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Chapter 1

Introduction

In mechanical and structural engineering, the typical product development cycle consists
of iterating design and analysis until both, shape and properties match well enough the
requirements. Historically, the analysis of mechanical properties was done by experiments,
but with increasing hardware performance nowadays they are mostly replaced by numerical
computations. Making this process efficient requires developing methods that robustly deliver
accurate results and can deal with the geometry from design software packages.

Recently, attention has been drawn towards the transition from design to analysis. Tradi-
tional methods such as the Finite Element Method require a mesh to perform computations.
Converting the geometry from Computer Aided Design (CAD) tools to such a mesh has
two major drawbacks. First, manual adjustment is still required in many situations despite
the existence of advanced automatic tools. Second, this step is often connected with a loss
of information, as the original geometry is approximated by lower order polynomials. New
technologies such as the isogeometric analysis (IGA), see e.g. Cottrell et al. [2009], or the
Finite Cell Method (FCM), introduced in Parvizian et al. [2007], try to tackle this problem.
Isogeometric analysis seeks to use the same geometric description from CAD systems for the
analysis. While this was shown to be very successful in the case of thin-walled structures,
problems arise for volumetric geometries, as they are usually stored in a boundary represen-
tation (BREP) format. The Finite Cell Method, in contrast, requires only the information
whether a given point is inside or outside the solid model and is, therefore, able to handle
arbitrary input shapes. The use of high order polynomials as basis functions provides the
approximation power to obtain highly accurate solutions.

Much research has been devoted over the last years into further developing the Finite Cell
methodology. Some major contributions towards making FCM a general tool for compu-
tational mechanics are the extensions to e.g. large deformation [Schillinger et al., 2012],
structural dynamics [Elhaddad et al., 2015], contact mechanics [Bog et al., 2015] or struc-
tural optimization [Parvizian et al., 2011]. The critical aspect in the FCM is the accurate
integration which is particularly challenging, as a discontinuity in the integrand has to be
captured (see section 2.3). Various methods have been proposed to address this issue. In
Joulaian et al. [2016], they use the moment fitting technique to compute an integration rule
that captures the discontinuity. Another direction is taken by Kudela et al. [2016], intro-
ducing the “smart tree” method, which attempts to map the cells of a conventional space
tree partitioning to approximate the geometry to a specified accuracy. Both methods deliver
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excellent results compared to the conventional space tree partitioning.

Closely related to the success of the Finite Cell Method is the introduction of the multi-
level hp-method by Zander et al. [2015] (see also section 2.2). This multi-level description
circumvents the need to constrain hanging nodes as in alternative hp-methods, such as in
Demkowicz et al. [1989]. Because the Finite Cell method can use structured (e.g. Cartesian)
meshes, the multi-level hp-scheme adds the ability to refine the discretization in a very simple
manner. In Zander et al. [2016], an extension to three-dimensional problems was presented.

To date, structural mechanics was the application of choice for the combination of Finite Cell
Method and multi-level hp-adaptivity. The aim of this thesis is to extend applications to
include fluid mechanics. To this end, we extend the Finite Cell methodology to encompass
other equations. Interpreting the contribution from the weak form on the fictitious domain
purely as a stabilization term allows us to use simpler equations. Although Cai [2013], Xu
et al. [2015] and Kamensky et al. [2015] used the FCM in the context of fluid-flow modelling,
only moderate polynomial degrees were used. Our goal is to extend this framework to higher
polynomial degrees and to combine FCM with the aforementioned multi-level hp-scheme.

Solving the incompressible Navier-Stokes equations with the Finite Element Method has
three main difficulties. First, the non-symmetric operator is not well-suited for standard
Bubnov-Galerkin methods, leading to non-physical oscillations for under-resolved discretiza-
tions. Second, the incompressibility constraint introduces a pressure field as a Lagrange
multiplier. Thus, the problem has a saddle point structure and is not positive definite. When
no stabilization is used, care has to be taken in selecting discretization pairs for velocity and
pressure. Last but not least, the solution for high Reynolds numbers is characterized by a
turbulent behavior. Failing to resolve the details leads to a wrong large-scale solution. To
address these problems, a residual-based Variational Multiscale (VMS) method is used as
both, stabilization scheme and turbulence model (see section 4.1).

The outline of this thesis is as follows. Chapter 2 introduces the general theory and notation
related to the discretization methods used throughout this work. To obtain some insight into
the performance of high-order Finite Elements on advection dominated problems, chapter
3 provides studies on the one- and two-dimensional advection-diffusion equation. These
include stabilized formulations where we address the definition of the stabilization parameter
τ in particular. We introduce a p-adapted definition that delivers promising results on a
simple one-dimensional example. Chapter 4 continues with introducing the residual-based
Variational Multiscale formulation for the Finite Cell method. After a general introduction
to the theory, the definitions of space- and time discretizations follow. To demonstrate the
potential of the presented methods, an application to common benchmark problems such as
the lid driven cavity and the flow around a cylinder follow in chapter 5. A detailed comparison
of drag and lift coefficients to reference solutions allows us to assess the quality of the method.
Finally, a summary of the results and an outlook of our future work conclude this thesis in
chapter 6.
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Chapter 2

The multi-level hp-adaptive Finite
Cell Method

This chapter provides a general overview of the discretization methods used throughout the
thesis. This includes an introduction to the Finite Cell method and the multi-level hp-scheme
as well as a discussion of related difficulties.

To introduce the general Finite Element framework, a domain composed of an interior Ω and
a boundary Γ is considered. The boundary is partitioned into a Dirichlet part ΓD and a
Neumann part ΓN with ΓN ∪ Γ and ΓN ∩ Γ = ∅. On this domain, a linear equation of the
type

Lu = f on Ω (2.1)

u = g on ΓD (2.2)

Bu = h on ΓN (2.3)

is defined, where L and B denote two linear differential operators acting on the domain
interior and the Neumann boundary, respectively. Without loss of generality, L is assumed
to contain only up to second order derivatives. B contains the boundary terms arising later
in the weak form from integration by parts.

To approximate eq. (2.1) using the Finite Element method, we obtain a weak form by requir-
ing the equation to hold under the L2 inner product with any element w from a test function
space W:

〈w,Lu〉 = 〈w, f〉 ∀w ∈ W, (2.4)

where 〈·, ·〉 denotes the L2 inner product on Ω. Integrating terms in Lu by parts yields the
weak form

B(w, u) = F (w) ∀w ∈ W (2.5)

with the bilinear form B and the linear functional F . Now, the continuity requirements on
u are weaker as derivatives were transferred to w. Thus, the function spaces in eq. (2.5) are
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the following:

W = { v(x) ∈ H1 | v(x) = 0 on ΓD } (2.6)

S = { v(x) ∈ H1 | v(x) = g(x) on ΓD }, (2.7)

where H1 denotes the Sobolev space of first order. The terms on the right hand side are now:

F (w) = 〈w, f〉+ 〈w,Bu〉Γ

where
〈w,Bu〉Γ = 〈w,Bu〉ΓN

+ 〈w,Bu〉ΓD
= 〈w, h〉ΓN

, (2.8)

due to the definition of the test space W in (2.6) and the Neumann boundary condition in
(2.3).

The space S incorporates the Dirichlet boundary condition from eq. (2.2). Using a function
ḡ ∈ S defined on Ω that takes the value of g at ΓD, we can split any v ∈ S into

v = u+ ḡ v ∈ V, (2.9)

where V contains only functions that vanish on ΓD. Substituting eq. (2.9) into eq. (2.5) yields

B(w, u+ ḡ) = F (w) ∀w ∈ W
⇔ B(w, u) = F (w)−B(w, ḡ) ∀w ∈ W,

which is often referred to as the strong way of imposing boundary conditions. However,
sometimes it is preferable or even necessary to impose Dirichlet data in a weak manner.
Instead of restricting the function spaces at the boundary, the weak form is modified in a
way that the solution fulfills the boundary condition in a weak sense. This is particularly
important in the Finite Cell method (see sections 2.3 and 2.4) where boundaries are not
conforming to the Finite Element mesh.

The solution to the strong form (eq. 2.1) is also a weak solution. This is often referred to as
the consistency property. To show that the exact solution is, in fact, the only solution to the
weak problem, it is sufficient to prove continuity

∃λ s.t. |B(w, v)| ≤ λ‖w‖ ‖u‖ ∀w, v ∈ W

and coercivity
∃µ s.t. B(v, v) ≥ µ‖v‖2 ∀v ∈ W,

of the bilinear form. Here, ‖ · ‖ denotes the norm associated with W (e.g. ‖ · ‖H1). The
uniqueness follows then from the Lax-Milgram lemma [Quarteroni and Valli, 1994].

In the next step, we discretize the weak form by choosing finite dimensional subspaces Vh ⊂ V
and Wh ⊂ W, which allows functions to be described in terms of discrete bases:

u ≈ uh = Nu
i (x) ûi (2.10)

w ≈ wh = Nw
i (x) ŵi, (2.11)

where Ni denotes the basis function with the index i. The individual choice of Vh and
Wh depends on many factors. Apart from practical arguments such as implementational
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effort, test and trial spaces are selected according to the following considerations: The trial
or interpolation space is responsible for approximability, that is, it needs to be capable of
representing the exact solution as good as possible. The test or weighting space, however,
controls the stability of the solution, determining how close the approximation is to the
optimal one (in the discrete space). From stability and approximability follows convergence.
More details can be found in e.g. Arnold et al. [1984]. The fundamental error estimate for a
discretization method is then stated as

‖u− uh‖ ≤ λ

µ
inf
v∈Wh

‖u− v‖, (2.12)

which is often denoted as Céa’s lemma. In other words, the error in the discrete solution
is bounded from above by a constant multiplying the optimal approximation error in the
discrete space.

The conventional (or Bubnov-Galerkin) choice of selecting Vh = Wh yields optimal results
for symmetric problems with well behaved coefficients. In that case, the bilinear form defines
an inner product 〈·, ·〉B : W ×W → R and the solution represents a best-fit in the (semi-)
norm induced by this inner product:

‖v‖B =
√
〈v, v〉B =

√
B(v, v) (2.13)

In that case, we have [Hughes, 2000]

‖u− uh‖B ≤ inf
v∈Wh

‖u− v‖B. (2.14)

This property is called the “best approximation property” and is one of the main reasons for
the success of the classical Finite Element Method for symmetric problems, such as linear
elasticity. Appendix A provides a short derivation of the best approximation property and
interprets the results in a Variational Multiscale setting (following section 3.2).

Now, eq. (2.5) can be discretized using the standard basis vectors for ŵi and separating the
degrees of freedom ûi:

B(Ni, Nj) ûj = F (Ni) i = 1 . . . n.

Employing a suitable quadrature rule, B and F are approximated numerically, and a matrix
equation of the form

Kû = f (2.15)

is obtained. After solving eq. (2.15) with an appropriate linear algebra tool, the solution can
be recovered using eq. (2.10) - (2.11).

