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Abstract
Industrial automation systems have been subject to increasing uncertainty over the
last years with frequent and far-reaching disruptions to global supply chains. Produc-
tion systems of the future must show higher agility, adaptability, and autonomy to
react quickly to anticipated and unanticipated events. Although agile and adaptable
production systems have been discussed for decades, current systems are far from
autonomous. In contrast to information technology (IT), operational technology (OT)
has not progressed as much in autonomy and resilience. Observing the growing
complexity in industrial control systems (ICS), mounting labor costs, and shortage of
skilled labor, why are ICS behind in automation and autonomy?

This dissertation attempts to narrow this gap in adaptability and agility between
IT and OT. To this end, a resilient self-adaptive architecture is proposed: The WA-
TERBEAR architecture, which merges self-adaptive concepts with domain-specific
views from ICS. The contributions of this dissertation appear in three stages. First,
the adaptable foundation is investigated by implementing a reconfigurable runtime
environment (RTE) for industrial control software based on the IEC 61499 standard
and comparing this middleware to existing developments. The results indicate that IT
developments are highly relevant to the OT domain and that the key characteristics
of dynamic adaptation are simplicity and correctness. Second, it became clear that
to simplify the procedure, it must be automated and correct by design. Paramount
is the consideration of consistency requirements during the adaptation which are
analyzed in this work. The consequence is a need for clear execution semantics and a
way to express the system behavior in a machine-readable format to guarantee the
consistency of these behaviors. Third, the timeliness of the dynamic adaptation is re-
viewed, which exposed a gap between the real-time theory and practice in ICS. While
it is shown that dynamic adaptation can be performed in real-time, this requires
suitable real-time models that are not used in practice.

Finally, resilience measures are used to quantify the impact of dynamic adapta-
tion on the resilience of an ICS. The integration into the WATERBEAR architecture
highlights the possibility of achieving resilient and autonomous modes of operation
with today’s technologies. While the path to resilience is a never-ending journey, it is
clear that advancements can be made, and must be made to prepare for an uncertain
future.
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Chapter 1

Agile Industrial Control Architectures

Contents
1.1 Agility and Adaptability in Software Engineering . . . . . . . . . . . . . . . . 3

1.1.1 Requirements and Types of Adaptation . . . . . . . . . . . . . . . . . . 3

1.1.2 Adaptation Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 An Architecture for Self-Adaptive Industrial Control . . . . . . . . . . . . . . 11

1.2.1 Self-Adaptive Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Self-Adaptation in ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 The WATERBEAR Architecture . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Challenges for the WATERBEAR architecture . . . . . . . . . . . . . . . . . . . 20

1.3.1 Adaptable Runtime Environment . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Consistency during Adaptation . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Timeliness during Adaptation . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The past years have shown how inherent uncertainties can upend the world, dis-
rupt global markets, and destabilize production networks. The COVID-19 pandemic,
the 2021 Suez Canal obstruction, and the 2022 energy crisis revealed the fragility
of globalization and global supply chains [10]. Looking ahead, climate change is
expected to lead to more frequent extreme weather events, disrupting all parts of
society [11]. For production systems, this uncertainty manifests in disrupted sup-
ply chains, surging demand for specific products (such as medical supplies), and a
shortage of skilled labor. Further, the disruptions to supply chains indicate a lack of
resilience against unanticipated events [12]. For instance, the manufacturing industry
was largely unprepared for the shortage of spare parts like programmable logic
controllers (PLCs). Flexibility becomes necessary due to changes in demand [13].
The continued shortage in skilled labor must lead to efficient use of human work,
e.g. through further automation [14]. If these challenges are not addressed, future
production systems are not ready for the reality they must operate in. In contrast,
future production systems must exhibit higher agility, adaptability, and autonomy to
react quickly and decisively to anticipated and unanticipated events.
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The concepts of adaptability and agility have been discussed since the 1990s [15].
Researchers have been studying flexible and reconfigurable manufacturing systems
for decades, most importantly to quickly adjust production systems to market de-
mands or to rapidly integrate new functions [16]. Yet, while developing in that
direction, current ICS, the systems that control most of the world’s production sys-
tems, have not achieved adaptability or agility, and are far from autonomous. ICS
are considered to be part of OT, in contrast to IT. The need to reduce costs, increase
availability, and improve system security has rapidly driven IT evolution over the
years. For instance, the roles of operations and development have merged towards
a DevOps role with the introduction of microservices and cloud architectures, and
this role may further evolve towards NoOps or serverless architectures, where most
of the operation tasks are automated [17, 18]. Similarly, the vision of autonomic com-
putation imagines a world of self-managing computation systems [19], which can
modify themselves according to their environment. An IBM white paper mentions
increasing labor costs for maintaining IT systems as a reason driving the push to-
wards autonomous behaviors [20]. Two examples of positive effects are mentioned
as selective process automation and reduced time and skill requirements. Observing the
growing complexity in ICS, mounting labor costs, and shortage of skilled labor in
the highly-specialized automation domain, why are ICS lagging in automation and
autonomy?

Key answers to this question include the significant need for safety and the inertia
of highly cost-efficient equipment. In contrast to most IT systems, ICS pose strict
requirements on process and environmental safety. Unlike web services or database
systems, ICS are usually safety-critical hard real-time systems. As a consequence,
these industries are also known to be reluctant to apply new technologies that may
endanger the availability or system integrity [21]. Furthermore, manufacturers
already struggle to oversee a zoo of legacy devices and machines. New technologies
must be introduced carefully to remain compatible with existing systems.

This dissertation investigates this divergence between IT and OT considering
adaptability and agility and attempts to narrow the gap or at least provide a sensible
path for OT systems to start this journey. While a major pivot towards new system
architectures is unlikely and undesirable, existing architectures and standards can
indeed be extended in the right direction. And, as it will turn out, there exists a
plethora of previous works and basic architectures in research to build upon.

This chapter introduces the state of the art in agility and adaptability of IT and
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summarizes the challenges in this field. Following this, a resilient, self-adaptive
ICS architecture, the WATERBEAR architecture, is proposed, which bridges the gap
between IT and OT systems. This dissertation identifies three current and urgent
challenges, addressing them using this architecture as the long-term target.

1.1

Agility and Adaptability in Software Engineering

Traditionally, agility and adaptability have played a crucial role in software engineer-
ing. In the software engineering domain, requirements change frequently, and agility
enables risk management to react to respond to these risks before significant issues
arise. On a broader scale, agility and adaptability are necessary means to transition
towards resilient and autonomous behaviors. These are not novel developments.
Gould [22], for instance, defines agility as “the ability of an enterprise to thrive in
an environment of rapid and unpredictable change”. Adaptability, and its extension
self-adaptability, have been discussed in research for decades, nowadays often con-
cerning cyber-physical systems (CPS) [23]. This dissertation specifically addresses
technical adaptability, i.e., the embedded ability of a technical system to be adapted
or to adapt itself.

Although adaptability seems to be a critical characteristic, making a system
adaptable is not a straightforward task. Before discussing the low-level and high-level
challenges in achieving (self-) adaptive behaviors, it is thus important to consider the
history, the diverse motivations to adapt, and the types of adaptation. These will be
the topic of the following section.

1.1.1

Requirements and Types of Adaptation
Adaptability is the ability of a system to adjust to changing requirements or environ-
ments. This broad definition allows for a broad selection of reasons to adapt, and
as a consequence, numerous types of adaptation. After a brief historical review of
adaptation, reasons, and types of adaptation are introduced.

Agility and Adaptability in Software Engineering 3



Historical Overview

There are several names for the concept of online adaptation: Dynamic software
updating, “on the fly” program modification, online version change, hot-swapping,
dynamic software maintenance, or software reconfiguration [24]. Online Version
Change is not a new problem [25]. Yet, while some approach it by looking at low-level
C implementations, others have focused on managing the change within software
architectures [26]. Within the context of this dissertation, the term adaptation is used
interchangeably for any type of online change. Self-adaptation is used to denote an
adaptation that a system can effect on itself.

Miedes and Muñoz-Escoi [27] provide a comprehensive history of important
works in online adaptation, starting from 1976. There are numerous surveys on the
topic of dynamic adaptation as well [24, 28, 29].

Going a step further, self-adaptation implies that a system is not only able to be
adapted but empowered to perform this adaptation by itself [30]. The transition
from simple adaptability towards self-adaptation is condensed by Weyns [29] into
six waves:

1. Automating tasks: Automating management problems such as installation,
configuration, operation, or maintenance.

2. Architecture-based adaptation: Applying basic design principles, e.g. abstrac-
tion and separation of concerns.

3. Runtime models: Using runtime models to provide up-to-date information
about the system and to effect change on the model, rather than the system.

4. Goal-driven adaptation: Transitioning from strict requirements to more relaxed
goals.

5. Guarantees under uncertainties: Taming the uncertainty by providing guaran-
tees during the self-adaptation processes.

6. Control-based adaptation: Employing mathematically founded control theory
to self-adaptation.

The waves continuously increase the sophistication, but also the abstraction level on
which the adaptation is implemented. Thus, there is a shift from automation towards
reconfigurable models and middlewares, towards managing uncertainty with goals
and guarantees. The contributions of this dissertation mainly focus on waves 1 to
4, in which at least the system goals are clearly defined, but are not limited to mere
automation of management tasks.
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Software adaptation and resilience can be closely related. Gama, Rudametkin,
and Donsez [31] mention this connection between software evolution and resilience.
Specifically, instantaneous repair is the keyword used to describe resilient behavior,
which can be achieved through software adaptation. The term evolvability is men-
tioned as a crucial property for systems to be resilient, and which goes beyond the
concepts of availability.

Although the idea of online adaptation is not new, it is not commonly used.
Ilvonen, Ihantola, and Mikkonen [32] review how well dynamic software updating is
represented in practice and education, particularly software engineering education.
A key takeaway is that there is a need for a holistic approach on the one hand, and a
need to include currently feasible approaches into education curriculums on the other
hand. Still, today, software change, and particularly online software change is not a
first-class concept in most IT systems, despite extensive developments in the area of
DevOps [33]. There is a need to incorporate formal models and verification into agile
development processes in the manner that self-adaptive architectures envision it.

The field of adaptation and self-adaptation has been evolving continuously over
the previous decades, and it will evolve further. There is no one-size-fits-all solution.
The six waves of engineering self-adaptive systems ([29]) indicate a direction for the
future, yet current systems are often stuck in the first waves. This slow progression
is partly due to the need for a deeper understanding when transitioning between
waves. For instance, automating management tasks requires an understanding of
why these tasks are needed and what parts of them can be automated. Runtime
models require a deep understanding of the process. Goals and guarantees require
consciousness of the high-level goals and guarantees and their boundary conditions.
Finally, incorporating (self-) adaptability into a system comes at a cost—if a non-
adaptable system can perform the tasks, why invest in adaptability?

There are plenty of reasons to provide adaptability, and there must be reasons not
to. In the section that follows, it will be shown that adaptation can be implemented
for many reasons, and this must lead to a spectrum of solutions.

Types of Adaptation

There are numerous reasons to adapt a (software) system. The ISO/IEC 14764 [34],
for instance, mentions five types of maintenance for software systems which indicate
reasons for online adaptation:

Agility and Adaptability in Software Engineering 5



• Corrective maintenance: Modification of a software product performed after
delivery to correct discovered problems.

• Preventive maintenance: Modification of a software product after delivery to
correct latent faults in the software product before they occur in the live system.

• Adaptive maintenance: Modification of a software product, performed after
delivery, to keep a software product usable in a changed or changing environ-
ment.

• Additive maintenance: Modification of a software product performed after
delivery to add functionality or features to enhance the usage of the product

• Perfective maintenance: Modification of a software product to provide en-
hancements for users, improvements of information for users, and recording to
improve software performance, maintainability, or other software attributes.

These types already indicate a temporal component: Corrective maintenance occurs
after a failure has occurred, whereas preventive maintenance must happen before.
Furthermore, there is a functional dimension: Adaptive maintenance handles changes
in the environment, additive maintenance deals with increased feature scope, and
perfective maintenance addresses non-functional improvements.

Chapin et al. [35], on the other hand, classify twelve types of software evolution
and maintenance along three criteria: Whether or not the software was changed,
whether or not the source code was changed, and whether or not a function was
changed. This results in four clusters (ordered by increasing impact): Support inter-
face maintenance, documentation maintenance, software properties maintenance, or
business rules maintenance. This classification is thus mainly concerned with the
why and the scope of the change, i.e., if it is limited to documentation, or if it touches
the business logic. Buckley et al. [36] provide a taxonomy of software change and
identifies fifteen dimensions over which changes can be compared, complementing
the previous works by focusing on the how, when, what, and where of software
change. Consequently, there is not one single reason to adapt a system dynamically
but many.

As a result of this multitude of reasons, there have been several implementa-
tions of dynamic adaptation. Seifzadeh, Abolhassani, and Moshkenani [24] classify
software adaptation by capabilities, constraints, and techniques. In terms of capa-
bilities/constraints, some metrics are scope, level of abstraction, ability to update
previously started code, simplicity, consistency, wait time to update and predictability,
update duration, code cleanup, performance overhead, supported changes, program-
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ming language, and multithreading support. Regarding techniques the following
metrics are chosen: Unit of update, upgrading dependents of an updated module,
update atomicity, state transformation, type-safety, time of update, updating active
(non-quiescent) code, and level of code differencing. This large array of metrics
indicates that most dynamic adaptation frameworks differ significantly and not
all applications require the same sophistication. Specifically, the implementation
characteristics will mainly depend on the type of modification. An adaptation that,
according to Chapin et al. [35], modifies the software properties without touching
the business rules may not require a state transformation at all.

While online software change or software evolution allows the software to be
changed, this leads to an open loop in which the programmer must implement the
changes manually. Self-adaptive software closes this loop and uses feedback from the
self and the context [37]. Self-adaptation is considered to be on a higher abstraction
level (General Level) compared to, for example, self-configuration (Major Level) or
self-awareness (Primitive Level) [37]. Salehie and Tahvildari [37] identify different
paradigms of self-adaptation: Closed/Open Adaptation refers to either a limited or
unlimited number of adaptive actions available during runtime. Model-Based/Free
Adaptation is either based on a fixed model or allows adaptation independent of a
model. Specific/Generic Adaptation distinguishes if only specific domains/applications
can be adapted, or if the mechanism is suitable for other domains as well.

Self-adaptation can be an internal or an external process. In an internal process,
the software truly adapts itself, i.e., there is no external entity to trigger the change.
In an external process, the adaptable software is adapted by an adaptation engine [37].
External adaptation is often achieved through the use of a middleware that provides
support for configurability and reconfigurability [38]. Consequently, self-adaptation
can be split into multiple tasks and phases. For example, Blair et al. [38] mentions
four phases: Identification of a need, computing the reconfiguration, detecting a safe
state, and adaptation execution. In the vision of autonomic computing [19], slightly
different phases were identified: Monitoring, Analysis, Planning, and Execution.
These phases make up the MAPE-K self-adaptation model.

Reasons for adaptation and self-adaptation are abundant and the need for
adaptability and agility in future systems cannot be discounted. In practice, (self-)
adaptation must be integrated carefully into the system architecture and the cost
of adaptability must be recognized. For a simple architecture, an open-loop self-
configurable architecture may suffice. For highly complex systems with high avail-
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ability requirements and long life cycles, such as specific forms of ICS, a sophisticated
self-adaptation framework is highly desirable.

1.1.2

Adaptation Challenges
A broad spectrum of reasons to adapt leads to a broad spectrum of implementations,
which consequently leads to a broad spectrum of challenges that must be tackled.
This section summarizes challenges from both the dynamic adaptation and the self-
adaptation perspective. The specific challenges addressed in this dissertation are
pointed out in Section 1.3.

Dynamic Adaptation Challenges

Self-adaptation on a high abstraction level requires adaptability under the hood. As
seen in the previous section, self-adaptation can be achieved by separating the adapt-
able software from the adaptation engine [37]. This separation of concern is, for most
applications, preferable. If this adaptation should take place on the fly, this is referred
to as Dynamic Adaptation. General challenges of dynamic adaptation are mentioned
by Mlinarić [39] as availability, correctness, flexibility (changeability), performance,
and simplicity (usability). These goals are stated as potentially contradictory, thus
there has to be a balance between the requirements. For example, simplicity may
conflict with flexibility or performance. Other goals, such as availability and correct-
ness should not be compromised. A major challenge in developing an adaptation
framework is thus finding the right balance between the requirements.

Temporally, the challenges can be split into the phases before, during, and after
the adaptation [31]: For instance, before an adaptation, verification is necessary
and compatibility must be checked. During the adaptation, the service must not
be interrupted, and the component state must be maintained. After the adaptation,
inconsistencies must be resolved, such as dead code / dangling objects, or non-
terminated processes. Additional challenges arise with the update cost and the
update duration.

Looking closer at the during phase of the adaptation, a more detailed analysis
is possible. Lounas, Mezghiche, and Lanet [40] mention the following challenges:
Code update, data update, update timing, and correctness. These challenges are
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very subjective to the application area. For example, the meaning of update timing
and correctness crucially depends on the system. Going down to the component or
code level, more problems arise. Feng et al. [41] formalize three important issues in
dynamic adaptation of component-based architectures:

Referential Transparency Problem Components may not have a full understand-
ing of the references they hold to other components and thus may be unable to
update them accordingly during a change.

State Transfer Problem The state or history of a component must be updated in
a way that guarantees consistent behavior.

Mutual Referential Problem Dependencies between components must be resolved,
which may require the concurrent change of multiple components.

Further problems are the increased complexity between swapping a component and
swapping an object, the processing of requests issued during the evolution process,
and the processing of unfinished requests or transactions [42]. On the binary level,
one must deal with issues such as rewriting of binary code, programming language
issues, and version coexistence [27].

These issues highlight how crucial information about the system is during an
adaptation. Decomposition of an architecture is insufficient, if the references and
connections between components are not documented or known. Updating a state
within a component requires the awareness that there is a state, and what this state
is composed of. Coming back to the waves of self-adaptation as defined by Weyns
[29], architecture-based adaptation is crucial to handle the referential transparency
problem, whereas runtime models can assist in dealing with state transformations or
processing unfinished requests. Yet, while self-adaptation addresses some of these
issues, it introduces new challenges as well.

Self-Adaptation Challenges

The possibility of dynamic adaptation invites the use of self-adaptation, where the
system can adapt itself. Although the idea is simple, the implementation in practice
is not. The following paragraphs show three levels on which challenges in self-
adaptation can be observed, and how the perspective has evolved over the years.

In their 2009 paper, Salehie and Tahvildari [37] identify research challenges
in four distinct areas of self-adaptation: Engineering, self-* properties, adaptation
processes, and interaction challenges. Engineering challenges are mainly concerned
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with the requirements, design, implementation, and testing of self-adaptive systems.
Self-* property challenges refer, on the one hand, to the development of individual,
less-noticed properties, and, on the other hand, to multi-property systems. The
challenges of the adaptation processes can be assigned to the phases of the MAPE
cycle, and interaction challenges address the difficulties in designing effective policies,
establishing trust, and achieving interoperability.

In 2013, Lemos et al. [43] wrote a paper on a renewed research roadmap. This
time, the challenges were split into design space, processes, decentralization, and
run-time verification & validation. Specifically, the design space challenges refer to
the issue of defining, representing, and observing the solution or decision space over
which self-adaptation is performed. Process challenges describe the changes to soft-
ware development processes required in self-adaptive systems, e.g. shifting design-
time activities to run-time or requiring continuous validation. Decentralization is
required for complex architectures, yet it also must guarantee system-wide quality
goals and requires further coordination between participants. Finally, validation &
verification (V&V) in a self-adaptive system must handle changing requirements due
to evolution and the complexity of run-time techniques in contrast to design-time
V&V. These challenges indicate a shift from implementation issues towards software
engineering issues.

In the more recent work (2019), Weyns [29] proposes challenges in the current
and future waves of engineering self-adaptive systems. In current waves, the identi-
fied challenges are adaptation in decentralized settings, dealing with changing goals,
domain-specific modeling languages, dealing with complex types of uncertainties,
empirical evidence for the value of self-adaptation, and aligning with emerging
technologies. In future waves, there are further challenges ahead: Exploiting artifi-
cial intelligence, coordinating adaptation with blockchain technology, dealing with
unanticipated change, control theory as a scientific foundation for self-adaptation,
and multidisciplinarity. These challenges indicate an increased abstraction level of
the self-adaptation topic and the maturity of the domain.

Conclusion

As explained earlier, there are many reasons to perform (self-) adaptation which has
led to numerous implementations and proposed solutions. There is a clear difference
between dynamic adaptation and self-adaptation challenges. In dynamic adaptation,
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many challenges have been known for decades, and it has been accepted that there is
no one-size-fits-all solution. For instance, guaranteeing integrity is highly dependent
on the application. In self-adaptation, there is an evolution of challenges from the
implementation level to higher abstraction levels. The underlying adaptability is
expected, although for many systems, guaranteeing integrity is not trivial. The next
section proposes a self-adaptive architecture for ICS before the specific challenges of
this dissertation are presented in Section 1.3.

1.2

An Architecture for Self-Adaptive Industrial Control

The previous section has summarized the general requirements, types, and challenges
of dynamic adaptation in the software engineering domain. Of these requirements,
some are more, and some are less relevant for ICS. Also, not all types of dynamic
adaptation are feasible for ICS, and not all challenges can be addressed within the
scope of this dissertation.

This section introduces the most relevant self-adaptive architectures as they have
been proposed in research. Elaborating on these architectures, a novel architecture
is proposed that extends currently feasible approaches and addresses practically
relevant challenges in dynamic adaptation of ICS to limit the scope of this dissertation.

1.2.1

Self-Adaptive Architectures
Multiple architectures and implementations have been shown in research to achieve
self-adaptive or autonomous behaviors. The most influential self-adaptation model
is MAPE-K, which can be implemented in different design patterns. Consequently,
this model and its extensions are chosen in this dissertation as the foundation for an
application of this model to ICS. This section introduces the aforementioned models,
while the next section explains the resulting ICS architecture.

MAPE-K

The MAPE-K self-adaptation model ([19, 44]) is one of the most influential concepts
of self-adaptation to-date [45]. It is based on a feedback loop of four phases: Initially
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coined Collect, Analyze, Decide, Act, the phases are later referred to as Monitor, Analyze,
Plan, and Execute:

Knowledge The knowledge is the collection of all data, states, or goals of the
system. Usually depicted as an abstract cloud, the knowledge is shared between
the different phases and represents the central knowledge base.

Monitor During the monitoring phase, data is collected and gathered in the knowl-
edge. This could be new information from sensors, changed system states, or
new system goals.

Analyze The analysis phase scrutinizes the knowledge to identify if an adaptation
could be necessary. The MAPE-K model does not limit the type of algorithm
used to perform this analysis.

Planning During the planning phase, the adaptation is prepared, and the nec-
essary actions are gathered. The actions are assembled into an adaptation
workflow, i.e., a recipe of how to adapt the system into the desired shape.

Execution Once the decision to adapt is made and the adaptation workflow is
composed, the adaptation can be executed.

Decomposing the process of self-adaptation into four distinct actions over one shared
knowledgebase permits the use of sophisticated architectures with clearly allotted
tasks and responsibilities, as seen in the following section.

Distributed MAPE-K

The decomposition of the self-adaptation process into the four MAPE phases allows
the decentralization and distribution of the feedback loop [46]. In practice, more
than one feedback loop may be necessary to implement self-adaptation in a complex
system. Multiple patterns to achieve this distribution or decentralization are outlined
in [46], and summarized here:

Master/Slave Pattern1 This centralized pattern allows distributed monitoring
and execution phases, yet centralizes the analysis and planning phase on a sin-
gle (master) peer (Figure 1.1a). A single point of failure is introduced, and there
may be significant communication overhead, however, the implementation is
simple and a centralized analysis and decision-making process can efficiently
utilize all information available.

1There are terminology concerns regarding this naming convention. An alternative name could be
Controller / Target.
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(a) Master/Slave (b) Regional Planner (c) Hierarchical Control

Figure 1.1: Distributed design pattern for MAPE-K self-adaptive systems as presented
in [46] that allow the distribution of responsibilities.

Regional Planning Pattern In some scenarios, it may be necessary to centralize
the adaptation planning phase, yet the analysis of information can be done
locally (Figure 1.1b). For example, the (re-) allocation of resources in a cloud
setting may be decided locally, while the planning is done centrally. Local
monitoring and analysis can lead to a smaller communication overhead.

Hierarchical Control Pattern A single self-adaptation layer of may not be suffi-
cient in complex architectures. In this case, a hierarchical decomposition of the
adaptation process can allow higher levels to focus on higher-level goals, while
low-level goals are considered on the bottom layers (Figure 1.1c). This can add
complexity, yet may also allow the self-adaptation of complex systems.

The basic MAPE architectures struggle with providing self-adaptation for complex
technical systems. The MAPE-K model can partially hide this by assuming a shared
knowledge component, however, sharing information comes at a cost. The distributed
design patterns demonstrate the ability to transparently distribute the responsibilities
of self-adaptation for complex architectures. The ability to distribute tasks is a key
reason to split the self-adaptation loop into distinct phases. Distributing these tasks
to multiple entities also provides clear responsibilities and a clear distinction between
consumers and producers.
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Figure 1.2: The MORPH reference architecture as presented by Braberman et al. [47],
which clearly distinguishes between configuration and behavior changes.

The MORPH Reference Architecture

The MORPH reference architecture [47] combines previously proposed architectures
for self-adaptation with multi-layered, hierarchical MAPE-K loops. This architecture
explicitly distinguishes between changes to the configuration and changes to the
behavior. The architecture is depicted in Figure 1.2 and consists of five layers. In
this manner, the responsibilities are clearly distinguished, and the interactions and
dependencies between the layers are explicit. The five layers are:

Target System The target system contains the operationally necessary functional-
ities. It performs monitoring tasks and reports its status and relevant events to
higher layers. In return, it receives commands from higher layers to change its
configuration or behavior.

Knowledge Repository The knowledge repository logs and stores information
about the goals, system, and environment and makes it available to the other
layers. It may contain a runtime model that it keeps up to date.

Strategy Enactment This layer decides if a change in the target system is neces-
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sary within the current strategy, sends commands to the target system, and
reports errors or exceptions to the higher layer. It does not decide on the strategy
but merely receives it.

Strategy Management This layer manages and selects strategies. It receives mul-
tiple strategies, of which an appropriate one is propagated to the strategy
enactors. When an exception occurs, it may decide to switch to a different
strategy. However, this layer does not create new strategies.

Goal Management This layer performs the computationally expensive tasks of
generating strategies based on the information in the knowledge repository
and returns them to the strategy management layer. It does not decide which
strategy to choose and does not enact the strategy.

This architecture further decomposes the tasks and responsibilities of a self-adaptive
or autonomous architecture and describes the interactions between the actors. This
decomposition is a necessary task to handle the complexity and provide transparency
of the interactions. It is also reminiscent of the six waves of self-adaptation as
proposed by Weyns [29]: Architecture-based adaptation takes place within the target
system, runtime models are maintained within the knowledge repository, and goals
and guarantees must be handled by the goal management layer. The architecture
further distinguishes between two types of adaptations: Configuration changes and
behavior changes. This is reminiscent of the works of Chapin et al. [35] and hints
at the fact that different adaptations require different methods of enactment and
guarantees.

Conclusion on Self-Adaptive Architectures

Current self-adaptive architectures have shown that splitting the responsibility into
separate tasks, as in the MAPE-K model, is highly beneficial. The individual tasks
can be distributed, and implementation becomes much more efficient. Instead of
building a single self-adaptive system, multiple subsystems can be implemented that,
together, yield a self-adaptive architecture. Continued hierarchical decomposition
between strategy generation, management, and enactment provides the ability to
quickly debug issues. Was the fault in the selection of a strategy, or was there a lack
of a feasible strategy? Was this due to a lack in the generation process, or was there
insufficient or wrong data in the knowledge repository? Merging the layers into one
complicates the procedure and erases the transparency that is especially needed for
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safety-critical systems.
This basic understanding is applied to ICS in the following section, where a

novel architecture for self-adaptive ICS is proposed.

1.2.2

Self-Adaptation in ICS
So far this chapter has offered a motivation why self-adaptation is needed for ICS and
introduced the transition from self-adaptive systems to self-adaptive architectures
with delegated tasks and responsibilities. This section is about how self-adaptive
architectures can be applied to ICS.

Two points should be emphasized: First, the fact that ICS are often safety-critical
and hard real-time systems, the burden of guaranteeing the integrity of the adaptation
process is much higher than for many IT systems. Secondly, the control logic in many
ICS is comparatively simpler than for general IT systems. This led to the development
of domain-specific programming languages with stripped-down features compared
to general-purpose programming languages. Considering these domain-specific
languages is important to address concerns about the adoption of new techniques.

This section first describes the intended behavior of the ICS in a self-adaptation
life cycle, before describing a potential self-adaptive architecture for ICS. Finally, the
scope of this dissertation is defined.

Self-Adaptive Behavior in ICS

The dependability of the industrial process is the most important task of ICS. Current
ICS achieve this through redundancy, determinism, and robustness. However, agility,
adaptability, and autonomy can provide new levels of dependability and flexibility.
This is why this dissertation is concerned with introducing these abilities to ICS
Self-adaptation is a valid path toward these abilities.

Industrial control systems (ICS) are safety-critical real-time systems. As such,
they must satisfy strict requirements and must undergo extensive validation & verifi-
cation (V&V). Iber et al. [48] detail the potentials of self-adaptation in ICS, specifically
for typical IEC 61131-3 POUs / tasks. A key insight is that the adaptation may disturb
the execution, thus the advantage of an adaptation must be weighed against the risks
of a delay. This is particularly important for traditional ICS with computationally
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heavy, monolithic tasks.
In this manner, one of the main goals of self-adaptation is to provide a type of

fault tolerance to improve the dependability against unanticipated changes. Faults
are inevitable in any technical system and can be the result of wear and tear, external
influence, or even bugs in the software. While faults cannot be prevented, the goal of
fault tolerance is to prevent a resulting error or failure. In many scenarios, the error or
failure can be prevented by deliberately changing the system to work around the fault.
Depending on whether or not the fault is fixed before or after a failure, this would
correspond to either preventive or corrective maintenance, according to ISO/IEC/IEEE
[34]. Self-adaptation could also be used to, for instance, perform perfective maintenance.
These types of adaptations would not be as critical for a safety-critical system, since
they do not directly intend to correct or prevent a failure.

Recovered

Initial Degraded

Monitoring

Fault
Failure

Analysis
Planning Execution

Detection Planning Execution Recovery

Loss

Figure 1.3: The resilience graph allows the quantification of a resilience loss over
time. The MAPE-K model can be integrated into this graph to highlight how each
phase affects the resilience loss.

Concerning the MAPE feedback loop, a potential reaction to a fault is depicted in
Figure 1.3. In this particular case, the fault detection only finishes after the failure,
yet this is not always the case. Nevertheless, detection (monitoring & analysis) must
identify that there is a fault before a plan can be made to repair it. Once the adaptation
plan is made, it can be executed, and the system can be returned to a recovered state.
The goal of self-adaptation, within this figure, is to minimize the area underneath the
graph, i.e., the loss incurred by the fault/failure. In the most optimal scenario, the
failure can be prevented.

This optimization problem sets the scene for how self-adaptation should be inte-
grated into ICS. The following section presents an architecture that implements this
behavior and integrates the existing works on dynamic reconfiguration of component-
based architectures, particularly in the domain of ICS.
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1.2.3

The WATERBEAR Architecture2

Having seen the multi-layered self-adaptive architectures in research, this state of
the art can now be merged with current ICS architectures that enable dynamic
reconfiguration. The result is the WATERBEAR architecture, named after the most
resilient creature on earth. This architecture combines the layered decomposition
of the MORPH architecture ([47]) with the reconfiguration model of the IEC 61499
standard as defined by Zoitl [50], which itself builds on the works of Kramer and
Magee [51, 52]. The blended model is depicted in Figure 1.4.
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Figure 1.4: The WATERBEAR architecture blends the MORPH architecture [47] with
the existing ICS architectures to fulfill the requirements of reconfigurable industrial
control software.

2The water bear, also known as tardigrade or moss piglet, is considered to be one of the most resilient
creatures on earth [49]. Destined to outlive humanity, just like the WATERBEAR architecture.
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In contrast to the MORPH architecture, behavior and configuration changes
are treated equally and use the same reconfiguration channels in the WATERBEAR
architecture. This is a simplification, since ICS are typically resource-constrained and
require extensive V&V. Implementing two separate interfaces may require additional
resources and two separate validation mechanisms. Principally, using a separate
channel for minor behavior changes may be feasible, yet out of the scope of this
dissertation.

The physical process and the ICS controlling it are located in the target system
layer, the reconfiguration manager is located in the strategy enactment layer, the con-
figuration manager is located in the strategy management layer, and the configuration
generator is presented within the goal management layer. The individual layers and
their responsibilities are detailed in the following:

Target System The target system is the ICS, which logs data into the knowledge
repository and feeds back status messages or important events to the strat-
egy enactment layer. It receives reconfiguration commands from the strategy
enactment layer as intended by the IEC 61499 reconfiguration model [50].

