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Abstract
Neutron scattering is an essential tool for investigating the physical properties of condensed
matter systems across a wide range of temporal and spatial scales. This thesis provides
a two-fold exploration of this broad topic, on the one hand emphasizing the potential of
inelastic neutron scattering for the investigation of lattice dynamics and, on the other hand,
exploring current issues in neutron optics and potential avenues to overcome them.

Within the first part, we elucidated a phonon softening in the Jahn-Teller active compound
LuVO3. This softening coincided with a monoclinic-to-orthorhombic structural phase transi-
tion at 82.5 K, accompanied by a change in orbital and spin order. Utilizing inelastic neutron
scattering at several three-axis spectrometers (EIGER, PUMA, and MIRA-2), we systemati-
cally examined the lattice dynamics of a single crystal of LuVO3 along various high-symmetry
directions, observing the expected longitudinal and transverse acoustic phonon modes. A
single transverse acoustic phonon branch was found to reproducibly express a phonon soft-
ening close to the zone boundary. When cooling below 82.5 K, we observed a small but
significant discontinuous reduction of the phonon energy by 0.3 meV, corresponding to 3 %
of the total phonon energy of about 10 meV.

This softening was explored in the context of elastic anomalies due to structural phase
transitions. An improper ferroelastic transition has been identified to optimally predict the
observed discontinuity in energy. Further exploration of the compound with supersonic mea-
surements, an investigation of the order of the transition, and studying the system’s reaction
to pressure are envisioned for a deeper understanding of the underlying lattice dynamics.

The second part of the thesis addresses current challenges in neutron optics by introducing
nested mirror optics as an innovative solution to overcome under-illumination issues during
neutron extraction from compact sources. Nested mirror optics are, in essence, laterally
nested reflective surfaces that enable efficient neutron transport and the recovery of the
initial volume of neutron phase space at a specific point. Their favorable characteristics
have been validated through analytic calculations, Monte Carlo simulations, and neutron
measurements. Those measurements encompassed neutron imaging and experiments with
position-sensitive detectors to explore the transport characteristics of parabolic and elliptic
nested mirror optics, demonstrating a high efficiency of transport and the expected preser-
vation of the neutron phase space. Additionally, we utilized two orthogonal planar elliptic
nested mirror optics to image one- and two-dimensional intensity distributions.

Despite engineering challenges, including deformations of the thin silicon substrates due
to the neutron supermirror coatings applied on one side only, nested mirror optics exhibit
promising potential in beam extraction, long-distance neutron transport, and sample focus-
ing. Considering the results presented here, we strongly recommend the incorporation of
nested mirror optics into the toolbox of neutron optics and beamline design, especially for
future compact high-brilliance neutron sources.
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Zusammenfassung
Die Neutronenstreuung ist ein wichtiges und vielfältiges Instrument zur Untersuchung der
physikalischen Eigenschaften von Systemen der kondensierten Materie über einen weiten
Bereich von zeitlichen und räumlichen Skalen hinweg. In dieser Arbeit behandeln wir dieses
umfassende Thema auf zweierlei Weise, indem wir einerseits das Potenzial der inelastis-
chen Neutronenstreuung zur Erforschung von Gitterdynamiken hervorheben und anderer-
seits einige der gegenwärtigen Herausforderungen der Neutronenoptik und Ansätze zu deren
Überwindung behandeln.

Im ersten Teil untersuchen wir die Gitterdynamik eines Jahn-Teller-aktiven Einkristalls
LuVO3, wobei wir eine Energieänderung eines transversalen Phononenzweigs in der Nähe
eines strukturellen Phasenüberganges bei 82.5 K feststellten, welcher mit einer Änderung
der Orbital- und Spinordnung einhergeht. Mithilfe inelastischer Neutronenstreuung an ver-
schiedenen Drei-Achsen-Spektrometern (EIGER, PUMA und MIRA-2) haben wir die Gitter-
dynamik in LuVO3 entlang mehrerer hochsymmetrischer Richtungen untersucht und dabei
die erwarteten longitudinalen und transversalen Phononenmoden beobachtet. Nur in einem
einzigen transversalen, akustischen Phononenzweig beobachteten wir eine Energieänderung
in der Nähe der Zonengrenze. Sobald der Kristall unter 82.5 K abgekühlt wird, stellen wir hier
reproduzierbar eine kleine, aber signifikante Reduzierung der Phononenenergie um 0.3 meV
fest. Dies entspricht etwa 3 % der Phononenenergie von 10 meV.

Diese sprunghafte Energieänderung wurde im Zusammenhang mit elastischen Anomalien
bei strukturellen Phasenübergängen diskutiert. Das beobachtete Verhalten lässt sich durch
einen “improper ferroelastic” Phasenübergang am besten erklären. Weitere Untersuchungen
hinsichtlich der Ordnung des Übergangs und der Reaktion des Systems auf Druck werden
Teil zukünftiger Forschung sein, die unser Verständnis der Gitterdynamik in LuVO3 weiter
vertiefen wird.

Der zweite Teil der Arbeit befasst sich mit aktuellen Herausforderungen der Neutronenop-
tik und stellt verschachtelte Spiegeloptiken als neuartigen Ansatz zur Überwindung von Un-
terausleuchtungsproblemen bei der Neutronenextraktion aus kompakten Quellen vor. Diese
Optiken basieren auf verschachtelten reflektierenden Oberflächen, die einen effizienten Neu-
tronentransport zwischen zwei Punkten ermöglichen, ohne den an der Quelle emittierten
Neutronenphasenraum unwiederbringlich zu verdünnen. Die vorteilhaften Eigenschaften der
Optiken wurden durch analytische Berechnungen, Monte-Carlo-Simulationen und Neutro-
nenmessungen verifiziert. Unter anderem wurden Neutronenbildgebung und positionssen-
sitive Detektoren verwendet, um die Eigenschaften von parabolischen und elliptischen ver-
schachtelten Spiegeloptiken zu untersuchen. Hierbei wurden eine hohe Transporteffizienz
und die Beibehaltung des Neutronenphasenraums nachgewiesen. Zusätzlich wurde die Ab-
bildung von ein- und zweidimensionalen Intensitätsstrukturen realisiert.

Die Optiken zeigen großes Potenzial für die Quellextraktion, den Transport über große
Entfernungen und die Fokussierung von Neutronen auf die Probe, und erweitern dadurch
den Baukasten der Neutronenoptik gerade im Hinblick auf kompakte, hochbrillante Quellen.
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1. Introduction
Neutron scattering is a powerful and versatile technique often utilized at the forefront of
experimental solid-state physics. Our exploration of this topic within this work is dual;
on the one hand, we utilized inelastic neutron scattering to investigate the softening of
a transversal phonon branch in the rare-earth vanadate (REV) LuVO3, and on the other
hand, we propose nested mirror optics (NMO) as an addition to the toolkit of contemporary
neutron optics to enhance the efficiency of neutron extraction from compact sources and to
facilitate the transport of neutrons to various scattering experiments.

Constituting the first part of this thesis, we used inelastic triple-axis neutron scattering
to study the lattice dynamics of LuVO3, a REV distinguished by possessing the rare-earth
element with the smallest ionic radius. Consequently, it exhibits unique properties that have
attracted significant scientific attention. In agreement with the behavior of other REVs,
at room temperature, LuVO3 adopts an orthorhombic Pbnm crystal structure [1, 2] due to
a size mismatch between the vanadium and lutetium ions, as indicated by a Goldschmidt
tolerance factor of α = 0.83 [3]. The two unpaired electrons of the vanadium ion facilitate a
cooperative Jahn-Teller effect, distorting the surrounding oxygen octahedra concurrent with
the presence of long-range orbital order (OO).

When the temperature is lowered below TOO1, the REV undergo a structural phase tran-
sition to the monoclinic P21/b structure, accompanied by the emergence of G-type OO.
The individual values of TOO1 fall within the range of 160 K < TOO1(REV) < 210 K, with
TOO1(LuVO3) = 177 K. Adhering to the Goodenough-Kanamori rules [4], C-type spin or-
der (SO) emerges with further cooling below TSO1. LuVO3 and similar REV containing
rare-earth elements with small ionic sizes experience a second structural phase transition
at the lowest ordering temperature TSO2 = 82.5 K. At that temperature, they revert to
the room-temperature orthorhombic Pbnm structure, concomitant with a change to G-type
SO and C-type OO. LuVO3’s magnetic structure and spin dynamics have been the subject
of significant scientific interest. A preceding disagreement regarding the explanation of an
unconventional magnetic scattering phenomenon, initially explained by an orbital-Peierls
dimerization model [5], has been resolved in favor of a Jahn-Teller-mediated alteration of
the in-plane magnetic exchange parameters [2].

In the subsequent investigation within this work, we will explore the lattice dynamics in a
single crystal of LuVO3 focusing on the longitudinal and transversal acoustic phonon modes,
which are intimately connected to the elastic constants of the compound. Utilizing triple-
axis spectroscopy, we observe the softening of a specific transversal phonon branch. Upon
cooling below TSO2, the energy of the transversal acoustic TA1 phonon mode discontinu-
ously decreases by 0.3 meV at the zone boundary, concomitant with the structural phase
transition. Albeit only constituting 3 % of the total phonon energy, 10 meV, the softening
was reproducibly observed across various instruments and beamtimes. Within the resolution
limits, this softening is not accompanied by a change in linewidth. We interpret these find-
ings in the context of elastic anomalies during structural phase transitions [6] and find good
qualitative agreement with the behavior predicted by an improper ferroelastic transition.
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2 CHAPTER 1. INTRODUCTION

The second part of the thesis is dedicated to assessing the current state of neutron optics and
proposing NMOs as an advancement beyond the presently used long, non-linearly tapered
guides.

Despite being a powerful and versatile technique, neutron scattering faces various chal-
lenges, including small samples, weak (magnetic) scattering signals, comparatively weak
sources, and extensive sample environments that increase the background of the measure-
ments. Consequently, experiments often involve prolonged measurement times, if feasible at
all. Neutron optics have been developed to enhance the flux at the sample position while
minimizing the number of interactions of neutrons with the sample environment, aiming to
improve the signal-to-noise ratio [7, 8]. However, when combined with compact sources, these
solutions are limited by the under-illumination of large neutron guides, drastically reducing
the instrument’s efficiency [9]. Special attention is required to prevent under-illumination
at modern high-brilliance sources like the butterfly moderator at the European Spallation
Source [10] and the planned accelerator-driven Jülich High Brilliance Source [11, 12]. A re-
liable solution to under-illumination effects during neutron extraction would enable the free
optimization of the moderator design to achieve the highest possible brilliance usually ob-
tained for more compact sources matching the extent of the sample. Intending to ultimately
expand the present toolkit of contemporary neutron optics, we will present in the second
part of this thesis NMOs as a potential solution to address the under-illumination problem.

In essence, NMOs are based on an assembly of laterally nested reflective surfaces with
common focal points, drawing inspiration from similar configurations employed in X-ray
spectroscopy [13] and from previous applications for enhancing neutron beam characteristics
[14, 15, 16, 17, 18]. Specifically, our double planar NMOs, encompassing both parabolic and
elliptic mirror geometries, preserve the neutron phase space density and thereby facilitate
the extraction of a compact neutron source and the subsequent transport with high efficiency
[19].

Throughout this work, we combined analytic calculations, Monte Carlo simulations, and
neutron measurements to validate the excellent transport properties of NMOs. We utilized
a position-sensitive detector and neutron imaging to confirm the simulated and calculated
characteristics, demonstrating a high efficiency of transport Q ≥ 70 % and the preservation
of the emitted beam shape; however, not without unexpected challenges. An unforeseen
deformation of the mirrors was observed during the investigation of the non-polarizing pro-
totypes. This deformation was attributed to a tensile surface stress induced by applying the
supermirror coatings on a single side of the substrates and was carefully examined using a
3D scanner.

Supported by Monte Carlo simulations, we explore various applications of NMOs, focusing
on their potential in beam extraction, long-distance transport, and, ultimately, focusing
neutrons onto a compact sample. The discussions and findings underscore the promising
potential of NMOs as a transformative technology for shaping the future landscape of neutron
optics and beamline design.
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Outline

The thesis is structured as follows: We begin with a concise review of neutron scattering,
covering the theory and instrumentation for triple-axis and imaging applications.

Chapter 4 details the investigation of the lattice dynamics in LuVO3. We begin by review-
ing rare-earth vanadates, emphasizing their structural properties and the consequential co-
operative Jahn-Teller effect. Presented neutron scattering data from triple-axis spectroscopy
reveal unexpected changes in LuVO3’s lattice dynamics, discussed in the context of anoma-
lous changes of the elastic constants during structural phase transitions.

The second part commences with a review of neutron sources and the role of neutron
guides. As a solution to the prevalent issue of under-illumination, we then propose nested
mirror optics as an alternative to long guides. We explore the theory of nested mirror
optics, addressing geometric aberrations in elliptic guides and showcasing NMOs as a natural
solution. Additionally, we present the preliminary investigation of an NMO prototype at
MIRA-2, confirming its transport efficiency. Subsequently, the evaluation of the imaging
properties of further prototypes at BOA is discussed, followed by a thorough examination
of the observed mirror deformations. In the concluding chapters, we highlight potential
applications of NMOs in beam extraction, transport, and focusing, suggesting a promising
avenue for advancing neutron optics. The thesis concludes with a summary of the main
results and an outlook proposing further investigations.
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2. Neutron Scattering - Quantifying the Inter-
action between Neutrons and Matter
The history of neutron scattering dates back to the 1930s before the scientific community
was aware of the existence of neutrons. One could argue that it started with Chadwick and
Feather, who explored the interaction between an unknown form of radiation, now known to
consist of neutrons, and various materials [20]. The two monitored the characteristics of the
scattering to determine the mass of the unknown particles, estimating it to roughly equal
that of a proton.

Today, with the properties of the neutron being well established, we continue to use various
scattering techniques. However, our focus has shifted from elucidating the properties of the
neutron itself to gaining insights into the characteristics of the scattering partner. Neutron
scattering now is an important tool for probing condensed matter on various temporal and
spatial scales. Neutrons, being uncharged particles, offer complementary insights compared
to probes that strongly couple to the electromagnetic field, such as electrons or photons.
Specifically, neutrons interact with the nuclei and weakly with any magnetic moments, en-
abling the investigation of the corresponding properties of the sample.

To harness the potential of neutrons for the investigation of lattice dynamics and magnetic
excitations, one must obtain a solid understanding of the theory describing the interaction
between neutrons and matter, comprehensively summarized here.

2.1 Properties of the Neutron
We will begin our introduction with an overview of the fundamental properties of the neutron.
A more detailed account can be found in the summary by Abele [21].

The neutron is an uncharged particle, meaning it carries zero measurable electric charge(1).
It possesses a mass of mn = 1.674 927 498 04(95)× 10−27 kg, slightly greater than that of the
proton with a ratio of mp/mn = 0.998 623 478 12(49) [23]. A free neutron, not bound within
a nucleus, undergoes β-decay, resulting in a proton, an electron, and an electron neutrino
with a mean lifetime of τ = 878.4(5) s [24]. Neutrons are classified as spin-1

2
particles

possessing a magnetic moment of µn = −9.662 365 1(23)× 10−27 JT−1 [23]. There is an
ongoing debate regarding the existence and the magnitude of the neutron’s electric dipole
moment. As of 2023, it has not been observed, with the current current best estimate being
dn = (0.0± 1.1stat ± 0.2sys)× 10−26 e cm [25].

In addition to these fundamental characteristics, neutrons possess a kinetic energy, Ekin,
which is often expressed in terms of other, related magnitudes,

kBTmod = Ekin =
v2mn

2
=

p2

2mn

=
~2k2

2mn

=
h2

λ2

1

2mn

. (2.1)

Here, v represents the velocity of the neutron, p is its momentum, and k denotes the wavevec-

(1)Baumann et al. determined the neutron’s charge to be qn = −0.4(11)× 10−21 e [22], which is in good
agreement with the expected lack of charge.
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6 CHAPTER 2. THEORY OF NEUTRON SCATTERING

tor, which is related to the de Broglie wavelength by k = 2π/λ(2). h = 6.626 070 15× 10−34 J s
and ~ = h

2π
denote the Planck constant and the reduced Planck constant.

Neutrons are often classified based on the temperature of the moderating material, Tmod,
resulting in the loosely defined terms of cold, thermal, and hot neutrons. Table 2.1 gives an
overview of these categories in terms of the other magnitudes presented in Eq. (2.1). It should
be noted that Eq. (2.1) only holds for non-relativistic neutrons, which is well justified for
typical moderator temperatures. In summary, we observe that the energies and wavelengths

category Tmod (K) E (meV) k (�A−1
) λ (�A) v (m/s)

cold 25 2.2 1.02 6.16 642
thermal 300 26 3.53 1.78 2224
hot 2300 200 9.78 0.64 6158

Table 2.1: Characterization of neutrons in terms of commonly used physical quantities. The
values for the cold, thermal, and hot regimes are approximate and can vary depending on
the field of study or personal preferences. The here quoted temperature values correspond
to the specific sources installed at the FRM-II [26].

of thermal and cold neutrons align well with the energies of collective excitations, such as
phonons and magnons, and the interatomic distances of common crystals, respectively. This
observation qualifies neutrons as ideal probes for investigating typical condensed matter
systems.

Following this overview of the fundamental properties of the neutron, our focus shifts
towards describing the characteristics of a neutron beam, which is, in essence, a large number
of neutrons traveling in a similar direction.

2.2 Properties of a Neutron Beam
In the context of neutron optics, neutron beams are commonly characterized in terms of their
flux, brightness, and brilliance. These magnitudes will briefly be defined here to prevent any
misinterpretations.

• Neutron flux, Φ, quantifies the number of neutrons passing through a specific area, A,
in unit time, t, normalized by that time and area:

Φ =
# neutrons passing through area A during time t

A t

[
1

cm2 s

]
. (2.2)

Here, A is oriented such that its surface normal is parallel to the average direction of
the neutron beam. Integrating the flux over a given time yields the fluence [1/cm2].

• Neutron brightness, b, is a differential measure that incorporates information about
the angular distribution of neutrons. It is defined as the neutron flux in a specific

(2)The de Broglie relationship, |~p| = h/λ = ~|~k|, is utilized to express the neutron momentum, ~p, in terms

of its wavevector, ~k.
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direction enclosed by a solid angle, dΩ, normalized by this solid angle:

b =
Φ in a given direction enclosed by dΩ

dΩ

[
1

cm2 s sr

]
. (2.3)

• Neutron brilliance, B, refers to a double differential magnitude that considers both the
angular and energy distribution of the neutrons. In comparison to the brightness, b,
only neutrons with an energy between E and E + dE are considered [27]:

B =
b with neutron energies between E and E + dE

dE

[
1

cm2 s sr meV

]
. (2.4)

Whereas neutron flux serves as the fundamental indicator for beam intensity, neutron bright-
ness offers a more nuanced perspective by accounting for the angular distribution of neutrons.
Brilliance provides the most profound description of a neutron beam by additionally consid-
ering its energy distribution. Collectively, these magnitudes serve as metrics quantifying the
vague term of beam quality.

2.3 Scattering Theory
This section closely follows the introduction given in the book of Squires [28], wherein the
theory of thermal neutron scattering is explored in greater detail than we can cover within
this thesis.

As a starting point, we consider a constant current of neutrons impinging onto the target
with a flux Φ, which gives rise to a specific rate of interaction events J

[
1
s

]
of any nature.

Consequently, we define the total cross-section,

σ =
J

Φ

[
cm2

]
, (2.5)

which is typically expressed in terms of barns, 1 b = 1× 10−24 cm2. This total cross-section
encompasses all potential outcomes of the interaction between the neutron and the target.
This includes elastic or inelastic scattering with a cross-section σs, or the absorption of the
neutron into the nucleus with a cross-section σa, yielding

σ = σa + σs. (2.6)

After an absorption event, the nucleus either i) decays into its ground state by emitting
a γ-quantum, ii) emits charged particles, or iii) decays into smaller fragments by fission.
Apart from resonances occurring at nucleus-specific energies, typically exceeding 100 keV,
the absorption cross section for thermal and cold neutrons smoothly varies as [29]

σa ∝
1

v
, (2.7)

where v denotes the velocity of the neutron.
Besides absorption into the nucleus, a neutron can be deflected from its trajectory by the

strong nuclear force or magnetic interaction. Any scattering process can be classified as
either elastic or inelastic, depending on its effect on the energy of the neutron.
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In an elastic scattering process, the total kinetic energy of the system remains constant,
which is equivalent to constant neutron energy due to the large mass of the sample, msample �
mn. Conversely, an inelastic scattering process gives rise to a change in the energy of the
neutron. The kinetic energy of a typical thermal or cold neutron, En � 1 eV is insufficient to
excite individual nuclei or electrons(3). Instead, these interactions primarily involve collective
atomic or magnetic motions, such as phonons or magnons. We will now discuss how different
interactions play into the above scattering cross sections.

We begin by observing that the quantum mechanical state of a neutron is fully determined
by its momentum (or wavevector) and spin, denoted as:

|~~k, σ〉 . (2.8)

From this state, the energy can be derived as E = (~2|~k|2)/(2mn). A comparison of the ini-
tially prepared state and the measured state after scattering at the sample yields information
about the scattering process regarding the transferred momentum, energy, and spin.

In an experimental setup, however, one cannot directly determine the state of a neutron
after scattering; instead, one measures rates of scattered neutrons. By discriminating neu-
trons based on their direction and energy after scattering, we obtain the double differential
cross section (DDCS),

(
d2σ

dΩdE

)
=

rate of neutrons scattered into solid angle dΩ
around direction θ, φ, with final energy between Ef and Ef + dE

Φ dΩ dE
. (2.9)

Here, Φ denotes the incident flux onto the sample. The other terms in Eq. (2.9) are illustrated
in Fig. 2.1. If the experiment does not account for the energy of the scattered neutrons, we
instead obtain the differential cross section,

(
dσ

dΩ

)
=

rate of neutrons scattered into solid angle dΩ
around direction θ, φ, regardless of Ef

ΦdΩ
=

∫ ∞
0

(
d2σ

dΩdE ′

)
dE ′. (2.10)

Finally, if the experiment does not account for the energy or the direction of the scattered
neutrons, we obtain the total scattering cross section,

σs =

∫
4π

(
dσ

dΩ

)
dΩ, (2.11)

which accounts for any scattering events, regardless of their nature. These cross-sections are
obtained in a neutron scattering experiment by carefully monitoring the rates of neutrons
in the incident beam and after interacting with the sample. A comparison of the thereby
obtained rates with theoretical predictions elucidates the physical processes occurring within
the sample.

(3)Compare, for example, the Rydberg energy hcR∞ = 13.605 693 122 994(26) eV, which represents the
ionization energy of a ground-state electron in hydrogen [23].
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Figure 2.1: Sketch of a scattering geometry, illustrating the magnitudes defining the DDCS
according to Eq. (2.9). An incident beam with flux, Φ, consisting of neutrons with states

|~ki, σi〉 illuminates the sample. Neutrons are scattered in the direction θ, φ, into a solid

angle dΩ, with a final energy between Ef and Ef + dEf. The final state is denoted by |~kf, σf〉,
resulting in a momentum transfer, ~Q = ~ki − ~kf, highlighted in blue. Figure is reproduced
from the work of Beddrich [30].

Following the typical convention in neutron scattering, we describe the scattering process in
terms of the transferred momentum and energy,

~Q = ~ki − ~kf

∆E =
~2

2mn

(
|~ki|2 − |~kf|2

)
.

(2.12)

At low neutron energies (cold and thermal neutrons), far away from resonances, and in small
samples, where multiple scattering does not occur, the transition probability for a combined
neutron and sample state can be expressed using Fermi’s golden rule [31, 32], giving rise to
the following DDCS [28],(

d2σ

dΩ dE

)
λi→λf

=
|~kf|
|~ki|

( mn

2π~2

)2 ∣∣∣〈~kf, λf|V |~ki, λi〉
∣∣∣2 δ (Eλi

+ Ei − (Eλf
+ Ef)) . (2.13)

Here, the combined initial state of the neutron and the sample, |~ki, λi〉(4) transitions into the

final state |~kf, λf〉 as a result of the interaction between the neutron and the sample, charac-
terized by its potential, V . The matrix element encompassed by |...| describes the transition

(4)Here and in the following, the spin state of the neutron is conveniently omitted, as no polarized or
magnetic scattering experiments were performed within the scope of this work.
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probability between the two combined states. δ denotes the Dirac delta distribution, the
main property of which, ∫

δ(x− x0)f(x)dx = f(x0), (2.14)

ensures the preservation of energy during the scattering process.
The interaction potential V is at the heart of the neutron scattering experiment, encap-

sulating the strong nuclear and magnetic interaction between the neutron and the sample.
First, we will quantify the potential, V , and subsequently derive the DDCS for nuclear elastic
scattering processes.

2.3.1 Nuclear Elastic Scattering
In this simple case, neutrons are deflected by a periodic arrangement of atoms, such as a
crystal lattice, without changing their initial energy. Facilitating the analytic calculation,
we assume the incoming and scattered neutrons to be represented by plane waves,

|~ki〉 = exp(−i~ki~r),

|~kf〉 = exp(−i~kf~r).
(2.15)

Additionally, the potential of the scattering system is assumed to be a superposition of
the potentials from individual nuclei, Vj, which depends solely on the distance between the

neutron and the respective nucleus, ~r− ~Rj. We can then derive the total interaction potential:

V (~r) =
∑
j

Vj(~r − ~Rj). (2.16)

Evaluating the integral over the incident and final neutron states, one obtains the following
expression,

〈~kf, λf|V |~ki, λi〉 =
∑
j

Vj( ~Q) 〈λf| exp
(
i ~Q ~Rj

)
|λi〉 , (2.17)

where Vj( ~Q) is given by(5),

Vj( ~Q) =

∫
Vj(~xj) exp

(
i ~Q~xj

)
d~xj. (2.18)

If the neutron wavelength is large compared to the range of the potential, which is satisfied
for any interaction via the strong nuclear force and thermal neutron wavelengths, the Fermi
pseudo potential [33] provides a reasonable approximation for the interaction potential,

Vj(~r) =
2π~2

mn

bjδ
(
~r − ~Rj

)
,

Vj(~xj) =
2π~2

mn

bjδ (~xj) .

(2.19)

(5)During the derivation, we substituted ~xj = ~r − ~Rj .
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Here, the strength of the interaction potential is conveniently absorbed into nucleon-specific
scattering length, bj. Using this approximation, we can calculate the matrix element,

〈~kf, λf|V |~ki, λi〉 =
∑
j

2π~2

mn

bj 〈λf| exp
(
i ~Q ~Rj

)
|λi〉 , (2.20)

which is subsequently inserted into the DDCS,(
d2σ

dΩ dE

)
λi→λf

=
|~kf|
|~ki|

∣∣∣∣∣∑
j

bj 〈λf| exp
(
i ~Q ~Rj

)
|λi〉

∣∣∣∣∣
2

δ (Eλi
+ Ei − (Eλf

+ Ef)) . (2.21)

So far, we have only considered the transition probability between two specific states. How-
ever, the experimentally obtained DDCS will contain various transitions between different
states, which must be accounted for in our derivation. We achieve this by calculating a
weighted average over all initial states and summing over the possible final states, consider-
ing the relevant conservation laws, such as energy, momentum, and spin. Transforming the
δ-function in terms of its integral representation, we obtain,

δ(Eλi
− Eλf

+ Ei − Ef) =
1

2π~

∫ ∞
−∞

exp

[
i
(Eλf

− Eλi
)t

~

]
exp(−iωt) dt, (2.22)

where the energy transfer is given by, ω = Ei−Ef

~ . Substituting this into Eq. (2.21), and
accounting for all possible transitions we get,(

d2σ

dΩ dE

)
=
|~kf|
|~ki|

1

2π~
∑
i,i′

bibi′

∫ ∞
∞

〈
exp

[
−i ~Q~Ri′(0)

]
exp

[
i ~Q~Ri(t)

]〉
exp(−iωt) dt. (2.23)

Here, ~Ri(t) = exp(iHt/~)~Ri exp(−iHt/~) denotes the time evolution of the position operator
of atom i, which consequently implies

exp
[
−i ~Q ~Ri(t)

]
= exp(iHt/~) exp(−i ~Q~Ri) exp(−iHt/~). (2.24)

Finally, the expression encompassed by 〈...〉 denotes the thermal average over the initial
states, 〈A〉 =

∑
i pi 〈λi|A |λi〉 with the weights pi distributed according to the Boltzmann

distribution,

pi =
exp

(
−Ei

kBT

)
∑

i exp
(
−Ei

kBT

) . (2.25)

In Eq. (2.23), two cases can be separated as follows: firstly, scattering arises due from cor-
relations between different nuclei, i 6= i′, and secondly, it arises due to self-correlations from
the same atom at different times, i = i′. By separating and averaging those contributions,
we obtain the following DDCS [28],(

d2σ

dΩ dE

)
coh

=
σcoh

4π

|~kf|
|~ki|

1

2π~
∑
i,i′

∫ ∞
∞

〈
exp

[
− ~Q~Ri′(0)

]
exp

[
i ~QRi(t)

]〉
exp(−iwt) dt

(
d2σ

dΩ dE

)
inc

=
σinc

4π

|~kf|
|~ki|

1

2π~
∑
i

∫ ∞
∞

〈
exp

[
− ~Q~Ri(0)

]
exp

[
i ~QRi(t)

]〉
exp(−iwt) dt

, (2.26)
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where σcoh = 4π (
∑

n fnbn)2 = 4π(b)2 and σinc = 4π
[
(
∑

i fnb
2
n)− (

∑
n fnbn)2]. Here, bn

denotes the scattering length of atom n occurring with frequency fn in the scattering system.
The individual scattering lengths vary due to isotopic composition and the spin state of a
nucleus, even in a perfect Bravais crystal.

From Eq. (2.26), we observe that coherent scattering arises from correlations between dif-
ferent nuclei at different times, i 6= i′, and self-correlations of a single nucleus at different
times i = i′. The coherent scattering from any system equals the scattering from a sys-
tem where every nucleus possesses the mean scattering length of the first system,

∑
i fibi.

Conversely, incoherent scattering arises only from self-correlations of the same nucleus at
different times. Mathematically it acts as a correction to coherent scattering and arises as
a consequence of the deviations of individual scattering lengths from the mean scattering
length, (

∑
i fib

2
i )− (

∑
i fibi)

2.
An overview of values for σcoh and σinc for various elements can be found in the work of

Dawidowski et al. [34]. We note that this derivation utilized the Fermi pseudopotential,
considering only nuclear scattering, which is sufficient for the scope of this thesis.

In the following subsections, we will explore Eq. (2.26) in the context of coherent elastic
Bragg scattering and scattering involving one-phonon processes.

2.3.2 Nuclear Coherent Elastic Scattering
Assuming coherent elastic scattering without energy transfer between a neutron and a crystal
structure (Bragg-scattering), we obtain the following coherent DDCS(6),

(
d2σ

dΩ dE

)
coh

=
σcoh

4π
N

(2π)3

V0

Debye-Waller factor︷ ︸︸ ︷
exp(−2W )

∑
~G

laws of conservation︷ ︸︸ ︷
δ( ~Q− ~G)δ(ω) . (2.27)

After trivially integrating over all final energies ensuring w = 0, this simplifies to,(
dσ

dΩ

)
coh

=
σcoh

4π
N

(2π)3

V0

exp(−2W )
∑
~G

δ( ~Q− ~G), (2.28)

where N is the total number of scattering nuclei in the crystal, V0 denotes the volume of the
crystal’s unit cell, and the sum is over all reciprocal lattice vectors, ~G, which are conveniently
defined by the relation,

exp(i ~Gm
~Rn) = 1. (2.29)

Here, ~Rn denotes any lattice vector ~Rn = n1~a + n2
~b + n3~c with n1, n2, n3 ∈ Z and ~a,~b, and

~c being the primitive lattice vectors of the real-space lattice(7). The Debye-Waller factor,
exp(−2W ), accounts for the thermal motion of individual scattering centers, causing a re-
duction in scattering intensity with increasing temperature without affecting the momentum
transfers at which scattering occurs or broadening the peaks in ~Q.

(6)Compare chapter 3 of the textbook of Squires [28] for the derivation of this result.
(7)A more comprehensive introduction to reciprocal lattice vectors including their derivation from the

real-space lattice can be found in the textbook of Hunklinger [35].
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When generalizing to a non-Bravais crystal with more than one scattering center per unit
cell, we adjust the DDCS slightly,(

dσ

dΩ

)
coh

= N
(2π)3

V0

∑
~G

δ( ~Q− ~G)
∣∣∣FN(~G)

∣∣∣2
FN( ~Q) =

∑
~d

bd exp(i ~Q~d) exp(−Wd).
(2.30)

Here, the sum in the nuclear unit-cell structure factor, FN( ~Q), encompasses the positions

of all scattering centers inside the unit cell, ~d. Essentially, the first part of Eq. (2.30)

corresponds to the Bragg condition(8) for the Bravais lattice. FN( ~Q) modifies the scattering
intensity of the Bragg peaks depending on the positions and the average scattering length,
bd, of the atoms within one unit cell.

2.3.3 Nuclear Coherent Inelastic Scattering and One-Phonon Processes
For inelastic scattering processes, which give rise to the creation or annihilation of one
phonon, the single-phonon contribution to the DDCS in a non-Bravais lattice is described
by [28, 36],

(
d2σpho

dΩdE

)
coh

=
(2π)3

V0

|~kf|
|~ki|

∑
s

∣∣∣∣∣∣∣∣∣∣
∑
µ

Debye-Waller︷ ︸︸ ︷
exp(−Wµ)

scattering length︷︸︸︷
bµ√

2Mµωs(~q)

polarization︷ ︸︸ ︷
( ~Q~eµ,s) exp(−i ~Q~rµ)︸ ︷︷ ︸

dynamical structure factor

∣∣∣∣∣∣∣∣∣∣

2

×

∑
~G


Bose occupation︷ ︸︸ ︷

(n(ωs(~q)) + 1)

laws of conservation︷ ︸︸ ︷
δ (ω − ωs(~q)) δ

(
~Q− ~G− ~q

)
︸ ︷︷ ︸

one-phonon creation

+n(ωs(~q))δ(ω + ωs(~q))δ( ~Q+ ~q − ~G)︸ ︷︷ ︸
one-phonon annihilation

 .
(2.31)

The phonon, a collective lattice excitation, is characterized by its momentum, ~q, its energy,
~ωs(~q), and its polarization s, determined by the direction in which atoms are displaced
from their equilibrium positions, ~es

(9). The subscript µ distinguishes specific atoms in the
unit cell. The DDCS accounts for contributions from all reciprocal lattice vectors, ~G. The

Bose occupation factor, n(ωs) =
[
exp

(
ωs(~q)
kbT

)
− 1
]−1

considers the temperature-dependent

population of phonon states with various frequencies, ωs(~q).
The inner product between the total momentum transfer and the polarization vector of the

phonon, ~Q~es, determines which phonon branches are experimentally accessible within a spe-
cific geometry. Only phonons whose polarization is approximately parallel to the momentum

(8)A discussion of the equivalency between Bragg’s law and the expression taking advantage of the reciprocal
lattice vectors can be found in the textbook of Hunklinger [35].

(9)A more comprehensive treatment of phonons can be found in section 4.5 of this thesis and in various
textbooks, see for example the book of Hunklinger [35].
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transfer, ~Q ‖ ~es, can be probed effectively. Consequently, we investigate longitudinal phonon

branches, where ~q ‖ ~es, by choosing a momentum transfer such that ~Q ‖ ~q. A transversal
phonon along a high-symmetry direction, ~q ⊥ ~es, is usually investigated in a setting where
~Q and ~q are only approximately perpendicular. Both the investigation of a longitudinal and
a transversal phonon branch are illustrated in Fig. 2.2 (a) and (b), respectively.

(0,0,0) (0,2,0)(0,0,0) (0,2,0)

(a) (b)

Figure 2.2: Investigation of the DDCS associated with a one-phonon process using inelastic
neutron scattering. The figure illustrates the relationship between the momentum transfer,
~Q, the reciprocal lattice vector, ~G, and the phonon momentum, ~q. Panels (a) and (b)

illustrate the investigation of a longitudinal phonon, ~q ‖ ~G, and a transversal phonon ~q ⊥ ~G,
respectively. In both cases, the energy of the excited phonon amounts to
~ω = ~2(|~ki|2 − |~kf|2)/(2mn).

Additionally, to maximize the factor ~Q~es, phonon branches are usually investigated in Bril-
louin zones as distant to the origin as allowed by the experimental setup. For a comprehensive
overview of the scattering from one-phonon processes, including the derivation of Eq. (2.31),
the reader is referred to the book of Squires [28].

In the upcoming chapter, we will explore the operating principles of neutron scattering
experiments and the utilization of specialized instruments to investigate the DDCS at specific
momentum and energy transfers. We will primarily focus on the working principle of triple-
axis spectroscopy (TAS) and the fundamentals of neutron imaging techniques.



3. Instrumentation - Expanding the Possibil-
ities of Research
Within this thesis, the experimental work encompassed two distinct domains. Firstly, we
used triple-axis spectroscopy (TAS) to investigate the softening of a transversal phonon
of LuVO3, a representative compound of the rare-earth vanadates. Secondly, the focusing
characteristics of the NMO prototypes were investigated using a position-sensitive detector
and neutron imaging techniques.

Expanding the preceding discussion of the interaction between neutrons and matter, our
focus in the present chapter shifts toward acquiring and interpreting data from specific
neutron experiments. Gaining insight into the data acquisition process facilitates the com-
parison of experimental findings with theoretical predictions, thereby allowing for a better
understanding of the underlying physical processes.

3.1 Triple-Axis Spectroscopy
Brockhouse and Shull initiated the field of triple-axis spectroscopy back in 1951 at the NRX
reactor located at the Chalk River Laboratory. Their work led to the establishment of the
first triple-axis spectrometer prototype in 1952 [37]. In recognition of their contribution,
Brockhouse and Shull were awarded the Nobel prize in 1994 for their “pioneering contribu-
tions to the development of neutron scattering in condensed matter research” [38].

To this day, TAS remains a cornerstone of modern neutron scattering, facilitating the
exploration of the DDCS of a sample at arbitrary momentum and energy transfers with
remarkable resolution. This is achieved by precisely determining the initial and final states
of the neutrons in the beam through the three eponymous scattering axes. The energies of
the incident and scattered neutrons are selected by Bragg scattering at the first and last axes,
known as the monochromator and the analyzer, respectively. The position of these devices
relative to the sample, which represents the second scattering axis, governs the directions of
the momenta of the incident and scattered neutrons. As a result, the configuration of the
instrument geometrically defines the initial and final states of the neutrons, |~ki〉 and |~kf〉(1).

Within the upcoming section, we provide a concise introduction to TAS, focusing on the
methods for energy selection and neutron manipulation at the specific axes. Additionally, we
present various scan types utilized for systematically exploring the reciprocal space. Finally,
we will present additional instrumentation for improving the beam quality and the signal-
to-noise ratio. A detailed account of the topic is available in the book of Shirane [39].

3.1.1 Monochromator and Analyzer
Concerning TAS, the monochromator and analyzer play pivotal roles by selecting neutrons
of specific energy from the beam through elastic Bragg scattering off of a crystal with known
lattice spacing. By adjusting the angle between the incident beam and the surface of the
monochromator/analyzer, θm/a, the wavelength of the scattered neutrons can be freely de-

(1)Again, the spin of the neutron is conveniently neglected.

15
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termined according to Bragg’s law [40],

2dm/a sin(θm/a) = nλi/f = n
2π

|~ki/f|
. (3.1)

Here, dm/a denotes the lattice spacing between the scattering planes, and θm/a is the angle
between those crystal planes and the incident neutrons. Neutrons with a wavelength λi/f

satisfy Bragg’s law and are ultimately deflected by an angle 2θm/a from their initial trajectory.
The parameter n ∈ N denotes the order of reflection, implying that neutrons with an integer
fraction of λi/f also satisfy Bragg’s law. These higher order contaminations typically have to
be eliminated by filters to diminish the measurement background.

An overview of a commonly used TAS geometry is given in Fig. 3.1 (a). Following the
neutron beam through the instrument, the monochromator initially scatters neutrons with
a specific wavelength from the incident white beam, thereby defining the direction and
magnitude of ~ki. After the interaction between the beam and the sample, the direction and
magnitude of ~kf are determined by the positioning and the angle of the analyzer, respectively.
Consequently, the momentum and energy transfers governing the DDCS are given by,

~Q = ~ki − ~kf

∆E =
~2(|~ki|2 − |~kf|2)

2mn

(3.2)

Fig. 3.1 (b) illustrates the momenta of the neutron beam visualized in (a) in reciprocal space.

The total momentum transfer, ~Q can be separated into a reciprocal lattice vector ~G and the
reduced momentum transfer ~q.

We will now briefly touch upon the properties of the crystals employed as the monochro-
mator and the analyzer. A perfect crystal would only satisfy Eq. (3.1) for an infinitesimally
narrow range of wavelengths. While this would offer impeccable energy resolution, the count
of neutrons with that exact wavelength dwindles to zero. Generally, the number of neu-
trons suitable for being reflected at the monochromator decreases with increasing energy
resolution.

In practice, one resorts to perfectly imperfect crystals featuring a certain degree of mosaic
spread to strike a balance between the required energy resolution of an experiment and the
flux required to perform the experiment in a timely fashion [41]. Mosaicity refers to the
extent of the deviation in the orientation of the crystallites within a single crystal, which is
typically modeled by a Gaussian distribution [42]. Due to these deviations, neutrons that
closely approximate the Bragg equation can still be reflected by a correspondingly oriented
crystallite instead of being transmitted. A more comprehensive treatment of the scattering
off of a mosaic crystal is left to the work of Sears [43].

A common material for constructing monochromators for cold neutrons is pyrolytic graphite
(PG) with a mosaicity of about 1° [44, 45]. Although theory predicts that monochromators
based on diamond should outperform all existing designs [46], the practical limitation of
fabricating diamond crystals with a sufficiently homogeneous mosaic spread is restricting
their current usage [47].