2.1 Hierarchical Finite Elements

Polynomial spaces are particularly effective at approximating smooth solutions [Szabó and
Babuška, 1991]. Various possibilities for defining a polynomial basis exist. Conventional Fi-
nite Element implementations commonly use Lagrange shape functions. From an engineering
point of view this has several advantages. First, we can interpret each unknown as the field
value at the node and second, these bases have the partition of unity property. A different
approach named the p-version was introduced in Babuska et al. [1981] and uses integrated
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Legendre polynomials, defined as

N1(ξ) =
1

2
(1− ξ)

N2(ξ) =
1

2
(1 + ξ)

Ni(ξ) = φi−1 i = 3 . . . p+ 1,

where φ is defined in terms of the Legendre polynomials Li:

φj =
1√

4j − 2

(
Lj(ξ)− Lj−2(ξ)

)
.

This choice yields the desirable orthogonality property of the shape function derivatives
rendering stiffness matrices diagonal. Unfortunately, the sparsity is not preserved in multiple
dimensions, where function spaces are usually constructed by a tensor product. However,
stiffness matrices are better conditioned compared to using Lagrange basis functions. Also,
the hierarchical nature of the integrated Legendre basis allows to easily remove basis functions
from the tensor product space while preserving optimal convergence rates. The remaining
space is called the trunk space. More information can be found in e.g. Szabó and Babuška
[1991].

Furthermore, shape functions in the tensor product space can be associated to topological
components. This is possible, as linear modes remain in the 1D bases at all polynomial
degrees and higher order 1D basis functions have no support at the nodes. In that way,
nodal, edge, face and volume modes can be obtained. Figure 2.1 illustrates this concept.

Figure 2.1: Association of basis functions to topological components.

2.2 Multi-level hp-FEM

In fluid- and structural mechanics solutions commonly possess strong gradients and singu-
larities (e.g., at re-entrant corners). In this case, the exponential convergence rate of p-FEM
deteriorates to an algebraic convergence [Gui and Babuška, 1986a]. However, an exponen-
tial convergence can be recovered by combining h- and p-refinement. This hp-version refines
towards the discontinuity and thereby localizes its effect while using the full polynomial
approximation power on the rest of the domain [Gui and Babuška, 1986b].
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While elevating the polynomial degree is relatively simple, performing h-refinement for high-
order elements is not straightforward. The most common choice is a refinement by replace-
ment where smaller elements substitute coarse elements. Although there are other more
flexible approaches, in this work only a space tree refinement type is considered (i.e. elements
are always bisected in each dimension when refined). After the replacement step, the mesh
is non-conforming and therefore constraints have to be added. Constructing these can be
cumbersome as dependencies can get very complex and opaque. This can result, e.g., in
special cases where circular dependencies block the refinement process leading to deadlocks
if not handled.

Base mesh solution ub Overlay solution uo Final solution u

+ =

Figure 2.2: Refinement by superposition [Rank, 1992; Zander, 2016].

To greatly simplify that process, the multi-level hp-method was introduced by Zander et al.
[2015]. Instead of replacing elements, the refined space is constructed by a superposition of
the original mesh with overlay meshes. This is an extension of the hp-d refinement scheme
[Rank, 1992], where only linear overlay elements are used (see fig. 2.2).

To construct a valid Finite Element space with a multi-level hp-basis, two simple rules are
sufficient. First, to obtain compatibility, the method imposes homogeneous Dirichlet bound-
ary conditions on the superposed patches. Using an integrated Legendre basis, this translates
to deactivating topological components on the boundary. These are identified by comparing
the refinement levels of adjacent elements. That means, in three dimensions nodes, edges and
faces that are connected to elements with a different refinement level are deactivated. Sec-
ond, to ensure linear independence of the basis, all topological components that have active
subcomponents are deactivated. For example, the interior degrees of freedom of a refined
hex (that has 8 sub-hexes) are inactive. Figure 2.3 illustrates the concept in one and two
dimensions.

Topological relations simplify the imposition of these rules. These relations include adjacency
lists containing information about connected elements as well as information about subcom-
ponents. As an example, a refined hex has eight children after its refinement. All faces that
were divided in the process have four sub-face, all edges have two sub-edges and each node
has one sub-node. Newly created components have no children. After this refinement step,
the lists of adjacent elements are updated for all topological components (with respect to the
new, refined setting). With this, the application of multi-level hp rules, as described above,
are straightforward. A detailed description of the multi-level hp theory and implementation
can by found in Zander [2016].

There are two possibilities to ensure linear independence in the linear modes. In addition
to deactivating nodes on the base level, it is also possible to deactivate them on the leaf
elements. Both variants yield the same space, but in the first case basis functions have a
smaller support which is favorable in the solution of the linear system, see, e.g., Pardo et al.
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k = 0

k = 1

k = 2

k = 3

p = 4

p = 4

p = 4

p = 4

Active Node

Inactive node due to
linear independence

Inactive node due to
compatibility

Active Edge

Inactive edge due to
linear independence

Inactive edge due to
compatibility

Active Face

Inactive face due to
linear independence

Inactive face due to
compatibility

Figure 2.3: The multi-level hp concept: One- and two-dimensional cases [Zander, 2016].

[2012].

2.3 The Finite Cell Method

Although the p-version provides superior accuracy compared to the h-version for a fixed mesh
size, the problem of mesh generation becomes even more severe. That is, the convergence
strongly depends on how good the mesh approximates the boundary. While h-meshes auto-
matically converge to the exact description by choosing finer segments, high-order elements
need to be constructed using the blending function method such that the approximation is
of the same order as the polynomial degree. The blending method seeks to control the error
originating from an insufficient boundary approximation such that it does not dominate the
discretization error.

This task is challenging for mesh generators, thus, it is desirable to circumvent the meshing
procedure. The Finite Cell Method avoids complex mesh generation, as the physical domain
is embedded into a larger, fictitious domain. The shape of the fictitious domain can be chosen
arbitrarily (e.g. as the bounding box of the geometry) such that meshing becomes trivial. To
recover the effect of the geometry, we modify the differential equation as it is now solved on
a larger domain. To this end, an indicator function α(x) is defined as

α(x) =

{
1 if x ∈ Ωphys

ε if x ∈ Ωfict

, (2.16)

where ε is a parameter that is chosen as small as possible. The setting is sketched in fig. 2.4.

At this stage, two points of view exist to develop the Finite Cell Method. In the physical
interpretation, the material parameters in the weak form (eq. 2.5) are multiplied by α. This
way, the solutions of the modified problem coincide with the solution of the original problem
inside Ωphys. As a result, the influence of material outside the domain of interest is eliminated.
Although ε can be arbitrarily small, in practice the range is limited by numerical stability.
Alternatively, we can view this process as a simple multiplication of the weak form by α.
While the two interpretations are equivalent for linear elasticity, the second view allows for
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Ωphy

ΓD

ΓN

+

Ωfict

=

Ω∩

α = 1

α → 0

Figure 2.4: The Finite Cell Method: General concept.

more flexibility concerning the application to other equations.

Although an analysis of the convergence was performed in Dauge et al. [2015], it has not
yet been explained how a Finite Cell formulation can be developed in general for a given
partial differential equation. Specifically, derivations that include a multiplication by α(x)
are problematic, as the question arises how this operation relates to the integration by parts.
In fact, it is crucial to multiply the final version of the weak form, as otherwise a derivative
would be acting on a discontinuous function. In Dauge et al. [2015], two different bilinear
forms are defined on Ωphys and Ωfict, respectively, where the one on Ωfict is multiplied by
ε. A right hand side is only considered in Ωphys. As a result, the dependency on x is not
present and the integration by parts is not a problem. Our attempt to extend these ideas for
formulating Finite Cell Methods in general is the following. In the construction of the weak
form, the L2 inner product is taken only on Ωphys but the function spaces are extended to
Ω∩. Now, the uniqueness of the solution is lost, as no equation is specified on Ωfict rendering
the problem ill-posed. This can be resolved by defining an additional bilinear form on Ωfict.
To ensure convergence, the magnitude of the additional terms needs to be small enough,
such that the modeling error does not dominate the overall error. In the traditional Finite
Cell Method the original bilinear form is used and multiplied by ε. Note, that other choices
are possible and could be advantageous in certain settings. In chapters 4 and 5, the weak
form of the Navier-Stokes equation is extended to Ω∩ by defining a diffusion problem on
Ωfict. A different approach to regain well-posedness is to consider only basis functions with a
support intersecting Ωphys. This way, the bilinear form on Ωfict would arise as a stabilization
technique for badly cut cells (where the intersection is small).

The first main difficulty in the Finite Cell Method from a practical point of view is to integrate
the modified bilinear form accurately. Standard quadrature schemes are usually constructed
by considering a polynomial approximation of the function. They perform therefore poorly
at handling the present discontinuities. The simplest and most flexible approach is to refine
the integration mesh towards the boundary using a space tree. This allows capturing the
discontinuity by distributing integration points in its close vicinity. The drawback is that
many integration points are needed to achieve the desired convergence, and therefore the
integration time is considerably increased. In this work two integration methods are consid-
ered: A conventional refinement based on a space tree and the blended partitioning approach
introduced in Kudela et al. [2015].
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2.4 Non-conforming boundary conditions

The purpose of the Finite Cell Method is to decouple the computation domain from the
geometry of the physical problem. As a result, boundaries are not conforming to the Finite
Element mesh. While this does not affect the (consistent) integration of Neumann boundary
conditions, now Dirichlet boundary conditions have to be imposed weakly. To this end, the
weak form is extended such that a modified equation of the type

B̃(w, u) = F̃ (w) ∀w ∈ W (2.17)

is obtained. Now, the test and trial spaces are not required to satisfy the boundary conditions
(cf. eq. 2.6 - 2.7). Two methods are adressed in this work: The penalty method and Nitsche’s
method.

The penalty method extends the weak form as follows:

B(w, u) + β 〈w, u− g〉ΓD
= F (w) ∀w ∈ W, (2.18)

such that

B̃(w, u) = B(w, u) + β 〈w, u〉ΓD

F̃ (w) = F (w) + β 〈w, g〉ΓD
.

The penalty parameter β is chosen as large as possible. While being very simple and conve-
nient to implement, several drawbacks limit the applicability of the penalty method. First,
the method lacks consistency as the weighting space W is not restricted at the boundary.
Therefore, the boundary integral on the Dirichlet part in eq. (2.8) does not vanish. Moreover,
the range of floating point numbers is limited, such that a stable computation of the solution
is only possible when β lies within a certain range, making its selection a challenging task.

An improvement of the penalty method can be obtained by adding extra terms. In Nitsche’s
method, the following formulation is used [Nitsche, 1971]:

B(w, u)− 〈w,Bu〉ΓD
− 〈B∗w, u− g〉ΓD

+ β 〈w, u− g〉ΓD
= F (w) ∀w ∈ W,

or in terms of eq. (2.17):

B̃(w, u) = B(w, u)− 〈w,Bu〉ΓD
− 〈B∗w, u〉ΓD

+ β 〈w, u〉ΓD

F̃ (w) = F (w)− 〈B∗w, g〉ΓD
+ β 〈w, g〉ΓD

.