Strategy Enactment The reconfiguration manager is triggered by status changes
or events from the target system. In response, it uses the information in the
knowledge repository to implement a reconfiguration in the form of reconfigu-
ration commands in correspondence to a specific strategy that was provided
by the strategy management layer. In the scope of the IEC 61499 standard, the
strategy could be an IEC 61499 system configuration or a corresponding change
specification.

Strategy Management The configuration manager is triggered by the reconfigu-
ration manager in case the strategy is not sufficient for the current scenario. It
uses the information in the knowledge repository to select a suitable strategy
from a set of strategies provided by the goal management layer.

Goal Management The configuration generator is triggered by the configuration
manager if all currently available strategies are insufficient to handle the current
scenario. Then, the configuration generator must use the information in the
knowledge repository to generate new strategies that propagate down to the
strategy management layer.

Knowledge Repository The information generated by the ICS, as well as the
initial requirements and goals, must be stored and made available to all partici-
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pants. This abstract knowledge repository serves this purpose.

Each layer may contain more than one generator or manager service. For exam-
ple, a pool of configuration generator services may be used to find as many feasible
strategies as possible. Similarly, there may be multiple configuration managers which
can decentrally decide on the most feasible strategy to be implemented. To ensure
the safety of the architecture, most importantly if a decentralized approach is utilized,
there may be a need for verification services that confirm the consistency, integrity,
and safety of the strategies and the resulting reconfiguration commands. This ver-
ification is only necessary when new strategies are formed, or when a strategy is
implemented in reconfiguration commands.

The MORPH architecture builds upon the MAPE-K feedback loop models. Thus,
these phases also re-emerge in the WATERBEAR architecture. The Monitoring phase
is present in the target system where data is logged to the Knowledge in the knowledge
repository and status and events are generated and sent up the chain of command
towards the strategy enactment layer. Analysis and Planning are implemented in the
reconfiguration managers, configuration managers, and configuration generators
in a hierarchical manner [46]. The reconfiguration manager, for instance, analyzes
the information in the knowledge repository and the current status to decide if
reconfiguration is necessary, and if it is, plans the procedure. The configuration
manager, in turn, analyzes the knowledge to select the most suitable strategy for the
current situation.

Due to the multi-layered decomposition of tasks and responsibilities, the imple-
mentation is simplified, and the individual challenges are more easily addressed and
solved. The following section describes the challenges in achieving a self-adaptive ar-
chitecture, such as the WATERBEAR architecture, before the scope of this dissertation
is specified.

1.3

Challenges for the WATERBEAR architecture

The general challenges of (self-) adaptive architectures and systems were discussed
in Section 1.1.2. The WATERBEAR architecture provides a concept that promises
superior adaptability, agility, and resilience for ICS. Yet, it is only a conceptual
architecture that needs refinement and implementation effort to put into practice.

Industrial automation systems as a whole are typically highly customized for
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their application. While there is some overlap in models, languages, and technologies,
there is a significant difference between, for example, discrete manufacturing and
process control systems. This difference must also materialize in the WATERBEAR
architecture. The goal management or configuration generation, for instance, must
integrate domain-specific information and models. The risk assessment influences
the possible levels of adaptability and what assurance measures must be taken along
the way, which must be reflected on the strategy management layer.

This dissertation concentrates on the layers necessary to achieve self-adaptation
capabilities, which are use-case independent. These layers are the lower layers:
The target system layer and the strategy enactment layer. Other layers, such as the
strategy management or the knowledge repository, are only addressed as needed.
This scope is illustrated in Figure 1.5. Generally, the scope includes how the system
can (self-) adapt, and excludes the application-specific questions of what or when to
adapt. For instance, the aim is not to investigate specifically how to adapt a PID
controller for a process control system, but how to facilitate adaptability and self-
adaptability for general ICS applications. In the same manner, the triggering of the
adaptation is not addressed, because this is highly application-specific and there is
much room for interpretation. Following, the layers are discussed individually:

Target System The state of the art in reconfigurable industrial control software is
applied and extended to investigate how, on the control level, the software can
be modified in real-time using a middleware or runtime environment (RTE).
This requires the handling of the reconfiguration commands from the higher
layers. Logging of data is limited to the information necessary to ensure a safe
adaptation procedure. Here, dynamic adaptation challenges arise, such as the
state transfer problem [41].

Strategy Enactment The strategy enactment layer must decide how the intended
change can be implemented in reconfiguration commands. These commands
must consider the requirements of consistency and timing. The decision-making
processes that decide when an adaptation is necessary are excluded, because
they do not influence how the adaptation is implemented. Here, dependencies
must be resolved and correctness and consistency are key [40, 41].

Strategy Management The strategy management layer plays a crucial role in
selecting a strategy while engaging with the knowledge repository and lower
layers. Within this dissertation, it is assumed that a strategy already exists,
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Figure 1.5: The scope of this dissertation focuses on the adaptation of the ICS, and
as a consequence concentrates on the target system and strategy enactment layers.
The three key cornerstones are the adaptability of the runtime environment, the
functional consistency, and the non-functional timing requirements.

because the selection process is highly application- and domain-specific. Rec-
ognizing the diverse nature of strategies, it must be acknowledged that there
is no optimal selection strategy for all use cases. This dissertation takes an
agnostic approach here to provide a flexible self-adaptation framework that can
be tailored to fit most applications.

Goal Management For similar reasons, the goal management layer is largely ex-
cluded in this dissertation, primarily due to its application- and domain-specific
nature. A possible solution is sketched in the final chapters to demonstrate
the full architecture and to underscore the flexibility and adaptability of the
architecture to diverse applications.

Knowledge Repository The knowledge repository is partially relevant to the dis-
sertation. Some information, e.g., system requirements, basic behaviors, and
timing data are commonly available or feasible to gather in current systems.

22 Agile Industrial Control Architectures



These models are considered in this dissertation as necessary input. An inter-
ested reader could find plenty of inspiration on how this could be extended
within the domain of the digital twin.

Consequently, this dissertation focuses on the core feature of the WATERBEAR
architecture: (Self-) adaptability. To create the highest impact, the argument can be
made that of all the challenges proposed by Mlinarić [39], correctness and simplicity
are the most urgent for the advancement of ICS. Correctness is critical to comply
with the stringent safety requirements of ICS. Simplicity reduces the threshold to
application, which can lead to multiplier effects if adaptation is more frequently used.
Once a simple and correct process is established, its flexibility and performance can be
improved further. Regarding self-adaptation, the use of domain-specific languages
and gathering empirical evidence for the value of self-adaptation can be seen as
most critical [29]. Use in ICS must take into account domain-specific languages, and
empirical evidence can substantiate the need for self-adaptation. Without clear cost
benefits, (self-) adaptation will not reach the domain of ICS.

Summary

This dissertation offers a roadmap to achieve a basic level of acceptance of (self-)
adaptation in ICS, which promotes resilient and autonomous behaviors. As seen
previously, there are open challenges on all architecture levels. The foundation,
however, consists of the lower levels and specifically of empowering the target system
to be adaptable. Consequently, this is the key area of interest for this dissertation,
and the three main challenges addressed in this dissertation are:

Adaptable Runtime Environment The development of an adaptable middleware
that abstracts the safety-critical control logic from the low-level execution se-
mantics. This is achieved by extending existing domain-specific models and
reusing existing technologies from the IT domain.

Consistency during Adaptation As safety-critical systems, ICS are subjected to
strict safety requirements, and their behavior must be predictable. A change in
the implementation must only lead to intended behavior changes. This topic
is approached by applying formal consistency conditions to the adaptation
process. Automating the procedure increases confidence in the correctness and
reduces the manual effort.

Timeliness during Adaptation As real-time systems, ICS must satisfy real-time
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constraints. This also applies during the adaptation, when the behavior will
be temporarily disrupted. The system integrity is only guaranteed if real-time
constraints are considered before, during, and after the adaptation. Automati-
cally considering the timing and schedulability further reduces the threshold
for application.

These challenges are explained in detail in the following sections, and solutions are
addressed in the chapters to come.

1.3.1

Adaptable Runtime Environment
As was identified in the past, adaptation, and, in particular, self-adaptation, rely on
higher-level abstractions than low-level dynamic software updating. To achieve this,
a reconfigurable or adaptable middleware can be used that separates the control logic
from the underlying implementation. This separation serves two main purposes:

• It provides re-usability for the necessary high-level services. For example, most
adaptations rely on the addition or removal of functionality. The low-level
instructions can be assembled into services that can be reused in diverse use
cases.

• It simplifies the implementation of an adaptation because the focus can be put
on the adaptation logic instead of the control logic. In traditional source-code
level updating, the logic and modification are deeply intertwined. This hampers
the automatic handling of the adaptation and complicates the manual handling
as well.

Current domain-specific runtime environments do not fully support dynamic
adaptation or lack high-level abstractions necessary for an application in ICS. While
rudimentary support for dynamic adaptation exists, it is rarely applied. To achieve
closed-loop self-adaptation, however, the ability to adapt is essential.

Thus, in Chapter 2, the current state of the art in adaptable runtime environments
for ICS is investigated, analyzed, and compared to middlewares of other domains in
which online-change is already established. Further, a runtime environment with a
focus on dynamic adaptation is implemented and evaluated concerning its ability to
satisfy real-time constraints.

24 Agile Industrial Control Architectures



1.3.2

Consistency during Adaptation
ICS oversee physical processes. Many of these processes can cause harm or damage,
and, thus, ICS are often subject to stringent safety constraints. The aversion to change
and modification in industrial systems is very well motivated: The execution should
be consistent and reliable. Dynamic adaptation represents a type of intended change.
Nevertheless, the behavior must remain predictable and consistent.

There are many ways to achieve consistency during an adaptation. Stopping the
plant, returning it to an initial state, and restarting the process, for example, is a way
to achieve consistency. It does, however, restrict the availability, productivity, and
agility. Thus, dynamic adaptation must provide the same guarantees, but without
the downtime.

This challenge is further developed in Chapter 3. Specifically, after introducing a
selection of existing consistency conditions, a mechanism to resolve the dependencies
between components is proposed. This mechanism does come with its disadvantages,
yet it builds on existing models and provides a key component to the propagation
of dynamic adaptation: simplicity. The automation of the adaptation procedure
reduces the friction currently encountered when evaluating whether or not dynamic
adaptation is production-ready.

1.3.3

Timeliness during Adaptation
While functional consistency is important, it is not the only requirement when adapt-
ing ICS, as ICS are usually real-time systems. As the name implies, dynamic adapta-
tion must be performed dynamically, i.e., while the system is and remains running.
Thus, the real-time guarantees of the system must be preserved.

This leads to two problems that must be addressed. First, there needs to be an
expressive real-time model of the system under adaptation, i.e., the ICS. Second, the
disruption of the adaptation concerning this real-time model must be quantified.
Deciding if an adaptation is feasible or not requires the existence of a schedulability
condition. Not every adaptation can be feasible in real-time. Thus, identifying a
workable adaptation that satisfies both the consistency and timing requirements is
crucial.
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The topic of real-time dynamic adaptation is addressed in Chapter 4. After
summarizing the state of the art in real-time scheduling for ICS, a schedulability
condition for dynamic adaptation is found that extends existing real-time models.
Then, expected adaptation times for ICS are extrapolated from measurements.

1.4

Conclusion

This chapter motivated the need for agility and self-adaptability in ICS. Based on the
current challenges in dynamic adaptation and self-adaptation, it derived the three
most pressing challenges that currently limit the adoption of dynamic adaptation
and self-adaptation in industrial architectures. These three challenges are addressed
in Chapters 2, 3, and 4. Chapter 5 assembles these pieces and shows the impact of
dynamic adaptation and self-adaptation on the resilience of technical systems, and
further proposes a decentralized implementation of the WATERBEAR architecture.
Finally, Chapter 6 summarizes the contributions of this dissertation and highlights
limitations and future research directions.
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Self-adaptive architectures, such as the WATERBEAR architecture (introduced
in Chapter 1), require adaptability. Once there is adaptability, the loop can be closed
and open-loop adaptation can be transformed into closed-loop adaptation [37]. An
example of this transition is established in the MAPE feedback loops [19, 44]. The
execution phase of the MAPE model (see Section 1.2.1) is critical because this is where
the adaptation is executed. Commonly, this adaptability is implemented in a recon-
figurable middleware that actively assists the adaptation. Two examples are given in
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Figure 2.1. Figure 2.1a demonstrates the benefits of splitting the managed from the
managing system to achieve a separation of concerns. Instead of building one system
that adapts itself, it may be simpler to implement one system that plans the change
and one that is changeable. Regarding the latter, the component-based architecture in
Figure 2.1b promotes adaptation by integrating connectors between components that
simplify the replacement of components. Consequently, a reconfigurable middleware
is crucial for the implementation of the WATERBEAR architecture in the domain of
ICS to provide the necessary adaptability.

(a) Concept of a self-adaptive system
from Weyns [53]

(b) Component and connector architecture for facili-
tated reconfiguration from Oreizy and Taylor [54]

Figure 2.1: Adaptation and reconfiguration concept architectures

ICS are using specialized hardware and domain-specific programming lan-
guages. For example, the IEC 61131-3 standard defines the most common pro-
gramming languages for use in PLCs. The IEC 61499 standard extends these models
towards distributed and reconfigurable control systems, yet has struggled with
adoption [55]. Recently, there has been a push from both industry and academia
for the continued integration of IEC 61499 models [56, 57]. Despite these efforts,
IEC 61499 standard remains under scrutiny for its ambiguous execution semantics
and the numerous diverging RTEs that, instead of promoting portability, inhibit it.
Further, while there is an interface for reconfiguration, it is rarely used and at the
very least struggles with the adaptation challenges of simplicity and correctness, since
reconfiguration is a manual process that can easily lead to inconsistent behavior.

Certainly, after years of independent development, there is a need to reconnect
the domain-specific models and languages back to the developments in general-
purpose languages. This can effectively narrow the gap between IT and OT. One
general-purpose language that provides some of the needed functionality and is
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well-adopted in practice is Erlang. Originating in the telecommunication industry, it
provides dependability and adaptability to high-availability communication systems.
In this chapter, an IEC 61499 RTE is implemented in Erlang to, on the one hand,
investigate Erlang’s fitness for safety-critical real-time systems, and, on the other
hand, to review Erlang’s dynamic adaptation model for integration in ICS. For
this purpose, a slice of the WATERBEAR architecture is implemented (Figure 2.2).
Specifically, the target system layer is implemented with the ability to apply the change
implementation that originates in the strategy enactment layer. The implementation
allows the comparison between existing IEC 61499 RTEs and Erlang concerning their
adaptation capabilities.
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Figure 2.2: This slice of the WATERBEAR architecture focuses on the target system
layer, which must use the change implementation from the strategy enactment layer
to modify itself.

This chapter first introduces the background regarding general industrial control
system (ICS) software, and in particular the IEC 61499 standard and its dynamic
reconfiguration capabilities in Section 2.1. In the same section, the programming
language Erlang is introduced which already has the desired dynamic adaptation
features. Following this, a synthetic performance analysis is shown that evaluates the
real-time performance of Erlang and the Erlang Runtime System (ERTS) (Section 2.2).
This leads to the implementation and evaluation of an IEC 61499 RTE in Erlang in
Section 2.3. The key findings are summarized in Section 2.4.
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2.1

Industrial Control Software

The work in this chapter builds upon previous works in the domain of industrial
control software. Compared to general software engineering, the domain-specific
languages used in this field are particularly tailored towards real-time performance
and the control of physical processes. After briefly introducing the elementary
concepts of PLCs and the most common programming languages of the IEC 61131-3,
Section 2.1.1 presents the fundamentals of the IEC 61499 standard for distributed and
reconfigurable industrial control systems. Following this, reconfiguration capabilities
of the IEC 61499 models (Section 2.1.3) and Erlang (Section 2.1.4) are established,
which will be merged in the following section.

Programmable Logic Controllers

ICS are commonly controlled using PLCs, which replaced the relay control commonly
used in the 1960s. The main reasons for this change were the lack of flexibility and
the difficulty of troubleshooting [58]. Maintaining an electrical system was more
cumbersome than maintaining software, and this advantage extends until today,
when many of these systems can be controlled, monitored, and maintained remotely.
PLCs are traditionally programmed using domain-specific programming languages,
however, general-purpose programming languages are becoming more and more
common. The use of domain-specific languages allows the use by engineers without
a programming background and facilitates the implementation of control logic in a
graphical manner.

Programming Languages: The IEC 61131-3 Standard

After the introduction of PLCs, the main difficulty was standardization between the
different vendors and industries, since most vendors used customized languages with
slightly different syntax and semantics. Generally, standardization facilitates reuse
and portability and simplifies training and the availability of qualified personnel.
The IEC 61131 standard is the first standard to reach international and industrial
acceptance [59]. There are ten parts to the IEC 61131 standard:

• Part 1: General information: This introductory chapter provides definitions,
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terms, and basic concepts that serve as the foundation for the subsequent parts.
• Part 2: Equipment requirements and tests: This chapter established the re-

quirements and tests for programmable controllers and their peripherals, for
instance, service conditions, functional requirements, functional type tests, and
verification, or electromagnetic compatibility (EMC) requirements.

• Part 3: Programming languages: Since PLCs can be programmed in multiple
languages, this part defines the three graphical and two textual programming
language standards.

• Part 4: User guidelines: This technical report mainly caters to PLC end-users
and introduces them to the IEC 61131 series and how to select or specify PLC
equipment.

• Part 5: Messaging service specification: This part specifies how devices can
communicate to a PLC and how PLCs can communicate with other devices.

• Part 6: Functional Safety: This part describes the life-cycle, requirements, and
evaluation methods for a PLC to be used in a safety context, i.e., as a functional
safety PLC.

• Part 7: Fuzzy Control Programming: This part provides a common understand-
ing for manufacturers and end-users to integrate fuzzy control applications in
the languages of the IEC 61131-3.

• Part 8: Guidelines for the application and implementation of programming
languages: This technical report provides guidelines for the application of
IEC 61131-3 and for the implementation of IEC 61131-3 languages for PLCs.

• Part 9: Single-drop digital communication interface for small sensors and
actuators (SDCI): This part provides an extension to the IEC 61131-2 standard
by specifying a single-drop digital communication interface.

• Part 10: PLC open XML Exchange Format: This part defines an XML-based
exchange format for the export and import of IEC 61131-3 applications and
projects, independent of vendors.

Looking closer at IEC 61131-3, this standard specifies the domain-specific modeling
languages to be used to program PLCs. In no particular order, these languages are:

• Sequential function chart (SFC): A graphical programming language based on
GRAFCET which itself is based on Petri nets and uses steps and transitions to
structure the control flow.

• Ladder diagram (LD): Originally used to document the design and construction
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of relay racks in manufacturing and process control, this graphical language
represents a program based on circuit diagrams, which resemble ladders.

• Function block diagram (FBD): The third graphical language uses blocks with
input and output variables to decompose the control logic. The blocks can be
connected in countless configurations.

• Instruction list (IL): This low-level textual language resembles assembly code
and uses jump instructions and function calls to achieve control flow.

• Structured text (ST): This high-level textual language syntactically resembles
Pascal and provides the common statements and instructions found in most
high-level programming languages, e.g. iterative loops, conditions, and func-
tions.

Despite the rise of high-level general-purpose programming languages, these five
domain-specific languages are still dominating the control domain [60]. The pro-
grams are structured in program organization units (POUs), such as programs,
function blocks, or functions, which represent hierarchical blocks that can be used
to encapsulate functionality. Each POU has a declaration part, where local variables
can be declared, and a code part that contains the instructions for the POU [59].
PLC programs are most commonly executed cyclically using a scan cycle. This cycle
consists of three phases:

1. Scanning the inputs
2. Executing the control logic
3. Updating the outputs

This simple execution simplifies the preservation of real-time constraints. This can be
supervised by a watchdog that raises an alarm if a program exceeds its cycle time.
The time-triggered execution facilitates the verification of the schedulability of the
real-time behavior, yet it may present a disadvantage concerning utilization [61].

Many PLCs currently offer online change features. These features usually merely
download the changed application and replace the old application. This type of
adaptation works only on the syntax level but ignores the semantics of the change
and can be considered a type of code replacement. Important challenges, such as
consistency or timeliness are not addressed (see Chapter 1). These features provide a
benefit for many applications but rely on the responsibility of the engineer applying
the adaptation and lack V&V. Further, some PLC vendors offer solutions for “bump-
free switching”, either for systems that must switch between automatic and manual
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modes, or for high-availability solutions in which the failure of one CPU must be
tolerated. In this case, a second CPU is running redundantly and synchronized via
PROFINET or via optical fiber to achieve switchover times between 50 and 300 ms 3.
These switchover times are in the same range or longer as typical deadlines and
could thus interrupt the real-time behavior of an application. This type of “fail-over”
is suitable for emergencies, however, it still only considers changes to a single PLC
and can not change a larger system.

The IEC 61131 defines the current state of practice in industrial control with PLCs.
This state is first and foremost focused on robustness, stability, and cost-efficiency.
While there are extensions to this standard, e.g., through object orientation ([62]),
the main obstacle is handling legacy systems and dealing with the portability of
legacy systems. This leads to simple execution semantics and limited reconfiguration
support.

2.1.1

The IEC 61499 Standard4

The IEC 61499 standard defines an architecture for distributed control systems built
on top of the languages defined in IEC 61131-3. It was introduced as a possible
successor of the IEC 61131-3 standard for industrial control systems. Despite several
architectural advantages, the standard is yet to be widely accepted by the indus-
try. The distributed and event-driven concept allows for more flexible systems to
tackle the upcoming challenges of the next decades such as the internet of things or
industry 4.0.

Flexibility, reconfigurability, and distribution are some characteristics associated
with this standard [55]. The main advantage is the encapsulation of independent
functionality in function blocks without global states. This feature facilitates the reuse
of function blocks as modules for many applications on different platforms. It allows
the modification of the function block network without causing unexpected issues
with seemingly unrelated subsystems [63] and it enables the dissemination of function

3https://www.siemens.com/de/de/produkte/automatisierung/systeme/industrie/sps/simatic-
s7-1500/redundante-und-hochverfuegbare-cpus.html

4Major parts of this section were published in L. Prenzel and J. Provost. “Implementation and
Evaluation of IEC 61499 Basic Function Blocks in Erlang”. In: International Conference on Emerging
Technologies and Factory Automation. Torino, Italy: IEEE, 2018 and L. Prenzel and J. Provost. “FBBeam:
An Erlang-based IEC 61499 Implementation”. In: International Conference on Industrial Informatics.
IEEE, 2019.
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blocks over large networks and resources, thus permitting real, physical distribution.
In addition, the model-based approach lends itself to formal verification [64, 65]. On
the other hand, several design and execution ambiguities prevent the full application
of the IEC 61499 standard. [66].

The IEC 61499 standard currently has three parts: The first part describes the
architecture for distributed systems. The second part introduces requirements for
software tools, e.g., a Document Type Definition that describes an XML exchange
format. Part three is currently withdrawn, and part four consists of compliance
profiles for systems, devices, and software tools. Apart from the standard itself, Zoitl
and Lewis [67] offer an extensive overview of the concepts of the IEC 61499 standard.

The standard defines models to specify a solution for a control problem. The
main element is the function block (FB), which serves as a software component
encapsulating functionality and data. It can be composed in large networks by linking
the event and data connections. The set of function blocks describing the solution to
a control problem is bundled in an application. The individual function blocks may
be distributed over multiple resources and devices with the corresponding models.

The basic function block allows the manual implementation of custom algo-
rithms. The execution of the algorithms is conducted by the Execution Control Chart
(ECC). Triggered by incoming events, the ECC requests the execution of an algorithm
and issues outgoing events. A schematic view of the basic function block is presented
in Figure 2.3. The inputs are typically on the left, while the outputs are on the right
side. Events are connected to the top part of the block, and data links are connected
to the bottom part.

The IEC 61499 standard specifies multiple function block types that can be mixed
in arbitrary combinations and provide a common interface. This allows the replace-
ment of one FB by another, independent of their implementation. They also allow
the hierarchical structuring of the control application and the introduction of I/O
functionality. Compared to textual languages, these applications can be represented
graphically which simplifies debugging and quick understanding, similar to the
other programming languages of the IEC 61131-3 standard.

• Basic FBs implement a state machine that defines under what circumstances
algorithms should execute and output events should be sent.

• Service Interface FBs may be used to implement I/O functionality.
• Subapplications contain a Function Block network and can be used to structure

an Application hierarchically.
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Figure 2.3: Events (top part of the function block) trigger the execution control
chart (ECC) which controls the execution of the algorithms and the emission of
output events. Data is updated when the events connected by the with-qualifiers are
triggered.

• Composite FBs are similar to subapplications in that they contain a function
block network, however, composite FBs have a different execution behavior.

In addition to the FB models, models of higher abstraction levels are used to
describe the system and the control solution: The Application model contains a
network of Function Blocks to solve a control problem. The System model contains
devices and resources that the Applications are mapped to by the Distribution model.

There exist multiple possible implementations of the function block network.
An overview is given by Ferrarini and Veber [68] and more recent developments
are summarized by Vyatkin [69]. Common execution modes are sequential, cyclic,
and parallel. This ambiguity in the execution semantics is further discussed in the
following section.

2.1.2

Execution Semantics of the IEC 61499 Standard5

Since the introduction of the IEC 61499 standard, there has been a discussion about its
execution semantics and possible ambiguities [66]. Most notably, [68] classified differ-
ent execution semantics on a theoretical level. Thus, for researchers and commercial
users of the standard, it is important to know the available execution semantics and

5Major parts of this section were published in L. Prenzel, A. Zoitl, and J. Provost. “IEC 61499
Runtime Environments: A State of the Art Comparison”. In: International Conference on Computer Aided
Systems Theory. Springer, 2019, pp. 453–460.
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the most prevalent solutions. The different RTEs may be compared on different
levels. There are organizational characteristics, such as the license of the project (open
or closed source), the status (commercial, research, or inactive), or the programming
language used for the implementation. The execution semantics may be described
by the trigger mechanism (cyclic or event-based) and the execution model of the
RTE. Finally, RTEs may be distinguished by the features they offer, such as real-time
performance, multitasking, or dynamic reconfiguration.

Execution Models

The IEC 61499 standard does not strictly define the execution semantics of its models.
This has led to several papers outlining these ambiguities [66, 70, 71]. Currently,
there is no consistent framework to describe the execution semantics of an IEC 61499
implementation, but two different views are discussed here. Ferrarini and Veber
[68] use the factors Multitasking and Scan order to describe seven groups of possible
implementation approaches (see Table 2.1). The first factor describes if the order in
which FBs are scanned is fixed or not fixed. The second factor characterizes whether
multitasking is used, and if so, how it is controlled. This leads to a total number of
eight combinations, but Ferrarini and Veber [68] exclude the case of a fixed scan order
and not controlled multitasking.

Multitasking Implementation

Not used Not controlled Controlled,
time slice

Controlled,
FB slice

Scan Not fixed A0 A1 A2 A3
Order Fixed A4 x A5 A6

Table 2.1: Classification of possible implementation approaches according to Ferrarini
and Veber [68] along the dimensions Scan Order and Multitasking Implementation.

In addition to this classification, many publications have introduced names for
the most common implementation. The earliest model is arguably NPMTR (Non-
Preemptive Multi-threaded Resource), which is employed in FBDK and mentioned
already in 2006 [72]. At a similar time, a sequential model was discussed by Zoitl
et al. [73] and Cengic, Ljungkrantz, and Akesson [70]. This model was later termed
Buffered Sequential Execution Model (BSEM) [74]. Finally, Cengic and Akesson [71]
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Archimedes R
Java

E NPMTR A1 Hard Yes Yes
C++

FBBeam O R Erlang E PMTR A2 Soft Yes Yes

FBDK C R Java E NPMTR A1 Partly Partly

4diac FORTE O R C++ E PMTR A1 Hard Yes Yes

Fuber O R Java E BSEM A0 Yes Yes

ICARU FB O R C C CBEM A4 Hard No Yes

ISaGRAF C C
IEC

C CBEM A4 Hard
61131-3

nxtIECRT C C C++ E PMTR A1 Hard Yes Yes

RTFM-RT R C E PMTR A1 Hard Yes

Table 2.2: Comparison of key characteristics of IEC 61499 RTEs found in research
and industry.

termed a third model, named Cyclic Buffered Execution Model (CBEM).

Comparison of Semantics

As mentioned before, the IEC 61499 standard does not strictly define its execution
semantics and thus different implementations are possible. This section presents a
collection of RTEs that have been implemented since the inception of the standard.
An overview of the comparison is displayed in Table 2.2. A total of nine different
RTEs are compared based on information that was available from websites and
publications.

In addition to the three execution models already introduced in the literature, an
additional model (PMTR) was added. NPMTR describes non-preemptible multitask-
ing resources. This explicitly excludes the preemptible multitasking resources, that
nevertheless do not fall into the categories of buffered sequential or cyclic execution
semantics. Thus, the name PMTR was chosen, to indicate the set of preemptible
multitasking resources.

The assignment and collection were performed to the best of the author’s knowl-

Industrial Control Software 37



edge. Where no reliable data was found, and the clues were inconclusive, the field
was left blank. Following, the nine RTEs are shortly presented.

Archimedes There are three different RTEs using similar execution semantics:
RTSJ-AXE [75], RTAI-AXE [76], and Luciol-AXE [77]. They are implemented
in Java and C++ and allow both reconfiguration and multitasking. FBs may
be implemented as independent tasks/threads, or combined in function block
containers.

FBBeam In this Erlang-based IEC 61499 RTE, every FB is implemented as a
process, and scheduling is left to the Erlang Virtual Machine. Erlang processes
do not share memory, and messages between processes are sent asynchronously.
Because of the fair round-robin scheduling, only soft real-time performance
can be guaranteed. Erlang includes sophisticated frameworks for distribution,
dynamic reconfiguration, debugging, and monitoring of distributed, highly
concurrent systems [4]. Its execution model may be best described by PMTR,
since FBs may be preempted.6

FBDK FBRT The FBDK (Function Block Development Kit) and the accompanying
FBRT (Function Block Runtime Environment) allow the modeling and exe-
cution of IEC 61499 systems in a Java-based RTE [78]. FBs are compiled into
Java classes and scheduled in a depth-first manner. Instead of emitting events,
the FBRT uses method calls to communicate between FBs [79]. The execu-
tion model of the FBRT was referred to as Non-Preemptive Multi-threaded
Resource (NPMTR) [72].

4diac FORTE 4diac FORTE is the RTE provided by the Eclipse 4diac open source
project [80, 81]. The implementation is based on C++ and uses the Event Chain
concept described by Zoitl [50] to achieve deterministic real-time performance
by allowing the introduction of real-time constraints for event chains. Execu-
tion of an event chain may preempt execution of other event chains, thus the
execution model PMTR seems the most appropriate.

Fuber Fuber was build to investigate the different execution semantics of the
IEC 61499 standard [70]. It executes in two threads: One for the execution of
the execution control chart (ECC), and one for the scheduling of algorithms.
FBs and algorithms are assigned to FIFO queues and algorithms are interpreted

6This RTE will be discussed in more detail in Section 2.3 and is mentioned here due to the non-
chronological ordering of publications in this dissertation.
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on the fly instead of static compilation, thus allowing modification of the
algorithm code during the execution. As the focus of this implementation is
research on the execution semantics, real-time performance is not considered.
Fuber employs the Buffered Sequential Execution Model (BSEM), where FBs
are put in a FIFO ready queue [74].

ICARU FB ICARU FB is a RTE for lightweight embedded systems, e.g. 8-bit Ar-
duino boards. The IEC 61499 model is converted into C code. FBs are imple-
mented as objects and events are passed directly to a variable in the destination
FB object [82]. Since the execution is cyclic, and the FBs are scanned in a fixed
order, the most appropriate execution model for this RTE is CBEM and A4.
Hard real-time performance may be achieved and dynamic reconfiguration is
available.

ISaGRAF ISaGRAF was the first commercial IEC 61499 implementation [83].
IEC 61499 FBs are compiled to IEC 61131-3 code that may be executed on
traditional IEC 61131-3 devices. Because of the IEC 61131-3 base, the execution
is cyclic instead of event-triggered. Its execution model is referred to as Cyclic-
Buffered Execution Model (CBEM) [71].

nxtControl nxtIECRT According to [83], the solution provided by nxtControl, nx-
tIECRT, is based on the open source RTE 4diac FORTE. Thus, the execution
semantics should mostly be identical. The nxtIECRT RTE is a hybrid runtime
system, that may execute both IEC 61131-3 and IEC 61499 systems [84]. Further-
more, nxtIECRT provides extensive features for changing control applications
during system operation.

RTFM-RT RTFM-RT is an IEC 61499 RTE built on the RTFM core language [85].
It uses the event chain concept and implements them as synchronous task
chains [86]. The RTE is mostly built for real-time research. Threads of execu-
tion are preemptible and multitasking is possible, thus the model PMTR was
assigned.