It is worth noting that the monochromator rarely is a single continuous crystal, but rather
an arrangement of similarly oriented smaller pieces of crystal, typically possessing an area
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Figure 3.1: (a) Geometry of a triple-axis spectrometer, and (b) a representation of the wave
vectors in the reciprocal lattice of the investigated sample. (a) The relative position of
the three scattering axes, the monochromator, the sample and the analyzer, determine the
directions of ~ki and ~kf, whereas the monochromator and the analyzer angles, θm and θa,
determine the magnitudes of those vectors, respectively. (b) In terms of the reciprocal space

of the crystal, the momentum transfer, ~Q = ~ki− ~kf, can be separated into a reciprocal lattice
vector, ~G, and the corresponding reduced momentum transfer ~q. The angle θs determines
the orientation of the sample with respect to ~ki.

of about 1 × 1 cm2. This configuration allows for individual crystal adjustments, enabling
horizontal or vertical focusing. While this may increase the flux at the sample position, it
comes at the expense of increasing the divergence [48, 49].

3.1.2 Scan Modes
TAS is an extremely versatile method for investigating the DDCS at specific points in the
four-dimensional Q,E-space. Several scanning techniques have been established to system-
atically investigate collective excitations such as phonons and magnons. Here, we provide a
concise overview of the most common ones.

• Elastic scattering:
In the case of elastic scattering, ∆E = 0, the magnitudes of the incident and the
outgoing wavevectors are equal. Assuming a Bragg reflection, ~Q = ~G, as a starting
point, one usually performs a longitudinal scan ~q ‖ ~Q or a transversal scan ~q ⊥ ~Q.
Considering Fig. 3.1, we observe that the longitudinal scan involves a change of 2θs by a
certain angle together with a rotation of the sample by half that angle, θs, to maintain
the orientation between ~Q and ~G. This type of elastic scan is often also referred to as
a θ-2θ-scan. Conversely, by rotating only the sample and keeping 2θs constant, ~G is
rotated with respect to ~Q, which results in a transversal scan, ~q ⊥ ~Q, for small angles
of rotation. This type of scan is usually called θ -or rocking-scan.

• Constant Q-scan: In this more common inelastic scan mode, the momentum transfer
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| ~Q| is kept constant, while the energy transfer ∆E is varied.

• Constant E-scan: In cases where a constant Q-scan is unfeasible, such as for the inves-
tigation of very steep dispersions where the energy of the excitation changes quickly
with varying momentum transfer, the energy transfer is kept at a constant value, while
the momentum transfer is varied.

Typically, both inelastic scans require complex adjustments of several axes. Modern instru-
mentation allows researchers to input the orientation of the crystal and the desired positions
in Q,E-space, with the software handling the calculations for the required adjustments auto-
matically. For a detailed insight into these calculations, the reader is referred to the following
references [39, 50, 51].

3.1.3 Enhancing Beam Quality with Filters and Collimators
In addition to the primary three axes, various devices are routinely employed to improve the
beam quality and remove unwanted neutron contamination, thereby improving the signal-
to-noise ratio. Here, we introduce those devices in the order in which the neutron beam will
encounter them in a typical TAS setup.

As mentioned previously, Bragg scattering generates higher-order contamination, i.e., neu-
trons with integer fractions of the desired wavelength, complicating the evaluation of the
obtained data. A filter is usually positioned directly behind the monochromator to remove
those unwanted neutrons. It consists of small, randomly oriented crystallites with a spe-
cific lattice spacing, dfilter. The lack of orientation entails that the value of the sine-term in
Bragg’s equation (Eq. (3.1)) varies freely between 0 and 1. Consequently, all neutrons with
λ ≤ 2dfilter = λcut undergo elastic scattering, deviating away from the original trajectory, thus
removing the higher order contamination for a well-chosen value of dfilter. Common materi-
als for this purpose include pyrolitic graphite (λcut = 6.7�A) [52], polycrystalline beryllium
(λcut = 4.0�A), or bismuth (λcut = 6.6�A), sometimes used interchangeably or in combination
with each other [53].

Besides filtering unwanted neutrons with respect to their wavelength, further options are
available for removing neutrons whose direction deviates too strongly from the intended
path. Soller collimators are based on thin, straight, parallel channels coated with a strongly
neutron-absorbing material originally designed for X-ray scattering [54, 55]. If the divergence,
α, i.e., the angle between a neutron and the optical axis, exceeds a threshold determined by
the geometry of the collimator, αcoll = tan−1(d/l), the neutron is always absorbed [56]. Here,
d and l denote the spacing between two absorbing plates and the length of the individual
plates, respectively. It can readily be shown that the transmission through such a collimator
gives rise to a triangular intensity distribution with respect to the divergence of the neutrons
[56],

T =

{
1− |α|

αcoll
for |α| ≤ αcoll

0 else
(3.3)

At this point, it should be noted that the divergence of a neutron beam typically refers to
the full width at half maximum (FWHM) of the divergence distribution of the individual
neutrons, which matches αcoll for the triangular shape of the recovered distribution. While
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collimators can be placed anywhere along the neutron path, they are most commonly posi-
tioned directly before or after the sample.

3.1.4 Monitors
To determine the DDCS, we must measure neutron rates before the sample and after the
energy selection by the analyzer. However, different considerations apply to these two mea-
surements. Before encountering the sample, the beam should pass the monitor mostly un-
obstructed. In this scenario, a low detection efficiency is preferred. Consequently, monitors
typically utilize fission chambers equipped with thin foils coated with small amounts of
235
92 U[57]. Conversely, the detector behind the analyzer should be designed to count neutrons
with the highest achievable efficiency. For TAS, state-of-the-art detectors are currently based
on 3

2He-filled fingers [58], tailored towards maximizing neutron capture and detection.
We now offer a brief overview of the three triple-axis-spectrometers utilized within the

context of this thesis.

3.1.5 Cold Triple-Axis Spectrometer MIRA-2, FRM-II, DE
MIRA-2, located at the FRM-II facility in Garching near Munich, is a multi-purpose instru-
ment with a primary focus on cold TAS [59]. This instrument played a pivotal role in the
preliminary investigation of the NMO prototypes and the study of the lattice dynamics in
LuVO3 at small ~Q.

Tailored towards the cold spectrum in which MIRA-2 typically operates, the monochro-
mator and analyzer are assembled from PG (PG002) with a lattice spacing of dPG002 =
3.355�A. To mitigate higher-order contamination, a liquid nitrogen-cooled beryllium filter
is positioned behind the monochromator. MIRA-2 operates within a wavelength range of
3.97�A ≤ λ ≤ 5.2�A. Due to instruments downstream of MIRA-2, inelastic measurements are
primarily performed using a constant ki mode, where the modulus of the incoming neutron
momentum is kept at a constant value while the energy transfer is selected at the analyzer.
Although this approach is equivalent to the constant kf mode in terms of probing the DDCS,
one has to account for the energy-dependent reflectivity of the analyzer. This is achieved by
normalizing the intensity measured by the detector by a factor [39],

|~kf|3 tan (θf) . (3.4)

In the constant kf mode, the energy-dependent efficiency of the monochromator can easily
be accounted for during the data evaluation by comparing the detector data to flux mea-
surements obtained from a monitor positioned between the monochromator and the sample.

Throughout the study of the NMOs, a position-sensitive CASCADE [60] detector was
mounted onto a linear stage, the details of which will be discussed at a later point dedicated
to the measurement geometry at MIRA-2, section 6.1.1.

3.1.6 Thermal Triple-Axis Spectrometer EIGER, PSI, CH
Initial phonon measurements were conducted at the thermal triple-axis spectrometer EIGER

at PSI [61]. It operates in constant ~kf mode, with kf = 2.662�A−1
. Similar to MIRA-2,

both the monochromator and the analyzer rely on the (002) reflection of pyrolitic graphite.
The monochromator allows for horizontal and vertical focusing. To mitigate higher-order
reflections, EIGER employs a PG-filter with λcut = 6.7�A.
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3.1.7 Thermal Triple-Axis Spectrometer PUMA, FRM-II, DE
Operating at a smaller wavelength than MIRA-2, the longitudinal phonon modes of LuVO3

closer to the zone boundary were investigated at PUMA at FRM-II [62]. PUMA was operated

in constant ~kf mode with ~kf = 2.662�A−1
. The monochromator and the analyzer employ the

(002) reflection of PG and have focusing options.

3.2 Neutron Imaging
This section draws inspiration from the comprehensive summary of the history of neutron
scattering by Brenzier [63] and the overview of different types of spatially resolving detectors
found in the work of Lehmann et al. [64].

Less than ten years after the identification of the neutron by James Chadwick in 1932 [20],
Kallmann and Kuhn produced radiographic neutron images akin to those previously obtained
with X-rays. They achieved this by utilizing a Ra-Be neutron source and a photographic
neutron detection system based on lithium foils, which functioned similarly to X-ray films
[65, 66]. Owing to substantial differences in the total cross-sections compared to X-rays and
the isotopic sensitivity of the neutron, neutron imaging ever since provides unique insights
for non-destructive testing, complementing X-ray scattering techniques.

Besides improvements in neutron beam quality and data reduction, significant progress has
been made in neutron detection techniques, particularly in improving spatial and temporal
resolution. The uncharged nature of the neutron necessitates its conversion into secondary
particles for detection, i.e., α, β, and γ. This conversion is typically achieved through
neutron capture in materials such as lithium, boron, or gadolinium [67]. Subsequently, the
intensity distribution of these secondary particles is digitized using techniques established in
X-ray radiography.

Photostimulable phosphor plates or systems based on scintillators have replaced previously
used X-ray films in visualizing the secondary particles [68, 64]. These technologies offer
several practical advantages, including reusability with no need for post-processing of the
films and no waste disposal. Furthermore, they offer a linear response to the neutron intensity
over a large range of exposures and provide a large field of view. The optical light emitted
by these devices is detected and digitized by charge-coupled device (CCD) cameras.

In the following section, we provide a brief overview of the processes involved in converting
the spatial intensity distribution of a neutron beam into a digital image, emphasizing the
quantitative evaluation of the data.

3.2.1 Spatially Resolving Neutron Detection Systems
An effective neutron radiography detector requires a specific spatial resolution, a minimum
signal-to-noise ratio, linearity between the detected signal and the incident neutron flux
over an extensive dynamic range for quantitative evaluation, and, in some cases, sufficient
time resolution [64](2). The extent to which specific requirements must be satisfied depends
on the nature of the conducted experiment. Today, CCD camera-based detection systems,
which convert light emitted by neutron-sensitive scintillators into digital data, meet these
requirements for most neutron imaging experiments, making them the primary choice. The

(2)For the work conducted within this thesis, time resolution was not necessary.
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Figure 3.2: Schematics of a neutron imaging setup based on a scintillator and a CCD camera.
The figure is reproduced from the work of Lehmann [64].

typical configuration of such a system is illustrated in Fig. 3.2.
The conversion of a neutron beam into a digital image can be separated into distinct steps.
First, the spatial intensity distribution of neutrons incident onto the scintillator screen is
converted into a spatial distribution of secondary particles through neutron capture reactions.
Typically used isotopes include 6Li, 10B, and 158Gd giving rise to the following reactions,

6
3Li +1

0 n→4
2 He +3

1 H,
10
5 B +1

0 n→7
3 Li +4

2 He.
(3.5)

In the case of neutron capture in Gd, the excited nucleus emits electrons and betas, which
can then be detected [69, 70].

Already upstream of the scintillator, the spatial resolution can be compromised if either
the divergence of the incoming neutron beam or the distance between the sample and the
scintillator is too large. Proper collimation of the beam helps achieve the optimum resolution,
typically limited by the conversion of neutrons into charged particles and subsequently visible
light.

Within the scintillator screen, the energetic secondary particles interact with the photoac-
tive components of the scintillator, typically ZnS:Cu, emitting visible light as a result. The
spatial resolution of this process is influenced by the range of the charged particles and the
thickness of the scintillator [69], which is itself dictated by the required light yield. Increasing
the scintillator thickness increases the light yield but decreases the resolution. For 6Li-based
ZnS:Cu scintillators, the spatial resolution is typically 50 µm, while for Gd-based scintillators
the resolution can be improved to about 20 µm [69, 71].

After the scintillator, the light yield is directed to and digitized into a grayscale image by a
low-background CCD camera positioned outside the direct beam to reduce radiation damage
from activation. While the high resolution of the camera does not impede the overall spatial
resolution of the measurement, thermal noise can affect the signal-to-noise ratio. The camera
is usually cooled with liquid nitrogen to mitigate this noise [64]. Additionally, to prevent
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Figure 3.3: a) Time-dependent light yield for various scintillation screens normalized to their
initial light yield at t = 0. b) Relative light yield as a function of the time-integrated flux
for different incident flux values and scintillator temperatures. The figure is taken from the
work of Neuwirth et al. [67].

negative entries in the data, a constant positive offset is applied to the entire image, which
must be accounted for during the data evaluation process. The entire system is enclosed in
a light-tight camera box to suppress noise from ambient sources of light [72].

Finally, we explore the impact of the incident neutron flux on the resulting light yield, and
the timescale over which this light is emitted. A comprehensive discussion covering various
types of scintillators can be found in the work of Neuwirth et al. [67]. Here, we summarize
the results, focusing on the 6LiF-based scintillator employed at BOA, which utilizes ZnS:Cu
for the secondary conversion to visible light.

Compared to other scintillator compositions, 6LiF/ZnS:Cu-based detectors provide the
highest light yield, which allows for an extensive dynamic range and improves the signal-to-
noise ratio. Regarding the linearity of the light yield, it should be noted that the relative
light yield increases to about 104 % during the first 60 s of illumination. In other words,
during the first 60 s of exposure, the light yield increases by 4 % compared to the first
image taken. This minor effect is attributed to the delayed emission of trapped electrons,
as discussed by Neuwirth et al. [67]. In terms of fluence, being the time-integrated flux, the
peak in light yield is reached after a fluence of fpeak = 10× 1010 cm−2, independent of the
incident flux. To put this into perspective, the maximum light yield is achieved after roughly
160 s of illumination at a flux of 6.25× 107 cm−2s−1. Subsequently, the relative light yield
slowly decreases at a rate of 10 %

200× 1010 cm−2 . The decline in light yield is mainly attributed to
radiation damage to the crystal structure, leading to defects that capture electrons, thereby
reducing the light yield. The resulting changes in light yield are illustrated in Fig. 3.3. Being
emitted as a result of neutron capture and subsequent conversion processes, not all photons
are immediately emitted upon neutron irradiation, entailing an afterglow effect following
neutron exposure. After 2 s, the afterglow amounts to approximately 1.98 % of the initial
light yield after, which decreases to 0.1 % at 40 s post-exposure. Although this afterglow
can give rise to ghost images, the slow-paced nature of our experiment reduces the effects
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significantly. Care was taken to schedule a delay between subsequent images to mitigate
the issue further. In conclusion, the 6LiF/ZnS:Cu-based scintillation plates demonstrate
reasonable linearity regarding their light yield as a function of exposure time and neutron
flux. This linearity facilitates a quantitative analysis of experiments using these detectors.

3.2.2 Data Evaluation
As a figure of merit for an NMO, we are typically interested in the ratio of correctly redirected
neutrons, i.e., neutrons arriving within a designated focal spot, compared to the total number
of neutrons incident on the NMO. To quantify this ratio, we capture three images, which
include one with the NMO redirecting the beam, a flat-field image without the device, and
a dark-field image obtained with a closed shutter(3). The latter accounts for the background
originating from thermal noise in the camera and the constant positive offset discussed
earlier. These images are represented in Fig. 3.4 (b), (c), and (d), respectively. In terms
of these acquired images, the transport efficiency is given by the grayscale value integrated
within the focal spot of Fig. 3.4 (b) (outlined in orange), Ifoc, divided by the integrated
grayscale of the flat-field Fig. 3.4 (c), Iff. However, care has to be taken to correctly account
for the constant background of the dark field, Idf, represented in Fig. 3.4 (d). The resulting
formula for the transport efficiency is given by,

Q =

(
Ifoc−Idf

Mfoc

)
(
Iff−Idf

Mff

) =

(
Ifoc−Idf

Mfoc

)
Sff

. (3.6)

Here, Mfoc and Mffi are the upstream monitor readings for the images with and without the
optical device, respectively. The normalization of the data to those monitors accounts for
both the dependence of the light yield on the exposure time and any fluctuations in the
neutron flux, which are common at spallation sources such as the PSI.

We will now discuss the panels in Fig. 3.4 in more detail, focusing on their role in data
evaluation. It should be noted that all images, originally 2048×2048 pixels large, have been
filtered with a 4× 4 median filter to correct for gamma spots and other irregularities in the
data. As an additional benefit, this operation reduces the file size significantly.

Panel (b) displays the color plot of the grayscale values acquired from the focused beam.
We observe a sharp central line corresponding to the one-dimensionally focused neutrons.
Panel (c) represents the flat-field image obtained by removing the NMO from the beam path.
A small modulation of intensity is attributed to the employed Soller collimator. Additionally,
we observe the mask used to confine the beam to the entrance area of the NMO, resulting
in a quadratic illumination area on the detector. The color plot in panel (d) depicts the
grayscale values of the dark-field image obtained with a closed neutron shutter shortly after
the illumination performed for panel (c). This image expresses a constant background with
a value of approximately 300 grayscale units. This constant offset is in place to prevent
negative entries in the data and remains independent of the exposure time. Conversely,
the afterglow effect, which contributes about 10 grayscale units, scales non-linearly with the
exposure time and is thus more difficult to account for.

(3)We can assume that no neutron traverses a closed shutter, effectively reducing the incident neutron flux
to zero.
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Figure 3.4: Illustration of the data normalization process utilized for the imaging data. All
panels show color plots of spatial intensity distributions. Panel (a) shows the focused neutron
beam, with the grayscale values normalized according to Eq. (3.6). Panel (b) shows the raw
grayscale values obtained with the NMO in the beam. Panel (c) shows grayscale values of
the flat-field image, with the NMO removed from the beam. Subtracting the dark field,
integrating the resulting grayscale values, and normalizing to the monitor yields Sff. Panel
(d) shows the grayscale values of the dark field obtained with a closed shutter shortly after
the previous illumination. The square-shaped afterglow of the detector system amounting
to ≤ 10 grayscale units is observed in the central part of the data.

Regarding the efficiency of transport given by Eq. (3.6), we first performed a pixel-wise(4)

subtraction of the dark field (d) from the flat-field image (c). Next, the resulting data is
normalized to the respective monitor value, Mff. In cases of constant incident flux, Mff is
proportional to the exposure time. The normalized flat-field image was then integrated,
yielding the denominator of Eq. (3.6), which we denoted as Sff. This value represents the
monitor-normalized number of neutrons potentially interacting with the NMO.

Similarly, we subtracted the dark field from the raw data obtained with the NMO in the
beam (b) on a pixel-wise basis. Subsequently, the data is normalized to the monitor reading,
Mfoc. To further normalize this image to the situation without the NMO present, we divided
it by Sff, generating the data shown in Fig. 3.4 (a). The integrated intensity amounts to
Itot = 0.92. A value of one would indicate the ideal case where no neutrons are absorbed or
scattered away from the detector during focusing. By selecting a specific area of integration,

(4)Pixel-wise refers to an operation that is performed independently on each pair of corresponding pixels
between two or more images.
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such as the orange rectangle in (a), we determine the transport efficiency for that particular
area, yielding Q = 44 %.

3.2.3 Imaging Beamline BOA, PSI, CH
We provide a brief overview of the imaging beamline BOA (Beamline for neutron Optics
and other Applications) at PSI (Switzerland), where the high-resolution investigations of the
NMOs were conducted. For a more detailed review of the instrument, the reader is referred
to the work of Morgano et al.[73] from which this subsection draws inspiration.

BOA replaced the former FUNSPIN instrument at PSI and is dedicated to testing advanced
neutron scattering and optics techniques. It offers excellent flexibility and a high spatial
resolution. The neutron guide leading to BOA is aligned with the cold source from which,
after passing a polarizing bender and a horizontally focusing guide, polarized neutrons with
a divergence of ≈ 40 ′ are provided in a square area measuring 40× 40 mm2.

Under standard operating conditions with a proton current of 1.48 mA hitting the target,
the total flux at the entrance of the instrument amounts to 1.7× 108 cm−2s−1 peaking in
intensity at around λ = 3�A [73], as depicted in Fig. 3.5. The dependence of the flux

Figure 3.5: Beam characteristics at BOA. (a) Wavelength spectra were recorded at seven
different positions in the horizontal plane of the beam. Reflection at larger angles (positive
positions) reduces intensity and shifts the maximum towards longer wavelengths. (b) Spatial
intensity modulation at the beam hole as seen through a pin-hole configuration. The intensity
fluctuations are attributed to reflections at individual mirror planes of the bender. Figures
are taken with permission from Morgano et al.[73].

distribution on the horizontal position is attributed to the dependence of the supermirror
reflectivity on the wavelength (compare Fig. 5.4 (a)). Reflection at larger angles leads to a
reduction in intensity and a shift of the maximum intensity toward larger wavelengths. To
optimize for long wavelengths and to minimize the measurement background, the direct line
of sight between the beam hole and the cold moderator is blocked.
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As illustrated in Fig. 3.5 (b), the beam experiences a notable spatial intensity modulation
in a pin-hole configuration. This is attributed to reflections from individual channels of the
bender. In our experiments, we utilized the entire 40 mm of horizontal extent, effectively
averaging this intensity modulation, as validated by the flat-field images. Before interact-
ing with the focusing device, the beam underwent collimation by Soller type collimators
α ∈ {10′, 20′, 40′} and monochromatization by a double crystal monochromator (DCM)
with a wavelength range of 2.5�A ≤ λ ≤ 6.1�A. Finally, the spatial intensity distribution
of the neutron beam arriving at the detector is converted to a digital image by a standard
6LiF/ZnS:Cu scintillator coupled to a CCD camera. This setup provides a resolution of
approximately 100 µm, sufficient for discerning subtle features in the spatial intensity distri-
bution of the manipulated neutron beams.



4. Anomalous Lattice Dynamics in LuVO3 -
A Triple-Axis Scattering Investigation
This chapter is divided into three parts. First, we introduce rare-earth vanadates (REV) with
a focus on LuVO3

(1). Secondly, we discuss the experimental techniques used to study the
lattice dynamics and present the resulting phonon dispersions along several high-symmetry
directions. Finally, we analyze the obtained results in the context of anomalous changes in
elastic constants due to phase transitions and compare them to similar studies on related
compounds.

4.1 Properties of Rare-Earth Vanadates
This opening section describes the crystal and electronic structure of rare-earth vanadates
(REV), focusing on LuVO3. We will also highlight the diverse phase diagrams of REV and
the relationship between the lattice distortions and the electronic and magnetic structures.
REV belong to the larger family of perovskites and have the chemical formula RVO3, where
R denotes a rare-earth element (a lanthanide, Sc, Y, and Lu). The subsequent sections draw
inspiration from several studies by Radhakrishnan [74], Benckiser [75], Goodenough et al.
[76] and Mizokawa et al. [77], to which the reader is referred for a more comprehensive
analysis of some aspects of this group of compounds.

4.1.1 Crystal Structure of RVO3

At room temperature, RVO3 compounds commonly crystallize in the orthorombic Pbnm
space group (No. 62(2))(2). In comparison to an ideal cubic perovskite (chemical formula
ABO3), which crystallizes in the Pm3̄m space group (No. 221), the size mismatch between
the R and the V atoms entails a distortion of the formerly cubic structure with several
implications [79], which are also visualized in Fig. 4.1:

• Compared to the cubic case, the V-O-V angles are smaller than 180°, indicating that
the oxygen octahedra are tilted with respect to each other.

• Due to the size mismatch between the R and V atoms, the lengths of the individual V-
O bonds deviate from their former common value. This distortion leads to a distortion
of the shape of the oxygen octahedron, thereby lowering the symmetry of the crystal
field surrounding the V atom, which splits the 3d orbitals of the V atoms.

• In sum, the breaking of symmetry changes the space group from a cubic perovskite
structure to the orthorhombic structure; Pm3̄m → Pbnm [80, 81].

The rotation of the oxygen octahedra is referred to as the GdFeO3-type rotation [77, 82]. One
can construct a pseudo-cubic unit cell within the room-temperature orthorhombic structure

(1)Being the last member of the lanthanide series possessing the smallest ionic radius, lutetium belongs to
the rare earths sharing many of their properties.

(2)The interested reader is referred to the work of Souvignier et al. [78] for an overview of the here used
Hermann–Mauguin symbols.

27
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Figure 4.1: (a) Ideal cubic perovskite structure with point group Pm3̄m and (b) room-
temperature crystal structure of RVO3, Pbnm, at the example of LuVO3. The orthorhombic
unit cell is indicated by solid, black lines, while the ideal cubic (a) and pseudo-cubic (b) unit
cells are indicated by dashed, black lines. The oxygen octahedra (red) in the orthorhombic
Pbnm structure are tilted with respect to the ideal perovskite structure as a result of the size
mismatch between R and V (GdFeO3-type rotation). Figure is reproduced from Goodenough
et al. [76].

to visualize the distortion of the cubic perovskite precursor. The axes of this pseudo-cubic
cell (x, y, z) have the following relationship with the axes of the orthorombic unit cell x =
y ≈
√
a2 + b2/2, z ≈ c/2 [83]. Taking LuVO3 as an example, Fig. 4.1 shows both the ideal

perovskite structure (a) and the room-temperature Pbnm unit cell of RVO3 (b), which are
rotated by 45° with respect to their parallel c-and z-axes.

The emergence of deviations from a perfect cubic structure in the context of the reduced
ionic radius of R can be comprehended through the empirical tolerance factor, initially
introduced by Goldschmidt [3]. It is defined by

α :=
1√
2

rA + rO

rB + rO

, (4.1)

where rA , rB and rO denote the effective ionic radii of the elements A, B and O for the
perovskite ABO3, respectively [84, 85]. Despite recent discussions, whether the tolerance
factor can on its own reliably predict the structure, stability, and lattice parameters of
perovskite compounds [86], it still serves as a first estimate of potential lattice distortions.
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For example, SrTiO3 crystallizes in an ideal, cubic perovskite structure, which is reflected
by its tolerance factor close to unity, α = 1.009, where rA = rSr = 1.44�A, rB = rTi = 0.605�A
and rO = 1.35�A are obtained from the work of Shannon et al. [85] for coordination numbers
corresponding to the cubic perovskite, 12, 6 and 2, respectively(3).

In the case of RVO3, rV = 0.64�A, rO = 1.35�A, the rotation of the oxygen octahedra
entails a reduction of the coordination number of R and V to 8 and 6, respectively. It should
be noted that the tabulation of the ionic radii by Shannon [85] does not extend to all R for
the required coordination numbers, and we, in some instances, relied on the approximated
values calculated by Jia [88]. The resulting tolerance factors for RVO3 range from α = 0.89
for rLa = 1.16�A to α = 0.84 for rY = 1.02�A and α = 0.83 for rLu = 0.98�A, respectively.
All REV fall in the range 0.8 ≤ α ≤ 0.89, for which the distorted perovskite structure is
expected [89].

In summary, a trend towards smaller rR suggests a more pronounced distortion of the
cubic perovskite structure. A gradual variation of the ionic radii belonging to different R
and the associated distortion towards a more orthorhombic structure are expected to result
in significant changes in the magnetic and orbital ordering, which has attracted significant
scientific interest [1, 2, 77, 79, 82, 90, 91, 92, 93, 94, 95]. Possessing the smallest ionic radius
among all REV, LuVO3 stands out by potentially exhibiting more pronounced effects.

4.1.2 Electronic Structure of RVO3

The electronic structure of the RVO3 Mott insulators is governed by two electrons occupying
the 3d shell of the V3+ ions. The cubic crystal fields associated with the undisturbed oxygen
octahedra (Pm3̄m) cause a splitting of the originally five-fold degenerate 3d levels [96], which
is shown in Fig. 4.2 (a). This results in one triply degenerate t2g orbital and one doubly
degenerate eg orbital. The repulsion between the electron clouds of the 3d orbitals and the
negatively charged oxygen ligand ions in octahedral surroundings favors minimizing overlap.
Consequently, the triply degenerate t2g set (xy, yz, and zx orbitals), is energetically favored
compared to the eg set being composed of x2 − y2 and 2z2 − x2 − y2 orbitals [97, 96]. The
corresponding electron densities are sketched in Fig. 4.2 (b), where the negatively charged
oxygen ions comprising the octahedron are located on the axes of the coordinate system.
The large energy gap between the eg and t2g orbitals (10Dq) makes a mixture of states
unlikely [75, 97].

The degeneracy of the t2g orbital is further lifted by a mixture of two effects. Firstly, the
GdFeO3-type rotation results in non-uniform V-O bond lengths, causing the t2g orbitals to
split by a small amount at all temperatures [77]. Secondly, an additional distortion of the
oxygen octahedron reduces the cubic symmetry of the crystal field to a tetragonal or trigonal
one. As shown in Fig. 4.2 (a), this reduction in symmetry splits the t2g and eg orbitals such
that energy is gained by partially occupying the resulting lower energy orbitals. If this energy
gain from this more favorable occupation exceeds the loss associated with the deformation of
the crystal structure, the distortion is realized, and the compound is called Jahn-Teller-active
[98].

(3)A readily available overview of the ionic radii published by Shannon can be found in an online database
[87].
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Figure 4.2: (a) Splitting of the five-fold degenerate 3d orbitals in a crystal field with different
symmetries. When subjected to a crystal field with cubic symmetry, the 3d orbitals are split
into a triply degenerate t2g and a doubly degenerate eg orbital. Due to the orientation of
the negatively charged O-ligands, t2g is energetically favored to e2g. When the symmetry of
the crystal field is further reduced by compression of the oxygen octahedra, the degeneracy
of the orbitals is further lifted. The occupation of the orbitals by two valence electrons in
V3+ according to Hund’s rules is indicated by pink arrows. (b) shows the distribution of
electron densities for various 3d orbitals. While the density of the eg orbitals is maximized
along the coordinate axes, the density of the t2g is localized between two axes, respectively.
Figures (a) and (b) are reproduced from Kugel et al. [96]. (c) The systematic distortion of
the corner-sharing oxygen octahedra gives rise to the collective Jahn-Teller effect. (c1) and
(c2) For a- and d-type Jahn-Teller effects, the elongated bonds (highlighted in green) within
the ab-plane are oriented perpendicular and parallel when traversing the c-axis, respectively.
(c3) Tilting of oxygen octahedra in the GdFeO3-type rotation. Figures (c1-3) are reproduced
from Mizokawa et al. [77].

In the case of V3+ ions, only two electrons are available to fill the three t2g orbitals, one
electron always occupying xy and the other either yz or zx. Due to the sharing of corners
between octahedra, individual Jahn-Teller distortions become coupled and give rise to the
collective Jahn-Teller effect. For a more comprehensive treatment of this topic, the reader
is referred to the work of Kugel and Khomskii [96].
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Fig. 4.2 (c1 and c2) illustrate two expressions of the collective Jahn-Teller effect differing
only with respect to the stacking of the distorted octahedra along the c-axis [77]. For the
a-type distortion (c1), the elongated bonds of two adjacent octahedra, indicated in dark
green, are rotated by 90° around the c-axis with respect to each other when moving through
the crystal along the c-direction. However, in the d-type distortion (c2), the elongated bonds
are parallel when traversing the crystal along c. When moving through the crystal along
either the x- or y-direction, the elongated bonds are consistently rotated by 90 ◦ around the
c-axis with respect to each other. The additional tilting of the octahedra associated with
the GdFeO3 rotation (c3) subtly influences the choice between a- and d-type Jahn-Teller
distortions. It has been demonstrated through the minimization of the free energy that the
d-type Jahn-Teller distortion is energetically favored over the a-type distortion when a large
GdFeO3-type distortion is present, specifically for a small ionic size of R [77].

Importantly, the different types of Jahn-Teller distortions are intertwined with a corre-
sponding orbital order (OO). In agreement with the symmetry of neighboring oxygen octa-
hedra, for the a-type distortion, an alternating occupation of yz and zx orbitals is expected
along all directions, i.e., anti-ferro G-type OO. Similarly, if the Jahn-Teller distortion is of
d-type, one encounters the same occupation of orbitals when moving along z, with alternat-
ing orbitals along x and y, i.e., C-type OO [96]. According to the Goodenough-Kanamori
rules, in perovskites, the magnetic spin order (SO) correlates strongly with the OO, where
G-type (C-type) OO favors C-type (G-type) SO, respectively [76].

The importance of the cation size for orbital and magnetic transitions in RVO3 can be
understood by comparing the temperature dependence of the SO and the OO for different
occupants of the R-site, which is summarized in Fig. 4.3. In panel (a), the specific heat of
RVO3 as a function of temperature is plotted for various elements R, revealing small peaks
indicative of phase transitions in the respective curves. Upon cooling the compounds below
TOO1, the orthorhombic Pbnm space group transitions to the monoclinic P21/b space group
(No. 3). The onset of G-type orbital ordering accompanies this transition. At TSO1, C-type
spin ordering emerges in addition to the existing G-type OO. Lastly, for compounds with
relatively small ionic sizes of R, starting with Dy, a final phase emerges at temperatures below
TSO2. The OO transitions from G-type to C-type, and the SO changes from C-type to G-type.
This observation is consistent with an increasing tilt angle for smaller cations, favoring a
collective d-type Jahn-Teller distortion, giving rise to C-type orbital ordering. These changes
of the SO and the OO at TSO2 were reported to be accompanied by a structural transition
from P21/b back to the room temperature structure Pbnm [2, 99].

4.2 Properties of LuVO3

LuVO3, the member among the RVO3 compounds with the smallest ionic radius, experiences
the most pronounced GdFeO3 distortion. This has attracted considerable research interest,
which will be briefly discussed here.

An overview of the various structural, orbital, and magnetic phases in LuVO3 is given in
table 4.1. We follow the naming convention for the individual phases by Skoulatos et al. [2].
At room temperature, LuVO3 crystallizes in the Pbnm space group without exhibiting either
OO or SO (phase 0). Upon cooling below TOO1 = 177 K, G-type OO emerges alongside with
a structural transition to P21/b (phase I). Further cooling below TSO1 = 105 K is associated



32 CHAPTER 4. LATTICE DYNAMICS IN LUVO3

(a)

(b)

Figure 4.3: (a) Temper-
ature dependence of the
specific-heat for RVO3,
where R denotes a rare
earth element. Transition
temperatures associated
with G-type orbital order-
ing (TOO1), C-type spin
ordering (TSO1), and the
combined G-type spin and
C-type orbital ordering
(TSO2 = TOO2) are indi-
cated by closed, open, and
double triangles, respec-
tively. The left inset shows
C-type OO and G-type
SO. The right inset shows
G-type OO and C-type
SO for comparison. Open
arrows and shaded lobes
indicate spin direction
and dyx and dxz orbitals
of the vanadium atoms,
respectively. (b) Overview
of different types of SO
and OO in RVO3 plotted
against the ionic radius of
R, rR. Figure is reproduced
from the work of Miyasaka
et al. [1]

with the appearance of a slightly canted C-type SO and a transformation of the OO to C-
type (phase II). Finally, as the temperature drops below TSO2/OO2 = 82.5 K, the OO changes
to C-type and the SO transitions to G-type (phase III). Additionally, the crystal structure
reverts back to Pbnm at TSO2/OO2. This behavior is consistent with that observed in other
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temperature space group OO SO

phase 0 T ≥ 177 K Pbnm; No. 62(2) - -
phase I 177 K ≥ T ≥ 105 K P21/b; No. 3 G-type -
phase II 105 K ≥ T ≥ 82.5 K P21/b; No. 3 G-type C-type
phase III 82.5 K ≥ T Pbnm; No. 62(2) C-type G-type

Table 4.1: Crystal structure and orbital and magnetic ordering in LuVO3 at various tem-
perature ranges.

RVO3 compounds with small ionic radius, e.g., Yb, Er, Y, Dy (see Fig. 4.3 and [99]). Fig. 4.4
visualizes the OO and the SO for the phases II and III. The monoclinic structure in phase
II lifts the equivalency between V-atoms along the c-axis, which is visualized by darker
shades of the orbitals. Importantly, the magnetic spins in the G-type SO in phase III are
aligned parallel to the c-axis, while in phase II, they are canted in the bc-plane. Fig. 4.5

(a) T < 82.5 K (b) T > 82.5 K

Pbnm P21b
C-type OO
G-type SO

G-type OO
C-type SO

phase III phase II

V

V

V1

V2

Figure 4.4: OO and SO of LuVO3 visualized for V atoms of a single pseudo-cubic unit cell.
Red and blue hues indicate occupied yz and zx orbitals, and light and dark shades indicate
orbitals belonging to crystallographically different V atoms in the P21/b structure (only
for T > 82.5 K). Gray arrows indicate the SO, which is consistent with the Goodenough-
Kanamori rules. See text for more details. The Figure is reproduced from Skoulatos et al.
[2].

shows an overview of the temperature dependence of the lattice parameters and the V-O
bond lengths. Investigating the parameters of the pseudo-cubic cell at room temperature
yields x = y =

√
a2 + b2/2 = 3.81�A, which is significantly larger than z = c/2 = 3.75�A, in

agreement with the xy orbital being energetically favored by the Jahn-Teller distortion.
One observes a minute change in bond lengths and a change in the slope of the lattice

parameters upon cooling below TOO1 = 177 K which is concomitant with the change from
Pbnm to P21/b. The onset of C-type SO is accompanied by a significant change in bond
length but does not impact the lattice parameters. However, the transition to G-type SO
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PbnmP21/bPbnm

Figure 4.5: Lattice parameters (a) and V-O bond lengths (b) in LuVO3 as a function of
temperature. The values are refined from high-resolution X-ray synchrotron data. Figure is
reproduced with permission from taken from Skoulatos et al. [2].

and C-type OO at TSO2 is accompanied by discontinuities in both the bond lengths and the
lattice parameters.

Across all observed T , the V-O1 bond distance along the c-axis remains relatively constant
and compressed, indicating that the permanent occupancy of the xy orbital is unchanged.
In contrast, the lengths of the two distinct V-O2 bonds exhibit a significant change during
the III-to-II phase transition. The difference between them changes sign, possibly indicating
a corresponding swap in the occupancies of the zx and yz orbitals.

In conclusion, we expect substantial modifications of the effective Hamiltonian across the
transition and the occurrence of orbital fluctuations in phase II, as predicted by theoretical
models [100]. Furthermore, the abrupt albeit small change in lattice parameters, < 0.5 %,
suggests that the elastic constants coupled to the electronic structure via the Jahn-Teller
effect might change, which would result in a noticeable alteration of the lattice dynamics of
the compound.

Magnetic Properties

In the closely related REV compound YVO3, Ulrich et al. [101] report neutron scattering
data hinting at unusual magnetic properties. They find an anomalously small magnetic
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moment, 1.05(2) µB, in YVO3’s equivalent of phase II. The authors attribute the attenuation
from the free ion value of 2µB to strong quantum fluctuations in the orbital phase. Further,
they report unusual features in the magnon dispersions obtained in phase II, e.g., |Jc| > |Jab|
and a splitting of the acoustic spin wave into an acoustic and an optical branch with a gap of
5 meV. The gap was explained by employing a model where Jc significantly varies between
the inequivalent V atoms along the c-axis, which produces alternating bonds along c. This
proposed model, a “orbital Peierls” dimerization state, requires degenerate yz and zx orbitals
sharing a single electron (with the other occupying xy). However, cluster calculations yield
a splitting of the orbital energy of yz and zx, contradicting this model [75].

An alternate hypothesis brought forth by Fang and Nagoasa [92] explains the reported
magnetic properties of YVO3 by a model based on the Jahn-Teller effect, in which Jab

alternates along c instead of varying Jc. The LDA + U calculations(4) are in qualitative
agreement with experimental data regarding the spin-wave gap. The deviations between
the calculated magnetic moment (1.72µB) and the experimentally obtained value (1.05µB),
which have been brought forth as an argument supporting the orbital Peierls state, can be
attributed to the elevated measurement temperature of 77 K at which the moment is not
saturated.

Similarly, in LuVO3, Skoulatos et al. have resolved the debate between a quantum “orbital
Peierls” model and a semi-classical Jahn-Teller model in favor of the latter [2]. To this end,
they showed that the magnon dispersions in previously investigated directions agreed with
both models. However, the observed dispersion of the optical band between (0, 1, 2) and (0,
2, 2) could not be explained using the orbital Peierls model and is instead predicted by a
Jahn-Teller induced alteration of Jab along c. The authors also state that the spin alignment
in phase II and the crystal structure of LuVO3 differs from what is observed for YVO3 with
respect to the canting direction of the spins (compare Fig. 4.4). Additionally, their polarized
neutron scattering data confirms the space group of the low-temperature phase III to be
Pbnm, while the intermediate phase II crystallizes in a P21/b space group. This result is
in disagreement with previous work, where Muñoz et al. [94] describe LuVO3 to undergo a
structural phase transition from orthorhombic Pbnm to monoclinic P21/n space group at
T ≤ 94 K.

Within this work, we investigated the lattice dynamics of LuVO3 using triple-axis neu-
tron scattering within various structural, orbital, and magnetic phases. More specifically,
the temperature dependence of acoustic and low-energy optical phonon dispersions was ob-
tained along several high-symmetry directions. An unusual change in energy transfer, i.e., a
softening of a transversal acoustic phonon branch, was observed and described in the context
of elastic anomalies at structural phase transitions.

4.3 Experimental Details
Elastic and inelastic neutron scattering techniques were employed to study the lattice dy-
namics in LuVO3 across its different structural, orbital, and magnetic phases. Within this
section, we first report on the investigated crystal and then summarize the measurements

(4)LDA+U, also known as Hubbard U or DFT+U describes a computational approach for characterizing
systems with strongly correlated electrons using the name-giving local density approximation. A detailed
review of the technique can be found in the work of Anisimov et al. [102].
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performed before discussing the treatment of the obtained data to extract the phonon dis-
persions.

4.3.1 Single Crystal of LuVO3

A large single crystal of LuVO3 with a mass of m = 4 g was grown by Tung Le in a high-
temperature Xenon arc furnace. The crystal growth process consisted of a number of steps
as outlined in [103]. Initially, LuVO4 powder was produced by annealing stoichiometric
quantities of Lu2O3 and V2O5 (99.9 % purity) at 1100 °C for 48 h. Subsequently, LuVO3

powder was created by reducing LuVO4 powder in a H2 atmosphere at a temperature of
1000 °C for a duration of 10 h. Finally, the LuVO3 powder was grown into single crystals
using the floating zone technique [104]. The seeds for the growth process were created by
subjecting a small quantity of the powder to hydrostatic pressure and annealing the resulting
rods in an argon atmosphere for 6 h at 1500 °C [105]. Fig. 4.6 illustrates the crystal growth
process and shows an image of the crystal mounted on its sample holder.

