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Abstract
Modern biomedical research heavily relies on data-driven approaches, holding im-

mense potential for personalized medicine, more profound insights into diseases, and
novel clinical decision support methods. In order to harness this potential, extensive
data collections need to be established. However, this necessitates collaborative data
gathering involving sensitive individual-level information shared with third parties or
repurposed for secondary objectives. While leveraging these data-driven approaches in
biomedical research, safeguarding the privacy of involved individuals is crucial. An es-
sential technical aspect is data anonymization, transforming data to minimize privacy
risks while optimizing data quality.

Quantifying data quality poses a complex challenge, dependent on the specific use
context. For example, when predetermined statistical properties are to be analyzed
in the anonymized data, transformation rules preserving these properties can be es-
tablished. In this thesis, we propose guidelines for selecting quality models tailored to
diverse usage scenarios. We accomplished this by integrating various general-purpose
quality models into the widely recognized data anonymization tool ARX. Addition-
ally, we conducted extensive experimental comparisons to explore different pertinent
aspects. Our findings suggest that specific quality models are best suited for spe-
cific usage scenarios. Notably, the Non-Uniform Entropy quality model is particularly
well-suited for general-purpose applications.

Even with prior knowledge of the usage scenario, modelling data quality is intricate.
For instance, in privacy-preserving statistical classification, where prediction models
are built from anonymized data to predict the class attribute value based on a set
of feature attributes, minimizing information loss for features is critical, as they are
highly discriminative for a specific class attribute.

Even when the usage scenario is known, modelling data quality is a non-trivial issue.
For instance, in the context of privacy-preserving statistical classification, where pre-
diction models are built from anonymized data to predict the value of a class attribute
from a set of feature attributes, it is vital to minimize the loss of information for the fea-
tures as these are most discriminating for a specific class attribute. We present a highly
adaptable solution for developing and evaluating privacy-preserving prediction mod-
els, accommodating various prediction models alongside a range of privacy-preserving
techniques. Three case studies are presented to exemplify the practical usability of our
solution.

While formalizing the quantification of data quality addresses the challenge, ef-
ficient software support is imperative to leverage these quality models within data
anonymization. Data anonymization is a multifaceted challenge involving models for



defining transformation rules, quantifying privacy risks and data quality, and imple-
menting anonymization algorithms. We introduce an innovative approach that enables
ARX to accommodate nearly any combination of anonymization techniques. Through
extensive experimental comparisons with existing solutions, we demonstrate superior
scalability and data quality, offering support for a broader array of methods and tech-
niques.



Zusammenfassung
Die moderne biomedizinische Forschung stützt sich stark auf datengetriebene An-

sätze und birgt ein enormes Potenzial für personalisierte Medizin, tiefere Einblicke in
Krankheiten und neuartige Methoden der klinischen Entscheidungsunterstützung. Um
dieses Potenzial zu nutzen, müssen umfangreiche Datensammlungen aufgebaut werden.
Dies erfordert jedoch eine gemeinschaftliche Datenerfassung, bei der sensible individu-
elle Informationen auf Ebene der Einzelpersonen gemeinsam gesammelt, mit Dritten
geteilt oder für sekundäre Zwecke verwendet werden müssen. Bei der Nutzung dieser
datengetriebenen Ansätze in der biomedizinischen Forschung ist der Schutz der Pri-
vatsphäre der involvierten Personen von entscheidender Bedeutung. Ein wesentlicher
technischer Aspekt ist die Datenanonymisierung, bei der Daten transformiert werden,
um die Datenschutzrisiken zu minimieren und gleichzeitig die Datenqualität zu opti-
mieren.

Die Quantifizierung der Datenqualität stellt eine komplexe Herausforderung dar, die
vom spezifischen Anwendungskontext abhängt. Zum Beispiel können bei der Analyse
der anonymisierten Daten vordefinierte statistische Eigenschaften beibehalten werden,
indem Transformationsregeln für diese Eigenschaften festgelegt werden. In dieser Ar-
beit schlagen wir Richtlinien zur Auswahl von Qualitätsmodellen vor, die auf verschie-
dene Nutzungsszenarien zugeschnitten sind. Dies haben wir erreicht, indem wir ver-
schiedene allgemeine Qualitätsmodelle in das weit verbreitete Datenanonymisierungs-
werkzeug ARX integriert haben. Zusätzlich führten wir umfangreiche experimentelle
Vergleiche durch, um verschiedene relevante Aspekte zu untersuchen. Unsere Ergeb-
nisse deuten darauf hin, dass verschiedene Qualitätsmodelle am besten für bestimm-
te Nutzungsszenarien geeignet sind. Insbesondere das Qualitätsmodell ”Non-Uniform
Entropy“ eignet sich besonders gut für allgemeine Anwendungsfälle.

Auch wenn das Nutzungsszenario im Voraus bekannt ist, ist die effektive Modellie-
rung der Datenqualität komplex. Zum Beispiel ist es im Kontext der datenschutzer-
haltenden statistischen Klassifikation, bei der Vorhersagemodelle aus anonymisierten
Daten erstellt werden, um den Wert eines Klassenattributs basierend auf einer Reihe
von Merkmalen vorherzusagen, wichtig, den Informationsverlust für die Merkmale zu
minimieren, da diese für ein bestimmtes Klassenattribut äußerst diskriminierend sind.

Wir präsentieren eine flexible Lösung zur Entwicklung und Bewertung von daten-
schutzerhaltenden Vorhersagemodellen, die verschiedene Vorhersagemodelle in Kom-
bination mit einer Vielzahl von datenschutzerhaltenden Techniken unterstützt. Drei
Fallstudien werden vorgestellt, um die praktische Anwendbarkeit unserer Lösung zu
veranschaulichen.



Während die Formalisierung der Quantifizierung der Datenqualität die Herausfor-
derung angeht, ist eine effiziente Softwareunterstützung unerlässlich, um diese Qua-
litätsmodelle im Kontext der Datenanonymisierung effizient zu nutzen. Die Datenan-
onymisierung ist eine komplexe Problemstellung, die Modelle zur Definition von Trans-
formationsregeln, zur Quantifizierung von Datenschutzrisiken und Datenqualität sowie
zur Implementierung von Anonymisierungsalgorithmen umfasst. Wir stellen einen in-
novativen Ansatz vor, der es ARX ermöglicht, nahezu beliebige Kombinationen von
Anonymisierungstechniken zu unterstützen. Durch umfangreiche experimentelle Ver-
gleiche mit bestehenden Lösungen zeigen wir eine überlegene Skalierbarkeit und Da-
tenqualität auf, die eine Unterstützung für eine breitere Palette von Methoden und
Techniken bieten.
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CHAPTER 1

Introduction and Objectives

Modern data-driven biomedical research approaches based on big data processing and
artificial intelligence provide enormous potential for advances in personalized medicine,
new insights into the development and course of diseases, and novel clinical decision
support methods [HF11]. Extensive data collections must be established to unlock
this potential, requiring sensitive individual-level data to be collected collaboratively,
shared with third parties or used for secondary purposes.

