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MÜNCHEN

WALTHER -

MEISSNER -

INSTITUT

BAYERISCHE

AKADEMIE DER

WISSENSCHAFTEN

A journey into quantum illumination

Dissertation

Fabian Johannes Kronowetter

http://www.tum.de/
http://www.wmi.badw.de/
http://www.badw.de/
http://www.tum.de/
http://www.wmi.badw.de/
http://www.badw.de/




TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Natural Sciences

A journey into quantum illumination

Fabian Johannes Kronowetter
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Abstract

The second quantum revolution and the associated development of applications that

exploit the distinct properties of individual quantum systems promise to redefine the

limits of technology as we know it today. Along with quantum computing and quantum

communication, quantum sensing is a central pillar of these recent developments. In

quantum sensing, the quantum illumination (QI) scheme, which can be classified as part

of the broader application segment of quantum radar, represents one of these advances

and promises to outperform the best classical radar schemes. The unprecedented potential

of QI relies on quantum-entangled probing states to push the well-known and established

frontiers in object detection. To date, the only successful implementation of QI in the

microwave domain relies on a specific mixing operation of the respective return and idler

modes, followed by single-photon counting in one of the two mixer outputs. In this thesis,

we present decisive advancements for a profound understanding of QI based on such a

mixing scheme. As a first central result, we present a theoretical study on the robustness

of the associated quantum advantage against imperfect detection of the return signals.

We focus on realistic detection parameters in terms of detection efficiency and dark count

probability, and quantify the trade-off between these two metrics in the framework of

QI. We further unveil strongly asymmetric photon-number resolution requirements for

detecting the two mixer outputs due to their largely different mean photon numbers.

In addition, we extend the protocol to introduce correlated photon counting, which is

based on counting photons from both mixer outputs, and identify an ideal weighting

of the respective measurement outcomes in post-processing. Apart from these receiver

characteristics, we identify rigorous requirements for the resource-state purity, which stem

from an inherent fragility of the associated idler mode. The second main result is the

experimental study of a nonlinear Josephson interferometer operating in the microwave

regime. The architecture of our quantum microwave parametric interferometer (QUMPI)

is based on superconducting Josephson parametric amplifiers as nonlinear quantum

elements combined with linear microwave components. While the sensitivity of classical

interferometers is intrinsically bound by shot noise, the usage of quantum input states or

nonlinear quantum elements can push this fundamental bound to the Heisenberg limit. We

find that the interferometric power of the QUMPI exceeds the shot-noise limit and observe

sub-Poissonian photon statistics in the output modes. In addition, we identify a low-gain

operation regime of the QUMPI which is essential for optimal quantum measurements

in QI protocols with frequency-degenerate signal and idler modes. The novel insights

based on these investigations are vital for a profound understanding of QI and successful

experimental implementations approaching fundamental quantum limits.
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Kurzzusammenfassung

Die zweite Quantenrevolution und die damit verbundene Entwicklung von Anwendungen,

die sich die besonderen Eigenschaften einzelner Quantensysteme zunutze machen, eröffnen

die Möglichkeit, die heute bekannten Grenzen der Technologie neu zu definieren. Neben

dem Quantencomputing und der Quantenkommunikation stellt die Quantensensorik einen

zentralen Pfeiler dieser jüngsten Entwicklungen dar. Im Bereich der Quantensensorik

ermöglicht das Quantenbeleuchtungsverfahren (QI), das als Teil des breiteren Anwen-

dungssegments des Quantenradars aufgefasst werden kann, die Empfindlichkeit der besten

klassischen Radarverfahren zu übertreffen. Das beispiellose Potenzial von QI beruht auf der

Verwendung von quantenverschränkten Abtastzuständen, um die Empfindlichkeitsgrenzen

der klassischen Objekterkennung zu überwinden. Bislang beruht die einzige erfolgreiche

Implementierung von QI im Mikrowellenbereich auf einer speziellen Mischoperation der

jeweiligen zurückkehrenden und zurückgehaltenen Signalmoden, gefolgt von einer Ein-

zelphotonenzählung in einem der beiden Mischerausgänge. In dieser Arbeit entwickeln

wir ein tiefgreifendes Verständnis von QI-Verfahren, die auf einem solchen Mischschema

basieren. Als erstes zentrales Ergebnis präsentieren wir eine theoretische Studie zur Ro-

bustheit des prinzipiell möglichen Quantenvorteils gegenüber einer nicht idealen Detektion

der zurückkehrenden Signale. Unsere Studie verwendet realistische Detektionsparameter

für die Detektionseffizienz und die Dunkelzählwahrscheinlichkeit der Mikrowellenphoto-

nen, und quantifiziert den notwendigen Kompromiss zwischen diesen beiden Metriken

im Rahmen von QI. Weiterhin zeigen wir stark asymmetrische Anforderungen an die

Photonenzahlauflösung für die Detektion der beiden Mischerausgänge auf, die aus deren

stark unterschiedlichen mittleren Photonenzahlen resultieren. Darüber hinaus erweitern

wir das Protokoll für die Implementierung einer korrelierten Photonenzählung, die auf

der Zählung von Photonen beider Mischerausgänge basiert, und identifizieren eine ideale

Gewichtung der jeweiligen Messergebnisse in der Nachbearbeitung. Abgesehen von diesen

Empfängereigenschaften definieren wir die notwendigen Anforderungen an die Reinheit

des Ressourcenzustands, die sich aus der inhärenten Fragilität der zugehörigen zurück-

gehaltenen Mode ergibt. Das zweite Hauptergebnis ist eine experimentelle Studie eines

nichtlinearen Josephson-Interferometers, das im Mikrowellenbereich betrieben wird. Die Ar-

chitektur unseres parametrischen Quanten-Mikrowellen-Interferometers (QUMPI) basiert

auf supraleitenden parametrischen Josephson-Verstärkern als nichtlineare Quantenelemen-

te in Kombination mit linearen Mikrowellenkomponenten. Während die Empfindlichkeit

klassischer Interferometer durch Schrotrauschen begrenzt ist, kann die Verwendung von

Quantenzuständen anstelle von klassischen Signalen oder nichtlinearen Quantenelementen

diese fundamentale Grenze bis zum Heisenberg-Limit verschieben. Wir stellen fest, dass
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die interferometrische Leistung des QUMPI die Grenze des Schrotrauschens überschreitet

und beobachten subpoissonische Photonenstatistiken in den Ausgangssignalen. Darüber

hinaus identifizieren wir einen Betriebsmodus des QUMPI mit geringer Verstärkung,

der für optimale Quantenmessungen in QI-Protokollen von grundlegender Bedeutung

ist. Die neuen Erkenntnisse, die auf diesen Untersuchungen beruhen, sind entscheidend

für ein tiefgehendes Verständnis von QI-Verfahren und ihre erfolgreiche experimentelle

Implementierung nahe am fundamentalen Quantenlimit.
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Chapter 1

Introduction

The second quantum revolution comes with a paradigm shift in our understanding and

utilization of quantum phenomena, extending far beyond the theoretical realm into prac-

tical applications that could redefine technology fields, such as information processing,

as we know them today [1–12]. The foundations for these impressive developments were

laid by the first quantum revolution in the early 20th century, which culminated in the

formulation of revolutionary theories like quantum mechanics and quantum electrodynam-

ics [13–17]. The second quantum revolution has been enabled by our ability to design,

control and manipulate quantum systems in unprecedented ways. This makes it possible

to create artificial quantum systems and tailor them for specific applications. Based on

this approach, a tremendous technological progress has been achieved in various fields,

including quantum computing [18–28], quantum communication [29–34], and quantum

sensing and metrology [35–39]. The basic ingredients for these advances are inherent

quantum phenomena, such as quantum squeezing [40, 41], quantum superposition [42],

and quantum entanglement [17]. In quantum sensing and metrology, novel approaches

based on these phenomena enable an unprecedented level of precision and sensitivity [43].

The quantum illumination (QI) scheme, associated with the broad application segment of

quantum radar, represents one of these approaches and can outperform the best classical

radar schemes. Conventional radar architectures are based on sending a classical elec-

tromagnetic signal (e.g. microwave radiation) to an object and inferring information on

the object by measuring and interpreting the reflected signal portions [43–46]. In general,

the search for improved radar systems is ever-present for a wide range of applications,

spanning from the medical sector to space exploration. QI relies on the use of entangled

resource states to go beyond the state of the art in object detection. The QI protocol was

first proposed in 2008 [47, 48] at optical frequencies for both discrete variable [47] and

continuous variable (CV) quantum states [48]. As it turned out, the use of CV quantum

states is compatible with classical radar architectures. Optical frequencies, however, are

inherently incompatible with the requirement of a bright thermal background in QI [48, 49].

These findings led to a refocus of QI toward microwave frequencies that are naturally

subject to a strong thermal background at ambient conditions. As a further limitation, the

QI protocol only outperforms classical radar schemes for weakly reflecting objects and low

1



2 Chapter 1 Introduction

powers of the probing signals. Intuitively, the QI-based approaches excel where classical

counterparts fail: in traditional sensing systems, the detection of weak signals is hindered

by background noise, limiting their effectiveness in scenarios where precision is crucial.

QI, however, leverages the highly correlated nature of the entangled probing signals to

discriminate the faint signal from pure background noise with unprecedented sensitivity.

The pioneering insights into QI propelled a plethora of theoretical and experimental

studies exploring quantum object detection based on QI [50–64]. The ongoing efforts in

QI exemplify the frontier of quantum technologies, marking a significant stride towards

harnessing quantum principles for practical and impactful real-world applications.

Transferring quantum information protocols into the microwave realm poses numerous

experimental hurdles. The comparatively low energy of single microwave quanta in the

gigahertz range (1 GHz corresponds to about 50 mK) mandates cryogenic conditions -

typically in the low tens of millikelvins range - to suppress the unwanted thermal noise.

Furthermore, a general prerequisite for the operation of the employed superconducting

circuits is a system temperature below the respective critical temperatures. Additionally,

these superconducting circuits are based upon sophisticated fabrication techniques and

tailor-made for operation at specific working frequencies. The cryogenic circuitry is

interfaced by state-of-the-art microwave devices at room temperature, which enable control

and readout of the quantum signals at the cryogenic stage. These measurement techniques

require advanced signal recovery methods [65, 66]. The development and pioneering of such

techniques have been undertaken at the Walther-Meißner-Institut (WMI) over the past

decade [65, 67–74]. The corresponding central groundwork encompasses the development

of advanced signal reconstruction techniques allowing for full Wigner tomography [67]

and associated photon-number calibration methods [70]. The subsequent experimental

realization of microwave squeezing [75], path entanglement with propagating quantum

microwaves [65], and coherent displacement in phase space [76] complete the tool set

for conducting advanced protocols, such as remote-state preparation [77], deterministic

quantum teleportation [78], and microwave quantum key distribution [79].

The first main building block of this thesis is a theoretical discussion of different QI

detection schemes [54]. In general, there are proposals for different QI schemes that all aim

at harnessing remaining quantum correlations of an entanglement-based resource state.

This two-mode quantum state is composed of a so-called signal mode, which is employed

as a probe tone, and an idler mode, which is retained for a subsequent measurement in

conjunction with the returned signal. To this date, the only successful implementation of

QI in the microwave domain [55] relies on a specific mixing operation of the respective

return and idler modes, followed by single-photon counting in one of the two mixer outputs.

We investigate the performance of this scheme for realistic detection parameters regarding

detection efficiency, dark count probability, and photon number resolution. Furthermore,

we take into account the second mixer output and investigate the advantage of correlated

photon counting (CPC) for a varying thermal background and optimum post-processing
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weighting in CPC. We find that the requirements for photon number resolution in the

two mixer outputs are highly asymmetric due to different associated photon number

expectation values. In addition, we observe that the requirements regarding purity of the

resource state are stringent, caused by high purity demands for the idler mode, while we

observe a robustness against finite detection efficiencies of the single-photon detectors.

The second central component of this thesis is an experimental study of a nonlinear

Josephson interferometer operating in the microwave regime [80]. While classical interfer-

ometers (operating with classical signals such as coherent light) are indispensable tools

for the precise determination of various physical quantities, their accuracy is ultimately

bound by the standard quantum limit. This limit can be overcome by using quantum

states or nonlinear quantum elements. Our quantum microwave parametric interferome-

ter (QUMPI) is based on superconducting flux-driven Josephson parametric amplifiers

(JPAs) [81–83] as the nonlinear element combined with linear microwave elements. Such

JPAs are established devices for various applications [84–87], such as quantum-limited

phase-sensitive amplification [73] or generation of entangled two-mode squeezed (TMS)

states [88]. We perform a systematic analysis of the implemented QUMPI. We find that

its interferometric power exceeds the shot-noise limit and observe a sub-Poissonian photon

statistics in the output modes. Furthermore, we identify a low-gain operation regime of

the QUMPI which is essential for optimal quantum measurements in QI protocols.

The structure of this thesis is outlined as follows. First, we introduce some fundamen-

tal concepts of quantum information with propagating microwaves based on Gaussian-

distributed states in chapter 2. In particular, we motivate continuous-variable (CV) states

in quantum information and discuss Gaussian states of light with the most important

single-mode and two-mode states. In addition, we briefly motivate different quantities

of central importance for the analysis and categorization of such states, e.g., quantum

entanglement and the degree of second-order coherence. Next, in chapter 3, we present a

theory study on QI. After a brief discussion of classical radar and some basics on hypothesis

testing, we present the Gaussian QI protocol that relies on entangled two-mode resource

states. The additional information encoded into these quantum states, compared to the

classical states used in the optimal classical radar scheme, needs to be harnessed by means

of suitable detection schemes, which is an ongoing field of research [49]. We evaluate the

most promising detection schemes in terms of performance and implementation. Next,

we discuss the robustness of these QI schemes against unavoidable imperfections, such

as a non-ideal purity of the resource states, an imperfect idler storage, and a realistic

receiver performance. We conclude the chapter with a brief analysis of applications that

go beyond binary detection in QI and a discussion of our findings. In chapter 4, we then

motivate superconducting quantum technology as a platform for conducting experiments

with propagating quantum microwaves. Here, we briefly introduce basic concepts of

superconductivity, Josephson junctions, dc-SQUIDs and JPAs. Chapter 5 covers the

experimental techniques used for conducting experiments with quantum microwaves at
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millikelvin temperatures. Besides describing a cryogenic setup, we introduce the room-

temperature electronics and important measurement techniques, such as the output line

calibration and the experimental characterization of flux-driven JPAs. In chapter 6, we

present an experimental realization of a quantum microwave parametric interferometer

composed of balanced microwave beam splitters and JPAs. In a first step, we conduct a

frequency-resolved network analysis, which is fundamental for a thorough understanding

of the design requirements of our device. Next, we introduce a theory model for simulating

the behavior of the interferometer at a fixed operation frequency. The main results of this

chapter encompass a detailed study of the interferometer and its application potential

in quantum information processing, and specifically, in the framework of QI. Finally, we

summarize our key results and provide a brief outlook in chapter 7.



Chapter 2

Gaussian quantum information with

propagating microwaves

In this chapter, we present some fundamental theoretical concepts that are necessary for a

thorough understanding of the experimental results obtained within this thesis. In a first

step, we introduce the concept of continuous variables in quantum information in Sec. 2.1.

In Sec. 2.2, we discuss various Gaussian states and their corresponding characteristics. The

intriguing concept of quantum entanglement, which lays the foundation for a plethora of

quantum schemes and protocols, is addressed in Sec. 2.3. Finally, in Sec. 2.4 we introduce

the second-order correlation function, which can be used to categorize the nature and

underlying statistics of electromagnetic waves.

2.1 Continuous variables in quantum information

In quantum physics, intuitive concepts that are inherent to quantum phenomena, such as

quantum superposition and entanglement, are often associated with discrete-variable (DV)

states. In this context, quantum superposition can be nicely illustrated based on the

two logical basis states of a qubit, |0⟩ and |1⟩ in Dirac notation, according to its wave

function |ψ⟩ = c0|0⟩ + c1|1⟩, where c0 and c1 are complex coefficients describing the

weight of the corresponding basis state in the superposition [6]. Similarly, quantum

entanglement between two parties A and B corresponds to a nonlocal wave function

|ψAB⟩ = 1/
√

2 (|0⟩A ⊗ |1⟩B − |1⟩A ⊗ |0⟩B). The extension from discrete to continuous

variables (CV), and hence to infinite dimensions, is a natural and logical approach for

various applications in quantum information processing [6, 78, 89]. The preparation,

unitary transformation, and measurement of quantum states is implementable in a

straightforward manner with CVs, such as continuous quadrature amplitudes of the

quantized electromagnetic field [6]. For example, squeezed electromagnetic fields enable

the straightforward generation of CV entanglement, while homodyne detection represents

an established measurement technique for accessing the information encoded in the

continuous phase-space quadratures [6]. Next to these practical and efficiency-based

considerations, schemes based on CVs stand out due to their unconditional character,

5
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which is difficult to achieve in DV settings based on qubits or single-photon states [6].

The generation of squeezed states, and similarly of entangled states, unconditionally

occurs at a timescale inversely proportional to the corresponding bandwidth [6]. However,

the generated entangled states suffer from a finite degree of entanglement, and only

converge to an equivalent of the maximally entangled EPR state in the threshold of very

large squeezing [6]. Accordingly, CV approaches excel in terms of generation efficiency

and deterministic character, but never reach perfect operation in realistic experimental

settings. A variety of CV protocols can be fully described in the framework of Gaussian

operations, i.e., interaction Hamiltonians that are at most quadratic in terms of the bosonic

mode operators and maintain the Gaussian statistics of input states [6, 54, 78, 90, 91].

Throughout this work, we focus on Gaussian CV quantum information.

2.1.1 Quadrature operators of the quantized electromagnetic field

In quantum information, electromagnetic modes are quantized and, for a harmonic

potential, can be well described by quantum harmonic oscillators with a Hamiltonian [92]

Ĥk = ℏωk

(
â†

kâk + 1
2

)
, (2.1)

where ℏ is the reduced Planck constant, k is the mode index, ωk is the corresponding

angular frequency, and â†
k and âk are the bosonic creation and annihilation operators,

respectively. The corresponding bosonic commutation relations are

[âk, â
†
k′ ] = δkk′ and [âk, âk′ ] = 0. (2.2)

The Hamiltonian in Eq. (2.1) can also be expressed as

Ĥk = 1
2(p̂2

k + ω2
kx̂

2
k), (2.3)

where p̂k and x̂k are the momentum and position operators, which can be expressed via

the creation and annihilation operators according to

x̂k =
√
ℏ

2ωk

(âk + â†
k), (2.4)

p̂k = 1
i

√
ℏωk

2 (âk − â†
k), (2.5)

where i is the imaginary unit, and where we employ the commutation relation for position

and momentum

[x̂k, p̂k′ ] = iℏδkk′ . (2.6)
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For the propagating electromagnetic modes, the quantum harmonic oscillators’ position

and momentum operators correspond to the quadrature operators, which we introduce as

dimensionless, Hermitian quantities [93]

q̂k ≡
√
ωk

2ℏ x̂k = âk + â†
k

2 , (2.7)

p̂k ≡
√

1
2ℏωk

p̂k = âk − â†
k

2i , (2.8)

with a commutation relation given by

[q̂k, p̂k′ ] = i
2δkk′ . (2.9)

From a classical viewpoint, these quadrature operators correspond to the real and imaginary

part of the complex oscillator amplitude for a single mode k [6]. Importantly, the

Heisenberg uncertainty relation for any arbitrary quantum state in terms of two non-

commuting observables Ô1 and Ô2 is given by [94]

⟨(∆Ô1)2⟩⟨(∆Ô2)2⟩ ≥ 1
4 |⟨[Ô1, Ô2]⟩|2, (2.10)

where the variance (∆Ô)2 of an observable Ô is

⟨(∆Ô)2⟩ = ⟨(Ô − ⟨Ô⟩)2⟩ = ⟨Ô2⟩ − ⟨Ô⟩2. (2.11)

As a consequence of Eq. (2.9) combined with Eq. (2.10), the propagating-field quadratures

possess a finite variance

⟨(∆q̂)2⟩⟨(∆p̂)2⟩ ≥ 1
4 |⟨[q̂k, p̂k]⟩|2 = 1

16 . (2.12)

The classical counterparts of the quadrature operators q̂ and p̂ are the in-phase (I) and

quadrature (Q) components of the complex classical signal, respectively [95]. Since the

global phase reference is arbitrary, one can define generalized quadratures [92]

(
q̂θ

k

p̂θ
k

)
=
(

cos θ sin θ
−sin θ cos θ

)(
q̂k

p̂k

)
, (2.13)

which are rotated globally by a phase θ.
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2.1.2 Representations of quantum states

An arbitrary pure state |Ψ⟩ of the electromagnetic field is defined by a linear superposition

of the products of photon-number states of the distinct modes [93]

|Ψ⟩ =
∑
n1

. . .
∑
nm

. . . Cn1···nm···|n1⟩1 ⊗ . . .⊗ |nm⟩m ⊗ . . . , (2.14)

where the summation runs over the entire set of photon numbers n1 to nm and ⊗ denotes

the tensor product. Importantly, pure states are composed of photon-number states with

the weight of the number states given by the complex coefficients Cn1···nm . For some

fundamental pure states of the electromagnetic field, Eq. (2.14) reduces to a superposition

of solely single-mode states, such as coherent states (see Sec. 2.2.3) or squeezed states (see

Sec. 2.2.4). A two-mode example of a pure state is the photon pair state. Conversely, not

all excitations of the electromagnetic field are encompassed by the description of pure

states according to Eq. (2.14). In this case, one can only rely on a set of probabilities for

the field to be characterized by a pure state according to Eq. (2.14). The corresponding

quantum state is a statistical mixture of pure states and is often referred to as a mixed

state. An important example of the statistical mixture is the thermal state characterized

by its temperature T , introduced in Sec. 2.2.2. In the quantum description, statistical

mixtures are described by the density operator

ρ̂ =
∑

k

Pk|ψk⟩⟨ψk|, (2.15)

where Pk is the probability of the quantum state to be in the pure state |ψk⟩, such that∑
k Pk = 1 with 0 ≤ Pk ≤ 1. Consequently, a pure state is a specific case of a mixed state

for which one probability within the sum is unity, while all remaining sum elements are

zero [56, 93]. Opposed to mixed states, pure states fulfill the relation

ρ̂2 = ρ̂. (2.16)

The expectation value of an operator Ô can be obtained via the trace operation

⟨Ô⟩ = Tr(Ôρ̂) =
∑

k

Pk⟨ψk|Ô|ψk⟩. (2.17)

Thus, the density matrix formalism is especially convenient for the expectation value

analysis in both, pure and mixed scenarios. For an alternative description of a general

N -mode quantum state, we can define a vector operator

r̂ = (q̂1, p̂1, . . . , q̂N , p̂N), (2.18)
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composed of the set of single-mode quadrature operators, which enters in the operator

Ô(ξ) = exp
(
ir̂T Ω ξ

)
, (2.19)

where Ω is the symplectic form of dimension 2N × 2N

Ω = ⊕N
k=1ω with ω =

(
0 1

−1 0

)
, (2.20)

and ξ ∈ R2N . The symmetrically ordered characteristic function χ of an arbitrary quantum

state is linked to its density operator via [96]

χ(ξ) = Tr
[
ρ̂ Ô(ξ)

]
. (2.21)

The Fourier transform of the symmetrically ordered characteristic function, also known as

the Wigner function W , can be written as [97, 98]

W (r) =
∫

R2N

d2Nξ

(2π)2N
exp

(
−irT ω ξ

)
χ(ξ). (2.22)

The Wigner function is a quasi-probability distribution that is normalized according

to
∫∞

−∞ W (r)dr = 1. The continuous variables r constitute the quadrature operators

eigenvalues [6]. In its general form, the Wigner function can be non-positive [6]. A

marginal distribution of a subset m of the 2N field quadratures can be straightforwardly

calculated by integration of W (r) over the 2N − m residual field quadratures [6]. For

instance, the marginal distribution of one local mode k of an N -mode state can be obtained

via

W (qk, pk) =∫ ∞

−∞
. . .
∫ ∞

−∞
W (q1, . . ., qk−1, pk−1, qk+1, pk+1, . . ., pN)dq1. . .dqk−1dpk−1dqk+1dpk+1. . .dpN .

(2.23)

The Wigner function is a versatile tool to obtain expectation values of arbitrary quantities

that are symmetric in â and â†, in particular the field quadratures [6]. Importantly, a

variety of alternative quasi-probabilities is used in quantum information. Among these

are the P -function [99, 100], which is particularly useful for calculating mean values of

operators normally ordered in â and â†. The Q-function [101], on the other hand, is

well-suited for calculating mean values of operators anti-normally ordered in â and â† [6].

In the picture of a single-mode quantum state, the signal moments ⟨(â†)k âl⟩ with

k, l ∈ N0 fully describe the corresponding state, similar to the density operator [102]. The

signal moments can be analogously expressed for multimode states. For a two-mode state
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they are given by ⟨(â†
1)k (â†

2)l âm
1 â

n
2 ⟩ with k, l,m, n ∈ N0. In general, such a full description

requires knowledge of the infinite number of signal moments. There are, however, certain

classes of states that can be fully described by a finite number of signal moments. One of

such classes are Gaussian states, introduced in the next section [103].

2.2 Gaussian states of light

In this section, we discuss Gaussian states, a class of particularly useful quantum states of

light that are fully characterized by signal moments up to second order, which allows for a

straightforward mathematical description [104]. The uniqueness of these states lies in their

versatility and simplicity, which is exploited in many quantum information processing

and quantum communication protocols. Gaussian states follow a Gaussian probability

distribution of their field quadratures with a positively defined Wigner function [6]. This

class of states is of central importance for the theoretical study presented in Ch. 3 and

for the experimental results presented in Ch. 6. A convenient approach to describe an

arbitrary N -mode Gaussian state is given by the statistical moments of its quadratures.

We introduce the displacement vector d as the first statistical moment

d = ⟨r̂⟩, (2.24)

which carries information on the mean field amplitude of all 2N quadratures of the

N -mode electromagnetic state. We further define a covariance matrix V, a 2N × 2N real

symmetric matrix, as the second statistical moment with

V = ⟨r̂kr̂l + r̂lr̂k⟩
2 − ⟨r̂k⟩⟨r̂l⟩, (2.25)

for k, l = 1, . . ., 2N . Accordingly, any Gaussian state can be fully described by a suitable

d and V [6, 7]. The associated purity can be directly obtained from the covariance matrix

according to

µ = 1
4N

√
det(V )

. (2.26)

Pure Gaussian states are characterized by det(V ) = 4−2N , while mixed states satisfy

0 ≤ µ < 1, where µ = 0 corresponds to a maximally mixed state [105]. The Wigner

function of an N -mode Gaussian state is given by

W (r) =
exp

[
−1

2(r − d)V −1(r − d)T
]

(2π)N
√

det(V )
. (2.27)

In this work, we focus on two-mode systems (N = 2) that are described by a 4 × 4
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Figure 2.1: The vacuum state illustrated via (a) its Wigner function and (b) the associated electric field

with an angular carrier frequency ω. The gray dots in (b) are 3000 randomly sampled points

from the underlying Gaussian distribution, the light gray line is a guide to the eye. The

solid dark blue line depicts the associated mean, whereas the dashed blue lines show the

2σ confidence interval of the vacuum fluctuations.

covariance matrix

V =
(

A C

CT B

)
, (2.28)

where A and B are 2 × 2 matrices that characterize the local properties of modes A and

B, respectively. The associated cross-correlations between both local modes are captured

in the 2 × 2 matrix C.

2.2.1 Vacuum state

The quantum-mechanical ground state is characterized by a finite, non-zero energy, which

is a direct consequence of the bosonic commutation relation [106]. This lowest energy

state is referred to as the vacuum state, |0⟩, carrying an energy of half a photon, often

referred to as the vacuum fluctuations [6]. These fluctuations manifest themselves, based

on our convention, in a quadrature variance of (∆q)2 = (∆p)2 = 1/4. Consequently, for a
single mode the vacuum state is characterized by

dvac = 0, V vac = I2

4 , (2.29)

where I2 is the 2 × 2 identity matrix. Figure 2.1(a) shows the corresponding Wigner

function, Fig. 2.1(b) depicts the associated electric field in the time domain. Importantly,

this vacuum variance is a direct consequence of the definition of the quadrature operators

[cf. Eqs. (2.7) and (2.8)]. Since this definition is arbitrary, one needs to pay attention on

the underlying reference when performing a quantitative analysis of electromagnetic states.

Other vacuum variance definitions often found in literature are 1/2 and 1 [6, 93, 97].
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Figure 2.2: Thermal state with nth = 3 photons illustrated via (a) its Wigner function and (b) the

associated electric field with an angular carrier frequency ω. The gray dots in (b) are 3000

randomly sampled points from the underlying Gaussian distribution, the light gray line is a

guide to the eye. The solid dark blue line depicts the associated mean, whereas the dashed

blue lines show the 2σ confidence interval of the thermal fluctuations.

2.2.2 Thermal state

The vacuum state can be understood as a thermal state with equilibrium temperature

T = 0. At finite temperatures, T > 0, a thermal state is characterized by its density

matrix operator

ρ̂th =
∑

n

nn
th

(1 + nth)n+1 |n⟩⟨n|, (2.30)

where |n⟩ is a Fock state of a single mode with frequency ω. The density matrix operator in

Eq. (2.30) is fully described by the corresponding equilibrium photon number distribution

that follows the Bose-Einstein statistics [107]

nth = ⟨â†â⟩ = 1
exp( ℏω

kBT
) − 1

, (2.31)

where kB is the Boltzmann constant and ℏ is the reduced Planck constant. The normally

ordered signal moments of a thermal state are given by

⟨(â†)mân⟩ = n!nn
thδnm. (2.32)

The mean and covariance matrix of a thermal state are

dth = 0, V th = (1 + 2nth) I2

4 . (2.33)

Figure 2.2(a) shows an exemplary Wigner function of a thermal state, Fig. 2.2(b) depicts

the associated electric field distribution in the time domain with a clear broadening of its
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Figure 2.3: Coherent state with a displacement angle θ = 3π/4 and displacement amplitude |α|2 = 10
illustrated via (a) its Wigner function and (b) the associated electric field with an angular

carrier frequency ω. The gray dots in (b) are 3000 randomly sampled points from the

underlying Gaussian distribution, the light gray line is a guide to the eye. The solid dark

blue line depicts the associated mean, whereas the dashed blue lines show the 2σ confidence

interval of the coherent state.

variance as compared to Fig. 2.1.

2.2.3 Coherent state

A coherent state |α⟩ can be generated by applying the displacement operator [104]

D̂(α) = exp
(
α â† − α∗â

)
(2.34)

to the vacuum state according to [99]

|α⟩ = D̂(α)|0⟩ = exp
(

−|α|2

2

)∑
n

αn

√
n!

|n⟩. (2.35)

The complex displacement amplitude, α = |α|exp(i(π/2−θ)) = P+iQ, carries information

about the average number of displacement photons, nd = |α|2, and the displacement angle

θ, which we define with respect to the p-axis, as illustrated in Fig. 2.3(a). The coherent

state is also an eigenstate of the annihilation operator

â|α⟩ = α|α⟩. (2.36)

Figure 2.3(a) illustrates the Wigner function of a coherent state with |α|2 = 10 and

θ = 3π/4. Figure 2.3(b) shows the corresponding electric field in the time domain with

an identical variance as the vacuum state (cf. Fig. 2.1). Correspondingly, coherent states

are minimum-uncertainty, pure states with µ = 1. The expectation value and covariance
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Figure 2.4: Photon-number probability distributions of coherent states with different mean photon

numbers, according to Eq. (2.39).

matrix of a coherent state are

dcoh =
(
P

Q

)
=
(

Reα
Imα

)
, V coh = I2

4 . (2.37)

From an intuitive point of view, the sinusoidal oscillations of strong coherent states,

α ≫ 1, resemble the characteristics of a harmonic oscillator supplemented by the quantum

mechanical vacuum noise. The relative uncertainty of the coherent state photon number

is [93]
∆n
⟨n⟩

= 1
|α|

= 1√
n
, (2.38)

which decreases with increasing |α| and illustrates the vanishing quantum signatures

in coherent states towards large mean photon numbers, n ≫ 1. Figure 2.4 shows the

Poisson-type photon-number probability distributions of coherent states for different mean

photon numbers

P (n) = |⟨n|α⟩|2 = exp
(
−|α|2

) |α|2n

n! = exp (−⟨n⟩) ⟨n⟩n

n! . (2.39)

2.2.4 Squeezed vacuum state

So far, we exclusively considered Gaussian states with a uniform variance in phase space.

Single-mode squeezed (SMS) states break this rotational symmetry and exhibit a distorted,

ellipsoidal probability distribution in phase space. Importantly, the minimal variance

of such SMS states is lower than the vacuum variance. Consequently, the orthogonal,

maximal variance of SMS states must be increased accordingly, hence the terminology
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squeezed. The SMS vacuum state is defined as

|ξ⟩ = Ŝ(ξ)|0⟩, (2.40)

where the squeeze operator is

Ŝ(ξ) = exp
[1
2ξ

∗â2 − 1
2ξ
(
â†
)2
]
, (2.41)

and ξ = reiφ denotes the complex squeeze parameter with the squeeze factor r, and the

corresponding phase φ that carries information on the squeezing orientation in phase

space. The squeeze factor r encodes the squeezed (or minimum) variance, σ2
s , as well as

the anti-squeezed (or maximum) variance, σ2
a, according to

σ2
s = 1

4e
−2r and σ2

a = 1
4e

2r. (2.42)

Note that the prefactor of 1/4 in Eq. (2.42) stems from our definition of the vacuum

fluctuations [cf. Eq. (2.29)] and that Eq. (2.42) is only valid for pure states. The level of

squeezing and anti-squeezing can be also expressed in decibel as [108]

S ≡ −10 log10(4σ2
s ) and A ≡ 10 log10(4σ2

a), (2.43)

respectively. While the definition of the SMS vacuum state in Eq. (2.40) is similar to

its counterpart for coherent states [cf. Eq. (2.35)], the squeeze operator has a quadratic

exponent in terms of the creation and annihilation operators in contrast to the linear

displacement operator [cf. Eq. (2.34)]. The squeeze operator is a unitary operator with [109]

Ŝ†Ŝ = ŜŜ† = 1. (2.44)

Analogous to coherent states, squeezed states can be expressed in the Fock basis as [97]

|ξ⟩ =
√

sech r
∞∑

n=0
(−1)n

√
(2n)!
n!

