after Cudmani et al. (2023), and both model responses, original
and extended version, were compared with each other. As expected, for non-monotonic
static loading, the extended model version can reproduce the observed experimental be-
havior more precisely than the original version.

Parts of the work presented in this section were published previously in similar form in
Schindler et al. (2023c, 2024). The author of this dissertation contributed to Schindler et al.
(2023c, 2024) as the first and corresponding author.

4.1. Introduction

In general, frozen soil bodies supporting tunnel excavations exhibit varying stress states and different
loading types through the construction stages (Andersland and Ladanyi 2003; Orth 2018). The exca-
vation leads to the shearing of the frozen soil and a relatively rapid increase in stress. After completing
the excavation, the frozen soil body deforms under a predominantly constant stress state and must
support the soil above it until the completion of the tunnel lining. Common excavation techniques, such
as partial face advance, result in a stepwise increased loading of the frozen soil body. Russo et al.
(2015) reported three long-duration excavation steps during the challenging construction of the Toledo
underground station in Naples (Italy). Several excavation stages with different lengths of advance in-
duced a stepwise increased loading on the supporting frozen soil over a period of more than six months.
Classen et al. (2019) and Zhou et al. (2021) considered the application of ground freezing to support
very large tunnel excavations with up to fourteen excavation stages. From a practical point of view,
these and other examples clearly highlight the need to improve our fundamental understanding of the
influence of the loading history on the mechanical behavior of frozen granular soils.

As described in Section 2.2.3, the equivalence of single-stage and multi-stage loading regarding the
creep behavior of frozen soils has not been conclusively clarified. Indeed, numerous studies like (An-
dersland and Akili 1967; Eckardt 1979b; Vyalov et al. 1989; Zhou et al. 2020; Staszewska 2022) have
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4. Multi-stage creep behavior of frozen Karlsruhe sand

contributed to the understanding of the complex mechanical behavior of frozen soils depending on the
stress and strain history. However, the influence of the stress and strain history on the rate-, stress-,
and temperature-dependent mechanical behavior of frozen soils is not yet fully understood.
In this context, the constitutive model proposed by Cudmani et al. (2023) introduced in Section 3.7 has
already been validated for predominantly monotonic loading. However, the consideration of stress-strain
histories deviating from monotonic static loading (e.g., stepwise loading or unloading) on the mechani-
cal behavior of frozen soils is still missing. In fact, there are many novel constitutive models for frozen
soils (e.g., Ghoreishian Amiri et al. (2016); Xu et al. (2017); Yao et al. (2018)), which neither take into
account nor are validated for stepwise loading.
Therefore, this chapter aims to present an important and impactful contribution to the following ends:
First, we introduce a comprehensive experimental program including uniaxial single-stage and multi-
stage creep tests to observe, understand, and quantify the main characteristics of the stress-strain
history on the mechanical behavior of frozen granular soils. Here, the objective is to extend the exist-
ing constitutive model by Cudmani et al. (2023) to consider stepwise loading and creep based on our
experimental findings. Subsequently, the focus is placed on the model validation for multi-stage creep
using element tests. Here, we compare our numerical results with our own experiments as well as data
from the literature.

4.2. Uniaxial single- and multi-stage creep tests on frozen
Karlsruhe sand

4.2.1. Stepwise loading

Results of single-stage and multi-stage creep tests on frozen Karlsruhe sand (details see Sections 3.1
to 3.5 and Table 3.3) with stepwise loading are compared in Figure 4.1. It includes the plotted total
strain evolution (left side) and the total strain rate evolution (right side) over the testing time. However,
for the creep stage, the plotted total strains in Figure 4.1 are predominantly viscoplastic.
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Figure 4.1.: Results of the single- (symbols) and multi-stage (lines) creep tests on frozen Karlsruhe sand
at θ = −4.3 ◦C: left: evolution of axial strain over time; right: evolution of axial strain rate over time

The single-stage creep tests (symbols) in Figure 4.1 show the well-known creep behavior of frozen soils
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(e.g., (Andersland and Ladanyi 2003)): On the one hand, the axial strain increases with time. On the
other hand, the strain rate first decreases (primary creep) and then increases (tertiary creep) with time.
The testing time, at which the minimum axial strain rate ε̇m (secondary creep) is reached, and the ter-
tiary creep begins, is called lifetime tm, according to Orth (1986) and Cudmani et al. (2023).
In principle, the multi-stage creep tests (solid and dashed lines) in Figure 4.1a)-c) reveal a similar evo-
lution of axial strain over time as the single-stage creep tests. However, the strain evolution resulting
from the multi-stage creep tests lies between that of the single-stage tests. As seen on the right side of
Figure 4.1, the load increase in the multi-stage creep tests led to a jump in the strain rate. As expected,
during the first loading stage, the evolution of the axial strain rate is similar in both the multi-stage and
the corresponding single-stage creep tests. At the beginning of the second and third creep stage, the
strain rate in the multi-stage creep tests lies above that of the corresponding single-stage creep tests for
the same testing time. With increasing time, the strain rate approaches that of the single-stage creep
tests. Deviations from this behavior pattern occur when the third and last creep stage begins near the
lifetime tm (the turning point of the strain evolution), as can be seen in test “MT3” in Figure 4.1c). In this
case, the axial strain rate does not decrease anymore with time. Instead, it remains almost constant
over a relatively short period of time and then increases, thus indicating the beginning of tertiary creep.
Here, the behavior of the frozen soil becomes unstable. We find that both the deviatoric stress level
and the previous stress history influence the lifetime tm. In contrast, based exclusively on the results
in Figure 4.1, there is no clear evidence that the minimum axial strain rate ε̇m at the turning point is
independent of the loading history. However, in accordance with the principles of crystal mechanics
applied to frozen granular soils by Orth (1985, 1988), the physical processes in frozen soils leading
to ice hardening, e.g., dislocation glide limited by discrete obstacles (thermal activation) and diffusion,
remain largely independent of the loading history. Orth explained physically that these two processes
are only influenced by the deviatoric stress level and temperature. Moreover, the resulting ice hardening
process dominates the frozen soil behavior until the minimum axial strain rate ε̇m and corresponding
lifetime tm are reached. Thus, the independence of ε̇m from the loading history at constant temperature
is physically reasonable. In contrast, the simultaneous crack initiation and propagation in the ice may be
influenced to some extent by the loading history. Based on the experimental results in Figure 4.1 and
the consideration of crystal mechanics, ε̇m is assumed to be dominated only by the current deviatoric
stress level at constant temperature.

Based on the results of uniaxial single-stage creep tests, Ting et al. (1983) and Orth (1986) concluded
that the total axial strain at the turning point is roughly independent of the temperature θ and the axial
stress σ1 (see also Section 2.2.3). Figure 4.2 shows the average axial strain εm at the turning point
(t = tm) for our tests compared with test results published by Orth (1986), which were obtained using
frozen sand similar to that described in Section 3.1.
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Figure 4.2.: Average axial strain εm at the turning point (t = tm) for uniaxial single-stage and multi-stage
creep tests for different axial stresses σ1 and temperatures

According to Orth (1986), the observed scatter of εm in Figure 4.2 can be traced back to differences
when setting up the sample end plates before the start of the tests. In addition, slight differences in the
initial density and degree of saturation of the samples could also contribute to this scattering. As can
be seen, the results of our single-stage and multi-stage creep tests confirm the findings of Ting et al.
(1983) and Orth (1986) regarding the negligible influence of the temperature θ and the axial stress σ1 on
εm. In addition, since the total average axial strains εm determined in the single-stage and multi-stage
tests are in the same range (see Figure 4.2), our conclusion is that εm is almost independent of the load
history. In this context, the results of additional stepwise loaded creep tests with more general loading
and creep stages in Appendix A.1.2 further confirm the loading history independence of both ε̇m and
εm for stepwise loading. In addition, for the upcoming numerical consideration of multi-stage creep (see
Sections 4.3 and 4.4), it is worth mentioning that in the considered constitutive model, εm is not an input
quantity, but results from the integration of the constitutive equations.

4.2.2. Stepwise unloading

In this section, we extend the experimental investigation on the frozen soil multi-stage creep behavior by
conducting experiments on stepwise unloading (see Table 3.6), using the same sample characteristics
as in the stepwise loading experiments. Unlike the previous tests conducted in a dead load oedometer
test apparatus in Section 4.2.1, these experiments were conducted in a conventional uniaxial load frame
system because the required loads and timing of load application were limited by the manual use of the
oedometer apparatus (further details see also Section 3.3). The experiments were performed at a lower
temperature of −10◦C, different from the conditions in the earlier tests in Section 4.2.1. However, the
different test temperatures do not fundamentally change the multistage creep behavior, so that essential
findings on the influence of stepwise loading or unloading on the creep behavior, i.e., the evolution of the
minimum axial strain rate ε̇1 and the lifetime tm, are comparable between tests at different temperatures.

The result of a multi-stage test with two unloading stages is part of Figure 4.3. Figure 4.3a shows
the axial strain ε1 versus time, while Figure 4.3b shows the axial strain rate ε̇1 versus time. Again, the
single-stage creep tests are represented by symbols, while the multi-stage test is represented by lines.
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Figure 4.3.: Results of a multi-stage (lines) creep test with two unloading stages and the corresponding
single-stage creep tests (symbols) at θ = −10 ◦C.

During the first load stage of the multi-stage test, both the axial strain ε1 and the axial strain rate ε̇1
closely resemble those of the equivalent single-stage test, indicating comparability based on the first
load stage. Due to the following first unloading stage, as can be seen in Figure 4.3a, at first, a slight,
barely visible decrease in ε1 occurs. After the initial stress reduction is completed, ε1 begins to increase
again over time, but at a slower rate compared to the first loading stage because the stress level is
reduced. Regarding the evolution of the axial strain rate ε̇1 (Figure 4.3b) after the first load reduction, a
pronounced sudden drop of ε̇1 is observed. After this sudden and short drop, ε̇1 quickly increases to a
certain value and then begins to decrease again. The return of decreasing strain rates signals the end
of the load reduction and the beginning of the second creep phase. Here, as expected, ε̇1 is lower than
during the first loading stage, which correlates with the reduced stress level of the second creep period
compared to the first one. In addition, similar to the stepwise loaded creep in Section 4.2.1, ε̇1 slowly
approaches the rates of the corresponding single-stage test over time. This pattern essentially repeats
itself for the second and final unloading stage. However, after approaching a similar axial strain rate ε̇1
in the multi-stage test compared to the equivalent single-stage creep test with σ1 = 5 MPa, ε̇1,multi-stage

is above the single-stage one ε̇1,single-stage. Consequently and in contrast to the previously observed
stepwise loaded creep behavior in Section 4.2.1, the minimum axial strain rate ε̇m of stepwise unloaded
creep is higher than in the equivalent single-stage experiment. Moreover, the corresponding lifetime
tm of the multi-stage test is shorter than that of the equivalent single-stage test. To further evaluate
these essential differences in creep behavior between stepwise loading and unloading, two additional
multi-stage creep tests with a single unloading stage were performed. Compared to the previous creep
test with two unloading stages in Figure 4.3, the tests with a single unloading stage in Figure 4.4 cover
a wider range of stress levels and higher incremental stress reductions. As discussed in Section 3.6,
note that the discontinuous axial strain rate curve on the right side in Figure 4.4b is due to the short
term negative value of ε̇1 that occurs at the beginning of the unloading stage, which is not shown in the
scaling.
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Figure 4.4.: Results of single-stage (symbols) and multi-stage (lines) creep tests with a single unloading
stage at θ = −10 ◦C: left: evolution of axial strain over time; right: evolution of axial strain rate over
time.

The results of multi-stage creep tests with a single unloading stage in Figure 4.4 and additional data in
Appendix A.1.3 (Figure A.7 to A.9) essentially confirm the previous findings for the influence of stepwise
unloaded creep. Namely, the minimum axial strain rate ε̇m for the last loading stage is higher, and the
corresponding lifetime tm is shorter compared to the equivalent single-stage tests. Apart from the
different trends of the minimum axial strain rate ε̇m and the corresponding lifetime tm during stepwise
unloaded creep compared to stepwise loaded creep, the average axial strain εm at the turning point also
appears to be independent of the loading history for stepwise unloading, as illustrated in Figure 4.5. This
is consistent with the previous results for stepwise loaded creep in Figure 4.2, where εm was also largely
unaffected by the loading history.

67



4. Multi-stage creep behavior of frozen Karlsruhe sand

4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 4.5.: Average axial strain εm at the turning point (t = tm) for uniaxial single-stage and multi-stage
creep tests at −10◦C. For additional tests data, see also Appendix A.1.3.

In summary, for stepwise unloaded creep, a higher minimum axial strain rate ε̇m for the last loading
stage is observed, while the corresponding lifetime tm is shorter compared to the equivalent single-
stage tests. Moreover, the multi-stage creep tests with different numbers of unloading stages and creep
stresses indicate a certain, more pronounced deviation between the results of ε̇m observed in the multi-
stage creep tests and the single-stage ones in comparison to stepwise loaded creep in Section 4.2.1.
Nevertheless, and similar to stepwise loaded creep, based on the extensive experimental database
created, it is assumed that ε̇m is also largely independent of the loading history for stepwise unloaded
creep, while tm depends on the latter accordingly. In fact, this is in accordance with comparisons of
single-stage and multi-stage unloaded creep tests on frozen fine sand reported by Staszewska (2022),
who concluded that ε̇m is not significantly affected by the loading history during stepwise unloaded
creep.

Regarding the higher ε̇m and shorter tm in multi-stage creep tests with stepwise unloading compared
to single-stage creep tests, the experimental results in this section are consistent with the previous
essential findings for stepwise loaded creep in Section 4.2.1, when considering the strengthening (ice
hardening) and weakening (ice cracking) effects that influence the creep behavior of frozen soils. The
physical processes in frozen soils leading to ice hardening, e.g., dislocation glide limited by discrete ob-
stacles (thermal activation) and diffusion, also remain largely independent of the unloading history, as
they are always influenced anew by the current deviatoric stress level and temperature at each loading
stage. However, to reconcile the observed differences between ε̇m,single-stage and ε̇m,multi-stage for step-
wise unloading with the essential physical processes for frozen soil creep, the following principles are
derived.
For stepwise unloaded creep, the initiation and propagation of micro-cracks in the ice matrix that occur
at higher creep stress levels and earlier loading stages are assumed to continue to grow and develop
at lower stress levels and later loading stages. Thus, the crack pattern of the previous loading history
is to some extent adopted and remains influential for the current creep stress level, ultimately resulting
in (slightly) higher minimum axial strain rates ε̇m for stepwise unloaded creep compared to single-stage
loading. In contrast, for stepwise loaded creep, the initiation and propagation of cracks in the ice matrix
restart at each new loading stage because the stress level is higher than the previous one, which cor-
relates with that of single-stage loading and becomes the dominant crack pattern at each new loading
stage. Therefore, it is physically reasonable that for stepwise loading, ε̇m,multi−stage,loading aligns more
closely to ε̇m,single−stage compared to stepwise unloading, where ε̇m,multi−stage,unloading is greater than
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4.2. Uniaxial single- and multi-stage creep tests on frozen Karlsruhe sand

ε̇m,single−stage and the qualitative differences are in average also higher than for stepwise loading.

4.2.3. Stepwise load-unload cycles

After analyzing stepwise loaded and unloaded creep separately, we focus on the combination of both
types and their joint influence on the creep behavior of frozen soils. For this purpose, uniaxial creep tests
with a load-unload-reload cycle were conducted at θ = −10◦C. Figure 4.6 depicts these test results,
including the corresponding single-stage tests.
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Figure 4.6.: Results of multi-stage (lines) creep test with a loading, unloading and reloading stage and
the corresponding single-stage tests (symbols) at θ = −10◦C.

During the first load stage, both the axial strain ε1 and strain rate ε̇1 in the multi-stage test agree with
those in the single-stage test, suggesting comparable material behavior for subsequent evaluations.
Upon load reduction, the strain rate behavior in the multi-stage test in Figure 4.6b follows the previously
observed pattern for unloading: a sharp decrease in ε̇1, followed by an immediate increase and then a
slow, steady decrease. Once ε̇1 in the multi-stage test aligns with that of the single-stage test, it slightly
exceeds it. At this point, the load is increased back to the original first load stage. In accordance with
the observed behavior for stepwise loading in Section 4.2.1, ε̇1 then rapidly increases, momentarily ex-
ceeding that of the multi-stage test before aligning with it. Finally, in the multi-stage test in Figure 4.6b,
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4. Multi-stage creep behavior of frozen Karlsruhe sand

the minimum axial strain rate ε̇m,multi-stage is nearly equal to the one for single-stage loading, while the
corresponding lifetime tm,multi-stage, as expected, is greater than in the corresponding single-stage test.
Essentially, the same behavior is observed in a second multi-stage creep test with load-unload cycles
and a final stepwise loaded stage in the corresponding Figures 4.6c and 4.6d. Based on the experi-
mental results in Figure 4.6, the frozen soil creep behavior for the last loading stage of a multi-stage
creep test with load-unload cycles agrees well with the essential findings for stepwise loaded creep in
Section 4.2.1.

In addition, Figure 4.7 compares the multi-stage creep behavior for two incremental loading stages
followed by a final unloading stage to assess whether the fundamental creep behavior observed sepa-
rately for stepwise loading and unloading remains consistent after multiple cycles of each.
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Figure 4.7.: Comparison of multi-stage (lines) creep tests with two stepwise loading stages and a final
unloading stage and their corresponding single-stage (symbols) tests at θ = −10 ◦C.

After a very similar creep behavior in the first load stage between the multi-stage and corresponding
single-stage tests, the axial strain rate ε̇1 in the multi-stage tests increases sharply as the load is in-
creased. Then, for the second loading stage (stepwise loaded creep), ε̇1 in the multi-stage tests is again
similar to the equivalent single-stage one. Finally, a load reduction is applied. Similar to the unloaded
creep behavior in Section 4.2.2, ε̇1 shows a significant decrease, then promptly increases, and then
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undergoes a steady decrease until reaching the minimum axial strain rate ε̇m. As observed in the step-
wise unloaded creep tests in Section 4.2.2, the resulting ε̇m,multi-stage is higher than in the single-stage
tests, while the lifetime tm,multi-stage is shorter, indicating an earlier onset of creep failure.

In conclusion, the multi-stage creep tests with stepwise load-unload cycles confirm the fundamental
creep behavior observed in separately stepwise loaded or unloaded multi-stage creep tests in the pre-
vious two sections. In particular, if the final creep stage at which ε̇m is reached consists of stepwise
loaded creep, ε̇m is largely independent of the loading history and, on average, quantitatively slightly
lower than in the corresponding single-stage tests. Besides, if the final creep stage to reach ε̇m involves
stepwise unloaded creep, ε̇m is higher than in the corresponding single-stage test, while the quantitative
differences between ε̇m,multi−stage and ε̇m,single−stage are on average also more pronounced than for a fi-
nal stepwise loaded stage. Nevertheless, the independence of the loading history can be assumed with
sufficient accuracy even for a final stepwise unloaded creep stage. In both scenarios, the lifetime tm
varies as it increases for stepwise loaded creep and decreases for stepwise unloaded creep compared
to the equivalent single-stage creep behavior.

4.3. Conceptual framework to consider the influence of the
loading history on the creep behavior of frozen soils

4.3.1. Opening remarks

Before introducing the concept of incorporating multi-stage creep into the constitutive model for frozen
granular soils proposed by Cudmani et al. (2023) (see Section 3.7), it is important to acknowledge
certain observations from the comprehensive experimental multi-stage creep tests in Section 4.2.1 to
Section 4.2.3. It has been noted that stepwise loaded creep mostly demonstrates independence of
the minimum strain rate ε̇m from the loading history. However, for stepwise unloaded creep, this in-
dependence is not clearly evident in the same way and is rather assumed. The concept proposed in
the following section is primarily developed based on observations from stepwise loaded creep tests in
Section 4.2.1. Therefore, the following notations, terms, and concepts always refer to multi-stage creep
under stepwise loading, but it is assumed that they also apply analogously and with sufficient accuracy
to stepwise unloaded creep. For simplicity, stepwise unloaded creep is not explicitly mentioned in the
following sections. However, the validity and accuracy of this new concept will be evaluated later by
back-calculations of not only stepwise loaded but also stepwise unloaded creep tests.

4.3.2. Description of the conceptual framework

A crucial relationship of the constitutive model for frozen granular soils proposed by Cudmani et al.
(2023) (see Section 3.7) is the relationship between the normalized axial strain rate ε̇1/ε̇m and the
normalized time t/tm. As explained in Section 3.7.1, for single-stage creep and monotonic shearing
with constant strain rate, this relationship is independent of the temperature and the stress level and
can be described by Equation 3.5.

ε̇1
ε̇m

= exp (−β) exp

(
β

t

tm

)(
t

tm

)−β

(3.5)

Here, ε̇m is the minimum axial strain rate, tm is the lifetime, and β is a material parameter. As shown by
the experimental results of the multi-stage creep tests in Section 4.2.1, in contrast to ε̇m, the lifetime tm
depends on the loading history. For this reason, Equation 3.5, which establishes a unique relationship
between tm and ε̇m, is unable to describe the creep behavior observed in the multi-stage creep tests.
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4. Multi-stage creep behavior of frozen Karlsruhe sand

In the following, a time transformation procedure is proposed to capture the behavior observed in the
multi-stage creep tests using Equation 3.5. The proposed procedure is based on the following assump-
tions derived from the experimental results discussed in Section 4.2.1.
Assumptions a)-f):

a) All tested frozen soil specimens had the same initial density, degree of saturation, and amount of
frozen pore water.

b) The total stress is equal to the creep stress.

c) The average axial strain εm at the turning point is mostly independent of the temperature, axial
stress, and loading history, as shown by the experimental results in Figure 4.2.

d) The minimum axial strain rate ε̇m depends only on the temperature and the axial stress. A possible
dependence of ε̇m on the loading history can be disregarded, as indicated by the experimental
results in Figure 4.1.

e) The lifetime tm depends on the temperature, the axial stress, and the loading history.

f) There is a unique relationship between the strain rate ε̇1, the strain ε1, and the stress σ1. This
relationship does not depend on the loading history.

Figure 4.8 illustrates the developed procedure to transform the creep time t and the lifetime tm deter-
mined in multi-stage creep tests into an equivalent time and lifetime of the corresponding single-stage
creep tests.
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Figure 4.8.: Determination of the normalized axial strain rate ε̇1/ε̇m over normalized time t/tm for a
multi-stage creep test “M” consisting of the loading stages M1 and M2 compared to the single-stage
creep tests “S1” and “S2” with σS1 = σM1 and σS2 = σM2 under a constant temperature.

The sub-index “S” denotes single-stage and “M” multi-stage creep tests for the same temperature. For
simplicity, the multi-stage creep test “M” assumably consists of two loading stages, “M1” and “M2”. The
stepwise-applied stresses σM1 and σM2 are equal to those in the single-stage creep tests “S1” and “S2,”
with σS1 = σM1 and σS2 = σM2. In addition, t describes the actual testing time. Naturally, the time t, the
strain ε, and the minimum strain rate ε̇m of test “M1” are identical to test “S1” during the first loading
stage. Hence, the actual strain rate ε̇S1 = ε̇M1, the corresponding minimum strain rate ε̇S1m = ε̇M1

m , and
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lifetime tM1
m = tS1m are also the same. As can be seen in Figure 4.8b, it is assumed that the frozen soil

sample has not achieved the lifetime during stage “M1”.

At the end of the first loading stage, “M1” at t = tM1
a = tM2

b , the stress increases from σM1 to σM2 (see
Figure 4.8a). In accordance with the aforementioned assumptions c)-f), the relationship εM2 (t) = εS2 (t)
must be fulfilled for t ≥ tM2

b and t ≥ tS2c , respectively. Thus, as shown in Figure 4.8a, the strain versus
time curves for M2 and S2 are identical starting from points b and c, but they are shifted by a period of
time ∆tbc = tM2

b − tS2c . Using the condition εM2
(
tM2
b

)
= εS2

(
tS2c
)

and assuming that εS2
(
tS2c
)

is known
from the single-stage test, the value of tS2c can be determined to calculate the time shift ∆tbc.
According to Figure 4.8a, the transformed time t∗,M2 = t−∆tbc in combination with
εM2 (t) = εS2

(
t∗,M2

)
for t∗,M2 > 0 describes the creep behavior in the loading stage M2 based on the

corresponding single-stage creep test. The transformed lifetime for M2 is t∗,M2
m = tS2m = tM2

m −∆tbc de-
rived from the lifetime tS2m of the single-stage test S2.

Summarizing, the transformed time t∗,M2 is the time in a single-stage creep test required to achieve
the deformation εM2

(
t > tM2

b

)
with σS2 = σM2.

In particular, t∗,M2 at the point b of M2 equals t∗,M2
b = tM2

b −
(
tM2
b − tS2c

)
= tS2c . According to the as-

sumption c), both samples M2 and S2 achieve the same strain εm = εM2
(
tM2
m

)
= εS2

(
tS2m
)

and the
same minimum strain rate ε̇M2

(
tM2
m

)
= ε̇S2

(
tS2m
)

at the turning point. In accordance with the above-
described time transformation procedure, we propose the following equations to calculate the time-
dependent evolution of the strain rate ε̇M2 (t) for the loading stage M2 based on the results of the
corresponding single-stage creep test S2:

ε̇S2
(
t∗,M2

)
ε̇S2m

= exp (β) exp

(
β
t∗,M2

t∗,M2
m

)(
t∗,M2

t∗,M2
m

)−β

(4.1)

t∗,M2 = t−∆tbc with t > 0 and t > ∆tbc (4.2)

t∗,M2
m = tM2

m −∆tbc = tS2m (4.3)

ε̇M2 (t) = ε̇S2
(
t∗,M2

)
(4.4)

In addition, the equations 4.1-4.4 can be generalized to describe the strain rate in the loading stage Mj
of a multi-stage creep test consisting of n stages based on their corresponding single-stage test Sj. The
loading stage number is defined with the superscript index j and the corresponding time increment with
the subscript index i:

ε̇Sj
(
t∗,Mj

)
ε̇Sjm

= exp (β) exp

(
β
t∗,Mj

t∗,Mj
m

)(
t∗,Mj

t∗,Mj
m

)−β

(4.5)

t∗,Mj = t−∆ti with t > 0 and t > ∆ti (4.6)

t∗Mj
m = tSjm (4.7)

ε̇Mj (t) = ε̇Sj
(
t∗,Mj

)
(4.8)

Here, ∆ti = tMj
0 − tSj0 is the time difference between the beginning of Mj at tMj

0 and the single-stage

creep time tSj0 , at which εMj
(
tMj
0

)
equals εSj

(
tSj0

)
. In addition, the multi-stage and single-stage creep

behavior for the loading stage j = 1 and time increment i = 1 correspond to t = tS10 = tM1
0 , ∆t1 = 0 and

t∗,M1 = tS1 = t.

To sum up, Figure 4.9 compares both the normalized axial strain rate ε̇1/ε̇m over normalized time t/tm
for the single-stage creep tests presented in Figure 4.1, as well as ε̇1/ε̇m over the normalized trans-
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formed time t∗,Mj/t∗,Mj
m for the additional multi-stage creep tests with stepwise loading. In accordance

with the proposed time transformation procedure, the multi-stage test results are converted to equiva-
lent single-stage tests, and therefore, as expected, both single- and multi-stage test results converge
to Equation 3.5. These findings provide another strong argument for the load history independence of
ε̇m, and agree well with the physical considerations in Section 4.2.1 from which we originally made this
preliminary assumption.
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Figure 4.9.: Uniaxial creep tests at θ = −4.3 ◦C according to Table 3.3: Evolution of the normalized axial
strain rate ε̇1/ε̇m over normalized time t/tm for the single-stage as well as ε̇1/ε̇m over the normalized
transformed time t∗,Mj/t∗,Mj

m for the multi-stage creep tests with stepwise loading.

At this point, the proposed concept based on stepwise loading is also tested for multi-stage creep with
stepwise unloading or stepwise load-unload cycles. Figure 4.10 depicts the normalized creep curves for
the multi-stage creep tests with stepwise unloading and their corresponding single-stage creep tests.
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Figure 4.10.: Uniaxial creep tests at θ = −10.0 ◦C according to Section 4.2.2 (Tables 3.5 and 3.6):
Evolution of the normalized axial strain rate ε̇1/ε̇m over normalized time t/tm for the single-stage as
well as ε̇1/ε̇m over the normalized transformed time t∗,Mj/t∗,Mj

m for the multi-stage creep tests with
stepwise unloading.
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4.3. Conceptual framework to consider the influence of the loading history on the creep behavior of
frozen soils

As previously stated in this section, it is recognized that there were discrepancies between single-stage
creep tests and multi-stage creep tests with stepwise unloading in Sections 4.2.2 and 4.2.3. As an-
ticipated, there are deviations in the normalized creep curves shown in Figure 4.10. The black lines
representing the normalized multi-stage creep curves with stepwise unloading are above the symbols
representing the single-stage tests. Using the proposed concept to derive the normalized creep curves
for multi-stage creep tests with stepwise unloading shows that the axial minimum strain rate ε̇m is
generally higher compared to the equivalent single-stage tests. Moreover, it demonstrates that the
frozen soil lifetimes tm also becomes shorter, especially in the multi-stage test under the loading path
σ1 = 8/5 MPa in Figure 4.10. For additional normalized creep curves for stepwise unloaded creep, see
also Figures A.10a and A.10b in Appendix A.1.3.

Finally, the proposed concept for converting multi-stage creep tests to their equivalent single-stage
creep test is also applied to the multi-stage creep tests with stepwise load-unload cycles. These nor-
malized creep curves are shown in Figure 4.11b.
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Figure 4.11.: Uniaxial creep tests at θ = −10 ◦C according to Table 3.5 and Table 3.6: Evolu-
tion of the normalized axial strain rate ε̇1/ε̇m over normalized time t/tm for the single-stage as
well as ε̇1/ε̇m over the normalized transformed time t∗,Mj/t∗,Mj

m for the multi-stage creep tests with
stepwise load-unload cycles.

On the one hand, for the multi-stage creep tests in Figure 4.11a, both single-stage and multi-stage nor-
malized creep curves converge to Equation 3.5 for the last loading stage consisting of stepwise loading,
further supporting the general validity of the proposed concept for stepwise loaded creep. On the other
hand, the normalized multi-stage creep curves with a final stepwise unloading stage in Figure 4.11b
again show deviations from the single-stage curves. However, here, the deviations are quantitatively
and qualitatively smaller compared to the normalized creep curves for purely stepwise unloaded creep
in Figure 4.10.

In summary, based on the multi-stage creep tests consisting of a final stepwise loaded creep stage,
it is concluded that the evolution of the axial strain rate ε̇1 during multi-stage creep depends on the tem-
perature, the axial stress, and the loading history. The latter influences only the lifetime tm but not the
minimum axial strain rate ε̇m. For simplicity and the following numerical considerations, it is assumed at
this stage that the same relationships apply to multi-stage creep consisting of a final unloading stage,
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4. Multi-stage creep behavior of frozen Karlsruhe sand

although it is acknowledged that our own experimental data do not entirely confirm this assumption. In
the following, the existing constitutive model for frozen granular soils proposed by Cudmani et al. (2023)
will be extended to take into account the influence of the previous loading history on the stress-strain
behavior based on the conceptual model presented in this section.

4.4. Extension of the constitutive model to consider multi-stage
creep

4.4.1. Generalization of the transformed creep time

The constitutive model developed by Cudmani et al. (2023) (Section 3.7) simulates the time-dependent
stress-strain behavior of frozen soils for predominantly monotonic loading. As described in Section 4.3,
the behavior observed in a multi-stage creep test can also be predicted with Equation 3.5, originally
valid for single-stage creep tests, with the help of a time transformation. In this section, this concept is
generalized to consider the influence of multi-stage stress paths on the mechanical behavior of frozen
soils.