Individuals’ privacy must be protected when implementing such data-driven ap-
proaches to biomedical research. This becomes increasingly challenging as data pri-
vacy involves ethical, societal, and legal aspects, which require consideration of pri-
vacy concerns and restrictions imposed by national and international data protection
laws [JJB12]. Examples are the US Health Insurance Portability and Accountabil-
ity Act (HIPAA) [HIP], the European General Data Protection Regulation (GDPR)
[Eur16], and the Chinese national standard on the protection of personal informa-
tion [Sta18]. To help make decisions about the use of sensitive or confidential data,
the Five Safes framework addresses data privacy on multiple levels [DRW16]: (1)
Safe projects is concerned with organizational measures that ensure that data use is
appropriate. (2) Safe people means that people working with the data are safe and
trustworthy. (3) Safe data implies that re-identification risks are reduced to an ac-
ceptable minimum. (4) Safe settings means that risks of privacy breaches during data
processing are reduced. (5) Safe outputs requires that disclosure risk of output data is
controlled such that results do not leak sensitive personal information.

Data anonymization is an important concept for achieving safe input (3) and output
(5) data. Here, data is transformed in such a way that privacy risks are minimized
while data quality is maximized at the same time. While the term data anonymiza-
tion has been established in many European countries, in other areas such as the
U.S., de-identification may be used instead. Data anonymization involves the follow-
ing concepts: (1) Transformation models, which specify data transformation rules,

1



CHAPTER 1: Introduction and Objectives

(2) Privacy models, which formally specify and quantify privacy risks, (3) Quality
models, which formally quantify data quality, and (4) Anonymization algorithms,
which typically search a given solution space for (semi)-optimal solutions. Here, the
solution space consists of transformations resulting from applying transformation rules
to input data. In this process, the algorithm guarantees that a predefined threshold
of privacy risks is met according to a privacy model and that maximal data quality is
achieved according to a quality model.

Quantifying data quality is a complex issue, as the usefulness of data heavily depends
on the context. For instance, when it is known that specific statistical properties shall
be analyzed in the anonymized data, it is possible to establish transformation rules
to keep these properties intact. This thesis addresses three problem areas involving
data quality in the context of data anonymization. Solution proposals to overcome
these challenges have been published by this thesis’ author (with a first or shared
first authorship) as full papers in international, peer-reviewed journals and conference
proceedings.

Outline
This thesis is publication-based and structured as follows: Chapter 1 introduces the
topic as well as all relevant concepts and definitions. The chapter also describes the
challenges this thesis tried to overcome. Chapter 2 provides an overview of the contri-
butions, which have been published as journal articles, as responses to these challenges.
Chapter 3 concludes the thesis by discussing the presented material and prior as well
as future work. Appendix A provides detailed information about the publications.
Finally, Appendix B lists all further publications to which this thesis author has con-
tributed as co-author and which have been published during the period of this doctoral
thesis.

1.1 Background
This section provides an extensive overview of the concepts and techniques used in
this thesis. First, the concepts of data transformation and privacy models are
introduced. Next, special attention is given to the concept of quality models, as
these are the core of this thesis. Finally, in the last section, all three concepts are
combined by a rather extensive introduction to data anonymization algorithms.

Data Transformation
The obvious first step in data anonymization is to remove all attributes from the dataset
that are directly identifying, e.g. social security numbers [FWFY10]. However, the
remaining attributes are potentially identifying if used in combination [Swe02a]. Thus,

2 Background



CHAPTER 1: Introduction and Objectives

(a) Suppression (b) Masking

(c) Categorization (d) Generalization

(e) Aggregation

Figure 1.1: Example transformations for different attributes using the different trans-
formation methods.

the next step, which is more challenging, is to transform these so-called quasi-identifiers
in such a way that it becomes very difficult for an adversary to link an identified or
identifiable individual to the dataset and thus disclose sensitive information about
this individual [NS08,Swe02a]. This process typically involves different transformation
methods, which can also be used in combination.

Figure 1.1 shows example transformations for the transformation methods described
as follows. Aggregation is a method where attribute values across multiple records
are transformed into a common aggregate. In the example, the values of the attribute
age were aggregated using the arithmetic mean. Suppression is a method where
complete attribute values or even whole records are removed from the dataset. In
the example, the values of the attribute marital status were suppressed (indicated by a
semantic-free placeholder “*”). Masking is a method where attribute values or certain
characters of these values are replaced by modified or even new values. In the example,
the last two digits of the admission date, i.e. the day of the month, were masked by
replacing them with a semantic-free placeholder. Categorization is a method where
continuous attribute values are mapped to categories. In the example, the values of
the attribute height were replaced by the categories [160, 169] and [170, 179], respec-
tively. Generalization is a method where attribute values are iteratively replaced
by less specific or less precise values. In the example, values of the attribute Diag-
nosis were replaced based on the International Classification of Diseases (ICD) [Wor].
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Instead of using classifications, the replacement values can also be chosen based on
user-defined generalization hierarchies, which is a typical strategy when anonymizing
health data [EEDI+09, EEA13, XHD+15]. Generalization hierarchies are well-suited
specifically for categorical attributes but can also be used for continuous attributes,
e.g. by performing categorization [PKK16a].

Figure 1.2: Example user-defined hierarchy for the attribute city.

A simple example of such a user-defined generalization hierarchy for the attribute
city is shown in Figure 1.2. The hierarchy consists of a set of increasing levels, which
specify attribute values with decreasing precision. The values are first transformed into
countries, then continents, and finally, suppressed (indicated by the character ”*“).

Figure 1.3: Example transformation using Random Sampling.

Random Sampling is a method where the dataset is sampled, meaning records
are randomly selected. This method can decrease an adversary’s confidence about the
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success of a re-identification attack. In the example in Figure 1.3, records 1, 2, 6, 7, 8
and 10 were sampled.

Privacy Models
When sensitive individual-level data is collected collaboratively, shared with third par-
ties or used outside of their original purpose, the involved individual’s privacy must be
protected against adversarial attacks. Three main types of privacy disclosure scenar-
ios are commonly addressed by privacy models [LLZM10]: Membership disclosure
means an adversary can learn whether an individual’s information is contained in a
specific dataset [NAC07]. In this case, the adversary is not able to link an individual
to a specific data entry (row or column). However, they can infer information. For
instance, if the dataset only contains information about diabetes patients, the adver-
sary can infer that the found individual has diabetes. Attribute disclosure means
that an adversary can learn whether an individual’s information is in a specific set
of rows in a dataset [MKGV07]. Like membership disclosure, the adversary can infer
information about the individual without linking them to a specific data entry. For
instance, if the attacker can learn that the individual’s information is contained in a
set of records that share a particular sensitive attribute value, then the attacker can
learn this information. Identity disclosure, also termed re-identification, means an
adversary can link an individual to a specific record in a dataset [Swe01]. This im-
plies that the adversary can learn all sensitive information about the individual in the
dataset.