With this extension, the weak form is symmetric, consistent, and the penalty term is not
required to be as large. Although β has a longer range where it has practically not influence
on the results, the choice of a parameter remains.
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Chapter 3

Multi-level hp-FEM for
advection-diffusion problems

A first step towards extending the methodology introduced in chapter 2 to the field of fluid
mechanics is to study a scalar advection-diffusion equation. This allows to investigate the
behavior in a setting where the operators are not symmetric, and therefore the Galerkin
orthogonality does not exist. Along with the theory in this chapter, some results are presented
for illustration. These were taken from Zander [2016] and are based on an advection-diffusion
solver that was implemented in the context of the present thesis.

The model problem of scalar advection-diffusion reads

a · ∇u−∇ · (k∇u) = f on Ω (3.1)

u = g on ΓD (3.2)

k∇u · n = h on ΓN . (3.3)

It describes the evolution of a quantity u being transported by a velocity field a while also
being subject to a diffusion process with a diffusivity k. In general, k is a second order tensor
that can be simplified to a scalar in the isotropic case. Following the standard procedure
presented in chapter 2, the weak form becomes

〈w,a · ∇u〉+ 〈∇w, k∇u〉 = 〈w, f〉+ 〈w, h〉ΓN
∀w ∈ W (3.4)

or in the form of eq. (2.5):

Bcd(w, u) = F cd(w) ∀w ∈ W. (3.5)

The first order (“advective”) term renders the bilinear form arising from eq. (3.4) non-
symmetric in u and w. As a consequence, eq. (3.5) does not define an inner product. Or-
thogonality and the best approximation properties, as in eq. (2.14) can therefore not be
derived.
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3.1 Deficiencies of Bubnov-Galerkin discretizations

The standard Finite Element solution exhibits spurious oscillations in case the advection is
dominant. A first indicator that was already given in the introduction of this chapter is
the loss of optimality compared to symmetric problems. This section gives more details and
points of view on this phenomenon.

To characterize the quality of a Bubnov-Galerkin approximation of advection-diffusion prob-
lems, an element Péclet number is defined as

Peh =
ah

2k
.

It relates the mesh size h, the advection velocity, and the diffusivity in a one-dimensional
setting (see eq. 3.1). For values of Peh > 1, the solution shows “instabilities” at boundary
layers. The term instability can be understood in that way that the constant in eq. (2.12)
gets arbitrarily large when Peh → 8. However, this does not give any insight or explanation
to the problem.

In the context of the Variational Multiscale (VMS) method (that will be addressed in more
detail in section 3.2), the oscillations are interpreted as an insufficient resolution of the small
scale solution characteristics. The coupling term in the scale separation vanishes for sym-
metric bilinear forms in a Bubnov-Galerkin discretization when the corresponding B-norm is
chosen. In other words, the small scales remain unresolved in both cases, but the large scales
are influenced only in the non-symmetric case. This is demonstrated in appendix A in more
detail.

Another perspective on the problem is to interpret oscillations as a result of non-matching
boundary conditions. For Peh → 8 the diffusion term vanishes, leaving a pure transport
equation. In this case, boundary conditions can be imposed only at the inflow (or only at
the outflow) boundary. Therefore, keeping original boundary conditions that are not valid
for pure transport phenomena renders the problem ill-posed. While this occurs only in the
limit case of k → 0, it is important that the discretization might be too coarse to “see” the
diffusive nature of the problem. This transition is defined by Peh = 1. Interestingly, the
eigenvalues of element matrices (of linear elements) become complex for Peh > 1, confirming
this interpretation.

An analysis for high-order Finite Elements can be found in e.g. Schwab and Suri [1996] and
Cai et al. [2014].

3.1.1 Example 1: Advection-diffusion in 1D

To obtain a first impression on the performance of numerical schemes applied to advection-
diffusion equations a 1D benchmark with u(0) = 1 and u(1) = 0 is studied. The physical
parameters a and k are chosen to be constant on Ω. The exact solution is given by

u =
e

a
k
x − e a

k

1− e a
k

.

As u ∈ C 8 , a good performance of the p-version is to be expected.



3.1. Deficiencies of Bubnov-Galerkin discretizations 13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x-coordinate

u

16 elem., p = 1, Pe =
5
8 , 17 dofs

1 elem., p = 16, 17 dofs

Analytical solution

(a) a = 1, k = 5 · 10−2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x-coordinate

u

32 elem., p = 1, Pe =
25
8 , 33 dofs

1 elem., p = 29, 30 dofs

m.-l. hp ref., 30 dofs

Analytical solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x-coordinate

u

32 elem., p = 1, Pe =
25
8 , 33 dofs

1 elem., p = 29, 30 dofs

m.-l. hp ref., 30 dofs

Analytical solution

(b) a = 1, k = 5 · 10−3

Figure 3.1: Finite Element solutions to one-dimensional advection-diffusion problem [Zander, 2016].

Figure 3.1 compares the solution to this benchmark for different Finite Element methods
and Péclet numbers. While in fig. 3.1a an h- and a p-version are compared on a very low
element Péclet number (Peh < 1), in fig. 3.1b the diffusion is reduced such that the problem
becomes unstable (for the given h- and p-methods). Additionally, the performance of an
hp-discretization with a graded polynomial degree of

pleft =
⌊s

2

⌋
+ 1 and pright = 2s+ 1,

for an element with refinement level s (cf. Zander [2016]) is shown.

It can be seen that the p-version provides a better approximation to the exact solution as
it is sufficiently smooth. This is also expressed in the corresponding convergence of the
L2 error, depicted in fig. 3.2. However, also the stability of the displayed methods differs
drastically. While in fig 3.1b the solution for p = 1 and 32 element exhibits strong oscillations
around the boundary layer, the solution on one element with p = 29 remains relatively
stable (although using fewer degrees of freedom). Stability also influences the convergence
by extending the pre-asymptotic range corresponding to the constant in Céa’s lemma (see
eq. 2.12). Furthermore, the p-method shows an odd-even pattern in the L2 error. This
coincides with the results presented in Cai [2013] where a different stabilizing effect for odd
and even polynomial degrees was found.

Moreover, an intelligent combination of h- and p-refinement is superior in this example. As the
p-version requires a high polynomial degree to reach the regime of exponential convergence,
the method is very limited in practice. The hp-version, however, requires only a moderate
degree. From this follows, that a robust hp-scheme is indispensable when both, boundary
layers (and internal layers) as well as smooth solution characteristics on other parts of the
domain shall be accurately resolved by a Finite Element method.
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Figure 3.2: Convergence of Finite Element solutions to the one-dimensional advection-diffusion
problem [Zander, 2016].

3.1.2 Example 2: Advection-diffusion skew to the mesh

Now, the two-dimensional example of an advection skew to the mesh is considered, following
Brooks and Hughes [1982]. Figure 3.3a shows the setup of the problem, featuring a dis-
continuous inflow Dirichlet boundary condition. Similar to the previous example, boundary
layers form on the left and the bottom edge. In addition, an internal layer extends from the
discontinuity in the boundary data into the domain. Figure 3.3b shows that an insufficient
discretization leads to a completely oscillatory solution. Again, the multi-level hp-scheme is
used to refine the discretization. The adaptivity is driven by the gradient of the solution, i.e.
an element is refined if the maximum value of the solution gradient in the element exceeds a
given threshold. In the same way, an element is coarsened if the maximum gradient does not
exceed this threshold value. This process is iterated until a maximum number of refinement
levels is reached, or the newly computed solution does not cause a change in the discretiza-
tion. Figure 3.4 displays the result for each of a maximum of 6 refinement steps. It can be
seen that after several initial steps of uniform refinement, the sharp layers are automatically
identified and in the following steps elements on the rest of the domain are coarsened again.
This also illustrates the interpretation of the poor behavior of the Bubnov-Galerkin method
as an insufficient resolution of boundary layers.

3.2 The Variational Multiscale method

The first numerical methods that successfully stabilize advection dominated problems were
developed in a Finite Difference context. It was found that changing the second order accurate
central difference stencil to a first order accurate upwind scheme makes solving problems up to
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Figure 3.3: Advection-diffusion skew to the mesh benchmark following [Brooks and Hughes, 1982;
Zander, 2016].

Peh → 8 possible [Zienkiewicz et al., 2005]. Attempts to interpret this approach as weighting
the upstream contribution more than the downstream contribution resulted in the Streamline-
Upwind Petrov-Galerkin (SUPG) method. However, until the introduction of the Variational
Multiscale (VMS) method in Hughes [1995] and Hughes et al. [1998], a framework to explain
the problem and to develop methods was missing. While first being designed in the context
of stabilizing non-symmetric operators, it was discovered later that the same methodology
applied to the Navier-Stokes equations also adds an effect known from turbulence models. As
such, it accounts for the energy loss by small solution characteristics that are not captured
by the discretization. Despite being closely related, there is a distinction between the VMS
method as stabilization scheme and as turbulence model. The latter is commonly referred to
as the residual-based VMS method.

Within the VMS, solution and weighting spaces are decomposed into a resolved and an
unresolved part. Following the notation used in chapter 2, the split reads

S = S ⊕ S ′

W =W ⊕W ′.

Figure 3.5 illustrates this concept schematically. The resolved scales are to be thought of
as the part that can be captured by the Finite Element discretization. The small scale
contribution is the missing part such that in a direct sum the original space is recovered.
Therefore, the space of small scales is necessarily infinite dimensional. To make this split
precise, projectors need to be introduced that uniquely define the transformation from the
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(a) s = 0, 289 dofs (b) s = 1, 1 089 dofs (c) s = 2, 4 225 dofs

(d) s = 3, 14 248 dofs (e) s = 4, 26 868 dofs (f) s = 5, 54 188 dofs

(g) s = 6, 159 243 dofs (h) s = 6, warped mesh

Figure 3.4: Numerical solution to the skew-mesh benchmark using multi-level hp-refinement [Zander,
2016]
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(a) Solution u (b) Coarse scale component u (c) Fine scale component u′

Figure 3.5: Illustration of coarse and fine scale contributions [Hughes et al., 2000].

complete space to the discrete space.

With this, the decompositions u = u+u′ and w = w+w′ can be inserted into the weak form
(eq. 2.4), giving

〈w + w′,L
(
u+ u′

)
〉 = 〈w + w′, f〉 ∀w ∈ W and ∀w′ ∈ W ′. (3.6)

As W and W ′ are linear independent, eq. (3.6) can be split into a coarse and a fine scale
problem:

〈w,L
(
u+ u′

)
〉 = 〈w, f〉 ∀w ∈ W

〈w′,L
(
u+ u′

)
〉 = 〈w′, f〉 ∀w′ ∈ W ′.

The inner product on the left-hand side can then be separated in its second argument as
follows

〈w,Lu) + 〈w,Lu′〉 = 〈w, f〉 ∀w ∈ W
〈w′,Lu〉+ 〈w′,Lu′〉 = 〈w′, f〉 ∀w′ ∈ W ′.

Note, that the last step requires the linearity of L.