Discussion

Table 2.2 summarizes the findings of this section. Up until now, the IEC 61499
standard has been implemented numerous times with different execution seman-
tics. Most RTEs are open source and research projects, but there are at least two
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commercially available IEC 61499 RTEs. Both of them do not only implement the
IEC 61499 model but support also the languages of the IEC 61131-3 standard. The
implementation languages vary but are mostly focused on Java and C / C++.

All RTEs except for two employ an event-triggered execution. Using the clas-
sification introduced by Ferrarini and Veber [68], most RTEs employ the semantics
A0, A1, or A2, where no fixed scan order exists. ISaGRAF and ICARU FB are the
only implementations with a fixed scan order, falling into the category A4. To the
knowledge of the authors, the categories A3, A5, and A6 are currently not used,
i.e., there are no RTEs with a fixed scan order and multitasking, or RTEs using FB
slice multitasking. For categories A5 and A6, this may be because a fixed scan order
with multitasking can be contradictory, since a multitasking implementation by itself
may disturb a fixed scan order. If the next FB in the fixed scan order must wait for
the previous FB to finish, multitasking is not possible. If it does not have to wait for
the previous FB to finish, this would disturb the determinism of a fixed scan order
implementation, since the previous FB might want to send events to the next FB in
the scan order. For A2 and A3, only one implementation currently exists, that uses
a fair scheduler with time slice preemption. Most other implementations do not
prescribe the scan order, and either do not use multitasking or do not control it.

Since the standard is aimed at industrial process measurement and control sys-
tems, most implementations claim to offer hard real-time performance. Multitasking
is available in some RTEs but not all. Although dynamic reconfiguration has been
the topic of multiple research papers, and many RTEs seem to support it, information
about the usability or performance of the reconfiguration process is rare.

Conclusion

This section summarized the developments concerning IEC 61499 RTEs for users and
researchers alike interested in working with standard or wanting to implement their
own RTE. Since its introduction, the standard has been implemented multiple times.
Despite the ambiguities of the execution semantics, there exist both commercial and
research RTEs that may be used to control physical systems.

From a theoretic perspective, the existing and possible execution models call
for a deeper investigation. The current classification frameworks help distinguish
fundamental differences between the RTEs but fail to describe the different execution
models of the standard precisely. Given that the execution semantics of the standard
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have room for interpretation, it is even more important to differentiate between the
implementations.

Given the availability of lightweight, multitasking embedded systems that re-
quire real-time performance, the IEC 61499 standard may offer suitable models for
this application. In this regard, deterministic real-time scheduling of multitasking
IEC 61499 systems may require further investigation.

Although the topic of Dynamic Reconfiguration has been addressed from a
modeling perspective, and many RTEs claim to allow dynamic reconfiguration,
examples of dynamic reconfiguration with the IEC 61499 models are rare. Most
RTEs focus on the execution semantics, whereas the frameworks for deployment,
distribution, configuration, and reconfiguration are also key selling points of the
IEC 61499 standard.

2.1.3

Dynamic Reconfiguration of IEC 61499 Standard
Dynamic reconfiguration was integrated into the IEC 61499 standard from the very
beginning since adaptability and reconfigurability were key requirements during
the development [50]. A detailed description of a real-time execution model for the
IEC 61499 standard, which also supported dynamic reconfiguration was developed
by Zoitl [50]. However, while the model was implemented in current RTEs and the
real-time execution is at least partially available, dynamic reconfiguration is currently
rarely applied.

Reconfiguration Services

The IEC 61499 standard includes a set of reconfiguration services to be used for
dynamic reconfiguration. These services are provided by the RTE and can also be
accessed via special service interface function blocks, which allow the design of the
reconfiguration logic in the same language as the control logic.

An exhaustive list of reconfiguration services is given by Zoitl [50]. The services
are summarized in Table 2.3. Some services are implemented in current RTEs such
as 4diac FORTE [81]. Generally, these services can be split into two categories:
Services to interact with FBs and the FB network (i.e., CREATE, DELETE, READ,
WRITE, START, STOP, KILL, RESET), and services to communicate with the RTE
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(i.e., QUERY).

Service Description

CREATE Allows the creation of resources, function blocks, connections, or types.

DELETE Allows the deletion of resources, function blocks, connections, or types.

WRITE Enables the writing of parameters, data inputs, data outputs, and internal variables.

START Sets the state of the function block to Running.

STOP Sets the state of the function block to Stopped

KILL Interrupts the execution and sets the state to Killed.

RESET Resets a stopped or killed function block back to the initial state.

READ Read data inputs, data outputs, and internal variables of function blocks.

QUERY Request information from the RTE regarding resources, function blocks, function
block states, connections, and loaded types.

Table 2.3: IEC 61499 reconfiguration services according to [87] and [50].

Theoretically, these services should suffice to achieve any higher level reconfiguration
task [50]. For convenience, it may be desirable to combine multiple of these low-level
services into high-level services, e.g., for updating a FB.

Reconfiguration Control Applications

The topic of dynamic reconfiguration of IEC 61499 models has been discussed for a
long time [88, 89]. It is facilitated by the event-triggered execution and the fractured
system state which allows the application to be exchanged efficiently without halting
the entire application, and complex changes are possible. Typically, the reconfigura-
tion services are wrapped inside a reconfiguration control application (RCA) which
modifies the concurrently running control application in real-time. The process of
reconfiguration can thus be split into five phases: The upload of the RCA, the initial
RINIT phase, the critical RECONF phase, the RDINIT phase, and the final cleanup of
the RCA [90].

A picture of an RCA (or Evolution Control Application) is shown in Figure 2.4.
As can be seen, the RCA is larger than the control application, and the RCA does not
contain any fail-over or recovery mechanisms. As RCAs are usually implemented
manually, this obstructs the use of dynamic reconfiguration in practice. Further, the
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large number of necessary connections means that the implementation is error-prone
and cumbersome.

Figure 2.4: An example RCA as given by Sünder, Vyatkin, and Zoitl [90].

While the IEC 61499 standard provides the necessary means to achieve dynamic
adaptation, in its current form, it is far from simple or even feasible. The cost of
implementing the necessary RCA and the needed validation dwarf the benefit of
adaptability. Further, there are no guarantees of consistency or real-time behavior,
thus this lies within the responsibilities of the developer or must be checked during
validation.

2.1.4

Erlang and the Erlang Runtime System
The previous sections have introduced the fundamentals of industrial control soft-
ware. Being rather traditional, the adoption of new technologies has been slow. The
IEC 61499 standard is slowly gaining traction, yet dynamic reconfiguration support
is not a first-class citizen within the existing RTEs. Most importantly, even once
the IEC 61499 models would see more use in practice, the dynamic reconfiguration
support that currently exists is rudimentary and a purely manual process. In contrast,
other domains already have decades of experience with dynamic adaptation and the
surrounding ecosystem and tooling.

This section introduces Erlang, a general-purpose programming language, in-
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tended for the telecommunication industry, that features dynamic adaptation, or hot
code loading, to achieve high availability. While some sources claim an availability
of “nine nines” (99.9999999%), this statistic has been critized [91].

Erlang7

Erlang is an open-source functional programming language with roots in the telecom-
munication industry. It was developed for distributed, highly available, and concur-
rent systems. Over time, there have been many changes and improvements, that
lead Erlang to the point where it currently is. With the introduction of Elixir8 in 2012,
there is at least one other language with wider adoption using the underlying virtual
machine of Erlang. Since its inception in 1986, many books have been written about
Erlang that provide great resources on the language, semantics, and application [92–
96]. This section provides an elementary introduction to the background necessary
to understand the methodology of this dissertation. Erlang is relatively fast to learn
and allows beginners to quickly delve into concurrent and fail-operational system
design. From the many available resources, [96] provides a great starting point.

The Erlang ecosystem can be split into three components that all contribute to
the advantages of using Erlang in the first place. These components are:

• The functional programming language, which allows for predictable syntax
that is largely side effect-free,

• the Open Telecom Platform (OTP), a collection of high-level behaviors and
templates that simplify the implementation of concurrently and fault-tolerance,
and

• the Erlang Runtime System (ERTS), the runtime system that provides the neces-
sary functionality to run Erlang systems and builds on top of the BEAM virtual
machine.

Erlang Programming Language

Erlang is a functional programming language, in contrast to imperative languages
such as C. This comes with several differences that can have advantages or may

7Major parts of this section were published in L. Prenzel and J. Provost. “FBBeam: An Erlang-based
IEC 61499 Implementation”. In: International Conference on Industrial Informatics. IEEE, 2019.

8https://elixir-lang.org/
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constitute a disadvantage in some cases. Three characteristics of Erlang are presented
here: Immutable variables, functions, and the actor model.
Immutable Variables Variables in Erlang are immutable. Once assigned, the value
of a variable cannot change within its scope. This provides predictable behavior
of code and prevents unexpected side effects during execution. On the other hand,
immutable variables prevent the use of for-loops. Instead, iteration is solved by
recursive function calls.

1 Eshell V12.3 (abort with ˆG)
2 1> Var = 1.
3 1
4 2> Var.
5 1
6 3> Var = 2.
7 ** exception error: no match of right hand side value 2

Listing 1: After assigning the variable Var, the value can be returned, but it cannot
be changed again, since variables in Erlang are immutable.

Functions As a functional programming language, all code in Erlang is organized
into functions. Functions have a name, receive some inputs, perform computations,
and return an answer. An example function is given in Listing 2.

1 countdown(0) ->
2 ok;
3 countdown(N) when N > 0 ->
4 countdown(N-1);
5 countdown(_) ->
6 ok.

Listing 2: An example countdown function that counts down until 0 and then returns
ok.

This single function uses pattern matching to differentiate between different inputs,
i.e., 0, N when N>0, or the anonymous variable _. Depending on which input is
received, a different function is called. Since variables are immutable, their values
cannot be changed once they are assigned. However, a different variable can be
returned that has updated the value of the variable. In this function, counting down
is achieved by the recursive call of the function until the stop condition is reached. A
tremendous advantage of this functional programming paradigm is that the function
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is essentially side effect free, i.e., every function clause can be tested individually, and
the resulting behavior only depends on the function inputs.
Actor Model All Erlang code runs in processes. For instance, when an Erlang
shell is started, the shell runs in an independent process to execute commands or
functions. When an exception occurs, only the process is terminated but the virtual
machine survives. A new process can be created using the spawn(Module, Name,

Args) function, as seen in Listing 3, where a process is spawned executing the
countdown(N) function. The start() function immediately returns the process
identifier (PID) of the newly spawned process and does not have to wait for the
countdown(1000) call to finish.

1 start() ->
2 Pid = spawn(?MODULE, countdown, [1000]),
3 Pid.

Listing 3: The spawn(Module, Name, Args) function creates a new process and
returns the PID of the new process.

The following section introduces the Erlang Runtime System (ERTS) and discusses
the process behavior in more detail.

Erlang Runtime System (ERTS)

The Erlang Runtime System (ERTS) is the runtime system that contains all the neces-
sary functionality to run Erlang systems. It is not the same as the BEAM, which is the
virtual machine that executes the user code within the ERTS.
Processes Code is executed in processes, which themselves are blocks of memory
encapsulating the state and protecting the virtual machine from errors. The virtual
machine is optimized for highly concurrent and available systems. Computation
time is allocated fairly and dynamically over the currently executable processes.
Executable processes receive a time slice measured by a reduction count (number of
function calls) of 4000 before they are preempted.

The execution order of processes is defined with priorities. Processes are put into
run queues according to their priority when they are ready to execute (see Figure 2.5).
There are three run queues per scheduler: Max and high priorities have separate run
queues, while normal and low priority processes share a run queue. Processes are
taken from the run queue in a FIFO manner, except for low-priority processes, which
have to reach the top of the run queue eight times before they are executed. The max
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Figure 2.5: Erlang processes transition through the run queues to receive execution
time depending on their priorities.

run queue precedes all other run queues when processes are rescheduled, and is
reserved for system processes. The high priority is available to the user, although it
should be used carefully, because it may lead to blocking and process starvation.

A process is only interrupted if its reduction count is consumed; although it may
finish early. The reduction count is a variable that measures the computation work
that was performed. A high-priority process is only executed after the currently
running process has yielded—in the worst case after the consumption of the full
reduction count. Natively-implemented functions (NIFs), which are coded in C and
called from an Erlang process, are not preempted by default, and can thus lead to the
blocking of the scheduler.

Erlang may use more than one scheduler to allow multitasking. During startup,
one scheduler may be spawned for every available CPU thread, and the load is
distributed dynamically. Every scheduler has its own set of run queues and assigned
processes. There are two load distribution paradigms built into the ERTS: Load
balancing and load compaction. Load balancing balances the load evenly over all
available schedulers. Load compaction (default) fully utilizes the smallest number
of schedulers to allow hibernation of idle schedulers. Processes are transferred
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between schedulers based on task-stealing and task-migration: Idle schedulers steal
processes from busy schedulers, and periodically, all schedulers redistribute their
work according to a migration plan [97].
Garbage Collection The virtual machine performs garbage collection per process.
This permits high responsiveness of the system since there are no long periods of
garbage collection that block the entire virtual machine. Generally, Erlang produces
a lot of garbage due to its immutable variables that are frequently discarded. There
are full-sweep (major) and generational (minor) garbage collection runs [98]. In a full-
sweep run, both the old and new heap are garbage collected. In a generational run,
only the new heap is garbage collected. This follows the idea that an object that has
survived several garbage collection runs will most likely survive for much longer
before being discarded [97].

Open Telecom Platform (OTP)

The Open Telecom Platform (OTP) is a collection of applications and behaviors that
facilitate the implementation of common system architectures. The most important
concepts are:

Packaging All modules can be packaged into applications and releases that enable
the version management and deployment of the implemented software. This
also allows the management of dependencies between applications and facili-
tates the administration of distributed applications with dozens or hundreds of
nodes running in parallel.

Behaviors Common process behaviors are abstracted into reusable templates.
For instance, there is a behavior for the implementation of a server in a client-
server pattern. Consequently, only the relevant logic inside the server must be
implemented, whereas the available communication patterns for synchronous
and asynchronous messaging can be reused.

Supervisors Similarly, there are patterns for the creation of supervisor processes,
whose job is the management of other processes. These supervisors receive
messages when a child process terminates, and can immediately start a new
child. Similarly, they are used to start all child processes during startup. When
a non-recoverable error occurs, the supervisor can terminate itself and notify
the supervisor above it in the supervision tree. In this manner, a hierarchical
fault-tolerant supervision tree can be created, that can tolerate multiple layers
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of failures before the application fails. Still, an application failure does not crash
the virtual machine.

This ecosystem allows the implementation of highly reliable systems with multi-
ple layers of redundancy and fault tolerance. In addition, the actor model allows the
monitoring and debugging of individual processes that provide transparency as to
why a failure occurs.

Erlang Execution Model9

The internals of the virtual machine are sparsely documented and subject to changes
and optimizations. The most thorough resource is [97]. Parts of the scheduling were
already explained in the previous pages. This section focuses on the scheduling
semantics from the point of view of a process.

Suspended

Runnable

Waiting

Running

Free

Exiting

Garbage
Collecting

suspend resume

msg timeout

suspend

receive

suspendresume
exit

GC

Figure 2.6: State machine depicting the operation of an Erlang process [97]

Figure 2.6 shows the state machine of an Erlang process. The blue elements
represent the typical cycle during execution. Processes are waiting, become runnable
because of a message or a timeout, and are eventually scheduled. Messages are stored
in a mailbox inside the recipient’s heap, or, if the recipient is locked, in a separate
heap fragment.

The processes are scheduled based on run queues, which they enter once they
are runnable. The behavior of the run queues is described in the previous section.
Processes are taken from their run queues in a first-in-first-out order. The process may

9Major parts of this section were published in L. Prenzel and J. Provost. “FBBeam: An Erlang-based
IEC 61499 Implementation”. In: International Conference on Industrial Informatics. IEEE, 2019.
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run for 4000 reductions before it is preempted, and this count includes garbage col-
lection. Generational garbage collection per process is triggered when the combined
heap and stack size exceeds the current limit for this process. Either sufficient garbage
is cleared, or the limit is increased. Priorities affect the order in which processes are
taken from the run queues. A currently running process cannot be interrupted until
it has reached its reduction count or has yielded.

This type of execution is optimized for telecommunication devices. Processes
communicate asynchronously and receive a fair amount of execution time, which
leaves the system responsive even under high load. This behavior was observed
in [2], where the reaction time of an IEC 61499 FB in Erlang under high load was
analyzed. Depending on the computational effort of handling a message, a process
may consume multiple messages during one scheduling without context switches.

Formally, the execution of the ERTS follows a combination of round-robin,
priority, and first-come-first-serve scheduling. On the highest abstraction level,
priorities define the order of execution. These priorities may lead to the starvation
of lower-priority processes, which is commonly undesirable. Within each priority
queue, processes are scheduled in a first-come-first-serve manner. Only currently
runnable processes enter the queue, while blocked processes will only enter once
they are runnable. In this way, numerous processes can be executed “concurrently”,
e.g., there can be a million processes at a time of which only hundreds are runnable
at a given moment, and only one is executed at once. On the lowest level, processes
are preempted if they run for too long and deferred to the back of the run queue.
This prevents blocking and enables fair scheduling, where every process can receive
an equal amount of time to execute.

Hot-Code Reloading with OTP

The documentation for the hot-code reloading procedure can be found in the Erlang
System Architecture Support Libraries (SASL) Reference Manual [99]. Further examples
of how to use hot code reloading in practice are found in [96].

Generally, the procedure relies on the ability of the virtual machine to load
new code during runtime to replace existing modules. Then, processes running
a function in these modules are simply switched over to the function in the new
module. In more complex cases, two versions of the same module can coexist within
the same virtual machine, and processes switch over in specific states. Since the
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process state is explicitly stored in the function arguments, transitioning to a new
version is as simple as executing the new function with the old arguments. This basic
functionality is wrapped and extended into a sophisticated framework that facilitates
the implementation of adaptations. This also takes care of dependencies between
processes, modules, and applications and effectively supports the end user in the
implementation.

Appup and Relup

Apart from the elementary, manual upgrade of processes, Erlang permits the up- and
downgrade of applications and releases in a structured manner. For applications,
this process is termed Appup, and for releases Relup. Both processes rely on a textual
description of how the application/release can be upgraded or downgraded. The
syntax for an Appup is shown in Listing 4.

1 {Vsn,
2 [{UpFromVsn, Instructions}, ...],
3 [{DownToVsn, Instructions}, ...]}.

Listing 4: Erlang up- and downgrades are specified in Appup files as lists of instruc-
tions.

This single Erlang term contains the information on how the version Vsn can be
reached. There can be a list of instructions (Instructions) for every version from
which it can be reached by upgrade (UpFromVsn) and one list for every version it
can be left into by downgrade (DownToVsn). Thus, whenever a new application is
deployed, this application specifies how it can be reached (by upgrade) or left to a
previous version (by downgrade) explicitly. This facilitates the handling of multiple
parallel versions in large systems with dozens or hundreds of nodes.

The Instructions list is a list of high- or low-level instructions that describe
the up-or downgrade procedure. These instructions are presented in the following
paragraphs.

Low-level instructions in the up- or downgrade instructions inform the ERTS
how to perform the modification. They represent the underlying services needed to
change the application as desired.

{load_object_code, {App, Vsn, [Mod]}}

Read all modules Mod as a binary without loading the module. This should be
placed first to shorten the suspend-load-resume cycle.
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point_of_no_return

Indicate the point of no return, after which a recovery is no longer possible.

{load, {Mod, PrePurge, PostPurge}}

Load the module

{remove, {Mod, PrePurge, PostPurge}}

Mark the current module version as old.

{purge, [Mod]}

Remove all old modules and kill processes running old code.

{suspend, [Mod | {Mod, Timeout}]}

Suspend all processes running module Mod.

{resume, [Mod]}

Resume all processes running module Mod.

{code_change, [{Mod, Extra}]}

Send a code_change message to all processes running module Mod.

{stop, [Mod]}

Stop all processes using module Mod through their supervisor.

{start, [Mod]}

Start all stopped processes using module Mod through the supervisor.

{sync_nodes, Id, [Node]}

Synchronize with other nodes Node.

{apply, {M, F, A}}

Apply a function.

restart_new_emulator

Restart the emulator in case a system application is upgraded.

Commonly, when developing an Appup, high-level services are used that use
the low-level services underneath. For example, a synchronous code replacement
will suspend, update, and resume all processes running a specific module. Instead of
implementing the low-level services individually, a high-level service can be used.

{update, Mod, Options[...]}

Synchronized code replacement for a single module or supervisor Mod using
suspension. Suspends all processes running Mod.
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{load module, Mod, Options[...]}

Simple code replacement for a single module Mod.

{add_module, Mod, Options[...]}

Loading a module Mod for the first time.

{delete module, Mod, Options[...]}

Deleting a module Mod.

{add_application, Application, Options[...]}

Adding another application Application that the application depends on.

{remove_application, Application, Options[...]}

Removing another application Application that the application depends on.

{restart_application, Application, Options[...]}

Removing another application Application that the application depends on.

If during the up- or downgrade an error/exception occurs, it may be possible
to recover the operation. In Erlang, the point_of_no_return instruction indicates
the time after which recovery is no longer feasible. Typically, it is placed after the
load_object_code instructions, i.e., after the new code has been added, but no
functional change has occurred [99]

2.1.5

Conclusion
This section introduced Erlang and the surrounding ecosystem. The virtual machine
and its semantics were presented, and how dynamic adaptation can be performed
was outlined. From this point, the difference to, for instance, the IEC 61499 models
is already evident: Most effort in Erlang is spent on how to achieve reliability,
transparency, and fault-tolerance practically and efficiently. The use of the virtual
machine and supervision trees allows failures to be tolerated and means that there is
always a backup plan available. Whereas most industrial control software specifies
that there shall be no errors, Erlang accepts that bugs are inevitable and must be
tolerated to achieve maximum availability of the system.
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2.2

Synthetic Performance Evaluation10

As the previous section outlined, there are existing IEC 61499 RTEs, some of them
implemented in languages like C. In contrast, Erlang provides a virtual machine,
implemented in C, to be used in reliable and highly concurrent soft real-time appli-
cations. Thus, why not implement an IEC 61499 RTE in Erlang? The most obvious
reason is that Erlang only offers soft real-time performance and cannot guarantee the
hard real-time requirements. Further, it is not clear if an IEC 61499 implementation
can be achieved efficiently, and if the syntax and the semantics of the IEC 61499
models are compatible with Erlang.

An obvious solution is to try it out and implement the key component of the
IEC 61499 models, the basic function block, in Erlang. During this implementa-
tion, the syntax and semantic differences can be unveiled and finally, the real-time
performance of this implementation can be investigated.

The section analyzes the syntax and semantics of the IEC 61499 basic function
block and presents a prototypical implementation in Erlang. This implementation is
evaluated concerning its real-time performance in a synthetic benchmark to under-
stand the advantages and disadvantages.

2.2.1

Function Block Syntax and Semantics
The general execution semantics of the IEC 61499 standard were described in Sec-
tion 2.1.2. After introducing the fundamentals of Erlang, this section describes the
syntax and semantics of the IEC 61499 standard relevant for implementation in
Erlang.

IEC 61499 Basic Function Block Syntax

A basic function block is defined by its type and by the instance properties. The
type is defined separately from the instance definition, which can be found in the FB

10Major parts of this section were published in L. Prenzel and J. Provost. “Implementation and
Evaluation of IEC 61499 Basic Function Blocks in Erlang”. In: International Conference on Emerging
Technologies and Factory Automation. Torino, Italy: IEEE, 2018.
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network. The FB instance is defined by the following properties:

• The name of the type and an unambiguous instance name
• Connections to and from the event inputs and outputs to and from other FBs
• Connections to and from the data inputs and outputs to and from other FBs
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Figure 2.7: IEC 61499 Function Block Layout

The general contents of the basic function block type are visualized in Figure 2.7. The
characterizing elements are:

• An execution control chart (ECC), that controls the event-triggered execution
• A set of algorithms, triggered by the ECC
• A set of internal, input, and output variables, that hold the internal state of the

FB
• A set of with qualifiers that define when data inputs are sampled and when

data outputs are sent

The ECC specifies the relationship between input events, algorithms, and output
events in the form of a Moore-type finite state machine. At the occurrence of an input
event, the available transitions are evaluated. When a new state is entered, the corre-
sponding algorithms are executed and outgoing events are sent. The transitions may
have guards using the available variables. The algorithms have access to the variables
and can calculate new output and internal variables. The IEC 61499 standard does
not strictly specify the language for the algorithms. The most common choice is the
use of IEC 61131-3 languages, most importantly structured text. This imperative
programming language is well-suited for simple algorithms. In the scope of the
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IEC 61499 models, algorithms should be brief and terminate quickly. Long-running
algorithms block the execution of other FBs and conflict with the event-triggered
execution. The set of variables holds the input-, output-, and internal variables. On
the occurrence of an input event, input variables connected to this event by the
with-qualifier are updated. When output events are sent, the corresponding data
outputs are propagated to the connected function blocks. Internal variables are only
updated by the algorithms.

IEC 61499 Basic Function Block Semantics

Within the IEC 61499 application, the FB is embedded in a FB network. The execution
of the FB is decided by the network and whatever execution semantics the RTE is
using to schedule the transmission of events, as seen in Section 2.1.2.

Once the event has been scheduled to arrive at the FB, first, the with-qualifiers
have to be used to update the input data connected to the event. Then, the ECC can
be triggered, which decides about the execution of algorithms and the emission of
outputs. The algorithms may change output variables, even if they are not sent yet.
Thus, they also must be buffered. Only when the corresponding output event is sent,
is the data from the output buffer transmitted.

2.2.2

IEC 61499 Basic Function Block Implementation
An approach to automatically generate an Erlang system from an IEC 61499 appli-
cation is described in [1]. This approach served as a proof of concept for updating
an automatically generated IEC 61499 application, but not all features of the basic
function block were supported. This section focuses on the full implementation and
evaluation of a basic function block with data connections and functional algorithms.

Kruger and Basson [100] show an implementation of a resource holon in Er-
lang/OTP, although unrelated to the IEC 61499 standard, and conclude that Erlang
is well suited due to its modularity, scalability, customizability, maintainability, and
robustness characteristics.

Since Erlang is a functional programming language, the function block is im-
plemented as a set of functions. To simplify this, the OTP behavior gen_statem for
finite state machines is used. The implementation makes use of records (a key-value
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construct) and is fully specified with type hints, allowing the use of the dialyzer
to check the type safety [101]. Displaying the full implementation would be out
of the scope of this section, but several code snippets are shown to illustrate the
implementation.

There are two types of functions to be implemented: Generic functions that are
the same for all possible basic function blocks (such as handle_event), and functions
that are specific to a certain FB type. To initialize the instance of a FB type, a set of
variables is passed to it during startup.

Generic Functions

The gen_statem behavior expects generic functions for initialization, startup, termi-
nation, update, and message handling. Termination and update functions can be
used for possible fault tolerance mechanisms or dynamic software updating.

1 % Handling data messages to be stored in the buffer.
2 handle_event(cast, #msg{type=data, name=Name, value=Value},
3 State, {ID, CON}) ->
4 NewID = upd_buf(Name, Value, ID),
5 {next_state, State, {NewID, CON}};
6 % Handling events that trigger the ECC.
7 handle_event(cast, #msg{type=event, name=Event},
8 State, {ID, CON}) ->
9 NewIM = sample_inputs(Event, ID#id.buf, ID#id.im),

10 UpdID = makeID(ID#id.name, ID#id.buf, NewIM,
11 ID#id.iv, ID#id.om),
12 {NewState, NewID} = ecc(Event, State, UpdID, CON),
13 erlang:garbage_collect(), %OPTIONAL
14 {next_state, NewState, {NewID, CON}}.

Listing 5: The FB process can receive two types of messages: Data and events.

The functions for handling messages are depicted in Listing 5. Mainly, two types
of messages are expected: Data messages and event messages. Data messages will
update the FB internal buffer. Event messages trigger the sampling of inputs and the
ECC.

The ECC function is shown in Listing 6. This recursive function triggers the
internal state machine and reacts according to whether or not a transition was taken.
If a transition is taken, algorithms are executed, data and events are sent, and the
ECC is triggered again. If no transition is performed, the recursive call ends and
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1 ecc(Event, State, ID, CON) ->
2 case statemachine(Event, State, ID) of
3 % No transition was taken.
4 no_transition -> {State, ID};
5 % A transition was taken, but the event was not used.
6 {no_event, NewState} ->
7 {NewIV, NewOM} = alg(NewState, ID),
8 send_do(NewState, NewOM, CON#con.do),
9 send_eo(NewState, CON#con.eo),

10 NewID = makeID(ID#id.name, ID#id.buf, ID#id.im,
11 NewIV, NewOM),
12 ecc(Event, NewState, NewID, CON);
13 % A transition was taken and the event was used.
14 {event, NewState} ->
15 {NewIV, NewOM} = alg(NewState, ID),
16 send_do(NewState, NewOM, CON#con.do),
17 send_eo(NewState, CON#con.eo),
18 NewID = makeID(ID#id.name, ID#id.buf, ID#id.im,
19 NewIV, NewOM),
20 ecc(no_event, NewState, NewID, CON)
21 end.

Listing 6: This Erlang implementation of an ECC calls itself recursively until no more
transition can be taken.

returns the internal FB state.
Figure 2.8 displays the structure of the handle_event function that is called

whenever a new message is picked from the mailbox. Depending on the type of
message, different sequences are followed. For data messages, the buffer is updated,
and the function returns. For event messages, the ECC is called after the inputs are
sampled. The ECC itself first calls the state machine to find executable transitions.
If no transition can be triggered, the ECC returns. If a new state is entered, the
corresponding action for this state is performed, i.e., algorithms are executed and
data and events are distributed to other function blocks. Finally, the ECC is called
again to find available transitions without events. This recursive call will run until
no transition can be fired anymore. Consequently, by design, the ECC should not
contain live locks and must terminate eventually.
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Figure 2.8: IEC 61499 Function Block Timing

Function Block Specific Functions

While the handle_event and ecc functions are the same for every basic function
block type, the functions to sample the inputs, update the buffers, call the state
machine, execute the algorithms, distribute the data, and send the events are specific
to the FB type. That means they have to be generated from the FB type definition.
Their implementation in Erlang is straightforward, as can be seen in the examples
provided in Listing 7.

1 % Statemachine function that decides whether a transition was
2 % executed, and if the transition used the event.
3 statemachine('REQ', 'START', _ID) -> {event, 'State'};
4 statemachine(_, 'State', _ID) -> {no_event, 'START'};
5 statemachine(_Event, _State, _ID) -> no_transition.
6

7 % Algorithm function that executes the algorithms in a given
8 % state.
9 alg('State', #id{im=IM, iv=IV0, om=OM0}) ->

10 {IV1, OM1}=alg_ALG(IM, IV0, OM0),
11 {IV1, OM1};
12 alg(_State, #id{im=_,iv=IV, om=OM}) -> {IV, OM}.

Listing 7: Statemachine and algorithm implementation in Erlang
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Every transition is defined by the event, the current state, and a guard on the
internal data. This statemachine function then returns the corresponding state or
no_transition. The last clause is the catch-all clause if no transition can be taken
in the ECC. The alg function executes the algorithms in a particular state. Every
algorithm must be defined in a separate function, e.g. alg_ALG(IM, IV0, OM0).
The algorithm returns the updated internal variables IV and output variables OM.

Initialization

1 instance_args('InstanceName') ->
2 InstName = 'InstanceName',
3 InitV = #initV{'QI'=0, 'QO'=0},
4 EO = #eo{'CNF' = #conx{evN='REQ', tarN='TargetFB'}},
5 DO = #do{'QO' = #conx{evN='QI', tarN='TArgetFB'}},
6 CON = #con{eo=EO, do=DO},
7 InitD = #initD{initV=InitV, con=CON},
8 {InstName, InitD}.

Listing 8: Function that initializes the internal state of the FB instance.

The Erlang process is part of a supervision tree and is started by the responsible
supervisor. The supervisor spawns the process from the Erlang module defining the
function block type with an additional set of arguments. Those arguments are used to
initialize the process and later, the function block. The first argument is the instance
name, which is used to register the process. This is more efficient than using process
identifiers, as the function block instance, by design, must have an unambiguous
name. In addition, there is a set of initialization values and a connection table. The
initialization values describe constant inputs of the function block and the connection
table describes for every outgoing event and data connection the name of the receiver
and what name is expected.

Language of the algorithm

The IEC 61499 standard does not strictly define the language of the algorithm. For
an implementation in Erlang, multiple options are available. The most forward
approach, and the one used for the evaluation in this work, is to implement the
algorithm directly in Erlang.
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The most convenient approach would be to convert the algorithms to C code and
call them as natively implemented functions in Erlang. The performance is generally
even better than Erlang code, but long algorithms may lead to blocking, as they
cannot be interrupted by the scheduler.

The third approach is the automatic conversion from one language (IEC 61131-3,
C, Ladder Logic, . . . ) to a language more compatible with Erlang, i.e., Erlang itself or
Elixir. This is currently being investigated.