In addition to privacy disclosure scenarios, privacy models also address privacy threat
scenarios where factors such as objectives and intent, existing background knowledge
of adversaries, replicability, and distinguishability of the data to be protected play an
important role [Ema13]: In the Prosecutor model, it is assumed that the adversary
already knows that the data about a targeted individual is contained in a data set
(i.e. membership disclosure has been achieved pre-attack). The goal is to re-identify
this specific individual to learn which exact record belongs to the individual. To this
end, the distinguishability of records in the dataset regarding the quasi-identifiers can
be used to calculate the re-identification risk [PKK16b]. This is a worst-case scenario.
However, it has been shown that typically this method overestimates the risks [BJ12].
In the Journalist model, the adversary aims to re-identify an arbitrary individual
without prior knowledge about membership. Since individuals represented in a dataset
are typically a sample of a larger population, the assumption about background knowl-
edge of the journalist model is believed to be more realistic than that of the prosecutor
model. According to the journalist model, the re-identification risk can be calculated
using a population table. However, information about the whole population, meaning
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all individuals in the population, is typically not available and thus, determining the
risk of successful attacks according to the journalist model is difficult. In the Mar-
keter model, in this scenario, the adversary aims to re-identify as many arbitrary
individuals as possible without prior knowledge about membership. This attack can
only be worthwhile if a non-trivial number of records can be re-identified. Therefore,
according to the marketer model, the risk of successful attacks can be expressed as an
average of the re-identification risks of all records.

The primary threat from which datasets are typically protected is re-identification
[US 02,Eur16]. If successful, this type of attack can have significant legal consequences
for data owners in many jurisdictions worldwide. Several high-profile attacks aiming
at re-identification have shown that protecting against this type of attack is a complex
issue [Leo12,EJAM11]. For example, re-identification attacks can typically not be pre-
vented successfully by simply removing directly identifying attributes, such as social
security numbers or names [DESG11,NS08,Swe01]. For this reason, more formal pri-
vacy models are required, which typically employ mathematical and statistical models
to quantify the privacy risks.

k-anonymity is the most well-known privacy model for protecting data from re-iden-
tification or identity disclosure. A dataset is said to be k-anonymous if, regard-
ing the quasi-identifiers, each record is indistinguishable from at least k − 1 other
records [Swe01]. To this end, the model forms equivalence classes by grouping records
according to the quasi-identifier values. Records within the same equivalence class
cannot be distinguished from each other. Consequently, an adversary can only link an
individual to a group of records; thus, the probability of correct linkage is no more
than 1/k. k-anonymity belongs to the class of privacy models, which account for the
distributions of attribute values within equivalence classes (also called groups) in a
dataset (also called sample). k-anonymity enforces the risk threshold on the groups of
the given sample and thus aims to protect from prosecutor attacks. k-anonymity and
other similar models addressing re-identification risks constrain the quasi-identifiers
but ignore sensitive attributes. If all records of one group share the same sensitive
attribute value, an attacker can learn this information about an individual without
linking the individual to a specific record. In order to counteract this problem, vari-
ous extensions of the k-anonymity privacy model exist. The most well-known privacy
models for protecting data from attribute disclosure are ℓ-diversity and t-closeness.
ℓ-diversity requires that each equivalence class contains at least ℓ “well-represented”
distinct values for each sensitive attribute [MKGV07]. The idea behind t-closeness is
that equivalence classes must not “stand out”. Therefore, the model requires that the
distance between the distribution of sensitive attribute values in each equivalence class
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and the distribution of the sensitive attribute values in the original dataset is less than
t [LLV07].

δ-presence is one of the most well-known privacy models to protect against mem-
bership disclosure. The model requires that the original dataset be modelled as a subset
of a larger dataset that represents the adversary’s background knowledge. Then, an
anonymized dataset is said to be (δmin, δmax)-present if the probability that an in-
dividual from the larger dataset is contained in the smaller dataset is between δmin

and δmax [NAC07]. According to the δ-presence model, successful prevention of mem-
bership disclosure can indirectly lead to the prevention of identity and attribute dis-
closure. The reason is that if the probability of an individual being present in the
dataset is at most δ %, then the probability of linking this individual to their record
(re-identification) and sensitive attribute is also δ %. ϵ-differential privacy(ϵ-DP) is
a strong privacy model that protects data from re-identification, attribute, and mem-
bership disclosure. Unlike most other privacy models, ϵ-DP does not apply privacy
constraints to the dataset but to the mechanisms with which it is processed. The idea
of ϵ-DP is that participating in a statistical database should not substantially affect
an individual’s privacy. To this end, the model guarantees that the anonymized data
is independent from the contribution of individual records [Dwo11]. All previously
described privacy models aim at minimizing privacy disclosure risks by guaranteeing
specific levels of privacy protection. However, they do not account for the likeliness
of an attack. The game-theoretic approach allows reasoning about re-identification,
meaning how likely an attack will occur. To this end, the re-identification problem is
analyzed from an economic perspective, assuming that an adversary will only launch
an attack if tangible economic benefit is involved [WVX+15,PGW+17].

Privacy model Disclosure model Threat model
k-anonymity Identity All
ℓ-diversity Attribute All
t-closeness Attribute All
δ-presence Membership Journalist, Marketer
ϵ-DP All All
Game-theoretic model (prosecutor) Identity All
Game-theoretic model (journalist) Identity Journalist, Marketer

Table 1.1: Categorization of privacy models.

Table 1.1 shows an overview of all previously described privacy models and their
categorization into disclosure as well as threat models. We note that if a privacy
model protects a dataset against prosecutor attacks, that directly implies protection
against journalist attacks. Moreover, the same applies when a privacy model protects
against journalist attacks, i.e., it also protects against marketer attacks. Many more
privacy models exist in the literature, as shown in a systematic survey by Wagner et
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CHAPTER 1: Introduction and Objectives

al. [WE18]. However, this section focused on the privacy models integrated in ARX, an
anonymization tool specifically tailored towards biomedical data [ARX]. The reason
is that this thesis exists in the context of ARX as it is embedded in the development
thereof.

Data Quality Models
Data anonymization inherently leads to the removal of information. Here, one opti-
mization goal is to keep the data as useful as possible. However, formally defining the
usefulness of data is a complex issue, as the nature of usefulness heavily depends on
the use case. In the literature, two different classes of data quality models have been
proposed, i.e. general-purpose quality models and special-purpose quality models. In
the typical scenario where the purpose of the data, i.e., how the data will be analyzed,
is unknown in advance, the former class can be used. In contrast, the latter class may
be suitable if the usage scenario is known pre anonymization.

In the context of general-purpose quality models, Fung et al. propose measuring the
similarity between the original and the anonymous data, where similarity can be de-
fined differently [FWCY10]. Domingo-Ferrer et al. suggest a proper definition should
capture the amount of information loss for a reasonable range of data uses [ZB15].
They define a dataset as having little loss of information if it is analytically valid and
analytically interesting. The former property requires that specific statistical charac-
teristics be preserved. On the other hand, a dataset is analytically interesting if specific
attributes that are useful for further analyses remain intact [ZB15].

In contrast, if the usage scenario is known in advance, this knowledge can be taken
into account during data anonymization to retain critical information. For example,
consider the case where the data is used for statistical classification, a common use case
for individual-level data, where the value of a predefined class attribute is predicted
from a given set of values of feature attributes. In this context, it is essential to
minimize the information loss of features that are most discriminating for the labels
in the target attribute [FWCY10]. To this end, it is essential to distinguish between
the removal of noise and the removal of structure. While removing noise is uncritical,
removing structure may impact the suitability of data for this use case, i.e. statistical
classification [FWY07].

