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Abstract

The ongoing transition to carbon-free energy in the European energy system requires
flexibilization on the consumption side in order to integrate renewable generation into
the grid. A potential option for load shifting is demand-side management in the resi-
dential sector, which requires appropriate incentives for the affected customers. Thus, a
simulation model is developed and analyzed, which allows for the evaluation of the effects
of variable electricity rates on consumption patterns and resulting system effects.

To quantify the DSM potential of households, a disaggregation method for measured
load curves is developed, allowing the modeling of shifting measures on an individual
appliance level. Historical time series of curtailment measures in high spatial resolution
are applied to determine the effects of the analyzed approach on the integration of
renewables. Survey-based information on the willingness of customers to adjust their
consumption behavior and on the acceptance factors of variable rates are applied to
model the effects of rate design. Based on these inputs, the developed model allows for
the evaluation of a suitable parametrization of the variable rate for the defined goal of
curtailment reduction.

The results are mainly assessed regarding the potential reduction of curtailment caused
by the modeled load shifting according to the assumed variable rate. A strong regional
dependence can be observed, caused by the differences in required curtailment measures.
Moreover, sensitivity analyses show the effects of rate parameters on the achieved reduc-
tion of curtailment, leading to a resulting potential ranging from 2% to 5%. Based on
this model, an optimization approach is applied to determine a parameter set that max-
imizes the curtailment reduction while maintaining approximate cost neutrality from
both the customer’s and the system’s perspectives.

The evaluations show that the developed model chain is suitable for the defined objective,
yields plausible results, and can be utilized for the reasonable design of variable rates,
which pose sufficient incentive for customers to adhere to system requirements. A legal
implementation of the price variability in grid fees mitigates the potential acceptance
problems. Thus, residential DSM, according to the developed approach, can provide a
relevant contribution to a future energy system.
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Kurzfassung

Die laufende Energiewende im europäischen Energiesystem erfordert eine Flexibilisierung
der Verbraucherseite, um die erneuerbare Erzeugung ins Netz zu integrieren. Eine
mögliche Option für Lastverschiebung ist Demand-Side Management im Haushaltssek-
tor, das geeignete Anreize für die betroffenen Kunden erfordert. Deshalb wird ein Sim-
ulationsmodell entwickelt und analysiert, das die Bewertung der Auswirkungen variabler
Stromtarife auf Verbrauchsverhalten und resultierender Systemrückwirkungen ermöglicht.

Um das DSM-Potenzial von Haushalten zu quantifizieren, wird eine Disaggregations-
methode für gemessene Lastgänge entwickelt, mit der Verschiebungsmaßnahmen auf der
Ebene einzelner Geräte modelliert werden können. Historische Zeitreihen von Abregel-
ungsmaßnahmen in hoher räumlicher Auflösung werden genutzt, um die Auswirkungen
des analysierten Ansatzes auf die Integration erneuerbarer Energien zu ermitteln. Um-
fragebasierte Informationen über die Bereitschaft von Kunden, ihr Verbrauchsverhalten
anzupassen, und über die Akzeptanzfaktoren variabler Tarife werden verwendet, um die
Auswirkungen der Tarifgestaltung zu modellieren. Basierend auf diesen Eingangsdaten
ermöglicht das entwickelte Modell die Bewertung einer geeigneten Parametrisierung des
variablen Tarifs für das definierte Ziel der Reduktion von Abregelung.

Die Ergebnisse werden primär in Bezug auf das Potenzial zur Reduktion der Abregelung
durch die modellierte Lastverschiebung anhand eines angenommenen variablen Tarifs be-
wertet. Es zeigen sich starke regionale Abhängigkeiten, die sich durch die Unterschiede
hinsichtlich notwendiger Abregelung in den Regionen ergeben. Darüber hinaus zeigen
Sensitivitätsanalysen die Auswirkungen der Tarifparameter auf die erreichte Reduktion
der Abregelung, was zu einem Potenzial im Bereich von 2% bis 5% führt. Basierend auf
diesem Modell wird ein Optimierungsansatz angewendet, um Tarifparameter zu bestim-
men, die die Reduktion maximieren und gleichzeitig eine ungefähre Kostenneutralität
sowohl aus Sicht des Kunden als auch des Systems sicherstellen.

Die Auswertungen zeigen, dass die entwickelte Modellkette für das definierte Ziel geeignet
ist, plausible Ergebnisse liefert und für die sinnvolle Gestaltung variabler Tarife genutzt
werden kann, die ausreichende Anreize für die Kunden bieten, sich externen Anforderun-
gen anzupassen. Eine gesetzliche Umsetzung variabler Preisbestandteile in den Netzent-
gelten vermeidet die potenziellen Akzeptanzprobleme. Somit kann DSM im Haushaltssek-
tor gemäß dem entwickelten Ansatz einen relevanten Beitrag zu einem zukünftigen En-
ergiesystem leisten.
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1 Introduction

1.1 Motivation

In response to the world’s profound environmental challenges, the European Union (EU)
has set ambitious goals to combat climate change. This commitment, defined in the
European Green Deal and reinforced by the European Climate Law [1], requires an
unprecedented transformation of the continent’s energy supply structure to reach the
objective of climate neutrality by 2050. The EU’s dedication to combatting climate
change is embedded in its commitment to the Paris Agreement, which underscores the
urgency of limiting global warming to well below 2 degrees Celsius above pre-industrial
levels [2]. Achieving this objective involves the evaluation of potential contributions
from all sectors of the energy industry, both on the generation and consumption side.
Especially the consumption side is expected to make an important contribution since the
transition to 100% renewable generation implies additional demand for flexibilization.

Residential electric energy consumption represents a substantial portion of Europe’s total
energy demand, accounting for about one-quarter of the total electricity consumption
[3]. Thus, the analysis of potential options for flexibilization of this sector’s electric
demand is substantial to meet the goals. One of the primary options available is the
effective management and optimization of the temporal consumption patterns according
to system requirements to foster the integration of renewable energy and mitigate grid
congestion. Grid congestion arises when the supply of electricity from renewable sources,
such as wind and solar, exceeds the capacity of the grid to transport and distribute this
energy efficiently [4]. Excess renewable energy may be curtailed without appropriate
measures, leading to a loss of clean energy generation.

The flexible adjustment of household electricity consumption by load-shifting measures
is denoted as demand-side management (DSM). It offers a viable solution to avoid the
curtailment of renewable generation by increasing consumption to utilize otherwise cur-
tailed energy directly. This not only reduces curtailment but also enhances the grid’s
reliability and resilience [5]. Appropriate energy management systems enable households
to align their electricity consumption with the availability of renewable generation [6].
To realize this potential, suitable incentive schemes that make participation beneficial
for the customer are necessary. This can be achieved by implementing variable elec-
tricity rates that provide monetary advantages by defining adjusted prices for energy
consumption dependent on system requirements.
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1 Introduction

The definition of variable rates is a challenging and complex task since, besides these
requirements, customer behavior and preferences have to be taken into account and are
decisive factors for such instruments’ successful and effective application. Simulation
of the expected reaction to variable rates is an option that can contribute to adequate
design by modeling the effects on both customers and the energy system, enabling the
estimation of the implications of specific rate structures and parameters and drawing
conclusions about the optimal implementation in a future energy system.

1.2 Solution Approach

As described, the curtailment of renewable generation can be avoided by increasing
consumption at the same time, leading to an overall higher share of usable renewable
energy and thus, lower fossil generation and lower GHG emissions. This can be achieved
by DSM, in particular by shifting consumption to time intervals with present curtailment
measures. Variable electricity rates are a means for incentivizing this behavior by offering
a monetary benefit through the difference between high and low prices. Therefore, the
optimal design of this kind of variable rate concerning the reduction of curtailment is
analyzed in the present thesis.

In order to quantify the possible contribution by this approach, simulation of the ex-
pected behavior of residential customers can yield an indication of the potential. Since
it depends on many input variables, utilizing a reliable data basis for the models is cru-
cial. Therefore, the combination of surveys, grid, and measured consumption data are
applied in the presented approach.

Highly time-resolved consumption data of residential customers allow for modeling the
consumption behavior and potential adaptation to DSM measures. Surveys are required
to represent the willingness of customers to adhere to potential variable rates and thus,
to model the changes in consumption patterns by these rates. Data from grid operators,
particularly historical curtailment data in high resolution with respect to both time and
space, are applied to calculate the modeled reduction.

Electrical consumption in households is caused by various devices with different con-
sumption patterns and varying potential for load shifting. Thus, the analyses here focus
on appliance types with an expected high potential due to comparably high energy con-
sumption, which can also be shifted timely without comfort losses. Electric vehicles
are not considered since these require a fundamentally different simulation approach
and are covered in various other studies [7]. The same holds for electrical heating sys-
tems [8]. Moreover, the flexibilization of these types of appliances according to grid
requirements is already covered in the German regulatory system [9, §14a] and defines
their grid-oriented operation [10,11].
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1.3 Research Questions

1.3 Research Questions

This approach leads to the following central research questions for the thesis:

RQ1 How can the potential for DSM measures with residential appliances be quantified
based on measured consumption data?

RQ2 What is the potential contribution to the reduction of curtailed energy by residen-
tial DSM?

RQ3 Which share of this contribution can be achieved with acceptance by customers
and no additional costs?

1.4 Structure of the Thesis

The overall methodical approach of the thesis is schematically depicted in figure 1.1.
This results in four main chapters. Chapter 2 focuses on the analysis of residential
load data and the development of methods for the assessment of time-resolved flexible
load. To achieve this, section 2.1 describes the identification of potentially flexible
and thus relevant appliance types. In section 2.2, an approach for quantification of
flexible load based on aggregated load profiles is described, while the detection of flexible
appliances in individual household load curves is developed and analyzed in section
2.3. Section 3.1 in chapter 3 shows the preparation and processing of curtailment and

Figure 1.1: Methodical approach of the thesis
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1 Introduction

grid data to generate regionally resolved time series of curtailed power as an input for
subsequent simulations. The approach for the calculation of the monetary value of
avoided curtailment is developed in section 3.2.

In chapter 4, the required monetary incentives for residential DSM are presented. A
potential variable rate structure suitable for the defined objective is developed and de-
scribed in section 4.1. Section 4.2 details the current regulatory setting of electricity
pricing in the residential sector in Germany. The required simulation parameters for
modeling the behavior of residential customers to potential variable rates are acquired
by a survey, which is evaluated in section 4.3.

Chapter 5 utilizes these data and findings from the previous chapter for modeling and
simulation of variable rates and their effects on consumption patterns and curtailment
reduction. Section 5.1 gives an estimate of the flexibility potential and resulting curtail-
ment reduction based on the described aggregate consumption data. Subsequently, a
more detailed analysis on an individual basis is carried out in section 5.2. Based on these
results, an optimization of the rate parameters with respect to costs from a system per-
spective and their effects on acceptance of the resulting rate are detailed in section 5.3.
Finally, in chapter 6, the findings are summarized, the research questions are answered,
and an outlook on potential future research is given.
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2 Flexible Household Load

2.1 Suitable Appliances

2.1.1 Scope

Electrical consumption in a residential setting is caused by a large variety of different
appliances and devices. These evince different requirements regarding their time of
use, user interaction, and controllability. Thus, this section aims to identify suitable
appliance types for residential DSM based on these factors.

2.1.2 Methodology

Based on statistical data on the consumption of electrical energy in households and
on previous studies on residential DSM, several groups of appliances that are typically
present in households are analyzed and evaluated regarding their suitability for DSM
measures. As described (cf. section 1.2), the focus is on DSM measures with the
intention of increased integration of renewable generation. Thus, the main criteria for
this classification are relevant power consumption and the possibility of shifting without
substantial loss of comfort for the user.

2.1.3 Results and Discussion

The appliances used in a typical household can be clustered by applications. Accord-
ing to statistics [12], their respective share of the total electricity consumption in the
residential sector is given in figure 2.1. This shows that most clusters pose a consider-
able contribution to the total consumption, and therefore, each cluster is to be analyzed
regarding potentially relevant appliance types for load shifting. Acceptance for load
shifting measures is assumed if these measures can be performed without noticeable loss
of comfort. This will be detailed in the following list.

Information and communication The cluster “Information and communication” con-
sists of communication devices such as phones and computers, as well as consumer
electronics like TVs or music systems. All of these appliances require actual user

5



2 Flexible Household Load

Figure 2.1: Electricity consumption in households per application (data based on [12])

interaction throughout the usage time. Therefore, no acceptance is assumed for
load shifting in this sector.

Lighting Similarly, lighting is used and required by the inhabitants of the respective
household depending on the current conditions, i.e., lack of natural light and pres-
ence in the respective room; therefore, shifting these kinds of appliances is not an
option. Thus, lighting is also considered to be non-controllable [13].

Mechanical household appliances This group of appliances evinces similar behavior as
before. Mechanical household appliances are mostly not useful without interaction
with the customer. Mechanical energy is also required by dishwashers and washing
machines, but these will be discussed in the cluster on process heat since this
represents their main share of consumption. Thus, this cluster is also excluded
from further analyses.

Fridges, freezers, other process cooling Cooling devices in a residential setting are
generally considered controllable devices [13]. Fridges and freezers usually evince
a regular pattern of periodic consumption, which could be slightly adapted to
external incentives without loss of comfort, i.e., without causing damage to re-
frigerated goods. However, the total load of this group of appliances is relatively
small [14], and thus, their potential load increase in case of flexibilization also poses
no substantial contribution [15]. Because of these properties, these appliances will
not be considered relevant for the simulation of load shifting. Air conditioning,
another application within this group, is rarely relevant in the investigated region
and, thus, is not considered an option either.

6



2.1 Suitable Appliances

Cooking, drying, ironing, other process heat This group evinces different behavior be-
tween the included appliances. Cooking, ironing, and other process heat in kitchen
appliances are considered not controllable [13] for the same reasons as above. How-
ever, drying enables the decoupling of user interaction and the actual process, i.e.,
actual electricity consumption. This allows the shifting of a substantial amount of
energy consumption to a later point in time. Under the assumption of automated
control of this shifting process, this is possible without loss of comfort. Therefore,
dryers are identified as a suitable appliance type. Process heat is also required for
dishwashers and washing machines. The same observations of decoupling interac-
tion and consumption hold for these types of appliances [16]. Therefore, they are
also included for further calculations and simulations.

Water heating and space heating The last two clusters displayed in figure 2.1 are both
connected to heating, so they are discussed together. According to literature, water
heating and space heating both evince considerable energy consumption and, at
the same time, can be automatically controlled and adapted to external influences
without loss of comfort with certain temperature limits. This suggests relevance
for the discussed use case. Nevertheless, both applications are not considered here
since a reasonable simulation of the behavior requires extensive modeling of the
thermal properties of residential buildings, which is beyond the scope.

Beyond these clusters of household appliances, there are other potential flexibility op-
tions, which are typically connected at the household level. On the one hand, the
charging process of electric vehicles can be designed flexibly to comply with external
requirements; on the other hand, home storage systems can be charged and discharged
accordingly. However, both of these appliances are also excluded from further analyses
for the same reason as heating systems since the reliable representation of driving profiles
and battery behavior is also beyond the scope of this project.

In summary, this yields three relevant types of appliances for subsequent calculations:
dishwashers, washing machines, and dryers. These evince both relevant energy con-
sumption and flexibilization without loss of comfort [17].

2.1.4 Summary

The analysis of suitable appliances for the considered use case of load shifting for reduc-
tion of curtailment shows that dishwashers, washing machines, and dryers are identified
as relevant for the following investigations. These appliance types evince relevant power,
are typically used on a regular basis, and can be shifted without loss of comfort. Thus, to
identify the load-shifting potential of the residential sector, it is necessary to identify the
operation times and load profiles of these appliances. This is possible on an aggregate
level or for individual households. Both approaches are described and analyzed in the
following two sections.
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2 Flexible Household Load

2.2 Aggregated Flexibility Load Profiles

This section is partially based on previously published work by the author [18,19].

2.2.1 Scope

In order to calculate the potential reduction of curtailed energy due to residential load
shifting on the level of grid regions without consideration of individual customers, a
time series of potentially flexible power of appropriate household appliances is required.
The total load of a large number of households is typically modeled using a standard
load profile or similar tools deduced from this concept [20–23]. Since evaluations of
these standard load profiles suggest that recent changes in consumption patterns are not
sufficiently represented, new profiles are to be calculated based on measured load data.
Eventually, publicly available data about energy consumption and daily load patterns of
relevant appliance types are applied to identify the potentially flexible energy per time
step.

2.2.2 Methodology

Measured load profiles of various German regions are used to quantify the potential for
load shifting in the household sector. These were recorded over a period of at least
six months in 13 local substations with a temporal resolution of 1min and thus cover
all seasons (winter, transition, and summer). The selected substations supply purely
residential areas without photovoltaic feed-in and without electrical heating systems
and can be used to deduce typical load profiles [19]. These measurement-based profiles
are expected to better represent the actual load of current residential customers in
Germany since standard load profiles (H0 for households) evince several shortcomings
in this respect [20,22].

The load profiles are calculated according to the structure of German standard load
profiles. This means that nine types of days are distinguished: working days, Saturdays,
and Sundays for the three seasons mentioned. Public holidays are treated as Sundays
[20]. A typical load curve is created for each type of day by normalizing to an annual
consumption of 1MWh and averaging over all relevant days and measurement points.
This averaging process approximates the behavior of a larger number of households. In
order to smooth out short-term peaks, which can occur due to the measurements of
about 30 to 80 households but are no longer to be expected when applied to a region
of the considered size, these load profiles are determined in a resolution of 15min. This
corresponds to the usual billing interval in the energy industry and is also used for
standard load profiles.
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2.2 Aggregated Flexibility Load Profiles

Figure 2.2: Comparison of calculated profile and standard load profile: Workday winter
(data based on [19])

In order to construct annual load curves from these standardized load profiles, the day
profiles are lined up according to the distribution of weekdays and holidays. Analogously
to the data used to represent curtailment (cf. section 3.1), the year 2018 is applied
here. As described before, holidays in the relevant federal state are mapped as Sundays.
This results in annual load curves with 35 040 quarter-hour values, which represent a
normalized total annual consumption of 1MWh. These are scaled to the total annual
consumption in the respective region.