2.2.3

Performance Evaluation
The previous section described the implementation of the IEC 61499 basic function
block in Erlang. As initially stated, this section aims to evaluate the real-time perfor-
mance of the Erlang implementation of the IEC 61499 basic function block. Since the
worst-case execution time in Erlang is unbounded due to its non-deterministic nature,
only an empirical analysis of the distribution of the reaction time can be produced.

Methodology

Real-time performance is a topic intensively studied in literature. Wilhelm et al. [102]
creates an important overview of how to estimate the worst case execution time
(WCET) of a system. More related to the IEC 61499 standard, Zoitl [50] presents a
model for the real-time execution of this standard.

The result of interest in this chapter is the reaction time of a function block and
what parameters it depends on. In combination with a control flow analysis, this
result may be used to determine the reaction time of a function block event chain,
similar to the description by Zoitl [50], although empirical. To measure the reaction
time, a basic function block is implemented as seen in the previous section, and
equipped with time-measuring capabilities. In this case, the function block will
return a set of timestamps to the requesting process. The full evaluation setup is
described in the next section.

In total, eight values are collected per measurement. Those are a counter, the
current system time, the monotonic process reduction count, and five durations of
the function block execution:

1. T1: Event send time to the FB
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2. T2: Data sampling time
3. T3: Execution control chart execution time
4. T4: Garbage collection time
5. T5: Event send time from the FB

T1 is the time it takes to send a message from a high-priority process to a normal-
priority process. T2 is the time to update the input memory from the buffer according
to the event. T3 is the time to execute the ECC. T4 is the time to perform the garbage
collection. T5 is the corresponding counterpart to T1, i.e., sending a message from a
normal priority process to a high priority process.

Evaluation Setup

To make realistic measurements, the function block has to be embedded in an en-
vironment, as depicted in Figure 2.9a. There is a high priority process in charge of
orchestrating the tests (Data Logging & Execution). It starts the load, requests the
function block execution, and stores the data. The outputs from the function block
are sent to a process serving as a trash can. Additionally, there is an application to
apply additional load to the ERTS. This application allows the spawning of processes
that repeatedly perform an expensive computation, thus filling the run queue.

Load Process Load ProcessLoad Process

Load Supervisor

Load Application

Load Process Load ProcessLoad Process

Load Supervisor

Load Application

Data Logging

& Execution

Trash Can
pid_instance

fb_pid

ei_REQ

ei_INIT

ei_CLEAR

eo_RDY

eo_CNFINIT

eo_CNFCLEAR

di_DeltaT

di_CurrError do_ControlAction
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fb_pid

ei_REQ

ei_INIT

ei_CLEAR

eo_RDY

eo_CNFINIT

eo_CNFCLEAR

di_DeltaT

di_CurrError do_ControlAction

(a) IEC 61499 Function Block Timing
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ei_CLEAR
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CNF_INITinit_PID

CNF_CLEARclear_PID

RDYupdate_PID

(b) IEC 61499 PID ECC

Figure 2.9: Experimental Setup

The implemented function block, implemented as a normal-priority process,
acts as a PID controller, calculating an algorithm when requested and distributing
its results to other processes. Its interface is shown in Figure 2.9a and the ECC is
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depicted in Figure 2.9b. The dashed connection from the top of the function block
interface stands for the additional time-measuring output.

To achieve realistic and consistent execution, the function block is triggered
every 25 ms. This value was chosen as a compromise between the highest possible
resolution (frequent measurement), economical generation of data, and avoidance of
feedback from the measurement. This execution is achieved by measuring the total
execution time and waiting for the remaining time. In case the execution takes longer
than 25 ms the next cycle is started immediately after the previous cycle.

The additional load fills the run queue of the scheduler, thus causing the function
block process to compete with other, normal priority processes. The load processes
are always executed for the full amount of reductions, in this case 4000, before they
are interrupted.

Tests

In a realistic setup, the function block would be part of a larger network. This
concurrent execution causes the run queue of the scheduler to fill with processes. In
normal systems, this additional load for an event-based system depends on the input
events and their frequency and is highly fluctuating.

In this benchmark, to achieve the most deterministic result, the load processes
are executed for the full amount of reductions and are continuously requested. Five
test cases are executed with varying numbers of concurrent processes, starting with
two and moving up to 32 in discrete steps. Lower numbers of processes show large
fluctuations, whereas more processes would exceed the cycle time. This number
resembles the number of processes waiting in the run queue before the function
block.

The test platform for this test is a Raspberry Pi 3 Model B with Raspbian Jessie
and Erlang 20. The only modification of the Raspberry Pi is to manually disable CPU
throttling. Only one scheduler is spawned to prevent work stealing between the
schedulers. The ERTS is started with a nice value of -20 to prevent interruptions as
much as possible.

Each test is performed for 7,200,000 executions, which is equivalent to 50 hours,
or 250 hours in total, for all 5 test cases.
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2.2.4

Results
The performance evaluation yielded 2 main results:

• Table 2.4 comparing the maxima, minima, mean values, and standard deviations
of the individual test cases for every measured variable.

• A scatter plot (Figure 2.10), visualizing the temporal distribution of the total
time data. The tests were performed consecutively, but they are overlaid in the
scatter plot to allow an easier comparison.

Figure 2.10: Temporal distribution of reaction time depending on number of concur-
rent processes.

Table 2.4 shows the relevance of the contributing durations. The Send Time 1,
which represents the time it takes for the process to receive a time slice, is dominating
in all test cases. Second is the Execution Control Chart Time. The manually enforced
garbage collection takes a considerable chunk of the execution time of the function
block. The sampling of the buffer values is nearly negligible. The Send Time 2
can serve as a reference value for the reactivity of the scheduler, as in this case,
the recipient of the message runs with a higher priority and will be scheduled
immediately.

The scatter plot (Figure 2.10) reveals periodic interruptions every hour and once
every 24 hours (around 6:25 AM). For 32 processes, a faint sinusoidal shape of the
disturbances can be perceived. The more remarkable outliers for 2 and 4 additional
processes all resemble the distribution of the next higher test case.
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# Proc. Max [ms] Min [ms] Mean [ms] StdDev

To
ta

lT
im

e 2 2.9252 1.1452 1.1653 0.0131
4 4.6620 2.2497 2.2844 0.0181
8 6.3932 4.4769 4.5339 0.0195

16 11.0155 8.9183 9.0264 0.0225
32 21.3346 17.8875 18.0100 0.0340

S
en

d
Ti

m
e

1 2 2.8468 1.1171 1.1358 0.0116
4 4.6028 2.2222 2.2554 0.0168
8 6.3147 4.4491 4.5045 0.0181

16 10.9293 8.8894 8.9968 0.0209
32 21.2492 17.8592 17.9803 0.0323

S
am

pl
e

Ti
m

e 2 0.0762 0.0011 0.0013 0.0001
4 0.0766 0.0011 0.0013 0.0002
8 0.1092 0.0011 0.0013 0.0002

16 0.0071 0.0011 0.0013 0.0001
32 0.0065 0.0011 0.0013 0.0001

E
C

C
Ti

m
e 2 0.1241 0.0182 0.0206 0.0032

4 0.1940 0.0180 0.0204 0.0033
8 0.2212 0.0182 0.0206 0.0035

16 0.1111 0.0183 0.0208 0.0037
32 0.1072 0.0185 0.0209 0.0040

G
C

Ti
m

e

2 0.1031 0.0067 0.0076 0.0006
4 0.1081 0.0065 0.0074 0.0008
8 0.1269 0.0065 0.0074 0.0008

16 0.0192 0.0066 0.0075 0.0006
32 0.0590 0.0066 0.0075 0.0006

S
en

d
Ti

m
e

2 2 0.1204 0.0127 0.0180 0.0049
4 1.2427 0.0127 0.0182 0.0050
8 0.1294 0.0127 0.0164 0.0037

16 0.1048 0.0128 0.0183 0.0037
32 0.1927 0.0128 0.0186 0.0054

Table 2.4: Tabular performance analysis results

In addition, the process consistently required 91 reductions for the execution in
every cycle. This includes the algorithm itself and all overhead introduced by the
function block implementation.

Discussion

The results present the performance of an asynchronous, parallel function block
implementation on a simple, commonly available hardware platform with a fair
round-robin scheduler.

It is important to note the limitations of the evaluation. Only one scheduler was
used, thus the Raspberry Pi platform was only able to use one core for Erlang. This
also implies that the operating system can run other tasks in parallel on other cores. If
four schedulers were spawned, parts of the performance would potentially improve
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by 300 %, although more interruptions by the OS could be expected. The current
operating system is not optimized for real-time performance.

The Send Time 1 and consequently the Total Time scale linearly with the number
of additional processes in the queue. This is very distinct for the mean and minimum.
For two and four extra processes, the maximum is distorted due to the outliers visible
in the scatter plot. This result follows the characteristics of the scheduler. A longer
run queue causes a longer wait time to be executed. Send Time 2 is independent of the
number of additional processes because the high-priority process will get executed
immediately. Intuitively, setting many processes to a higher priority will diminish the
advantage. Both the garbage collection and ECC show notable outliers worth further
investigation. The cyclic interruptions visible in the scatter plot are most likely due
to the operating system.

The results allow two separate interpretations of the maximum number of pro-
cesses executable within the 25 ms deadline. The current framework uses 32 con-
current processes as a maximum load. In a worst-case scenario, where 32 processes
are busy blocking the scheduler, a real-time task may still be executed within 25 ms.
This corresponds to the fairness property of the scheduler, as long-running processes
will eventually be preempted. On the other hand, the current FB implementation
required under 100 reductions for an ECC execution. Thus, preemption is rather
unlikely during the execution of a single FB. In a realistic setup, where each FB
process will use much less than 4000 reductions, a much larger number of processes
can fit inside the 25 ms window. Assuming 500 reductions per function block and
4 schedulers, 1024 individual function blocks may be executed while consistently
keeping the 25 ms deadline.

Conclusion

The aim of this section was the demonstration of an asynchronous, multitasking
IEC 61499 Basic Function Block implementation in Erlang and its real-time perfor-
mance evaluation. Erlang and the IEC 61499 models share many similarities since
they are both intended for distributed, concurrent, and event-triggered applications.
This simplifies the implementation of the IEC 61499 models.

Using Erlang as an implementation language comes with many benefits, e.g., the
native support for distribution, concurrency, and event-based execution, as well as
the functional paradigm which is well-suited for safety and traceability. Erlang also
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allows dynamic software updating, i.e., updating running applications, which will
be investigated in further projects.

On the other hand, Erlang’s concurrency introduces overhead into the system,
and it cannot guarantee hard real-time constraints due to the fair scheduler and non-
deterministic garbage collection. Erlang’s flexibility and scalability are not necessarily
beneficial to an IEC 61499 implementation.

This section presented a feasible IEC 61499 basic function block implementation
in Erlang. On a simple single-board computer with a soft real-time operating system,
the real-time performance was consistent. Minor cyclic interruptions, most likely
due to the operating system, were observed. The garbage collection was triggered
manually to prevent unanticipated delays. The implementation of the function
block is slim enough to not be interrupted by the scheduler, although this means the
scheduler of the ERTS behaves more like a cooperative round-robin scheduler. The
reaction time of the FB thus depends largely on the number of concurrent processes
in the run queue. The upper bound, when every process uses as many reductions
as possible until it is interrupted, was shown in this section. In this scenario, 32
additional load processes could be executed while still keeping a 25 ms deadline.

2.3

IEC 61499 Runtime Environment using Erlang11

The previous section analyzed a basic function block implementation in Erlang,
which was shown to be generally possible and feasible. However, individual FBs do
not allow a further analysis of the execution semantics and how well the techniques
and concepts of Erlang can be mapped to the IEC 61499 models.

This section describes the IEC 61499 implementation of FBBeam. The solution
builds on the experiences gained from the prototypical implementation in the previ-
ous section. FBBeam allows the automatic code generation from an IEC 61499 model,
defined by the XML exchange format, into Erlang source code that may be executed
directly within the Erlang Runtime System. Further, it leverages the prominent
features of Erlang for use in industrial control systems, i.e., design for fault-tolerance
and reliability as well as the ability to dynamically adapt.

11Major parts of this section were published in L. Prenzel and J. Provost. “FBBeam: An Erlang-based
IEC 61499 Implementation”. In: International Conference on Industrial Informatics. IEEE, 2019.
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2.3.1

FBBeam Execution Semantics
As seen in Section 2.1.2, the IEC 61499 models can be implemented in different ways.
In FBBeam, the implementation from Section 2.2 is extended. FBs are implemented
as dedicated processes and messages are sent autonomously and directly to the
recipient process. Process scheduling is handled by the Erlang virtual machine. As a
result, no additional event handlers are necessary and processes behave the same,
independently of how they may be distributed. All processes share the same priority,
thus executable FBs get their fair share of execution time in a FIFO order. As shown
in Section 2.2, a usual execution cycle of a FB consumes much less than the available
4000 reductions. If multiple messages, i.e., new data or events, are in the mailbox, the
FB will consume all of them until it could be preempted, yet this is unlikely given
that FBs are usually short-running.

The implementation of FBBeam corresponds to a multitasking implementation
with time slices without a fixed FB scan order. Regarding the semantics defined
by Vyatkin [69], the implementation follows an asynchronous, parallel execution.
Wherever further choices about the execution semantics were necessary, the choice
facilitating an implementation in Erlang was made.

In addition to the FB processes, additional processes are needed as supervisors.
These supervisors start and monitor a set of processes, and restart them if they
terminate unexpectedly. As long as no crashes occur, these supervisors do not add
additional load and do not influence the execution behavior.

2.3.2

Compilation
The code generation is performed in three steps. The compiler, generating the Erlang
source code from the IEC 61499 XML documents, is implemented in Python 3.

1. The IEC 61499 XML exchange format files are read, and parsed, and an internal
model of the IEC 61499 system is created. Python objects collect all information
regarding FB instances, connections, subapplications, and applications.

2. The internal IEC 61499 model is transformed into an internal representation of
the Erlang source code. FB instance information is gathered in the correspond-
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ing type modules, and the information necessary to generate supervisors is
extracted from the application and subapplications.

3. Finally, the internal representation is inserted into templates for the Erlang
source code modules. For Service Interface FBs, the source code is taken from a
prepared library, and the functions defining the instances are appended.

The general code generation follows the scheme from Section 2.2. The main
extension is the integration of FB networks as applications and subapplications
and the implementation of service interface FBs in a library. These two aspects are
discussed in the following sections.

Service Interface FB

IEC 61499 systems consist of either library FBs or custom-built FBs. Wherever
possible, reuse if recommended. Most functionality can be built using the basic FB,
the simple FB, or by combining multiple FBs into a subapplication or composite FB.
There are two reasons to take another route: Either, the functionality requires access
to functions that are not available in the IEC 61499 standard, or an implementation in
the previously mentioned ways would be inefficient. In this case, a service interface
FB can be implemented instead. These FBs provide an interface to an underlying
service, e.g. written in C. Thus, these service interface FBs must be supplied by the
RTE and cannot be generated from the XML files directly.

In FBBeam, the service interface FBs must be supplied separately as an Erlang
implementation. Generally, arbitrary Erlang implementations are possible. For
example, the Modbus interface consists of two separate Erlang processes: One process
to provide the interface, and a server to handle the TCP connection. In this manner,
multiple service interface FBs could connect to the same server without requiring a
second TCP socket. Further, if the connection is broken, the interface survives and
can reopen the connection. This provides fault tolerance to the implementation.

Supervision Trees

In Erlang, processes must be part of a supervision tree to be part of an application.
There can be multiple layers of supervisors that connect to the top-level application
supervisor. A supervisor specification is depicted in Listing 9.

In this specification, a single child is specified to be started during the startup of
the supervisor. The strategy one_for_one specifies that when a child fails, only this
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1 -module(SupervisorName).
2 -behaviour(supervisor).
3

4 -export([start_link/0]).
5 -export([init/1]).
6

7 start_link() ->
8 supervisor:start_link({local, ?MODULE}, ?MODULE, []).
9

10 init(_Args) ->
11 SupFlags = #{strategy => one_for_one, intensity => 1,
12 period => 5},
13 ChildSpecs = [
14 #{id => 'InstName',
15 start => {'TypeName', start_link,
16 ['TypeName':instance_args('InstName')]},
17 restart => permanent,
18 shutdown => 5000,
19 type => worker,
20 modules => ['TypeName']}
21 ],
22 {ok, {SupFlags, ChildSpecs}}.

Listing 9: Supervisor implementation in Erlang with a single child specification.

child is restarted. The intensity and period define how often a process may fail
during the period. The given values indicate that if a process terminates twice within
five seconds, the supervisor itself terminates.

2.3.3

Current Limitations
The current implementation of FBBeam is for research purposes that focus on dy-
namic reconfiguration and real-time performance. The main intention is to introduce
new ideas, concepts, and techniques into a domain that while being interested in
concepts of reliability and adaptability, has not shown too much innovation in this
direction.

Thus, the features that are implemented either share a common foundation, such
as the FB model which conveniently overlaps with the actor model of Erlang, or are
native to Erlang but appealing to the industrial control domain, such as dynamic
adaptation. Specifically, of the IEC 61499 models, currently, only the System, the
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Application, and some of the FB models are used. From the FB models, the Basic FB,
the Subapplication, and the Service Interface FB are supported. A library of Service
Interface FBs is being extended continuously and currently contains an interface for
Modbus TCP. Adapters are not supported yet and the IEC 61499 distribution models
are currently not used, mainly because they are largely incompatible with the distri-
bution features of Erlang. The concept of distribution and internode communication
is natively available for Erlang, but those features must be mapped to the IEC 61499
distribution models.

Within Basic FBs, the translation of algorithms is an open field for research. A
converter from IEC 61131-3 ST code to Erlang has previously been developed but
is not yet integrated, since the conversion suffers from the conceptual differences
between ST and Erlang. Alternatively, ST code could be compiled into C code, which
can be executed inside the Erlang Runtime System, although this circumvents all
safeguards that make Erlang fault-tolerant. Currently, algorithms may be defined
in Erlang itself. Since FBBeam is mainly intended for research, this is not a critical
issue.

2.3.4

Evaluation & Case Study12

To demonstrate the multitasking capability of the Erlang Runtime System, a case
study of a physical simulation is implemented. Figure 2.11 displays the application
model of the simulation. A PID controller is connected to a FB network simulat-
ing a physical process with a random disturbance. This simulation is executed
continuously and the number of executions reached over 60 seconds is counted.

The application is modified to run up to 32 concurrent simulations with 32 PID
FBs in parallel, and the simulation is run with between 1 and 4 Erlang schedulers.
This experiment is repeated for 120 runs and the results are displayed in Figure 2.12.
In total, the simulation was run for over 256 hours.

The case study indicates, that without any further optimizations, Erlang can
distribute the workload efficiently and automatically over multiple CPU cores. With
four schedulers, the application has to compete with the operating system for re-
sources, thus the performance can only exhibit linear behavior up to 3 schedulers.

12Major parts of this section were published in L. Prenzel and J. Provost. “FBBeam: An Erlang-based
IEC 61499 Implementation”. In: International Conference on Industrial Informatics. IEEE, 2019.
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Figure 2.11: IEC 61499 Application model of a tank simulation case study. The
simulation is executed continuously for 60 seconds, after which the total number of
executions is displayed.

Full utilization of the additional schedulers requires a larger number of concurrent
simulations.

Discussion

Reusing proven technology for the implementation of the IEC 61499 standard has
multiple advantages. The Erlang Runtime System can support a large number of
concurrent processes. It is not limited to the number of operating system threads and
allows fast context switches. As illustrated by the case study, Erlang can run large
numbers of FBs concurrently, and can efficiently employ the available CPU cores.
The load is distributed dynamically and processes receive equal opportunities to
handle their messages/events. When more than one scheduler is used, performance
may scale almost linearly.

If real-time constraints or event rates were available, it could be possible to find a
better scheduling mechanism, such as earliest deadline first or rate monotonic scheduling.
Erlang is intended for dynamic soft real-time systems, not for static or cyclic hard real-
time applications. Since static, cyclic hard real-time implementations of the IEC 61499
standard already exist [79], FBBeam shows how a dynamic, event-triggered, and
scalable multitasking IEC 61499 implementation may look like.

In addition, an IEC 61499 implementation in Erlang allows the reuse of a proven
and growing ecosystem. Recently, [103] demonstrated that there is a need to move
the IEC 61499 ecosystem forward in terms of fault tolerance. FBBeam opens oppor-
tunities for investigations into how existing frameworks of Erlang may be adapted
for the IEC 61499 models, for example:

• Unit & system testing
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Figure 2.12: Event chain executions for 1–4 scheduler and 1–32 concurrent event
chains for 60 seconds. Error bars indicate minimum and maximum values in 120
runs, the continuous line connects the average values.

• Distribution, deployment, and monitoring
• Dynamic reconfiguration
• Function Block error handling and fault-recovery

Dynamic Reconfiguration Support

As part of the implementation of FBBeam, Erlang’s dynamic reconfiguration features
were used to reconfigure IEC 61499 applications. Since the hot code loading process of
Erlang differs significantly from the IEC 61499 dynamic reconfiguration models, a
direct mapping from one to the other was not possible.

The implementation did, however, show how convenient and simple the adap-
tation process in Erlang is. Although the documentation is not extensive, there are
enough resources on how to adapt Erlang systems. Generally, the usage of separate
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up- and downgrade specifications facilitated the implementation. The process is
clear: Identify the differences between applications and their dependencies, suspend
the execution, transform the state using manually written transformation functions,
and resume the execution. By contrast, the IEC 61499 standard offers the services
and the possibility to create arbitrary applications with them, yet the task feels more
daunting and there is generally less support. Additionally, the availability of great
live debugging features, extensive unit testing support, and a general tendency to
think about failures and fault tolerance in Erlang provide more confidence in the
procedure. Erlang forces you to think about the “what if a process fails”, whereas the
IEC 61499 standard still lacks support for exceptions.

Conclusion

Despite the architectural advantages of the IEC 61499 standard as a modeling lan-
guage for distributed control systems, industry acceptance is still lacking. Erlang, on
the other hand, is a technology initiated and developed by the industry itself, which
is improved continuously. This section outlined an IEC 61499 implementation in
Erlang to pinpoint opportunities and limitations.

Erlang favors an asynchronous execution because of its process architecture,
although an event-chain implementation, such as introduced by Zoitl [50], may be
feasible and advantageous in the future, especially concerning real-time constraints.
In the current implementation, all scheduling and load distribution is organized by
the Erlang Runtime System.

In the author’s opinion, the IEC 61499 ecosystem can benefit from many diverse
implementations that may suit different purposes. If interoperability were guaran-
teed, an Erlang implementation may offer convenient scalability, availability, and
multitasking in applications where soft real-time suffices. While the real-time perfor-
mance may not be sufficient for safety-critical industrial automation applications, this
aspect could be improved in the future by introducing new scheduling paradigms to
Erlang.
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2.4

Key Findings

Current standards, such as the IEC 61131-3 or the IEC 61499 standards offer only
primitive support for adaptation, which significantly inhibits agility as a precursor
for self-adaptation. A reconfigurable RTE for industrial control software can offer the
adaptable foundation onto which an agile architecture can be built.

This chapter investigated the role of current standards in improving the agility
of ICS. Therefore, first, the state of the art in reconfigurable real-time software, in
particular concerning industrial control (IEC 61499) and telecommunication (Erlang),
was summarized. In detail, current IEC 61499 implementations were analyzed and
compared. Further, the soft real-time RTE of Erlang was evaluated for an IEC 61499
implementation using a synthetic benchmark. Lastly, a full-fledged compiler from
the IEC 61499 exchange format to Erlang was implemented that allows adaptation at
runtime using the high-level paradigms of Erlang, and an evaluation regarding the
scalability of the implementation was performed.

2.4.1

Reuse of existing technology
In modern software engineering, the reuse and re-purposing of existing technologies
and frameworks is essential. Python’s success hinges on its vast ecosystem of easily
integrable packages developed by a large community. This drives innovation and
stimulates new ideas that emerge at the intersection of other works.

The IEC 61499 standard, as a domain-specific language, offers a promising
architecture and fresh ideas for the automation industry, however, it is rarely used
compared to the IEC 61131 standard. This may be partly due to many of its features
only existing in research implementations or prototypes, e.g. dynamic reconfiguration.
Furthermore, a lack of adoption leads to a lack of stimulation for new ideas and
developments, broadening the gap to the predominant IEC 61131 standard.

Erlang, as a programming language, has been in use and development over
the last thirty years. The ecosystem can be confidently described as mature, and
the runtime system serves as the infrastructure for other languages (i.e., Elixir) as
well. Thus, the idea of reusing the RTE for an IEC 61499 implementation is not
far off. Reusing and building upon this technology has obvious advantages, most
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importantly:

• Maturity of the ecosystem
• Frequent and continuous upgrades and improvements
• Large and growing user base
• Detailed documentation
• Available commercial support
• Support for hot-code-loading

Building an IEC 61499 RTE on top of an existing RTE allows leveraging these ad-
vantages. The resulting RTE is straightforward to implement and benefits from the
capabilities of Erlang.

The main disadvantage of using Erlang under the hoods of an IEC 61499 RTE
is the lack of hard real-time semantics. As was seen in Section 2.2, the performance
is fast, yet not deterministic. On the one hand, this facilitated the implementation,
and the soft real-time semantics of Erlang are already sophisticated compared to the
IEC 61499 standard. On the other hand, the IEC 61499 models should be executed
in hard real-time, even though the standard does not describe how. This led to a bit
of a conundrum because there also would not have been a straightforward way of
making a hard real-time RTE given that the required metrics (deadlines, cycle times,
priorities) do not exist within the IEC 61499 standard.

Nevertheless, the implementation served as an evaluation framework for dy-
namic adaptation and the feasible execution semantics of the IEC 61499 models.
Furthermore, dynamic adaptation is just one area in which inspiration from other
frameworks can be favorable. Other topics include automated deployment, real-time
scheduling, testing, or monitoring, which were not touched upon in this dissertation.

Reusing existing technologies can stimulate new ideas and capabilities that, in
the long term, may lead to improvements in the IEC 61499 standard or other domain-
specific modeling languages. It also allows the comparison of the IEC 61499 models
to the state of practice in other domains, which helps to identify shortcomings and
potentials.
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2.4.2

Guarantees and Execution Order
PLCs should execute and behave deterministically, both from a hardware and soft-
ware perspective. The programming languages commonly used to program PLCs
are simpler and cater to the needs of the automation engineer. The IEC 61499 stan-
dard extends these languages with models that allow the consideration of the full,
distributed system during development before making decisions about the deploy-
ment. This advantage comes with the responsibility that engineers expect the same
determinism from these distributed models as they expect from a traditional PLC.
However, guaranteeing predictable behavior in a distributed system is much harder.

The discussions about the IEC 61499 execution semantics focus on the ambiguity
within a single RTE [71]. This ambiguity remains within the standard and has not
been resolved. Precise execution semantics between distributed runtimes are even
harder to guarantee and there is little work done in this area. Furthermore, splitting
the connections into data and event connections complicates the implementation and
semantics even more.

This issue became evident when facing the IEC 61499 implementation in Erlang
in this chapter. One goal of the implementation was to achieve functionally determin-
istic behavior, and Erlang provides some guarantees for achieving this determinism.
For example, the message ordering between two participants on the same node/de-
vice is guaranteed by Erlang [104, 105]. The arrival of a message in a distributed
setting, however, cannot be guaranteed. If the participant is not available at the
time or the entire node crashes, the message will not be delivered. Having explicit
guarantees or an explicit lack of guarantees promotes transparency towards the
developer. In the case of Erlang, this means that if guaranteed delivery is expected,
you need to implement a handshake that ensures that the message has been sent
and received successfully. This kind of handshake may in return prevent predictable
message ordering, yet this can also be overcome by a robust architecture.

The IEC 61499 standard, on the other hand, gives very few behavior guaran-
tees and lacks the ability for expressive error handling [55, 106]. Implementing
handshakes or sophisticated, robust failure handling mechanisms within an ECC
is cumbersome and inefficient, and usually leads to an explosion of states and tran-
sitions. Thus, the application developer must rely on hazy guarantees, which can
and may hold for a single node, yet are impossible to guarantee in a distributed
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setting. There are two paths out of this predicament: Solve the issue in the RTE by
sacrificing speed and efficiency for robustness and determinism, or communicate the
issue transparently and improve the developer’s ability to implement the required
protocols efficiently, e.g. by introducing exception handling within FBs. Either way,
transparency is critical to facilitate development and interoperability.

2.4.3

Real-time Capabilities
ICS require predictable real-time behavior to guarantee the safety of the physical pro-
cess. Research has provided real-time models for an IEC 61499 implementation [50].
These models are, however, not commonly applied. Erlang, on the other hand, only
offers soft real-time, which cannot guarantee that deadlines will not be missed.

In this chapter, the real-time performance of Erlang was investigated, and the
system was able to show fast soft real-time performance. However, an Erlang imple-
mentation cannot offer any hard real-time guarantees. The non-deterministic garbage
collection can lead to unpredictable delays, and there are no real-time metrics, such
as deadlines or cycle times.

Two topics should be mentioned here. First, there have been efforts in the past to
achieve hard real-time scheduling in Erlang. In [107], a hard real-time scheduler for
Erlang was introduced, yet it was never fully adopted. They used deadline monotonic
(DM) scheduling, and an earliest deadline first (EDF) scheduler was proposed. The
problem of garbage collection was still open, yet this impact is relatively small in
Erlang since it is performed per process. This would solve some of the issues and
make an IEC 61499 implementation in Erlang suitable for hard real-time applications.
Second, most current IEC 61499 runtimes avoid the topic of real-time performance.
Some runtimes use the concepts of the IEC 61131 to achieve real-time performance,
others do not specifically address the topic at all. In general, the standard does not
contain the necessary metrics to perform a scheduling analysis, e.g. deadlines, rates,
or worst-case execution times.

Erlang does not offer the hard real-time performance necessary for safety-critical
ICS applications, yet this does not mean that an IEC 61499 implementation in Erlang
is pointless. It can serve as an example of an adaptable RTE with soft real-time
performance, which may suffice for many applications. In the light of interoperability,
it may even work together with hard real-time RTEs in a larger application.
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The ability to adapt is meaningless if unused. The previous chapter showed
how the fundamental ability can be achieved and improved, yet adaptation remains
a manual process. Closing the loop towards self-adaptation requires the ability to
implement the adaptation logic automatically and autonomously, i.e., without user
intervention. Instead of using manual labor to understand the requirements and
implement a suitable adaptation, this procedure must be automatic. This serves two
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purposes: Automatic processes are faster and, if set up correctly, can prevent user
errors and bugs. These reasons are particularly important for (self-) adaptation. A
fast adaptation improves the agility of the system, and buggy or incorrect adaptation
renders the process ineffective. To achieve an architecture such as the WATERBEAR
architecture, adaptation must be swift and safe by design.

The main problem with transitioning a manual process into an automatic one is
the handling of implicit knowledge. When a developer is tasked with implement-
ing a dynamic adaptation, the developer must understand the explicit and implicit
requirements and find a suitable solution. As seen in Section 1.1.2, there are numer-
ous requirements to be considered before, during, and after the adaptation. The
most important high-level requirement is correctness or consistency. An incorrect
adaptation is worse than no adaptation at all. Thus, a mechanism is needed that can
automatically guarantee the correctness or consistency of the adaptation.
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Figure 3.1: The strategy enactment layer takes the selected change specification
(strategy) and devises a suitable reconfiguration sequence (change implementation)
while keeping the behavior of the system in mind.

The mechanism developed in this chapter is summarized in Figure 3.1. Such
a mechanism is only as good as the information it is provided. Thus, the implicit
developer knowledge must be made explicit. Within the scope of the WATERBEAR
architecture, all the relevant information must be stored in the knowledge reposi-
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tory. Within the strategy enactment layer, the change specification provided by the
strategy management must be implemented using the available information. In this
mechanism, the required reconfiguration operations must be identified and sorted in
an order that preserves the correctness of the running applications. The scenarios that
result from these reconfiguration sequences can be validated against the correctness
rules.

This chapter first introduces the state of the art in consistency management
in dynamic adaptation and the issues that arise within (Section 3.1). Section 3.2
discusses the requirements of the IEC 61499 models regarding consistency, and
proposes a method for achieving consistency within the scope of the IEC 61499
standard and general ICS. The algorithm is evaluated on multiple reconfiguration
scenarios in Section 3.3, and difficulties and limitations are highlighted. Finally,
Section 3.4 concludes the chapter with the key findings.

3.1

Consistency in Dynamic Reconfiguration

The most straightforward idea in achieving consistency during an adaptation is
to wait for the perfect moment. In traditional modification processes, this perfect
moment is forced: The system is brought to a safe state, turned off, and restarted with
the new version. This moment, i.e., the point in time and the corresponding system
state, is guaranteed to achieve consistency. Yet, for some systems, such an offline
adaptation may be infeasible, and, as seen in Chapter 1, there are good reasons for
dynamic adaptation, e.g., the transition towards self-adaptation.