[
exp(iφ) tanh r

2

]n

|2n⟩. (2.45)

This shows that an ideal SMS vacuum state is formed by even-numbered Fock states |2n⟩.
The photon-number expectation value of SMS vacuum states can be evaluated as [110]

⟨n⟩ = ⟨ξ|â†â|ξ⟩ = ⟨0|Ŝ†(ξ)â†Ŝ(ξ)Ŝ†(ξ)âŜ(ξ)|0⟩ = sinh2 r, (2.46)

which can be straightforwardly calculated via the squeezing operator transformation [97]

Ŝ†(ξ)â†Ŝ(ξ) = â cosh r − â†eiφsinh r, (2.47)
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Figure 2.5: Squeezed vacuum state with a squeeze factor r = 1 and squeeze angle γ = π/4 illustrated

via (a) its Wigner function and (b) the associated electric field with an angular carrier

frequency ω. The gray dots in (b) are 3000 randomly sampled points from the underlying

Gaussian distribution, the light gray line is a guide to the eye. The solid dark blue line

depicts the associated mean, whereas the dashed blue lines show the 2σ confidence interval

of the squeezed vacuum fluctuations.

and its Hermitian conjugate

Ŝ†(ξ)âŜ(ξ) = â†cosh r − â e−iφsinh r. (2.48)

The corresponding photon-number variance is

(∆n)2 = 2⟨n⟩(⟨n⟩ + 1). (2.49)

Equation (2.46) yields zero in the case of no squeezing, r = 0, coinciding with the vacuum

state, and increases with increasing r. The average field amplitude and covariance matrix

of the SMS state are given by

dsq = 0, V sq = 1
4

(
e−2rcos2 φ

2 + e2rsin2 φ
2 −sinh2r sinφ

−sinh2r sinφ e2rcos2 φ
2 + e−2rsin2 φ

2

)
. (2.50)

Similar to the phase convention of coherent states, we introduce the squeeze angle,

γ = −φ/2, as the angle between the anti-squeezed quadrature direction and the p-axis,

illustrated in Fig. 2.5(a).

2.2.5 Squeezed coherent state

A central question for applications relying on squeezed states is how one can leverage

the reduced quadrature noise in practical scenarios. While a wide range of classical

communication and sensing applications relies on coherent resource states combined
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Figure 2.6: Amplitude-squeezed state with squeeze factor r = 1, squeeze angle γ = π/4, displacement

angle θ = 3π/4 and |α|2 = 10 illustrated via (a) its Wigner function and (b) the associated

electric field with an angular carrier frequency ω. The gray dots in (b) are 3000 randomly

sampled points from the underlying Gaussian distribution, the light gray line is a guide to

the eye. The solid dark blue line depicts the associated mean, whereas the dashed blue lines

show the 2σ confidence interval of the squeezed vacuum fluctuations.

with homodyne detection, the zero mean of SMS vacuum states hinders their use in

these protocols. We introduce the displaced squeezed state |α, ξ⟩, which overcomes

this restriction. This class of states is generated by squeezing the vacuum state and

subsequently applying the displacement operation [97]

|α, ξ⟩ = D̂(α)Ŝ(ξ)|0⟩. (2.51)

Accordingly, this state has unit purity and is characterized by

ddisp,sq =
(

Reα
Imα

)
, V disp,sq = 1

4

(
e−2rcos2 φ

2 + e2rsin2 φ
2 −sinh2r sinφ

−sinh2r sinφ e2rcos2 φ
2 + e−2rsin2 φ

2

)
, (2.52)

and the photon-number properties

⟨n⟩ = |α|2 + sinh2 r, (2.53)

(∆n)2 = |α cosh r − α∗e−iφsinh r|2 + 2 cosh2 r sinh2 r. (2.54)

As can be seen from Eq. (2.52), the squeezed coherent state carries the same coherent

information α as a coherent state in the first statistical moment, while the underlying

phase-dependent noise (or variance) can be suppressed below the vacuum limit. The

SNR of squeezed coherent states depends on the distinct phase angles θ and φ and can

exceed the coherent-state reference by a factor of exp(2r) [93]. This maximized SNR is

achieved with amplitude-squeezed states, where the displacement angle is orthogonal to
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Figure 2.7: Phase-squeezed state with squeeze factor r = 1, squeeze angle γ = 3π/4, displacement angle

θ = 3π/4 and |α|2 = 10 illustrated via (a) its Wigner function and (b) the associated electric

field with an angular carrier frequency ω. The gray dots in (b) are 3000 randomly sampled

points from the underlying Gaussian distribution, the light gray line is a guide to the eye.

The solid dark blue line depicts the associated mean, whereas the dashed blue lines show the

2σ confidence interval of the squeezed vacuum fluctuations.

the squeeze angle, i.e., θ = γ ± π/2 [cf. Fig. 2.6(a)]. This family of states is characterized

by a reduced photon-number uncertainty compared to coherent states, while the associated

phase uncertainty is increased [97]. Figure 2.6(b) shows the time-dependent electric field of

the amplitude-squeezed state in Fig. 2.6(a) with a reduction in the amplitude uncertainty,

illustrated by its standard deviation coinciding with σs, and an enlarged phase uncertainty,

σa. The orthogonal ensemble of states with θ = γ (±π, because of the symmetry of

the squeezed state) is called phase-squeezed states, shown in Fig. 2.7. In contrast to

amplitude-squeezed states, these states are characterized by reduced phase uncertainties

at the cost of magnified amplitude noise, illustrated in Fig. 2.7(b).

Figure 2.8 can be understood as a phase diagram of the introduced single-mode Gaussian

states as a function of quadrature variances. The global threshold for the entire family of

minimum-uncertainty states, defined by Eq. (2.12), is illustrated in orange and encompasses

all squeezed states with unit purity. The coherent state, shown as the dark blue dot can be

interpreted as the minimum uncertainty state with symmetric variance (∆q)2 = (∆p)2 =
1/4. Note that since Fig. 2.8 does not reflect the average field amplitude, the vacuum

state coincides with the coherent states. The class of thermal states corresponds to the

blue line over the main diagonal. The purple horizontal and vertical lines illustrate the

vacuum variance threshold for (∆q)2 and (∆p)2, respectively. Hence, all states that can

be found below this limit (in the purple-shaded areas) correspond to non-pure, or noisy,

squeezed states. These states are highly relevant in experiment, since realistic squeezed

states always carry a finite amount of noise. States that do not follow a uniform variance

distribution in phase space, but exhibit a minimum variance larger than the vacuum

fluctuations are called squashed states (green color).
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Figure 2.8: Phase diagram of single-mode Gaussian states. The white region corresponds to unphysical

states that violate the Heisenberg uncertainty relation in Eq. (2.12).

2.2.6 Two-mode squeezed vacuum state

In the following, we expand the picture from the fundamental Gaussian single-mode

states [k = 1 in Eq. (2.1)] to a two-mode case (k = 2) by introducing a unitary two-mode

squeezing (TMS) operator [1, 6]

ŜTMS(ξ) = exp(ξ∗â1â2 − ξâ†
1â

†
2), (2.55)

where ξ = r exp(iφ) is the two-mode squeezing parameter analogous to the single-mode

case, and âk (k = 1, 2) refer to the two distinct vacuum modes. Similar to the single-mode

transformation, the operator implements the transformations

Ŝ†
TMS(ξ)â1ŜTMS(ξ) = â1cosh r + â†

2e
iφsinh r, (2.56)

Ŝ†
TMS(ξ)â2ŜTMS(ξ) = â2cosh r + â†

1e
iφsinh r. (2.57)

The TMS vacuum state generated by the TMS operator in Eq. (2.55) has unit purity and

is identical to a sequence (illustrated in Fig. 2.9) of generating two orthogonal single-mode

squeezed vacuum states with equal squeeze amplitude r,

b̂1 = â1cosh r + â†
1e

iφsinh r, (2.58)

b̂2 = â2cosh r + â†
2e

i(φ±π)sinh r, (2.59)
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Figure 2.9: Scheme for the generation of TMS vacuum states. JPA 1 and JPA 2 generate two single-mode

squeezed states, b̂1 and b̂2, with identical squeeze amplitude and orthogonal amplification

orientation, illustrated by the red and blue ellipses, respectively. Superposition of these states

in a balanced beam splitter (depicted as a 180◦ hybrid ring) results in TMS vacuum states

with entangled local modes ĉ1 and ĉ2 that locally resemble thermal states, illustrated by the

uniformly distributed gray circles.

where â1 and â2 are the initial vacuum modes, followed by a superposition of these states

in a balanced 50 : 50 beam splitter

ĉ1 = b̂1 + b̂2√
2

= d̂1 cosh r + d̂†
2 e

iφ sinh r, (2.60)

ĉ2 = b̂1 − b̂2√
2

= d̂2 cosh r + d̂†
1 e

iφ sinh r, (2.61)

where we define d̂1 = 1/
√

2(â1 + â2) and d̂2 = 1/
√

2(â1 − â2) as two further vacuum

modes. The generated states, ĉ1 and ĉ2, are identical to the ones from Eqs. (2.56) and

(2.57). In the Fock basis, the TMS vacuum state can be written as a superposition state

by applying the TMS squeeze operator to the vacuum according to [93]

ŜTMS(ξ)|0, 0⟩ = 1
cosh r

∞∑
n=0

(−eiφtanh r)n |n, n⟩. (2.62)

The reduced density matrix of one mode of the TMS vacuum state coincides with that of

a thermal state [97]

ρ̂th =
∑

n

nn
th

(1 + nth)n+1 |n⟩⟨n|, (2.63)

with the mean photon number nth = sinh2r. The nonlocal correlations encoded in the

family of TMS vacuum states become apparent by the statistical moments

dTMS = 0 and V TMS = 1
4

(
cosh 2rI2 sinh 2r (σz cosφ+ σx sinφ)

sinh 2r (σz cosφ+ σx sinφ) cosh 2rI2

)
,

(2.64)
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Figure 2.10: Marginal distributions of the Wigner function W for the TMS vacuum. The local marginal

distributions of modes 1 and 2 resemble thermal states and are depicted in panels (a) and

(b), respectively. Panels (c) to (f) show the nonlocal phase-space correlations. For the

employed parameters of r = 1 and φ = π [cf. Eq. (2.55)], the quadrature pair (q1, q2) is

anti-correlated, as shown in panel (c), while another pair (p1, p2) is correlated, as depicted

in panel (f).

where I2 is the (2×2) unity matrix and σz (σx) are the Pauli-z (x) matrices, respectively [1].

Figure 2.10 shows the Wigner marginal distributions of the TMS vacuum. The correlations

of the nonlocal q- and p-quadrature pairs become ideal in the limit r → ∞ [111]. In

this limit, the Wigner function converges to W (r) ∝ δ(q1 + q2)δ(p1 − p2), which is the

continuous-variable equivalent to the EPR state.

2.3 Quantum entanglement

Nonclassical correlations in propagating signals provide an essential ingredient for vari-

ous protocols in quantum communication and sensing, such as quantum teleportation,

Heisenberg-limited precision measurements, and quantum cryptography [54, 78, 88, 89, 112,

113]. Quantum entanglement is an intriguing and purely quantum phenomenon [114, 115].
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At the same time, quantum entanglement is inherently fragile and can easily be destroyed

by losses and noise [116]. In the Fock basis, an entangled Gaussian state can be expressed

as [93]

|ψ⟩AB =
∞∑

n=0

√
Nn

(N + 1)n+1 |n⟩A|n⟩B, (2.65)

where A and B are the indices denoting two distinct modes and N is the average photon

number per mode. The associated wave function, |ψ⟩AB, corresponds to a zero-mean

Gaussian state, the TMS vacuum state. In general, quantum entanglement can be

expressed via a separability criterion of the associated density operator, ρ̂AB. If the state

ρ̂AB can be described by a sum of product states

ρ̂AB =
∑

k

pk ρ̂k,A ⊗ ρ̂k,B, (2.66)

this state is separable and, therefore, not entangled [6, 108]. For bipartite Gaussian states,

the negativity N provides a useful entanglement monotone. To this end, it is useful to

introduce local symplectic invariants of the covariance matrix [117]

V =
(

A C

CT B

)
, (2.67)

where A, B and C are 2 × 2 matrices, which fully describe the local states A, B, and

corresponding cross-correlations, respectively. The associated symplectic invariants are

given by

I1 = det (A), I2 = det (B), I3 = det (C), I4 = det (V ). (2.68)

The symplectic eigenvalues of V are [118]

ν± =
√

∆ ±
√

∆2 − 4I4

2 , (2.69)

where ∆ = I1 + I2 + 2I3. Accordingly, we can express the negativity as [119]

N = max
[
0, 1 − 4ν−

8ν−

]
= max [Nk] , (2.70)

where Nk = (1 − 4ν−)/(8ν−) is the negativity kernel. The bipartite state is separable

for Nk ≤ 0, i.e., ν− ≥ 1/4. A positive Nk > 0 is indicative of non-zero quantum

entanglement and Nk → ∞ corresponds to maximally entangled states in the limit of

r → ∞ [108, 117]. Quantum entanglement is related to a subset of a more general

class of quantum correlations, which can be captured by the quantum discord [120, 121].

From a conceptual point of view, quantum discord is a measure of nonclassicality of a
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corresponding system. The quantum discord can be written as [120]

DA = I(A : B) − J(A|B), (2.71)

where I(A : B) is the quantum mutual information and J(A|B) denotes the one-way

classical correlations. The quantum mutual information encompasses the whole of the

correlations in the bipartite system, both classical and quantum. For two-mode Gaussian

states we can express it as [117]

I(A : B) = f
(√

I1

)
+ f

(√
I2

)
− (f (ν+) + f (ν−)) , (2.72)

where

f(x) =
(

2x+ 1
2

)
log

(
2x+ 1

2

)
−
(

2x− 1
2

)
log

(
2x− 1

2

)
. (2.73)

The one-way classical correlations are closely linked to the entropy of the system, which

leads to a nontrivial task of minimizing the conditional entropy of the bipartite quantum

state to find an analytical solution for the associated quantum discord [122–124]. For the

class of bipartite Gaussian states, however, there exists an analytical expression [125, 126]

DA = f
(√

I2

)
− (f (ν+) + f (ν−)) + f

(√
Emin

A|B

)
, (2.74)

where [108, 123]

Emin
A|B =


(

1
4

|I3|+
√

I2
3 −(I1−16I4)(I2−1/16)

I2−1

)2
, if (I1I2−I4)2

(I1+16I4)(I2+1/16)I2
3

≤ 1
I1I2+I4−I2

3 −
√

I1I2+I4−I2
3 −4I1I2I4

3I2
, otherwise.

(2.75)

The quantum discord is not symmetric with respect to the associated subsystems A

and B, i.e., DA , DB. Furthermore, a finite quantum discord is a necessary but not

sufficient criterion for bipartite correlations to be strictly nonclassical [127]. The role

of quantum entanglement and more general quantum correlations in the framework of

entanglement-based quantum radar are discussed in Ch. 3.

2.4 Second-order correlation function

Intensity fluctuations represent a powerful tool to categorize light in its most general

sense. Accordingly, chaotic light exhibits different photon statistics compared to coherent

light or single photons [104]. The second-order correlation function, g(2)(τ), is the central

figure of merit in this scope and captures the distinct nature of photon statistics. This

correlation function is typically expressed in a normalized form, also called the degree of
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second-order temporal coherence [104], which can be expressed in classical terms as [93]

g(2)(τ) = ⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩
⟨E∗(t)E(t)⟩2 = ⟨I(t)I(t+ τ)⟩

⟨I(t)⟩2 , (2.76)

where E(t) is the time-dependent electrical field amplitude, I(t) corresponds to the

associated field intensity, τ denotes a finite time delay and the light is assumed to

follow stationary statistical properties. Application of the Cauchy-Schwartz inequality to

Eq. (2.76) shows that for classical light 1 ≤ g(2)(0) and g(2)(τ) ≤ g(2)(0) [93]. Accordingly,

from a classical point of view, the degree of second-order coherence is upper bounded by its

zero time delay value. The first experimental efforts to investigate the correlation between

two optical intensities were conducted by Hanbury Brown and Twiss in 1956 [128]. Their

pioneering work builds the foundation for a plethora of studies on the correspondence

between the classical and quantum nature of light [104]. For single-mode light, the

quantum description of the degree of second-order temporal coherence can be expressed as

g(2)(0) =

〈
â†â†ââ

〉
⟨â†â⟩2 . (2.77)

With the commutation relation of the creation and annihilation operators, [â, â†] = 1, and
the definition of the photon number operator, n̂ = â†â, we can express Eq. (2.77) in terms

of the mean and mean-square photon numbers as [104]

g(2)(0) = ⟨n̂(n̂− 1)⟩
⟨n̂⟩2 = ⟨n̂2⟩ − ⟨n̂⟩

⟨n̂⟩2 = 1 + ⟨(∆n̂)2⟩ − ⟨n̂⟩
⟨n̂⟩2 . (2.78)

Since ⟨(∆n̂)2⟩ ≥ 0, we can infer the inequality [97]

g(2)(0) ≥ 1 − 1
⟨n̂⟩

for ⟨n̂⟩ ≥ 1. (2.79)

From an intuitive point of view, the degree of second-order temporal coherence provides

information on the likeliness to find one or more photons at a time delay τ , when there is

a photon present at τ = 0 [97]. Note that in Eq. (2.79), g(2)(0) → 0 for ⟨n̂⟩ ≪ 1, which is

evident since a very weak source of quantum light (e.g. a single photon source) has a very

small probability that more than one photon is emitted at a time.

For coherent light, the photon-number variance is
〈
(∆n̂)2

〉
= |α|2 = ⟨n̂⟩, which yields

a degree of second-order temporal coherence of g(2)(τ) = g(2)(0) = 1. Consequently, this
class of states is unconditionally second-order coherent. In other terms, the photons in

the coherent state are evenly distributed in time [93]. Thermal states are characterized by

the photon-number variance
〈
(∆n̂)2

〉
= ⟨n̂⟩2 + ⟨n̂⟩, which results in g(2)(0) = 2. Thermal

states belong to the class of bunched light, characterized by g(2)(τ) < g(2)(0), i.e., photons
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Degree of second-order coherence for single-mode states

⟨n̂⟩
〈
(∆n̂)2

〉
g(2)(0) statistics

coherent |α|2 |α|2 = ⟨n̂⟩ 1 Poissonian

thermal 1
exp( ℏω

kBT
)−1 ⟨n̂⟩2 + ⟨n̂⟩ 2 super-Poissonian

squeezed sinh2r 2⟨n̂⟩(⟨n̂⟩ + 1) 3 + 1/⟨n̂⟩ super-Poissonian

phase-sq. |α|2 + sinh2r ⟨n̂⟩ e2r 1 − 1/⟨n̂⟩ + er

⟨n̂⟩3/2 super-Poissonian

amplitude-sq. |α|2 + sinh2r ⟨n̂⟩ e−2r 1 − 1/⟨n̂⟩ + e−r

⟨n̂⟩3/2 sub-Poissonian

Fock n 0 1 − 1/⟨n̂⟩ sub-Poissonian

Table 2.1: Overview of the mean photon number ⟨n̂⟩ = ⟨â†â⟩ and photon-number variance ⟨(∆n̂)2⟩
for different classes of single-mode states, which enable an evaluation of the second-order

coherence degree, g(2)(0), and the associated photon statistics.

tend to bunch in time, which leads to an enhanced probability of finding more than one

photon within a characteristic time scale. Squeezed vacuum states also exhibit bunched-

light characteristics, as dictated by their photon-number variance
〈
(∆n̂)2

〉
= 2⟨n̂⟩(⟨n̂⟩+1),

which yields g(2)(0) = 3 + 1/⟨n̂⟩. Accordingly, the photon-number fluctuations in the

squeezed vacuum exceed those of the thermal states for a given mean photon number [93].

The opposite behavior occurs for anti-bunched light, characterized by g(2)(τ) > g(2)(0).
Typical sources of such light are quantum two-level systems that emit single quanta of

light within a characteristic time scale. In a more general approach, the entire class of

number states show anti-bunched characteristics, since they have a zero photon-number

uncertainty,
〈
(∆n̂)2

〉
= 0, which gives g(2)(0) = 1 − 1/⟨n̂⟩ < 1 for all n ≥ 1. This result

for the number states satisfies the lower bound for Eq. (2.79) and violates the classical

limit of g(2)(0) ≥ 1. Interestingly, the squeezed coherent states can also go below this

classical limit [129]. These states have a photon-number variance

〈
(∆n̂)2

〉
= |α|2

[
e2rsin2

(
θ − 1

2φ
)

+ e−2rcos2
(
θ − 1

2φ
)]

+ 2sinh2(r)
[
sinh2(r) + 1

]
,

(2.80)

which yields

g(2)(0) = 1 + |α|2 (cosh(2r) − cos(2θ − φ) sinh(2r) − 1) + sinh2(r) cosh(2r)(
|α|2 + sinh2(r)

)2 . (2.81)

The variance in Eq. (2.80) for the amplitude-squeezed states, i.e., θ = φ/2 (cf. Fig. 2.6),



26 Chapter 2 Gaussian quantum information with propagating microwaves

0 2 4 6 8 10
0

1

2

3

4

5

squeezed

Fock
amplitude-sq.

phase-squeezed

coherent

thermal

n

g
  

 (
0

)
(2

)

Figure 2.11: Second-order correlation function g(2)(0) for various single-mode states. The dot-dashed

black line represents the boundary between sub- and super-Poissonian statistics, which is

saturated by the coherent state. The dashed purple line for the Fock states illustrates the

lower limit from Eq. (2.79), the discrete purple points correspond to the integer number

states with ⟨n⟩ = n.

simplifies to

〈
(∆n̂)2

〉
=
(√

⟨n̂⟩ + 1
4e

−r
)2

−
(√

⟨n̂⟩ − 1
4e

−r
)2

=
√

⟨n̂⟩e−r, (2.82)

which is valid for the case when the coherent portion of the mean photon number is

much larger than that of the squeezing, i.e., |α| ≫ er [93]. Accordingly, amplitude-

squeezed states have a reduced uncertainty compared to the coherent states and follow a

sub-Poissonian statistics, characterized by g(2)(0) < 1 [129, 130].

In general, Poissonian statistics are reflected by g(2)(0) = 1, while super-Poissonian

light exhibits g(2)(0) > 1. Phase-squeezed states, i.e., θ = φ/2 + π/2 (cf. Fig. 2.7) are

characterized by an increased photon-number variance〈
(∆n̂)2

〉
=
√

⟨n̂⟩er, (2.83)

for the identical threshold given in Eq. (2.82). A summary of various single-mode charac-

teristics is provided in Tab. 2.1 and is also illustrated in Fig. 2.11. The investigation of

intensity correlations can be expanded from the single-mode picture to multiple modes,

which might exhibit non-vanishing cross-correlations. The two-mode second-order corre-

lation function, also known as the second-order cross-correlation function, is of central
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importance for the results presented in Ch. 6 and can be expressed as

g
(2)
C (0) = ⟨â†â†ââ⟩ + ⟨b̂†b̂†b̂b̂⟩ + 2⟨â†âb̂†b̂⟩(

⟨â†â⟩ + ⟨b̂†b̂⟩
)2 , (2.84)

where â and b̂ represent the two distinct modes. For TMS states with finite individual

displacements, theory predicts a parameter region where g
(2)
C (0) < 1 for orthogonal

squeeze angles [131]. These sub-Poissonian characteristics are maximal for symmetric

configurations, i.e., identical displacement amplitudes of the respective modes. Although

the non-classical regime is shallow with g
(2)
C,min(0) ≃ 0.9 for experimentally accessible

squeeze levels and displacement amplitudes, this non-classical footprint shows a robustness

against finite noise in the signal [131]. In Ch. 6, we experimentally realize such non-local

photon anti-bunching, g
(2)
C (0) < 1, with noisy and displaced TMS states [80].





Chapter 3

Quantum illumination

In this chapter, we first introduce the concept of quantum illumination (QI) and present

established knowledge in the field. Later sections of this chapter discuss our own advance-

ments in this thriving area of research, with a focus on the signal detection in QI and the

robustness of the protocol against realistic imperfections. These findings are based on a

collaboration with M. Würth and Prof. Dr. W. Utschick from the Technical University of

Munich, TUM School of Computation, Information and Technology within the project

“Quantum Radar Team” (QuaRaTe).

The fundamental paradigm of QI is based on quantum-entangled resource states, which

are employed in a radar-type scheme. One mode of the entangled resource state is sent as

a probe signal to interrogate a region of interest for the presence or absence of an object.

The other mode, conventionally labeled as the idler, is preserved for the round-trip time

of the signal. In case the object is present, the probe signal is partially reflected and

propagates back to a detection unit. The signal is entirely lost if the object is not present.

Irrespective of the object being present or absent, thermal background noise enters the

detector. Here, a joint measurement on the idler and the received signal fraction lays

the foundation for a statistics-based analysis, which corresponds to hypothesis testing in

order to discriminate, based on the measurement data, between the two cases [48, 49].

Most importantly, QI is robust against an entanglement-breaking background noise, which

results in an enhanced performance compared to the ideal classical reference scheme based

on coherent resource states [48]. In this framework, remaining non-classical correlations

in the propagating modes provide the essential ingredient for QI [47, 48].

Although the two terms are not interchangeable, the term quantum radar is often used

as a synonym for quantum illumination. Importantly, quantum radar encompasses any

target detection scheme that employs any non-classical part for the purposes of enhanced

capabilities [49]. Accordingly, the scope of quantum radar clearly goes beyond QI, i.e.,

any radar scheme based on QI can be classified as a quantum radar, but not vice versa.

The quantum feature in quantum radar may be based on using: a quantum transmitter

and/or a quantum receiver [64]. Here, the realm of quantum sensing provides a useful

classification of sensors into three distinct quantum types, based on their application and

non-classical properties [132]:

29
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Figure 3.1: Classification of quantum radar (blue) into the three different quantum sensor types [132] at

microwave frequencies compared to the concept of quantum illumination (gray), which can

be viewed as a type 3 quantum sensor independent of the operating frequency.

• Type 1: Transmission of non-classical quantum states of light that are not entangled

with the receiver,

• Type 2: Transmission of classical states of light combined with a quantum receiver,

• Type 3: Transmission of non-classical quantum states of light that are initially

entangled with the receiver.

Here, a quantum receiver may be any type of receiver that goes beyond classical limits, e.g.,

regarding its noise temperature or non-classical detection techniques. In this framework,

QI schemes may be understood as type-3 quantum sensors, since they intrinsically rely

on quantum-entangled resource states. Note that from another point of view, it can also

be argued that the term quantum radar implies microwave frequencies, while the general

concept of QI is independent of the operating frequency, as illustrated in Fig. 3.1.

In this chapter, we shed light on the paradigm of quantum illumination, starting with

a brief summary of the classical radar basics in Sec. 3.1. In Sec. 3.2, we introduce the

concept of hypothesis testing, which represents a central component in the analysis of

general radar schemes. The widely considered quantum illumination protocol based on

Gaussian states is discussed in Sec. 3.3. Here, various different detection schemes have

been proposed, which all aim towards harnessing remaining quantum correlations of the

initially entangled states. We introduce and discuss various such detection schemes in

Sec. 3.4. Next, we focus on a particular QI scheme that relies on a parametric mixing

(PM) of the return and idler signal, followed by single-photon detection. We evaluate

this PM scheme in terms of robustness against finite purity of the resource states in

Sec. 3.5 and briefly address challenges related to the idler storage in in Sec. 3.6. We

continue with a thorough study on practical receiver characteristics in Sec. 3.7. Finally, we

introduce various accuracy-enhancing protocols that go beyond binary hypothesis testing

and conclude the chapter with a concise discussion. The results presented in this chapter

have been published in Ref. [54]. Parts of the text and figures are adapted from this
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Figure 3.2: Schematic depiction of a classical radar scheme with all relevant quantities for the radar

equation [see Eq. (3.3)].

reference.

3.1 Fundamentals of classical radar

The first steps toward classical radar technology were taken by Heinrich Hertz in 1886,

when he demonstrated that radio waves could be reflected from solid objects [133].

Sophisticated radar applications emerged during the first half of the 20th century and

have continuously evolved and improved since then. Today, classical radar use cases are

highly diverse, ranging from ocean monitoring, to self-driving vehicles, meteorological

precipitation monitoring, flight control, and outer space surveillance.

In its simplest form, a radar system emits electromagnetic radiation toward an object

and records the fraction of the transmitted power that is reflected back from that object,

implying a co-located transmitter and receiver unit. In this case, we can evaluate the

power density incident on the object as [49, 95]

So = 1
4πR2PtxGtxF

2, (3.1)

where R is the distance between the transceiver and the object, which is connected to

the signal round-trip time t = 2R/c, where c is the speed of light in vacuum. The power

emitted by the transmitter is denoted by Ptx, Gtx is the transmitter gain, and 0 ≤ F ≤ 1
is a form factor that incorporates the transmissivity of the path along which the signal

propagates. The radar cross-section, σ, is a measure for the effective reflectivity of the

object and linearly enters the expression for the power density of the reflected signal

portion incident on the receiver [49]

Sr = 1
(4π)2R4σPtxGtxF

4 = Pr

Ar
, (3.2)
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where the quantity Pr denotes the total power incident on the receiver and Ar is the

effective area of the receiver. Solving Eq. (3.2) for Pr yields the famous radar equation

Pr = 1
(4π)2R4σArPtxGtxF

4, (3.3)

which is illustrated in Fig. 3.2 and represents the conceptual core behind classical radar

technology. A corresponding signal-to-noise (SNR) ratio can be defined as [134, 135]

SNR = Pr

kBTBrFn
= σArPtxGtxF

4

(4π)2R4kBTBrFn
= σPtxGtxGrλ

2F 4

(4π)3R4kBTBrFn
, (3.4)

where kB is the Boltzmann constant, T is the radar unit operating temperature, Br is

the receiver bandwidth, Fn is a dimensionless quantity that corrects for deviations of the

actual noise characteristics from a perfect black-body radiator, and Gr = 4πAr/λ
2 is the

receiver gain [49]. Note that kBTBrFn is the effective noise power withing the detection

bandwidth. For a given minimum detectable signal and an associated minimum SNRmin,

we can express the maximum radar range as [135]

Rmax =
[

σPtxGtxGrλ
2F 4

(4π)3SNRminkBTBrFn

]1/4

, (3.5)

which represents a central quantity in the world of radar engineering. For the binary

detection task of radar applications, one aims for inferring the presence or absence of an

object based on a detected signal. The associated analysis relies on hypothesis testing

and an optimal decision strategy, which we introduce in the next section.

3.2 Decision strategy and hypothesis testing

The task of testing for the presence or absence of an object, or in other terms discriminating

between two hypotheses, coincides with sampling from two distinct probability distributions

and distinguishing between them based on the sampling routine [56]. Here, the conditional

probability distributions p0(R) and p1(R) for a random variable R carry information

on the hypotheses H0 (target absent) and H1 (target present), respectively. In the most

general case, R spans the real space Z, shown in Fig. 3.3(a). A decision strategy separates

this decision space into the sub-spaces Z0 and Z1 [136]. Accordingly, we assume that H0

is true for R ∈ Z0 and decide that H1 is true for R ∈ Z1. The decision strategy aims

toward optimizing this task, or equivalently, minimizing the associated error [56]. This

binary hypothesis scenario encompasses four distinct outcomes of a hypothesis test [56],

which can be divided into correct decisions

(i) declare H0, when H0 is true,
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Figure 3.3: (a) Illustration of a decision space Z. In a binary decision task, a suitable decision strat-

egy separates Z into the subspaces Z0 and Z1 to minimize associated error probabilities.

(b) Exemplary probability density functions (PDFs) that depend on a statistical observable

x for a radar scenario, where H0 corresponds to an object being absent and H1 denotes an

object being present. The associated miss probability PM, false-alarm probability PFA, and

detection probability PD are highlighted in red, green, and orange, respectively.

(ii) declare H1, when H1 is true,

and wrongful decisions

(iii) declare H1, when H0 is true,

(iv) declare H0, when H1 is true.

Figure 3.3(b) illustrates the associated probabilities for the radar scenario, where we set

the intersection between the two probability density functions as the decision threshold.

Accordingly, decision (iii) corresponds to the false alarm probability PFA = P (H1|H0), i.e.,
the probability of a target falsely being declared present. We label decision (iv) as the

miss probability PM = P (H0|H1), which corresponds to the probability of a target falsely

being declared absent [136, 137]. The detection probability PD can be straightforwardly

defined as PD = P (H1|H1) = 1 − PM [56, 133, 138]. The optimization of such a set of

probabilities decisively depends on the considered scenario and a suitable decision rule

must be constructed for given boundary conditions. In typical radar applications, the

Neyman-Pearson approach is a common decision criterion. Here, the detection probability

is maximized for a given tolerable false alarm probability [49]. The receiver operating

characteristic (ROC) represents the central figure of merit for Neyman-Pearson-based

considerations. The ROC evaluates PD versus a fixed PFA, and can be interpreted as

the relation between sensitivity and specificity (1 − PFA) [49]. We focus on the Bayesian

decision strategy, i.e., minimizing the mean error probability Pe = w0 PFA + w1 PM, where

w0 and w1 are the prior probabilities of the respective hypothesis to occur. For the

Bayesian strategy, a likelihood test represents an optimal testing approach and can be

written as [138]

Λ(R) = p1(R)
p0(R) ≷ λ, (3.6)

where Λ(R) is the likelihood ratio, λ = w0/w1 is the decision threshold, the case of

Λ(R) > λ is given under H1 and Λ(R) < λ is given under H0. The corresponding decision
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space is delimited by [56]

Z1 =
{

R s.t.
p1(R)
p0(R) >

w0

w1

}
, (3.7)

and

Z0 =
{

R s.t.
p0(R)
p1(R) >

w1

w0

}
, (3.8)

where s.t. is an abbreviation for the expression such that. Customarily, one assumes

that both hypotheses are equally likely, w0 = w1 = 1/2, when no prior knowledge on

the scenario is accessible [56]. In this case, we observe λ = 1, which corresponds to

the intersection of two probability density functions (cf. Fig. 3.3(b)). The mean error

probability can be written as [136]

Pe = w0 PFA + w1 PM =

=
∫

Z1
w0 p0(R)dR +

∫
Z0
w1 p1(R)dR =

∫
Z

min [w0 p0(R), w1 p1(R)] dR, (3.9)

which we also express as

Pe ≤ min0≤s≤1w
s
0w

1−s
1

∫
Z
ps

0(R)p1−s
1 (R)dR, (3.10)

by inserting min(a, b) ≤ xsy1−s (0 ≤ s ≤ 1), which is valid for any positive numbers x and

y [56]. Under the assumption of equally probable hypotheses, w0 = w1 = 1/2, Eq. (3.10)
simplifies to the Chernoff bound (CB) [56]

Pe ≤ 1
2min0≤s≤1

∫
Z
ps

0(R)p1−s
1 (R)dR = 1

2e
−MξCB , (3.11)

were M is the number of test samples, which are independent and identically distributed,

and ξCB is the error probability exponent. Importantly, the Chernoff bound is asymptoti-

cally tight for a large number of test samples M according to [139]

ξCB = − lim
M→∞

logPe

M
. (3.12)

The Battacharyya bound (BB)

Pe ≤ 1
2e

−MξCB ≤ 1
2e

−MξBB = 1
2

∫
Z

√
p0(R)p1(R)dR (3.13)

represents a simplified version of the Chernoff bound with s = 1/2. While the Battacharyya

bound does not require the potentially cumbersome minimization over s, this bound is not

exponentially tight, and therefore only represents a strict upper bound on the respective
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error probabilities.