At this point, it would be desirable to solve the coarse scale equation directly. However,
the second term includes the small scale solution, rendering the problem not closed. Solving
the infinite dimensional small scale problem, in turn, includes the resolved scales and would
result in solving the original problem. The conventional Bubnov-Galerkin method would just
not consider the 〈w,Lu′〉 term and solve the remaining equation. While this is reasonable in
the symmetric case, the intention of the Variational Multiscale Method is to find a unified
approach to stabilize the problem in the general case.

The main idea is to model the small scale problem and substitute the result into the coarse
scale equation. To this end, the derivatives in 〈w,Lu′〉 are transferred to the weighting
functions. The new operator that is now acting on w is the adjoint of L, denoted as L∗. This
ensures that no derivatives act on u′. Furthermore, the terms in the small scale equation are
rearranged as follows:

〈w,Lu〉+ 〈L∗w, u′〉 = 〈w, f〉 ∀w ∈ W
〈w′,Lu′〉 = −〈w′,Lu− f〉 ∀w′ ∈ W ′.
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This last step makes evident that the small scales are driven by the residual of the resolved
scales. The small scale problem is formally solved by

u′ = −G′
(
Lu− f

)
, (3.7)

where G′ denotes the small scale Green’s operator that is related to the inverse of L but takes
the defined projectors and boundary conditions into account. The mathematical details can
be found e.g. in Hughes and Sangalli [2007]. With this, the coarse problem can be closed:

〈w,Lu〉 − 〈L∗w,G′
(
Lu− f

)
〉 = 〈w, f〉 ∀w ∈ W.

The remaining task is to find a good approximation to G′. While extremely simple, u′ is
commonly approximated as

u′ ≈ τ
(
Lu− f

)
, (3.8)

where τ denotes a stabilization parameter. With this, the stabilized weak form reads:

〈w,Lu〉 − 〈L∗w, τ
(
Lu− f

)
〉 = 〈w, f〉 ∀w ∈ W. (3.9)

Section 3.3 will address the selection of τ in more detail. The method provides a starting
point for the development of more advanced schemes and is therefore not limited to this
simplification.

Furthermore, eq. (3.9) coincides with the general structure of stabilization techniques [Donéa
and Huerta, 2003]. That is, stabilization techniques can be grouped under the following form:

〈w,Lu〉+ 〈Sw, τ
(
Lu− f

)
〉Ωe = 〈w, f〉 ∀w ∈ W,

where S denotes a stabilization operator. It is defined for different methods as

VMS : S = −L∗
SUPG : S = Ladv

GLS : S = L,

where Ladv denotes the advective part of L. A detailed summary of the Variational Multiscale
method can be found in Hughes et al. [2004].

3.2.1 Example 3: Advection-diffusion skew to the mesh

To show the performance of the multi-level hp-method combined with a stabilization scheme,
the setting of section 3.1.2 is considered with zero diffusivity. In this case, no discrete Bubnov-
Galerkin method would deliver meaningful results.

To stabilize the Finite Element solution, an SUPG-scheme is used. The weak form (cf.
eq. 3.5) is therefore extended by adding the residual weighted with Ladvw = a · ∇w:

Bcd(u,w) +
∑

e

〈
a · ∇w, τ

[
a · ∇u− f

]〉
Ωe = F cd(u,w) ∀w ∈ W. (3.10)



3.3. Choice of the stabilization parameter 19

The stabilization parameter τ is selected as

τ =
τh√
p
, (3.11)

where

τh =
h√

2 ‖a‖
. (3.12)

Equation (3.12) extends a definition of τ for one-dimensional advection-diffusion equations
to multiple dimensions, that is known to deliver nodally exact values for p = 1 [Donéa and
Huerta, 2003]. This value is then adapted to higher polynomial degrees in eq. (3.11). The
choice to divide by

√
p is founded on empirical (visual) considerations. A discussion about

selecting τ follows in section 3.3.

Figure 3.6 shows the result of a graded multi-level hp-discretization applied to the SUPG-
stabilized problem. Clearly, the discontinuous boundary and internal layers are captured by
the gradient driven refinement (as in section 3.1.2).

(a) Refined discretization, 41 489 dofs (b) Warped solution on refined discretization

Figure 3.6: Stabilized Finite Element solution to the skew-mesh benchmark using five levels of
multi-level hp-refinement [Zander, 2016].

3.3 Choice of the stabilization parameter

The main difficulty in the development of stabilization schemes for advection-dominated
problem has been the selection of the stabilization parameter τ . One question that has to
be addressed in advance is the definition of the quality of an approximation. In the Finite
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Element framework, the error is measured using a norm that maps functions from the solution
space to a real number. This way, the quality of different approximations can be compared
by looking at the norm of the error ‖e‖ = ‖u−uh‖. Now, stabilization techniques such as the
Variational Multiscale Method can be tuned to deliver good results with respect to the chosen
norm. It might be natural to optimize the difference of solution and approximation, and
therefore choose the L2 norm. However, L2-optimal approximations of potentially very steep
or even discontinuous solutions arising from advection-dominant problems are characterized
by Gibbs’ phenomenon. That is, especially in a p-FEM context, unphysical oscillations
around the discontinuity limit the applicability of such a method in practice. To suppress
this phenomenon, the weak form is commonly extended by a shock-capturing term that adds
diffusion depending on the steepness of the solution. This renders the problem nonlinear,
increasing its complexity significantly.

The standard procedure is, therefore, to seek optimality in common norms such as H1 or
L2 and apply a shock capturing scheme if oscillations are too severe. For a one-dimensional
advection-diffusion equation, the definition

τh =
h

2a

(
cothPe− 1

Pe

)
(3.13)

was found to give nodally exact values for linear elements and represents an optimal solution in
the H1 semi-norm. This corresponds to the behavior of Bubnov-Galerkin discretizations ap-
plied to symmetric problems. Although it does not transfer to multiple dimensions, eq. (3.13)
is regularly used.

In the context of this thesis, it is crucial to find a definition for τ that also includes the
polynomial degree p. Equation (3.13) leads to an over-diffusive behavior when p is increased,
as it does not account for the additional approximation power. Moreover, convergence cannot
be guaranteed, as the stabilization term needs to possess the same magnitude as the weak
residual. For low-order elements, the optimal scaling includes a factor h in the definition of
τ . This can be explained looking at the advective limit (k → 0). Then, τ = h/2a rescales
the weighting functions Ladv(Ni) = a · dNi/dx to be precisely of magnitude one.

To adapt this for p-refinement, various possibilities exist. Some definitions have been studied
in this work and are discussed in the following. Figure 3.7 provides a comparison of L2

errors on a benchmark similar to example 3.1.1 with a = 0.5 and k = 0.001. The boundary
conditions were set to u(0) = 0 and u(1) = 1 and emphasize the influence of the boundary
layer. Moreover, an optimal τ was found by iteratively testing the error for a range of values
(from 0 to τh) and refining around the minimum until the increment |τn+1

p − τnp | reaches
machine precision.

The first choice is to select
τp =

τh
p
, (3.14)

as suggested e.g. in Donéa and Huerta [2003]. Although an improvement can be achieved for
low polynomial degrees, it is apparent that the scaling is not correct for p → 8. A different
approach is to define a p-adapted element length hp that accounts for the approximation
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quality of the high-order polynomials. This results in new definitions for Pe and τ :

Pep = Pe(hp) (3.15)

τp = τh(hp, P ep) (3.16)

A common choice in combination with Lagrange basis functions is to consider the distance
between interpolation points, i.e. using hp = h/p for an equidistant spacing. The results
obtained with this definition are very similar to the previous formula (eq. 3.14). A better
scaling was obtained with

hp = fph

fp =
3

p2 + 2p
.

(3.17)

Definition (3.17) is based on fitting a curve to the (numerically computed) optimal τp. It
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Figure 3.7: Comparison of different definitions for τp.

confirms the results shown in fig. 3.1b that for high polynomial degrees p-refinement is more
efficient than h-refinement. Although this definition performs well in the presented one-
dimensional benchmark, it has not yet been investigated, how generically applicable it is.
Moreover, the question of optimality arises, as the oscillations are clearly more significant
compared to using eq. (3.14).

Besides eq. (3.13), many other possibilities exist to define τ . Promising concerning high-order
polynomials are in particular the approaches introduced by Franca et al. [1992], where τ is
calculated based on a modified Péclet number, and Tezduyar and Osawa [2000], where the
element matrices are used to define the stabilization parameter.

The extension to include a reaction term is particularly important in transient advection-
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diffusion problems as it appears as a consequence of the time discretization. The significance
of this reaction term is then characterized by the time step ∆t. In this setting, the stabilization
term can be adapted using formulations as introduced in e.g. Codina [2000] by analyzing the
discrete system:

τ =

(
σ +

2a

h
+

4k

h2

)−1

,

where σ denotes the reaction constant. A fourth-order accurate definition can be found in
Shakib et al. [1991]:

τ =

(
σ2 +

(
2a

h

)2

+ 9

(
4k

h2

)2
)− 1

2

. (3.18)

Both attempt to blend the advective, diffusive and reactive limits of τ . The multi-dimensional
version of eq. (3.18) reads

τ =
(
σ2 + aTGa+ 9k2G : G

)− 1
2 , (3.19)

with the second order metric tensor G defined as

Gij =
∑

k

∂ξk
∂xi

∂ξk
∂xj

. (3.20)

It is derived by transforming the advection-diffusion equation into the element coordinate
system. This definition is commonly used in the Variational Multiscale setting, see, e.g.
Bazilevs et al. [2010]. Equation (3.19) can be used to stabilize a transient advection-diffusion
equation:

τ =

(
4

∆t2
+ aTGa+ 9k2G : G

)− 1
2

.

To adapt this formula to high-order discretizations, the derivative of the mapping from global
to local in eq. (3.20) is identified as a measure for h−1 and is therefore multiplied with f−1

p ,
according to eq. (3.15) - (3.17):

Gpij =
Gij
f2
p

. (3.21)

Last, but not least it is not clear how good a scalar can approximate G′ (cf. eq. 3.8). It might
be necessary to choose a more sophisticated approximation to exploit the full potential of
high-order polynomials.
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Chapter 4

Residual-based Variational
Multiscale turbulence modeling
using FCM

In this chapter, the Variational Multiscale method is applied to the Navier-Stokes equations,
following section 3.2. The weak form is then discretized using the multi-level hp-adaptive
Finite Cell method.

The starting point is the strong form of the incompressible Navier-Stokes equations:

∂u

∂t
+∇ · (u⊗ u) +∇p = ν∆u+ f on Ω

∇ · u = 0 on Ω

u = g on ΓD

ν∇u · n = 0 on ΓN

u = u0 at t = 0 .

After defining test and trial functions as

U = {u, p} u ∈ S, p ∈ P
W = {w, q} w ∈W , q ∈ Q,

the weak form becomes

B(W ,U) = L(W ) ∀W ∈ {W ×Q}. (4.1)

The nonlinear form B is composed of a linear form B1 and a trilinear form B2 that represents
the nonlinear part:

B(W ,U) = B1(W ,U) +B2(W ,U ,U),
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where

B1(W ,U) =
〈
w,

∂u

∂t

〉
+
〈
∇ ·w, p

〉
−
〈
q,∇ · u

〉
+
〈
∇Sw, ν∇Su

〉

B2(W ,V ,U) = −
〈
∇w,v ⊗ u

〉
.