This annual load curve of all households in the regions under consideration does not
allow any conclusions to be drawn about the load-shifting potential in this sector. This
potential depends on the share of selected appliances (dishwashers, washing machines,
and dryers) in the total load profile.

Based on data about the shares of different device types in total consumption, time
usage distributions, and equipment levels [24–26], a time-resolved distribution of each
day profile to these device types can be calculated. The considered device types are
assigned according to their share of the total daily consumption as well as average daily
trends from surveys and measurements. These daily curves are only available in hourly
resolution, which can be seen in the graphical representation of the result by the resulting
steps. Due to the data situation, no better representation is possible here; however, no
substantial effect is expected on the results of the calculations.
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2 Flexible Household Load

(a) Saturday winter (b) Sunday winter

(c) Workday spring/fall (d) Saturday spring/fall

(e) Sunday spring/fall) (f) Workday summer

(g) Saturday summer (h) Sunday summer

Figure 2.3: Comparison of calculated profile and standard load profile (data based
on [19])
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2.2 Aggregated Flexibility Load Profiles

2.2.3 Results and Discussion

Analogously to the established standard load profile, the calculations of new profiles
based on the described measured data basis yield load curves in a resolution of 15min
for 9 types of days. Figure 2.2 shows a comparison of the standard load profile H0,
which is typically applied for the residential sector, to the new profile deduced from
measurements. The load curves for a workday in winter are selected as an example
here.

The depicted load curves evince several noticeable differences, which support the as-
sumption that H0 is not suitable for reliable representation of today’s household con-
sumption [19]:

� Clearly lower increase in the morning hours

� Less pronounced midday peak

� Raised and slightly shifted evening peak

� Increased base load

The corresponding comparison for the other 8 types of days is given in figure 2.3. These
confirm the conclusions listed above and show some additional characteristics that differ
from H0 [19]:

� Different seasonal characteristics

� Fewer deviations between Saturdays and Sundays

� Generally, later load increases on weekends

In summary, H0 indeed proves inappropriate for utilization in models regarding residen-
tial DSM. Therefore, all the following calculations are based on the newly calculated
load profile.

Figure 2.4 depicts the described allocation of the respective shares of the total load to
the identified relevant appliance types, exemplarily for one type of day. As expected, it
shows that the main operation times of the appliances are during the day, with peaks
in the afternoon and the evening. Thus, almost no flexibility potential is to be expected
during night hours. Moreover, it can be concluded that the developed method yields
plausible results and constitutes a reasonable basis for subsequent calculations.

11



2 Flexible Household Load

Figure 2.4: Time-resolved share of relevant appliances (based on [18])

2.2.4 Summary

The presented methodology provides a means of determining representative load profiles
for the residential sector in Germany. It is based on the established structure of standard
load profiles, improved with recently measured data. The comparison to this standard
load profile shows several differences, which are assumed to be caused by changes in the
daily behavior of residential customers. By additionally utilizing data on the operation
of flexible appliances, disaggregation of the profile to the level of these appliances is
possible. The resulting profiles enable the construction of time-resolved load curves of
potentially flexible consumption in Germany’s residential sector. Combined with the
survey results discussed in section 4.3, this allows determining the proportion that is
actually available for DSM measures. These data are applied in section 5.1 for further
analyses.
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2.3 Individual Flexibility Assessment

This section is based on previously published work by the author [27].

2.3.1 Scope

The previous section describes an approach to quantify the DSM potential in the residen-
tial sector based on aggregate measurements. Naturally, aggregate evaluations cannot
fully model individual consumption behavior; therefore, the analysis of individually mea-
sured consumption patterns is presented as an alternative approach to obtaining reliable
data about the DSM potential of residential customers.

As previously described, dishwashers, washing machines, and dryers are considered rel-
evant here. To investigate the exact DSM potential, certain information about the
appliances is necessary:

� How many appliances are present in a household?

� How often are the appliances used?

� Which characteristics do the load profiles have?

� What is the energy consumption per use?

� How long does a program last?

� When are the appliances used?

To gather this information, three approaches are possible: a survey, measuring the ap-
pliances directly, or the disaggregation of the household’s power consumption. Due to
some disadvantages of the first two listed procedures (e.g., survey: inaccuracy, measur-
ing: great effort), disaggregation is the preferred variant here.

There are various existing and proposed algorithms to perform this disaggregation, pri-
marily denoted as non-intrusive load monitoring, which can be used for a wide variety of
applications [28]. Although different approaches are applied, most of them require con-
sumption data in a temporal resolution in the range of 1Hz up to the kHz range [29,30].
Since the available data set here is recorded in 1min intervals, these are not applicable.
Thus, the methodology is developed to fit these circumstances.

13



2 Flexible Household Load

Figure 2.5: Method for disaggregation (based on [27])

2.3.2 Methodology

In order to obtain valuable and representative data, the developed algorithm is to be
applied to a large number of households. Due to the installation of smart meters, the
required consumption data in high temporal resolution becomes available for this kind
of analysis. The available data basis consists of around 2500 German households. Due
to partially incomplete recordings, these are reduced to 565 data sets with good data
quality from August 2014 to July 2015 for further analyses.

Existing approaches often rely on a known load profile of the appliance to identify.
Therefore, all different appliances’ programs have to be measured. Based on these data,
algorithms that recognize this load profile are implemented. This approach is impractical
for a large number of households due to the effort of measuring every single appliance
and program. [31] [32]

Therefore, the goal is to design an algorithm that can disaggregate the power consump-
tion without prior knowledge about the present appliances. The method consists of
two parts that are applied separately for every household: Recognition of load profiles,
which occur repeatedly, and assigning them to an appliance type depending on defined
properties.

14



2.3 Individual Flexibility Assessment

2.3.2.1 Identification of Dishwashers and Washing Machines

In figure 2.5, seven steps are illustrated, which are applied to disaggregate the total power
consumption. The first six steps identify regularly appearing load profiles. The last step
includes the assignment of determined load profiles to appliance types. Ultimately, the
result is none, one or more load profiles per appliance representing different programs.
In detail, this is reached by:

Extraction of relevant intervals In the first step, the whole year’s data are reduced
by extracting intervals from the total power consumption, which potentially are
household appliances of the considered types. Therefore, the load profile needs to
exceed both a defined minimal power and a minimal duration after subtracting
the base load from the household’s load profile. In order to take the alternating
load profiles, especially from dryers, into account, an additional time variable is
specified. It defines how long the load profile may be lower than the minimal power
so that the interval is still extracted as one coherent sequence.

Clustering of the extracted intervals Similar load profiles are grouped by clustering
of all extracted intervals. The correlation coefficient is applied as a metric for
clustering the load profiles. Due to high computational effort, this process is
applied to only three months of data (November–January). This does not influence
the analyses of actual uses. This step results in a certain number of clusters
containing a minimum number of similar load profiles. Clusters that don’t reach
the minimum of included patterns are deleted because it is assumed that the three
considered household appliances are used regularly.

Processing of the cluster After clustering the intervals, they exhibit different lengths
due to possible disturbances like simultaneously running appliances. During this
step, unnecessary information is deleted. The clustering step, as well as the pro-
cessing, is repeated twice in order to improve the quality of the results.

Identification of complete load profiles The first three steps may lead to partially in-
complete load profiles. Some appliances may contain a heating phase that occurs
later than the distance defined for extracting the intervals. Therefore, the deter-
mined load profiles are used to identify similar intervals during the whole year’s
load data. As soon as an interval with the same length exceeds the selected cor-
relation coefficient, an interval with a fixed length (here: 150min) is extracted.
The maximum program duration of the three considered appliances is expected to
amount to approximately 150min.

Clustering of the complete load profiles All extracted intervals of the previous step
are clustered again. It occurs that different programs start with the same energy
consumption, and the rest of the complete profiles vary.
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2 Flexible Household Load

Processing of the complete load profiles This step contains the same procedure as
the first processing step, but now the clusters of the whole year are edited and
adjusted.

Figure 2.6: Exemplary visualization of defined properties (based on ) [27])

Assignment of the load profiles At this point, several load profiles exist for every
household, which occur regularly. To finish the disaggregation, assigning these
load profiles to one of the three household appliance types is necessary. For this
purpose, a few known appliances’ load profiles are available. A conceivable brute-
force approach would be possible by looking for matches between measured and
extracted load profiles. Due to a small data basis and a large number of house-
holds, this approach is expected to lead to inadequate results. Therefore, the load
profiles are used to realize a more general approach. Five properties (depicted
in figure 2.6) are defined, which describe the load profiles’ characteristics more
abstractly and are used to assign the determined load profiles to the appliance
types:

� Number of peaks: The number of peaks or rather heating phases included in
the load profile (1 to 8)

� Power increase: The amount the power increases at the beginning of a peak
(I)

� Power decrease: The amount the power decreases at the end of a peak (D)

� Relation of peak duration and whole duration: The sum of the duration of
all heating phases divided by the whole length of the profile
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2.3 Individual Flexibility Assessment

� Longest peak’s duration: For this load profile, the first peak is the longest
(L)

These five features are computed for the measured household appliances. Due to
differences in the individual appliances, this yields an interval per appliance type
for every property. To prevent double or triple assignment, at least one property
of two appliances must be disjointed. A load profile is neglected if it does not fulfill
all properties for one appliance type.

Analyses show that this approach does not work for dryers. For the 565 households,
nearly no load profile is identified as a dryer. For less than 5% of the households, a
dryer is assigned, which is significantly smaller than the value of the federal statistical
office (42.6%) [33]. Detailed investigation of the dryers’ load profile characteristics shows
why a separate procedure is necessary to identify those appliances.

With the method described above, none, one, or more than one load profiles are assigned
to an appliance for every household. The load curve for the whole year is analyzed for
uses by comparing the correlation coefficient between the extracted load profile and
the energy consumption pattern. In contrast to the clustering algorithm, the expected
correlation coefficient is smaller to also identify disturbed appliance uses. Accordingly,
the difference in the two intervals’ energy consumption is also considered to ensure
reliable assignments.

As an additional plausibility check, the identified appliances are evaluated regarding
their number of uses per year. Appliances that are beyond the range of plausible values
(e.g., for dishwashers between 52 (once per week) and 730 (twice per day)) are considered
incorrectly recognized and removed from the results.

As soon as more than one load profile is assigned to one appliance, two operations are
required to ensure correct results. If one identified profile is part of another, this could
lead to double counts or wrong energy calculation. For analyzing the frequency of uses,
the following steps are applied:

� Sorting the load profiles by length: This step is necessary to identify the correct
amount of consumed energy. Searching for the shorter profile first would prevent
any matches of the longer profile afterward and, therefore, underestimate the en-
ergy and duration of the operation. Thus, the load profiles have to be sorted by
length in descending order.

� Partly deletion of detected matches: To avoid duplicate uses, the appliance load
profile is subtracted from the load curve, so after a match has been detected, there
cannot be another match for the shorter profile at the same time step.
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2.3.2.2 Identification of Dryers

As mentioned, the described method does not work for dryers because nearly no load
profile is recognized. Dryers are typically characterized by a strongly alternating load
profile. As soon as there is any disturbance like a measurement inaccuracy or shift,
the load profiles of two dryers are precisely opposite. Consequently, the correlation
coefficient gets relatively small or even negative, so these intervals are not clustered.

Therefore, a separate method is required to identify dryers. Two additional assumptions
are used here to reduce the solution space: Firstly, a dryer only exists if the household
owns a washing machine, and secondly, the dryer is used subsequently to the washing
machine. According to the second criterion, only 4-hour intervals after washing machines
are considered to identify dryers. In order to avoid the problem of inaccurate matches,
the load curve is smoothed by converting to a time resolution of 3min. After that, the
same processing steps as described can be applied and yield plausible results.

2.3.2.3 Extraction of Representative Sample

The data basis consists of 565 measured households with varying consumption behav-
ior and equipment state regarding the considered appliances. Therefore, it cannot be
assumed that the results for this complete set are in accordance with statistical data
about German households in general. Therefore, the results are not considered rep-
resentative. However, for reliable calculations about potential contributions from the
residential sector, an approximately representative sample is required.

The approach of generating such a representative sample is the optimized selection of
households from the complete set to reduce the deviations between statistical values
for the selected sample and statistical values which are published for Germany [26,
33]. To find a suitable trade-off between a sufficiently large remaining sample and
enough combination opportunities to fit statistical data, a sample size of 100 is defined.
Therefore, the goal is to select 100 of 565 data sets that provide the best possible
approximation.

Since
(
565
100

)
is way too large to perform an exhaustive search for the selection of the ap-

propriate sample, the selection is carried out by optimization. The selection of a sample
of objects from a more extensive data set can be reasonably represented as a bitstring,
i.e., a series of zeros (not selected) and ones (selected). According to previous research,
genetic algorithms are suitable for this kind of optimization problem [34]. Therefore,
the selection of the sample utilizes the MATLAB implementation of genetic optimiza-
tion. Since the result of the algorithm is non-deterministic, the process is conducted
repeatedly to identify the optimal solution.

As already mentioned, the goal of the optimization process is the reduction of deviations
from statistical data. These are evaluated for all three relevant appliance types. The
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Figure 2.7: Equipment rate of identified appliances (based on [27])

following indicators for representative consumption behavior and DSM potential are
chosen:

� Equipment rate

� Mean uses per year

� Mean energy consumption per use

Therefore, nine indicators are applied in total. The objective of optimization is the
reduction of the mean squared error of these nine values.

2.3.3 Results

2.3.3.1 Number of Appliances

As a first result, the amount of households with a specific type of appliance is evaluated.
The red bars in figure 2.7 represent the number of households in the complete set for
which the respective appliance has been assigned. By application of the described op-
timization process, the sample of 100 households is chosen and depicted in the second
bar per set. As a reference, statistical values that are applied as the optimization goal
are also given [33].

The determined values for the equipment rate are smaller than the statistical values but
in the same range. This suggests that the identification method generally yields valid
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Figure 2.8: Mean uses per year of identified appliances (based on [27])

results, but not all occurrences are recognized. This might result from the relatively
small data basis of appliance load profiles.

The sample selection process yields a viable method to create a data set that almost
fulfills the statistical demands. A very good approximation of the reference value can
be observed for all three types of appliances. Therefore, the selection method yields
plausible results on the first indicators and will be analyzed further.

2.3.3.2 Frequency of Operation

The frequency of operation, i.e., the number of uses per year, is already applied as a
criterion in the identification of plausible appliances. In figure 2.8, the mean value for
every appliance is illustrated in the same structure as before.

This analysis confirms the developed methodology for sample selection. For every appli-
ance, the sample values are very close to statistics [26], whereas the complete set differs
considerably. As before, the values differ slightly from the statistically determined ones
but are close enough to consider the results reliable.

2.3.3.3 Energy Consumption

The energy consumption per use is essential for determining the DSM potential. More-
over, these results can again be used to check the plausibility of the applied method.
Figure 2.9 shows the appliances’ mean energy consumption per use.
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Figure 2.9: Mean energy consumption of identified appliances (based on [27])

Previous studies mention the mean energy consumption for dishwashers with 1.25 kWh,
for washing machines with 0.75 kWh, and for dryers with 1.6 kWh [35]. The comparison
of these values and those depicted in figure 2.9 (mean 1.01 kWh/0.42 kWh/1.58 kWh,
median 0.90 kWh/0.43 kWh/1.38 kWh) leads to the result that the determined mean
energy consumption is slightly smaller but reasonably close. A possible explanation for
the deviation might be that households tend to use eco programs, which is not considered
in the computation of the mean literature values.

2.3.3.4 Duration of Operation

The duration of the programs is the next value, which belongs to the appliances’ char-
acteristics. According to the source above [35], program durations for dishwashers are
in the range of 60min to 80min, for washing machines between 70min and 120min and
for dryers between 80min and 120min. The calculation confirms that most of the recog-
nized dishwashers and dryers are in these ranges (mean 65min/18min/83min, median
66min/17min/77min). However, washing machines differ significantly. The analysis
of the identified load profiles suggests that the described algorithm only recognizes the
initial heating phase for washing machines but not the subsequent spin cycle since it
is below the chosen power threshold. Since energy consumption is the crucial quan-
tity for evaluating DSM measures, the results can nevertheless be used despite these
shortcomings.
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Figure 2.10: Raster plot of dishwasher usage (based on [27])

2.3.3.5 Time of Operation

The last important subject of investigation is analyzing the user behavior, i.e., the
typical operation times of these appliances. These results are also essential for assessing
the DSM potential. In this context, raster plots are used to visualize the distribution.
The generated plots consist of 1440 columns (minutes of the day) and 365 rows (days
of the year). Each cell contains the normalized number of identified uses of the selected
sample of households during the relevant minute. This means that minutes with no uses
are marked white, and the maximum is displayed in dark red. Figure 2.10 shows the
distribution for dishwashers for the year from Friday, August 1 2014 until Friday, July 31
2015.

This kind of visualization evinces some notable characteristics:

� Focus during evenings: It shows that most dishwashers are used in the evenings,
especially during working days. Using the dishwasher after work is the expected
user behavior for employed people.

� Focus during winter: The second finding is the focus of uses from November until
March. The results show a highly frequent use of dishwashers in this season, specif-
ically on weekends. A higher probability of being at home might be a conclusive
explanation for this observation.

Closer inspection of the resulting data leads to additional conclusions:
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Figure 2.11: Raster plot of washing machine usage (based on [27])

� Public holidays: Several public holidays like Christmas Days, New Year, or Ascen-
sion Day evince substantially increased appliance usage compared to non-holidays
with similar seasons and weekdays. Since people tend to be at home more often on
these days compared to working days, this supports the plausibility of the method.