In the quantum case, the error probability for a binary decision task can be expressed

as

Pe = w0 tr(Ô1ρ̂0) + w1 tr(Ô0ρ̂1), (3.14)

where ρ̂0 (ρ̂1) is the density operator of the associated system under hypothesis H0 (H1),

and Ô0 (Ô1) is the measurement operator that minimizes the error probability [140]. For

w1 = w2 = 1/2, we can formulate the quantum Chernoff bound (QCB) and the quantum

Battacharyya bound (QBB) as [56, 141, 142]

Pe ≤ 1
2e

−MξQCB ≤ 1
2e

−MξQBB , (3.15)

similar to the classical counterparts in Eqs. 3.11 and 3.13. The corresponding error

exponents are given by [56]

ξQCB = −log
(
min0≤s≤1tr

(
ρ̂s

0ρ̂
1−s
1

))
, (3.16)

and

ξQBB = −log
(

tr
(√

ρ̂0

√
ρ̂1

))
. (3.17)

Note that the quantum Chernoff bound and the quantum Battacharyya bound can be

analytically evaluated for Gaussian states.

3.3 Gaussian quantum illumination protocol

The QI scheme relies on quantum-enhanced remote sensing by exploiting quantum cor-

relations between M spatially separated pairs of signal and idler modes, described by

the bosonic operators âS and âI, respectively [6, 7, 48, 143]. The first proposal of QI by

Seth Lloyd in 2008 [47] relies on discrete variables and associated non-classical states for

enhanced sensitivity in quantum radar under the following conditions:

• Low number of signal photons, NS ≪ 1,

• Low-brightness of thermal background, NB ≪ 1,

• Low target reflectivity, κ ≪ 1,

• Large measurement time-bandwidth product, M = TW ≫ 1.

In his study, Lloyd considers resource states for the QI protocol that are formed by

entangled pairs of qubits, while the classical reference scheme relies on transmission of

unentangled discrete states, characterized by NS photons per mode. The performances

of both schemes can be divided into a ’good’ and a ’bad’ regime, respectively. Note

that the thresholds for the distinction between ’good’ and ’bad’ are different for the QI
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scheme and the classical reference, for details we refer the reader to Refs. [47, 50]. While

the error exponents in the ’good’ regimes coincide, the QI scheme achieves an M -fold

enhancement of the error exponent with respect to the discrete-variable reference in the

’bad’ case [47, 50]. This enormous improvement in performance caused a hype in the

community, suggesting that QI could revolutionize radar technology [50].

However, Tan et al. [48] soon after proved that the discrete-variable reference scheme

does not correspond to the optimal classical scheme and, correspondingly, that the M -fold

enhancement of the error exponent is not a legit QA. Their work extends the scope to the

entire family of Gaussian states and proves that a coherent-state transmitter represents

the ideal classical reference [48]. For the parameters considered by Lloyd [47], most

importantly for NB ≪ 1, the QI protocol yields a performance that is at best as good

as the coherent-state system, dampening the initial hopes and promises of QI [50]. At

the same time, Tan et al. [48] identified a more conservative 6 dB improvement of the

error exponent with respect to the ideal classical reference for the bright-background

regime of NB ≫ 1, while the remaining parameters are identical to the initial proposal by

Lloyd. This promise for a 6 dB QA has inspired a plethora of theoretical and experimental

efforts [50–64]. Based on these pioneering theory works, the focus of QI has shifted to

Gaussian states with a parameter space restricted to [48, 49]:

• Low number of signal photons, NS ≪ 1,

• Large number of thermal background photons, NB ≫ 1,

• Low target reflectivity, κ ≪ 1,

• Large measurement time-bandwidth product, M = TW ≫ 1.

While initial studies [47] focused on optical wavelengths, the condition of a bright thermal

background, NB ≫ 1, is not naturally fulfilled for ambient room-temperature settings

with Nopt
B ≃ 10−6 per mode [49]. This absence of noise results in a QI performance similar

to its classical counterpart in the optical regime [144]. Microwave frequencies, however,

intrinsically fulfill this bright background condition, making the microwave domain a

natural candidate for QI implementations.

For Gaussian states, the resource states are pure quantum-entangled zero-mean states

which are fully characterized by the corresponding covariance matrix

V SI = ⟨[âS âI â
†
S â

†
I ]T[â†

S â
†
I âS âI]⟩ (3.18)

=
[
(NS + 1) I2 Cq σX

Cq σX NS I2

]
, (3.19)

where NS is the mean photon number of the respective signal and idler modes, I2 is the

two-dimensional identity matrix, the quantity Cq =
√
NS(NS + 1) encodes the strength

of quantum correlations, and σX is the Pauli-X matrix. In this framework, the signal
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mode interrogates a region of interest, while the idler mode is retained and stored for a

round-trip time of the signal.

For the task of a binary decision between hypothesis H0 (target absent) and hypothe-

sis H1 (target present), the return modes entering the receiving unit are given by

âR|H0
= âB, (3.20)

âR|H1
= eiθ √

κ âS +
√

1 − κ âB, (3.21)

where âB represents a thermal state with mean photon number NB = ⟨â†
BâB⟩ ≫ 1, θ is

the overall phase shift and κ ≪ 1 is the round-trip signal loss. Note that, under H1,

NB/(1 − κ) thermal photons are encoded in âB under both hypotheses [145]. Since we

focus on QI and do not consider quantum phase estimation, we set θ = 0 [58]. The

resulting joint return-idler state is again characterized by zero-mean Gaussian states with

V RI = ⟨[âR âI â
†
R â

†
I ]T[â†

R â
†
I âR âI]⟩ (3.22)

H0=


NB + 1 0 0 0

0 NS + 1 0 0
0 0 NB 0
0 0 0 NS

 (3.23)

H1=


κNS +NB + 1 0 0

√
κCq

0 NS + 1
√
κCq 0

0
√
κCq κNS +NB 0√

κCq 0 0 NS

 . (3.24)

Notably, the entanglement is not only lost under H0, but also under H1, which can be

expressed by the relative correlation enhancement [64]

χ = |⟨âRâI⟩|
NS

≤
√
κCq

Cc
< 1. (3.25)

Note that the presence of finite entanglement is quantified by χ > 1 and Cc = NS denotes

the maximally obtainable correlations by classical means, and [âR, âS] =
[
â†

R, â
†
S

]
= 0.

The expression in Eq. (3.25) is valid for κ ≪ 1 and an identical photon number NS in the

signal and idler mode, respectively. The ideal TMSV resource states are always entangled,

χ = Cq/NS =
√
NS(NS + 1)/NS > 1 [see Eq. (3.18)]. However, the relative correlation

enhancement, as captured by χ, decreases with increasing NS and vanishes towards large

NS, as shown in Fig. 3.4. This dependence leads to the intuition that a larger quantum

advantage (QA) in QI may be expected for low NS ≪ 1.
The minimum error probability, Pe,min, for the binary decision task between H0

and H1 has an upper bound given by the quantum Chernoff bound (QCB), Pe,min ≤
0.5 exp(−ξQCBM), as introduced in the previous paragraph. Note that we only consider
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Figure 3.4: Relative correlation enhancement χ [solid blue line, see Eq. (3.25)] as a function of the signal

photon number NS per mode of a TMSV state. The top x-axis shows the corresponding

squeezing level. The dashed gray line illustrates the classical limit, χ = 1 , above which

correlated states are quantum-entangled.

the particular case w0 = w1 = 0.5. A typical classical reference scheme is a coherent state

(CS) transmitter with a mean photon number NS per mode, combined with a homodyne

detector. This classical reference achieves an error exponent

ξC = κNS

(√
1 +NB −

√
NB

)2
, (3.26)

which converges to

ξC = κNS/(4NB), (3.27)

for the QI limitations introduced above, i.e., in the weak transmission (NS ≪ 1), bright
background (NB ≫ 1), and high loss (κ ≪ 1) limit. Since Eq. (3.27) coincides with

the classical Chernoff bound, this error exponent represents the ideal case for classical

illumination, which also holds for classical two-mode states characterized by classical

correlations C ≤ Cc = NS [48, 56].

In the same parameter space, the QI protocol has an error exponent

ξQI = κNS/NB = ξQCB, (3.28)

which is 6 dB, or a factor of four in linear units, larger than ξC [48]. Theory shows that

this 6 dB enhancement is optimal and coincides with the quantum Chernoff bound [146].

The QI paradigm is closely related to the task of quantum parameter estimation, e.g.,

when the object reflectivity κ is of interest [147]. In the realm of quantum parameter

estimation, the quantum Fisher information (QFI) represents the central figure of merit

and is connected to the Cramér-Rao bound, which gives an upper limit for the obtainable
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precision of the unbiased estimator κ̂

∆κ̂2 ≥ 1
MF

, (3.29)

where F denotes the QFI for a number of M independent measurements. The QFI is a

quantum analogue to its classical counterpart, which is defined as [148]

IX(κ) =
∫

X

(
d

dκ log f(x|κ)
)2

pκ(x)dx, (3.30)

where X is a continuous random variable, f(x|κ) is the probability density function

for a measurement outcome x conditioned on an unknown parameter κ, and X is the

possible outcome space of x. The derivative d
dκ

log f(x|κ) is called the score function, which

describes how sensitive f is to changes in κ at a particular value of κ. The classical Fisher

information provides a metric for the overall sensitivity of f to changes of κ by weighting

the score function for each point x ∈ X in the possible outcome space with the chance

pκ(x) = f(x|κ) [148]. Similarly, the QFI grants access to the amount of information that

a quantum state ρ̂κ conveys about an unknown parameter κ upon which the quantum

state depends [149]. From an intuitive point of view, the QFI is large if ρ̂κ exhibits a large

gradient with respect to κ. In contrast, the associated QFI is small for a shallow gradient,

since a change in κ only weakly affects ρ̂κ. For Gaussian-distributed states, the QFI can

generally be expressed analytically [147, 150–152]. The QFI is closely linked to various

other important quantities, such as the Bures distance [153] between two quantum states.

In the framework of QI, the enhancement of the QFI with respect to the optimal

classical case is limited to 3 dB, i.e., FQI/FC ≤ 2, where FQI denotes the QFI associated

with the QI protocol and FC represents the classical counterpart [147]. For Gaussian QI,

the QFI can be expressed as [147]

FQI = 4NS

(NB + 1)
(
1 + NS

NS+1
NB

NB+1

) . (3.31)

In principle, the QI task can be mapped onto quantum parameter estimation via a

corresponding error probability [147, 154]

Pe ≃ exp(−κ2FQIM/8), (3.32)

which is valid for pairwise joint measurements, as realized in the PM-type receiver

(cf. Sec. 3.4). For large M , Eq. (3.32) converges toward the 3 dB QA for NS ≪ 1, NB ≫ 1,
and κ ≪ 1, in accordance with the QI theory for this class of receivers [145, 155]. In

this work, we are interested in the binary target detection problem, as opposed to the

continuous-valued parameter estimation. Accordingly, we use the QCB for the performance

evaluation of various receiver schemes. Nonetheless, Eq. (3.32) provides a useful general
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illustration on the connection between the QFI and the QCB.

3.4 Detection schemes

In the following, we first discuss the detection scheme for the classical reference method,

followed by an evaluation of various detection schemes for the QI protocol. In principle,

achieving the 6 dB advantage in QI is theoretically possible with optimal collective

quantum measurements throughout allM transmitted mode pairs [49]. The corresponding

experimental implementation is challenging, which promotes more practical detection

schemes that typically rely on pairwise joint measurements and yield a 3 dB QA [49, 53, 64].

For the classical reference scheme based on coherent-state transmission, the information

is exclusively encoded in the first-order signal moments. Accordingly, each received mode is

in a thermal state characterized by the background photon number NB and a mean field of

⟨âR⟩ = 0 under H0, versus a mean field of ⟨âR⟩ =
√
κNS under H1. Homodyne detection

grants access to this information and results in sampling from a Gaussian distribution

with variance (2NB + 1)/4 and zero mean (H0), or a mean of
√
κNS (H1) [145]. The

individual measurement results Yk (k = 1, . . . ,M) for a set of M mode copies can be

summed up Y = ∑M
k=1 Yk and evaluated according to the decision rule:

(i) declare H0, if Y < (M
√
κNS)/2,

(ii) declare H1, if Y > (M
√
κNS)/2.

The associated detection error probability is given by [145]

PCS
e = 1

2erfc
(√

κNSM

4NB + 2

)
≃ 1

2
√
πMξC,hom

e−MξC,hom , (3.33)

where erfc(x) = (2/
√
π)
∫∞

x exp(−t2)dt is the complementary error function and ξC,hom =
κNS/(4NB+2) denotes the corresponding error exponent. For a bright thermal background,

NB ≫ 1, we can approximate ξC,hom ≃ κNS/(4NB), which coincides with the classical

Chernoff bound in Eq. (3.27). This serves as a proof that coherent resource states in

combination with homodyne detection represent an optimal classical radar scheme in the

asymptotic regime. Note that the approximation in Eq. (3.33) is valid for κNSM/(4NB +
2) ≫ 1 [145].

The setting in quantum illumination is decisively different due to the zero-mean resource

states, which makes basic homodyne detection obsolete. The goal of various proposed

receiver schemes is to reach the theoretical 6 dB QA. From Eq. (3.23) and Eq. (3.24), it

is obvious that the potential of the entanglement-assisted protocol does not originate

from local properties of the individual modes (i.e., the diagonal V RI entries), but rather

from remaining non-local correlations (i.e., the anti-diagonal V RI entries) characterized

by ⟨âRâS⟩ = ⟨â†
Râ

†
S⟩ =

√
κCq with [âR, âS] =

[
â†

R, â
†
S

]
= 0. This fundamental result leads
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Figure 3.5: (a) Illustration of the considered quantum illumination scheme [155]. One mode of a two-mode

squeezed vacuum state (TMSV), characterized by NS photons per entangled mode, serves

as a signal source. While the idler mode can directly pass to the PM receiver, the signal

propagates through a bright thermal background characterized by the noise photon number

NB. Under hypothesis H0 (no target present), the entire signal is lost and only NB thermal

photons enter the receiver via the signal path. Under H1 (target present), the signal is weakly

reflected from the target (with reflectivity κ ≪ 1) and NB + κNS photons enter the receiver

via the signal path. The receiver consists of a mixer, implementing an interaction between

the retained idler and return signal modes, followed by two single-photon counters, PC1 and

PC2. (b) The PCs can be characterized by their detection efficiency η, dark count probability

Pdc, and photon number resolution K. We analyze the performance of the overall scheme in

terms of error probabilities for realistic values of η, Pdc, and K in order to test robustness of

the QI quantum advantage in presently accessible experimental settings in Sec. 3.7.

to the intuition that a joint measurement of âR and âI is a prerequisite for achieving

the QA [48, 145, 155]. A potential workaround for this joint measurement might be

implemented with a feed-forward heterodyne scheme, which also avoids using single-

photon detectors or counters [57]. Moreover, a variant of this scheme exploiting re-

programmable beam splitters promises the full 6 dB QA [58]. However, its experimental

implementation remains very challenging in the microwave regime due to the absence of

required components.

Parametric mixer

As of today, the only successful experimental implementation of a microwave quantum

radar relies on the PM-type receiver, schematically shown in Fig. 3.5(a) [55]. In this

approach, the return and idler modes interact non-linearly to form the input-output

relations

b̂1 =
√
G âI +

√
G− 1 â†

R, (3.34)

b̂2 =
√
G âR +

√
G− 1 â†

I , (3.35)

where G = 1 + ε2 is the mixer gain and ε ≪ 1. Originally, it was proposed to use an

optical parametric amplifier for implementing this input-output relation [145]. In the

microwave domain, a Josephson ring modulator or a degenerate Josephson mixer realizes

the same transformation [55, 73, 80]. The optimal mixer gain, G∗, has been derived in
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Figure 3.6: Error probability Pe as a function of the number of transmitted modes M for individual

single-photon counting with PC1 (olive green) and PC2 (red) in an PM-type QI scheme. The

dashed black line represents the error probability of the ideal classical reference radar (CS

transmitter with a coherent photon number NS in combination with a homodyne detector),

which coincides with the Helstrom (lower) bound for classical state transmitters [56]. The

dashed blue line depicts the quantum Chernoff (upper) bound for entanglement-based QI

schemes. The employed system parameters are NS = 0.01, NB = 20, κ = 0.01, and G = G∗.

Ref. [58] as a function of the system parameters, NS, NB, and κ. The mixer is followed by

single-photon counters, PC1 and PC2, with

N1 = ⟨b̂†
1b̂1⟩ = G⟨â†

I âI⟩ +
√
G (G− 1)

(
⟨â†

Râ
†
I⟩ + ⟨âRâI⟩

)
+ (G− 1) ⟨âRâ

†
R⟩, (3.36)

and

N2 = ⟨b̂†
2b̂2⟩ = G⟨â†

RâR⟩ +
√
G (G− 1)

(
⟨â†

Râ
†
I⟩ + ⟨âRâI⟩

)
+ (G− 1) ⟨âIâ

†
I⟩, (3.37)

as the respective detected photon numbers. As it can be seen from Eq. (3.23) and Eq. (3.24),

the return mode âR is characterized by ⟨â†
RâR⟩ = NB under H0 and ⟨â†

RâR⟩ = NB + κNS

under H1. The non-local correlations, ⟨â†
Râ

†
I⟩ = ⟨âRâI⟩ = 0 vanish for H0 and are given

by ⟨â†
Râ

†
I⟩ = ⟨âRâI⟩ =

√
κCq for H1.

Within the scope of this work, all detection protocols perform a maximum likelihood

analysis of the photon number statistics, which is based on photon counting through

M return-idler transmitted modes. Irrespective of the detection scheme (individual or

correlated photon counting, introduced in the next paragraph), it is assumed that for

both hypotheses the conditional photon number distributions are given by

PN |Hm =
(
n+M − 1

n

)
Nn

m

(1 +Nm)n+M
, (3.38)
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where N is the total photon count, n ∈ N0 and m = 0, 1. They converge to a normal

distribution for M ≫ 1 according to the central limit theorem. The decision threshold for

the maximum likelihood test is given by [56]

Nth = M
σ|H1 µ|H0 + σ|H0 µ|H1

σ|H0 + σ|H1

, (3.39)

where µ|H0,1 and σ2|H0,1 are the mean and variance of the photon number distribution

under the two hypotheses, respectively. The obtained overlap of the two distributions

defines the error probability of the scheme. This overlap depends on the difference of

the means ∆µk = |Nk|H1 − Nk|H0| (k = 1, 2), as well as on the respective variances

σ2
k|H0,1 = Nk(Nk + 1)|H0,1 , where both quantities scale linearly with the total number of

transmitted modes [145]. Since N1|H0,1 ≪ 1, it follows that σ2
1|H0,1 ≃ N1 ≪ 1, which

results in a small overlap of the two distributions and a low resulting error probability

(cf. Fig. 3.6). Conversely, for the same parameters, N2 ≃ 20.104|H0 (N2 ≃ 20.105|H1) is

dominated by G⟨â†
RâR⟩ ≃ NB and yields photon number distributions with variances

σ2
2|H0,1 ≃ N2

2 ≫ 1 ≫ σ2
1|H0,1 , while ∆N2 ≃ ∆N1. The associated error probability of N2 is

much larger than that of N1 and clearly inferior to the ideal classical reference scheme, as

shown in Fig. 3.6. Note that the considered maximum likelihood test yields the minimum

possible error probability in a scenario where the prior distribution of the two hypotheses

is unknown and is thus optimal [156]. To conclude, the PM-type receiver shows a strong

asymmetry of the detection performance in individual detection, where only PC1 (in our

convention) shows a QA.

From a theoretical point of view, the error probability for PC1 is bounded by the

classical Bhattacharyya bound [cf. Eq. (3.13)] according to

PPC1
e ≤ 1

2e
−MξCB , (3.40)

where the corresponding error exponent is given by [145]

ξCB = ε2κNS(NS + 1)
2NS(NS + 1) + 2ε2κ(2NS + 1)(NS +NB + 1) ≃ κNS

2NB
, (3.41)

for NS ≪ 1, κ ≪ 1, and NB ≫ 1. Accordingly, individual detection with PC1 converges

towards the 3 dB QA in the asymptotic regime.

(Un)balanced difference detection

Las Heras et al. [155] consider the PM-type receiver exploiting both PCs by analyzing the

operator Ô = GN̂1 − (G− 1) N̂2. Note that this difference detector (correlated photon

counting, CPC, in our convention) is unbalanced with weights G and G− 1, such that

the decisive non-local correlations persist in Ô [cf. Eq. (3.36) and Eq. (3.37)]. The phase-
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Figure 3.7: Error probability Pe as a function of transmitted modes M for individual single-photon

detection and correlated photon counting with w1 = G and w2 = G − 1 for (a) NB = 20
coupled background photons and (b) NB = 1000. The black dashed line represents the error

probability of the ideal CS radar. The blue dashed line depicts the corresponding QCB. The

green line depicts the ideal CPC performance, the olive green (red) line shows the results

for individual detection with PC1 (PC2). The employed system parameters are NS = 0.01,
κ = 0.01, and G = G∗.

conjugate receiver scheme, discussed further below, also utilizes the measurement outcome

of both single-photon counters in a balanced difference detector with N̂ = N̂1 − N̂2 [145].

In the following, we compare the performance of the PM-type scheme for individual

photon counting with the CPC approach which relies on the operator Ô (see Fig. 3.7).

The error probability of the CPC in comparison with individual detection (PC1) is very

similar for both NB = 20 [see Fig. 3.7(a)] and NB = 1000 [see Fig. 3.7(b)]. Note that for

log10(M) < 7 in Fig. 3.7(b), the QCB lies above the performances of CPC and PC1 and

can only be interpreted as an upper bound to the associated error probabilities [48, 145].

Similarly, we observe a second crossing of the QCB and the CS reference at an even lower

log10(M) ≃ 6.5. These features can be explained by the QCB reaching the asymptotic

regime only when M ≫ NB/(κNS), corresponding to the error probability converging

towards zero, which occurs for M ≫ 107 in Fig. 3.7(b) [48]. For Fig. 3.7(a), this criterion

yields M ≫ 2 · 105 and is fulfilled for the entire range of M . Large correlations between

individual photon counting events of PC1 and PC2, illustrated by Eqs. (3.45) and (3.46),

result in the enhanced performance of the CPC. The operator Ô can be more generally

described as

Ô = w1N̂1 − w2N̂2, (3.42)

where w1 and w2 are the artificial weights of the measured photon numbers in post-

processing, such that they are not constricted by experimental conditions. The expectation

value and variance of Ô are given by

⟨Ô⟩ = w1⟨N̂1⟩ − w2⟨N̂2⟩, (3.43)
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and

Var
(
Ô
)

= w2
1 Var

(
N̂1
)

+ w2
2 Var

(
N̂2
)

− 2w1w2Cov
(
N̂1, N̂2

)
, (3.44)

where Var(N̂k) = Nk (Nk + 1) for k = 1, 2. Under the hypotheses H0 and H1, the

corresponding covariances yield

Cov
(
N̂1, N̂2

)∣∣∣
H0

= G (G− 1) (NS +NB + 1)2 , (3.45)

Cov
(
N̂1, N̂2

)∣∣∣
H1

=
(

(2G− 1)Cq +
√
G (G− 1) (NS (κ+ 1) +NB + 1)

)2
, (3.46)

the corresponding derivation is provided in AppendixA. Figure 3.8(a) shows the QA of

the CPC approach as a function of w1 and w2. Here, the conventional weighting according

to Ref. [155], w1 = G and w2 = G− 1 (solid red line), has a large gradient with respect

to the optimal working regime (blue), such that a small change or misestimation of G can

lead to a complete loss of the QA [white star versus black star, see also Fig. 3.8(b)]. We

identify an optimal weighting according to

w2 =

√
NS(NS + 1)(NB + κNS)(NB + κNS + 1)

(NB + (κ− 1)NS)(NB + (κ+ 1)NS + 1)

+ NS(NS + 1)
(NB + (κ− 1)NS)(NB + (κ+ 1)NS + 1)

)
w1

= (G∗ − 1)w1,

(3.47)

shown as the dashed white line in Fig. 3.8(a), which relaxes the requirements in terms of

parameter precision and introduces a degree of freedom in the choice of the post-processing

weights.

Phase-conjugate receiver

Similar to the PM scheme, the phase-conjugate receiver (PCR) relies on mixing the

return signal with the retained idler and a subsequent photon-number measurement [145].

As can be seen from Eqs. (3.34), (3.36) and (3.37), the transformation of the non-local

correlations into observables is mediated by the phase-conjugating properties of the input-

output relations in the parametric mixer. In the PCR scheme, this phase-conjugation is

established by a receiver that implements [145]

âPCR = â†
R +

√
2âvac (3.48)

for each return mode, where âvac is the vacuum-state operator that is required in order to

fulfill the bosonic commutation relation. Subsequently, the phase-conjugated modes are

superimposed with the corresponding retained idler modes in a symmetric beam splitter
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Figure 3.8: (a) QA as a function of weights w1 and w2. The solid red line represents weighting according

to w1 = G and w2 = G − 1 [155]. While this relation (white star) can yield the full 3 dB
QA (blue color code), a slight variation or misestimation of G on the order of 0.05% (black

star) leads to inferior results with respect to the CS reference. The dashed white line

represents an optimal weighting according to Eq. (3.47). (b) Resulting error probability

as a function of transmitted modes for the optimal weighting (green line with white stars)

versus a misestimated weighting (green line with black stars) in comparison with individual

detection (PC1, olive green) and the CS reference (dashed black). The system parameters

are NS = 0.01, κ = 0.01, NB = 1000, and G = G∗.

to form two output modes [49]

â± = âPCR ± âI√
2

. (3.49)

The final measurement operator is given by [145]

N̂ = N̂+ − N̂−, (3.50)

where N̂+ = â†
+â+ and N̂− = â†

−â−. The associated error probability of the PCR scheme

can be approximated as [145]

PPCR
e ≃ 1

2erfc
(√

ξPCRM
)

≃ e−MξPCR

2
√
πMξPCR

, (3.51)

where the corresponding error exponent is given by [145]

ξPCR = κNS(NS + 1)
2NB + 4NSNB + 6NS + 4κN2

S + 3κNS + 2 ≃ κNS

2NB
, (3.52)

for NS ≪ 1, κ ≪ 1 and NB ≫ 1. Accordingly, the PCR scheme also converges toward

the 3 dB QA in the asymptotic regime. Similar to the CPC approach, the PCR scheme

exploits the entire information carried by the two outputs of the phase conjugator, which
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reflects in a slight performance advantage over individual detection with PC1 in the

PM scheme [145]. Nevertheless, the full potential of the QI protocol is beyond reach

for these receiver schemes, which belong to the class of local operations plus classical

communication (LOCCs) and are known to perform not optimally for such a type of state

discrimination [157, 158].

Sum-frequency generation receiver

The sum-frequency generation (SFG) architecture was the first proposed receiver to

saturate the QCB in QI [159]. Here, the return and idler pairs are upconverted to a single

mode at the sum frequency ωP = ωS + ωI. Conceptually, SFG relies on pairwise return-

idler input states which are converted into a single-mode output state that is initially

vacuum and evolves into either a weak thermal state (under H0) or a weak coherent state

embedded in a weak thermal state (under H1). Here, the coherent footprint is a direct

consequence of the non-zero cross-correlations of the return and idler modes under H1.

Such an output state evolution is only valid for low photon numbers ⟨â†
RâR⟩ of the return

state, which is not the case for the typical QI parameter restrictions, specifically NB ≫ 1.
A feedforward (FF) mechanism employing a series of pairwise low-transmissivity beam

splitters, combined with conditional two-mode squeezing operations complement the SFG

building block to form the FF-SFG, which saturates the Helstrom minimum probability

of error, i.e., the 6 dB QA for NS ≪ 1 [140, 159]. This adapted scheme is also valid for

NB ≫ 1 due to the low transmissivity of the employed beam splitters and an associated

small photon number entering the SFG per cycle [159]. For each cycle, two photon number

measurements with expectation values that are conditioned on the respective hypothesis

are fed forward to the next pairwise modes and converge to a final hypothesis assumption

after K cycles of the scheme [159]. Despite the optimum discrimination potential of this

architecture for multimode mixed Gaussian states, an experimental realization is out

of reach with the currently available technology. The main challenges are the stringent

requirements for high-fidelity cascaded idler storage and finite efficiencies of each of the

manifold operations in the scheme [49, 159].

Correlation-to-displacement conversion

Another interesting conversion module to capture quantum correlations and transform

those into a coherent quadrature displacement was proposed in Ref. [58]. Its working

principle can be divided into several steps. First, the module conducts a heterodyne

measurement of each of the M return modes, which yields on average a zero-mean

measurement distribution with a variance governed by the system parameters NS, NB

and κ. For the favorable bright-background NB ≫ 1, weak-signal NS ≪ 1 regime of QI,

the heterodyne measurement outcomes are on the order of
√
NB. As a consequence, the

corresponding idler states collapse into conditional, weakly displaced thermal states with
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a mean photon number on the order of
√
κNS/NB [58]. The corresponding SNR ≃ κ/NB

of the individual, weakly displaced thermal states is extremely small. In a second step,

a programmable beam splitter array of dimension M constructively combines the mean

fields of the individual idler modes. The matched, complex weights of the beam splitters

are adapted based on the respective heterodyne measurement outcomes and result in

a constructive interference of the ensemble of means throughout all M modes. For

uncorrelated noise, the SNR of the correlation-to-displacement module steadily grows with

increasing M and yields an error exponent that saturates the QCB and the associated

full 6 dB QA in the asymptotic regime [58]. The adaptive programming of the beam

splitter array relies on the outcomes of each of the individual heterodyne measurements,

which provide classical control signals as an input to the beam splitter array. Accordingly,

the ensemble of M ≫ 1 idler states needs to be reliably stored in a quantum memory,

which represents a major experimental hurdle. The programmable beam splitter array of

length M ≫ 1 represents another technological challenge, which is highly nontrivial with

currently available technology.

Hetero-homodyne receiver and sequential detection

The correlation-to-displacement conversion served as an inspiration for a simplified scheme

of the hetero-homodyne receiver proposed in Ref. [57]. Here, the return modes undergo a

heterodyne detection in order to extract the in-phase (I) and quadrature (Q) components,

which resemble thermal states. In contrast to the correlation-to-displacement scheme, this

first step is conducted sequentially, i.e., only one return mode is measured at a time. The

extracted +I and −Q components are used to modulate a strong local oscillator tone that

provides a reference for homodyning the associated idler modes, which have been stored for

the signal round-trip time. This routine is repeated M times. Naturally, the information

for these conditioned sequential homodyne measurements is encoded in the first signal

moments [144]. Under H0, the associated mean is zero, whereas under H1, the measured

mean values scale as M
√
κNS [57, 160]. Under both hypotheses, the measurement

variances are approximately MNB/4. The corresponding decision threshold γ is based on

the mean values extracted from these conditioned sequential homodyne measurements

and scales as γ = M
√
κNS/2 [57]. The error probability of this scheme converges toward

the 3 dB QA in the asymptotic regime [57]. In principle, the hetero-homodyne receiver

realizes an effective phase-conjugation that is required to convert the remaining signal

and idler cross-correlations into a measurable quantity [57]. The employed heterodyne

techniques in Refs. [57, 58], including their intrinsic finite added noise, can be applied to

the return signals without loss of the QA due to the noisy character of the return modes

for NB ≫ 1. In contrast, the idler modes remain ideally pure during storage and require

quantum-limited homodyne detection for a persistent QA [57].
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3.5 Purity requirements for the resource states

Propagating TMS vacuum states represent an ideal resource for QI and can be routinely

generated with various superconducting parametric circuits [65, 72, 78, 161, 162]. In

experiment, however, these states [cf. Eq. (3.18)] are subject to finite added noise. In

this section, we investigate the influence of such added noise on the performance of the

QI protocol. In more detail, we focus on the PM scheme for individual detection with

PC1. We assume the detection unit to operate in an optimal manner in order to gain a

quantitative understanding of the robustness of the QA against noise in the resource states.

The noise contribution for a TMS state can be quantified by the purity µ = 1/(16
√

detV )
of the associated 4×4 covariance matrix V , according to Eq. (2.26). Similar to single-mode

states, the purity is unity for states that saturate the Heisenberg uncertainty relation.

In experiment, we generate the TMS states by first creating two single-mode squeezed

states with an orthogonal orientation in phase space and subsequently superimposing

these states in a beam splitter, as illustrated in Fig. 2.9. For the case of a finite purity,

µSMS < 1, of these initial single-mode squeezed states and an ideal, lossless beam splitter,

we obtain the TMS purity of µTMS = µ2
SMS. Here, we assume identical purities of the two

initial single-mode states. In general, the purity decreases for increasing squeezing levels

(and pump powers) due to non-idealities of the JPAs, as shown later in Ch. 5 (see Fig. 5.13).

This pump-power dependence is linked to the highly nonlinear character of JPAs, which

is based on associated Josephson junctions. While the lowest-order nonlinearity is used

for parametric amplification, the unwanted higher-order nonlinearities play a detrimental

role in the JPA dynamics with increasing pump powers [108]. Large pump powers also

result in non-negligible microwave fields inside the JPA resonators, which may lead to

increased coupling to various loss channels. In general, these effects lead to a deviation

from an ideal parametric amplification and degrade the quality of the produced squeezed

states [75, 108, 163]. In QI, we consider very low signal levels, where these pump-induced

effects are expected to play a minor role. Here, the goal is to minimize a persisting noise

floor in the generated JPA states, stemming, e.g., from finite internal quality factors of

the JPAs. This ensemble of typically unwanted factors results in a decreased purity of the

quantum states.

In order to test the robustness of the PM scheme against finite purities of the resource

states, we investigate the following scenario: for a given photon number NTMS per mode,

which stems purely from squeezing according to NTMS = sinh2(r), we analyze how pure

such a state needs to be in order to outperform the associated classical reference scheme.