To find a suitable safe update point, there must be transition conditions. If there
are formalized transition conditions, these conditions can be used to synthesize a
safe-by-design controller that navigates the system through the state space of these
conditions [108]. If there are no formalized transition conditions, it is also possi-
ble to manually specify potential update points and use a verification mechanism,
e.g., model checking, to verify the safety of these points [109]. Existing formal mod-
els of the application behavior, e.g., through interface automata, can also serve to
synthesize safe locations [110].

For simple applications, e.g., IT server where most of the state is initialized at
startup and does not change significantly during operation, checkpoint restart may be
a solution. In this case, the old version is frozen in a quiescent checkpoint state, a new
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version is initialized, and the new system is brought to the equivalent checkpoint
state [111].

The problem is worsened if the adaptation changes the specification as well [112].
The problem of formalizing the requirements during an adaptation is known in
research [113–115].

Generally, the validity of an online change from version 1 to version 2 with
a particular state mapping in a specific state is undecidable [116]. This is due to
the halting problem, which argues about the termination of an arbitrary program
given an input. It was shown that there cannot be a general algorithm that can
solve the halting problem for all combinations of programs and inputs. Deciding the
validity of an online change can be reduced to a halting problem, since validity can
usually be considered a type of reachability, i.e., the change is valid if eventually a
particular state is reached. This does not indicate that halting or reachability cannot
be shown for any program; for many systems, this analysis can be trivial. Yet, a
general algorithm for all programs cannot be implemented. Thus, any algorithm
must have three outcomes: valid, invalid, or unknown.

For future systems, it is assumed that the desirable or undesirable behavior is
known. Arguments about consistency of unspecified behavior are not particularly
productive, thus at least from the observed behavior, it should be possible to deter-
mine if the observations fall within the realm of expected or unexpected/undesirable
outcomes. For this argument, input-output automata are used as a simple abstrac-
tion, although more complex models may be used or necessary. For the sake of
visualization, this simple representation suffices.

In the following, two aspects are discussed in detail: General consistency condi-
tions that can be used to achieve consistency during dynamic adaptation procedures,
and the problems and solutions of state transformation during an adaptation. rate

3.1.1

Consistency Conditions
When updating a system on the fly, safety is of utmost importance. In addition to the
validation and verification necessary for the new system version, the transition from
one version to another must be validated and verified as well. This problem has been
addressed in many research papers. Apart from satisfying real-time constraints, the
functional consistency of the change is crucial to prevent failures. For component-

82 Consistent Adaptation of Industrial Control Systems



based systems, three major consistency conditions emerged: Quiescence, Tranquility,
and Version Consistency [117–119].

Applying these concepts in practice is not always straightforward. In this section,
the dynamic update of distributed control systems is considered, which results in
new requirements and constraints. The aforementioned concepts are introduced in
more detail in the following paragraphs.

Quiescence

Quiescence provides consistency by demanding that a component is “not within a
transaction and will neither receive nor initiate any new transactions” during the
adaptation [117]. Components can be passivated to achieve this by stopping the
initiation of new transactions. A passivated component is unable to initiate new
transactions, yet can service old transactions. By passivating the right components,
eventually, the lack of new transactions will leave some components in a quiescent
state.

In this context, two types of transactions are mentioned: Independent and de-
pendent two-party transactions. For independent transactions, only the components
directly adjacent to a change must be passivated to prevent these transactions from
being initiated. For dependent transactions, on the other hand, all dependent transac-
tions that eventually lead to this component must be considered. Thus, the passivated
set of components and thus the caused disturbance is directly related to the interde-
pendence of the system [117].

A downside of the original approach was its focus on components, which can
lead to long passivation times of components. Wermelinger [120] instead proposes
the use of passivation on the connection level, which only blocks the connections that
will eventually be removed.

The strict requirements of quiescence could be relaxed if communication is
synchronous and reliable and messages cannot be lost [121].

A benefit of the quiescence approach is that it can be modeled very efficiently as
a state machine on the component level [122]. The component starts in the active state,
is passivated to reach the passive state, and eventually reaches the quiescent state once
all transactions involving this component have ended. Yet, these states can be hard
to detect, since this requires tracking the transactions of other components as well.

Quiescence is a simple consistency condition suitable for many scenarios. How-
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ever, depending on the transactions, it may take a long time for the system to reach
quiescence. As a consequence, several conditions were developed that are explained
in the following sections.

Tranquility

Tranquility was introduced as a condition for consistency to reduce the potential
disruption caused by quiescence [118]. It takes two additional assumptions into
account: Firstly, a component can be changed if there is an active transaction it has
already participated in but will not again, and if there is an active transaction it
will participate in, but has not yet. Secondly, when assuming a black box design, a
component can only depend on directly adjacent components. Thus, a component is
in a tranquil state if it is passivated and “none of its adjacent nodes [components]
are engaged in a transaction in which it has both already participated and might still
participate in the future” [118].

Unlike quiescence, tranquility is not forced by passivating surrounding compo-
nents. As a consequence, it can occur naturally and with less disturbance, but there
is also no guarantee that it ever occurs [118]. Quiescence, on the other hand, will be
reached eventually, as long as transactions eventually finish. On the other hand, the
black box principle is in practice often not applicable [119].

Thus, tranquility provides an extension to quiescence that relaxes the assump-
tions. However, it also requires additional monitoring with higher complexity. It can
be beneficial in the best or average case, yet does not improve the worst-case delays
over quiescence.

Version Consistency

The aforementioned consistency conditions work on the level of components. Version
consistency, on the other hand, ensures global consistency with distributed transac-
tions [123]. It requires that for every transaction, all sub-transactions are “entirely
executed in the old or the new configuration” and the component is idle at the time
of update [119].

If a component is in a valid state to be changed can be determined through the
property of Freeness. Baresi et al. [119] determine Freeness by following dynamic
dependencies. These dynamic dependencies are maintained on a configuration
model of the system by adding or removing future and past dependencies on each
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component. These dependencies indicate if a source node can initiate or has already
initiated a transaction on the target node. If a component does not have both past
and future dependencies regarding one transaction, the component is said to be free.
In essence, this indicates that regarding one transaction, this component either will
be visited, or was already visited, but not both. The dynamic dependencies must be
either tracked globally or for each component.

Once it is possible to track the Freeness status of each component, the update
must be triggered at the right moment. Baresi et al. [119] mentions three mechanisms
to achieve version consistency:

• Waiting for freeness, i.e., holding the update back until the component is free,
• Concurrent versions, i.e., hosting an old and a new version of a component and

choosing which version must serve a request, and
• Blocking for freeness, i.e., blocking some transactions from processing in a node

to prevent past dependencies.

Version consistency takes a different approach than quiescence or tranquility, and
offers multiple mechanisms to achieve it. The common piece to all three conditions
is, on the one hand, a condition to determine a safe update point, and on the other
hand, a mechanism for how to reach this point. The next section explains how to
handle the state transformation problem.

3.1.2

State Transformation
The previous sections discussed possible consistency conditions that concern the
timing of the update. Since most applications are stateful, and the meaning of the
state may change during an adaptation, the state of the application must also be
transformed during the adaptation.

The state transformation can be achieved in many ways. Seifzadeh, Abolhassani,
and Moshkenani [24], for instance, mention the following types:

Copy/Shadow The data structure can either be copied to a new location, or modi-
fied by adding pointers to new fields.

Specified/Re-Execution There must either be a (manually) specified transformer
function, or the state can be retrieved by re-execution from a previous check-
point.
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Global/Active Either the global state is transformed, or only actively updated
states are transformed.

Eager/Lazy In an eager transformation, the entire state of the application is trans-
formed at once. Lazy transformation updates the state of a module/process/-
component when it is used for the first time.

Value/Type The transformation can be limited to values of the state, or also allow
type changes.

Direct/Indirect The transformation is either performed directly by the affected
module or exported to a standard format and transformed indirectly by another
module.

Generally, the main problem with state transformation is the creation of the
needed transformer functions. For some applications, it is possible to automatically
generate these transformers by analyzing the source code [124]. In other cases, the
transformers may depend on the context and origin of the adaptation. A closed-
loop self-adaptation should be able to also generate the transformers, whereas an
open-loop manual adaptation may require manually created transformer functions.

3.2

Automated Dependency Resolution for IEC 6149913

After having seen the challenges in preserving consistency and some solutions on
how consistency during a dynamic adaptation can be achieved, this section applies
this methodology to ICS. The existing framework for dynamic reconfiguration of the
IEC 61499 standard is introduced briefly. It currently does not offer any guarantees
of consistency but only offers the low-level operations or services necessary for a
reconfiguration. This section, then, analyzes the system and change specifications to
automatically generate a safe-by-design sequence of operations.

This section introduces a methodology to automatically generate reconfigura-
tion sequences that allow the safe reconfiguration of distributed, component-based
systems based on the IEC 61499 standard (Figure 3.2). A mechanism is developed
to extract the required reconfiguration operations from the difference between two
applications and required supplemental information is identified. The resulting oper-

13Major parts from this section are published in L. Prenzel and S. Steinhorst. “Automated De-
pendency Resolution in Dynamic Reconfiguration for IEC 61499”. In: Proceedings of the International
Conference on Emerging Technologies and Factory Automation (ETFA). Västerås, Sweden: IEEE, 2021.
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Application Parsing to Delta Reconfiguration Operations
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Figure 3.2: From the IEC 61499 application, the event traces can be extracted. The dif-
ference between the two applications yields the required reconfiguration operations
for the change, which can be assembled into a reconfiguration sequence given the
event traces.

ations may be organized into a dependency graph using a rule set, and a linearized
reconfiguration sequence can be extracted via topological sorting. The methodology
is demonstrated on four reconfiguration scenarios, and an extension is proposed to
identify and handle feedback loops.

3.2.1

Reconfiguration Operations
The necessary operations must be identified to be able to change a component-based
system. A reconfiguration operation o can be defined as a tuple (Equation 3.1), where
i is the instruction or service, t is the target, e.g., a component or a connection, and D

is a set of operations that this operation depends on.

o = (i, t,D) (3.1)
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IEC 61499 Reconfiguration Services

The IEC 61499 standard defines a set of reconfiguration services and a state ma-
chine for the operational states of an FB. These services are specific to the runtime
environment and may be provided by a set of corresponding management FBs.
An exhaustive list of services is given by Zoitl [50]. These management FBs can
be assembled into a reconfiguration control application (RCA) or Evolution Control
Application [50, 88]. This process was described in Section 2.1.3.

In this section, the IEC 61499 services are treated as the instructions in a reconfig-
uration operation. The operation to create a new FB would thus contain the CREATE
FB service as the instruction i, the target t as the FB to be created, and D would
indicate a set of dependencies that must be performed before the FB can be created.

Selected Reconfiguration Operations

The services as described by the IEC 61499 standard are intended to be exhaustive,
i.e., they should allow any type of reconfiguration. In practice, most reconfigurations
are going to be simplistic, such as tweaking a parameter. Even complicated reconfigu-
rations do not typically need the full set of services, at least during normal operation.
The KILL and RESET services, which can be used to interrupt a running FB and may
lead to a corrupted state or event loss, are hardly compatible with most execution
semantics as long as continuity is desired. Yet, there may be specific edge cases in
which their use is required.

In this section, thus, only a selection of these services is used to demonstrate
the methodology (Table 3.1). Most noteworthy, these are the services to create and
delete FBs and connections. Further, the flow of events must be controlled, which
can be achieved by setting the operational state of a FB to stopped or started. It is
assumed that, when a FB is stopped, the events for this particular block are going to
be buffered. This is crucial to achieve consistency because otherwise, unrecoverable
information in the form of events is going to be lost.14 Finally, the internal state of
FBs must be accessed by reading and writing. Some services are omitted from the
methodology since they do not add any meaningful value at this point. These are

14To the author’s knowledge, this behavior is not clearly defined within the IEC 61499 standard.
Some RTEs, such as 4diac FORTE do not buffer events in the stopped state. Buffering can lead to an
overflow of the event queue, however, losing events is a dangerous interference with the execution
semantics. Message and event loss can be tolerated in fault-tolerant languages like Erlang, but it
requires special care, attention, and an underlying framework built for fault-tolerance.
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the services to create and delete types and resources, because they can always be
performed during the RINIT or RDINIT phases and their ordering does not matter,
except that resources are added in the very beginning and deleted at the very end.
The methodology can be easily extended to incorporate other or new services.

Service Description

CREATE FB Create a new function block.
CREATE CON Create a new data/event connection.
DELETE FB Delete a function block.
DELETE CON Delete a data/event connection.
START Set the operational state of the FB to Started.
STOP Set the operational state of the FB to Stopped.
READ Read the data inputs, outputs, and internal variables of a FB.
WRITE Write the data inputs, outputs, and internal variables of an FB.

Table 3.1: Description of the reconfiguration services as defined in [50].

3.2.2

Reconfiguration Scenarios
Reconfiguration can take place in many scenarios that require slightly different
handling. This section distinguishes four scenarios concerning the necessary state
transformations.

State in Dynamic Reconfiguration

A major hurdle in the dynamic reconfiguration of a component-based system is the
handling of state [125]. In [126], the continuity property is introduced concerning the
state transformation. To achieve continuity, a service must be continued and partially
executed services must be completed. In a traditional change scenario, in which the
system is shut down and restarted, the state can be discarded and the new system
can be restarted from a known, initial state. In the dynamic case, this continuity and
integrity is a critical component. Given two arbitrary systems, the prospect of being
able to elegantly transition from one to the other is rather bleak. Transforming a
flight controller into an HVAC controller, however unrealistic, is difficult not because
different components are used, but because of the difference in state and the difficulty
to achieve continuity.
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State Transformations

A state transformation offers the necessary information to transform the state, either
by mapping state X to state Y or by identifying suitable safe update points, e.g., wait
until state X and switch to state Y. For a small class of problems, the needed state
transformation can be identified automatically. Panzica La Manna [126] model the
system behavior with interface automata, which are then used to identify a correct
state transformation. This requires the availability of corresponding behavior models
and a framework to identify the state transformation. Other automatic frameworks
require the availability of formal specifications and manually created mapping func-
tions [108]. In this section, reconfiguration scenarios are characterized based on the
state transformation needs from an architectural perspective, irrespective of their
origin.

Reconfiguration Scenarios in IEC 61499

The system view of an IEC 61499 application does not comprise any information on
how another system may be transformed into this one or how it could be transformed
into another one. Current behavior models are not suitable to automatically identify
appropriate state transformations, although that may change in the future [127].
Currently, four classes of reconfiguration scenarios can be identified with different
requirements regarding the handling of state.

(I) Stateless In a stateless reconfiguration, the internal state does not matter and
can be discarded, or there is no internal state. This is the case for robust
processes, which can quickly recover the state, or for specific event FBs or
simple FBs that contain little or no state.

(II) State mapping In most mapping reconfigurations, the application behavior is
not changed but only the allocation of resources. In this scenario, the state can
be mapped from one FB to another without transformation.

(III) State transformation (SISO) In the simple case of state transformation, the
state of one FB is transformed into the state of one other FB, for example, if the
FB version is updated and the implementation changes slightly.

(IV) State transformation (MIMO) For complex changes, the state of multiple FBs
can be transformed into the state of multiple others. This can be the case when
two FBs are replaced by a single new one, or a subapplication is exchanged for
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another subapplication.

IEC 61131-3 Online Change

Current PLC software suites based on the IEC 61131-3 standard may encompass
an online change feature [89]. Given the IEC 61131-3 execution model, this usually
means that the current application program is exchanged for a new version, and the
state is mapped, but not changed (Scenario II: State mapping). This allows only for
very small changes and requires the care of the developer to not cause catastrophic
failures. The fragmented state of the IEC 61499 models allows for much more fine-
grained changes with less impact on the execution and more control over the state
transformation.

3.2.3

Automatic Generation of Reconfiguration Operations
As identified by Hummer et al. [89], most of the needed reconfiguration operations
can be extracted from the difference between two applications, i.e., the delta. In this
section, the operations are generated automatically from the delta: After parsing the
applications, their contents can be compared, and the operations needed to patch this
difference are generated. Yet, the delta fails to capture the intention of the developer
and thus complicates the generation of the state transformation. Panzica La Manna
[126], for instance, use the behavior models to automatically generate feasible state
transformations. Given the lack of fitting behavior models within the IEC 61499
standard, it is assumed that any state transformation is supplied by the system
developer until suitable models are available. It may also in principle be feasible to
infer state transformations from the ECC, yet most commonly, while the syntax of
the change is obvious, the semantics are usually not.

Section 3.2.2 identified four scenarios with different needs for state handling.
Following this, the generation of these operations is discussed.

Stateless Reconfiguration

For Scenario I, the stateless reconfiguration, the difference contains all needed infor-
mation: The added and removed function blocks and connections. As a result, the
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needed CREATE, START, STOP, and DEL operations can be added. Every created
FB must be started, and every deleted FB must be stopped.

State Mapping Reconfiguration

For Scenario II, not all information is given in the difference. CREATE, DEL, START,
and STOP operations can be generated the same as in Scenario I. The mapping of one
FB to another must be performed manually and supplied to the generation process.
The necessary state mapping mmap is defined in Equation 3.2, where s is the source
FB and t is the target FB. As a result, the necessary READ and WRITE operations can
be added, where the state of s is read, and the state of t is written.

mmap = (s, t) (3.2)

SISO State Transformation Reconfiguration

Scenario III can be treated similarly to Scenario II, except for an additional state
transformation operation added between the READ and WRITE operations. This
state transformation operation must be provided by the application developer and
may be implemented as an FB. A definition of a state transformation mSISO is given in
Equation 3.3, where s is the source FB, t is the target FB, and f is the transformation
function.

mSISO =
(
s, t, f(states) → statet

)
(3.3)

MIMO State Transformation Reconfiguration

The operations for Scenario IV are identical to Scenario III. In addition to the state
transformation operation between two FBs, this operation must synchronize more
than one input and/or output FB. A definition for the MIMO state transformation
mMIMO is given in Equation 3.4, where S is a set of source FBs, T is a set of target FBs,
and f is the transformation function.

mMIMO =
(
S, T, f(stateS) → stateT

)
(3.4)
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3.2.4

Reconfiguration Sequences
After generating the reconfiguration operations from the delta, the operations must
be assembled in the right order to preserve the continuity of the application. This
preservation can be achieved by updating the system from the event source to the
event sink. Traditionally, the IEC 61499 reconfiguration services were implemented
in management FBs, which are assembled into reconfiguration applications. In
this section, the operations are mapped into a dependency graph, and a linearized
sequence is extracted. In particular, the dependencies are added according to a
set of rules, and the linearized sequence is found through topological sorting. The
reconfiguration sequence could be implemented in a RCA or simply sent to a runtime
service that executes the operations. In this section, a linearized sequence was
chosen deliberately to prevent concurrency issues and increase determinism, yet the
dependency graph can be easily used to create a concurrent reconfiguration plan or
configuration manager as described by Wermelinger [120].

Reconfiguration Sequence Definition

A reconfiguration sequence s is an ordered sequence of reconfiguration operations oi
that must be performed to reconfigure an application. It must preserve the order of
the operations to prevent undesirable side effects. For example, a new function block
must be stopped before it can be connected, and it should be fully connected before
the old function block is deleted. Thus, the ordering of the sequence s must ensure
that the dependencies of an operation oi are satisfied by the preceding operations o0
to oi−1.

s =
[
o0, · · · , on|oi.D ⊆

{
o0, · · · oi−1

}]
(3.5)

Sequence Dependencies

Dependencies between evolution regions of interest (EROIs) were introduced by Hum-
mer et al. [89]. In this section, it is proposed to introduce dependencies between the
reconfiguration operations themselves. These dependencies lead to the identifica-
tion of the EROI, since by definition, an EROI is a region that can be reconfigured
independently. If a set of operations can be executed independently, this set can be
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Figure 3.3: A dependency tree for the reconfiguration operations of Scenario 1 (Fig-
ure 3.4). A node represents an operation, an edge indicates that the lower operation
depends on the higher one.

treated as an EROI.
The dependencies can be injected through rules. The rules are applied to the

set of reconfiguration operations and yield the dependencies of each particular
operation. Once all dependencies have been added, a dependency graph can be
used for visualization, and a suitable reconfiguration sequence can be extracted via
topological sorting.

A list of dependency rules is given in Table 3.2. These rules are applied to any
operation in the reconfiguration sequence, i.e., if an operation with a CREATE FB
instruction is detected for a target FB, it must occur before a corresponding START
operation for this particular FB. In this method, any operation may only appear
once in a reconfiguration sequence, i.e., an FB cannot be started and stopped two
consecutive times since the rules don’t differentiate between the operations.

The START and STOP ordering rules ensure that all FBs are stopped and started
from the event source to the sink. In this manner, the change can propagate through
the application while old events are processed in the old version, and new events are
processed in the new version. These rules add dependencies for the event and data
connections in the application. In the case of feedback loops, a circular dependency is
created that cannot be resolved. A solution to this problem is discussed in Section 3.4.

An example of a resulting dependency tree is given in Figure 3.3. As can be seen,
the dependencies leave several implementation choices for the order of execution.
The dependencies also allow transparent and explainable reasoning as To why a
specific operation is or is not currently allowed. This facilitates a conversation
between the automatic tooling and the system developer, who can reproduce why a
reconfiguration is or is not possible.
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Rule Description

STOP before START Existing FBs must be stopped before they can be started.
CREATE FB before START New FBs must be created before they can be started.
STOP before DEL Any FB must be stopped before it can be deleted.
START ordering All FBs must be started in the order of the FB connections.
STOP ordering All FBs must be stopped in the order of the FB connections.
STOP before CREATE CON Any FB must be stopped before its connections can be cre-

ated.
STOP before DEL CON Any FB must be stopped before its connections can be

deleted.
CREATE FB before CREATE CON Any FB must be created before its connections can be cre-

ated.
DEL CON before DEL FB Any connection must be deleted before the FB can be

deleted.
DEL CON before START Any connection must be deleted before the FB can be started.
STOP before QUERY Any FB must be stopped before its state can be queried.
STOP before WRITE Any FB must be stopped before its state can be written.
WRITE before START Any state must be written before the FB can be started.

Table 3.2: Dependency rules for the injection of dependencies into the operations.
The resulting dependencies allow the sorting of the operations.

Sequence Ordering

Once the reconfiguration operations are created and the dependencies are injected, the
operations can be sorted by a simple topological sorting algorithm based on Kahn’s
algorithm [128], in which the operations are sorted by the dependency first, and a
static priority second. The priorities are defined for every instruction i, e.g., START
has a higher priority than STOP. The implementation of the algorithm in Python is
given in Listing 10.

The sequence ordering according to the dependencies guarantees that any de-
pendency is fulfilled, i.e., that any execution will be performed either by the old
version, or the new version. No events are lost or have to be discarded. The priority
ensures that given two choices, the more urgent operation is performed. In general, it
is preferable to START as soon as possible and STOP as late as possible to minimize
the disturbance. This algorithm works well for many scenarios but can suffer from
priority inversion. In particular, a higher priority operation (START) could be blocked
by a lower priority operation (DEL CON). The general problem could be extended to
an optimization problem if an appropriate cost function was introduced, e.g., min-
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1 def topological_ordering(depgraph: DepGraph) -> Sequence:
2 """Find a topological ordering of the dependency graph.
3

4 Uses a priority function to determine the next operation from
5 the feasible set. Dependency loops cannot be resolved and
6 will raise an exception.
7 """
8

9 L: list[Operation] = [] # Sorted list of operations
10 S = set() # Set of feasible operations
11 N = set(depgraph.items()) # Set of unfinished operations
12

13 while S := depgraph.feasible_items(set(L)):
14 # Choose an op from S and add it to L
15 chosen_op = max(S, key=lambda x: priority(x))
16 L.append(chosen_op)
17 N -= {chosen_op}
18

19 if len(N):
20 not_perf_string = "\n".join([str(n) for n in N])
21 perf_string = "\n".join([str(n) for n in L])
22 print(f"Not performed operations: {not_perf_string}")
23 print(f"Performed operations: {perf_string}")
24 raise NotImplementedError("Not all operations were

performed.")↪→

25

26 return Sequence(L)

Listing 10: Iterative algorithm based on Kahn’s algorithm [128] to select a topological
ordering from the dependency graph.

imizing the disturbance from STOP to START. This would require the quantified
disturbance per operation and could also incorporate communication overhead. This
optimization problem is not considered in this work.
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3.3

Evaluation & Case Studies15

After proposing a mechanism for the automatic resolution of dependencies between
components of the IEC 61499 models to provide consistency, the behavior can be
exemplified and evaluated in multiple scenarios. This section first introduces four
hypothetical reconfiguration scenarios, that are then solved using the proposed
mechanism.

The four scenarios, as identified in Section 3.2.2, exhibit the feasibility of using the
dependency graph to generate a topological sorting of the reconfiguration operations.
The necessary operations and the potential impact on the execution are presented
for each scenario. For the sake of brevity, only the relevant FBs of an application
are displayed. All other function blocks in the application can continue without
interruption unless they have connections through the affected FBs.

The different phases according to Sünder et al. [129] are indicated in each sce-
nario. The startup sequence contains the creation of new FBs and connections. The
reconfiguration sequence is when the operation is disrupted. It is marked by the
first STOP operation and ends when all FBs are started again. The closing sequence
deletes the remaining connections and FBs. Some services, such as CREATE TYPE or
CREATE RES are omitted here. These operations would always occur during the
RINIT or RDINIT phases.

3.3.1

Scenario I: Stateless Reconfiguration
Figure 3.4 shows a reconfiguration in which two FBs are replaced by two other FBs.
In this particular scenario, the exchange is stateless, i.e., the states of FBs B and D are
discarded, and FBs F and G start from their initial states.

15Major parts of this section were published in L. Prenzel and S. Steinhorst. “Automated Depen-
dency Resolution in Dynamic Reconfiguration for IEC 61499”. In: Proceedings of the International
Conference on Emerging Technologies and Factory Automation (ETFA). Västerås, Sweden: IEEE, 2021.
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Figure 3.4: Scenario I: Function blocks B and D are replaced by function blocks F and
G, respectively. A resulting reconfiguration sequence with the RINIT, RECONF, and
RDINIT-phases is displayed on the left. The evolution of the application is shown on
the right. The internal state is not carried over in this scenario.

Operations

The reconfiguration requires operations to create, start, stop, and delete the affected
FBs in the correct order. According to the flow of events and data, the reconfiguration
must occur from FB A to FB E, i.e., the FBs must be stopped from left to right and
started from left to right. In this manner, the integrity and continuity of the event
flow can be guaranteed. Figure 3.3 shows the dependency tree for this scenario.

Impact

After adding the new FBs, the two FBs are exchanged one after another. This allows
the reconfiguration of FB B to start, while FB D can still process old events. Similarly,
FB F can already continue, while FB G is still under reconfiguration.
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3.3.2

Scenario II: FB Mapping Reconfiguration
The second scenario investigates the reconfiguration sequences for the redistribution
of FBs from one resource to another (Figure 3.5). Two function blocks from Resource
1 (C, D) are shifted to Resource 2, which requires the addition of two communication
FBs (X and Y).
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Figure 3.5: Scenario II: The mapping of FBs to resources is reconfigured. Throughout
the reconfiguration, the continuity must be preserved. Thus, the internal state of FB
C must be read and written before C* can be started.

Operations

Similar to Scenario I, the operations to create, start, stop, and delete are added as
needed. In addition, two operations to read and write are added as well, to map the
state between the resources.
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Impact

Initially, the new function blocks and connections are added. During the critical
phase, FB B is stopped to prevent further execution. FB C is stopped first, and
the state is read and written to FB C*. This allows FBs X, Y, and C* to be started
while the state from D is read and written to D*. If concurrent or parallel execution
were possible, some of these operations could be performed in parallel, thus further
reducing the overhead. It is noteworthy that the distinction between the RECONF
and RDINIT phase starts to blur, as the execution can be reinstated continuously.

3.3.3

Scenario III: SISO State Transformation
In Scenario III (Figure 3.6), an FB is replaced by another FB with an explicit state
transformation. This new FB may be a new version of the same type, or another FB
altogether. The key difference to Scenario II is the explicit transformation of the state
between the reading and the writing of the state.

A DB C

Resource 1

A DB C*

Resource 1

R
E
C

O
N

F

A B C

Resource 1

C*

D

A B C

Resource 1

C*

D

R
IN

IT

1

2

3

1

2

3

R
D

IN
IT

Figure 3.6: Scenario III: The version of a function block is changed, thus requiring an
explicit state transformation between the stopping of FB C and the start of FB C*.
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Operations

A state transformation operation is added to explicitly transform the state between
the READ and WRITE operations. Other operations remain similar to scenarios I and
II.

Impact

This change has a particularly small impact since only the FB before the one to be ex-
changed must be suspended momentarily. The biggest difficulty is the identification
of the state transformation, which can be performed offline. Given the fragmented
state of the IEC 61499 application, the state of an FB is small and consists of the ECC
state and the set of variables (input, output, internal).

3.3.4

Scenario IV: MIMO State Transformation
In the MIMO state transformation case, the state of multiple FBs is needed to recon-
figure one or multiple FBs. In this particular scenario, the state of three FBs must be
read and transformed to reinitialize a new FB. FB B* replaces FBs B and E, while also
requiring the state of C.

Operations

In addition to the operations discussed before, the state transformation in this sce-
nario requires the synchronization with three READ operations. Thus, the state
transformation can only start once the states of FBs B, C, and E are read.

Impact

Stopping FB A suspends the arrival of new events, while previous events can still
be processed. Once the connections are rewired to FB B*, FB A can be restarted, and
FB B* is started as soon as the state is transformed. The required inputs of the state
transformation lead to a further synchronization of the sequence, thus also increasing
the overall impact.
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Figure 3.7: Scenario IV: The version of a function block is changed, thus requiring a
state transformation.

3.3.5

Discussion
The reconfiguration scenarios show how the methodology enables the automatic gen-
eration of reconfiguration sequences that preserve the continuity of the application
throughout the reconfiguration. The changes in the applications sweep through the
FB networks from source to sink. They also indicate the elements that currently can-
not be automated: The state mapping and the state transformation. This information
is not presently included in the IEC 61499 application but is represented by the intent
of the system developer. Nevertheless, this added layer of abstraction simplifies and
facilitates the utilization of dynamic reconfiguration for a range of reconfiguration
scenarios.
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3.3.6

Conclusion
The transition from traditional manufacturing systems to more adaptable or even
(partly) autonomous systems is feasible. A major step in this direction is taking the
human out of the loop and automating the reconfiguration procedure as much as
possible. Dynamic reconfiguration as a topic has been addressed in the scope of
component-based systems, the IEC 61499 standard, and even in industrial applica-
tions with the IEC 61131-3 standard.

This section proposed a methodology to automatically generate reconfigura-
tion sequences for component-based systems, as they are defined by the IEC 61499
standard. These sequences may be implemented in different forms, for instance,
reconfiguration applications. By automatically generating the required operations
and ordering them according to their dependencies, the continuity of the provided
services can be guaranteed. This automatic adaptivity provides the foundation for
an architecture such as the WATERBEAR architecture.

3.4

Key Findings

Adaptability does not imply safe adaptability. Countless things can go wrong during
an adaptation. Windows users are far too familiar with things breaking after an
update, and these updates usually aren’t even applied on the fly. For ICS, safe dynamic
adaptation must involve the physical process and the behavior of the control system.
Functionally, the adaptation may not lead to a violation of the specification, which
lays out the admissible interactions between the control system and the physical
process. For instance, if a switch needs to be activated once every 24 hours, the
dynamic adaptation needs to remember if the switch was already activated, and
when it has to be activated again.

This chapter showed the implementation of a correct-by-design algorithm to
automatically generate safe adaptation or reconfiguration sequences. The implemen-
tation is based on consistency requirements and conditions in research. An existing
consistency condition (i.e., quiescence) is applied to the domain-specific modeling
language of the IEC 61499 standard. Using this condition, an algorithm is imple-
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mented that automatically selects a safe reconfiguration sequence of operations that
modifies a system while preserving the intended application behavior. An evaluation
demonstrates the algorithm on a selection of relevant adaptation scenarios and shows
that the consistency of the functional behavior is guaranteed.

3.4.1

Choice of Consistency Conditions
Research has come up with multiple consistency conditions, e.g., quiescence, serenity,
and version consistency [117–119]. Each condition extends the previous one in one way
or another. Ultimately, they all make different assumptions about the system, the
transactions, and the available information that describes the system. In practice, not
all information may be available and this limits the applicability of these conditions.

This chapter uses a variation of quiescence to guarantee the consistency of the
transactions. This condition is particularly suitable for the problem at hand because
of the one-directional interactions between function blocks (FBs) with strictly defined
interfaces. In this way, the reconfiguration sequence updates the system from the
event source to the event sink while pushing old events out of the system as new
events arrive. Components are passivated during the adaptation. Consequently, the
consistency of the execution is guaranteed because one by one, components will be in
a state where all previous transactions have finished and no new transactions (of the
old behavior) can be launched. As components are activated again from the event
sink, they start execution in the new behavior, thus achieving consistency.