� Vacation periods: In school vacation periods like, e.g., easter vacation, the dis-
tribution of dishwasher uses is much smoother compared to the rest of the year.
This can be explained by the assumption that more people are on vacation, which
reduces the after-work peak in the evenings.

All of these observations are in accordance with typically expected customer behavior.
This is, therefore, another plausibilization step for the presented algorithm.

The raster plots for washing machines and dryers are depicted in figures 2.11 and 2.12.
As presented, both the equipment rate of washing machines and the number of uses per
year are the highest of the considered appliances. In contrast, the dryers’ plot is much
lighter, which implies a lower equipment rate and the lowest number of uses per year.

For both appliances, the focus of use can be observed during weekends, especially for
dryers in winter. This again seems plausible because people are doing their laundry
rather on weekends. Moreover, higher dryer usage during winter makes sense because
some households have alternative options to dry their laundry, e.g., air drying outside.
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Figure 2.12: Raster plot of dryer usage (based on [27])

2.3.4 Summary

The presented method intends to develop an algorithm for disaggregating the load curve
of various households without having data about individual equipment states or load
profiles of the respective appliances. Load profiles are identified and extracted based
on several criteria, such as power thresholds and durations. Measured load profiles for
some appliances are used to derive these criteria, which allow assigning the identified
load profiles to appliance types. Therefore, this method can be applied to a large number
of data sets without the necessity to perform individual analyses or measurements.

The results show plausible characteristics. All investigated quantities, like equipment
rates, energy consumption, or number of uses, are reasonably close to literature values.
The investigation of the temporal user behavior even evinces noticeable differences for
special days like holidays, confirming the method’s plausibility. Therefore, the identifi-
cation of dishwashers, washing machines, and dryers is considered suitable for further
simulations in the subsequent chapters.
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3 Curtailment Data

3.1 Regional Curtailment Data

This section is partially based on previously published work by the author [18].

3.1.1 Scope

Curtailment of renewable generation is one of the measures for grid congestion man-
agement available to grid operators. The curtailed energy is lost for the energy system
since it cannot be fed into the grid. Therefore, reducing curtailed energy can increase
the overall share of renewably generated energy and decrease the total greenhouse gas
(GHG) emissions caused by the generation of electric energy. Since October 2021, it is
implemented in the German redispatch process [9, § 13a]. Previously, it constituted a
separate process called feed-in management [36].

In order to quantify the potential reduction achieved by demand-side flexibilization
measures, like in this case, load shifting of household appliances, the potential effect on
the grid is to be estimated. Since previous analyses show that the majority of individual
curtailment measures are caused by congestion on the transmission grid level [37], lower
voltage levels and grid structures will be neglected here, which also circumvents the
problem of severely limited data availability on a national scope.

Another simplification applied here is the assumption that load increase at a particu-
lar grid node on the transmission level prevents curtailment of the equivalent amount of
energy [18]. This neglects the potential effects on other nodes but is considered a reason-
able approximation since no data about the actual line sections that cause curtailment
are publicly available. Therefore, a way of allocating historical curtailment measures to
appropriate grid nodes is required to model potential reductions. Based on that, the
actual curtailed energy per grid node and time step can be determined.

3.1.2 Methodology

The first step here is the acquisition of data about the geographic location of all grid
nodes in the German transmission grid. Since the grid data published by the transmis-
sion system operators (TSOs) are not sufficient in this respect, this analysis is based on
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a grid model developed in a previous project [19], which in turn utilizes several free data
sources and processing tools [38–41].

As already mentioned, grid data for underlying grid levels are not available with the
required coverage to be used for allocation to grid nodes. Therefore, the allocation is
based on the geographic proximity of the curtailed plant to the node. This procedure
yields a tesselation of the considered area, i.e., of Germany, in regions, each of which
contains one node and consists of the geographic area with the smallest distance to this
specific node, compared to all other nodes [42]. Mathematically, this is called a Voronoi
diagram.

The initial Voronoi tesselation yields neighboring regions; therefore, each node’s neigh-
boring nodes can be deduced. This allows calculating the distance between each pair of
neighboring nodes. These distances evince a wide range of values. Therefore, the lowest
decile is chosen as a threshold value. This choice cuts the extremal values but still leaves
most of the assumed grid in its original state.

The aggregation of nodes to the described new “nodes” is performed by identification
of clusters, i.e., two or more nodes within a distance below the threshold of each other.
These nodes are then replaced by one new node at the center of gravity of the original
nodes.

Currently, there is no central data set of curtailment measures or curtailed energy for
Germany. These data are only partially published by the respective distribution sys-
tem operators (DSOs). The curtailment data consist of a list of individual curtailment
measures, which include the time stamps of begin and end of the respective measure,
the level of curtailment (relative to the installed capacity), and the affected plant. All
renewable plants funded by EEG are included in a register of installations, which addi-
tionally gives location, installed capacity, and the energy carrier. In order to determine
the actual curtailed power and, therefore, deduce the curtailed energy, it is necessary to
estimate the generation power at a given point in time. Since no data about this are
available in a per-plant resolution, the time series is approximated by the total power
of the respective energy carrier in the control area where the plant is located. This is
referred to as ”dynamic approach” in literature and evinces good results compared to
alternative approaches [43].

3.1.3 Results and Discussion

3.1.3.1 Grid Data

As a result, the locations of 490 German grid nodes can be deduced. The analysis of
these grid nodes also shows several clusters of nodes with very low distances, which
would produce very small regions compared to others. In order to achieve a tesselation
in regions with areas on a comparable scale, neighboring nodes with a distance below the
defined threshold are combined and considered only one node for subsequent calculations.
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Figure 3.1: Grid regions for subsequent simulations (based on [37])

This approach is also supported by the assumption of a highly meshed distribution grid
in regions with a high density of transmission grid nodes [42]. The threshold value cannot
be deduced from actual distribution grid data, so the described alternative approach is
applied and yields 5.14 km as the threshold value.

Based on the resulting set of 251 nodes, the Voronoi tesselation is computed again,
yielding 251 grid regions for Germany, which are shown in figure 3.1 and will be the
basis for regional evaluations and charts.

3.1.3.2 Curtailment Time Series

For the presented evaluations, data from Bayernwerk, Netze BW, Mitnetz, Avacon,
E.DIS, WEMAG, and Schleswig-Holstein Netz for the year 2018 are available and used.

The described methodology is applied to the identified 251 grid regions, resulting in 251
time series of curtailed energy in a resolution of 1min for 2018. For this, the plants are
allocated to the respective administrative districts according to their locations and then
aggregated to the level of grid regions. Figure 3.2 shows the calculated sum of curtailed
energy per grid region, displayed on a log scale due to a wide magnitude range. The
distribution evinces high amounts of curtailment in northern and northeastern Germany,
whereas considerably less energy is curtailed in the south. Grid regions displayed in
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Figure 3.2: Curtailed energy per grid region in 2018

white do not necessarily mean zero curtailment but also include regions with no available
data.

The total curve of curtailed power in Germany is given in figure 3.3. It is calculated as
stated before and summed over all grid regions. The graph in a resolution of 1min shows
that curtailment is necessary throughout the year and sums up to several gigawatts for
peak events. Total curtailed energy amounts to 2.34TWh according to the calculations,
which represents about 43.3% of the published values [44]. 421 610 time steps of the year,
i.e. 80.2%, evince curtailment in this aggregate analysis. Therefore, both a seasonal
evaluation and an evaluation on the grid region level make sense for identifying and
understanding potential characteristics and patterns.

Figure 3.4 shows the total curtailed energy per month of the year 2018. In order to
get fully comparable values, ”month” is not used in its usual calendrical definition, but
rather as 1/12 of the whole year, i.e., 730 h. It is evident that the curtailed energy follows
a seasonal pattern since there is considerably less curtailment in the summer months
from May to August. This confirms the assumption that most of the curtailment is
caused by wind power rather than by PV plants since these have their production peak
in months with high solar irradiance.

Three grid regions are selected for detailed analyses. The first one is located in the
north of Germany, so the renewable generation mix is dominated by wind power, and
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Figure 3.3: Total curtailed power in 2018, resolution 1min

Figure 3.4: Total curtailed energy in 2018 per month
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Figure 3.5: Curtailed power in region W in 2018, resolution 1min

the amount of curtailed energy is comparably high. The chosen grid region is denoted
by W in figure 3.2 and represents a part of the project region evaluated in [45].

The second selected grid region complements this by representing the southern German
grid situation with high shares of solar PV and considerably less curtailment than in
the north. Here, the grid region which contains the field trial of [46, 47] is chosen and
denoted by S.

The third region, denoted by C, is chosen to include the maximum occurring curtail-
ment in the present data set. It is also located in northern Germany and still shows
considerably higher amounts of curtailed energy compared to W , so its detailed analysis
is expected to yield additional insights.

Detailed analysis of the times series of curtailed power in grid region W , displayed in
figure 3.5, yields a total amount of curtailed energy of 3.00GWh, reaching peaks of over
10MW. Curtailment measures are active for 39.9% of the year, so in 209 941 time steps
in the applied resolution of 1min. This shows that wind-dominated grid regions require
curtailment measures frequently, which in turn shows relevant potential for reduction of
curtailment.

For comparison, figure 3.6 shows the analogous graph for grid region S. Here, the total
curtailed energy in 2018 amounts to 108MWh, so approximately 1/28 of region W . Cor-
respondingly, curtailment measures occur far less frequently, as only 4296 time steps, or
0.8% of the whole year 2018, are affected. By contrast, the peaks of curtailed power are
in the same order of magnitude as for region W . Therefore, grid regions dominated by
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Figure 3.6: Curtailed power in region S in 2018, resolution 1min

solar PV require considerably less consumption adjustment to reduce necessary curtail-
ment but still require comparable flexible power in the event of adaption.

As expected, the highest values can be seen in figure 3.7 for region C. Here, the peaks
exceed values of 1GW, leading to 1.26TWh of total curtailed energy over the year.
Thus, about half of the curtailed energy in the data is attributed to this grid region.
72.1% of the year, or 378 744 time steps, evince curtailment measures.

3.1.4 Summary

In summary, the developed methodology allows the partitioning of the area of Germany
into smaller regions, which are geographically associated with one or more nodes of
the transmission grid. This allocation of generation or consumption by geographical
distance is considered a reasonable approximation since no comprehensive data set of
lower grid levels is available. Historical data of individual curtailment measures are
converted to time series by applying the dynamic approach, which considers publicly
available generation data of renewables to improve data quality. The procedure yields
time series of curtailed energy in a resolution of 1min for 251 regions.

The evaluation of these time series evinces substantial differences between the selected
example regions, W as a typical wind-dominated region in the north, S as a region
in the south with a substantial share of solar PV, and C as the region with maximum
curtailed energy. W undergoes curtailment measures for approximately 40% of the
whole year, whereas in S less than 1% of all time steps are affected. The evaluated total
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Figure 3.7: Curtailed power in region C in 2018, resolution 1min

curtailed energy throughout the year shows similar behavior. Region C, however, evinces
considerably higher curtailed power for about 3/4 of the year. Thus, it is concluded that
the detailed modeling and evaluation of regions with different characteristics is essential
for a comprehensive assessment of rates for the defined use case.

3.2 Value of curtailed energy

3.2.1 Scope

The previous section described the developed method to represent curtailed energy in the
required temporal and regional resolution. Since the overall goal includes the design of
a cost-neutral electricity rate, it is also necessary to define the monetary value of these
measures, or more precisely, the value of avoided curtailment from an energy system
perspective. Thus, this section aims to deduce a suitable definition of said value for the
subsequent simulations.

3.2.2 Methodology

The assessment of the value of curtailed energy is performed in two steps. First, the
usual literature approach is presented and discussed. After that, the proposed shifting
process is analyzed more thoroughly regarding potential additional or saved costs due
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(a) Estimated total costs (b) Estimated specific costs

Figure 3.8: Costs for curtailed energy (data based on [48])

to the DSM measure. Thus, this leads to a valuation method for avoided curtailment
by DSM.

3.2.3 Results and Discussion

One key figure usually applied to describe the total costs of curtailment in the German
energy system is the sum of reimbursements for the curtailment measures. Operators
of curtailed renewable assets are reimbursed for their lost revenue compared to the
uncurtailed operation [9, § 13a]. This value is typically evaluated yearly and can be
applied to describe the value of curtailment per energy unit. Figure 3.8 shows these
values for recent years, both in total (figure 3.8a) and per curtailed energy (figure 3.8b)
[48]. This can be considered a comparatively simple first approach. However, it has
two substantial weaknesses: it does not reflect the time-dependency of the value and
describes the costs of curtailment, not the value of avoided curtailment.

Based on that, one possible improvement to the approach would be to use time-dependent
costs in the calculation. Since reimbursements are partially coupled to market prices of
the respective time frame, this would yield an hourly time series representing the costs
of curtailed energy. Nevertheless, this still cannot be considered a helpful definition of
the value of avoided curtailment in the context of this thesis. Moreover, data availability
is another problem for this approach since these time-dependent reimbursement costs
are not published.
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Figure 3.9: Qualitative illustration of curtailment-driven load shifting

In order to reasonably assess the value of avoided curtailment by a DSM approach, the
load-shifting process also has to be taken into account. Thus, two time intervals are to
be considered: one with potentially reduced curtailment by increasing load (discussed
in the two previous approaches, interval A), and a second one with corresponding load
reduction (interval B). This means that a load-shifting measure from interval B to
interval A is assumed. This is schematically depicted in figure 3.9.

In interval A, curtailment is reduced by increasing load. This means that the additional
shifted load within this interval is covered by generation that would be curtailed other-
wise. Thus, the accruing costs in interval A remain unchanged by DSM measures.

In interval B, the load is reduced compared to the unshifted state. This means that the
coverage of the load in interval B after the shifting process causes less costs since less
energy has to be supplied. This cost reduction depends on the market prices within this
interval and is determined by the day-ahead prices.

Reduced load, in theory, also causes feedback effects on these prices, which in turn also
affects the reduction in costs. This effect can be quantified by energy system modeling
or by analyzing the historical bid curves of the day-ahead spot market. Both approaches
are compared in a previous paper [49]. The results show that the expected price changes
are relatively small in general, and for the discussed application of DSM with household
appliances, they can be considered negligible. Moreover, it would introduce additional
non-linearities in the resulting model, causing substantially increased runtimes of the
simulations and optimizations in sections 5.2 and 5.3. Thus, these feedback effects are
not modeled within the scope of this thesis.
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3.2.4 Summary

The analysis of the cost effects of DSM measures shows that, on the one hand, increased
load, which reduces curtailment, can be considered cost-neutral, whereas, on the other
hand, load reduction in uncurtailed intervals reduces the total system costs. Thus, the
load-shifting measures, designed with the primary purpose of curtailment reduction,
also contribute to cost reduction. This provides additional financial leeway for the
optimization of rate parameters.
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4.1 Rate Structure

This section is partially based on previously published work by the author [50].

4.1.1 Scope

The overall goal of the flexible operation of household appliances for this thesis’s scope is
the reduction of curtailed energy. In order to achieve this, sufficient monetary incentives
have to be offered for the expected behavioral adjustments of the customers. Thus, the
scope of the present section is the analysis of existing rate structures and their specific
features and influences, leading to a structure designed to meet this goal’s requirements.
This structure is seen as a general pattern, where several variables are to be defined
by subsequent simulations to define the concrete implementation. The analyses within
this section are conducted regarding the resulting total retail price from the customer’s
perspective. The question of implementability in specific price components like grid fees
is discussed in the subsequent section (cf. section 4.2).

4.1.2 Methodology

Various options for residential electricity contracts are collected, analyzed, and compared
to identify suitable rate structures. This includes both theoretical concepts for variable
pricing and experiences from actual projects or electricity suppliers. This overview allows
the identification of the essential elements of a variable electricity rate for the use case of
load-shifting for the reduction of curtailment. Thus, it allows the definition of the general
rate structure, which will be applied in subsequent calculations and simulations.

4.1.3 Results and Discussion

In order to incentivize the behavioral adaptation of customers to the system’s demand
for flexibility, several rate elements can be applied and combined. Electricity rates gen-
erally consist of one or more of three fundamental elements, which can also be designed
in various variable ways. The term variable here is used to represent all kinds of pricing
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structures that vary the resulting price according to defined influences, so no termino-
logical distinction between variable and dynamic pricing is applied.

Retail customers can be charged per grid connection point, per capacity, and per con-
sumed energy. This is implemented by three different fundamental rate elements, which
can be combined:

Basic fee The basic fee is a constant amount that accrues per unit of time, usually
per month or year, and is charged per grid connection point. It is, therefore,
independent of the actual consumption behavior and poses no incentive for load
shifting or energy saving.

Demand charge A demand charge can represent the necessary capacity for the energy
supply of the respective customer [51]. It is determined by the maximum demand
in a given time frame. Therefore, this can motivate behavioral changes (load
shifting and energy saving) to smooth the load curve.

Energy price The third fundamental element is the energy price, which is charged per
consumed unit of energy. This represents the cost for the generation of electri-
cal energy and is the element commonly viewed as “electricity price”. It can be
interpreted as an incentive to avoid energy consumption but is irrelevant for load-
shifting measures.

In the German retail market for the residential sector, usually a combination of a basic
fee and an energy price is applied. Both elements are constant in this system. As already
pointed out, this is a suitable approach to cover the costs but is not helpful in utilizing
the flexibility potential of residential customers. Therefore, additional variability is to
be included.

The overall aim is to incentivize household load-shifting measures by varying rate ele-
ments dependent on external parameters. Therefore, the basic fee is unsuitable for this
purpose, which leaves demand charge and energy price as relevant elements.