In QI, we aim for a typical number of signal photons of NS = NTMS = 0.01 per mode,

which corresponds to a squeeze factor of r ≃ 0.1 and an associated squeezing level

S = 20 r log10(e) = 0.87 dB. Importantly, the finite purity in this consideration is reflected

in added noise of the QI resource states and a resulting enhanced photon number per

mode, N ′
S = NTMS + NN, where NN denotes the number of added noise photons in the
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resulting state. Note that in order to maintain a fair comparison, the classical reference

scheme can resort to an increased coherent resource photon number N ′
S. We consider the

case of an identical added noise for both JPAs, which we model according to

(Ŝ ′)†
(
â1

â2

)
Ŝ ′ =

(â1 + ζ) cosh r −
(
â†

1 + ζ∗
)
e−2iγ1sinh r

(â2 + ζ) cosh r −
(
â†

2 + ζ∗
)
e−2iγ2sinh r

 , (3.53)

where we set r1 = r2 = r, and restrict the squeezing angles to |γ1 − γ2| = π/2. The

classical complex random variable ζ models the added noise and satisfies ⟨|ζ|2⟩ = NN. In

the PM scheme, these noisy resource states result in adapted photon numbers, N ′
1 and

N ′
2, as compared to Eqs. (3.36) and (3.37), given by

N ′
1 = G⟨(â′

I)†â′
I⟩ +

√
G (G− 1)

(
⟨(â′

R)†(â′
I)†⟩ + ⟨â′

Râ
′
I⟩
)

+ (G− 1) ⟨â′
R(â′

R)†⟩, (3.54)

and

N ′
2 = G⟨(â′

R)†âR⟩ +
√
G (G− 1)

(
⟨(â′

R)†(â′
I)†⟩ + ⟨â′

Râ
′
I⟩
)

+ (G− 1) ⟨â′
I(â′

I)†⟩. (3.55)

Here, the return mode â′
R = âR is characterized by ⟨(â′

R)†â′
R⟩ = NB under H0 and

⟨(â′
R)†â′

R⟩ = NB + κN ′
S = NB + κ(NTMS + NN) under H1. The non-local correlations,

⟨(â′
R)†(â′

I)†⟩ = ⟨â′
Râ

′
I⟩ = 0 vanish for H0 and are given by

⟨(â′
R)†(â′

I)†⟩ = ⟨â′
Râ

′
I⟩ =

√
κCq =

√
NTMS(NTMS + 1) (3.56)

for H1. Based on Eqs. (3.54) and (3.55), we perform a maximum likelihood analysis,

analogous to Sec. 3.4, and compare the resulting error probabilities to an ideal coherent-

state transmitter that relies on sending N ′
S photons per mode. Figure 3.9 shows the QA

of the PM scheme for individual detection with PC1 as a function of the squeezing level

S, which corresponds to a photon number NTMS per mode of the resource state, and an

associated two-mode purity level of these states. The QA is evaluated in the asymptotic

regime with respect to the classical Chernoff bound of the classical reference, characterized

by PCS
e = 0.5 exp(−MκNS/(4NB). Accordingly, the QA in decibel is given by

QA = 10 log10

(
κNSM

4NB

1
ln (2∆Pe(M) + exp(−MκNS/(4NB))

)
, (3.57)

where ∆Pe(M) = PCS
e (M) − PPC1

e (M). We observe stringent requirements on the purity,

with a vanishing QA at a threshold value of approximately 98 % for NTMS = 0.01. The
0 dB-threshold value relaxes slightly with increasing squeezing level, while at the same,

the overall QA monotonously decreases, in accordance with theory [145]. Importantly, we

only enter the realm of a QA greater than 2 dB for purities close to unity and squeezing

levels on the order of 1 dB or smaller. The identical analysis for NB = 1000 yields very
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Figure 3.9: QA for individual detection with PC1 as a function of the TMS photon number, NTMS =
sinh2(r) (bottom x-axis), the associated squeeze level S (top x-axis) and purity of the TMS

resource states. The other employed system parameters are NB = 20, κ = 0.01, and G = G∗.

similar results. This finding strongly suggests that the stringent purity requirements

of the scheme stem predominantly from the idler part of the entangled resource state.

From a conceptual point of view, this intuition is analogous to the argumentation why

heterodyne measurements of the return mode do not impact the QA, while the idler mode

requires quantum-limited homodyning in the hetero-homodyne receiver with sequential

detection [57].

In summary, the required purities for a persistent QA greater than 1 dB are challenging

from an experimental point of view. While purities close to unity can be routinely achieved

with JPAs at low pump powers, the beam splitter that superimposes the single-mode

squeezed states also suffers from finite losses and associated added noise to the TMS

states [108]. However, the requirements in order to achieve a finite QA between 0.5 dB
and 1 dB seem realistic based on our study shown in Fig. 3.9, which matches with the

experimentally demonstrated microwave quantum radar QA of 0.8 dB [55]. Notably, the

authors of Ref. [55] further improved the purity of the idler mode by sideband cooling

down to a noise temperature of 29 mK, which corresponds to a thermal population of

Nth = 2.5 × 10−3 at an idler frequency of ω/(2π) ≃ 3.75 GHz.

3.6 Considerations on the idler storage

In comparison with the classical reference, storing the idler for the round-trip time of

the propagating signal represents a major challenge in QI. In principle, proof-of-principle

experiments can resort to using delay lines and rely on a finite temporal length of the

signal and idler modes, which creates a certain flexibility for the exact timing of the joint
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measurements [55]. A practical QI scheme, however, requires versatile idler storage [164–

167]. Such a deterministic and reliable idler storage is specifically demanding for the full

6 dB QA schemes that rely on an optimal joint measurement of the entire signal and idler

ensemble. A finite idler storage efficiency η I results in a deteriorated performance of the

associated signal-idler measurements and an increased detection error. Correspondingly,

the QCB from Eq. (3.28) changes to [49, 56]

ξQCB(η I) = η IκNS/NB. (3.58)

Since the quantity η I enters the error exponent linearly, we observe that the maximally

obtainable QA by means of QI, expressed in linear units, is reduced to QA ≤ 4/η I. This

implies that we require η I > 1/4 for a persisting QA with respect to a 6 dB scheme. For

the more practical 6 dB schemes, this threshold tightens to η I > 1/2.

3.7 Practical receiver characteristics

As introduced in Sec. 3.4, an optimal detector layout for QI remains an open question,

because the full 6 dB QA in the error exponent requires very cumbersome and demanding

experimental setups [58, 159]. At the same time, the 3 dB QA over the ideal classical

radar can be achieved by using more practically accessible schemes. However, realistic

quantum illumination implementations may contain detection imperfections [55, 59]. In

this section, we analyze the practical limitations of microwave PCs and their impact on

the PM-type receiver, which represents the detector layout that is best studied to date [55].

We investigate the PM-receiver performance with non-unity detection efficiencies, non-zero

dark count probabilities, and finite photon number resolution [cf. Fig. 3.5(b)]. Furthermore,

we consider the effects of these imperfections on the correlated photon counting (CPC)

results of both PCs [155].

Although single-photon detection for propagating microwaves is challenging due to the

low photon energies, which are approximately 6 orders of magnitude smaller than for

optical photons, various theoretical concepts [168–178] have paved the road to successful

experimental implementations [179–185]. Here, the most advanced schemes exploit Ramsey

interferometry to implement quantum non-demolition detection, or counting, of incident

microwave photons by measuring a photon-induced phase perturbation of an ancilla

qubit [181, 182]. Since the qubit coherence time directly correlates with the dark count

rate, the performance of Ramsey-based detectors strongly depends on a sufficiently long

qubit lifetime. Apart from the dark count rate and detection efficiency, the photon-number

resolution is another key parameter in single-photon detection. Dassonneville et al. [185]

have realized a photon counter with a photon-number resolution of up to three photons,

which we consider as a reference in Sec. 3.7. The dead time of single-photon detectors [186]

represents a further important quantity, which we do not discuss in detail in this work.
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Figure 3.10: Error probability difference ∆log10(Pe) = log10(Pe) − log10(Pe,CS) as a function of the

number of transmitted modes M for individual photon counting (solid lines) and optimal

[according to Eq. (3.47)] correlated photon counting (dashed lines) for (a) NB = 20 coupled

background photons and (b) NB = 1000. The black line represents the error probability of

the CS reference. Green lines depict ideal detectors, orange lines correspond to η = 0.93
and Pdc = 0.03, blue lines show the performance for η = 0.84 and Pdc = 0.014. The red line

shows the results for PC2 which are close to Pe = 0.5 in each of the three considered cases.

The mixer gain is set to G = G∗.

Modern microwave detection schemes achieve dead times between 100 ns [181] and several

microseconds [185, 187].

Finite detection efficiencies

State-of-the art microwave single-photon detectors (SPDs) achieve a click probability

Pc = 0.93 for an incoming single photon with a dark count probability Pdc = 0.03 [185].

The dark count probability can be computed as the dark count rate times the duration

of the detection window. Moreover, Pc = 1 − P|1⟩(0), where P|1⟩(0) is the probability

of measuring no click for an impinging single photon. To this date, the quality of

photon-number resolved measurements, expressed by the conditional probabilities P|k⟩(l)
of realizing a measurement outcome l = {0, . . . , 3} for an incoming Fock state |k⟩ strongly

depends on k, with P|1⟩(1) = 76%, P|2⟩(2) = 71% and P|3⟩(3) = 54% [185]. For simplicity,

we assume a photon number resolution corresponding to the SPD click probability, i.e.,

P|k⟩(k) = Pc = 0.93 for all k = 1, 2, ... which effectively gives an upper performance bound.

We model the influence of finite dark count probabilities and a finite detection efficiency
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Figure 3.11: QA for individual detection with PC1 as a function of the dark count probability Pdc

and detection efficiency η for (a) NB = 20 and (b) NB = 1000. The white stars indicate

the performances of microwave single-photon detector implementations from Refs. [180–

185, 187]. The gray color code illustrates a region without any QA. The other employed

system parameters are NS = 0.01, κ = 0.01 and G = G∗.

P|k⟩(k) < 1 with a beam splitter before an ideal PC

ĉj = √
η b̂j +

√
1 − η b̂c,j, (3.59)

where j = 1, 2, η = P|k⟩(k) is the beam splitter transmissivity, the dark count probability

is modeled with a coupled mode b̂c,j = 1/
√

1 − η âth,j characterized by ⟨â†
th,j âth,j⟩ =

(1/(1 − Pdc) − 1) ≃ Pdc for Pdc ≪ 1. Accordingly, we do not take into account the

influence of P|k⟩(l) for k , l.

In Fig. 3.10, we plot the error probability difference for NB = 20 [see Fig. 3.10(a)] and

for NB = 1000 [see Fig. 3.10(b)]. We compare the ideal performance of individual and

CPC detection for a given CS reference in two realistic scenarios: high efficiency and

moderate dark count probability [185] versus moderate efficiency and low dark count

probability [182]. For NB = 20, both scenarios yield clearly inferior results compared to

the ideal case. We observe that the scenario with low dark count probability outperforms

the high-efficiency counterpart, which underlines that for a realistic implementation,

minimizing dark count probabilities plays a decisive role for the photon detection in QI.

Additionally, the CPC approach only marginally beats individual detection for all three

scenarios in the low-noise case of NB = 20. The high-noise regime, NB = 1000, shows
similar results with the low dark count detector performing slightly better than the high

efficiency case and a consistent performance enhancement for the CPC. In both noise

regimes, PC2 does not exhibit a strong dependence on the non-idealities, since Pe ≃ 0.5
already in the ideal case.

Figure 3.11 illustrates the projected performance of various already demonstrated mi-
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crowave single-photon detectors, in terms of Pdc and η, for achieving a QA in individual

detection with PC1. In accordance with the successful microwave quantum radar realiza-

tion [55], the underlying device investigated by Dassonneville et al. [185] is situated in the

region of a robust QA. Importantly, the QA vanishes rapidly with increasing Pdc, even

for an ideal detection efficiency of η = 1. Conversely, the scheme is robust against finite

efficiencies, η < 1, down to η ≃ 0.6 for NB ≫ 1 (see Fig. 3.11). These findings suggest

that the minimization of Pdc in combination with a reasonably high η is desirable in order

to achieve the QA, in agreement with our results from Fig. 3.10. In accordance with the

theory, the maximally reachable QA increases with increasing NB, as it also can be seen

in Fig. 3.11(a) and (b). As a consequence, the area of QA > 0 increases and, e.g., the 1 dB
and 0 dB QA lines lean towards lower values of Pdc and η. We would like to mention that

our mapping of existing single-photon detectors onto the QA problem in Fig. 3.11 may be

limited to various simplifications of our theoretical model and should not be considered as

a complete evaluation of those detectors’ performance.

Finite detection resolution

In principle, photon counters can provide full access to the photon number operator in

Eq. (3.36) and Eq. (3.37). However, existing state-of-the-art microwave single-photon

counters exhibit a rather limited photon number resolution [182, 184, 185]. To analyze

the impact of this finite resolution, we restrict the PCs in Fig. 3.5 to a resolution up to K

photons. Therefore, a single measurement has possible outcomes of measuring 0, 1, . . . , K
photons. We assume that the measurement yields K if the number of photons in the

probe is larger or equal K. Under both hypotheses the state at the output of the mixer is

a thermal state with mean photon number Nj, j ∈ {1, 2}, given by Eqs. (3.36, 3.37) [145].

This yields a photon number distribution at the output of the photon counter

p(n) =

(1 − qj)qn
j , 0 ≤ n < K,

1 − (1 − qj)
∑K−1

k=0 q
k
j , n = K,

(3.60)

with qj = Nj

Nj+1 . For this distribution, the expectation value is given by

µ
(K)
j =

qj(1 − qK
j )

1 − qj

, (3.61)

and the respective variance can be written as

σ
2,(K)
j = qj

1 − qj

(
1 − (2K + 1)qK

j + 2qj

1 − qK
j

1 − qj

)
−
(
qj(1 − qK

j )
1 − qj

)2

. (3.62)
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Figure 3.12: Error probability Pe as a function of the number of transmitted modes M for different

resolutions K for individual detection with (a) PC1 and (b) PC2. The solid lines show the

performance for the low-noise regime, NB = 20, and dashed lines for the high-noise regime,

NB = 1000. The mean signal photon number is NS = 0.01 and reflectivity κ = 0.01 in both

cases. The mixer gain is set to G = G∗.

Analogous to the analysis of the ideal PM scheme, the assumption of a large number of

transmitted modes, i.e. M ≫ 1, leads to the threshold given in Eq. (3.39) but with mean

and standard deviation from Eqs. (3.61, 3.62).

In Fig. 3.12, we plot the error probability for individual detection with PC1 and PC2

in panels (a) and (b), respectively. We compare ideal photon counters with a photon

number resolution of K = 1, 2, 3. For PC1 and both background scenarios of NB = 20 and

NB = 1000, all variants clearly outperform the CS reference and for a resolution of K ≥ 2,
the resulting error coincides with the full-resolution counter. The associated low average

photon number N1 ≃ 0.11 ≪ 1 under both hypotheses and for both background scenarios

explains why a binary SPD is close to being optimal. The reason why a higher resolution

does not become more relevant in more noisy scenarios is that the optimal mixer gain,

G∗, decreases with increasing NB, such that N1 stays similar for varying NB. This finding

is important for real-world applications with naturally high number of noise photons.

Conversely, detection with PC2 alone is always inferior in comparison to the optimum

classical scheme due to the large value of N2, which is governed by strong background

noise coupled to the return mode [see Eq. (3.37)].
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3.8 Quantum illumination beyond binary detection

The binary detection task for the presence or absence of an object at a fixed distance

represents the most fundamental challenge associated with radar technology. State-of-the-

art classical radar applications go far beyond these capabilities and are able to infer the

distance of an object by means of the signal round-trip time, and gain information on the

velocity and direction by the associated Doppler shifts. A corresponding extension of the

basic QI protocol is not straightforward, mainly due to the idler storage and the phase

dependent correlations between the pairwise return and idler states. These hurdles are

persisting for all varieties of the QI scheme, for pairwise detection schemes, as well as for

global joint measurements [188].

The authors of Ref. [189] discuss quantum target ranging in a continuous-time setting

and compare the associated performance to that of a classical radar scheme employing

pulse compression. In order to implement the ranging functionality, both considered

schemes are based on time-of-flight measurements [64]. The quantum radar approach

yields an SNR threshold which is 6 dB better than that of the classical scheme. Here, the

SNR threshold is defined as the crossover below which the range-delay accuracy is inferior

to the associated Cramer-Rao bound limit [64]. Operation of the quantum radar scheme

at its SNR threshold results in a mean-squared range-delay accuracy that can be tens of

dB higher than the classical one with the same pulse bandwidth and an identical number

of transmitted photons [64, 189]. The proposed protocol faces two main challenges in

terms of implementation: first, a long pulse duration and integration time is needed, which

is a major drawback for moving targets and in terms of idler storage. Second, a suitable

receiver design has yet to be identified and developed, making the whole concept of a

quantum-enabled range-delay accuracy advantage difficult to implement [189].

The deduction of an object’s velocity based on the Doppler effect in the framework

of QI is discussed in Ref. [190]. The quantum resource states yield a improved precision

in the estimation of the velocity of an object, where a QA greater than 3 dB in the

variance of the estimator is observed if the path transmissivity is larger or equal to

50 % [190]. Here, the authors propose frequency-resolved photon counting as an optimal

measurement for the idealized scenario of no losses [190], which is difficult from an

experimental point of view. Note that, in this scope, there is a lower limit for the precision

of simultaneous estimation of both velocity and range, as imposed by Heisenberg’s

uncertainty principle [64, 112, 154, 191].

In Ref. [192], the authors propose an entanglement-based protocol for the localization

of a point-like target in three-dimensional space. The corresponding scheme relies on

N entangled photons that are all employed to interrogate a region of interest, while no

idler photons are considered. On the receiving side, the individual positions of impact

in combination with the respective arrival times allow for deduction of the position of

the target by means of electromagnetic scattering relations [49, 192]. For an N -partite
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entangled system, such an approach yields a
√
N precision enhancement for locating

the target [192]. However, from an experimental point of view it is highly challenging

to generate such maximally entangled states with N ≫ 1 for considerable precision

enhancements. Moreover, this protocol is very susceptible to photon loss, i.e., already

loosing one single mode of the N -mode ensemble results in a complete loss of information

for the remaining N − 1 modes [49]. The detector requirements are also demanding, since

the proposed
√
N precision enhancement is based on an infinite detector size and an

infinite integration time [49]. These two requirements are a result of the assumed random

times of arrival of each of the N modes, combined with a full randomness of their spatial

point of impact on a planar receiver [192].

3.9 Discussion and summary

The general scope of quantum illumination can be expanded from two-mode entangled

resource states to multimode (> 2) entanglement for a potentially improved sensitivity.

The case of three entangled modes in the framework of Gaussian QI is discussed for both

possible approaches: two modes are employed as a probing signal, while one idler mode is

retained [193]; and a single signal mode in combination with two idler modes [194]. The

expansion towards a higher number of entangled modes leads to an increased robustness

of the protocol with respect to tolerable noise and losses [49]. For the single-mode

probing case, the authors observe an improved error exponent of the three-mode protocol

with respect to the typical two-mode Gaussian QI up to NS = 0.295 signal photons per

mode [194]. The experimental exploration of two-mode QI is still at the proof-of-principle

level, which renders an added complexity, such as three-mode entanglement and associated

detector layouts, difficult to implement as of today. Interestingly, Ref. [43] widens the

scope of the three-mode approach to non-Gaussian states. It is important to note that

typically, Gaussian states are convenient to work with, both in theory and in experiment [6].

However, the community actively explores ways to boost the performance of the basic

two-mode QI by exploiting non-Gaussian states, e.g., by means of photon addition or

photon subtraction with the probe signals [49, 195, 196].

In the framework of QI, one typical assumption is the large number of employed

modes, M ≫ 1, which can lead to issues with the overall detection time. For a carrier

frequency of 5 GHz, which matches with conventional operating frequencies of state-of-

the-art superconducting circuits [cf. Ch. 4 and Ch. 6], typical JPA bandwidths are on the

order of 10 MHz. For this bandwidth, the resulting time length per mode is 100 ns. In our

studies, we mainly focus on 106 ≤ M ≤ 108, which coincides with previous studies [48, 145]

and yields representative results especially for moderate background noise levels around

NB = 20. In order to acquire such high M , typical integration times correspond to

0.1 s (M = 106) and 10 s (M = 108). For an increasingly bright thermal background

(NB = 1000), we observe that an enhanced number of transmitted modes is necessary
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to enter the asymptotic regime, which leads to even longer integration times. These

associated time scales are clearly too slow for detecting moving targets [49].

In conclusion, QI and quantum radar are expected to have significant impact on radar

applications [64]. Over the last two decades, the fascination behind QI has generated a

great progress in theoretical studies and experimental efforts [47, 48, 55, 145]. The first

successful experiments towards a QI implementation were conducted in the optics domain

in 2013 by Lopaeva et al. [51]. This experiment, however, lacks an optimal classical

reference setup and does not implement a joint measurement, leading to a complete loss of

any QA. The first genuine experimental realization of a QI-based quantum radar scheme

was carried out at optical frequencies in 2015 by Zhang et al. [59]. This implementation

relies on the initial QI protocol [48] combined with the PC receiver [54, 145]. In this

work, Zhang et al. demonstrate a QA of 0.8 dB. Various different researchers have tried

to close the gap to the microwave domain, but the corresponding experiments often lack

some basic requirements that are crucial for a genuine QA [60, 61, 63, 197]. For details,

we refer the reader to Ref. [56]. The first, and so far the only, realization of a quantum

microwave radar experiment with a finite QA was conducted by Assouly et al. [55] in

2023. In their approach, the signal mode of a TMSV state propagates along a delay line

that is connected to a tunable notch filter, which allows for switching between the two

hypotheses. The required bright thermal background is artificially generated and coupled

to the return mode. The idler is stored in a long-lived mode for the round-trip time of the

signal. The detector scheme is based on the PC scheme to parametrically mix the return

and idler modes, followed by individual detection with PC1 (according to our convention).

The demonstrated QA is 0.8 dB, on par with the experiments at optical frequencies. Note

that in Ref. [55], the classical reference is evaluated only theoretically, not implemented in

experiment.

In this chapter, we have thoroughly discussed the manifold facets of quantum illumina-

tion in terms of general concepts, concrete implementations, and the robustness against

realistic experimental imperfections. In this context, we have focused on the performance

of single-photon counters, which represent one of the central elements of QI protocols.

With a focus on the PM scheme, we have compared individual single-photon detection to

correlated difference detection, and have found that the latter performs slightly better

for different noise regimes. We have analyzed the role of respective weighting of the

individual detector outcomes and identified the adjusted ratio for the optimal QI perfor-

mance [cf. Eq.(3.47)]. While large NB ≃ 1000 theoretically gives access to a larger QA

and matches realistic noise values at gigahertz frequencies, the detection unit needs to

be able to handle corresponding return signal powers. Respectively, the mixer needs to

operate at input signal powers on the order of NB · ℏω without suffering from compression

effects; the same applies to PC2 [cf. Eq. (3.37)]. We find that the respective expectation

values of the two photon number operators are highly asymmetric. This is due to the

fact that the photon number expectation value at PC1 is governed by the number of
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signal photons per mode, NS ≪ 1, while the average photon number at PC2 is dictated

by the number of thermal background photons, NB ≫ 1. As a consequence, currently

available PCs with a photon number resolution of up to three photons yield a clearly

deteriorated performance of PC2 already for small NB ≃ 10, such that CPC does not

seem to be suitable for near-term implementations. In contrast, individual detection

with PC1 and limited photon number resolution, K ≤ 3, reaches a reasonable QA even

for large NB ≃ 1000. As we have noted, the maximum achievable QA with PM-type

receivers increases with increasing NB and saturates at 3 dB for large NB, which imposes

further restrictions on low-NB implementations [55]. Therefore, individual detection with

PC1 for large NB may be the simplest route towards the practical 3 dB QA with the

currently available technology. Finally, our presented results provide valuable insights also

to neighboring research fields, such as quantum communication [90, 198, 199].

While the fundamental task of transmitting quantum signals at microwave frequencies

over free-space channels remains to be an ongoing challenge, careful analysis of suitable

operation scenarios represents a very important step towards experimental realization.

There exist various further hurdles to overcome in order to push this technology towards

field applications. More specifically, QI proves to be inherently fragile against a variety of

unwanted effects, such as finite purities of the resource states, finite detection efficiencies,

and persisting dark-count probabilities during detection [54]. Challenges with respect to

ranging and long integration times pose further limitations which remain to be solved.

Accordingly, long-range QI applications seem out of reach with the currently available

technology, while short-range scenarios without a need for ranging capabilities represent

promising candidates for initial QI use cases [49]. Especially, the detection of objects

with a low speed or fixed in space could benefit from the discussed QI schemes. As

such, applications like an airport body scanner searching for the presence or absence of

metallic objects, or low-energy medical use cases show a great potential. Finally, it is

important to keep in mind that research on QI and quantum radar is evolving fast, and

new developments can drastically change the currently known limits.
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Superconducting quantum technology

In physics, phase transitions are usually characterized by the appearance of a new kind

of order (described by an order parameter in the Ginzburg-Landau theory of phase

transitions) on varying some control parameter such as temperature, pressure or magnetic

field and the breaking of a particular symmetry. Numerous discoveries of the properties

of matter trace back to studies executed under extreme conditions. Superconductivity

is a prominent example in this context. The achievement of helium liquefaction in 1908

expanded the experimentally available temperature range close to absolute zero [200].

During this period, experimentalists had investigated the electrical conductivity of metals

at varying temperatures and had observed a linear decrease in resistance as a function

of decreasing temperature [201]. At this time, researchers speculated on three different

concepts of the resistance evolution towards zero temperature [200]:

(i) A finite resistance persists.

(ii) The resistance converges towards zero.

(iii) At a certain temperature, the resistance shows a minimum and increases thereafter,

diverging towards infinity.

Figure 4.1(a) conceptually shows the corresponding resistance curves as a function of

temperature. Due to the intuition that the thermal motion of electrons may be frozen

out at sufficiently low temperatures, the third concept was the most common at that

time [200]. However, experiments with gold and platinum suggested that a small residual

resistance at low temperatures was connected to purity imperfections in the studied

materials [203]. This suspicion led to the investigation of mercury, which was available

with very high purity and, therefore, should show a vanishingly small resistance at low

temperatures. While the resistance below 4.2 K indeed became too small to measure, the

observed resistance change was not continuous, but showed a sudden drop, as illustrated

in Fig. 4.1(b). Kammerlingh-Onnes described his observation as ”Mercury had passed

into a new state, which on account of its extraordinary electrical properties may be called

the superconductive state” [204]. Today, we know a plethora of superconducting elements

and compounds. The superconducting compounds encompass the high-temperature

superconductors based on copper oxides, e.g., YBa2Cu3O7 (”YBCO”) and Bi2Sr2CaCu2O8

61
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Figure 4.1: (a) Illustration of the historically expected resistance evolution in metals towards low tem-

peratures (adapted from Ref. [200]). The three different concepts are discussed in the main

text. (b) Discovery of the superconductivity by the sudden resistance drop of mercury at

liquid helium temperatures (adapted from Ref. [202]).

(”BsCCO”). In the following, we introduce some basics of superconductivity and discuss

the related Josephson effects, which are important building blocks for various quantum

devices, such as superconducting qubits and Josephson parametric amplifiers (JPAs).

These JPAs represent a fundamental component of the experimental results presented in

Ch. 6.

4.1 Superconductivity

The fascinating characteristics of superconductors encompass the phenomena of ideal

diamagnetism, vanishing electrical resistance, and quantization of magnetic flux [200].

Importantly, the vanishing resistance is a necessary, but not a sufficient requirement for

ideal diamagnetism, which has been discovered only in 1933 by Walther Meißner and

Robert Ochsenfeld and therefore is known as the the Meißner-Ochsenfeld effect today.

Accordingly, we extend the focus to fundamental magnetic considerations, which can be

understood by treating the superconducting state as a macroscopic coherent quantum

state [200]. In 1933, Meißner and Ochsenfeld observed that superconductors expel an

applied flux density from the interior, except for a thin surface layer, even if they are

cooled down a constant applied flux density [205]. This observation clearly showed that

the superconducting state is a true thermodynamic phase with its properties depending

only on the coordinates within the phase diagram but not the path used to arrive at

these coordinates. This is visualized in Fig. 4.2: Fig. 4.2(a) shows a normal conductor

(NC) that we first cool down (T ↓) to form a perfect conductor (PC). Subsequently

we switch on an external magnetic field (Bext ↑). Then, we switch the order of these
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Figure 4.2: Evolution of a (a) perfect conductor (PC) and (b) superconductor (SC) for a two-step

sequence consisting of cooling (T ↓) and then applying an external magnetic field (Bext ↑),
or, alternatively, reversing the order of these steps. These two sequences are illustrated at the

top and bottom of the two panels, respectively. We observe path-dependent final states for

the perfect conductor in (a), while the superconductor exhibits a path-independent final state.

Both, PC and SC, start in the normal-conducting (NC) state (adapted from Ref. [201]).

operations, i.e., first apply an external magnetic field and then cool down the material.

We observe that the resulting final state depends on the path we choose. The perfect

conductor only expels the external flux in the case where we first cool down the system,

which can be straightforwardly explained by classical electromagnetism [201]. Ohm’s law

J = σE shows that for a given current density, perfect conductivity results in a vanishing

electric field inside the conductor. Consequently, the magnetic flux density shows no time

dependence, ∂B/∂t = 0, according to the Maxwell-Faraday equation, −∂B/∂t = ∇ × E,

with E = 0 [201].

Application of the magnetic field in the normal-conducting state leads to eddy currents

because of induction [200]. However, these currents disappear exponentially fast with time

after the flux density reaches its steady state, so that the flux density inside and outside

the normal conductor become homogeneous. The flux distribution remains constant when

cooling this normal conductor to the perfectly conducting state, due to ∂B/∂t = 0 [200].

This flux density inside the perfect conductor remains preserved if the external magnetic

field is switched off. In summary, we observe a path-dependent final state of a perfect

conductor for the same position in the magnetic flux-temperature phase diagram.

In the same scenario, a superconductor shows strikingly different characteristics, as

illustrated in Fig. 4.2(b). Starting again from the normal-conducting state, we observe an

expulsion of the magnetic flux from the interior of the superconductor, independent of

the temporal order with respect to cooling and application of the external magnetic field.

Here, a similar argument as for the perfect conductor applies to the path consisting of

first cooling the system down and, then, applying the magnetic field. Importantly, the

superconductor also expels magnetic flux in the reversed scenario, when first the magnetic

field is switched on and then the system is cooled down at constant magnetic flux. This
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evolution represents a decisive difference compared to the behavior of a perfect conductor.

Note that these observations only hold for magnetic field values up to a critical value

known as the critical field. As a result, we observe a path-independent final state of the

superconductor, which corresponds to the behavior of a true thermodynamic phase [201].

Flux quantization was first observed in 1961 nearly at the same time by two independent

research groups, Doll and Näbauer [206] from the Walther-Meißner-Institut in Munich

and Deaver and Fairbank [207] from Stanford University. Their studies were based on

the measurement of the magnetic flux trapped within superconducting hollow cylinders.

They demonstrated that the magnetic flux trapped in the cylinders at a continuously

varied cooling field solely occurs in integer multiples of the flux quantum, Φ0 = h/(2e).
In order to trap only a few flux quanta by a magnetic cooling field Bf on the order of the

Earth’s magnetic field, Bearth ≃ 2.5 × 10−5 T (at its surface), the cross-sectional area of

the cylinder πr2 ≃ Φ0/Bf , and consequently a very small cylinder radius on the order of

r ≃ 10 µm has to be chosen. Note that for r ≃ 1 cm millions of flux quanta are trapped by

Bf ≃ Bearth, such that a very high resolution is required to measured changes of a single

flux quantum on the huge background.

Doll and Näbauer used superconducting lead cylinders to study trapping of magnetic

flux. For details on these experiments, we refer the reader to Refs. [200, 201, 206, 207].

For many decades, the phenomenon superconductivity was described by phenomenological

models due to the absence of a microscopic theory [201]. The London brothers proposed

a first phenomenological model that could explain the perfect conductivity and ideal

diamagnetism of superconductors by introducing the two London equations [208]. Later

on, they showed that the London equations can be derived in a straightforward way

from the current-phase and energy-phase relations obtained by assuming that the entirety

of superconducting charge carrier can be described by a macroscopic wave function

with amplitude and phase, ψ(r, t) = ψ0 exp(iθ(r, t), with the absolute square of the wave

function given by the density ns = |ψ0|2 of the superconducting charge carriers. A drawback

of the macroscopic quantum model was the fact that it could not describe situations with a

spatially varying density of the superconducting charge carriers. This problem was solved

by the Ginzburg-Landau (GL) theory. Within the GL theory [209] the transition into the

superconducting state is described in terms of the Landau theory of phase transitions

by introducing a complex, spatially varying order parameter Ψ(r). Key achievements of

GL-theory have been the description of the spatially inhomogeneous flux distribution in

the mixed state of type-II superconductors and the prediction of the coherence length.

The latter describes the minimum length scale over which spatial variations of the order

parameter can occur. Finally, Bardeen, Cooper and Schrieffer [210, 211] provided the

first microscopic theory of superconductivity in 1957, explaining the transition into

the superconducting state by an instability of the Fermi sea of electrons in a metal

due to an attractive electron-electron interaction mediated by phonons. The attractive

electron-electron interaction leads to the formation of Cooper pairs, which form a coherent,
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Figure 4.3: Schematic illustration of a Josephson junction. The two superconductors characterized by

the respective macroscopic wave functions ψk (k = 1, 2) are coupled through a tunnel barrier,

depicted in orange.

macroscopic many-body state [211]. This macroscopic quantum state can be described by

a macroscopic wave function, ψ(r, t) =
√
ns(r, t) exp(iθ(r, t)), where ns(r, t) denotes the

density of superconducting electrons and θ(r, t) corresponds to the global phase of the

many-body state. For details on the theory of superconductivity, we refer the reader to

Refs. [200, 201, 208–211].

4.2 Josephson junctions

A Josephson junction is obtained by weakly coupling two superconductors, where the

weak coupling is usually realized by placing a thin layer of a non-superconducting material,

such as an insulator, between two layers of bulk superconducting material, schematically

illustrated in Fig. 4.3. Each of the two superconductors is characterized by its macroscopic

wave function ψk(r, t) =
√
ns,k(r, t) exp(iθk(r, t)), where k = 1, 2 corresponds to super-

conductor 1 and 2. The two wave functions can have a finite spatial overlap if the layer of

the non-superconducting material is thin enough. In the most general case, the phases θ1

and θ2 are not equal, leading to a phase difference across the Josephson junction. In the

presence of a finite flux density threading the barrier region, the gauge-invariant phase

difference can be expressed as [201]

φ(r, t) = θ2(r, t) − θ1(r, t) − 2π
Φ0

∫ 2

1
A(r, t)dl, (4.1)

with the path integration oriented from superconductor 1 across the barrier to supercon-

ductor 2 (illustrated in green in Fig. 4.3), and the vector potential A(r, t). Josephson

showed that the finite coupling of the two superconductors yields a finite supercurrent Is

flowing without any voltage drop across the insulator, which is given by

Is = Ic sinφ. (4.2)

Here, Ic denotes the maximum Josephson current, or critical current, which is determined

by the coupling strength of the two superconductors, and φ is the phase difference given by
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Eq. (4.1). This current-phase relation is referred to as the first Josephson equation [201].

For the case of a non-vanishing voltage across the Josephson junction, the time derivative

of the phase difference, φ(t), is given by

∂φ

∂t
= 2π

Φ0
U(t). (4.3)

This voltage-phase relation is also known as the second Josephson equation. If a constant

voltage is applied across the junction, the gauge-invariant phase difference evolves linearly

with time. This results in an alternating current with Josephson frequency

fJ = U

Φ0
= 2eU

h
, (4.4)

which corresponds to a ratio of approximately 484 GHz per mV of applied voltage [200].