While quiescence is simple to implement and, together with the IEC 61499 ex-
ecution semantics leads to satisfactory results, other conditions may be just as or
more suitable. Version consistency, for example, is a very high-level condition that
ensures global consistency with distributed transactions [123]. This detailed transac-
tion model does not currently exist within the IEC 61499 standard, and therefore, a
simpler consistency condition was chosen in this work.

Given the current state of the IEC 61499 standard and the given information,
quiescence is straightforward to implement and can handle a variety of scenarios.
When better formal models of the execution behavior are available, other consistency
conditions should also be evaluated. One shortcoming of quiescence is the handling
of loops, which is discussed in the next section.
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3.4.2

Consistency in Feedback Loops
Feedback loops lead to circular dependencies between components. These loops
cannot be easily handled by quiescence. This topic is also addressed in the works on
quiescence, where a possible solution is a partial passivation of the component to let
the feedback loop finish [117].

Unfortunately, this partial passivation requires the knowledge of how to treat
each input/output. Since the IEC 61499 standard defines an executable model, most
of the information is available inside the component, which would allow the unravel-
ing or flattening of the feedback loop. This, however, means that the behavior of the
component in detail must be considered, which quickly complicates the implementa-
tion of quiescence. In principle, it is also possible to implement components that do
not behave deterministically, e.g., by introducing random behavior or by relying on
external communication interfaces. In this case, unraveling a feedback loop could
prove impossible. Either way, proper behavior modeling of the component could
solve this issue and could circumvent the need for exhaustive simulation of the
models.

While in the current algorithm, feedback loops are prohibited and cannot be
resolved, this extension is rather straightforward once it is known how the feedback
loop should be treated. Partial passivation is a possible solution, yet neither partial
nor any passivation (apart from stopping, which leads to event loss) is part of the
IEC 61499 models.

3.4.3

Execution Semantics and Ambiguities
Consistency is required on the behavior level. The system behavior is defined by the
executed model and the underlying execution semantics. The IEC 61499 standard
partially defines the execution semantics and the language to create the application
model. Issues with the application model (e.g., feedback loops) were discussed
before, where the behavior models of the application are insufficient to resolve
circular dependencies between components.

Furthermore, ambiguous execution semantics make it impossible to derive a
clear consistency condition, since the behavior can be inconsistent even without

Key Findings 105



an adaptation taking place. For instance, the separation between data and event
connections and the different scheduling of both obstruct most efforts in achieving
consistent behavior. Furthermore, important mechanisms such as suspension (or
even partial suspension) are not currently part of the IEC 61499 standard. Both the
comparison with Erlang, as well as the analysis of the theory behind consistency
conditions, lead to the necessity of passivation. While this can be fixed within an
implementation by modifying the event scheduler, this further complicates the issue
with data connections. Passivating event dispatches but not corresponding data
changes means that preserving consistency on that level is infeasible. In Erlang, for
instance, all messages can be queued and when a component is passivated, it simply
stops retrieving messages. In most IEC 61499 implementations, events are queued,
but data updates are not. Thus, when passivated, important data updates may be
lost and all consistency conditions disappear.

Consistency in dynamic adaptation of component-based systems has been re-
searched for decades. In practice, consistency requires clearly defined models and
unambiguous execution semantics tailored for consistency. With the current state
of the IEC 61499 models, achieving consistency is difficult to impossible without
addressing the ambiguity in the application model and execution semantics. This
chapter tried to bridge this gap and assumed smaller changes to the semantics to
allow consistency to be achieved. Strong consistency guarantees, especially in a dis-
tributed setting or between different runtimes, would require much stricter semantics
and guarantees than the IEC 61499 standard currently offers.
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Chapter 4

Real-time Adaptation of Industrial Control Sys-
tems
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The defining characteristic of dynamic adaptation is that it is performed dynami-
cally, i.e., during the execution. If a real-time system is adapted dynamically, then
the real-time requirements of the system must also apply during the adaptation. The
previous chapter introduced the automatic generation of consistent reconfiguration
sequences. However, consistency alone does not factor in the real-time constraints.
While the state of the application may remain consistent, the execution of the sys-
tem may be disrupted for too long, which can lead to deadline misses, failures, or
catastrophic consequences. This is unacceptable for an ICS whose purpose is to be
dependable and to prevent failures.
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Figure 4.1: In this chapter, the previous sorting algorithm is replaced by an opti-
mization mechanism that uses timing information. This timing information can be
gathered from the system itself.

As seen in Chapter 2, the IEC 61499 execution semantics are ambiguous and
there have been different interpretations in practice. Most implementations gravitate
towards an event-triggered execution which also facilitates dynamic adaptation. An
event-triggered execution, however, complicates the real-time analysis compared
to a cyclic execution. The most sophisticated real-time model for an IEC 61499
implementation was developed by Zoitl et al. [130]. This model, unfortunately, does
not consider the real-time execution during the adaptation. Additionally, the models
of the IEC 61499 standard do not integrate the suspension functionality that was
needed in the previous chapter to achieve consistency. As a result, guaranteeing
real-time performance was up to now not feasible, yet it is urgently needed for an
architecture like the WATERBEAR architecture to succeed.

This chapter bridges the gap between the existing real-time models and dynamic
adaptation by extending the real-time models to cover the dynamic adaptation
phase. This requires the consideration of shared access and resource contention
between the real-time tasks in the system that have not been previously addressed
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for the IEC 61499 models. The extended model allows the application of common
schedulability conditions, which then allows the optimization of the reconfiguration
sequence to not just consider consistency, but also minimize the real-time disturbance.
The scope of this extension is visualized in Figure 4.1. The timing data needed for the
optimization can be gathered from measurements of an actual implementation. Using
this procedure, both the consistency and the timeliness of the dynamic adaptation
procedure can be guaranteed. Finally, the agility of this adaptation procedure is
evaluated to gather a glimpse of how quickly an architecture like the WATERBEAR
architecture could adapt with currently feasible technologies.

The chapter first introduces the fundamentals of real-time scheduling for ICS in
Section 4.1, particularly concerning the event-triggered execution of the IEC 61499
models. Following this, the existing real-time models of the IEC 61499 standard
are extended to cover the dynamic adaptation phase in Section 4.2. Finally, the
agility of an existing IEC 61499 runtime environment is evaluated in measurements
(Section 4.3). The chapter concludes with the key findings in Section 4.4.

4.1

Real-time Scheduling and Reconfiguration of ICS

The fundamentals of industrial control software are detailed in Section 2.1. In this
section, the existing work on real-time scheduling and reconfiguration, specifically
with a focus on the IEC 61499 standard, is summarized.

4.1.1

Real-time Execution of IEC 61499
As seen in Section 2.1.2, the IEC 61499 standard can be implemented using different
execution semantics. This is due to some ambiguity on the side of the standard.
Nevertheless, over the years, the topic of real-time execution of the IEC 61499 models
has been approached, since this is crucial for safety-critical hard real-time systems.

Generally, there are different ways to achieve real-time performance with the
IEC 61499 models. One approach is the use of a scan-based execution cycle as used in
regular IEC 61131 languages. By reserving execution time for each FB in every cycle,
real-time performance can be simple to guarantee, yet there is a large overhead [131]
and it may lead to event-loss [70]. This approach is also not particularly suitable for
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reconfiguration, since the same reconfiguration problems of the IEC 61131 standard
emerge (e.g., global state, monolithic execution). Thus, this section only considers
event-driven execution.

The underlying event-driven execution model is proposed by Zoitl et al. [130],
where the event-chain concept is introduced. The most comprehensive real-time
model for the IEC 61499 standard exists in Zoitl [50]. This chapter builds upon the
theory of this work, which is briefly summarized in the following. Afterward, the
dynamic adaptation procedure and its impact on the real-time execution is recapped.

4.1.2

Real-time Execution Model
The most elaborate real-time execution model for the IEC 61499 standard to date was
done by Zoitl [50]. This model assigns a real-time task to every event chain, i.e., every
chain of FB executions starting at an event source and ending at an event sink. Zoitl
[50] proposes the use of either fixed priority or dynamic priority scheduling for the
IEC 61499 models.

Fixed Priority

The main scheduling paradigm for these types of systems is preemptive fixed priority
scheduling, e.g., rate monotonic (RM) or DM scheduling. Zoitl [50] discusses both
of these. Given that RM scheduling is only optimal for periodic tasks where the
deadline is equal to the rate, DM is chosen as the most suitable paradigm for the
IEC 61499 models. As was seen in Chapter 2, the main issue in implementing a
real-time runtime environment is the lack of scheduling information. A solution is
the use of special real-time FBs that specify the necessary scheduling information on
their interfaces. A remaining issue of DM (and similar, but less significant for RM)
scheduling is the relatively low schedulability bound of 58.6 %, i.e., the system must
reserve considerable resources.

Dynamic Priority

This potential waste of resources can be diminished by dynamic priority scheduling.
In this case, the priorities of tasks are assigned at runtime. This represents additional
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load and a source of uncertainty, yet scheduling paradigms such as EDF scheduling
can be optimal up to 100 % utilization.

For the IEC 61499 models, the choice of fixed or dynamic priority scheduling
must be implemented in the event dispatcher that schedules the execution of FBs.
This is equivalent to the assignment of events to run queues in Erlang (see Chapter 2).
Unlike general fixed priority scheduling mechanisms, Erlang allows only for three
priority levels. While this does limit its use for real-time systems, the frequent pre-
emption and fair allocation within each priority level maximizes the responsiveness
of the system. This can effectively reduce the impact of blocking behavior, which
must be considered for the IEC 61499 execution models.

Blocking

There are different types of blocking behavior. Zoitl [50] identifies two main blocking
cases: Shared access of multiple tasks to the same FB and data connections between
multiple tasks. Yet, there is at least a third type of blocking, as will be seen in
Section 4.2.2, which is the suspension of FBs during an adaptation.

To date, while there are many different runtime environments for the IEC 61499
standard, not many support the necessary real-time semantics. The open source
implementation 4diac IDE ([81]) and the corresponding runtime environment 4diac
FORTE offer an implementation of the event chain execution model and support for
real-time FBs, yet this is rarely used in practice.

4.1.3

Dynamic Adaptation Procedure16

There is a framework for the Dynamic Reconfiguration of the IEC 61499 standard.
This framework uses the IEC 61499 models as the programming language in which
the reconfiguration is instructed. The rudimentary framework is integrated into the
standard itself with numerous extensions [50, 63, 90, 129].

The general idea is to launch a reconfiguration control application (RCA) in
parallel with the regular control application, which uses the management interface
of the IEC 61499 devices to change the control application [129]. This approach has

16Major parts of this section were published in L. Prenzel and S. Steinhorst. “Towards Resilience by
Self-Adaptation of Industrial Control Systems”. In: International Conference on Emerging Technologies
and Factory Automation (ETFA) 2022. Stuttgart, Germany: IEEE, 2022
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many upsides, e.g., a low latency, access to the full semantics of the IEC 61499 models
for failure handling and reconfiguration logic, and the benefits that the IEC 61499
models introduce for modeling distributed control applications. In contrast to other
approaches, e.g., the hot code loading capabilities of Erlang (see Section 2.1.4), the
major downside is that this can lead to fairly large RCAs.

Running the RCAs concurrently with the control application simplifies the satis-
faction of real-time constraints because the same scheduler of the control application
can be used to interleave the RCAs while keeping all deadlines.

RINIT RECONF RDINIT
Reconfiguration Application

PRE
Assembly

POST
Teardown

Control Application

Se
nd

Se
nd

A P

Resource 2

Resource 1

Figure 4.2: Once a reaction is decided, the RCA must be assembled on a separate
resource. During its execution, it interacts with the control application. Eventually, it
can be disassembled in the tear-down phase.

The general method of adaptation is displayed in Figure 4.2. The reconfiguration
process is triggered from the outside, and an RCA is sent to a second resource on the
same device. The individual phases are explained in the following section.

Adaptation Phases

The adaptation of ICS using the IEC 61499 standard can be split into five phases [90]
that deal with the assembly, execution, and tear-down of a RCA (Figure 4.2). The
RCA is executed in parallel with the control application and modifies it on the fly.
The five adaptation phases are:

PRE The RCA is transmitted to the control device and assembled in a separate
resource using the same operations used for the reconfiguration. This phase is
non-critical and can be performed over a long time.

RINIT After the RCA is started in parallel with the control application, non-critical
operations, such as the addition of FBs, can be performed. At this stage, the
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RCA is executed concurrently with the control application, but with a lower
priority.

RECONF In this critical phase, parts of the control application are suspended to
prevent unpredictable state changes, and the real-time behavior is disturbed.
In a well-designed RCA, the disturbance must not cause the violation of a
deadline [7].

RDINIT Once the execution of the control application is resumed, the final non-
critical operations remove left-over elements on the application resources, such
as removed FBs. This can be performed concurrently with a lower priority.

POST Eventually, the RCA has to be removed to free the resource for further
reconfigurations. In this phase, the RCA can either be disassembled, or the
entire resource could be deleted.

Splitting the adaptation into these five phases illustrates that not everything
during the adaptation is critical to the real-time performance and that there is an
inherent overhead (e.g., transmission of the changes) to every adaptation. Further,
the concurrent nature of the adaptation indicates a clear benefit of multi-threading,
even if the critical RECONF phase is only single-threaded. In the following section,
the timing impact of the adaptation process is further illuminated.

Timing Impact of Dynamic Adaptation

Performing a dynamic adaptation can affect the real-time performance of the control
application. Ideally, this impact must be minimized and real-time constraints, such as
deadlines, must be satisfied at any point during the adaptation. The previous section
introduced the five phases of the adaptation process. The only critical phase is the
central RECONF phase, in which the control application is actively modified [50, 90].

Without going into the details of each phase, the overall duration of the adapta-
tion process can be calculated as the sum of the individual durations of each phase:

dE = dPRE
E + dRINIT

E + dRECONF
E + dRDINIT

E + dPOST
E . (4.1)

Each duration d depends on the execution time C, which is a result of the complexity
of the adaptation and is directly affected by the utilization U of the resource. Gen-
erally, the exact duration is affected by the scheduling, yet a good estimate can be
achieved by dividing the execution time C by the utilization U :
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dXE =
C

1− U
. (4.2)

Given that the FBs that make up the execution of all phases are short-running and
must terminate quickly, and RCAs are commonly made up of many FBs, this estimate
is accurate since small scheduling differences will average out. Equation 4.1 indicates
that the overall duration during which the application is affected is longer than the
critical RECONF phase, which also means that the response time to the triggering of
an adaptation is substantially longer than the RECONF phase. On the other hand,
only a small fraction of the overall adaptation is real-time critical, which means
that most of the attention should be directed onto this phase. Further, Equation 4.2
demonstrates that while a high utilization is generally attractive, this will prolong
the response time of the adaptation process.

4.2

Schedulability of Dynamic Adaptation17

Having seen the existing works on dynamic adaptation of the IEC 61499 models,
this section addresses the schedulability of dynamic adaptation since this was not
addressed in previous works such as [50]. First, the execution of the IEC 61499
standard is modeled using preemptive rate monotonic (RM) scheduling with shared
resources. This model allows the incorporation of the delay introduced by a sequence
of reconfiguration operations into the schedulability condition. From this model, a
schedulability condition can be extracted that allows the optimization of the ordering
of the reconfiguration sequence, which extends the works proposed in Chapter 3. Two
examples demonstrate that an optimization algorithm using the timing information
outperforms the heuristic algorithm by up to 85 %.

The system model and resulting scheduling problem are defined in Section 4.2.1.
Section 4.2.2 describes the blocking duration and its calculation. Two examples
demonstrate the approach in Section 4.2.3.

17Major parts of this section were published in L. Prenzel, S. Hofmann, and S. Steinhorst. “Real-time
Dynamic Reconfiguration for IEC 61499”. In: International Conference on Industrial Cyber-Physical
Systems (ICPS). Coventry, United Kingdom: IEEE, 2022.
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4.2.1

System and Problem Definition
This section first defines the system model, emphasizes the resulting scheduling
problem that occurs during the reconfiguration, and argues about the timeliness
of the reconfiguration. The original scheduling problem that did not consider the
reconfiguration or access to shared resources was defined by Zoitl [50].

System Model

The tasks of the system model are the execution traces or event chains within the
component-based architecture. This is in line with previous models [50]. These tasks
or traces can be modeled as directed acyclic graphs (DAGs). The task-set

τ = (τ1, . . . , τn) (4.3)

consists of n tasks that may occur concurrently. Each task τi is characterized by
(Vi, Ei, Di), where the vertices Vi = (ei,0, . . . , ei,j) are distinct executions of com-
ponents, in this case IEC 61499 FBs, the edges Ei are the precedence constraints
between executions, and Di is a deadline of the task that must be kept. Executions
ei,j = (fi,j, c

e
i,j) are defined by the FB fi,j and a WCET cei,j . FBs are shared resources

that can only be used in one execution e at a time. The WCET cei,j depends on the
algorithms, execution control, state, and the execution platform. A fixed, known
WCET for every execution is assumed.

Next, the reconfiguration sequence is modeled that modifies the application with
a set of reconfiguration operations. The ordered sequence

S = ⟨o0, . . . , on⟩ (4.4)

consists of reconfiguration operations oi = (ai, Fi, c
o
i ), where ai is an action, Fi is a set

of affected FBs, and coi is the WCET of the operation. The actions can interfere with
the execution of a particular FB, e.g., a stop action will suspend all affected FBs until
they receive a corresponding start action. A suspended FB is blocked from being
executed and events must be preserved. This suspension is an important mechanism
to guarantee the consistency of the reconfiguration [117]. It enables reconfiguration of
an application from source to sink, which causes all events to be processed according
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to either the old version, or the new version, but not a mixture [6].

Scheduling Problem

The resulting scheduling problem is to determine whether all real-time tasks satisfy
their deadlines when the reconfiguration sequence is applied. By itself, this problem
is not well-defined, thus, the analysis is based on the following assumptions:

1. There is only one single-threaded resource that executes both the tasks and the
reconfiguration sequence using rate monotonic (RM) scheduling.

2. The resource can be preempted, but access to a FB is blocking, i.e., a FB cannot
be executed by a second task before the first task has released it.

3. Each real-time task τi has a unique rate Ti identical to its deadline Di. It cannot
be triggered more frequently than its rate.

4. The reconfiguration sequence S is not a real-time task and has no deadline.
Thus, it has the lowest priority and may be preempted by real-time tasks. It is
only executed once.

t
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(schedule)
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Figure 4.3: A reconfiguration (τR) introduces additional blocking behavior within the
real-time tasks (τ1, τ2). The blocking duration depends on the performed reconfigura-
tion and must be assessed before the reconfiguration is applied.

Given that the reconfiguration is not a real-time task, its impact can nevertheless
not be neglected, since it may introduce blocking behavior that causes a priority
inversion when the reconfiguration suspends particular FBs. To mitigate the priority
inversion, the priority ceiling protocol (PCP) is utilized, which elevates the priority of
a task if it blocks a resource with a higher priority ceiling. This behavior is depicted
in Figure 4.3, where the sequence S blocks tasks τ1 and τ2, because it requested
their resources before the tasks were triggered. Sha, Rajkumar, and Lehoczky [132]
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define a schedulability condition for n periodic tasks using PCP and preemptive RM
scheduling:

∀i, 1 ≤ i ≤ n,
Ci

Ti︸︷︷︸
Execution

+
Bi

Ti︸︷︷︸
Blocking

+
i−1∑
j=0

Cj

Tj︸ ︷︷ ︸
Preemption

≤ i(21/i − 1)︸ ︷︷ ︸
Max. Utilization

(4.5)

This condition assumes a task-set τ = {τ1, . . . , τn}, where τn has the lowest priority
and τ1 has the highest priority. This is compatible with the system model, which can
be sorted in ascending order by their rate Ti = Di to fit the requirement. The WCET
of a task τi with m executions can then be calculated as

Ci =
m∑
j=1

ci,j. (4.6)

The condition in Equation 4.5 consists of three components. The first component
is the contribution of the tasks WCET to the overall utilization. The second is the
contribution of blocking by other, lower-priority tasks to the utilization. Third is the
cumulative preemption of tasks with higher priority. The sum of all components
must be lower than the maximum utilization for a task-set of i tasks using preemptive
RM scheduling. In the model, the blocking time

Bi = B(τi) = BFB(τi) +BR(τi) (4.7)

has two contributors: BFB(τi) is caused by shared access to the FBs, and BR(τi) is a
result of the concurrent execution of the reconfiguration sequence S. Together, they
determine how long a task is blocked by a lower-priority task due to the PCP.

Thus, the problem remains of determining the blocking durations BFB(τi) and
BR(τi) for every task given a reconfiguration sequence. Once these values are known,
the schedulability condition will decide if the system is schedulable and can thus meet
its deadlines. The next section shows how the blocking durations can be determined.
Afterward, an optimization problem is proposed to minimize the blocking time of
each task by optimizing the order of reconfiguration operations.
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4.2.2

Blocking Duration
The reconfiguration sequence will temporarily suspend FBs that may be used by
other real-time tasks. This is a priority inversion, which can be solved using the
priority ceiling protocol (PCP). To satisfy the schedulability test in Equation 4.5, the
blocking time B(τ) has to be determined. The contributors of B(τ) can be seen in
Equation 4.7.

Function Block Blocking Time BFB(τi)

When two tasks share a FB, the higher priority task may have to wait until the lower
priority task has released the FB. This execution cannot be preempted, since this
would lead to an inconsistent state. With F (τi) defined as the set of FBs used by task
τi, this blocking time can be calculated as

BFB(τi) =
n∑

j=i+1

 ∑
fk∈F (τj)∩F (τi)

cj,k

 , (4.8)

that is the sum of the WCET of all executions in tasks with lower priorities that use
an FB that is also used in τi. More intuitively, it is the maximum duration a task may
be blocked by another task with a lower priority because they require access to the
same FBs.

Reconfiguration Blocking Time BR(τi)

The blocking time BR(τi) depends on the reconfiguration sequence S. An example is
given in Figure 4.4. Every reconfiguration sequence can be split into three phases:
An initialization phase RINIT, a critical phase RECONF, and a de-initialization phase
RDINIT [90]. The critical RECONF phase begins when the first shared resource, in
this case a FB, is stopped. It ends when the last FB is started, and the execution of
the real-time tasks can continue. During the RDINIT phase, leftover components are
cleaned up. Using preemptive scheduling, RINIT and RDINIT do not disturb the
real-time execution, since they can be prolonged indefinitely and are executed when
no other real-time task is running.

Intuitively, BR(τi) is the duration of the sequence S during which there is a
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Figure 4.4: The reconfiguration sequence S can be split into three phases: RINIT,
RECONF, and RDINIT [90]. The blocking time of a task lasts while a resource with a
higher priority ceiling is suspended.

suspended FB with a higher priority ceiling than the priority of task τi. Formally, the
priority function

πFB(f) = max
τi|f∈F (τi)

πτ (τi), (4.9)

can be defined, which returns the priority ceiling of a FB f based on the priority
πτ (τi), which can be assigned to each task according to its rate/deadline.

The notation Sp,q = ⟨op, . . . , oq⟩ represents the sub-sequence of S = ⟨o0, . . . , on⟩,
where 0 ≤ p ≤ q ≤ n. The existence of a suspension function sus(S0,q) is assumed,
which returns the set of FBs suspended after the occurrences of the sequence S0,q.
This function must check if a FB was stopped or added during the sequence but not
yet started. Then, the function

πR(oi) = max
f∈sus(S0,i)

πFB(f) (4.10)

calculates the priority ceiling of a reconfiguration operation as the maximum priority
ceiling of any FB suspended during the occurrence of operation oi. πR(oi) decides
whether operation oi can preempt another real-time task. Now the blocking sequence

Sblock(τi) = ⟨oi ∈ S|πR(oi) ≥ πτ (τi)⟩, (4.11)

can be defined, which represents the sequence of operations that will block task τi.
From the point of view of τi, this is the disturbance of the reconfiguration S. Finally,
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the blocking time of τi,

BR(τi) =
∑

oj∈Sblock(τi)

coj , (4.12)

is calculated as the sum of the WCET of all blocking operations from the point of
view of task τi. For a task-set τ = (τ1, . . . , τn), where D1 < Di < Dn and, thus, τ1 has
the highest priority and τn the lowest, the blocking times will follow the same order

BR(τ1) ≤ BR(τi) ≤ BR(τn). (4.13)

This is because any sub-sequence of S that blocks τi must also block τi+1, since
πτ (τi) > πτ (τi+1), i.e., the priority of task τi is larger than the priority of task τi+1.

Reconfiguration Feasibility

The original schedulability condition as proposed by Sha, Rajkumar, and Lehoczky
[132] was given in Equation 4.5. By adjusting this condition, the laxity of a task τi can
be defined as

L(τi) = Tii(2
1/i − 1)︸ ︷︷ ︸

Max. Utilization

−Ti

i−1∑
j=0

Cj

Tj︸ ︷︷ ︸
Preemption

− Ci︸︷︷︸
Execution

− B(τi)︸ ︷︷ ︸
Blocking

. (4.14)

This laxity is the time that τi could execute longer while still keeping its deadline. For
the system to be schedulable, the laxity must be positive for all tasks τi ∈ τ :

L(τi)
!

≥ 0. (4.15)

This section illustrated how to compute the blocking time B(τi) and laxity L(τi)

given a reconfiguration sequence S. This allows the application of the schedulability
condition in Equation 4.5, which indicates whether the system can be scheduled with
preemptive, single-threaded RM scheduling.

Optimization

The laxity metric can be used to define an optimization problem to identify the
ordering of operations that causes minimal disruption to the real-time execution.
The full optimization algorithm is presented in [7] and an extension to also consider
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(b) Example I after Reconfiguration
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(d) Example II after Reconfiguration

Figure 4.5: The connection graph shows that the reconfiguration of Example I requires
a change in components/FBs 2.3, 2.4, 2.5, and 2.6. The reconfiguration from Example
II-1 to II-2 modifies components 1.2 and 1.3, while combining 4.3, 4.4 and 4.5 into
a new 4.3. Tasks are depicted as colored lines. In Example II, there is an additional
task τ5, which is not reconfigured.

rollback behavior in the sequence is presented in [9]. For the definition of the
optimization problem, please refer to the aforementioned paper. The results of the
optimization are presented in the following section.

4.2.3

Evaluation
The schedulability condition and reconfiguration optimization are demonstrated
on two example systems (Figure 4.5). Example I consists of 21 FBs and three tasks
τ1, τ2, and τ3. Example II consists of 24 FB and five tasks, τ1–τ5. A fixed WCET of
every FB of 50 µs is assumed. The WCETs, blocking times BFB(τi), and deadlines
are summarized in Table 4.1. The systems are inspired by real applications. To
demonstrate the feasibility of the schedulability condition and optimization, naming
and timing values are simplified without loss of generality.

A reconfiguration is implemented for both examples. In Example I, four FBs are
replaced by new FBs, which requires one state transformation each, and all tasks are
affected. In Example II, two separate locations are changed. In task τ1, two FBs are
replaced, and in task τ4, three FBs are replaced by a single new FB. The generated
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Tasks Undisrupted Heuristic Optimized

τ D = T Cτ (τi) BFB(τi) BR(τ) L(τ) =
BR,max

BR(τ) L(τ) BR(τ) L(τ) %

Example I

τ1 1000 300 100 0 600.00 1280 −680.00 190 410.00 85.16%

τ2 4000 600 100 0 1413.71 1470 −56.29 1240 173.71 15.65%

τ3 5500 350 0 0 1463.70 1470 −6.30 1320 143.70 10.20%

Example II

τ1 1000 250 100 0 650.00 1280 −630.00 480 170.00 62.50%

τ2 2500 200 50 0 1196.07 1340 −143.93 660 536.07 50.75%

τ3 4000 300 50 0 1449.05 1600 −150.95 1300 149.05 18.75%

τ4 5000 350 0 0 1409.14 1660 −250.86 1370 39.14 17.47%

τ5 7000 350 0 0 1529.44 1660 −130.56 1510 19.44 9.04%

Table 4.1: Satisfaction of real-time constraints can be guaranteed using schedulability
conditions, where a laxity L(τ) must be positive. A reconfiguration may lead to
a negative laxity. While a heuristic ordering of reconfiguration operations cannot
satisfy real-time constraints, the proposed optimized algorithm can.

dependency graph limits the feasible orderings of the necessary reconfiguration oper-
ations while guaranteeing consistency as described in Chapter 3. The reconfiguration
is performed from the event source to the event sink, pushing out events following
the old execution. While the reconfiguration flushes out old events, new events will
follow the new system specification.

The undisrupted systems satisfy the schedulability condition (Eq. 4.5, see Ta-
ble 4.1). The system is not overloaded with work, which would make reconfiguration
infeasible, and it is not idle either. The laxity in the undisturbed case is equal to the
maximal blocking time of each task that may be caused by the reconfiguration.
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Figure 4.6: The dependency graph of Example I limits the feasible orderings that
satisfy the consistency requirements. Higher nodes restrict lower nodes. The colors
indicate the priority of each operation according to the heuristic in [6].
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Results

As can be seen in Table 4.1, the heuristic ordering of reconfiguration operations can
in both cases not satisfy the schedulability condition, since the laxity is negative. In
Example I, the blocking time of the heuristic solution is significantly larger than the
maximum blocking time BR,max. This indicates that the reconfiguration may lead
to one or multiple missed deadlines. The optimized sequence that was ordered as
presented in the previous section can meet the deadline in both examples.

Discussion

The heuristic algorithm does not take into account the individual deadlines of each
task. Thus, it doesn’t favor any task in particular but tries to start components as soon
as possible and stop components as late as possible. This algorithm can find a decent
solution very quickly but fails to find the optimal solution. It generates a sequence,
even if a deadline is missed. Using the schedulability metric, a global minimum
can be found that satisfies all constraints. In the examples, the timing-optimized
solutions disrupt the time-critical tasks less. The priority inversions caused by the
heuristic algorithm are resolved.

4.2.4

Conclusion
The need for adaptability was motivated in Chapter 1. Dynamic adaptability facil-
itates self-adaptation since it shortens the adaptation time and makes the system
generally more agile.

In this section, the execution of the IEC 61499 standard was modeled as a schedul-
ing problem that can be solved using preemptive RM scheduling and a PCP for the
access to shared components/FBs. It was shown that the maximum blocking time
during a reconfiguration can be calculated, and the blocking time can be used to
find an optimal reconfiguration ordering. In two examples it was demonstrated that
using real-time information is crucial in selecting a reconfiguration sequence. The
heuristic algorithm, as proposed in Chapter 3, failed to find schedulable sequences.
Using real-time information, a schedulable sequence can be selected instead.

The schedulability condition is only applicable to single-threaded, preemptive
RM scheduling. Extensions to distributed control systems are necessary and valida-

Schedulability of Dynamic Adaptation 123



tion on real applications is needed, although current IEC 61499 runtime environments
do not support preemptive RM scheduling.

4.3

Agility of Dynamic Adaptation with IEC 6149918

The previous section investigated the real-time schedulability of reconfiguration
sequences as part of an adaptation process. As seen in Section 4.1, this disturbance is
only part of the entire adaptation duration. Further, it does not determine the agility
of the system, which depends on how quickly an adaptation can be applied once it
has been triggered.

In this section, the required adaptation time is estimated. Therefore, the execution
times of the elementary reconfiguration services are measured in a simple case
study. Then, the expected duration of larger adaptation is extrapolated from these
measurements.

4.3.1

Measured Execution Time
To measure the execution time of the individual reconfiguration services, a small
IEC 61499 application was implemented, and a minor adaptation was performed. The
application behavior is simplistic and irrelevant to the measurements (Figure 4.7a).
The adaptation is the exchange of a single FB and the corresponding removing and
adding of connections. After the adaptation is done, it automatically reverts the
changes to the initial configuration. The reconfiguration control application (RCA)
consists of two sequences of each 12 operations and is displayed with the distinct
phases in Figure 4.7b. Within each sequence, first, the new FBs are created, before
the old and connected FBs are stopped to preserve consistency [6]. Then, the old
connections are deleted, new connections are added, the stopped FBs are resumed,
and the old FB is deleted. Every two seconds, the FB is replaced and the execution
times of each FB is measured within the RCA.

The measurement is performed on a Raspberry Pi 4B+ with Raspberry Pi OS

18Major parts of this section were published in L. Prenzel and S. Steinhorst. “Towards Resilience by
Self-Adaptation of Industrial Control Systems”. In: International Conference on Emerging Technologies
and Factory Automation (ETFA) 2022. Stuttgart, Germany: IEEE, 2022
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(a) IEC 61499 Application
RINIT RECONF RDINIT

(b) Reconfiguration Control Application

Figure 4.7: The test reconfiguration control application (4.7b) switches the FB E SR A
in the application (4.7a) every two seconds using 12 reconfiguration operations.

with the PREEMPT RT patch applied. The IEC 61499 application is modeled in
the 4diac IDE and executed in 4diac FORTE [81] for one hour. The source code is
modified to log relevant scheduling information, leading to 1800 data samples. All
superfluous OS services and throttling are disabled, and the RT priority of 4diac
FORTE is maximized. The results of this measurement are summarized in Table 4.2,
and the distributions are visualized in Figure 4.8. Two groups can be identified:
Most services are performed in around or under 4 µs, while the creation of a new FB
requires on average 11.34 µs. The distributions show a long tail for longer execution
times, which may be due to the execution platform, the non-real-time operating
system, or the runtime environment. For the analysis, the mean value is used as
the estimated execution time for each service. This data should not be used for the
sake of inferring execution times for safety-critical applications, since they depend
critically on the hardware and software configuration, yet they suffice to support the
analysis.