Figure 4.12 illustrates the proposed extension of the constitutive model to consider multi-stage creep.
Here, the loading stage number is defined with the superscript index j and the corresponding time
increment with the subscript index i.
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Figure 4.12.: Generalization of the transformed creep time t∗i+1 for multi-stage loading

We assume that the constitutive Equation 3.7 and Equations 3.19 to 3.22 have been integrated from t0
to ti. The stress state σSj (t), the viscous strain εi, and all state variables depending on stress state,
temperature θ, and time t are known at the specific time tSji . Since we consider loading under a constant
temperature θ, the time-dependent evolution of the viscous strain rate ε̇v,i (t) (solid line in Figure 4.12),
corresponding to single-stage creep, is defined by the stress state σSj (t) according to Equations 3.19
to 3.22. In particular, the minimum strain rate ||ε̇Sjm|| and lifetime tSjm for single-stage creep with σSj (t)
can be determined with Equations 3.20 to 3.22. For increment i+1, the stress increases from σSj (t)
to σSj+1 (t) and the creep time steps forward from ti to ti+1 = ti +∆ti. For single-stage creep with
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4.4. Extension of the constitutive model to consider multi-stage creep

σSj+1 (t), the viscous strain rate ε̇v,i+1 (t) (dashed line in Figure 4.12), the minimum strain rate ||ε̇Sj+1
m ||,

and the lifetime tSj+1
m can be determined with Equations 3.19 to 3.21. Here, the constitutive model by

Cudmani et al. (2023), which does not consider the influence of the loading history on the viscous
behavior, predicts a tertiary creep strain rate with ti+1 > tSj+1

m for this loading history in Figure 4.12.
However, this deviates from the strain rate evolution experimentally observed in Section 4.2.1, where
no tertiary creep behavior after the load increase was observed, and thus ti+1,exp < tm,exp. In fact, the
actual viscous strain rate ε̇v,i+1

(
t∗i+1

)
results from the single-stage creep curve for σSj+1 (t) by using a

transformed creep time t∗ instead of the global time t. In accordance with the description of the viscous
strain rate under 1D conditions in Section 4.3, we consider the influence of the loading history on the
creep behavior by including the transformed creep time t∗i+1 in Equation 3.21:

ε̇v,i+1 = ||ε̇m|| exp (−β) exp

(
β

t∗i+1

t∗m,i+1

)(
t∗i+1

t∗m,i+1

)−β
s

||s||
(4.9)

t∗i+1 = ti+1 −
(
tSji − tSj+1

i+1

)
= tSji +∆ti −

(
tSji − tSj+1

i

)
= tSj+1

i +∆ti (4.10)

t∗m,i+1 = tSj+1
m (4.11)

Here, tSj+1
m is the lifetime during single-stage creep with σSj+1 (t). In addition, tSj+1

i is the creep time
required to achieve the norm of the current viscous strain ||εv (ti) || in a single-stage creep test with
σSj+1 (ti). The time tSj+1

i can be determined from the solution of the following equation:

||εv (ti) || = ||ε̇Sj+1
m || exp (−β)

∫ tSj+1
i

t0

exp

(
β

t

t∗m,i+1

)(
t

t∗m,i+1

)−β

dt (4.12)

In Equation 4.12, ||εv (ti) || is the norm of the viscous strain tensor at the end of the increment i. ||ε̇Sj+1
m ||

and t∗m,i+1 can be determined from Equations 3.20 and 3.22 for σSj+1 (t).

To sum up, the extended constitutive model able to consider multi-stage creep is defined by Equa-
tion 3.3, Equations 3.7 to 3.10, Equations 3.19 to 3.20, Equation 3.22, and Equations 4.9 to 4.12. As
explained in Section 3.8, we implemented these constitutive equations in the form of a ’user-defined
material’ (UMAT) FORTRAN subroutine. In this manner, the model can be used in commercial finite
element analysis (FEA) codes and is thus applicable in geotechnical boundary value problems. Fig-
ure 4.13 presents the numerical integration scheme of the extended constitutive equations for FEA.
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4. Multi-stage creep behavior of frozen Karlsruhe sand
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Figure 4.13.: Numerical integration scheme of the constitutive equations for FEA to consider multi-stage
creep

For the calculation of the increment i+1, the FEA code provides, among others, the stress tensor σi,
the total strain tensor εi, the time ti, and the increments of the total strain tensor ∆εi and the time
increment ∆ti, respectively. In addition, the creep time t∗i , the minimum strain rate ||ε̇m,i||, and lifetime
tm,i of the increment i are also available as state variables. Using the incremental values provided by
the FEA code, the total strain tensor εi+1 = εi +∆εi and the time ti+1 = ti +∆ti can be determined,
while the stress tensor σi+1 has to be updated from the integration of the constitutive model. As can
be seen in Figure 4.13, the UMAT calculation of increment i+1 consists of five iterations. For the first
iteration, the minimum strain rate ||ε̇m,i+1|| and the lifetime tm,i+1 of the increment i+1 are calculated
with σi+1 = σi, because the stress tensor σi+1 has not been updated yet. Subsequently, the norm of
the total strain tensor increments ||∆εi+1|| provided by the FEA code is compared with the calculated
norm of the viscous strain tensor increments ||∆εv,i+1 (ti+1, ||ε̇m,i||, tm,i) || to identify a stress change
for increment i+1. The stress σi+1 is equal to σi, if ∆εi+1 only consists of a viscous strain rate compo-
nent (∆εel,i+1 = 0) and has approximately the same value as ∆εv,i+1 (ti+1, ||ε̇m,i||, tm,i). Hence, there
would be no stress change between increment i and i+1, and no creep time transformation would be
necessary. This strain increments (strain rate) comparison intends to avoid unnecessary computing
time caused by the numerical integration to find tSj+1

i for increments without stress changes.
As can be seen in Figure 4.13, on the one hand, no stress changes between increments i and i+1 result
in the creep time t∗i+1 = ti+1. On the other hand, numerical integration is required to determine tSj+1

i
according to Equation 4.12 when σi+1 is not equal to σi. The numerical integration in Equation 4.12 is
solved by Newton’s method to approximate tSj+1

i . Subsequently, the transformed creep time t∗i+1 is the
sum of tSj+1

i and the time increment ∆ti. After completing the first iteration process inside the UMAT
subroutine, the viscous strain rate tensor ε̇v,i+1 and the resulting stress rate tensor σ̇i+1 are calculated
according to Equations 4.9 and 3.7. Subsequently, the stress tensor σi+1 = σi+1 + σ̇i+1 ·∆ti is up-
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4.5. Model validation for EVPFROZEN

dated and used for the second iteration inside the UMAT to determine ||ε̇m,i+1|| and tm,i+1 again. At
the end of the iteration process (here: five iterations), the final stress tensor σi+1 and the updated state
variables are returned to the FEA code for convergence consideration.

Summarizing, the extended constitutive model presents a simple approach without introducing more
material constants to consider the influence of the loading history on the creep behavior of frozen soils
during steady-state temperature conditions.

From this point on, the extended constitutive model is designated by the acronym EVPFROZEN, which
stands for elastic-viscoplastic frozen soil model.

4.5. Model validation for EVPFROZEN

This section compares the prediction of the extended constitutive model with experimental data. First,
we focus on the shear and creep behavior under single-stage loading. Here, it is important to verify that
the novel transformed creep time t∗ in Equation 4.9 does not influence the already validated predictive
capacity of the model by Cudmani et al. (2023). Subsequently, we analyze the model response for
multi-stage loading by comparing experimental and numerical results using our own test data as well as
data from the literature.

4.5.1. Monotonic loading

Gudehus and Tamborek (1996) tested frozen Karlsruhe sand, which has already been introduced in
Sections 3.1 and 3.7. The dry density ρd = 1.72 g/cm3, void ratio e = 0.54, and the water content
w = 0.18 of the frozen soil samples, were similar to the freezing test characteristics in Orth (1986).
Therefore, we adopt the already calibrated material parameters for frozen Karlsruhe sand introduced
in Section 3.7.3. For the sake of completeness, these material parameters are again summarized in
Table 4.1.

Table 4.1.: Repetition of Table 3.7: Material constants for frozen Karlsruhe sand with e = 0.540 and
Sr ≈ 0.90

One-dimensional model Three-dimensional model
E ν c α1 α2 β K1 A B C D

[MPa] [-] [%] [MPa/◦C] [-] [-] [K] [-] [-] [-] [-]
500 0.3 2.40 3.05 0.59 0.69 3817 2.11 -3.18 3.18 3.33

Gudehus and Tamborek (1996) conducted confined compression and creep tests at a temperature
of θ = −20◦C under different constant traces of stress Iσ = σ1 + σ2 + σ3. Figure 4.14 compares the
experimental and numerical results.
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4. Multi-stage creep behavior of frozen Karlsruhe sand
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(a) Confined compression test with different constant traces of stress Iσ = σ1 + σ2 + σ3
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(b) Confined creep test with different deviator stresses q

Figure 4.14.: Experimental (symbols) and numerical (solid lines with filled symbols) results of confined
freezing tests at θ = −20◦C [Data from Gudehus and Tamborek (1996)]

As can be seen, the proposed model continues to realistically predict the increasing shear resistance for
increasing Iσ in confined compression tests under a constant strain rate (Figure 4.14a). Nevertheless,
for very high stress states (Iσ = 24 MPa and Iσ = 30 MPa), the measured compressive peak strength
does not increase significantly. Gudehus and Tamborek (1996) explained this finding as being due to
the pressure-dependent reduction of the freezing point. As a result, this reduction led to ice softening
and, simultaneously, a reduction of the shear resistance between the ice matrix and the grain skeleton.
These weakening effects are complex and difficult to calculate numerically. Therefore, the simulation of
the confined compression tests in Figure 4.14a leads to a slight overestimation of the peak strength for
very high stress states.
In addition, slight differences can be observed between the simulations with the model by Cudmani
et al. (2023) (dashed lines) and the extended model presented in this study (solid lines) for the confined
compression tests in Figure 4.14a (right side). The use of the extended model improves the description
of the actual deformation behavior as the ultimate shear strength qu = σ1 − σ3 reaches the peak shear
deformation εu,1 > 0.06 more slowly. In contrast, the predicted behavior with the model by Cudmani
et al. (2023) is stiffer (εu,1 < 0.06) than observed in the experiments. Hence, the model accuracy

80



4.5. Model validation for EVPFROZEN

improves in terms of the shear behavior of frozen soil through the proposed equivalent creep time.
In addition, the comparison of confined creep tests with Iσ = 12 MPa and different deviator stresses
q at θ = −20◦C is depicted in Figure 4.14b. The evolution of the axial strain rate over time is slightly
underestimated by the extended model. In fact, the simulated minimum axial strain rates ε̇m are lower
in comparison to the experiments. As a result, the predicted lifetime tm becomes longer. As expected,
there are no essential differences between the model response by Cudmani et al. (2023) (dashed lines)
and the extended model (solid lines). The introduction of the transformed creep time t∗ in Equation 4.9
does not change the model response in terms of the predicted creep behavior.
In summary, the implementation of the transformed creep time t∗ improves the model response for
monotonic shearing without having any noteworthy influence on the model accuracy for single-stage
loaded creep.

4.5.2. EVPFROZEN’s model response for multi-stage stepwise loaded creep

Using our own test data

After confirming the model response for single-stage loading, we investigate the validation for multi-
stage loading by simulating the multi-stage creep tests described in Section 4.2.1. As explained in
Section 3.7.3, seven material constants have to be determined for the 1D model. The material param-
eters determined in Section 3.7.3 based on Orth’s (1986) experimental findings cannot be used for our
analysis. Our own freezing test characteristics are different from those in Orth (1986) mainly due to the
different dry densities of our tested frozen sand samples (for influences on testing results, see, e.g.,
Ting et al. (1983)). Therefore, it is necessary to re-calibrate the model parameters using our own test-
ing data. According to Section 3.7.3, at least two uniaxial creep tests and three uniaxial compression
tests are needed to determine the seven 1D-material constants. Thus, we performed additional uniaxial
creep and compression tests to avoid using the same experimental data for the model calibration and
validation. The most important results of these additional tests are summarized in Table 4.2.

Table 4.2.: Additional testing data of frozen Karlsruhe sand (ρd ≈ 1.66 g/cm3, w ≈ 0.20, e ≈ 0.58, Sr ≈ 0.9)
to calibrate the 1D-model

Uniaxial creep tests with constant loads
Test number θ σ1 ε̇m tm

[◦C] [MPa] [%/min] [min]
M-7 -10.0 6.5 6.50 E-3 334.2
M-8 -10.0 8.8 9.01 E-2 25.8

Uniaxial compression tests
Test number θ σc ε̇1

[◦C] [MPa] [%/min]
C-1 -10.0 10.4 1.0
C-2 -15.0 13.7 1.0
C-3 -20.0 16.5 1.0

The method to determine the 1D-material constants using experimental data is extensively described
in Section 3.7.3 and will not be repeated here. The material parameters used for the 1D-model are
presented in Table 4.3.
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4. Multi-stage creep behavior of frozen Karlsruhe sand

Table 4.3.: Material constants of frozen Karlsruhe sand (ρd ≈ 1.66 g/cm3, w ≈ 0.20, e ≈ 0.58, Sr ≈ 0.9)
for the 1D model

E ν c α1 α2 β K1

[MPa] [-] [%] [MPa/◦C] [-] [-] [K]
500 0.3 2.40 2.44 0.63 0.69 3817

The results of the uniaxial experimental and numerical multi-stage creep tests are compared in Fig-
ure 4.15. Note that the experimental test results of MT1 to MT3 have already been introduced in
Section 4.2.1, viz. Figure 4.1.

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

Experiment

0 200 400 600 800 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

Simulation

(a) Axial strain evolution over time

1     10    100   1000  
10

-3

10
-2

10
-1

10
0

Experiment

1     10    100   1000  
10

-3

10
-2

10
-1

10
0

Simulation

(b) Axial strain rate evolution over time

Figure 4.15.: Experimental and numerical results of uniaxial multi-stage creep tests at θ = −4.3◦C

The model prediction agrees well with the experimental data. The minimum axial strain rate ε̇m and the
lifetime tm for the last load step are in accordance, thus confirming that the proposed constitutive model
extension is appropriate.
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4.5. Model validation for EVPFROZEN

To extend the model validation, we simulated uniaxial multi-stage creep tests at different temperatures
using data from the literature. This discussion follows in the next section.

Using data from the literature

As mentioned in Section 2.2.3, Eckardt (1979a,b, 1982) extensively investigated the mechanical behav-
ior of frozen sand with the help of single-stage and multi-stage creep tests under compressive stress
states. The granulometric properties (grain size distribution) and state variables (void ratio, degree of
saturation, water content, and dry density) of Eckardt’s tested frozen medium sand were very similar to
the freezing tests by Orth (1986), who investigated frozen Karlsruhe sand in the same frost laboratory
at the University of Karlsruhe (Germany). Thus, we also adopted the determined material parameters
for frozen Karlsruhe sand in Table 3.7 for the tested sand by Eckardt. The experimental and numerical
results of uniaxial multi-stage creep tests for different increasing vertical stresses at θ = −10◦C and
θ = −20◦C are shown in Figure 4.16. The multi-stage creep tests include three to six load steps Nσ1,j

(j = 3− 6) with incremental stress increases ∆σ1 between 0.3 to 4.0 MPa. The vertical stress σ1 for
each load step ranged from 0.6 to 12.0 MPa.
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Figure 4.16.: Evolution of axial strain over time: Experimental (symbols) and numerical (solid lines)
results of uniaxial multi-stage creep tests

The model accuracy concurs more strongly at θ = −10◦C (Figure 4.16a) when compared to θ = −20◦C
(Figure 4.16b). The deviations between the calculated and measured deformations at θ = −20◦C occur
during the load applications due to stiffness differences. Here, the simulations overestimate the actual
elastic deformations during the load application in comparison with the deformations observed in the
experiments. However, the creep deformations (evolution of the predominantly viscous axial strain) for
every loading step are in good accordance.
For both the experiments and the simulations, the time-dependent axial strain increases as a function of
the stress state. As shown in Figure 4.2, the average axial strain εm at the turning point (t = tm) for this
frozen Karlsruhe sand is around 0.04 to 0.06. The model realistically captures the turning point of the
creep curves in accordance with the experiments in Figure 4.16, as the axial strains increase strongly
for ε1 > 0.06 and creep failure occurs.
In fact, there are two simulations in Figure 4.16, one at θ = −10◦C with σ1 = 2.0/3.5/7.0 MPa and
one at θ = −20◦C with σ1 = 4.0/8.0/12.0 MPa, which both predict creep failure immediately after
the last load increase. The model response concurs with the corresponding experiments that also
show creep failure shortly after the last load step. The proposed model’s ability to predict creep fail-
ure after a load increase is a powerful feature for safely improving the geotechnical design of frozen
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soil bodies. The consideration of multi-stage creep provides clear economic benefits as the lifetime
of the frozen soil is ultimately longer in comparison to a single-stage lifetime evaluation under the
same loading stages. In addition, our proposed model extension guarantees the early identification
of sudden creep failure. Besides, for very long creep times (here: t > 500 h) under low stress states
(σ1 = 0.6/0.9/1.2/1.5/2.1 MPa and σ1 = 1.0/3.0/4.0/5.0/6.0 MPa) the model does not predict creep
failure which is also in accordance with the corresponding experiments. Therefore, we assume that the
over-engineering of frozen soil bodies by using the model is unlikely.

Summarizing, the essential features of the rate-, stress-, and temperature-dependent characteristics
of frozen soils are well reproduced by the model for multi-stage loaded creep. Moreover, the improved
model can precisely predict the rate-dependent evolution of axial strain, both for different numbers of
load steps Nσ1,j and for varying stress with increasing ∆σ1. Here, the model validation includes a very
large stress state range σ1.

4.6. Model version comparison for multi-stage creep

After the validation of the new concept of EVPFROZEN for stepwise loaded creep, EVPFROZEN is
compared with the original model version according to Cudmani et al. (2023) (see Section 3.7) for both
stepwise loading and stepwise unloading. On the one hand, as already discussed in Sections 4.4
and 4.5.1, the concept of EVPFROZEN offers clear advantages over Cudmani’s model version. On the
other hand, coupling the creep time to the previous stress-strain history increases the computational
effort when using EVPFROZEN instead of Cudmani’s model version. Thus, the following comparison of
model versions aims to identify strengths and limitations of both versions and to derive efficient and time-
saving model version choices for geotechnical applications considering single-stage (see Appendix C.1)
and multi-stage loading. Besides the simulation in this section, additional multi-stage simulations can
also be found in Appendix C.2.

4.6.1. Stepwise loading

Figure 4.17 compares the experimental and numerical results of a multi-stage creep test with three
loading stages, viz. σ1 = 5.0 MPa, σ1 = 6.0 MPa and σ1 = 7.0 MPa.
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Figure 4.17.: Evolution of axial strain (a) and axial strain rate (b) over time in uniaxial multi-stage creep
tests with three loading stages at −10◦C. Experiments: symbols. Simulations: lines.
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For the first two creep stages, both models’ predictions are similar and agree well with the experimental
data, especially for the time-dependent strain evolution in Figure 4.17a. However, a first underestimation
of the axial strain rate evolution (dashed line in Figure 4.17b) already occurs using Cudmani’s model ver-
sion for the second creep stage at σ1 = 6.0 MPa when compared to EVPFROZEN and the experiment.
Despite the actual continuous steep decrease of ε̇1, Cudmani’s model reproduces a nearly constant
strain rate, indicating the imminent arrival at lifetime tm. This trend and the resulting essential difference
between the two model versions becomes even more evident for the third and final loading stage. De-
spite the observed initial decrease of ε̇1 in the experiments, the original model directly predicts a strong
axial strain rate increase corresponding to tertiary creep. In contrast, EVPFROZEN appropriately repro-
duces the initial ongoing primary creep phase directly after the third load increase. Subsequently, both
the arrival at lifetime and the axial strain rate increase can be well reproduced by EVPFROZEN. In order
to further evaluate the different model responses for multi-stage loaded creep, we performed additional
creep tests at −10◦C with two loading stages, including different total stresses (σ1 from 6 up to 9MPa)
and different incremental stress increases (∆σ1 = 1.0 MPa or 2.0 MPa). Figure 4.18 illustrates these
experimental results and their back-calculations.
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Figure 4.18.: Evolution of axial strain rate over time in uniaxial multi-stage creep tests with two loading
stages at −10◦C.

As can be seen, the multi-stage creep simulations with two load steps confirm the already observed
essential differences in Figure 4.17 in predicting the lifetime tm between both model versions. Cud-
mani’s model directly predicts tertiary creep after the last load increase, while the EVPFROZEN model
response at first results in decreasing axial strain rates. This is followed by reaching the minimum ax-
ial strain rate ε̇m and the frozen soil lifetime tm. Later on, ε̇1 increases since tertiary creep occurs.
Here, the EVPFROZEN model response is in good accordance with the experimental measurements.
In summary, the multi-stage creep comparison for stepwise loading revealed the influence of the load-
ing history on the creep behavior. In the original model, the creep time is coupled with the global time.
This assumption may lead to an unexpected increase in the strain rate after an increasing stress state
at a constant temperature. For instance, and as schematically shown in Figure 4.20, tm can suddenly
become smaller than the creep time t (total time) after a stress change using the original model. Hence,
Cudmani’s model may immediately predict increasing axial strain rates, which clearly differs from the
essential mechanical behavior of frozen soils observed in the lab tests and studies from the literature.
In contrast, the EVPFROZEN model with its coupled transformed creep, which is independent of the
global time, precisely reproduces the rate-dependent evolution of the axial strain rate both for different
numbers of load steps as well as for varying incremental stress increases and total stress levels.
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4.6.2. Stepwise unloading

This section deals with the multi-stage creep responses of both models upon unloading. For this pur-
pose, a uniaxial multi-stage creep test with two stepwise unloading stages after an initial loading phase
was performed at −10◦C. Figure 4.19 shows the comparison of the experimental and numerical results.
Note that the non-continuous curves in Figure 4.19b are related to the short-term negative value of ε̇1
occurring at the beginning of each unloading stage, which is not shown in the scaling. As can be seen in
Figure 4.19, there are only slight differences in the model response for both models, as can be seen for
the axial strain evolution in Figure 4.19a. Indeed, the axial strain rate evolution in Figure 4.19b is more
accurate for EVPFROZEN when compared to the experimental one. Here, ε̇1 only decreases slightly af-
ter the first and second load decrease, while Cudmani’s model predicts a more pronounced axial strain
rate reduction. However, both simulations underestimate the measured axial strain rate evolution. In
addition, they overestimate the frozen soil lifetime tm compared to the experiment, which is not on the
safe side.
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Figure 4.19.: Evolution of axial strain (a) and axial strain rate (b) over time in uniaxial multi-stage creep
tests with two unloading stages at −10◦C.

As a result, starting from the second unloading stage, the axial strain evolution also differs significantly
between the experimental and predicted results, see Figure 4.19a. From a practical and safety point of
view, both observed model deviations from the experimental measurements upon unloading should be
taken into account since the model responses may not be on the safe side. Nevertheless, an essential
model difference, as observed in stepwise loaded creep (see Section 4.6.1), cannot be found here. This
is, in any case, expected since the predicted lifetime tm due to unloading always increases at steady-
state temperature conditions. Consequently, both model versions keep predicting decreasing axial strain
rates during primary creep independent of the incremental stress reduction. A direct jump to tertiary
creep, as observed during multi-stage loaded creep in Section 4.6.1, can be theoretically ruled out for
both model versions. However, theoretically, we expect a switch from tertiary to primary creep after
unloading in Cudmani’s model based on its constitutive formulation. Figure 4.20 further explains this
phenomenon. Moreover, it summarizes the model response differences between the original version
and EVPFROZEN for multi-stage loading and unloading in accordance with their constitutive formulation
in terms of creep time.
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Figure 4.20.: Model response differences for multi-stage loading or unloading at a constant temperature.
Original model version after Cudmani et al. (2023) and the extended version with creep time coupling
called EVPFROZEN.

To experimentally and numerically validate the theoretical model differences upon unloading shown in
Figure 4.20, a second multi-stage creep test was performed but with only one instead of two unloading
steps and at high stress levels so that the lifetime of the frozen soil is relatively small. The test result,
together with its back-calculation, is illustrated in Figure 4.21.

1     10    100   
10

-2

10
-1

10
0

Figure 4.21.: The same as in Figure 4.19b at −10◦C but for one unloading stage.

In this case, both model versions overestimate the axial strain rate evolution in comparison to that
measured. Moreover, they already predict increasing strain rates and thus underestimate the frozen
soil lifetime tm at the first loading stage. This is not in accordance with the experiment, even though
the prediction is on the safe side. However, the essential and important finding here is the unrealistic
switch of an increasing ε̇1 at the end of the first loading step to an initial decrease at the beginning of
the second loading step in Cudmani’s model simulation (dashed lines). In contrast, the EVPFROZEN
model response for the second loading stage only includes a continuous strain rate increase. From a
theoretical point of view, this behavior is expected since creep failure indicated by the lifetime tm cannot
be reversed. Moreover, in Cudmani’s model, the creep time (equal to the global time) may appear falsely
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smaller than the lifetime after a stress decrease. This is not on the safe side, as the model prediction
may lead to an unsafe AGF design for unloading construction stages.

4.6.3. Stepwise load/unload cycles

Since the differences in model response for stepwise loading and unloading have been examined sep-
arately, in this section, we compare both model versions for their ability to predict creep behavior for
different combinations of static load/unload cycles. Similar to the stepwise loaded or unloaded creep
test procedure introduced in Figure 3.10c, in multi-stage creep tests with load/unload cycles, the axial
stresses were increased or decreased at an axial strain of ε1 = 2.5 % and ε1 = 3.5 %, respectively.
First, a creep test with a complete load/unload and reload cycle was back-calculated with both model
versions. In the first loading stage, the axial stress σ1 is equal to 7MPa and then decreases to 5MPa
in the second stage. In the third and final stage, σ1 increases again to 7MPa. Figure 4.22 shows
the corresponding experimental (symbols) and numerical (lines) results of the evolution of axial strain
(Figure 4.22a) and axial strain rate (Figure 4.22b) over time of this unloaded and reloaded creep test.

0 200 400 600 800

0

0.02

0.04

0.06

0.08

0.1

0.12

(a)

1     10    100   1000  
10

-3

10
-2

10
-1

10
0

(b)

Figure 4.22.: Evolution of axial strain (a) and axial strain rate (b) over time in uniaxial multi-stage creep
tests with one load/unload and reload cycle at −10◦C.

For the first loading stage with σ1 = 7.0 MPa, both model versions underestimate the creep deforma-
tions as both ε1 and ε̇1 are lower than the measured ones. However, after a short period of the first
loading stage, the accuracy of both model versions in predicting the axial strain rate ε̇1 (Figure 4.22b)
improves for the second loading stage at a reduced axial stress of σ1 = 5.0 MPa. In fact, as can be seen
in Figure 4.22b, EVPFROZEN predicts lower axial strain rates ε̇1 than Cudmani’s version. Moreover,
the time-dependent decrease in ε̇1 is also underestimated by EVPFROZEN, while Cudmani’s model
captures well the qualitative and quantitative evolution of ε̇1 compared to the experiment. These obser-
vations differ from the essential ones derived from the back-calculation of stepwise loaded creep tests
in Section 4.6.2, where Cudmani’s model version overestimated the decrease in ε̇1 after a decrease in
stress. However, after reloading to σ1 = 7.0 MPa for the third and final loading stage, the previously
revealed significant model differences for multi-stage creep between the two model versions reappear.
Cudmani’s version mostly predicts a constant axial strain rate ε̇1, indicating the imminent arrival at the
frozen soil lifetime tm. In contrast and in agreement with the experiment, EVPFROZEN qualitatively and
quantitatively reproduces the continuous decrease of ε̇1 after reloading in combination with a longer
frozen soil lifetime tm than predicted by Cudmani’s model version. Despite the difference in the time-
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dependent evolution of ε̇1 after each loading step, both simulations capture well the experimentally
measured minimum axial strain rate ε̇m and the corresponding lifetime tm.

In addition to the multi-stage creep test consisting of a final (re-)loading stage in Figure 4.22, Fig-
ure 4.23 compares both model responses for multi-stage creep with two consecutive loading stages
and a third and final unloading stage.
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Figure 4.23.: Evolution of axial strain rate over time in uniaxial multi-stage creep tests with two loading
stages and one unloading stage at −10◦C.

At first, we focus on the multi-stage creep test in Figure 4.23a, which consists of a moderate stress
increase for the second loading stage from 7MPa to 8MPa, while the subsequent stress decrease is
relatively large from 8MPa to 5MPa. For this multi-stage loading scenario, both model versions capture
well the first two stepwise loaded creep phases. However, for the last unloading stage, the previously
observed deviations between multi-stage unloaded creep tests and their back-calculations repeat them-
selves, as both simulations underestimate the measured minimum axial strain rate ε̇m and simultane-
ously overestimate the frozen soil lifetime tm, which is not on the safe side. Consequently, regardless
of a previous and/or consecutive stepwise loading history, a combination with stepwise unloading still
involves uncertainties in model accuracy for both model versions, especially if the incremental stress
reduction for the unloading stage is relatively large.
For the multi-stage creep test in Figure 4.23b, the incremental stress increase and decrease are re-
versed compared to the test in Figure 4.23a. First, a relatively large incremental stress increase is
applied from 5MPa to 8MPa for the second loading stage, while the final unloading stress decrease is
moderate from 8MPa to 7MPa. Although both models initially show good agreement with the experi-
mental data for the first loading stage, a significant difference between the two model versions becomes
apparent for the second loading stage in Figure 4.23b. After a relatively large stress jump from 5MPa to
8MPa, shown in detail in the dashed rectangle (Figure 4.23b), Cudmani’s model predicts the onset of
tertiary creep with increasing ε̇1 and imminent creep failure. In contrast, the EVPFROZEN model accu-
rately captures the experimentally observed creep behavior and continues to predict primary creep with
decreasing ε̇1. For the final creep stage (stepwise unloading), the stress is then reduced to 7MPa. After
the pronounced model differences for the second loading stage, the predictions of EVPFROZEN for this
third stage are similar to those of Cudmani’s model and agree with the experimental data in terms of
ε̇m and tm. However, for Cudmani’s model version and in view of the model behavior described above,
this is a coincidence rather than a systematic consideration of multi-stage creep since the model has
already predicted creep failure for the second loading stage and, physically inconsistent, again predicts
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creep failure for the third loading stage.

Overall, the back-calculation of the multi-stage creep tests in Figure 4.22 and Figure 4.23 summarizes
well the potential inconsistency in Cudmani’s model prediction for combinations of stepwise loading
and unloading, as it theoretically allows for a permanent transition between primary and tertiary creep
phases, leading to uncertain multi-stage creep behavior. Conversely, the response of the EVPFROZEN
model remains systematically consistent because an abrupt transition from primary to tertiary creep and
vice versa is not possible due to the coupling of creep time with both loading and stress-strain history.

4.7. Closing remarks

This chapter deals with the influence of varying stress states on the mechanical behavior of frozen soils
at constant temperatures. The comparison between uniaxial creep tests with both single-stage loading
and multi-stage stepwise loading shows that the minimum axial strain rate ε̇m is mostly independent of
the loading history. Note that for multi-stage creep under stepwise unloading, the independence of ε̇m
was not clearly evident in the same way as for stepwise loading and was rather assumed. However, in
both cases (stepwise loading and unloading), the lifetime tm of the frozen soil depends on the loading
history. These findings are consistent with previous experimental studies found in the literature.
Moreover, the introduction of the transformed creep time t∗ enables the conversion of multi-stage creep
tests into equivalent single-stage creep tests. Here, the evolution of the normalized axial strain rate
ε̇1/ε̇m over normalized time t/tm for single-stage as well as the normalized axial strain rate ε̇1/ε̇m over
normalized transformed time t∗,Mj/t∗,Mj

m for multi-stage creep tests converge and are consequently
comparable with each other. Hence, this crucial relationship of the constitutive model for frozen soils
proposed by Cudmani et al. (2023) to describe the rate-, stress-, and temperature-dependent mechani-
cal behavior of frozen soils is not only valid for predominantly monotonic (single-stage) loading but also
for multi-stage loading. Therefore, we extend the constitutive model by taking into account multi-stage
loading based on our proposed determination of the normalized axial strain rate ε̇1/ε̇m over normalized
transformed time t∗,Mj/t∗,Mj

m .
The extended model, designated by the acronym EVPFROZEN, captures the equivalent creep time
after a changing stress state by coupling the transformed creep time t∗ to the previous loading his-
tory. Comparing the simulations with our own experiments and comprehensive data from the literature
successfully completes the first step in validating the extended model. The model validation includes
a large number of incremental axial stress changes Nσ1,step, and incremental axial stress increases
∆σ1 by simultaneously covering a wide range of total axial stress states σ1. Considering the influence
of varying stress states on the shear and creep behavior of frozen soils enables a more realistic and
economically optimized design of ground freezing applications due to the resulting prolonged lifetime of
the frozen soil. In fact, it is possible to take into account different construction stages and techniques
and, therefore, different stress levels of the frozen soil body.
Moreover, the EVPFROZEN model response was compared with the original model version after Cud-
mani et al. (2023) for multi-stage creep. Here, essential differences between the models emerged for
multi-stage creep after loading and unloading. The original model proposed by Cudmani et al. (2023)
results in an erroneous prediction of the frozen soil lifetime reach. In cases of stepwise loaded creep,
Cudmani’s model predicts creep failure too early, resulting in less efficient AGF designs. In addition, for
stepwise unloaded creep, it may even predict decreasing strain rates (primary creep) after unloading,
even though the frozen soil lifetime has already been reached earlier. In contrast, the proposed concept
of EVPFROZEN precisely captures the influence of the loading history on the frozen soil lifetime both
for stepwise loaded and unloaded creep. Moreover, it did not falsely predict early arrival at lifetime nor
a sudden switch between primary and tertiary creep after a stress change was observed in the simu-
lations. Consequently, the EVPFROZEN model version is preferable for AGF designs in which varying
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stress states of the frozen soil body are expected.