Interestingly, Eq. (4.4) relates frequency and voltage to each other by using only the

fundamental constants h and e, which allows for building robust voltage standards based

on Josephson junctions [200]. In the framework of superconducting quantum computing,

the nonlinear, lossless inductance of Josephson junctions introduces the anharmonicity

to various superconducting circuits, allowing one to build quantum bits (qubits). The

corresponding nonlinear Josephson junction inductance is given by

LJ(φ) = U

İ(φ)
= Φ0

2πIc cosφ = Lc

cosφ, (4.5)

where the Josephson inductance Lc represents the minimum inductance of the junc-

tion [201]. In the energy picture, the finite wave function overlap results in a Josephson

coupling energy [201]

EJ(φ) = 1
2πΦ0Ic(1 − cosφ) = EJ,0(1 − cosφ), (4.6)

where EJ,0 = Φ0Ic/(2π). An externally applied bias current I through the junction yields

a tilted washboard potential with the potential energy of the system given by

Epot(φ) = EJ(φ) −
(

Φ0 φ

2π

)
I = EJ,0

(
1 − cosφ− I φ

Ic

)
. (4.7)

In this framework, the phase difference φ can be considered as a classical particle moving

in this potential. Accordingly, the zero voltage state corresponds to the particle resting in

one of the local potential minima. This state is accessible only for |I| < Ic. The voltage

state of the junction can be viewed as the particle moving down the tilted washboard

potential, as for |I| > Ic there is no longer a local potential minimum [108].

The maximum value of the Josephson supercurrent can be varied by applying an
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Figure 4.4: Schematic of a dc-SQUID biased by an external current I getting split into two paths, I1 and

I2. Each path hosts one Josephson junction, shown in orange, characterized by the respective

critical currents Ic,1 and Ic,1, and phase differences φ1 and φ2.

external magnetic field parallel to the barrier layer, resulting in the well-known Fraunhofer

pattern Is(Bext) [201]. The magnetic field sensitivity can be drastically enhanced by

employing superconducting loops, or hollow cylinders, which contain one or more Josephson

junctions. The term superconducting quantum interference device (SQUID) encompasses

all such kinds of systems containing superconducting loops intercepted by one or more

Josephson junctions [201]. As of today, SQUIDs are used in a variety of applications

and represent the most sensitive detectors for magnetic flux and all quantities that can

be transformed into magnetic flux by suitable antenna structures. In most applications,

SQUIDs are operated as flux-to-voltage converters, converting tiny flux changes at the

input into large voltage changes at the output [201].

A superconducting loop hosting a single Josephson junction, which is driven by a time-

dependent external flux, is called an rf-SQUID [201, 212, 213]. A parallel connection of

two Josephson junctions in a superconducting loop is known as a dc-SQUID [201, 214–216].

The dc-SQUID, discussed in the next section, is a central component of the Josephson

parametric amplifier, which we introduce in Sec. 4.4.

4.3 Dc-SQUIDs

Figure 4.4 illustrates the general layout of a dc-SQUID. We consider the case of equal

critical currents Ic,1 = Ic,2 = Ic for the two Josephson junctions, described by their

respective current-phase relations Is,k = Ic cosφk, with k = 1, 2. The total supercurrent

Is through the dc-SQUID can be evaluated using Kirchhoff’s law according to

Is = Is,1 + Is,2 = 2 Ic cos
(
φ1 − φ2

2

)
sin

(
φ1 + φ2

2

)
= 2 Ic cosφ− sinφ+, (4.8)
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where the quantities φ− = (φ2 − φ1)/2 and φ+ = (φ1 + φ1)/2 correspond to new relative

phase differences. The circulating current in the dc-SQUID loop, Icirc, is given by

Icirc = Is,1 − Is,2

2 = Ic cos
(
φ1 + φ2

2

)
sin

(
φ1 − φ2

2

)
= −Ic cosφ+ sinφ− . (4.9)

Since the overall phase change ∆θ along the closed loop of the dc-SQUID needs to fulfill

∆θ = nπ with n ∈ N0, the gauge invariant phase differences φ1 and φ2 are not independent

of each other [201]. The resulting relation between φ1 and φ2 is given by

φ1 − φ2 = −2π
Φ0

(∮
C

Adl +
∫ P 2

P 1
ΛJ sdl +

∫ P 4

P 3
ΛJ sdl

)
, (4.10)

where Λ is the London parameter, J s corresponds to the supercurrent density, and A is

the vector potential. The corresponding integration path is highlighted in green in Fig. 4.4.

Equation (4.10) is evaluated by using Eq. (4.1) in combination with the expression for the

gauge-invariant phase gradient [200]

∇ θ = 2π
Φ0

(Λ J s + A). (4.11)

The integral over the closed contour C in Eq. (4.10) yields the total flux Φ. For the

remaining two integrals over J s, we choose an integration path deep inside the supercon-

ducting leads, where J s = 0 and, thus, the corresponding integrals vanish [201]. This

assumption is only valid for a superconductor with lateral dimensions much larger than

the London penetration depth [201]. Note that the integration paths P1 to P2, and P3 to

P4 in Eq. (4.10) cover the entire superconducting loop except for the two barriers. We

obtain the relation

φ2 − φ1 = 2π Φ
Φ0
, (4.12)

which we can insert into Eq. (4.8) to obtain

Is = 2 Ic cos
(
π

Φ
Φ0

)
sin

(
φ1 + π

Φ
Φ0

)
. (4.13)

The total flux through the dc-SQUID is given by the sum of the external flux, Φext, and

the current-induced loop flux, ΦL = LL Icirc, according to Φ = Φext + ΦL, where LL is the

self-inductance of the SQUID loop. The associated screening parameter of the loop is

defined as

βL = LL Ic

Φ0/2
, (4.14)



4.4 Josephson parametric amplifiers 69

resonator

L0L0L0

C
0

C
0

C
0

Cc

pump

Φ		 +	Φdc rfL L

2

L L

2

dc-SQUID

a in

aout

Figure 4.5: JPA circuit diagram. The central element is a quarter-wavelength resonator with characteristic

inductance L0 and capacitance C0. Incoming modes âin couple to the resonator via the

coupling capacitance Cc.

and relates the induced flux, LL Ic, to half a flux quantum, Φ0/2. Accordingly, the total

loop flux, normalized to a flux quantum, can be expressed as

Φ
Φ0

= Φext

Φ0
− βL cosφ+ sinφ−

2 . (4.15)

For small loop inductances, we can approximate Φ ≃ Φext and write the maximal dc-

SQUID supercurrent as [214]

Imax
s = 2Ic

∣∣∣∣∣cos
(
π

Φext

Φ0

)∣∣∣∣∣ . (4.16)

We see that for a small loop inductance the dc-SQUID can be viewed as a single Josephson

junction with flux-tunable critical current and flux-tunable inductance [217]

LSQ(Φext) = Φ0

2πImax
s

= Φ0

4π Ic

∣∣∣cos
(
πΦext

Φ0

)∣∣∣ . (4.17)

This underlines the versatility of the device that can serve as a non-linear, flux-tunable

lossless inductance in superconducting quantum circuits [108].

4.4 Josephson parametric amplifiers

In this section, we discuss the Josephson parameter amplifier (JPA) that constitutes

an important building block for the experimental results presented in Ch. 6. The JPA

consists of a quarter-wavelength coplanar waveguide (CPW) resonator in combination

with a dc-SQUID, which connects the CPW to the ground plane. As the dc-SQUID can

be viewed as a flux-tunable nonlinear inductance, a nonlinear, flux-tunable LC-resonator

with potentially high quality factor is obtained. In the following, we first introduce the

most important basics on CPWs, followed by a brief analysis of the flux-dependent JPA

resonance frequency. Finally, we address parametric amplification with flux-driven JPAs
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and discuss the standard quantum limit.

Coplanar waveguide resonators Planar transmission lines encompass a broad range of

implementations, such as striplines, microstrip lines, slotlines, and coplanar waveguides

(CPWs). These types of transmission lines are compact and, importantly, compatible for

integration with active circuit devices, forming microwave integrated circuits [95]. The

telegrapher’s equations are typically employed for describing the wave propagation through

such linear transmission lines [95]. In general, CPWs form effective one-dimensional

transmission lines, which do not impose any spectral restrictions on a propagating signal.

In this work, we focus on superconducting CPWs which, in the ideal case, can be modeled

as a lossless transmission line with characteristic impedance

Z =
√
L0

C0
, (4.18)

where L0 and C0 are the characteristic inductance and capacitance per unit length,

respectively [95]. In a next step, we impose boundary conditions in the form of a coupling

capacitance at one end of the CPW, combined with a short to ground at the other

CPW end. The coupling capacitance Cc acts an effective line break and introduces a

voltage antinode and current node. Correspondingly, the short to ground is reflected in a

voltage node and current antinode. This combination of boundary conditions is used for

creating quarter-wavelength resonators [95]. The resulting fundamental angular resonance

frequency depends on the CPW length l according to [218]

ω0 = 2πc
√
εeff

1
4l = 1

4l
√
L0 C0

, (4.19)

where c denotes the velocity of light, εeff = c2/v2
ph is the CPW permittivity, and

vph = 1/
√
L0 C0 is the phase velocity. The loaded resonator quality factor, Ql, pro-

vides information on the associated loss rates and is considered as the central figure of

merit for resonators

Ql = 2πaverage energy stored
energy loss/cycle = ω0

κtot
, (4.20)

with the total loss rate as the sum of the internal loss rate, κint, and the external loss rate,

κext, according to κtot = κint + κext. The internal loss rate stems from typically unwanted

loss channels, such as two-level fluctuators, surface resistance, or quasiparticles [219, 220].

The external loss rate is determined by the coupling capacitance and can be regarded as

an adaptive design parameter. Accordingly, we can relate Ql to the internal quality factor,

Qint = ω0/κint, and the external quality factor, Qext = ω0/κext, via

Q−1
l = Q−1

int +Q−1
ext. (4.21)
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Figure 4.6: Theoretical resonance frequency ωJPA as a function of the externally applied magnetic flux

Φext for (a) different critical currents Ic, an overall resonator inductance Lr = 2 nH and loop

inductance LL = 50 pH, according to Eq. (4.25). Panel (b) shows the corresponding results

for various LL, a fixed value of Ic = 1 µA and Lr = 2 nH. In panel (c), we display ωJPA for

various values of Lr and a fixed Ic = 1 µA, LL = 50 pH. Accordingly, the light blue line is

identical for all three panels and serves as a reference. The bare resonator frequency is set to

ω0/(2π) = 6.1 GHz for all panels.

In experiments, we typically measure these resonators in reflection and can deduce the

quality factors from the complex reflection coefficient [221]

Γ = (ω − ω0)2 + iκint(ω − ω0) + (κ2
ext − κ2

int)/4
[(ω − ω0) + i(κext + κint)/2]2 , (4.22)

from which we can extract the power spectrum [222]

|S11(∆)|2 = 1 − 4κint κext

κ2
tot + (2∆)2 , (4.23)

where ∆ = ω − ω0. The frequency-dependent JPA phase response can be written as

φ(∆) = atan2
(

κ2
int − κ2

ext + (2∆)2

(κint + κext)2 + (2∆)2 ,
−4κext∆

(κext − κint)2 + (2∆)2

)
, (4.24)

where atan2 is the 2-argument arctangent function [222, 223]. Note that in experiment,

one observes a clear difference between overcoupled (Qext < Qint) and undercoupled

(Qext > Qint) resonators with respect to φ(∆). Importantly, the phase response shows

a phase shift at resonance of approximately 2π for the strongly overcoupled case. In

contrast, for strong undercoupling, the phase shift at ω0 vanishes. For critical coupling,

Qext ≃ Qint, the observed phase shift amounts to π/2 [222]. In the magnitude response,

the overcoupled and undercoupled regimes are more difficult to distinguish, due to the

symmetry of Eq. (4.23) with respect to κint and κext. However, the critical coupling scenario
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in the flux-driven JPA. (b) Schematic of the frequency space for the JPA, where a pump

frequency ωp = 2ω0 results in the amplification of the signal mode ωs = ω0 +δω in conjunction

with an amplification of the associated idler mode ωi = ω0 − δω.

is reflected in a strong resonant dip in |S11| due to impedance matching criteria [95, 222].

For more details, see Ref. [222].

Flux-dependent JPA resonance frequency In contrast to the basic CPW resonators

introduced in the previous paragraph, the quarter-wavelength resonators in our JPAs are

shorted to ground via dc-SQUIDs. The flux-dependent inductance of the dc-SQUID from

Eq. (4.17) results in a magnetic-flux dependence of the JPA resonance frequency

ωJPA(Φext) = ω0

(
Lr

LSQ(Φext) + LL/4 + Lr

)
, (4.25)

where Lr is the the overall inductance of the bare resonator. Note that Eq. (4.25) is only an

approximated, simplified expression for the JPA resonance frequency, assuming that the

capacitance of the Josephson junctions is negligible compared to the resonator capacitance,

and assuming vanishing transport current through the dc-SQUID. For a detailed study, we

refer the reader to Ref. [71]. Figure 4.6 shows the JPA resonance frequency as a function

of an externally applied dc flux Φext, according to Eq. (4.25), for different values of Ic, LL,

and Lr.

Flux-driven parametric amplification We next investigate the JPA response to a periodic

flux modulation through the dc-SQUID. This flux modulation can be implemented by

applying a pump tone at the frequency ωp = 2ω0, i.e., at twice the JPA resonance frequency.

This pump tone typically couples inductively to the dc-SQUID and causes a periodic

modulation of the SQUID inductance, which leads to a periodic modulation of the JPA

resonance frequency [81]. The resulting parametric effect is a three-wave mixing process,

in which an incident signal with angular frequency ωs = ωp/2 + δω is amplified [224, 225].
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The amplification is called parametric as it is achieved by the modulation of a system

parameter, namely the inductance of the resonator. The quantity δω denotes the frequency

detuning between ωs and ωp/2. Due to energy conservation, an idler mode at the frequency

ωi = ωp/2 − δω additionally appears from the three-wave mixing dynamics [226].

The dynamics of a flux-driven JPA can be well described by the quantum-mechanical

treatment of a periodically modulated harmonic oscillator, as introduced by Yamamoto

et al. [221]. The resulting Hamiltonian can be written as

ĤJPA = ℏω0

[
â†â+ 1

2 + ϵ cos(αω0 t)(â+ â†)2
]
, (4.26)

where ϵ/2 corresponds to the quasi-classical modulation amplitude and αω0 is the mod-

ulation frequency. The Heisenberg equation of motion, combined with a rotating wave

approximation at αω0/2 results in a closed expression for the JPA output field [108, 221].

Here, it is important to account for the input field coupled to the resonator, as well as for

a finite coupling to the environmental bath [221, 222]. Note that we exclusively consider

α = 2, i.e., ωp = 2ω0. Convergence to a steady-state solution of the Heisenberg equation

of motion restricts the modulation amplitude to ϵ ≤ ϵc = κtot/(2ω0), where ϵc shows

similarities to the critical driving force of a Duffing oscillator and represents the threshold,

above which the JPA enters the parametric oscillator regime [218, 227–229]. We restrict

our consideration to the operation of the JPA in a steady state and neglect transient

dynamics. In the following, we address the two distinct amplification regimes of the JPA,

i.e., the frequency-nondegenerate and frequency-degenerate modes.

Frequency-nondegenerate amplification For the case of δω , 0, i.e., when the signal

frequency ωs = ωp/2 + δω is not equal to exactly half the pump frequency, we label the

flux-driven JPA operation mode as (frequency-)nondegenerate. The associated signal gain

can be written as [221]

Gs(δω) = κ2
intδω

2 + [(κ2
int − κ2

ext)/4 − ϵ2ω2
0 − δω2]2

κ2
tot δω2 + [κ2

tot/4 − ϵ2ω2
0 − δω2]2

, (4.27)

whereas the idler gain is given by [221]

Gi(δω) = κ2
ext ϵ

2 ω2
0

κ2
tot δω2 + [κ2

tot/4 − ϵ2ω2
0 − δω2]2

. (4.28)

For nondegenerate-gain operation, the JPA is equivalent to a phase-preserving, or phase-

insensitive, amplifier. Towards high internal quality factors, or equivalently, vanishing

internal losses, κint → 0, Eqs. (4.27) and (4.28) are linearly related according to Gs(δω) −
Gi(δω) = 1. Equations (4.27) and (4.28) furthermore show that overcoupled JPAs,

κint ≪ κext, generally exhibit amplification characteristics for the entire range of 0 < ϵ < ϵc.
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Conversely, undercoupled JPAs act as effective attenuators for weak pumping 0 < ϵ < ϵth

below a threshold value of ϵth =
√
κ2

int − κ2
ext/(2ω0), which is applicable for frequencies

close to ω0 [221, 222]. Above this threshold, the undercoupled JPAs act as amplifiers for

ϵth < ϵ < ϵc. In this work, we exclusively rely on overcoupled JPAs. The signal and idler

gains according to Eqs. (4.27) and (4.28), respectively, are shown in Fig. 4.8(a) for various

pump strengths and in Fig. 4.8(b) for different internal quality factors.

Frequency-degenerate amplification Next, we consider the frequency-degenerate ampli-

fication scenario with δω = 0, or equivalently, ωs = ωp/2. Here, the signal and idler modes

are frequency-degenerate and can coherently interfere [82, 230]. A resulting constructive

or destructive interference directly depends on the phase θ of the the input signal with

respect to the phase of the pump signal. As a consequence, selected quadratures of the

input field to the JPA can be controllably amplified or attenuated. This phase-dependent,

degenerate gain can be written as [221]

Gd(θ) =

(
κ2

ext−κ2
int

4 + ϵ2ω2
0

)2
+ κ2

extϵ
2ω2

0 − 2κextϵ ω0
(

κ2
ext−κ2

int
4 + ϵ ω2

0

)
sin2θ(

κ2
tot
4 + ϵ2ω2

0

)2 . (4.29)

For strongly overcoupled JPAs, we can simplify Eq. (4.29) and extract the respective

maximum and minimum gain according to [108]

Gmax
d =

[
ϵ ω0 + (κext − κint)/2
ϵ ω0 − (κext + κint)/2

]2

, (4.30)

Gmin
d =

[
ϵ ω0 − (κext − κint)/2
ϵ ω0 + (κext + κint)/2

]2

. (4.31)

In phase space, these two extrema are oriented orthogonal to each other, with θmin =
π/4 + nπ and θmax = 3π/4 + nπ (n ∈ N0). For vanishing internal losses, κint = 0, we
obtain

Gmax
d Gmin

d = 1. (4.32)

This symmetry motivates introducing the squeeze parameter r with Gmax
d = exp(2r) and

Gmin
d = exp(−2r) [6, 231]. Similar to the nondegenerate case, the discussed steady-state

properties are only valid for ϵ < ϵc.

Standard quantum limit The noise properties of amplifiers represent an important

figure of merit that is usually characterized by the signal-to-noise ratio (SNR). Obviously,

a low noise level is useless if the signal level is low too. In the same way a large signal level

is useless if the noise level is large. In both cases a small SNR is achieved. It is important

to note that in general, deterministic noiseless linear phase-preserving amplification is

fundamentally impossible, as dictated by the bosonic commutation relations [226, 232].



4.4 Josephson parametric amplifiers 75

-20 -10 0 10 20

-10

0

10

20

30

δω/(2π) (MHz)

G
  ,

 G
  
(d

B
)

s
i

G
  ,

 G
  
(d

B
)

s
i

-20 -10 0 10 20
-10

0

10

20

δω/(2π) (MHz)

(a) (b)

 ϵ / ϵ		= 0.3c

  ϵ / ϵ		= 0.4c

 ϵ / ϵ		= 0.5c

 ϵ / ϵ		= 0.6c

 ϵ / ϵ		= 0.7c

 ϵ / ϵ		= 0.8c

 ϵ / ϵ		= 0.9c  Q   = 500int
 Q   = 2000int
 5Q   = 10int

 Q    = 200ext

 G  s
  G  i

 Q    = 200ext

 G  s
  G  i

 Q    = 10int
4

 ϵ / ϵ		= 0.9c

Figure 4.8: Nondegenerate signal and idler gain as a function of detuning δω for overcoupled JPAs

according to Eqs. (4.27) and (4.28). Panel (a) shows the results for various pump powers,

an internal quality factor Qint = 10000 and an external quality factor Qext = 200. Panel (b)
depicts the influence of Qint on the gain spectra for a fixed pump strength ϵ/ϵc = 0.9.
The external quality factor is fixed to Qext = 200 and the resonance frequency is set to

ω0/(2π) = 5.5 GHz for both panels. Solid lines represent Gs, while dashed line correspond to

the associated Gi.

This important principle is formulated in the Haus-Caves theorem [233, 234], which

states that these phase-preserving amplifiers add a minimum amount of noise in the

amplification process. The quantum efficiency η is one of several established quantities

for noise characterization, other common quantifies being the noise temperature or the

absolute number of noise photons [95]. The quantum efficiency, in classical electrodynamics

similar to the noise figure, is a figure of merit that describes the degradation of the SNR

caused by a respective amplifier. Conventionally, the quantum efficiency is defined as

η = SNRin

SNRout
, (4.33)

where SNRin denotes the SNR at the input of the amplifier and SNRout is the corresponding

SNR at the output. The lower limit for the added noise, Af , expressed in photon units

and referred to the input of the amplifier, also known as the standard quantum limit

(SQL) for phase-insensitive amplification, can be expressed as [226, 232, 234]

Af ≥ 1
2

(
1 − 1

G

)
, (4.34)

where G is the amplification gain. Accordingly, phase-preserving amplifiers add a minimum

of half a noise photon to the to-be-amplified signal in the limit of large gain, G ≫ 1 [235].
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We can express the quantum efficiency in terms of the SQL according to

η = 1
1 + 2Af

≤ G

2G− 1 , (4.35)

which yields η ≤ 1/2 in the limit G ≫ 1. The operation of JPAs in the phase-sensitive

mode grants access to noiseless signal amplification under the condition given in Eq. (4.32).

In this case, we can define the phase-averaged gain as G′ =
√
Gmax

d Gmin
d = 1. For

degenerate amplification, we can express the phase-dependent noise contributions by

the corresponding geometric mean, A′
f = 2

√
Aq Ap, where Aq and Ap are the noise

contributions to the respective quadratures. Accordingly, we can rewrite Eq. (4.34) as

√
Aq Ap ≥ 1

4

1 − 1√
Gmax

d Gmin
d

 , (4.36)

which underlines that the lower limit on the added amplification noise, valid for vanishing

internal losses, is indeed zero for Gmax
d Gmin

d = 1. While experimental hurdles and

imperfections make it impossible to demonstrate entirely noiseless amplification, various

studies have realized phase-sensitive amplification with JPAs exceeding the SQL [73, 75,

82, 236]. The range of applications for this type of amplifier is large and spans from

low-noise preamplification of qubit readout signals to effective single-shot homodyne

measurements in the microwave regime [90].



Chapter 5

Experimental techniques

Experiments with quantum microwaves at frequencies of several gigahertz are based upon

sophisticated experimental techniques. In Sec. 5.1, we introduce fundamental building

blocks for conducting advanced quantum microwaves experiments. In this scope, we cover

the cryogenic part of the setup, as well as detection and processing of quantum signals at

room temperature. Here, the output line calibration represents an important cornerstone

for gaining access to information on quantum states at millikelvin temperatures via

our detection unit located at ambient conditions. In this work, flux-driven Josephson

parametric amplifiers (JPAs) represent a central component for the generation and

manipulation of quantum microwave signals. Information on the JPA sample preparation,

flux tunability, gain characteristics, and further basic measurement routines is given in

Sec. 5.2.

5.1 Quantum microwave experiments at millikelvin

temperatures

In this section, we introduce all central tools for conducting experiments with quantum

microwaves in the frequency range of several gigahertz. Microwave photons at frequencies

around 5 GHz carry an energy which is on the order of 6 magnitudes lower compared

to optical photons 1. These low energies of single microwave quanta make it impossible

to operate experiments at the level of a few photons at room temperature. Already

a temperature of 600 mK is equivalent to a thermal population of approximately two

photons at 5 GHz. At room temperature, the corresponding thermal occupation number

already exceeds an average of 1000 photons per mode. In order to generate and manipulate

quantum microwave states, we are forced to work at experimental temperatures on the

order of 10 mK. Furthermore, finite microwave losses deteriorate the quantum properties

of generated states, representing a further experimental hurdle. In order to tackle

these challenges, we use state-of-the-art cryogenic setups, which can provide millikelvin

1An exemplary optical photon with a wavelength of 600 nm, corresponding to approximately 500 THz
or 2 eV, versus the microwave photon at 5 GHz characterized by an energy of roughly 3 µeV.
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Figure 5.1: Schematic of a cryogenic experimental setup for conducting quantum microwave studies. The

cryostat on the right is illustrated in a cross-sectional view, with the sample stage located at

its bottom. The cryostat is interfaced to room-temperature test and measurement equipment

with rf and dc lines. A CPU with associated graphical user interfaces enables control, readout,

and analysis by a user.

temperatures and are (partially) equipped with superconducting low-loss microwave cables

to facilitate high-quality quantum information experiments. An exemplary schematic of an

experimental setup for conducting quantum microwave studies is shown in Fig. 5.1. Typical

experiments, or protocols, are conducted at very low signal levels, which makes direct

signal readout challenging. Accordingly, quantum signals are strongly amplified before

entering the detection unit at room temperature. The associated added amplification

noise drastically blurs the signal and necessitates sophisticated signal detection techniques.

A reliable and precise output line calibration allows for correlating the measured classical

quantities at room temperature to quantum properties of the signals at the cryogenic

sample stage.

5.1.1 Cryogenic setup

Dilution refrigerator Experiments presented in this work have been either performed

in a custom-built wet dilution cryostat [237] or in a commercially available cryogen-free

dilution refrigerator 2. Both cryostats rely on exploiting the spontaneous phase separation

in a 3He/4He mixture at around 900 mK, forming a 3He-rich phase, the concentrated

phase, and a 3He-poor phase, the dilute phase. In these dilution refrigerators, 3He
acts as the circulating working fluid driven by vacuum pumps. Here, 3He is diluted by

transitioning across the phase boundary from the concentrated to the diluted phases.

2LD400 dilution refrigerator measurement system from Bluefors.

https://bluefors.com/
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Figure 5.2: (a) Photograph of the 3He/4He dilution cryostat (LD400 from Bluefors) and its temperature

stages. (b) Exemplary microwave input line bundle with corresponding input attenuators.

(c) HEMT stack mounted at the 4 K stage. (d) Photograph of the dc wiring at the MXC.

(e) Output circulators located between the sample stage and the input to the HEMTs. The

respective components are false-colored in blue.

Since this process is endothermic, it removes heat from the 3He/4He mixture and provides

an effective cooling power proportional to the amount of 3He crossing the boundary [238].

In this manner, dilution refrigerators can achieve temperatures down to several mK [238–

240]. In the following, we exemplarily illustrate the working principle of a commercially

available cooling apparatus. Figure 5.2(a) shows the cryostat with several characteristic

temperature stages at temperatures of 4 K, 900 mK, 100 mK, and 10 mK, respectively.

The latter three are commonly referred to as the still plate, cold plate (CP) and mixing

chamber plate (MXC), respectively. Further details on the working principle of 3He/4He
dilution refrigerators can be found in Ref. [241]. For a detailed description of the second

cryostat that was designed and constructed at the Walther-Meißner-Institut, we refer the

reader to Ref. [237].

Dc wiring and thermometry The dilution refrigerator is equipped with thermometry

lines to read out the system temperature at various stages. In addition, the system is set

up with numerous dc wires in twisted-pair configuration. We use 36 AWG (American

Wire Gauge) phosphor-bronze and 35 AWG copper wires between the room temper-



80 Chapter 5 Experimental techniques

ature interface and the 4 K stage. The lower temperature stages are equipped with

either superconducting niobium-titanium (NbTi) filaments embedded in copper-nickel

or phosphor-bronze wires. In experiment, these dc wires are used to operate different

components, i.e., thermometry, heating, power supply of high-electron-mobility transistor

(HEMT) amplifiers, operation of cryogenic microwave switches, and powering of mag-

netic coils. The different wires are mechanically thermalized at different stages of the

cryostat, which is especially important for precise temperature readout. A resistance

bridge with closed loop temperature control 3 is used for precise, low-noise four-wire

resistance measurements of the thermometers in conjunction with PID-based temperature

stabilization. The corresponding preamp/scanner 4 enables readout of 16 independent

lines. An additional 8-channel resistance bridge 5 allows for independent temperature

readout of further thermometers. Additionally, the wiring is partially low-pass filtered at

room temperature in order to suppress high-frequency noise. The power supply for the

HEMT amplifiers is custom-built at the Walther-Meißner-Institut.

Microwave lines The dilution refrigerator is equipped with various 50 Ω microwave

cables, which act as an interface between the sample stage at several mK and the room

temperature environment. These cables can be logically divided into input and output

cables. Microwave signals can travel into the fridge via these input lines. The presented

cryostat is equipped with 28 semi-rigid coaxial lines (0.86 mm SCuNi-CuNi) with SMA

connectors leading from the room-temperature interface to the MXC. It is of uttermost

importance to minimize the unwanted thermal noise. For that reason, the input cables are

sequentially thermalized via microwave attenuators, which are mounted onto the different

stages of the cryostat (i.e., the 50 K stage, 4 K stage, still plate, cold plate, and MXC).

Via this step-wise approach, the effective noise temperature of the input line is gradually

decreased down to millikelvin temperatures, which translates to an average thermal

occupation number of nth ≪ 1 photons at working frequencies around 5 GHz. Stronger
attenuation corresponds to a better thermalization and reduced noise, since the coupling

strength to the thermal anchor is proportional to the level of attenuation. Conversely, the

overall line attenuation needs to stay low enough to feed the required microwave powers to

the designated components. Our quantum microwave experiments at the sample stage are

typically conducted at very low signal levels, corresponding to few photons at microwave

frequencies. The output lines transmit the information contained in these weak signals

towards the HEMT amplifiers, which amplify the signals with a low number of added

noise photons, typically on the order of few photons [222]. Superconducting coaxial lines

(0.86 mm NbTi between the MXC and still plate and SC-219/50-NbTi-NbTi from the still

plate to the HEMTs) ensure minimal transmission losses, < 0.3 dB/m, before the first

3Model 370 ac resistance bridge from Lakeshore.
4Model 3716 from Lakeshore.
5Model AVS-47B from Picowatt.

https://www.lakeshore.com/
https://www.lakeshore.com/
https://www.picowatt.fi/
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Figure 5.3: (a) Schematic diagram of the single-pole-6-throw cryogenic microwave switches. The latch-

type actuators can be moved via current pulses applied through the respective power terminals,

enabling switching of the rf subsystem, shown in blue. Here, the inner conductor of the

rf input port (IN) connects to (disconnects from) the inner conductor of the respective rf

output port (1 to 6) for the SET (RESET) operation. (b) Photograph of the two cryogenic

microwave switches mounted onto an oxygen-free high thermal conductivity (OFHC) copper

holder on top of the MXC. All unused rf ports are terminated by 50 Ω loads.

amplification stage. We employ cryogenic HEMTs 6 with an average gain of GH = 41 dB
in a bandwidth from 4 GHz to 8 GHz and a noise temperature below 2 K. The output lines

are partially thermalized to different temperature stages via mechanically pressing one

end of annealed silver wires to the outer conductor of the cable and the other end to the

respective temperature stages. A sequence of two back-to-back mounted circulators 7 in

conjunction with 50 Ω-loads implements effective microwave isolation in order to suppress

reflections and noise from the HEMTs, which would affect the sample stage.

Cryogenic microwave switches The limited number of microwave input and output

lines motivates the usage of cryogenic microwave switches, which can significantly expand

the complexity and density of a setup. Additionally, these switches enable implementation

of basic logic, such as switching between two hypotheses in the quantum radar protocol

(see Ch. 3). We employ two cryogenic latching relay microwaves switches with a frequency

range from 0 to 18 GHz 8. Figure 5.3(a) shows the schematic diagram of the single-pole-

6-throw layout. In order to connect the microwave input port to a chosen output port,

a current pulse of 125 mA for a duration of 10 ms is applied via the power terminals,

generating a magnetic field strong enough to drive the designated actuators in a desired

latching position. The polarity of the respective current pulse with respect to the common

6LNF-LNC4-8C cryogenic low noise amplifier from Low Noise Factory.
7LNF-CIC4-8A single junction double-shielded cryogenic circulator from Low Noise Factory.
8R573423600 single-pole-6-throw switches with SMA female connectors from Radiall.

https://lownoisefactory.com/
https://lownoisefactory.com/
https://www.radiall.com/
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Figure 5.4: Photographs of the custom-built switch driver. (a) and (b) Pulsing module controlled by an

Arduino Uno in conjunction with several relays to generate square pulses from a dc current

generated by a power supply, depicted in (c).

terminal (C) determines the switching operation: SET or RESET. The SET operation

brings the actuators into galvanic contact between the inner conductor of the input port

(IN) and the the inner conductor of the respective output port. Similarly, the RESET

operation breaks this contact by detaching the actuator. There exists the option of a

global SET and RESET of all ports simultaneously, which requires an increased current

strength of 750 mA. We typically avoid these global operations to minimize the associated

heat load during switching. The latching relay relies on ferromagnetic materials, which

can result in stray magnetic fields and, by extension, trapped magnetic flux vortices in the

JPA ground planes degrading the internal JPA quality factors [242, 243]. Active switching

and the associated magnetic field may additionally distort the dc-flux characteristics of the

JPAs. In order to avoid these error sources, we mount the switches outside the cryoperm

magnetic shield on top of the MXC, far from all JPAs. Both switches are mounted onto a

OFHC copper holder, as depicted in Fig. 5.3(b). A custom-built driver generates suitable

current pulses, which can be adjusted in terms of polarity, applied voltage, maximum

current and pulse length. This functionality is implemented by a combination of a power

source 9 with an adjustable voltage output and a current limiter [cf. Fig. 5.4(c)], combined

with an independent pulsing module, shown in Figs. 5.4(a) and (b). The pulsing module

consists of an Arduino Uno 10 generating low-voltage (5 V), low-current (20 mA) pulses

of adjustable temporal length, combined with several Arduino-compatible relays 11. The

Arduino pulses drive the distinct relay channels to modulate the output signals of the

power source and control their polarity via H-bridge logic.

9EL302RT bench power supply from Aim-TTi.
10Rev3 in combination with a Ethernet Shield 2 from Arduino.
11TC-9072496 8-channel relay module from TRU COMPONENTS.

https://www.aimtti.com/
https://www.arduino.cc/
https://www.conrad.de/de/marken/tru-components.html?hk=SEM&gclid=EAIaIQobChMItdWGq9fcgQMVEmHmCh2MKwsBEAMYASAAEgLh5PD_BwE
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Figure 5.5: Photograph of the dual-path heterodyne microwave receiver.