The new argument in B2 is defined as V = {v, 0}, v ∈W . This step separates the nonlinear
form B into a bilinear and a trilinear form and is used in the application of the Variational
Multiscale method in section 4.1. Note also, that

S = { S1, . . . ,Sd }
W = {W1, . . . ,Wd },

where d denotes the number of space dimensions. As only homogeneous Neumann boundary
conditions are considered here, the right hand side L(W ) contains only the volume forces
and is therefore defined as

L(W ) = 〈W ,f〉.

Now, the problem has a saddle-point nature, i.e. it can not be obtained from the minimiza-
tion of an (energy-) functional. The consequence is, that in contrast to previous equations
the weak form does not satisfy coercivity. Therefore, the Lax-Milgram lemma (cf. chapter
2) does not apply, and the uniqueness of the solution cannot be guaranteed in general. Dis-
cretizing eq. (4.1) with a standard Finite Element method also yields a zero block-matrix as
no interaction between q and p is present. To prove invertibility in this setting, the weaker,
nevertheless sufficient, Babuška-Brezzi or inf-sup condition is used which reads [Donéa and
Huerta, 2003]:

inf
q∈Q

sup
w∈V

〈q,∇ ·w〉
‖w‖W‖q‖

> 0,

or equivalently:

∃λ s.t. sup
w∈V

〈q,∇ ·w〉
‖w‖W

≥ λ‖q‖ ∀q ∈ Q. (4.2)

Equation (4.2) formulates the condition in the form of an eigenvalue problem. It is, therefore,
apparent that the inf-sup condition requires 〈q,∇ · w〉 to have non-zero eigenvalues which
guarantees that problem (4.1) has a unique solution. While this property can be verified in
the continuous setting, it does not generally transfer to the discrete spaces. As a consequence,
inf-sup stability needs to be proven for each velocity-pressure discretization pair. Otherwise,
spurious pressure modes arise, rendering the solution unphysical. A detailed analysis of
Galerkin methods and inf-sup conditions can be found in Durán [2005].

Instead of choosing inf-sup stable spaces, the problem can be stabilized. To this end, formu-
lations like the Galerkin Least-Squares (GLS) or the Variational Multiscale method add a
small amount of diffusion to the problem to suppress the spurious modes. In practice, this is
very convenient, as arbitrary combinations of pressure and velocity discretizations can then
be used.



4.1. The residual-based Variational Multiscale method 25

4.1 The residual-based Variational Multiscale method

Following the formulation and notation used by Bazilevs et al. [2007a], velocity and pressure
interpolation spaces, as well as momentum and continuity weighting spaces, are split into a
resolved and an unresolved part:

S = S ⊕ S ′ P = P ⊕ P ′

W = W ⊕W ′ Q = Q⊕Q′.

Then, the test and weighting function pairs become

U = U +U ′ = {u, p}+ {u′, p′}
W = W +W ′ = {w, q}+ {w′, q′}.

In the following, the projector is chosen to separate the two scales with respect to the H1

semi-norm. Inserting the split into eq. (4.1) yields

B(W ,U +U ′) = L(W ) ∀W ∈W (4.3a)

B(W ′,U +U ′) = L(W ′) ∀W ′ ∈W ′, (4.3b)

where the goal is to close eq. (4.3a) using eq. (4.3b). Now, the fine scale weak form (eq. 4.3b)
is split as follows

B1(W ′,U) +B1(W ′,U ′) +B2(W ′,U ,U) +B2(W ′,U ,U ′)

+B2(W ′,U ′,U) +B2(W ′,U ′,U ′). = L(W ′).
(4.4)

Defining the strong residual of the Navier-Stokes equations as r(U) allows to compress the
terms B1(W ′,U), B2(W ′,U ,U) and L(W ′) into 〈W ′, r(U)〉. Rearranging the remaining
three terms yields then:

B(W ′,U ′) = −〈W ′, r(U)〉 −B2(W ′,U ,U ′)−B2(W ′,U ′,U), (4.5)

which represents the small scale equation that is used to determine (approximate) the small
scales. The formal inverse operator, that by definition solves eq. (4.5), depends now not only
on the coarse scale residual but also on the solution:

U ′ = −F ′(U , r(U))

This differs from the linear case where the fine scale Green’s operator is only applied to the
residual (cf. eq. 3.7).

In the same fashion as in the linear case, F ′ is now approximated by a matrix of scalars:

U ′ ≈ −τ r(U). (4.6)

While this is similar to eq. (3.8), the solution and the residual are vector quantities, therefore
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τ is also a matrix. It is defined as follows [Bazilevs et al., 2007a]:

τ =

[
τMI

d×d 0

0 τC

]
,

where τM denotes the stabilization parameter of the momentum residual and τC the stabi-
lization parameter for the continuity residual. The former is chosen according to eq. (3.19),
that was obtained from the analysis of advection-diffusion systems. The definition for τC
reads

τC = (g · τMg)−1,

with

gi =
d∑

j=1

∂ξj
∂xi

.

Following section 3.3, an adaption to higher polynomial degrees is achieved by defining
gpi = gi/fp, similar to eq. (3.21).

Now, eq. (4.3a) can be closed by inserting approximation (4.6). As this step introduces a
modeling error, the exact coarse scale solution U is replaced by the approximated solution
Uh. Inserting eq. (4.6) into eq. (4.3a) yields the Variational Multiscale weak form

BMS(W h,Uh) = L(W h) ∀W h ∈ {W ×Q}, (4.7)

with

BMS(W h,Uh) =B(W h,Uh)−B1(W h, τ r[Uh])

−B2(W h,Uh, τ r[Uh])−B2(W h, τ r[Uh],Uh)

+B2(W h, τ r[Uh], τ r[Uh]).

To conclude the Variational Multiscale formulation, three assumptions are made at this point
(cf. Bazilevs et al. [2007a]):

(1)
〈
wh,

∂u′

∂t

〉
= 0

(2) u′ = 0 on Γ

(3) 〈∇Swh,∇Su′〉 = 0.

Although assumption (1) has been shown to have a significant influence on the solution
[Codina et al., 2007] it can be justified by the simplification that follows from it. Moreover,
as a consequence of choosing an H1-projector, coarse and small scales are orthogonal, i.e.,
〈∇Sw,∇Su′〉 = 0 holds (cf. appendix A). Of course, the approximation uh is not an exact
H1-projection, however, assumption (3) seems reasonable in this context. Now, applying
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assumptions (1) - (3), B1 and B2 can be expanded:

BMS(W h,Uh) = B(W h,Uh) + 〈∇qh, τMrM 〉+ 〈∇ ·wh, τCrC〉

+ 〈∇wh,uh ⊗ τMrM + τMrM ⊗ uh〉

−
〈
∇wh, τMrM ⊗ τMrM

〉
.

The explicit dependencies of rM and rC on uh and ph have been omitted for readability. The
first two terms originate from B1 and the remaining terms from B2. Using the equalities

〈∇wh,uh ⊗ τMrM 〉 = 〈uh · ∇wh, τMrM 〉
〈∇wh, τMrM ⊗ uh〉 = 〈uh · (∇wh)T , τMrM 〉

allows to further rearrange the additional terms and arrive at:

BMS(W h,Uh) =B(W h,Uh) + 〈uh · ∇wh +∇qh, τMrM 〉+ 〈∇ ·wh, τCrC〉 (4.8)

+
〈
uh · (∇wh)T , τMrM

〉
−
〈
∇wh, τMrM ⊗ τMrM

〉
. (4.9)

It is interesting to notice that B1(W h, τ r[Uh]) introduces a coupling between qh and ph.
Consequently, the zero block-matrix in the original saddle point problem is filled with a diffu-
sion term that is scaled with τC . Therefore, the Variational Multiscale method stabilizes the
weak form for velocity-pressure discretization pairs that do not satisfy the inf-sup condition.

4.2 Weak imposition of boundary conditions

The fact that boundaries are not conforming to the mesh is crucial in the Finite Cell context.
As a consequence, a weak imposition needs to be considered (cf. section 2.4). Moreover, it
was shown by Bazilevs and Hughes [2007] that this has several benefits compared to applying
boundary conditions in a strong way. First, the instabilities of the discrete operator that occur
at boundary layers when convection is dominant can be stabilized by relaxing the constraint
appropriately. That is, in the transition between pure diffusion and pure convection the
outflow Dirichlet condition is weakened more and more. In the limit of zero diffusion, no
outflow condition is imposed as the system becomes hyperbolic and information can only
travel downstream. Second, in addition to the stability argument, it has been shown in
Bazilevs et al. [2007b] that often inaccurate tangential velocity components near turbulent
boundary layers can be greatly improved. To this end, a wall-function model is incorporated
to account for the lack of approximability in the vicinity of no-slip boundaries. Comparisons
to experiments, direct numerical simulations (DNS) and other turbulence models can be
found in Bazilevs et al. [2010].

To enforce Dirichlet boundary conditions weakly using Nitsche’s method (cf. section 2.4),
the formulation presented in Bazilevs et al. [2010] extends the Variational Multiscale weak
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form as follows:

BMSW (W h,Uh) =BMS(W h,Uh)

+
〈
wh, (uh · n)uh + phn− 2ν∇suh · n

〉
ΓD

+
〈
− 2ν∇swh · n− qhn,uh − g

〉
ΓD,out

+
〈
− 2ν∇swh · n− qhn− (uh · n)wh,uh − g

〉
ΓD,in

+
〈
whβW ,u

h − g
〉

ΓD

+
〈
wh · n

(
β − βW

)
,uh · n− g

〉
ΓD

,

(4.10)

where

β =
CIB
hb

(4.11)

and

βW =
u∗2

‖uhtan‖
. (4.12)

The first (boundary-) term in eq. (4.10) recovers consistency of the method by canceling
the Dirichlet part of the boundary integral as described in section 2.4. The two following
terms add adjoint-consistency (cf. section 2.4). To impose only inflow boundary conditions
in the advection dominant case the outflow boundary integral contains only the diffusive
contribution and therefore vanishes for ν → 0. The last two terms penalize the deviation
from the prescribed values and ensure the stability of the method. Again the term scales with
k and vanishes in the advective limit. In that case, the inflow boundary condition is only
enforced by the contribution of the adjoint consistency term. Furthermore, the tangential
(no-slip) part of the penalty term is treated slightly different than the wall-normal (no-
penetration) part. Instead of using the the original parameter β the tangential contribution
is enforced by a wall-penalty βW instead. Equation (4.12) defines βW in terms of a wall
friction velocity enabling the use of a wall model, see e.g. Bazilevs et al. [2007b].

Although it is desirable to incorporate eq. (4.10) - (4.12) the formulation implemented in the
context of this thesis uses a penalty method due to its simplicity (see section 2.4). That is,
only the penalty term is added to the weak form:

BMSW (W h,Uh) = BMS(W h,Uh) + β〈wh,uh − g〉ΓD
, (4.13)

where β is chosen to be large enough to enforce the boundary conditions without leading to
numerical instabilities (cf. eq. 2.18). However, the next step in the developing the Finite
Cell method beyond this thesis and exploiting its full potential for turbulence modeling is
the extension of the boundary conditions as presented.