Formal quality models either calculate data quality or a reduction of data qual-
ity. Reduction of quality quantifies how much information has been lost during the
anonymization process, i.e., the original data set has a reduced quality value of 0 %,
while this value is 100 % for a completely generalized or suppressed data set. Data
quality, also termed utility or Precision, indicates how much information remains in
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the anonymized data set. Both measures can be used interchangeably by defining
reduction of quality as the opposite of data quality and vice versa.

Figure 1.4: Categorization of quality models

Quality models can be interpreted in different ways. For example, there is a dis-
tinction between class-based and attribute-based models. While the former calculate
the reduction of quality based on the sizes of the equivalence classes resulting from the
anonymization process, the latter are based on the individual reduced quality values
of each attribute of the data set. Then, as the name implies, attribute-based quality
models retrieve one value for the reduced quality value of each attribute. As these
values are possibly mapped into different intervals, they may be normalized to impose
an equal weight on them. Lastly, the values obtained for each attribute in the data set
might be aggregated differently to compile a quality value for the overall data set.

Figure 1.4 shows how seven general-purpose and one special-purpose quality models
are categorized into the classes described above. It can be seen that classes may overlap.
For instance, the Ambiguity metric is considered class-based as well as attribute-based.
The remainder of this section comprises a detailed description of each of the eight
quality models. Again, the focus lies on models which were integrated in ARX.

Average Equivalence Class Size (AECS) is a class-based and syntactic quality
model proposed by LeFevre et al. It measures information loss based on the size of
the equivalence classes resulting from a transformation. Thus, it only considers cardi-
nalities and does not account for the actual values of the quasi-identifying attributes
in the input data set [LDR06a]. Discernibility is a class-based and syntactic quality
model introduced by Bayardo et al. Discernibility also measures information loss based
on the size of the equivalence classes resulting from a transformation. It introduces
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a penalty for suppressed entries based on how many tuples in the transformed data
set are indistinguishable from it [BA05]. Height is an attribute-based and syntactic
quality model that measures information loss based on the overall distortion resulting
from a transformation. It introduces a penalty for each instance of a value trans-
formed, and then the overall distortion is the sum of all penalties. [Sam01]. Precision
is an attribute-based and syntactic quality model proposed by Sweeney [Swe02a]. It
measures data quality by reporting the amount of distortion in a transformed data
set. The Precision metric is an extension of the Height metric. For each entry of the
generalized data set, the ratio of the generalization level of an attribute to the height of
the attribute’s generalization hierarchy denotes this entry’s distortion. The minimum
generalization level is always 0 and represents the original data values. We note that as
Precision measures data quality, the sign of the results can be inverted (by multiplying
them with −1) to obtain a value for information loss. Loss is an attribute-based and
syntactic quality model introduced by Iyengar [Iye02], which calculates the informa-
tion loss. This measure considers the transformed data set and the given generalization
hierarchies, where the idea is to quantify the loss induced by a transformation when
an original value cannot be disambiguated from another value. For this purpose, each
value of the transformed data set is penalized with a factor between 0 and 1, where
the higher the factor, the more values cannot be distinguished from each other, i.e.,
are equal.

De Waal and Willenborg proposed the use of entropy as a measure for information
loss in [DWW99]. The authors consider the entropy measure with global recoding
and local suppression. In [GT09], Gionis and Tassa introduce a slight variation called
Non-Uniform Entropy (N.-U. Entropy), which, in contrast to the initially pro-
posed measure, increases monotonically with increasing generalization. This measure
is frequently used in scientific works, e.g., in [DFT01], [EEDI+09], and it has also re-
cently been recommended in a guideline for anonymizing health data [EEA13]. How-
ever, the measure proposed by [GT09] is unsuitable for generalization and suppression,
as the latter type of recoding may increase Non-Uniform Entropy and thus reduce
information loss. As a consequence, a variation of Non-Uniform Entropy can be used
as an attribute-based and semantic quality model. The model adopts the principles
from [DWW99] by separately analyzing tuples from the data set that have been sup-
pressed and tuples from the data set that have been generalized. Kullback-Leibler
Divergence (K.-L. Divergence) is a class-based and semantic quality model that is
based on information theory and is a measure of the difference between two probability
distributions. Precisely, it measures the information lost when one distribution is used
to approximate the other. Li et al. ( [LLV07]), Machanavajjhala et al. ( [MKGV07])
and most recently, Xia et al. [XHD+15] used the KL-divergence in order to measure
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the data utility when anonymizing data via generalization. Ambiguity Metric, a se-
mantic quality model that is both attribute- and class-based, was introduced by Nergiz
et al. The metric defines the information loss as the average size of the Cartesian prod-
ucts of all generalized entries for each tuple in the data set [NC06]. In other words, it
calculates the number of possible combinations of input tuples that a generalized tuple
stands for.

Classification Metric (CM), a syntactic and class-based quality model, was in-
troduced by Iyengar specifically for statistical classification. The idea is to minimize
the loss of information of feature attributes best suitable for discriminating the target
attribute [Iye02]. To this end, first equivalence classes are built by grouping records
with the same feature attribute values. Then, records are penalized if they are sup-
pressed or have a class label different from the majority class label of this class.

Anonymization Algorithms
As described in Section 1.1, the first step in data anonymization typically involves re-
moving all directly identifying attributes from the dataset, followed by a more complex
step where quasi-identifiers are transformed in such a way that it becomes very hard to
successfully utilize these attributes for attacks. This step typically involves quantify-
ing privacy risks and data quality by mathematical privacy and quality models. Then,
data anonymization algorithms implement a search procedure, where all possible
outputs are traversed in order to find a solution which satisfies privacy risks accord-
ing to a predefined privacy model while at the same time providing “optimal” data
quality according to a quality model. Figure 1.5 illustrates this abstract mechanism.

Figure 1.5: Abstract mechanism used by anonymization algorithms
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As described in Section 1.1, different types of transformation methods for trans-
forming the quasi-identifiers exist. However, health data anonymization algorithms
typically utilize generalization hierarchies. Here, the search space is typically modelled
as a generalization lattice, which is a set of all possible combinations of generaliza-
tion levels for all quasi-identifiers where each element represents a specific combina-
tion. The elements of the generalization lattice and, thus, the size of the search space
and the amount of data distortion depend on the generalization scheme. The most
widespread scheme is the so-called full-domain generalization scheme, where all
values of a quasi-identifier are transformed to the same level of its hierarchy [LDR05,
Sam01, Swe02b]. For instance, in Figure 1.2, if an occurrence of the city Munich is
transformed to Germany, then it also requires transforming occurrences of Chicago
to USA. Lesser known and used generalization schemes are subtree generalization
and sibling generalization. In subtree generalization, all values represented by
the same subtree of the hierarchy are either transformed to the same level or left
unchanged [BA05, FWY05, FWY07, Iye02, LDR05]. For example, if an occurrence of
the city Munich is transformed to Germany, then it also requires transforming Berlin,
i.e. all other values represented by this subtree, to the same level. However, it does
not require transforming occurrences of the city of Chicago to the same level, as this
value belongs to a different subtree. Sibling generalization is similar to subtree
generalization as it considers values subtree by subtree. However, while subtree gen-
eralization requires all values represented by a subtree to be treated the same, sibling
generalization additionally allows for single values to be left unchanged [LDR05]. For
example, suppose an occurrence of the city of Munich is transformed to Germany. In
that case, an occurrence of the city of Berlin may or may not be transformed to
the same interval. All three generalization schemes require that all instances of a
value are treated the same. For example, if the city of Munich occurs in multiple
rows of a dataset, all instances are transformed in the same manner or left unchanged.
This scheme is called global recoding. In contrast, local recoding, also called cell gen-
eralization, allows for different instances of the same value to be transformed to
different levels of the hierarchy or even left unchanged [LDR05,WLFW06,XWP+06].
For example, the first instance of Munich may be transformed to level 1 of its hier-
archy (Germany), while the second instance may be transformed to level 2 (Europe).
Full-domain generalization, as well as subtree generalization, are single-dimensional
generalization schemes, which means each quasi-identifier is transformed separately.
In contrast, quasi-identifiers are generalized in groups in the multidimensional gen-
eralization scheme. For example, instead of transforming values of the attribute
country first, followed by transforming values of the attribute sex, both attributes
are transformed in one step [LDR06a, LDR06b]. This scheme allows for different in-