The specific implementation of these price adjustments is typically clustered in the
following types of variable rates: [52]

Time of use pricing Time of use (ToU) pricing applies two or more price levels, pre-
defined based on time of day, day of week, or season. This segmentation and
the respective price levels are deduced from historical data regarding, e.g., con-
sumption, wholesale prices, or generation. Therefore, it is impossible to represent
short-term pricing requirements but only to incentivize flexibilization based on
long-term patterns. Typical implementations include ToU rates with high prices
during the day and low prices during the night, leading to a smoothed consump-
tion curve of the affected customers. Low prices around noon may also be helpful
to shift consumption to the expected time of high PV consumption.
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Critical peak pricing This concept is extended with Critical peak pricing (CPP). As
before, the price levels are predefined, but to provide additional short-term flex-
ibility, the actual time frames where these price levels apply are determined on
short notice, typically between one day and some minutes. The share of time af-
fected by the peak price level (i.e., the high price) can be restricted. Variable rates
with this pattern are often applied to reduce grid load during critical events. The
structure can also be combined with additional ToU elements. A variant of this
pricing approach is called Peak time rebate (PTR) or Critical peak pricing with
rebate (CPR), which incentivizes load adjustment with rebates for load reduction
during peak events rather than high prices.

Real-time pricing The direct representation of wholesale prices in the retail price is de-
noted as Real-time pricing (RTP) and yields price adjustments in short intervals,
typically hourly or quarter-hourly. This structure passes the price risk of energy
procurement to the customer and, therefore, incentivizes load adjustment accord-
ing to the current market conditions. However, RTP does not represent influences
other than market prices in the resulting price, which requires the introduction of
additional principles to achieve, e.g., grid-friendly behavior (assuming that prices
do not represent the grid state, which would be possible with, e.g., nodal or, to a
lesser extent, zonal pricing).

These general structures describe the price levels, the intervals of price adjustments, and
the lead time of price information. They can be applied to represent a variety of external
influences in the resulting retail price and, thus, to achieve load adjustment for several
different purposes [53]:

Time Both demand charges and energy prices can be time-dependent. Daily and weekly
energy price patterns with two price levels are relatively common since they can be
implemented with conventional double-rate meters. Further options are seasonal
differences or a higher number of different price levels. Strictly time-dependent
rates (also called time of use rates) usually define the time frames at least one
month ahead, which can be considered convenient for customers to adapt to.

Load Load dependency is another form of variable rate. This means that the applicable
price level depends on the current total load of the customer’s household. Again,
several price levels or a continuous increase can be implemented.

Energy consumption Similarly to load dependency, the current price level can also de-
pend on the cumulative energy consumption within a defined time frame, e.g.,
within a day or month. Rates with increasing prices at higher cumulative con-
sumption are also called ”‘progressive”’ and pose an incentive for energy-efficient
behavior.

Grid state Prices can be adjusted based on the current or expected grid state to avoid
grid problems. Since the prediction horizon is relatively small, these kinds of rates
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are usually implemented as CPP. This means customers get information about
higher or lower prices for critical situations on short notice.

Renewable generation Another influence that can be represented as CPP (and in ap-
proximate form with ToU) is renewable generation. This is aimed at consuming
as much renewable energy as possible and thus avoiding curtailment by reducing
prices (energy or demand) at times with high renewable generation.

Spot market Prices at the EPEX SPOT wholesale market change hourly and can also
be directly passed on to the retail customer as a part of the energy price. This
structure is called real-time pricing and assigns the price risk entirely to the cus-
tomer, not the energy supplier, as is the case with the other variable rate possibili-
ties. There are also market-based implementations that do not directly forward the
market price to the customer but involve adjustments like minimum and maximum
prices, fixed time frames, or longer lead time.

The described variants of variable rates show a variety of potential rate structures for
residential customers. In order to suit the discussed objective of increased integration of
renewable generation by reduction of curtailed energy, the options are analyzed regarding
the specific requirement for this use case. This yields a general rate structure with several
parameters, which can be optimized and determined by simulation.

Fundamental rate elements The necessity for curtailment is not directly linked to the
maximum demand of the customers. Therefore, a demand charge is not included
in the considered rate structure. As described, the monthly basic fee is generally
considered constant since it represents fixed costs per customer. Therefore, it has
no relevance regarding incentives for DSM and is also neglected for simplicity. This
leaves energy prices for further investigation, which can be adjusted according to
the requirements defined by the use case.

Rate structures Occurrences of curtailment measures do not follow a reliable daily or
seasonal pattern (cf. section 3.1). Thus, ToU pricing is not an option for this use
case. Wholesale prices do not represent curtailment necessities either since the
grid congestion does not directly affect the resulting price (again, not considering
approaches like nodal pricing). Therefore, an adjusted version of CPP pricing is
suggested here as a suitable approach. Since the objective of reducing curtailment
requires increasing the load in times with active curtailment measures rather than
decreasing for traditional CPP implementations, the “peak” price interval is de-
fined as the low price level to incentivize load shifting to this interval. Intervals
that are not affected by curtailment evince a higher price.

Influences As already pointed out, time, load, and wholesale prices do not represent
the necessity for curtailment. Renewable generation can potentially correlate but
still does not include all necessary information. Therefore, the predicted grid
state is the selected control variable since it directly allows for determining the

40



4.2 Regulatory implementation

potentially required curtailment measures and, therefore, identifying appropriate
“peak” intervals with low prices.

In summary, the chosen rate structure consists of an energy price with two price levels.
The “normal” energy price, denoted as N , applies for time intervals without predicted
congestion. In case of expected curtailment, a lower price L is defined to increase at-
tractiveness for load shifting to this interval. Since the “peak” events are advantageous
for the customer, no restriction regarding their occurrences is considered. However, the
minimum duration of a price interval can be decisive for acceptance of the resulting vari-
able rate. Therefore, the rate structure includes this as a third parameter M . According
to these preliminary investigations, numerical values for these three parameters are to
be determined optimally to achieve the highest possible reduction while maintaining the
economic viability of the whole concept. In subsequent analyses, this rate structure will
be denoted as NLM rate.

4.1.4 Summary

Potential features of variable electricity rates are collected and discussed in three dimen-
sions. Concerning the use case, a CPP variant with a low “peak” price as an incentive for
load increase is selected. The time interval with low prices is directly deduced from pre-
dicted curtailment necessity, which yields the duration of a price interval as an additional
parameter since it defines to what extent the actual requirements can be represented in
the rate structure. Demand charges and basic fees are neglected for the model, leading
to three parameters for the resulting rate structure: normal price level N , low price level
L, and minimum duration of price intervals M .

4.2 Regulatory implementation

This section is based on previously published work by the author [50].

4.2.1 Scope

Retail electricity rates in Germany consist of several components like power generation
costs, grid fees, electricity tax, VAT, and concession fees [54]. In today’s market setting,
all these components are usually charged per unit of energy; therefore, a constant energy
price applies to the energy consumption of retail customers, which poses no incentive
for adjustments of the consumption behavior to external requirements.

However, utilization of the residential flexibility potential can be enabled by variable
electricity rates with elements like time-dependent pricing, peak pricing, real-time pric-
ing, or demand charges (cf. section 4.1). Recommendations for functional rate design
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can be deduced by simulation based on measured consumption data (cf. chapter 5).
This raises the question: Which price components should be charged variably to repro-
duce the optimal rates with necessary spreads and assign price risks to the appropriate
market players?

4.2.2 Methodology

Based on the legal and regulatory definitions of the price components of retail energy
prices in Germany, the structure is analyzed regarding potential variability and possible
spreads, both in the current implementation and potentially adjusted settings. For each
component, this yields a potential contribution and suitability to implementing variable
rates in the German system.

4.2.3 Results and Discussion

4.2.3.1 Current Electricity Price Components

German retail electricity prices consist of several components beyond the costs of pro-
curement and sales. Most of them have a fixed price per consumed unit of energy. They
are defined by some kind of regulatory entity, which means the involved stakeholders
have no possibility of adapting these components to current necessities.

Currently, the electricity price for German households consists of 8 components, dis-
played in figure 4.1 for 2023 and summing up to a mean total of 45.73 ct/kWh. Due to
unusual circumstances in recent years regarding the pandemic and the global politi-
cal situation, retail prices underwent a substantial increase compared to previous ones
and do not necessarily pose a representative basis for the presented evaluations. Thus,
the price composition for January 2020 is also displayed and subsequently discussed for
comparison, at that time consisting of 10 components and totaling at a mean value of
31.37 ct/kWh. The reported values proportionately include base fees. [54,55]

Procurement and sales The first component covers the costs for the actual generation
or purchase of electrical energy, the expenses for sales and marketing, and the
potential profits for utilities. Its mean value increased from 7.18 ct/kWh [55] to
23.83 ct/kWh [54]. The amount of this component is solely set by the energy supplier;
therefore, variable design is possible here. Since the mean amount more than
tripled in the considered time period, this also relevantly increases the possible
price spreads in this component.

In the current German market, several suppliers offer variable rates based on this
component. However, these mostly depend on market prices and do not reflect
grid requirements, as discussed here. [56]
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Figure 4.1: Price components of German retail electricity prices for households (data
based on [54,55])

Grid fees Grid fees are charged by the respective grid operators for the construction
and maintenance of the electric grid on both distribution and transmission levels.
The regulator defines the calculation of the amount, so individual grid operators
have no possibility to vary this component. The cost component caused by the
transmission grid is unified [9, § 24], whereas distribution grid components depend
on the local DSO. However, both are essentially charged per unit of energy.

For larger customers, grid fees usually include a demand charge, which at the
moment is not applicable for residential customers [57, § 17]. The component also
includes the costs for metering point operation. This leads to a mean value of
7.71 ct/kWh for 2020 [55], increasing to 9.52 ct/kWh for 2023 [54].

There are already possibilities to reduce grid fees for customers with grid-friendly
consumption patterns [57, § 19]. Although these measures, called “atypical grid
usage” or “intensive grid usage,” are not relevant for residential customers, this
shows that the general concept of variable or at least individual grid fees is a valid
option.

For customers with controllable devices like electric vehicles, heat pumps, and
electric storage systems which are obliged to comply with grid-oriented operation
according to [9, § 14a], reduced grid fees are legally implemented [11]. Beginning
in April 2025, a variable grid fee with ToU structure can be chosen voluntarily
by operators of said devices [11]. This can be considered a first approach to
improved integration of renewables, as discussed here. However, it is currently
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focused on local grid overload by consumption and thus might be complemented
by the presented concept.

Value-added tax This tax is applied as a general consumption tax, so it is not specific
to electricity distribution. It is defined by a fixed percentage (19%) of the total
net price, i.e., the sum of all other components [58, § 12], which yields 7.30 ct/kWh

at the moment for Germany [54], up from 5.01 ct/kWh in 2020 [55]. Adjusting this
component would require major modifications to the whole system of taxation,
making it quite complex to vary.

Concession fees Concession fees are paid by the grid operator to the respective munic-
ipality for the concession to operate the electricity grid; therefore, they are also
charged to the customer. The amount is defined in the particular concession con-
tract but is subject to upper limits defined by law [59, § 2]. This yields a current
mean value of 1.66 ct/kWh [54], which remained constant for the past years [55].

Concession fees can only be charged per kWh according to applicable law [59, § 2].
Therefore, the flexible design of this component would require adjusted legislation.
Moreover, the exact formulation would still depend on the individual contracts
between the parties involved.

With the so-called “low load fee”, it already includes an incentive for variable rates
and load shifting, which applies to rates with at least two price levels. However, the
achievable spread is relatively low due to the small total amount of this component.
Moreover, free adjustment depending on current requirements is impossible, so it
will not be considered sufficiently flexible for these investigations.

EEG levy Before July 1, 2022, the expenses caused by the differences between EEG
remuneration and actual market revenues of the generated energy were reallocated
via the EEG levy by the transmission system operators [60, § 60]. It was recal-
culated annually and amounted to 6.756 ct/kWh in 2020 [55]. Since these costs are
now covered by tax money, it is no longer present as a price component for retail
prices.

According to the relevant law, it was charged per kWh, so a flexible EEG levy
would not have been possible within this regulatory framework. Changes to this
system have been proposed several times [61], [62], and were expected to signifi-
cantly impact customer behavior. Due to the abolition of the levy, this flexibiliza-
tion potential is no longer relevant for further investigation.

CHP levy Similarly to the EEG levy, extra costs for the promotion of CHP systems are
reallocated by the CHP levy [63, § 26]. Compared to the former EEG levy, the
amount is low with 0.226 ct/kWh [55] for 2020 and 0.357 ct/kWh for 2023 [54], but the
system of calculating and allocating the costs is identical to the EEG [63, § 26a]. As
before, the regulation demands billing per unit of energy and needs to be adjusted
to design variable implementations.
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Further levies As mentioned before, atypical or intensive grid usage allow for reduced
grid fees under certain conditions [57, § 19]. The resulting missing revenues for
grid operators are reallocated by this levy, which is named by the paragraph of
the respective law. Its value is 0.417 ct/kWh for 2023 [54], up from 0.358 ct/kWh

in 2020 [55], and analogously to the previous levies, flexibilization would require
regulatory changes.

The same also holds for the offshore grid levy, which covers the costs for missing
connection of offshore wind power plants [9, § 17f], which amounts to 0.416 ct/kWh

for 2020 [55] and 0.591 ct/kWh for 2023 [54]. Another levy with similarly designed
calculation and billing was the interruptible load levy, which covered the costs for
specific industrial demand response measures [64, § 18] (0.005 ct/kWh in 2020 [55]),
but disappeared with the expiration of the underlying regulation [64, § 20].

Electricity tax As a last component, the electricity tax is charged by the government
and constantly accounts for 2.05 ct/kWh [54,55]. The amount is defined by law [65,
§ 3] and not assigned to a specific purpose.

4.2.3.2 Analysis of Status Quo

As described in the previous subsection, all components of German retail electricity
prices are currently charged per energy and are usually constant over time. They can be
clustered into three different groups based on the current price formation mechanism:

� Price is defined by the energy supplier

� Fixed price defined by law or regulation

� Price is dependent on other components

These groups are described and analyzed in the following.

Procurement and Sales The first group consists of the component “Procurement and
Sales”. As pointed out, its function is to cover the costs of electricity generation
or purchase and for all other processes of the energy supplier that are necessary
to supply energy to its retail customers. Therefore, the exact pricing structure
and price level are up to the energy supplier, making it a perfect candidate for
implementing variable rates.

Since this component accounts for about 24 ct/kWh, spreads of just under 50 ct/kWh

are possible in a conservative implementation of time of use rates. Conservative
here means an approximately uniform distribution of time intervals with high price
level and intervals with low price level, a nonnegative low price level, and (at least
approximately) revenue neutrality for both energy supplier and customer (provided
that the customers’ behavior remains unchanged).
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However, none of these assumptions are legally necessary, so in theory, arbitrarily
high peak prices can be implemented as an incentive for load reduction or load
shifting in critical situations. Analogously, negative values of this component can
provide an incentive to increase the current consumption. Therefore, potential
price spreads are not limited by the current mean value. Demand charges are
currently not explicitly allowed but also seem to be in accordance with the law
since they are mentioned for a particular group of retail customers [9, § 37].

However, a completely free rate design is not advisable from an economic point
of view. Cost savings on the customer side have to be compensated for by the
energy supplier by cost reduction on the wholesale market or other financial ben-
efits. Moreover, rate structures that are too complicated or include very high
price spreads might receive little acceptance in today’s highly competitive retail
electricity market.

As described, the component is defined and charged by the energy supplier. There-
fore, grid requirements cannot be represented due to unbundling laws [9, § 6a]. This
means that theoretically, most flexibility requirements in retail electricity pricing
could be mapped to the component, but in practice, the necessary information is
not available.

Regulatory components The second group consists of all components defined by some
kind of law or regulation and typically fixed for at least one year. This includes all
kinds of fees and levies, as well as the German electricity tax. These components
are charged per energy, so demand charges are impossible in the current setting.
Due to the static definition, they are unusable for dynamic pricing approaches.
Thus, using these components as additional incentives for load shifting and other
changes in behavior requires regulatory changes. For grid fees, variable design
is possible beginning in 2025 but is limited regarding the maximum spread and
requires yearly predefined price levels [11]. Thus, it is not suitable for the desired
CPP design but can pose a basis for further development.

VAT The third “group” also consists of only one component: the value-added tax. This
component is defined by federal law and amounts to 19% of the sum of all other
components. Since this ratio is fixed, no flexible design of the component itself
is possible, but price spreads in other components are increased by 19% due to
the VAT. Therefore, this introduces additional leverage to incentivize changes in
consumption behavior.

The analysis of the current situation shows that only the energy supplier has the possi-
bility to adjust prices dynamically. Therefore, only about 52% of the total retail price
can be influenced. All other relevant stakeholders, like grid operators and the regulator,
have no means to vary their respective components according to the defined goal under
current legislation. Including all relevant influences and dependencies (cf. section 4.1)
in the final retail price requires appropriate adjustments. These will be discussed in the
following section.
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4.2.3.3 Potential regulatory adjustments

In general, there are three possible approaches to redesigning the system to overcome
the described drawbacks:

� Price signals by other stakeholders to the energy supplier

� Legislative redesign of components

� Introduction of new components

All of these approaches require substantial adjustments to existing laws or regulations,
and therefore, market players in energy economics cannot implement them without the
legislator’s support.

Price signals As already pointed out, the influence of grid operators or possibly other
stakeholders on the actual price for energy supply, so on the component defined by
the energy supplier, would allow including all relevant factors in the price formation
process. Therefore, adjustments of further price components can be avoided, which
could potentially reduce legislative implementation efforts. On the downside, new
processes for aggregation of all signals have to be defined to establish measures to
deal with conflicting interests, e.g., between grid operators and energy suppliers or
between grid operators on different voltage levels. Similar challenges are currently
being addressed in the field of CLS management [66].

Legislative redesign Changing the respective regulations that define grid fees, conces-
sion fees, or several levies could enable dynamic design and adjustments of these
components. Thus, grid operators or the regulator have a direct influence on the
final retail price and are able to include their requirements in this price. Depend-
ing on the current situation of the energy system, this could raise the total price
spread seen by the customer, increasing the variable rate’s incentive effect.