4.3 Spatial discretization and linearization

To discretize the weak form, Wh and Ph need to be defined. In the context of this work a
hierarchical polynomial basis (cf. section 2.1) is used. A possibly different polynomial degree
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is chosen for each field component and space dimension, defining an ansatz order template of
the form

P =



pv11, . . . , pv1d, pp1

...
...

...
pvd1, . . . , pvdd, ppd


 (4.14)

for each element. The numbering is as follows: pvij denotes the polynomial degree for velocity
component j in space dimension i; ppi denotes the degree to discretize the pressure field in
space component i. Associated with (4.14) are the basis function vectors N j and Np that
span the basis for velocity, acceleration and pressure spaces. Note, that accelerations are
discretized with the same basis functions as the velocities. In the selection of P care has to
be taken that neighboring elements remain conforming. Using the introduced discretization
the primary variables can be expressed as

uh(x, t) =

d∑

j=1

nj∑

Aj=1

N j
Aj

(x)VjAj (t) ej

u̇h(x, t) =

d∑

j=1

nj∑

Aj=1

N j
Aj

(x) V̇jAj (t) ej

ph(x, t) =

np∑

Ap=1

Np
Ap

(x)PAp(t),

where d and nj denote the dimensionality of the problem and the number of unknowns for
solution component j (i.e. the dimensionality of Wj). Furthermore, VjAj , V̇jAj and PAp

represent the degrees of freedom for velocities, accelerations and pressure and ej denotes
the jth standard Cartesian basis vector. As a different discretization can be chosen for
each solution field component, the shape functions and corresponding indices are different.
Despite this, the subscripts in Aj and Ap are dropped to enhance readability in the following

derivations. In N j
A, the range of index A is, therefore, considered with respect to the field

component j.

Now, the discrete momentum and continuity residual vectors can be defined as

RM = (RMiA) = (RM11 , . . . , R
M
1n1
, . . . , RMd1 , . . . , R

M
dnd

)T (4.15a)

RC = (RCA) = (RC1 , . . . , R
C
nc

)T , (4.15b)

where ni denotes the number of equations for the ith space dimension. The order in which
the residual vectors are organized is arbitrary; therefore eq. (4.15) represents just an example.
RMiA and RCA are defined as follows

RMiA = BMSW ({N i
Aei, 0}, {uh, ph})− L({N i

Aei, 0})
RCA = BMSW ({0, Np

A}, {uh, ph})− L({0, Np
A}).

Note, that the boundary terms arising from eq. (4.13) are also included in the residual.

The nonlinear system arising from requiring the residual to vanish is solved using a Newton-
Raphson procedure. The resulting iterations can be performed either in terms of the velocity-
pressure degrees of freedom or the acceleration-velocity degrees of freedom. A relation be-
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tween velocities and accelerations needs to be established, allowing to apply the chain rule.
To remain general, Ṽ is used instead of V or V̇ . After defining φ = {Ṽ ,P }, the first-order
Taylor expansion of the residual can be computed:

R(φ+ ∆φ) ≈ R(φ) +
∂R(φ)

∂φ
∆φ.

As the goal is to have R(φ+ ∆φ) = 0, the iteration scheme can be constructed as follows:

∂R(φl)

∂φl
∆φl+1 = −R(φl).

The missing piece is now the tangent matrix T = R(φl)/∂φl. It is composed of a velocity
part, an acceleration part and a pressure part:

T = CvT v + CaT a + CpT p. (4.16)

The constants are determined by the time integration scheme and depend on the choice of
Ṽ and the relation between V and V̇ . Furthermore, T can be written in a block form as:

T =

[
K G
D L

]
=

[
[Kij ] [Gi ]

[Dj ] L

]
. (4.17)

The block matrices in eq. (4.17) are defined as follows:

K = Cv

[
∂RM

i

∂V j

]
+ Ca

[
∂RM

i

∂V̇ j

]

G = Cp

[
∂RM

i

∂P

]

D = Cv

[
∂RC

∂V j

]
+ Ca

[
∂RC

∂V̇ j

]

L = Cp
∂RC

∂P
,

with

∂RM
i

∂V j
=

[
∂RMiA
∂VjB

]
∂RM

i

∂V̇ j

=

[
∂RMiA
∂V̇jB

]
∂RM

i

∂P
=

[
∂RMiA
∂PB

]

∂RC

∂V j
=

[
∂RCA
∂VjB

]
∂RC

∂V̇ j

=

[
∂RCA
∂V̇jB

]
∂RC

∂P
=

[
∂RCA
∂PB

]
.

While i and j define the space dimension and velocity component, the new indices Ai and Bj
represent the corresponding equation number and degree of freedom. The resulting matrices
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are given as

∂RMiA
∂VjB

= 〈N i
A,u

h · ∇N j
B〉δij + 〈∇N i

Aν,∇N j
B〉δij + 〈∇N i

A · eν,∇N j
B · ei〉

+ 〈uh · ∇N i
AτM ,u

h · ∇N j
B〉δij + 〈∇N i

A · eiτC ,∇N j
B · ej〉Ω′

+ β〈N i
A, N

j
B〉ΓD

∂RMiA
∂V̇jB

= 〈N i
A, N

j
B〉δij + 〈uh · ∇N i

AτM , N
j
B〉δij

∂RMiA
∂PB

= − 〈∇N i
A · ei, Np

B〉+ 〈uh · ∇N i
AeiτM ,∇Np

B〉Ω′

∂RCA
∂VjB

= 〈N i
A,∇Np

B · ej〉+ 〈∇N i
AτM ,u

h · ∇Np
Bej〉

∂RCA
∂V̇jB

= 〈∇Np
AτM , N

p
Bej〉

∂RCA
∂PB

= 〈∇Np
AτM ,∇N

p
B〉Ω′ .

(4.18)

Note, that the last term in the definition of ∂RMiA/∂VjB represents the linearization of the
penalty term introduced in eq. (4.13).

Following section 2.3, the last step is to apply the Finite Cell methodology by multiplying
BMS and L with α(x) (cf. eq. 2.16):

BFCM = α(x)BMS (4.19a)

LFCM = α(x)L. (4.19b)

This way, the geometry of the physical domain can be recovered. An extension of an existing
code towards the Finite Cell Method requires, therefore, an adaption of the integration scheme
and a multiplication by α(x). Note, that the linearization of eq. (4.19) simply adds a factor
α(x) to the matrices defined in eq. (4.18). This can be implemented e.g. by adjusting the
weight of integration points. From a physical point of view, the Finite Cell Method reduces
the density and the viscosity of the fluid in Ωfict to a very small value. Also, incompressibility
is not enforced in Ωfict, and the pressure gradient is only acting on Ωphys.

As suggested in section 2.3, the stabilization of the weak form on the fictitious domain is not
required to be a scaled version of the original weak form. In this work, the following form
has been used to maintain uniqueness in Ωfict:

〈∇wh, εν∇u̇h〉Ωfict
+ 〈∇qh, εν∇ph〉Ωfict

= 0 (4.20)

This particular choice originates from the fact that the nonlinear iterations within the time
integration scheme (presented in section 4.4) are performed in terms of V̇ . In numerical tests
eq. (4.20) has been shown to be more stable and deliver a better conditioned system compared
to the full stabilized VMS weak form. Moreover the computational time is decreased signifi-
cantly as the evaluation requires less effort compared to eq. (4.8). However, the performance
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of eq. (4.20) has to be evaluated in future investigations and serves only as a first experiment.
The original approach in the Finite Cell Method that defines the weak form of the problem
also on the fictitious domain reduces the influence of the residual on Ωfict independent of the
physical parameters. Using a modified weak form instead, adds another layer of difficulty in
choosing ε as the influence of the terms on Ωfict is not automatically reduced by a constant
factor. Therefore, a generic definition of ε potentially includes problem dependent quantities.

4.4 Generalized-α time integration

As suggested in Bazilevs et al. [2007a], the semi-discrete Navier-Stokes weak form is advanced
in time using a generalized-α scheme. Extended to first order systems by Jansen et al.
[2000], the generalized-α scheme allows to damp high frequencies while remaining second-
order accurate.

As mentioned in the previous section, the nonlinear system can be solved either in terms
of velocities or accelerations. In this work, an acceleration-based formulation is used. With
this, the method becomes: Given V n and V̇ n at time step n, find the intermediate quantities
V n+αf and V̇ n+αm as well as new solution V n+1, V̇ n+1 and P n+1, such that

RM (V n+αf , V̇ n+αm ,P n+1) = 0 (4.21a)

RC(V n+αf , V̇ n+αm ,P n+1) = 0, (4.21b)

where

V n+1 = V n + ∆tV̇ n + γ∆t(V̇ n+1 − V̇ n) (4.22)

V n+αf = V n + αf (V n+1 − V n) (4.23)

V̇ n+αm = V̇ n + αm(V̇ n+1 − V̇ n). (4.24)

The three parameters αm, αf and γ determine the method. While αm ≤ αf ≤ 1/2 is required
for stability, second-order accuracy in time is achieved if γ = 1/2 + αm − αf [Jansen et al.,
2000]. The family of generalized-α methods is obtained by defining the parameters as follows:

αm =
1

2

(
3− ρ 8

1 + ρ 8

)

αf =
1

1 + ρ 8

,

with a spectral radius ρ 8 controlling the numerical damping of high frequencies (in time).
Throughout this thesis, ρ 8 was selected as 1/2. Numerical studies on the influence of ρ on
the solution can be found in [Jansen et al., 2000]. Besides that, a fully implicit backward
Euler scheme is obtained by choosing αm = αf = γ = 1.

As the residual is evaluated at αm and αf , but the solution is searched at time step n + 1,
the linearization of the residual requires the application of the chain rule:

∂RM (V n+αf , V̇ n+αm ,P n+1)

∂V̇ n+1
=

∂RM

∂V n+αf

∂V n+αf

∂V̇ n+1
+

∂RM

∂V̇ n+αm

∂V̇ n+αm

∂V̇ n+1
(4.25)
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The partial derivatives in eq. (4.25) represent the dependencies of the residual parameters on
the solution variable V̇ n+1. The first partial derivative follows from (4.24):

∂V̇ n+αm

∂V̇ n+1
=

∂

∂V̇ n+1

[
V̇ n + αm(V̇ n+1 − V̇ n)

]
= αm

and the second partial derivative from inserting eq. (4.23) into eq. (4.22):

∂V n+αf

∂V̇ n+1
=

∂

∂V̇ n+1

[
V n + αf (V n+1 − V n)

]

=
∂

∂V̇ n+1

[
V n + αf

([
V n + ∆tV̇ n + γ∆t(V̇ n+1 − V̇ n)

]
− V n

)]

= αfγ∆t

This defines the constants required in the computation of the tangent matrix (cf. eq. 4.16):

Ca = αm Cv = αfγ∆t Cp = 1.

Note, that the pressure is evaluated at n + 1, therefore no chain rule is required (giving
Cp = 1).