Despite the comprehensive EVPFROZEN model validation, it should be noted that based on uniaxial
creep tests and their corresponding axial strain measurements, EVPFROZEN cannot be fully validated
in terms of all its possible predictive capabilities, e.g., volumetric deformations during creep. There-
fore, the present model validation for multi-stage creep is naturally limited to a certain extent. However,
the scope of this dissertation in terms of multi-stage creep is the experimental investigation of frozen
coarse-grained soils under uniaxial multi-stage loading and its constitutive modeling consideration. In
this context, studies such as Ting (1983) and Orth (1988) revealed that the uniaxial creep deformations
of frozen granular soils are almost purely deviatoric. As summarized in Section 3.7.2 (Figure 3.14),
the comparison between uniaxial and triaxial creep tests by Orth (1986, 2018) and Cudmani et al.
(2023) confirms that the creep deformations under confinement are still predominantly deviatoric. In
addition, the novel presented experimental multi-stage creep results in Section 4.2.1 also show that
stepwise loading and unloading do not affect the essential (creep) strain rate evolution. Consequently,
the measured frozen soil creep deformations are still mainly deviatoric. Therefore, it is sufficient to ex-
perimentally measure and numerically compare the axial strain as well as the axial strain rate and use
these data as a first step to validate the model for uniaxial multi-stage loading.

In summary, the work in this chapter has significantly improved and further validated an existing ad-
vanced constitutive model for frozen granular soils for both single-stage and multi-stage loading.

Apart from the far-reaching improvement of the constitutive model, it is acknowledged that a different set
of model parameters was used for the back-calculation of the literature freezing tests provided by Gude-
hus and Tamborek (1996) and Eckardt (1979b) compared to our own multi-stage creep tests, compare
the different material constants in Table 3.7 and Table 4.3. The reason for this is the different sample
characteristics of the tested frozen Karlsruhe sand, i.e., the dry density and, thus, the initial relative den-
sity of the samples, although the different samples had the same degree of saturation. Consequently,
at this stage, a calibrated EVPFROZEN material parameter set is only valid for a specific initial relative
density at a constant degree of saturation. To overcome this restriction, in the next two sections, the
influence of the initial frozen soil relative density on the mechanical behavior at a constant degree of
saturation is investigated experimentally and then considered numerically within EVPFROZEN.
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5. Influence of relative density on the
mechanical behavior: Experimental
investigations

This chapter presents an extensive experimental investigation of the mechanical behavior
of frozen granular soils, focusing on the influence of the initial frozen soil relative density.
The work includes shear and creep tests on frozen Karlsruhe sand with varying initial rel-
ative densities, as well as freezing tests from the literature on two different frozen sands.
This comprehensive experimental database derives a linear relationship between shear and
creep strength and the initial frozen soil relative density that is largely independent of rate
and temperature.

5.1. Introduction

Considering the influence of the volumetric composition on the mechanical behavior of frozen soils,
it is important to note the challenges posed by the natural variability of soils in-situ. Here, changes
in relative density within a soil layer of otherwise similar composition and state greatly complicate the
characterization of frozen soil mechanical behavior. For instance, under fully saturated soil conditions,
the proportion of pore water available for freezing varies with the relative density, ultimately affecting
the resultant ice content, which later contributes to the increased frozen soil shear and creep strength.
In addition, with respect to the ultimate and service limit state design of frozen soil bodies, it is crucial
to evaluate the differences in frozen soil shear and creep strength as a function of initial soil relative
density. For instance, Lunardi et al. (2023) reported the importance of considering the variation of the
relative density according to the in-situ soil conditions for the design of supporting frozen soil bodies
during the extensive use of artificial ground freezing (AGF) as part of the construction of a subway tun-
nel in Milan (Italy). A total of 42 cross passages were excavated using AGF to temporarily increase the
strength and stiffness of the subsoil and provide watertightness. According to Lunardi et al. (2023), the
frozen soil bodies consisted of fully saturated, mostly well-graded gravelly sands with relative densities
ranging from medium dense to dense state, depending on their depth and location along the 15 km
tunnel construction.
In addition, studies such as Orth and Müller (2013); Wang et al. (2022b); Sopko (2023); Zhang et al.
(2023) demonstrate the increasing use of frozen soil bodies as pit walls or as support for the construc-
tion of deep shafts. In this context, it is important to consider the dependence of frozen soil mechanics
on the relative density, as the state of the soil may significantly change with increasing depth and over-
burden.
Despite frozen soil bodies created by AGF, according to Yang et al. (2016); Zhang et al. (2017); Hjort
et al. (2022); Chen et al. (2023), varying states within the frozen soil and specifically varying relative
densities also play an important role in permafrost regions. In particular, tailings dams of sand, which
consist of waste material produced from processing mineral ores, show a wide range of different relative
densities and granulometric properties, which should be taken into account in terms of the geotechnical
design and management of tailing dams in cold regions (Powter et al. 2011; Williams 2021; List and
Lord 2022).
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However, in the past, experimental studies on the mechanical behavior of frozen soils have mostly fo-
cused on shear and creep tests under a specific initial frozen soil void ratio and, thus, relative density
(Andersland and Ladanyi 2003; Arenson et al. 2007; Yamamoto 2013). The influence of different initial
relative densities on the mechanical behavior of frozen soils has received less attention. The above-
mentioned examples highlight the need to improve our fundamental understanding of the initial relative
density influence on the shear and creep behavior of frozen soils. The latter is the fundamental basis for
the development of constitutive relationships and, ultimately, for the consideration of the initial relative
density dependence in constitutive models for frozen soil engineering.

As described in Section 2.2.5, as one of the first experimental studies, Goughnour and Andersland
(1968); Ting (1981) investigated the influence of increasing sand fraction in specimens of ice-sand mix-
tures for saturated conditions on the shear and creep strength by uniaxial compression and creep tests.
A linear relationship between the shear strength and the initial relative density was established, while no
relationship was found for the creep behavior. Since then, studies such as Hooke et al. (1972); Baker
and Konrad (1985); Zhu and Carbee (1987); Andersen et al. (1995); Da Re et al. (2003); Li et al. (2003);
Arenson et al. (2004); Du et al. (2016); Zhang et al. (2017); Niu et al. (2022) have contributed to a bet-
ter mechanical understanding of the initial frozen soil relative density. However, most of these studies
have focused on the shear strength, conducting uniaxial and triaxial compression tests at different initial
relative densities. The important link and combination of shear and creep tests with the same material
under varying relative densities are often missing. As a result, there have been a few attempts, such as
by Hou et al. (2018) and Fei and Yang (2019), to propose analytical or constitutive models that consider
the initial frozen soil relative density influence on mechanical behavior. Nevertheless, the proposed
models describe either the shear or creep strength dependence on the relative density ID and have
been tested only for fine-grained frozen soils.
In fact, even the advanced constitutive model EVPFROZEN, according to Sections 3.7 and 4, requires
different parameter sets to consider the effect of varying initial frozen soil relative densities. For instance,
to successfully back-calculate the freezing tests with a very dense initial state of the tested frozen Karl-
sruhe sand in Sections 3.7.4 and 4.5.1, the EVPFROZEN material parameters from Table 3.7 were
used. In contrast, it was not possible to use these validated parameters to back-calculate identical
freezing tests under a slightly different frozen soil state, i.e., dense state, at otherwise equal degrees of
saturation in Sections 4.5.2 and 4.6.
Overall, there is a lack of constitutive models for frozen soils that simultaneously account for the shear
and creep strength dependence on the initial frozen soil relative density while also covering the essential
rate-, stress-, and temperature-dependent mechanical behavior under shear and creep loading. In addi-
tion, it is advantageous if the number of model parameters remains relatively small and their calibration
procedures, as well as the effort, including freezing tests, remain practically manageable. To address
these issues, this and the following chapter aim to make an important and impactful contribution to the
following ends:

This work is divided into two parts. Part I is part of this chapter, i.e., Section 5.2 through Section 5.5,
while Part II is part of Chapter 6.
In Part I, we present a comprehensive experimental study detailing the results of shear and creep tests
on frozen coarse-grained soils with different initial frozen soil relative densities. Our own experimental
investigations, in combination with data from the literature, are crucial for establishing the fundamen-
tal relationship between shear and creep strength and initial frozen soil relative density. Following the
experimental study, Part II in Chapter 6 shifts the focus to numerical modeling.
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5.2. Uniaxial shear and creep tests with different initial relative
densities at a constant degree of saturation

In this section, our own experimental results on frozen Karlsruhe sand (KAS) are presented and dis-
cussed. In addition, we include data from the literature on different frozen sands to compare and support
our own experimental findings. Unless otherwise noted in the graphs, tests refer to frozen Karlsruhe
sand (KAS). In order to evaluate our own KAS test results and to compare them with the data from
Orth (1986), we convert the frozen soil sample characteristics of Orth (1986) to the characteristics of
our own tested material of Karlsruhe sand, i.e., we use our own values of emin and emax (see Table 3.1)
to calculate the initial relative density of Orth’s frozen sand samples. Finally, we define KAS relative
densities from loose to very dense states for specific bandwidths and mean values of the initial relative
density ID and dry density ρd. These bandwidths are listed in Table 5.1.

Table 5.1.: Definition of relative density based on our own granulometric properties of KAS after Table 3.1
for Sr,mean ≈ 0.88

Definition ID esamples emean ρd,samples ρd,mean

[-] [-] [-] [g/cm3] [g/cm3]
Loose ≤ 0.25 0.787− 0.871 0.828 1.408− 1.473 1.441

Medium dense 0.25− 0.70 0.669− 0.771 0.728 1.486− 1.578 1.524
Dense 0.70− 1.00 0.584− 0.653 0.627 1.593− 1.662 1.619

Very dense* 1.20** 0.540* 1.720*
* adapted from Orth (1986)
** calculated with emin and emax of our own tested Karlsruhe sand according to Table 3.1

First, the influence of the initial relative density on the shear strength of the frozen soil is analyzed. Next,
we demonstrate its influence on creep behavior. Finally, the combination of shear and creep test data
for different temperatures demonstrates the essential characteristic of varying initial relative densities
under a constant degree of saturation on the mechanical behavior of frozen soils.

5.2.1. Uniaxial compression tests

As shown in Table 3.2, we performed uniaxial compression tests on KAS at −5◦C , −10◦C, −15◦C and
−20◦C. Figure 5.1 shows an excerpt of the experimental results at −10.0◦C, viz. the axial stress σ1
over axial strain ε1, in relation to different relative densities. Here, the uniaxial compression tests were
conducted at axial strain rates ε̇1 of 1.0 %/min and 0.01 %/min.
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Figure 5.1.: Evolution of axial stress σ1 over axial strain ε1 in uniaxial compression tests for different
relative densities from loose to very dense at θ = −10◦C. Very dense tests after Orth (1986).

Consistent with the well-known rate-dependent behavior of frozen soils (e.g., Andersland and Ladanyi
(2003)), the uniaxial compression strength σc is higher at an axial strain rate of ε̇1 = 1.0 %/min (Fig-
ure 5.1a) compared to the equivalent test at the same relative density at ε̇1 = 0.01 %/min (Figure 5.1b).
In addition and as extensively discussed by Orth (1986), in the compression tests at ε̇1 = 1.0 %/min,
the axial stress after reaching the peak strength strongly decreases, while at ε̇1 = 0.01 %/min, it re-
mains almost constant after reaching the peak strength. Orth (1985, 1986) concluded physically that
the simultaneous strengthening (ice hardening and hindered soil dilatancy by the ice matrix) and weak-
ening (ice crack initiation and propagation) effects are rate-dependent. In particular, at lower axial strain
rates (here: ε̇1 = 0.01 %/min), the weakening effects become less pronounced and are mostly in equi-
librium with the strengthening effects after the peak. Consequently, only a relatively small decrease in
axial stress occurs after the peak. In addition, the specimens tested at ε̇1 = 1.0 %/min show a stiffer,
more brittle behavior than the ones at ε̇1 = 0.01 %/min. Orth (1985) argued that the weakening effects
(crack initiation and propagation) become more dominant for relatively small axial peak strains εu corre-
sponding to high axial strain rates ε̇1 (here: 1.0 %/min). In contrast, at low axial strain rates, the crack
propagation rate slows down. Overall, this leads to a more ductile frozen soil behavior for lower axial
strain rates. Thus, the peak axial strain εu ≈ 0.04 in Figure 5.1b is also larger compared to the tests in
Figure 5.1a with εu ≈ 0.01− 0.02.

Focusing on the influence of initial relative density, the test results in Figure 5.1 demonstrate an ob-
vious correlation between the compression strength σc (crossed symbols) and the relative density ID,
as σc increases with increasing ID both for ε̇1 = 1.0 %/min and ε̇1 = 0.01 %/min. This characteristic
is qualitatively in accordance with previous studies from the literature, e.g., Goughnour and Andersland
(1968); Baker and Konrad (1985). To establish a quantitative relationship between σc and ID, Figure 5.2
compares uniaxial compression strength σc at −10◦C with the dry density ρd and the relative density
ID. It includes our own test data with frozen KAS and data with frozen KAS and Ottawa sand (OTS)
from the literature. Note that a few test results on frozen KAS in Figure 5.2b refer to relative densities
ID below zero, which is physically not reasonable. As mentioned in Section 3.2, there were scattering
effects in the KAS sample characteristics, especially for very loose samples, due to overall inaccuracies
in the determination of the gravimetric water content and the corresponding void ratio of the sample after
the freezing test. These inaccuracies resulted in calculated values of ID below zero using separately
determined minimum and maximum void ratios emin and emax for the tested material according to DIN
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18126 (version of 2022). In accordance with physical considerations, it is assumed that the negative
values of ID determined in Figure 5.2 correspond to ID = 0 when the inaccuracies in its determination
are taken into account after the freezing test.
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Figure 5.2.: Comparison of uniaxial compression strength σc, sample dry density ρd (a), and relative
density ID (b) at −10◦C.
KAS: our own tests (filled symbol) and after Orth (1985) (open symbols). OTS data after Baker and
Konrad (1985) (open symbol) and Parameswaran (1980) (filled symbols).

As can be seen in Figure 5.2, our own KAS test results and additional data from Orth (1985) indi-
cate a linear relationship between σc and ρd (Figure 5.2a) as well as σc and ID (Figure 5.2b). In fact,
this proportional behavior holds for different axial strain rates based on the comparison of tests with
ε̇1 = 1.0 %/min and ε̇1 = 0.01 %/min. Test results of frozen OTS in Figure 5.2 from the literature es-
sentially confirm our experimental findings, although the data scatter is stronger. We point out that the
OTS data could also indicate a non-linear relationship between σc and ρd, which is not provided by the
KAS data. Nevertheless, based on our own uniaxial compression tests with frozen KAS and data from
the literature, we conclude that there is a linear relationship between both the uniaxial compression
strength σc and the sample dry density ρd and σc and the relative density ID.

As discussed in Section 2.2, besides the ice matrix and its strength, there is a decisive factor con-
tributing to the overall shear strength: the hindrance of dilatancy in coarse-grained soil by the ice matrix.
The overall linear increase in uniaxial compression strength σc in relation to the relative density ID ob-
served in Figure 5.2b can be attributed to the interaction of two mechanisms. On the one hand, the
contribution of the ice strength to σc decreases with increasing ID due to the reduction of pore space
and, therefore, ice content. On the other hand, it is well-known that for coarse-grained soils, the ten-
dency to dilate increases disproportionately with an increase in ID. Figure 5.3 highlights the hindered
dilatancy effect for frozen Manchester fine sand (MFS) as reported by Andersen (1991) in triaxial com-
pression tests under very low confinement of σ3 = 0.1 MPa at −10◦C. Here, the tested specimens had
a degree of saturation of Sr > 0.95 (Andersen 1991). From the findings of Orth (1988) and Cudmani
et al. (2023), we assume that the essential mechanical frozen soil behavior observed in Figure 5.3 at a
confining pressure of σ3 = 0.1 MPa under triaxial compression is also valid for uniaxial compression.
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Figure 5.3.: Deviator stress q (solid lines) and volumetric strain εvol (dashed lines) versus axial strain
ε1 in triaxial compression tests with ε̇1 = 0.18 %/min and σ3 = 0.1 MPa for different relative densities
from loose to dense state at −10◦C. Data after Andersen (1991).

The stress-strain (solid lines) and corresponding volumetric strain curves (dashed lines) in Figure 5.3
demonstrate the influence of the relative density on the increase in shear strength due to the dilatancy
of the frozen soil. Independent of the relative density, there is almost no volumetric strain until the peak
strength qu (crossed symbols) is reached. Although with increasing relative density, the remaining ice
matrix is diminished in volume, it still locally hinders or even prevents dilatancy of the granular skeleton.
Consequently, for the range of relative densities studied, the strength of the ice matrix and its ability
to inhibit dilatancy is largely independent of the total ice content as long as the ice is homogeneously
distributed in the pores and there is a high degree of saturation. The increase in shear strength due
to hindered dilatancy, which leads to an increase in grain-to-grain contact forces and effective stress,
resulting in an increase in shear resistance, overcompensates for the reduction in ice content/strength.
Once peak strength is reached and pronounced cracks in the ice allow for dilatancy in the granular
skeleton, the volumetric strain εvol starts to increase significantly. At this stage, we can clearly distin-
guish between the dilatancy of loose and dense samples as they become larger with increasing relative
density.
In summary, increasing relative density results in a decreased frozen soil void ratio and, thus, reduced
ice content and ice strength. Still, in the investigated range of relative densities, the ice matrix pre-
vents and/or hinders dilatancy in the granular skeleton. We assume that the continued hindered di-
latancy of the frozen soil is primarily responsible for the overall increase in frozen soil shear strength
with increasing relative density. From a physical point of view, the two opposite effects of decreasing
ice content/strength and increasing dilatancy tend to behave non-linearly when evaluated individually.
However, the two effects combined have a proportional influence on the shear behavior of frozen soils,
as shown in Figures 5.1 through Figure 5.3.

Apart from the obvious influence of the relative density ID on the compression strength (σc for uni-
axial and qu for triaxial loading), comparing the stress-strain behavior in Figure 5.1 and Figure 5.3, no
clear dependence can be derived for the peak axial strain εu at reaching σc/qu. For example, in Fig-
ure 5.1b, εu for the loose sample is equal to that of the dense one, while the medium dense and very
dense specimens have opposed to this the highest εu. In contrast, for the loose sample in Figure 5.3,
the strain at the first peak is significantly smaller than the one of the dense sample. Nevertheless, the
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medium dense specimen still has the the highest εu, which is physically not reasonable. The observed
variation of εu could be due to soil-specific variability or experimental inaccuracies, such as the determi-
nation of εu for compression tests where the peak strength is mostly equal due to residual strength and
no clear stress softening is observed after the peak is reached, making the unambiguous determination
of εu difficult. Therefore, and in order to further evaluate the influence of the initial relative density on
εu, we performed additional uniaxial compression tests at −15.0◦C for loose and dense KAS samples
under different axial strain rates ε̇1 (see Table 3.2). An excerpt of these results, i.e., the evolution of
axial stress σ1 versus axial strain ε1, is shown in Figure 5.4.
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Figure 5.4.: Comparison of uniaxial compression tests for loose (dashed lines) and dense (solid lines)
KAS samples at different axial strain rates ε̇1 at θ = −15◦C.

In contrast to the previous tests at −10◦C (Figures 5.1 and 5.3), the uniaxial compression tests at
−15◦C in Figure 5.4 indicate a clear dependence of peak strain εu from the relative density ID. The
loose samples become more brittle, showing a smaller εu, while for the dense samples, εu is larger,
indicating more ductile behavior. This pattern is the same for all three investigated axial strain rates but
is more pronounced at lower axial strain rates when the weakening effect, i.e., ice cracking, propagates
more slowly. It is also interesting to note that the initial stiffness of the loose specimens appears to
be higher than that of the dense specimens, as the dashed curves initially lie above the solid ones
for an initial axial strain ε1 < 0.02. Here, the higher ice content of the loose specimens positively
influences the initial strength and stiffness compared to the dense specimens until the ice matrix is
significantly weakened by ice cracking. In contrast to the dense samples, this effect on strength and
stiffness reduction of the loose samples cannot be compensated by soil dilatancy. Therefore, the strain-
strain curves of the loose samples become, at this point, more brittle and start to lie below those of the
dense samples at higher axial strains (here: ε1 > 0.02−0.04). For further evaluation of the deformation
behavior, Figure 5.5 compares the peak axial strain εu between loose and dense frozen KAS samples
for a wide range of different axial strain rates ε̇1 at −10◦C and −15◦C.
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Figure 5.5.: Dependency of the peak axial strain εu on the axial strain rate ε̇1 in uniaxial compression
tests on frozen KAS for different relative densities.

As can be seen, the peak axial strain εu for loose samples is mostly smaller than for dense samples,
both at −10◦C and −15◦C. In fact, the quantitative differences are greater at relatively low axial strain
rates ε̇1, while at high values, i.e., ε̇1 = 1.0 %/min, εu is similar for both loose and dense samples.
Consequently, at high strain rates, the weakening effect of ice cracking cannot be compensated by
higher relative densities and resulting increased dilatancy. Therefore, the deformation behavior appears
to converge for loose and dense samples for ε̇1 = 1.0 %/min. In addition, the results in Figure 5.5 con-
firm our previous findings based on Figure 5.4 and provide additional insights in terms of the changing
behavior from brittle to more ductile with increasing relative density.

To sum up, based on our own uniaxial compression tests and data from the literature, we found that
shear strength increases linearly with relative density for coarse-grained frozen soil at high degrees
of saturation. The observed approximate linearity supports and validates previous assumptions made
from the literature, which were associated with uncertainties due to the limited amount of data and the
scatter. The increase in shear strength with increasing relative density is attributed to the ice-hindered
but significantly increased dilatancy of the granular skeleton. In this context, frozen soils behave com-
paratively brittle in the loose state, while the deformation behavior becomes more ductile as the relative
density increases.

5.2.2. Uniaxial creep tests

After analyzing and discussing the influence of relative density on the shear strength of frozen coarse-
grained soils, this section deals with its influence on creep behavior under uniaxial loading. For this
purpose, again, we use and evaluate both our own frozen KAS tests and data from the literature.
Figure 5.6 depicts the evolution of axial strain (Figure 5.6a) and axial strain rate (Figure 5.6b) over time
for loose, dense, and very dense KAS samples under an axial stress of σ1 = 8 MPa at θ = −10◦C.
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Figure 5.6.: Experimental results of uniaxial creep tests on frozen KAS with σ1 = 8 MPa for different
relative densities from loose to very dense at θ = −10◦C. Very dense test after Orth (1988).

Regardless of the relative density, the results of all creep tests in Figure 5.6 qualitatively show the same
well-known creep behavior of frozen soils, including primary, secondary, and tertiary creep. For more
details on the essential creep behavior of frozen soils, see Section 2.2.3. Figure 5.6a shows that the
time-dependent evolution of the axial strain ε1 varies staggered between different relative densities. In
fact, the loose sample exhibits the fastest evolution of ε1 over time, closely followed by the medium
dense sample, and then, with a significant delay, by the dense sample. Notably, the very dense sample
experiences consequently the slowest increase in axial strain over time, but with another significant
time lag compared to the dense sample. In Figure 5.6b, we essentially observe the same pattern in the
double-logarithmic representation of the strain rate ε̇1 over time in terms of reaching the minimum axial
strain rate ε̇m dependent on the relative density ID, see crossed symbols. Indeed, as ID increases, ε̇m
clearly decreases. Naturally, this pattern applies analogously to the corresponding frozen soil lifetime
tm, which becomes longer with increasing ID. In order to further evaluate and derive a general rela-
tionship between ε̇m and tm dependent on ID, we performed additional uniaxial creep tests with KAS at
different axial stresses and temperatures. An excerpt of these creep tests is shown in Figure 5.7.
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Figure 5.7.: Additional uniaxial creep tests with frozen KAS for varying relative densities. Very dense
tests after Orth (1986, 1988).
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The uniaxial creep tests conducted at −10◦C and −15◦C in Figure 5.7a further support the previous
finding of the relative density dependent decrease in ε̇m and increase in tm, respectively, for a given
σ1. In particular, Figure 5.7a indicates that the relationship between ε̇m and tm (blue dashed line) is
constant, i.e., ε̇m · tm = const., regardless of temperature, stress state, or relative density. As a result,
the crossed symbols in Figure 5.7a corresponding to ε̇m and tm continue to align linearly on a straight
line. So far, studies such as Ting (1983); Orth (1988) have concluded that a certain linearity between
ε̇m and tm holds only for a single specific relative density. Our study provides new evidence that it is
also valid for a wide range of different relative densities, from loose to very dense states.
In addition, Figure 5.7b depicts supplementary uniaxial creep curves of KAS at −10◦C. As before, it
includes tests on loose to very dense samples. A crucial observation is that curves for loose, medium
dense, dense, and very dense samples converge, indicating almost identical minimum axial strain rates
ε̇m and corresponding lifetimes tm. However, these presented creep curves from samples of different
relative densities are associated with different creep stresses. Notably, the creep stress required for the
loose sample is the lowest, and as the relative density increases, so does the creep stress required
to achieve the same ε̇m and tm. For instance, to achieve ε̇m ≈ 10−3 %/min in a uniaxial creep test at
−10◦C in Figure 5.7b, an axial (creep) stress of σ1 = 4 MPa is required for the loose specimen, while
this stress increases to 5MPa and 6MPa for a dense and very dense sample, respectively. This implies
that at steady-state temperatures, there exists an equivalent creep stress state depending on ID, result-
ing in the same ε̇m and tm. This novel experimental finding is fundamentally similar and comparable
to that of Cudmani et al. (2023) (see Section 3.7.2), who found equivalent stress states for unconfined
and confined creep, but in our case, the equivalent stress state depends on the relative densities, while
Cudmani et al. (2023) defined it on the confining pressure.

In terms of the axial strain evolution, based on our experimental investigations in Section 4.2 and studies
by Ting et al. (1983); Orth (1986), we concluded that the total axial strain at the turning point (t = tm)
is roughly independent of the temperature θ and the axial stress σ1 for both uniaxial single-stage as
well as multi-stage loaded creep. However, these results were only obtained under a specific relative
density. Figure 5.8 compares the average axial strain εm at the turning point for creep tests on frozen
KAS ranging from loose to very dense states.
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Figure 5.8.: Average axial strain εm at the turning point (t = tm) for uniaxial single-stage creep tests
with frozen KAS. Very dense tests after Orth (1986).

As can be seen in Figure 5.8, and as expected, εm is largely independent of both the stress and temper-
ature but is influenced by the relative density to a certain extent. According to Orth (1986), the observed
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scatter of εm at constant relative density mainly results from differences when setting up the sample end
plates before the start of the tests. In addition, slight differences in the initial degree of saturation of the
samples could contribute to the observed scattering. Despite the scattering effects, analogous to Sec-
tion 5.2.1, frozen KAS in the loose state exhibits a more brittle behavior and thus reaches creep failure
relatively early, as indicated by the range of εm,loose = 0.023− 0.046. Conversely, as ID increases, the
material becomes more ductile, and the onset of creep failure is delayed, as indicated by an increase in
εm, i.e., εm,dense = 0.034− 0.060.

There are different crystal and soil mechanical aspects that lead to the deceleration of creep rates
and overall increase in creep strength with increasing relative ID. At first, the pore spaces and, thus, the
ice content reduce with increasing ID. Reduced ice content also reduces the overall macroscopically
observable viscous behavior, as the creep process occurs in the ice matrix. However, this alone cannot
explain the increase in creep strength since, without ice, the sand would show no creep strength in the
frozen state. Based on our own comprehensive experimental database, macro-mechanical experimen-
tal observations as well as soil and crystal mechanical considerations, we derive the following concept
in terms of the influence of relative density on the creep behavior of frozen coarse-grained soils:
We assume that two different essential characteristics control the decrease of the creep rate and the
increase of the creep strength with increasing relative density ID. On the one hand, the local (micro-
mechanical) stress distribution between the granular skeleton and ice matrix depends on ID, i.e., an
increase of the effective stress in the granular skeleton leads to a decrease of the ice stresses for
the same total stress level. On the other hand, increasing ID and, thus, grain content retards the initia-
tion and propagation of microcracks in the ice matrix. Both of these characteristics are discussed below.

Stress distribution between the granular skeleton and the ice matrix
First, as explained in Section 5.2.1, the shear strength of frozen soils increases with increasing relative
density because the effective stresses in the granular skeleton increase due to increased grain-to-grain
contact forces and shear resistance with increasing ID. Based on the comparison of creep tests at the
same temperature and creep stress in Figure 5.7a, we assume that during the load application at the
beginning of the creep test, the increasing relative density results in an increased load fraction that is
carried by the granular skeleton and a decreased load fraction in the ice matrix for the same stress level.
Thus, during the creep phase, the stress level in the ice matrix is different between the creep tests at
the same total creep stress depending on the relative density, reducing the creep rates for the sample
in a dense state compared to the one in a loose state. Consequently, at the same temperature and total
creep stress, the stress fractions in the granular skeleton and in the ice depend on ID. There is a shift
of the fraction more towards the granular skeleton with increasing ID, reducing the stress level in the ice
matrix, which is responsible for the creep deformations, leading to the observed decrease of the creep
rates with increasing ID.

Retardation of the initiation and propagation of microcracks in the ice matrix
Considering both the strengthening process, viz. ice hardening, which dominates during primary creep
and the weakening process, viz. the initiation and propagation of microcracks in the ice matrix, which
results in increasing strain rates during tertiary creep, we derive the influence of ID on microcracks in
the ice matrix using Figure 5.9 and Figure 5.10.
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Figure 5.9.: Axial strain ε1 and normalized ε1/εm plotted against normalized time t/tm for the uniaxial
creep tests already presented in Figure 5.7a. For corresponding labels, see also Figure 5.7a.

According to Orth (1986, 1988), ice hardening and microcracking occur simultaneously but are tempo-
rally distinct. In fact, Orth argued physically and crystal mechanically that the essential characteristics
of the creep strain curves for frozen soils at constant relative density and constant degree of saturation
are mostly stress- and temperature-independent. In contrast, as shown in Figure 5.6, for different initial
relative densities from loose to very dense, the axial strain curves are time shifted. In this context, our
own time-normalized creep strain curves in Figure 5.9a are in accordance with Orth’s finding, as the
creep strain characteristics are similar but offset due to deviations in εm caused by different relative
densities, see Figure 5.8. Removing this offset in Figure 5.9b by normalizing the creep strain ε1 to εm
demonstrates that the characteristics of the normalized creep strain are essentially independent of the
relative density ID. However, ID has a positive influence on microcrack initiation and propagation. This
phenomenon is further discussed with the help of Figure 5.10.

(a) Loose sample (b) Dense sample

Figure 5.10.: Schematic illustration of the possible initiation and propagation of microcracks in the ice
matrix on the meso-scale. Yellow: mineral grains; blue: ice matrix; black: possible microcrack directions.

Following, we assume that there is no grain breakage and that microcracks in the ice matrix have to
pass along the mineral grains. Figure 5.10 posits that the pattern of microcracks in the ice matrix differs
significantly between loosely and densely packed samples. For loose samples, the large amount of
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pore space allows cracks to form almost freely with marginal constraints. This provides the shortest mi-
crocrack pathways. In contrast, for dense samples, the grain alignment obstructs a more straight crack
propagation, leading to longer overall crack lengths and consequently delaying the weakening process
of the frozen soil. The above agrees with considerations by Ting et al. (1983) regarding the important
role of grain assembly constraints that affect crack propagation with increasing initial frozen soil relative
density.

Figure 5.11 summarizes and highlights our experimental findings in terms of the dependence of the
frozen soil creep strength on the relative density ID.
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(a) KAS: Our own tests (filled symbols) and after Orth (1988) (open symbols). MFS after Ting (1981).
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(b) KAS: Our own tests (filled symbols) and after Orth (1986, 1988) (open symbols).

Figure 5.11.: Minimum axial strain rate ε̇m over initial dry density ρd and relative density ID in uniaxial
creep tests.