However, the adjustments might cancel out in other situations with contradict-
ing flexibility requirements of the respective market players. Moreover, the price
spread that can be realized with one component directly depends on the current
value; therefore, the spreads might be too low to sufficiently incentivize load shift-
ing. Besides procurement and sales, only grid fees pose the opportunity of creating
spreads larger than a few cents (cf. subsection 4.2.3.2).

Grid fees could potentially include demand charges that allocate the costs of grid
construction and maintenance to the respective cause, potentially leading to aware-
ness regarding load peaks. CPP variants representing the current grid requirements
on a local or regional scale are also an option. Since a large share of the grid fees
is assigned to the DSO, this would enable the local grid operator to react flexibly
to local congestion situations. Thresholds and prices can be dynamically adjusted
depending on the actual grid state. The introduction of variable grid fees with a
ToU structure, beginning in 2025, can be considered a first step.
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New components For increased spreads and, therefore, additional leverage, it can be
helpful to include additional components that incentivize behavioral changes. Sev-
eral variants have been proposed [67,68].

This new price component is denoted as the flexibility component. Usually, it is
adjusted based on current flexibility demand. To pose an incentive for increased
consumption, it can be 0 or negative; to cause a reduction of consumption, it is
positive and therefore increases the price per unit of energy.

Therefore, with this instrument being regulatory possible, virtually arbitrary en-
ergy prices could be defined by the energy supplier or the grid operator. Given
the assumption that there is the same flexibility demand in both directions, this
could be designed revenue-neutral for the grid operator [68].

With the usual approach to a flexibility component system, it is impossible to
include demand charges for utilizing flexibility potential. This might require an-
other new component with the goal of a smoother consumption behavior. To avoid
additional financial burdens for customers, other components might be reduced.
This could be applied as an instrument to avoid load peaks in critical situations.

4.2.4 Summary

The analyses show that in the current regulatory setting, only the amount for procure-
ment and sales of the energy supplier can be designed in a variable and flexible way
to pose an incentive for residential customers for behavioral changes. This evinces two
main disadvantages: the potential spread is restricted by external factors, and other
stakeholders in the energy system have no means of influencing the final retail prices.

Possible improvements to the system include three different approaches. The first one
is the regulatory introduction of price signals from other stakeholders to the energy
supplier, providing an opportunity for, e.g., grid operators to react to their specific
requirements. This could also be achieved by the flexible design of further price com-
ponents like grid fees. As a last option, implementing new price components, e.g., a
flexibility bonus, yields the highest flexibility for customized rate structures. Therefore,
further development of the regulatory environment in one or more of these directions is
recommended to tap the full potential of residential flexibility in the electricity sector.
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4.3 Survey

This section is partially based on previously published work by the author [69].

4.3.1 Scope

For the simulation of customer behavior under the effect of variable electricity prices, it is
essential to model their decisions regarding rate acceptance, price interval duration, and
actual load shifting. In order to determine the respective parameters for the intended
target group, a survey is conducted among German customers to collect current data
regarding their preferences and attitudes towards variable electricity rates, leading to
input parameters for the model that characterize their behavior and participation.

4.3.2 Methodology

To obtain an overview of load-shifting potential in the residential sector, a variety of pre-
viously conducted pilot projects and studies is analyzed regarding suitable appliances
and load-shifting potential first. Since these projects cover various rate structures, ap-
pliance types, and regional scopes, a survey was conducted to create reliable and recent
data on the relevant parameters for the defined NLM rate and a German target group.
This survey is designed as an online questionnaire with the main focus on the following
areas of questions:

� Which decision criteria are relevant for the acceptance of an electricity rate?

� Which monetary savings are required per use to choose a variable rate and to shift
the operation of appliances?

4.3.3 Results and Discussion

Figure 4.2 gives an overview of several field trials and research projects regarding res-
idential DSM in the form of a bubble chart [70–94]. It shows the dependency of the
overall load shifting potential (on the ordinate) to the spread between the highest price
and the lowest price (converted to Eurocents, on the abscissa) which apply in the re-
spective variable rate. The size of the bubbles corresponds to the analyzed participants,
and the color represents the type of variable rate (cf. section 4.1).

The chart shows that the determined potential varies vastly among the analyzed projects.
There are cases that evince no load shifting at all, whereas others lead to shifting rates
of over 40%. The majority of results lies within approximately 10% to 30%. This
observation leads to the conclusion that the actual achieved load shifting depends not
only on the price difference but also on other influences, which are not covered here.
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Figure 4.2: Overview of pilot projects and field trials regarding residential DSM (based
on [69])

Moreover, the distribution of data points with a high number of participants also shows
no clear pattern. Therefore, it cannot be deduced that outliers are caused by a smaller
sample size.

However, the overall tendency suggests that higher price spreads generally enable higher
shifting rates, which is in accordance with expectations. Therefore, a survey is helpful
to determine this correlation with respect to the intended target group.

The sample group that is analyzed in the survey is described by some key figures in
table 4.1. This shows that all relevant groups of customers concerning gender, age, and
housing situation are represented in the sample group. The mean number of persons
per household is slightly above the statistical mean value for Germany, which might
correlate with a high share of house owners in the sample group. Nevertheless, due to
the number of participants and the described coverage of relevant clusters of customers,
the survey results are considered to be a reliable approximation of customers’ behavior.
Relevant findings for the simulation are discussed in this section.

As a first result, figure 4.3 shows the importance of several potential decision criteria for
the customers’ rate selection and switching process. This is implemented in the survey
by a numerical rating from 1 (not important) up to 5 (very important), which allows
the calculation of the mean importance per criterion within this scale.

The figure suggests that criteria regarding the structure of the potentially variable rate
(integration in everyday life and comprehensible rate structure) and resulting costs (total
electricity costs, price cap, potential monetary savings) are essential. Ecological factors
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Number of participants 130
Male : female participants 50% : 50%
Age of participants up to 25: 8%

26–35: 19%
36–45: 12%
46–55: 29%
56–65: 20%
above 65: 11%

Mean number of persons per household 2.4
Housing situation Owner of house: 45%

Owner of flat: 16%
Main tenant: 35%
Subtenant: 4%

Table 4.1: Key figures about the survey sample group (based on [69])

Figure 4.3: Decision criteria for electricity rates (based on [69])
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Figure 4.4: Acceptance of variable rates depending on yearly savings (based on [69])

like sustainability and integration of renewables are also considered to be important.
However, according to the survey, the actual supplier is relatively insignificant for the
choice. Therefore, a transparent, comprehensible, and comparable rate structure is
recommended. Sustainable rate design, e.g., by procurement of renewable generation,
can be a USP.

Within the defined general rate structure (cf. previous sections), both costs and integra-
bility are represented by the parameters that are to be optimized. The resulting costs
are directly affected by the normal price level, the low price level, and the spread of
these two. Easy integration and a comprehensible structure are assumed to correlate
with longer duration of price intervals, e.g., price intervals of 24 h require less adaptation
effort than intervals of 1min. Therefore, both of these criteria are analyzed in detail
throughout the following survey questions.

The potential savings with the new, possibly variable, rate can be a decisive criterion
for rate switching and acceptance decisions. Thus, figure 4.4 shows the acceptance of
switching to a variable rate dependent on the expected monetary savings per year. The
chart is depicted in cumulative form, which means it shows the total share of customers
who are willing to switch to a variable rate with respect to their savings.

The results lead to several interesting conclusions:

� A small share of customers 2.3% is willing to switch to a variable rate at projected
savings of 0. However, as expected, the vast majority only accept “new” structures
if they benefit monetarily.
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Figure 4.5: Preferred price interval duration (based on [69])

� The cumulative curve evinces a steep increase to about 150EUR, where already
88.5% of participants are willing to switch to the respective variable rate.

� Customers, which still reject a new rate at this value, are also unlikely to ac-
cept it at considerably higher savings since at 500EUR, the resulting cumulative
acceptance is still only 92.3%.

The depicted data is used for acceptance analysis of modeled customers in section 5.3.
Customers who do not accept variable rates even at potential savings of 500EUR are
assumed to be indifferent to variable rates and, therefore, are not expected to switch
at all based on monetary incentives. Values between the grid points are interpolated
linearly.

As mentioned, the second identified cluster of criteria, easy and comprehensible integra-
tion in everyday life, is affected by the rate parameter M , the minimum duration of a
price interval. In order to quantify these effects, the preferred price interval duration of
each participant of the survey is determined. The results are depicted in figure 4.5, in
this case not cumulated.

The distribution shows that more than 95% of respondents prefer rate structures with
interval duration of at least one hour. The categories 6 h and 3 h cover over 60% of
the sample group, suggesting that attractive rate design should at least consider price
interval duration in this range. Nevertheless, a considerable number of customers prefer
their price to be constant for at least half a day or even a day.
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Figure 4.6: Acceptance of DSM for dishwashers dependent on savings per use (based
on [69])

For utilization in the evaluations, this decision is also considered to be cumulative,
i.e., customers are assumed to also accept durations above their chosen answer. As an
example, a customer with a preferred duration of 6 h is assumed and modeled to also
accept price interval durations of more than 6 hours. This leads to a quantified share
of customers willing to accept a potential NLM rate dependent on the parameter M of
this rate.

These two described coefficients allow modeling the acceptance decision of simulated
agents to potential variable rates depending on the current parameters of this rate.
However, the actual load-shifting measures still require sufficient monetary incentives.

This evaluation is given in figure 4.6 for dishwashers as one of the identified appliance
types. Similar to figure 4.4, acceptance of shifting measures is depicted cumulatively as
a function of monetary savings. The chart shows a pretty uniform increase of acceptance
over savings, up to 71.2% for 50 ct less energy costs per use. Here, the specified savings
are calculated per use of the respective device.

Therefore, the implementation in the model requires translation of price spreads induced
by the rate (difference between N and L) to these actual savings per use, which are
additionally dependent on the device’s energy consumption. Values between the grid
points are also linearly interpolated here. For potential savings of 0 ct, the share of
shifted appliances is assumed to be 0% since the defined rate model solely relies on
external price signals as incentives for load shifting. Customers who demand higher
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(a) Washing machines (b) Dryers

Figure 4.7: Acceptance of DSM dependent on savings per use (based on [69])

savings than 50 cents in the survey are considered to be unwilling to participate in load-
shifting measures.

Figure 4.7a and figure 4.7b show the analogous evaluation for washing machines and
dryers, respectively. The overall characteristics are pretty similar to those discussed for
dishwashers since they commence at about 10% acceptance for low savings values and
evince an approximately uniform increase to more than 70%. Again, the savings are
given per use of the respective appliance, so the described translation of price spreads to
saving values is applied here. All further assumptions discussed for dishwashers are also
utilized for these appliance types in order to convert the survey result to appropriate
input data for the model.

4.3.4 Summary

The survey results show that the general acceptance of variable rates depends on simple
rate design and monetary benefits for the customer. Closer inspection of these criteria
with respect to the defined rate parameters suggests that a majority of respondents are
generally willing to accept variable rates and also to adapt their behavior accordingly,
provided that the structure complies with their preferences regarding price spreads and
interval duration. Thus, the survey evaluation yields input data for the modeling process
described in section 5.2.
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5 Modeling of DSM and Optimization
of Rate Parameters

5.1 Aggregate Potential Estimation

This section is partially based on previously published work by the author [69].

5.1.1 Scope

The previous chapters described both the data basis and the additional assumptions
required for modeling the potential benefits of residential DSM regarding curtailment
measures. In the subsequent sections, these effects are modeled in detail on an individual
appliance level and in high temporal resolution. However, to get a first estimate of the
overall potential of a nationwide implementation and a general basis for plausibility
checks, the effects are simulated on an aggregate level first. This allows evaluation of
the general concept and yields preliminary results about the usefulness of the described
pricing approach.

5.1.2 Methodology

5.1.2.1 Load and Curtailment Data

For modeling potential residential DSM measures, aggregate load curves for the residen-
tial sector are calculated based on the load profiles that are determined in section 2.2.
By concatenating the daily profiles dependent on the type of day and on the season, load
curves for a whole year are constructed. The described distribution of the time-resolved
total load to different types of appliances can also be extended from daily profiles to
yearly curves. This yields the possibility of approximately determining the potentially
flexible share of the residential load.

As previously explained, these resulting load curves are normalized. Simulations within
this section are spatially resolved based on the grid regions identified in section 3.1.
Therefore, the load curves are scaled to the total residential electricity consumption in
the respective region, yielding an approximation of the actual consumption patterns per
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region. Since this procedure is applied to both the flexible and the inflexible components
of the load curve, the total flexible load per time step can be determined.

Since the underlying load profiles are calculated in a temporal resolution of 15min (cf.
section 2.2), the model employs the same resolution. Although curtailment data are
available in higher resolution, calculations on this level are not reasonable here since
no additional precision is to be expected. Therefore, curtailment data are converted to
values in time steps of 15min by calculating the mean value per respective interval. Due
to this averaging process, the results can be considered an upper estimate of the actual
potential since peaks below the resolution are not represented.

In order to determine the potential for reducing curtailed energy based on the acquired
data regarding curtailment measures and consumption profiles, it is assumed that load
reduction is generally possible without causing additional curtailment. This simplifica-
tion is necessary since data for a more precise mapping are not available. Again, the
results are thus regarded as an upper estimate since this assumption is not generally
valid in actual grid situations.

5.1.2.2 DSM measures and Curtailment Reduction

The general methodology for modeling DSM measures is based on the assumption that
flexible load from time intervals with price N is shifted to time intervals with price
L. Here, the shifting process is modeled per day without considering a maximum ac-
cepted shifting period and also without the possibility of shifting between days. These
simplifications are justified due to the simulation of a very large number of households
per region. Nevertheless, this again contributes to interpreting the results as an upper
estimate.

As already described, the electricity grid within the regions is not considered. Therefore,
it can be assumed that load increase in intervals with active curtailment reduces the
amount of curtailed energy accordingly. This is yet another reason for interpreting the
result as an upper estimate since, in some cases, this can be prevented by congestion
in the distribution grid. However, as already mentioned, this effect is not expected to
be substantial [37]. Flexible load is reallocated optimally to L-intervals, i.e., in a way
that covers as much curtailed energy as possible. Since no individual appliances with a
fixed duration of operation are considered, this optimal allocation can be implemented
on independent time steps. Thus, the total possible reduction results on the one hand
from the flexible share of the calculated load curve and on the other hand from the total
amount of curtailed energy on the respective day.

Since the goal here is to approximate the total potential for curtailment reduction with
the identified rate structure, the price spread between N and L intervals is assumed
to be large enough for all customers, which complies with all previously mentioned
assumptions in terms of getting an upper estimation of the potential. The parameter
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M , representing the minimum duration of price intervals, is varied to get an indication
of the effects depending on the curtailment characteristics of different regions.

The rate levels for each day are determined based on curtailment data. It is assumed
that these are known precisely in advance. In reality, a slightly lower effect can be
expected due to forecasting inaccuracies. As described in section 4.1, the lower price
level L applies to all intervals with active curtailment. No upper bound on the total
duration of L-intervals is applied.

5.1.2.3 Parametrization

In order to assess the influence of accepted DSM measures, four assumptions regarding
the flexible load are compared. A1 represents the assumption that the total consumption
of flexible appliances (i.e., washing machines, dryers, and dishwashers) is flexible and
shiftable. For A2, the flexible load is reduced to the ratio, which is generally accepted
according to the survey in section 4.3, assuming a price spread that is large enough.
Due to the representation of survey results, this is considered the reference scenario. For
simplified estimation of lower acceptance, A3 and A4 assume that this share is further
reduced to 2/3 and 1/3, respectively.

For the examination of the required resolution of price intervals, M is varied from 15min
over 1 h, 2 h, 4 h up to 6 h. Higher values are not considered since they would cause
implausible results due to the day-by-day model structure.

5.1.3 Results and Discussion

5.1.3.1 Regional Characteristics

The simulation result for minimalM under assumption A2 is depicted in figure 5.1, which
is subsequently considered the reference case for this section to evaluate differences in
reduction potential. For every region with available curtailment data (cf. section 3.1),
the relative reduction potential is represented by the coloring of the region. The relative
reduction potential is defined as the amount of curtailed energy that can be avoided by
the modeled DSMmeasures divided by the total curtailed energy in the respective region.
As a first observation, the map evinces substantial regional differences regarding this
indicator. The relative potential varies from 0.4% up to 100%, i.e., a complete avoidance
of curtailment necessity due to DSM measures. For comparison of the assumptions,
figure 5.2 shows the regional difference in relative reduction potential between A4 and A2.
This shows that most regions evince low differences below 20% between the assumptions,
especially those with very high or very low reference (A2) values. Relevant differences
due to the reduced flexibility potential under A4 are observed for mid-range regions since
these are comparably affected more by changes in flexibility potential.
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Figure 5.1: Relative curtailment reduction potential per region, A2, M = 15min (ref-
erence case)

Assumption Relative Reduction(%)
A1 5.0%
A2 4.6%
A3 3.3%
A4 2.1%

Table 5.1: Relative curtailment reduction for M = 15min
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Figure 5.2: Difference in relative curtailment reduction potential per region, A4, M =
15min, compared to reference case

Comparison with the total curtailed energy depicted in figure 3.1 shows that these
differences are mainly caused by the amount of curtailed energy, leading to the conclusion
that residential consumption and, thus, the amount of flexible load per region is only a
minor influence. Therefore, detailed analyses of selected regions are essential for valuable
results. Overall, A2 leads to a nationwide curtailment reduction of 4.6%. The respective
values for different assumptions are given in table 5.1. Two main findings can be deduced
here:

� The difference between the total flexible load (A1) and the accepted flexibilization
(A2, reference case) is rather small. In contrast, the effect of further reduction
of the assumed potential in A3 and A4 reduces the overall benefits considerably.
Thus, rate design, which leads to high acceptance among the participating house-
holds, is crucial for the whole approach.