4.3.2

Estimated Adaptation Times
With the measurements of the execution times for each service, it is possible to
estimate the necessary adaptation time for different scenarios. Four adaptation
scenarios are assumed: A minor change, as seen in the previous section, where only
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Figure 4.8: The measured execution times of the reconfiguration FBs indicate a mean
execution time of under 5 µs, except for ST CREATE FB, which takes around 11 µs.
The outliers in the measurement over one hour are rare and have an insignificant
influence on overall execution times.

minimal changes are performed, a moderate change of multiple components, and
a major adaptation, which affects large portions of an application. Additionally,
a composite reconfiguration is considered to represent a distributed scenario in
which multiple devices are reconfigured. For the sake of simplicity, additional
communication overhead is ignored in this scenario because it is highly application-
specific. For the moderate and major reconfigurations, 10 and 100 added/removed
FBs are assumed, respectively, and an average of three connections per FB. In practice,
these numbers are easily achievable if hierarchical subapplications are modified.

The adaptation is structured into five phases as described in Section 4.1.3. The
resulting number of operations per phase and the corresponding estimated execution
times are summarized in Table 4.3. In the example scenarios, the number of operations
scales linearly with the number of changed FBs. The estimated execution time
behaves identically. The PRE and POST phases represent a significant overhead, yet
they do not influence the real-time execution. While a minor adaptation only requires
execution time in the order of µs, a moderate to composite scenario may require
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Function Block Mean Std Min Max

EC START ELEM 2.98 µs 1.38 µs 2.46 µs 21.28 µs
EC STOP ELEM 3.22 µs 1.54 µs 2.50 µs 25.45 µs
ST CREATE CONN 3.87 µs 1.46 µs 3.09 µs 25.09 µs
ST CREATE FB 11.34 µs 3.27 µs 9.20 µs 51.06 µs
ST DEL CONN 4.05 µs 1.38 µs 3.26 µs 24.48 µs
ST DEL FB 3.36 µs 1.15 µs 2.91 µs 19.19 µs

Table 4.2: Statistics of the measured execution times of the reconfiguration FBs, as
performed by the test application.

PRE RINIT RECONF RDINIT POST
∑

Minor
n = 36 1 10 1 36

0.23 ms 0.01 ms 0.04 ms 0.00 ms 0.14 ms 0.42 ms

Moderate
360 10 100 10 360

2.29 ms 0.11 ms 0.36 ms 0.03 ms 1.38 ms 4.17 ms

Major
3600 100 1000 100 3600

22.90 ms 1.13 ms 3.62 ms 0.34 ms 13.75 ms 41.73 ms

Composite
36000 1000 10000 1000 36000

228.96 ms 11.34 ms 36.16 ms 3.36 ms 137.52 ms 417.34 ms

Table 4.3: Operations for each phase for four adaptation scenarios, and the corre-
sponding estimated execution time (ms).

milliseconds. Ignoring the impact on the real-time execution (which is only affected
by the RECONF duration), this adaptation is fast, but not instantaneous.

These results represent only the expected execution times. To reach the expected
adaptation time, the utilization of the device must be taken into account since the
system will be busy with other tasks. Most of the operations will be performed with
a low priority to prevent any disturbance of the real-time tasks. Consequently, for
a device with 80 % utilization, the adaptation time will be five times as long. This
behavior is further analyzed in Figure 4.9, where the estimated adaptation times are
plotted over the system utilization. At a utilization of 1.0, the adaptation is infeasible,
since the additional load would result in missed deadlines. The lower utilization
bound for RM scheduling (0.6931) indicates a typical load that can be expected. This
would allow a major adaptation to take place in about 100 ms, and a composite
adaptation in one second. Since the utilization bound only considers real-time tasks,
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Figure 4.9: The adaptation time depends on the system utilization. For realistic
utilization levels, the adaptation will terminate within seconds.

the actual utilization may be higher, and thus the adaptation time could be longer.
This adaptation time represents the entire adaptation and not merely the real-time
critical RECONF phase. Further communication overhead could lead to adaptation
times in the order of seconds.

An important distinction is that the utilization of the system is decided at design
time. While a high utilization is generally desirable to use the available resources
efficiently, this may make dynamic adaptation infeasible or slow. More efficient
scheduling paradigms, such as earliest deadline first scheduling, may allow even
higher utilization for real-time tasks, thus making dynamic adaptation even more
difficult.

4.4

Key Findings

The consistency conditions from the previous chapter enabled the generation of
functionally safe and consistent reconfiguration sequences. Yet, executing these
sequences may lead to intolerable delays of the real-time behavior that can lead to
catastrophic failures of the ICS.

This chapter extends the necessary schedulability theory to reconfiguration
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sequences, thus allowing a decisive assessment of the satisfiability of real-time con-
straints during an adaptation. First, the state of the art in real-time scheduling in
programmable logic controllers (PLCs) is summarized, particularly focusing on dy-
namic reconfiguration. Next, a scheduling problem for dynamic adaptation is defined
and the impact of an adaptation on the real-time behavior is investigated. A decision
criterion is specified that determines if a reconfiguration sequence is schedulable
for a given system. Finally, the execution times of reconfiguration services in a real
system are measured, and estimated adaptation times are extrapolated that indicate
the agility of the architecture.

Three key insights of this analysis are further detailed in this section.

4.4.1

Blocking Behavior
ICS are real-time systems. During an adaptation, the real-time constraints must be
preserved. This is the key promise of dynamic adaptation: If the system fails and
must restart because of an adaptation, it is no longer dynamic. Unlike an additional
workload, the adaptation can actively modify and interfere with the execution of
other real-time tasks. Thus, an analysis of the disruption caused by the adaptation is
critical.

Apart from the additional workload introduced by the adaptation, the most im-
portant factor is the interference of the adaptation with the real-time tasks. Generally,
this interference is caused by the starting and stopping of components, which will
delay or disrupt other system behaviors. If another task needs to access a component
during its reconfiguration, this will lead to a delay that may cause a deadline miss.

This chapter showed that the blocking time of the real-time tasks is the critical
aspect of the adaptation. This blocking time is caused by the shared access to
components that may be temporarily disrupted to achieve consistency of the process
(as explained in Chapter 3). To preserve the consistency of the behavior, some
components are temporarily suspended and will not react to events, which may lead
to critical real-time tasks missing their deadline. Thus, it is possible to determine
the blocking duration of each real-time task from the suspension duration of the
used components. This blocking duration is the deciding factor when it has to be
determined if a reconfiguration can be performed in real-time or not.

In the current model, the priority ceiling protocol (PCP) is used to determine the
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blocking time of the real-time tasks. This only holds for rate monotonic scheduling
in a single-threaded, non-distributed scenario. Especially communication delays can
play a significant role in the adaptation of distributed systems. Multi-threading is a
very realistic option due to its pervasiveness in modern industrial computers and
may promise compelling computational gains. However, these extensions would
further complicate the schedulability analysis and were consequently excluded from
this analysis.

Nevertheless, this chapter applied the calculation of the blocking time from
scheduling theory to the field of dynamic adaptation, which yields satisfactory
results and can be used to identify suitable reconfiguration sequences in practice.

4.4.2

Schedulability
The schedulability of the dynamic reconfiguration is determined by the laxity of the
undisrupted real-time behavior and the introduced blocking time of the reconfigura-
tion. The blocking time depends on the suspension of the shared components during
the reconfiguration, which is influenced by the order in which the reconfiguration
operations are executed. The consistency requirements in Chapter 3 are insufficient
to determine the best order of operations from a laxity perspective. The heuristic
algorithm proposed in Chapter 3 can guarantee consistency, yet it does not take
into account the real-time requirements. This chapter showed the optimization by
incorporating timing requirements such as deadlines. This leads to a reconfiguration
sequence with minimal disruption to real-time behavior.

This chapter assumed RM scheduling and the PCP, yet other algorithms are also
feasible and would provide distinct advantages and disadvantages. For instance,
EDF scheduling may allow for higher utilization, yet may lead to a less deterministic
failure behavior. Either way, laxity is required to perform a reconfiguration. If
an additional load immediately leads to a deadline miss, reconfiguration becomes
impossible. Practical applications usually contain some laxity because achieving
full utilization is not desirable. This chapter assumes cyclic tasks, which simplifies
the schedulability analysis. Given the event-triggered nature of most IEC 61499
execution semantics, there may also be a temporal component to the utilization: The
utilization may fluctuate depending on the behavior of the system.

The application of scheduling theory to dynamic adaptation permits conclusive
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statements regarding the hard real-time schedulability of the system. This allows the
adaptation of non-stop, safety-critical systems.

4.4.3

Domain-specific Models
Timing requirements are non-functional requirements. These can be harder to grasp
or more easily overlooked. In particular, gathering these requirements in the nec-
essary detail can be cumbersome. This chapter relies on information that is not
currently part of the IEC 61499 standard and is also not necessary for many appli-
cations. Hard real-time execution, for instance, is not always mandatory. Without
strict timing requirements, dynamic reconfiguration can be performed without a
thorough real-time analysis. This type of execution and adaptation is also possible in
programming languages such as Erlang.

If, on the other hand, hard real-time execution is required, then the timing
requirements must be known explicitly. This chapter demonstrated the schedulability
of dynamic reconfiguration which requires further explicit knowledge that is also
not currently contained within the IEC 61499 models. The necessary information
includes, among others, execution traces and the corresponding timing constraints.
This is consistent with previous works on this topic [50], yet there has been little
progress in this direction. Further work is necessary to show how to model this
information and include it within the IEC 61499 standard.

The event-triggered nature of most IEC 61499 execution semantics allows for
more flexibility in the scheduling. This chapter treated tasks within the execution
as cyclic occurrences for the sake of schedulability. In practice, however, behaviors
may be inherently non-cyclic or may have much larger cycles than the deadlines. As
a result, it may be possible to schedule a dynamic reconfiguration at a time when
the system is particularly idle. This touches on the topics of identifying safe update
points from Chapter 3. In the end, this ability relies on the availability of the relevant
information.

A main contribution of this dissertation is the automation of previously manual
processes. While manual processes rely on implicitly known information, e.g., an
automation engineer knows when to best schedule a reconfiguration, automation
requires explicit knowledge. This knowledge may be included in domain-specific
models, e.g., the IEC 61499 models, and needs to be included to enable automation.
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While intuitively, an architecture such as the WATERBEAR architecture extends
current ICS and industrial automation systems (IAS) through self-adaptation, this
benefit can be hard to quantify. Weyns [29] identifies this challenge as a need for
empirical evidence for the value of self-adaptation. Arguably, in practice, complex
architectures that do not offer immediately evident benefits are not approachable.
The previous chapters have proposed improvements to the adaptability of runtime
environments (RTEs) and mechanisms to automatically implement adaptation se-
quences. However, these methods are not free and require extensions to models and
further implementation efforts. Thus, from the point of view of a practitioner, the
effort may appear greater than the potential benefit.

The IEC 61499 standard has integrated reconfiguration services since its incep-
tion that are rarely used in practice. This may also apply to any extensions or further
developments unless their benefits are quantifiable. Consequently, first of all, possi-
ble scenarios should be specified in which dynamic (self-) adaptation could prove
beneficial. While the previous chapters have developed aspects of the WATERBEAR
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architecture, the full potential of self-adaptability can only become evident during its
application.

Resilience provides a mechanism to quantify the losses in system performance
during fault or failure events. By analyzing potential scenarios that may emerge in
dynamic adaptation, a comparison can be made to systems that cannot (self-) adapt.
Figure 5.1 shows the meaning of these scenarios within the WATERBEAR architecture.
Measurement data is used to create scenarios on the strategy management layer to
facilitate the decision-making by the configuration manager. This manager uses this
data to select a suitable strategy and handle potential failure scenarios.
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Figure 5.1: This chapter shows how the configuration manager can use measurement
data to select the appropriate strategy that was handed down from the goal manage-
ment layer to be implemented in the strategy enactment layer.

Furthermore, this chapter presents a decentralized implementation of the WA-
TERBEAR architecture, underscoring its capacity for autonomous and distributed
functions. Specifically, the separation of concerns between the different layers of
the WATERBEAR architecture allows for an efficient distribution. The decentraliza-
tion, however, necessitates synchronization via consensus algorithms that enable a
decentralized decision-making process.

This chapter introduces the concept of resilience in Section 5.1, which allows
the quantification of the impact of dynamic adaptation on the system performance.
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Next, the initial WATERBEAR architecture is sketched out in Section 5.2 for a resilient
and fully autonomous operation of an industrial automation system. Finally, the key
findings are summarized in Section 5.3.

5.1

Resilience19

Measures of fault tolerance commonly rely on qualitative differences, i.e., whether
the system is fault-tolerant of a specific fault or not. Thus, they struggle to quantify
degradation [133]. By contrast, resilience is commonly used in a quantitative context,
i.e., a person/system is more resilient than another. In this section, an established
resilience metric is used to quantitatively assess the impact of dynamic adaptation in
response to a fault.

Several definitions of resilience from assorted domains are outlined by Hosseini,
Barker, and Ramirez-Marquez [134]. A common definition goes as follows: “Re-
silience is the ability to prevent something bad from happening, or the ability to
prevent something bad from becoming worse, or the ability to recover from some-
thing bad once it has happened.” [135]. There are three components in this definition:
Prevention, survival, and recovery.

Resilience can be quantified as a function of time and visualized in a resilience
graph [136]. An example is displayed in Figure 1.3, where the phases of the MAPE
loop are inserted. Henry and Emmanuel Ramirez-Marquez [136] identify three
distinct system states: The original state, a disrupted or degraded state, and a recovered
state. In our specific example, the original state ends with the failure, and the degraded
state ends when an adaptation is executed. In practical applications, the graph may
be arbitrarily complex.

A failure generally leads to a loss in some metric. If a failure does not create
any loss, then no action is required because it has no effect. Computation of a loss
requires the definition of a figure of merit F (•) [136]. For the domain of industrial
control, possible metrics could be productivity, process quality, or process/communication
delays. Since this dissertation focuses on the methodological aspects of resilience
quantification, a figure of merit F (•) is assumed for which increasing values are

19Major parts of this section were published in L. Prenzel and S. Steinhorst. “Towards Resilience by
Self-Adaptation of Industrial Control Systems”. In: International Conference on Emerging Technologies
and Factory Automation (ETFA) 2022. Stuttgart, Germany: IEEE, 2022
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preferred, and it is assumed that the system can be sufficiently quantified using a
single metric. For practical applications, multiple metrics may be necessary to fully
capture the complexities.

5.1.1

Calculation
Once a figure of merit is chosen as the metric, the loss of this metric can be calculated
over time. Bruneau et al. [137], for instance, introduces the calculation of a resilience
loss

RL =

∫ t1

t0

[100−Q(t)]dt (5.1)

by integrating the loss of quality over time, where the quality Q(t) ranges from 0
to 100. A smaller resilience loss indicates higher resilience. For this dissertation, an
abstract quality of service is chosen, e.g., productivity, as the figure of merit, which can
be measured in percent. By integrating this metric over time, the lost productivity is
calculated in the unit of time. For example, if a failure causes a total loss of function
for 5 seconds, this would lead to an equivalent resilience loss as a partial loss of 50 %
for 10 seconds.

A difficulty of resilience quantification is the choice of metric, and the comparison
between metrics. Mitigating a loss in one metric by compensating it with another
metric requires a conversion factor that is often hard to derive. In the case of this
dissertation, a fault is assumed to lead to a failure of the ICS, which directly causes a
loss of productivity. Faults and failures that immediately lead to a full shutdown to
prevent catastrophic consequences, for example, an emergency stop, are explicitly
excluded because there can be no meaningful quantification of losses in this case. This
does not mean that dynamic adaptation cannot handle these faults and failures, if
anything it may be the only reasonable solution for true non-stop systems. However,
the added risk of failure during the adaptation must be carefully considered.
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5.1.2

Impact of Dynamic Adaptation on Resilience20

The previous section outlined a decentralized, autonomous mode of operation for
ICS. The results show that consensus algorithms enable fully autonomous closed-loop
self-adaptation and provide the system with unprecedented flexibility.

A detailed analysis of the resilience scenarios and behaviors is performed in this
section and the resilience gains and losses are quantified to allow an assessment of
the benefit of dynamic adaptation as part of a self-adaptive architecture.

Resilience Scenarios

Using the estimated adaptation times from Section 4.3, the effect of dynamic adap-
tation on the system resilience can be quantified. First, the survival and recovery
scenarios are analyzed, before the prevention scenario is analyzed as part of Figure 5.4

The analysis is based on a couple of assumptions. Degradation and recovery
follow the resilience graph as introduced in Section 5.1. A fully-available system has
a quality of service (QoS) of 100 %, while a degraded system retains 25 %. During
a restart, the system is disabled. The fault takes place after 5.5 s, and the failure
after 10 s. Degradation, recovery, and ramp-down/ramp-up require 2 s to transition
from 100 % to 0 % and a restart takes 5 seconds. The values are inspired by realistic
applications, however, tailored to provide a meaningful analysis. A fault in a real
system may remain dormant for days or weeks, and a restart could require a ramp-
down in the order of hours to reach a safe state.

In Figure 5.2, a survival scenario is displayed. The reaction takes place after 5.5
seconds (dMAP), when the failure has happened and degradation has begun. The
restart action quickly shuts down the system and performs the modification offline.
Using a fast dynamic adaptation, the system can survive the failure, without reaching
a degraded state or having to shut down. The major adaptation (dE = 0.1s) can
be performed nearly instantaneously. The resilience loss RLA shows a loss of 0.6 s
of production time, which is mostly caused by the degradation and ramp-up. The
restart requires a significant loss of productivity (RLR = 7.0s).

The recovery scenario in Figure 5.3 results from a delayed reaction time (dMAP =

20Major parts of this section were published in L. Prenzel and S. Steinhorst. “Towards Resilience by
Self-Adaptation of Industrial Control Systems”. In: International Conference on Emerging Technologies
and Factory Automation (ETFA) 2022. Stuttgart, Germany: IEEE, 2022
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Figure 5.2: In a survival scenario, the adaptation takes place after the failure occurred,
but before a degraded state is reached.

10s), which could be caused by a slow detection, or a complex decision-making
algorithm. The system reaches its degraded state until finally a reaction is triggered.
In the restart reaction, the system will quickly ramp down and perform a restart. In
the adaptation scenario, the (in this case, complex) adaptation is triggered, which
will cause the system to remain degraded until the adaptation is done. Finally, the
recovery can begin. Similarly to the survival scenario, dynamic adaptation provides
a significant resilience advantage over a restart. The loss RLA of 4.9 seconds is still
half the expected loss RLR of a restart.
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Figure 5.3: The recovery scenario is a delayed reaction, once the degraded state has
been reached. The resilience loss (RL) in the survival scenario is significantly lower,
yet even in recovery, the adaptation provides a clear advantage over a restart.

Further scenarios are sampled in Figure 5.4. There are four types of reaction

138 Agile & Resilient Industrial Control Systems



speeds (early, fast, late, and delayed), and three levels of adaptation complexities are
considered (Minor/Moderate, Major, and Composite). An early reaction coupled
with a minor to major adaptation can, in this example, prevent an impact on the
system, which results in a loss of 0, i.e., the system is perfectly resilient against this
kind of fault/failure. The composite adaptation will lead to the manifestation of
the failure, and a brief degradation. It must be noted that here, a non-critical failure
is assumed that does not require an immediate shutdown. If the failure must be
prevented at any cost, and the risk of its manifestation during the adaptation period
is too large, then an emergency shutdown is necessary.

For the fast, late, and delayed reactions, different resilience losses can be ob-
served. In all cases, the resilience loss of the adaptation (RLA) is lower than the loss
of the restart scenario (RLR). This is evident from the fact that the adaptation time
is always shorter than the restart time, which is a valid assumption. What is note-
worthy is that once dynamic adaptation is available, the reaction time becomes the
critical factor that determines the system’s resilience. Without dynamic adaptation,
the reaction time is less important, since the restart will lead to a loss either way.
Consequently, the currently feasible dynamic adaptation mechanisms require and
facilitate a shift of focus to the monitoring, analysis, and planning phases.
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Figure 5.4: Dynamic adaptation leads to a significantly smaller resilience loss RL
compared to a traditional restart. If the detection and decision-making (MAP, ♦) after
the fault (▼) takes place before the failure (×), a degradation can be prevented (RL =
0). Otherwise, dynamic adaptation avoids lengthy downtimes and can recover much
faster.
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Discussion

There are two key insights: First, the advantage of adaptation over a restart depends
on how difficult a restart is. In the scenarios, a restart is assumed to be feasible
and reasonably fast, i.e., within five seconds. For many applications, this is highly
optimistic and unrealistic. Restarting a PLC can require an extensive ramp-down
phase to bring the system into a safe and known state, from which the system can be
safely started. If, on the other hand, a restart is feasible within a short time frame,
e.g., because the system is stateless or the change does not affect the state, then the
advantage of dynamic adaptation fades. Arguably, many bugs, failures, or attacks
require more complicated modifications.

Second, once dynamic adaptation is feasible, available, and sufficiently fast,
the main resilience gain can result from better monitoring, analysis, and planning
methods. An adaptation cannot be faster than instantaneous. More importantly,
dynamic adaptation facilitates further developments in monitoring, analysis, and
planning, since it significantly lessens the burden of adaptation. A fast reaction that
is implemented too late is similarly ineffective as a quickly implemented reaction
that is detected too late. Yet the ability to quickly adapt together with fast detection
results in exceptional flexibility and agility.

Dynamic adaptation allows the implementation of any imaginable adaptation of
the system. This allows the reaction to events that cannot be anticipated, e.g., attacks
or bugs. Many faults and failures, by contrast, can be anticipated, and a reaction can
be arranged beforehand, or even directly implemented within the control application.
This allows for a faster reaction without requiring a lengthy adaptation or a restart,
yet additional resources must be reserved. The preparation of a reaction may also
be coupled with dynamic adaptation to allow a fast implementation of complex
reactions.
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5.2

Resilient Autonomous Operation for IAS21

The previous chapters have shown specific contributions towards agility and adapt-
ability of ICS. The big picture of how this adaptability can be integrated into a
self-adaptive architecture for ICS has not yet been addressed. This especially affects
the upper layers of the WATERBEAR architecture where strategies are generated
and decisions are made. For large-scale systems, these layers are also not singular
devices, and thus centralized techniques and mechanisms can reach a limit.

Commonly, self-adaptive systems are implemented as multi-agent systems
(MAS) [138]. This approach is particularly suited to decentralized systems, where
techniques such as swarm intelligence or auction-based voting can be employed. Yet,
decentralizing the optimization algorithm for the adaptation of safety-critical systems
can be troublesome. As identified by [139], certifying Reconfigurable Manufacturing
Systems (RMS) is an unsolved problem and may require changes to current standards
and best practices. V&V of MAS can be difficult due to their flexible behavior, which
further complicates their use in safety-critical systems [140].

An alternative to the use of MAS is to not decentralize the optimization, but
to decentralize only the agreement. The planning phase of the MAPE loop (see
Section 1.2.1) can thus be further divided into finding a solution and agreeing to a
solution. This is already integrated into the WATERBEAR architecture, where gener-
ated strategies are fed to configuration managers after a verification procedure. This
allows the configuration manager to disagree with the proposed strategies. Similarly,
the control device in the target system can verify the reconfiguration commands
before their execution and reject the changes. Consequently, there is no need for a
decentralized optimization, yet there must be a synchronization mechanism. In this
section, the use of consensus algorithms is proposed for this purpose.

In this section, a decentralized architecture based on the WATERBEAR architec-
ture is developed, together with a two-stage consensus mechanism. The architecture
is demonstrated in a case study in Section 5.2.2.

21Major parts of this section were published in L. Prenzel and S. Steinhorst. “Decentralized Au-
tonomous Architecture for Resilient Cyber-Physical Production Systems”. In: Proceedings of the
Conference on Design, Automation and Test in Europe (DATE). Grenoble, France: IEEE, 2021.
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5.2.1

Decentralized Architecture
As identified by Koren, Gu, and Guo [141], the real-time decision-making mechanisms
needed for production planning in manufacturing systems are difficult to achieve.
Nevertheless, real-time adaptability, especially when facing failures or disruptions,
is critical for any autonomous manufacturing system [142, 143]. As a result, most
current approaches either focus on the optimization problem, using algorithms such
as Genetic Algorithms [144] or focus on dynamic real-time production planning using
multiagent systems [145]. While centralized approaches can solve arbitrarily complex
optimization problems, the necessary orchestrators represent single points of failure.
Furthermore, with cloud computing and manufacturing, a production plan may be
generated by potentially untrusted devices. On the other hand, fully decentralized
approaches, such as multiagent systems, struggle to find the optimal production plan.
This section focuses on the problem of how centralized optimization algorithms can
be used in a resilient and decentralized architecture for the autonomous generation
and application of production plans.
Cloud Manufacturing Cloud Manufacturing promises the service-oriented pairing
of manufacturing demand and supply through a cloud architecture [146]. As such,
the abstraction level is much higher and the production plan does not consider safety-
or timing-related properties. Within Cloud Manufacturing, the issue of trust and
security has been touched and may be solved by blockchain technology, but since
the abstraction level is higher, safety validation is not commonly applied [147]. In
contrast to Cloud Manufacturing, the changes in this architecture manifest on a lower
abstraction layer in which safety- and timing-related properties must be guaranteed.

Therefore, a novel decentralized system architecture for CPPS is proposed, com-
bining an optimization algorithm with a decentralized validation and consensus
framework. The phases of the life cycle are depicted in Figure 5.5. The production
plan, which details the mapping of devices and tasks, is generated automatically.
Functional validation is applied to the plan and a two-stage consensus algorithm
provides autonomy, resilience, and real-time decision-making capabilities to the de-
centralized architecture. The proposed system architecture has three distinct phases:

Automatic Production Plan Generation The new production plan is generated
based on a system description and formalized specifications. This is identical
to the configuration generation task in the WATERBEAR architecture.
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Figure 5.5: Life-cycle of the autonomous system architecture, separated by decision-
making tasks and control tasks.

Production Plan Validation The timing, safety, and functional correctness of the
generated production plan are validated. This task can be found in the verifica-
tion services in the WATERBEAR architecture.

Decentralized Two-Stage Consensus The decision-making process is built on a
two-stage consensus algorithm, featuring a majority agreement on the safety
and optimality and a unanimous agreement of all executing devices on the
feasibility and authenticity of the plan. In the WATERBEAR architecture, the
first stage takes place on the strategy management layer, whereas the second
stage can be found on the target system layer.

The hardware design of the architecture is visualized in Figure 5.6. A mesh
network of heterogeneous devices with varying functionalities and computational ca-
pabilities is considered. The generation of the production plans is outsourced to cloud
devices, whereas the functional validation can be performed on the computationally
stronger devices in the mesh network as well.

Automatic Production Plan Generation

The automatic production plan generation is performed by an optimization algorithm.
The inputs to the optimization are a formalized system description and one or
multiple product specifications. The goal of the optimization is to find a production
plan that uses the devices in the system description to fulfill (ideally) all product
specifications. This problem can be formalized as a version of the Job Shop Scheduling
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Figure 5.6: Hardware architecture featuring three types of heterogeneous devices.
Devices with additional computational resources can participate in the validation,
whereas the production plan generation is outsourced to the cloud.

problem, to which a great number of solutions already exist [148]. In this architecture,
a greedy algorithm is used to find a suitable plan, although different algorithms can
be plugged in. The reconfiguration of the architecture is enabled by adaptable control
devices on the lowest layer, as seen in Chapter 2.

Production Plan Validation

The new proposed production plan must be validated. Given that it may be generated
remotely, this plan is not immediately trustworthy. Thus, the validation can be used
to generate this trust [149].

The validation may encompass the verification of different timing- and safety-
related properties. Since the inputs of the generation (system description, specifi-
cations) are openly available, they can be used in the validation procedure as well,
leading to a more meaningful validation. Additional complexity is introduced by con-
sidering a stateful reconfiguration, in which the system state is (partially) preserved
during a modification of the production plan. Depending on the expressiveness
of the system description and specifications, a formal verification may be feasible,
e.g., to verify safety-critical time constraints. The validation can be performed in
a distributed manner, with devices validating a hierarchical sub-component of the
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overall production plan.

Decentralized Two-Stage Consensus

The two-stage consensus starts when a new production plan is proposed. The first
stage synchronizes the results of the functional validation between the involved
devices. During this stage, unsafe or functionally incorrect plans are filtered out, and
a new plan may be selected based on its optimality. The second stage empowers all
devices affected by the new plan to veto the change.

Majority Consensus The first consensus uses majority voting to select the most
suitable new plan after performing an in-depth functional validation, as de-
tailed in the previous subsection. Given the computational complexity of this
validation, this consensus is formed between the computationally stronger
devices. A majority vote is chosen over a unanimous vote since the functional
validation leads to the same result on all devices.

Unanimous Consensus The second consensus requires all affected devices to
unanimously agree to this new plan. Every device must perform a quick
feasibility analysis and verify its authenticity. Only if every device can fulfill
this new production plan, it can be applied to all devices.

In case a consensus cannot be formed in the second stage, the production plan
may be changed incrementally to exclude problematic devices. Thus, a malicious
device in the second stage would not be able to block the consensus indefinitely.

Simulation Framework

The architecture is implemented in a custom discrete event simulation using the
Python library simpy [150]. It can simulate arbitrary mesh networks, which are
defined in a YAML file and can be visualized in a graphical user interface. The
optimization is currently performed using a greedy algorithm on a graph represen-
tation of the system. The simulation may be executed in real-time or simulation
time, and can automatically output the timestamped interactions between all system
components (see for example Figure 5.8).
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Figure 5.7: Example system of a flexible manufacturing system with conveyor belts
and a backup robot. A workpiece must follow the specification A–B–C–D–B–E.
Functionality B is redundant in stations 2 and 5, every other function is only available
once.

5.2.2

Case Study
To highlight the features of the simulation and to demonstrate the feasibility of the
architecture, a case study is implemented. Figure 5.7a depicts a conveyor belt system
with an additional gripper robot that may serve as a backup to reroute workpieces in
a factory. An abstract system view is visualized in Figure 5.7b, detailing the specific
functions of the stations. Each station (1–6) has a distinct function, where station
2 and 5 are identical. Station 7 is the robot, which has no specific function apart
from transportation. The specification defines that every workpiece must pass all
functions in the order A-B-C-D-B-E. Every station features a device, and there are
four additional gateway devices (101–104) with additional computational power
and no functional capabilities, and two cloud devices (201–202). This case study
illustrates three contributions:

System Configuration The system can autonomously generate and apply a pro-
duction plan.

System Reconfiguration When facing a failure, the system can reconfigure itself
to circumvent the failed device and continue operation.

Decentralized Consensus Using the two-stage consensus algorithm, the devices
can decentrally agree on the course of action.
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Figure 5.8: Time diagram representing the result from the discrete event simulation.
After system initialization (0), a production plan is generated (1). From the point
when all devices agree (3), the new plan runs until a device failure appears (5), at
which point new production plans are generated. Eventually, a new plan is found
and applied (7). Timing is exaggerated for better visualization.

The simulation architecture uses a distributed ledger to share the production
plans and synchronize the system state. The system starts with all devices available,
configures itself, and starts producing. At a predefined point in time, Device 2 fails,
causing a reconfiguration. Because Device 5 is still available, the system remains
functional and continues production at a slower rate by using Device 5 twice and
involving the robot arm. To better visualize the timing behavior, the durations of
computational tasks and communication are exaggerated.

Results

The timing behavior of the simulated case study is displayed in Figure 5.8. Particu-
larly interesting events are marked with numbers. At Event 0, the system description
and specifications are initialized, which leads to the generation of new production
plans. At Event 1, the first plan is created, and the first stage of the consensus begins,
in which the gateway and cloud devices validate the plan. After a majority of de-
vices agrees (Event 2), the second stage of the consensus takes place, which ends at
Event 3. As a result, the production plan is set to valid and the devices are configured.
Consequently, the second production plan, which is now outdated, is dismissed in
the second phase of the consensus (Event 4). When Device 2 fails (Event 5), this is
recognized as a system change (Event 6) and leads to the generation of new plans.
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Eventually, a new plan passes both stages of the consensus and replaces the old plan
(Event 7). Since the last plan is already outdated when it is ready, it is discarded in
the first stage of the consensus (Event 8).