Based on the results of Figure 5.11a, ε̇m versus ρd (left side) and ID (right side) for different axial creep
stresses σ1, the following key insights can be derived. First, for creep tests on KAS, a strong linear
correlation is evident between both ρd and ID and the logarithm of ε̇m for a wide range of different
axial stresses. This simple log-linear relationship is consistent with the individual findings presented
in Figure 5.6b and Figure 5.7a, as log (ε̇m) increases proportionally with ρd and ID. For comparison
purposes, experimental results with MFS from Ting (1981) are also depicted with red points in Fig-
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ure 5.11a. For MFS, the log-linear relationship appears to be a quantitatively poorer fit to the test data,
although the qualitative trend is still satisfactorily captured. Deviations from a log-linear relationship in
the MFS tests could be due to more pronounced scatter, measurement inaccuracies, and the overall
limited number of seven tests under a single axial load and temperature compared to the sophisticated
and more comprehensive KAS database.
In Figure 5.11b, the axial creep stress σ1, required to achieve a certain minimum axial strain rate ε̇m,
is plotted against ρd (left side) and ID (right side). The presented data includes uniaxial creep tests at
−10◦C (black symbols) and −15◦C (red symbols). Note that it is not possible to intentionally generate
a specific ε̇m in load-controlled tests since only σ1 can be controlled during uniaxial creep tests. Thus,
ε̇m is a test result induced by σ1 rather than an input parameter for a creep test. Based on the creep
test results in Figure 5.11b, a linear relationship between σ1 and ρd, as well as σ1 and ID, can be
established when comparing similar values of ε̇m. This relationship appears to be independent of the
temperature, as the slope of the black and red lines is visibly almost identical. Moreover, as ρd and ID
increases, a higher value of σ1 is required to attain the same ε̇m, additionally confirming the previous
results highlighted in Figure 5.7b.

In conclusion, based on our own uniaxial creep tests and referenced literature, a linear relationship
can be deduced between the logarithm of minimum axial strain rate ε̇m and the dry density ρd, as
well as the relative density ID for a given axial stress σ1. Moreover, when comparing a constant ε̇m,
the axial creep stress σ1 required to achieve a specific value of ε̇m increases linearly with ρd and ID.
These essential relationships have been experimentally confirmed for a wide range of different stress
states, temperatures, and relative densities at a constant degree of saturation. Furthermore, similar to
the observed shear behavior in Section 5.2.1, the characteristic deformation behavior of the frozen soil
changes from comparably brittle to more ductile under creep loading as ID increases.

5.3. Combined description of uniaxial compression and creep
strength for frozen Karlsruhe sand (KAS)

In Sections 5.2.1 and 5.2.2, we explored separately how the initial relative density ID affects the uniax-
ial shear and creep behavior of frozen granular soils under different rates, stresses, and temperature
conditions. In the following, we present a combined analysis of the experimental findings in order to es-
tablish a general relationship for both shear and creep loading dependent on ID. The aim is to provide
a unified description of our experimental findings, paving the way for numerical considerations.
Figure 5.12 illustrates the uniaxial compression strength σc (filled symbols) and creep strength σ1 (open
symbols) plotted against the axial strain rate ε̇1 and minimum axial strain rate ε̇m for loose to very dense
samples of frozen KAS.
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Figure 5.12.: Comparison of uniaxial compression strength σc (filled symbols), uniaxial creep strength
σ1 (open symbols), and their joint linear regression (dashed lines) dependent on the relative density for
frozen KAS.

As can be seen in both Figure 5.12a and Figure 5.12b, the compression strength σc and creep strength
σ1 for the same relative density are rate-, stress- and temperature-dependent. In this context, Cudmani
(2006); Cudmani et al. (2023) already reported that for very dense KAS, the σc − ε̇1 and the σ1 − ε̇m
relationships are qualitatively and quantitatively similar but not identical. We can confirm their finding
based on Figure 5.12 also for loose to dense states. Cudmani (2006) argued that the mechanical
response of the ice matrix also depends on the previous deformation history, which is different between
uniaxial compression and creep tests, and thus, the σc − ε̇1 and the σ1 − ε̇m relationships differ of up
to 10− 15 %. Nevertheless, according to Cudmani et al. (2023), from a practical point of view, it is
reasonable to assume a unique relationship to describe the shear and creep behavior, indicated by
the dashed lines in Figure 5.12. As can be seen, the fitted relationships are nearly parallel for the
different relative densities. However, the parallelism concurs more strongly for −10◦C when compared
to −15◦C. At −10◦C, the amount of data is greater than for −15◦C, which consequently leads to a more
accurate and reliable determination of the σc/σ1 − ε̇1/ε̇m relationship. Moreover, the comparison of σc
or σ1 at a specific axial strain rate ε̇1 or minimum axial strain rate ε̇m for loose, dense, and very dense
states leads to the already identified linear relationship between σc/σ1 and the relative density ID (see
Section 5.2). Here, the black arrows in Figure 5.12 highlight that the linear dependency between σc/σ1
and ID can also be accurately described with a unique relationship. In particular, the black arrows in
Figure 5.12a and Figure 5.12b are the same size. The distance, marked by the black arrows, between
the blue and red dashed line, is nearly identical for different temperatures and over a wide range of
strain rates. Hence, the relationship describing the relative density influence on the shear and creep
strength of frozen soils appears to be mostly rate- and temperature-independent.

5.4. Influence of varying relative densities on the shear strength
under confining pressure

So far, the analysis has predominantly focused on uniaxial stress conditions. In this section, we ex-
pand the scope to include three-dimensional aspects by examining the influence of relative density ID
for different triaxial stress states and, thus, confinements. Instead of conducting our own triaxial freez-
ing tests on frozen KAS, we use comprehensive testing data from the literature on frozen Manchester
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5. Influence of relative density on the mechanical behavior: Experimental investigations

Fine Sand (MFS) for this purpose. Andersen (1991); Andersen et al. (1995) and Swan (1994) reported
triaxial compression tests on frozen MFS with a wide range of different temperatures, strain rates, con-
finements, and relative densities. Following, we summarize their main findings and conclusion in terms
of the influence of the relative density ID under confining pressure σ3 on the stress-strain behavior of
frozen MFS. Further details and explanations can be found in Andersen (1991); Swan (1994); Andersen
et al. (1995); Da Re et al. (2003).

Figure 5.13 offers a comprehensive look at the triaxial compression behavior of frozen Manchester
Fine Sand (MFS) for loose/medium dense (dashed lines) and dense (solid lines) samples under low
and high confining pressure.
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Figure 5.13.: Triaxial compression test results with ε̇1 = 0.18 %/min highlighting the effect of relative
density ID and confining pressure σ3 on the stress-strain behavior of frozen MFS. Data after Swan
(1994) and Andersen et al. (1995).

First, the test results in Figure 5.13 confirm the well-known (positive) influence of increasing confining
pressure σ3 on the shear strength of frozen soils, as the peak strength qu increases with increasing
σ3. This effect can be observed for both loose and dense samples when comparing Figure 5.13a with
Figure 5.13b. Next, as extensively explained by Andersen et al. (1995), the comparison of Figure 5.13a
and Figure 5.13b indicates that the yield point (dashed circles in the figure) is largely unaffected by
changes in relative density and confining pressure. After reaching the yield point, the large stress-
strain behavior remains similar within each confinement level despite variations in ID. However, when
comparing low to high confinement in Figure 5.13, distinct differences in stress-strain behavior emerge.
On the one hand, under low confinement, there is strain softening and, thus, a decrease in deviatoric
stress after the yield or peak point. On the other hand, under high confinement, we observe strain hard-
ening and deviatoric stress increase after the yield point. Moreover, in the triaxial compression tests
reported in Figure 5.13, relatively high initial stiffness of the tested frozen MFS was observed, with yield
stresses of qyield = 7− 17 MPa being reached at relatively small axial strains of ε1 < 0.01. This mea-
sured high initial stiffness clearly differs from triaxial test results on frozen sand in the literature, such
as Parameswaran and Jones (1981); Orth (1986); Xu (2014), which show a more ductile stress-strain
behavior. Based on the data and information provided by Andersen (1991); Swan (1994) on the test
procedure and equipment, the observed high initial stiffness for frozen MFS compared to literature data
cannot be conclusively resolved.
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5.4. Influence of varying relative densities on the shear strength under confining pressure

In order to derive a fundamental relationship between the relative density ID, the confining pressure
σ3, and the peak strength qu, Figure 5.14 plots qu against ID using triaxial test data on frozen MFS by
Andersen (1991) and Swan (1994).
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Figure 5.14.: Comparison of the peak deviator qu with the relative density ID and their regressions
(lines) for different confinements σ3 in triaxial compression tests with ε̇1 = 0.18 %/min.

In Figure 5.14, the shear strength qu increases with the relative density ID under constant confine-
ment, consistent over a wide range of different confining pressures σ3 from 0.1MPa to 10MPa and
temperatures. It is noteworthy that confined compression tests at σ3 = 0.1 MPa closely resemble un-
confined compression tests due to the low level of confinement (Cudmani et al. 2023), aligning with
the previously established linear relationship for uniaxial stress conditions in Section 5.2.1. In general,
in Figure 5.14, both regression approaches (solid and dashed lines) show good agreement with the
experimental data, even though the polynomial fit at relatively high confinements of σ3 = 10 MPa has
higher accuracy than the linear approach. In this context, note that the presented results in Figure 5.14a
and Figure 5.14b are derived from studies by two different researchers. Specifically, the tests at −10◦C
in Figure 5.14a were reported by Andersen (1991), featuring a larger dataset with a correspondingly
higher degree of variability in the results. Nevertheless, this dataset also introduces a notable scatter in
the observations. Instead, the tests at −15◦C and −20◦C in Figure 5.14b are part of the experimental
investigations by Swan (1994), covering lower temperatures and showing less scattering, but the total
number of tests is smaller compared to Andersen (1991). It is important to acknowledge the limitations
inherent in the datasets and measurement methodologies used in the studies by Andersen (1991) and
Swan (1994). The data is based on global measurements of stresses and strains, which, while providing
valuable insights, do not allow for a definitive conclusion regarding the interaction between increasing
confinement σ3 and relative density ID. In particular, with the available measurement techniques, it is
challenging to distinctly discern the individual contributions of high σ3 and high ID to the significantly
higher peak deviator stress qu observed in tests with σ3 = 10 MPa compared to those at σ3 = 0.1 MPa.

To sum up, and despite some data scattering effects for frozen MFS from the literature, the influence of
the relative density ID under different confinements on the shear strength of frozen soils is essentially
comparable to that under uniaxial stress conditions, as the peak deviator stress qu increases approxi-
mately linearly with increasing ID under low and high confining pressures.
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5.5. Closing remarks

In summary, the initial relative density ID of frozen granular soils affects the compression strength σc
and the creep strength σ1 under uniaxial loading conditions. In fact, σc and σ1 increase linearly, mostly
rate- and temperature-independently, with ID. It is possible to describe the evolution of the compression
strength σc and the creep strength σ1 for different strain rates and temperatures within a single rela-
tionship and to combine this relationship with a unique one for its dependence on the relative density
ID. While triaxial stress states are beyond the primary scope of our experimental work, we summarized
extensive triaxial compression test data from the literature to identify the effect of ID on the mechanical
frozen soil behavior under confinement. Apart from the general increase in shear strength with increas-
ing confining pressure for loose to dense states, the fundamental relationships between relative density
ID and shear strength established from uniaxial conditions also approximate well for triaxial conditions.

In the following, the existing constitutive model EVPFROZEN for frozen granular soils according to
Section 4 will be extended to include the influence of the initial relative density on the mechanical be-
havior of frozen granular soils based on the conceptual, experimentally derived relationships presented
in this chapter.
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6. Influence of relative density on the
mechanical behavior: Constitutive
modeling

After experimentally revealing the influence of the initial frozen soil relative density on the
mechanical behavior of frozen soils, the experimental results are used to derive the funda-
mental relationship between both the shear and creep strength and the initial relative density
of the frozen soil. Here, we introduce a novel concept to incorporate frozen soil’s relative
density dependence into the advanced constitutive model EVPFROZEN. The derivation and
development of the concept for EVPFROZEN, corresponding calibration, and model valida-
tion are presented for a wide range of initial relative densities. EVPFROZEN effectively
demonstrates the linear relationship between shear and creep strength and the initial rel-
ative density of frozen soil under uniaxial and triaxial loading. This is supported by the
back-calculation of freezing tests on two distinct frozen sands covering a wide range of
different initial frozen soil relative densities.

6.1. Introduction

Based on the comprehensive experimental database presented in Section 5, we introduce a novel
concept to incorporate frozen soil’s relative density dependence into the advanced constitutive model
EVPFROZEN. In this chapter, we present the derivation and development of the concept, the corre-
sponding calibration, and the model validation for a wide range of initial relative densities considering
two frozen sands with different granulometric properties.

6.2. Conceptual framework to consider the influence of the
relative density on the shear and creep behavior of frozen
soils

6.2.1. In general

A crucial aspect of the constitutive model EVPFROZEN is the relationship between the normalized creep
rate ε̇v/||ε̇m|| and the normalized time t∗/tm, as already explained in Sections 3.7.1 and 4.3.2. For
single-stage and multi-stage creep as well as monotonic shearing with constant strain rate, this relation-
ship is independent of the temperature and the stress level; see Section 4.3.2. Despite its far-reaching
scope of application, the relationship between ε̇v/||ε̇m|| and t∗/tm, implemented in EVPFROZEN ac-
cording to Section 3.7 and 4.4, holds only for a unique given relative density and degree of saturation.
Next, we present a conceptual framework to consider the influence of the relative density on the shear
and creep behavior of frozen soils within EVPFROZEN.
For single-stage creep under uniaxial conditions, the three-dimensional formulation of Equation 4.9
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simplifies to Equation 3.5 with ε̇v = ε̇1, ||ε̇m|| = ε̇m and t∗ = t.

ε̇1
ε̇m

= exp (−β) exp

(
β

t

tm

)(
t

tm

)−β

(3.5)

Here, ε̇m is the minimum axial strain rate, t is the testing time, tm is the lifetime, and β is a material pa-
rameter. As shown by the experimental results of the uniaxial shear and creep tests in Section 5.2, ε̇m
depends on the initial relative density ID of the frozen soil. Moreover, EVPFROZEN considers a unique
stress-strain rate relationship to describe both the shear and creep strength of frozen soils. Therefore,
in the following, the established consideration of the relative density ID for the creep behavior, i.e., the
minimum axial strain rate ε̇m applies analogously to the shear behavior at a constant axial strain rate
ε̇1.

Figure 6.1 depicts the normalized creep curves presented in Section 5.2.2 for loose to very dense
frozen KAS at −10◦C and −15◦C.
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Figure 6.1.: Evolution of the normalized axial strain rate ε̇1/ε̇m over normalized time t/tm for different
relative densities from loose to very dense state resulting from the uniaxial creep tests in Section 5.2.2
at −10◦C and −15◦C. Very dense tests after Orth (1986).

As expected, the normalized experimental creep rate curves for different ID converge to Equation 3.5,
which is consistent with our experimental conclusion that the essential creep characteristics of frozen
soils do not differ between loose to very dense states. In this context, Figure 6.1 evidences that the
general formulation of Equation 3.5 is still sophisticated to different initial relative densities of frozen
soils. Nevertheless, our experimental results revealed a clear dependence of ε̇m on ID. Hence, the
current calculation of ε̇m based on Equation 3.20 needs to be modified in order to describe ε̇m also
as a function dependent on ID. In the following, we first analyze the influence of ID on Equation 3.20,
including its corresponding Equations 3.3, 3.19, 3.22, and 4.9, as well as the influence of ID on the 1D
and 3D model parameters involved. Next, we identify the affected model parameters by ID and propose
a concept to include their dependence on ID within EVPFROZEN. For these purposes, we assume that
in the freezing tests discussed in Sections 5.2 and 5.3, all tested frozen soil specimens had the same
degree of saturation Sr (for the general influence of Sr, see Section 8.7.2). Thus, the experimentally
observed differences in frozen soil mechanics between loose and very dense states result exclusively
from the influence of the initial relative density ID under otherwise identical test conditions.
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6.2.2. Relative density influence on EVPFROZEN’s 1D parameters

In total, EVPFROZEN consists of seven 1D parameters, i.e., E, ν, c, α1, α2, β, and K1. For simplicity,
we disregard a possible influence of the initial relative density ID on Young’s modulus E. Especially
since our own experimental compression tests, as well as tests from the literature summarized in Sec-
tion 5.2.1, did not indicate a significant influence of ID on the initial frozen soil stiffness. Indeed, a
viscous stiffness influence of ID will be at least indirectly incorporated through the upcoming modified
description of ||ε̇m||, which will be shown later on in Section 6.3. In addition, the Poisson’s ratio ν of
frozen soils physically depends only on the degree of saturation, and for a high degree of saturation, ν
is close to 0.5 (Schulson and Duval 2009). Therefore, Young’s modulus E and Poisson’s ratio ν are not
further considered in terms of the influence of ID on EVPFROZEN’s 1D parameters.
Section 3.7.3 explained the calibration procedure for the EVPFROZEN material constants in detail.
Therefore, we do not repeat the complete procedure here. Instead, Figure 6.2 shows the final results
of the 1D calibration procedure for different frozen KAS freezing tests with loose to very dense states.
Note that the plotted lines in Figure 6.2 are determined by fitting to the experimental data (symbols).
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−10◦C (open symbols) and −15◦C (filled sym-
bols).

0

1

2

3

4

5

6

(b) Parameter β based on uniaxial creep tests.

-20 -15 -10 -5 0

0

5

10

15

20

(c) Parameters α1 and α2 based on uniaxial com-
pression tests.

-20 -15 -10 -5 0

0

0.5

1

1.5

2

(d) Parameter K1 based on uniaxial compression
and creep tests.

Figure 6.2.: Calibration procedure to determine the frozen KAS 1D parameters for different relative
densities ID from loose to very dense state. Plotted lines are fitted to the experimental data (symbols).
Very dense tests after Orth (1986).

As can be seen in Figures 6.2a, 6.2b, and 6.2d, the parameters c, β, and K1 are mostly independent of
the initial relative density ID at a constant degree of saturation. This finding agrees well with experimen-
tal results already presented in Section 5.2.2, Section 5.3, and Section 6.2.1. Despite the independence
of c, β, and K1 from ID, the uniaxial stress σα (θ) at the reference strain rate ε̇α varies with the relative
density ID in Figure 6.2c. This observation indicates that ID affects the temperature-dependent evo-
lution of σα. Consequently, it leads to different values of the 1D EVPFROZEN parameters α1 and α2

(Equation 3.3) at different ID, which are compared in Table 6.1. Note that α1 and α2 were calibrated
using uniaxial compression tests at an axial strain rate of ε̇α = ε̇1 = 1.0 %/min, as recommended in
Section 3.7.3.
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Table 6.1.: Calibrated material constants α1 and α2 for different initial relative densities of frozen KAS
α1 α2

Relative density Calibration after [MPa/◦C] [-]
Very dense Table 3.7 3.05 0.59

Dense Table 4.3 2.44 0.63
Loose Figure 6.2c 2.16 0.64

As expected, the results for σα (θ) in Figure 6.2c display an increase with ID since the uniaxial com-
pression strength σc increases linearly with ID independent of the strain rate and temperature (see
Section 5.3). Thus, from a mathematical point of view, it is convenient to couple σα to ID through an
additional linear relationship. This requires revising the function for σα to include the dependence on
both the temperature θ and the initial relative density ID.

6.2.3. Modified function for σα to include the initial frozen soil relative density
and its calibration

This section deals with the modification of σα according to Equation 3.3 to include the frozen soil shear
and creep strength dependence from the relative density ID. Moreover, we introduce the corresponding
calibration procedure for the new proposed material constants.

The upcoming modified function for σα is based on our experimental findings in terms of the influence of
initial frozen soil relative density ID on the mechanical frozen soil behavior as well as the identification
of the affected 1D EVPFROZEN parameters by ID in the previous section. We have already identified
that σα changes rather proportionally with ID. In order to mathematically determine this slope rate, Fig-
ure 6.3 depicts the normalized uniaxial compressive strength σ̄c as a function of ID. The experimental
normalized data over this wide relative density range fit a linear approximation defined by Equation 6.1.

σ̄c/1 =
σc/1

σc/1,ref
= 1 + αID (ID,ref − ID) (6.1)

For the normalization process, we used as a reference the uniaxial compressive strength σc,ref for
very dense KAS samples with ID,ref = 1.20 (eref = 0.54), according to Orth (1986), and our determined
values for emin and emax for Karlsruhe sand. Consequently, σ̄c equals one for ID = ID,ref = 1.20 in
Figure 6.3.
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Figure 6.3.: Normalized uniaxial compression σ̄c =
σc(ID)

σc,ref(ID,ref=1.20)
(filled symbols) and creep strength

σ̄1 =
σ1(ID)

σ1,ref(ID,ref=1.20)
(open symbols) of frozen KAS for different initial relative densities ID. Very dense

tests (ID = 1.20) after Orth (1985, 1986, 1988).

Figure 6.3 includes normalizations of both uniaxial compression tests (filled symbols) and uniaxial creep
tests (open symbols) for a wide range of different strain rates and temperatures. Here, σ̄c corresponds
to the normalized uniaxial compression strength for a constant axial strain rate ε̇1 and σ̄1 to the normal-
ized uniaxial creep strength for a specific minimum axial strain rate ε̇m. σc,ref is the reference uniaxial
compressive strength, and σ1,ref is the reference uniaxial creep strength corresponding to a reference
frozen soil relative density ID,ref . The initial frozen soil relative density ID needs to be pre-defined in
EVPFROEZN as an input parameter. In addition, αID is a fitting parameter indicating the slope of the
function σ̄c/1, as shown in Figure 6.3.
In order to further evaluate the concept of the normalized uniaxial compression/creep strength, Fig-
ure 6.4 compares the linear fit proposed by Equation 6.1 to compression tests of frozen MFS under
different initial relative densities. As previously mentioned in Section 5.2.1, triaxial compression tests
conducted under relatively low confining pressure (here: σ3 = 0.1 MPa) are comparable to uniaxial
conditions, corroborating the findings in Section 3.7.2.
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Figure 6.4.: Normalized triaxial compression strength q̄u ≈ σ̄c =
σc(ID)

σc,ref(ID,ref=0.55)
of frozen MFS for dif-

ferent initial relative densities ID at θ = −10◦C. At relatively low confinement, q̄u is assumed to be
approximately equal to the normalized uniaxial compressive strength σ̄c. Data after Andersen (1991).
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As can be seen in Figure 6.4, the use of Equation 6.1 also agrees well with the experimental data for
frozen MFS and, thus, confirms the suitability of the proposed linear approach to describe the relative
density dependence of the uniaxial compression and/or creep strength.

Taking into account the proposed fits in Figure 6.3 and Figure 6.4, it is convenient to multiply the existing
function for σα according to Equation 3.3 with σ̄c/1 defined by Equation 6.1 to implement the relative
density dependence into σα. Equation 6.2 introduces the new definition of the function of σα (θ, ID),
including its previous dependence on the temperature θ and the novel dependence on the initial frozen
soil relative density ID.

σα (θ, ID) = [α1(−θ)α2 ] · σ̄c/1 = [α1(−θ)α2 ] · [1 + αID (ID,ref − ID)] (6.2)

Table 6.2 lists the one-dimensional EVPFROZEN material constants for frozen KAS and MFS, resulting
from the newly proposed concept to calculate σα (θ, ID). For details on the EVPFROZEN material
parameter calibration of frozen MFS, see Appendix B.

Table 6.2.: One-dimensional EVPFROZEN material constants for frozen KAS and MFS, including the
new relative density dependence of EVPFROZEN.

E ν c α1 α2 β K1 αID ID,ref

[MPa] [-] [%] [MPa/◦C] [-] [-] [K] [-] [-]
Frozen Karlsruhe sand (KAS)

According to Table 3.7 New
500 0.3 2.40 3.05 0.59 0.69 3817 -0.269 1.20

Frozen Manchester fine sand (MFS)
According to Table B.3 New

500 0.49 2.2 1.83 0.74 0.88 4430 -0.597 0.55

Figure 6.5 shows the evolution of σα (θ, ID) over the temperature θ for frozen KAS from loose to very
dense states using the new concept after Equation 6.2 in combination with the model parameters in
Table 6.2.
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Figure 6.5.: The same as Figure 6.2c, but using the new approach σα (θ, ID) instead of σα (θ) for frozen
KAS. Parameters after Table 6.2.

The proposed modified formulation for σα reproduces mostly well the temperature- and relative density
dependent evolutions. In general, the accuracy is higher for dense and very dense states compared to
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loose states. However, stronger deviations for the loose states only occur at temperatures θ < −10◦C.
In order to calibrate the new parameters ID,ref and αID , we propose to take ID,ref equal to the initial
relative density of the samples used for the 1D calibration procedure of the parameters E, ν, c, β, and
K1. Consequently, the determination of ID,ref does not require additional freezing tests. For the param-
eter αID , we suggest performing at least two additional uniaxial compression tests with different initial
relative densities but the same degree of saturation. On the one hand, the selected relative densities
shall cover at least the entire expected range of the frozen soil relative density under consideration. On
the other, we recommend choosing initial relative densities ID, which substantially differ from ID,ref to
improve the linear fit accuracy for σ̄c. Both the axial strain rate and temperature for the additional uniax-
ial compression tests can basically be chosen freely, as long as the test conditions are identical to the
ones resulting in the reference uniaxial compressive strength σc,ref corresponding to ID,ref . However,
for simplicity, we recommend using the same axial strain rate as for the tests to determine α1 and α2,
i.e., ε̇1 = 1.0 %/min.

In summary, we propose a rather simple modification consisting of a linear approximation to consider
the initial frozen soil relative density within the constitutive model EVPFROZEN, while at the same time,
the calibration of the new parameters ID,ref , and αID only requires a few additional uniaxial freezing
tests.

6.2.4. Relative density influence on EVPFROZEN’s 3D parameters

After extending the 1D formulation of σα, the focus now shifts to examining whether the 3D parame-
ters A, B, C, and D also depend on ID. In Section 5.4, we concluded that the peak deviator stress
qu increases approximately linearly with increasing ID under low and high confining pressures. Thus,
from a numerical point of view, it is necessary to check whether the linear relationship established
for uniaxial stress conditions can also be applied under confining pressures. Within the constitutive
model EVPFROZEN, Cudmani et al. (2023) considered the influence of the confining pressure on
the mechanical behavior of frozen soils by defining equivalent stress states for unconfined and con-
fined creep (see Section 3.7.2). They introduced the normalized Roscoe’s variables p̂ and q̂ calculated
through p̂ = p/σ1,creep (||ε̇m||, θ) and q̂ = q/σ1,creep (||ε̇m||, θ). Here, the triaxial creep stress state de-
scribed by the deviatoric stress q and mean pressure p is scaled to its equivalent uniaxial creep strength
σ1,creep (||ε̇m||, θ), which leads to the same minimum creep rate ||ε̇m|| and temperature θ for unconfined
and confined conditions. Cudmani et al. (2023) proposed Equation 3.26 to describe the normalized
Roscoe’s variables q̂ as a function of p̂ for compressive loading and Equation 3.27 for tensile loading,
including the EVPFROZEN 3D parameter A, B, C, and D. Note that the original equations after Cud-
mani et al. (2023) were proposed for geotechnical sign convention, i.e., compressive stress is positive
and tensile stress negative. However, in this thesis, we used the mechanical sign convention, and
Equations 3.26 and 3.27 have already been converted accordingly.

q̂compression =
1

2A

[
− (B + C) +

√
(B + C)2 − 4A (Dp̂− 1)

]
(3.26)

q̂tension =
1

2A

−(1

2
B + C

)
+

√(
1

2
B + C

)2

− 4A (Dp̂− 1)

 (3.27)

Although Cudmani et al. (2023) originally defined p̂ and q̂ with reference to unconfined and confined
creep test data, the concept of equivalent stress states and the calibration procedure of the 3D pa-
rameters A-D can also be applied for uniaxial and triaxial shearing since the model EVPFROZEN
uses a unique relationship for both shear and creep loading, see Section 5.3. In this case, p̂ and
q̂ are calculated through p̂ = p/σc (ε̇1, θ) and q̂ = q/σc (ε̇1, θ) with σc (ε̇1, θ) being the uniaxial com-
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behavior of frozen soils

pression strength σc at a given constant axial strain rate ε̇1 and temperature θ. Table 6.3 lists the
three-dimensional EVPFROZEN material constants for frozen MFS, determined in Appendix B using
triaxial compression tests on frozen MFS at a single relative density of ID = 0.55 and a constant degree
of saturation of Sr ≈ 1.0.

Table 6.3.: Three-dimensional EVPFROZEN material constants for frozen MFS with ID = 0.55 and
Sr ≈ 1.0 according to Table B.3.

A B C D
[-] [-] [-] [-]

1.83 -1.87 1.87 2.5

In order to assess the influence of ID on the 3D EVPFROZEN parameters and their calibration proce-
dure based on p̂ and q̂, two critical evaluations are necessary for this context. First, we need to examine
whether changes in σα (θ, ID) lead to notable alterations in the calibrated values of the 3D EVPFROZEN
parameters A-D for the calculation of σcr (p, q, ϕ) defined in Equation 3.19. Second, it is essential to
explore whether σcr (p, q, ϕ) itself is influenced by the relative density ID.
In the following, we use comprehensive triaxial compression data by Andersen (1991) and Swan (1994)
for frozen MFS to evaluate the above-mentioned issues. Figure 6.6 illustrates and compares the normal-
ized stress states p̂ and q̂ derived from triaxial compressions tests with frozen MFS at ε̇1 = 0.180 %/min
for different relative densities ID. Specifically, Figure 6.6a presents purely experimentally determined
values of p̂ and q̂, including experimental data both for the triaxial and uniaxial stress state. Here,
due to the lack of available uniaxial compression tests on frozen MFS, we again assume that the
triaxial peak strength qu (ε̇1 = 0.18 %/min, σ3 = 0.1 MPa, θ) at a relatively low confining pressure of
σ3 = 0.1 MPa is comparable to the uniaxial compression strength σc (ε̇1 = 0.18 %/min, θ) so that we
fulfill the requirement of normalizing p̂ and q̂ with σc. Additionally, for comparison purposes and as a
first test of the relative density dependent EVPFROZEN model extension introduced in Section 6.2.3,
Figure 6.6b plots p̂ against q̂ calculated from the triaxial experimental data and the calculated uniaxial
values σc,EVPFROZEN (ε̇1 = 0.18 %/min, θ, ID) using EVPFROZEN with the 1D MFS parameters shown
in Table 6.2.
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1D parameters for MFS in Table 6.2.

Figure 6.6.: Normalized stress states (symbols) derived from triaxial compressions tests with frozen
MFS at ε̇1 = 0.180 %/min for different confining pressures σ3 and initial relative densities ID.
q̂compression after Equation 3.26 using the 3D EVPFROZEN parameters A, B, C, and D according to
Table 6.3. Data with black symbols after Andersen (1991). Data with red symbols after Swan (1994).

For confining pressures of σ3 = 2− 5 MPa, in Figure 6.6a, the normalized deviatoric stress q̂ appears
to be independent of ID, with all values clustering closely together and aligning well with the already
calibrated compression curve q̂compression (dashed line) using the 3D parameters A-D according to Ta-
ble 6.3. This suggests that within this range of confining pressures, the calibrated EVPFROZEN param-
eters A-D adequately capture the frozen soil response to increasing confinement independent of ID.
However, in Figure 6.6a, we also observe a noticeable deviation and potential dependence on ID for a
relatively high confining pressure of σ3 = 10 MPa. At −10◦C, q̂ shows an increase with ID, implying
an influence of ID on the calibrated parameters A-D and, thus, the evolution of the curve q̂compression.
Similarly, results at −15◦C and −20◦C (red symbols) with σ3 = 10 MPa confinement indicate a trend
of q̂ increasing with ID, although the deviations are less pronounced than those observed at −10◦C.
This pattern of q̂ increasing with ID at high confining pressures of 10MPa was also observed in the
experimental investigations, see Figure 5.14. At this confinement level, the relationship between the
peak deviator stress qu and ID was stronger non-linear and, thus, deviating from the linear relationship
at lower confinements and especially uniaxial stress conditions. Taking into account these experimental
conclusions, it is reasonable that also the q̂ values in Figure 6.6 at relatively high confining pressures in-
dicate a dependence on ID. This trend is also visible when comparing the purely experimental obtained
values of p̂ and q̂ in Figure 6.6a with the partially calculated ones in Figure 6.6b. In fact, both results are
qualitatively similar, but the calculated q̂ values in Figure 6.6b are, on average, higher than the purely
experimental values in Figure 6.6a. An observed possible influence of relative density at high confine-
ment may be related to the pressure dependent freezing point of ice; for details, see Marcolli (2017) and
Figure 2.13. Here, the overall shear strength of loose samples with relatively high ice content is more
affected by ice softening due to the reduction in freezing point at high confinement, and thus, the peak
strength could be more affected compared to dense samples with less ice content.