5.1.2 Quantum microwave detection and processing

In this subsection, we introduce a detection scheme of microwave signals at the cryostat

outputs. The discussed detection setup is similar to those presented in Refs. [68, 108, 222].

All microwave devices are referenced to a 10 MHz rubidium frequency standard 12.

Dual-path analog detection unit First, microwave signals at a working frequency frf

of several gigahertz enter a second amplification stage at room temperature 13, which

is temperature-stabilized by a Peltier cooler 14. Next, these signals are routed to the

dual-path heterodyne detection unit depicted in Fig. 5.5. In the following, we illustrate the

working principle of the detection unit for a single path due to an underlying symmetric

layout with respect to the two paths. Room temperature microwave switches route

the incoming signal either to a vector network analyzer (VNA) for frequency-resolved

measurements as described in Sec. 5.2, or pass them further to the detection unit. The

raw signal passes a microwave isolator 15 and gets subsequently spectrally filtered by a

high-pass (HP) filter 16, followed by a low-pass (LP) filter 17. In a next step, the microwave

12FS725 atomic clock from Stanford Research Systems.
13AMT-A0482-EMI 1 GHz to 8 GHz broadband low noise amplifier with EMI shielding from AgileMWT.
14DA-075-12-02-00-00 Peltier cooler combined with a PT100 thermometer from Laird.
15IS-18-1 with a frequency range of 3700 to 8200 MHz at insertion loss< 0.7 dB from MCLI.
16VHF-5050+ with a passband between 5500 and 10 000 MHz with insertion loss< 2 dB and a cutoff

frequency of 5050 MHz at a loss of 3 dB from Mini Circuits.
17VLF-8400+ with a passband between dc and 8400 MHz with insertion loss< 1.8 dB and a cutoff frequency

of 9100 MHz at a loss of 3 dB from Mini Circuits.

https://www.thinksrs.com/
https://www.agilemwt.com/
https://lairdthermal.com/de
https://www.mcli.com/
https://www.minicircuits.com/
https://www.minicircuits.com/
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signals are down-converted to an intermediate frequency (IF) of fIF = 12.5 MHz in an

image-rejection mixer 18 (IRM) with fIF = frf − fLO, where fLO is the frequency of a

strong local oscillator (LO) microwave tone. The LO signal is generated by a vector signal

generator 19, high-pass filtered 20, and split in a power combiner to supply both IRMs

of the two distinct dual detection paths. The relative phase between the two paths is

adjustable by usage of a mechanical phase-shifter 21, which is placed directly after the

power combiner in one of the two paths. The usage of image-rejection mixers at this

stage is crucial especially for measurements of squeezed states, since the reconstructed

squeezing level would be inherently limited to 3 dB when using conventional mixers.

This is due to the fact that the (in this case red) noisy sideband would also be down-

converted to fIF, increasing the variance of the reconstructed signal by the minimum of

one quarter of a signal photon, which corresponds to a maximally possible squeezing level

of 3 dB [68]. Note that fIF = 12.5 MHz is not chosen arbitrarily, but well-detuned from

the employed 10 MHz frequency standard to avoid parasitic signals within the spectral

bandwidth of the reconstruction, and commensurable with the FPGA sampling frequency

of 125 MHz. Furthermore, fIF is well above the spectral range dominated by 1/f -noise, and
clearly below entering aliasing problems associated with the Nyquist-Shannon sampling

theorem [107, 222, 244]. After the IRMs, the down-converted signals in both paths are

balanced in power using step attenuators 22 and subsequently filtered using band-pass

filters 23. This attenuation and filtering also allows us to prevent compression effects in the

subsequent amplification and avoids clipping effects during the analog-to-digital conversion.

An IF amplifier 24 in each path combined with another low-pass filter 25 completes the

analog part of the dual-path detection unit.

Digital signal processing Figure 5.6 shows a schematic of the digital signal processing

unit with the FPGA 26 image at its core. In a first step, the incoming dual-path analog

signals at the IF frequency are analog-to-digital converted (ADC) in a transceiver module 27

at the sampling frequency of 125 MHz. The channel balancing enables correcting for offset

mismatches between the two channels, as well as amplitude balancing with a weak coherent

signal. Next, the signals are down-converted to zero frequency in a digital down-conversion

18IRM4080B with an LO frequency range of 4000 to 8000 MHz from Polyphase.
19SGS100A SGMA rf source with a frequency range up to 12.75 GHz and a maximal output level of 22 dBm

from Rohde & Schwarz.
20VHP-26 with a passband between 3000 and 7000 MHz with insertion loss< 1.3 dB and a cutoff frequency

of 2570 MHz at a loss of 3 dB from Mini Circuits.
21RFPSHT0008W4 high power phase shifter tuner with a phase adjustment of 720°for a frequency range

from dc to 8 GHz from RF-LAMBDA.
22ESA2-1-10/8-SFSF attenuators from EPX microwave inc.
23ZX75-12-S+ with a passband between 9 and 15 MHz with insertion loss< 3.5 dB from Mini Circuits.
24AU-1447-R with a gain of 60 dB over a frequency range from 0.001 to 400 MHz from Miteq.
25SLP-21.4+ with a passband between dc and 22 MHz with insertion loss< 1 dB from Mini-Circuits.
26PXIe-7975R FlexRIO FPGA Module from National Instruments.
27NI-5782 Transceiver Adapter Module for FlexRIO from National Instruments.

https://tsc.com/polyphase-microwave-products/
https://www.rohde-schwarz.com/
https://www.minicircuits.com/
https://rflambda.com/
https://www.epxmicrowave.com/
https://www.minicircuits.com/
https://nardamiteq.com/
https://www.minicircuits.com/
https://www.ni.com/
https://www.ni.com/
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Figure 5.6: Data acquisition and processing scheme based on FPGA logic. The two analog input signal

channels are first digitized by an ADC and subsequently balanced with regard to offset

and amplitude. In a next step, the two signals are digitally down-converted (DDC) and

demodulated (DEMOD). The resulting two pairs of signal components are spectrally filtered

(FIR) and finally used for quadrature moment calculation. A number of L averages is

accumulated before the data stream is forwarded to the measurement CPU. Each iteration of

the FPGA cycle is initiated by means of an external trigger pulse. The scheme repeated K

times.

(DDC). This step, combined with signal demodulation, implements digital homodyning

and complements the full heterodyne detection sequence. The IQ-demodulation yields

the I- and Q-quadratures of each signal path via

I1,2 = 2 fIF

∫ t+f−1
IF

t
A1,2(τ) cos(2πfIFτ)dτ, (5.1)

Q1,2 = 2 fIF

∫ t+f−1
IF

t
A1,2(τ) sin(2πfIFτ)dτ, (5.2)

where the sine and cosine functions at the IF (or demodulation) frequency are digitally

generated, multiplied by the digitized input signals A1,2(τ), and numerically integrated

over a full period of f−1
IF . A digital finite-impulse-response (FIR) filter 28 with an adjustable

bandwidth precisely selects a narrow frequency window around the signal frequency, further

suppressing unwanted noise [245]. Typical full bandwidths of the employed FIR filters are

on the order of 400 kHz [108, 222]. Note that we have to deal with the following trade-off:

while decreasing the FIR filter bandwidth is beneficial in terms of SNR, the filter ringing

time grows accordingly [245]. An increased filter ringing time implies that longer times

are needed to reach a steady-state regime of the system, where we can acquire reliable

data. For more details on FIR filter design, we refer the reader to Refs. [108, 222]. In a

final step, the FPGA computes the correlation quadrature moments, ⟨În
1 Î

m
2 Q̂

k
1Q̂

l
2⟩, with

n + m + k + l ≤ 4 and n,m, k, l ∈ N0. This sequence is repeated for L averages and

28Created via DSP System Toolbox in Matlab.

https://de.mathworks.com/products/dsp-system.html


86 Chapter 5 Experimental techniques

afterwards sent to the measurement CPU. Each sequence is prompted by a short square

trigger pulse generated by an arbitrary waveform generator 29. Additionally, the whole

scheme can be repeated K times. The data acquisition is split into L averages and K cycles

due to memory limitations of the FPGA. The FPGA is referenced by the global 10 MHz
frequency standard. After data acquisition, the FPGA sends the statistical moments data

to the host CPU, which continuously runs a LabVIEW program with a graphical user

interface (GUI) for data reception and routing [222]. Various measurement parameters,

such as the channel balancing and number of averages, are fully controllable via this

GUI. The full FPGA image, as well as the measurement code, are written in LabVIEW,

facilitating seamless interfaces between FPGA, host CPU and measurement CPU. In

operation, the FPGA and host CPU steadily wait for prompts from the measurement CPU,

which represents the primary control node for running complex measurement protocols.

The transmission of the moment data is established via first-in-first-out (FIFO) buffers

at both parties, the FPGA and the host-CPU. As a consequence, the time-resolved

information which is contained in the analog signal is preserved in the digital data trace.

Post-processing of specific parts of the acquired data, or time traces, in conjunction with

pulsed operation of the measurement scheme is a decisive building block of reference-state

reconstruction, as described in the next paragraph.

Reference-state reconstruction In our experiments, we are interested in the evolution

of single or few quanta of microwave quantum states. Due to the absence of reliable and

versatile signal detectors at cryogenic temperatures, we need to rely on room-temperature

components for detection of these low-energy signals. Despite making use of low-noise

HEMTs, which dictate the SNR in the amplification chain, we have to use advanced signal

recovery methods to reliably reconstruct quantum states at the sample stage. In the

following, we introduce techniques on how to perform state tomography of a two-mode

quantum state, characterized by the bosonic operators âk, with k = 1, 2, from a noisy

signal with vanishing SNR at room temperature. Throughout this work, we rely on the so-

called reference-state reconstruction method to retrieve the signal moments of propagating

quantum signals before the action of the amplification chain [67, 68, 108, 246]. As

introduced before, the microwave quantum state of interest undergoes a whole amplification

chain before detection. As a result, the measured raw signal is not only stronger, but

carries a significant noise contribution. According to the Friis law [95], for large HEMT

gain the noise of the whole detection chain is governed by the first amplification stage

Aamp = A1 + A2

G1
+ A3

G1G2
+ . . . , (5.3)

where Ak and Gk (k = 1, 2, ...) are the values of the input noise (in photon units) and

gain of the k-th amplifier in the chain, respectively. In the frequency range of 4 to 12 GHz,
29HDAWG 750 MHz Arbitrary Waveform Generator from Zurich Instruments.

https://www.zhinst.com//
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state-of-the-art HEMTs achieve an approximate gain of G = 40 dB with around 10 added

noise photons, referred to the input. In order to cancel out this noise contribution and

account for the overall amplification of the chain, a well-known signal serves as a reference

state, allowing for correction of noise and gain [65, 66, 247]. We rely on weak thermal

states characterized by a photon number nth ≪ 1 per mode at the designated working

frequency around 5 GHz, which can be well approximated by the vacuum state. We define

dimensionless complex envelope functions

S1,2 = (I1,2 + iQ1,2)/
√
κ1,2, (5.4)

where κ1,2 correspond to the photon number conversion factors introduced in Sec. 5.1.3.

The associated envelope operators are given by

Ŝ1,2 = (Î1,2 + iQ̂1,2)/
√
κ1,2 = â1,2 + V̂ †

1,2, (5.5)

where â1,2 are the bosonic operators of the propagating quantum signal in paths 1 and 2.

The operators V̂1,2 correspond to the added noise from the respective amplification chain.

As can be seen from Eq. (5.5), a measurement of the quadrature moments ⟨În
1 Î

m
2 Q̂

k
1Q̂

l
2⟩

for a known reference quantum state â1,2 enables direct evaluation of V̂1,2. As stated

above, the vacuum state serves as such a reference in our case. Under the assumption

of a constant amplification noise, we can reconstruct arbitrary quantum states and their

associated signal moments ⟨(â†
1)n(â†

2)mâk
1â

l
2⟩ by effectively filtering out the known influence

of V̂1,2.

Gaussianity In principle, acquisition of quadrature moments up to the second order is

sufficient to reconstruct Gaussian states, which are fully described by the corresponding

signal moments. Nonetheless, we typically acquire quadrature moments up to fourth order,

which proves to be useful in terms of Gaussianity verification of the measured quantum

states. In this framework, we introduce the cumulants

⟨⟨(â†)kâl⟩⟩ =

∣∣∣∣∣∣ ∂
k

∂xk

∂l

∂yl
ln
∑
m,n

⟨(â†)mân⟩xmyn

m!n!
∣∣∣
x=y=0

∣∣∣∣∣∣. (5.6)

of order (k + l), with k, l ∈ N0 [247–249]. While cumulants of order (k + l) ≤ 2 can be

non-zero for Gaussian states, higher-order contributions (k + l) ≥ 3 must theoretically

vanish for such states. In experiment, we check whether ⟨⟨(â†)kâl⟩⟩ → 0 in terms of

skewness, (k + l) = 3, and sharpness, (k + l) = 4, of the reconstructed states [249]. While

the former is a necessary criterion, the latter is a sufficient prerequisite [222, 247]. Since

the higher-order cumulants are never strictly zero in experiment, we verify our measured

states as Gaussian if cumulants of the third and fourth orders are significantly smaller
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than their first and second order counterparts

⟨⟨(â†)kâl⟩⟩
⟨⟨(â†)mân⟩⟩

≪ 1 (5.7)

for 3 ≤ (k + l) ≤ 4 and (m + n) ≤ 2. Note that this method only grants access

to a qualitative analysis of the Gaussianity. Neither the absolute, nor the relative

[cf. Eq. (5.7)] magnitude of the higher-order cumulants allows us to determine up to which

extent the Gaussian approximation is applicable and how experimental parameters are

influenced. Since quantitative approaches exist but are cumbersome to implement in

terms of computational effort [250], we rely on the qualitative analysis provided by the

cumulant approach.

Physicality check Apart from Gaussianity, all reconstructed states need to obey the

Heisenberg uncertainty principle according to Eq. (2.12). While this principle is universal,

the reconstruction of states may suffer from experimental deficiencies, such that the

resulting states are nonphysical. For Gaussian states, we formulate the physicality check

as

det V ≥
( 1

16

)ℓ

, (5.8)

where V is the 2ℓ× 2ℓ covariance matrix of an ℓ-mode Gaussian state. Accordingly, only

states that fulfill this physicality check, or in other words, the Heisenberg relation, are

used for further analysis, while all other states are filtered out. Previous experiments

with squeezed states have shown that a low number of averages during data acquisition,

reflecting a low SNR, tends to produce an increased failure of the physicality check [108].

At the same time, including all measured states in the full analysis can lead to better

agreement between experiment and theory in these low-average scenarios, details can be

found in Ref. [108].

5.1.3 Output line calibration

Photon number conversion factor Since the cryostat does not allow for direct access to

the signals at the point of interest in our experiment, i.e., at the sample stage, quantitative

analysis at room temperature requires a precise relation of the signal powers between

these two points. A calibrated photon source at the cryogenic sample stage with well-

known and controllable emission characteristics allows for a direct mapping between a

voltage amplitude detected at room temperature and the photon number emitted from

the calibrated source. This approach can be applied for each output line, such that

the detected quadrature moments ⟨Îk
1 Q̂

l
1Î

m
2 Q̂

n
2 ⟩ provide quantitative insights into the
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Figure 5.7: (a) Photograph of the calibrated source inside the cryostat. (b) Planck spectroscopy for an

exemplary output channel. Blue points are experimental data, the red line corresponds to a

fit based on Eq. (5.9). We find a conversion factor κ = (3.64 ± 0.03) 10−7V2/photon and an

amplification noise AH = 12.82 ± 0.12 (in units of photons).

dynamics of the quantum signals at the sample stage. This mapping is conventionally

labeled as the photon number conversion factor (PNCF), given in units of V2/photon,
and relates the measured voltages to the photon numbers before amplification. As a

calibrated source, we employ a cryogenic 30-dB attenuator as an effective black-body

radiator [68]. The temperature of the attenuator is varied between 30 and 450 mK by

means of a PID-controlled loop. This loop is realized using a RuO2 resistive temperature

sensor in combination with a heater 30. The temperature sensor is read out in four-wire

configuration with superconducting NbTi twisted pairs. The temperature sensor and

heater are clamped to the attenuator on opposite sides in order to reliably control the

temperature of the attenuator itself. Furthermore, a thin silver ribbon is clamped to the

attenuator at one end, while its other end is thermally anchored at the MXC. This ribbon

serves as an additional thermalization channel. The thickness, and thereby, the thermal

conductivity of the silver ribbon is designed in a way that the attenuator cools down

reasonably fast after active heating, while the MXC temperature stays largely unaffected

during heating. Figure 5.7(a) shows a photograph of the 30-dB attenuator that serves as

a connecting piece between a stainless steel (SS) input cable and a superconducting NbTi

cable. The SS cable serves as an input line. Its other end is connected to the MXC, realizing

a weak thermal coupling between the attenuator and the MXC. The superconducting

cable leads to the main cryogenic experimental setup, which should remain unaffected

by heating effects. Additionally, low losses between the emitted microwave noise and the

first amplification stage are beneficial for the output line calibration in terms of reliability

30100 Ω strip resistor soldered to a twisted pair of superconducting NbTi wire. A galvanically decoupled,
annealed silver strip, which is glued to the resistor, establishes a good thermal coupling to the 30-dB
attenuator.
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and robustness [108]. The detected power at the FPGA for a respective output channel is

given by [68, 70]

P (Tatt) = κ

Z0

[1
2 coth

(
ℏωs

2kBTatt

)
+ Aamp

]
, (5.9)

where Tatt is the varying attenuator temperature, κ in units of V2/photon is the PNCF that

further depends on the full amplification gain G and detection bandwidth B, Z0 = 50 Ω
denotes the characteristic line impedance, ωs is the signal frequency, and Aamp corresponds

to the full amplification noise (in unit of photons) added by our amplification chain.

As introduced in Eq. (5.3), this added noise can be well approximated by the HEMT

noise, AH ≃ Aamp. Figure 5.7(b) shows a characteristic PNCF measurement with two

distinct regimes: a saturation of the signal caused by the quantum fluctuations at

temperatures below 60 mK, and the linear Johnson-Nyquist regime above 120 mK. Note

that there exists a variety of other self-calibrated microwave sources, such as qubits [251],

or tunnel junctions [252]. Similar to our approach, heating the entire MXC and sample

stage manifests in well calibrated Johnson-Nyquist noise [253]. This particular approach

is, in principle, also implementable in our cryostat. However, the associated heating

of all experimental components at the sample stage may affect their characteristics, as

it is the case for our JPAs [222]. The local heating approach avoids these potential

issues and has proven as a reliable and precise calibration method throughout various

experiments [71, 73, 74, 77, 78, 80, 88, 254].

Reconstruction point By default, the signal reconstruction is conducted with respect to

the calibrated source in the setup, i.e., the heatable attenuator. A precise estimation of the

losses between the calibrated source and a chosen reconstruction point along the signal path

affects the value of κ and enables quantum state reconstruction at arbitrary positions in

the setup [68, 108]. Signal reconstruction at variable reference points represents a decisive

tool in our experiments, which grants access to, e.g., the statistics of squeezed states right

at the output of a respective JPA. The losses, e.g., due to insertion imperfections, must

be carefully estimated based on nominal data sheet values of the respective microwave

components. Furthermore, microwave cable losses are extracted from room temperature

time-domain reflectometry measurements in order to take into account the effects of

reflection losses due to impedance mismatch. A beam splitter model, according to which

the signal sequentially couples to the environmental bath, allows for including these

losses in the PNCF. Additionally, active heating of the 30-dB attenuator locally disturbs

this equilibrium bath temperature. The associated losses can be either incorporated by

introducing a linear temperature gradient along the following cable [108], or by using the

increased attenuator temperature as an effective bath temperature for the first subsequent

lossy component, i.e., the SMA connector of the following superconducting cable [222].
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Figure 5.8: (a) Optical microscope image of an NEC JPA chip with the signal and pump ports marked

as S and P, respectively. The red rectangle highlights the coupling capacitance between

the signal port and the quarter-wavelength resonator, also depicted in panel (b) with larger

magnification. Panel (c) shows a close-up of the dc-SQUID and the vertical pump line. The

corresponding area is highlighted in blue in panel (a).

5.2 Flux-driven Josephson parametric amplifiers

Device preparation JPAs represent a versatile tool for the generation of squeezed states

and phase-sensitive amplification. Throughout this work, we employ two different JPA

batches. For the experiments presented in Ch. 6, we rely on devices fabricated at NEC

Smart Energy Research Laboratories, Japan, and RIKEN, Japan [81]. Figure 5.8(a)

shows an optical microscope image of a JPA chip from NEC. The results discussed in

Ch. 7 are based on JPAs fabricated at the WMI. The architecture of both device types

relies on the same fundamental building blocks: a superconducting quarter-wavelength

resonator in CPW geometry, which is short-circuited to the ground plane via a dc-

SQUID at one end [cf. Fig. 5.8(c)], and capacitively coupled to a signal line at the other

end [cf. Fig. 5.8(b)] [71, 81]. In proximity to the dc-SQUID, there is a separate CPW

pump line inductively coupled to the dc-SQUID, which allows for parametric driving of

the JPA. The NEC devices are patterned onto a silicon substrate of 300 µm thickness with

a thermal-oxide top layer. The signal line, resonator, and pump line are realized based

on a 50 nm niobium layer that is deposited via magnetron sputtering. The aluminum dc-

SQUID with an electrode thickness of 50 nm is fabricated by means of shadow evaporation.

Further information about the NEC JPAs can be found in Ref. [81]. The WMI devices

rely on the same material stack and are fabricated on silicon substrates with a thickness

of 525 µm and a niobium film thickness of 150 nm. The dc-SQUID electrode thickness is

30 nm and 70 nm for the bottom and top electrodes, respectively. The JPA chips are glued

in a custom-built sample box that is made of OFHC copper and subsequently gold-plated,

as depicted in Fig. 5.9(a). GE varnish 31 glue ensures strong adhesion at low temperatures,

31GE 7031 from CMR-Direct.

https://www.cmr-direct.com/de/
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(a) (b)

alumina substrate glass bead pin

silver glueK-connector
sample box

silver wire

superconducting
coil

aluminum
shield

Figure 5.9: (a) Photograph of an assembled sample box with the JPA chip located in the center. The

signal and pump lines are connected to the sample box with a K-connector on either side.

Aluminum substrates with Au waveguides in CPW geometry serve as an interface between the

K-connectors and the JPA chip. (b) Photograph of a closed sample box with a superconducting

coil for dc-flux biasing the JPA mounted on top. The sample box is thermalized via two

silver wires to the sample rod and mounted into an aluminum box (only the bottom lid is

shown) for magnetic shielding.

and provides good thermalization between sample box and chip. The ground plane of

the JPA chip is galvanically connected to the sample box via a set of aluminum bonds.

The sample box is equipped with two rf K-connectors 32 connecting the respective signal

and pump cables. Glass beads serve as an interface between the K-connectors and the

inner volume of the sample box. A direct connection between glass beads and respective

CPW pads on the chip is challenging to establish. Hence, we make use of an additional

interface in the form of a CPW transmission line on a gold-plated printed circuit board

(PCB) on an alumina substrate 33. Similar to the JPA chip, the ground plane of the CPW

transmission line is galvanically coupled to the sample box via a set of aluminum bonds.

On one side of the alumina substrate, a vertical edge to sample box prevents us from using

bonds. Here, we resort to silver glue for establishing a good galvanic connection. The glass

bead is soldered to the inner conductor of the PCB transmission line. Aluminum bonds

establish a galvanic connection between the other end of the PCB transmission line and

the designated signal (or pump) pad of the JPA chip. This assembly technique allows for

a typical impedance matching of 50 ± 3 Ω. For low-loss signal propagation, we connect a

superconducting coaxial NbTi cable to the signal port of the sample box. Since microwave

losses are not as critical for the pump line, we employ flexible, normal-conducting rf

cables 34. For flux-tuning of the JPAs, we mount a custom-built superconducting coil

on top of the respective JPA sample box, as depicted in Fig. 5.9(b). The coil holder is

manufactured from OFHC copper and subsequently gold-plated, analogous to the sample

32K102F-R connector from Anritsu.
33Fabricated by Rohde&Schwarz GmbH with a 50 Ω impedance matching.
34Minibend microwave cables from Huber+Suhner.

https://www.anritsu.com/en-gb/
https://www.rohde-schwarz.com/de/startseite_48230.html
https://www.hubersuhner.com/de


5.2 Flux-driven Josephson parametric amplifiers 93

-0.5 0.0 0.5
4.8

5.0

5.2

5.4

5.6

ω
/(

2
π

) 
(G

H
z
)

-44 -43 -42 -41
-4

-2

0

2

4

Pump power (dBm)

0 10 20 G   (dB)

Φ    /Φ
ext 0

(a)

δ
ω

/(
2
π

) 
(M

H
z
)

(b)

0 10 20

nd

G   (dB)nd

Figure 5.10: (a) Experimental JPA resonance frequency as a function of the externally applied magnetic

flux, Φext. (b) Measured nondegenerate gain spectrum Gnd as a function of the detuning

δω from the JPA resonance frequency and the JPA pump power referred to the input

of the pump port. The working point in (b) coincides with the green data point in (a).

The exemplary red spectrum on the right part in panel (b) is a line cut at a pump power

of −40.5 dBm, illustrated by the black-dashed line.

box. For the coil, we employ 300meters of single-filament NbTi wire 35. Application of

GE varnish to various layers of the coil during winding ensures good mechanical stability

and thermalization. In order to confine the applied magnetic field and isolate the JPAs

from each other, we place the sample box with coil inside a superconducting aluminum

shield. The bottom part of such an aluminum shield is depicted in Fig. 5.9(b). This field

confinement is fundamental for avoiding magnetic cross-talk between different JPAs, or

other flux-controlled and flux-sensitive devices. For thermalization, two annealed silver

wires with a flattened end are clamped between the aluminum shield and the sample box,

and between the sample box and the coil holder, respectively. Finally, an input circulator

enables measuring the JPA in a reflection-type configuration.

Flux characteristics The magnetic-flux dependence of the JPA resonance frequency

represents an important tool for harmonizing a multitude of JPAs towards one working

frequency in advanced experiments [78, 80]. This flexibility is fundamentally important

due to a limited reproducibility of system parameters in fabrication, which reflects in a

variation of the bare resonance frequencies of the JPAs. We investigate the JPA frequency

dependence on the externally applied magnetic field in frequency-resolved measurements,

making use of a VNA 36. The dc current flowing through the superconducting coil, Icoil, is

applied with a dc current source 37. Figure 5.10(a) shows a typical flux-dependent JPA res-

35C510/NbTi wire from Supercon Inc.
36ZVA24 vector network analyzer from Rohde & Schwarz.
376241A wide ranging source from ADCMT.

https://www.supercon-wire.com/
https://www.rohde-schwarz.com/
https://www.adcmt.com/en/products/vig/6241a
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Figure 5.11: (a) Experimentally measured phase-dependent degenerate gain Gd as a function of the

relative phase between the coherent input signal and the pump tone for various pump

powers given in dBm. (b) Maximum degenerate gain values Gmax
d from (a) as a function of

the pump power. (c) Maximum degenerate gain as a function of the coherent input power

for different pump powers. The dashed horizontal lines illustrate the corresponding 1 dB
compression thresholds. All powers are referred to the JPA pump port. The color code

matches between all three panels.

onance response. The JPA resonance frequency follows the expected dependence according

to Eq. (4.25). We find the current-flux conversion factor of Icoil/Φext ≃ 0.182 mA/Φ0.

Working frequency Based the measurement shown in Fig. 5.10(a), we fix the dc flux

working point to a working frequency of 5.5232 GHz, highlighted as the green data point.

While the tunability of the JPA covers a frequency span of approximately 800 MHz, the
preferred working regime for our purposes is more narrow. On the one hand, a large slope

of the resonance frequency, ∂ω0/∂Φext, makes the JPA sensitive to flux noise. Accordingly,

a slight variation of Φext results in a stronger shift in JPA resonance frequency in steeper

regions [cf. Fig. 5.10(a)], which is why we typically try to avoid these working points. On

the other hand, the required pump power to achieve a fixed gain increases with decreasing

slope along the flux curve, because the effective pump driving strength is proportional to

this slope [222]. As a consequence, pump-induced noise is more pronounced at flat regions

of the flux curve for a fixed gain. Hence, we also try to circumvent JPA working points at

vanishing slope. Note that this argumentation holds only for pump levels below the onset

of higher-order nonlinearities. We use optimized attenuation in the JPA pump microwave
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lines, typically, on the order of 30 to 40 dB, which may further limit operation of the

JPAs in very flat regimes of the flux curve. This limitation comes from finite dynamic

ranges of our room temperature microwave generators. In summary, we face a trade-off in

the choice of the JPA working frequencies, which requires careful consideration for each

experiment, due to conflicting requirements towards maximizing gain and minimizing

noise.

Nondegenerate and degenerate gain In order to generate parametric gain with the

JPA, we apply a coherent pump tone at the frequency ωp = 2ω0. Figure 5.10(b) depicts

the spectrum of the nondegenerate gain Gnd as a function of the applied JPA pump power.

The line cut at a pump power of about −40.5 dBm in Fig. 5.10(b) shows an exemplary

characteristic gain spectrum with a maximal nondegenerate gain Gnd ≃ 25 dB. In a

next step, we investigate the phase-sensitive degenerate JPA gain, Gd. In this scope, we

apply a weak coherent signal in the single-photon regime at half the pump frequency,

ωs = ωp/2, coinciding with the JPA resonance frequency at the chosen working point of

ω0/(2π) = 5.5232 GHz. For signal readout, we employ the dual-path receiver introduced

earlier in Sec. 5.1.2 and determine the power of the amplified coherent tone based on the

detected quadrature moments. Figure 5.11(a) shows the phase-dependent gain Gd for

different pump powers. Note that the varying phase of the coherent tone is stabilized with

respect to the respective pump phase. A calibration measurement with no pump applied

provides the reference for calculating Gd. As expected, the JPA acts as a phase-sensitive

amplifier, where effectively one quadrature of the incoming signal is amplified, while the

orthogonal quadrature is deamplified. Figure 5.11(b) depicts the associated maximum

degenerate gain values, Gmax
d , as a function of the applied pump power. The extracted

values of Gmax
d provide part of the calibration for later studies presented in Ch. 6.

Quantum efficiency The quantum efficiency of JPAs can, in principle, exceed the SQL

in the phase-sensitive regime [73, 75, 236]. In the following, we briefly introduce the

measurement routine for quantum efficiency determination of flux-tunable JPAs. In a

first step, we detune the JPA in frequency by changing the external dc flux, such that the

JPA resonance is outside of the measurement bandwidth. Next, we vary the power, Pin,

of a coherent input tone to calibrate the coherent photon number, nc = ⟨n̂c⟩, with respect

to the JPA input port using the reference-state reconstruction, as introduced earlier in

Sec. 5.1.2. These two quantities are related linearly according to [222]

nc(Pin) = cPin + o, (5.10)

where we treat c and o as free fitting parameters. After this calibration, we tune the JPA

to the designated working frequency and apply a time-modulated measurement routine.

We fix the JPA phase in a parallel configuration with respect to the coherent displacement
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angle, γ = θ, as defined in Ch. 2. Without loss of generality, we choose to amplify the

q-quadrature. During one pulse of our time sequence, the coherent and pump tones are

both applied. We extract the detected power, Pon, for the amplified q-quadrature from

the first-order signal moment according to

Pon = κ

Z0
⟨q̂⟩2, (5.11)

where κ is the PNCF. During a second pulse of our sequence, we record the power, Poff ,

associated with the q-quadrature without the pump tone. This reference enables a direct

estimation of the degenerate JPA gain

Gd = Pon

Poff
. (5.12)

With the reference point located directly after the JPA, we can additionally reconstruct

the signal variance of the amplified quadrature while the JPA pump is on, given by

σ2
on =

[
Gd(σ2

in + σ2
χ)
]

=
[
Gd(1

4 + σ2
χ)
]
, (5.13)

where σ2
in = 1

4 is the vacuum variance of our coherent input signal and σ2
χ denotes the added

amplification noise, reflected in an enhanced variance associated with the q-quadrature.

From Eq. (5.13), we can directly evaluate the unknown variance σ2
χ and use it for analysis

of the quadrature quantum efficiency according to

η = 1
1 + 2σ2

χ

, (5.14)

where σ2
χ ≃ nJPA/2+AH/(2Gd). The quantity nJPA is the noise added by the JPA, referred

to its input. This noise depends on the JPA gain according to [73]

nJPA(Gd) = λ(Gd − 1)β, (5.15)

where λ and β are fitting parameters. Figure 5.12 depicts the measured JPA quantum

efficiency η as a function of the degenerate gain, Gd. In agreement with the Friis formula,

we account for the JPA noise and the HEMT noise, while neglecting further noise added

by the remaining amplification chain. The displayed fit relies on Eqs. (5.14) and (5.15).

Compression In realistic scenarios, JPAs operate as linear amplifiers only up to a finite

signal input power due to compression effects caused by higher-order nonlinearities and

pump depletion effects [163, 255, 256]. We introduce the 1 dB compression point as the

38Note that, without loss of generality, the displayed data in this figure is acquired with displaced
squeezed states as an input to the JPA.
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Figure 5.12: Experimental JPA quantum efficiency, η, as a function of the degenerate gain, Gd. The blue

symbols with associated error bars correspond to measured data, the blue dashed line is a

guide to the eye. The red solid line is a fit to the data according to Eq. (5.14) and Eq. (5.15).

The corresponding fit parameters are λ = 0.048 and β = 0.42.38

signal input level at which the maximum gain of the amplifier is decreased by 1 dB with

respect to its low power value [95]. Figure 5.11(c) shows the maximum degenerate gain as

a function of the coherent signal power. Each data point is extracted from a measurement

as shown in Figs. 5.11(a) and (b) for varying signal levels. We repeat the measurement

for four different pump powers with a matching color code between Figs. 5.11(c) and

(a). The flat plateaus represent the linear amplification regime. As expected, we observe

compression effects appearing at progressively lower input powers with increasing pump

powers.