� In the optimal case, the achievable curtailment reduction is a low single-digit
percentage. Therefore, no real decisive contribution to the whole energy system
can be expected, but the effect is nevertheless non-negligible.
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5.1.3.2 Detailed Analysis of Focus Regions

A detailed analysis of daily curtailment values and potential reduction for region C under
A2 is depicted in figure 5.3. The chart displays one bar per day, which represents the
total curtailed energy in the respective region on this day. In order to visualize both
range and distribution, these bars are sorted by magnitude. The calculated potential
reduction of curtailed energy compared to the residual amount, which the simulated
measures cannot avoid, is shown by the color of the bars. Depending on the region, only
one of the two colors might be visible in the graphical depiction.

It shows that almost every day of the year (332 days) evinces curtailment measures,
totaling to 1.3TWh. About half the year (180 days) evince over 1GWh curtailed energy
per day, with a range of up to 25GWh. The potential relative reduction, as already
apparent from figure 5.1, is very small. Most days evince no visible reduction since
only 12 days allow a reduction of more than 0.1GWh, whereas 154 days evince a non-
zero value below this threshold. However, the total amount of potentially avoidable
curtailment sums up to 5.2GWh, leading to a relative reduction potential of 0.42% for
A2.

Figure 5.4 depicts the effects of varied flexibility assumptions. Similar to the values in
table 5.1, the difference between A2 (accepted DSM) and 0.48% for A1 (total flexible
load) is relatively small. However, further decreased flexibility for A3 and A4 lead to a
considerable, approximately linear reduction of the calculated potential.

Figure 5.5 shows analogous charts for region S. Here, the overall number of affected

Figure 5.3: Sorted daily curtailment reduction potential for region C, A2
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Figure 5.4: Relative curtailment reduction potential for region C

(a) Sorted daily reduction, A2 (b) Relative reduction

Figure 5.5: Curtailment reduction potential for region S
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(a) Sorted daily reduction, A2 (b) Relative reduction

Figure 5.6: Curtailment reduction potential for region W

days, i.e., bars in figure 5.5a, is comparably low with 22. The figure also shows that for all
days, the total amount of curtailed energy can be avoided by DSM measures. Therefore,
this region’s total value of potential curtailment reduction amounts to 0.11GWh.

As expected, the comparison of assumptions in figure 5.5b shows that total usage of the
flexibility potential (A1) does not affect the relative reduction potential since A2 already
achieves 100% reduction. This is still possible for A3, whereas A4, i.e., utilization of
only 1/3 of the accepted potential, evinces a slight reduction to 93%. This shows that for
regions with few required curtailment measures and small amounts of curtailed energy,
the actually utilized share of flexibility is comparably insignificant since A4 still avoids
over 90% of curtailment. A second finding is that regions with very high values in the
relative perspective, e.g., depicted in figure 5.1, affect the overall reduction only slightly
since high relative values correlate with small absolute amounts of curtailed energy.

For the third focus region W , the analyses are given in figure 5.6. Here, on 259 days of
the year, a total amount of 3.0GWh is curtailed, with daily values of up to 0.26GWh.
Nevertheless, only 42, i.e., a minority of days exceed 10MWh. This allows a total
reduction of curtailment for a large number of days (195) and a partial reduction for
several more but shows that the residential contribution is insufficient for days with high
curtailed energy. This is in accordance with the results for region C. Overall, this leads
to a potential reduction of 0.57GWh and, therefore, a relative reduction of 19.0%.

The assumption-dependent evaluation shows similar characteristics as identified before
for region C. The additional flexibility, which could be assumed for A1, facilitates
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Figure 5.7: Difference in relative curtailment reduction potential per region, A2, M =
6h, compared to reference case

only a minor increase to 19.4%, whereas the reduced scenarios evince considerably less
potential.

In summary, these analyses show that the individual potential for curtailment reduction
is highly dependent on the regional characteristics and amounts of curtailed energy and
also on the assumed flexibility potential in the residential sector.

5.1.3.3 Rate Structure

Previous analyses within this section assumed optimal reallocation of flexible load in a
quarter-hourly grid. Since the chosen NLM rate depends on M , defining the minimal
duration of price intervals, the achieved flexibilization can also be smaller for higher
values of M . Figure 5.7 exemplarily shows this dependency for M = 6h, compared to
the previously displayed reference case in figure 5.1. As before, assumption A2 is applied
for the displayed evaluation.

The map suggests a rather small effect of different M -values. For many regions, the
relative potential is only slightly reduced. However, in some cases, especially in the
middle and higher range of relative reduction potential, the resulting potential is clearly
affected and reduced by an increase of M . As before, a detailed analysis of selected
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M Relative Reduction(%)
15min 4.6%

1h 4.3%
2h 3.9%
3h 3.5%
6h 2.7%

Table 5.2: Relative curtailment reduction for A2

Figure 5.8: Relative curtailment reduction potential dependent on M for region C

focus regions seems appropriate for further insights. On a nationwide scale, the achieved
relative reduction of 4.6% for M = 15min changes as given in table 5.2. Higher values
for M are not considered here since no useful results can be expected due to the day-
based modeling. The table shows that overall, a 6 h grid for price levels would cause
a decrease of potential by approximately 40%. However, the survey results (cf. figure
4.5) show that higher values lead to generally higher acceptance. This confirms the
importance of M as a rate design parameter.

The dependency of relative reduction potential from M for the region with the highest
curtailed energy C is depicted in figure 5.8. The chart suggests an approximately linear
descent of relative reduction potential with interval width, from 0.42% in the base case
down to 0.19% for the maximal value of M = 6h, leading to an approximate halving of
the potential due to adjusted interval width.

Analogous charts for the other focus regions are given in figure 5.9. In region S, the
relative reduction potential is not affected up to 3 h. As already pointed out, the flexibil-
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(a) Region S (b) Region W

Figure 5.9: Relative curtailment reduction potential dependent on M

ity potential is high enough compared to the necessary curtailment, so additional slight
restrictions are not visible in the results. Only for M = 6h, a reduction by about 20%
is observed.

By contrast, region W (figure 5.9b) again shows quite a strong correlation between in-
terval duration and relative reduction. The relative potential decreases from 19.0% for
15min to 8.0% for 6 h. Thus, the region-specific charts support the previous observa-
tions.

5.1.4 Summary

The described model for assessment of the effects of potential residential DSM measures
on the curtailment of renewables on an aggregate level proves helpful for an approximate
indication of the viability and utility of the general flexibilization approach. It allows
for simulation of the expected effects on a regional level based on load profiles of flexible
appliances, assumptions about their utilization, and historical data about curtailment
measures. The results are considered to be plausible and explainable.

Estimating the relative reduction potential of curtailment on this aggregate level shows
clear differences between the defined regions. In regions with high amounts of curtailed
energy, the absolute potential is considerably higher, as observed for regions C and W ;
however, depending on the assumptions, only 0.14% to 0.48% curtailment reduction can
be achieved for region C, and 8.0% to 19.0% for region W . The comparison to region S
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shows that under given assumptions, no curtailment would be necessary if DSMmeasures
were implemented as described. Here, the differences between assumptions are almost
negligible.

Similar observations apply also to the sensitivity analyses regarding the rate parameter
M , which defines the minimum duration of a price interval. Regions with low total
curtailment, such as region S, are considerably less affected than regions with medium
or high amounts, like regions W and C, respectively. However, since regions with high
curtailment also present high absolute potential for reduction and, therefore, more con-
tribution to the total relative reduction of curtailment, a suitable choice of M is essential
for viable results.

In summary, the presented results indicate that residential DSM can contribute con-
siderably to the reduction of curtailment and therefore, to the increased integration of
renewable generation. Thus, detailed investigations on the level of individual households
and appliances and in higher temporal resolution are reasonable for more precise results.
These are given in the subsequent sections.

5.2 Modelling of Individual DSM Potential

5.2.1 Scope

As described in the previous section, the simulation of the potential contribution of res-
idential flexibility to reducing curtailment requirements with an aggregate model shows
that the discussed approach can be beneficial. In order to improve the quality and preci-
sion of the results, the following section presents an alternative methodology for modeling
flexible customer behavior based on individual load curves and appliances. Due to the
more detailed data basis, this also allows for refining the temporal resolution.

Therefore, this leads to the following objectives for this section:

� Development of a model for load-shifting processes of household appliances based
on measured load data

� Application of this model to calculate the potential reduction of curtailment

� Definition of realistic model parameters

� Sensitivity analyses of influence factors
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5.2.2 Methodology

5.2.2.1 Load and Curtailment Data

Analogously to the simplified model in the previous section, the data basis for modeling
curtailment measures is deduced from historical data for the year 2018 as described in
section 3.1. In contrast to before, the generated time series of curtailed energy with
a temporal resolution of 1min remain unchanged here since this matches the model
resolution of the individual DSM model. The previously described regional partitioning
according to proximity to grid nodes is also applied here.

The consumption patterns are modeled based on the load curves described and analyzed
in section 2.3. These are also available in a temporal resolution of 1min and thus
allow the development of the whole model in this resolution, leading to a more detailed
representation of both consumption patterns and the potential effects of flexibilization
on the consumption side. In order to extrapolate conclusive results from the available
data set, the extracted representative sample of households, which is constructed to meet
statistically collected data for Germany, is used here.

For the simulation of DSM measures, i.e., load shifting of individual household appli-
ances, the identified operation times and load profiles of relevant appliances are applied.
These allow to individually reallocate the electricity consumption caused by said ap-
pliances based on the influences considered in the model, such as price differences and
acceptance parameters of the simulated customer. Consequently, these data are also
reduced to the approximately representative sample as described.

5.2.2.2 Parametrization of Agents

Every modeled household, denoted as an agent in the simulation, is described by three
parameters that define its behavior towards load shifting of considered appliance types.
These parameters represent the minimal monetary savings the respective agent demands
to shift the specific appliance type, i.e., dishwasher, washing machine, and dryer. Since
these requirements differ between the appliance types according to the discussed survey
(cf. section 4.3), the behavior cannot be reasonably modeled with a single threshold
value but requires distinction by appliance type.

These three parameters are deduced from the survey and represent the distribution
gathered from these results. Since the 100 load patterns of the extracted sample dif-
fer considerably regarding present appliances and individual consumption behavior, the
sensible matching of survey data and load data to define one of 100 agents is crucial
for helpful results. In order to define this matching, a large number of calibration sim-
ulations have been carried out with random configurations, i.e., randomly permuted
assignment of price thresholds according to the survey and load data. These calibration
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simulations cover all regions and a variety of rate parameters in order to achieve mean-
ingful results. The potential reduction of curtailed energy (cf. subsequent sections) is
calculated for each configuration since this is the most relevant indicator in the subse-
quent application of the model and, therefore, is chosen as the criterion to identify a
representative configuration.

Since the “true” configuration or the actual reduction of curtailed energy is unknown,
the median value of the calculated reduction is chosen as an approximation for the
expected outcome. Therefore, the configuration that meets the median value best over
all simulated parameter sets is chosen as a basis for all subsequent simulations and
considered roughly representative of the given purpose.

5.2.2.3 Modeling of Load Shifting Processes

In section 4.1, the applied NLM rate structure, characterized by three parameters N , L,
and M , is deduced and explained. This structure also applies to the simulations in this
section. Therefore, time series of prices can be constructed from given curtailment data
and these parameters for each region. In accordance with the model structure, these
time series are generally defined in a resolution of 1min. All calculations are carried out
for one year.

For the simulation of the load-shifting processes, every agent is handled individually.
For each identified usage of an appliance, the costs for the operation are calculated from
a customer perspective. These costs are given by the sum over the product of energy
consumption and energy price per minute of operation. This baseline is used to evaluate
potential savings achieved by the shifting process.

Within a specific shifting interval, i.e., the time window that is assumed to be acceptable
for load shifting, the potential costs for operation are calculated for all possible starting
points. This can be illustrated by moving the load profile of the appliance minute
by minute through the shifting interval and evaluating the costs that would apply for
every possible position. The difference between baseline costs and potential costs at this
position defines the potential savings that can be achieved by shifting.

In case these savings reach or exceed the individual threshold value of this agent for the
respective appliance type, load shifting of this appliance usage is assumed. The shifted
position is defined by the minimum resulting costs of operation, i.e., the maximum sav-
ings for the agent. Positions where the same appliance type is already in operation are
excluded to prevent implausible results with, e.g., two dishwashers running simultane-
ously while only one is present in the respective household.

Due to the given rate structure with two price levels, in the general case, several possible
positions meet this criterion of minimum costs. In that case, one of the possible posi-
tions is chosen randomly in order to reflect the potentially unknown behavior of home
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energy management systems. This introduces an additional probabilistic element to the
simulation, potentially affecting the results.

5.2.2.4 Evaluation of Potential Curtailment Reduction

The potential reduction of curtailed energy is calculated analogously to the previous
section. This means that an increase in consumed energy within a particular region
in a time interval with active curtailment is assumed to reduce the curtailment by the
amount of additional consumption, whereas the decreased consumption in other time
intervals does not affect the necessity for curtailment.

As explained before, this is a slightly simplified approach, which is necessary due to
restricted data availability and to maintain a feasible computational effort. Thus, the
results are still considered an upper estimate while presumably closer to reality than the
aggregate simulation before.

5.2.2.5 Handling of Probabilistic Model Structure

In order to deal with the probabilistic model structure, the calibration simulations men-
tioned above are evaluated regarding the effects of random positioning of appliance op-
eration. Repeated simulations with identical parameters evince a distribution of results
regarding the potential curtailment reduction. As before, the median value of relative
curtailment reduction over a large number of simulations is chosen as an indicator.

The calibration simulations show that comparably few repetitions allow approximating
this median value quite well. Since the overall simulation is computationally very inten-
sive and will become even more complex (cf. section 5.3), this is crucial for maintaining
a feasible runtime of the model. The evaluations show that 10 repetitions are necessary
to approximate the median value of relative curtailment reduction to a deviation of less
than 0.05 with a probability of more than 95%.

This precision is considered sufficient for the described application; therefore, all sub-
sequent evaluations of curtailment reduction will be repeated 10 times. Since the op-
timization procedure in section 5.3 requires more data than curtailment reduction, the
result of this repetition process is not calculated just by taking the median value but
by choosing the simulation result that meets the median value best. This allows for
additional output of the “median” resulting load curve.
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Figure 5.10: Mean daily load curve for exemplary ToU rate

5.2.3 Results and Discussion

5.2.3.1 Exemplary Time of Use Rate

Although the considered rate structure is defined as dependent on curtailment data, a
simple time of use (ToU) rate is chosen here as an example for illustrative purposes to
demonstrate the model capabilities and results. This rate is defined as follows:

� Two price levels as an incentive for load shifting from high prices to low prices

� A price spread of 100 ct/kWh between the levels for full utilization of the potential

� High price level from 06:00 to 18:00, low price level for the rest of the day

Since the model component, which simulates the individual load-shifting processes, can
flexibly take time series with prices as an input, this rate structure can be modeled
despite the fact that it does not comply with the rate structure generally considered
here.

For this exemplary evaluation, a shifting interval of 6 h|6 h is assumed. This means that
each individual usage of an appliance can be shifted by 6 h in both directions, i.e., the
appliance can be operated up to 6 h before the original time of operation as well as up
to 6 h after this time.

The simulation of load shifting based on this ToU rate results in an adjusted load curve
for the modeled year. The mean daily load curve, calculated by averaging the resulting
load values per minute of the day over all days of the year, is depicted in figure 5.10.
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Figure 5.11: Raster plot of modeled dishwasher usage with ToU rate

This evaluation shows the general principles of the load-shifting model. Within the
time interval from 06:00 to 18:00, the load curve is decreased due to appliance operation
being shifted from this high price interval. Consequently, load increase is observed in the
remaining intervals, with peaks developing at the borders between high and low prices.
Since the shifting interval is chosen as 6 h—6h and the high price level is applied for a
time window of 12 h, appliance usage from the high price interval can be shifted entirely,
leading to considerably high differences in the resulting load curves.

These effects can also be observed in the raster plot depicted in figure 5.11. It shows
the share of active appliances within the modeled sample of households per minute of
the year, analogously to figure 2.10. Compared to the initial state, load decreases in the
high price interval and load increases at times with low prices are clearly visible.

The chart also confirms the peaks as mentioned above, which evolve at the borders
of the price intervals, i.e., at 06:00 and 18:00. Additionally, it shows that the load is
shifted steadily throughout the year, so there are now observable seasonal effects. These
exemplary model results show that the simulation of load-shifting processes works as
expected.

5.2.3.2 Effects of Price Intervals

Applying the described methodology to the actual rate structure under investigation
allows the evaluation of several influence factors on the potential contribution of the res-
idential sector to a reduction of curtailment. As detailed before, the NLM rate structure
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(a) All regions (b) Region C

(c) Region W (d) Region S

Figure 5.12: Relative curtailment reduction potential dependent on M
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Figure 5.13: Relative curtailment reduction potential per region, M = 1min, 6 h|6 h,
spread 100 ct/kWh (reference case)

is defined by three parameters, which define two price levels and the minimum duration
of price intervals.

In order to assess the effect of this interval duration M , the price levels N and L are
assumed to be 100 ct/kWh and 0 ct/kWh, respectively, to create a maximum price spread
and, therefore, to tap the full potential of load shifting in the modeled data set. The
shifting interval is again set to 6 h|6 h as a good estimation of the actually accepted
intervals. The relative curtailment reduction potential, given by the potentially reduced
amount of curtailed energy divided by the total amount of curtailed energy, is used as
an indicator for comparison.

Figure 5.12a shows overall relative curtailment reduction for the described parameter
for regions modeled. It can be observed that higher values of M lead to a considerable
reduction of the potential, which is in accordance with the results in section 5.1. The
difference between 1min and 15min is relatively small, but each subsequent step, starting
from M = 1h, decreases the result clearly. Price intervals with a duration of 1 d, i.e.,
an assignment of high or low price levels to whole days, prove not beneficial according
to the evaluation.