Despite possible relative density-dependent variances noted in the values of p̂ and q̂ in Figure 6.6,
the already calibrated function q̂compression for a given initial relative density agrees with the test data.
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Based on the current available triaxial test data, it is not definitive whether the parameters A-D are fully
independent of the initial relative density ID. For simplicity and to avoid further model adjustments as
well as recalibration, we assume that the 3D EVPFROZEN parameters A, B, C, and D are not influenced
by ID. Future comprehensive triaxial testing is necessary to clarify this matter conclusively. However, as
shown in Figure 6.6b, considering the 1D model adjustments in Section 6.2.3, EVPFROZEN indirectly
incorporates a relative density dependence even for 3D stress conditions, though so far, it is not yet
dependent on the confining pressure.

6.3. Model validation

This section compares the prediction of the relative density dependent model version of EVPFROZEN
with experimental data in terms of the consideration of the shear and creep behavior for varying initial
frozen soil relative densities from loose to dense states. Here, we use our own experimental data and
data from the literature for frozen KAS as well as literature data on frozen MFS. The model validation
includes uniaxial compression and creep tests, as well as triaxial compression tests. For KAS, we
use the 1D model parameters according to Table 6.2, while for MFS, we use the 1D and 3D model
parameters listed in Table 6.2 and Table 6.3.

6.3.1. Uniaxial compression tests with frozen KAS

Figure 6.7 compares experimental and numerical results of uniaxial compression tests with frozen KAS
for a relatively low axial strain rate of ε̇1 = 0.01 %/min. The simulations cover not only relative densities
ranging from very loose (ID = −0.04) to very dense (e = 1.20) states but also temperatures from −10◦C
to −20◦C.
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Figure 6.7.: Experimental (symbols) and numerical (lines) results of uniaxial compression tests with
frozen KAS for ε̇1 = 0.01 %/min at different temperatures. Experiments with ID = 1.20 after Orth (1985,
1986).

The simulations validate the model’s capability to precisely predict the uniaxial compression strength
σc, demonstrating its consistency across various initial frozen soil relative densities and temperatures.
Moreover, at an axial strain rate of ε̇1 = 0.01 %/min, the predicted stress-strain response aligns closely
with the experiments. In fact, when reaching the uniaxial compression strength σc, EVPFROZEN ac-
curately captures the corresponding axial peak strain εu, which simultaneously depends on the initial
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frozen soil relative density ID. It predicts, in accordance with the experiments, a more brittle behav-
ior characterized by smaller peak strains for loose states while indicating a more ductile response for
denser states. In addition, Figure 6.8 presents both experimental and numerical results from uniaxial
compression tests conducted at different initial relative densities ID of frozen KAS, with a relatively high
axial strain rate of 1.0 %/min at −10◦C. Again, ID varies from very loose (ID = 0.02) to very dense
(ID = 1.20).
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Figure 6.8.: Comparison of experimental and numerical results of uniaxial compression tests with
frozen KAS and different initial relative densities ID for ε̇1 = 1.0 %/min at θ = −10◦C. Experiment
with ID = 1.20 after Orth (1985).

The model response in Figure 6.8 also agrees with the experiments in terms of the predicted uniaxial
compressive strength σc, although the model slightly underestimates the peak strength for very dense
frozen KAS, indicated by ID = 1.20. Moreover, the model captures well the observed increase in σc with
a decrease in initial relative density ID. However, for a relatively high axial strain rate of 1.0 %/min, the
model tends to clearly underestimate the stress-strain behavior, predicting a softer response than what
is observed experimentally for a relatively fast axial strain rate of ε̇1 = 1.0%/min. In addition, the ob-
served shear strength softening after reaching its peak value is also not well reproduced by the model.
These stress-strain differences have been reported before when evaluating the model accuracy for rela-
tively high shear strain rates; see Section 3.7.4 and Appendix C.1.2. Since the proposed EVPFROZEN
model extension to consider the initial relative density in Section 6.2.3 does not change the essential
stress-strain model response, as expected, this previous model limitation remains. However, in general,
the order of frozen soil strain rate magnitude in in-situ shear processes is mostly significantly smaller
than 1.0 %/min (Harris 1995; Andersland and Ladanyi 2003; Orth 2018). Therefore, from a practical
point of view, the lower strain rate response of the model is more relevant, which is in good agreement
with both peak strength and stress-strain behavior, as previously shown in Figure 6.7.

6.3.2. Uniaxial creep tests

This section evaluates the EVPFROZEN model response to uniaxial creep tests with both frozen KAS
and MFS for different initial relative densities ID.

Karlsruhe sand (KAS)

Figure 6.9 illustrates the comparison between creep tests of KAS with very loose (ID = 0.07) to very
dense (ID = 1.20) states, conducted at a constant axial stress of σ1 = 8 MPa and −10◦C.
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Figure 6.9.: Comparison of experimental (symbols) and numerical (lines) results of uniaxial creep tests
with frozen KAS at σ1 = 8 MPa and θ = −10◦C. Experiment with ID = 1.20 after Orth (1988).

In Figure 6.9a, the axial strain ε1 over time is depicted, while Figure 6.9b presents the axial strain rate
ε̇1 over time. The experimental results are denoted by symbols, and the simulations are denoted with
lines. As can be seen in Figure 6.9, EVPFROZEN effectively captures the dependency of creep strength
on the initial relative density ID. On the one hand, in Figure 6.9a, the model accurately predicts faster
increases in axial strains over time for increasing ID and, thus, looser frozen soil states. On the other
hand, in Figure 6.9b, the model reproduces well the disproportional decrease in minimum axial strain
rate ε̇m and increase in corresponding frozen soil lifetime tm with increasing ID, indicating dense frozen
soil states.
In order to further assess the model’s creep dependence on the initial relative density, Figure 6.10 shows
additional back-calculated uniaxial creep tests at different axial stresses and temperatures.
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Figure 6.10.: Additional experimental (symbols) and numerical (lines) results of uniaxial creep tests with
frozen KAS at different temperatures. Experiments with ID = 1.20 after Orth (1986, 1988).

The additional simulations confirm the previously observed ability of the model to accurately predict the
relative density dependent creep behavior of frozen soil. Again, the model accurately reproduces both
ε̇m and tm at −10◦C and −15◦C, respectively, reflecting their dependence on the initial ID as observed
in the experimental results. In addition, as can be seen in Figure 6.11, the model also accounts for
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the stiffness differences between loose and very dense states, as the predicted average axial strain εm
at the turning point (t = tm) becomes higher with increasing relative density ID, qualitatively in good
agreement with the experiments.
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Figure 6.11.: Comparison of the measured and predicted average axial strain εm at the turning point
(t = tm) in uniaxial creep tests with frozen KAS at −10◦C. Experiments with ID = 1.20 after Orth (1986)
and additional tests see also Appendix C.3.2.

In this context, the incorporated model dependence of the average axial strain εm on ID is also im-
portant with regard to the previously introduced concept of multi-stage creep in Section 4.4, where
the transformed creep time t∗ is calculated iteratively over the total viscous strain, see Equation 4.12.
Since the model accounts for the change in total strain (brittle to more ductile with increasing ID) with
sufficient accuracy, no conflict is expected between the two proposed model extensions for multi-stage
creep (Section 4.4) and initial relative density (Section 6.2).

Manchester fine sand (MFS)

Despite the comprehensive model testing for frozen KAS, we extend our validation efforts to include
frozen Manchester Fine Sand (MFS) using data from the literature. This additional step ensures a more
general robustness and applicability of the relative density dependent EVPFROZEN model version.
Figure 6.12 shows the experimental and numerical results for uniaxial creep tests on frozen MFS at
σ1 = 10.5 MPa and −15◦C from medium dense (ID = 0.45) to very dense state (ID = 0.90).
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Figure 6.12.: Comparison of experimental (symbols) and numerical (lines) results of uniaxial creep tests
with MFS for different initial relative densities ID. Data after Ting (1981).

The model’s prediction, while slightly less accurate than for frozen KAS, still effectively captures the key
relative density aspects of frozen soil creep behavior. This includes the dependence of the minimum
axial strain rate ε̇m on ID, as well as the corresponding lifetime tm.

6.3.3. Triaxial compression tests with frozen MFS

After extensively testing the relative density dependent EVPFROZEN model for uniaxial loading, we
tested and analyzed it for triaxial loading. However, the available triaxial experimental database to
validate the model for the influence of different initial relative densities under confinement is limited
compared to uniaxial conditions. In the absence of sophisticated triaxial data for frozen KAS with dif-
ferent ID, the model is exclusively tested under confinement with literature data for frozen MFS. Here,
Andersen (1991) and Swan (1994) provided numerous triaxial compression tests, but no triaxial creep
tests were performed. Thus, at the current stage, the following triaxial model testing concentrates on
the shear behavior under confinement and its influence by different initial frozen soil relative densities.
In the beginning, the focus is on evaluating the model’s response for a wide range of ID under different
confining pressures σ3 at a constant axial strain rate. The latter part focuses on the model’s predictions
under high confining pressures.

Figure 6.13 presents the experimental and numerical results for triaxial compression tests at −10◦C
with confining pressures between σ3 = 0.1 MPa and σ3 = 5 MPa at an axial strain rate of 0.18 %/min.
The initial frozen soil relative densities range from loose ID = 0.23 to very dense state ID = 0.88− 0.93.
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(a) σ3 = 0.1 MPa
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(c) σ3 = 5 MPa

Figure 6.13.: Comparison of experimental and numerical results of triaxial compression tests with MFS
at −10◦C and ε̇1 = 0.18 %/min for different confining pressures σ3 and initial relative densities ID.
Experiments after Andersen (1991) obtained from Swan (1994).
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In terms of the peak shear strength qu, the simulations in Figure 6.13 are in accordance with the exper-
iments, as they effectively capture qu in relation to the initial ID and confining pressure σ3. In addition,
the model predicts the observed quantitative increase in qu well with increasing ID under each confine-
ment. Despite these general concordances, discrepancies are observed in the predicted stress-strain
behavior, similar to those for frozen KAS under uniaxial loading and an axial strain rate of 1.0 %/min
in Section 6.3.1. As can be seen in Figure 6.13, the model tends to underestimate the relatively high
initial stiffness observed in the experiments, where within an axial strain of ε1 < 0.5 %, an increase in
deviatoric stress from 0MPa to about 8− 10 MPa was measured in all tests. In contrast, in the simu-
lations, these stress states were reached at higher axial strains of around ε1 ≈ 2− 3 %. Furthermore,
the model accuracy of predicting peak axial strain εu at qu depends on the evaluated relative density
ID. On the one hand, the model predicts εu mostly accurately for loose and medium dense states,
i.e., ID = 0.23− 0.56. On the other hand, the predicted εu for dense states, i.e., ID ≈ 0.90, is smaller
than the measured ones, indicating a stiffer model response. This deviation pattern becomes more
pronounced with increasing confinement pressure σ3; see Figure 6.13b and Figure 6.13c.

Figure 6.14 shows additional, comprehensive simulations of triaxial compression tests with MFS un-
der relatively high confining pressures of σ3 = 10 MPa at temperatures between −10◦C to −20◦C.
Moreover, the simulations cover axial strain rates of ε̇1 = 0.18%/min, shown with black symbols/lines,
and ε̇1 = 0.018 %/min, marked in red.
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Figure 6.14.: The same as Figure 6.13, but at σ3 = 10 MPa and different axial strain rates ε̇1 and
temperatures. Experiments after Andersen (1991) and Swan (1994) obtained both from Swan (1994).

As already observed in the simulations in Figure 6.13, the predicted relative density dependent peak
strengths qu in Figure 6.14 are also in accordance with the experiments at a relatively high confining
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pressure of σ3 = 10 MPa. Moreover, the influence of decreasing axial strain rates ε̇1 on qu is qual-
itatively well captured by the model, as it predicts a lower qu for tests under ε̇1 = 0.018 %/min than
ε̇1 = 0.18 %/min for comparable relative densities. Nevertheless, as already discussed in Section 6.2.4,
for high confinements of σ3 = 10 MPa on frozen MFS, the experimental results in Figure 6.14 indicate
a possible non-linear influence of the relative density on the peak strength, which is not considered in
the current relative density dependent EVPFROZEN framework. Hence, overall, there are quantitatively
larger deviations between the experimental and numerical results at high confinements of σ3 = 10 MPa
in Figure 6.14 compared to lower confinements in Figure 6.13.

To sum up, the comprehensive back-calculation of frozen MFS triaxial compression tests outlines the
relative density dependent model’s capability to accurately capture essential mechanical aspects under
confinement, such as peak strength and shear deformations, under different axial strain rates, temper-
atures, confining pressures, and initial frozen soil relative densities.

6.4. Closing remarks

The numerical work in this chapter deals with the implementation of the initial frozen soil relative density
dependence into the advanced constitutive model EVPFROZEN for frozen granular soils. Based on
our own comprehensive experimental data and literature data described in Section 5, we demonstrate
that the basic EVPFROZEN framework holds for different initial frozen soil relative densities but needs
specific modification. Calibrating the EVPFROZEN parameter set for different relative densities identi-
fies the relative density dependent model parameters. Subsequently, a simple extension of the existing
EVPFROZEN framework is proposed, introducing the two new 1D parameters αID and ID,ref . The novel
parameters αID and ID,ref are calibrated using the same test types as for the original parameters, but
these freezing tests must be performed at different initial frozen soil relative densities than the other cal-
ibration tests. With this extension, EVPFROZEN now includes a linear relationship between the shear
and creep strength and the initial frozen soil relative density for both uniaxial and triaxial loading at a
constant degree of saturation. The relative density dependent EVPFROZEN model testing includes the
back-calculation of uniaxial and triaxial compression and creep tests on different frozen sands while
covering a wide range of different strain rates, stress states, temperatures, and frozen soil relative den-
sities. The overall good agreement between experimental and numerical results successfully validates
the model. In conclusion, this work adds a significant new mechanical feature to the advanced constitu-
tive model EVPFROZEN, thus providing new opportunities to use the model in geotechnical applications
where different relative densities of frozen soil bodies need to be considered.

After enhancing the model to consider multi-stage loading and varying initial relative densities, it is
important to test the model not only in element tests, as done so far, but also to simulate boundary
value problems using EVPFROZEN. This is an important next step towards using the model for real-
scale geotechnical applications. Therefore, the following chapter focuses on simulating boundary value
problems using EVPFROZEN in a finite element analysis (FEA) code.

129





7. Using EVPFROZEN to design frozen soil
bodies in boundary value problems

Despite its increasing use and ongoing technical advance, Artificial Ground Freezing (AGF)
is still considered an expensive technique compared to conventional construction methods.
The main reason for this is a conservative AGF design, which results from (semi-)analytical
and elastic approaches that oversimplify the complex mechanical behavior of frozen soils.
In contrast, advanced constitutive models for frozen soils offer a unique opportunity for effi-
cient optimization of the AGF design. For this purpose, they must be implemented in finite
element analysis (FEA) codes, extensively tested, and validated for AGF boundary value
problems. This section presents the testing of the EVPFROZEN model for frozen granular
soils in both a shear and creep failure boundary value problem. The model can capture
the rate-dependent ultimate shear strength for different temperatures observed in shear
failure experiments from the literature. The simulation of a conventional tunnel excavation
supported by a frozen soil body reflects the model’s capability to accurately reproduce the
frozen soil deformations experimentally measured during the excavation and the following
creep phase. In addition, the tunnel boundary value problem is also simulated with an
enhanced elastic model for frozen soils. Here, the comparison of both model responses
highlights the geotechnical, economic, and safety AGF design potential of the proposed ad-
vanced model in relation to the simplified approaches commonly used hitherto.

The work presented in this section was published previously in a similar form in Schindler
et al. (2023b). The author of this dissertation contributed to Schindler et al. (2023b) as first
and corresponding author.

7.1. Introduction

In the previous chapters, EVPFROZEN has already been validated by element tests for predominantly
monotonic uniaxial and triaxial loading and multi-stage (stepwise loaded) creep under constant tem-
peratures. However, its extensive testing in boundary value problems to achieve the next important
step in validating the model for practical geotechnical and tunneling scenarios is still missing. In gen-
eral, boundary value problems can present much more complex boundary conditions, inducing spatially
and temporarily varying stresses, strains, and temperatures, for which the model validation using only
single-element tests is limited. In this context, appropriate model validation requires well-instrumented
large-scale experiments (model tests) that can be interpreted and simulated as boundary value prob-
lems to compare and evaluate the numerical results.

Despite the effort and practical importance, there are very few experimental studies in the literature
(Vailov 1965; Parameswaran 1979; Orth and Meissner 1985; Stelzer and Andersland 1991; Gudehus
and Tamborek 1996; Cai et al. 2019) dealing with model tests with particular focus on the shear or
creep behavior of frozen soil bodies. Schindler et al. (2023d) recently back-calculated the twin-tunnel
excavation model test by Cai et al. (2019) using the EVPFROZEN model in a finite element analysis
(FEA). However, the simulation only covered the tunnel excavation step because Cai et al. (2019) did
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not monitor the following and practically important creep deformations after tunnel excavation in their
experiment. Consequently, the EVPFROZEN model response has not been sufficiently evaluated for
time-dependent boundary value problems associated with shear and creep failure. Furthermore, it is
necessary to compare the EVPFROZEN model with conventional approaches from the literature to
demonstrate its practical and economic advantages for future AGF design.

This chapter deals with the following important contributions:
We use the unique experimental database provided by Orth and Meissner (1985) and Gudehus and
Tamborek (1996) to simulate shear failure under a foundation as well as the deformations occurring
during the excavation and creep stages of a frozen soil body supporting the ground in a conventional
tunnel construction. Here, the analysis and evaluation include simulations using the EVPFROZEN
model and a novel enhanced elastic model for frozen soil developed based on conventional approaches
from the literature. The different model responses are compared with each other and experimental data
from the literature. Based on this comparison, we derive the geotechnical and economic advantages of
the sophisticated constitutive model EVPFROZEN for future AGF designs.

7.2. In general

We simulate boundary value problems found in the literature that were performed with frozen Karl-
sruhe sand. This coarse to medium sand is described in detail in Section 3.1. In the following bound-
ary value problems, the saturated frozen Karlsruhe sand had the same characteristics (unit weight
γ ≈ 20.3 kN/m3, gravimetric water content w ≈ 0.18, void ratio e ≈ 0.54, and degree of saturation
Sr ≈ 0.90) as the laboratory specimens in Orth (1986). Consequently, we adopt the already calibrated
material parameters for frozen Karlsruhe sand introduced in Section 3.7.3 for the boundary value prob-
lems simulations. Furthermore, the EVPFROZEN model version, as described in Section 4 including
multi-stage creep, is used for the simulations. The relative density dependence extension introduced
in Section 6 is not required because only one specific initial relative density of the frozen soil was
investigated in the experiments. In particular, this initial relative density ID is equal to the reference
frozen soil relative density ID,ref = 1.2 for frozen Karlsruhe sand. Therefore, it is sufficient to use the
EVPFROZEN version according to Section 4. For the sake of completeness, the used EVPFROZEN
material parameters are again summarized in Table 7.1.

Table 7.1.: Repetition of Table 3.7: Material constants for frozen Karlsruhe sand with e = 0.540 and
Sr ≈ 0.90

One-dimensional model Three-dimensional model
E ν c α1 α2 β K1 A B C D

[MPa] [-] [%] [MPa/◦C] [-] [-] [K] [-] [-] [-] [-]
500 0.3 2.40 3.05 0.59 0.69 3817 2.11 -3.18 3.18 3.33

Note that Section 3.7 has already addressed and explained the approximation of a mean value of
ν = 0.3 for frozen Karlsruhe sand, since the tested frozen samples in Orth (1986) used for the model
calibration were not fully saturated (Sr ≈ 0.9) prior to the freezing process.

7.3. Simulation of a punching test

Gudehus and Tamborek (1996) provided a comprehensive experimental database consisting of element
and model tests, which followed the extensive laboratory investigation by Orth (1986). The correspond-
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ing element tests have already been simulated in Section 4.5.1 using EVPFROZEN. Here, the numerical
results agreed with the experiments. In the next step, we use the model test data by Gudehus and Tam-
borek (1996) to further validate the constitutive model in a shear failure boundary value problem for
frozen soils. Figure 7.1 describes the experimental setup of the punching tests and its numerical ap-
proximation. According to Gudehus and Tamborek (1996), a rectangular box with the dimensions for the
samples of length = 400 mm, width = 400 mm, and height = 145 mm was used for the tests. Soft foam
was placed at the bottom of the box, and the frozen sand was placed on top. The testing conditions
(granulometric properties, void ratio, and degree of saturation) of the frozen sand in the punching tests
were very similar to those of the element tests in Orth (1986); Gudehus and Tamborek (1996). Thus, we
use the material parameters for frozen Karlsruhe Sand listed in Table 3.7. It is worth mentioning that no
adjustment of the parameters was made based on the experimental results of the analyzed boundary
value problem.
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Figure 7.1.: Punching tests following Gudehus and Tamborek (1996). Left: Experimental setup. Right:
Simulation procedure of the loading ram by applying node displacements at the top of element nos.
1-15.

The punching tests were conducted with different incremental displacements ∆uy/h at θ = −10◦C and
θ = −20◦C. Gudehus and Tamborek (1996) monitored the vertical displacement uy of the circular
loading ram (d0 = 50 mm) and measured its axial force F (see Figure 7.1). These punching tests are
simulated as 2D axisymmetric boundary value problems. Hence, for simplicity, the rectangular sam-
ple box is approximated as a circular box with a radius of 200 mm. The boundary value problem is
solved with the FEA code ABAQUS/Standard using the 8-node biquadratic axisymmetric quadrilateral
elements CAX8R with reduced integration. The element size is taken to be constant and amounts
to 2.5 mm. The frozen sand’s initial conditions are geostatic with an earth pressure value at rest of
K0 = 0.46, corresponding to approximately 1− sin (φ′

sand). The outer boundaries are defined as fixed
in accordance with the experimental setup, whereas the circular loading ram is represented by an axial
displacement boundary condition. The axial displacement of the circular loading ram consists of ele-
ments 1-15; see Figure 7.1. The incremental displacements ∆uy/h of elements 1-10 are constant and
equal to that of the loading ram measured in the experiments.
Furthermore, there is a transition zone between elements 11-15, in which the incremental displace-
ments decreased sinusoidally to zero. This technique avoids numerical discontinuities even though
high bending forces are expected. As a consequence of the high bending moments, tensile stresses in
the transition zone need to be considered in terms of the maximum shear strength under tensile stress
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7. Using EVPFROZEN to design frozen soil bodies in boundary value problems

states. In the experiments, the frozen soil cracked in the transition zone next to the contact zone be-
tween the loading ram and frozen soil, where large deformation gradients developed. It is well known
that conventional FEA calculations cannot reproduce this cracking phenomenon. Nevertheless, the
present punching test simulations focus on the mechanical behavior under compressive stress states.
We substantially increase the maximum tensile strength to match the maximum compressive strength
in this transition zone. Thus, we avoid locally exceeding the shear strength in the transition zone be-
fore reaching a critical stress state in the area of the loading ram. This modification was introduced in
the present simulations in order to avoid convergence problems caused by excessive mesh distortion
in the transition area during the simulation. The punching test simulations use the seven 1D material
constants presented in Table 3.7 and the 3D model parameters shown in Table 7.2. Note that for the 3D
material calibration, parameters B and C were defined as equal to zero, and different signs for parameter
D were chosen. The goal for this choice was to obtain the same equivalent uniaxial creep strength (see
Equation 3.19) for compressive and tensile loading. The soft foam material was simulated as an elastic
material with a Young’s modulus of Efoam = 1 MPa and a Poisson’s ratio of νfoam = 0.3, according to
Gibson and Ashby (1982).

Table 7.2.: 3D material constants for the punching tests leading to σt = σc
Compression Tension

A B C D D
[-] [-] [-] [-] [-]

2.11 0.0 0.0 3.33 -3.33

Figure 7.2 compares the measured axial force of the loading ram F and the sum of the predicted nodal

reaction forces FR =
10∑

nel=1
FR,nel at the top of elements 1-10 (see Figure 7.1) for different incremental

displacements ∆uy/h at θ = −10◦C and at θ = −20◦C. It should be noted that incremental displace-
ments are relative to the sample box height h for comparison purposes.
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Figure 7.2.: Experimental (left) and numerical (right) punching test results. Data after (Gudehus and
Tamborek 1996).

The numerical and experimental results in Figure 7.2 are in accordance. The EVPFROZEN model can
capture essential characteristics of the shear behavior of frozen soil, i.e., the rate dependence and
the corresponding limited shear strength. Both the maximum shear strength and the associated de-
formations are satisfactorily reproduced. However, due to the known limitations of conventional FEA
simulating boundary value problems, including shear localization (e.g., mesh size dependence of nu-
merical results), the present comparative results should only be considered as a general indicator of the
predictive capability of the model. A reliable prediction of shear localization would require more complex
numerical methods or non-local constitutive models, which are beyond the scope of this thesis.

7.4. Simulation of a tunnel excavation model test including creep
phases

In this section, we use the unique experimental database provided by Orth and Meissner (1985) to sim-
ulate a conventional tunnel excavation covered by a frozen soil ring for the excavation step and the fol-
lowing creep step. The FEA simulations of this creep boundary value problem include the EVPFROZEN
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7. Using EVPFROZEN to design frozen soil bodies in boundary value problems

model and an enhanced elastic approach based on the conventional methodology used in the literature
to describe the frozen soil behavior.

7.4.1. Description of the test setup and the FEA model

Orth and Meissner (1985) experimentally investigated the creep behavior of frozen soils using a proto-
type tunnel at a 1:20 scale (box dimensions: B=2.0 m x H=1.5 m x T=0.5 m). First, the box was filled with
dry sand. The filled material was then saturated, and a surface pressure of p0 = 0.25 MPa was applied
on the top. Subsequently, a frozen horizontal soil cylinder with a thickness of dfrozen = 0.12 m started
to form with the help of freeze pipes driven into the sand. The frozen soil body enclosed the tunnel
excavation with a diameter of dtunnel = 0.3 m. Finally, the tunnel was excavated with a drilling machine.
Displacement transducers and dial gauges monitored the displacements above the tunnel roof at var-
ious levels throughout testing. Further description of the model tunnel tests can be found in Orth and
Meissner (1985). In order to simulate the above-described tunnel excavation problem, a 3D boundary
value problem has been developed, which includes two materials and three different geometries:

• the cylindrical frozen soil body consisting of frozen sand

• the cylindrical tunnel excavation area consisting of unfrozen sand

• the unfrozen subsoil outside the frozen soil body consisting of unfrozen sand.

Figure 7.3 depicts the dimensions and boundary conditions of the numerical model.
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Figure 7.3.: 3D numerical model of a conventional tunnel excavation covered by a frozen soil ring fol-
lowing Orth and Meissner (1985)

We reduced the computational costs by using the symmetry of the boundary value problem and only
simulating half of the sample box. The boundary value problem is solved with the FEA code ABAQUS/Standard
using the 8-node linear brick elements C3D8R for frozen sand and C3D8RP elements (including pore
pressure DOF to account for hydrostatic pore pressure) for unfrozen sand with reduced integration. The
numerical model consists of about 35,000 elements with an average size between 0.0125 m in the vicin-
ity of the frozen sand area to 0.0750 m near the outer boundary of the model. The unfrozen Karlsruhe
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7.4. Simulation of a tunnel excavation model test including creep phases

sand is simulated with a hypoplastic soil model according to von Wolffersdorff (1996) and its extension
with the intergranular strain concept proposed by Niemunis and Herle (1997). The hypoplastic parame-
ters of Karlsruhe sand used for the simulations are adopted from Chrisopoulos and Vogelsang (2019).
The numerical simulation consists of the following four steps:

• Step I: Geostatic equilibrium step. The saturated soil is completely unfrozen, and the surface
pressure p0 = 0.25 MPa is applied. We assume a K0 state for the initial effective stresses of the
unfrozen soil with K0 = 0.46.

• Step II: Freezing step. The frozen soil body forms with a thickness of dfrozen = 0.12 m. This aver-
age frozen soil thickness has been observed experimentally and reported by Orth and Meissner
(1985). In the simulations, we consider both a uniform, constant frozen soil temperature and a
linear, steady-state temperature gradient within the frozen soil body. Details on the temperature
distributions are explained in the following Section 7.4.2.

• Step III: Tunnel excavation step with a step time duration of 13 h. For simplicity, all the elements
inside the frozen soil ring are removed simultaneously and linearly over time throughout this step
(ramp function) in order to approximate the tunnel excavation (see Figure 7.3).

• Step VI: Creep step with a step time duration of 227 h. There is no further change in the boundary
conditions or the external loads. The frozen soil continues to creep under compressive loading.

7.4.2. Back-calculation of the model test using EVPFROZEN

Consideration of a uniform, constant frozen soil body temperature

First, we simulate the creep boundary value problem described in Section 7.4.1 using the EVPFROZEN
model for the cylindrical frozen soil body and assuming a uniform, constant frozen soil body tempera-
ture of θ = −3◦C. This average frozen soil temperature was the same as the only reported frozen soil
temperature during the experiments by Orth and Meissner (1985), which was monitored at a distance
of 0.5 cm from the tunnel invert, very close to the inner edge of the frozen soil body. The simplified ap-
proach of considering an average frozen soil temperature is in agreement with the common AGF design
proposed in the literature, for example, by Cudmani and Nagelsdiek (2006), Russo et al. (2015), Orth
(2018) or Pimentel and Anagnostou (2019). Note that at the beginning of the tunnel excavation in step
3, we assume an initial creep time of t0 = 1 min for the use of this model, according to Cudmani et al.
(2023).
Figure 7.4 compares the measured and calculated central settlements above the tunnel roof after the
tunnel excavation started. As mentioned at the beginning of this section, Orth and Meissner (1985)
monitored the displacement/settlement above the tunnel roof at various levels throughout testing. They
reported that the settlement at these levels decreased with increasing distance from the tunnel exca-
vation area. In Figure 7.4, only the largest measured deformations (symbols) are shown, which were
consequently monitored close above the tunnel crown near Point A.
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Figure 7.4.: Experimental (symbols) and numerical (solid line) results of the vertical displacement uy at
the tunnel crown center after beginning the tunnel excavation. Data from Orth and Meissner (1985).

The calculated vertical displacements of the two center points, A and B, at the top and bottom of the
frozen tunnel crown are in good agreement with the monitored deformations in the test. The frozen soil
next to the tunnel excavation area (Point B) creeps faster than at the upper part (Point A) because of
the higher stress states at the free edge of the frozen soil ring. Therefore, the predicted settlements
at Point B are higher than at Point A. In general, the numerical results during the tunnel excavation
and the following creep step are qualitatively and quantitatively similar to the measured deformations
in the experiments. The tunnel excavation results in a nearly linear increase of the settlements during
the excavation time. Afterward, the calculated and measured vertical displacement uy decrease with
increasing creep time. From a practical point of view, the long-analyzed creep time of over 200 hrs
(more than eight days) represents routine tunnel construction periods (e.g., cross passages) in which
the frozen soil body has to bear the loads; see Cudmani and Nagelsdiek (2006); Han et al. (2016);
Phillips et al. (2021). Subsequently, the tunnel shot-/concrete support has hardened sufficiently and is
able to bear the loads permanently.

Figure 7.5 describes the evolution of mean pressure p and deviatoric stress q at representative cen-
ter points of the frozen soil body.
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Figure 7.5.: Numerical stress results at the tunnel center of the frozen soil body for the tunnel excavation
step (t < 13 h) and the creep step (13 h < t < 240 h)

The tunnel excavation (t < 13 h) leads to a significant increase in the mean pressure (Figure 7.5a)
and deviatoric stress (Figure 7.5b), both at the inner edge (element 1) and in the middle (element 5) of
the frozen soil body. On the other hand, during the tunnel excavation, the stresses at the outer edge
(element 10) remain nearly constant. As expected, the biggest changes in the stress state occur at the
inner edge of the side wall in comparison to the edges of the invert and crown.
During the creep step (13h < t < 240h), the stresses of element 1 increase with the exception of the
side wall, where they slightly decrease by approximately the same amount. The center (element 5) and
the outer edge (element 10) of the frozen soil body contribute only marginally to the bearing capacity.
Here, the stresses are low and continue to decrease during the creep step. As a result, the inner edges
are decisive for the bearing capacity of the frozen soil due to the highest stress level in these areas.
In addition, the predicted stresses in Figure 7.5 are of a similar order of magnitude as in practical
experience reported by Jones and Brown (1979) and Doebbelin and Orth (2012). Here, numerical
calculations resulted in an average shear stress of about 340 kPa and an average normal stress of
370 kPa for a soil ring with a thickness of 1 m in a tunnel construction in Washington (Jones and Brown
1979). Doebbelin and Orth (2012) considered an average creep stress of 450 kPa for a frozen soil body
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with a thickness of 2.5 m supporting a shallow tunnel excavation. Our simulations and predicted frozen
soil body stress states are consistent with these reports from the literature.