12 Background



CHAPTER 1: Introduction and Objectives

stances of the same attribute value to be transformed to different generalization levels.
For instance, <Munich, Female> might be transformed to <Germany, Female> while
<Munich, Male> might be transformed to <Europe, Male>.

Generally, global recoding schemes produce smaller search spaces but higher data
distortion than local recoding schemes. In particular, full-domain generalization has
the smallest search space but the largest distortion. On the other hand, cell suppres-
sion has the largest search space but the least distortion. In order to decrease data
distortion, generalization schemes are often combined with suppression schemes. The
most common is record suppression, where complete records are removed from a
dataset [BA05, Iye02, LDR05, Sam01]. Value suppression means that all instances
of a specific value are removed (e.g. all occurrences of the age value 20) [WFP07],
while during cell suppression (also called local suppression), only some instances of
a given value are removed [Cox80,MW04].

Figure 1.6: Example generalization lattice for the attributes city and sex. The first
digit of the tuple refers to the former attribute and the second digit to the latter.

Figure 1.6 shows the generalization lattice constructed from the hierarchies for the
attributes city and sex. While the hierarchy for the attribute city consists of 4 levels
(0 - 3), as shown in Figure 1.2, the hierarchy for the attribute sex comprises two levels
since values can only be suppressed. Each node represents a single transformation,
which defines generalization levels for all quasi-identifiers in the dataset. In the above
example, quasi-identifiers consist of the attributes city and sex. An arrow is drawn
between a transformation and its successor to indicate that the successor represents
a direct generalization of this transformation and that the two transformations differ
by precisely one generalization level. The transformation (0,0) represents the original
dataset, meaning neither values of the attribute city nor values of the attribute sex are
generalized. In contrast, the transformation (3,1) represents the maximal generaliza-
tion, which means that both attributes are generalized to the maximal level of their
respective hierarchies.
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Figure 1.7: Example dataset including output datasets for attributes city and sex when
applying generalization and suppression.

Figure 1.7 shows output datasets for the transformations (1,0) and (0,1) result-
ing from applying full-domain generalization to the input dataset, followed by record
suppression. Referring to the abstract depiction of data anonymization algorithms in
Figure 1.5, the “optimal” transformation can be found by traversing the lattice node
by node. For each node, the transformation is applied to the dataset (Step 1). All
records that violate the privacy constraint are suppressed (Step 2), and eventually, the
quality is calculated according to a given privacy model. Finally, the transformation
with the highest quality is returned as the solution.

1.2 Challenges
Secondary use of data in the biomedical domain, which means using data for research
when it was initially collected for clinical care, is gaining support from businesses
and governments alike [McK11,WDA+16,Com14]. Using data for biomedical research
bears significant potential in areas such as epidemiology, public health, quality im-
provement or data privacy [FAWJ18]. However, secondary use of health data poses
quite challenging in practice, mainly due to a lack of data quality. Reasons for data
quality issues are complex. First, the incentive for data collection in the first place
may have an impact on the accuracy. For instance, financial or contractual obligations
mandate consistent data entry; the resulting data may be more accurate than when
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data is only used for internal purposes [ASS+11]. Typically, priorities regarding data
collection in the clinical vs. research setting may differ significantly. Consequently, it is
not surprising and thus generally accepted that clinical data are not collected with the
same attention as research data [WW13]. Further, data quality issues may arise from
inadequate data entry, which can stem from both software and human deficiencies. For
instance, the software might exude a flawed design where multiple fields are provided
for the same data point. Moreover, a lack of documentation relating to data entry
might lead to a difference in documentation practices among different personnel, e.g.
the same field could be used for documenting a scheduled as well as the actual date of
an event. Similarly, if the used vocabulary is not standardized, artificial differences in
data entries could arise [ASS+11].

As described above, data quality issues are very common when data is used for
secondary purposes. When this data is used in a setting where data anonymization
is necessary, it is easy to see that these quality issues become amplified because data
anonymization inherently leads to loss of information. Therefore, minimizing the de-
crease in data quality during anonymization is crucial. As described in section 1.1,
quantifying and adequately utilizing the concept of data quality in the data anonymiza-
tion context is a complex task. Therefore, this thesis addresses three different problem
areas relating to data quality:

C1. Modelling data quality for general purposes The usefulness of data often
depends on the use case. Therefore, modelling data quality becomes a complex issue
when the usage scenario is unknown. To overcome this, measuring data quality requires
formal models which quantify data quality for general purposes. A multitude of such
data quality models have been proposed in the literature, which typically define an
increase in information loss as well as a decrease in data quality in order to be able to
distinguish interesting from uninteresting data. However, prior to the work presented
in this thesis, it was unclear which quality model is suited best for which usage scenario
because a systematic evaluation was missing.

C2. Modelling data quality for specific purposes Even when the usage scenario
is known in advance, modelling data quality is a non-trivial issue. For instance, in the
context of privacy-preserving statistical classification, prediction models are built from
anonymized data to predict a class attribute’s value from a set of feature attributes.
Here, it is important to minimize the loss of information for the features as these are
most discriminating for a specific class attribute.

C3. Enabling anonymization tools to optimize their output regarding dif-
ferent quality models Assuming that the two problems mentioned above can be
solved by finding the proper formalization of data quality in a specific context, the next
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problem that arises is that in order to properly utilize these quality models, software
support is needed. As described in section 1.1, data anonymization is a complex task
involving transformation and privacy models as well as anonymization algorithms and
quality models. Since data quality heavily depends on the usage scenario, it is crucial
that data anonymization software supports a wide range of models and combinations
thereof. In order to achieve this goal, the software has to be very flexible in its design
and provide scalability when handling high-volume and high-dimensional data.