This effect is also confirmed by a more detailed view of the individual regions in figure
5.13 for M = 1min, used as a reference case for this section, and the comparison to
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Figure 5.14: Difference in relative curtailment reduction potential per region, M = 1h,
6 h|6 h, spread 100 ct/kWh, compared to reference case

M = 1h in figure 5.14. Most regions evince a noticeable decrease in relative reduction
potential, especially those in the middle range regarding their potential.

Regions with very high reduction potential in the first case often appear to be virtually
unaffected by the parameter change, leading to the conclusion that their load-shifting
potential by far exceeds the required flexibility for curtailment avoidance. Due to the
color scale, the effects on regions in the very low range cannot be reasonably deduced
from the map. Therefore, the previously defined focus regions will be analyzed in more
detail.

The relative curtailment reduction potential for varied values ofM in region C is depicted
in figure 5.12b. It shows that compared to the baseline for 1min, the variation of M
considerably affects the resulting reduction potential. As explained, this is not visually
represented in the maps due to the generally low level and the wide range of values,
which is to be visualized with one color scale.

The bar plot shows that similarly to the nationwide evaluation in figure 5.12a, the
transition from 1min to 15min is relatively small, whereas subsequent steps lead to
substantially decreasing results. The observation that a daily price structure is not to
be recommended can also be confirmed in this detailed analysis of region C.

Figure 5.12c gives the analogous evaluation for region W . It evinces a very similar
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pattern, only starting from a different level for the base case. Moreover, a notable
difference is the comparably slight deviation between 15min and 1 h.

As expected, region S shows a different picture due to the generally lower required
curtailment. The first differences from 1min up to 1 h are relatively small to negligible,
and the resulting values on a generally high level, starting around 90% relative reduction
potential. This means that the detailed simulation described here still confirms the
observation from section 5.1 that curtailment in this solar-influenced region could almost
be entirely avoided by residential flexibilization measures.

Starting from a high initial value, the following decreases are more pronounced than
for the previously analyzed regions, again confirming that a daily price structure is not
helpful for the considered use case. Values of M in the range of several hours evince
stronger effects on the result than for the previously depicted focus regions. However,
due to the overall small contribution of this region, the effect on the total result is
virtually irrelevant.

Overall, the analyses show that the parameter M considerably affects the potential re-
duction of curtailed energy and, thus, is to be chosen carefully. Smaller interval duration
generally increases the potential contribution to curtailment avoidance, whereas larger
intervals prevent the full potential from being used. These effects will also be analyzed
in section 5.3.

5.2.3.3 Effects of Shifting Intervals

As previously defined, the shifting interval is the time window that is assumed to be
accepted and possible for DSM measures, i.e., for load shifting. Since this parameter
was not covered in the survey, it is to be chosen according to previous studies. These
evince a wide range of assumptions, from a few hours to days. Due to this, a value in
the middle range, 6 h in both directions, is chosen as the base case, which is thus applied
in the previous calculations regarding the variation of M .

Nevertheless, the effect of smaller or larger shifting intervals is to be analyzed since
it vastly affects the potential operation times of flexible appliances and, therefore, the
possibilities to temporally meet curtailment measures with these appliances. For this
section, M is chosen as 1min to achieve conclusive results. For the same reason, the
modeled price spread remains 100 ct/kWh.

Figure 5.15a shows the potential relative reduction of curtailment over all regions for
different values of the shifting interval. Two general cases are distinguished:

� Delay only: The operation of an appliance can only be postponed. This is moti-
vated by the fact that the operation of considered appliance types requires user
interaction beforehand, e.g., filling the dishwasher. Therefore, this case needs few
or no behavioral changes on the customer side.
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(a) All regions (b) Region C

(c) Region W (d) Region S

Figure 5.15: Relative curtailment reduction potential dependent on shifting interval
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Figure 5.16: Difference in relative curtailment reduction potential per region, M =
1min, 0 h|6 h, spread 100 ct/kWh, compared to reference case

� Both directions: Besides postponing the operation, it is also possible to start
the appliance prior to the original time of operation. Naturally, this increases
the possible flexibility and, therefore, the adaptability to rates and represented
curtailment requirements.

For both cases, several intervals are analyzed. It is important to note here that 1 h in
both directions means the appliance can be started up to 1 h earlier and up to 1 h later,
leading to a total time window of 2 h.

As expected, the chart shows that the assumed shifting interval substantially influences
the result. The calculated relative reduction potential covers a range from 0.4% up
to 5.7%. It is observed that the extension of the shifting interval to both directions
increases the potential considerably but does not reach twice the value for unidirectional
shifting, as might be assumed due to the doubled time window.

For an overview over all modeled regions, figure 5.16 shows the results for a shifting
interval of 0 h|6 h compared to the reference case with an interval of 6 h|6 h. The map
evinces a quite uniform decrease of reduction potential due to the restriction to delay,
except for some regions that still achieve very high values for the delay-only case. These
confirm both main conclusions so far for a vast majority of regions: Larger shifting
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intervals substantially increase the potential reduction of curtailment, and so does the
possibility of shifting the load in both directions.

The detailed chart for focus region C is given in figure 5.15b. It evinces similar features
compared to the total evaluation in 5.15a, but as expected from previous calculations,
on a generally lower level of relative reduction. However, the increasing effects of larger
shifting intervals and allowing earlier operation of appliances are clearly visible, confirm-
ing the previous conclusions.

This also holds for region W in figure 5.15c. However, in this case, the relative increase
for higher values (more than 4 h) is substantially larger, hinting at curtailment events
that occur less frequently than for region C, but still require high load increases in order
to be avoided.

By contrast, region S in figure 5.15d evinces higher increases in the lower range, whereas
it reaches some saturation effect for higher shifting intervals, especially in the case of
shifting to both directions. Again, this can be traced back to the fact that the overall
demand for curtailment measures in regions like this is comparably low, leading to an
almost complete reduction of curtailed energy already with limited flexibility.

In conclusion, the analyses and charts prove that the shifting interval is an essential
determinant for calculating potential curtailment reduction. Variation of this parameter
causes considerable deviations in the resulting values of relative reduction. Considering
the problem that no reliable, generally valid statistical data regarding this parameter
are available, it is essential to consider variations and sensitivity analyses in subsequent
simulations.

5.2.3.4 Effects of Price Spreads

Besides the duration of price intervals and possible shifting intervals, the price spread
between the price levels N and L is the third main influence factor to the resulting
reduction of curtailment measures since it directly affects the willingness of customers
and, therefore, of modeled agents, to adhere to the given price signals.

The described survey (cf. section 4.3), used for parametrization of agents in the model,
already shows that the price sensitivity is quite high. In order to verify this simulatively,
the effects of price spreads between 0 ct/kWh and 100 ct/kWh in the simulation results are
evaluated in steps of 5 ct/kWh. For this purpose, M is again set to 1min, and the shifting
interval is defined as 6 h|6 h.

The relative reduction potential over all regions for varied price spreads is depicted
in figure 5.17a. As before, the relative reduction potential is plotted on the ordinate,
whereas the abscissa shows the independent variable, in this case, the price spread.

As expected, no curtailment reduction is observed for a price spread of 0 ct/kWh since no
incentive for load shifting is present. In the range from a spread of 5 ct/kWh to about
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(a) All regions (b) Region C

(c) Region W (d) Region S

Figure 5.17: Relative curtailment reduction potential dependent on price spread
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Figure 5.18: Difference in relative curtailment reduction potential per region, M =
1min, 6 h|6 h, spread 30 ct/kWh, compared to reference case

30 ct/kWh, a steep increase of the potential is observed with every step, showing that a
substantial share of the total flexibility can already be activated with these comparably
small spreads. Above that, the slope decreases, eventually showing an effect of saturation
when approaching the highest value of 100 ct/kWh. Thus, the effect of an additional price
spread is relatively small in this range.

A spatially resolved illustration of the effect of price spreads is given in figure 5.18
for a spread of 30 ct/kWh. This value is chosen since it represents the steeper part of
the relation between price spread and relative reduction potential and is considered a
realistic estimate of an implementable price spread (cf. section 4.2).

Similar to the previously analyzed influence factors, the difference map shows a relatively
uniform decrease of relative reduction potential for a majority of regions due to the
reduced price spread. Especially in the regions with generally low curtailment necessity,
a spread of 30% already reaches similar values as the reference case.

Another observation also corresponds to the previous analyses: Regions with a generally
low value of relative reduction potential evince less or no apparent decrease. As before,
this is caused by the color scale of the map, which cannot fully represent the details in
all ranges of values. However, a closer investigation of region C in figure 5.17b and W in
figure 5.17c shows that both evince an apparent decrease in relative reduction potential
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between the compared cases.

The general characteristics for region C match the relation for the sum of all regions quite
well. This is expected behavior since a majority of curtailment measures are located
in this region, thus affecting the overall evaluations proportionally. This means that a
steep increase for smaller spreads can be observed, followed by a decreasing gradient and
leading to a saturation effect, where the potential flexibility is almost fully utilized.

The chart for region W shows a similar relation with the difference that the saturation
takes effect already for smaller price spreads. This can also be observed for region S in
figure 5.17d and can be explained by the generally lower levels of curtailed energy for
these regions.

Bot region W and S evince another notable feature in their respective charts. As de-
scribed, the curve is expected to increase monotonically since higher price spreads enable
more flexibilization and, thus, higher values of relative curtailment reduction potential.
However, both charts show one or more small dips in the range of almost constant values,
i.e., for higher price spreads with very small changes between the simulated steps.

This is caused by the aforementioned probabilistic structure of the model. Load-shifting
processes are not modeled as totally deterministic but involve a random choice of opera-
tion time if equivalent alternatives occur. As described, repeated model runs are applied
to alleviate this approach’s distorting effects. Nevertheless, a slight uncertainty in the
simulation results remains, leading to artifacts like the ones described. Since these do
not affect the overall results and conclusions, they are considered unproblematic.

5.2.4 Summary

The developed model of load-shifting measures on individual appliance level for modeled
agents proves helpful and generates plausible results. It considerably increases the pre-
cision of the simulation compared to the aggregate model discussed before due to better
temporal resolution, better data basis, and much more detailed modeling of shifting
processes.

For a realistic parametrization of agents, a probabilistic approach is applied to meet
a larger group’s expected median behavior. The modeling of load-shifting processes
introduces another probabilistic element since the objective of minimal costs can be
achieved for more than one shifted position. In this case, a random choice is used in the
model. In order to avoid model distortions caused by this randomness, repeated model
runs are applied to generate stable and representative results. Calibration runs show
that 10 repetitions are enough for reasonable precision.

The analyses of three main influences on the relative curtailment reduction potential
show that price interval duration, shifting interval, and price spread all affect the result
considerably, as expected from previous calculations and investigation. For a config-
uration of M = 1min, a shifting interval of 6 h|6 h and a maximum price spread of
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100 ct/kWh, which is assumed to be roughly comparable to the aggregate calculations in
the previous section, a relative reduction potential over all regions of 2.5% is simulated,
compared to 4.6% in the aggregate case. Clearly, this difference is partially caused by
different parametrization, but it also shows the increased model precision due to better
temporal resolution and more detailed modeling of shifting processes.

Price spread and price interval are identified as relevant influences to the effect of the
described rate structure. Therefore, these are chosen as optimization variables for the
subsequent section, where a model is presented to choose the optimal parameter set
for the given objective. Besides that, the shifting interval is a property of customer
behavior. Therefore, this cannot be defined from a system perspective but is considered
an input value. Since no reliable data is available, the strong dependence of results on
this factor suggests that sensitivities are also to be considered in further analyses.

To conclude, the detailed appliance-level simulation model confirms the main conclusions
from the previous section. The residential sector can contribute to reducing curtailment
and, thus, to better integration of renewable generation in the energy system. This
contribution is comparably small but non-negligible. In order to tap this potential,
the choice of rate parameters is crucial to meet the requirements both from a system
perspective and the customers’ view. Therefore, this problem will be addressed in the
following section.

5.3 Optimization of Rate Parameters

5.3.1 Scope

In the previous section, the methodology for the simulation of load-shifting processes
based on the described input data is described and applied to assess the potential for
curtailment reduction dependent on assumed rate parameters. These parameters are
varied to examine different sensitivities and influences, but requirements regarding costs
and acceptance of the resulting rates are not considered. Thus, this section presents
an approach to determine the defined rate parameters in a way that does not cause
additional costs from a system point of view and investigates the resulting rate structure
in the context of the collected acceptance data from the survey (cf. section 4.3). This
raises the following core questions for the section:

� Is it possible to maintain cost neutrality by appropriately calculating the param-
eters of an NLM rate?

� Which curtailment reduction potential can be achieved by the resulting rate?

� Is there a substantial difference between regionally defined NLM rates and nation-
wide ones?

� Can the resulting rates be expected to be accepted by customers?
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5.3.2 Methodology

Based on the load shifting model and subsequent evaluation of curtailment reduction
described previously, an optimization model is applied to determine the parameters for
an NLM rate. This allows the inclusion of all defined requirements and conditions in a
comprehensive model and, thus, the calculation of the optimal parametrization for the
defined application.

Since the overall model structure is highly nonlinear due to the simulation of individual
customers and their consumption patterns, choosing an appropriate optimization method
is crucial to achieving reliable results in a manageable runtime. A considerable number
of conventional methods are not applicable to this problem structure. Previous analyses
of the optimization of related problems in the field of electricity rates suggest that genetic
optimization is the appropriate choice for this application [95,96]. Besides the handling
of nonlinear problems, also integer-valued, i.e., discrete, variables are supported by this
approach, which is required for the integration ofM in the model. The implementation of
the optimization is built upon the standard MATLAB implementation since it is assumed
to be fully developed and easily adaptable, and it features built-in parallelization, which
is necessary for complex optimization problems [97].

The overall objective of the optimization is the maximization of reduced curtailment, i.e.,
the difference between the curtailed energy in the base case and the curtailed energy
in the optimized case. With the described model and simulated customer behavior,
this naturally leads to a maximum difference between N and L in order to tap the
full potential of load shifting [97]. This leads to considerably fewer expenses by the
customers due to the time intervals with free energy, which can also be interpreted as
an increase in costs from a system perspective, which is unfavorable since the costs of
generation and distribution still have to be covered. Therefore, an additional condition
is to be defined to yield viable resulting rates from a cost perspective.

In general, this condition can be described as cost neutrality of the resulting rate. This
means that the total purchasing costs of the modeled customers do not change due to the
applied new NLM rate compared to the base case with fixed energy price. Thus, for every
configuration, the potential purchasing costs are to be calculated and compared with the
base case in order to decide on the viability of said configuration. Since this calculation
is too complex to be represented in the constraints of an optimization problem, it is also
included in the objective, leading to a multi-objective problem that intends to maximize
the reduction of curtailed energy as long as cost neutrality is maintained.

As described, cost neutrality is seen as equality of purchasing costs in the base case of a
constant energy price and the respective costs in the NLM case. However, equality con-
ditions are computationally hard to implement in an optimization problem, potentially
causing infeasibility of the resulting model. Thus, the equality condition is reformulated
to incorporate an accepted tolerance range that is still considered sufficiently “equal”
for the model. This tolerance range is chosen as 5% of the total costs. For the fixed
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Variable Lower bound Upper bound Type
N 31.37 ct/kWh 100 ct/kWh Continuous
L 0 ct/kWh 31.37 ct/kWh Continuous
M 1 9 Integer

Table 5.3: Definition of optimization variables in the model

energy price, the value 31.37 ct/kWh is chosen based on the data discussed in section 4.2
for 2020 [55], assuming that this value is more representative for long-term insights than
recent values for 2023.

In the optimization, three parameters for the NLM rate are to be determined. In accor-
dance with the previous sections, the maximum difference between N and L is considered
to be 100 ct/kWh. Thus, 100 ct/kWh and 0 ct/kWh are chosen as upper and lower bounds of
these parameters, respectively. Since cost neutrality is an additional condition for feasi-
ble solutions, N cannot be lower than the fixed energy price in the base case, whereas L
cannot be higher than this value. This is represented in the boundary values to reduce
the solution space and, thus, computational effort. The parameter M can be discrete
time intervals as defined in section 4.1. To represent this in the optimization, these inter-
vals are mapped to the integer range 1 to 9. This leads to the definition of optimization
variables summarized in table 5.3.

The optimization as described can be applied either to each region individually, leading
to separate sets of rate parameters per region, or to the sum of all regions, yielding a
“nationwide” optimized parametrization. In the first case, the objective considers the
reduced curtailment of one region, whereas in the second case, the sum of all regions is
taken.

As a result of this approach, a parameter set is deduced that is expected to contribute
to the reduction of curtailment while maintaining cost neutrality when applied to all
customers. Since there are various options for the actual implementation of such rates
in the retail market (cf. section 4.2), it is also important to assess whether such rates
are attractive to customers if they are introduced as an alternative option besides the
existing conventional rates with constant energy prices. Based on the findings from the
survey in section 4.3, this can be evaluated by the expected savings that are required
for a switching decision as well as the minimal price interval that is accepted by the
customer. There are more complex methods to assess the diffusion of novel electricity
rates described in literature [97–100]. However, these sophisticated models require a high
number of assumptions that are not backed by real-world data. Thus, the described more
straightforward approach to acceptance is preferred here.
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5.3.3 Results and Discussion

5.3.3.1 Optimized Rate Parameters

Applying the described optimization model to the present data representing residential
consumption and curtailment measures yields optimal parameter sets for NLM rates
that maximize the reduction of curtailed energy while maintaining (approximate) cost
neutrality. Naturally, the achieved relative reduction is lower than in the previous section
with maximum price spread between N and L due to the additional constraints. For
the general case of nationwide optimization, i.e. no individual rate parameters per grid
region, the results regarding relative reduction potential over all regions are displayed in
figure 5.19a.