Squeezing Apart from amplification purposes, the generation of squeezed states is

another key application of JPAs. The measurement routine for squeezed vacuum states is

similar to the phase-sensitive gain scheme, but without a coherent input tone. Instead,

the JPA phase-sensitively amplifies the incident weak thermal state, which can be well

approximated by vacuum fluctuations. For these states, the squeeze level S can be

calculated from the second-order moments [6]. Squeezing along the q- or p-quadrature,

without loss of generality, enables extraction of the corresponding variances from the

reconstructed signal moments according to [79]

σ2
q = 1

4
(
⟨â2⟩ + ⟨(â†)2⟩ + 2 ⟨â†â⟩ + 1

)
, (5.16)

σ2
p = 1

4
(
⟨â2⟩ + ⟨(â†)2⟩ − 2 ⟨â†â⟩ + 1

)
. (5.17)

The squeezed and anti-squeezed quadratures can be evaluated as σ2
s = min(σ2

q , σ
2
p) and

σ2
a = max(σ2

q , σ
2
p), respectively. Figure 5.13(a) shows the reconstructed S as a function of

the applied pump power. We observe a steady increase in S up to Smax ≃ 8 dB. Beyond
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Figure 5.13: (a) Squeezing level S with associated statistical error bars as a function of the applied

pump power referred to the JPA pump port. The gray-dashed line illustrates the vacuum

limit, above which the reconstructed states are categorized as squeezed. (b) Corresponding

reconstructed purity µ with associated statistical error bars, the upper bound of unity is

depicted as the gray-dashed line. (c) Experimental squeeze angle γ for the target squeeze

angle of 45◦. (d) Absolute values of the cumulants Cn,m = ⟨⟨(â†)nâm⟩⟩. The lines connecting
the data points in panels (a) to (d) are a guide to the eye.

the associated pump power of approximately −44 dBm, the squeezing level abruptly

decreases and exceeds the vacuum fluctuations, characterized by S = 0 dB. Figure 5.13(b)

depicts the purity µ according to Eq. (2.26) of the investigated states. The purity steadily

decreases with increasing pump power, and remains µ > 0.9, close to unity, for pump

powers up to −50 dBm. At this power, the corresponding squeezing level is S ≃ 5 dB. The

monotonic decrease of µ potentially stems from higher-order nonlinearities, pump-induced

noise, and gain-dependent environmental noise [73, 108, 163, 221, 222]. The squeezing

angle is stabilized to 45◦ in the phase-locked loop, the reconstructed squeezing angle γ

is shown in Fig. 5.13(c). The precision and variance of the phase stabilization increases

with increasing pump power, due to larger powers of the generated output states and,

thus, better SNRs in the phase estimation. Figure 5.13(d) depicts the corresponding

absolute values of the cumulants. The cumulants the first two orders steadily increase and

dominate at low pump powers, while the higher-order cumulants n+m ≥ 3 stay constant

at lower values. The fourth-order cumulants start rising at pump powers around −45 dBm
and surpass the second order cumulants at around −43 dBm. Beyond this threshold, the

reconstructed states cannot be considered Gaussian anymore [108].
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To conclude, the experimental techniques described in this chapter are the cornerstone

for performing advanced quantum microwave experiments, such as the experimental study

discussed in the next chapter. While the cryogenic part of the setup is the core of such

experiments, the associated room temperature counterpart is of central importance for

data detection and processing. Sophisticated measurement techniques, such as the output

line calibration and a precise control of the JPAs, complement our tool set for conducting

studies with quantum microwaves at frequencies of several gigahertz.





Chapter 6

Quantum microwave parametric

interferometer

Interferometry is a fundamental technique of high precision measurements and metrology.

In the broadest sense, coherent-wave interference can provide precise information on a

variety of physical quantities, such as magnetic fields and gravitational waves, which

directly or indirectly cause phase differences between the associated waves propagating

along the two interferometer arms (one only can measure phase differences but not

phases) [257]. The immense sensitivity of interferometers is based on the fact that

tiny changes of the phase difference can be detected: for example, in the approach of

gravitational-wave detection in the Laser Interferometer Gravitational Wave Observatory

101
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Figure 6.1: (a) General scheme of the QUMPI. Here, a circulator separates the incoming and outgoing

signals for each JPA. (b) Details of the experimental setup consisting of a 180◦ hybrid

ring (HR), which splits and symmetrically superimposes two incoming signals from ports In1

and In2, two JPAs for phase-sensitive amplification, and a second 180◦ HR, which completes

the nonlinear interferometer. Output two-mode signals are detected with a heterodyne

microwave receiver and digitally processed to extract statistical signal moments. The latter

enable a full state tomography.

(LIGO), a gravitational wave passing over one arm of an interferometer changes its length,

which affects the interference pattern and a resulting readout signal [258]. Classical

interferometers, such as the Mach-Zehnder interferometer, typically rely on the injection of

a coherent state into one port of a beam splitter, while only vacuum fluctuations enter the

second port [259]. Their phase sensitivity is limited by the shot noise of the coherent signal,

also known as the standard quantum limit (SQL). As the uncertainty in the photon number

of a coherent state is
√
N , the one of the phase is 1/

√
N according to the Heisenberg

uncertainty relation, leading to a signal-to-noise ratio (SNR) of N/
√
N . As a consequence,

the SQL reflects in a
√
N scaling of the SNR [40, 257]. This linear interferometer

sensitivity can be improved by coupling quantum states, such as squeezed states, into

the second beam splitter port [257, 260]. The use of squeezed states allows to reduce the

detection noise below the SQL, which is equivalent to an augmented phase sensitivity [261].

Alternatively, the SQL can be overcome by using nonlinear elements, such as parametric

amplifiers, leading to interactions between photons [262–265]. In principle, exploiting

quantum correlations between photons in these states allows one to achieve the Heisenberg

limit (HL) with a linear scaling of the SNR with respect to N [257, 266]. While nonlinear

interferometers have been investigated at optical frequencies, the microwave domain, so

far, remained largely unexplored due to relatively small energies of microwave photons

with frequencies in the 1–10 GHz regime and the associated difficulty of single-photon

detection [257, 265, 267, 268]. Meanwhile, quantum microwave sensing and communication

represent novel and rapidly growing fields, which promise groundbreaking fundamental

experiments and applications [52, 55, 78, 269]. The results presented in this chapter have

been published in Ref. [80]. Parts of the text and figures are adapted from this reference.

In this chapter, we present an experimental realization of a nonlinear microwave

interferometer making use of Josephson-junction-based superconducting quantum circuits,
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illustrated in Fig. 6.1. This quantum microwave parametric interferometer (QUMPI)

consists of two linear balanced microwave beam splitters and two nonlinear quantum

devices in the form of flux-driven JPAs. Low-loss microwave cryogenic circulators are used

to separate the incoming and outgoing signals of the JPAs. In Fig. 6.1(a), we present the

idea of the QUMPI. Input signals at ports In1 and In2 are split and subsequently fed into

JPA1 and JPA2. Then, the nonlinearly amplified signals from the JPAs interfere and leave

the circuit at ports Out1 and Out2. Figure 6.1(b) shows a detailed circuit layout of our

experiment. We employ two symmetric hybrid rings (HRs) as microwave beam splitters

and two superconducting flux-driven JPAs. In Sec. 6.1 we perform a network analysis

of the interferometer, which highlights the extreme phase-sensitivity of the circuit and

the associated need for a precise geometric design of the interferometer building blocks.

An understanding of measured data requires a detailed theoretical model of the QUMPI,

which we introduce in Sec. 6.2. Details on the experimental setup are provided in Sec. 6.3.

Finally, in Sec. 6.4, we present results of an in-depth experimental study of the QUMPI.

6.1 Frequency-resolved network analysis

Interferometric devices rely on a superposition of waves, such that the resulting interference

effects directly reflect properties of the underlying electromagnetic waves. Apart from

the amplitudes of these incoming waves, their respective phases and a resulting phase

difference play a decisive role in interferometry. While the design of interferometers

aims at a specific transformation of the incoming waves, realistic implementations always

suffer from finite imperfections in the arm length or in the form of intrinsic losses. In

superconducting circuits, losses are typically small and well known. Conversely, the

macroscopic design of the QUMPI and the employed custom-built superconducting cables

introduce finite length offsets in the interferometer arms. In the following, we perform a

full network analysis of the QUMPI in order to investigate the robustness of the circuit

towards relative length variations in the interferometer arms, and equivalently, variations

of the phase difference. In this analysis, we focus on the passive part of the interferometer

and assume the JPAs to be detuned in frequency. The remaining passive interferometer

can be decomposed into two 180◦ HRs and various transmission lines. We use the even &

odd mode approach [270] for this analysis, which is convenient for decomposing multi-port

devices into a cascaded series of two-port networks [95]. The individual two-port devices

can be straightforwardly described by the corresponding ABCD matrices. In contrast

to scattering matrices, these ABCD matrices can be cascaded since they act as effective

transfer matrices. For an intuitive understanding, consider the scattering matrix S of a

two-port device, defined as [95]

(
V −

1
V −

2

)
= S

(
V +

1
V +

2

)
=
(
S11 S12

S21 S22

)(
V +

1
V +

2

)
, (6.1)
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Figure 6.2: (a) Illustration of a 180◦ HR as a four-port device with two nominal input ports and two

nominal output ports. (b) Geometric configuration and impedance specifications of the 180◦

HR depicted in (a).

relating the complex voltage amplitudes of the reflected waves, V −
1 and V −

2 , of a device

under test to the incident wave amplitudes V +
1 and V +

2 , where the subscripts denote the

corresponding port. The associated two-port transfer matrix T is defined as(
V −

2
V +

2

)
= T

(
V +

1
V −

1

)
=
(
T11 T12

T21 T22

)(
V +

1
V −

1

)
, (6.2)

connecting the voltages at the output port 2, incident (V +
2 ) as well as reflected (V −

2 ),

to the voltages V +
1 and V −

1 at the input port 1. As a result, transfer matrices can be

easily cascaded, which is useful for modeling a sequence of devices that are connected

back-to-back. Based on such 2 × 2 transfer matrices, we derive the full scattering matrix

of the interferometer. For details on microwave network analysis, we refer the reader to

Ref. [95].

180° hybrid ring The 180◦ HR represents a central building block of the QUMPI and

corresponds to a four-port network with a 180◦ phase shift between the two output ports,

schematically depicted in Fig. 6.2. The device has one symmetric input, denoted by the∑
symbol, and an asymmetric input port, illustrated by the ∆ symbol. With respect to

the port labeling according to Fig. 6.2, a signal applied to port 1 is split in a balanced

manner and couples to ports 2 and 3 with an identical phase, while port 4 is isolated. An

input signal applied to port 4 is also evenly split and leaves the HR at ports 2 and 3, with

port 1 being isolated. In this case, the signal leaving the HR at port 2 acquires a phase

difference of 180◦ with respect to the signal leaving at port 3. The ideal scattering matrix
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for the 180◦ HR is given by [95]

SHR = −i√
2


0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0

 . (6.3)

The basic design criteria for a 180◦ HR are shown in Fig. 6.2(b). The design wavelength

λd determines the respective lengths of the ring segments, while the impedance of the

transmission lines forming the ring is a factor of
√

2 larger than the characteristic input

impedance Z0.

Geometric symmetries in a circuit result in well-defined relationships between arbitrary

waves that symmetrically enter the circuit, which simplifies a corresponding circuit

analysis. In the following, we perform such a symmetry-based approach called the

even-odd analysis [270] of the 180◦ HR. The even-odd analysis technique [270] allows

for decomposing the system along its symmetry plane into a superposition of one even

excitation and one odd excitation with a respective wave amplitude of 1/2, as illustrated
in Figs. 6.3(a) and (b), respectively. We start by analyzing an incident wave at port 1

of unit amplitude. Based on the design, the wave splits into two components that can

constructively interfere at ports 2 and 3. At port 4, the divided wave components arrive

180◦ out of phase and destructively interfere. Here, the even case corresponds to an even

polarity (++) of the respective 1/2 excitations at ports 1 and 3, while odd refers to a

corresponding odd polarity (+-). The result of the even-odd decomposition is a 2-port

network that we can describe via cascading the known transfer matrices of the respective

sub-components, i.e., open stubs, shorted stubs, and transmission lines, shown in Fig. 6.4.

The transfer matrices of an open stub [Fig. 6.4(a)] and a shorted stub [Fig. 6.4(b)] as a

function of the signal wavelength λ, segment length l, and impedance Z, are

(
A B

C D

)
O

=
 1 0

i
Z

tan
(

2πl
λ

)
1

 and
(
A B

C D

)
S

=
 1 0

− i
Z

cot
(

2πl
λ

)
1

 , (6.4)

respectively. The transfer matrix of a transmission line [Fig. 6.4(c)] can be expressed as

(
A B

C D

)
TL

=
 cos

(
2πl
λ

)
iZ sin

(
2πl
λ

)
i
Z

sin
(

2πl
λ

)
cos

(
2πl
λ

)  . (6.5)

The resulting transfer matrix for the even case and excitation via port one (denoted by
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mode case yields an effective open circuit (O.C.) along the symmetry plane. (b) The circuit

equivalent for the odd case corresponds to a shorted circuit (S.C.) along the symmetry plane.

The O.C. in (a) and S.C. in (b) stem from interference effects of the respective excitations

due to the system symmetry.

the superscript) is given by

(
A B

C D

)1

even
=
(
A B

C D

)
O

·
(
A B

C D

)
TL

·
(
A B

C D

)
O

=

=
 1 0

i√
2Z0

tan
(

2π
λ

λd
8

)
1

 cos
(

2π
λ

λd
4

)
i
√

2Z0 sin
(

2π
λ

λd
4

)
i√
2Z0

sin
(

2π
λ

λd
4

)
cos

(
2π
λ

λd
4

)  1 0
i√
2Z0

tan
(

2π
λ

3λd
8

)
1

 ,
(6.6)

where we set Z =
√

2Z0 and inserted the corresponding segment lengths from Fig. 6.3

according to the HR design from Fig. 6.2 into Eqs. (6.4) and (6.5). Similarly, the odd

decomposition yields

(
A B

C D

)1

odd
=
(
A B

C D

)
S

·
(
A B

C D

)
TL

·
(
A B

C D

)
S

=

=
 1 0

−i√
2Z0

cot
(

2π
λ

λd
8

)
1

 cos
(

2π
λ

λd
4

)
i
√

2Z0 sin
(

2π
λ

λd
4

)
i√
2Z0

sin
(

2π
λ

λd
4

)
cos

(
2π
λ

λd
4

)  1 0
−i√
2Z0

cot
(

2π
λ

3λd
8

)
1

 .
(6.7)



6.1 Frequency-resolved network analysis 107

1

 Z

2

l

Open stub(a)

1

 Z

2

l

Shorted stub(b)

1 2

l

 Z

Transmission line(c)

Figure 6.4: Decomposed circuit sub-components with known ABCD matrices.

In a next step, we transform the even and odd transfer matrices into 2 × 2 scattering

matrices according to

S11 =
A+ B

Z0
− CZ0 −D

A+ B
Z0

+ CZ0 +D
, (6.8)

S12 = S21 = 2
A+ B

Z0
+ CZ0 +D

, (6.9)

S22 =
−A+ B

Z0
− CZ0 +D

A+ B
Z0

+ CZ0 +D
. (6.10)

For arbitrary waves, the transmission coefficients T and reflection coefficients Γ are related

to the scattering matrices via

T = S21 and Γ = S11. (6.11)

Accordingly, we can evaluate the even coefficients, Teven and Γeven, as well as the odd

coefficients, Todd and Γodd. In a superposition, the sum of the even case and the odd

case corresponds to a single, unit-amplitude incoming signal at port 1. Similarly, the

output signals are formed by a superposition of the even mode and odd mode results. The

resulting vector amplitudes of the output signals at the four ports are given by [95]

B1
1 = 1

2Γeven + 1
2Γodd, (6.12)

B1
2 = 1

2Teven + 1
2Todd, (6.13)

B1
3 = 1

2Γeven − 1
2Γodd, (6.14)

B1
4 = 1

2Teven − 1
2Todd. (6.15)

where the superscript denotes the incident wave at port one. These B-entries coincide

with the final scattering matrix entries, since the input wave amplitude is unity [95]. To

this end, we can calculate the first and third columns of the final 4 × 4 scattering matrix
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of the 180◦ HR

SHR =


B1

1 B4
2 B1

3 B4
4

B1
2 B4

1 B1
4 B4

3
B1

3 B4
4 B1

1 B4
2

B1
4 B4

3 B1
2 B4

1

 , (6.16)

where the superscripts denote the incident wave at ports one and four. Note that the

scattering matrix in Eq. (6.16) simplifies to the ideal case [cf. Eq. (6.3)] for an incoming

excitation at the design wavelength λ = λd. The second and fourth columns of SHR can be

calculated by repetition of the even-odd analysis with port four as an active port, shown

in Figs. 6.5(a) and (b). For an incoming wave at port 4, the two divided wave components

travel along the ring and arrive in phase at ports 2 and 3 to interfere constructively.

Note that there is a 180◦ phase difference between the output of the two ports. At port

1, the wave components interfere in a destructive manner and cancel each other. For

the sake of conciseness, we do not show each step in the analysis of port 4, which can

be conducted in a straightforward manner analogous to the wave excitation at port 1.

Figure 6.6 shows the complex frequency-dependent scattering parameters according to

Eq. (6.16) for an incoming wave at port 1 and a design frequency ωd/(2π) = 5.75 GHz
of the 180◦ HR. Strong signal suppression can be observed for the reflection (S11) and

isolation (S41) magnitudes in Fig. 6.6(a). The signal is evenly split (−3 dB) between port

2 (S21) and port 3 (S31) at ωd/(2π) = 5.75 GHz over a flat bandwidth of roughly 750 MHz.
With port 1 as the symmetric input port, the signals leave ports 2 and 3 in phase, shown
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Figure 6.6: Theoretical (a) magnitude and (b) phase of the complex scattering parameters of a 180◦

HR with design frequency ωd/(2π) = 5.75 GHz for an excitation at the symmetric port 1

according to the scattering matrix derived in Eq. (6.16).

in Fig. 6.6(b). For comparison, we plot the calculated scattering spectrum for an incoming

wave at the asymmetric port 4 in Fig. 6.7. Analogous to Fig. 6.6(a), we observe a strong

signal damping in reflection (S44) and isolation (S14) combined with an even splitting

of the incoming wave at ports 2 and 3, as depicted in Fig. 6.7(a). The associated phase

response shown in Fig. 6.7(b) illustrates the 180◦ phase difference between port 2 and port

3 at the design frequency.

Scattering parameters of the interferometer A full network analysis of the passive

interferometer can be conducted by cascading the transfer matrices of its building blocks

according to

T QUMPI = T HR · T TL · T HR, (6.17)

where T QUMPI, T HR, and T TL are the 4 × 4 transfer matrices of the QUMPI, the

180◦ HR, and the transmission lines connecting the two HRs, respectively. In a first step,

we transform the 4 × 4 HR scattering matrix SHR from Eq. (6.16) into the corresponding
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transfer matrix

T HR =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 . (6.18)

The explicit expressions for calculating an arbitrary transfer matrix based on a known

scattering matrix of dimension 4 × 4 are provided in Appendix B. The two interferometer

arms can be straightforwardly modeled by the transfer matrix

T TL =


exp(−i 2πl1/λ) 0 0 0

0 exp(−i 2πl1/λ) 0 0
0 0 exp(−i 2πl2/λ) 0
0 0 0 exp(−i 2πl2/λ)

 , (6.19)

where l1 and l2 are the two interferometer arm lengths, respectively. Here, we assume
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lossless signal propagation along the interferometer arms, which is appropriate based on

the low losses < 0.3 dB/m of our employed superconducting cables (cf. Sec.5.1.1) and

geometric arm lengths ≃ 0.5 m. Finally, we obtain the full scattering matrix of the entire

circuit by inverting the linear system given in Appendix B.

Figures 6.8(a) to (c) show the theoretical magnitude of the scattering parameters of

the 4 × 4 network for an excitation at port 1 of the interferometer for different arm

length differences ∆ l = l2 − l1, where l1 and l2 are the respective interferometer arm

lengths. We observe constructive interference of the incoming signal at output port 3

(S31) with approximately 0 dB attenuation over a flat bandwidth of more than 2 GHz
around the center frequency of 5.75 GHz for a balanced configuration with ∆ l = 0,
shown in Fig. 6.8(a). This case corresponds to the ideal design. Signal transmission

through port 2 is strongly attenuated by more than 20 dB over this bandwidth. Similarly,

reflection (S11) and isolation (S41) are heavily suppressed. Already a small arm length

asymmetry, ∆ l = λ/4, which corresponds to a length of approximately 9.5 mm in our

superconducting cable at the carrier frequency of around 5.5 GHz, results in a drastically

different setting, depicted in Fig. 6.8(b). In this configuration, the two output ports are

balanced with around 3 dB of attenuation at the design frequency, which can decisively

affect the functionality of the interferometer. For the configuration of ∆ l = 0.45λ, shown
in Fig. 6.8(c), we observe an inverted scenario with respect to Fig. 6.8(a). Here, the

incoming signal constructively interferes at the interferometer output port 2, while being

strongly suppressed at port 3. Additionally, we observe a strong frequency dependence of

the scattering parameters, where S21 and S31 are almost balanced at −3 dB at 5.5 GHz.
The observed strong dependence of the interferometer response as a function of the arm

length difference is exactly what we expect from such a device, since we effectively vary

the overall phase difference between the two arms, which coincides with the operation of

a classical Mach-Zehnder interferometer. However, the QUMPI additionally encompasses

active components in the form of JPAs, which we intend to operate at a fixed frequency.

Accordingly, we aim towards a well-defined circuit design of the interferometer with

∆ l = 0, corresponding to Fig. 6.8(a).

6.2 Frequency-degenerate theory model

After the frequency-resolved analysis in the previous section, we investigate the expected

characteristics of the QUMPI at the designated working frequency of ω/2π = 5.48 GHz
based on the input-output formalism. The nonlinear interferometer is modeled in a

step-wise approach as a sequence of different operations, as depicted in Fig. 6.9. Since the

thermal population of our states at the carrier frequency of ω/2π = 5.48 GHz and with the

effective temperature of T ≃ 50 mK is small, nth = 1/(exp(ℏω/kBT ) − 1) ≃ 5 · 10−3 ≪ 1,
we assume vacuum states as both signal inputs, as discussed in Sec. 5.1.2. The initial

coherent states âk (k = 1, 2) with complex displacement amplitudes αk are modeled by
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Figure 6.8: Theoretical magnitude of the complex scattering parameters of the passive part of the

QUMPI as a function of the signal frequency for an excitation at port 1 and (a) identical arm

lengths with ∆ l = l2 − l1 = 0, where l1 and l2 are the respective interferometer arm lengths.

Panel (b) depicts the associated scattering parameters for an arm length offset corresponding

to ∆ l = λ/4 at the frequency of 5.5 GHz. Panel (c) shows the results of the network analysis

for ∆ l = 0.45λ at 5.5 GHz. The shown curves are evaluated based on Eq. (6.17).

applying the displacement operator D̂(αk) to vacuum, v̂k,

âk = v̂k + αk. (6.20)
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First, the signals of the two input lines are superimposed at an ideal 180◦ HR, which we

model as

B̂†
k

(
â1

â2

)
B̂k = 1√

2

(
−1 1
1 1

)(
â1

â2

)
, (6.21)

with k ∈ {1, 2}. The expression used in Eq. (6.21) corresponds to the ideal scattering matrix

in Eq. (6.3), which is an appropriate assumption based on our working frequency ω/2π =
5.48 GHz being well within the bandwidth ≃ 750 MHz of the HR with a design frequency

ωd/2π = 5.75 GHz. The losses due to insertion, connectors, and cable attenuation are

modeled with a non-unitary loss operator according to

L̂†
j

(
â1

â2

)
L̂j =

(√1 − εj â1 + √
εj v̂1√1 − εj â2 + √
εj v̂2

)
, (6.22)

with j ∈ {1, 2, 3}. The phases ϕk that are acquired by the signals traveling along each

interferometer arm are modeled as

P̂ †
(
â1

â2

)
P̂ =

(
eiϕ1 0
0 eiϕ2

)(
â1

â2

)
, (6.23)

which are connected to the interferometer arm lengths via ϕk = 2πlk/λ [cf. Eq. (6.19)].

Next, the two JPAs perform a phase-sensitive amplification which we model by a squeezing

operator according to

Ŝ†
(
â1

â2

)
Ŝ =

(â1 + ζ1) cosh r1 −
(
â†

1 + ζ∗
1

)
e−2iγ1sinh r1

(â2 + ζ2) cosh r2 −
(
â†

2 + ζ∗
2

)
e−2iγ2sinh r2

 , (6.24)

where the JPA gain Gk is related to the squeezing parameter rk via Gk = e2rk . The

respective squeezing angle is denoted by γk. Note the difference between the pure squeeze

operator introduced in Eq. (2.47) and Eq. (6.24). The noise added by the two JPAs is taken

into account by introducing a random classical variable ζk, which fulfills ⟨ζkζ
∗
k⟩ = nk(Gk)

and ⟨Re (ζ)2⟩ = ⟨Im (ζ)2⟩ = nk(Gk)/2. Note that this noise number depends on the

respective gain [73]. For a reliable analysis of Gk and nk, we reconstruct the corresponding

quantum states at the output of the second HR, when exclusively JPA1 (JPA2) is driven,

as depicted in Fig. 6.11. The full transformation of the circuit is given by the combined

operator

F̂ = L̂3B̂2L̂2ŜP̂ L̂1B̂1. (6.25)

Consequently, the final state |Ψ⟩ can be expressed as 1

1Note that this is only a symbolic notation for better clarity. For a full description, the environment
enters via two additional modes. Since we do not care further about the environment, we drop these
modes.



114 Chapter 6 Quantum microwave parametric interferometer

HR2HR1

L3

ϕ
1

ϕ
2

ε3

ε3ε1 ε2

ε2ε1

L2B1 B2L1 P S

a1

a2

JPA1 (G , γ , n )
1 1 1

JPA2 (G , γ , n )
2 2 2

Figure 6.9: Scheme of the theoretical model of the interferometer circuit. The incoming modes â1 and â2

sequentially undergo various transformations, as indicated by the vertical dashed lines. The

final states are reconstructed after the operation L̂3.

|Ψ⟩ = F̂ |α1;α2⟩. (6.26)

The signal moments of the circuit outputs b̂k are given by(
⟨(b̂†)nb̂m⟩1

⟨(b̂†)nb̂m⟩2

)
= ⟨Ψ|

(
⟨(â†)nâm⟩1

⟨(â†)nâm⟩2

)
|Ψ⟩. (6.27)

As introduced in Sec. 5.1.2, we exclusively consider Gaussian states and restrict ourselves

to signal moments up to the second order [6]. They are obtained by applying the operator

of Eq. (6.25) to the initial signal moments with m+ n ≤ 2. Based on the complementary

quadrature operators given in Eqs. (2.7) and (2.8), we further rely on the first and second

statistical moments according to Eqs. (2.24) and (2.25).

All quantities discussed in Sec. 6.4 are either evaluated directly with the signal moments,

the associated first and second statistical moments, or by using the second-order correlation

function [131] and interferometric power (IP) [271]. For two-mode fields, the respective

second-order auto-correlation functions, g
(2)
k (0), can be written as [cf. Eq. (2.77) in Sec. 2.4]

g
(2)
k (0) = ⟨â†

kâ
†
kâkâk⟩

⟨â†
kâk⟩2

, (6.28)

where k = 1, 2. The associated second-order cross-correlation function, g
(2)
C (0), can be

expressed as [cf. Eq. (2.84) in Sec. 2.4]

g
(2)
C (0) = ⟨â†

1â
†
1â1â1⟩ + ⟨â†

2â
†
2â2â2⟩ + 2⟨â†

1â1â
†
2â2⟩(

⟨â†
1â1⟩ + ⟨â†

2â2⟩
)2 . (6.29)

For more details on the second-order correlation function, see Sec. 2.4. We combine our

model with the approach from Ref. [131] to express second-order correlation functions for
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arbitrary Gaussian states based on their respective covariance matrices and displacement

vectors. The explicit expressions for the different Gaussian second-order correlation

functions are provided in Appendix C.

The IP is defined as [271]

P (ρAB) = 1
4 inf

ÛA

F
(
ρΦ,ÛA

AB

)
, (6.30)

where ρAB is the two-mode probe state, ÛA is an arbitrary unitary transformation of

the subsystem A, F is the quantum Fisher information, and Φ is the corresponding

estimator [271, 272]. For Gaussian states, the IP can be expressed as [271]

P =

(
X +

√
X2 + Y Z

)
2Y , (6.31)

where

X = (D + F ) · (1 + E + F −G) −G2, (6.32)

Y = (G− 1) · (1 +D + E + 2F +G), (6.33)

Z = (D +G) · (D · E −G) + F (2D + F ) · (1 + E), (6.34)

and

D = 4(V11V22 − V12V21), (6.35)

E = 4(V33V44 − V34V43), (6.36)

F = 4(V13V24 − V14V23), (6.37)

G = det(4V ). (6.38)

The theoretical concepts introduced in this section combined with the theoretical foun-

dations of Ch. 2 provide us with all necessary tools to conduct a profound experimental

investigation of the QUMPI.

6.3 Experimental setup

In Fig. 6.10, we show a photograph of the custom-built wet dilution cryostat, in which

the experiment has been conducted. A detailed scheme of the setup is shown in Fig. 6.11.

An arbitrary waveform generator 2 provides modulation pulses to rf sources 3 and for

synchronizing the FPGA 4. The rf sources are referenced to each other in a daisy-chain

2HDAWG 750 MHz from Zurich Instruments.
3SGS100A SGMA rf source from Rohde & Schwarz.
4PXIe 7972 from National Instruments.

https://www.zhinst.com/
https://www.rohde-schwarz.com/
https://www.ni.com/
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Figure 6.10: Photographs of the cryogenic experimental setup. Panel (a) shows the front of the sample rod

with two microwave input lines, which are connected to a heatable attenuator, respectively.

Next, the two lines lead to a first hybrid ring (HR1). The two output ports of HR1 are

connected to the two JPAs, located on the back of the sample rod, shown in panel (b),

via respective circulators. JPA2 is enclosed in an aluminum (Al) shield in order to avoid

crosstalk to JPA1. The second hybrid ring, HR2, completes the interferometer. The output

circulators suppress unwanted back scattered noise from the HEMTs. The depicted rf

switches are not used in the presented experiment.

configuration at a frequency of 1000 MHz starting with the rf source connected to In2.

This source, the AWG and the FPGA are synchronized at a frequency of 10 MHz by

means of a rubidium frequency standard 5. The different input lines (In1, In2, P1, P2) are

sequentially attenuated at various temperature stages. The coldest attenuator of the line

associated with In1 (In2) is thermally coupled to a 100-Ω heater and a RuO2 temperature

sensor. At the same time, the attenuator is only weakly coupled to the mixing chamber

plate of the dilution refrigerator. This allows for a precise PID temperature control of the

coldest attenuators, while all other components can remain stable at a base temperature

of T = 35 mK. The photon numbers in the reconstructed states are calibrated using

Planck spectroscopy, as introduced in Sec. 5.1.3 [70]. For that, we vary the temperature of

a heatable 30-dB attenuator in the range between 50 mK and 430 mK. The sample stage

5FS725 atomic clock from Stanford Research Systems.

https://www.thinksrs.com/
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is surrounded by a cryoperm shield to protect it from magnetic stray fields. In addition,

JPA2 is enclosed in a superconducting aluminum shield in order to avoid cross-talk between

individual JPAs. Due to the low signal level, both signals at the output of the cryogenic

sample stage require amplification with a cryogenic high-electron-mobility transistor

(HEMT) amplifier and subsequent additional room-temperature amplifiers. Frequency-

resolved measurements are performed using a vector network analyzer (VNA, not shown).

The tomography of quantum microwave states is performed using a heterodyne receiver

setup and data processing as described in Sec. 5.1.2, similar to previous experiments

described in Refs. [72, 74, 78, 88]. Output signals at the operating frequency of 5.48 GHz
are down-converted to an intermediate frequency of 11 MHz using image rejection mixers

in combination with a local oscillator (LO) operating at 5.491 GHz. We employ a digital

FIR filter with a full bandwidth of 400 kHz. The JPA squeezing angles are set via a

phase-locked loop, where in each measurement cycle the actual squeezing orientation,

γexp
k (k = 1, 2), is extracted from the quadrature moments of the signals emitted from

the respective JPA. Next, the phase of the corresponding JPA pump signal is adjusted

by 2∆γk, where ∆γk is the difference between the actual angle γexp
k and the target angle

γtarget
k . The respective phases of the coherent input tones are stabilized in a similar way

by computing ∆θk = θexp
k − θtarget

k and corrected by ∆θk. For independent adjustment

of each rf source, the AWG produces a pulse-modulation sequence which activates each

source twice per sequence for a fixed duration: first for individual phase adjustment and

the second time for data acquisition. A general scheme of the AWG modulation sequence

is depicted in the inset of Fig. 6.11. For details on the phase stabilization and pump

modulation, we refer the reader to Ref. [108].

6.4 Results and discussion

The experimental results presented in this section can be divided into two categories.

The first part covers the circuit calibration, which is a non-trivial task due to the active

interferometer elements, i.e., the JPAs. This important basic prerequisite enables advanced

circuit analysis in active operation of the QUMPI, which constitutes the second part of this

section. For well-calibrated coherent input tones, we investigate various output quantities

of interest, i.e., photon numbers, interferometric power, and second-order correlation

functions.

A systematic study of the QUMPI requires careful circuit calibration and a precise

control of the JPAs. The latter are operated at a frequency of ω0/2π = 5.48 GHz.
Experimental bandwidths of JPA1 and JPA2 are 2MHz and 10MHz, respectively. We

operate both JPAs in the phase-sensitive amplification regime by pumping them at twice

the resonance frequency, ωp = 2ω0 [81, 82]. The microwave interferometer arms are

tailored to have identical lengths within an accuracy of less than 1 mm. At the carrier

frequency of around 5.5 GHz, the associated wavelength in our superconducting cables
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Figure 6.11: Schematic of the measurement setup. The output signals are amplified and filtered in

subsequent steps, down-converted, and digitized. An arbitrary waveform generator (AWG)

creates a pulse-modulation sequence for the individual rf sources and the FPGA, which is

required for the sequential reference-state reconstruction [65].

is approximately 38 mm, which corresponds to signal propagation at around 70 % of the

speed of light in vacuum. Given the interferometer arm accuracy in comparison with the

signal wavelength, microwave signals traveling along different interferometer paths do

not acquire a significant relative, path-induced phase shift. This geometric precision is

decisive for achieving the intended functionality of the QUMPI, as evaluated in Sec. 6.1.

However, the overall phase difference also depends on JPA-induced phase shifts, which
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Figure 6.12: Planck spectroscopy of the interferometer in the linear regime for output channel powers

(b) P1 at Out1 and (c) P2 at Out2. Orange points correspond to injection of thermal states

at In1 and vacuum at In2, blue points correspond to the inverted case of thermal-state

injection at In2 and vacuum at In1, as depicted schematically in the quadrature planes in (a).

The temperature dependence of P1 (P2) for orange (blue) data points yields the photon

number calibration for the interferometer and verifies its functionality. The corresponding

error bars are smaller than the symbol size. The solid purple lines represent fits based on

Eq. (5.9). We find PNCF values of κ1 = (3.64 ± 0.03) 10−7V2/photon, AH,1 = 12.78 ± 0.28,
κ2 = (3.74 ± 0.05) 10−7V2/photon, and AH,2 = 20.80 ± 0.29, where the noise contributions,

AH,1 and AH,2, are given in photon units.

can be adjusted by fine-tuning the JPA operation frequency with an external magnetic

flux [81]. The output state tomography relies on heterodyne measurements with the

FPGA-based setup described in Ch. 5. After digital down-conversion and filtering, we use

the reference-state reconstruction method to extract statistical field quadrature moments

and recover a covariance matrix of the quantum states at a certain reference point, also

introduced in Ch. 5.