Solution proposals to overcome the challenges addressed in this doctoral thesis have
been published by this thesis’ author (with a first or shared first authorship) as full
papers in international, peer-reviewed journals and conference proceedings.
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Methods and Solutions

As described in section 1.2, this doctoral thesis addresses challenges in three different
problem areas related to data quality in the context of data anonymization. For each
of these problem areas, a solution proposal has been published as a full paper in
an international, peer-reviewed journal or conference proceeding. We refer to these
solution proposals as contributions Ref.A.1, Ref.A.2 and Ref.A.3.

Figure 2.1: Visual representation of the three problem areas, or challenges, presented
in the previous section in relation to the solutions Ref.A.1 to Ref.A.3, described in this
section.

The solutions of all three contributions have been integrated into and released with
the anonymization tool ARX [ARX]. ARX has been mentioned in national and in-
ternational guidelines addressing various aspects in the context of privacy protection
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and data anonymization, such as quantitative risk assessment [Eur14], data sharing in
general [Eur18], privacy-preserving implementations [Eur15], best practices [EMOT16]
and many more [Off17, Min15, BK17, Per18, Pol18, Dut18, Min16]. Furthermore, ARX
has been integrated in a multitude of different software collections [Fin18,Res19,Uni18,
LMU19, Uni19, Kor17, TMF16, Tem17, ZB15, Tor17, RL19, KHF19] and has been used
in several research projects [CCZYM17, KHC+16, ABMS15, JKH+17, SKH16, LZJ+16,
XJC+15,PMG+18].

Figure 2.1 shows a visual representation of the three problem areas, or challenges
C1 - C3, introduced in the previous chapter and their relation to the three solution
proposals described in this chapter. Since all three solution proposals have been inte-
grated into the software ARX, C3 is addressed by all three proposals. Furthermore, it
can be seen that Ref.A.1 and Ref.A.2. mainly address C1 and C2, respectively, while
Ref.A.3 addresses both C1 and C2.
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2.1 Evaluation of General-Purpose Data Quality
Models

As described previously, measuring data quality is particularly challenging when the
usage scenario is unknown at the time of anonymization. Various general-purpose data
quality models have been proposed in the literature, but it is unclear which model is
best suited for which usage scenario.

In Ref.A.1, we have taken the first step towards a guideline for selecting an appro-
priate quality model. For this purpose, we have implemented seven general-purpose
quality models, i.e. AECS, Discernibility, Precision, Loss, Ambiguity, Kullback-Leibler
Divergence, and Non-Uniform Entropy, into ARX. We used each quality model to
anonymize a publicly available dataset containing patient discharge data according to
the k-anonymity privacy model.

The overall goal of this work was to conduct an extensive experimental comparison
in order to investigate (1) how the quality models influence the transformation of data,
(2) how anonymized data relate to each other when obtained by using different quality
models, and (3) how well-suited for real-world applications are anonymized data when
obtained by using different quality models. We quantified the influence of each quality
model on the transformation of data by the amount of generalization and suppression
used during the anonymization process. In order to address the second question,
we used each model to measure the data quality of the optimal solutions that were
obtained from the other models. Finally, we selected a typical real-world application
scenario, i.e. statistical classification, to evaluate the third research question. For this
purpose, we used logistic regression to build privacy-preserving models representing
the discharge dataset in order to predict a specific class attribute, i.e. the charge of
hospital stays.

Our experimental evaluation showed that (in general) different models are best
suited for different application scenarios. However, we also found that one general-pur-
pose quality model, Non-Uniform Entropy, is well-suited for general-purpose usage
scenarios. This is reasonable, as anonymized data contained instance-level as well as
schema-level information when using this model. Moreover, we found that statistical
power decreased by only 10 %, and the prediction model exhibited good accuracy.

Individual Contributions of Thesis Author: The thesis author has signifi-
cantly contributed to the development and conceptual design of the research project.
Moreover, the author has contributed to the gathering, collection, acquisition or provi-
sion of data, software or sources. Further, the author has significantly contributed to
the analysis and evaluation or interpretation of data, sources and conclusions drawn
from them. Finally, the author has contributed to the drafting of the manuscript.
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2.2 Data Quality Models for Machine Learning
Machine learning models can be built from clinical, paraclinical and biomolecular data
to detect unknown relationships between biomedical parameters. In this scenario,
individual-level data of patients and probands will not be made public. However, the
results from the machine learning process, i.e., the models, may be shared across sites.
Therefore, it has to be ensured that the so-called prediction models cannot be used
to extract sensitive information. A common solution to this problem is to anonymize
the original data and use the results to build so-called privacy-preserving prediction
models.

A variety of different data anonymization tools have been developed in recent
years. At the same time, progress has been made with methods for measuring data
quality in the context of machine learning. However, most tools lack support for
privacy-preserving machine learning methods. In Ref.A.2, we aimed to bridge this
gap by integrating various machine learning techniques into ARX. In previous work, we
extended ARX with a method for optimizing the quality of anonymized data for use as
training data for building prediction models. In addition, we implemented supervised
learning to build logistic regression models from anonymized data.

The previous implementation of the quality model had major limitations: Only one
class variable was permitted, the class variable had to be considered by the privacy
model, and no transformations could be applied to target variables. We overcame
these limitations by re-implementing a considerable portion of the internal code of the
software. Further, we implemented a generic interface to support random forest and
naïve Bayes in addition to logistic regression prediction models. Then, we integrated
the approach with existing privacy models, such as Differential Privacy, and we created
compatibility with further data transformation techniques, such as data aggregation.
Finally, we improved the ability to assess prediction performance by adding various
metrics and visualizations. To illustrate our solution’s high degree of versatility, we pre-
sented three case studies. We showed that our tool is able to create privacy-preserving
prediction models when different types of risks have to be mitigated in order to protect
the individual’s privacy.

Individual Contributions of Thesis Author: The thesis author has signifi-
cantly contributed to the development and conceptual design of the research project.
Moreover, the author has contributed to the gathering, collection, acquisition or provi-
sion of data, software or sources. Further, the author has significantly contributed to
the analysis and evaluation or interpretation of data, sources and conclusions drawn
from them. Finally, the author has contributed to the drafting of the manuscript.
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2.3 Efficient Anonymization While Considering Dif-
ferent Data Quality Models

Data anonymization is a complex task as the effectiveness highly depends on the con-
text. For instance, the data’s dimensionality, volume and statistical properties must
be considered. Many different algorithms, models and methods have been proposed
in the literature. However, most algorithms only support a specific combination of
models. Moreover, implementations are lacking, and the number of easy-to-use tools
is small.

In Ref.A.3, we describe how we have extended ARX with a novel approach that
enables the tool to support an (almost) arbitrary combination of quality and privacy
models as well as transformation methods. The basis of ARX is a globally-optimal
search algorithm which applies record suppression and full-domain generalization in
order to transform the input data. Generalization is based on user-defined hierarchies.
This design enables high flexibility in terms of data anonymization techniques, i.e.
different privacy and quality models can be plugged into the system. However, it
is quite inflexible when it comes to data transformation methods, i.e. support for
methods besides global generalization is inadequate, which leads to data quality loss.

To overcome these limitations, we have designed and implemented an approach in
which the basic algorithm of ARX is applied to different subsets of the dataset in an
iterative manner. The main advantage is that with this approach, different generaliza-
tion schemes may be applied to different subsets of the data, effectively enabling local
generalization in addition to global generalization. This leads to a reduction of gener-
alization overall and, thus, better data quality. Moreover, this approach facilitates the
combination of almost arbitrary privacy and quality models, as well as transformation
methods.