The time integration described in the following is summarized in algorithm 1. Each time step
begins with evaluating a predictor to initialize the nonlinear iterations that attempt to solve
eq. (4.21). Throughout this work, the following predictor is used:

V n+1,0 = V n (4.26a)

V̇ n+1,0 =
γ − 1

γ
V̇ n (4.26b)

P n+1,0 = P n, (4.26c)

Several other definitions are discussed in Jansen et al. [2000]. Now follows a loop of nonlinear
iterations which begin with evaluating quantities at the intermediate step, defined by αf and
αm:

V n+αf ,l = V n + αf (V n+1,l−1 − V n) (4.27a)

V̇ n+αm,l = V̇ n + αm(V̇ n+1,l−1 − V̇ n) (4.27b)

P n+1,l = P n+1,l−1, (4.27c)

where l is the index of the nonlinear iteration l = 1, . . . , lmax. In the second step, the tangent
matrix and the residual are assembled using V n+αf ,l, V̇ n+αm,l and P n+1,l. The linear system

[
K l Gl

Dl Ll

](
∆V̇ n+1,l

∆P n+1,l

)
=

(
−RM

l

−RC
l

)
(4.28)

is then solved. In the third and last step of the nonlinear iterations, the solution is updated
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Algorithm 1 Time integration

function performTimeIntegration(V 0, V̇ 0, P 0, ∆t, n)
// Initialize variables
V n = V 0

V̇ n = V̇ 0

P n = P 0

// Start time loop
for n = 0 to nmax do

// Predict solution at next time step (cf. eq. (4.26))
V n+1 = V n

V̇ n+1 = (γ − 1)/γ V̇ n

P n+1 = P n

// Start Newton-Raphson iterations
for l = 0 to lmax do

// Evaluate quantities at intermediate step (cf. eq. (4.27))
V n+αf = V n + αf (V n+1 − V n)
V̇ n+αm = V̇ n + αm(V̇ n+1 − V̇ n)

// Assemble linear system
T = integrateTangentMatrix(V n+αf , V̇ n+αm , P n+1, ∆t)
R = integrateResidual(V n+αf , V̇ n+αm , P n+1, ∆t)

// Solve for update (eq. (4.28))
∆V̇ ,∆P = solveLinearSystem(T , R)

// Update solution variables (eq. (4.29))
V̇ n+1 = V̇ n+1 + ∆V̇
V n+1 = V n+1 + γ∆t∆V̇
P n+1 = P n+1 + ∆P

if nonlinearIterationsConverged( ) then
break l

end if
end for

// Now update and proceed to the next time step
V̇ n = V̇ n+1

V n = V n+1

P n = P n+1

end for

// Return latest solution
return V n, V̇ n, P n

end function
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as follows

V̇ n+1,l = V̇ n+1,l−1 + ∆V̇ n+1,l (4.29a)

V n+1,l = V n+1,l−1 + γ∆t∆V̇ n+1,l (4.29b)

P n+1,l = P n+1,l−1 + ∆P n+1,l. (4.29c)

The iterations are stopped once convergence is achieved. Then, the solution fields at time
step n are updated with the newly obtained values and the algorithm proceeds to the next
time step.

The convergence of the Newton-Raphson scheme can be measured in several ways. In the
current work, the scalar product of residual and increment and the norm of the residual were
considered:

e1 =
∣∣Rl · (∆V̇ n+1,l,∆P n+1,l)

∣∣
e2 = ‖Rl‖.

After the error in the chosen norm was decreased by several orders of magnitude, the scheme
is considered to be converged.

To start the time integration, it is often desirable to use several first-order implicit steps.
Especially oscillations in time arising from non-matching initial and boundary conditions can
be eliminated this way (see algorithm 2). Furthermore, the efficiency of the scheme can be
increased by an adaptive selection of the time step ∆t . One method has been proposed by

Algorithm 2 Solution scheme

// Get discrete initial conditions (e.g. by an L2-projection)
V 0, V̇ 0, P 0 = getInitialConditions( )

n0 = 2
∆t0 = ∆t/n0

// Integrate first time step with n0 backward-Euler steps
V 1, V̇ 1, P 1 = performTimeIntegration(V 0, V̇ 0, P 0, ∆t0, n0)

// Start the actual time integration
V n, V̇ n, P n = performTimeIntegration(V 1, V̇ 1, P 1, ∆t, nmax − 1)

Vignal et al. [2017] that estimates the error using a first-order backward approximation and
does not require the computation of an additional solution.
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Chapter 5

Results

To show the performance of the theory introduced in the previous chapters several bench-
marks are computed and analyzed in the following. To this end, the lid driven cavity ex-
ample and the flow around a cylinder are considered. Although the computations are only
two-dimensional, the methods and the implementation are not restricted to this.

5.1 Lid driven cavity

In the lid-driven cavity benchmark, a square domain with fluid inside is excited by a prescribed
tangential velocity component on the top. Together with no-slip conditions on the remaining
boundary a circulation emerges. The flow characteristics change depending on the Reynolds
number defined as

Re =
ucL

c

ν
, (5.1)

where uc and Lc are the characteristic velocity and length scales. They were chosen as the
prescribed velocity (on the top) and the side length of the domain. The problem is discretized
for different Reynolds numbers using a conforming mesh with three levels of multi-level hp-
refinement towards the boundaries. The setting is summarized in table 5.1. Figure 5.1
shows the velocity contours and fig. 5.2 - 5.3 compare the solution along the middle lines at
x = 0.5 and y = 0.5 to a reference obtained by Ghia et al. [1982]. Despite the relatively

space

number of elements 3× 3

maximum refinement depth 3

polynomial degree 3

number of dofs 6240

time

∆t 0.025

number of time steps

Re = 100 160

Re = 1000 1600

Re = 5000 8000

Re = 10000 8000

Table 5.1: Discretization of lid driven cavity example.
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(a) Re = 100 (b) Re = 1000

(c) Re = 5000 (d) Re = 10000

Figure 5.1: Velocity contours of the lid driven cavity example for different Reynolds numbers.
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Figure 5.2: Velocity profile comparison at x = 0.5 with Ghia et al. [1982] for the lid driven cavity
benchmark.
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Figure 5.3: Velocity profile comparison at y = 0.5 with Ghia et al. [1982] for the lid driven cavity
benchmark.
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coarse discretization, the solution coincides very well with the reference. This underlines
the effectiveness and flexibility of the multi-level hp-method. In combination with C0 Finite
Elements, the local features such the corner singularity in this example can be decoupled
from the rest of the discretization. This could be even further improved by extending the
adaptive scheme to an anisotropic refinement where elements are bisected only in one spatial
direction.

5.2 Flow around a cylinder

To investigate the performance of the Finite Cell Method, a two-dimensional flow around a
cylinder as defined in Schäfer and Turek [1996] is considered. Above Re ≈ 50, a periodic
vortex shedding (Von Kármán vortex street) arises. The assumption of a two-dimensional
nature of the problem is only valid up to a transition zone from Re ≈ 190 to Re ≈ 400 after
which the flow becomes turbulent and the velocity does not remain uniform in z-direction. A
numerical study of this transition can be found in Rajani et al. [2009] where the development
of the vertical profile for increasing Reynolds numbers is shown. The problem definition is

lx = 2.2

ly = 0.41
0.05

(
0.2
0.2

)

ΓN

ux, uy = 0

ux, uy = 0

ν = 2 · 10−3

ρ = 1
ux = 0
uy = 0

ux = u0
4y(ly−y)

y2

uy = 0

Figure 5.4: Flow around cylinder following Schäfer and Turek [1996].

sketched in fig. 5.4. To introduce a small asymmetry, the cylinder is placed slightly below
ly/2. In the first benchmark, the inflow velocity is chosen as u0 = 0.3, resulting in a steady
flow profile with Re = 20. The Reynolds number is calculated according to eq. (5.1) using as
characteristic velocity the mean value of the inflow profile:

uc =
2

3
u0.

The second benchmark in Schäfer and Turek [1996] investigates the transient behavior at
Re = 100, obtained by selecting u0 = 1.5.

For both scenarios the reference values are compared to the solution obtained with a con-
forming grid and to the solution obtained with the Finite Cell Method. For both methods the
time step was chosen as ∆t = 0.01 in the steady case and ∆t = 0.0025 in the unsteady case.
The initial velocity and pressure fields are assumed to be zero. As the computation of the
Hessian matrix of the element mapping has not been implemented, the second derivatives are
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omitted in computations with conforming meshes. Furthermore, the drag and lift coefficients
are computed as follows:

CD = Cf

∫

S
τny − pnx dS CL = Cf

∫

S
τnx − pny dS, (5.2)

with

Cf =
1

ρru2
c

τ = ρν
∂ut
∂n

= ρν
(
n ·
∑

i

ti∇ui
)

t =

(
ny
−nx

)
.

The line integral over the circle is carried out numerically using a Gauss-Legendre scheme
with p+ 1 integration points.

5.2.1 Conforming mesh

A conforming Finite Element mesh is obtained utilizing blended quadrilaterals. The element
edges corresponding to the boundary of the cylinder consist of parametric arcs. The two
benchmark scenarios are solved on four discretizations. Starting from a base mesh with
polynomial degree 8 layers of multi-level hp-refinement are added successively. To retain a
total number of 6936 degrees of freedom, the polynomial degree is multiplied by 1/2 each
time. The resulting meshes are plotted in fig. 5.5. In all computations a penalty value of
β = 106 was used to apply boundary conditions.

The results in the steady case are summarized in table 5.2. Moreover, fig. 5.6 shows the
temporal evolution of drag and lift coefficients until a steady state is reached. For p = 1
both, drag and lift coefficients deviate significantly from the reference values. Increasing the
polynomial degree results in a much better agreement.

CD CL

p = 1 5.788 0.0055

p = 2 5.600 0.0102

p = 4 5.541 0.0094

p = 8 5.561 0.0103

Schäfer & Turek 5.57− 5.59 0.0104− 0.0110

Table 5.2: Drag and lift coefficients for Re = 20 evaluated at t = 10 using a conforming discretization.

The velocity and pressure fields for Re = 100 are shown in fig. 5.7 and fig. 5.8 at the respective
time step with maximum lift value in fig. 5.10. The gray lines represent the reference solution
bounds from Schäfer and Turek [1996]. Figure 5.9 shows the temporal evolution of drag and
lift coefficients for p = 4. While in the solution fields no significant difference is seen, the drag
and lift forces decrease with p, showing also a considerable difference in phase. In contrast
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(a) Base mesh, p = 8

(b) One levels of refinement, p = 4

(c) Two levels of refinement, p = 2

(d) Three levels of refinement, p = 1

Figure 5.5: Conforming spatial discretizations of the flow around a cylinder.
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Figure 5.6: Evolution of CD and CL for Re = 20 using a conforming discretization.
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(a) p = 1, time step 2084 (b) p = 2, time step 2039

(c) p = 4, time step 2005 (d) p = 8, time step 1999

Figure 5.7: Velocity magnitude contours for conforming discretizations of the flow around a cylinder.