Consideration of a linear, steady-state temperature gradient within the frozen soil body

The following EVPFROZEN simulations intend to approximate the actual temperature distribution of
the frozen soil body in the experiments by Orth and Meissner (1985) more realistically. In general,
a frozen soil body supporting a tunnel excavation will have a mainly radially symmetric temperature
distribution around the freezing pipe prior to tunnel excavation. Studies such as Pimentel et al. (2012),
Classen et al. (2019), and Casini et al. (2023) also show that the inner edge of the frozen soil body often
extends significantly into the tunnel excavation area. Consequently, both frozen and unfrozen soil must
be excavated to complete the tunnel, and the temperature at the inner excavated edge of the frozen soil
body is not close to 0◦C during or immediately after excavation. In particular, a frozen soil body starts
to thaw from its core (Levin et al. 2021; Ngo et al. 2022). Therefore, the inner edge temperature is still
mostly constant and well below 0◦C for a certain time after the excavation. This temperature behavior
at the inner edge of a frozen soil body is consistent with the experimental measurements by Orth and
Meissner (1985). The monitored temperature close to the inner edge of the frozen soil body was about
−4◦C before the start of the tunnel excavation. During excavation, according to Orth and Meissner
(1985), the measured temperature quickly increased from about −4◦C to −3◦C, where it remained
constant during the remainder of the excavation and the subsequent creep phase. In addition, the
brine circulating through the thin freezing pipes had a constant temperature of −4.4◦C during the tests.
Unfortunately, Orth and Meissner (1985) did not provide additional temperature measurements, but they
reported a frozen soil body thickness of about 0.12 m, as discussed in Section 7.4.1. Considering the
above background and in order to evaluate the influence of a temperature gradient within the frozen soil
body, we performed additional simulations of the tunnel excavation model test. Table 7.3 summarizes
the assumed temperature gradients for the frozen soil body in the additional simulations GRADIENT-1
and GRADIENT-2.

Table 7.3.: Temperature distribution in the EVPFROZEN simulations considering linear, steady-state
temperature gradients within the frozen soil body. See Figure 7.5 for body locations.

Simulation name Inner body edge Body center Outer body edge
GRADIENT-1 −1.0◦C −4.4◦C −1.0◦C
GRADIENT-2 −3.0◦C −4.4◦C −1.0◦C

Linear temperature interpolation between the given temperature values

In GRADIENT-1 and GRADIENT-2, the temperature in the center of the frozen soil body of −4.4◦C was
assumed to be the same as the monitored brine temperature of the freezing pipes during the exper-
iments in Orth and Meissner (1985). In addition, in GRADIENT-1, we assumed a linear temperature
increase from the center to the inner and outer frozen soil edge, e.g., from −4.4◦C to −1.0◦C. Al-
though this is not consistent with the measured invert temperature of about −3.0◦C for the inner edge,
we deliberately chose a temperature close to the freezing point at both edges to cover this extreme
case. In simulation GRADIENT-2, we took into account all available temperature information from the
frozen soil body provided by Orth and Meissner (1985), which resulted in −3.0◦C at the inner edge and
−4.4◦C at the center. As in GRADIENT-1, the outer edge of the frozen soil body in GRADIENT-2 had
a temperature of −1.0◦C to approximate the transition zone between frozen and unfrozen soil. Here,
we considered the transition zone between frozen and unfrozen states at about −1.0◦C because at
higher temperatures the pore water in sands is no longer fully frozen (e.g., Watanabe and Wake (2009))
and consequently, additional complex effects have to be taken into account numerically. In this context,
EVPFROZEN has not yet been tested or validated for partially frozen soil conditions. Therefore, we limit
the use of EVPFROZEN to fully frozen soil states within our study.
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Figure 7.6 compares the measured and predicted central settlements above the tunnel roof after the
start of tunnel excavation for the two additional simulations, GRADIENT-1 and GRADIENT-2.
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Figure 7.6.: The same as Figure 7.4 but for the simulations GRADIENT-1 and GRADIENT-2

The predicted settlements in GRADIENT-1 and GRADIENT-2 are very similar to those of the uniform,
constant temperature simulation in Figure 7.4. The two additional simulations do not show a pro-
nounced influence of a temperature gradient distribution compared to a uniform, constant frozen soil
temperature,–neither for the time-dependent deformation evolution nor for the absolute settlement val-
ues. In fact, these results are reasonable and can be explained by the relatively low stress level of the
frozen soil body. Figure 7.7 demonstrates the temperature influence on the EVPFROZEN model re-
sponse for relatively small deviatoric stress and strain rate levels in relation to the presented numerical
stress results in Figure 7.5.
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Figure 7.7.: Comparison of experimentally observed 1D creep strength (open symbols) and the unique
q− ε̇m relationships determined in the constitutive model (dashed lines)

As can be seen in Figure 7.7, relatively low deviatoric stress levels result in small minimum creep rates
||ε̇m|| (see also Equation 3.20). Here, EVPFROZEN does not predict a pronounced temperature de-
pendence between −1.0◦C and −5.0◦C for relatively low stress levels. In this context, Parameswaran
(1980), Duval et al. (1983), and Orth (1985, 1988) explained the fundamental mechanism leading to
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creep processes in ice and frozen soils: dislocation glide limited by discrete obstacles (thermal activa-
tion) and diffusion. EVPFROZEN builds on the experimental and theoretical studies on frozen Karlsruhe
sand by Orth (1985, 1986, 1988). Here, Orth proposed a creep formula based on crystal mechanics
and assumed dislocation glide limited by discrete obstacles (thermal activation) as the primary physical
process for the frozen soil creep behavior rather than diffusion. Orth (1985) argued that using the theory
of thermally activated processes predicts the strain-rate sensitivity being great at medium homologous
temperature and lower near melting temperature and absolute zero. In fact, EVPFROZEN follows the
theory of thermally activated processes to describe the creep behavior of frozen granular soils. Hence,
the model accounts for this non-exaggerated stress- and temperature-dependent frozen soil behavior
at relatively low strain rates, as shown by the simulations considering different temperature distributions
in Figure 7.4 and Figure 7.6.

Figure 7.8 compares the stress results (colored lines) of the additional simulations GRADIENT-1 and
GRADIENT-2 with the ones at −3.0◦C (Figure 7.5) for the elements 1, 5, and 10 of the frozen soil body
crown, side wall and invert.
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(a) GRADIENT-1: red lines
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Figure 7.8.: Comparison of the numerical stress results from Figure 7.5 (black lines) at a uniform, con-
stant temperature of −3.0◦C with the predicted ones for GRADIENT-1 and GRADIENT-2 (colored lines)
under linear, steady-state temperature gradients. For the evaluated stress locations, see also Figure 7.5.
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For GRADIENT-1, Figure 7.8a indicates a lower stress level when compared to the simulation at a uni-
form −3.0◦C (black lines). The overall frozen soil stiffness is reduced due to higher temperatures at
the inner and outer edges. Consequently, the stresses are also lower. Nevertheless, GRADIENT-1
qualitatively confirms our previous findings presented in Section 7.4.2: the highest stress level and con-
centration is at the inner frozen soil edge, while stress relaxation occurs in the frozen soil body center
and the outer edge during the creep step. The predicted stresses in GRADIENT-2 (Figure 7.8b) are
nearly identical to the simulation at −3.0◦C. Neither the lower temperature in the center nor the higher
temperature at the outer edge has a significant effect on the frozen soil behavior. This finding also
supports our conclusion in Section 7.4.2 that the inner edges are decisive for the bearing capacity of
the frozen soil body.

To sum up, the influence of linear, steady-state temperature gradients within the frozen soil body is
comparatively small since the predicted stresses in the tunnel boundary value problem are low, and
consequently, the corresponding creep rates are also small. Therefore, EVPFROZEN does not predict
a pronounced temperature-dependent frozen soil behavior, which is consistent with the essential frozen
soil characteristics at low stress levels and relatively high temperatures close to the freezing point.

7.4.3. Assessment of a simplified modeling approach based on the elasticity
theory

Orth (1986, 1988, 2018) and Doebbelin and Orth (2012) proposed a simplified semi-analytical approach
to determine the stress- and time-dependent stiffness of a frozen soil body based on the evaluation of
uniaxial creep tests. This approach is based on Orth’s important experimental finding that the axial
strain evolution ε1 (t) of frozen soils is mostly independent of the stress level and temperature when the
testing time t is normalized with the lifetime tm, as shown by the uniaxial creep tests (open symbols) in
Figure 7.9. Here, as mentioned by Orth (1988), the observed scatter in the experimental measurements
results mainly due to an offset caused by displacements of the end plate during load application.
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Figure 7.9.: Generalization of the axial strain (dashed line) as a function of the normalized time t/tm
based on uniaxial (open symbols) and triaxial (filled symbols, p = 4 MPa) single-stage creep test results
for frozen Karlsruhe sand according to Orth (1986)

Orth’s findings confirm that only the normalized time t/tm is necessary to describe the uniaxial creep
deformation of frozen soils for single-stage loading. In addition, the comparison between uniaxial and
triaxial creep tests by Cudmani et al. (2023) (Section 3.7.2) reveals that the creep deformations un-
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der confinement are still mainly deviatoric and thus fundamentally similar to uniaxial creep. Moreover,
Cudmani et al. (2023) revealed that there are equivalent stress states under uniaxial and triaxial creep
conditions that lead to identical minimum creep rates ε̇m and thus, to identical frozen soil lifetimes tm. To
highlight this issue, Figure 7.9 also includes triaxial creep tests (filled symbols) with different deviatoric
stresses q at a constant mean pressure of p = 4 MPa for frozen Karlsruhe sand. Although the scat-
ter of the triaxial tests is more pronounced compared to the uniaxial tests, the axial strain evolution ε1
(prevailing deviatoric creep direction) can also be approximately described as a function of normalized
time t/tm for triaxial creep. Based on Orth’s (1986) unique uniaxial and triaxial experimental database,
we present an enhancement of Orth’s semi-analytical approach and implement it in a numerical elastic
model. This model couples the frozen soil stiffness with the creep time, lifetime, stress, and temperature
and will be explained in detail in the following.

As can be seen by the dashed line in Figure 7.9, the axial strain evolution as a function of t/tm can be
approximated by a fourth-degree polynomial. The corresponding constant parameters a1 to a5, listed
in Table 7.4, were obtained by fitting Equation 7.1 to the experimental data (open and filled symbols)
shown in Figure 7.9.

ε1 (t/tm) = a1 (t/tm)
4 + a2 (t/tm)

3 + a3 (t/tm)
2 + a4 (t/tm) + a5 (7.1)

Table 7.4.: Parameters a1 to a5 in Equation 7.1 to approximate the evolution of axial strain dependent
on the normalized time t/tm shown in Figure 7.9

a1 a2 a3 a4 a5
[-] [-] [-] [-] [-]

-4.80E-03 3.47E-02 -8.12E-02 9.86E-02 5.00E-03

Note that the initial axial strain ε1,exp (t/tm = 0) in the experiments (see Figure 7.9) is not equal to
zero at the beginning of the creep stage, as there is an initial predominantly elastic deformation due
to the rapid increase in axial stress caused by the applied load. In order to account for these effects,
we assume an initial axial strain ε1 (t/tm = 0) of 0.5 % via the use of parameter a5. Based on the
generalized axial strain evolution illustrated in Figure 7.9, we derive a time-, stress- and temperature-
dependent deformation elastic modulus Emod:

Emod (q, t, tm) =
q (t)

ε1 (t/tm)
(7.2)

In Equation 7.2, the frozen soil stiffness depends on the deviatoric stress indicated by the Roscoe in-
variant q as we only consider uniaxial and triaxial, exclusively deviatoric creep (Andersland and Ladanyi
2003). Moreover, to evaluate the evolution of axial strain, Equation 7.1 is used, whereby the frozen soil
lifetime tm can be calculated with Equation 3.20 and Equation 3.22. Figure 7.10 depicts the resulting
deformation elastic modulus Emod for 1D conditions as a function of the deviatoric stress q = σ1 ob-
tained with Equation 7.2 using the frozen Karlsruhe sand parameters listed in Table 3.7. Note that the
data plotted in Figure 7.10 are the result of using Equation 7.2 for different constant creep times and
temperatures, while the deviatoric stress q is a free variable.
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(a) For a constant creep time, t = 10 d.
Emod: filled symbols, t/tm: open symbols.
Data at −5◦C and −10◦C following Orth (2018).
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Figure 7.10.: Stress- and time-dependent deformation elastic modulus Emod calculated with Equa-
tion 7.2 under 1D conditions

(
p = σ1

3 and q = σ1
)

for frozen Karlsruhe sand based on the generalized
axial strain evolution presented in Figure 7.9

Figure 7.10a shows the calculated stress-dependent evolution of Emod (filled symbols) for a constant
creep time t=10d at a constant temperature of θ = −3◦C. For comparison purposes, Figure 7.10a also
includes the evolution of Emod at −5◦C and −10◦C determined by Orth (2018), as well as the corre-
sponding normalized times t/tm (open symbols). As expected, the frozen soil stiffness increases with
decreasing temperature. Here, Emod ranges between 50 to 100 MPa at a constant temperature of
−3◦C and even doubles to more than 200 MPa at −10◦C. At higher stress levels, the stiffness reaches
its peak Emod,max and then decreases for all three evaluated temperatures. Note that Emod,max is not
directly related to the arrival at the frozen soil lifetime, as Emod (t = tm = 10 d) ̸= Emod,max as shown
in Figure 7.10a. For the stress levels evaluated at the three different temperatures, all the normalized
times t/tm are clearly less than one; thus, neither secondary nor tertiary creep has been reached yet.
Therefore, the observed peak stiffness and the subsequent stiffness reduction in Figure 7.10a reflect
the overall softening of the frozen soil due to its viscous behavior rather than creep failure indicated by
reaching the frozen soil lifetime tm. The same explains the partial stiffness increase with increasing
deviatoric stress q, especially for (q ≤ 0.5 MPa), which is not fully understandable physically. Here,
decreasing stress levels for a constant creep time t at a constant temperature should result in relatively
low creep rates and thus, in an overall higher stiffness compared to high stress levels. A similar stiffness
behavior is also observed in Figure 7.10b, which shows the stress-dependent evolution of Emod for dif-
ferent creep times ranging from 0.1 to 50 days at a constant temperature of −3◦C. As can be seen, the
greater the stress, the greater the influence of time on stiffness. Here, the stiffness varies from about 50
to 300 MPa. In contrast, as described above, at low stresses, creep deformations are relatively small,
and only a weak dependence of stiffness on time is observed.
In general, and based on Figure 7.10, we would like to point out that the complex viscous behavior
of frozen soils cannot be fully described physically within a purely elastic framework. In particular, the
observed increase and decrease of Emod in Figure 7.10 do not directly reflect the incremental stiff-
ness increase and decrease during primary creep (creep resistance increases due to pronounced ice
hardening) and tertiary creep (creep resistance decreases due to pronounced ice cracking). The pro-
posed determination of Emod is obviously limited and remains a rather simple engineering framework
for achieving a certain deformation behavior at a given stress level, creep time, and temperature, re-
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gardless of the actual frozen soil creep phase.

To be able to carry out FEA calculations, the proposed time-, stress- and temperature-dependent defor-
mation elastic modulus Emod is implemented in a general 3D stress-strain relationship:

σ = Emod (q, t, tm) : ε (7.3)

In Equation 7.3, σ denotes the stress tensor, ε is the total strain tensor, and Emod (q, t, tm) denotes the
time-, stress- and temperature-dependent fourth-order elastic stiffness tensor. This stiffness tensor is
calculated according to Hooke’s law equations using the deformation elastic modulus Emod (see Equa-
tion 7.2) and Poisson’s ratio ν. In total, the proposed elastic model framework for frozen soil consists of
Equations 7.1 to 7.3 and includes ten material constants, viz. ν, c, α1, α2, K1 in Table 3.7, and a1 to
a5 in Table 7.4.

It should be here noted that for the application of the proposed elastic approach in AGF applications,
there is still an important limitation. The current determination of Emod using Equation 7.2 leads to an
unrealistic prediction of zero stiffness in case q = 0. To tackle this limitation, we recommend adding a
small constant elastic stiffness E0, which could be taken equal to the estimated elastic modulus of the
unfrozen soil, so that Emod,tot = E0 + Emod.

7.4.4. FEA using the elastic approach and its comparison with the EVPFROZEN
model response

This section deals with additional simulations of the creep boundary value problem described in Sec-
tion 7.4.1, but instead of using the sophisticated EVPFROZEN model, we approximate the time-dependent
frozen soil behavior with the aforementioned elastic model. In total, we performed two different simu-
lations, named EL-1 and EL-2. In EL-1, we combine both steps (tunnel excavation and creep phase)
so that the loads change for a longer period within the simulations. This approach corresponds to the
commonly used simulation methodology reported in the literature (Doebbelin and Orth 2012; Russo
et al. 2015). For comparison purposes, we also investigate a second approach, EL-2, which is identical
to the original simulation method presented in Section 7.4.2 with separate steps for the excavation and
creep phase. Note that for the simulations EL-1 and EL-2 using the elastic framework (Equation 7.3),
we only consider a stress change due to a change of the strain tensor with time, e.g. d

dtσ = Emod · d
dtε.

A second, additional stress term d
dtσ = ε · d

dtEmod due to a time-dependent stiffness change has been
neglected in the simulations EL-1 and EL-2. Still, this simplification does not qualitatively change the
essential findings presented in the following. The two different simulation approaches, EL-1 and EL-2,
are summarized in Table 7.5. In EL-1 and EL-2, we considered a uniform, constant frozen soil body
temperature of −3◦C equal to the first simulation in Section 7.4.2. Note that the geostatic equilibrium
step and the freezing step have no influence on the simulation results and are therefore not considered.

Table 7.5.: Two elastic simulation approaches with different step numbers and step times for the tunnel
excavation and creep stage of the creep model test presented in Section 7.4.1

Simulation name Number of steps texcavation tcreep
EL-1 1 (combined step) 240 h
EL-2 2 13 h 227 h

Figure 7.11 compares the vertical displacement uy at the tunnel crown center for the simulations EL-1
and EL-2, the EVPFROZEN model response and the experimentally measured deformations shown in
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Section 7.4.2.
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Figure 7.11.: Comparison between the two elastic approaches EL-1, EL-2, and the EVPFROZEN model
for the vertical displacement uy at the tunnel crown center after beginning the tunnel excavation. For
the location of Points A and B, see Figure 7.4. Data following Orth and Meissner (1985).

The simulation El-1 with the elastic model (crossed lines) predicts a nearly linear settlement increase
over time for Points A and B. Here, the final displacement uy for Point B, which is at the bottom of the
frozen soil body crown, amounts to -3 mm and is in good agreement with the experimental measure-
ments. However, the simulation EL-1 underestimates the displacement uy for Point A (top of the frozen
soil body crown), which is on the unsafe side. Moreover, the experimentally measured evolution and
shape of the settlement curves cannot be reproduced by the elastic approach EL-1. This also applies
to the simulation results of EL-2 (lines with vertical strokes). Here, vertical displacements uy only occur
during the tunnel excavation step. In the following creep step, no external or internal forces change in
the simulation, and thus, both the stress and strain remain unchanged. Note that the total values of
uy at the end of the simulation for EL-1 and EL-2 are nearly identical and amount to ca. -1.6 mm for
Point A and ca. -3.0 mm for Point B. In summary, the simulations EL-1 and EL-2 result in qualitatively
and quantitatively greater deviations from the experimental data compared to the EVPFROZEN model.
Moreover, the sophisticated model response is more accurate than the elastic ones in terms of the ac-
tual time-dependent settlement evolution.

Figure 7.12 illustrates the corresponding mean pressure p and the deviatoric stress q at the tunnel
center for the two elastic simulations EL-1 and EL-2.

147



7. Using EVPFROZEN to design frozen soil bodies in boundary value problems

0 50 100 150 200 250

0

100

200

300

400

500

1 5 10

Side wall Invert Crown

0 50 100 150 200 250

0

100

200

300

400

500

600

700

800

1 5 10

Side wall Invert Crown

(a) El-1

0 50 100 150 200 250

0

100

200

300

400

500

1 5 10

Side wall Invert Crown

0 50 100 150 200 250

0

100

200

300

400

500

600

700

800

1 5 10

Side wall Invert Crown

(b) El-2

Figure 7.12.: The same as Figure 7.5 for the simulation approaches EL-1 and EL-2

In Figure 7.12a (EL-1) and 7.12b (EL-2), both the maximum stress level and its location at the inner
side wall edge (point 1) agrees well with the EVPFROZEN simulation (see Figure 7.5). For instance,
in all three simulations, the mean pressure p ranges between 330 to 380 kPa while the corresponding
deviatoric stress q amounts to ca. 600 kPa after the completion of the tunnel excavation. Moreover,
the simulations EL-1 and EL-2 confirm the relatively small stress level at the middle (point 5) and outer
edge (point 10) of the invert and crown, which was also observed in the EVPFROZEN simulation. Nev-
ertheless, there is an important difference in terms of the load-bearing behavior of the frozen soil body.
The elastic frozen soil simulations EL-1 and EL-2 predict the highest mean pressures and deviatoric
stresses across the sidewall thickness of the frozen soil body. In contrast, in the EVPFROZEN simu-
lation, the three inner edges (point 1) of the side wall, invert, and crown account for the highest mean
pressures and deviatoric stresses, and thus, a circular, more uniform load distribution occurs across
the whole inner surface of the frozen soil body. The main reason for this novel finding is the additional
relaxation effect that takes place during the actual creep stage and can be explained as follows:
Unrestricted deformations are only possible at the inner edges of the frozen soil body. At the center
and outer edges, the deformation of the frozen soil is partially hindered by the surrounding frozen and
unfrozen areas. Consequently, the frozen soil both creeps and relaxes in these areas. Here, the relax-
ation process seems to predominate as the stresses decrease and load redistribution to the unhindered
inner edges takes place. As a result, higher stress states occur, corresponding to a more pronounced
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creep behavior. The sophisticated EVPFROZEN model can capture this complex phenomenon, while
the elastic model obviously cannot due to the lack of a viscous strain rate tensor in its constitutive formu-
lation. For more details on testing EVPFROZEN to predict the relaxation behavior of frozen Karlsruhe
sand in general, see Appendix C.4.

7.5. Closing remarks

In order to predict the stability and serviceability of geotechnical constructions consisting of frozen
granular soils, the constitutive model EVPFROZEN was successfully implemented and applied to the
back-calculation of model tests by means of FEA. The simulation of punching tests demonstrates the
model’s ability to realistically reproduce the essential features of the experimentally observed frozen
soil behavior, in particular, its rate-dependent shear strength for different temperatures (Section 7.3).
Furthermore, the simulation of a unique model test, consisting of a tunnel excavation supported by
an annular frozen soil body, highlights the model’s capability to predict deformations due to excavation
and creep (Section 7.4). For typical creep periods pertaining to tunneling construction times of cross
passages, the EVPFROZEN model response was in accordance with the experimentally measured
deformations during both the tunnel excavation and the following creep stage. The evaluated stress
states of the frozen soil body were also consistent with comparable studies from the literature. In
addition, the tunnel excavation and creep phase were also simulated with an alternative elastic modeling
approach proposed in the literature for the simplified solution of boundary value problems in practice.
Here, the frozen soil stiffness is described with a time-, stress- and temperature-dependent elastic
deformation modulus. The comparison of the two model responses (EVPFROZEN and the simplified
elastic model) with the experiments clearly reveals the limitations of the simplified approach in relation to
the advanced model. Even though the final settlements in both model responses were similar, the time-
dependent evolution and shape of the settlement curves predicted by the elastic model clearly differed
from the experimental ones. Here, the advanced EVPFROZEN model response was qualitatively and
quantitatively more accurate than the elastic approach. Moreover, the comparison of both models in
terms of the predicted frozen soil stress states revealed a second essential difference. The elastic
model response mainly resulted in an increase in stress across the side wall and a decrease in stress
across the invert and the crown. In contrast, the EVPFROZEN model predicted a more realistic load
distribution throughout the frozen soil body, with the highest stress levels at the inner side wall, invert,
and crown edges, where the largest deformations of the frozen soil body occurred.
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8. Recommendations and limitations for the
use of the constitutive model

Parts of the work presented in this section have previously been published in similar form
in Cudmani et al. (2023); Schindler et al. (2023d, 2024). The author of this dissertation
contributed as a co-author to Cudmani et al. (2023) and as the first and corresponding
author to Schindler et al. (2023d, 2024).

Within this thesis, previous restrictions of the original model version proposed by Cudmani et al. (2023)
have been successfully tackled, leading to an improved, far-reaching constitutive model, designated
by the acronym EVPFROZEN (elastic-viscoplastic frozen soil model). Nevertheless, it is important
to propose practical recommendations for the future use of EVPFROZEN and to point out that some
limitations remain.

8.1. Selection of the model version

From a practical point of view, based on the comprehensive model testing for single-stage and multi-
stage creep in Sections 4.5.2, 4.6, C.1, and C.2, the following recommendations for the selection of the
model version and their limitations can be derived:
The original model version proposed by Cudmani et al. (2023) (see Section 3.7) and EVPFROZEN (see
Sections 4 to 7), satisfactorily capture the essential characteristics of the shear behavior of frozen soil
and are thus suitable for practical applications in which shear failure plays an important role. More-
over, both model versions are capable of capturing the coupled shear-creep behavior for predominantly
monotonic static loading. Therefore, no essential differences were observed in terms of single-stage
loading. Because of the increased computational complexity of using EVPFROZEN due to the calcu-
lation of the transformed creep time t∗, the original model version is recommended for simplicity under
predominantly monotonic loading.
However, in terms of multi-loading and, thus, non-monotonic static loading, the original model version
proposed by Cudmani et al. (2023) is susceptible to an erroneous prediction of the frozen soil lifetime
reach for multi-stage creep. In cases of stepwise loaded creep, the original model predicts creep fail-
ure too early, resulting in less efficient AGF designs. In addition, for stepwise unloaded creep, it may
even predict decreasing strain rates (primary creep) after unloading, even though the frozen soil lifetime
has already been reached earlier. In contrast, the extended model version (EVPFROZEN) accurately
captures the influence of the loading history on the frozen soil lifetime both for stepwise loaded and
unloaded creep. Moreover, it did not falsely predict either an early arrival at lifetime or a sudden switch
between primary and tertiary creep after a stress change. Therefore, the EVPFROZEN model version
is preferred for practical applications where varying stress states of the frozen soil body are expected.
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8.2. Model calibration

8.2.1. For a unique initial frozen soil relative density

The unambiguous 1D and 3D model calibration procedure for the in total eleven parameters has been
introduced in Section 3.7.3. In particular, eight freezing tests consisting of three uniaxial compression
and two creep tests, one uniaxial tensile test, and two triaxial compression or creep tests are required.
Thus, both the original model version and EVPFROZEN require only a single, unambiguously deter-
minable set of material parameters to model a wide range of temperatures, stress states, and strain
rates.

8.2.2. For varying initial frozen soil relative densities

Overall, an advantage of EVPFROZEN is its unambiguous and relatively simple calibration procedure.
The introduction of the initial relative density dependence within EVPFROZEN through the parameters
αID and ID,ref in Section 6.2.3 follows this principle. The additional calibration of αID and ID,ref requires
only a small number of additional calibration freezing tests (at least two), which are still the same test
types as for the calibration of the other seven 1D parameters according to Section 3.7.3. Hence, no ad-
ditional experimental technique requirements complicate model use and calibration. In addition, the test
types for calibrating αID and ID,ref can be freely chosen between uniaxial compression and creep due
to their essentially similar established relationships for the relative density influence. Indeed, for sim-
plicity, it is recommended to perform uniaxial compression tests instead of creep tests, which are less
time-consuming and easier to normalize to their reference test at the reference relative density ID,ref .
Furthermore, it is advisable to conduct at least two uniaxial compression tests with clear differences
in initial relative density to better estimate the newly introduced 1D parameter αID . The second new
parameter ID,ref requires no special determination, as it has a clear physical meaning, i.e., the initial
relative density of the frozen soil samples used for the freezing tests to calibrate the other seven 1D pa-
rameters. So far, no adoption of the original calibration for the 3D parameters has been proposed since,
based on the literature data evaluated within this dissertation, it is assumed that the 3D EVPFROZEN
parameter remains largely unaffected by ID. To clarify this assumption conclusively, additional triaxial
compression and especially creep tests should be performed and analyzed under different initial frozen
soil relative densities. At this stage and for the practical use of the 3D model with different relative
densities, it is recommended to perform preliminary triaxial freezing tests with different ID to verify that
the standard calibrated 3D parameters do indeed remain independent of ID. This should be done if the
initial frozen soil relative density under confinement plays a dominant role in the considered boundary
value problem.

8.3. Strain rate boundaries

As explained and discussed in Sections 2.2.2 and 3.7.1, the linear relationship between the logarithm
of the strain rate and the frozen soil shear and creep strength is experimentally confirmed for the inves-
tigated frozen sands in the range of ε̇ = 10−4 %/min to ε̇ = 1 %/min based on data from the literature
as well as the experimental investigations within this dissertation. However, physical considerations and
the limited experimental studies available, such as Bragg and Andersland (1981); Orth and Meissner
(1982); Duval et al. (1983); Orth (1986); Zhu and Carbee (1987); Zhu et al. (1988); Arenson (2002);
Oishi et al. (2023), indicate that outside these material-dependent ranges there is a reduced or even
non-existent rate-dependence of the mechanical behavior of frozen soils as residual shear and creep
strength are reached. On the one hand, as shown in Figure 2.6 (Section 2.2.2), the shear strength
reaches an ultimate value when the upper strain rate limit is reached. On the other hand, and as shown
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in Figure 8.1, there also appears to be a lower strain rate limit at which the shear and creep behav-
ior reaches approximately a residual strength. However, there is currently limited experimental data
available for the lower strain rate limit.
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Figure 8.1.: Change in the relationship between uniaxial shear strength σc (filled symbols) and creep
strength σ1 (open symbols) and the corresponding strain rate ε̇1 and ε̇m for frozen Karlsruhe sand and
frozen Fairbanks silt, indicating a lower temperature-dependent strain rate limit.

Moreover, the results in Figure 8.1b indicate that this lower limit is temperature-dependent, which has
also been discussed and physically derived by Orth (1986). As a result, in the lower strain rate limit,
the logarithm of the frozen soil lifetime tm increases significantly and disproportionately with decreasing
stress state. This is illustrated for frozen Fairbanks silt in Figure 8.2.
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Figure 8.2.: Change in the relationship between uniaxial creep strength σ1 (symbols) and the corre-
sponding frozen soil lifetime tm after which creep failure occurs, indicating a strongly non-linear increase
of tm when reaching the lower strain rate limit. Data after Zhu and Carbee (1987).

Based on the results in Figure 8.2, the assumed constant relationship between ε̇m and tm (see Equa-
tion 3.22) considered by the 1D material parameter c within EVPFROZEN underestimates the strongly
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non-linear increase of tm with decreasing stress state when reaching the lower strain rate limit. In addi-
tion, from a practical point of view, there appears to be a temperature-dependent stress state in which
a frozen soil body could be considered ”‘stable”’ without a pronounced occurrence of creep failure be-
cause the frozen soil lifetime tm increases disproportionally with the minimum strain rate ε̇m compared
to a proportional relationship according to Equation 3.22 in the strain rate regions above the lower limit.
However, as already explained in Section 3.7.1, in order to numerically account for these mostly rate-
independent strengths, neither an upper nor a lower strain rate limit has been implemented yet within
the proposed advanced constitutive model EVPFROZEN, as shown for frozen Karlsruhe sand in Fig-
ure 8.3a. Consequently, EVPFROZEN predicts continuously a decrease or increase in frozen soil’s
shear and creep strength with decreasing or increasing strain rates. In the future, experimental inves-
tigations focusing on the lower strain rate limit are crucial to consider these boundaries numerically, as
schematically shown in Figure 8.3b.
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Figure 8.3.: The unique σ1 − ε̇m and the σc − ε̇1 relationships for 1D conditions calibrated in
EVPFROZEN (dashed line) for frozen Karlsruhe sand. Filled symbols: uniaxial compression tests;
Open symbols: uniaxial creep tests. Data after Orth (1986).

At this stage, and for the practical use of EVPFROZEN, the following is recommended:

EVPFROZEN recommendation for the upper strain rate limit
The use of EVPFROZEN should be limited to investigated strain rates of a maximum of 1%/min, as
its model response has been tested and validated for this upper limit. Based on practical reports by
Harris (1995); Andersland and Ladanyi (2003); Orth (2018), this is sufficient to cover common frozen
soil engineering applications associated with relatively high strain rates and fast loading applications.