Figure 4.6: Schematics of the crystal growth of LuVO3 and the resulting single crystal
attached to a sample holder. (a) The growth process including the different stages is outlined,
with blue rectangles representing powders and a red rectangle denoting the resulting single
crystal. (b) During all experiments, the crystal was carefully aligned such that its a-axis
(and the [100] direction) was vertically oriented.

4.3.2 Measurement Strategy
The complex nature of the Jahn-Teller active compound, LuVO3, gives rise to a diverse
phase diagram characterized by structural transitions involving the emergence of OO and
SO. To unravel this intricate relationship, inelastic neutron scattering was employed as a
powerful tool to probe the lattice dynamics in the material. This technique enables the
precise determination of the phonon dispersion relations along different momentum transfer
directions ~Q. The measurements presented in this study were conducted by Tobias Weber
(Planning and Conduction of the experiments) and Markos Skoulatos (Conduction of the
experiments) at various TAS instruments, including EIGER at PSI in 2016, and 2017, MIRA-
2 at FRM II in 2017, and PUMA at FRM II in 2018. The obtained data is analyzed and
presented for the first time in this work.

To track the evolution of acoustic phonon dispersions (both longitudinal and transversal)
across different phases characterized by distinct OO and SO, a systematic investigation
at various temperatures was performed. An overview of all the scan paths is provided in
Fig. 4.7. All investigations presented here were performed with the LuVO3 single crystal
being oriented in the [001], [010] scattering plane, such that its a-axis was oriented vertically
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Figure 4.7: Overview of the conducted scans in reciprocal space (a), and their projection
into the first Brillouin zone (b). Full red circles depict the reciprocal lattice points, while
the zone boundaries are indicated by dashed, black lines. Orange circles indicate selected
high symmetry points within the first Brillouin zone [106] to which the scans extend. Scans
performed at large negative values of k or l are shifted into the first quadrant of the reciprocal
space for visualization.

in the TAS experiment (compare Fig. 4.6 (b)). Due to the increase in signal strength from

phonon modes with increasing momentum transfer, S( ~Q,w) ∝
∣∣∣ ~Q∣∣∣2, one usually investigates

the phonons in Brillouin zones as distant from the origin as the instrumental setup allows.
A projection of all scans into a common BZ is visualized in (b). Several scans along very
high symmetry directions, such as [010], [001], and [011], were obtained from the different
measurements. Most of them extend towards the zone boundaries (dashed, black lines),
where the change in phonon energy, i.e., the softening, is expected to be most pronounced.
Each marker in Fig. 4.7 represents a series of constant-Q scans performed over an energy
range enabling the determination of the phonon dispersion (typically ranging between 1 meV
and 15 meV depending on the energy of the lattice excitation). Each constant-Q scan was
repeated at a multitude of temperatures ranging from 9 K to 250 K to track subtle changes
through the various magnetic and structural phases.

In contrast, the exceptional resolution in Q and ∆E of MIRA-2, FRM II was employed to
determine the slope of the phonon dispersion close to the zone center, where its steep nature
requires constant-E scans instead of constant-Q scans. Fig. 4.8 (a) and (b) show exemplary
constant-Q and constant-E scans, respectively.

In order to extract the energy and momentum transfers from the data, theoretical models
were fitted, which are indicated by solid lines in (a) and (b). Assuming a Gaussian profile for
the resolution function of the TAS [107, 108](5) and a Lorentzian line shape for the phonon

(5)For the calculation of the resolution function, a Gaussian mosaic of the monochromator and the analyzer
crystals is assumed together with a Gaussian intensity profile after collimation, which is typically well
justified.
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Figure 4.8: Exemplary constant-Q (a) and constant-E (b) scans investigating the phonon
dispersions obtained at EIGER and MIRA-2, respectively. Various models fitted to the data
are shown together with their AIC, which measures the chosen model’s goodness with a lower
value indicating a better fit.

itself, one would expect the measured data, i.e., the convolution of the two, to be of Voigtian
shape (indicated by a solid, black line)(6). However, as presented in Fig. 4.8 (a) the data is
better approximated by a simple Gaussian line shape with a constant background C, area
A, center E0 and width σ, e.g.,

Counts = A
exp

(
−(∆E−E0)2

2σ2

)
√

2πσ
+ C, (4.2)

reflected by a smaller Akaike information criterion (AIC) [109, 110]. This indicates that
the line width of the phonon, Γ, is small compared to the instrument resolution, which
complicates the determination of the former. A further determination of Γ utilizing resolution
de-convolution does not promise significant improvements over the simple fitting procedure.
Considering the small relative change in the energy transfer, the resolution ellipsoid is not
expected to change significantly.

The data obtained by constant-E scans (b) was approximated by the sum of two Gaussian
line shapes with different widths corresponding to the same transversal phonon branch ob-
tained at ±(0, δ, 2). One observes the influence of the instrumental resolution resulting in one
focusing and one de-focusing branch at positive and negative values of δ (7). By combining
the resulting energy and momentum transfers from individual scans, we obtain dispersion
relations for different directions and temperatures.

(6)A Voigt line shape is defined as the convolution of a Gaussian lineshape with a Lorentzian lineshape.
Often, a pseudo-Voigt profile is used as a model instead, which is the sum of the former two.

(7)Compare the work of Cooper and Nathans [107] for a detailed discussion of focusing effects in TAS
measurements.
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4.4 Phonon Dispersions
An extensive investigation regarding different phonon branches in LuVO3 was conducted with
an emphasis on temperature-dependent changes in phonon energy and linewidth hinting at
the influence of changing structure, OO and SO. Dispersions along various directions were
established during the experiments. Only the main results are presented here, with an
overview of the raw scans found in the appendix A.

We first discuss an acoustic transversal phonon, propagating in the [010]-direction, polar-
ized along [001], which was investigated around the (004) Bragg reflection. We will refer to
this branch as TA1, compare Fig. 4.7 (b). An initial investigation at EIGER in 2016 hinted
at a subtle softening of this phonon branch at the zone boundary as visualized in Fig. 4.9.
We investigated TA1 at four different temperatures, T ∈ {50 K, 70 K, 90 K, 110 K}. Fig. 4.9
(a) shows the obtained dispersions, in excellent agreement with a sine-dispersion law [35],

∆E =
∣∣∣A sin

(xq
2

)∣∣∣ . (4.3)

The phonon possesses an amplitude of about A = 10 meV and extends from the zone
center q = 0 to its boundary xq = π. However, in proximity to the zone boundary at
~Q = (0,−0.5, 4), one observes a decrease in the determined phonon energy of about 0.3 meV
upon lowering the temperature from 90 K to 70 K, see inset. Fig. 4.9 (b) highlights the four

constant-Q scans obtained for different temperatures at ~Q = (0,−0.5, 4). When comparing
temperatures below and above TOO2 = 82.5 K, one observes a shift in phonon energy, char-
acterized by the change of the peak position of the constant-Q scans, together with a minor
increase in the total number of scattered neutrons. In addition to the main peak associ-
ated with TA1, centered around ∆E = 10 meV, one observes a weak signal attributed to a
transverse optical phonon around 12.5 meV, which did not express any anomalous behavior.

A second investigation of TA1 at temperatures closer to TSO2 = 82.5 K was conducted at
EIGER, PSI, in 2017 with the obtained dispersions and scans being presented in Fig. 4.9 (c)
and (d) following the same fashion as above. During this measurement, we confirmed the
softening of the transversal phonon in addition to refining the temperature at which it occurs
to a range between 80 K and 85 K. Due to a smaller range in investigated energy transfers,
8 meV ≤ ∆E ≤ 12 meV, the optical phonon was not observed here. Curiously, the difference
in scattering rates above and below TSO2 is smaller than in the previous experiment, which
might be attributed to a slight difference in crystal alignment.

Besides the reproducible softening occurring close to the zone boundary, δ ∈ [−0.5,−0.4] r.l.u.,
no significant change in energy is observed closer to the zone center, δ ≤ 0.4 r.l.u. Expanding
on this observation, Fig. 4.10 shows the temperature dependence of the phonon energy at var-
ious fixed Q-positions. The figure combines the data from the dispersions and a designated
temperature scan at Q = (0,−0.5, 4). The findings are summarized as follows:

• TA1 undergoes a significant shift in phonon energy of about 0.3 meV at the zone
boundary, ~Q = (0,−0.5, 4), at the second orbital ordering temperature TSO2 = 82.5 K.
This change is concomitant with the structural transition, where the intermittent P21/b
structure reverts back to the room-temperature Pbnm structure upon cooling, Fig. 4.10
(a) and (b).



40 CHAPTER 4. LATTICE DYNAMICS IN LUVO3

0

2

4

6

8

10

E 
(m

eV
)

(a)

0

50

100

150

200

250

300

Co
un

ts
/1

0 
m

in
Q = (0,-0.5,4)

(b)

T (K)
50.0
70.0
90.0
110.0

0.4 0.2 0.0
Q = (0, , 4) (r.l.u.)

0

2

4

6

8

10

E 
(m

eV
)

(c)

8 10 12 14
E (meV)

0

50

100

150

200

250

300

Co
un

ts
/1

2 
m

in (d)

Q=(0,-0.5,4)

T (K)
75.0
80.0
85.0
95.0

0.5 0.49.0

9.5

10.0

0.5 0.49.0

9.5

10.0

50

60

70

80

90

100

110

T (K)

Figure 4.9: Dispersion relations of the transverse, acoustic phonon branch TA1 obtained at
EIGER in 2017 (a) together with selected underlying constant-Q scans at Q = (0,−0.5, 4)
(b). The data from a later repetition of a similar experiment at EIGER in 2017 is shown in
(c) and (d) for comparison. Solid lines of corresponding color depict fits to the data, i.e., a
simple sine-dispersion law (Eq. (4.3)) for (a) and (c) and Gaussian models, Eq. (4.2), for (b)
and (d).

• Upon increasing the temperature above 82.5 K, the energy of TA1 decreases linearly
with a suggestion of a slight drop at the first ordering temperature TOO1, Fig. 4.10 (a)
and (b).

• The optical phonon TO1, observed at ~Q = (0,−0.5, 4) around ∆E = 12.5 meV, is less
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Figure 4.10: Temperature dependence of phonon energy and linewidths obtained at different
Q-points for the TA1 mode of LuVO3 as obtained around ~Q = (0,−0.5, 4) r.l.u. The color
plot in panel (a) depicts the obtained neutron intensity per 10 min normalized to a common
monitor as a function of both the applied temperature and the energy transfer at the sample.
Additionally, energy transfers of the modeled acoustic and the optical phonon branches are
indicated by broken red lines (error bars correspond to the uncertainties of the fits). Panel
(b) provides a more detailed illustration of the temperature dependence of the energy transfer
of TA1, revealing a significant change in ∆E at TSO2 = 82.5 K. However, as depicted in (c),
no significant change of the width, σ, of the Gaussian fits was observed. Panels (d) and (e)
show no significant temperature-dependent change of the phonon energy distant from the
zone center. All error bars represent the uncertainty of ∆E obtained from the performed
Gaussian fits to the data.
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intense and does not exhibit a significant change in energy at TSO2 or TOO1, Fig. 4.10
(a).

• Within the measured data, no significant change in linewidth is observed at TSO2,
Fig. 4.10 (c).

• The phonon softening cannot be resolved distant to the zone boundary at either ~Q =
(0,−0.2, 4) or ~Q = (0,−0.3, 4) possibly due to the instrument resolution, Fig. 4.10 (d),
(e) and Fig. 4.11.

As a main result, the observed transversal acoustic phonon TA1 exhibits a significant soften-
ing in energy when cooled below TSO2, concomitant with a structural phase transition from
P21/b to Pbnm together with the change of G-type (C-type) OO (SO) to C-type (G-type)
OO (SO). Additional investigations of phonons along the longitudinal [001] and [011] high-
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Figure 4.11: LuVO3 TA1 phonon energies and widths of the Gaussian fits for several tem-
peratures and Q positions.

symmetry directions did not yield any anomalies. Fig. 4.12 and Fig. 4.13 present data and
fits of the phonon dispersions obtained along the [011] and the longitudinal [001]-direction,
respectively. These directions extend to the T, and the Z-point highlighted in Fig. 4.7. Si-
nusoidal fits generally agree with the data but seem to be of decreased quality compared
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Figure 4.12: Phonon dispersions in the [011]-

direction around ~Q = (0,−2, 2) measured at
EIGER. Three phonon branches can be identified:
At the highest energies, remnants of a longitudinal
optical phonon branch are observed close to the
zone boundary at ∆E = 12.5 meV. At medium
energy, ∆E = 10 meV, a longitudinal acoustic
phonon is observed. At the lowest energies, we
suspect a transversal acoustic phonon. No unusual
softening in energy is observed at TSO2 = 82.5 K in
any of the branches. The dispersions were inves-
tigated for T ∈ {75 K, 85 K, 100 K, 110 K} as indi-
cated by black lines on the colorbar.
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Figure 4.13: Phonon dispersions in longitudi-
nal [001]-direction around the (0, 0, 4) Bragg-
reflection were obtained at PUMA. The highest-
energy feature is a longitudinal optical phonon
observed only at the zone boundary ∆E ≥
15 meV. At ∆E = 12.5 meV, and ~Q = (0, 4.5, 0)
the longitudinal acoustic mode is observed. No
unusual softening is observed upon cooling below
TSO2 = 82.5 K. The dispersions were investigated
for T ∈ {70 K, 90 K, 115 K, 200 K} as indicated by
black lines on the colorbar.

to the fits to TA1, compare Fig. 4.9. Nevertheless, the fit parameters should still reflect a
significant change in the energy of the phonon branch. In summary, none of the other modes
observed show any significant softening during the structural phase transition as observed
for the TA1 phonon branch around ~Q = (0,−0.5, 4) r.l.u. The data only expresses a small
and regular softening of the phonon modes with increasing temperature, attributed to the
crystal lattice’s thermal expansion [35].

4.5 Discussion
During the investigation of phonon dispersions along several high-symmetry directions in
LuVO3 using inelastic neutron scattering in a TAS-geometry, we have demonstrated an
anomalous change in the phonon energy of the transversal acoustic TA1 branch concomitant
with the structural, orbital and magnetic phase transition at TSO2 = 82.5 K. The softening
is most pronounced close to the zone boundary at ~Q = (0,−0.5, 4) r.l.u. This softening
occurred reproducibly irrespective of the instrument (EIGER, PSI or PUMA, FRM II) and
expresses no hysteresis irrespective of heating or cooling the crystal through the transition.

There exists a large body of literature on various phonon anomalies in perovskites and
similar compounds, ranging from soft optical modes in PbTiO3 investigated with TAS by
Shirane et al. [111] to more recent investigations of spin-phonon coupling in transition-
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metal perovskites investigated by DFT+U computer simulations [112]. However, the lattice
dynamics of REV have been less thoroughly investigated, with their magnetic properties
being at the focus of scientific interest instead [2, 92, 101]. We believe the present case can be
explained in simple terms with the Jahn-Teller-induced structural phase transition occurring
together with the softening. Some alternative theories will also briefly be mentioned.

Our discussion will closely follow the extensive work of Carpenter et al., which discusses the
topic of “elastic anomalies in minerals due to structural phase transitions” in [6]. Additional
insights are taken from [113].

4.5.1 Lattice Dynamics and Elastic Constants
To compare the obtained phonon dispersions to changes in elastic modulus, the calculation
of which will be discussed in section 4.5.3, we briefly discuss the influence of changing elastic
constants on the lattice dynamics of the system. To keep the introduction short, we discuss
only the case of waves in a continuous medium(8), which yields a linear dispersion between
energy and momentum, with a short finishing remark concerning the present case, in which
the wavelength is comparable to the lattice parameters of the periodic crystal.

The general equation of motion for elastic waves in a continuous medium is given by:

ρ
∂2ui(xj)

∂t2
=
∑
j

σij(xj)

∂xj
, (4.4)

where ρ denotes the homogeneous mass density and ui denotes the displacement along i at
distance xj from the origin in the direction j. The components of the stress tensor σij are
visualized in Fig. 4.14. All here used indices ijkl indicate one of three orthogonal directions

x

y

z

Figure 4.14: Schematics of the components of
strain. The first index in σik denotes the di-
rection in which the force is pointing, and the
second index indicates the surface normal on
which the point of attack is located.

among xyz. Substituting the stress by inserting Hooke’s law and the definition of strain,

σij(xj) = Cijklekl(xj),

ekl(xj) =
1

2

(
∂uk(xj)

∂xl
+
∂ul(xj)

∂xk

)
,

(4.5)

into Eq. (4.4), we obtain the well-known wave equation for elastic waves in a continuous

(8)This approximation is valid also for phonons in a crystal, if the wavelength of the phonons is much larger
than the interatomic distances, i.e., small q and ω close to the zone center.
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medium,

ρ
∂2ui(xj)

∂t2
=
∑
jkl

Cijkl
∂2ul(xj)

∂xj∂xk
(9). (4.6)

One solution to the above wave equation is the plane wave ansatz,

ui(xj) = u0i exp[i(qjxj − wt)], (4.7)

with w denoting the frequency and u0i representing the amplitude of the wave in direction
i. qj denotes the component of the wavevector in the direction parallel to the direction of
xj. Plugging this expression back into Eq. (4.6), yields the dispersion relation,

ρω2ui(xj) =
∑
jkl

Cijklqjqkul(xj). (4.8)

In favor of studying this general equation, we discuss only situations where the wave travels
along the high-symmetry directions investigated during the experiments. When a softening
was observed in LuVO3, a transverse wave travels along the b-direction of the LuVO3 crystal,
[010] with its polarization in c-direction, along [001]. In that case, Eq. (4.8) becomes,

ρω2uc(xb) = Ccbbcq
2
buc(xb) (4.9)

with the linear dispersion relation following immediately after canceling uc(xb),

ω = qb

(
Ccbbc
ρ

) 1
2

. (4.10)

We now leave the discussed case of an elastic continuum and discuss the present case, where
the wavelength of the waves is on the same order of magnitude as the interatomic distances.
Eq. (4.10) suggests that at the zone center, i.e., small q, we expect a linear dispersion with
a slope

∆E

q
= ~

(
Ccbbc
ρ

) 1
2

(4.11)

proportional to the root of the corresponding elastic constant.
To understand the situation closer to the zone boundary, we discuss the simplest case of a

one-dimensional chain with only nearest-neighbor interaction. Here, the general dispersion
relation can be expressed as [35]

ω2 =
4

M
Cn sin2

(qa
2

)
, (4.12)

where M is the mass of an individual atom in the chain, Cn denotes the spring constant
between neighboring atoms, a is the equilibrium distance between the atoms, and q denotes
the wavevector. In the limit of small q, this reduces to Eq. (4.10), with ρ denoting the

(9)In comparison to the work of Carpenter et al. [6], the ordering of the indices k and l is inverted in favor
of the more modern notation found for example in the book of S. Hunklinger [35].
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line density ρ = a2/M (10). Taking the root of Eq. (4.12) yields the sine-dispersion given

in Eq. (4.3) with A = 2 (Cn/M)
1
2 . When extended to the three-dimensional case, see for

example [35], we again obtain proportionality between the phonon energy and the root of
the elastic constant corresponding to the specific branch, ∆E ∝

√
Cijkl. The behavior of

those elastic constants in the context of various types of phase transitions is summarized in
the work of Carpenter et al. [6].

4.5.2 Variations of Elastic Constants
Elastic constants are known to vary with temperature in different ways. On the one hand,
anharmonic terms in the Hamiltonian of the lattice dynamics lead to an expansion of the
crystal concomitant with a linear decrease in the elastic constants with increasing temper-
ature. On the other hand, the behavior of elastic constants at phase transitions is more
involved including strong variations and even discontinuities. Fig. 4.15 and Fig. 4.16 show
both behaviors for Mg2SiO4 at high temperatures above the Debye temperature and the
α-β structural transition in quartz, respectively. We believe both effects to be reflected

Figure 4.15: All elastic constants (Voigt no-
tation) of Mg2SiO4 at T � TDebye decrease
linearly with temperature. The slopes differ
between the various constants. Figure taken
from Suzuki et al. [114].

Figure 4.16: Various elastic constants in quartz
around the α to β structural transition, Tc =
846 K, express strongly anomalous behavior. Elas-
tic constants increase or decrease discontinuously
at the phase transition. Figure taken from [6].

(10)Note that Cijkl and Cn have different units.
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in the phonon dispersion of TA1, where a discontinuity in the phonon energy is observed
at TSO2 = 82.5 K together with a linear decrease upon increasing the temperature above
TSO2, compare Fig. 4.10. We will first investigate the anomaly at the phase transition be-
fore discussing the linear decrease and comparing it to the observed changes in the lattice
parameters.

4.5.3 Elastic Anomalies due to Structural Phase Transitions
In the limit of small strains (no anharmonic effects), the relationship between the stress, σ,
and the resulting strain, e, is given by a generalized Hooke’s law,

σi = Cikek, (4.13)

where Cik denotes an element of the elastic tensor in Voigt notation(11) [115, 35]. Similarly,
the elastic energy stored in a crystal subjected to a small deformation is given by [116]

Gelastic =
1

2

∑
i,k

Cikeiek, (4.14)

where the sum runs over all six components of the strain in Voigt notation, i.e., three
compressive or tensile and three shear stresses. Ensuring the stability of the crystal, even for
vanishing components of Cik (which might occur at structural phase transitions as we will
see later on), Hooke’s law and consequently the elastic energy is expanded by higher order
terms in e leading to

Gelastic =
1

2!

∑
i,k

Cikeiek +
1

3!

∑
i,k,l

Cikleiekel +
1

4!

∑
i,k,l,m

Ciklmeiekelem + ..., (4.15)

where the sums again run over all six entries in the strain vector in Voigt notation, and
C denotes generally temperature-dependent elastic constants of up to fourth order in Voigt
notation. The prefactors account for counting equivalent terms multiple times, such as
Cik = Cki.

The authors highlight the similarity between Eq. (4.15) and a Landau expression of the
free energy [117, 118], where the strains represent the order parameters driving the transition
(12).

(11)In general stresses and strains are expressed using 3 × 3 matrices, which are consequently connected
by a rank four tensor with 81 entries. Considering symmetries in stress and strain, e.g., σik = σki due
to
∑ ~M = 0, we obtain a maximum of 6 unique entries for σ and e. Rearranging the entries yields the

relationship in Voigt notation, as shown below. The change in the notation for the strains is analogous.

σ1 := σxx σ6 := σxy σ5 := σxz
σ6 := σyx σ2 := σyy σ4 := σyz
σ5 := σzx σ4 := σzy σ3 := σzz

→

σ1
σ2
σ3
σ4
σ5
σ6


(12)A single symmetry-breaking strain is sufficient but multiple strains can combine for various types of

structural phase transitions [6].
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Following the work of Carpenter et al. [6], we investigate the above formalism by the example
of an orthorhombic-to-monoclinic phase transition, reflecting the structural phase transition
occurring in LuVO3 at TSO2. In the most simple case, where the symmetry-breaking shear
strain e4

(13) represents the order parameter, and the excess energy equals the elastic energy;
we get the following Landau expansion

G = Gexcess = Gelastic =
1

2
a(T − Tc)e

2
4 +

1

4
be4

4. (4.16)

Solving for a minimum in G with respect to e4,

∂

∂e4

G = 0 = a(T − Tc)e4 + be3
4, (4.17)

yields the following two expressions for e4,

e2
4 =

{
0 for T > Tc

a
b
(Tc − T ) for T < Tc

. (4.18)

The associated elastic constant, C44, is obtained by double differentiation of G with respect
to e4,

C44 =
∂2

∂e2
4

G

∣∣∣∣
e4

= a(T − Tc) + 3e2
4 =

{
a(T − Tc) for T > Tc

−2a(T − Tc) for T < Tc

. (4.19)

C44 is expected to soften to 0 for T approaching Tc from either side with slopes in a 1 : 2
ratio. Identifying the prefactors of Eq. (4.16) with the ones in Eq. (4.15) yields an agreement
for T > Tc.

While this basic example of a second-order phase transition suffices in demonstrating the
anomalous change of the elastic constants close to phase transitions, the observed behavior
of C44 does not agree with the discontinuity in the phonon energy observed for TA1(14).
Therefore, an investigation more tailored to the present problem is needed.

As discussed, in the case of LuVO3, the strains are closely intertwined with the electronic
structure by nature of the collective Jahn-Teller effect, indicating that a purely elastic model
does not suffice to accurately describe this phase transition. We now consider the case in
which the phase transition is driven by an order parameter, Q, different from the strains.
Under the assumption that this order parameter couples to the symmetry-breaking strains
to various extents, the excess energy is expressed as

Gexcess =
1

2
a(T − Tc)Q

2 +
1

4
bQ2 + ...+

∑
i,m,n

λi,m,ne
m
i Q

n +
1

2

∑
i,k

C0
ikeiek, (4.20)

where the coupling is described by the terms λemQn. Different coupling mechanisms corre-
spond to different exponents m and n, typically integers among 1, 2, 3. The variety of possible

(13)e4 denotes the movement of a plane with surface normal parallel to x in the z-direction.
(14)A discontinuity in an elastic constant entails a discontinuity in the energy of the corresponding phonon

branch, ∆E ∝
√
Cij .
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couplings results in a multitude of behaviors, which the elastic constants can express during
and while approaching the structural phase transitions. In general, the temperature depen-
dence of the elastic constants can be calculated by taking the second derivatives of Gexcess

with respect to the respective strains while considering the structural changes induced by a
changing Q,

Cij =
∂2Gexcess

∂ei∂ej
. (4.21)

An overview of the behavior of C44 for various types of phase transitions from orthorhom-
bic to monoclinic point-group symmetries is given in Fig. 4.17. (a1-3) show the resulting

Tc Tc Tc

Tc Tc Tc

Tc Tc Tc

C44

C44

C44

Ttr

Ttr

Ttr

second order tricritical first order

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 4.17: Variations of C44 around phase transitions of point group mmm to 2/m with
e4 as the symmetry-breaking strain. The three columns depict the behavior at second-
order, tricritical, and first-order transitions. (a1-3) Proper ferroelastic phase transition with
the symmetry-breaking e4 being the order parameter. (b1-3) Pseudo-proper ferroelastic
transition. (c1-3) Improper ferroelastic transition Pmma to P2/c. The figure is reproduced
from the work of Carpenter et al. [6].

temperature dependence of C44 in the above discussed case of e4 representing the sole or-
der parameter with no external coupling. The slopes express the determined 2 : 1 ratio.
(a1) shows the behavior at a second-order phase transition for which we assume C4444 > 0.
(a2) and (a3) show the variation of C44 at a tricritical point and a first-order transition,
respectively. Analogous to the previous calculation, we assumed the strain e4 to be the
symmetry-breaking order parameter driving the transition. For the calculation of the tri-
critical transition, we assumed a positive sixth-order term, C444444 > 0, together with a zero
fourth-order term, C4444 = 0. As a result, C44 softens linearly when approaching Tc. How-
ever, this time, the ratio between the slopes is 4 : 1. For the first order transition, we assumed
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a negative value of C4444 < 0 and a positive C444444 > 0, which results in a discontinuity of
C44 at a transition temperature Ttr slightly larger than the original Tc. However, none of the
three “proper ferroelastic” transitions qualitatively describe the behavior expressed by the
neutron scattering experiment, where we observe a discontinuous decrease of phonon energy
when cooling below TSO2. In contrast, we observe a discontinuous increase during the proper
ferroelastic first-order transition in (a3).

We can describe the situation in LuVO3 more accurately by introducing a coupling term
between the orbital order parameter, Q(15), and e4. (b1-3) show the behavior of C44 in the
case of a “pseudo-proper ferroelastic transition” where we assume a linear coupling between
the order parameter, Q, and the strain, λ4e4Q in Eq. (4.20). As before, i) C44 varies smoothly
to zero, and ii) the ratio of the slopes is 2 : 1 and 4 : 1 for the second-order or tricritical
phase transitions, respectively. Similar to the behavior observed for the first-order proper
ferroelastic transition, the discontinuity in C44 at the first-order pseudo-proper ferroelastic
transition does not agree with the observed phonon dispersion.

We now assume a quadratic coupling term between the order parameter and the symmetry-
breaking strain, λ4e4Q

2. Fig. 4.17 (c1-3) visualizes the behavior of C44 around the resulting
“improper ferroelastic” transition. The calculation starts with the excess energy and its
minimization with respect to Q,

Gexcess =
1

2
a(T − Tc)Q

2 +
1

4
bQ4 + λ4e4Q

2 +
1

2
C0

44e
2
4,

∂Gexcess

∂Q
= a(T − Tc)Q+ bQ3 + 2λ4e4Q = 0,

(4.22)

and yields the following solutions:

Q2 =

{
0 for T > Tc
−a(T−Tc)−2λ4e4

b
for T < Tc

. (4.23)

Inserting the result back into Gexcess and double differentiating with respect to e4 results in
the following expression for the elastic constant [6]

C44 =

{
C0

44 for T > Tc

C0
44 −

2λ2
4

b
for T < Tc

. (4.24)

The behavior of C44 across this improper ferroelastic transition is sketched in Fig. 4.17 (c1).
We observe a discontinuity with no softening as Tc is approached from either side.

Fig. 4.17 (c2) and (c3) demonstrate the behavior of C44 under the assumption of a quadratic
coupling between the order parameter and the strain for a tricritical or a first-order phase
transition, respectively. For the tricritical and the first order transition, one assumes C4444 =
0, C444444 > 0 and C4444 < 0, C444444 > 0, respectively.

The comparison of the discontinuity in the energy of the phonon mode and the calculated
elastic constant C44 yields an excellent qualitative agreement suggesting an improper fer-
roelastic transition at TSO2. Regarding the order of the transition, the picture is less clear.

(15)See the work of Kressdorf et al. for a possible definition of an orbital order parameter [119], which can
couple to the corresponding strain.
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However, the determination of the order of the transition remains less conclusive. The in-
terplay of the discussed effects, coupled with the typical temperature dependence of elastic
constants, necessitates further investigation into any anomalous behavior and a thorough
comparison to the above calculations.

4.5.4 Elastic Properties Distant from Phase Transitions
In addition to the behavior at the phase transition, we briefly discuss the general tempera-
ture dependence of phonon modes. Commonly, the elastic constants decrease linearly with
temperature according to [114],

Cik(T ) = C0
ik − χE(τ, T ), (4.25)

where C0
ik denotes the elastic constant at some normalizing temperature, and E is the thermal

energy according to the Debye model (at high temperatures, the energy is proportional to
the temperature T , [35]) using an empirical value for the characteristic temperature τ , which
replaces the Debye temperature. χ := γδS/V0 denotes a constant value > 0 comprising the
Grüneisen parameter, γ, and the isobaric anharmonic parameter (the Anderson-Grüneisen
constant), δS. In general, we observe a linear dependence between Cik and T , with distinct
slopes for specific combinations of ik that vary depending on the material, as illustrated in
Fig. 4.15.

Instead of expressing this behavior in terms of T , one can directly link the relative change
in the volume of the unit cell (V (T )−V0)/V0 to the relative change in the energy of acoustic
phonons (∆E(T )−∆E0)/∆E0. This dependence is given by [35],

− ∆E(T )−∆E0

∆E0

= γ
V (T )− V0

V
, (4.26)

where γ denotes the Grüneisen parameter, typically a positive value between 1 and 3 [35].
While the thermal expansion cannot account for the abrupt change in phonon energy, the
change in unit cell volume at the structural phase transition can be compared to the change
in phonon energy. Fig. 4.18 shows the relative change in volume of the unit cell together
with the relative change in phonon energy. Distant to the phase transition at TSO2 = 82.5 K,
the relative change in energy is in perfect qualitative agreement with the relative change in
the volume of the unit cell. While both are constant in T below TSO2, they increase linearly
with T above TSO2. The ratio of the slopes (red and blue lines indicate linear fits to the
data) yields a Grüneisen parameter of γ = 9.4, which is anomalously large. At the phase
transition, however, we see opposite directions in the jumps, indicating that this simple
model based on thermal expansion breaks down at TSO2.

We thereby propose that both the vanishing slope below TSO2 and the decreasing slope
above TSO2 can be explained by a model based on the expansion of the crystal, with the only
unexpected behavior occurring at the phase transition. This suggests that the corresponding
elastic constant does not undergo any unexpected behavior during the approach to TSO2. A
comparison of this finding to the calculated behavior of C44 in Fig. 4.17 (c1-3) suggests a
second order improper ferroelastic phase transition at TSO2.

Notably, a relative increase in the elastic modulus leads to an elevation in the observed
phonon energy at the zone boundary. However, one expects the same relative increase for all
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Figure 4.18: Relative change in unit cell volume, V (T )−V0

V0
, and phonon energy ∆E(T )−∆E0

∆E0

plotted against T . The volume of the unit cell is calculated from the data presented in
Skoulatos et al. [2], compare Fig. 4.5. Besides the opposite direction of the discontinuity
at the phase transition, the relative change in phonon energy is in excellent qualitative
agreement with the relative change in the volume of the unit cell. Red and blue lines
represent linear fits to the data, the comparison of which yields a Grüneisen parameter of
γ = 9.4, which is anomalously large.

investigated momentum transfers (compare Eq. (4.3)). Interestingly, during the experiment,
no change was observed further from the zone boundary, as seen in Fig. 4.11. This observation
can be explained by considering that while the relative change in phonon energy remains
constant, the absolute value of the difference decreases as one moves further from the zone
boundary. Eventually, this decrease reaches a point where it becomes indiscernible due to
the uncertainties inherent in the experiment.

The apparent lack of change in phonon linewidth also strengthens the theory of changing
elastic modules. Typically, a coupling of the phonon to some excitation would also change
its lifetime and, therefore, the linewidth observed in the neutron experiment [120]. However,
the limited resolution of the TAS experiments might have limited the investigation of any
change in linewidths here.

No unusual softening was observed during the investigation of phonon dispersions along
other high-symmetry directions, which agrees with the monoclinic to orthorhombic phase
transition. When cooling below TSO2, a structural phase transition occurs concomitant with
a change from G-type OO to C-type OO. This impacts only the stacking of orbitals along
c from alternating between zx and yz to keeping one orientation but does not affect the
stacking along other directions, compare Fig. 4.4. From the calculation, one consequently
expects only a single elastic constant to express a discontinuity at TSO2, which agrees with
the obtained phonon dispersions.
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4.6 Conclusion and Outlook
In this study, we investigated a softening of the transversal acoustic TA1 phonon branch,
concomitant with the structural phase transition occurring at TSO2 = 82.5 K. At the zone
boundary, ~Q = (0, 0.5, 4) r.l.u., the phonon energy undergoes a minor relative energy change
of 3 %, which corresponds to an absolute value of 0.3 meV. This small but significant soft-
ening was repeatedly observed at several instruments across multiple beamtimes. It is much
less pronounced near the Γ-point, potentially due to instrumental resolution limitations. As-
suming a basic sinusoidal relationship between the energy and the momentum described in
Eq. (4.3), we note that the relative softening of the phonon mode should remain constant,
indicating that the absolute change in phonon energy is reduced closer to the Γ-point. Con-
sequently, the softening cannot be resolved distant to the zone boundary where it is most
pronounced. Alternatively, this behavior might be explained by a ”zone boundary soft acous-
tic mode” as described in the textbook of Dove [121]. No significant change in the phonon
linewidth was discernible within the resolution of our triple-axis neutron measurements.

The observed softening of TA1 was discussed within the framework of elastic anomalies
due to structural phase transitions, suggesting an improper ferroelastic transition. Notably,
no softening could be observed in any other direction in reciprocal space, which is attributed
to the special symmetry of the coupling strain.

Moving forward, we intend to perform supersonic measurements to gain immediate knowl-
edge about the elastic constants while acknowledging the limitations of those in direct com-
parison with neutron data due to the vastly different frequencies observed. Furthermore,
the phase transition’s order could be elucidated using high-precision heat capacity measure-
ments. To examine the softening phenomenon near the zone center, where the absolute
difference in energies is smaller, we propose utilizing neutron resonant spin-echo methods,
employing their superior energy resolution. This approach might also provide additional
insights into the behavior of the phonon linewidth around the phase transition [50].

Expanding on the current investigation, we propose subjecting the crystal to external
uniaxial stress using a bellow-driven pressure in-situ cell [122, 123], which could offer valuable
insights into the response of the phonon dispersion to stress applied along various directions.
Additionally, subjecting the crystal to hydrostatic pressure and monitoring the response of
both the phonon dispersion and lattice constants promises information about the elastic
response of the system.

Finally, we propose simulation-assisted theoretical investigations, considering various cou-
plings between the TA1 phonon mode and other excitations, focusing on understanding the
connection between the anomalous lattice dynamics and the alterations in the symmetry of
the OO.
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5. Theory of Nested Mirror Optics
In the upcoming three chapters, we comprehensively explore parabolic and elliptic nested
mirror optics (NMOs), the central theme of this thesis. The three chapters cover the theory,
the performance investigation, and the applications of NMOs in neutron scattering.
This first chapter is structured as follows: We briefly introduce neutron guides, discussing
their various geometries and their advantages and drawbacks. Subsequently, we explore
ellipitic and parabolic NMOs, detailing how they overcome the limitations associated with
conventional neutron guides. Finally, we present the analytic framework associated with
the neutron beam transport through a NMO and the Monte Carlo simulations utilized to
evaluate their performance.

5.1 The History of Neutron Guides
As demonstrated during the investigation of the lattice dynamics in LuVO3 in chapter 4,
neutrons are a remarkably versatile tool in condensed matter physics, offering unique insights
that complement those obtained with charged probes.

However, the finite lifetime of free neutrons, after which they undergo beta-decay, τ =
878.4(5) s [24], presents a challenge in experimental contexts. To address the limited life-
time, we require sources capable of generating neutrons in proximity to any experimental
setups. Here, we will provide a concise overview of various neutron-generating sources and
the subsequent transport of these neutrons to the instruments with neutron guides.

Neutron Sources

Modern methods of neutron generation rely on the extraction of neutrons from heavy nuclei.
This process relies on the interplay between the range-limited strong nuclear force and the
much weaker electromagnetic force, which dictates the optimum ratio of neutrons to protons,
N/Zopt. By optimizing the binding energy of a nucleus according to the Bethe-Weizsäcker
mass formula [124, 125], we obtain the ideal ratio of neutrons to protons for a given number
of nucleons,

N/Zopt ≈ 1 +
ac

2aA

A2/3.

Here, A denotes the mass number of the nucleus, while ac and aA represent empirically
determined, positive constants that account for the Coulomb term and the Pauli exclusion
term of the mass formula, respectively. Notably, N/Zopt increases with the mass number
A, indicating that the fragmentation of a heavy nucleon into smaller fragments is typically
accompanied by the release of excess neutrons [126].

Each fission event of 235
92 U, a common fuel source for power plants and research reactors,

releases an average of 160 MeV of kinetic energy, and is accompanied by the release of an
average of 2.43 neutrons [126]. The exact number depends on the specific fission process,
such as

235U + n→ 144Ba + 89Kr + 3n. (5.1)

The highly excited fission fragments evaporate the excess neutrons with an average kinetic
energy of about 2 MeV.

55
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For a typical reactor design, an average of 0.5 neutrons are absorbed in the control rods,
and parasitic neutron captures, e.g., in cooling water or by 238

92 U and one neutron is required
to initiate one subsequent fission event. The surplus neutron can be transported from the
reactor core to be utilized in an experiment [126].

In contrast to fission events, the generation of free neutrons in spallation sources relies
on the bombardment of dense elements with large mass numbers, e.g., uranium, tungsten,
tantalum, mercury, or lead, using high-energy charged particles, typically protons of Ekin ≈
1 GeV [127, 128, 129]. The term spallation encompasses several nuclear evaporation processes
theoretically described by Victor Weisskopf in 1937 [130]. During spallation, high-energy
particles collide with heavy nuclei, leaving the latter highly excited. These excited nuclei
subsequently emit additional particles with sufficient energy to excite different nuclei in a
cascading reaction. Neutrons are evaporated from these excited nuclei where energetically
allowed, skewing the ratio of neutrons and protons, ultimately resulting in β+-decays and the
emission of additional γ-radiation. On average, a single 1 GeV-proton causes the evaporation
of 10 neutrons with kinetic energies of 2 MeV. Roughly 40 % of the incoming proton’s
energy is deposited in the nuclei available for neutron evaporation, with the remainder being
cooled from the target. The available cooling power ultimately limits the achievable flux
[131]. Ongoing research aims to bypass the limitations of fission and spallation sources by
minimizing the excess energy, which is not available for neutron evaporation.

Fundamentally differing in their principles of neutron generation, these sources are based
on i) the electron bremsstrahlung to evaporate neutrons from the nuclei [132], ii) laser-
driven fusion of deuterium and tritium, which results in the emission of one neutron [133],
iii) high energy laser pulses to release proton pulses from aluminum foils, which are then
transformed to neutron pulses at a heavy target [134, 135], or iv) halo nuclei, which are
isomers excited by the inverse Compton effect resulting in the binding energy of the outermost
neutron approaching zero. This neutron can then be released by a low-energy photon beam,
producing a neutron beam with similar energy and polarization qualities [136, 137]. While
these source designs offer the potential for significant gains in either peak neutron flux or
beam quality, they currently face technological challenges that must be overcome before they
can be considered viable alternatives to conventional neutron sources.

Fig. 5.1 summarizes the development of neutron sources differentiating by the principle of
neutron generation and the achieved peak neutron flux. Neutron science was initiated with
continuous cyclotron-based spallation sources; the subsequent generation of neutron sources
was based on the fission of 235U, with the flux quickly approaching the limit determined by
the achievable cooling power. At the time of writing, the highest continuous flux amounting
to 1.5× 1015 cm−2s−1 is available at the Institut Laue-Langevin (ILL) in Grenoble, France,
which was commissioned in the 1970s and today operates at a thermal power of 58.3 MW.
Operating in pulsed mode, contemporary particle-driven spallation sources, e.g., SNS, ISIS,
MLF at J-PARC, and the upcoming ESS, achieve significantly higher peak neutron flux with
comparable time-averaged flux.

Except for specific applications, such as high energy neutron radiography [139] or palliative
cancer treatments [140, 141], the desired neutron energies are typically much smaller than
that of fission or spallation neutrons. Additionally, the probability for neutron capture in
235U drops with increasing neutron energy [142]. This indicates that reducing the initial
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Figure 5.1: Development of peak neutron flux of neutron sources operating in pulsed and
continuous (CW) modes. The figure is reproduced from the book of Bolton et al. [138].

neutron energy is favorable for maintaining the criticality in fission-based reactors. During
this moderation process, the excess energy of the neutrons is released into the moderating
medium, e.g., water, heavy water, or graphite, by elastic collisions until a thermal equilibrium
is reached or the neutron leaves the moderating material [143]. The kinetic energies of
thermalized neutrons follow a Maxwell-Boltzmann distribution governed by the temperature
of the moderator. Besides moderation to ambient temperatures, hot or cold sources can
provide neutrons of higher or lower energies, respectively [144, 145]. Compare table 2.1 for
an overview of the properties of such generated neutrons.