To emphasize the potential of our new approach, we conducted an extensive exper-
imental comparison with other data anonymization tools using six different real-world
datasets. Here, we focused on multi-dimensional and local generalization. Our re-
sults show that ARX often outperforms the competitors in terms of data quality and
scalability.

Individual Contributions of Thesis Author: The thesis author has signifi-
cantly contributed to the development and conceptual design of the research project.
Moreover, the author has contributed to the gathering, collection, acquisition or provi-
sion of data, software or sources. Further, the author has significantly contributed to
the analysis and evaluation or interpretation of data, sources and conclusions drawn
from them. Finally, the author has contributed to the drafting of the manuscript.
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Discussion

This thesis presents solutions for different challenges related to data quality in the
context of data anonymization. This chapter summarizes and concludes the work.

3.1 Principal Results

The starting point for the research in this thesis was based on the assumption that
data quality depends on the usage scenario. We investigated whether certain quality
models are suited for specific usage scenarios and whether certain quality models are
fit for general purposes (Ref.A.1). Our results indicated that different quality models
are or are not suitable for different application scenarios. For instance, Discernibility
might be suitable for anonymizing small datasets (e.g. data about rare diseases). On
the other hand, AECS might not be the best choice for predictive modelling. However,
our results also indicate that Non-Uniform Entropy is best suited for general-purpose
scenarios. Moreover, we selected one specific purpose, i.e. machine learning, to inves-
tigate further (Ref.A.2), as previous work in this area had shown that anonymization
has a detrimental impact on data quality when used for machine learning tasks. By
implementing the ability to create privacy-preserving prediction models into ARX,
we were able to show that it is possible to achieve very good prediction performance
and still provide a high level of privacy at the same time. Finally, we realized that
software support for different methods is needed to cover a broad spectrum of usage
scenarios, particularly for various data quality and transformation models. Therefore,
in Ref.A.3, we presented a novel approach which enables ARX to support a multi-
tude of quality, privacy and transformation models in combination. By means of an
extensive experimental evaluation, we were able to show that ARX often outperforms
competitors. The success of our solution is illustrated by the fact that ARX has been
used in many different guidelines, software collections and research projects.
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3.2 Prior Work
Previous works investigating data quality in the context of data anonymization have
obtained conflicting results. Some have found that anonymization has only a small im-
pact on data quality, e.g. [KL06], while others found a non-trivial impact, e.g. [PE07].
Findings from further studies indicated that data quality may depend on both the
anonymization and the analysis methods [LP04, CK06]. Since then, one particu-
lar quality model, i.e. Non-Uniform Entropy, has frequently been recommended for
anonymizing biomedical data, e.g. in [EEA13]. In Ref.A.1, we were able to confirm
this finding, particularly for the general-purpose setting.

Name Discl. Type Opt. Transf. Metric
MinGen ID ✓ FDG,RS Precision
Binary Search ID ✓ FDG,RS Precision
Incognito (ℓ-diversity /
t-closeness) (AD) ID ✓ FDG,RS *
OLA ID ✓ FDG,RS *
K-Optimize ID ✓ STG,RS *
µ-argus ID ✗ STG,CS Precision
Datafly ID ✗ FDG,RS -
Improved Greedy Heuristics ID ✗ FDG,RS -
Genetic Algorithm ID ✗ STG,RS CM
Bottom-Up Generalization ID ✗ STG -
Top-Down Specialization ID ✗ STG,VS -
Mondrian Multidimensional ID ✗ MDG DM
InfoGain Mondrian AD ✗ MDG N.-U. Entropy
Top-Down Disclosure AD ✗ VS -
SPALM MD ✓ FDG DM
MPALM MD ✗ MDG Heuristics
Flash * ✓ * *
Lightning * ✗ * *

Table 3.1: Overview of data anonymization algorithms. The wildcard character “*”
indicates a flexible design or that multiple values are possible. For example, the Flash
algorithm may be used to counteract identity disclosure but also attribute disclosure.
(FDG: Full-Domain Generalization; STG: Subtree-Generalization; MDG: Multidimen-
sional Generalization; RS: Record Suppression; CS: Cell Suppression; VS: Value Sup-
pression

For the specific use case of machine learning, early research suggested that anonymi-
zation could compromise the usefulness of data [BS08]. Subsequently, methods were
developed to optimize anonymized data for training prediction models, disproving
this notion. These methods initially centered on basic anonymization techniques like
k-anonymity and simple prediction models in distributed settings [AP08, IKB09]. As
a result, assessing the effectiveness of anonymization methods for predictive mod-
elling became a common practice in academia [FWFY10, MKH17]. More recently,
a wider range of prediction and privacy models have been explored. Some intro-
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duced general-purpose anonymization algorithms to enhance prediction performance
[LLBW11,LTZS14], while others focused on privacy-preserving algorithms tailored to
specific prediction models [LC11, FWJ12]. In Ref.A.2, we built upon this research
and enhanced ARX with privacy-preserving machine learning techniques.

A great number of data anonymization algorithms have been proposed in the lit-
erature. Table 3.1 shows an overview of some of the most well-known algorithms,
including the disclosure threat they aim to prevent, as well as the transformation
scheme and quality models they are designed to use. The table includes both optimal
and heuristic algorithms. Notably, there are two outliers, i.e. Flash and Lightning.
Flash was originally proposed by Kohlmayer et al., together with a generic implemen-
tation framework. This enabled the usage of globally optimal algorithms that utilize
full-domain generalization to obtain k-anonymous datasets [KPE+12]. The framework
was adopted in ARX, which, later on, was extended to support further privacy and
quality models, as well as transformations and combinations thereof [PKLK14]. Fur-
thermore, Prasser et al. integrated the Lightning algorithm, a heuristic counterpart
to Flash [PBE+16]. As we showed in Ref.A.1-3, embedding those two algorithms
in the generic implementation framework of ARX enabled the software to support an
almost arbitrary combination of anonymization techniques.