EVPFROZEN recommendation for the lower strain rate limit
As shown in the FEA using EVPFROZEN in Section 7.4.2, especially Figure 7.7, disregarding the lower
strain rate limit when analyzing the creep behavior of frozen soil bodies leads to the prediction of a
minimum residual creep rate ||ε̇m|| at very low stress states close to zero. Considering the actual me-
chanical behavior for low stress states shown in Figure 8.1, the current EVPFROZEN model response
for relatively low stress states and thus very low strain rates is on the safe side, as the model continues
to predict a linear relationship between the logarithm of ||ε̇m|| and stress, which underestimates the
actual creep strength in the lower strain rate limit. As a result, EVPFROZEN predicts shorter frozen soil
lifetimes tm compared to the expected actual frozen soil creep behavior. Hence, EVPFROZEN can be
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used for creep failure issues (predominantly constant stress state in the boundary value problem) asso-
ciated with low strain rates and stress states, although the results may lead to some over-engineering.
In contrast, at this stage, without implementing a lower strain rate limit, it is recommended to limit the
use of EVPFROZEN in shear failure issues (applying a constant strain rate as an external load, e.g.,
applying a constant axial displacement for a pile embedded in a frozen soil layer) to a lower strain rate
of ||ε̇m|| ≥ 10−4 %/min. This ensures that EVPFROZEN does not predict negative stress states at
constant relatively low strain rates (see Section 3.7.1). In addition, the model response is sufficiently
tested and validated above this limit for constant strain rates, as shown in Sections 3.7.4, 4.5.1, and
Appendix C.1.2.

8.4. Consideration of very high confining pressures

EVPFROZEN efficiently accounts for the influence of confining pressure on the shear and creep behav-
ior of frozen soils. The proposed concept, according to Equation 3.19 in combination with the four 3D
material parameters A, B, C, and D, is sophisticated to account for a wide range of confinements where
the shear and creep strength increases with increasing mean pressure. However, as shown based on
experimental data from the literature in Figure 2.12 and the comparison of the EVPFROZEN model
response with triaxial compression test data within this dissertation (e.g., Figure 4.14a and 6.14), the
confined shear strength of frozen soils does not increase continuously with increasing confinement. At
very high confinements, the pressure-dependent freezing point of ice is lowered, resulting in ice soften-
ing, which at some point leads to a decrease in shear and creep strength (see Figure 2.12 and 2.13 in
Section 2.2.4). In this case, EVPFROZEN overestimates the ultimate shear and creep strength. From
a practical point of view, the corresponding mean pressure ranges in which ice softening must be con-
sidered are very high and generally outside the expected pressure ranges in frozen soil engineering
applications (Harris 1995; Orth 2018). However, if relatively high confinements of the frozen soil body
are expected in practical applications, it is recommended to perform preliminary triaxial freezing tests
to study the pressure-dependent mechanical behavior and to calibrate the 3D material parameters A-D
accordingly to avoid overestimating the shear and creep strength. This is in accordance with the gen-
eral recommendation for the A-D calibration process given in Section 3.7.3, where the triaxial freezing
tests shall cover the range of deviatoric stresses and mean pressures expected in common engineering
applications.

8.5. Volumetric deformations

Uniaxial and triaxial compression as well as creep tests on frozen coarse-grained soils from the litera-
ture like Baker et al. (1981); Orth (1986); Xu (2014) show that pronounced volumetric strains occur after
peak shear strength as well as creep failure. In contrast, there is almost no volumetric strain in the frozen
soil until the peak strength is reached (see, e.g., Figure 5.3 in Section 5.2.1) because the deformations
in the ice matrix up to that point are purely deviatoric (Orth 1986). Regarding the EVPFROZEN model
response to volumetric deformation, stress-strain coaxiality is assumed in the model; see Equation 4.9.
Therefore, the model cannot fully realistically reproduce volumetric strain during creep and shear. How-
ever, from a practical point of view, this is not a concern because the ultimate- and service-limit states
of frozen soil bodies only consider the point up of shear or creep failure, and until then, the frozen soil
deformations are mainly deviatoric and in accordance with the EVPFROZEN model response.
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8.6. Consideration of static non-monotonic loading

8.6.1. Presented model validation for uniaxial multi-stage creep

As already highlighted in Section 8.1, EVPFROZEN is preferable over the original model version in
terms of non-monotonic static loading. In particular, there was a good agreement between the exper-
imental and EVPFROZEN results for multi-stage creep under stepwise loading, both for the minimum
axial strain rate ε̇m and, of practical importance, for the corresponding frozen soil lifetime tm. Here,
EVPFROZEN predicted, on average, slightly higher values of ε̇m and thus shorter lifetimes tm com-
pared to the experiments, which is additionally on the safe side. Therefore, for multi-stage creep under
stepwise loading and a combination of stepwise loading and unloading with a final stepwise loaded
creep stage, no additional practical precautions are recommended for the use of EVPFROZEN, as it
can be used in its proposed framework according to Section 4.4. However, the back-calculation of step-
wise unloaded creep tests highlighted that EVPFROZEN tends to predict longer frozen soil lifetimes
than observed in the experiments. From a practical point of view, this model response is on the unsafe
side, although the accuracy is considerably higher than with the original model version after Cudmani
et al. (2023) for stepwise unloaded creep.
To overcome these uncertainties of EVPFROZEN for stepwise unloading and to practically improve the
reliability of the model prediction when using EVPFROZEN in boundary value problems considering
unloading, it is recommended to adjust the 1D EVPFROZEN model parameter c according to Equa-
tion 3.22. In this context, it is also recommended that stepwise unloaded multi-stage creep tests be
performed first at this stage. The EVPFROZEN model response is then compared with the experimen-
tal results using the calibrated parameters according to the standard model calibration procedure de-
scribed in Section 3.7.3. In cases of expected deviations and model response on the unsafe side (longer
predicted lifetimes than measured), the parameter c is reduced as long as the model response in terms
of predicted frozen soil lifetimes agrees well with the measured ones from the multi-stage unloaded
creep tests. Figure 8.4 illustrates this practical parameter adjustment approach based on the performed
uniaxial multi-stage unloaded creep tests on frozen KAS according to Sections 4.2.2 and 4.2.3. Note
that the model response for the other loading cases will also be affected and may lead to a significant
underestimation of the frozen soil lifetime tm and thus increased potential for over-engineering when
modifying (reducing) the material parameter c.
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Figure 8.4.: Practical approach to improve the EVPFROZEN model accuracy for stepwise unloaded
creep by adopting the 1D parameter c so that the measured and predicted frozen soil lifetime tm con-
verge more closely. EVPFROZEN simulations are plotted with lines.
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As can be seen, reducing the 1D parameter c significantly improves the agreement between the mea-
sured and predicted frozen soil lifetime tm, while the predicted minimum axial strain rate ε̇m is apparently
unchanged by the parameter adjustment. Note that the total strain rates and, thus, the strains are still
underestimated by the model, but the practically important lifetime tm is captured more accurately, which
is crucial from a practical and safety point of view.

Overall, and especially for stepwise loading, the extended model called EVPFROZEN is preferable
to the original model version for AGF designs where varying stress states of the frozen soil body are
expected.

8.6.2. Strain rate changes during shearing

Orth (1986) performed uniaxial compression tests of frozen Karlsruhe sand with varying strain rates
ε̇1 at a constant temperature. As can be seen in Figure 8.5, the uniaxial compressive strength σc for
stepwise increasing or decreasing strain rates (lines) was not similar to that under a constant strain rate
(symbols).
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Figure 8.5.: Comparison of uniaxial compression tests with constant axial strain rate (symbols) and
varying axial strain rates (lines) on frozen Karlsruhe sand at −15◦C. Data after Orth (1986).

Orth (1986) argued that changing strain rates strongly influence the initiation and propagation of cracks
in the ice matrix. Hence, uniaxial compression tests with varying strain rates were not directly compara-
ble to tests with a constant strain rate due to different viscous behaviors. In contrast, based on confined
compression tests with frozen clay under constant and varying strain rates at a constant temperature,
Wang et al. (2017) suggested a potentially unique stress-strain relationship for a given strain rate. This
would be consistent with the isotach theory proposed for unfrozen clays (Šuklje 1957). Despite these
efforts, the influence of varying strain rates on the mechanical behavior of frozen soils has not been
fully understood. The currently proposed model version of EVPFROZEN does not consider a possible
influence of varying strain rates on the shear behavior of frozen soils. The predicted stress state is
uniquely defined by the current strain and strain rate under a constant temperature.

8.6.3. Influence of varying temperatures

The mechanical behavior of frozen soils changes not only in cases of varying stress states under con-
stant temperatures but also for varying temperatures at constant stress states. However, there are few
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experimental studies like Wang et al. (2017); Yao et al. (2018); Wang et al. (2022a) dealing with the in-
fluence of transient temperature conditions on the shear and creep behavior of frozen soils. According
to Andersland and Ladanyi (2003), decreasing temperatures can result in (partial) refreezing of the de-
veloped cracks in the frozen soil. As a result, the creep rates sharply decrease. In contrast, increasing
temperatures lead to ice softening, a possible increase in the unfrozen water content, and an overall
reduction of shear and creep strength (Wang et al. 2022a). The proposed concept may be further ad-
justed to consider these highly non-linear characteristics. At this stage, it is suggested that the use of
the constitutive model be limited to steady-state temperature conditions.

8.7. Consideration of varying initial frozen soil relative densities

8.7.1. Triaxial creep at different initial frozen soil relative densities

In the absence of sophisticated triaxial creep test data at different initial frozen soil relative densities,
the relative density dependent response of the EVPFROZEN model for confined creep has neither
been tested nor validated. Indeed, Cudmani et al. (2023) demonstrated the efficiency of EVPFROZEN
in describing triaxial shear and creep behavior, albeit at a unique frozen soil relative density ID. From a
physical point of view, there are no obvious reasons to suspect that the essential confined creep charac-
teristic of frozen soil should change at different ID, since this has also not been observed for unconfined
creep. However, as this aspect has not been empirically tested, uncertainties remain. Therefore, if creep
failure under confinement is considered, it is recommended to perform triaxial creep tests with differ-
ent initial relative densities in advance and back-calculate them with EVPFROZEN to reduce potential
model uncertainties.

8.7.2. Influence of the degree of saturation on the mechanical behavior

This thesis and the majority of frozen soil studies in the literature dealing with the influence of rela-
tive density focus on relatively high degrees of saturation Sr between 90− 100 %, representing nearly
or fully saturated frozen soil conditions. Consequently, the interaction between varying initial relative
densities and degrees of saturation Sr < 90 % has not been fully understood. Despite previous efforts
(e.g., Ting (1981); Enokido and Kameta (1987); Vrettos et al. (2023)), there is a lack of comprehensive
experimental data on the shear and creep behavior of unsaturated frozen soils. One reason for this is
the challenging test conditions and higher demands on the test equipment, especially in ensuring a ho-
mogeneously distributed degree of saturation over the entire frozen soil sample (Vrettos et al. 2023). As
a result, the applicability of the proposed relative density dependent EVPFROZEN model to degrees of
saturation Sr < 90 % and thus to significantly unsaturated frozen soil conditions remains unconfirmed.
However, data from the literature, summarized in Figure 8.6, suggest a similar linear relationship be-
tween frozen soil shear and creep strength and Sr at constant initial ID as the one found in this thesis
between shear and creep strength and ID at constant Sr.
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(a) Uniaxial compression strength σc vs Sr. Data
at −30◦C after Enokido and Kameta (1987) and
at −10◦C after Vrettos et al. (2023).
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(b) Uniaxial creep strength σ1 vs Sr. Data after
Ting (1981).

Figure 8.6.: Literature data on the influence of different degrees of saturation Sr on the shear and creep
strength of frozen coarse-grained soils at constant initial relative density ID.

As can be seen in Figure 8.6a, the uniaxial compression strength σc of frozen sand decreases linearly
with decreasing degree of saturation Sr at constant initial relative density ID. Moreover, as summarized
in Figure 8.6b, Ting (1981) reported a linear decrease in creep strength with decreasing Sr at constant
ID. This implies that the approach used to implement the frozen soil relative density dependence within
EVPFROZEN could potentially be adapted in the same way for Sr. In particular, the proposed formula-
tion of σα (θ, ID) in Equation 6.2 simply extends to Equation 8.1 to include the degree of saturation via
σ̄Sr = 1 + αSr (Sr,ref − Sr).

σα (θ, ID, Sr) = [α1(−θ)α2 ] · σ̄c/1 · σ̄Sr = [α1(−θ)α2 ] · [1 + αID (ID,ref − ID)]︸ ︷︷ ︸
σα (θ, ID) according to Equation 6.2

· [1 + αSr (Sr,ref − Sr)] (8.1)

Here, Sr is the initial degree of saturation of the frozen soil and Sr,ref is the reference degree of saturation
obtained from the frozen samples used to calibrate the original 1D and 3D EVPFROZEN parameters,
while αSr is a fitting parameter. For instance, in the case of the already calibrated EVPFROZEN param-
eters of frozen Karlsruhe sand, Sr,ref is about 0.9 (see Section 3.7.3).

Despite the extension proposed for σα (θ, ID, Sr) based on the literature data in Figure 8.6, note that
it is still unclear whether Sr affects other EVPFROZEN material parameters beyond the current scope
of the σα function. Future research aims to fill this experimental gap by focusing on compression and
creep tests under unsaturated frozen soil conditions to compare mechanical behavior with fully satu-
rated conditions. The proposed EVPFROZEN concept for frozen soil relative density dependence may
be further adjusted to consider the influence of Sr. At this stage, we suggest limiting the use of the
relative density EVPFROZEN model to relatively high and constant degrees of saturation Sr, ranging
from 85% to 100%, for which EVPFROZEN has been validated in this thesis.
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8.8. Tensile loading

EVPFROZEN considers a simple framework for tensile loading, which is essentially the same as for
compressive loading but reduced by a constant factor between the compressive and tensile strength,
see Sections 3.7.2 and 3.7.4 and especially Figures 3.23 and 3.24. Although the currently predicted
tensile strength is lower than the compressive strength (see Figure 3.23), the model does not account
for the fact that frozen soil is more brittle under tensile loading than under compressive loading. In
addition, the tensile shear strength of frozen soil is less rate- and temperature-dependent than that
under compressive loading, see Section 2.2.7. In contrast, tensile creep strength appears to be stress-
and temperature-dependent, although there is very little sophisticated experimental data available in the
literature regarding the creep behavior of frozen soils under tensile loading. In particular, the uniaxial
tensile creep tests on frozen sand by Eckardt (1979b), summarized in Figure 2.21 (Section 2.2.7),
highlight the essential differences between creep strength under tensile and compressive loading, as a
sudden, brittle creep failure occurs at relatively low strains under tensile loading compared to the ductile
behavior under compressive loading. From a practical point of view, consideration of the tensile shear
and creep strength of frozen soils opens up far-reaching possibilities for further optimization of frozen
soil bodies towards a more sustainable design. However, since creep strength appears to be different
from shear strength under tension and is also associated with brittle material behavior, special attention
must be paid in practice to the tensile behavior of frozen soils. In terms of the current EVPFROZEN
model response for tensile loading, Figure 8.7 compares experimental and numerical results of uniaxial
creep tests under tensile loading on frozen medium sand. The experimental results were obtained from
Eckardt (1982) who, as mentioned in Section 4.5.2, tested a frozen sand similar to Karlsruhe sand.
Thus, for the EVPFROZEN simulations shown in Figure 8.7b, the material parameters were obtained
from Table 3.7 accordingly.
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(b) EVPFROZEN simulations using the parameters
according to Table 3.7

Figure 8.7.: Comparison of experimental and numerical results of uniaxial creep tests under tensile
loading on frozen medium sand, which is similar to frozen Karlsruhe sand. Data after Eckardt (1982).

As can be seen in Figure 8.7, the current relatively simple model approach to consider the tensile be-
havior of frozen soils results in a significant underestimation of the initial stiffness, while the creep strain
evolution is clearly overestimated compared to the experiments. These deviations are not automatically
on the safe side. In fact, as indicated by ”Failure”’ in Figure 8.7, the model predicts a shorter frozen
soil lifetime tm in three tests than observed in the experiments. However, in general, the model re-

160



8.9. Use of the model for frozen fine-grained soils

sponse results in a ductile stress-strain behavior, while the experiments show sudden creep failure and
overall a brittle stress-strain behavior. Furthermore, the simulations (Figure 8.7b) show a clear stress-
and temperature-dependent influence on the creep strength, while this cannot be clearly recognized
from the experiments (Figure 8.7a) when comparing the three creep failure tests, where the one test at
−15◦C lie between the other two tests at −10◦C, even though the creep stresses are similar.

Regarding the current tensile framework within EVPFROZEN, it is not recommended at this time to
use it for practical applications because the tensile behavior has not been sufficiently tested within this
dissertation. Therefore, significant uncertainties remain in the experimental understanding and numeri-
cal consideration of the tensile behavior of frozen soils. Future research shall focus on the mechanical
behavior of frozen soils to fill these gaps and provide a path to an accurate and reliable EVPFROZEN
framework for frozen soil tensile behavior.

8.9. Use of the model for frozen fine-grained soils

To date, EVPFROZEN has been extensively tested and validated for frozen coarse-grained soils such
as frozen sands (e.g., this dissertation) and gravelly soils (see Cudmani (2006)). Although, there are
similarities between the mechanical behavior of frozen coarse-grained and fine-grained soils, as pointed
out in Section 2.2.1, there are also significant differences in the freezing and thawing as well as viscous
behavior between frozen coarse-grained and fine-grained soils. In principle, however, the basic con-
cept of EVPFROZEN is applicable to frozen coarse-grained soils, as comprehensively demonstrated
by Schindler et al. (2023d) for frozen Fairbanks silt. Here, the experimental and numerical comparison
of uniaxial compression and creep tests for frozen Fairbanks silt agreed well with the model response
for a wide range of stress states and temperatures. As a result, an initial and important step has been
successfully completed in terms of the model’s use for fine-grained frozen soils with relatively low plastic
fine content (details on Fairbanks silt see Zhu and Carbee (1987)). Moreover, Schindler et al. (2023d)
simulated a twin-tunnel excavation supported by fine-grained frozen soil bodies in order to approximate
a typical ground freezing application in the construction of cross passages. The predicted incremental
displacements were in good accordance with the model test data found in the literature. However, in
general, with regard to the use of EVPFOZEN for frozen fine-grained soils, it is still recommended to
re-evaluate (back-calculation of respective freezing tests) the applicability of the model to frozen soils
with significant plastic fines, e.g., clays. In the latter case, neither the unfrozen pore water content
and osmosis, nor the osmotic pressures leading to ice lens formation can be disregarded. The ability
of EVPFROZEN to cover these characteristics that influence mechanical behavior has not yet been
conclusively clarified.
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9.1. Summary

This thesis deals experimentally and numerically with

• the complex multi-stage creep behavior of frozen coarse-grained soil,

• the influence of the initial frozen soil relative density on the mechanical behavior,

• and the practical application of the extended EVPFROZEN constitutive model for frozen granular
soils in the design of frozen soil bodies for boundary value problems.

Each chapter has contributed to the development and enhancement of the fundamental understanding
of frozen soil mechanics by both improving and using the advanced constitutive model EVPFROZEN,
as summarized below.

9.1.1. Starting point

The critical review of the literature on the shear and creep behavior of frozen coarse-grained soils fo-
cused on existing scientific gaps in multi-stage creep behavior, the influence of initial relative density,
and practical and scientific gaps in the development and establishment of advanced constitutive models
for frozen granular soils. Identifying the gaps set the stage for the basic and applied frozen soil research
conducted in this thesis.

Based on the defined main research objectives of this thesis, the experimental and numerical meth-
ods used in this research were tailored and detailed, including sample preparation, test equipment for
freezing tests, testing program, and numerical tools. In addition, an advanced constitutive model for
frozen granular soils proposed by Cudmani et al. (2023) was introduced and discussed in detail, in-
cluding the presentation of the constitutive equations and the calibration of the corresponding material
parameter. The presented model testing highlighted the good accuracy and strength of the model in
predicting the shear and creep behavior of frozen soils under predominantly monotonic static loading.
However, its limitations and weaknesses, such as the lack of consideration of non-monotonic static
loading, varying initial relative densities, and its missing applicability in boundary value problems, were
also identified and discussed. These limitations served as the starting point for this thesis and led to the
derivation of the main research objective to significantly improve and test this constitutive model.

9.1.2. Multi-stage creep behavior of frozen soils

The comprehensive experimental testing program of frozen Karlsruhe sand revealed the essential in-
fluence of varying stress states on the mechanical behavior of frozen soils at constant temperatures.
It included its multi-stage creep behavior under stepwise static loading, stepwise static unloading, and
combinations of load-unload cycles. In particular, it was found that the minimum axial strain rate ε̇m is
mostly independent of the loading history, especially for stepwise loaded creep over a wide range of dif-
ferent loading paths and stress levels. Conversely, the corresponding frozen soil lifetime tm is influenced
by the loading history, becoming longer for stepwise loaded creep and shorter for stepwise unloaded
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creep compared to the equivalent creep behavior under single-stage loading. Moreover, for both step-
wise loaded and unloaded creep, the average axial strain εm at the turning point (t = tm) appears to
be largely independent of the loading history. Based on the experimental findings, a novel conceptual
framework, including the transformed creep time t∗, was developed to convert multi-stage creep tests
into equivalent single-stage tests. Here, the evolution of the normalized creep curves, i.e., normalized
axial strain rate over normalized time, for single-stage and multi-stage creep tests converged, espe-
cially with high accuracy for stepwise loading. Thus, both single-stage and multi-stage creep could be
described by a unique relationship already implemented in the existing constitutive model. This finding
was crucial in extending the existing constitutive model to account for non-monotonic static loading. By
implementing the transformed creep time t∗ into the existing constitutive model, the extended model
is able to capture the equivalent creep time after a changing stress state by coupling the transformed
creep time t∗ to the previous loading history. This has been achieved without the introduction of new
material parameters. Comparison of the simulations with our own experiments and data from the litera-
ture successfully validated the extended model for single-stage and multi-stage loading. In this context,
the model validation included numerous incremental changes and increases as well as decreases in
stress while addressing a wide range of total stress conditions. The extended model has been given
the acronym EVPFROZEN, which stands for elastic-viscoplastic frozen soil model.
Finally, the EVPFROZEN model response was compared with the original model version after Cud-
mani et al. (2023). As expected, both model versions are suitable for predominantly monotonic loading.
In contrast, essential differences between the models emerged for non-monotonic loading and, thus,
multi-stage creep. Here, EVPFROZEN is preferable due to its coupling of creep time with stress-strain
history.

9.1.3. Influence of the initial relative density on the mechanical behavior of
frozen soils

The extensive experimental investigations on frozen Karlsruhe sand, including uniaxial shear and creep
tests, in combination with data from the literature, demonstrated the influence of the initial relative den-
sity of frozen soils on their shear and creep strength at high degrees of saturation. First, it was found
that the shear strength increases linearly with increasing relative density. This was observed for both
uniaxial and triaxial loading. The increase in shear strength with increasing relative density is attributed
to the ice-hindered but significantly increased dilatancy of the granular skeleton, leading to an increase
in effective stress and, thus, increased shear resistance. In this context, frozen soils behave compar-
atively brittle in the loose state, while the deformation behavior becomes more ductile as the relative
density increases.
In terms of the uniaxial creep behavior, the comparison of uniaxial creep tests at the same creep stress
indicated that the minimum axial strain rate ε̇m decreased and the corresponding frozen soil lifetime
tm increased disproportionally with increasing relative density ID. In fact, a linear relationship was de-
rived between the logarithm of ε̇m and ID for a given axial stress σ1. Moreover, when comparing ε̇m of
the creep tests, the axial creep stress σ1 required to achieve a specific value of ε̇m increased linearly
with ID. These essential relationships have been experimentally confirmed for a wide range of different
stress states, temperatures, and relative densities at a constant degree of saturation. The increase in
creep strength with increasing relative density is mainly attributed to the change in stress distribution
towards the granular skeleton rather than the ice matrix as well as the increased structural inhibition
of crack propagation in the ice matrix with increasing ID. Furthermore, similar to the shear deforma-
tion behavior, the characteristic deformation behavior of the frozen soil changes from comparably brittle
to more ductile under creep loading as ID increases. Finally, a unified linear relationship was estab-
lished to describe the evolution of the shear and creep strength and the initial frozen soil relative density
across different strain rates, stress states, and temperatures. In fact, this established linear relationship
is mostly rate- and temperature-independent. The experimental results and derived relationships were
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the basis for incorporating the initial relative density influence into the EVPFROZEN model for frozen
soils.

To numerically consider the influence of the initial relative density ID within EVPFROZEN, it was shown
that the basic model framework and the main constitutive equations were still valid. However, in its cur-
rent form, the influence of ID on the minimum creep rate ||ε̇m|| was missing in EVPFROZEN and had to
be implemented. First, the EVPFROZEN model parameters dependent on ID and affecting the calcu-
lation of ||ε̇m|| were identified throughout the parameter calibration for different initial relative densities.
Here, the current formulation of the reference stress σα, which is part of ||ε̇m||, was extended and two
new model parameters αID and ID,ref were introduced to capture the linear relationship between shear
and creep strength and initial relative density. The calibration of the novel parameters αID and ID,ref is
generally consistent with the calibration procedure of the original model parameters, as it requires only
a small number of additional freezing tests at different initial frozen soil relative densities. The relative
density dependent EVPFROZEN model testing involved back-calculating uniaxial and triaxial compres-
sion tests as well as uniaxial creep tests on various frozen sands, covering a wide range of different
strain rates, stress states, temperatures, and frozen soil relative densities. The overall good agreement
between the experimental and numerical results successfully validated the relative density dependent
model using both our own experimental database and data from the literature.

9.1.4. Use of EVPFROZEN in boundary value problems for engineering
applications

After testing EVPFROZEN in element tests so far, the first comprehensive simulations of model tests
in finite element analysis (FEA) demonstrated the practical application and potential of the model using
unique experimental data from the literature. In particular, the simulation of punching tests demonstrated
the model’s ability to realistically reproduce the essential features of the experimentally observed frozen
soil behavior, especially its rate-dependent shear strength for different temperatures. In addition, the
simulation of a model test approximating a tunnel excavation supported by an annular frozen soil body
highlighted the model’s ability to predict deformations due to the excavation and creep phases. To com-
pare EVPFROZEN with common practical but simplified approaches for the design of frozen soil bodies,
the tunnel excavation and creep phases were also simulated with an alternative elastic modeling ap-
proach proposed in the literature. The comparison of the two model responses (EVPFROZEN and the
simplified elastic model) with the experiments revealed the limitations of the simplified approach in rela-
tion to the advanced model. In contrast to the elastic approach, EVPFROZEN accurately predicted the
time-dependent evolution and shape of the settlement curves. Moreover, the elastic model response
mainly resulted in an increase in stress across the side wall and a decrease in stress across the invert
and the crown. In contrast, the EVPFROZEN model predicted a more realistic load distribution through-
out the frozen soil body, with the highest stress levels at the inner side wall, invert, and crown edges,
where the largest deformations of the frozen soil body occurred. The main reason for these differences
was that only EVPFROZEN captured the interaction between the creep and relaxation processes of the
frozen soil body, while the elastic approach obviously could not due to the lack of an explicit viscous
component in its constitutive formula.

9.1.5. Perspectives

Based on the extensive EVPFROZEN development, testing, and validation, the following advantages of
using EVPFROZEN in practical frozen soil applications are enumerated:

• The EVPFROZEN model only requires a single, relatively small, unambiguously determinable set
of material parameters to model a wide range of temperatures, stress states, and strain rates.
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• It provides an incremental assessment of the rate-, stress- and time-dependent frozen soil lifetime
tm, i.e., the time at which the frozen soil becomes unstable under constant loading.

• Considering different loading paths within EVPFROZEN enables the evaluation of stress state
changes in frozen soil bodies. These changes affect the shear and creep behavior of frozen soils
during various construction stages and can lead to prolonged frozen soil lifetimes compared to
only considering the final loading stage.

• The EVPFROZEN material parameter set has been extended to additionally cover a wide range
of different initial frozen soil relative densities. This improves the model’s versatility in accounting
for in-situ soil variability, construction constraints, and differences in shear and creep strength and
stiffness depending on the initial frozen soil relative density.

• EVPFROZEN can consider the actual temperature distribution within the frozen soil body based
on thermal calculations in contrast to a constant average temperature often used in semi-analytical
and elastic approaches. Taking into account areas with lower temperatures than the average of-
fers the opportunity to further optimize the AGF design since the shear stiffness, shear strength,
and frozen soil lifetime increase while the creep deformations decrease with decreasing temper-
atures.

In summary, this dissertation makes a significant contribution by adding new mechanical features to the
advanced EVPFROZEN model. The comprehensive enhancement and validation of EVPFROZEN aims
to encourage engineers and researchers to use this advanced model for the mechanical design of frozen
soil bodies, as it highlights the model’s geotechnical, economic, safety, and resource-efficient design
potential for assessing the stability and deformations of frozen soils in geotechnical and engineering
applications.

9.2. Outlook

Based on Section 8, which provided practical recommendations for using the EVPFROZEN model and
also discussed its current limitations, future research on frozen soil testing and modeling is encouraged
to focus on the following aspects.

• In the absence of creep tests for very low (< 10−4 %/min) and very high (> 1 %/min) strain
rates, the EVPFROZEN model response has been assumed in these strain rate ranges. To date,
EVPFROZEN appears to overestimate frozen soil shear and creep strength at very high strain
rates and underestimate it at very low strain rates. In this context, low strain rates are espe-
cially relevant for practical applications of AGF. Therefore, experimental studies, including at least
long-term uniaxial creep tests (ε̇1 < 10−4 %/min), are first required to determine the relationship
between creep strength σ1, minimum axial strain rate ε̇m, and frozen soil lifetime tm for relatively
low stress levels and thus very small creep deformations. Moreover, the upper strain rate limit
can be investigated with compression tests under constant high strain rates, i.e., ε̇ > 1 %/min.
The EVPFROZEN model framework can then be adjusted to account for the expected upper and
lower strain rate limits discussed in Sections 2.2.2 and 8.3.

• EVPFROZEN builds on a total stress concept, as it has been developed and validated based
on post-freezing confinement freezing tests (initial load application after freezing, definitions see
Nishimura and Wang (2019)). However, as described by Cudmani et al. (2023), pre-freezing
confinement (initial load application before freezing) has more practical relevance. The effective
deviatoric stress (i.e., the difference between the deviatoric stress after freezing and the initial
deviatoric stress before freezing), which induces shear and creep of the frozen soil, should be

166



9.2. Outlook

considered numerically. Triaxial testing is a good way to perform pre-freezing confinement freez-
ing tests. First, the unfrozen soil sample is consolidated under a certain stress level and then
frozen. Subsequently, the actual freezing test begins. As proposed by Cudmani et al. (2023), to
consider pre-freezing confinement within EVPFROZEN, the formulation of the deviatoric stress s
and q needs to be modified within the model. Assuming that the initial deviator of the soil s0 and
q0 is carried by the granular skeleton, the effective deviatoric stress inducing shear and creep of
the frozen soil is the difference between seff = s− s0 and qeff = q− q0 after the soil has been
frozen.

• EVPFROZEN considers a simple framework for tensile loading, which is essentially the same
as for compressive loading. Although the resulting tensile strength is lower than the compres-
sive strength, the model does not consider the fact that frozen soil is more brittle under tensile
loading than under compressive loading. Moreover, as shown in Section 8.8, the current sim-
plified EVPFROZEN for tensile loading is not able to accurately reproduce the complex tensile
behavior of frozen soils, especially the experimentally observed differences between shear and
creep strength (see Section 2.2.7). However, before attempting to adapt the EVPFROZEN ten-
sile framework, a comprehensive experimental investigation of the tensile behavior of frozen soils
is necessary to fundamentally understand and quantify not only the differences between tensile
shear and creep but also their significant deviations from the well-known mechanical behavior un-
der compressive loading. For example, it should be clarified in which cases and to what extent the
tensile behavior of frozen soil is rate- and temperature-dependent and how the strain rates evolve
during tensile creep loading. This includes clarifying whether all three known creep phases under
compression (primary to tertiary creep) also exist under tension.

• Stress-strain coaxiality is assumed in EVPFROZEN; see Equations 3.21 and 4.9. Therefore, the
model cannot realistically reproduce volumetric strain after reaching the peak shear and creep
strength. Adding an additional elastic-(visco)plastic term could improve the model response ac-
cordingly.

• There is no comprehensive model validation for non-uniform and time-varying temperature fields.
However, there is also no sophisticated experimental database, including freezing tests at varying
rather than constant temperatures, to even test the current model response of EVPFROZEN for
transient temperature conditions. It is recommended to perform compression and creep tests with
temperature jumps during the tests, as performed by Wang et al. (2017) in triaxial compression
tests on frozen clay. Here, the evolution of the creep strain rates can be observed and compared
to steady-state temperature tests in the same manner as in this thesis for single-stage and multi-
stage loading to investigate their equivalence. This requires a fundamental understanding of the
dependence of creep strain rates on varying temperatures at a constant stress state, including
creep failure. Moreover, freezing tests under a temperature gradient are desirable because they
approximate the actual temperature distributions within a frozen soil body in practical applications.
First approaches to provide sophisticated freezing tests under temperature gradients on Karlsruhe
frozen sand for model validation purposes have already been reported by Viglianti et al. (2024).
Based on a high-quality and sophisticated experimental database on the influence of varying
temperatures on the mechanical behavior of frozen soils, EVPFROZEN can be tested, and its
strengths and limitations in the thermo-mechanical coupled model response can be identified for
further practical use and model adaptation.