Neutrons are typically extracted from the moderator via beam tubes, which are evacuated
aluminum tubes inserted into holes in the shielding material surrounding the core. They are
strategically directed at the point of highest neutron flux in the moderator [146]. As the
neutrons undergo random motion through the moderating material, the total available flux
is distributed evenly over a solid angle of 4π. In the limit of large distances to the source, this
uniform distribution in solid angles decreases the available flux with the squared distance to
the source. Due to the small solid angle under which samples are seen by the source, there
is a significant reduction of neutron flux compared to the flux within the moderator.

Neutron guides can mitigate this reduction in flux. They are designed to efficiently trans-
port neutrons over considerable distances without suffering significant losses in flux, thereby
drastically increasing the flux, brightness, and brilliance at the instrument’s position.



58 CHAPTER 5. THEORY OF NESTED MIRROR GEOMETRIES

Neutron Guides

When taking a guided tour at the FRM II, one might encounter an anecdote of uncertain
accuracy about the supposed origins of neutron guides. It recalls a time when radiation
safety was handled less stringently, and scientists, eager to save time, would take shortcuts
through experimental areas, even crossing the paths of neutron beams. While time-efficient,
this practice also disturbed the experiments of others, leading to some researchers enclosing
their neutron beams within evacuated metal tubing to prevent such interruptions.

Interestingly, besides preventing any disturbances to the neutron beams, it was soon dis-
covered that installing the evacuated metal tubes increased the neutron flux at the sample
position, surpassing what was expected from the evacuation alone. This discovery is said to
have heralded what we now recognize as neutron guides.

While a fortunate alignment of circumstances has played a role in many scientific break-
throughs, or as Louis Pasteur aptly put it, “chance only favors the mind which is prepared”,
the success story of the neutron guide likely began in 1945 with the discovery of Fermi and
Zinn that neutrons exhibit total reflection when striking metallic surfaces at very shallow
angles [147].

It was Maier-Leibnitz and Springer who proposed the use of metal-coated neutron tubes
with a rectangular cross-section [7] to address the decrease of neutron flux with the square
of the distance from the source. This innovation marked a fundamental shift in the design of
beamlines and instruments. Previously, instruments were placed as close to the reactor core
as shielding allowed, resulting in significant measurement background and crowded experi-
mental halls. The introduction of neutron guides revolutionized this by enabling the efficient
transport of long-wavelength neutrons, which allowed for increased distances between the
point of neutron generation and the instrument. This entailed significantly improving the
achievable signal-to-background ratio and a more efficient use of the available neutrons, as
more than one instrument can be positioned along the guide.

Understanding the characteristics of neutron total reflection at metallic surfaces is crucial
for designing neutron optical devices for i) extracting neutrons from sources, ii) efficiently
transporting neutrons from sources to experiments, and iii) tailoring the extent and diver-
gence of neutron beams towards specific experiments. We here provide a concise overview
of the behavior of neutrons at plane interfaces between two materials with different neutron
optical properties.

Total Reflection and Refraction of Neutrons

The total reflection of neutrons at the interface between air and a metallic surface was exper-
imentally observed in 1944 by Fermi and Zinn [147] and thoroughly discussed in a quantum
mechanical picture by Goldberger in 1947 [148]. This behavior can also be understood by
considering a change in the indices of refraction, n1 → n2, analogous to the concept used
to describe the interaction between optical light and matter. Similarly, the kinematics of
neutron reflection and refraction are captured by Snell’s law,

n1 sin θ1 = n2 sin θ2. (5.2)

Here, θ1,2 denote the angle between the surface normal, ~n, and the momentum of the incident
and the refracted neutrons, as illustrated in Fig. 5.2. The indices of refraction, n1, n2, encap-
sulate the interaction between neutrons and the matter surrounding them. This interaction
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Figure 5.2: Behavior of a neutron at material interfaces with different neutron potentials Vi.
The total energy of the neutron, comprising kinetic and potential energy, E = T + V , as
well as the component of momentum perpendicular to the surface normal, k⊥, are preserved
at the interface. Both constants are highlighted in red.

depends on the number density of the nuclei, ρn, and their bound coherent scattering length,
bcoh. Using the Fermi pseudopotential to approximate the interaction potential mediated by
the strong nuclear force [33], the squared refractive index of a material comprising different
nuclei, j, can be calculated as [149]

n2 = 1−
λ2
∑

j bcoh,j ρn,j

π
. (5.3)

Here, λ denotes the wavelength of the neutron. A detailed derivation of this result is provided
in the appendix B.

The qualitative behavior of neutrons at the interface depends on the relationship between
the two indices of refraction. For n2 > n1 or n2 < n1, neutrons are refracted towards or
away from the surface normal, respectively. In the latter case, if a neutron approaches the
interface at a sufficiently large angle relative to ~n, such that the refracted neutron would
move parallel to the surface, the neutron is instead totally reflected, maintaining its angle
relative to the surface normal. The corresponding angle between the momentum of the
incident neutron and the surface is defined as the critical angle of that interface, θc

(1). For a
neutron at the interface between vacuum, bcoh,j = 0, n1 = 1 and a medium with a refractive
index n2, the critical angle, denoted as θc, can be calculated as θc = π

2
− arcsin (n2). When

n2 is approximately equal to 1, which is typically the case for neutrons, this expression can

(1)It should be emphasized that the angle θc denotes the angle between the surface and the trajectory of
the incoming neutron, in contrast to θ1 denoting the angle to the surface normal.
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be approximated by

θc ≈ λ

√
ρnbcoh

π
. (5.4)

The linear relationship between the critical angle and the wavelength of the incident neu-
tron suggests that cold and thermal neutrons can be transported more efficiently than un-
moderated or hot neutrons. This enables separating neutrons useful for the experiment from
high energy neutrons, which primarily contribute to the background noise [7].

In addition to the wavelength dependence, θc also increases with the number density, ρn,
and the bound coherent scattering length, bcoh. This indicates that densely packed, strongly
scattering nuclei have a greater influence on the trajectory of a neutron. Fig. 5.3 illustrates
the values of bcoh for various naturally occurring isotopic compositions with respect to their
atomic number. Except for Dysprosium, which has an exceptionally large neutron absorption

0 20 40 60 80 100
atomic number

5

0

5

10

15

b c
oh

 (f
m

)

H

He

C

Al
Si

Sc

TiMn

Ni
Se

Sm

Gd

Dy

U

58Ni

Figure 5.3: Overview of the bound coherent scattering lengths of various elements plotted
against their atomic number. Unless specified otherwise, the values correspond to naturally
occurring isotopic compositions. Elements with comparatively large/small scattering lengths
or relevance in neutron scattering are highlighted and denoted. The large value of bcoh =
14.4 fm makes 58Ni a prime candidate for the coating of neutron guides. The data illustrated
here is taken from the work of Dawidowski et al. [34].

cross-section limiting its use as a neutron reflector, 58Ni offers one of the highest critical angles
θc, 58Ni = λ · 0.119 ◦/�A. The naturally occurring isotopic composition of Ni also provides a
reasonable critical angle, θc, Ni = λ · 0.099 ◦/�A = λ · κ, coupled with manageable absorption.
Its metallic properties allow the creation of coatings with very low roughness, making the
natural isotopic composition of Ni the baseline for critical angles in neutron reflection. The
development of supermirror coatings marked a breakthrough in neutron optics, for the first
time enabling the reflection of an extensive range of neutron wavelengths at larger momentum
transfers than previously achievable with simple metallic coatings.
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Reflection of Neutrons at Supermirror Coatings

During a neutron scattering study of nerve fibers in 1970 [150], Kirschner and Caspar noted
that repeating two alternating layers with positive and negative neutron potential could
produce neutron monochromators with surprisingly high reflectivity. This discovery laid the
foundation for what we now know as supermirror coatings. In essence, their fabrication and
working principle can be traced back to the simple recipe discovered back then: Layered
structures (synthetic crystals) consist of alternating materials with significantly different
neutron potential. These structures can serve multiple purposes, including i) the reflection
of hot neutrons under large angles, ii) the polarization of a neutron beam, and iii) providing
a monochromatic neutron beam. Their working principle is based on Bragg’s law,

2d sin θ = nλ, (5.5)

where d, θ, and λ denote the distance between two layers of the same material, i.e., the
lattice spacing of the synthetic crystal, the angle between the incident neutrons and the
surface of the crystal, and the wavelength of the neutron, respectively.

By slowly varying the lattice spacing of successive layers within the supermirror, neutrons
can be reflected for a wide range of wavelengths and incident angles, each combination
satisfying the Bragg condition for a specific value of d. This idea predates the experiments
mentioned above and is likely to be first published by Turchin in 1966, who introduced them
as “stratified systems” [151]. Due to the predominance of natural nickel during the early
days of neutron guides, the critical angle of supermirrors is still expressed as a multiple, m,
of the critical angle of Ni, θc, m = mθNi. Starting with the first experimental realizations of
supermirrors [8, 152], the quality of produced supermirrors quickly improved. Using a recipe
for determining optimum layer thicknesses [153], the guide system at SINQ (Switzerland)
was fully equipped with m = 2 supermirrors [154, 155]. Since then, the achievable m-value
has continuously increased up to m = 8 in recent years [154].

However, the quality of a supermirror coating is not only characterized by the critical angle
but also by the reflectivity at that angle, the edge reflectivity Re. Under the assumption of
ideal layers, with optimum thickness, perfectly sharp interfaces with zero roughness, no
diffusing atoms, and no absorption in the coatings, the reflectivity should equal R = 1 for all
angles up to θc, m. However, these effects are impossible to eliminate in real systems, which
entails a decrease in reflectivity for increasing momentum transfer. Computation has shown
that the absorption alone limits the achievable critical angle to approximately m = 10 [154].

Fig. 5.4 shows data from a measured reflectivity curve for an m = 4 supermirror and
theoretical approximations for supermirrors with m = 2, 4, 6. All reflectivities are plotted
against the neutron momentum transfer parallel to the surface normal normalized by the

critical momentum transfer of Ni, 2k‖/kc, Ni, where kc, Ni = 0.0217�A−1
. Furthermore, the

critical trajectories (reflection under the critical angle) of neutrons with λ = 4�A are illus-
trated atop the figure, making tangible the complications associated with creating optical
devices for such limited angles of reflection. The reflectivity curves consist of three distinct
parts. Firstly, a thin Ni-layer atop the mirror reflects all neutrons with k‖ ≤ kc, Ni with near
perfect efficiency, i.e., R0 ' 99 %. When exceeding kc, Ni, neutrons penetrate deeper into
the supermirror coating until they arrive at a layer spacing d satisfying the Bragg equation,
where they will be reflected with high probability. As d typically decreases with the distance
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2 k /kc, Ni

Figure 5.4: Calculated and measured supermirror reflectivities for various m-values as a
function of the neutron momentum transfer parallel to the normal vector, 2k‖, normalized

by the critical momentum transfer of Ni, kc, Ni = 0.0217�A−1
. Above the main panel, lines

with colors corresponding to the m-values of the main figure illustrate the critical trajectories
for λ = 4�A neutrons.

from the surface, neutrons with higher k‖ penetrate deeper into the coating before being
reflected, with the associated absorption decreasing the observed reflectivity. Lastly, the
reflectivity quickly drops to zero when the critical angle is exceeded. For a more detailed
discussion of supermirrors, the theory governing their reflectivity, and their fabrication, the
reader is referred to the literature [156, 157, 158].

Building upon this discusson of neutron reflection at flat surfaces, we will now focus on
the intricacies of fabricating neutron guides from reflective surfaces, designed to operate at
small angles of incidence.

5.2 Long Guides with Rectangular Cross Section
5.2.1 Straight guides
In their seminal paper from 1963 titled “The use of neutron optical devices on beam-hole
experiments”, Springer and Maier-Leibnitz propose several applications for the recently dis-
covered neutron guides, which include i) separating high-energy neutron and gamma back-
ground by capitalizing on the wavelength-dependent critical angle of reflection (compare
section 5.1), ii) the separation of cold from thermal beams through the same principle,
and iii) significantly enhancing the neutron intensity at the sample beyond the geometrical
constraints imposed by the source-to-sample distance [7].

During that era, neutron guides were typically fabricated with rectangular cross-sections
made of glass, subsequently coated with naturally occurring nickel. Nevertheless, the authors
envisioned advanced geometries that would be realized decades later. One such concept
involved the combination of two elliptic guides for phase space preserving neutron transport
from one focal point to another, now known today as a Selene-type optic [159, 160].

For the extraction of neutrons from the moderator at a reactor or spallation source, the
entrance of the guide is preferably aligned with the region of maximum neutron flux while
avoiding a direct line of sight onto the reactor core to minimize background contamination.
Along the trajectory of a neutron, the cross-section of the guide remains constant up to the
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instrument. Historically, due to the ease of fabrication, parallel-sided neutron guides with
rectangular and constant cross-sections were the predominant choice for neutron extraction
and transport.

The advent of more compact, high-brilliance neutron sources [27, 12, 161] introduces com-
plexities to the above-described neutron extraction process, which relies on large moderators
and their spatially extended clouds of neutrons. As a result, innovative and novel designs
are required to effectively capitalize on the high-brilliance neutron beams offered by these
new sources.

5.2.2 Large Guides and Compact Sources – Under-illumination
When utilizing compact neutron sources and conventional guides, a significant challenge
known as under-illumination arises due to the dilution of neutron phase space. It occurs
when extracting neutrons into a guide from a source that lacks sufficient size to fully utilize
that guide’s capabilities [9].

We consider a simplified one-dimensional geometry, where neutrons with a given wave-
length, λ, are extracted by a guide with a critical angle, θc, corresponding to this wavelength.
To ensure that the guide is fully illuminated at the given wavelength, every neutron that
can be transported by the available θc must also be able to geometrically access the guide,
i.e., the guide must be filled with neutrons up to its acceptance [9]. Fig. 5.5 illustrates why

Figure 5.5: Illustration of under-illumination. The distance between the guide entrance
and the moderator, dmg, the height of the guide, hg, and the critical angle of the guide θc,
determine the extended footprint of the guide necessary for full illumination, hm. If this
footprint exceeds the size of the moderator, tm, the transported neutrons will be diluted
over the height of the guide, which entails under-illumination. The figure is adapted from
the work of Herb et al. [19].

a complete illumination of the guide requires that the moderator surface must exceed

hm ≥ hg + 2dmg tan θc (5.6)

in the considered dimension. If this condition is not met, neutrons emitted by the source
will be diluted over the guide’s acceptance, resulting in a reduced available flux compared to
that present at the source. According to Liouville’s Theorem, which states that the neutron
phase space can only decrease, and considering that the absolute value of neutron divergence
is not affected by a parallel-sided neutron guide, it becomes evident that the original neutron
brilliance as emitted by the source cannot be recovered.

Additionally, since the critical angle scales linearly with λ, we can conclude that for every
hm ≥ hg, there exists a critical wavelength above which the guide remains under-illuminated
and more neutrons could be transported if the source were of infinite size.
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In scenarios where hm ≤ hg, the guide remains under-illuminated regardless of the wave-
length. Here, the guide lacks neutrons passing parallel to the reflective surfaces of the guide
close to the top and bottom of the guide. To assess the overall efficiency of the extraction
process within this dimension, we define the wavelength-dependent extraction efficiency,

Eeff =

{
tm/hm for tm < hm

1 for tm > hm

. (5.7)

For reactor sources, the neutron cloud within the moderator is typically large compared
to the cross-section of the guides used to extract the neutrons [162]. Consequently, under-
illumination rarely reduces Eeff significantly. However, as we transition towards smaller
sources with higher brilliance, such as the para hydrogen moderator planned for the ESS,
where the vertical extent of the source is as small as hm = 0.03 m, under-illumination becomes
a critical issue, as the guides can be located no closer than dg = 2 m to the source[163].

In contrast to parallel-sided guides, guides with elliptically shaped side walls naturally
facilitate point-to-point transport of neutrons between spatially constrained focal areas due
to the geometric properties of the ellipse. However, the phase space present at the first
focal point is disturbed significantly during the transport, as discussed in the following.
Additionally, elliptic neutron guides similarly suffer from under-illumination as conventional
guides with rectangular cross-sections.

5.3 Long Elliptic Guides
While guides with a constant rectangular cross-section are suitable for extracting neutrons
from an extensive source, where under-illumination is less problematic, the increasing number
of reflections necessary to transport neutrons over large distances reduces the efficiency for
increasing m-values and distances. To mitigate the losses associated with multiple reflections,
ballistic guides have been successfully implemented [164, 165]. The concept features a cross-
section diverging in the first half of the guide and reconverging in the second half, which
reduces the number of reflections during transport. Today, most beamlines at the ESS use
such a concept with the guide cross-section following an elliptic profile [166].

Apart from large-scale applications, the point-to-point transport capabilities of elliptic
guides can also be leveraged on smaller scales. Brandl et al. successfully employed two
elliptic neutron guides located between the sample and the monochromator, and the sample
and the analyzer to increase the signal-to-noise ratio of an inelastic TAS experiment [167].
During the investigation of an acoustic phonon in lead, the signal-to-noise ratio could be
increased by a factor of ≈ 20.

While elliptic guides provide numerous advantages over transport systems based on con-
stant cross sections [164], such as improved transport efficiency due to the reduced number
of reflections, and better performance for small sources, in practice, they also suffer from
several problems. Ideally, an elliptic guide should transport all neutrons emerging from its
first focal point, F1, directly toward the second focal point, F2 in a single reflection. How-
ever, gravity and finite mirror waviness(2) can result in multiple reflections along the guide

(2)Waviness refers to local deviations of the surface normals from their intended values. To quantify the
magnitude of the waviness, we quote the width of the normal distribution in angles, η [168].
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Figure 5.6: Trajectories of neutrons emitted below the first focal point F1 with an offset
r1 from the optical axis (depicted as a black broken line). The semi-major and semi-minor
axes of the ellipse, a and b, respectively, define the focal points, located at z = ±f , where
f =
√
a2 − b2. Neutrons reflected at points with z < 0 arrive at F2 with an increased offset

from the optical axis, i.e., defocused (|r2| > |r1|, green trajectories), whereas those reflected
at z > 0 are focused toward F2 (|r2| < |r1|, blue lines). Neutrons reflected at z ≈ 0 arrive at
F2 with r2 ≈ r1 (red lines). The length of the elliptic guide is given by l = ze− zs. Figure is
reproduced from the work of Herb et al. [19].

[169]. Furthermore, the typically extended source size gives rise to geometric aberrations
that distort the neutron phase space [170].

Depending on the point of reflection along the neutron guide, z, neutrons emitted with a
vertical offset to the optical axis, r1, may either be focused or defocused at F2, as illustrated
in Fig. 5.6. The relation between the local magnification r2/r1 and the point of reflection,
z, is commonly described by

r2

r1

=
f − z
f + z

, (5.8)

where f denotes the focal length of the ellipse.
However, we have improved on the precision of this result by first analytically calculating

r2 as a function of r1 and z and subsequently performing a Taylor expansion rather than
relying solely on geometric arguments as previously done. A detailed explanation of this
calculation is presented in the appendix C, and the summarized results are illustrated in
Fig. 5.7. Here, the dependence of the magnification r2/r1 on z is shown for a long elliptic
mirror with a focal length, f = 0.675 m, semi-minor axis, b = 0.02 m, and total length,
l = 0.8 m(3). The presented data corresponds to r1 = 2 mm, but it should be noted that the
result shows little dependence on r1. The high-precision python simulation and the analytic
calculation (compare Eq. (C.6) in appendix C) exhibit perfect agreement, validating both.

However, the commonly used approximation given in Eq. (5.8) deviates slightly for |z| � 0,
as illustrated in the insets in Fig. 5.7. We propose an improved approximation given by,

r2

r1

≈ 1 +

(
f − z
f + z

− 1

)
(f 2 − b2 + b r1)

b2 + f 2
. (5.9)

(3)If not specified otherwise, elliptic guides are oriented symmetrically with respect to their semi-minor
axis, i.e., zs = −l/2, ze = l/2.
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Figure 5.7: Dependence of the local magnification in an elliptic guide on the point of re-
flection, r2/r1(z). The high precision simulation (gray band) and the analytic calculation
(red, compare Eq. (C.6)) are in perfect agreement. Both the simple approximation given
in Eq. (5.8) (broken, purple line) and the improved approximation (light blue), Eq. (5.9),
are in reasonable agreement with the calculation for the chosen geometry. The horizontal
black line represents the desired imaging with unit magnification, r2/r1 = 1. The two insets
illustrate that the improved approximation significantly reduces the relative difference be-
tween the exact solution and the approximation, (approx.− calc.)/calc., when neutrons are
reflected at the mirror’s entrance and exit, |z| = 0.4 m. While the relative difference (y-axis
labeling on the right) remains below 0.2 % for the improved approximation (solid blue line),
it exceeds 0.3 % for the simple approximation (dashed blue line).

It takes into account the semi-minor axis, b, and demonstrates significantly better agree-
ment with the analytic simulation than Eq. (5.8) (error of order O(z2) instead of O(z)). It
reduces the relative error by a factor greater than 2 for most z. For f � b ≥ r1, Eq. (5.9)
approaches Eq. (5.8) as expected. Given the small discrepancy between the analytic solution
and Eq. (5.9), the latter might be used as a pre-estimation tool to assess the quality of beam
transport in long elliptic guides before investing computational resources into a Monte-Carlo
approach. However, it should be noted that the here disregarded influence of gravity is likely
to be more important already for small transport distances.

In addition to quantifying the focusing and defocusing effects as a function of z, we have
also calculated the spatial intensity distribution at the second focal point directly from the
initial distribution of neutrons. Performing the analytic calculation requires the simplifying
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assumption that the points of reflection are uniformly distributed in z between the start and
the end of the elliptical mirrors. We will later see that this assumption is only justified in the
case of short mirrors and improve on this approximation. The resulting probability density
function (PDF) describes the uniform probability that a neutron is reflected between z and
z + dz normalized by dz,

pZ(z) = 1/l, z ∈ [−l/2, l/2] . (5.10)

Here, l denotes the length of the elliptical mirror along z, l = ze − zs. Furthermore, we
assume the vertical offsets to the optical axis under which neutrons are emitted at F1 to be
uniformly distributed with PDF,

pR1(r1) = 1/h, r1 ∈ [−h/2, h/2] , (5.11)

where h denotes the height of the source in the considered dimension.
Assuming that these two distributions are independent, we can calculate the joint prob-

ability that a neutron is emitted at r1 and subsequently reflected at z as the product of
Eq. (5.10) and Eq. (5.11). Employing the simplified relation between r2, r1, and z given
in Eq. (5.8), we can analytically calculate the PDF of r2, which corresponds to the spatial
intensity distribution of neutrons arriving at F2 normalized to 1,

pR2(r2) =


2f
hl

[
ln
(
f+l/2
f−l/2

)
− l

2f

]
for |r2| ≤ h

2
f−l/2
f+l/2

2f
hl

[
−1

4
(2 + l/f) + 2|r2|

2|r2|+h + ln
(

(|r2|+h/2)(2f+l)
4f |r2|

)]
for h

2
f−l/2
f+l/2

≤ |r2| ≤ h
2
f+l/2
f−l/2

0 for h
2
f+l/2
f−l/2 ≤ |r2| .

(5.12)
The derivation is presented in appendix D(4). The resulting PDF can be shown to integrate to
1 and exhibits continuous behavior at r2 = h

2
f−l/2
f+l/2

as expected for an intensity distribution.

It has to be noted that Eq. (5.12) does not account for double reflections possible within the
guide and does not include the effects of gravity.

We observe three distinct regions into which |r2| might fall. If the magnitude of r2 exceeds

the limits imposed by the ranges of r1 and z, |r2,max| = h
2
f+l/2
f−l/2

(5), no neutrons can be found,

i.e., pR2(r2) = 0. For a small region centered around the optical axis |r2| ≤ h
2
f−l/2
f+l/2

, the

density of neutrons remains constant at a value pR2(r2) = 2f
hl

[
ln
(
f+l/2
f−l/2

)
− l

2f

]
. Between

these two values, i.e., h
2
f−l/2
f+l/2

≤ |r2| ≤ h
2
f+l/2
f−l/2 , the intensity drops monotonously from the

value observed in the inner region to zero. In the case of a very short mirror, where l = ε, the

expression approaches 2f
hl

[
2l−l
2f

]
= 1/h for |r2| ≤ h/2, which correctly equals the distribution

of neutrons at the first focal point, as given by Eq. (5.11).
The influence of the mirror length l becomes evident if we compare pR2(r2) for various

values of l while keeping f = 1.35 m, and h = 0.005 m, constant. These are typical values for
a small elliptic guide setup. As illustrated in Fig. 5.8, the results from Eq. (5.12) (continuous
lines) are in excellent agreement with a Python simulation (open circles).

(4)Within this work, we assume for simplicity that |z| 6= f , which is always true if the mirror does not
extend to the focal points, l < 2f .

(5)This limiting value of r2 is achieved for a neutron that is emitted at the maximum distance from the
optical axis, r1 = h/2 and subsequently reflected at the entrance of the neutron guide z = −l/2.
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Figure 5.8: Spatial intensity distributions at F2 as a function of r2 for various mirror lengths,
l, on a linear (a) and a logarithmic (b) scale. Solid lines illustrate the analytically obtained
intensity distributions, see Eq. (5.12). Data from Python simulations under analogous as-
sumptions, i.e., uniform distributions in r1 and z, are shown as empty circles of matching
color. The rectangular intensity distribution as emitted at F1 is outlined in red, compare
Eq. (5.11). Panel (c) shows the difference between the simulation and the calculation, yield-
ing a good agreement exhibiting no systematic discrepancies. All data is obtained with
f = 0.675 m, h = 5 mm and perfectly reflecting mirrors.

The intensity distributions are symmetric around r2 = 0 and comprise the three regions
described above. This includes a central region of constant value, which becomes narrower
and more intense as l increases, along with tails of intensity whose width expands with
increasing l. This progressing distortion of the initial, rectangular intensity distribution,
outlined in red, is attributed to a growing portion of neutrons being reflected distant to the
semi-minor axis, z = 0, at either the entrance or the end of the elliptic guide, resulting in
focusing or de-focusing effects. Finally, for |r2| ≥ h

2
f+l/2
f−l/2 the probability to find a neutron is

zero. This simple approximation already reveals that increasing the length of the elliptical
mirrors entails a more pronounced distortion of the initial intensity distribution found at F1

during the transport.
However, a real source emits neutrons uniformly concerning their angle to the optical axis

and r1, leading to a non-uniform distribution of points of reflection along the mirror. When
considering a flat reflecting surface parallel to the optical axis, it is evident that the number
of neutrons per unit length decreases with increasing distance from the source, ds, for two
reasons. Firstly, in a two-dimensional context, the intensity of the neutron beam decreases
proportionally with 1/ds

(6). Secondly, the angle of incidence also decreases with increasing

(6)This is analogous to the 1/d2s -law for three dimensions.
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ds. Both effects conspire to decrease the neutron density with increasing z.
Conversely, in the case of a long, elliptic mirror, the angle of incidence increases at large

values of z, qualitatively opposing the first effect concerning the neutron density. A detailed
analysis of this observation is presented in appendix E, with Fig. 5.9 summarizing the results.
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Figure 5.9: Neutron densities at the reflecting surface as a function of the point of reflection
z for differently shaped mirrors. The black line refers to the assumption of uniform density
employed for the derivation of Eq. (5.12). Blue and red lines correspond to flat and elliptic
mirror geometries with their maximum distance to the optical axis, b = 0.02 m, respectively.
Panels (a) and (b) show the respective distributions for two different total lengths of the
mirror l = 1 m and l = 0.06 m. All distributions correctly integrate to 1 as highlighted in
the legend.

For the calculation, we assumed all neutrons to be emitted from one focal point, with the
maximum distance between the optical axis and the elliptic and the flat mirror being, b =
0.02 m. The focal length of the elliptic mirror amounts to f = 0.675 m. Panels (a) and (b)
show results for l = 1 m and 0.06 m, respectively. For l = 1 m, the intensity distributions
for the flat mirror (blue) and the elliptic one (red) show qualitative differences, with both
differing significantly from the uniform intensity distribution (black). When going to large
z > 0.25 m, the density of neutrons impinging on the reflective surface per length element in
z monotonically decreases for the flat mirror. Considering the elliptic mirror, the increase in
incident angle overcomes the reduction in density with increasing distance from the source,
such that the overall density increases when z approaches 0.5 m. In the case of very short
mirrors z = 0.06 m, the observed behavior is dominated by a linear term in z, which is easily
obtained from a series expansion (compare appendix E). Due to the discussed effects with an
opposing sign, pZ(z) obtained for the elliptic mirror changes at half the rate with z compared
to the case of the flat mirror.
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In conclusion, the initial assumption of a uniform distribution of the points of reflection over
the length of the guide is only satisfied in the case of short guides, e.g., l/f ≈ 1/10, where
the relative difference does not exceed 10 %. For long guides, however, the relative difference
to the uniform distribution becomes prohibitively large, which necessitates using the true
pZ(z) when calculating pR2(r2).

The analytic transformation of the PDFs, even with the help of computer algebra systems
(Mathematica [171]), becomes impossible at this point. Additionally, for an extended source
of neutrons, we anticipate a slight deviation in pZ(z) compared to the one calculated under
the assumption that all neutrons are emitted from F1. Lastly, the relationship between r2

and r1 determined by Eq. (C.6) cannot be integrated analytically.
To obtain the intensity distribution at the second focal point, we employ numerical inte-

gration as discussed in appendix F. The resulting intensity distributions are visualized in
Fig. 5.10 similarly to those in Fig. 5.8. Two key differences can be observed compared to
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Figure 5.10: Spatial intensity distributions for various mirror lengths, l, on a linear (a) and
logarithmic (b) scale. Solid lines represent the intensity distributions at F2 derived from
a transformation of the intensity distribution of neutrons at F1. To account for the exact
elliptic shape of the reflective surface and the uniform distribution of neutrons in r1 and
their angle to the optical axis, α, numerical integration had to be utilized as outlined in
appendix F. Data obtained from McStas simulations under analogous assumptions is shown
as empty circles of matching color. The difference between the two datasets is illustrated in
(c), exhibiting no systematic discrepancies. Outlined in red is the rectangular distribution
of intensity as found at F1, pr1(R1).

the data obtained under the assumption of a constant pZ(z) (compare Fig. 5.8). Firstly, the
values of pR2(r2) obtained for various values of l all plateau at the same value instead of
increasing with decreasing l. Secondly, the flanks of intensity are more pronounced. Both
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effects are attributed to the difference in pZ(z), where the uniform distribution overesti-
mates the number of neutrons reflected in the second half, which are focused. The McStas
simulation is in excellent agreement with the numerical integration, validating both.

Irrespective of the calculation mode, the comparison of intensity distributions for guides
of various lengths reveals that shorter guides preserve the emitted, rectangular intensity
distribution to a higher degree, whereas the neutron distribution transported through a long
elliptic guide experiences significant spatial distortion.

Elucidating this distortion of the neutron phase space in more detail, we simulated the
neutron transport through a long elliptic guide using the McStas software package [172].
Fig. 5.11 illustrates the intensity distribution at F2 as a function of both the distance to the
optical axis r2 and the vertical divergence αv. Fig. 5.11 (a) compares the spatial intensity

r 2

Figure 5.11: Beam quality after transport by a long elliptic guide. Solid and broken lines
represent results from simulations with (m = 4.1, Re = 82 %), and with ideal reflectivity,
respectively. (a) Horizontally integrated intensity distribution at F2 plotted against the ver-
tical distance from the optical axis, r2. The emitted rectangular spatial intensity distribution
is outlined in red. After the transport through the long elliptic guide, the rectangular shape
at the second focal point is heavily distorted. A reflection close to the exit of the guide results
in a central peak of focused neutrons close to the optical axis, z = 0. Conversely, neutrons
reflected close to the entrance of the guide contribute to the tails of intensity, which extend
much further than the original rectangular intensity distribution. (b) The color plot shows
the neutron intensity at F2 as a function of the vertical divergence, αv, and r2, normalized
to the uniform intensity of the emitted volume of phase space. The red rectangle indicates
the outline of the volume of phase space as emitted by the source at F1.
The simulated long guide is characterized by the following dimensions: f = 20 m, b0 =
0.132 m, and l = 39.5 m. The neutron beam used in the simulation was monochromatic with
a wavelength of λ = 4�A. The figure is adapted from the work of Herb et al. [19].

distributions at F1 and F2, respectively. The emitted rectangular peak of uniform inten-
sity (red) becomes severely distorted during the transport through the long elliptic guide,
resulting in a sharp peak of focused neutrons close to the optical axis and tails of weak



intensity far away from the optical axis. To further disentangle the contributions to the re-
sulting neutron distribution, Fig. 5.11 (b) shows the intensity at the second focal point as a
function of both the vertical deviation from the optical axis, r2, and the vertical divergence,
αv. This reveals contributions of focused (small |r2|, large |αv|) and defocused (large |r2|,
small |αv|) neutrons, which correspond to reflections close to the exit and entrance of the
guide, respectively (compare Fig. 5.6). Additionally, isolated islands of intensity arise due to
doubly-reflected neutrons. Multiple interactions with the same mirror (garland reflections)
or subsequent interactions with two opposing mirrors (zig-zag reflections) result in inten-
sity arising in the upper left (and lower right) and upper right (and lower left) quadrant,
respectively. Apart from the geometric aberrations, multiple reflections occurring over the
course of a long guide as a consequence of gravity or finite mirror waviness may furthermore
complicate the divergence and intensity profile at F2, compared to the situation at F1.

To visually summarize the geometric aberrations introduced into the neutron phase space
by a long elliptic guide, Fig. 5.12 illustrates the results of a Python simulation. We simulated
the transport of a grid-like intensity pattern from one focal point of a long elliptic guide to
the other, emphasizing the distortions and complexities encountered during the neutron
transport through such a guide. Instead of returning to their initial position relative to
F1, neutrons arrive at F2 with significant variations in offsets. Those focused toward the
optical axis manifest as a sharp central peak, while the defocused neutrons are dispersed
further from their emission point. The intensity emitted from the individual slits becomes
thoroughly blended due to the discussed geometric aberrations.

While Fig. 5.12 vividly illustrates why geometric aberrations in long elliptic guides render
them unsuitable for imaging experiments, the complications associated with the distortion
of the emitted volume of neutron phase space are more profound in real experiments. In the
context of neutron scattering, precise knowledge of the initial state of neutrons, including
their distribution in energy and momentum, is crucial. Researchers then aim to determine
the state of the scattered neutrons and infer the difference between the two to understand
the interaction between neutrons and the sample. Complex initial intensity distributions
make this comparison between theory and experimental results more challenging, potentially
requiring advanced corrections and data analysis techniques(7).

In the next section, we will explore a solution to reduce geometric aberrations based on an
assembly of shortened mirrors replacing a single long mirror.

5.4 Elliptic Nested Mirror Optics
By constraining the guide length, l, to values much smaller than the focal length, f , we
ensure that neutrons are reflected close to the semi-minor axis, which reduces geometric
aberrations, ensuring the preservation of the volume of phase space as emitted at F1. How-
ever, a shortening of the mirrors entails a significant reduction of the angular acceptance of
the guide, consequently reducing the amount of transported neutrons significantly. The im-
pact of these two effects on the transported intensity distribution is illustrated in Fig. 5.13.
Ideally, one would recover the entire angular range transported by a long elliptic guide while
maintaining the improved quality of imaging enabled by the shortened mirrors.

(7)Usually, it is assumed that the phase space of the incident neutrons can be approximated by Gaussian
resolution ellipsoids in momentum and energy space [108, 107, 173].
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Figure 5.12: Simulated transport of a grid-like intensity distribution through a long elliptic
guide. Neutrons are emitted at F1 in five equidistant stripes, each with a width of 0.5 mm
and spaced 2 mm apart. They are subsequently transported to F2 by a long elliptic guide
characterized by the following parameters: f = 0.675 m, l = 1 m, b = 0.02 m and perfectly
reflecting mirrors. Panel (a) illustrates the neutron trajectories, color-coded according to
their first point of reflection. Green and dark blue trajectories correspond to neutrons
reflected close to the entrance and the exit of the guide, respectively. Red and light blue
trajectories correspond to neutrons reflected close to z = 0 and neutrons that pass through
the guide without reflection. The present geometry also allows for doubly reflected neutrons
indicated by orange lines. It should be noted that the figure is not to scale.
Panel (b) displays the intensity distribution at F2 as a function of the distance to the optical
axis, r2, and the initial point of reflection, z. Red lines indicate the positions at which
neutrons are emitted at F1, i.e., the grid. Orange lines depict the approximate relationship
between r1 and r2 given by Eq. (5.8) for each of the slits showing a good agreement with
the color plot. The intensity around z = −0.45 m corresponds to doubly reflected neutrons.
Panel (c) presents the data from (b) after integration over z, which is equivalent to the spatial
intensity distribution after the transport at F2 (blue). This distribution contains focused
neutrons near r2 = 0 and defocused tails of neutron intensity far from the optical axis,
|r2| � 0. In summary, the originally grid-like intensity distribution emitted at F1 (depicted
in red) undergoes a significant transformation during transport, making it unrecognizable at
F2.
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Figure 5.13: Simulated intensity distributions at F2 similar to those presented in Fig. 5.12.
By reducing the guide length from l = 1 m to l = 0.05 m, geometric aberrations are reduced
significantly, even enabling the recovery of the emitted grid-like structure at F2. However,
the significant reduction of l limits the efficiency of neutron transport. Both effects can
be observed in the horizontally averaged intensity distributions (c), where small peaks in
intensity appear at the correct distances from the optical axis, with the intensity dropping
to a constant background in between. The peak shapes can be understood directly from the
shape of the integrated data (b). The constant background is attributed to neutrons passing
the very short mirrors without reflection, illustrated in light blue in (a).

As discussed by Zimmer [174] and detailed in appendix G for non-symmetric geometries, this
can be achieved by nesting several elliptic mirrors with coinciding focal points but different
semi-minor axis bn. One obtains the full angular acceptance while reducing the distortions
to the neutron phase space. Fig. 5.14 illustrates the construction process, including the
neutron trajectories that determine the geometry. The m-value of the outermost mirror and
the requirements for the reflected beam, such as the desired divergence and the position
of the two focal points, jointly determine the semi-minor axis of this outermost mirror b0.
After selecting a common length for the individual mirrors, l, one can calculate the semi-
minor axis of the next inner mirror by requiring that a line from F1 to the end of one mirror
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l

Figure 5.14: Schematics of a symmetric elliptic NMO including shape-determining neutron
paths being reflected either at the entrance, zs, or the exit, ze of the NMO. The common
focal points of all elliptic surfaces are highlighted in orange. The figure is reproduced from
the work of Herb et al. [19].

coincides with the entrance of the next inner mirror. Following this recipe ensures that every
neutron emitted at F1 interacts with precisely one mirror, enabling the device to transport
a geometrically defined range of angles [19].

The total number of mirrors required on each side to transport the desired angular range
α ∈ |αmin, αmax| can be approximated by

N ≈ ln

(
αmax

αmin

)
f

l
. (5.13)

The derivation of this result can be found in the appendix G and [174]. Accordingly, the
number of required mirrors increases logarithmically with the angular range and linearly with
the ratio of the focal length, f , to the mirror length, l. Curiously, the total neutron reflecting
area remains constant under variations of l. This is because the area of an individual mirror
scales proportionally to l while the number of mirrors scales reciprocally. This observation
supports utilizing shorter mirrors, as they offer reduced geometric aberrations.

In practical terms, the finite thickness of the mirror substrates restricts the minimum dis-
tance between two adjacent reflecting surfaces. Consequently, neutrons emitted at minimal
angles ≤ ∆α do not partake in the reflection process and instead traverse the divergence
hole unobstructed. These neutrons can either be absorbed by a beam stop or be partially
reflected by equidistantly spaced mirrors, which is discussed at a later stage.

Furthermore, neutrons emitted at a given distance from the optical axis, r1, can pass
between any two mirrors without interaction or undergo a double reflection, depending on
their initial emission angle. Fig. 5.15 (a) and (b) illustrate these two cases, respectively.
In the first case, the origin of the neutron, characterized by the sign of r1, and the point of
reflection occur on the same side relative to the optical axis, as shown in panel (a). We can
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Figure 5.15: Schematics illustrating how neutrons pass between two mirrors of the elliptic
NMO either unobstructed (a) or doubly-reflected (b). Neutrons emitted on trajectories
encompassed by the red and the green lines are either non- or doubly reflected. In contrast,
neutrons traveling between the green and the blue lines are correctly reflected once.

then approximate the ratio of neutrons passing between two mirrors without interaction to
the total number of neutrons incident between the two mirrors by

Rloss, passing =
θg − θr

θb − θr

≈
arctan

(
bn−r1
f+l/2

)
− arctan

(
bn+1−r1
f−l/2

)
arctan

(
bn−r1
f−l/2

)
− arctan

(
bn+1−r1
f−l/2

) ≈ r1

bn
. (5.14)

Here, bn and bn+1 are the semi-minor axes of the two adjacent mirrors and θg, θr and θb denote
the angles between the optical axis and the green, red, and blue trajectories in Fig. 5.15 (a),
respectively. The fate of a neutron is determined by its emission angle compared to those
angles. Neutrons emitted within a range of angles between the green and the red line, θg−θr,
do not interact with any mirror, while those emitted between the blue and the green line,
θb−θg, are correctly reflected. Under the assumption of approximately flat mirrors (constant
distance to the optical axis bn), utilizing the small angle approximation(8), and considering

the relation between the semi-minor axes of two adjacent mirrors, bn+1 ≈ bn
f−l/2
f+l/2

(compare

appendix G), we finally derive the approximate loss ratio: Rloss, passing ≈ r1
bn

. The implicit
assumption that the angular distribution of neutrons is uniform is well supported for the
small angular range necessary to illuminate the space between two adjacent mirrors.