As before, the calculations are performed for assumed shifting intervals from 1h to 24 h.
The different parameters in this regard also result in differences in the optimal rate
parameters. Thus, for every displayed case, the individually optimal rate parameter set
is applied in order to determine the relative reduction potential in said case.

As expected, load shifting in both directions still evinces higher relative reduction po-
tential than delayed operation only. Moreover, the general trend to higher reduction
potential with increasing shifting intervals is also as expected and in accordance with
previous evaluations. However, the step from 4h|4 h to 6 h|6 h unexpectedly shows a
slight decrease in reduction potential. As already explained before, this kind of seemingly
inconsistent behavior is caused by the probabilistic model structure, which incorporates
randomness in the modeling methods and thus, cannot generate fully comparable results
for different inputs.

Looking at the actual resulting values, the exemplary case of 6 h|6 h evinces a relative
reduction potential of 1.31%, whereas the delay-only case of 0 h|6 h results in 0.90%.
Compared to the previously calculated values of 2.52% and 1.42% (cf. figure 5.15a), re-
spectively, the additional constraint of cost-neutral implementation considerably reduces
the potential. However, under the given assumptions, the contribution to increased in-
tegration of renewables by reduction of curtailment is still present and non-negligible.

Overall, this evaluation shows that the optimization model works as designed, as it
still yields a non-zero reduction potential with the applied constraints. Therefore, it is
theoretically possible to design electricity rates that pose sufficient incentives for load
shifting while still ensuring cost neutrality.

The results for a shifting interval of 6 h|6 h are also regionally depicted in figure 5.20.
Similar to the previous section, large differences between the regions can be observed,
which are assumed to be mainly caused by the total amount of curtailed energy.

Detailed analysis of focus region C in figure 5.19b shows the same behavior as described
before between 4 h|4 h and 6 h|6 h. Since most curtailed energy occurs in this region,
it considerably affects the overall result. Thus, it can be deduced that the described
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probabilistic effect leading to seemingly inconsistent results occurs within this region.
Apart from that, the general pattern of increasing reduction potential with increasing
shifting intervals remains present as expected.

Regarding the resulting values, the decrease of relative reduction potential is in the same
range as for all regions. In the 6 h cases, the reduction potential decreases from 0.19%
and 0.12% (cf. figure 5.15b) to 0.09% and 0.07% for 6 h|6 h and 0 h|6 h, respectively.

Similar observations hold for regionsW and S in figures 5.19c and 5.19d. Both evince the
plausible pattern of increasing reduction potential with increasing shifting intervals, and
both show a considerable reduction compared to previous analyses depicted in figures
5.15c and 5.15d. However, for region S, a saturation effect for high shifting intervals can
be observed, caused by the fact that the comparably low total curtailed energy can be
avoided to a high share of up to 96%.

5.3.3.2 Variation of M

The optimization model is designed to return the optimal rate parameters for an NLM
rate regarding curtailment reduction. Without additional constraints besides cost neu-
trality, it is expected to consistently yield a value of 1min forM, regardless of the specific
configuration, because the lowest duration of price intervals allows for the best repre-
sentation of load shifting needs. However, the model results in a M = 15min for three
of the simulated cases. Since these results contradict plausible expectations, a detailed
analysis is necessary.

Figure 5.21 depicts the relative reduction potential according to the optimization result
for these three cases 2 h|2 h, 6 h|6 h and 0 h|12 h. Compared to these, the results of the
comparison runs with identical N and L values, but M = 1min, are also shown.

It can be observed that the cases that result in unexpected M -values cannot be assigned
to a specific group since both low and high shifting intervals are affected. Also, shifting
to both sides and delay-only shifting is present in the sample.

The results of the comparison run evince a slight increase in relative reduction potential
for all three cases. This means that the optimization in these cases does not return
the actual optimal result since adapted parameters increase the objective value. This
effect can be caused by the structure of the complex optimization problem since minor
deviations in the objective when adjusting variables lead to increasing difficulty in solving
the optimization. Thus, it can be deduced that the optimization does not yield the best
solution in all cases, but considering other inaccuracies and probabilistic effects in the
model, it provides a sufficiently precise and plausible result for the present application.
The model structure which causes the described effect is analyzed in more detail in a
subsequent subsection.

88



5.3 Optimization of Rate Parameters

(a) All regions (b) Region C

(c) Region W (d) Region S

Figure 5.19: Relative curtailment reduction potential for optimized rate parameters
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Figure 5.20: Relative curtailment reduction potential per region with optimized rate
parameters for a shifting interval of 6 h|6 h

Figure 5.21: Relative curtailment reduction potential with optimized rate parameters
and M = 1min
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Figure 5.22: Relative curtailment reduction potential with regionally optimized rate
parameters

5.3.3.3 Regional Optimization

As mentioned above, the depicted optimization results are calculated for a nationwide
uniform NLM rate. Thus, this rate does not represent regional characteristics or dif-
ferences, which might be caused by the generation structure within respective regions.
However, the advantage of easier implementation and communication due to lower com-
plexity seems preferable. In order to assess the effects of regionally optimized rate
parameters, the optimization model is applied to the defined grid regions individually,
as described in the methodology.

The result for two exemplary load shifting intervals is depicted in figure 5.22. As ex-
pected, the regional optimization yields slightly better results regarding relative reduc-
tion potential since the regionally distinct definition of rates allows for adaptation to
specific requirements. Compared to the nationwide optimization, the resulting relative
reduction potential is higher by up to about one quarter. Thus, individually designed
rate parameters seemingly are the superior option for implementation.

However, several observations contradict this conclusion. The proper design of an NLM
rate and the determination of optimal rate parameters is dependent on a large amount
of data, which has to be collected in high quality and for long time periods since the
precision of an optimization result naturally depends strongly on the input data. This
is much easier to ensure for a nationwide rate than for several hundred subregions.
Moreover, as explained before, the optimization method itself can partially cause the
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Figure 5.23: Structure of the optimization problem for 6 h|6 h

difference between the two results by not finding the actual optimum. Thus, for the
present data, a nationwide implementation is considered preferable.

5.3.3.4 Structure of the Optimization Problem

As observed above, the optimization model does not always yield the best possible
solution but might also return a parameter set that is near the best value. This is
caused by the structure of the optimization problem, which evinces small gradients, i.e.,
the difference in the objective value is small for marginal adjustments of the variables.
However, in the general case, the obtained solution can be considered good enough and
valid for further evaluations and conclusions.

In order to depict the described effect, figure 5.23 shows the dependency of the calculated
relative reduction on two of the three defined variables, N and L. The relative reduction
is represented by the color value at the intersection of L on the abscissa and N on the
ordinate, yielding a raster plot of the results. The calculations in the depicted case use
a value of M = 1min, a shifting interval of 6 h|6 h and are evaluated in steps of 1 ct/kWh.
Combinations of N and L which do not fulfill the cost-neutrality criterion are marked
in black instead of the color-coded reduction potential.

The figure demonstrates two main findings: The solution space that maintains cost-
neutrality is relatively small, and both N and L evince a narrow parameter range due
to this additional condition. However, within this area, the difference between adjacent
values is relatively small to negligible, leading to the difficulty of the optimization as
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Figure 5.24: Relative curtailment reduction potential for accepted parameters accord-
ing to survey data

mentioned above and, thus, to results that do not reach the actual optimum but an ade-
quate approximation. Due to the uncertainties regarding the input values, this accuracy
is considered sufficient for the evaluations within the scope of this thesis and still allows
evaluation of the general effects and correlations.

5.3.3.5 Acceptance of Resulting Rates

The described and evaluated methodology allows for designing variable retail electricity
rates, which pose sufficient incentive for load shifting while not causing additional costs.
However, depending on the actual implementation in the market, the rate may be com-
peting with conventional rates with fixed energy prices. Thus, in this case, this incentive
only comes into effect for customers who actively decide to choose this rate because it
meets their needs and expectations.

Besides criteria focusing on sustainability, which might be convincing enough for some
even if there are few additional advantages, according to the survey discussed in sec-
tion 4.3, this decision is mainly based on two properties: Monetary savings and simple
rate structure. The first one can be calculated for modeled customers based on their
shifted load curve, whereas the second one here is mainly defined by the parameter M .
Therefore, these criteria are determined for the optimized rate structure from subsection
5.3.3.1 in order to decide whether a specific modeled customer chooses the NLM rate.
If not, no load shifting is expected from the respective customer; therefore, there is no
contribution to curtailment reduction.
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The results of this evaluation are depicted in figure 5.24. It shows that by including
the criterion of sufficient savings, of accepted price interval M , or both (denoted by
“accepted” in the plot), the relative reduction potential substantially decreases, leaving
little to no relevant contribution to curtailment reduction. This demonstrates that a
rate like this cannot be expected to have high enough acceptance for the defined goals.
Moreover, if it is only used by those who achieve substantial savings, whereas the oth-
ers stay with a conventional rate, the calculated cost neutrality no longer holds. In
conclusion, it is necessary to implement incentives in price components that affect all
customers, like e.g. grid fees or electricity tax.

Summary

Based on the DSMmodel described and analyzed in the previous section, an optimization
method is developed that determines suitable parameters for the chosen rate structure,
which fulfills the criterion of cost neutrality and, at the same time, maximizes the re-
duction of curtailed energy. The model implementation based on genetic optimization
shows this problem’s general feasibility, enabling the analysis of the potential effects of
such optimized rates.

The results evince similar behavior in dependence of the load shifting interval as observed
previously without optimization. However, the overall reduction potential substantially
decreases compared to the unconstrained values in the previous section, in the exemplary
case of 6 h|6 h to about 1/2.

A detailed investigation of the focus regions supports these conclusions. The effect of
varied shifting intervals yields plausible and expected results, and the cost-neutrality
criterion generally decreases the reduction potential. Due to the low absolute curtailed
energy, a saturation effect can be observed again for region S.

In theory, M = 1min is expected to yield the best possible curtailment reduction.
However, for some simulated cases, the optimization result does not reflect this. Closer
inspection of this effect evinces that the difference between the optimization results
for M = 15min and the shortest possible interval is almost negligibly small in some
cases, causing the optimization to not find the optimal solution, but a close enough
approximation regarding the reduction potential.

The comparison of nationwide to regional optimization of rate parameters shows that
regional adjustment yields slightly better reduction potential due to better adaptation
to regional characteristics. However, the calculated improvement is relatively small,
while causing considerable additional effort regarding data collection and implementa-
tion. Thus, a nationwide definition of rate parameters is recommended.

The analysis of potential acceptance of the resulting rates based on the previously dis-
cussed survey results regarding preferred rate structure and expected savings shows that
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the reduction potential decreases to almost no relevant contribution to the goal. There-
fore, to achieve a considerable effect, the price variability has to be implemented in a
way that equally affects all customers, not as an additional rate choice.
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6.1 Summary and Key Findings

The transition of the European energy system to renewable and decarbonized generation
poses a major challenge to all stakeholders for the next decades. A diverse combination
of measures and technologies can support and enable progress towards this overall ob-
jective. One of these, the utilization of demand-side flexibility in the residential sector,
is described and analyzed in the present thesis, focusing on the additional integration of
renewable energy in the grid. To quantify this contribution, the potential reduction of
curtailment from renewable generation units is chosen as an appropriate objective since
curtailed energy is currently lost for the system.

For the evaluation and calculation of the potential contribution to this objective, the
first step is to determine the flexibility potential of the residential sector. The analysis
of the consumption structure in typical German households yields the conclusion that
washing machines, dryers, and dishwashers are the relevant appliance types for this kind
of application since they evince comparably high consumed power and energy while
also being shiftable without loss of comfort for the customer. Cooling devices (fridges,
freezers) are excluded since their potential is considered to be too low due to low power
demand. Additional loads like electric vehicles and electric heating systems are not
considered within the scope of this thesis since their modeling and analysis require
fundamentally different approaches.

Two approaches for quantifying the time-resolved flexibility potential are presented
based on the identified appliance types. The first one utilizes measured data of sev-
eral German distribution grid areas with exclusively residential customers, enabling the
calculation of aggregate load profiles based on the established standard load profile sys-
tem. In combination with literature data of usage profiles for the appliances in question,
the resulting profiles can be distributed to the appliance types in question, leading to
a value of flexible load for each time step. Thus, two possible solutions for RQ1 are
developed and analyzed, providing input data for subsequent modeling steps.

By contrast, the second approach is based on measured data from individual households,
utilizing the installed smart metering infrastructure. In order to quantify the flexibility
potential in this case, a pattern-matching methodology is developed, which allows for
identifying the operation times of the relevant appliances in the yearly load curve. Thus,
the resulting flexibility is defined by the time steps and load profile of the recognized

97



6 Conclusion

usage of said appliances, presumably leading to considerably higher accuracy than the
previous approach.

In order to calculate the potential reduction of curtailed energy by the modeled DSM
measures, regionally allocated curtailment data are required. This is achieved by pro-
cessing historical data on individual curtailment measures and assigning the resulting
time series to grid regions. These grid regions are based on the nodes of the German
transmission grid, slightly adjusted where distances are too low. The resulting data show
that the need for curtailment measures varies vastly between different German regions,
with the highest values for grid regions with high installed wind capacity and lower for
grid regions with a focus on solar PV. The analysis of the systemic value of avoided
curtailment shows that in the considered application, it depends on the market value of
the energy that is shifted to reduce said curtailment.

The implementation of DSM measures in the residential sector requires appropriate
incentive structures. Monetary incentives for load shifting can be posed by suitably
designed variable electricity rates, which enable savings for the customer by adhering
to the present price signals. The investigation of the regulatory setting for residential
retail prices in Germany shows that in the current system, variable price signals can
only be set by the energy supplier, demonstrating the need for a redesign of the price
components to enable including grid requirements. In order to develop a variable rate
for the considered problem, the range of possible rate structures and designs is analyzed,
leading to a CPP-type rate with low prices for time intervals with present curtailment.
Based on this finding, a survey is conducted in the form of an online questionnaire to
collect data on the willingness of customers to accept variable rates and to adhere to
these by load shifting in dependence of rate properties and potential savings.

The modeling of the potential for curtailment reduction by application of the defined
rate structure is again demonstrated in two variants. On the one hand, an upper estima-
tion of the potential is possible by using the time series of flexible load on an aggregate
level, whereas on the other hand, modeling of individual load shifting processes allows
simulating the potentially reduced curtailment in more detail, higher temporal resolu-
tion and presumably increased accuracy. The results show that the relative reduction
potential differs vastly between the defined grid regions, confirming that regionally dif-
ferentiated calculation is important for reliable conclusions. Moreover, the effects of
different assumptions regarding accepted load shifting intervals, price spreads, and du-
ration of price intervals can be quantified. Regarding RQ2, the models evince a relative
reduction potential of between 2% and 5%, depending on the assumptions. Thus, the
potential contribution to the overall integration of renewable generation is rather small
but still substantial.

By adding the additional criterion of approximate cost neutrality from a system per-
spective, determining suitable rate parameters requires an optimization approach to
suffice the requirements and, thus, to answer RQ3. The methodology is based on ge-
netic optimization, enabling the finding of close-to-optimal sets of rate parameters that
achieve maximum curtailment reduction while maintaining the additionally introduced
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constraint of cost neutrality. As expected, this constraint causes further decreased cur-
tailment reduction to about one-half of the previous case. The calculation of regionally
defined rate parameters evinces a slight improvement but is not recommended due to
increased effort regarding data and implementation. Adding customer acceptance as a
further criterion, the potential curtailment reduction decreases to almost negligible val-
ues. This demonstrates that for actual regulatory implementation, it is necessary that
the price variability applies to all customers in the form of suitable price components
like grid fees and not to provide the variable rate as an additional choice opposed to
conventional rates. Since the transition of grid fees to a more variable design is cur-
rently ongoing with a voluntary ToU structure starting in 2025 for operators of, e.g.,
electric vehicles and heat pumps, future extension and dynamization of this approach
constitutes an opportunity for implementation.

6.2 Limitations and Outlook

The presented methodology proves to be a good foundation for both estimating the po-
tential effects of variable rates in the residential sector regarding load shifting measures
and for the reasonable design of said variable rates. The discussed results confirm the
feasibility and plausibility of the developed model but also show potential for further
research in this field. A first possible improvement is the extension of the scope to fur-
ther appliance types like cooling devices or to flexible loads of customers beyond the
residential sector like small businesses. This allows the model to yield a more compre-
hensive view of the expected results of specific regulatory changes and their resulting
rates, thus providing improved insight into the requirements for rate design. Regarding
said rate design, the investigated rate structure is specific for the defined purpose of
curtailment reduction by load-shifting measures. This also poses potential for future
model enhancements, covering a more comprehensive range of possible rate features and
applications.

The developed optimization approach is applied to find the optimal choice regarding
curtailment reduction while maintaining cost neutrality, with evaluation of the accep-
tance afterwards. A potentially substantial improvement is the integrated optimization
under additional consideration of acceptance of the resulting rate, enabling an improved
workflow for rate design. This is not implemented in the current optimization model
due to high computational complexity caused by the probabilistic model structure, but
is expected to be feasible with appropriate assumptions.

Besides that, model coupling is an option for future development. On the one hand,
integrated interaction with simulation models for the load-shifting behavior of electric
heating systems and electric cars enables a more detailed understanding of residential
load curves under present and potential future circumstances. On the other hand, cou-
pling with an energy system model or with grid simulation software provides additional
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capabilities regarding the modeling of feedback effects on energy markets or electricity
grids, as well as their consideration in the modeling methodology.

Since the results vastly depend on the quality of input data, a last point to be mentioned
here is the enlargement and improvement of the utilized data basis. This applies to all
described input data but primarily to curtailment and consumption data. Especially for
the last one, more recent data in higher temporal resolution are expected to substantially
improve the quality and usefulness of the model results and should become available soon
with the ongoing rollout of intelligent metering systems.
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