(a) p = 1, time step 2084 (b) p = 2, time step 2039

(c) p = 4, time step 2005 (d) p = 8, time step 1999

Figure 5.8: Pressure contours for conforming discretizations of the flow around a cylinder.
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Figure 5.9: Evolution of drag and lift coefficients for a conforming discretization with p = 4.

to the steady computations the quality of the results does not increase for higher polynomial
degrees. As in the unsteady example the influence of shear forces becomes more important,
the deviation can be attributed more to an error in the velocity fields. In general the results
have shown to be sensitive to the time step. That is, a larger time step causes an over-diffusive
behavior and therefore leads to an underestimation in the drag and lift forces.
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Figure 5.10: Drag and lift coefficients for different conforming discretizations.

5.2.2 Finite Cell discretization

In this section, the flow around a cylinder is discretized using the Finite Cell method. Ad-
ditionally, the mesh is refined towards the cylinder inside a larger box with two levels and
towards the cylinder boundary with three levels of multi-level hp-refinement. The different
configurations are summarized in table 5.3 and plotted in fig. 5.11. Throughout this sec-
tion the blended partitioning approach (cf. Kudela et al. [2015]) was used to handle the
discontinuity in the FCM. The differences to computations using a space tree approach with
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depth p + 1 were not significant. The configuration with a base mesh of 11 × 2 elements

p base mesh β ε number of unknowns

1 88× 16 106 10−7 10593

2 44× 8 105 10−6 11685

4 22× 4 106 10−7 13899

4 22× 4 106 1 13899

Table 5.3: Finite Cell discretizations of the flow around a cylinder.

and p = 8 is not presented here, as it exhibits major oscillations around the cylinder arising
from numerical instabilities related to a high penalty value and a small ε in the Finite Cell
method. Moreover, the difference between using a Finite Cell discretization, i.e. eliminating
the influence from Ωfict, and only applying boundary conditions in an immersed sense is
investigated. To this end, the discretization with p = 4 is also computed with α = 1 and
using the full VMS Navier-Stokes formulation on Ωfict.

(a) p = 1

(b) p = 2

(c) p = 4

Figure 5.11: Finite Cell discretizations of the flow around a cylinder.

Again, we analyze the steady setting first. Table 5.4 compares the drag and lift forces obtained
with the Finite Cell Method. Similar to the conforming discretization, the results for lower
polynomial degrees do not agree well with the reference. This is even more severe as for p = 1
in particular the lift forces are completely wrong.

Now, the unsteady case is analyzed. Figures 5.12 - 5.13 show the velocity and pressure fields.
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CD CL

p = 1 4.735 −0.0418

p = 2 5.576 0.0444

p = 4 5.580 0.0095

p = 4, α = 1 2.821 0.0060

Schäfer & Turek 5.57− 5.59 0.0104− 0.0110

Table 5.4: Drag and lift coefficients for Re = 20 evaluated at t = 10 using FCM.

The drag and lift coefficients are depicted in fig. 5.14. Again, the time step in fig. 5.12 - 5.13
was chosen such that the lift value in fig. 5.14 is maximal. The results confirm the conclusion
from the steady computations that increasing p increases the accuracy significantly in the
Finite Cell Method. Despite this, an optimal agreement was not achieved with the given
discretization. In the computations, a clear improvement of the results can be achieved by
choosing a smaller time step. As an example, the drag and lift forces for p = 4 agree very
well with the reference computations for a time step of ∆t = 0.001. The origin of this error
is therefore not yet clear but can be attributed either to the time integration or the VMS
stabiliztion, which also introduces a time step dependency.

(a) p = 1, time step 2018 (b) p = 2, time step 2002

(c) p = 4, time step 2000 (d) p = 4, α = 1, time step 2017

Figure 5.12: Velocity magnitude contours for FCM discretizations of the flow around a cylinder.

Figures 5.15 - 5.16 show the velocity and pressure solution fields around and inside the
fictitious domain for p = 4. The smooth extension enables optimal convergence in the Finite
Cell Method (cf. Dauge et al. [2015]) only if the influence originating from the fictitious
domain is eliminated. As a consequence, the solution in fig. 5.15b and fig. 5.16b exhibits
oscillations around the interface. While the influence on the large scale characteristics on the
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(a) p = 1, time step 2018 (b) p = 2, time step 2002

(c) p = 4, time step 2000 (d) p = 4, α = 1, time step 2017

Figure 5.13: Pressure contours for FCM discretizations of the flow around a cylinder.
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Figure 5.14: Drag and lift coefficients for different FCM discretizations.

rest of the domain is small, the effect on the solution and its derivatives on the boundary
can not be neglected. As a result the drag and lift forces in both, steady (cf. table 5.4) and
unsteady computations (cf. fig. 5.14) are underestimated. As these quantities are of great
interest in practice, future investigations need to aim also at finding a particular ε that is
small enough to accurately compute forces. This includes in particular the problem that a
modified equation on Ωfict introduces a dependency of ε on problem specific quantities, as
mentioned in section 4.3.
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(a) Diffusion problem on Ωfict with α = 10−7 (b) Navier-Stokes on Ωphys and Ωfict

Figure 5.15: Comparison of velocity fields for different models in Ωfict with p = 4.

(a) Diffusion problem on Ωfict with α = 10−7 (b) Navier-Stokes on Ωphys and Ωfict

Figure 5.16: Comparison of pressure fields for different models in Ωfict with p = 4.
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Chapter 6

Conclusion and Outlook

In the first part of this thesis, it has been demonstrated that the multi-level hp-method repre-
sents a flexible tool to resolve sharp solution characteristics that often arise in the field of fluid
mechanics. The application to advection-diffusion problems shows that spurious oscillations
at boundary layers can be suppressed by refining the mesh locally. Moreover, the combination
of high-order methods with stabilization schemes such as the Variational Multiscale Method
was addressed. A simple expression for choosing the stabilization parameter τ for arbitrary
polynomial degrees has been found in a simple one-dimensional setting that needs yet to be
validated on more complex scenarios.

In the second part, the residual-based Variational Multiscale method was extended towards
the Finite Cell method. The only major modification required is the adaption of the integra-
tion scheme towards a discontinuous integrand. However, an improvement in computation
time and numerical stability can be achieved by choosing a different weak form in the fic-
titious domain. The results presented in chapter 5 show that this approach delivers good
results in combination with the blended partitioning of integration cells. Although drag and
lift coefficients in the flow around a cylinder example deviate from the reference values to
a significant degree, this problem is present also in computations using a conforming mesh.
Therefore, the source of this error can not be related purely to the Finite Cell discretiza-
tion. An additional investigation in this direction is required before more complex scenarios
can be addressed. Furthermore, it has been shown that the combination with a multi-level
hp-refinement provides the required flexibility to adapt Finite Cell discretizations locally in
regions of interest.

On top of this, several tasks remain open. This includes, in particular, extending the weak
imposition of boundary conditions as suggested in chapter 4.2. The possibility to incorporate
a wall model is very attractive as it transfers to immersed boundaries in a straightforward
manner and therefore greatly extends the method’s range of applicability. Furthermore,
the quality of different definitions of τ for the stabilized Navier-Stokes system needs to be
investigated. It is not yet clear, how sensible the method is with respect to the selection of
τ and under which conditions the influence is significant. As mentioned in section 4.4, it is
possible to decrease the overall computation time by extending the time integration to use
an adaptive step size. An automatic selection of ∆t would also go well with the philosophy
of automatizing the solution procedure and therefore reducing the effort for the engineer in
practice.
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Besides the discretization method, it is also of interest to address the solution time of the linear
system of equations. As direct solvers tend to require too much memory on larger problems,
iterative solvers need to be used. As the number of iterations is strongly dependent on the
conditioning of the matrices, the use of preconditioners is indispensable. One possibility
represents the element-by-element inverse preconditioner introduced in Bazilevs et al. [2010].
The concept is to extract element matrices from the final system and assemble the inverse into
the preconditioner. Despite its attractive simplicity concerning the implementation, it is not
clear how the performance changes for high-order elements. A similar approach represents
the SIPIC preconditioner, introduced by de Prenter et al. [2017], where the bad conditioning
is attributed to a small support and a linear dependence of basis functions in badly cut cells.

Last, but not least, the tests performed in chapters 3 and 5 need to be complemented by more
benchmarks and real world examples. In particular, studying the influence of the integration
scheme used to capture the discontinuity in the Finite Cell Method is important to guide the
future development of the method.
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Appendix A

The best approximation property
and Variational Multiscale method

The question, how the optimality of the Bubnov-Galerkin method relates to the Variational
Multiscale method the Galerkin orthogonality is addressed here. Following the introduction
of chapter 2, a symmetric weak form of the type

B(w, u) = F (w) ∀w ∈ W (A.1)

is considered, where the solution u ∈ W was already split, such that the right hand side F
contains the Dirichlet boundary contribution B(w, g). Moreover, B(w, u) defines an inner
product 〈·, ·〉B due to the symmetry in u and w. The discrete Bubnov-Galerkin solution is
obtained by choosing Wh ⊂ W and solving

B(wh, uh) = F (wh) ∀wh ∈ Wh. (A.2)

The exact solution u also satisfies eq. (A.2). Subtraction of both equations yields

B(wh, uh − u) = 0 ∀wh ∈ Wh,

or using the error e = uh − u:

〈wh, e〉B = 0 ∀wh ∈ Wh. (A.3)

In other words, the error is B-orthogonal to the weighting space, which was chosen to be also
the solution space, because of this property. To show, that the solution is an optimal fit, we
consider any qh ∈ Wh and proceed as follows:

B(e+ qh, e+ qh) = B(e, e) +B(e, qh) +B(q, e) +B(qh, qh)

= B(e, e) + 2B(qh, e)︸ ︷︷ ︸
=0, by eq. (A.3)

+B(qh, qh).

As B(qh, qh) ≥ 0, we get

B(e, e) ≤ B(e+ qh, e+ qh) = B(u− uh + qh, u− uh + qh).
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Because q is arbitrary, vh = uh + qh is arbitrary and therefore

B(e, e) ≤ B(u− vh, u− vh) ∀vh ∈ Wh,

the solution uh delivers the best error possible with respect to ‖e‖B =
√
B(e, e):

uh = inf
vh∈Wh

‖u− vh‖B. (A.4)

Equation A.4 is precisely the definition of an orthogonal projection onto Wh in ‖ · ‖B.

Now, we construct a Variational Multiscale method and choose this projector. The coarse
scale equation yields

〈w, u〉+ 〈w, u′〉 = 〈w, f〉. (A.5)

We know, that already the equation 〈w, u〉 = 〈w, f〉 gives an optimal result in ‖ · ‖B. From
this, we can conclude that 〈w, u′〉 = 〈w, e〉 = 0 as it does not contribute to the weak form.
Therefore, from a symmetric operator follows the orthogonality of coarse and unresolved scales
in the B-norm, where the unresolved scales are exactly the error uh − u. Furthermore, the
Variational Multiscale method provides a theoretical framework to optimize Finite Element
methods with respect to a different norm.
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Gui, W. and Babuška, I. (1986a). The h, p and h-p versions of the finite element method in 1
dimension Part I: The error analysis of the p-version. Numerische Mathematik, 49(6):577–
612.
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