For neutrons that interact with a mirror on the opposite side relative to their point of
origin, the ratio of doubly-reflected neutrons to all neutrons incident between the mirrors is
given by a similar factor

Rloss, double reflection =
θr − θg

θr − θb

≈
arctan

(
bn+r1
f−l/2

)
− arctan

(
2bn−bn+1+r1

f+l/2

)
arctan

(
bn+r1
f−l/2

)
− arctan

(
bn+1+r1
f−l/2

) ≈ r1

bn
, (5.15)

where the same assumptions as above were utilized. Here, the angles θr, g, b correspond to

(8)Specifically, all arctan functions in Eq. (5.14) are approximated by their argument.
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the angles between the optical axis and the red, green, and blue trajectories depicted in
Fig. 5.15 (b), respectively.

For either case and to first order independent of l and f , the geometric loss ratio for
neutrons passing between the nth and (n+ 1)th mirror can be approximated by

Rloss ≈ r1/bn, (5.16)

indicating that the innermost mirrors suffer the greatest geometric losses and larger NMOs
offer better transport efficiency when keeping constant the extent of the source. The average
loss for an extended source with width w is readily obtained:

Rlossw =

∫ w
2

−w
2

|r1|
bn

dr1

w
=

w

4bn
. (5.17)

Typically, neutron optical systems are limited by the critical angle of the supermirror coating,
which in turn determines the maximum transportable divergence leaving the source. For a
given source geometry (height h, divergence θs), the losses can be reduced by utilizing a
NMO with a larger focal length, and consequently larger semi-minor axes b0 ≈ θs f , thereby
reducing the loss ratio. However, a larger focal length imposes stricter requirements on
the mirror waviness and necessitates additional mirrors towards the center of the NMO.
Additionally, for large wavelengths, gravitational distortions of the neutron trajectories can
pose disadvantages when exceeding a certain travel time of the neutrons, tf ∝ f , requiring
careful simulation-supported consideration when choosing the size of the NMO.

Highlighting the optical imaging quality, Fig. 5.16 presents McStas Monte-Carlo simula-
tions of a one-dimensional, elliptic NMO comparing the intensity distribution at F2 with the
emitted distribution at F1. The geometry for this simulation, considering only the vertical
dimension, is similar to the one for the long elliptic guide shown in Fig. 5.11(9). In the
present setup, a source with height, hs = 6 mm, illuminates a symmetric, one-dimensional,
elliptic NMO equipped with mirrors with length, l = 1.6 m. Fig. 5.16 (a) illustrates that
the emitted spatial intensity distribution (red) remains well preserved during the transport
through the NMO, with only a minor deviation at the upper edge, r2 = 3 mm, attributed to
gravitational effects. In both simulations, one with ideal reflectivity (dashed blue line) and
another considering a realistic supermirror reflectivity profile with m = 4.1 and Re = 82 %
(solid blue line), a small and constant reduction in intensity compared to the source is ob-
served. While the discussed geometric losses account for the reduction to ≤ 90 %, the finite
mirror reflectivity accounts for another 10 % loss.

When investigating the intensity as a function of the vertical position, r2, and the vertical
divergence, αv, as shown in Fig. 5.16 (b), the emitted uniform intensity distribution (red
outline) is well-preserved during the transport, except for a slight smearing at the upper edge,
r2 = 3 mm, due to gravity. The fine texture of the intensity is attributed to contributions
reflected by individual mirrors. A substantial decrease of the intensity around αv = 0 marks
the divergence hole, and the slight decrease in intensity towards higher angles of incidence
corresponds to the decreasing supermirror reflectivity for larger angles of reflection, compare
Fig. 5.4.

(9)The simulated NMO consists of 40 individual mirrors on both sides of the optical axis, each with a
thickness, dsub = 0.5 mm, f = 20 m, b0 = 0.8 m, l = 1.6 m, and m = 4.1, Re = 82 %.
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Figure 5.16: Beam quality after transport through an elliptic NMO. (a) Horizontally inte-
grated intensity distributions at F1 (red) and F2 (blue) plotted against the vertical distance
from the optical axis, r2. Solid and broken lines represent results from simulations with (m
= 4.1, Re = 82 %), and with ideal reflectivity, respectively. (b) Intensity at F2 as a function
of αv and r2 normalized to the uniform density of the emitted volume of phase space. The
red rectangle indicates the outline of the volume of phase space emitted at F1. Overall, the
intensity distribution recovered at F2 closely resembles the distribution emitted at F1, sug-
gesting that the original phase space volume is successfully preserved during the transport.
The figure is adapted from the work of Herb et al. [19].

5.5 Parabolic Nested Mirror Optics
In addition to using nested elliptic mirrors for neutron transport between two focal points,
a similar system can be realized based on parabolic mirrors. This is equivalent to relocating
one of the focal points shown in Fig. 5.14 to an infinite distance from the former semi-
minor axis. The resulting parabolic mirrors are arranged in a nested fashion, such that each
neutron belonging to the incident parallel beam is focused onto the focal point, as illustrated
in Fig. 5.17. Designed for a parallel beam, the distance from the optical axis at the exit
of the nth mirror, rn(ze), must equal the distance from the optical axis at the entrance of
the adjacent inner (n + 1)th mirror, rn+1(zs). As visualized by the blue and green neutron
trajectories, this procedure ensures that every neutron of a parallel beam is focused on the
common focal point. Similarly, the device can transform all neutrons emerging from the
focal point into a zero divergence beam. Determining the parabolic shapes with coinciding
focal points follows a methodology similar to the one discussed for the elliptic NMO in the
appendix G. Neutrons belonging to the innermost part of the parallel beam do not participate
in the reflection process, which leads to a divergence hole 2∆α at the focal point analogous
to the one discussed for the elliptic NMO.

Whereas elliptic NMOs excel at conserving the beam phase space during transport from one
focal point to another, parabolic focusing nested mirror optics (pfNMO) perform a different
task in that they transform a low-divergence, spread out beam into a high-divergence focused
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Figure 5.17: Schematics of a parabolic NMO including shape-determining neutron trajec-
tories being reflected at zs (green) or ze (blue). The common focal point of all parabolic
mirrors is shown in orange.

beam while preserving the phase space density. A second set of parabolic de-focusing nested
mirror optics (pdNMO) can then reverse this transformation, recovering the original phase
space of the beam with minor losses.

Supported by McStas simulations, we will now discuss the key differences between a pfNMO
and a long parabolic trumpet [175], which is commonly utilized for focusing a beam onto a
sample position. The presented arguments are equally valid for the inverse case, in which
either device transforms a compact source into a low-divergence beam.

The short length of the parabolic mirrors l� f ensures that all neutrons interact with the
pfNMO at a similar distance far away from the focal point. This distance, df, geometrically
determines the relationship between the incident divergence before the pfNMO, αi, and the
distance from the optical axis the neutron possesses at the focal point, rf. The relationship
is given by

rf ≈ df αi. (5.18)

Following Eq. (5.18), a pfNMO provides the capability to adjust the beam width at its focal
point by manipulating the divergence of the incident neutron beam. Matching this width
to the extent of the sample potentially improves the signal-to-noise ratio. Conversely, the
points of reflection in a parabolic trumpet occur within a broader range of distances to the
focal point, leading to a less straightforward relationship between the incoming divergence
and the size of the focused beam.

Fig. 5.18 provides additional insights into the focusing properties of both devices for beams
with different incoming divergences, αi, as indicated above each column. The color plots in
the first row illustrate the simulated intensity distributions at the focal point of a long
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Figure 5.18: Beam characteristics at the focal point of a vertically focusing parabolic trumpet
(first row) and of a parabolic NMO (second row) illuminated with various incident diver-
gences, αi, indicated above each column. Accounting for the simulated geometries, only the
vertical dimension is considered. The color plots display the intensity of the neutron beam
at the focal point of the devices as a function of the vertical divergence, αv, and the vertical
offset from the optical axis, rf . The data illustrated in the color plots was integrated over
all values of αv, resulting in spatial intensity distributions shown in the third row. Here,
the broken black lines indicate the width of the beam according to Eq. (5.18), which is in
excellent agreement with the peak shape provided by the pfNMO.
For all simulations, the focusing devices were illuminated by a neutron beam with uniform
and constant brilliance. Consequently, the total number of neutrons arriving at the focal
point indicated in white is proportional to the incident divergence, αi. The incident beam
featured a wavelength of λ = 4.9(5)�A and a constant height of h = 32 mm. While the
horizontal divergence was kept at zero (neutrons are only focused vertically), the incident
vertical divergence was systematically adjusted to various values, αi. The simulated pfNMO
consisted of 40 mirrors characterized by the following parameters f = 0.675 m, b0 = 0.016 m,
m = 4, Re = 82 %, l = 0.12 m. f, l and b0 are measured from the entrance of the NMO at
z = 0, respectively. The simulated parabolic trumpet shared similar characteristics, namely
f = 0.675 m, b0 = 0.016 m, m = 4, Re = 82 %, and l = 0.65 m. The influence of gravity was
disregarded during all simulations, given the relatively short distances considered.

parabolic trumpet as a function of the vertical distance from the optical axis, rf, and the
vertical divergence, αv. Three distinct components can be observed, spanning an increas-
ingly large area with increasing αi. Neutrons being reflected at the upper (lower) reflective
surface of the trumpet appear at the lower (upper) island of intensity in the color plot.
Neutrons passing the central part of the nozzle without reflection contribute to the central
parallelogram. At the end of the trumpet, neutrons are reflected close to the optical axis
under angles exceeding θc. The reflectivity curve of the m = 4 coating results in a reduc-
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tion of intensity under large angles, which appears instead as a horizontal extension of the
parallelogram around αv = 0 ◦.

In comparison, for all investigated αi, the parabolic NMO gives rise to a connected, well-
defined, and uniform phase space volume, as observed in the second row. The spatial extent
of this phase space volume smoothly increases proportionally with αi. This is highlighted
in the third row, highlighting the data of both devices integrated over all values of αv,
corresponding to the spatial intensity distribution at the focal point. The two black, broken
vertical lines indicate the calculated width of the beam according to Eq. (5.18), which is in
perfect agreement with the simulated peak shape obtained for the pfNMO. As both devices
were illuminated by a beam with constant and uniform brilliance, the integrated intensity
indicated in white for each panel increases proportionally with αi.

Apart from offering a more uniform volume of phase space, the distance between the
reflective surfaces of the NMO and its focal point enables utilizing an extensive sample
environment, which would interfere with a parabolic trumpet.

5.6 Two-Dimensional Nested Mirror Optics
Two approaches are available for two-dimensional imaging or focusing of neutrons using
NMOs. Firstly, the geometries shown in Fig. 5.14 or Fig. 5.17 can be rotated around the
optical axis to create a toroidal geometry. In this case, the radial coordinate is denoted
by r. Secondly, the geometry can be translated into the paper plane, where r represents
the Cartesian coordinate oriented perpendicularly to the optical axis and the mirrors. This
geometry redirects neutrons in only one dimension, necessitating a second perpendicularly
oriented device for two-dimensional redirection. The two devices can be positioned behind
each other along the optical axis, with one device occupying the space from −l/2 to 0 and
the other from 0 to l/2, which we call a double-planar geometry. Albeit technically highly
challenging, it would be possible to intersect the orthogonal mirrors, creating one common
device. Fig. 5.19 illustrates both the toroidal and the double-planar geometries.

A toroidal NMO requires only a single reflection for two-dimensional imaging, thereby
reducing transport losses associated with finite supermirror reflectivity. However, the fabri-
cation process of such devices is complex, which limits their range of practical applications.
Based on an electrochemical replication technique commonly employed in X-ray gracing in-
cidence optics, toroidal Ni-mirrors have been fabricated and investigated successfully [176].
Nevertheless, the application of supermirror coatings to non-planar surfaces is still challeng-
ing. Despite some advances in the field [177], as of the current writing, truly toroidal NMOs
are still in their infancy. Recent progress has been reported by Wu et al., who investigated
a toroidal device consisting of two approximately elliptic mirror shells coated with m = 2
supermirror. Each mirror shell was divided axially into four parts and azimuthally into six
segments, resulting in a total of 48 segments [178, 179]. In the limit of very short mirrors,
l � f , the coating of flat substrates subsequently bent into a cylindrical shape or a tessel-
lation of small pieces of flat mirrors might allow for a combination of the advantages from
toroidal NMOs and supermirror coatings.

The double-planar geometry offers an attractive alternative, which allows the utilization of
supermirror coatings with m ≥ 4. During fabrication, flat silicon substrates are first coated
with a supermirror before being pushed into yokes with the corresponding shape-determining



82 CHAPTER 5. THEORY OF NESTED MIRROR GEOMETRIES

Figure 5.19: Schematics of double-planar (violet) and toroidal (green) elliptic NMOs enabling
two-dimensional focusing of neutrons. (a) and (b) show views along different angles to the
optical axis. For illustration, the eccentricity of the elliptic shapes is greatly exaggerated,
and a quarter of the toroidal NMO was made transparent. Figures are reproduced from
Herb et al. [19].

grooves. Besides their simpler realization, double planar systems geometrically fit today’s
rectangular guide shapes and allow for simple beam polarization. Furthermore, separating
the beam transport into two reflections in orthogonal dimensions helps mitigate the influence
of gravity, as will be discussed in more detail later on. Additionally, the separation of
dimensions allows for the independent control of the phase space of the transported neutrons
in both dimensions orthogonal to the optical axis.

The overall ease of fabrication finally supported the decision to realize a prototype of
a double-planar system to investigate its properties and compare them to simulation and
theory.

5.7 McStas Simulations of Nested Mirror Optics
In contrast to the simplified calculations presented earlier, the real-world performance of
elliptic or parabolic NMOs is influenced by many subtle effects that are not easily accounted
for analytically. To assess the overall performance of NMOs and compare it to currently
employed neutron optical solutions, we conducted Monte Carlo simulations using McStas
[172]. To obtain results that closely align with realistic conditions, the simulations should
take into account various effects, including the true elliptic or parabolic geometry of the
substrates, mirrors coated on one or both sides with supermirror including channeling effects
within these mirrors, realistic supermirror reflectivity profiles, double reflections and neutron
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leakage between adjacent mirrors, and absorption, refraction, and total reflection governed
by the silicon substrates onto which the coatings are applied.

A new simulation component was developed for parabolic and elliptic NMOs, based on
code designed initially by Giacomo Resta in the context of [176]. This novel component
enables the modeling of double-planar devices and accounts for all the effects mentioned
above. Furthermore, the influence of gravity can be closely approximated. Starting from
McStas version 3.4, this FlatEllipse finite mirror component is now accessible to all users as
a contributed component [180].

We present a brief overview of the developed simulation component, emphasizing the ad-
justable parameters for the interested reader. Addressing a broad spectrum of potential
users, the simulation component enables the determination of the geometry of each mirror
constituting the assembly from a single point on the outermost mirror surface, the position
of the two focal points, and the intended length of the individual mirrors, following the recipe
provided in the appendix G. Suppose more intricate control over the characteristics of each
mirror is required. In that case, one can also provide a file containing shape-determining
points of the individual mirrors (a combination of z and r for each mirror).

Fig. 5.20 depicts the simulation geometry in its local coordinate system. The z- and

F1 F2

lStart

AT position in McStas

lEndLStart LEnd

r_0

mirror_width

mf m-value frontside
mb m-value backside

always at z=0

neutron trajectory 

z

r

(0/0)

Figure 5.20: Schematics of the simulation geometry of a planar NMO including extreme
neutron trajectories (red). The geometry-defining parameters of the simulation are denoted
in italics, with the remaining ones being discussed in the text.

r-coordinates denote the directions parallel and perpendicular to the optical axis, with r
indicating the horizontal direction, denoted by x in McStas. The outermost mirror surface is
defined by the z-coordinates of the two focal points, LStart and LEnd, and the r-coordinate
at z = 0, r 0. Subsequent mirror shapes can be automatically computed by considering the
z-coordinates of the entrance and the exit of the NMO, lStart and lEnd, and the number
of mirrors, nummirror. Reflective surfaces are always generated in pairs on both sides of
the optical axis (not depicted in Fig. 5.20).

A finite substrate thickness is accounted for if one chooses mirror width > 0. In this case,
the m-values of the coatings applied to the inner and outer sides of the mirrors can be chosen
individually, mf , mb. A value of 0 corresponds to all neutrons passing the surface (unless
the silicon substrate totally reflects them), and an unrealistically high value of m > 10
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results in ideal reflectivity. For other m-values, a realistic supermirror profile is computed,
see Fig. 5.4. Additionally, one can allow or disallow reflections from the convex outer side
of a mirror by setting the doubleReflections parameter to either 1 or 0 respectively. The
width of the mirror blades along a lateral direction perpendicular to both the optical axis
and the normal vector of the mirror surface is determined by mirror sidelength. All of
the parameters mentioned above are specified in units of meters where applicable. If it is
necessary to configure a geometry that reflects neutrons vertically, it is advisable to rotate
the entire component within McStas using the ROTATED keyword.

To approximate parabolic geometries, one of the focal points can be relocated to a great
distance from the reflective surfaces. When selecting the position of this focal point, using an
excessively distant location can introduce numerical uncertainties, while positioning it too
closely may lead to geometric errors. Based on prior tests, a z-value of LStart = ±5000 m
has been deemed reasonable. It should be noted that the insertion point (AT) in the McStas
.instr file must be located between those of the two adjacent geometries.



6. Characterization of Nested Mirror Optics
Prototypes
The upcoming chapter will provide a detailed account of the investigations performed on
all elliptic and parabolic NMO prototypes. On the one hand, we will focus on determining
the efficiency of transport through an elliptic NMO, with the measurements conducted at
MIRA-2 utilizing a spatially resolving CASCADE detector. On the other hand, we report
on examining the peak shape of beams transported by the elliptic and parabolic NMOs,
utilizing neutron imaging techniques at BOA.

6.1 Investigation of the Polarizing Elliptic NMO at MIRA-2
Here, we report on the investigation of the first prototype of a polarizing planar elliptic NMO
at MIRA-2 using a CASCADE detector. Due to the fast count rate of the detector coupled
with a rather coarse resolution, emphasis was put on determining the efficiency of transport
of the elliptic NMO. Some of the here presented results have already been published in the
work of Herb et al. [19], serving as a template for the present section.

The investigated NMO is a planar, elliptic system designed for horizontal focusing. It con-
sists of mono-crystalline silicon substrates coated with polarizing FeSi supermirror, m = 4.1,
Re = 82 %. The mirrors were inserted into shape-determining elliptic grooves in iron yokes,
as shown in Fig. 6.1. As the mirrors were salvaged from a previous bender assembly, the

Figure 6.1: Pictures of the polarizing elliptic NMO prototype. The device contains eight
elliptic mirror blades, with a ninth central mirror aiding the alignment process. Columns on
either side of the mirrors house the permanent magnets supplying the field to saturate the
polarizing FeSi supermirror coatings. Figure is reproduced from the work of Herb et al. [19].

supermirror coating was applied on both sides of the substrates, entailing effects discussed
in more detail in section 6.1.5. All mirror substrates share the same geometry featuring
a length, l = 120 mm, a thickness, dsub = 0.15 mm, and a height of 45 mm. No absorb-
ing sublayers were applied during the coating process, such that neutrons exceeding the
polarization-dependent critical angle θ±c are transmitted through the mirror with high prob-
ability.

85
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Figure 6.2: Experimental setup at the instrument MIRA-2 at FRM II (top-down view). The
geometry of the unpolarized beam was defined by using the apertures A1 and A2. The NMO
images A1 onto the position-sensitive detector. A transmission polarizer and a spin flipper
were installed to account for a polarized beam, along with suitable magnetic fields to guide
the neutron polarization between the polarizer and the NMO. Figure is reproduced from
Herb et al. [19].

The shape of the elliptic grooves was calculated according to the method discussed in ap-
pendix G, with the elliptic mirrors being positioned symmetrically around the semi-minor
axes of the ellipses, which possess a common focal length of f = 0.6 m. Corresponding to
the critical angle of a λ = 5�A neutron, the outermost ellipse possesses a semi-minor axis
of b0 = 20.76 mm. Due to the limited beam divergence provided by the monochromator of
MIRA-2, where the initial experiments were conducted, mirrors were inserted into the device
only on one side of the optical axis. The shape-determining ellipses had semi-minor axes
ranging between 4 mm ≤ bn ≤ 17 mm (compare Fig. 6.1). The casing was placed between
two iron plates that are connected and magnetized by columns of NdFeB magnets, forming
a yoke with a field of ≈ 50 mT, sufficient to saturate the FeSi supermirrors.

6.1.1 Measurement Geometry at MIRA-2
The prototype of the polarizing elliptic system with unit magnification was investigated
using the multi-purpose three-axis spectrometer MIRA-2 at the Maier-Leibnitz-Zentrum
(MLZ, FRM II) [59]. The primary goal of this investigation was to assess the quality of
the neutron optical image and the efficiency of neutron transport. Fig. 6.2 illustrates the
experimental setup for investigating the polarizing elliptic NMO. The monochromator of
MIRA-2 selects and provides neutrons with a wavelength of λ = 4.9�A, with δλ/λ ≈ 1 %.
The neutron beam was then geometrically defined by two remotely adjustable apertures:
A1, with width w, defined a virtual neutron source at the first focal point of the NMO, F1,
which was then imaged onto its second focal point, at F2. A second aperture, A2, restricts
the extent of the beam at the entrance of the NMO to its geometric acceptance. The careful
beam preparation allows the definition of the neutron transport efficiency of the NMO as
the ratio of two integrated neutron rates: that encompassing the focused beam image and
that encompassing all neutrons arriving at the detector with the NMO removed from the
setup.

To facilitate the alignment, the NMO was mounted on a rotation table, such that its
vertical axis of rotation coincided with the entrance area of the NMO. This configuration
ensured that the exposed area of the NMO remained consistent during rotation within the
narrow range of angles θ required to scan through the optimum beam focusing. The imaged



6.1. INVESTIGATION OF THE POLARIZING ELLIPTIC NMO AT MIRA-2 87

intensity distribution at F2 was determined by utilizing a position-sensitive detector (PSD),
positioned at a distance d from the center of the NMO. With a large area of 200 × 200 mm2

and a spatial resolution of 2.5(1) mm (FWHM) [181], the detector enabled the discrimination
of distinct reflected and transmitted beam components and facilitated the alignment process.
Additionally, the PSD was mounted on a motorized linear stage, enabling the variation of
the distance d and thereby facilitating the investigation of the imaged intensity distribution
at varying distances from the focal point F2. To account for the polarizing supermirror
coating, the beam could be polarized by a transmission polarizer positioned between A1 and
the NMO. This device consisted of a stack of silicon plates coated with a polarizing FeSi
supermirror and a collimator to remove the reflected beam with the unwanted polarization
state. Notably, the installation of this transmission polarizer did not alter the trajectory
of the transmitted and polarized beam from that previously defined in the setup without
polarization. The polarization of the beam incident on the NMO could be inverted with a flat-
coil spin flipper. Several magnetic coils were installed between the polarizer and the NMO,
tuned to meet the requirements of the spin flipper and the guide fields. All adjustments
aimed for an optimum flipping ratio, defined as the ratio of count rates in the focused beam
image with the spin flipper switched on and off, respectively. In its final configuration, with
a guide field exceeding 2 mT throughout the space between the polarizer and the NMO, we
achieved a flipping ratio of 16. This was sufficient for studying the polarization dependence
of the various reflected and transmitted beam components after passing through the NMO.

6.1.2 Alignment of the Elliptic NMO
In an initial step towards assessing the general transport properties of the NMO, we deter-
mined transport efficiency. To obtain accurate results, proper orientation of the NMO with
respect to the virtual source and the PSD is crucial. We will briefly discuss the compara-
tively simple alignment process, which simultaneously represents an advantage of an NMO
compared to contemporary guide systems.

An unpolarized beam was utilized throughout this initial alignment process. The NMO
was positioned in the extension of the virtual source at a distance matching its focal length,
f = 600 mm. To achieve optimum focusing conditions, two parameters were independently
varied: the angle of incidence, θ, at which neutrons from the virtual source hit the entrance of
the NMO and the distance between the PSD and the NMO, d. The widths of the apertures A1

and A2 were kept constant throughout these adjustments, with A1 representing a compact
virtual source, w = 0.5 mm, and A2 configured to illuminate the entrance of the NMO
ensuring that all neutrons interact with at least one mirror.
To assess the quality of focusing and adjust the alignment of the NMO accordingly, we
monitored the peak amplitude of the vertically integrated detector data. Exemplary data
are presented in Fig. 6.3. Fitting a Gaussian-type function to the vertically integrated
detector data allows determining its horizontal position, x0, amplitude, A, width, σ, and the
constant background, C. The fitted function is given by:

I(x) = A exp

(
−(x− x0)2

2σ

)
+ C. (6.1)
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Figure 6.3: Intensity distribution at F2 when imaging a virtual source with width, w =
0.5 mm, utilizing the polarizing elliptic NMO. Panel (a) illustrates the detector data on a
logarithmic scale (a), whereas the vertically integrated data on a linear scale is depicted in
panel (b). The NMO and the detector were optimally oriented for an unpolarized beam
with θ = 0 and d = 600 mm. Both images show a sharp peak of correctly reflected spin-up
neutrons to the right of an extended region of neutrons leaking through the optic due to
their spin-down-state or for geometric reasons. The statistical uncertainties of the raw data
are confined within the markers. The Gaussian fit (red) is in good agreement with the data.
The Figure is reproduced from the work of Herb et al. [19].

The contour map in Fig. 6.4 (a) provides an overview of the obtained normalized values
of A, with red dots indicating the specific combinations of d and θ at which the data was
obtained. Cuts through this map at constant values of d and θ are depicted in Fig. 6.4
(b) and (c), respectively. The offset of θ was adjusted such that the global maximum of A
occurs at θ = 0◦. Using this convention, the intensity peaks in a small region around θ = 0◦

and drops significantly already at deviations of |θ| = 0.25 ◦. In comparison, the influence of
d seems less important. At θ = 0 mm, the amplitude plateaus within a range of d-values,
570 mm ≤ d ≤ 630 mm, which is consistent with performed Monte-Carlo simulations (not
shown).

Following this initial alignment of the elliptic NMO, the components for beam polarization
were introduced into the setup as described in section 6.1.1. The results from a subse-
quent repetition of the alignment procedure are shown in Fig. 6.5. Under consideration of
the respective investigated ranges of d-values, the data found in Fig. 6.4 and Fig. 6.5 are
qualitatively similar. Besides introducing the equipment required for neutron polarization,
we slightly reduced the vertical extent of A2 to maximize the flipping ratio, which could
have changed the characteristics of the reflected neutron beam slightly. The rather coarse
resolution of the detector prevented the tracking of those more subtle alterations.

Following the alignment, we investigated the imaging properties of the polarizing elliptic
NMO. This investigation focused on quantifying the ratio of neutrons successfully trans-
ported from F1 to F2. Additionally, we determined the extent to which the peak shape at
F1 is preserved as the beam is transported through the NMO.
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Figure 6.4: (a) Contour plot of the imaged amplitudes, A, for the unpolarized beam setup.
Data were acquired only for the combinations of θ and d indicated by red dots. The observed
maximum around θ = 0 ◦ is broadened significantly due to the limited resolution of the
detector. Panels (b) and (c) depict cuts through the contour map at specific values of d and
θ, respectively. The error bars include, apart from statistical fluctuations, a fitting error of
the non-Gaussian peak shape of both, the intensity of the focused neutrons and the point
spread function of the employed PSD [181]. Figure is reproduced from Herb et al. [19].

6.1.3 Efficiency of Transport
After setting the values of θ and d to those determined for optimum focusing, as presented
in Fig. 6.5, we proceeded to investigate the performance of the NMO at various widths of
the virtual source, w. To this end, we systematically varied the width of A1 within a range
of 0.25 mm ≤ w ≤ 6 mm. Conversely, the width of the beam-defining aperture A2 was kept
constant at 8 mm, which limited the illumination of the NMO to five out of the available
eight mirrors. The obtained normalized detector images are displayed in Fig. 6.6, with w
indicated on the top left of each panel. All images exhibit a similar structure, characterized
by a sharp peak representing focused neutrons on the right, adjacent to a diffuse region of
intensity. This region is attributed to neutrons passing the optic either due to geometric
losses (leakage and double reflections) or incorrect spin orientation. As w increases, both
the width of the reflected beam and the number of leaking neutrons increase, in agreement
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Figure 6.5: (a) Contour plot of the amplitudes A for the polarized beam setup. The dis-
tribution with a distinct maximum at θ = 0◦ is qualitatively equivalent to the results ob-
tained for the unpolarized setup (compare Fig. 6.4). Note the narrower range of d-values
that is presented here. Within uncertainties, the amplitudes for detector distances between
590 mm ≤ d ≤ 650 mm are indistinguishable. (b) and (c) show cuts through the contour
map at fixed values of d and θ, respectively. Figure is reproduced from Herb et al. [19].

with Eq. (5.16). For each w, the total rate of neutrons arriving within a defined window,
characterized by a width, wint = 9 mm, and a height, hint = 62.5 mm, delineated in red in
Fig. 6.6, is represented by IF2 . A second rate, IA2 , was determined by counting all neutrons
hitting the detector when the elliptic NMO was entirely removed from the setup, with
all other parameters kept constant. This rate corresponds to all neutrons passing A2 and
illuminating the mirrors. The ratio of these two quantities defines the efficiency of transport,
expressed as:

Q(w,wint) ≡
IF2(w,wint)

IA2(w)
. (6.2)

The obtained values of Q, as presented in Fig. 6.6, saturate around Q ≈ 73 % for small w,
and exhibit a slight decrease at the largest width investigated, with Q(6 mm, 9 mm) = 68 %.
While the overall trend aligns with the expectation that an increasing w results in more neu-
trons either remaining unreflected or undergoing double reflection between adjacent mirrors
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Figure 6.6: Measured neutron intensity distributions at F2 after transport through the elliptic
NMO for various widths, w, of the virtual source at F1. The data was utilized for the
determination of the experimental figure of merit Q(w,wint), as defined in Eq. (6.2). The
area of integration, characterized by a width, wint = 9 mm, and height, h = 62.5 mm, which
encompasses IF2 is outlined by a red rectangle. Neutrons that bypass the NMO can be faintly
discerned in a diffuse region to the left of the prominent peak of focused neutrons. The
transport efficiencies are approximately Q ≈ 72 % for most values of w, with a slight decline
observed at the largest width, as anticipated due to the increased geometric losses described
byEq. (5.17). All images are normalized to their total intensity. Figure is reproduced from
Herb et al. [19].
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(compare Eq. (5.17)), the current scenario is nuanced due to the double-side coated sub-
strates. Further details and the effects on transport efficiency are discussed in section 6.1.5.

It should be noted that a critical quantity for the characterization of neutron optic systems
is the brilliance transfer, which quantifies the efficiency of neutron transport by comparing
the brilliance of a neutron beam before and after an optical device, respectively. In practical
applications, the brilliance is typically averaged over a finite volume of phase space that is
the same for both the source and the target, with the ratio between these averages defining
the brilliance transfer. One may then define the integrated brilliance transfer for a NMO by
choosing equal areas at the first and second focal point and comparing the neutron flux at
both positions within the angular and wavelength acceptance of the NMO.

For the current configuration of an elliptic NMO focusing in only one dimension, we define
the partly-integrated brilliance transfer similarly to the efficiency of transfer, Q, with an
integration width equal to the width of the virtual source,

B(w) ≡ Q(w,w). (6.3)

The rationale behind considering wint ≥ w for the determination of the transport efficiency
was to mitigate the influence of the limited detector resolution FWHM = 2.5(1) mm, which
hinders the precise determination of the brilliance transfer for small w. For the largest
width studied w = 6 mm, one finds B(6 mm) = 0.62, in good agreement with the efficiency
of transport Q(6 mm, 9 mm) = 0.68. These experimental figures already encompass real-
world -factors such as neutron losses due to imperfect machining precision, absorption in the
Si-wafers and coatings, imperfect polarization, and finite supermirror reflectivities, ranked
in order of significance. Monte-Carlo simulations conducted to disentangle the individual
contributions are discussed in greater detail in section 6.1.5.

6.1.4 Preservation of Beam Shape
In addition to maximizing the neutron transport efficiency, maintaining the spatial distribu-
tion of the neutron beam during transport is a distinctive characteristic of an elliptic NMO.
To explore the relationship between the width of the focused beam and the primary beam at
F1, w, we evaluated the detector data displayed in Fig. 6.6. The data was initially vertically
integrated and then interpolated using a cubic spline. The FWHM of the peak was sub-
sequently determined based on that interpolation. The determined FWHM values were in
good agreement with their respective w for large values of w ≥ 4 mm (red circles). However,
the physical resolution of the PSD limited the investigation of smaller virtual sources. To
overcome this limitation, we conducted a subsequent, similar experiment at the BOA imag-
ing beamline (see section 6.2 for more details). In this experiment, neutrons were detected
using a standard scintillator plate with a resolution of FWHM = 100 µm. The obtained
FWHM values are indicated by blue circles in Fig. 6.7 and plotted together with McStas
simulations of extremely high resolution (black squares). For very small values of w, the
imaging capabilities of the elliptic NMO investigated are potentially limited by the waviness
of the supermirror coating, estimated to be η = 2× 10−4 rad. The resulting FWHM can
be approximated by FHWMwav = 2 × 2.355 × 0.6 m × 2× 10−4 rad = 0.57 mm(1), which

(1)The factor 2
√

2 ln(2) = 2.355 describes the relationship between the width of the Gaussian distribution
used to describe the waviness and the FWHM of the same distribution. 0.6 m denotes the distance between
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MIRA-2 measurement

Figure 6.7: Dependence of the horizontal FWHM at F2 on the width, w, of the primary
rectangular beam at F1. The black squares represent the results of McStas simulation,
which are in good agreement with ideal one-to-one imaging (r2 = r1, represented by the black
broken line). Conversely, the FWHM values measured at MIRA-2 (red circles) were limited
by the finite resolution of the detector of 2.5(1) mm, as indicated by the horizontal, red broken
line. In contrast, the data obtained at BOA (blue circles) agree with unit magnification from
very small values of w ≥ 0.5 mm up to w = 6 mm, beyond which they start to deviate from
the simulated values. The inset illustrates the effect of geometric aberrations on the FWHM
of the focused beam as described in the text.

is in good agreement with the asymptotic behavior of the FWHMs obtained at BOA for
w ≤ 0.5 mm.

For widths exceeding the waviness limit, the data for w ≤ 6 mm aligns well with the antici-
pated unit magnification. A minor deviation, consistent with the high-resolution simulation,
is observed for w ≥ 6 mm. This slight discrepancy between the simulated FWHM and w is
a result of geometric aberrations in (short) elliptic guides, as discussed earlier (Eq. (5.8) and
Fig. 5.6). Neutrons reflected in the second half of the ellipse produce a triangular feature on
top of the initial rectangular peak shape (shown in blue in the inset in Fig. 6.7), while neu-
trons reflected in the first half of the ellipse smear out the flanks of the peak shape (green).
These two effects work together to reduce the FWHM compared to the width at F1.

In comparison to the simulation, where this effect becomes significant only for w ≥ 10 mm,
the agreement between the FWHM and w breaks down much earlier in the measured data.
This deviation is mainly attributed to the illumination of the virtual source using a parabolic
NMO, which provides a beam of limited size depending on the distance from the focal point,
as discussed in section 6.2.3.3.

the reflective surfaces and F2.
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6.1.5 Comparison to Simulations
Supporting the interpretation of the experimental findings, we conducted Monte-Carlo sim-
ulations using the McStas software package [172], as detailed in section 5.7. The simu-
lated setup replicates the experimental geometry, incorporating mirrors with their geometry
and reflectivity matching their real double-side coated counterparts. We obtain a reason-
able agreement between the simulated and experimentally obtained transport efficiencies,
as listed in table 6.1. The plateau of Q observed for w ≤ 2 mm is effectively replicated in

w (mm) 0.25 0.5 1 2 4 6

Qexp 0.73 0.73 0.72 0.72 0.71 0.68
Qsim 0.82 0.81 0.81 0.80 0.77 0.73

Table 6.1: Measured and simulated efficiencies of transport, Q. The simulation accurately
replicates the experimentally observed plateau for widths w ≤ 2 mm. The generally higher
values of Qsim are mainly attributed to the assumption of ideal polarizing components in the
simulation.

the simulation. The minor drop in intensity for increasing w appears less pronounced in the
measured data, which can be attributed to the finite resolution of the CASCADE detector.
A significant portion of the remaining quantitative disparity can be attributed to neglecting
polarization-associated effects in the simulation. These effects were not accounted for due to
the limited knowledge of the individual efficiencies of the polarizer, the spin flipper, and the
NMO. Assuming that the polarizer provides a beam with a polarization of 98 % [59], the mea-
sured flipping ratio of 16 corresponds to a polarization of 90 % after the NMO. This would be
sufficient to account for the observed difference between the measured and simulated values
of Q in table 6.1. We expect the finite mirror waviness to have a negligible effect on the
obtained values for Qexp. Even if we generously assuming a waviness of η = 4× 10−4 rad, the
displacement of a reflected neutron at F2 would amount to 2.355×2η ·0.6 m = 1.1 mm, which
is small compared to the FWHM of the point-spread-function of the detector of 2.56 mm.

A comparison of both the experimentally obtained and the simulated data to the antic-
ipated geometric losses of an NMO, as calculated in Eq. (5.17), is presented in Fig. 6.8.
Employing the approximation of the geometric losses in an NMO derived in Eq. (5.17),
Rloss ≈ w

4b
, we can express the experimentally obtained Q-values by

Q = Q0

(
1− w

4b

)
. (6.4)

Here, the factor Q0 accommodates loss mechanisms primarily independent of the neutron
trajectory, instead encompassing aspects like finite supermirror reflectivity and polarization-
related losses. In an ideal scenario, where mirrors exhibit perfect reflectivity, the beam is fully
polarized, and there is no waviness; this value is expected to be Q0 = 1. Fitting Eq. (6.4)
to both the simulated and measured transport efficiencies displayed in Fig. 6.8 enables the
extraction of the corresponding values for b, which govern the reduction of the Q-values as
w increases. The b-value returned from each fit represents an average of all semi-minor axes
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Figure 6.8: Efficiencies of transport, Q, for various widths of the virtual source, w, as
obtained experimentally at MIRA-2 and from Monte Carlo simulations. A linear fit to the
data reasonably agrees with the loss ratio derived in Eq. (5.17).

of the NMO, which can then be compared to the nominal geometry. For the measured and
the simulated data, the obtained values are bcalc, exp = 23(3) mm and bcalc, sim = 14(1) mm,
respectively. While the value obtained from the simulation is in good agreement with the
geometry of the elliptic NMO, with semi-minor axes ranging between 9 mm ≤ bn ≤ 17 mm,
the large value of bcalc, exp suggests that additional effects are influencing the slope of the
measured data. Potentially, a minor lateral misalignment of the NMO during the experiment
induced geometric losses even at w = 0, thereby lessening the impact of increasing w on the
efficiency of transport.

In addition to simulating the actual experimental geometry, we conducted additional simu-
lations to explore the impact of the substrate thickness, dsub, and the supermirror reflectivity
on the transport efficiency, Q. These simulations maintained the experimental geometry,
modeling a double-side coated NMO illuminated by a neutron beam with a wavelength of
λ = 4.9�A and a wavelength spread of δλ/λ = 0.1.

Table 6.2 summarizes the impact of dsub and w on the transport efficiency. Two sets
of efficiencies were obtained: Qideal (left column), utilizing an ideal reflectivity curve, and
Qreal (right column), which used the measured reflectivity curve of an m = 4.1, Re = 82 %
supermirror. The relative drop in intensity (Qreal − Qideal)/Qideal ≈ 5% remains below the
20% reduction associated with the edge reflectivity of the m = 4.1 supermirrors, which is
expected given the small angles of reflection and the long wavelength of the beam with
λ = 4.9�A. The gradual decrease in Q with increasing dsub is attributed to channeling and
double reflections, as illustrated in Fig. 6.9. Additionally, the decrease in Q with increasing
w is due to increased geometric losses.
Additionally, we compared the transport efficiency of elliptic NMOs, examining cases of both
single-side and double-side coatings, (m = 4.1, Re = 82 %). One might assume that single-
side coated mirrors would be more suitable for NMOs, since the neutron transport relies
on single reflections at well-defined distances from the optical axis. However, for mirrors
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Figure 6.9: Illustration of channeling (blue trajectory) and double reflections (green tra-
jectory) for selected initial neutron trajectories (red) in an NMO equipped with double-side
coated mirrors (black). As the affected neutrons miss the second focal point, the efficiency of
transport, Q, is reduced. Dashed red lines depict the ideal, unperturbed neutron trajectories
for very thin mirrors. Figure is reproduced from Herb et al. [19]

w (mm) dsub = 0 mm dsub = 0.15 mm dsub = 0.30 mm

0.25 0.99|0.93 0.85|0.82 0.70|0.69
0.5 0.99|0.92 0.85|0.81 0.70|0.69
1 0.97|0.91 0.85|0.81 0.70|0.69
2 0.94|0.88 0.84|0.80 0.69|0.67
4 0.89|0.83 0.81|0.77 0.69|0.67
6 0.84|0.79 0.77|0.73 0.67|0.66

Table 6.2: Dependence of the efficiencies of transport, Q (w = 6 mm, wint = 9 mm), on
the Si-substrate thickness, dsub, and the width of the virtual source, w. The first and the
second entries in each cell correspond to results obtained for ideally reflecting mirrors and
for a realistic m = 4.1 reflectivity profile, (Qideal|Qreal). The simulations replicated the
experimental setup, including aperture A2, and the double-side coated mirrors. The bold
column corresponds to the data presented in table 6.1. Table is reproduced from Herb et al.
[19].

with finite reflectivity, double-side coated wafers can potentially enhance NMO efficiency if
the mirrors are sufficiently thin. Neutrons that penetrate through the first coating and into
the substrate can be reflected by the second coating on the opposite side. To arrive at F2,
these neutrons must traverse the first coating once again. Despite the low probability of this
occurring, there could still be a net gain in the overall transport efficiency depending on the
reflectivity of the coatings.