Discussion

The case study highlights the features of the simulation and demonstrates the fea-
sibility of the architecture and the two-stage consensus algorithm. The system can
automatically generate a production plan that enables the control devices to produce.
The greedy graph-search algorithm can find a valid production plan and may in the
future be exchanged for a more elaborate algorithm that can consider a multitude
of factors. The control devices configure themselves when the production plan is
selected and begin the process control autonomously.

After the failure of Device 2, new production plans are generated automatically.
Following a cleanup phase, in which the state of the previous production is discarded,
the involved devices configure themselves again and begin producing according
to the new plan. In the future, this cleanup phase may be replaced by a stateful
reconfiguration, where leftover workpieces are considered. An approach similar to
the calculation of migration routes proposed by Pourmohseni et al. [151] may be
utilized.

The feasibility of the two-stage consensus algorithm is demonstrated. The first
stage, featuring a functional validation, can take place without interrupting the safety-
and timing-critical process control. Only the second stage requires the synchroniza-
tion between all involved devices. As a result, the devices decentrally configure and
reconfigure themselves, showing resilience against failures. The custom simulation
framework performs a meaningful quantitative timing analysis and provides an
extensible skeleton for future implementations.

5.2.3

Conclusion
This section presented an autonomous mode of operation for cyber-physical pro-
duction systems (CPPS) based on the WATERBEAR architecture. This autonomous
system operation mode closes the self-adaptation loop through an automatic produc-
tion plan generation, a functional validation, and a two-stage consensus mechanism.
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A simulation demonstrated the feasibility and benefits of such an architecture: By
closing the self-adaptation loop and integrating consensus mechanisms, the system
autonomously reacts to unforeseen events and recovers its functionality indepen-
dently in a decentralized manner. This indicates an increased resilience over current,
traditional architecture.

This section also highlighted the need for future work to close the loop. Specif-
ically, multi-objective optimization to automatically generate configurations, fast
real-time capable consensus mechanisms, and sophisticated validation mechanisms
to check proposed adaptations in a decentralized manner are needed.

5.3

Key Findings

As identified by Weyns [29], the value of self-adaptation needs to be shown with
empirical evidence. Quantifiable benefits are required to offset the high initial cost
of agility and self-adaptability of ICS. The IEC 61499 standard included dynamic
reconfiguration support since the beginning, yet it is not used in practice. Until now,
the cost has seemed to overshadow the potential gains, which were elusive and hard
to quantify. Consequently, this chapter shines some light on this topic.

This chapter addressed the quantification of resilience gains resulting from
dynamic adaptation. The state of the art in resilience and resilience quantification of
technical systems was analyzed to identify a suitable metric. It was found that single
metrics are inherently flawed in the quantification, however generally, productivity
and availability can be used until better metrics are available. The resilience gains of
an adaptable architecture in contrast to a non-adaptable architecture were evaluated.
The results show that some architectures benefit from adaptability more than others.
Most importantly, fast detection and decision-making mechanisms can increase the
resilience gain, and applications that are costly to restart benefit the most. Finally, a
closed-loop optimization mechanism for decentralized, autonomous, and resilient
operation of IAS was established. The multilayered architecture allows an efficient
separation of concerns with facilitates decentralization. However, decentralization
requires synchronization mechanisms, such as consensus algorithms.
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5.3.1

Prevention, Survival, Recovery
Resilience, as a word, conveys an abstract idea that is broadly understood. How this
idea materializes in a technical system is usually harder to grasp. Scientific literature
has spent a lot of effort on the definition and quantification of resilience which aids
in understanding and implementation.

Dynamic adaptation, on the other hand, is generally understood as a kind
of evolution, or for technical (software) systems, updating of a system. While the
concept is very comprehensible, it’s often underestimated and seen as “just updating”,
especially when considering that the process could be extensively automated. The
link between adaptability and resilience is often missed.

In this chapter, the effects of dynamic adaptation were explicitly demonstrated
to lead to resilient behaviors, namely prevention, survival, and recovery. These terms
are easily understandable and illustrate the significance of dynamic adaptation in
future system architectures. Moreover, they allow a comparison between different
behaviors. The benefit of (fast) dynamic adaptation becomes obvious when it enables
a system to prevent a failure instead of just recovering from it. This particularly applies
to unanticipated faults and failures, which cannot be accounted for at design time.

The three resilient behaviors shown in this chapter are placeholders for all kinds
of resilient reactions to a fault or failure. The focus of this dissertation was on
realizing the ability to adapt, not developing or evaluating ingenious adaptations.
The fundamental adaptability enables all types of complex, resilient reactions and
scenarios to be implemented. For instance, a mixed-criticality approach can be used
to prioritize specific functions over others, leading to a simultaneous degradation of
one function to prevent a loss in another function. The solution space is limited only
by the creativity of the developer, or, in the future, by the generating algorithm.

5.3.2

Monitoring, Analysis, Planning
Closed loop adaptation requires more than just adaptability. To close the loop, a
decision has to be made to trigger an adaptation and the adaptation has to be planned.
In scientific literature, the MAPE feedback loop ([19, 44]) offers a self-adaptation
model with four phases: Monitoring, Analysis, Planning, and Execution.
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The MAPE model applies to all types of adaptive systems and is not specific to
ICS. Thus, an integration of the MAPE model is necessary and ICS-specific require-
ments must be considered. Or, as stated by Weyns [29], domain-specific modeling
languages need to be integrated into self-adaptive engineering.

This chapter proposed a decentralized, autonomous mode of operation for ICS
enabling resilient behavior. A two-stage consensus algorithm permits decentralized
decision-making between the participants while considering resource constraints of
the control devices (or PLCs). The evaluation in Section 5.1.2 further indicates the
relationship between the different phases when it comes to resilient behavior. The
main goal of this dissertation was to realize adaptability and agility in ICS. In terms of
the MAPE loop, this is the fundamental requirement to achieve self-adaptation, since
an architecture that cannot be adapted can also not self-adapt. Once this precursor
is available, the other phases start to matter more: Elaborate data collection, fast
decision-making, and sophisticated planning algorithms are the keys to closing the
loop from adaptability to self-adaptability.

Consequently, once a sufficient level of adaptability and agility is achieved, the
focus must shift towards these three phases. As was seen in Section 5.1.2, the feasible
speed of adaptation, i.e., up to one second for complex changes, means that the other
phases need to reach similar ranges as well, or faster. Monitoring and analysis must
be fast enough to detect a deviation before it can lead to dangerous consequences.
The adaptation must be planned in time, yet this can also be partly achieved at design
time by conceiving fallback configurations that can be used when needed. Regarding
the integration of domain-specific models into self-adaptation, this dissertation has
shown some progress by linking the IEC 61499 standard. Yet, there are further needs.
For instance, the IEC 61499 standard does not have satisfactory behavior models that
could be monitored [127].

5.3.3

Choice of Metric
To make a compelling case for the adoption of (self-) adaptation, a quantitative
analysis is invaluable. On the qualitative level, the term fault tolerance describes the
ability to tolerate faults and failures, however, it is hard to quantify how beneficial a
fault tolerance mechanism is. Finding a suitable, quantifiable metric, thus, permits a
comparison between different techniques and scenarios.
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A resilience metric and the corresponding resilience graphs allow a simple (and
graphical) analysis of the quantitative benefit of a resilience action. Nevertheless, the
resilience graphs require a metric over which a loss of performance can be measured.

This chapter showed how the quantitative impact of dynamic adaptation can
be determined on a simple productivity or availability metric. The resilience loss
caused by a resilience action was measured in lost production time, which is easily
accessible. This metric is on a high enough abstraction level to be easily understood,
yet is straightforward to calculate or simulate.

Often a single metric is incapable of capturing the entire system behavior during
a failure scenario [136]. In these cases, multiple metrics should be combined to paint a
better picture of the multifaceted losses and gains. For instance, lowered productivity
could be overcome by lowering production quality. Then, a compromise must be
made about the acceptable product quality and the required production rate. In a
closed-loop scenario, the system itself must be able to decide in this multi-objective
optimization problem, thus a conversion factor between metrics may be necessary.

5.3.4

Decentralized Decision-Making
As was seen in Chapter 1, multilayered self-adaptive architectures provide separation
of concern which facilitates their implementation. It also enables the decentralization
of tasks, e.g., the generation of configurations. Generally, decentralization allows for
better scalability, since the number of participants can be increased. For instance, the
configuration generation can be outsourced to a powerful cloud server to relieve the
resource-constrained edge and control devices from this task. Furthermore, decen-
tralization eliminates single points of failure and allows for scalable introduction of
redundancies. However, decentralization requires some form of synchronization and
often leads to communication overhead.

This chapter demonstrated that a two-stage consensus algorithm is suitable for
the synchronization of the decision-making process between decentralized partici-
pants in the WATERBEAR architecture. This enables a highly scalable, distributed
generation and validation process. Furthermore, security can be increased by en-
abling the control devices to object to the adaptation and thus preventing compro-
mised devices from triggering malicious adaptations.

The behavior of the architecture was shown in a simulation, yet real implementa-
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tions are necessary. For instance, the consensus mechanism relies on functional vali-
dation, which can be difficult to implement for complex systems. In practice, the issue
of certification and validation of reconfigurations and adaptation is unsolved [139]
and requires further work as well. Nevertheless, decentralized self-adaptation for
ICS was shown to be feasible.
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Chapter 6

Conclusion
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This dissertation has advanced the state of research in dynamic adaptation
and self-adaptation within industrial control systems (ICS). Within Chapter 1, three
principal challenges were identified: the development of an adaptable runtime envi-
ronment, the consideration of consistency during the adaptation, and the examination
of timeliness during the adaptation. The development of an adaptable runtime envi-
ronment is crucial for displaying practical applications and demonstrating technical
feasibility, while consistency and timeliness during the adaptation are critical to
ensure the reliability and dependability of the methods.

This dissertation has provided contributions to all three challenges. Most impor-
tantly, it demonstrated for the first time, how functional consistency and timeliness
can be guaranteed during the dynamic adaptation of an ICS. This is an important
step in bringing dynamic adaptation and self-adaptation into practice, since ICS must
fulfill strict safety and real-time requirements. Previous works in this domain were
either not specific to the domain of ICS, or did not fully consider the consequences to
the functional or real-time behavior.

The previous chapters have shown the contributions of this dissertation to these
three key challenges. This chapter not only summarizes the contributions of this
dissertation but also sets the stage for discussing its limitations and future directions,
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underscoring the impact and potential of the findings within the ICS context.

6.1

Key Findings

This section summarizes the key findings and contributions of the previous chapters
and relates them to each other to underline their significance. The contributions are
ordered by the chapters they appeared in, which also follow the research challenges
from Chapter 1. This analysis lays the groundwork for the limitations and future
steps presented in the next section.

6.1.1

Reconfigurable Runtime Environment
Adaptability and reconfigurability are key enablers to increase the flexibility, main-
tainability, and autonomy of industrial control software. Current standards, such
as the IEC 61131-3 and the IEC 61499 standards offer only primitive support for
dynamic adaptation, a precursor for self-adaptation. Chapter 2 investigates the role
of the runtime environment in the dynamic adaptation of ICS. Therefore, first, the
state of the art in reconfigurable real-time software, in particular for industrial control
(IEC 61499) and telecommunication (Erlang), was summarized. Specifically, current
IEC 61499 implementations were analyzed and compared concerning their execution
semantics. Further, the soft real-time runtime environment of Erlang was evaluated
for an implementation of the IEC 61499 standard. Lastly, a full-fledged compiler from
IEC 61499 models to Erlang was implemented that allows adaptation at runtime
using the high-level paradigms of Erlang, and an evaluation of the scalability of the
implementation was performed.

As described in Chapter 1, a reconfigurable runtime layer is crucial for self-
adaptation, because it can provide effectors that can execute an adaptation designed
by another entity. This allows the middleware to implement the change through ser-
vices, while higher levels consider the use of these services to guarantee consistency
or timeliness (as discussed in Chapters 3 and 4). Three findings of Chapter 1 should
be highlighted specifically:

Reuse of existing technology The reuse of existing technologies for an IEC 61499
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implementation provides stimulus for new developments and allows the com-
parison with the state of practice of other domains. Even though industrial
automation is considered a rather conservative domain, observing other do-
mains and learning from their innovations and mistakes can initiate unique
developments.

Guarantees and Execution Order Guarantees given by the runtime environ-
ment must be communicated transparently. Better guarantees reduce the effort
for the adaptation designer, yet may exponentially increase the complexity of
the runtime. However, the adaptation designer must be aware of the guarantees
that exist, or more importantly, do not exist. For the IEC 61499 execution model,
this, for instance, concerns the possibility of event loss or changes in the event
order. Clear execution semantics are needed, especially if interoperability is
desired.

Real-time Capabilities Sophisticated real-time models require information. The
IEC 61499 model does not provide all of the information necessary for a sophis-
ticated event-triggered real-time execution, for instance, deadlines or priorities.
Erlang, on the other hand, cannot guarantee hard real-time performance but
offers very efficient and sophisticated soft real-time mechanisms that work with
less information. There needs to be a conscious decision about the level of real-
time guarantees and how the necessary information is going to be provided.

The IEC 61499 standard offers a promising framework for implementing an
adaptable runtime environment. However, it is also lacking in clarity about the
execution semantics and the real-time behavior. These issues are magnified during
an adaptation procedure, and when questions of correct behavior arise, as was seen in
the following chapters.

This dissertation compared the support of existing ICS architectures for dynamic
adaptation to a runtime environment used for high-availability telecommunication
systems. While the boundary conditions differ, similar lessons can be learned. Given
that Erlang and its hot-code loading feature have been used in production systems for
decades, these lessons could prove invaluable for the future of ICS.
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6.1.2

Consistency During Reconfiguration
Dynamic adaptation itself does not imply safety during the adaptation. As was seen
in Chapter 1, there are as many types of adaptation as there are reasons to adapt.
For ICS, safe adaptation must consider the physical process and the behavior of
the control system. Functionally, the adaptation may not lead to a violation of the
specification, which lays out the admissible interactions between the control system
and the physical process.

This dissertation implemented a correct-by-design algorithm to automatically
generate safe adaptation or reconfiguration sequences. First, consistency require-
ments and conditions in research were reviewed. Then, an existing consistency
condition (i.e., quiescence) was applied to the domain-specific modeling language
defined by the IEC 61499 standard. This allowed the implementation of an algo-
rithm that automatically selects a safe reconfiguration sequence of operations to
modify a system while preserving the intended application behavior. An evaluation
demonstrated the algorithm on a selection of relevant adaptation scenarios.

From the implementation and evaluation, three key findings are presented here.

Choice of Condition In research, multiple consistency conditions have emerged
over the last decades, e.g., quiescence, tranquility, and version consistency [117–
119]. For application in practice, one condition must be chosen and imple-
mented. In Chapter 3, a variation of quiescence was used to guarantee con-
sistency during a reconfiguration of the IEC 61499 models. This condition is
particularly suitable due to the one-directional interactions between compo-
nents and their well-defined interfaces. Updating the system from event source
to event sink allows the update to push old events out of the system as new
events arrive. While quiescence is simple to implement, other conditions may
be just as or more suitable. Version consistency, for example, is a high-level
condition, yet it requires a detailed transaction model which does not currently
exist for the IEC 61499 models. Given the current state of these models and
the provided information, quiescence is straightforward to implement and can
handle a variety of scenarios.

Feedback Loops Feedback loops lead to circular dependencies between compo-
nents. This cannot be handled easily by quiescence unless more information
about the execution behavior is available. Since the IEC 61499 standard defines
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an executable model, most of the information is available inside the component
but must be inefficiently extracted. Non-deterministic behaviors may also be
infeasible to resolve. A solution could be to integrate better behavior models
into the IEC 61499 standard which enables the decomposition of feedback loops.

Execution Semantics Consistency is required on the system behavior level which
is defined by the executed model and the underlying execution semantics. Am-
biguous execution semantics make it impossible to derive a clear consistency
condition because the behavior can be inconsistent even without an adaptation
taking place. Two issues in the IEC 61499 models are the separation between
data and event connections, and the lack of suspension mechanisms. While
these issues can be and have been solved, they would need to be formalized
within the IEC 61499 standard.

Consistency is crucial for the adoption of dynamic adaptation and eventual self-
adaptation. Yet, consistency during adaptation depends upon a consistent execution
model to build on or transparency about the inconsistencies. For ICS, the existing
consistency conditions suffice, yet they have to be properly integrated into the
domain-specific languages. For the IEC 61499 standard, this would require the
community to settle on one semantic and accept the necessary changes to the standard.
On the other hand, settling on a compromise, e.g., regarding the choice between event-
triggered and cyclic execution, or the type of event-triggered real-time execution,
may water down the consistency guarantees.

6.1.3

Timeliness during Reconfiguration
The consistency conditions developed in this dissertation allow the generation of
functionally safe reconfiguration sequences. Yet, the execution may lead to intolera-
ble delays of the real-time behavior that can lead to catastrophic failures of the ICS.
Chapter 4 extended the necessary schedulability theory to reconfiguration sequences,
thus allowing a decisive assessment of the satisfiability of real-time constraints during
an adaptation. First, the state of the art in real-time scheduling in programmable
logic controllers (PLCs) was summarized, particularly focusing on dynamic recon-
figuration. Next, a scheduling problem for dynamic adaptation was defined and
the impact of an adaptation on the real-time behavior was investigated. A decision
criterion was specified that determines if a reconfiguration sequence is schedulable
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for a given system. Finally, the execution times of reconfiguration services in a real
system were measured, and estimated adaptation times were extrapolated to indicate
the agility of the architecture.

This dissertation advanced the state of research on schedulability analysis regard-
ing the IEC 61499 standard and dynamic adaptation. While real-time performance
was always expected and partially shown (e.g., in [50]), this did not cover the adapta-
tion phase and most importantly not while simultaneously guaranteeing consistency
of the running application. From the achievements of Chapter 4, three notable
contributions are:

Quantifiable Blocking Behavior The timing disruption of a dynamic adaptation
task is the blocking time that results from the suspension of other components.
The disruption can be quantified using the priority ceiling protocol (PCP). The
blocking time depends on the order of operations within the reconfiguration
sequence. Smaller, incremental reconfigurations would thus be less disruptive
to the real-time behavior.

Extended Schedulability Blocking caused by the adaptation affects the schedu-
lability. In this dissertation, a schedulability condition for rate monotonic
scheduling was shown. This scheduling condition can be used to find an op-
timal reconfiguration sequence with a minimal disturbance of the real-time
performance, yet not every adaptation can be achieved in real-time. Conse-
quently, developing a reconfiguration sequence should be done iteratively,
while keeping the real-time laxity in mind. In addition, this laxity needs to be
considered during the initial setup of the system. If the system is at capacity
without the extra load of a reconfiguration, the adaptation may be infeasible.

Domain-specific Models Current domain-specific models lack the necessary in-
formation to perform the schedulability analysis necessary to guarantee hard
real-time behavior. While it was shown that dynamic adaptation can be rea-
sonably fast, the event-triggered execution of the IEC 61499 standard requires
more advanced scheduling models but does not currently hold the information
to implement them.

This dissertation investigated the real-time feasibility of dynamic adaptation
and the reachable agility of such an architecture. It was shown that hard real-time
schedulability with strict guarantees is feasible if the necessary models are available.
For the IEC 61499 models, this is complicated by the event-triggered execution. In
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practice, dynamic adaptation can apply complicated changes within seconds without
disrupting real-time behavior, which promises great agility compared to the state of
practice.

6.1.4

Agility and Resilience
Dynamic reconfiguration has been a less-marketed feature of the IEC 61499 standard.
Similarly, in Erlang, hot-code loading is known but rarely applied in production.
This can be blamed on incomplete or poorly documented implementations, yet
another reason is that the benefit may be hard to quantify. For instance, the nine-
nines availability22 of Erlang was only impressive after it was achieved and had been
measured.

The agility and self-adaptability of ICS are irrelevant if the benefits cannot be
quantified. Although the IEC 61499 standard has included dynamic reconfiguration
in principle since its inception, it is rarely used in practice. In past applications, the
cost overshadowed the potential gains, which were elusive and hard to quantify.
Chapter 5 addressed the quantification of the resilience gain that results from the use
of dynamic adaptation. The state of the art in resilience and resilience quantification
for technical systems was examined to identify a suitable metric. Next, a closed-loop
optimization mechanism for decentralized, autonomous, and resilient operation of
IAS was established to extend the concepts of self-adaptation. Finally, the resilience
and resilience gains of an adaptable architecture in contrast to a non-adaptable
architecture were evaluated in several scenarios.

Resilience is not a prerequisite for most technical systems. Even when a type of
recovery is needed, in most applications, this can be done via manual intervention,
e.g., manually resetting the system and fixing the issue. However, for modern
software architectures and distributed, non-stop systems, resilience can be highly
desirable. A central argument of this dissertation is the value of dynamic adaptation,
as it enables a transition towards self-adaptation, which offers its own set of benefits:

Prevention, Survival, Recovery Adaptability and agility of the ICS enables re-
silient behavior in response to unanticipated events. Depending on the fault
and reaction speed, and the agility of the system, a degradation can either be
prevented, survived, or recovered. The questions of which of these scenarios

22Erlang is said to have achieved nine-nines of uptime, i.e., 99.9999999 %.
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takes place should be considered during system design.

Monitoring, Analysis, Planning In addition to adaptability, closed-loop adapta-
tion requires monitoring, analysis, and planning. Once the system demonstrates
sufficient agility, the monitoring, analysis, and planning phases become sig-
nificantly more important. Thus, adaptability serves as a multiplier for the
relevance of the other phases. Considering the importance of big data, it is
surprising how much the planning and execution phases have been neglected.

Choice of Metric Comparing resilience actions requires a metric over which they
can be compared. Productivity is an obvious choice, but can be difficult to
measure. Generally, relating low-level actions to high-level effects (i.e., costs)
promises the highest benefit.

In Chapter 5, the step from agility to resilience was shown to indicate the significance
of dynamic adaptation for ICS. It was shown that dynamic adaptation is a precursor
to self-adaptive behavior, and given the current feasibility of dynamic adaptation,
the focus can shift towards the earlier phases of the MAPE self-adaptation loop.

6.2

Research Limitations and Future Directions

While this dissertation provided distinct contributions to the area of dynamic adap-
tation and self-adaptation, it is not without limitations. The contributions of this
dissertation build upon previous scientific contributions, and themselves provide a
foundation for future scientific work. Applying the results to practice would be its
own, fascinating journey, but unquestionably out of scope for this work. Thus, this
section elaborates on the limitations of this work and highlights a selection of the
next steps that seem appealing and important.

6.2.1

Research Limitations
The limitations are split into two categories: methodological limitations and gen-
eralizability limitations. The methodological limitations address the choices made
during the dissertation. The generalizability limitations, on the other hand, describe
the reservations when introducing this research into practical application.
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Methodological Limitations

The main parts of this dissertation, namely chapters 2 to 5, have shown different
aspects of the design, implementation, and validation of adaptable and self-adaptive
systems. This required several choices to be made, that need to be critically assessed.
Design Choices Two noteworthy design choices of this dissertation are using the
IEC 61499 models as an input, and applying the MAPE and MORPH self-adaptation
models. The MAPE model is commonly used and operates on a high abstraction
level. The MORPH architecture is less known, however the usage in this dissertation
is exemplary and not prescriptive. In this sense, these models could be replaced
as new models appear. The IEC 61499 standard, on the other hand, can appear as
a questionable choice given the lack of adoption in practice. The selection of the
IEC 61499 models in this dissertation is a strategic choice, grounded in their relevance
to the research challenges, rather than an arbitrary decision. Shortcomings of the
current state of the IEC 61499 standard are made clear throughout this work. The
standard does, however, provide the best starting point for the path taken in this
dissertation. The obvious alternative, the IEC 61131 standard, lacks some of the re-
quired characteristics, namely the reconfiguration framework and the fragmentation
of the global state. Nevertheless, given some modifications, the contributions of this
dissertation could be coined for any component-based architecture for ICS.
Behavior assumptions The generation of reconfiguration sequences in Chapter 3
relies on the knowledge of the execution traces between components. This knowl-
edge is not defined within the IEC 61499 standard. The presence of this information
is necessary to guarantee the functional consistency of the behavior. Without it, the
algorithms presented in this dissertation may fail to uphold consistency conditions,
potentially resulting in unpredictable behavior. In its absence, it is possible to ap-
proximate the execution traces from the component connections. It is also possible
to observe the execution traces in a real system or a simulation. Better information,
in this case, leads to a smaller disruption to the system, because fewer components
need to be stopped. A lack of information, in contrast, would require larger areas of
the application to be stopped.
Real-time assumptions Similarly, the existence of real-time scheduling information
was taken for granted in Chapter 4, although it is not part of the IEC 61499 standard
and is not available in current IDEs. Without this information, schedulability analysis
is impossible and the timeliness of the adaptation cannot be verified. Also, generally,
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real-time execution is not possible without knowing the constraints you need to
satisfy. This usually includes deadlines, cycle times, and execution times.
Validation Chapter 4 and Chapter 5 both rely on measurements within a controlled
environment and assumptions about how real-world examples would scale. In prac-
tical applications, this may be different. For instance, a novel runtime could be much
faster or slower in executing individual reconfiguration instructions. Alternatively, a
practical application may be larger or smaller than the scenarios identified within
this dissertation, or their composition may differ. For instance, the critical RECONF
phase of an application could be longer in comparison with the other phases. For
this dissertation, shorter reconfiguration times or smaller reconfigurations would not
undermine the overall conclusions. Significantly longer execution times of individual
reconfiguration services could represent an issue that would need to be compensated
through system design. However, as defined in the standard, these services should
be executed quickly. Different sizes of applications were considered in the adaptation
scenarios with generous margins.

These methodological limitations show the decisions and assumptions necessary
to achieve the contributions. Individual choices can be seen as questionable, and
some assumptions could have been weakened. Nevertheless, choices, such as using
information that is not part of the IEC 61499 standard, were necessary to challenge
the state of the art.

Generalizability Limitations

Apart from the methodological choices, the contributions of this dissertation could
be seen as too narrow or only applicable to a small subset of systems. These general-
izability limitations are discussed here.
Use case specificity As was previously seen, dynamic adaptation and particularly
self-adaptation are not strict requirements for most technical systems, and they intro-
duce overhead. Thus, the benefit of dynamic adaptability could be much smaller for
some systems. For instance, there is a common argument that dynamic adaptation is
less important for cars because they spend half the day in a stationary or safe position
and don’t need to be adapted while they are driving. Similarly, manufacturing sys-
tems that only produce during the day can be easily modified during the night shift.
Consequently, the use case for dynamic adaptation may be smaller than expected.
Nevertheless, it should not be forgotten that dynamic adaptation can be a stepping
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stone towards self-adaptation, and that today’s systems are not necessarily predictive
of how future systems will operate. In a drift towards more software-defined systems,
self-adaptation can displace hardware redundancies and enable fine-grained process
optimizations within seconds. In connection with artificial intelligence, dynamic
adaptation provides the agile execution step of the MAPE cycle, whereas AI could fit
into the analysis and planning phases.
Ongoing developments The technology world is changing continuously. While the
OT world is changing much slower than the IT world, it is changing nevertheless.
This can lead to developments that make the contributions of this dissertation obso-
lete, for instance, a true “IT-OT convergence” in the sense of abandoning traditional
PLC languages or introducing serverless architectures. However, the gap between IT
and OT systems is not arbitrary. The requirements are different. While Javascript has
taken a dominant position in web applications and is more and more leaking into the
backend, it was simply not made to satisfy real-time requirements. And while the IT
world is transitioning towards cloud architectures where serverless functions make
sense, embedded systems are always linked to a physical system. The contributions
of this dissertation build upon basic architectures for ICS and component-based
systems, which are unlikely to become obsolete in the future.

Anticipating the future is inherently uncertain. Whether or not self-adaptation
will eventually persist needs to be seen. The currently ongoing developments are
exciting, yet do not pose threats to the applicability of dynamic adaptation as shown
here. If anything, the softening of real-time constraints could make this research
more likely to become practical.

6.2.2

Future Directions
Application A key component of extending this research should go towards ap-
plicability. This specifically means going back to practitioners, understanding their
needs, problems, and capabilities, and identifying the correct solution that pushes the
envelope of what is currently possible. On the other hand, one should not get stuck
in the weeds of trying to implement small, incremental changes. This particularly
concerns the application of real-time theory in practice. The current status quo in
industrial automation seems to rely on cyclic execution because this is what is known
to work. However, this theory fails for distributed applications. The IEC 61499 stan-
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dard thrives on event-driven execution, however offers very little help to achieve this
in real-time. Research has shown how event-driven execution can be achieved for the
IEC 61499 standard, and this dissertation has shown that even dynamic adaptation
can be performed under full real-time constraints. However, the real-time models
rely on deadlines of event chains which most IEC 61499 users have no understanding
of and wouldn’t know how to specify. This gap needs to be closed, or other real-time
models need to be found, that end-users would be comfortable with.
Implementation The Erlang implementation from Chapter 2 is prototypical and
not necessarily suitable for hard real-time execution. The existing IEC 61499 imple-
mentations are lacking parts of the required features, e.g. full dynamic adaptation
support and event-driven real-time execution. Furthermore, the higher levels of the
WATERBEAR architecture, for instance, configuration generators and managers are
non-existent in practice. Consequently, these hold potential for future research. Three
areas are of particular interest:

1. A fully-adaptable runtime environment with a strong focus on clear real-time
execution semantics,

2. Configuration managers and validators which can verify an application or
configuration given a behavior specification or high-level constraints, and

3. Configuration generators which can autonomously create applications or con-
figurations according to high-level descriptions or change requests.

The runtime environment serves as the base layer for experiments and practical use
cases. The configuration managers and validators support the developer, emphasize
the benefits of unambiguous execution semantics, and provide the ability to differ-
entiate between “good” or “valid” and “bad” applications. Finally, the generators
close the feedback loop to fully demonstrate the benefits of an adaptable runtime in
practice.
Validation Closing the gaps in the theories and implementing a prototype for use
in production systems are the necessary steps to finally validate the closed-loop
behavior on a real-world system. Theoretical results suffice for research purposes,
but to achieve adoption in a conservative domain such as industrial automation, the
capabilities must be demonstrated in a real use case. This cannot be the first step,
but it also certainly can’t be the last—because enabling adaptability and agility in
automation systems is not the end goal, it’s the starting point for new research.
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After agility The works in this dissertation should not be self-serving. The con-
tributions are building blocks intended to make the idea of dynamic adaptation
and self-adaptation digestible and palatable. Once they have arrived, the real work
can begin to properly control and operate such systems optimally. How can we
tell a self-adaptive control system what we want it to achieve? How can it explain
its behavior and decision-making process back to the operator? How should these
systems work together in global supply chains? What are the consequences on the
hardware and human layers, when the software is fully adaptable? These questions
will need to be answered by the following research.

6.3

Concluding Remarks

Current industrial control architectures must provide increased agility and adapt-
ability to cope with the uncertainties and complexities of the modern, connected
world. Yet, while the ideas of adaptability and agility have been discussed since the
1990s, modern closed-loop self-adaptation has not been achieved in industrial control
systems (ICS).

In this dissertation, the gap between IT and OT concerning adaptability and
agility was narrowed, and a roadmap towards resilience was brought to light. Explic-
itly, four contributions should be highlighted.

• The adaptability of current ICS middlewares was inspected and compared to
IT environments. An adaptable middleware was implemented that allows the
reuse of a modern IT ecosystem for ICS.

• The automatic generation of reconfiguration sequences was investigated and im-
plemented using a correct-by-design algorithm that resolves the dependencies
and respects the functional consistency requirements.

• Existing real-time models for ICS were extended to cover the dynamic adapta-
tion phase. A metric was defined that allows the optimization of the reconfig-
uration sequences to respect both functional consistency and non-functional
timing requirements.

• The effect of dynamic adaptation on resilience as part of a self-adaptive archi-
tecture was demonstrated. It was shown that all applications can benefit from
dynamic adaptation, yet hard-to-restart systems benefit the most, and dynamic
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adaptation capitalizes on fast detection and decision-making mechanisms.

Self-adaptation is not one discrete task but requires many distinct pieces to work
together. Within this dissertation, some pieces to the puzzle were put into their
correct location. Other pieces were sketched out, and new pieces were found. In the
author’s opinion, the task of self-adaptation is so vast, that there will always be areas
of improvement. The best way to handle this prospect is to divide and conquer and
build extensible interfaces between the components of these exciting, self-adaptive
architectures.
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Acronyms
CPPS cyber-physical production system

CPS cyber-physical system

DAG directed acyclic graph

DM deadline monotonic

ECC execution control chart

EDF earliest deadline first

EROI evolution region of interest

ERTS Erlang Runtime System

FB function block

FBD function block diagram

IAS industrial automation system

ICS industrial control system

IL instruction list

IT information technology

LD ladder diagram

MAS multi-agent system

OT operational technology

OTP Open Telecom Platform

PCP priority ceiling protocol

PID process identifier

PLC programmable logic controller

POU program organization unit

QoS quality of service

RCA reconfiguration control application

RM rate monotonic
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RMS Reconfigurable Manufacturing System

RTE runtime environment

SFC sequential function chart

ST structured text

V&V validation & verification

WCET worst case execution time
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