• The model validation for large-scale experiments (model tests) in this thesis and in the study by
Schindler et al. (2023d) holds uncertainties due to the limited available experimental data and their
restricted measurement instrumentation. Hence, the ability to model the mechanical behavior of
frozen soil in boundary-value problems requires further testing. Therefore, it is recommended
that additional experimental model tests be conducted that approximate typical geotechnical and
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9. Summary and outlook

engineering applications of frozen soil bodies to provide sophisticated, well-instrumented, large-
scale experiments with particular emphasis on the shear or creep behavior of frozen soil bodies.
These tests can then be back-calculated with EVPFROZEN to strengthen its reliability and further
promote its potential for optimized AGF design.

• So far, EVPFROZEN has mostly been tested on uniform sands (e.g., this thesis) or gravel with
relatively low sand content (Cudmani (2006)). Its validation for other well-graded coarse-grained
materials, such as sandy gravel or gravelly sand, is still missing due to a lack of well-documented
experimental data. Indeed, the previous attempt to test EVPFROZEN for frozen fine-grained soils
by Schindler et al. (2023d) gave promising results, and the general application of the model to
these soil types should be further investigated. From a practical point of view, the testing and
use of EVPFROZEN is particularly relevant for mixtures of coarse- and fine-grained frozen soils
since alluvial soils are heterogeneous in nature and often contain significant fines in addition to
coarse-grained fractions.
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A. Experiments

A.1. Experimental freezing tests on frozen Karlsruhe sand:
Multi-stage creep behavior

A.1.1. Uniaxial single-stage creep tests used for comparison with multi-stage
creep tests
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Figure A.1.: Single-stage creep tests at −10◦C compared to multi-stage creep tests referring to Sec-
tions 4.2.2, 4.2.3 and A.1.2

A.1.2. Additional multi-stage creep tests with stepwise loading
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Figure A.2.: Multi-stage creep tests with stepwise loading at −10◦C: 0231-cr
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Figure A.3.: Multi-stage creep tests with stepwise loading at −10◦C (1/2)
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Figure A.4.: Multi-stage creep tests with stepwise loading at −10◦C (2/2)
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Figure A.5.: Stepwise loading: average axial strain εm at the turning point (t = tm) for uniaxial single-
stage and multi-stage creep tests at −10◦C.

171



A. Experiments

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

(a)

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

(b)

Figure A.6.: Additional uniaxial creep tests at θ = −10◦C according to Table 3.5 and Table 3.6: Evolution
of the normalized axial strain rate ε̇1/ε̇m over normalized time t/tm for the single-stage as well as ε̇1/ε̇m
over the normalized transformed time t∗,Mj/t∗,Mj

m for the multi-stage creep tests with stepwise loading
using the proposed concept after Section 4.3.
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A.1.3. Additional multi-stage creep tests with stepwise unloading
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(c) 0257-cr at −10◦C

Figure A.7.: Multi-stage creep tests with stepwise unloading at −10◦C (1/2)
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Figure A.8.: Multi-stage creep tests with stepwise unloading at −10◦C (2/2)
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Figure A.9.: Multi-stage creep tests with stepwise unloading at −10◦C: 0237-cr
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Figure A.10.: Additional uniaxial creep tests at θ = −10◦C according to Table 3.5 and Table 3.6: Evo-
lution of the normalized axial strain rate ε̇1/ε̇m over normalized time t/tm for the single-stage as
well as ε̇1/ε̇m over the normalized transformed time t∗,Mj/t∗,Mj

m for the multi-stage creep tests with
stepwise unloading using the proposed concept after Section 4.3.
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A.1.4. Additional multi-stage creep tests with stepwise load-unload cycles
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Figure A.11.: Multi-stage creep tests with stepwise load-unload cycles at −10◦C
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Figure A.12.: Stepwise load-unload cycles: average axial strain εm at the turning point (t = tm) for
uniaxial single-stage and multi-stage creep tests at −10◦C.
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A.2. Experimental freezing tests on frozen Karlsruhe sand:
Varying initial relative density referring to Sections 5 and 6

A.2.1. Uniaxial compression tests

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

10

12

(a)

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

10

12

(b)

Figure A.13.: Uniaxial compression tests at −5◦C
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Figure A.14.: Uniaxial compression tests at −10◦C (1/2)
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Figure A.15.: Uniaxial compression tests at −10◦C (2/2)
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Figure A.16.: Uniaxial compression tests at −15◦C
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Figure A.17.: Uniaxial compression tests at −20◦C
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A.2. Experimental freezing tests on frozen Karlsruhe sand: Varying initial relative density referring to
Sections 5 and 6

A.2.2. Uniaxial single-stage creep tests
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Figure A.18.: Single-stage creep tests at −10◦C (1/4)
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Figure A.19.: Single-stage creep tests at −10◦C (2/4)
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Sections 5 and 6
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Figure A.20.: Single-stage creep tests at −10◦C (3/4)
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Figure A.21.: Single-stage creep tests at −10◦C (4/4)
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Figure A.22.: Single-stage creep tests at −15◦C
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Figure A.23.: Single-stage creep tests at −20◦C
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A.3. Indirect tensile tests on frozen Karlsruhe sand and frozen
sandy gravel

The work presented in this section was presented in a similar form at the 18th European
Conference on Soil Mechanics and Geotechnical Engineering.

Schindler, U., Chrisopoulos, S., Vogt, S., Cudmani, R. (2024). Shear and creep behaviour
of frozen granular soils under compressive and tensile loading. Proceedings of the XVIII
ECSMGE 2024. pp. 815-820. doi: 10.1201/9781003431749-137.

The author of this dissertation was the first and corresponding author of the above paper.

A.3.1. Testing material

This study presents a laboratory test program, including standard uniaxial compression tests and spe-
cial, indirect uniaxial tensile tests at a temperature of −5◦C. Both types of experiments were performed
with frozen Karlsruhe sand (details, see Section 3.1) and a frozen sandy gravel, which is obtained from
drilling campaigns in southern Germany. The following test description refers to the sandy gravel mate-
rial but is also applicable to the tested Karlsruhe sand. Figure A.24 shows the grain size distributions of
the tested sandy gravel.

Figure A.24.: Grain size distributions of the investigated sandy gravel.

A.3.2. Sample preparation

Our experimental study includes two different sample types of frozen sandy gravel. We prepared full
cylinder samples for uniaxial compression tests, while hollow cylinder samples were used for uniaxial
tensile tests. Figure A.25 illustrates examples of the prepared full and hollow cylinder samples with the
frozen sandy gravel tested in this study.

187



A. Experiments

(a) Full cylinder (b) Hollow cylinder

Figure A.25.: Examples of the two tested types of frozen sandy gravel samples.

Firstly, we briefly summarize the sample preparation method for both specimen types. In both cases,
dry material was filled into a cylindrical mold with a diameter of 100 mm and a height of 250 mm.
Subsequently, the mold was closed and flushed with CO2 to displace the air within the sample. Next,
the sample was slowly saturated from the bottom to the top with de-aired water. Afterward, the mold
was sealed airtight and placed into a cooling chamber to freeze the sample isotropically to the testing
temperature of −5◦C. Finally, the frozen samples were pushed out of the mold, and their end plates
were trimmed and smoothed out using cutting tools. At the end of the preparation procedure, the full
cylinder samples had a diameter of about 100 mm and a height of about 200 mm. In contrast to the
above procedure, the preparation of the hollow cylinder samples began by placing a 40 mm diameter
steel rod in the center of the mold. The actual preparation process was then essentially the same as for
the full cylinder samples, including pushing out the steel rod of the frozen sample. The hollow cylinder
samples had an outer diameter of about 100 mm, an inner (hole) diameter of 40 mm, and a height of
about 200 mm. The full and hollow cylinder sample characteristics were very similar, with an average
gravimetric water content of w = 14.5 %, dry unit weight of ρd = 1.87 g/cm3 and an average degree of
saturation of Sr = 89 %.

A.3.3. Testing equipment for indirect tensile tests using the hydraulic
fracturing method

In order to investigate the frozen soil tensile shear behavior, either so-called direct or indirect tensile
tests are reported in the literature. Although direct tensile tests are desirable, they are more challenging
to perform and more time-consuming than indirect tensile tests. In fact, from a practical point of view,
indirect tensile tests seem sufficiently accurate to approximate the tensile behavior of frozen soils, with
the advantage of reduced test effort and less complex measurement equipment (Wang et al. 2023).
In this study, we performed indirect tensile tests on frozen gravel using a hollow-cylinder device based
on the hydraulic fracturing method (HFM) proposed by Al-Khateeb and Buttlar (2000) and Perras and
Diederichs (2014) in the field of testing asphalt and rock mechanics. This practical and comparably
simple testing method has recently been demonstrated by Wang et al. (2023) for frozen silt. In this study,
we applied HFM to frozen coarse-grained soils for the first time. In the following, we briefly summarize
HFM; for further details, see Al-Khateeb and Buttlar (2000) and Wang et al. (2023). HFM is similar
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to the dilatometer test conducted in boreholes in situ. The core aspect of HFM is the use of a hollow
cylindrical specimen in which the internal pressure p is gradually increased. This pressure is applied
until the specimen reaches its peak strength, indicating shear failure under tension (radial splitting of
the sample). Since the internal pressure p can be well controlled, HFM allows different types of loading,
such as monotonically increasing p or keeping p constant (creep). As such, HFM is comparatively cost-
effective and provides a technically simple yet fundamental insight into the mechanical response of the
specimen under stress. Figure A.26 shows our used testing set-up and supplementary equipment to
perform HFM on frozen gravel.
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Figure A.26.: Experimental set-up to perform hollow-cylinder tensile tests (HFM) at Zentrum Geotechnik
of the Technical University of Munich.

As can be seen in Figure A.26, the internal pressure p was applied to the sample via a conventional
packer system commonly used for grouting works. The applied pressure was controlled by a volume
pressure controller (VPC). In addition, a steel tube at the top and bottom of the packer prevented the
packer membrane from expanding outside the sample. Consequently, only the packer membrane inside
the hollow cylinder expanded and applied pressure to the sample. Steel plates at the top and bottom
of the sample hindered vertical displacements of the sample. Hence, the sample only deforms radially
during the tests. The packer membrane and the contact areas of the steel plates with the sample were
lubricated to reduce friction. In order to convert the measured internal pressure p into the stress state
of the sample, based on theoretical and mechanical considerations, Perras and Diederichs (2014) and
Wang et al. (2023) proposed the following equation for the tangential stress σΘ.

σΘ = σt = p

(
R2 + r2

R2 − r2

)
(A.1)

In Equation A.1, σΘ corresponds to tensile stress σt in HFM, while p is the applied internal pressure.
Moreover, r is the radius (location in the sample) at which σt is evaluated, and R is the outer radius of the
hollow cylinder. Based on our tested sample dimensions for frozen gravel described in Section A.3.2,
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A. Experiments

Equation A.1 results in σt ≈ 1.38 · p at the inner surface with r = 20 mm and R = 50 mm.

A.3.4. Testing program

In order to investigate the difference in the shear behavior between compressive and tensile loading,
five uniaxial compression and five tensile tests on frozen gravel were performed at −5◦C. The results
of these freezing tests are discussed in the next section.

A.3.5. Experimental results of uniaxial shear tests on frozen sandy gravel

Uniaxial compression tests

Figure A.27 depicts the experimental results of uniaxial compression tests with frozen gravel at −5◦C

for different constant axial strain rates ε̇1 from 0.01 %/min to 1.0 %/min.

0 1 2 3 4 5 6

0

1

2

3

4

5

Figure A.27.: Evolution of axial stress σ1 over axial strain ε1 in uniaxial compression tests at −5◦C with
different constant axial strain rates ε̇1 for frozen sandy gravel.

The test results in Figure A.27 are in accordance with the well-known rate-dependent behavior of frozen
soils, as the uniaxial compression (peak) strength σc increases with increasing axial strain rate. In fact,
σc ranges between 1.5 MPa up to about 4.5 MPa. This is consistent with studies like Zhao et al. (2020),
who reported a similar rate-dependent order of magnitude for frozen gravel at −5◦C.

Indirect uniaxial tensile tests (HFM) on frozen sandy gravel

After analyzing the shear strength of frozen gravel in uniaxial compression tests, the uniaxial tensile
behavior is discussed and compared with that under compression. Figure A.28 shows the experimental
results of HFM on frozen sandy gravel at −5◦C.
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A.3. Indirect tensile tests on frozen Karlsruhe sand and frozen sandy gravel
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Figure A.28.: Experimental results of HFM tests on frozen sandy gravel at −5◦C. σt represents the
uniaxial tensile strength of the sample.

In particular, Figure A.28a describes the measured and evaluated volume increase of the packer mem-
brane ∆V during the tests. The radial expansion of the packer membrane leads to radial and especially
tangential deformation of the frozen soil sample and, after a particular stage, to tensile/shear failure.
In this context, Figure A.28b compares the tensile stress σt with ∆V, where σt is calculated from the
measured inner pressure p according to Equation A.1. At the beginning, σt slowly increases with in-
creasing ∆V. Afterward, there is complete contact between the packer membrane and the frozen soil
sample. Hence, σt increases faster with ∆V until the peak tensile strength σt,u is reached. The sam-
ple shows a brittle failure by abruptly enlarging cracks (see Figure A.29) and consequently, the stress
instantaneously drops to zero.

Figure A.29.: Example of a sandy gravel sample tested and its corresponding crack pattern after tensile
testing.

The peak strength σt,u in Figure A.28b ranges from 3.2 MPa to 4.0 MPa with an average value of 3.6
MPa. In addition, the experimental results do not indicate a pronounced rate-dependence of the frozen
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A. Experiments

soil tensile behavior, as σt,u is mostly independent of the investigated incremental volume increase
∆V/∆t. In fact, this is consistent with experimental observations by Schulson and Duval (2009), which
revealed no significant rate-dependence of the tensile strength of polycrystalline ice (see Figure 2.20
in Section 2.2.7). Therefore, the tensile shear behavior of the frozen soil should also be less affected
by the rate of shear loading, as the polycrystalline ice contained in the frozen soil controls the viscous
behavior.

A.3.6. Comparison of uniaxial compression and tensile tests on frozen
Karlsruhe Sand
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(a) Uniaxial compression tests according to Ta-
ble 3.2.
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(b) Uniaxial indirect tensile tests (HFM) according
to Section A.3.4

Figure A.30.: Comparison of uniaxial compression and tensile tests on dense samples
(ρd ≈ 1.62 g/cm3, Sr ≈ 0.88) of frozen Karlsruhe sand at −5◦C. σt represents the uniaxial tensile
strength of the sample. Definition of ∆V, see Figure A.28a
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Figure A.31.: Additional uniaxial indirect tensile tests (HFM) on frozen KA (ρd ≈ 1.62 g/cm3, Sr ≈ 0.88)
at a relatively low rate of ∆V/∆t = 0.3ml/min. σt represents the uniaxial tensile strength of the sample.
Definition of ∆V, see Figure A.28a.
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B. Model calibration and additional testing
for frozen Manchester fine sand

The work presented in this section was published previously in similar form in Schindler
et al. (2023a). The author of this dissertation contributed to Schindler et al. (2023a) as first
and corresponding author.

B.1. Model calibration for frozen Manchester fine sand

In total, EVFPROZEN, according to Section 4.4 without its relative density dependence, consists of
eleven parameters, which can be calibrated by using eight standard laboratory freezing tests consisting
of 1D and 3D compression and/or creep tests as well as a 1D tensile test. The derivation and deter-
mination of the parameters are explained in detail in Section 3.7.3. In the following, we will exemplarily
determine all eleven parameters for frozen Manchester fine sand (MFS) to illustrate the unambiguous
and rather simple model calibration procedure.

According to Martin et al. (1981) and Andersen (1991), Manchester fine sand (MFS) is a uniform quartz
and feldspar fine sand obtained from the banks of the Merrimack River (New Hampshire, USA). The
mechanical behavior of frozen MFS has been extensively investigated by Martin et al. (1981); Ting
(1981); Andersen (1991); Swan (1994). Hence, sufficient experimental data is available to fully calibrate
EVPFROZEN for frozen MFS. For instance, Martin et al. (1981) and Ting (1981) extensively investigated
the uniaxial creep strength of MFS at various temperatures and uniaxial creep stresses. Table B.1 sum-
marizes the 1D creep tests used to determine the seven 1D EVPFROZEN model parameters.

Table B.1.: Uniaxial single-stage creep tests on frozen MFS (ρd ≈ 1.54g/cm3, Sr ≈ 1.0) after Martin
et al. (1981)

Test number θ σ1 ε̇m tm
[◦C] [MPa] [%/min] [min]

S8-59 -12.5 9.1 1.69E-02 120
S8-46 -12.5 7.9 2.40E-03 970
S9-1 -18.5 10.6 4.12E-03 465
S8-76 -18.7 8.8 5.46E-04 3200
S9-137 -27.4 10.6 1.26E-04 10,000
S9-134 -27.6 16.5 1.53E-02 165

Following the procedure in Section 3.7.3, the 1D creep test data in Table B.1 are evaluated in Figure B.1
to determine the 1D parameters c, α1, α2, β, K1. The corresponding fitting equations and determined
parameter values are also shown in the figure.
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Figure B.1.: Calibration of the 1D model parameters c, α1, α2, β, K1 using 1D creep tests listed in
Table B.1. Data after Martin et al. (1981); Ting (1981).

Despite the comprehensive experimental MFS database for compressive loading, there are no sophis-
ticated 1D compression tests with frozen MFS in the literature. Therefore, Young’s modulus E cannot
be directly determined. For simplicity, E is assumed to be 500 MPa, which has been approximated from
the similar frozen Karlsruhe sand; see Sections 3.1 and 3.7.3. According to Martin et al. (1981), the
frozen MFS samples tested were fully saturated (Sr ≈ 1.0). Consequently, the Poisson ratio ν for MFS
is assumed to be 0.49. After calibrating all seven 1D parameters, the missing four 3D parameters A, B,
C, and D need to be determined to complete the EVPFROZEN calibration procedure. In this context,
Andersen (1991) performed comprehensive 3D compression tests on frozen MFS under different con-
stant strain rates and confinements. Table B.2 summarizes the 3D compression tests used to determine
the four 3D model parameters.

Table B.2.: Triaxial compression tests on frozen MFS (ρd ≈ 1.54g/cm3, Sr ≈ 1.0) at −10◦C after Ander-
sen (1991)

Test number σ3 ε̇1 qu
[MPa] [%/min] [MPa]

18
10 0.180

13.4
19 13.1
63 14.4
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B.1. Model calibration for frozen Manchester fine sand

As described in Section 3.7.2, EVPFROZEN is capable to account for the influence of the mean pres-
sure and to differentiate between compressive and tensile loading by introducing the equivalent uni-
axial creep strength σcr (p, q, ϕ) (see Equation 3.19). In order to determine the shape of this func-
tion, the parameters A, B, C, D are fitted to the results of confined compression tests normalized
by their equivalent uniaxial compressive strength σc,EVPFROZEN (calculated with the 1D model), i.e.
p̂ = p/σc,EVPFROZEN (ε̇1, θ) and q̂ = q/σc,EVPFROZEN (ε̇1, θ). Since no tensile tests are available for
frozen MFS, we assume empirical points for the hydrostatic tensile strength (0.4, 0) and the ratio of ten-
sile to compressive strength σt/σc = 0.4, according to Section 2.2.7. In Figure B.2, the 3D compression
tests from Table B.2 are plotted in the normalized p̂− q̂ creep surface to determine the 3D parameters
A, B, C, and D. Again, the corresponding compressive fit equation and the determined parameter values
are also shown in the figure. Note that in Figure B.2, p̂ < 0 corresponds to compression.
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Figure B.2.: Calibration of 3D EVPFROZEN parameters using the 3D compression tests listed in Ta-
ble B.2. Data after Andersen (1991).

Table B.3 summarizes the 1D and 3D material parameters for frozen, saturated MFS with a dry unit
weight of ρd ≈ 1.54g/cm3 and Sr ≈ 1.0.

Table B.3.: EVPFROZEN material constants for frozen Manchester fine sand (MFS) related to an initial
frozen soil void ratio of e ≈ 0.662, a dry unit weight of ρd ≈ 1.54g/cm3 and a degree of saturation of
Sr ≈ 1.0 according to the freezing tests by Martin et al. (1981); Ting (1981); Andersen (1991).

One-dimensional model Three-dimensional model
E ν c α1 α2 β K1 A B C D

[MPa] [-] [%] [MPa/◦C] [-] [-] [K] [-] [-] [-] [-]
500 0.49 2.2 1.83 0.74 0.88 4430 1.83 -1.87 1.87 2.5
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B. Model calibration and additional testing for frozen Manchester fine sand

B.2. Model validation for frozen Manchester fine sand based on
element tests

This section compares the EVPFROZEN model prediction with the experimental data from uniaxial
creep and triaxial compression tests for frozen MFS. Here, Martin et al. (1981) conducted unconfined
creep tests at various uniaxial stresses σ1 and temperatures θ. Figure B.3 compares the experimental
and numerical results.

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

(a) σ1 = 10.6 MPa

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

(b) θ = −18.4◦C

Figure B.3.: Experimental (symbols) and numerical (lines with symbols) comparison of 1D creep tests
with frozen MFS. Data after Ting (1981).

The model response (lines) for the creep tests is in accordance with the experiments (symbols). Both
the minimum strain rate ε̇m and the lifetime tm are well reproduced, both for different temperatures at
a constant uniaxial stress (Figure B.3a) and for different uniaxial stresses at a constant temperature
(Figure B.3b). In addition to creep behavior, EVPFROZEN is also capable of predicting the practically
important shear strength of frozen soils under both uniaxial and triaxial loading. Figure B.4 compares
the experimental and numerical results of triaxial compression tests under different confinements and
axial strain rates at −20◦C.
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Figure B.4.: Experimental and numerical comparison of triaxial compression tests with frozen MFS at
−20◦C. Open symbols: σ3 = 0.1 MPa; Filled symbols: σ3 = 10 MPa. Data after Swan (1994).
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B.2. Model validation for frozen Manchester fine sand based on element tests

As can be seen in Figure B.4a, the peak shear strength qu of frozen MFS increased with increasing
strain rate. In addition, an increase in confinement leads to a higher qu for the same strain rate ε̇1. In
both cases, EVPFROZEN is able to predict the ultimate shear strength accurately; see Figure B.4b.
However, the model shows a softer behavior of the frozen soil before reaching the peak compared to
what was measured in the tests. Considering these deviations for MFS, it is recommended that they be
taken into account when using the model to evaluate the ultimate-limit state. To sum up, as shown for
frozen MFS based on element tests, EVPFROZEN satisfactorily captures the essential characteristics
of the shear and creep behavior of frozen soils, which is key to its use in AGF designs.
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C. Additional simulations using EVPFROZEN

C.1. Additional simulations for single-stage loading

Parts of the work presented in this section were published previously in similar form in
Schindler et al. (2023c). The author of this dissertation contributed to Schindler et al.
(2023c) as the first and corresponding author.

C.1.1. In general

The simulations in this section were performed using the frozen KAS material parameters according to
Table 4.3.

C.1.2. Uniaxial compression test

In order to evaluate the models’ shear responses, four uniaxial compression tests with different constant
axial strain rates were performed at −10◦C. Figure C.1 presents the experimental and numerical results
of these tests.
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Figure C.1.: Evolution of axial stress over axial strain in uniaxial compression tests at −10◦C with differ-
ent constant axial strain rates ε̇1

The experimental results in Figure C.1a illustrate the well-known rate-dependent shear behavior of
frozen soils as the ultimate shear strength increases with increasing axial strain rate. The predicted
ultimate shear strength values in Figure C.1b agree well with the experiments for both model versions.
However, EVPFROZEN is more accurate in terms of the corresponding axial strain deformations than
Cudmani’s version. As already discussed by Cudmani et al. (2023), using their version reproduces a
stiffer frozen soil behavior before reaching the peak than measured in the tests. Consequently, and
as can be seen in Figure C.1b, the predicted axial strain (dashed lines) required to achieve the peak
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C.1. Additional simulations for single-stage loading

is mainly smaller in the simulations than in the experiments. Moreover, this axial strain is mostly in-
dependent of the axial strain rate when using the original version. In contrast, EVPFROZEN (solid
lines in Figure C.1b) predicts a more ductile behavior with decreasing axial strain rate for the ultimate
shear strength, which is in accordance with the measured axial strain. The axial strain corresponding
to the ultimate strength is reached more slowly. The implementation of a transformed creep time in
EVPFROZEN provides an improved non-linearity stiffness response for the shear behavior. However,
note that both model versions still clearly underestimate the stiffness for a relatively fast axial strain rate
of 1 %/min. In addition, the observed shear strength softening after reaching its peak value is also not
well reproduced by the models. This should be taken into account for the model use in AGF applications,
even though the order of strain rate magnitude in in-situ shear processes is mostly significantly smaller,
for which the models’ predicted deformation behavior is in good agreement with the measured ones. To
sum up, both model versions satisfactorily capture the essential characteristics of the shear behavior of
frozen soil and are thus suitable for AGF applications in which shear failure plays an important role.

C.1.3. Uniaxial single-stage creep tests

As discussed in Section C.1.2, the ultimate shear strength of frozen soils is rate-dependent. Hence, the
time- and stress-dependent creep strength of frozen soils also depends on its previous shear history
(load application speed) since the creep strength is obviously limited to its ultimate shear strength. For
instance, and as shown in Figure C.1a, in the experiments, uniaxial creep deformations for a creep
stress of σ1 = 6.5MPa are observable, only if ε̇1,loading is higher than 0.003 %/min. Otherwise, shear
failure occurs first, and no creep strength exists for this intended stress level. In addition, relatively slow
load application speeds reduce the maximum creep time period ∆tcreep = tm − tloading until the lifetime
tm of the frozen soil is reached (see Figure C.2b). From a practical point of view, it is important that
sophisticated constitutive models for frozen soils capture these coupled shear-creep characteristics.
In order to validate this, we simulate uniaxial single-stage creep tests under different load application
speeds. Figure C.2 compares both model responses with each other and single-stage creep tests
at 5.0MPa and 6.5MPa with two different load application speeds ε̇1,loading. Note that the plotted
experimental results include the total strain evolution (Figure C.2a) and the total strain rate evolution
(Figure C.2b).
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Figure C.2.: Evolution of axial strain (a) and axial strain rate (b) over time in uniaxial single-stage creep
tests at −10◦C with ε̇1,loading = 0.01%/min (open symbols) and ε̇1,loading = 0.005%/min (filled sym-
bols). Experiments: symbols. Simulations: lines.
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C. Additional simulations using EVPFROZEN

In general, the time-dependent axial strain evolution in Figure C.2a is in good accordance with the two
experiments for both model versions, even though EVPFROZEN is more accurate than Cudmani’s ver-
sion. The same applies to the strain rates in Figure C.2b, which first decrease (primary creep) and
then increase (tertiary creep) with time for both the experimental and numerical results. In particular,
the predicted minimum axial strain rates ε̇m in Figure C.2b agree with those measured. Moreover,
studies like Schindler et al. (2024) and Staszewska (2022) provide evidence that ε̇m is mostly indepen-
dent of the previous stress-strain history and thus both versions predict the same ε̇m. Nevertheless,
the corresponding lifetime tm (testing time at which ε̇m is reached) differs in the two simulations. As al-
ready discussed in Section C.1.2, Cudmani’s model predicts a stiffer shear behavior than EVPFROZEN.
Hence, in Figure C.2b, the Cudmani version’s response results in a shorter load application time until
the intended creep stress level is reached. This is indicated by the sudden drop of ε̇1 after its previous
constant period in Figure C.2b. Consequently, the creep stage in Cudmani’s model simulation (dashed
lines) begins earlier, and the total time until reaching tm is also shorter since it is shifted by nearly the
same time difference. On the one hand, the use of the extended model version EVPFROZEN may
result in longer lifetimes of the frozen soil and thus improves AGF designs economically. On the other
hand, Cudmani’s model version response is stiffer for the load applications and, therefore, predicts an
earlier lifetime reach, which, from a practical point of view, is on the safe side. Nevertheless, both model
versions are able to capture the coupled shear-creep behavior for predominantly monotonic loading,
which is an essential feature for advanced AGF designs.

C.2. Additional simulations for multi-stage loading

C.2.1. In general

The simulations in this section were performed using the frozen KAS material parameters according to
Table 4.3.
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C.2. Additional simulations for multi-stage loading

C.2.2. Stepwise loading
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Figure C.3.: Simulations of multi-stage creep tests with stepwise loading at −10◦C
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C. Additional simulations using EVPFROZEN

C.2.3. Stepwise unloading
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Figure C.4.: Simulations of multi-stage creep tests with stepwise unloading at −10◦C (1/3)
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Figure C.5.: Simulations of multi-stage creep tests with stepwise unloading at −10◦C (2/3)
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C. Additional simulations using EVPFROZEN
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Figure C.6.: Simulations of multi-stage creep tests with stepwise unloading at −10◦C (3/3)
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C.2. Additional simulations for multi-stage loading

C.2.4. Stepwise load-unload cycles
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Figure C.7.: Simulations of multi-stage creep tests with stepwise load-unload cycles at −10◦C (1/2)
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Figure C.8.: Simulations of multi-stage creep tests with stepwise load-unload cycles at −10◦C (2/2)

C.3. Additional simulations for the influence of the initial relative
density

C.3.1. In general

The simulations in this section were performed using the frozen KAS material parameters according to
Table 6.2.
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C.3.2. Uniaxial creep tests on frozen KAS
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(a) σ1 = 5 MPa at −10◦C
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(b) σ1 = 7 MPa at −10◦C
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Figure C.9.: Simulations of uniaxial creep tests on frozen KAS with different initial densities. Symbols:
Experiments; Lines: Simulations.
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C. Additional simulations using EVPFROZEN

C.4. Testing EVPFROZEN in uniaxial relaxation tests on frozen
Karlsruhe sand

Section 7.4 demonstrated EVPFROZEN’s ability to predict both the creep and relaxation behavior of
frozen soils during a conventional tunnel excavation supported by a frozen soil body. In the following, the
EVPFROZEN model response for relaxation is evaluated based on the comparison of uniaxial relaxation
tests on frozen Karlsruhe sand reported by Orth (1986). Orth (1986) performed uniaxial relaxation tests
on frozen KAS at −10◦C. The tests consisted of a load application phase followed by a relaxation phase.
In the load application phase, a target axial stress σ1 was achieved by applying a constant axial strain
rate of ε̇1 = 0.1 %/min (schematic procedure, see Figure C.10a). Next, after reaching the target σ1,
axial deformation was prevented (∆ε1 = 0) and the decrease in axial stress σ1 was measured over time
during the relaxation phase (Figure C.10b). Figure C.10 shows the back-calculation of these uniaxial
relaxation tests using the model version of EVPFROZEN according to Section 4.4 in combination with
the material parameters according to Table 3.7.
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Figure C.10.: Simulations of uniaxial relaxation tests on frozen KAS with different initial stress states at
−10◦C. Symbols: Experiments; Lines: Simulations.

In the simulations in Figure C.10a, the target axial stress σ1 is reached at different axial strains ε1.
For example, σ1 ≈ 2 MPa is reached at ε1 ≈ 0.005, while a predicted σ1 ≈ 10 MPa corresponds to
ε1 ≈ 0.047. Consequently, the comparison of the experimental and numerical results for the following
relaxation phase in Figure C.10b refers not only to different initial axial stresses but also to different initial
axial strains. In general, as can be seen in Figure C.10b, the predicted decrease in axial stress σ1 (lines)
occurs more slowly than observed in the experiments (symbols). Therefore, the model underestimates
the total stress reduction at the end compared to the measured stress reduction. In particular, for
relatively high initial axial stresses such as σ1,initial ≈ 6− 10 MPa, the stress deviations are higher
than for lower stress levels. For instance, for the relaxation test starting at σ1,initial ≈ 2 MPa, there
is a good agreement between the measured and predicted stress decreases over time. In summary,
EVPFROZEN is generally capable of qualitatively predicting the stress reduction of frozen soils during
relaxation. The back-calculation of uniaxial relaxation tests on frozen Karlsruhe sand indicates that the
model underestimates the initial stress decrease at the beginning of the relaxation phase. However,
as time progresses, the predicted stress evolution improves. Furthermore, the model’s accuracy in
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predicting the relaxation behavior of frozen soil increases as the initial axial stress and corresponding
strain decrease. Therefore, the model’s response and its use appear to be more accurate for relatively
low initial stress levels than for relatively high ones.
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