As dsub increases, the front faces of the wafers represent a larger portion of the entrance of
the NMO, as indicated by an increasing filling fraction, ζ. The discussed benefit from the
increased reflectivity of double-side coated mirrors is quickly offset by the channeling and
double reflection effects illustrated in Fig. 6.9. For the investigation of the elliptic NMO, the
filling fraction amounted to approximately ζ = 5× 0.15/8 = 9.4% for our prototype, where
five mirrors with dsub = 0.15 mm were illuminated through the aperture A2, set to a width
of 8 mm.
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Fig. 6.10 illustrates the transport efficiencies obtained from McStas simulations for the NMO
equipped with mirrors on both sides of the optical axis. The aperture A2 is removed in
this configuration, but the remainder of the geometry resembles the experimental setup.
Therefore, this simulation includes the divergence hole as an additional source of neutron
loss. The data qualitatively agrees with the expectations from the previous discussion. For

Figure 6.10: Dependence of the simulated efficiency of transport, Q, on dsub and w, for
single-sided (filled squares, solid lines) and double-sided (empty circles, broken lines) m =
4.1, Re = 82 % supermirror coatings. Figure is reproduced from Herb et al. [19].

all investigated values of w, the dependence of Q on dsub is weak for single-side coated
mirrors, as the influence of refraction and absorption effects caused by the silicon substrates
is minute. Notably, double-side coatings might offer a marginal advantage for very thin
mirrors and large w. However, as dsub increases, the transport efficiency provided by the
double-side coated NMOs linearly decreases due to the growing filling fraction ζ and the
associated effects shown in Fig. 6.9.

In conclusion, the decision to use double-side coatings over single-side coatings must be
determined on a case-by-case basis supported by Monte Carlo simulations. Double-side
coatings are better suited for larger NMOs, where ζ is smaller. Additionally, they might be
used for the outer mirrors of an NMO, where large m-values are required that entail reduced
edge reflectivity.

Overall, the investigation of the elliptic NMO at MIRA-2 revealed a high efficiency of
neutron transport, consistent with the calculations and the conducted simulations. However,
due to the limitations of the CASCADE detector’s resolution, a follow-up experiment was
carried out at BOA to investigate the shape of the transported beam further.
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6.2 Investigation of NMOs at BOA
The upcoming chapter details the investigation of the second generation of our NMO pro-
totypes at the imaging beamline BOA. These prototypes include two non-polarizing elliptic
NMOs and one polarizing as well as one non-polarizing parabolic NMO, all of which were
specifically designed for use at MIRA-2. Additionally, we conducted further experiments on
the polarizing elliptic NMO that had previously been studied. To complement our earlier
research on the transport efficiency conducted at MIRA-2 (compare section 6.1), we uti-
lized a high-resolution PSD to explore the spatial details of the imaged neutron beam that
were previously inaccessible due to the limited resolution of the CASCADE detector. Ad-
ditionally, we utilized the novel elliptic NMO prototypes to image more complex intensity
distributions in one and two dimensions.

6.2.1 Double-Planar Parabolic NMO
We begin the exploration of parabolic NMOs by providing an overview of the investigated
devices. This is followed by a detailed description of the experimental setup, concluding
with a discussion of the obtained results. Fig. 6.11 displays an overview of the double-planar
parabolic NMO. Fig. 6.11 (a) displays the geometry of the double-planar device including
exemplary neutron trajectories. The neutrons first encounter the polarizing horizontally
focusing parabolic NMO (phpNMO). Measured from the midpoint between the two devices
at z = 0, indicated by a vertical, black broken line, the mirrors of the phpNMO extend from
z = −(l + g) = −61 mm to z = −g = −1 mm. Each mirror is l = 60 mm long, possesses a
height of 40 mm, and is coated only on the side facing the optical axis with polarizing FeSi
m = 4 supermirror with an edge reflectivity of Re = 82 %. On either side of the optical axis,
there are 18 symmetrically arranged mirrors with a thickness of 0.3 mm, spaced according
to a recipe similar to the one discussed in appendix G. The maximum distance between the
reflective surface of the outermost mirror and the optical axis occurs at z = −61 mm and
amounts to 20 mm. Furthermore, 22 mirrors, each with a thickness of 0.2 mm, are positioned
closer to the optical axis. To alleviate the impact of the divergence hole, these mirrors have
been equidistantly arranged such that the distance between two reflective surfaces always
exceeds 0.4 mm. This distance was considered the smallest achievable during the fabrication
process. The red lines in Fig. 6.11 (a) illustrate trajectories of neutrons reflected at this
device (not to scale). Whereas the actual device is equipped with mirrors on both sides of
the optical axis (represented by black and gray parabolic lines), the trajectories are displayed
only on one side of the optical axis for clearer visualization. Fig. 6.11 (c) presents an image
of the entrance of a horizontally focusing NMO, featuring a large number of vertical mirrors.

Subsequently, the beam encounters the non-polarizing vertically focusing parabolic NMO
(npvpNMO). Its mirrors, all with length, l = 60 mm, and height, 40 mm, extend from
z = g = 1 mm to z = l + g = 61 mm. The gap of 2g = 2 mm between both devices was
necessary for the construction process. This section contains 18 mirrors with a thickness of
0.3 mm on each side of the optical axis, which are spaced similarly to the schema given in
appendix G. An additional 21 mirrors, placed equidistantly and separated by a minimum
distance of 0.4 mm, have a thickness of 0.2 mm to fill the divergence hole. Each mirror is
coated with non-polarizing m = 4 NiTi supermirror with an edge reflectivity of Re = 82 %,
applied only on the side closer to the optical axis. Blue lines in Fig. 6.11 (a) show the
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Figure 6.11: Overview of the geometry of the double-planar parabolic NMO prototype. Panel
(a) illustrates the geometry of the mirrors, along with exemplary neutron trajectories (not
to scale). Red and blue lines illustrate trajectories of neutrons reflected at the horizontally
and vertically focusing devices, respectively. Although the actual mirror geometries are
symmetric with respect to the optical axis, for visualization purposes, reflections at the
horizontal and vertically focusing devices are depicted for neutrons interacting with mirrors
on only one side of the optical axis, respectively. A more detailed description of the geometry
of both devices is presented in the main text. Panel (b) depicts the entire prototype, divided
into three segments: a first empty segment that ensures a homogeneous magnetic guide field
in the central segment, where the polarizing horizontally focusing parabolic NMO is located.
The final segment contains the non-polarizing vertically focusing parabolic NMO. Panel
(c) illustrates the entrance of a horizontally focusing NMO, highlighting a large number of
individual vertical mirrors.

trajectories of neutrons that are reflected by the npvpNMO. As before, the trajectories are
visualized only on one side of the optical axis.

The common focal point of the two parabolic NMOs is situated at z = f = 675 mm,
indicating that each device has a distinct focal length measured from its respective entrance.
Additionally, neutron-absorbing boral plates [182] with square openings of 40×40 mm2 were
placed at the entrance of the first segment and the exit of the third segment to shield against
unwanted neutron background. Fig. 6.11 (b) depicts this shielding connected to the front of
the empty segment by four screws.

6.2.1.1 Experimental Setup

In this section, we provide a detailed description of the geometry used to evaluate the non-
polarizing vertically focusing parabolic NMO at BOA. Fig. 6.12 (a) and (b) illustrate the
experimental setup and showcase the neutron trajectories as well as exemplary detector
images, respectively. Fig. 6.12 (a) displays a sketch of the measurement setup including
images of the actual experiment. The neutron beam originated from the cold section of the
polarized neutron guide feeding BOA [73]. Initially, a Soller collimator reduces the horizontal
divergence of the incoming beam to αh ∈ [10′, 20′, 45′], with 1′ equaling (1/60)◦. To ensure
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Figure 6.12: Sketched measurement geometry at BOA enabling the investigation of the non-
polarizing vertically focusing parabolic NMO using a scintillator. (a) The neutron beam
is monchromatized by a double crystal monochromator (green) and collimated by Soller
collimators (orange) before being focused by the rotated parabolic NMO. The aperture
A2 allows illuminating selected areas of the NMO. Panel (b) depicts a top-down view of
exemplary neutron trajectories and detector images before and after focusing, respectively.

that all neutrons arriving at the NMO are effectively reflected by its m = 4 mirrors, the
beam was then monochromatized by a double crystal monochromator set to a wavelength of
λ = 4.5�A. Importantly, to facilitate the alignment process utilizing the available rotational
stages, the non-polarizing vertically focusing parabolic NMO was rotated by 90 ◦ around the
optical axis such that it instead focused neutrons in the horizontal direction(2). This rotated
NMO was positioned on a rotational table such that its axis of rotation coincides with the
entrance window of the NMO. Upstream of the NMO, a remote-controlled aperture, A2,
enabled the illumination of selected parts of the NMO. The difference between the nominal
focal length of the parabolic NMO, fparab = 675 mm, and the actual distance to the detector,
dexp, is given by dparab = dexp−fparab, which could be adjusted by moving the detector along
the optical axis. Fig. 6.12 (b) displays a schematic representation of the system, showcasing
neutron trajectories and detector images before and after focusing. To describe the acquired
data, we use the coordinate system employed in McStas, where z represents the direction
parallel to the optical axis, y points upwards in the vertical direction, and x completes the
right-handed system.

6.2.1.2 Properties of Focusing

Fig. 6.13 presents a preliminary assessment of the focusing characteristics of the non-polarizing
vertically focusing parabolic NMO illuminated by a neutron beam with λ = 4.5�A, and
αh ≈ 20 ′. During the data acquisition, the aperture A2 was adjusted to selectively illu-
minate the top part of the rotated, now vertical mirrors(3). The cascading plot depicts

(2)Unless otherwise specified, the non-polarizing vertically focusing parabolic NMO was rotated by 90 ◦

around the optical axis, such that it focused neutrons horizontally. However, due to its intended use and to
maintain consistency, we will keep referring to it as the “non-polarizing vertically focusing parabolic NMO”.

(3)To facilitate the alignment, the non-polarizing vertically focusing parabolic NMO was rotated by 90 ◦

around the optical axis resulting in horizontal focusing along x.
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Figure 6.13: Relationship between the peak shape provided by the rotated non-polarizing
vertically focusing parabolic NMO and the difference between the actual distance to the
detector and the nominal focal length, dparab. Values of dparab < 0 indicate that the detector
is too close to the NMO. The incoming beam was uncollimated, which corresponds to a di-
vergence of αh ≈ 20 ′. The cascading plot displays vertically integrated, normalized detector
data for various values of dparab as open circles. An exemplary detector image (acquired
for dparab = −40 mm) is presented in the top left inset, with the axes labeled according to
the coordinate system shown in Fig. 6.12. The red dashed lines in the main plot represent
two Gaussian peaks, the sum of which approximates the measured data, as indicated by the
dashed line of the corresponding color. The horizontal solid lines within the plot indicate
the FWHM of the peaks, with specific FWHM values provided on the left side of the figure.
The inset at the top right illustrates the relationship between the FWHM and dparab. Addi-
tionally, the amplitude A of the peaks is presented in this inset.
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vertically averaged detector data for various deviations from the nominal focal length of the
NMO, dparab. The normalized data, shown as open circles, is well approximated by the sum
of two Gaussian peaks, corresponding to contributions from mirrors on opposing sides of
the optical axis; compare for example the neutron trajectories in Fig. 5.17. Two broken
red lines indicate the individual peaks, with the sum of these contributions represented by
a broken line, color-coded to match the measured data. Whereas the two peaks overlap
well for small values of dparab, separating the overall peak into two individual contributions
becomes distinctly apparent for larger deviations from the nominal focal length.

In the cascading plot, the corresponding FWHM values of the peaks are indicated by solid
horizontal lines, with the specific values provided on the left side. The inset at the top right
illustrates the relationship between the FWHM and dparab. The minimum FWHM value is
achieved at dparab = −40 mm, which is in good agreement with the obtained maximum of the
amplitude, A, both indicating the optimum focusing configuration. However, this implies
that the focal length of the NMO is smaller than intended. We attribute this observation
to an excess curvature of the mirrors, likely caused by the single-side coating, a topic to
be discussed in greater detail in section 6.3. The inset in the top left provides exemplary
horizontally focused normalized detector data at the focal point for reference.

In addition to the observed relationship between the shape of the focused peak and dparab,
we also noticed a significant and unexpected variation in the FWHM of the focused peak
depending on the point of illumination along the vertical y-direction. This effect was visible
in the raw detector data and became more apparent when the data was vertically integrated
within specific regions, as depicted in Fig. 6.14. We obtain similar data by averaging the data

Figure 6.14: Horizontal focusing of a white neutron beam with divergence αh = 10 ′ by
the rotated non-polarizing vertically focusing parabolic NMO. Panel (a) shows exemplary
detector data obtained at the focal point, dparab = 0 mm, with the axes labeled according
to Fig. 6.12. A ratio of Q = 0.44 of all neutrons incident on the NMO is recovered inside
the exemplary sample volume outlined in orange. Panel (b) depicts data vertically averaged
between two horizontal lines of matching color in (a). The trend of the FWHM values for
the three segments indicates that the quality of focusing is worse in the central part of the
NMO, where the FWHM is significantly higher. As illustrated in the zoom region inset, the
intensity that is missing from the central peaks reappears in the flanks of the distribution.
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between the two red and green lines in panel (a), which corresponds to neutrons reflected
near the top and the bottom of the NMO. The data exhibits a central peak of well-focused
neutrons, FWHM ≈ 2.2 mm, sitting atop a triangular shape of intensity, compare Fig. 6.14
(b). Besides the main peak, neutrons leaking trough the NMO appear as small side peaks
at x = ±17 mm, which exhibit a small amount of intensity texture due to the contributions
from individual mirrors. Overall, these findings agree with our expectations.

However, the main peak is significantly less pronounced when considering only the cen-
tral region delineated by the blue lines, FWHM= 3.2 mm. This observation contradicts the
assumption that the mirrors remain translationally invariant along the vertical axis. More-
over, we note a redistribution of the intensity, where neutrons missing from the central peak
reappear at the flanks of the distribution, as depicted in the inset.

To elucidate this phenomenon, we defined five horizontal stripes in the detector data of
the neutron beam focused by the non-polarizing vertically focusing parabolic NMO. Subse-
quently, we determined the FWHM of the vertically averaged data for each of those segments
for various values of dparab, with the results illustrated in Fig. 6.15.

Figure 6.15: FWHM of a white neutron beam, αh = 10 ′, after horizontal focusing by the
rotated non-polarizing vertically focusing parabolic NMO as a function of the segment of the
focused peak and dparab. The five stripes of the obtained detector data, for which the FWHM
values were obtained individually, are delineated by the two lines of corresponding color as
depicted in the inset. While the minimum achievable FWHM increases when moving from
the outer part of the focused beam towards the center, the distance at which this FWHM
is achieved decreases, indicating that optimal focusing occurs at distances smaller than the
nominal focal length. The total integrated intensities for each of the investigated areas
are in excellent agreement, as indicated in the legend. Additionally, results from a McStas
simulation are depicted, which reasonably align with the results obtained for the outer areas.
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For each area encompassed by two lines of matching color in the inset, we observe the ex-
pected linear increase of the FWHM with the deviation between dparab and the distance
at which minimum focusing is observed. However, comparing the FWHM values for differ-
ent segments along the focused peak reveals two unexpected effects. Firstly, the minimum
achievable FWHM notably worsens towards the center of the focused peak, whereas the
top and bottom regions closely agree with respect to their FWHM. Secondly, the minimum
FWHM is achieved for increasingly negative values of dparab towards the vertical center of
the focused peak.

Examining the underlying cause for the decrease in focusing quality towards the center
of the NMO, we note that the quality of focusing is best when the neutrons interact with
the reflective surfaces close to the shape-determining grooves, specifically at the top and the
bottom of the focused peak. In contrast, the central part of the mirror deforms freely and
deviates from its nominal shape if subjected to external forces, attributed to the single-side
supermirror coating, a topic discussed in greater detail in section 6.3. As the mirrors are
coated only on the one side facing the optical axis, the resulting tensile stress would favor
an increased curvature. This curvature becomes more pronounced closer to the center of the
mirrors and entails the observed reduction of the overall focusing quality and the decrease
in the distance of optimum focusing compared to the nominal focal length.

To elucidate how individual parts of the NMO contribute to the overall focused beam and
how each part transports neutrons to the focal point, we segmented the entrance window of
the non-polarizing vertically focusing parabolic NMO, measuring 40×40 mm2, into 25 square
segments of equal area, each spanning 8 × 8 mm2. Utilizing the aperture A2 upstream of
the NMO, we illuminated each segment one at a time. The resulting detector data acquired
for focusing a neutron beam with λ = 4.5�A, αh = 10 ′, and dparab = 0 mm is presented in
Fig. 6.16. The position of each individual panel corresponds to the specific segment of the
NMO illuminated by the incident beam. For instance, the data in the top left panel was
obtained when the neutron beam illuminated the top left segment of the NMO. Apart from
this manipulation of A2, the geometry was maintained during all measurements.

Each image exhibits a central peak of focused neutrons that appears at a constant horizon-
tal coordinate, x ≈ 1 mm. This indicates that regardless of its distance to the optical axis,
every part of the initial beam is focused correctly with a common focal length. Additionally,
a diffuse intensity region appears due to unreflected and doubly reflected neutrons keeping
their original direction. Consequently, the position of this region within the detector data
aligns with the position of the corresponding panel within the grid. Since the NMO only
focuses in the horizontal dimension, the vertical position of both the focused peak and the
diffuse region is the same in each row.

Within each panel, the FWHM of the vertically integrated data is denoted in white. Gen-
erally, the FWHM increases when the incoming beam illuminates a more central part of the
NMO. The smallest FWHM is achieved when the lower left segment is illuminated, with
a value of FWHM = 2.11 mm, in good agreement with Eq. (5.18), rf = 10

60

◦ π
180◦

0.65 m =
1.9 mm. In contrast, illuminating the central portion of the NMO results in the worst fo-
cusing, with FWHM = 6.8 mm. The increase in FWHM for neutrons arriving at the more
central mirrors presented in the middle column is expected due to the overlap of the non-
reflected and the focused components of the beam. However, the change in FWHM with
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Figure 6.16: Horizontally focused intensity distributions obtained in optimum focusing con-
ditions, i.e., dparab = 0. The position of each respective panel in the grid corresponds to the
illuminated segment of the rotated non-polarizing vertically focusing parabolic NMO. For
instance, the top-left panel displays data obtained when the top-left segment of the NMO
was exposed (more details in the text). Each panel exhibits a central peak of focused neu-
trons, and a diffuse region attributed to leaking neutrons that are either not reflected by
the mirrors or double reflected during their transport through the NMO. The FWHM of the
vertically averaged data corresponding to the peak of focused neutrons is indicated in white
within the corresponding panels. The observed increase of the FWHM values towards the
center of the NMO indicates a reduction of the focusing quality.

the vertical position of the point of illumination along the mirrors indicates a deformation
of the mirrors, particularly distant from the shape-determining grooves. This effect is con-
sistently observed for each column, suggesting that it is independent of the initial curvature
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or the thickness of the mirrors. All vertically integrated data displaying the FWHM and
the center positions of the peaks, x0, are shown in Fig. 6.17, with the panel placements
matching Fig. 6.16. The minute dependence of x0 on the point of illumination indicates that
the position of the NMO is in good agreement with its nominal focal length.
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Figure 6.17: Vertically integrated intensity distributions of the data presented in Fig. 6.16.
The data in each panel consists of a central peak of focused neutrons, and a diffuse region
of leaking neutrons that either pass the NMO unobstructed or were doubly reflected. The
FWHM and the position of each peak are indicated by the upper and the lower value within
each panel. Notably, the position of the peaks, x0, exhibits only a minute change with
respect to the illuminated region of the NMO. This observation suggests that the NMO is
well-adjusted, and each mirror effectively provides good focusing.
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6.2.2 Polarizing Elliptic NMO
In addition to the transport efficiency measurements previously conducted at MIRA-2, we
utilized the superior resolution of BOA to capture the finer details of the beam after transport
through the polarizing elliptic NMO. This allowed us to further explore the imaging quality
of the NMO, and to image structures in one and two dimensions.

6.2.2.1 Experimental Geometry

Expanding on the initial investigation of the imaging properties at MIRA-2, a second exper-
iment was conducted at BOA to assess the shape of the beam as imaged by the polarizing
elliptic NMO. Compared to the experiment performed at MIRA-2, the CASCADE detec-
tor was replaced by a 6LiF/ZnS:Cu-based scintillator that offers a superior resolution of
FWHM ≤ 100 µm. The measurement setup and exemplary data are illustrated in Fig. 6.18.
In addition to replacing the CASCADE detector with the scintillator, two notable differ-

Figure 6.18: (a) Top-down view of the experimental geometry for the investigation of the
elliptic polarizing NMO at BOA. Mirrors were inserted on only one side of the optical axis.
The monochromatic neutron beam provided by the DCM, λ = 4.5�A, was focused by the
non-polarizing vertically focusing parabolic NMO onto an aperture with width, w, which
was subsequently imaged by the elliptic NMO onto the detector. Both the parabolic and
the elliptic NMO were positioned according to their optimum focusing conditions, with
dparab = −1 cm, dellip = 0 mm. Panel (b) shows exemplary detector data for w = 1.0 mm.
The data displays a sharp central peak of focused neutrons and diffuse regions of neutron
leakage. Intensity texture arising from double reflections, corresponding to individual pairs
of mirrors, appears left to the central peak where the NMO was equipped with mirrors.
The obtained FWHM values for the central peak range from 1.18 mm to 1.21 mm for the
different regions, separated by red horizontal lines. Panel (c) depicts vertically averaged
detector data.
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ences between the BOA experiment and the one at MIRA-2 persist. Firstly, at BOA, a
parabolic NMO was utilized to illuminate the virtual source, resulting in an increased source
divergence. This configuration ensures that all mirrors of the NMO can be illuminated si-
multaneously. Secondly, the primary focus of this experiment was to determine the shape
of the imaged neutron beam. Consequently, the polarization was not maintained up to the
elliptic NMO. While reducing the efficiency of transport due to the faulty polarization of half
of the neutrons, this change did not alter the shape of the imaged beam. Less importantly,
we utilized a double crystal monochromator to monochromatize the beam to a wavelength
of 4.5�A, as opposed to the focusing monochromator employed at MIRA.

Fig. 6.18 (b) shows exemplary detector data obtained for a virtual source with width
w = 1.0 mm, with the vertically averaged data presented in Fig. 6.18 (c). The data exhibits a
central peak of focused neutrons, accompanied by diffuse regions of neutron leakage. Texture
arising from double reflections and geometric leakage between specific pairs of mirrors arises
only to the left of the focused peak, where mirrors were inserted. Segmenting the detector
area into stripes separated by horizontal, red lines allows us to individually determine the
FWHM of the vertically averaged data for each region. These values range from 1.18 mm
to 1.21 mm, which is in good agreement with the expected value for unit magnification,
FWHM = w = 1 mm.

6.2.2.2 Evaluation of the Peak Shape

For each of the individual segments of the detector data illustrated in Fig. 6.18 (c), referred
to as top, upper, middle, lower, and bottom, we evaluated the FWHM for various values of
w. These FWHM values are presented in Fig. 6.19. For very small w ≤ 1 mm, the FWHM
deviates from w and approaches a minimum value of 0.7 mm regardless of the illuminated
region. This deviation is mainly attributed to the mirror waviness or a possible misalignment
of the NMO, with the resolution of the detector ≤ 0.1 mm likely playing a less relevant
role. Assuming a waviness of η = 2× 10−4 rad, we obtain a corresponding limiting FWHM
of 2 × 2.355 × 0.6 m × 2× 10−4 rad = 0.6 mm at the focal point which is in reasonable
agreement with the approached value, as illustrated in the inset. For a large range of
widths 1 mm ≤ w ≤ 6 mm, the assumed one-to-one correspondence between FWHM and w
aligns very well with the data before it breaks down at larger w. The discrepancy between
the experimental data and the simulation is mainly attributed to the virtual source being
illuminated by the parabolic NMO. For large w, this leads to an inhomogeneous intensity
distribution at the first focal point, which is then imaged onto the detector. Additionally,
the parabolic NMO provides a beam with limited width depending on dparab, which is in
qualitative agreement to the fact that the FWHM levels off at a common value of w = 7 mm.

Notably, the FWHM of the beam transported by the polarizing elliptic NMO does not
change significantly with the vertical point of illumination. This suggests that the mirrors
maintain the nominal geometry even distant from the shape-determining grooves. This
observation can possibly be explained by the use double-side coated mirrors, which likely
entails a compensation of surface tensions on both sides of the mirrors, thereby reducing the
deformation. A more detailed discussion of this topic can be found in section 6.3.
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Figure 6.19: Dependence of the peak FWHM of the imaged neutron beam on the width of
the virtual source, w, obtained for the polarizing elliptic NMO. The data corresponding to
the various curves is obtained from the segments on the detector as illustrated in Fig. 6.18.
Notably, the overall FWHM values do not depend on the point of illumination along the
mirror, indicating that the mirrors are translationally invariant along the vertical direction.
The black dashed line and the black solid lines correspond to imaging with unit magnification
and a McStas simulation with unphysically high resolution, respectively.

6.2.3 Non-Polarizing Double-Planar Elliptic NMO
Similarly to the polarizing prototype, the second-generation non-polarizing elliptic NMO
prototypes were constructed using blades of mono-crystalline silicon coated with supermirror.
However, the coatings were applied only on the side closer to the optical axis. This single-
sided coating is intended to enhance transport efficiency by mitigating channeling and double
reflection effects illustrated in Fig. 6.9. Moreover, since this NMO is designed to be non-
polarizing, the supermirror coatings consist of alternating layers of Ni and Ti resulting in
m = 4 and Re = 82 %.

The geometry of the overall configuration is similar to the one for the parabolic NMO
displayed in Fig. 6.11. Focusing in two dimensions was achieved by using a double-planar
design with each of the two focal points positioned at a distance f = 675 mm from the
midpoint between the two orthogonal NMOs. Each mirror blade has a length of l = 60 mm
and a height of 40 mm. Defining this midpoint to be at z = 0 mm, the mirrors of the
horizontally focusing elliptic NMO span from zs = −61 mm to ze = −1 mm, while the
mirrors of the vertically focusing counterpart range from 1 mm ≤ z ≤ 61 mm. The largest
semi-minor axes for both sets of shape-determining ellipses amount to b0 = 20 mm, enabling
a maximum field of view of 40×40 mm2. For this prototype, a partial filling of the divergence
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hole was achieved by positioning equidistant mirrors close to the optical axis. Specifically,
this was done if the calculated distance between adjacent mirrors was less than the sum of
the substrate thickness and the space required for the fabrication of the grooves, bn+1− bn ≤
dsub +dgrooves, where dgrooves = 0.2 mm. Two different substrate thicknesses were employed to
ensure the stability of the outer, more strongly bent mirrors and to maximize the transport
efficiency by increasing the filling ratio of the divergence hole. The outer and inner mirrors
are based on substrates with dsub = 0.3 mm and dsub = 0.2 mm, respectively.

6.2.3.1 Beam Shape

Similarly to the investigation of the transport characteristics of the first-generation polariz-
ing elliptic NMO prototype (compare Fig. 6.19), we explored the imaging properties of the
second-generation non-polarizing vertically focusing elliptic NMO (npveNMO)(4). Specifi-
cally, we investigated the relationship between the width, w, of the virtual source positioned
at the first focal point of the NMO and the FWHM of the beam at the second focal point
after the transport. This relationship is illustrated in Fig. 6.20 for various investigated wave-
lengths, 2.45�A ≤ λ ≤ 6.0�A. During the measurements, only the top part (≈ 10 mm) of the
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Figure 6.20: Relationship between the horizontal FWHM of the imaged beam at F2 after
transport through the rotated npveNMO, and the width of the virtual source at F1, w. Data
is shown for various wavelengths of the incoming beam, λ. The measurement geometry was
similar to the one for the polarizing elliptic NMO depicted in Fig. 6.18.

rotated npveNMO was illuminated with the rest shielded by the aperture A2. Limiting the
points of reflection to areas close to the shape-determining grooves ensured a high imaging
quality.

Notably, the observed FWHM values are in excellent agreement across all explored wave-
lengths, as expected when considering that the number of mirrors partaking in the imag-

(4)Again, the NMO originally designed to focus neutrons vertically was rotated by 90◦ around the optical
axis, such that it focused neutrons horizontally during the experiment.
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ing process should not influence the peak shape. For small widths of the virtual source,
w ≤ 4 mm, the FWHM of the transported beam is in excellent agreement with w, consistent
with the intended imaging with unit magnification. For larger virtual sources w ≥ 4 mm,
the FWHM of the transported beam stabilizes at FWHM = 4 mm. This is attributed to
the illumination of the virtual source utilizing a parabolic NMO, which restricts the size of
the initial beam at the virtual source, as explored in more detail in section 6.2.3.3. No data
was collected for smaller beam widths w ≤ 2 mm, as this is already within the range of very
small samples for neutron scattering.

6.2.3.2 One-Dimensional Imaging

In addition to examining the transport properties of elliptic NMOs using neutrons emitted
from a simple slit-like virtual source, we conducted experiments employing more complex
intensity distributions. These investigations confirmed the elliptic NMO’s capability to ef-
fectively image various intensity distributions.

For the initial test of one-dimensional imaging, we chose a regular grid-like structure of
neutron-absorbing material. The grid was fabricated with a 3D printer utilizing a borated
PLA filament and was structured as follows: 0.5 mm-wide open slits are separated by 1.5 mm
of filament, yielding a structure with a periodicity of 2 mm. Fig. 6.21 (a) displays an image of
this structure consisting of eleven slits. To mitigate the effects associated with the previously

Figure 6.21: One-dimensional imaging of a grid-like intensity distribution. Panel (a) depicts
the grid-like structure, positioned at F1 of the npveNMO, the outline of which is highlighted
in red in panel (b). The color plot illustrates the obtained spatial intensity distribution at
F2 after the transport through the elliptic NMO. The vertically averaged data in panel (c)
distinctly reveals individual peaks of intensity, each corresponding to contributions from the
respective slit.

discussed deformation of the mirrors, the entrance of the npveNMO was shielded such that
only the top ≈ 10 mm of the mirrors were illuminated. The intensity distribution at the first
focal point was determined by placing the grid structure as close to the detector as possible
and recovering the FWHM of the resulting two-dimensional image, which is delineated in
red in Fig. 6.21 (b). The acquired intensity distribution obtained at F2 aligns closely with
the outline of the imaged grid-like structure. However, the intensity significantly decreases
with increasing distance from the optical axis. The vertically averaged detector image in
Fig. 6.21 (b) faithfully reproduces eight out of the initial eleven slits, corresponding to an
effective field of view with a width of 14 mm. The steep drop in intensity for neutrons
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further from the optical axis is attributed to a combination of effects. Firstly, as derived
in Eq. (5.16), the geometric losses are expected to increase linearly with increasing distance
from the optical axis. Secondly, a parabolic NMO was utilized to illuminate the grid with
a non-uniform spatial intensity distribution of neutrons, which even if imaged correctly falls
off with increasing distance from the optical axis. Further insights into this phenomenon
were provided by varying the distance between the illuminating parabolic NMO and the
3D-printed grid, as discussed in section 6.2.3.3.

6.2.3.3 Variation of dparab

In the experiments reported previously, parabolic NMOs were routinely employed to con-
dense the incident neutron beam onto a slit or grid-like structure to create a neutron distribu-
tion with a high divergence, which was subsequently imaged onto the detector by the elliptic
NMO. This setup introduces a complex interplay between the maximum achievable beam
size and the beam divergence, depending on the distance between the parabolic NMO and
the illuminated structure. To examine the effects of varying dparab, we repeated the previ-
ously discussed imaging of the one-dimensional grid, while varying the distance between the
npvpNMO and the grid, as shown in Fig. 6.22 (a)(5). The uncollimated beam is monochro-
matized by the DCM (λ = 4.5�A) and focused by the npvpNMO onto the grid-like structure.
The deviation between the distance from the grid to the NMO and its nominal focal length
(f = 675 mm), is denoted by dparab. Consequently, the illuminated area, and hence the
number of illuminated slits, is expected to increase with the magnitude |dparab|. Fig. 6.22 (b)
displays the detector data acquired at F2 of the elliptic NMO displaying the imaged slits for
various values of dparab, separated by red lines. For dparab ≤ 0 mm, the number of strongly
illuminated slits increases from three at dparab = 0 mm to eight at dparab = −200 mm. Con-
versely, for dparab ≥ 0 mm, in addition to the observed increase in the illuminated area, a
significant drop in the overall intensity of the image is apparent.

Fig. 6.22 (c) depicts simulated neutron trajectories for three different values of dparab ∈
{200 mm, 0 mm,−200 mm}. These trajectories are color-coded based on the specific slit they
pass at the first focal point. The simulation illustrates how the number of illuminated and
imaged slits increases for |dparab| > 0 mm. It also highlights the intricate relationship between
the individual slit and the part of the parabolic NMO that illuminates it, which changes with
the sign of dparab. The correspondence between each slit’s position and the divergence emitted
from it also entails an interesting effect: For dparab � 0 mm, only double reflections occur
at the elliptic NMO, whereas for dparab � 0 mm, geometric losses are restricted to neutrons
passing between mirrors. The dilution of neutrons along the second, lateral dimension, which
is neglected in the simulation, results in an additional reduction of intensity in the acquired
data for dparab � 0 mm.

Overall, the imaging process was deemed successful, and the results illustrate the intricate
relationship between dparab, the number of illuminated slits, and the range of divergences
emitted from each of those slits. This relationship needs to be taken into account when
utilizing parabolic NMOs as a neutron beam condenser for imaging purposes.

(5)To facilitate the alignment, both devices were rotated by 90 ◦ around the optical axis such that they
focused horizontally. The position of the elliptic NMO was maintained to ensure optimal imaging.
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Figure 6.22: Influence of varying the distance between the parabolic NMO and an imaged grid-like structure. Panel (a) depicts
a sketch of the measurement geometry: a 3D-printed grid-like structure was illuminated by the rotated non-polarizing vertically
focusing parabolic NMO and imaged onto the detector by the rotated non-polarizing vertically focusing elliptic NMO. For all
acquired data, the latter was arranged in its optimum focusing condition, positioned between the grid and the detector each
at a distance equal to its focal length. During the measurement, the parabolic NMO was displaced to various distances, dparab,
from its nominal focal length. Panel (b) displays detector data for each deviation, separated by red lines. Overall, the grid-like
structure is well-resolved in the detector data, with an increasing number of slits being illuminated for dparab 6= 0 mm. Panel (c)
illustrates simulated neutron trajectories (initial divergence αh = 30′) for three selected values of dparab, color-coded according
to the slit (orange horizontal broken line) they passed at the first focal point. The spatial intensity distribution at the detector
position is depicted as black curves at the bottom of the panel, reproducing the grid-like structure.
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6.2.3.4 Two-Dimensional Imaging

Evaluating the imaging capabilities of the elliptic NMOs further, we utilized two orthogonal
devices to achieve two-dimensional imaging as displayed in Fig. 6.23. The common measure-

Figure 6.23: Demonstration of two-dimensional imaging using two orthogonal elliptic NMOs.
A sketch of the employed measurement geometry is shown at the top, with the two parabolic
NMOs illuminating a 3D-printed structure, which is then imaged by two orthogonally ori-
ented non-polarizing elliptic NMOs. The aperture preceding the elliptic NMOs ensures that
only the top left segment of each elliptic NMO contributes. (a), (b), (c), and (d) show the
imaged structures and the detector data obtained at F2 during the imaging of a 45 ◦ rotated
grid, a vertically aligned cross, a 45 ◦ rotated cross, and a five-pointed star, respectively.
While the bottom panels depict a large section of the detector, including contributions from
leaking neutrons, the zoomed panels of the center are restricted to images corresponding to
two-dimensionally redirected neutrons.
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ment geometry included two parabolic NMOs illuminating the specific 3D-printed structure
and the two non-polarizing elliptic NMOs imaging it onto the detector. To enhance the
imaging quality and to minimize background, only the top-left corners of both the verti-
cally and horizontally focusing elliptic NMOs were illuminated during the imaging process.
This selective illumination is evident in the detector images, where distinct diffuse regions
of intensity can be distinguished based on their trajectory toward the detector.

The most intense region on the bottom right corresponds to neutrons being reflected cor-
rectly at both non-polarizing elliptic NMOs, i.e., the intended image at F2. In contrast,
neutrons arriving at the top left either interact with none of the NMOs or are doubly re-
flected at both. The regions at the top right and bottom left are attributed to neutrons being
reflected only at the horizontally or vertically focusing elliptic NMO, respectively. This ex-
plains the mirroring of the grid-like structure (a) and the star (d) when comparing the top
and bottom right intensity distributions.

Curiously, two distinct images appear when neutrons are exclusively reflected in the hor-
izontal direction. The exact origin of these images remains inconclusive, and efforts to
reproduce a similar structure within McStas simulations were unsuccessful. Most likely,
these images arise from individual contributions, such as unreflected and doubly reflected
neutrons, which separate vertically before arriving at the detector as seen in Fig. 6.23 (b),
(c) and (d). In (a) these individual images coincidentally overlap, creating the illusion of
one common grid.

Instead of accurately representing the original geometries, the region of vertically focused
neutrons appears as a diffuse region lacking distinct contours. This is likely due to the
improper alignment of the vertically focusing elliptic NMO, which could not be adequately
adjusted without a goniometer. As a result, the quality of two-dimensional imaging is
compromised significantly when compared to the horizontally reflected structures.

In conclusion, when both orthogonally oriented elliptic NMOs are properly aligned, high-
quality, two-dimensional imaging of structures should be effectively achieved, constituting a
part of future research.

6.3 Investigation of Mirror Deformations
To examine the observed deformation of the supermirror-coated silicon substrates and its
impact on the performance of potential NMO-based systems, supplementary investigations
were performed utilizing a 3D scanner. Our aim was to quantify the deformations from
the nominal mirror geometry, with the intention of potentially mitigating the effects of the
deformation on the performance of the NMO by adjusting the shape-determining grooves
accordingly.

Determination of Mirror Deformations using a 3D-Scanner

To determine the actual geometry of the silicon substrates, and thereby quantify the extent
of deviation from their nominal intended shapes, two test devices were fabricated. These
devices maintained the aluminum housing of their NMO counterparts, featuring a selection
of elliptic and parabolic grooves. The results of subsequent investigations carried out with
an optical 3D scanner are presented here.

We explored the geometry of leftover silicon substrates featuring a length of 60 mm, a
width of 40 mm, and a thickness of dsub = 0.2 mm. These substrates were coated on one side
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with a polarizing FeSi supermirror characterized by m = 4 and Re = 82 %. The 3D-scanning
process was performed using an ATOS Compact Scan/300 3D-scanner operating with optical
light [183]. However, as this device cannot accurately capture reflective surfaces, a white
opaque spray was applied before scanning. Following this preparation, a single capture was
sufficient to digitize the geometry of each individual mirror. Fig. 6.24 showcases the test
piece with the white opaque spray applied, along with a three-dimensional representation
of the obtained geometry. The digitization of the entire test piece involved reconstructing

Figure 6.24: Investigation of the geometry of a Si wafer coated on the bottom side using the
3D scanner. Panel (a) depicts the test piece coated with white opaque resin, illuminated with
blue light during the 3D scanning process. A few selected grooves of the elliptic and parabolic
NMO prototypes were machined into the test pieces, thereby facilitating the investigation
and quantification of deformations of the mirrors inserted into each of these grooves. Panel
(b) illustrates the obtained 3D data represented by a point cloud, where red and blue points
correspond to the mirror and the casing that houses them, respectively. Panel (c) illustrates
the process of aligning the raw data to the nominal geometry. The raw measured data
corresponding to the mirror (red) is rotated and shifted to agree optimally with the nominal
geometry (outlined in blue). This recovered data after the alignment is illustrated in orange.

it from multiple captures obtained at various angles during a full rotation. This data was
saved in the .stl format, consisting of a large number of triangles that collectively form the
surface of the scanned geometry. As illustrated in Fig. 6.24 (b), only the vertices of those
triangles were saved. Instances of missing data, indicated by white areas in Fig. 6.24 (b),
can be attributed to insufficient coating with the opaque resin or to an insufficient range of
illumination angles.

Free Mirror

To establish a baseline, we present a height profile obtained from the backside of a substrate
coated with supermirror only on the bottom side, which was not supported by any shape-
determining grooves; essentially a free mirror placed on a flat surface. This example will
serve to briefly explore the process of data acquisition and processing.

The process of aligning the obtained data is illustrated in Fig. 6.24 (c). Following the
capture and digitization of data by the 3D scanner, the resulting point cloud representing
the mirror (red) is rotated around the r-axis, such that its projection into the xz-plane
(delineated in green) aligns optimally with the nominal outline of the mirror (blue). This
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means that x should range from x ∈ [−20 mm, 20 mm], and z ranges from z ∈ [1 mm, 61 mm].
Assuming that the data acquired for the mirror possesses a rectangular shape, this is achieved
by rotating the data around r by an angle γ until the sum of the maximum distances between
any two points along x and z is minimized,

γopt = arg min
γ

[dz(γ) + dx(γ)] . (6.5)

Here, dx(γ) and dz(γ) denote the maximum distance between the two x and z coordinates
of any two points, as depicted in Fig. 6.24 (c). Minimizing with respect to γ is equivalent
to an alignment of the data parallel to the axes of the coordinate system. Subsequently, the
data is shifted and rotated around x and z to minimize the deviation between the obtained
height profile, r, and the nominal profile. It should be noted that the least squares algorithm
utilized for the adjustment aims to minimize the sum of the squared distances between all
corresponding points of the nominal and measured surface. Consequently, a deformed mirror
will be oriented to be partially above and below the nominal profile. Since there is no absolute
reference point, the discussion must be limited to relative deformations from the nominal
geometry, tolerating, for example, a constant offset from 0 close to the shape-determining
grooves.

In the absence of external forces on the mirror, the surface of the free mirror should
resemble a plane with its surface normal oriented along r. However, the uniform tensile stress
induced by the supermirror coating applied to the bottom of the mirror leads to a dome-like
deformation of the substrate as illustrated in Fig. 6.25. Panel (a) illustrates the acquired and
aligned height profile, showcasing almost circular contours of constant height. As depicted
in panel (b), we observe a maximum relative deformation of about ∆rz = 0.10 mm along
the z-axis for each of the investigated regions. Finally, panel (c) indicates a slightly smaller
deformation of ∆rx = 0.07 mm along the x-axis, primarily attributed to the smaller extent
of the mirror along this direction. Overall, the mirror exhibits significant deformation, in
agreement with expectations arising from uniform tensile stress applied to the bottom of the
substrate.

Straight Grooves

Facilitating the insertion of the mirrors into the shape-determining grooves, they are fabri-
cated with a tolerance of 0.02 mm, i.e., mirrors with dsub = 0.2 mm are supported by grooves
0.22 mm wide. To investigate the impact of this tolerance on the shape of the mirrors, the
height profile of a mirror was acquired after being inserted into a straight groove. Again,
disregarding any external forces, the mirror should resemble a plane with its surface normal
parallel to r.