In a first step, we detune both JPAs from the intended operation frequency and

switch our interferometer into a linear regime. Then, we perform Planck spectroscopy

of our system by injecting thermal states generated by a heatable attenuator at one

input and vacuum at the other, as illustrated in Fig. 6.12(a) [273]. Figures 6.12(b)

and 6.12(c) show the corresponding experimental results. We observe both constructive

and destructive interference of the broadband thermal signals, as expected in a symmetric

linear interferometer. Thermal-signal injection at In1 (orange points) results in the

temperature dependence of P1, while P2 remains independent of T due to destructive

interference. The inverted case of thermal-signal injection at In2 (blue points) provides

clear evidence for the symmetry of the system, which is reflected in a P2(T )-dependence
and a T -independent response of P1. These experimental results underline that we are

indeed in the configuration associated with a symmetric interferometer, see Fig. 6.8(a).

As a second part of the calibration routine, we tune both JPAs to the same resonance

frequency of ω0/2π = 5.48 GHz. This step converts the QUMPI into the nonlinear
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.

regime. The JPA responses are controlled via magnitude and phase of the coherent

pump tones. Since we expect the best interferometric performance for a balanced gain

of G1 = G2 [257], we inject vacuum states at both circuit inputs and pump the JPAs

with varying magnitude and phase [65]. We balance the produced two-mode states at

the interferometer output by minimizing asymmetries of the local output modes. These

asymmetries result in squashed variances σ2
s,k and amplified variances σ2

a,k (k = 1, 2
denotes path 1 and path 2, respectively) of the local phase space distributions. We

define a balancing criterion as B =
(
σ2

s,1/σ
2
a,1

)
·
(
σ2

s,2/σ
2
a,2

)
. For our system, we observe B

reaching values of around 0.91, close to the optimum value of B = 1. Finite asymmetries

and insertion losses of the HRs, as well as the nonidentical noise properties of the JPAs,

limit the balancing. Figure 6.13 illustrates the concept behind the balancing parameter

B =
(
σ2

s,1/σ
2
a,1

)
·
(
σ2

s,2/σ
2
a,2

)
. Figure 6.13(a) shows the reconstructed Wigner function of the

local output Out1 of the interferometer during calibration. We analyze remaining variance

asymmetries between two orthogonal quadratures, σ2
a,1 and σ2

s,1, and try to minimize them.

Similarly, as shown in Fig. 6.13(b), we optimize σ2
a,2 versus σ2

s,2. For a fixed ∆γJPA = π/2,
we investigate B as a function of the pump powers, PP1 and PP2, entering the respective

JPA pump ports [see Fig. 6.14(a)]. Note that B is unity for an ideal balanced state

and decreases with increasing imbalance between the local variances. As can be seen in

Fig. 6.14(b), the balancing is best for amplification along orthogonal orientations in phase

space, i.e., ∆γJPA = |γ2 − γ1| = π/2, as expected from theory [6].

After the calibration, we investigate the nonlinear interferometer response to coherent

signals applied to both input ports, In1 and In2, with a photon number of |α1|2 = |α2|2 =
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Figure 6.14: Interferometer calibration. The balancing parameter B enables optimization of the (c) JPA
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0.69(7), where |αk| (k = 1, 2) are the respective displacement amplitudes [274]. We fix

one coherent displacement angle, θ1 = 0.64π, while varying the other, θ2. Both JPAs

are operated with an average gain G1,2 = 7.73 dB and an average number n1,2 = 0.238
of added noise photons referred to the JPA inputs. The JPA2 squeezing angle, γ2, is

fixed to 0 and we vary γ1. We compare the acquired data with a theoretical model of

our system based on the input–output formalism introduced in Sec. 6.2. Figures 6.15(a)

and 6.15(b) show the photon numbers Nk = ⟨â†
kâk⟩ at the respective outputs Out1 and

Out2. Here, â†
k (âk) is the photon creation (annihilation) operator. The bottom row of

Fig. 6.15 shows the model prediction. The common color bars for each column underline a

good quantitative agreement between experiment and theory. As a model quality metric,

we introduce the normalized distance, d(x) ≡ ∑M
k=1

∑N
l=1 |akl − bkl|/|akl|, between the

respective data matrices akl and model matrices bkl of dimension M × N with respect to

a quantity x. The corresponding distances are d(N1) = 7.6 % and d(N2) = 6.5 %. Since

our model intrinsically corresponds to a nonlinear interferometer, this agreement confirms

that our experimental system acts as such. The asymmetry in the patterns between

Fig. 6.15(a) and 6.15(b) stems from the nonlinear character of our interferometer.

Next, we evaluate the interferometric power (IP) of the QUMPI. For a bipartite quantum

probe state, the IP defines the worst-case precision of a parameter estimation, where

the corresponding parameter experiences unitary dynamics in one of the two subsystems

(e.g., a phase shift of the signal in one interferometer arm) [271]. Remarkably, the IP

provides a measure of bipartite discord-type correlations for Gaussian states beyond pure
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Figure 6.15: Interferometer measurements with coherent signals applied to In1 and In2. The correspond-

ing displacement amplitudes are |α1| = |α2| = 0.83(5), and the displacement angle θ1 is

fixed to 0.64π, while θ2 varies from 0 to 2π. Both JPAs are operated as squeezers with the

average gain G1,2 = 7.73 dB and squeezing angle γ1 varying from 0 to 2π, while γ2 = 0.
Top row shows the experimentally reconstructed photon numbers (a) N1 and (b) N2 at the

ports Out1 and Out2, respectively, as a function of θ2 and γ1. (c) Interferometric power P
of the QUMPI illustrating the two-mode state probe capabilities. The bottom row depicts

the model predictions according to Eqs. (6.27) and (6.31).

entanglement [271, 275]. We apply the expressions according to Eqs. (6.31) to (6.35) to

our theory model, as well as to the reconstructed experimental covariance matrices, in

order to extract the IP of the QUMPI [271]. Figure 6.15(c) depicts both the experimental

and theoretical IP as a function of θ2 and γ1. The data in Fig. 6.15(c) is independent of

θ2, since P is invariant under local unitary operations [271]. Furthermore, P goes to zero

for parallel amplification angles, γ1 = γ2 + nπ (n = 1, 2, ...), where output states become

separable, and is maximal for orthogonal amplification, where the states are entangled.

In this context, the SQL sets an upper bound, PSQL = N , for separable two-mode probe

states, where N is the mean photon number in the probing subsystem. For pure two-mode

squeezed states P saturates at the HL with PHL = N(N + 1) [271]. The simulated IP

reproduces the experimental data, however with a noticeably smaller maximum value, as it
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Figure 6.16: Second-order correlation analysis of the QUMPI. Single-mode second-order correlation

functions, g
(2)
1 (0) and g(2)

2 (0), at the interferometer ports (a) Out1 and (b) Out2. (c) Second-

order cross-correlation function, g
(2)
C (0), between ports Out1 and Out2. Experimental results

are shown in the top row, model predictions according to Eqs. (C.1) to (C.3) are depicted

in the bottom row. The experimental parameters are identical to those in Fig. 6.15.

can be seen from Fig. 6.15(c) and d(P) = 47.0 %. We attribute this deviation to possible

misestimates of losses in the underlying photon number calibration. Both, maximum

theoretical (Ptheory/PSQL = 1.38) and experimental (Pexp/PSQL = 1.70) values exceed the

SQL but do not reach the HL (Ptheory/PHL = 0.58, Pexp/PHL = 0.65). The presence of

finite noise in the system prevents reaching an IP closer to the HL. We note, however,

that Pexp > PSQL provides direct evidence that the QUMPI exceeds the
√
N scaling of

the SNR, since SNR ∝
√

P . Here, we use the theoretical (reconstructed) photon number

of the local mode at Out1 of our circuit to compute PSQL = N =
(
2(σ2

q + σ2
p) − 1

)
/2 and

PHL. The parameters used in the theoretical model are summarized in Tables 6.1 and 6.2.

The parameters ε1, ε2, and ε3 are estimated from the data sheets of the respective passive

microwave components. The displacement amplitudes, |α1| and |α2|, are adjusted via the

photon number calibration factor in combination with an individual two-step modulation

power sweep of the two rf sources connected to In1 and In2. The displacement angles,

θ1 and θ2, in Table 6.1 (Table 6.2) are reconstructed and adjusted in real time using

6.248 · 108 (9.372 · 108) raw data points before demodulation. The squeezing angles, γ1
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and γ2, in Table 6.1 (Table 6.2) are processed similarly using 1.2496 · 109 (1.8744 · 109)

raw data points before demodulation. The reconstructed JPA squeezing factors, r1 and

r2, are obtained in post-processing, where the averaged demodulated data is taken into

account for 46 independent measurements of 1.2496 · 109 (1.8744 · 109) raw data points

before demodulation, respectively. The theory model introduced in Sec. 6.2 relies on ϕk

as a free parameter, representing the phase acquired by signals in paths 1 and 2 of the

interferometer, respectively.

|α1|2 θ1 |α2|2 θ2 ε1 (dB) ϕ1 ϕ2 r1

0.723 0.639π 0.670 0 to 2π 0.63 1.31π 1.36π 1.01(4)

γ1 n1 r2 γ2 n2 ε2 (dB) ε3 (dB)

0 to 2π 0.034(5) 0.723(2) 0 0.441(9) 0.31 0.3

Table 6.1: Model parameters used for the simulated results of Figs. 6.15 and 6.16. Each point in

Figs. 6.15 and 6.16 is obtained using 1.4 · 109 raw data points before demodulation. The loss

values εj are estimated based on the respective data sheet values. The complex displacement

amplitudes, αk = |αk|exp[i(π/2 − θk)], and the respective JPA parameters (rk, nk, γk) are

reconstructed.

In order to study correlation properties and related intensity fluctuation statistics of

the QUMPI, we analyze the second-order correlation function at zero delay time, g(2)(0),
for the single-mode fields at the interferometer outputs, as well as the cross-correlations

between the outputs, as introduced in Eqs. (6.28) and (6.29) and adapted for Gaussian

states in Appendix C [88]. The experimentally obtained data for g
(2)
1 (0), g(2)

2 (0), and g(2)
C (0)

as a function of θ2 and γ1 are depicted in Fig. 6.16. The bottom row shows the respective

theoretical predictions [131]. Our model sufficiently well reproduces the experimental

observations with d[g(2)
1 (0)] = 8.6 %, d[g(2)

2 (0)] = 10.4 % and d[g(2)
C (0)] = 7.8 %, although

some fine features are not resolved in the experimental data. In accordance with the

model, the local output modes show correlation functions indicating photon bunching,

g
(2)
1 (0), g(2)

2 (0), g(2)
C (0) > 1.

To further explore the QUMPI, we experimentally investigate g
(2)
C (0) as a function of the

displacement amplitude of the incident coherent states. We observe that for sufficiently

large displacement amplitudes, |α1| and |α2|, and equal displacement angles, θ1 = θ2,

g
(2)
C (0) indicates anti-bunching between the interferometer outputs, providing evidence for

nonclassical correlations between them [131]. In Fig. 6.17(a), we show g
(2)
C (0) predicted by

our theoretical model. For the experimentally relevant model parameters, most importantly

the adapted average JPA gain G1,2 = 4.06 dB, Fig. 6.17(a) shows that |α1|2, |α2|2 > 5
is required to realize nonlocal photon anti-bunching, g

(2)
C (0) < 1. Figure 6.17(b) shows

the experimental data of g
(2)
C (0) as a function of |α|2 = |α1|2 = |α2|2. The blue line is a

cut along the main diagonal of Fig. 6.17(a). The inset shows an expanded view of the
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Figure 6.17: Intensity cross-correlations, g
(2)
C (0), of the interferometer output fields for variable displace-

ment amplitudes of coherent input signals. (a) Model predictions as a function of the

number of coherent photons |α1|2 and |α2|2 (θ1 = θ2 = 0.81π) entering the circuit at In1

and In2, respectively. (b) Experimental results for g
(2)
C (0) (orange crosses with standard

deviation shown in shaded orange) as a function of the symmetrically varied displacement

amplitudes. The blue line depicts the theoretical prediction. The horizontal black line

illustrates the classical limit of g
(2)
C (0) = 1. (c) Analogy between Wigner functions of

single-mode (theory) and two-mode [experiment, green cross from (b)] displaced squeezed

states exhibiting g(2)(0) < 1 (g
(2)
C (0) < 1).

region where the data points for g
(2)
C (0) drop below the classical limit. Our theory model

suggests that the minimal coherent photon number |α|2 = |α1|2 = |α2|2 required to achieve

g
(2)
C (0) < 1 increases with increasing JPA gain, while g

(2)
C,min(0) converges towards unity

for large JPA gain. At the same time, g
(2)
C (0) becomes more robust towards noise with

increasing JPA gain.

Summary and discussion We have realized and systematically analyzed a quantum

microwave parametric interferometer. We have studied the frequency-dependent circuit

response in an even-odd analysis. We have performed a detailed investigation of the

input-output relations of our QUMPI device with coherent and thermal input states. Our
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|α1|2 θ1 |α2|2 θ2 ε1 (dB) ϕ1 ϕ2

0.177 to 10.76 0.806π 0.177 to 10.76 0.806π 0.63 1.03π 1.36π

r1 γ1 n1 r2 γ2 n2 ε2 (dB)

0.508(5) π/2 0.0004(6) 0.422(5) π 0.124(4) 0.31

ε3 (dB)

0.3

Table 6.2: Model parameters used for the simulated results of Fig. 6.17. Each point in Fig. 6.17 is

obtained using 2.1 · 109 raw data points before demodulation per independent measurement.

The listed values are derived in the same way as in Table 6.1 and averaged over 16 independent

measurements.

experimental results can be well explained by using a theoretical model based on the

input–output quantum formalism. As part of this study, we have demonstrated non-local

photon anti-bunching at the QUMPI outputs, characterized by g
(2)
C (0) < 1 for coherent

input states. Remarkably, for the specific operating point of the JPAs with equal gain

values and orthogonal amplification angles, the input–output relations of the QUMPI

simplify to

b̂1 =
√
Geff â1 +

√
Geff − 1 â†

2,

b̂2 =
√
Geff â2 +

√
Geff − 1 â†

1,
(6.39)

with the effective gain
√
Geff = cosh(r) and the JPA squeezing factors r = r1 = r2

according to the JPA gain G = exp(2r). The input and output modes are described

by bosonic operators â1, â2 and b̂1, b̂2, respectively. The relations in Eq. (6.39) coincide

with those describing the so-called Josephson mixer, which can be utilized for producing

microwave EPR states [78, 269]. For low effective gain values, Geff ≃ 1, our interferometer

can be applied in a quantum illumination detection scheme for achieving the 3-dB quantum

advantage in the error exponent over the ideal classical counterpart, as introduced in

Ch. 3 [47, 145, 155]. The application of the QUMPI in an experimental quantum radar

scheme is further discussed in Ch. 7. Interestingly, the input–output relations in Eq. (6.39)

also coincide with those of a SU(1,1) interferometer, with the exception that the coefficients,

Geff and (Geff − 1), enter linearly in the SU(1,1) implementation [257]. This difference is

related to the fact that the parametric amplifiers are connected in series for the conventional

SU(1,1) implementation, whereas the JPAs in the QUMPI are arranged in a parallel

configuration. Furthermore, our findings open a new avenue towards quantum-enhanced

nonlinear interferometers in the fast-evolving field of superconducting circuits operating in

the microwave regime. Remarkably, current dark matter axion search experiments focus

on the frequency range from 1 GHz to 25 GHz and rely on read-out by quantum-limited

amplifiers [276]. To this end, the QUMPI could find applications in related dark matter
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axion search experiments [277]. As such, the investigated circuit is expected to be useful

in many applications ranging from quantum-enhanced interferometry to mode-mixing as

part of a joint quantum receiver in quantum sensing experiments [155, 278].





Chapter 7

Conclusion and outlook

Conclusion In this thesis, we have developed fundamental concepts and techniques for

the experimental realization of microwave quantum illumination. As a prerequisite, we

have introduced and motivated continuous variables in quantum information processing,

which offer a powerful alternative to discrete variables in terms of control and measurement,

efficiency, and seamless interfacing with classical platforms. Gaussian states represent a

versatile class of continuous-variable states that can be fully described in a comprehensive

manner. Throughout this work, we also have introduced a basic tool set for the generation,

manipulation, and characterization of Gaussian microwave states.

As one of the key results of this thesis we have provided a comprehensive theoretical

framework for the description of microwave quantum illumination (QI). To this end,

we have shed light on the fundamental concepts of classical radar systems to provide

the performance limits of classical systems that QI aims to overcome. We have tackled

important topics in this realm, such as the ideal decision strategy for object detection and

the basics of hypothesis testing. In general, the quantum illumination protocol promises

a quantum advantage (QA) up to 6 dB in the error exponent with respect to the ideal

classical radar. We have shown that a simple scheme, saturating the ideal classical bound,

is the coherent-state transmitter combined with homodyne detection, which naturally

motivates the use of Gaussian states. In our analysis we have evaluated the restrictions

on specific parameters required to enter the regime of a genuine QA: bright thermal

background, low signal powers, low object reflectivity, and large time-bandwidth product.

The required bright thermal background makes QI suboptimal at optical frequencies where

the thermal photon population per mode is negligibly small at room temperature. In

contrast, at microwave frequencies one observes a strong thermal background radiation

with over 1000 photons per mode at room temperature, making this frequency regime

ideal for QI. The unprecedented potential of QI relies on quantum-entangled probe

states that are characterized by the presence of quantum correlations exceeding classical

limits. The initial entanglement is quickly lost due to the interaction with the bright

thermal background. However, residual nonclassical correlations persist and enable the

performance enhancement in QI. These residual correlations are non-local, which renders

local homodyne or heterodyne detection schemes useless.

129
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There have been vivid research activities proposing various detection schemes which

may benefit from the non-local correlations and hence allow for a finite QA. Although

some of these proposals, in theory, can exploit the full 6 dB QA, their experimental

realization is extremely challenging with state-of-the-art technology. Fortunately, there

also exist various simplified schemes that are more straightforward in implementation

and can achieve a reduced, but still useful 3 dB QA. As of today, the only successful

experimental implementation of a microwave quantum radar relies on the parametric-mixer

(PM) receiver [55]. In this approach, the return and idler modes first interact nonlinearly

in a parametric mixer, followed by single-photon counting (PC1) at one of the mixer

outputs. However, the potential impact of photon counting at the other mixer output

(PC2) on the resulting QA has not been investigated yet. We have bridged this gap and

found a strong asymmetry in the photon number expectation values at the outputs of the

mixer, with N1 ≪ 1 and N2 ≃ NB ≫ 1, where NB is the number of thermal background

photons coupled to the signal. This asymmetry leads to the underperformance of the

detection scheme based on PC2 alone, which is clearly inferior to the classical scheme,

while detection exclusively with PC1 converges to the 3 dB QA in the asymptotic regime

of a large number of transmitted modes.

We have additionally investigated an adapted scheme of the PM receiver, where we have

studied a correlated photon counting (CPC) scheme that simultaneously exploits both

mixer outputs. From an intuitive point of view, these outputs are highly correlated due to

their interaction in the mixer and have the potential of outperforming individual detection

with PC1. We have observed such a performance enhancement and have identified an

optimal analytical weighting of the individual outputs for PC1 and PC2, which is of central

importance in CPC. In addition, we have investigated the robustness of the associated

QA against various imperfections in the QI protocol. First, we have shown that the purity

requirements for the two-mode squeezed vacuum resource state are stringent, which is

caused by a high fragility of the retained idler mode against noise. This fragility is reflected

in a required two-mode purity of at least 98 %, for a conventionally considered photon

number of N = 0.01 per mode, to reach a QA. We have thoroughly discussed the influence

of realistic detection parameters in terms of single-photon detection efficiencies and dark

count probabilities, which are subject to a design trade-off in realistic devices based on

superconducting quantum circuits. We have unveiled strongly asymmetric photon-number

resolution requirements for detecting the two mixer outputs, caused by the largely different

mean photon numbers. While a binary single-photon detector without any photon-number

resolution capabilities is close to the ideal performance for PC1, the second photon counter

PC2 requires a resolution of K ≫ 1 to become practically useful, which is out of reach

with currently available technology. Hence, we have shown that individual detection with

PC1 represents a practically optimal way towards achieving the genuine 3 dB QA. The

discussed results have been published as Ref. [54].

In the next step, we have turned to experimental aspects of microwave QI. We have
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introduced superconducting quantum technology and the associated fundamental con-

cepts and and devices, such as superconductivity, Josephson junctions, dc-SQUIDs, and

Josephson parametric amplifiers (JPAs). Here, JPAs represent the main microwave

quantum building block of our experimental work and serve as versatile tools for pro-

ducing propagating squeezed states in the microwave regime. We have introduced the

experimental techniques for conducting quantum microwave experiments at millikelvin

temperatures with carrier frequencies of several gigahertz. Furthermore, we have presented

concepts for quantum microwave detection and processing at room temperature. Here,

the reference-state reconstruction represents a central tool for experimental tomography

of propagating quantum states. In this context, we have presented various important

aspects of our experiments, such as a photon-number calibration routine for output lines

and characterization measurements of superconducting JPAs.

We have exploited the phase-sensitive amplification regime of JPAs in order to experi-

mentally realize a nonlinear Josephson interferometer operating in the microwave regime.

The successful realization of such an interferometer is the second main result of this

thesis. The main building blocks of our quantum microwave parametric interferometer

(QUMPI) are two flux-driven JPAs in combination with linear microwave hybrid rings

(HRs). While the sensitivity of classical interferometers is intrinsically limited by shot

noise, one can exceed this fundamental bound and reach the ultimate Heisenberg limit

by using quantum input states or nonlinear quantum elements. We have conducted a

frequency-resolved network analysis of the QUMPI circuit in order to understand its

experimental requirements. Here, we have theoretically investigated the sensitivity of the

QUMPI against geometrical asymmetries in the interferometer arms, which is of central

importance for the design of our experimental setup. In addition, we have developed

a quantum model to describe the QUMPI input-output relations for the injection of

microwave coherent states with various parameters. We have found excellent agreement

between the model predictions and our experimental results for the photon numbers N1

and N2 at the two outputs of the interferometer, which is quantified by the normalized

distances d(N1) = 7.6 % and d(N2) = 6.5 % between the experimental data and theory

model. We have found that the interferometric power P of the QUMPI clearly exceeds the

shot-noise limit in both theory (Ptheory/PSQL = 1.38) and experiment (Pexp/PSQL = 1.70).
Furthermore, we have analyzed the single-mode second-order correlation functions at the

interferometer outputs and have found a good agreement between our model and the

experimental results with normalized distances on the order of 10 %. We have experi-

mentally demonstrated non-local photon antibunching in the output modes for coherent

amplitudes |α|2 > 5 of the input states and low JPA squeeze factors r ≃ 0.5 by means of a

second-order cross-correlation function g
(2)
C (0) < 1. Finally, we have identified a low-gain

operation regime of the QUMPI, where its input-output relations coincide with those of

the PM-type receiver in QI, enabling its application in microwave quantum illumination

schemes. These experimental results have been published as Ref. [80].
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Figure 7.1: Schematic of the cryogenic quantum illumination setup. The output signals are amplified

and filtered in subsequent steps, down-converted and digitized in a room temperature setup

(not shown), similar to the one illustrated in Fig. 6.11.

Outlook The theoretical studies and experimental work conducted in this thesis directly

aim toward an experimental study of quantum illumination in the microwave regime. For

the realization of the latter, we consider the experimental layout shown in Fig. 7.1. Here,

JPAs 1 and 2, in conjunction with the associated HR 1, are employed for the generation

of two-mode squeezed vacuum (TMSV) states that constitute the resource states of the

protocol. The cryogenic rf switch 1 implements a central logical component, i.e., switching

between hypotheses H0 (object absent) and H1 (object present). To implement H0, the

incoming signal is terminated with a 50 Ω load. Under H1, the switch position changes in

a way to allow the incoming signal to propagate to a 20-dB attenuator, which models the
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strong signal attenuation condition, κ ≪ 1. This (heatable) 20-dB attenuator can also

serve as a thermal-noise source for calibration purposes. Next, the signals enter a second

HR 2, where we can feed in microwave noise signals generated at room temperature to

fulfill the important condition, NB ≫ 1. One of the two outputs is directly connected to

an output line, e.g., for calibration of the coupled noise. The second HR output serves as

an input to the parametric mixer, or QUMPI. The idler part of the resource state first

propagates to a second rf switch 2, which we can toggle between two positions. The first

position is connected directly to an output line for calibration and stabilization of the

TMSV states. The second position allows the idler to propagate to the QUMPI. One

of the two QUMPI outputs is connected to a single-photon counter (SPC), which relies

on a working principle described in Ref. [185]. The second QUMPI output leads to a

single-photon detector (SPD) based on our novel 3D-cavity architecture [279]. This parallel

access to both the SPC and SPD devices allows to directly compare their performance in

terms of the associated QA in the full quantum illumination protocol. Figure 7.2 shows

rf switch 1

rf switch 2

SPD
JPA 1

JPA 2

SPC

JPA 3

JPA 4

(a) (b)

output
circulatorHR 2

HR 1

HR 3

HR 4

Figure 7.2: Photograph of the cryogenic quantum illumination setup. Panels (a) and (b) show different

perspectives on the cryogenic sample stage. The JPAs and the SPC are enclosed in aluminum

cylinders for magnetic shielding. The central sample rod is later additionally enclosed in a

double-layered cryoperm shield (not shown here) for extra protection from stray magnetic

fields.

a photograph of the assembled cryogenic setup according to the layout illustrated in

Fig. 7.1.Based on our studies, we expect a performance of the setup around a quantum

advantage of 1 dB. Such a proof-of-principle demonstration will lay a foundation for more

practical schemes, such as coupling the signal mode directly into free space by means of
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an antenna structure, and, eventually, may lead to field-deployable quantum radars.

The field of quantum sensing and metrology is advancing at an excitingly rapid pace along

with the neighboring disciplines of quantum computing and quantum communication [36].

The immediate and broad application potential in sensing and metrology is arguably a

unique selling point compared to the other fields. Highly sensitive magnetic field detectors

are already available today in the form of quantum magnetometers based on SQUIDs and

atomic vapor cells. Based on the impact of these quantum devices in their application

segment, it can be extrapolated that future solutions in quantum sensing and metrology

will decisively shape the technology landscape of the coming decades.



Appendix A

Hypothesis-dependent covariances in

the CPC scheme

The covariance between N̂1 and N̂2 in Eqs. (3.36) and (3.37) is given by

Cov
(
N̂1, N̂2

)
= Cov

(
b̂†

1b̂1, b̂
†
2b̂2
)

= ⟨b̂†
1b̂1b̂

†
2b̂2⟩ − ⟨b̂†

1b̂1⟩⟨b̂†
2b̂2⟩. (A.1)

For a complex random vector X = (X1, . . . , Xn), we introduce the moment notation

mi = ⟨X i⟩, mij = ⟨X iXj⟩, . . . (A.2)

The fourth-order moments can be expressed as

mijkl = cijkl + cicjkl[4] + cijckl[3] + cicjckl[6] + cicjckcl, (A.3)

where ci, . . . , cijkl denote the cumulants of order one to four and the numbers in the

square brackets indicate the number of terms contained in each expression as the indices

rotate, i.e., i → j, j → k etc. For Gaussian states, cumulants of order≥ 3 vanish and the

fourth-order moment simplifies to

mijkl
Gauss = cijckl[3] + cicjckl[6] + cicjckcl. (A.4)

The remaining first and second order cumulants are connected to the moments via

ci = mi and cij = mij −mimj. (A.5)

Since the first-order signal moments and the corresponding first-order cumulants vanish

for b̂1 and b̂2, the fourth-order signal moment from Eq. (A.1) simplifies to

⟨b̂†
1b̂1b̂

†
2b̂2⟩ = ⟨b̂†

1b̂1⟩⟨b̂†
2b̂2⟩ + ⟨b̂†

1b̂
†
2⟩⟨b̂1b̂2⟩ + ⟨b̂†

1b̂2⟩⟨b̂1b̂
†
2⟩, (A.6)
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where we used the expressions from Eq. (A.5). The covariance between N̂1 and N̂2 reduces

to

Cov
(
N̂1, N̂2

)
= ⟨b̂†

1b̂
†
2⟩⟨b̂1b̂2⟩ + ⟨b̂†

1b̂2⟩⟨b̂1b̂
†
2⟩. (A.7)

The expressions from Eqs. (3.45) and (3.46) can be straightforwardly derived by insertion

of Eqs. (3.23), (3.24), and (6.39) into Eq. (A.7).
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Appendix B

Conversion of a scattering matrix into a

transfer matrix

Here, we provide the explicit expressions to calculate a 4 × 4 transfer matrix T [see

Eq. (6.18)] based on a known 4 × 4 scattering matrix S according to [95]

T11 = S21 + S22S13 − S23S12

S42S13 − S43S12

(
−S41 + S43S11

S13

)
− S23S11

S13
, (B.1)

T12 = S22S13 − S23S12

S42S13 − S43S12

−S43

S13
+ S23

S13
, (B.2)

T13 = S22S13 − S23S12

S42S13 − S43S12

(S43S14

S13
− S44

)
+ S23S14

S13
+ S24, (B.3)

T14 = S22S13 − S23S12

S42S13 − S43S12
, (B.4)

T21 = S13

S42S13 − S43S12

(
−S41 + S43S11

S13

)
, (B.5)

T22 = S13

S42S13 − S43S12

(
−S43

S13

)
, (B.6)

T23 = S13

S42S13 − S43S12

(
−S44 + S43S14

S13

)
, (B.7)

T24 = S13

S42S13 − S43S12
, (B.8)

T31 = S32S13 − S33S12

S42S13 − S43S12

(
−S41 + S43S11

S13

)
+ S31 − S33S11

S13
, (B.9)

T32 = S32S13 − S33S12

S42S13 − S43S12

(
−S43

S13

)
+ S33

S13
, (B.10)

T33 = S32S13 − S33S12

S42S13 − S43S12

(
−S44 + S43S14

S13

)
+ S34 − S33S14

S13
, (B.11)

T34 = S32S13 − S33S12

S42S13 − S43S12
, (B.12)

T41 = −S12

S42S13 − S43S12

(
−S41 + S43S11

S13

)
− S11

S13
, (B.13)

T42 = −S12

S42S13 − S43S12

(
−S43

S13

)
+ 1

S13
, (B.14)

T43 = −S12

S42S13 − S43S12

(
−S44 + S43S14

S13

)
− S14

S13
, (B.15)

T44 = −S12

S42S13 − S43S12
. (B.16)



Appendix C

Gaussian second-order correlation

functions

The second-order auto-correlation functions g
(2)
1 (0) and g(2)

2 (0), as well as the second-order
cross-correlation function g

(2)
C (0) for Gaussian states are given by [131]

g
(2)
1 (0) = 2

2
2 (V11 + V22)2 + 4 (V11 + V22)

(
|d1 + i d2|√

2

)2

+
∣∣∣∣∣∣(V11 − V22 − 2iV12) +

(
|d1 + i d2|√

2

)2
∣∣∣∣∣∣
2
− 4

V11 + V22 +
(

|d1 + i d2|√
2

)2
+ 1


/

2

V11 + V22 +
(

|d1 + i d2|√
2

)2
− 1

2
 , (C.1)

g
(2)
2 (0) = 2

2
2 (V33 + V44)2 + 4 (V33 + V44)

(
|d3 + i d4|√

2

)2

+
∣∣∣∣∣∣(V33 − V44 − 2iV34) +

(
|d3 + i d4|√

2

)2
∣∣∣∣∣∣
2
− 4

V33 + V44 +
(

|d3 + i d4|√
2

)2
+ 1


/

2

V33 + V44 +
(

|d3 + i d4|√
2

)2
− 1

2
 , (C.2)
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g
(2)
C (0) =

2 (A+B)2 − 3B − 3 a− 3 b+
∣∣∣∣∣A−B − 2iC + (x2 + i y2)2

2

∣∣∣∣∣
2

+ |x1 + i y1|2 |x2 + i y2|2

2 − 3A+ 2 (a+ b) (A+B) − 3 |x1 + i y1|2

2

−3 |x2 + i y2|2

2 + |x2 + i y2|2 (4A+ 4B)
2 +

∣∣∣∣∣a− b− 2i c+ (x1 + i y1)2

2

∣∣∣∣∣
2

+2 |e+ h+ i f − i g|2 + 2 (a+ b)2 + |x1 + i y1|2 (4 a+ 4 b)
2 + |x1 + i y1|2 (A+B)

+2 |h− e+ i f + i g|2 + |x2 + i y2|2 (a+ b) + (x1 − i y1) (x2 + i y2) (e+ h− i f + i g)

+ (x1 + i y1) (x2 − i y2) (e+ h+ i f − i g) − (x1 − i y1) (x2 − i y2) (h− e+ i f + i g)

+ (x1 + i y1) (x2 + i y2) (e− h+ i f + i g) + 3
2

]

/
[

|x1 + i y1|2

2 + |x2 + i y2|2

2 + A+B + a+ b− 1
]2

, (C.3)

where

a = V11, b = V22, c = V12, e = V13, f = V14, g = V23,

h = V24, A = V33, B = V44, C = V34,
(C.4)

and

x1 = d1, y1 = d2, x2 = d3, y2 = d4. (C.5)
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Vadiraj, F. Quijandŕıa, G. Johansson, I. Fuentes, and C. M. Wilson, “Generating

Multimode Entangled Microwaves with a Superconducting Parametric Cavity”, Phys.

Rev. Appl. 10, 044019 (2018).

[163] S. Boutin, D. M. Toyli, A. V. Venkatramani, A. W. Eddins, I. Siddiqi, and A. Blais,

“Effect of Higher-Order Nonlinearities on Amplification and Squeezing in Josephson

Parametric Amplifiers”, Phys. Rev. Appl. 8, 054030 (2017).

[164] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N.

Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse,

S. Wehner, and R. Hanson, “Realization of a multinode quantum network of remote

solid-state qubits”, Science 372, 259 (2021).

[165] J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ar-

davan, T. Schenkel, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum

memory using the 31P nuclear spin”, Nature 455, 1085 (2008).

[166] C. Grezes, Y. Kubo, B. Julsgaard, T. Umeda, J. Isoya, H. Sumiya, H. Abe, S. Onoda,

T. Ohshima, K. Nakamura, I. Diniz, A. Auffeves, V. Jacques, J.-F. Roch, D. Vion,

D. Esteve, K. Moelmer, and P. Bertet, “Towards a spin-ensemble quantum memory

for superconducting qubits”, Comptes Rendus Physique 17, 693 (2016).

[167] J. O’Sullivan, O. W. Kennedy, K. Debnath, J. Alexander, C. W. Zollitsch,
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