The obtained height profile and cuts along the x- and z-directions are presented in Fig. 6.26.
As the scanner requires a direct line of sight between both of its cameras and the area of
investigation and given that the straight grooves were machined at their original position at
the vertical center of the testpiece, the long edges of the mirrors become obscured by the test
piece. The available data, which covers about 30 mm of the total width of 40 mm, reveals a
similar shape compared to the free mirror, although with a less pronounced deformation. In
both cases, the central parts of the mirror are elevated compared to the edges. However, at
the long edges of the height profile, near the shape-determining grooves, the mirror supported
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Figure 6.25: Height profile of an unsupported sil-
icon substrate with the super mirror coating ap-
plied only on the bottom side. Panel (a) shows
the aligned height profile r(x, z), where z denotes
the direction parallel to the long side of the mir-
ror. Nearly circular contours of constant height are
overlaid on the color plot as indicated by the color
bar. Panels (b) and (c) show vertical and hori-
zontal cuts through this height profile. The values
shown are obtained by calculating the horizontal
and vertical medians between the two lines of cor-
responding color and line style in (a). Panel (d)
provides a 3D representation of the height profile
(not to scale).

Figure 6.26: Height profile of a mirror inserted into
the straight grooves of the test piece with a speci-
fied tolerance of 0.02 mm. Although the substrate
is less prominently curved compared to the free
mirror (compare the different ranges of r), partic-
ularly distant from the shape-determining grooves,
there is still a noticeable deviation from the nom-
inally flat geometry. For a detailed explanation
of the panels, compare the analogously structured
Fig. 6.25.

by the straight grooves exhibits a much smaller deformation. The pink solid line in Fig. 6.26
(b) indicates that the left side of the mirror does not curve for more than ∆rz = 0.025 mm
over its complete length, which is significantly less than the almost 0.1 mm obtained for
the free mirror, as illustrated by the pink solid line in Fig. 6.25 (b)(6). This comparison

(6)Evaluating the deformation of the mirror inserted into the straight grooves was limited along the x-axis,
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suggests that the elevation is well-controlled close to the grooves. Still, deformation happens
due to the given tolerance of 0.02 mm and the measurement limitations, preventing us from
accurately determining the mirror geometry very close to the grooves.

Parabolic Grooves

Inserting the mirror into the outermost parabolic groove with r(z = 0 mm) = 20 mm (com-
pare section 6.2.1) yields the height profile depicted in Fig. 6.27 (a). The parabolic shape of

Figure 6.27: Height profile extracted from the mir-
ror inserted into the parabolic grooves. The figure
is structured analogously to Fig. 6.25

Figure 6.28: Difference between the measured and
the nominal height profiles for a mirror inserted
into the parabolic grooves. The figure is structured
analogously to Fig. 6.25.

the reflective surface entails a nominal decrease of the distance from the optical axis, r(z),
with increasing z. The acquired data corresponding to the mirror was rotated and shifted
to achieve an overall best fit with the nominal geometry, depicted as a broken black line in
Fig. 6.27 (b). Similarly to the case of the free mirror, the tensile stress associated with the
supermirror coating applied to the bottom side entails an increased curvature of those areas
of the substrate that are further away from the shape-determining grooves. Fig. 6.27 (c) il-
lustrates that the relative deformation along the x-axis amounts to approximately 0.05 mm,
which is in alignment with the values obtained for the free mirror, indicating that the minute

as no data was acquired very close to the grooves.
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curvature of the parabolic groove does not impact this deformation significantly.
To evaluate possible deformations along the z-axis, we subtracted the height profile of the

nominal geometry from the one acquired with the 3D scanner with the result illustrated
in Fig. 6.28 (a). Cuts along the z-axis through this difference are depicted in Fig. 6.28
(b) and exhibit a nearly constant offset between the nominal and the measured data close
to the shape-determining grooves, indicating an absence of excess deformation. While the
deformation close to the left side (pink curve) amounts to ∆rz ≤ 0.02 mm, which is within the
tolerance specified for the grooves, the blue curve displays a slightly more severe deformation
∆rz ≤ 0.03 mm. Distant from the shape-determining grooves (orange curve), we again
observe a significant deformation of the substrate exhibiting a strong curvature, which is
likely responsible for the observed reduction in focusing quality and the reduction of the
focal length from the nominal value.

Elliptic Grooves

In contrast to the straight and parabolic geometries, the ellipse nominally displays a signifi-
cant curvature. Despite this fundamental difference, the obtained height profiles (Fig. 6.29)
and especially their deviation from the nominal geometry (Fig. 6.30) yielded similar results
compared to the other shapes. Once again, we observe that the grooves accurately deter-
mine the geometry of the mirrors, evident from the small relative height difference on the left
side of the mirror ∆rz ≤ 0.02 mm (pink curve in Fig. 6.30 (b)). However, distant from the
grooves, the substrate deforms more freely (∆rz = 0.04 mm) and exhibits a distinct excess
curvature as displayed by the orange curve. Along the x-axis, the substrate exhibits its usual
relative difference of about ∆rx = 0.05 mm, indicating that the increased curvature of the
elliptic shape does not stabilize the mirror against these lateral deformations.

Summary of Mirror Deformations

We employed 3D scanning to evaluate the deviation of the realized mirror geometries from the
nominally intended ones. For this purpose, test pieces with selected grooves were fabricated,
into which the leftover mirrors were subsequently inserted. The deformation of the mirrors is
attributed to the applied FeSi supermirror coatings, which induce a uniform tensile stress on
the coated bottom side of the silicon substrates. As the distance to the shape-determining
grooves increases, the mirrors deform more freely, and the observed deviations generally
increase. The specified tolerance of the grooves (0.02 mm) is on the same scale as the observed
deformations and, therefore, must always be considered when designing NMO systems.

The observed deformation of the parabolic mirrors aligns well with the neutron images pre-
sented in Chapter 5.5. We noticed better imaging quality close to the grooves, corresponding
to the minor discrepancies between the nominal and observed mirror geometry. With in-
creasing distance from the grooves, the effects observed in Fig. 6.15, such as an increase in
the minimum achievable FWHM and a shift of the point of optimum focusing toward the
device, are both explained by the increasing curvature of the reflecting surfaces. Verifying
this result through Monte Carlo simulations is part of our future research.

During the measurements on the polarizing elliptic NMO, we demonstrated that coating
the substrates on both sides significantly reduces the innate deformations, likely due to
the stresses on both sides of the substrates canceling. This represents an avenue towards
reducing deformations of any mirrors from their nominal geometry.
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Figure 6.29: Height profile acquired for a mir-
ror inserted into the outer elliptic groove of
the test piece. The figure is structured analo-
gously to Fig. 6.25.

Figure 6.30: Difference between the obtained
and the nominal height profile for the outer
elliptic mirror. The figure is structured analo-
gously to Fig. 6.25.

Further investigations will include determining the stress induced by supermirror coatings
utilizing X-ray scattering [184]. These results will be used to perform finite element method
simulations predicting the curvature of the substrates without building prototypes. Addi-
tionally, we will perform Monte Carlo simulations using the obtained deformed geometries
and compare the results to the neutron measurements performed in this thesis. Finally, we
will conduct an in-depth exploration of stress reduction or groove manipulation to address
the deformations.
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7. Applications of Nested Mirror Optics
In this chapter, we explore applications of NMOs, emphasizing their capability to enhance
the extraction of neutrons from small sources by mitigating the effects of under-illumination
associated with conventional neutron guides. The importance of such an application for high-
brilliance sources alone justifies the consideration of NMOs when devising delivery systems
for future neutron facilities. The chapter closely follows our work published in Herb et al.[19].

The calculations, simulations, and experiments presented earlier, utilizing polarizing and
non-polarizing elliptic prototype NMOs, showcased an efficient, one- and two-dimensional
imaging of neutrons between their two focal points. This indicates that an elliptic NMO
can function as a comprehensive neutron delivery system contained within a single, com-
pact device. To expand our examination towards longer transport distances, including losses
incurred due to gravitational bending of neutron trajectories, we present the results of ad-
ditional McStas simulations for planar elliptic NMOs in section 7.1.1.

In addition to exploring elliptic NMOs, we have demonstrated the complementary func-
tionality offered by parabolic NMOs. They can transform a high-divergence beam emitted
by a compact source into a low-divergence one, concurrent with increasing the beam size.
The original phase space volume of neutrons, as extracted from the source, can be effectively
recovered using a second parabolic NMO that refocuses the low-divergence neutrons. In sec-
tion 7.1.2, we will illustrate how a system comprising two parabolic NMOs connected by an
extended guide can circumvent gravitational limitations and achieve a reasonable brilliance
transfer over substantial length scales, reaching hundreds of meters.

Furthermore, the complementary properties of elliptic and parabolic NMOs establish a
versatile toolkit that can serve as the basis for designing a wide range of application-specific
beamlines. Additionally, parabolic NMOs could be integrated into existing guide systems at
well-established research facilities to act as a final stage for neutron delivery. For example,
they could be employed to focus a beam onto a small sample inside a pressure cell. While
this hybrid approach might not provide the same degree of brilliance enhancement as a fully
NMO-based neutron extraction system, it could still result in substantial improvements in
beam quality and a reduction in background at the point of focus.

7.1 Beam Extraction
The task of extracting neutron beams from a compact high-brilliance neutron source is
challenging for various reasons. On the one hand, there are technological challenges. For
instance, areas of increased radiation near the source necessitate a careful selection of mate-
rials and frequent replacements of neutron optical components due to radiation damage. On
the other hand, there are more theoretical challenges. Optimizing the efficiency of neutron
beam delivery, as characterized by its extent, divergence, and wavelength spectrum, is sub-
ject to fundamental limitations outlined in Liouville’s theorem [117]. This theorem dictates
that, for systems obeying Hamilton’s equations of motion, the phase space density cannot
increase. Ideally, the density at the sample position would match that emitted at the surface
of the source. NMOs were developed to approach this limit in neutron extraction for a large
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solid angle of transportation. Another advantage of implementing NMOs is that all sensitive
optical components are positioned at a safe distance from the source and the sample. This
not only mitigates some of the technological challenges but also allows for the utilization of
extensive sample environments.

As discussed in section 5.2.2, under-illumination of guides can be a significant issue when
extracting neutrons from compact sources. This challenge is particularly relevant for small,
high-brilliance moderators like the flat, pancake-shaped para-hydrogen moderator at the
ESS [185, 163] and finger moderators [186] used for compact accelerator-based neutron
sources [187].

At the ESS, neutron beam optics assemblies (NBOAs) are located at a minimum distance of
dmg ≈ 2 m [188] away from a flat moderator with a thickness of tm = 30 mm. In comparison,
the extraction guides are significantly taller, i.e., hg > tm. table 7.1 shows that, for typical
NBOA parameters at the ESS, the guide stays under-illuminated even for wavelengths as
short as λ = 1�A. A significant portion of potential useful neutrons is already lost during
beam extraction. These losses increase for longer wavelengths with their correspondingly
larger critical angle.
As emphasized by Andersen et al. [185], “The beam extraction efficiency suffers when the

λ (Å) 2α (deg) hm (mm) Eeff

0.5 0.35 46.1 0.65
1 0.69 57.7 0.52
2 1.39 80.7 0.37
4 2.78 127 0.24
6 4.16 173 0.17
10 6.93 265 0.11
15 10.40 380 0.08
20 13.68 496 0.06

Table 7.1: Vertical guide illumination losses for a typical NBOA at the ESS according to
Eq. (5.7). We disregard further losses due to imperfect supermirror reflectivity and employ
the following parameters for the calculation. tm = 30 mm, hg = 34.6 mm, dmg = 1903 mm,
and m = 3.5. The maximum divergence still reflected at the mirrors is determined by
2α = 2θc,m. Illumination losses in the horizontal direction can further reduce the efficiency,
albeit to a lesser extent for a moderator of assumed large width, wm = 200 mm. The table
is reproduced from Herb et al. [19].

source is reduced to a size similar or smaller than the opening of the neutron guide. This
results in a trade-off when reducing the source size, between the resultant brightness increase
and the loss of beam extraction efficiency”. In agreement with this statement, we find
that the under-illumination of neutron guides introduces two distinct compromises. On the
moderator side, it limits the optimization of the moderator dimensions for maximal brilliance.
Ideally, the moderator’s extent should be tailored to match the size of the small samples
usually investigated, providing the largest brilliance possible. On the instrumental side,
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under-illumination constrains the potential of the instrument. Since it limits the transport
of more divergent neutrons, an instrument designed for high resolution cannot be extended
by a high-intensity option, even if that would be otherwise convenient.

The trade-off mentioned in the quote from Ref. [185] does not apply to elliptic NMOs.
They accept a divergence determined geometrically by the ratio of their height, b0, to its fo-
cal length, f . When a sufficient solid angle is available for neutron extraction, elliptic NMOs
facilitate the transport of long-wavelength neutrons to an instrument without the large effi-
ciency losses typically associated with this process. Furthermore, considering the geometric
losses derived in Eq. (5.17), the transport efficiency of NMOs increases with decreasing mod-
erator size. This distinct feature of NMOs opens the door to design high-brilliance sources
that enable fully optimized neutron delivery to even the smallest samples without dealing
with the usual compromises imposed by conventional neutron extraction systems.

7.1.1 Integrated Brilliance Transfer by Elliptic NMOs
In this section, we expand our analysis of a planar elliptic NMO with unit magnification,
serving as a fundamental solution for one-dimensional neutron extraction and transport be-
tween two focal points. Our primary objective is to investigate the impact of size-dependent
effects on the transport efficiency. Again, we consider focusing only in the vertical direction,
which conveniently enables us to address the influence of gravity.

The geometry of a planar elliptic NMO dictates the reflection kinematics during the trans-
port of a neutron beam. When a neutron interacts with the (n+ 1)th mirror plate (compare
Fig. 5.14 for the mirror indexing conventions) it is reflected within a narrow range of angles
centered approximately around arctan (bn/f) ≈ bn/f ; a range which becomes narrower for
smaller ratios w/f and l/f . Because the angle of reflection for a given wavelength is limited
by θc(λ), the reflectivity edge of the supermirror produces a spectral cutoff for wavelengths
shorter than λc,n, determined by the relation

bn/f ≈ mnκλc,n. (7.1)

Here κ represents the wavelength-dependent critical angle of nickel, κ = 0.099 deg /�A. When
using a common m-value, mn = m, for all mirrors, this results in different λc,n values
for each of the mirrors. However, because the angles of reflection and mirror indices n
are strongly correlated, it is possible to establish a common cutoff for the entire covered
angular range, denoted as λc,n = λc. According to Eq. (7.1), achieving this would necessitate
gradually decreasing the m-values towards the center of the NMO. Shaping the spectrum
by employing elliptic NMOs might eliminate the need for auxiliary devices, such as Bragg
filters or velocity selectors, to remove unwanted faster neutrons. In practice, a few specific
m-values might suffice to achieve a soft cutoff, effectively preventing undesired neutrons
from reaching the instrument. An interesting option suited to elliptic NMOs involves using
band-pass supermirrors(1) to provide a divergent beam with a small wavelength spread and
considerable flux [189], similar to the coatings found in laterally-graded parabolic guides
[190]. Additionally, we showed how utilizing polarizing supermirrors for the NMO facilitates
polarizing the beam.

(1)These supermirrors only cover a small range of different layer thicknesses, thereby fulfilling Bragg’s
equation for only a limited range of wavelengths at a given angle of incidence.
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Considering the relationship between the mirror indices and the angles of reflection, one can
use an aperture A2 to illuminate a selected range of mirrors, thereby defining the divergence
of the beam at the sample position. If the wider angular range is not required for any
applications, the NMO can be configured with correspondingly fewer mirrors. In the reported
experiments, we have analyzed the imaging properties of small, planar elliptic NMOs. These
devices were configured in two ways: a half-device with mirrors on one side of the optical axis,
and a full-device with mirrors on both sides. In applications where a narrow beam divergence
is required, such as Small Angle Neutron Scattering, the half-device configuration offers
continuous coverage of the angular range, spanning from approximately αN ≈ bN/(f − l/2)
to α0 ≈ b0/(f − l/2)(2). When using a full device with N additional mirrors on the other
side, the range of covered angles is extended by −α0 to −αN , with a gap in between due to
the divergence hole.

We will now discuss the effects of size-related factors on the brilliance transfer by utilizing
simulations of a full device, equipped with 2N identical mirrors, single-side coated with an
m = 4.1, Re = 82 % supermirror and possessing a thickness of dsub = 0.15 mm. To assess
the neutron transport efficiency, we calculated the partly-integrated brilliance transfer B, as
defined in Eq. (6.2). Note that we consider neutrons emitted over the whole angular range
between the geometric extremes, [−α0, α0]. This definition of the brilliance transfer as an
integral quantity includes the losses associated with the divergence hole. There are several
options available to achieve additional refocusing in the horizontal plane. One can utilize
a double-planar device as described in section 5.6, or, for a wide moderator and not too
long wavelengths, a conventional ballistic channel of vertical mirrors, for which horizontal
illumination losses might still be acceptable. When considering the linearly independent
components of neutron motion, the two-dimensional integrated brilliance transfer can be
calculated as the product of the corresponding B-values for both dimensions lateral to the
beam. Therefore, simulating a single planar elliptic NMO is sufficient.

Our primary focus lies in understanding how B changes with the size of the NMO and the
neutron wavelength λ for an NMO which transports neutrons with the maximum possible
divergence. To achieve this, we conducted simulations for a narrow range of wavelengths
(±5%) around a central value λ. For each λ, we chose a corresponding value of b0 such that
the critical angle of reflection matched the geometrically-defined divergence α0 = θc. To
achieve linear size scaling of the whole NMO, we varied the focal length of the NMO, f ,
while keeping the ratios b0/f and l/f , and the height of the source, w = 6 mm constant.

For each value of b0, we implemented the maximum number of mirrors for the respective
wavelength. This number 2N is limited by requiring that the minimum distance between
mirror surfaces exceeds the sum of the thickness of the substrate and the space between
adjacent grooves, i.e., dmin = dsub +dg. We conservatively chose dg = 0.4 mm as a technically
reasonable lower limit for the space between mirrors. Considering that dmin is constant, the
total number of mirrors 2N increases when scaling up the size of the NMO. The results de-
picted in Fig. 7.1 (a) can be explained as a combination of several effects. Firstly, the relative
impact of the divergence hole becomes smaller for increasing values of f and a consequently
larger number of mirrors 2N . Secondly, geometric losses associated with neutrons being
reflected twice or not at all when passing through one of the mirror channels are reduced for

(2)We note that the semi-minor axis bN corresponds to an imaginary (N+1)th mirror.
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Figure 7.1: Simulated partially integrated brilliance transfer B, as defined in Eq. (6.2). A
planar elliptic NMO was scaled proportionally to its focal length f . As described in the
text, the following parameters remained constant: l/f = 1/10, dsub = 0.15 mm, m = 4.1,
R0 = 82 %, and w = 6 mm. Panels (a) and (b) display the same data presented as a function
of 2f and the time of flight tf, respectively. The figure is reproduced from the work of Herb
et al. [19].

larger NMOs. As discussed in Eq. (5.17), the magnitude of this loss, ∝ w/bn, decreases as
the size of the NMO is scaled up while keeping the source size constant.

However, gravity disturbs the neutron trajectories, violating the assumptions upon which
the NMO design is based. While it is theoretically possible to adjust the mirror distances
to account for the influence of gravity, this approach only works for a small range of wave-
lengths and is thus considered overly restrictive. Gravity’s impact on f is opposite to the
effects mentioned above, ultimately limiting B to an optimal value that, for the specified
assumptions, remains well above 85 % across a wide range of f values. The impact of the
gravity-associated effects depends on the time it takes for a neutron to travel from one focal
point to the other, denoted as tf . This time is proportional to the neutron’s wavelength and
the focal length of the NMO: tf = 2f · vn ∝ 2f · λ. When investigating B as a function of tf,
we observe similar values across all simulated wavelengths, as illustrated in Fig. 7.1 (b).

The surprisingly small effect of gravity onB for tf ≤ 0.05 s can be understood by considering
the symmetry of the neutron trajectories, which entails that the flight time from the source
to the NMO equals the time spent between the NMO and its second focal point. As the
neutron travels, it accumulates additional vertical momentum due to gravity. This results
in an increase of the momentum parallel to the surface normal for reflections at the set of
mirrors located below the optical axis and a reduction of this momentum for reflections above
the optical axis. Consequently, the number of neutrons that are reflected at mirrors of a
given m-value remains approximately constant. Moreover, given the flat reflecting surfaces,
if the neutron is reflected, this additional momentum is reversed, ensuring that the imaging
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condition is still fulfilled, similar to the case without the influence of gravity(3).
The B-values for the NMO, as seen in Fig. 7.1 (a), are notably larger than those for a

representative NBOA at the ESS, as given in table 7.1, despite the discussion of the NMO
accounting for additional losses due to the finite mirror reflectivity. Furthermore, these loss
mechanisms are expected to impact NBOAs more severely, given the increased number of re-
quired reflections compared to an NMO. By utilizing parabolic NMOs, it is feasible to double
the divergence transportable in each dimension by employing a configuration consisting of
two parabolic NMOs. This is achieved by halving the angle of reflection compared to a single
ellipse. The following section demonstrates the suitability of this concept for long-distance
neutron transport, as it is less constrained by gravitational beam bending.

7.1.2 Extraction into a Low-Divergence Beam with Parabolic NMOs
As discussed in section 5.4, an elliptic NMO with unit magnification can effectively restore
the beam phase space emitted at F1 at its second focal point, F2. However, for focal lengths
f exceeding a few tens of meters, and for typical cold-neutron wavelengths, gravitational
bending of neutron trajectories disrupts the vertical brilliance transfer of a simple elliptic
NMO, as depicted in Fig. 7.1. This issue is also present in long focusing guides [191],
leading to notable neutron losses and phase space distortions. Instruments with very long
neutron flight paths, such as high-resolution time-of-flight (ToF) spectrometers, demand an
alternative approach.

To address such applications, we propose a system that comprises two sets of parabolic
NMOs connected by a long guide enabling the efficient transport of the low-divergence beam,
as illustrated in Fig. 7.2 (a). The focal lengths of the two sets of parabolic NMOs, f1 and
f2, can be adjusted based on the specific requirements of the instrument. In this setup, the
first parabolic double-planar NMO extracts the initially divergent beam from the compact
moderator and transforms it into a low-divergence beam with an increased extent, adhering
to Liouville’s theorem. This transformation significantly reduces the number of reflections
per meter within the guide and ensures that the maximum reflection angle remains well
below the critical angle. Consequently, reflection losses are reduced, and the length of the
guide has only a weak effect on the transported flux. At the end of the long guide, the second
parabolic double-planar NMO refocuses the low-divergence onto its focal point.

We present McStas simulation results of the above-described system using example param-
eters not optimized for any specific purpose. The operational principle of such a configuration
is depicted in Fig. 7.2. The simulation setup consists of a circular moderator with a diame-
ter of 30 mm. This moderator provides angle- and wavelength-independent brilliance in the
range of 2�A to 8�A and illuminates the double-planar parabolic NMO. Each set contains
two subsystems, one focusing in the horizontal direction and the other along the vertical
direction. The beam is transformed to low divergence by the first double-planar NMO and
enters a straight guide coated with m = 2 supermirror. The guide measures a length of
lg = 160 m and has a square cross section with side lengths of 218 mm. At the end of the
long guide, the second double-planar parabolic NMO refocuses the beam onto its focal point,
F2. Both NMOs share a common focal length of 6 m measured from the midpoint between

(3)Note that the reflection process is only separated into two dimensions, one parallel and one perpendicular
to gravity, for double planar devices.
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Figure 7.2: Sketch of the simulated long-distance neutron transport system based on two
double-planar parabolic NMOs connected by a long straight neutron guide. The violet
quadrilaterals indicate PSDs determining spatial intensity distribution during the simula-
tions. The PSDs (a)–(e) each cover an area of 218× 218 mm2 matching the guide. The final
PSD (f) measures an area of 30× 30 mm2 and provides a more detailed view of the focused
beam. The figure is reproduced from the work of Herb et al. [19].

the parabolic NMOs to the joint focal point. These NMOs are equipped with m = 4.1
supermirrors, have a total length of 1.2 m, and are designed to match the cross-section of
the guide. In these simulations, the substrate thickness is neglected, dsub = 0.

Fig. 7.3 depicts simulated spatial intensity distributions at various positions of the setup
shown in Fig. 7.2. The data is obtained from simulations with and without gravity, re-
spectively. Panel (a) and (b) show the intensity distribution as emitted from the circular
moderator and the homogeneous illumination of the first set of parabolic NMOs, respec-
tively. The texture observed in the intensity distribution at the beam monitor (c), after the
first double-planar NMO, results from the contributions of individual mirrors of the NMO,
and the central, perpendicular stripes of lower intensity correspond to the divergence hole.
Because the first planar subsystem from the source focuses horizontally, the vertical stripe is
more blurred than the horizontal one. The influence of gravity on the low divergence beam
entails a vertical gradient of the neutron intensity at the end of the long guide (d). The tex-
ture observed at the entrance of the guide was smoothed out along the guide. Approximately
If = 25% of all neutrons arriving at the first NMO arrive within an area of 30 × 30 mm2

at F2 (f). Gravity leads to a minor vertical distortion of the intensity distribution of the
polychromatic beam, with its maximum found marginally below y = 0 mm.
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Figure 7.3: Simulated spatial intensity distributions obtained at the locations denoted in Fig. 7.2. The top and bottom rows
correspond to simulations disregarding and accounting for gravity. The total intensity arriving at each PSD is denoted in
white. (a) Neutrons are emitted with uniform brilliance at the circular moderator. (b) The entrance of the first set double-
planar parabolic NMO is illuminated homogeneously. The intensity incident onto this monitor sets the basis for normalization
I(b) = 1.0 (c) After passing the parabolic NMO, the neutron beam is textured due to reflections at individual mirrors. (d) At
the exit of the long guide, when accounting for gravity, the low-divergence neutron beam accumulates at the bottom of the
guide. (e and f) The second double-planar NMO refocuses the neutrons and recovers the initial shape of the moderator. Red
circles in (e) indicate areas encompassing integrated intensities of I� = 0.3I(b) and I� = 0.5I(b), respectively. Roughly 25 %
of the neutrons incident on the first NMO are recaptured within the area (f) measuring 30× 30 mm2. Figures are reproduced
from the work of Herb et al. [19].
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Figure 7.4: Intensity fraction and integrated brilliance transfer B, as obtained within a circu-
lar monitor at F2 with a diameter �. The intensity data shown in the inset is reproduced from
Fig. 7.3(f). For comparison, the corresponding, quadratically increasing intensity fractions
at the moderator (a), with diameter 30 mm, are shown in green. Values of B shown in blue
are larger than 40% for a target area of � ≤ 10 mm and still 23% for � = �mod = 30 mm.
The colors of the circles match the colors of the data points. The figure is reproduced from
Herb et al. [19].

Fig. 7.4 illustrates the relationship between the fraction of neutrons initially entering the
first NMO that eventually reach a circular region at F2. This relationship is represented as
a function of the circle’s diameter, �. To illustrate, circles with diameters of 10 mm and
30 mm capture intensity fractions of I� = 0.045 and I� = 0.23, respectively. However, it
should be noted that the integrated brilliance transfer, B = I�/(�/�mod)2, increases with
decreasing � and reaches ≈ 50 % for a beam diameter of several millimeters. Importantly,
our simulations already account for beam losses of around 30 % due to finite supermirror
reflectivity.

In summary, these results underscore the excellent performance of neutron transport, par-
ticularly when targeting small samples. Most importantly, the gravitational effects exhibit
a negligible impact on the overall performance of this system consisting of compact NMOs.

When comparing the proposed system with a configuration based on elliptic NMOs, which
already boasts several advantages, we can identify the following additional benefits:

• The system featuring two parabolic NMOs allows us greater flexibility when it comes
to choosing the length of the straight guide section for long-distance neutron transport.

• The low beam divergence provided by the first parabolic NMO enables the use of
mirrors with smaller m-values, taking advantage of a higher edge reflectivity at a
reduced cost.

• The lateral extent of the neutron beam remains smaller throughout the transport in
this system. Consequently, it reduces the amount of required shielding, which can be
a practical advantage in experimental setups.
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To avoid the direct line-of-sight from the experiment to the moderator, a vertically imaging
NMO could be combined with a horizontal beam bender, which channels neutrons through
multiple reflections within the empty space between curved mirror plates [192, 193]. Another
approach to interrupt the line-of-sight relies on using a slightly tilted NMO. However, this
approach will come at the expense of deteriorating the beam quality.

The combination of both elliptic and parabolic NMOs offers versatile configuration options
for neutron beamlines. When a beamline requires the installation of choppers, utilizing el-
liptic NMOs can be advantageous. They have the capability to refocus the neutron beam
onto the slit position of the choppers, as illustrated in Fig. 7.5 (b). For applications that
require both choppers and a long neutron flight path, such as high-resolution ToF instru-
ments, a combination of elliptic NMOs followed by a pair of parabolic NMOs connected by
a long guide (as previously discussed) might be the best choice. This configuration, shown
in Fig. 7.5 (c), provides the flexibility needed for such demanding experiments.

Figure 7.5: Some options for long-distance transport of neutrons from a moderator to an
instrument. (a) System of two parabolic NMOs connected by a guide. Different focal lengths
f1 and f2 may be used for non-unit magnification (see also section 7.2). (b) Elliptic NMOs
provide intermediate beam images to place choppers (CH1-CH3). (c) Configuration with
elliptic and parabolic NMOs. Figures are reproduced from the work of Herb et al. [19].

7.2 Focusing and Magnification
Combining two parabolic NMOs with distinct focal lengths, f1 and f2, provides the means to
magnify neutron beams, as depicted in Fig. 7.6. This magnification can be easily be derived
from Eq. (5.18) as follows:

r1

f1

= α1 = α2 =
r2

f2

,

r2

r1

=
f2

f1

,
(7.2)

where we employed the fact that the divergence of neutrons does not change within the
long guide, α1 = α2. This neutron magnification technique might find utility in neutron
imaging or microscopy [176, 194], offering an avenue to overcome the spatial resolution
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r

Figure 7.6: Sketch of a lens system comprised of two parabolic NMOs. The bottom part
of the figure provides an analogy to this neutron lens system in the context of visible light
optics. In both cases, the magnification is given by M = f2/f1. Figure is reproduced from
Herb et al. [19].

limitations in current neutron imaging setups, which typically achieve spatial resolutions on
the order of 10 µm. These limitations arise due to factors such as the resolution of neutron-
sensitive scintillators and the available neutron flux at the sample position [195]. To achieve
a resolution of 10 µm, considering a waviness of η = 5× 10−5 rad for the parabolic mirrors,
it would necessitate distance of dos = 0.05 m between the optical components (NMOmicro in
table 7.2). However, for an NMO as small as NMOmicro, the spacing between the reflecting
mirror surfaces becomes around 10 µm, which is much smaller than the typical thickness of
silicon wafers. Consequently, it might be necessary to assemble the NMOmicro from stacked
wafers with varying thicknesses, which would lead to exceedingly high manufacturing costs.

In summary, NMO lens systems configured similarly to the prototypes may not be suitable
for achieving high-resolution neutron imaging. However, they could find utility in imaging
at intermediate length scales, for neutron scattering experiments on small samples subjected
to extreme conditions, and for adjusting the size of the beam during neutron transport.

As depicted in Fig. 7.7, varying the focal length of the second NMO 2 m ≤ f2 ≤ 6 m,
generates smaller beam sizes at F2, with their diameters ranging from 1 cm to 3 cm. For all
configurations, the diameter of the circular neutron source at F1, �mod = 3 cm, was kept
constant along with the focal length of the first set of NMOs, f1 = 6 m. Future advancements
in technology may shed light on the feasibility of developing high-performance NMOs for
applications involving length scales on the order of micrometers.

7.3 Summary of Nested Mirror Optics
At present, the definition of neutron beams at the sample position predominantly relies
on the utilization of collimators and apertures reminiscent of the principles underlying a
pinhole camera, as illustrated in Fig. 7.8 (a). When the final beam-defining aperture cannot
be positioned in close proximity to the sample, for example, due to the use of a bulky sample
environment, the surroundings of the sample will also receive some illumination, causing a
penumbra effect as indicated by the broken red line. To enhance the precision of beam
definition at the sample position and to increase the flux, one potential solution involves
replacing the traditional slits with elliptic or parabolic focusing guides [196], as depicted
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Figure 7.7: Simulated intensity distributions at F2 of a neutron transport system as presented
in Fig. 7.5 (a) (detailed discussion in section 7.1.2). The focal length of the first NMO is
constant, f1 = 6 m, while the focal length of the second NMO, f2, is adjusted within the
range of 6 m to 2 m. The magnification factor is calculated as M = f2/f1. The fraction of
neutrons that reach the detector area at F2, divided by the number of neutrons that initially
enter the first NMO, is represented by IF2 . The red circles encompass intensity fractions
(Ic) within the plotted data. The slight deformation of the shape of the circular moderator
observed for f2 = 2 m is attributed to the fact that the two orthogonally oriented parabolic
NMOs of the double-planar system possess slightly different focal lengths (compare Fig. 6.11
for a sketch of such a geometry). All simulations disregard the influence of gravity. Figure
is reproduced from Herb et al. [19].

in Fig. 7.8 (b). A persistent challenge arises in the form of a diffuse halo surrounding the
focused beam when the guide exit is situated at a significant distance from the sample.
Furthermore, the length of the guide must exceed a certain threshold to diminish phase
space inhomogeneities [196].

If sufficient space along the beam is available, a promising solution is the Selene setup,
composed of two elliptic Montel mirrors, as suggested already in the work of Maier and
Leibnitz [7] and refined by Stahn and Glavic [160]. The setup is sketched in Fig. 7.8 (c,
d). Typically, this setup extracts the neutron beam from the moderator with a parabolic
Montel mirror, resulting in a focused beam that is subsequently modified by a pair of elliptic
Montel mirrors. This focusing system can produce beams as small as 2 mm at the sample
position, preventing unwanted illumination of the surroundings. However, for larger beam
sizes (approximately 10 mm), these systems span several meters in length, complicating their
implementation into existing beamlines. Using a partial setup does not help, as a single
Montel mirror would deflect the beam, leading to significant phase space distortion [197].

The limitations associated with slit and guide configurations can be effectively mitigated
by employing NMOs. As demonstrated by the prototypes, achieving focal lengths of ap-
proximately 600 mm is straightforward, enabling the placement of the NMO at a distance of
approximately 500 mm from the sample, thereby providing ample space for accommodating
sample environments. Furthermore, a parabolic NMO offers a beam with a substantial diver-
gence, determined by four times the critical angle of reflection of the outermost supermirror.
For instance, an m = 6 supermirror can generate a beam with a divergence of nearly 4.8◦

for 2�A neutrons. At λ = 0.5�A, this divergence reduces to 1.6◦ for m = 8. As discussed
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Figure 7.8: Various options for illuminating a sample with a neutron beam (only one dimen-
sion is shown). To achieve precise beam definition at the sample necessitates the placement
of either slits (a) or focusing guides (b) in close proximity to the sample, which can be
challenging when dealing with bulky sample environments. The Selene-setup incorporating
elliptic (c) and/or parabolic (d) Montel mirrors, while effective, demands substantial space
and introduces beam displacement from the original optical axis. In contrast, parabolic
NMOs (e) offer a compact solution for precise beam definition at the sample. The figure is
reproduced from the work of Herb et al. [19].

previously and shown in Fig. 7.8 (e), the divergence and the size of the beam at the sample
can be adjusted by an aperture and a collimator in front of the NMO, respectively. Freely
adjusting the size of the focused beam by controlling the divergence incident on the parabolic
NMO requires a sophisticated setup including remotely exchangeable collimators similar to
those used for parabolic guides [198]. In the case of elliptic NMOs, the footprint can be
straightforwardly adjusted using a variable aperture, A1.

To ensure the delivery of a precisely defined beam, the mirrors must adhere to strict
geometric tolerances, and the gravity-induced distortions should be minimized. Leveraging
modern manufacturing techniques, the minimum achievable waviness for Montel mirrors is
on the order of η ' 4× 10−5 rad, resulting in an estimated beam blurring of approximately
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Device dos (m) η (10−4 rad) ∆w (mm) w (mm)

Focusing guide [199] 0.5 1 0.1 1
Selene [160] 15 0.4 1.2 10
NMOparab 0.6 2 0.24 6
NMOmicro 0.1 0.5 0.01 0.5

Table 7.2: Exemplary geometrical parameters of various focusing devices and their estimated
waviness-induced blurring. The variable dos represents the maximum unobstructed flight
distance between a reflecting surface and the focal point/sample or between two mirrors. η
denotes the waviness, and ∆w = 2ηdos and w refer to the waviness-induced blurring of the
beam at sample position and the maximum achievable beam size at the sample, respectively.
It has to be noted that the values provided for ∆w and w are approximate, as they depend
on various factors, such as the beam divergence, the neutron wavelength, and the detailed
design of the specific optical components.

∆w ' 1.2 mm for an optics-to-sample distance of approximately dos = 15 m (table 7.2). It
should be noted that decreasing this distance can reduce the blurring, at the same time
imposing limits on the maximum achievable beam size, with w ∝ dos. To compare waviness-
induced blurring, we provide estimated parameters ∆w and w for a short focusing guide as
well [199].

Compared to a Selene setup, it appears that NMOs offer the advantage of transporting
larger beam sizes over shorter distances before experiencing a significant drop in brilliance
transfer. For example, the polarizing elliptic NMO investigated at MIRA transported a
beam with w ≤ 6 mm when the optics-sample distance was dos = 0.66 m.

The non-polarizing parabolic NMOparab with a focal length of 0.6 m and an assumed wavi-
ness of η = 2× 10−4 rad would enable the definition of a focused beam with waviness-induced
blurring on the order of only ∆w ≈ 0.24 mm (table 7.2). This is in good agreement with the
experimentally obtained minimum FWHM = 2.355 · 0.24 mm ≈ 0.6 mm.

Elliptic NMOs offer additional advantages for beam transport and focusing. Firstly, they
can increase the useful flux density at the sample by a factor of four compared to a setup
using a single Selene guide (as seen in Fig. 7.8(c)), owing to the doubling of the achievable
divergence in each dimension. Secondly, they enable a more compact beamline design.
Thirdly, reflection losses are minimized as the number of reflections is halved. Lastly, the
alignment of the whole NMO is as straightforward as for a single neutron guide element.

Several critical parameters must be considered when selecting the optimal optical device
for neutron extraction and refocusing onto a sample. These include the sizes and shapes
of the source and the sample, the distance between them, and the available lateral space.
As discussed, NMOs require less space along the optical axis for a given beam size at the
sample position, w. Additionally, the efficiency of NMOs tends to increase as w decreases.
Consequently, elliptic NMOs are an excellent choice for the extraction and transport of
neutrons when dealing with a compact source with a diameter � ≤ 10 mm and a relatively
short distance between the source and sample position, up to 20 m.
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When dealing with a compact source and a distance between the source and the sample
amounting to a few tens of meters, a Selene-type setup also images the whole source. This
configuration can potentially mitigate the effects of gravity, thanks to shorter paths of un-
obstructed flight between reflections. Here, one needs to consider the required maximum
divergence and the divergence hole, the supermirror-coated area, and the feasibility of the
mirror systems. When transporting the same total divergence, the reflecting surfaces of Se-
lene guides are typically illuminated at larger incident angles compared to the mirrors of a
corresponding NMO. This introduces a trade-off in fabrication costs. On the one hand, an
NMO necessitates a larger coated area to effectively transport the same phase space volume.
On the other hand, it requires a lower m-value for most of the mirrors, which reduces the
costs per coating and increases their reflectivity.

If the extent of the source is large enough that illumination losses are not a significant
concern, an ordinary neutron guide may still offer competitiveness, primarily in terms of the
transferred flux. However, NMOs maintain their superiority in preserving the phase space
emitted by the source, as explored in detail in section 5.4.

In cases where the vertical and horizontal extents of the source significantly differ, vari-
ous conceptually different optical systems might be effectively combined to achieve neutron
transport in two dimensions. For instance, one could use a ballistic neutron guide for beam
transport in one dimension and employ an NMO for refocusing a narrow source along the
other dimension.

NMOs may also offer an efficient means to focus neutron beams for prompt gamma activa-
tion analysis (PGAA). Because the NMO can be placed far away from the sample, neutron
captures occurring in the NMO can be shielded very efficiently, thus reducing background.

The reported experimental results, obtained with a small prototype elliptic NMO equipped
with polarizing m = 4.1 supermirrors, have demonstrated a high figure of merit for imaging
of 72 %. Additionally, we demonstrate the imaging capabilities of elliptic NMOs for sub-
millimeter beams in one and two dimensions. Future experiments on larger NMOs will
demonstrate their capabilities for the extraction of sources with some cm diameters.

NMOs are well-suited to extracting neutrons from a small moderator. In the standard
technique, which uses neutron guides, illumination losses increase with the neutron wave-
length and scale inversely with the moderator size. NMOs can, by design, provide a high
extraction efficiency, even for large wavelengths and especially for small beam sizes. As such,
their natural field of application is in the development of delivery systems for the extraction
of cold neutrons from compact, high-brilliance sources, like the flat para-hydrogen moderator
at the ESS [185, 163] or tube-like moderators proposed for future accelerator-based neutron
sources [137, 11]. NMOs are a viable alternative to non-linearly tapered neutron guides, and
Montel mirrors at such sources.

In summary, for delivering neutrons to scattering instruments, NMOs offer a distinct ad-
vantage over contemporary neutron guides. NMOs enable the precise selection and matching
of the phase space to meet the specific requirements of individual experiments. The imaging
properties of elliptic NMOs contribute to a clean spatial definition of the beam, eliminat-
ing the penumbra effect observed behind neutron guides and apertures. The beam spectrum
transported by an NMO can be adjusted precisely through its geometry and the chosen super-
mirror m-values. The well-defined angles of reflection in NMOs result in a short-wavelength
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cut-off, contrasting with neutron guides that transport faster neutrons, often necessitating
additional devices for spectral cleaning. The flexibility to adjust the beam divergence re-
motely through the control of apertures enables the optimization of the signal-to-background
ratio. This is particularly valuable when operating an instrument in high-resolution or high-
intensity mode or when aligning the beam with the acceptance of a sample environment.
Notably, the placement of apertures far from the experiment minimizes associated back-
grounds. This configuration also provides ample space for accommodating advanced sample
environments.

NMOs are also simpler to install than neutron guides. Their neutron extraction perfor-
mance increases with NMO size and, hence, with distance to the source (up to distances
exceeding several tens of meters, at which point neutron trajectories are appreciably curved
by gravity). Increased distance from the source provides the additional benefit that irradi-
ation damage to and activation of the optics are strongly reduced, the latter of which also
implies that NMOs can be easily accessed and exchanged to accommodate varying needs
of beamlines. From a technological point of view, the complexity of producing NMOs is
comparable to the manufacture of neutron benders [192], which are frequently used to place
instruments out of the direct line-of-sight of a neutron source.

Parabolic NMOs can be used in a variety of ways. Their complementary neutron transport
and focusing capabilities enable the configuration of entire beamlines for dedicated purposes
and are especially suitable for satisfying instrument needs. Long beam lines, which transport
neutrons over more than 100 m, as well as small optical setups for focusing existing beams
onto tiny samples, are possible.

Owing to their superior large-wavelength extraction capability, NMOs will be an asset for
future sources of very-cold neutrons (VCN), for which new moderator materials are being
studied (see, e.g., Ref. [200, 201]). Higher neutron intensities at larger wavelengths would,
for different classes of scattering instruments, lead to significant gains of performance [202].
Experiments in fundamental physics, including in-beam searches for a non-vanishing neutron
electric dipole moment [203] and searches for a baryon-number violation by neutron oscilla-
tions to antineutrons or sterile neutrons [204], would also profit. NMOs could be employed in
such dedicated, large-scale projects, but also in general-purpose fundamental-physics beam-
lines, such as ANNI at the ESS [205], or at in-beam sources of ultracold neutrons [206, 207].



Conclusion and Outlook
In this thesis, we explored the overarching topic of neutron scattering with our main focus
turned toward two subjects. On the one hand, we utilized the versatile technique of triple-
axis neutron spectroscopy to examine a phonon softening phenomenon in the rare earth
vanadate LuVO3, specifically in the transversal acoustic TA1 phonon mode. On the other
hand, we assessed the performance of novel NMO prototypes using analytic calculations,
McStas simulations, and neutron imaging techniques. The presented results demonstrate
their promising characteristics for neutron extraction, transport, and focusing and suggest
their compatibility with the contemporary landscape of neutron optics.

Phonon softening in LuVO3

Utilizing inelastic triple-axis neutron scattering, we explored a softening in the transversal
acoustic TA1 phonon branch of a single crystal of LuVO3. A reduction in the energy of the
phonon mode occurs when cooling the compound below a temperature of TSO2 = 82.5 K,
concomitant with a structural phase transition from a monoclinic P21b to an orthorhombic
Pbnm structure. At the zone boundary, ~Q = (0,−0.5, 4) r.l.u., the phonon energy exhibited a
discontinuous relative reduction of 3 %, corresponding to an absolute value of 0.3 meV. This
subtle yet significant softening was consistently observed across various instruments and
beamtimes. However, the effect could not be observed near the Γ-point at the zone center,
likely due to limitations of the instrumental resolution. Assuming a sinusoidal dispersion
relation, we expect the relative softening of the phonon mode to remain constant for all ~Q,
suggesting challenges in resolving this phenomenon with increasing distance from the zone
boundary where the energy is reduced. An alternative explanation not explored further
involves a zone boundary soft acoustic mode. No significant change in the phonon linewidth
was detected within the resolution of our triple-axis neutron measurements, contradicting
the idea of a coupling of the phonon to another excitation.

The observed softening of TA1 was discussed within the context of elastic anomalies during
structural phase transitions, hinting at a potential improper ferroelastic transition. Remark-
ably, no softening was observed along other directions in reciprocal space, highlighting the
unique symmetry of the coupling strain.

Looking ahead, supersonic measurements can be performed to directly determine relative
changes in the elastic constants. However, a quantitative comparison is unlikely to be fruit-
ful due to the significant difference in the probing frequencies. Additionally, determining
the order of the phase transition could be achieved through high-precision heat capacity
measurements. For a closer examination of the softening near the zone center, where the
absolute energy differences are smaller, neutron resonant spin-echo methods with superior
energy resolution are suggested. This approach further promises to yield insights into the
phonon linewidth behavior around the phase transition.

Building upon the presented study, subjecting the crystal to external uniaxial stress using
a bellow-driven in-situ pressure cell might yield valuable insights into the lattice dynamics
in response to stress applied along different directions. Furthermore, exploring the effects
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of hydrostatic pressure and monitoring the phonon dispersion and the lattice constants in
proximity to the transition holds potential interest.

Exploring the temperature hysteresis of the investigations presented here and the proposed
experiments could provide valuable information about the processes involved in the phase
transition. Finally, simulation-assisted theoretical investigations are suggested, considering
various couplings between the TA1 phonon mode and other excitations, focusing on un-
derstanding the connection between the anomalous behavior of the phonon dispersion and
alterations in orbital- and spin ordering.

Evaluation of Nested Mirror Optics
In the second part of the thesis, we explored the novel nested mirror optics (NMO) with
a focus on expanding the current toolkit of neutron optics and, ultimately, improving the
quality of neutron scattering experiments.

As a starting point, we discussed challenges associated with under-illuminating a long guide
during neutron extraction from a compact source. While elliptic or ballistic neutron guides
facilitate the transport between two points, they still suffer from under-illumination and
significantly distort the phase space volume of the transported neutron beam. We utilized
analytic calculations, numerical approximations, and Monte Carlo methods to comprehen-
sively evaluate these aberrations, where we improved the precision of previous results. While
under-illumination reduces the available neutron flux at the sample positions, the aberra-
tions of the phase space complicate the extraction of the double-differential cross-section
from the obtained data, rendering both undesirable effects.

Following this introduction, the concept of an NMO was introduced as a solution to reduce
phase space aberrations by limiting the points of reflection to a confined region along the
optical axis and nesting additional reflecting surfaces laterally to improve the angular ac-
ceptance of the device. The phase space-preserving nature of NMOs was validated through
Monte Carlo simulations. This work also provides a detailed methodology for determining
the reflecting surfaces and estimating the geometric losses associated with NMOs. Finally,
we presented the designed McStas simulation component, which enables Monte Carlo simu-
lations of double-planar NMO geometries.

Beyond the theoretical and simulation-based evaluation, various elliptic and parabolic
NMO prototypes were commissioned and investigated with neutrons. We utilized a CAS-
CADE detector to determine the efficiency of transport of the polarizing elliptic NMO at
MIRA-2 and a neutron imaging setup at BOA to investigate the beam shape provided by the
parabolic and elliptic NMOs. The efficiency of transport for the polarizing elliptic NMO pro-
totype was determined to be above 72 %, in good agreement with the performed simulations
and the analytic calculations of the geometric losses.

The imaging capabilities of the elliptic NMOs were initially confirmed by demonstrating
that, when correctly aligned, the width of the transported neutron beam at the second fo-
cal point precisely matches the width of the intensity distribution at the first focal point.
Imaging of a one-dimensional grid-like structure was similarly successful. Additionally, suc-
cessful imaging of simple two-dimensional intensity distributions was accomplished despite
a minor misalignment of the vertically focusing NMO, which resulted from the absence of a
goniometer during the measurement.
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While investigating the novel NMO prototypes, we repeatedly encountered a minor deforma-
tion of the reflective surfaces, likely due to tensile stress induced by the applied supermirror
coatings. Besides resulting in decreasing focusing quality reflected by an increased FWHM,
the excessively curved substrates entailed a reduction of the effective focal length from its
nominal value by up to 25 mm, depending on the point of illumination. We began quan-
tifying this deformation through 3D scanning to gain additional insights into the behavior
of the substrates when inserted into differently shaped grooves. Ultimately, the deforma-
tions should be mitigated by reducing the stress on the substrates, for example, by coating
the mirrors from both sides, by utilizing thicker substrates, or by adjusting the nominal
geometries to account for the expected deformations.

Various applications of parabolic and elliptic NMOs or combinations thereof were pre-
sented. Whereas an elliptic NMO is limited in its ability to transport neutrons over ex-
tended distances due to gravity, the combination of two double-planar NMOs facilitates an
efficient long-distance neutron transport through a straight guide connecting both. Using
parabolic NMOs with different focal lengths offers additional flexibility to control the extent
of the beam at the sample position. This guide system holds potential utility for instruments
dealing with samples of widely varying sizes.

In summary, NMOs can potentially advance neutron transport, especially in the context
of compact high-brilliance sources. The here-presented findings open avenues for further
practical applications and optimizations of NMOs. Future work should involve i) a repeti-
tion of the imaging investigations addressing alignment challenges, ii) refining mirror and
coating designs to mitigate substrate deformation, and iii) exploring additional scenarios to
validate the versatility and robustness of larger NMOs by simulation and experiment. These
experimental scenarios include neutron time-of-flight experiments, triple-axis scattering, and
neutron resonance spin-echo experiments. Finally, investigating the potential of NMOs in
various neutron imaging setups and considering advancements in the extraction of neutrons
from cold compact sources are believed to be among the most promising applications of
NMOs.
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Acronyms
AIC Akaike information criterion.

BZ Brillouin zone.

CCD charge-coupled device.

DCM double crystal monochromator.

DDCS double differential cross section.

FWHM full width at half maximum.

ILL Institut Laue-Langevin.

NMO nested mirror optics.

npveNMO non-polarizing vertically focusing elliptic NMO.

npvpNMO non-polarizing vertically focusing parabolic NMO.

OO orbital order.

PDF probability density function.

pdNMO parabolic de-focusing nested mirror optics.

pfNMO parabolic focusing nested mirror optics.

PG pyrolytic graphite.

phpNMO polarizing horizontally focusing parabolic NMO.

PSD position-sensitive detector.

REV rare-earth vanadates.

SO spin order.

TAS triple-axis spectroscopy.
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[90] Adolfo Avella, Andrzej M. Oleś, and Peter Horsch. Defect-Induced Orbital Po-
larization and Collapse of Orbital Order in Doped Vanadium Perovskites. Phys-
ical Review Letters, 122(12):127206, March 2019. ISSN 0031-9007, 1079-7114.
doi:10.1103/PhysRevLett.122.127206. 29

[91] G. R. Blake, T. T. M. Palstra, Y. Ren, A. A. Nugroho, and A. A. Menovsky. Tran-
sition between Orbital Orderings in YVO 3. Physical Review Letters, 87(24):245501,
November 2001. ISSN 0031-9007, 1079-7114. doi:10.1103/PhysRevLett.87.245501. 29

[92] Zhong Fang and Naoto Nagaosa. Quantum Versus Jahn-Teller Orbital Physics in YVO3

and LaVO3. Physical Review Letters, 93(17):176404, October 2004. ISSN 0031-9007,
1079-7114. doi:10.1103/PhysRevLett.93.176404. 29, 35, 44

[93] J. Fujioka, T. Yasue, S. Miyasaka, Y. Yamasaki, T. Arima, H. Sagayama, T. Inami,
K. Ishii, and Y. Tokura. Critical competition between two distinct orbital-spin ordered
states in perovskite vanadates. Physical Review B, 82(14):144425, October 2010. ISSN
1098-0121, 1550-235X. doi:10.1103/PhysRevB.82.144425. 29

https://doi.org/10.1107/S0567740877012114
https://doi.org/10.1103/PhysRevB.83.064101
https://doi.org/10.1107/S0567740870003576
https://doi.org/https://doi-org/10.1107/S0567739476001551
https://doi.org/10.1080/00150193.2016.1215750
https://doi.org/10.1016/0022-4596(91)90388-X
https://doi.org/10.1016/0022-4596(91)90388-X
https://doi.org/10.1007/978-3-8348-9545-5
https://doi.org/10.1103/PhysRevLett.122.127206
https://doi.org/10.1103/PhysRevLett.87.245501
https://doi.org/10.1103/PhysRevLett.93.176404
https://doi.org/10.1103/PhysRevB.82.144425


154 BIBLIOGRAPHY
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[154] C. Schanzer, M. Schneider, and P. Böni. Neutron Optics: Towards Applications
for Hot Neutrons. Journal of Physics: Conference Series, 746(1):012024, 2016.
doi:10.1088/1742-6596/746/1/012024. 61

[155] W. Wagner, G.S. Bauer, J. Duppich, S. Janssen, E. Lehmann, M. Lüthy, and
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[164] Christian Schanzer, Peter Böni, Uwe Filges, and Thomas Hils. Advanced geometries
for ballistic neutron guides. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 529(1):
63 – 68, 2004. ISSN 0168-9002. doi:https://doi.org/10.1016/j.nima.2004.04.178. 64
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and P. Böni. Compact turnkey focussing neutron guide system for inelastic scattering
investigations. Applied Physics Letters, 107(25):253505, 2015. doi:10.1063/1.4938503.
64

[168] Ursula Bengaard Hansen, Mads Bertelsen, Erik Bergbäck Knudsen, and Kim Lefmann.
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Figure A.1: Inelastic neutron scattering data investigating the dispersion of the transversal TA1 phonon branch in LuVO3 at
four different temperatures measured at EIGER in 2016. Gaussian and Voigtian fits to the data are shown in blue and black,
respectively. The reduced chi-square values corresponding to the Gaussian and Voigt fits are depicted as each panel’s upper
and lower numbers.
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four different temperatures obtained at EIGER in 2017. Gaussian and Voigt fits to the data are shown in blue and black,
respectively. The reduced chi-square values corresponding to the Gaussian and Voigt fits are shown as each panel’s upper and
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bars correspond to the uncertainties of the fits). No significant change in phonon energy can
be observed at TOO2 for any modes investigated.
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Appendix B: Derivation of Snell’s law
We here examine the situation of a neutron with kinetic energy T = ~2k2

2mn
transitioning

between regions with different neutron potentials V1 and V2. The results derived from this
discussion were employed to simulate the kinematics of refraction and reflection at silicon-air
interfaces. Additionally, we obtain Snell’s law in the process.

At any interface, the total energy, i.e., the sum of kinetic and potential energy Ei = Ti +Vi,
has to be preserved. Additionally, the component of momentum perpendicular to the surface
normal (parallel to the surface) has to remain constant due to the symmetry of the interface,
k1⊥ = k2⊥. A sketch of the behavior at the interface is shown in Fig. B.1. We observe that

1, T1

2, T2

k1||

k1

k2 k2||

E1 = T1 + V1

E2 = T2 + V2

n1, V1

n2, V2

k1||

Figure B.1: Behavior of a neutron at material interfaces with different neutron potentials Vi.
The total energy of the neutron, comprising kinetic and potential energy, Ei = Ti + Vi, as
well as the component of momentum perpendicular to the surface normal, k⊥, are preserved
at the interface. Both constants are highlighted in red.

k2
i = k2

i⊥ + k2
i‖, and utilize Ti =

k2
i ~

2

2mn
to calculate

E1 = E2,

(k2
1‖ + k2

1⊥)~2

2mn

+ V1 =
(k2

2‖ + k2
2⊥)~2

2mn

+ V2,

k2
1‖~2

2mn

+ V1 =
k2

2‖~2

2mn

+ V2,

(B.1)

where the last equality was derived using k1⊥ = k2⊥. Solving for the momentum parallel to
the surface normal, k2

2‖, yields

k2
2‖ = k2

1‖ +
2mn(V1 − V2)

~2
. (B.2)
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For V1 > V2, the resulting increase in momentum perpendicular to the surface leads to a
refraction of the neutron towards the surface normal. As per intuition, for V1 = V2, the
trajectory of the neutron remains undisturbed.

Two cases have to be discriminated if V2 < V1. Firstly, if
k2

1‖~
2

2mn
> V1 − V2, the neutron

is refracted away from the surface normal. Otherwise, the equation can not be solved, and
instead of being refracted, the neutron is totally reflected at the surface. All performed
McStas simulations account for neutron refraction and reflection according to the above
formalism.

For completeness, a refactoring of the given equations in terms of Snell’s law is given,
including a derivation of the critical angle in terms of the neutron Fermi pseudopotential.
We begin by expressing the component of momentum parallel to the surface in terms of the
angle to the surface normal θi:

k1 sin θ1 = k1⊥ = k2⊥ = k2 sin θ2,(
(E − V1)2mn

~2

) 1
2

sin θ1 =

(
(E − V2)2mn

~2

) 1
2

sin θ2,

sin θ1

(
E − V1

E

) 1
2

= sin θ2

(
E − V2

E

) 1
2

≡ sin θ1n1 = sin θ2n2.

(B.3)

A comparison of the latter equation to Snell’s law allows the extraction of the indices of
refraction,

ni =

(
1− Vi

E

) 1
2

. (B.4)

For an interface between vacuum, n1 = 1, and a material with neutron potential V2, we
calculate the critical angle to the surface normal θc, n as follows,

sin θc,n = n2 =

(
1− V2

E

) 1
2

=

(
1− V2λ

22mn

~24π2

) 1
2

(B.5)

Considering that θc = π− θc,n
(1) and inserting in the Fermi pseudopotential as a function of

the bound coherent scattering length and the density, one obtains the well-known expression
for the critical angle

sin2 θc = λ2V22mn

~24π2
= λ2

∑
j bcoh,jρn,j

π
. (B.6)

Finally, the indices of refraction can be expressed in terms of bcoh and ρ or the critical angle,

ni =

(
1− λ2Vi2mn

~24π2

) 1
2

=

(
1− λ2

∑
j bcoh,jρn,j

π

) 1
2

=
(
1− sin2 θc

) 1
2 . (B.7)

(1)The critical angle, θc, is measured between the surface of the interface and the critical trajectory of the
neutron, different from the angle between the surface normal and the critical trajectory, θc, n.



Appendix C: Derivation of Geometric Aberra-
tions in Elliptic Guides
Within this section, we derive a more precise approximation for the geometric aberrations
of neutrons reflected in a long elliptic guide. We first obtain an analytic value of r2 as a
function of r1, z, b, and f before expanding the result in terms of f−z

f+z
− 1 around a value of

0, which corresponds to z = 0. The extensive calculations were performed with the help of
Mathematica [171].

We describe the two-dimensional situation in terms of a coordinate system, where the first
coordinate, z, is aligned parallel to the optical axis and the one perpendicular to it is denoted
by r. Using this geometry, the outline of an ellipse centered around z = 0 is implicitly defined
by,

0 = r2 − b2f
2 + b2 − z2

f 2 + b2
, (C.1)

where f and b denote the focal length and the semi-minor axis of the ellipse, respectively
(a2 = f 2 + b2). The surface normal of the ellipse is given by:

~n =

[
z b2

r(f 2 + b2)

]
. (C.2)

A neutron is emitted above the first focal point at z = −f , r = r1. With the reflection
occurring at z, r = rr, the trajectory of the incident neutron is described by,

~ti =

[
−f
r1

]
+ λi

[
z + f
rr − r1

]
=

[
−f
r1

]
+ λi~vi, (C.3)

which yields the trajectory of the reflected neutron:

~tr =

[
z
rr

]
+ λr

(
~vi − 2

~n (~vi · ~n)

|~n|2

)
. (C.4)

Here, we used the fact that a vector ~vi reflected at a surface with normal vector ~n has a
direction:

~vr = ~vi − 2
~n (~vi · ~n)

|~n|2
. (C.5)

Equating the z-coordinate in Eq. (C.4) with the position of the second focal point z = f ,
we utilize the computer algebra system Mathematica [171] to derive the r-coordinate at F2,

r2(r1, z) =
r1(f + z) (b2 + f(f − z))

2

2 b r1z(b2 + f 2)
√

b2+f2−z2

b2+f2 + 2b2 (f 3 − fz2) + b4(f − z) + f 2(f − z)(f + z)2
.

(C.6)
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This analytic expression can be Taylor expanded in terms of f−z
f+z

around 1, corresponding
to z = 0, up to first order, we finally obtain

r2(r1, z) ≈ r1 + r1

(
f − z
f + z

− 1

)
(f 2 − b2 + b r1)

b2 + f 2
+O

((
f − z
f + z

− 1

)2
)
...

= r1

(
b2 + f 2 − (f 2 − b2 + b r1)

b2 + f 2
+
f − z
f + z

· f
2 − b2 + b r1

b2 + f 2

)
+O

((
f − z
f + z

− 1

)2
)
...

(C.7)

The series expansion was performed by utilizing:

∂g(z)

∂ f−z
f+z

=

(
∂ f−z
f+z

∂z

)−1
∂g(z)

∂z
= −(f + z)2

2f

∂g(z)

∂z
(C.8)

It is easily seen that for f � b, Eq. (C.7) can be approximated by:

r2(r1, z) ≈ r1
f − z
f + z

, (C.9)

typically valid for elliptic guides. The improvement of Eq. (C.7) compared to Eq. (C.9)
might enable the utilization during the evaluation of long elliptic guide systems.



Appendix D: Analytic Derivation of pR2 (r2) at
the Second Focal Point of an Elliptic Guide
Here, we present the analytic calculation of the intensity distribution at the second focal
spot after reflection by a long elliptic guide. Parts of the derivation were performed utilizing
Mathematica [171].

Using the simple approximation given in Eq. (5.8),

r2 = r1
f − z
f + z

, (D.1)

the distance to the optical axis at F2 depends only on z, f , and the distance at F1, r1. To
perform the calculations, z and r1 are assumed to be independent and uniformly distributed
with the following probability density functions (PDFs),

pZ(z) = 1/l for z ∈ [−l/2, l/2],

pR1(r1) = 1/h for r1 ∈ [−h/2, h/2].
(D.2)

The PDFs can be interpreted as two intensity distributions of neutrons normalized to 1.
While pR1 describes the spatial intensity distribution of neutrons at the first focal point
as a function of r1, pZ(z) describes the density of neutrons impinging on the elliptic mirror
surface as a function of the point of reflection, z. For a source possessing a rectangular spatial
intensity distribution, the assumption of a uniform PDF in r1 is reasonable. However, one
expects pZ(z) to decrease with increasing distance from the source or equivalently, z. The
validity of this necessary simplification is discussed in the appendix E in more detail. Under
the assumption that both variables are independent, which is reasonable in the case of
h� b� f , we use the joint probability distribution of both variables, pZ(z) · pR1(r1) = 1

hl
,

and Eq. (C.9) to calculate the PDF of r2 following the standard approach,

pR2(r2) =

∫ h
2

−h
2

∫ l
2

− l
2

δ
(
r2 − r1

f−z
f+z

)
h l

dz dr1, (D.3)

where δ denotes the Dirac delta function. To evaluate the integral over dz, we utilize the
following property of the Dirac delta

δ(g(z)) =
∑
i

δ(z − zi)
|g′(zi)|

, (D.4)

where the sum extends over all roots, zi, of the function g(z) and g′(zi) = d
dz
g(z)

∣∣
z=zi

. Since

g(z) = r2 − r1
f−z
f+z

has only one root for a given r2 and r1, we can integrate in dz after
calculating

g′(z) =
2fr1

(f + z)2
(D.5)
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and

z = f
r1 − r2

r1 + r2

(D.6)

finally resulting in

pR2(r2) =


∫ h

2

−h
2

2
∣∣∣ fr1
(r1+r2)2

∣∣∣
h l

dr1 for
[
r2

f−l/2
f+l/2

≤ r1 ≤ r2
f+l/2
f−l/2

]
0 else

. (D.7)

We now discern four cases depending on the value of r2. Assuming it to be positive, the
lower limit of integration for r1 can be calculated as r1, min = r2

f−l/2
f+l/2

, which corresponds to
a reflection at the entrance of the guide. Accordingly, the upper limit occurs for reflection
at the end of the guide and amounts to r1, max = r2

f+l/2
f−l/2 . Another two cases have to be

discerned depending on the ratio of this upper limit and the extent of the source, h.
Altogether, the four cases concerning r2 are the following

pR2(r2) =
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2
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hl
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∣∣∣ fr1
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hl
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. (D.8)

Evaluating the integral for strictly positive values of r1 (and r2) yields,

∫
2fr1

h l(r1 + r2)2
dr1 =

2f
(

r2
r1+r2

+ log(r1 + r2)
)

h l
+ C, (D.9)

with log denoting the natural logarithm and C being the constant of integration. Carefully
handling the individual limits of integration results in the following PDF for r2,

pR2(r2) =



2f
hl

[
2r2

2r2−h −
1
4

(2 + l/f) + ln
(

(r2−h/2)(2f+l)
4fr2

)]
for

[
−h

2
f+l/2
f−l/2 ≤ r2 ≤ −h

2
f−l/2
f+l/2

]
2f
hl

[
− l

2f
+ ln

(
f+l/2
f−l/2

)]
for

[
−h

2
f−l/2
f+l/2

≤ r2 ≤ h
2
f−l/2
f+l/2

]
2f
hl

[
2r2

2r2+h
− 1

4
(2 + l/f) + ln

(
(r2+h/2)(2f+l)

4fr2

)]
for

[
h
2
f−l/2
f+l/2

≤ r2 ≤ h
2
f+l/2
f−l/2

]
0 else.

(D.10)
It is readily seen, that the distribution is symmetric with respect to r2 = 0 as is expected
due to the initial distribution also being symmetric in r1. Furthermore, the function is
continuous at r2 = ±h

2
f−l/2
f+l/2

and integrates to 1, validating the calculation. The central part
of the PDF is surprisingly constant. The width of this region of constant density increases
with decreasing l in agreement with the geometric consideration outlined in Fig. 5.6.



Appendix E: Derivation of pZ (z) for Straight
and Elliptic Guides
We here assess the assumption used in appendix D, that the points of reflections, z, are
distributed uniformly over the length of the mirror.

As a starting point, the PDF of neutrons arriving at a straight reflecting surface will be
calculated. Assuming a uniform distribution of neutrons in angles

pα(α) =
1

αmax − αmin

for α ∈ [αmin, αmax], (E.1)

and the neutron to be emitted from the optical axis at z = −f , we can calculate the point
of reflection to be

z =
b

tanα
− f, (E.2)

where b denotes the constant distance between the optical axis and the reflective mirror
surface. This allows us to determine the PDF of neutrons as a function of z to be

pZ(z) =

∫ αmax

αmin

pα(α)δ

(
z −

(
b

tanα
− f

))
dα

=
1

αmax − αmin

∫ αmax

αmin

∣∣∣∣sin2 α

b

∣∣∣∣ δ(α− arctan

(
b

f + z

))
dα

=

{
1

arctan( b
f−l/2)−arctan( b

f+l/2)
b

b2+(f+z)2 for z ∈ [−l/2, l/2]

0 else

(E.3)

where the first term is constant and is concerned with the normalization of the integral only.
The second, z-dependent term decreases for increasing z, which is due to the two effects
mentioned in the main text. Firstly, the distance from the source to the point of reflection
increases with z reducing the incident intensity appropriately, Iz ∝ 1/ds. Secondly, the angle
of incidence also decreases with increasing z, now distributing the already smaller neutron
flux over a larger area, thus reducing the flux arriving at the mirror further, Iz ∝ sinα.
Calculating the intensity according to the above consideration yields a qualitative agreement
with the more formal calculation resulting in Eq. (E.3),

Iz ∝ I0
sinα

ds

= I0
b

d2
s

= I0
b

b2 + (f + z)2
,

(E.4)

thus validating both. Here, we used sinα = b/ds and d2
s = b2 + (f + z)2.

In comparison to the flat guide, the two effects described above have opposing influence
on pZ(z) for an elliptic guide. For increasing z, the distance to the reflecting surface again
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increases. However, now the angle between the incident neutron and the surface also increases
due to the shape of the ellipse, hence diminishing the overall influence of z on the density of
neutrons arriving at the reflecting surface compared to a flat guide. pZ being independent
of z up to a higher order in z would validate the initial assumption of the intensity being
uniformly distributed on the mirror.

To determine the true PDF of neutrons in z arriving at the mirror, we use a description of
the ellipse in a polar coordinate system, with its origin coinciding with the first focal point,
where the neutrons are emitted under an angle α. This angle equals the polar angle, θ,
determining the elliptic shape together with the distance from the first focal point according
to

r(θ) =
b2

a− f cos θ
(E.5)

where a = (b2 + f 2)
1
2 . As usual, b and f denote the semi-major and semi-minor axes, and

the focal length of the ellipse, respectively. From this, the probability of a neutron arriving
at zf := z + f = b2 cosα

a−f cosα
can be calculated by transforming the distribution of a neutron

being emitted under an initial angle α,

pα(α) =
1

αmax − αmin

for α ∈ [αmin, αmax] (E.6)

pZf
(zf ) =

1

αmax − αmin

∫ αmax

αmin

δ

(
zf −

b2 cosα

a− f cosα

)
dα. (E.7)

Employing the relation Eq. (D.4), this integral can be expressed as

pZf
(zf ) =

1

αmax − αmin

∫ αmax

αmin

δ
(
α− arccos

(
zfa

b2+fzf

))
∣∣∣ b2a2 sinα

(a−f cos2 α)2

∣∣∣ )dα (E.8)

and evaluated to be

pZf
(zf ) =

1

αmax − αmin

ab

(b2 + fzf )2

(
(b2 + fzf )

2

b2 + (2f − zf )zf

) 1
2

,

pZ(z) =
1

αmax − αmin

ab

(b2 + f(z + f))2

(
(b2 + f(f + z))2

b2 + (2f − (z + f))(z + f)

) 1
2

.

(E.9)

In the final step, we shifted the coordinate system back from the polar one centered around
F1 to the one centered around the semi-minor axis, zf = z + f . This adjustment allows for
better comparability to the previous results. For z = 0 one obtains accordingly

1

αmax − αmin

b

b2 + f 2
(E.10)

which is in agreement with the value obtained at z = 0 for the straight mirror.
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While Eq. (E.9) evidently still depends on the point of reflection z, we can perform a series
expansion in z around z = 0 to determine the leading order term and compare it to the one
obtained from the expression calculated for a flat mirror. For the flat mirror we obtain,

pZ(z)flat ≈
b

(b2 + f 2) (αmax − αmin)
− 2bf

(b2 + f 2)2 (αmax − αmin)
z +O(z2), (E.11)

while the series expansion for the PDF of the elliptic mirror around z = 0 yields

pZ(z)ell ≈
b

(b2 + f 2)(αmax − αmin)
− bf

(b2 + f 2)2 (αmax − αmin)
z +O(z2). (E.12)

Both expansions are in agreement regarding the constant term and the sign of the linear
term being negative, indicating that pZ(z) decreases with increasing z, as expected. The
magnitude of the linear term shows that this dependence is twice as fast in the case of the
flat mirror. This is attributed to the discussed observation that the angle of incidence of the
neutrons decreases with z for the flat mirror, while it increases in an elliptic geometry(1).

However, despite the effect being of reduced importance for the elliptic mirror, pZ(z) is
not uniform as originally assumed. In the case of short mirrors, say l/f = 1/20, the effect is
small, but when describing long, elliptic mirrors, one is required to take it into account to
obtain the correct pR2(r2), which shall be evaluated in appendix F.

Until now, we have not considered the influence of r1, due to not being able to solve the
arising second integral in r1 analytically. Despite this limitation, one can still use numerical
integration methods to recover a pZ(z), which also considers the density of neutrons in r1.
Starting at the following expression,

pZ(z) =

∫ αmax

αmin

∫ r1,max

r1,min

pR1(r1)pα(α)δ (z − z(r1, α)) dαdr1, (E.13)

where z(r1, α) denotes a function returning the z-coordinate of the point of reflection for
a given initial angle α and the deviation from the optical axis r1. For a value of z, one
calculates the minimum and maximum value of α to be

αmin = α(z, r1 = +h/2) = arctan

b
√

b2+f2−z2

b2+f2 − h/2
f + z


αmax = α(z, r1 = −h/2) = arctan

b
√

b2+f2−z2

b2+f2 + h/2

f − z

 .

(E.14)

The limits of integration in r1 will be accounted for by the δ-distribution. The joint proba-
bility of r1 and α is uniform and can be calculated by integrating both variables within their
limits over 1 as,

pR1(r1)pα(α) = 1/A, with A =

∫ αmax

αmin

∫ r1,max

r1,min

dα dr1 (E.15)

(1)It should be noted that for the elliptic geometry, the illuminated segment of the mirror corresponding
to an interval dz also increases with |z| due to the increasing angle between the mirrors and the optical axis
along z.
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Using Eq. (D.4), one arrives at the following integral:

pZ(z) =

∫ αmax

αmin

∫ r1,max

r1,min

1/A
δ (r1 − r1(z, α))∣∣∣dz(r1,α)

dr1

∣∣∣ dr1dα. (E.16)

To calculate the derivative, we start with the following equation describing the intersection
of the neutron trajectory with the elliptic mirror,

b

(
f 2 + b2 − z2

f 2 + b2

) 1
2

= r1 + (f + z) tanα (E.17)

where the left side represents the r-coordinate of an elliptic mirror centered around z = 0
and the right side describes the r-coordinate of a neutron being emitted from z = −f with
an offset r1 under an angle α to the optical axis. Eq. (E.17) can be solved for either of
its three unknowns with respect to the other two. We need z(r1, α) for the derivative with
respect to z and r1(z, α) for the δ-distribution.

r1(z, α) = b

(
(b2 + f 2 − z2)

b2 + f 2

) 1
2

− tan(α)(f + z)(
dz

dr1

)−1

=
2 (tan2(α) (b2 + f 2) + b2)

(b2 + f 2)

(
−2 tan(α)− 2b2(f tan(α)+r1)√

b2(b2+f2)(b2 tan2(α)+b2−2fr1 tan(α)−r2
1)

) (E.18)

Evaluating the derivative at r1(z, α) yields a complex equation, which cannot be integrated
analytically in α with the available CAS, necessitating numerical integration.

pZ(z) =

∫ αmax

αmin

1

A

∣∣∣∣∣dz(r1, α)

dr1

−1
∣∣∣∣∣
r1=r1(z,α)

dα (E.19)

Due to the integrand’s smooth nature, a simple trapezoidal integration algorithm suffices for
the numerical integration.



Appendix F: Numerical Approximation of pR2(r2)
at the Second Focal Point of an Elliptic Guide
To determine a more realistic intensity distribution at the second focal point as a function
of the distance to the optical axis, r2, we start by writing out the final expression for the
neutron density at the second focal point,

pR2(r2) =

∫ zmax

zmin

∫ r1,max

r1,min

pZ(z)pR1(r1)δ (r2 − r2(r1, z)) dr1 dz, (F.1)

where r2 denotes the distance of the neutron from the second focal point. r1 and z describe
the distance of the neutron at the first focal point and z denotes the z-coordinate of the
point of reflection and pZ(z) and pR1 denote the respective probability functions normalized
to 1. Finally, the function r2(r1, z) relates the three magnitudes as shown in Eq. (C.6). Due
to r2 and r1 sharing signs, we here only evaluate the integral for r2 ≥ 0, with the calculation
for r2 ≤ 0 being analogous.

The limits of integration in z are themselves limited by the entrance and the exit of
the elliptic guide, i.e., zmin ≥ −l/2 and zmax ≤ l/2. At the same time, not all values of
z are geometrically allowed for a certain r2. When dealing with large values of r2, e.g.,
r2 ≥ w/2, all neutrons reaching that r2 must be reflected in the first half of the ellipse,
z ≤ 0. However, arbitrarily small values of r2 can be realized for all points of reflection
by choosing an appropriately small r1. Considering both arguments, the limits in z are as
follows: zmin = −l/2 and zmax = min [l/2, z(r2, r1 = h/2)], where min [] yields the smallest
of its arguments and z(r2, h/2) returns the z-coordinate of the point of reflection connecting
r1 = h/2 and r2. Due to the sheer number of appearances of z in r2(r1, z) (Eq. (F.3)) the
employed CAS was not able to return z(r2, h/2) analytically. Instead, the approximation for
r2 (Eq. (5.8)) was solved for z, which then served as a starting point for a Newton-Raphson
algorithm yielding a numerical solution for z with a relative precision of 1× 10−8.

The limits of integration in r1 are geometrically confined by −h/2 ≤ r1 ≤ h/2, with h
denoting the height of the source. Additionally, there exists a limit for r1 given by the
chosen r2, similar to the one discussed before, yielding r1,max = min [h/2, r1(r2, z = l/2)] and
r1,min = max [0, r1(r2, z = −l/2)]. However, the δ-distribution in the integrand always yields
a value for r1, which is in agreement with those limits.

The probability density function of r1 is given by pR1(r1) = 1/h for r1 ∈ [−h/2, h/2].
The derivation of pZ(z) was presented in appendix E. The values of pZ(z) were calculated
numerically and tabulated for the numerical integration.

Finally, the δ distribution in the integrand is transformed according to Eq. (D.4), to be

δ (r2 − r2(r1, z)) =
δ (r1 − r1(r2, z))∣∣∣dr2(r1,z)

dr1

∣∣∣ , (F.2)
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with

r2(r1, z) =
r1(f + z) (b2 + f(f − z))

2

2br1z (b2 + f 2)
√

b2+f2−z2

b2+f2 + 2b2 (f 3 − fz2) + b4(f − z) + f 2(f − z)(f + z)2

(F.3)
and its derivative being calculated to

dr2(r1, z)

dr1

=
(f − z)(f + z) (b2 + f(f − z))

2
(b2 + f(f + z))

2(
2br1z (b2 + f 2)

√
b2+f2−z2

b2+f2 + 2b2 (f 3 − fz2) + b4(f − z) + f 2(f − z)(f + z)2
)2 .

(F.4)
By solving Eq. (F.3) for r1,

r1(r2, z) =
r2(f − z) (b2 + f 2 + fz)

2

−2br2z(f 2 + b2)
√

b2+f2−z2

b2+f2 + 2b2f 3 − 2b2fz2 + b4f + b4z − f 3z2 + f 2z3 − f 4z + f 5

(F.5)
one obtains all the pieces necessary to perform the integration numerically:

pR2(r2) =

∫ min[l/2, z(r2,h/2)]

−l/2

[
pZ(z)pR1(r1)

∣∣∣∣dr2(r1, z)

dr1

∣∣∣∣−1
]
r1=r1(r2,z)

dz. (F.6)

Due to the smooth nature of the integrand, equidistant values of z in combination with a
simple numerical integration method based on the trapezoidal rule, e.g., the trapz -function
from the NumPy package in Python, allow for a quick evaluation of the integral. Calculating
Eq. (F.6) for uniformly distributed values of r2 results in the data shown in Fig. 5.10.



Appendix G: Design of Elliptic NMOs
A more general version of the recipe for the construction of elliptic NMOs given in [174]
shall here be discussed for geometries not centered around the semi-minor axes of the shape-
determining ellipses, which in the case of one very distant focal point also can be used for
an approximation of a parabolic NMO.

For the purpose of illustration, two exemplary elliptic mirrors are sketched in Fig. G.1.
Initially, a point on the outermost mirror has to be determined by the maximum angle of
reflection allowed by the combination of minimum neutron wavelength, λ, and maximum
possible m-value. Assuming the height of the source to be negligible, this point can be
calculated to be,

zp = zs

rp = tan(0.00173 m λ/�A)(zs − F1)
(G.1)

After the point on the outermost mirror is calculated as shown above or chosen in accordance
with other parameters, the two focal points F1 and F2 have to be determined. For the here
shown calculations, we orient the coordinate systems such that the z-coordinate coincides
with the optical axis connecting the two points. In this geometry, it is useful to represent
elliptic (or parabolic) mirror surfaces as follows

r2 = k1 + k2z + k3z
2, (G.2)

for which the k-values can be determined by starting from the general form of the ellipse
centered around z0 = F1+F2

2
:

(z − z0)2

a2
+

r2

a2 − f 2
= 1. (G.3)

zp, rp

zs zez0

bn+1

bn

Figure G.1: Schematics of the determination of an elliptic nested geometry. A point on the
elliptic surface (zp, rp) in combination with the z-coordinates of the two focal points F1 and
F2, and the entrance and the exit of the NMO, zs, ze, is sufficient to fully determine the
nested geometry.
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Here, f denotes the focal length of the ellipse, f = F1−F2

2
. Considering the point on the

mirror surface allows the calculation of the semi-major axis,

a =


[
(zp − z0)2 + r2

p + f 2
]

+
([

(zp − z0)2 + r2
p + f 2

]2 − 4(zp − z0)2f 2
) 1

2

2


1
2

(G.4)

which then allows to calculate all k-values for Eq. (G.2):

k3 =
f 2

a2
− 1

k2 = −2z0k3

k1 = z2
0k3 + (a2 − f 2).

(G.5)

This allows us to determine the distance of a mirror from the optical axis at the exit of
the NMO, rn(ze), and connect it with F1, as indicated by a red line in Fig. G.1. Using the
theorem of intersecting lines, we can determine a point on the adjacent inner mirror to be
located at the following coordinates,

zn+1 = zs

rn+1 = rn(ze)
zs − F1

ze − F1

,
(G.6)

which in turn enables calculating the next set of k-values allowing to repeat the above process
until a satisfactory number of mirrors is reached or until the spacing between individual
mirrors subceeds the minimum distance, which can still be fabricated.

The total number of mirrors, N , needed to transport an angular range from αmin to αmax

using a symmetric elliptic nested mirror geometry can be approximated by the following
considerations. Assuming a focal length, f , and a common length of the mirrors, l, the point
determining the outermost mirror is given by,

z0 = −l/2
r0 = (f − l/2) tanαmax,

(G.7)

which, in the case of f � l, allows to approximate the corresponding semi-minor axis to be
b0 ≈ fαmax. Considering Fig. 5.14 and Eq. (G.6), it is evident that the semi-minor axis of

the adjacent inner mirror is smaller by a factor of bn+1 = bn
f−l/2
f+l/2

. Since this factor remains
constant for each pair of mirrors, the semi-minor axis of the N -th mirror is approximately,

bN = b0

(
f − l/2
f + l/2

)N
, (G.8)

which can, in the case of f � l, be simplified to

bN ≈ b0

(
1− l

f

)N
(G.9)
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where bN = (f + l/2) tanαmin. The number of required mirrors is then expressed as,

N =
ln
(
bN
b0

)
ln
(

1− l
f

) ≈ ln
(
αmin

αmax

)
ln
(

1− l
f

) ≈ ln

(
αmax

αmin

)
f

l
. (G.10)

The number of required mirrors thus scales with the logarithm of the angular range and
linearly with the ratio of focal length to mirror length. Interestingly, the total coated area
required to transport a certain angular range stays constant under variations of l, as the
area per individual mirror scales as ∝ l, whereas the number of mirrors scales reciprocally
to l. This finding typically favors small l, which ensures better imaging quality, albeit more
complex to fabricate.

When designing a parabolic NMO, one can resort to the here presented recipe with one of
the focal points located very far from the optical axis. However, one must balance numerical
errors, which carry more impact for large values of f , with the errors associated with choosing
a finite distance between the focal points. Instead, one can perform an analogous calculation
for a truly parabolic mirror shape, which is not shown here.
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