However, most approaches are tailored towards one single threat scenario repre-
sented by a specific privacy model, and they calculate data quality according to one
specific quality model. Early data anonymization algorithms mainly address the iden-
tity disclosure threat. To this end, they focus on the k-anonymity privacy model.
Sweeney proposed an algorithm called MinGen, which utilizes full-domain general-
ization with record suppression and exhaustively searches the whole lattice to find the
globally optimal solution according to the Precision metric [Swe02b]. Samarati pro-
posed a Binary Search algorithm that exploits a lattice’s monotonicity property. In
this context, monotonicity means that if a node at level k is not k-anonymous, each
node at levels ≥ k is k-anonymous. Given the lattice’s height h, the algorithm starts
its search at level h/2. If a k-anonymous node is found, the search proceeds at the
lower level h/4. Otherwise, it proceeds at the higher level 3h/4. The search termi-
nates when a level with at least one k-anonymous node is found while no k-anonymous
node is at a lower level. In the case of multiple k-anonymous nodes at the same level,
the globally optimal solution is identified according to the Precision metric [Sam01].
LeFevre et al. presented the Incognito algorithm, which takes advantage of the fact
that if a transformed subset of the quasi-identifiers is not k-anonymous, neither is the
whole dataset [LDR05]. Thus, the algorithm creates generalization lattices of each
quasi-identifier subset and traverses them in a bottom-up, breadth-first manner. In
this process, if a smaller subset of quasi-identifiers is found to not be k-anonymous,
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each larger subset can be predictively tagged as not k-anonymous as well and thus
pruned from the lattice in further iterations of the search. As opposed to MinGen
and the Binary Search algorithm, Incognito has been designed as metric agnostic,
which means it can easily be adapted to include any quality model in order to find the
globally optimal solution. An algorithm called Optimal Lattice Anonymization
(OLA), which utilizes a divide-and-conquer approach, was proposed by El Emam et
al. [EEDI+09]. In order to speed up the search, the algorithm constructs sublattices
and uses predictive tagging to exclude nodes from the search. The algorithm starts
with the whole lattice and constructs sublattices for each node at level h/2 (the middle
of the lattice). One node is randomly chosen as a starting point. The node is checked
for anonymity; if it is not anonymous, all predecessor nodes are not anonymous either
and can be pruned (excluded from the search). In that case, the search continues
with a sublattice at level (h/4) + 1. On the other hand, if the node was anonymous,
the search is continued at level (h/4) − 1, where the process repeats. The algorithm
terminates when all sublattices have been visited. The choice of quality metric for de-
termining the globally optimal solution is relatively flexible; in their original work, the
authors have presented experimental results when using the Precision, Discernibility
and Non-Uniform Entropy metrics. Like MinGen, the Binary Search algorithm, Incog-
nito and OLA utilize full-domain generalization with record suppression. Bayardo and
Agrawal proposed K-Optimize, a globally optimal algorithm which utilizes record
suppression but subtree generalization instead of full-domain generalization [BA05].
Here, the search space is modelled by a set enumeration tree where each set is a power
set over special alphabets generated from an ordered attribute’s domain. The algo-
rithm starts at the most general node and utilizes pruning on the successors of this
node if it is found to be anonymous. The authors present the algorithm utilizing two
different metrics, i.e., the Discernibility and Classification metrics. However, like the
Incognito algorithm, K-Optimize has been designed as metric agnostic, which means
any quality model may be adopted.

While these five algorithms produce a globally optimal solution, it has been proven
that this problem is NP-hard [MW04]. To overcome this issue, various heuristic ap-
proaches have been proposed. These approaches guarantee a so-called minimal solu-
tion, i.e., a solution that is not optimal but “good enough” (e.g. [Swe98, BRK+13]).
The following section covers a selection of these heuristic algorithms.

Hundepool et al. presented µ-argus, where subtree generalization and cell suppres-
sion are greedily applied to combinations of domain values that occur less frequently
than the specified value of k. The minimal solution is chosen based on the Preci-
sion metric. The algorithm considers all possible combinations of attributes of size
two and three. Thus, the resulting dataset may not be protected from linkage when
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more than three attributes are used [HW96]. Datafly, proposed by Sweeney, was the
first algorithm to handle real-world datasets. The algorithm traverses the lattice in
a bottom-up manner, prioritizing transformations associated with the highest num-
ber of distinct values, and applies full-domain generalization and record suppression.
The algorithm terminates when a k-anonymous node is found [Swe98]. While a metric
guides Datafly’s search, it does not properly utilize a quality model or cost metric. The
Improved Greedy Heuristic, proposed by Babu et al., is an extension of Datafly
where the decision about which node to visit next is made based on the smallest pos-
sible minimal equivalence class size. When multiple transformations are found, the
algorithm falls back on Datafly’s strategy [BRK+13]. Based on a lattice built from
generalization hierarchies for a set of quasi-identifying attributes, Iyengar’s genetic
algorithm proposes to encode each lattice node as a “chromosome”. The algorithm
then utilizes subtree generalization and record suppression in order to find the “fittest”
solution, where fitness is a metric for the amount of data distortion measured by the
Classification metric [Iye02]. Wang et al. proposed a Bottom-Up Generalization
algorithm, which starts with the node representing the original data and then traverses
the lattice in a bottom-up manner to find a minimal solution for a classification task
while utilizing subtree generalization [WYC04]. The search is guided by the ILPG
metric [FWY05, FWY07], a so-called Trade-Off Metric. As the name implies, these
types of metrics aim to account for the trade-off between quality (or information) loss
and privacy gain, which lies at the core of every anonymization operation. Unlike
the bottom-up generalization algorithm, the Top-Down Specialization (TDS) al-
gorithm starts with the node representing a maximally generalized dataset. Then,
it selects specializations in a top-down manner until no further specialization can be
selected without violating the privacy constraint [FWY05,FWY07]. In addition to sub-
tree generalization, TDS employs value suppression. Like Bottom-Up Generalization,
the search is accompanied by a Trade-Off Metric, i.e. IGPL [FWY05, FWY07]. As
opposed to the previously described algorithms, Mondrian utilizes multidimensional
generalization in combination with local recoding. Introduced by LeFevre et al., the
algorithm searches in a top-down manner while splitting the attributes’ dimensions
into partitions based on the medium value of a chosen attribute. The algorithm termi-
nates when no more splits can be found without violating the privacy constraint, i.e.
the partition contains at least k records [LDR06a]. Along with the Mondrian Multidi-
mensional algorithm, the authors present a new quality model, i.e. the Discernibility
Metric, which they incorporate into the algorithm.

While all previously described algorithms aim to prevent identity disclosure, fewer
algorithms are available that target attribute disclosure. The algorithms ℓ-diversity
Incognito [MKGV07] and t-closeness Incognito [LLV07] have been proposed as an
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extension to the original Incognito algorithm to prevent attribute disclosure accord-
ing to the ℓ-diversity and t-closeness privacy model, respectively. Similarly, InfoGain
Mondrian is an extension of the original Mondrian algorithm utilizing the ℓ-diversity
privacy model [LDR06b]. Following the design of their counterparts, the Incognito
extensions can produce globally optimal results, while InfoGain Mondrian is a heuris-
tic algorithm which aims to calculate a minimal solution. Wang et al. introduced the
Top-Down Disclosure (TDD) algorithm, which aims to find a minimally suppressed
solution according to the ℓ-diversity privacy model. To this end, the algorithm starts
at the completely suppressed dataset and iteratively “discloses” domain values. Here,
the search is guided by the IGPL metric and terminates once no further solution exists,
which does not violate the privacy constraint [WFP07]. The most well-known mem-
bership disclosure algorithms, SPALM and MALM, have been proposed by Nergiz et
al. [NAC07]. Both algorithms aim to prevent membership disclosure, or table linkage,
by utilizing the δ-presence privacy model. SPALM exploits the monotonicity property
of the δ-presence privacy model, which states that when a dataset is anonymous accord-
ing to δ-presence, so is its generalized version if it uses full-domain generalization. The
algorithm starts with the maximally generalized dataset and creates specializations
guided by the Discernibility Metric. The previously described monotonicity property
is used to prune the search space. In contrast, MALM is a heuristic algorithm which
finds a minimally optimal solution by applying multidimensional generalization.

Both the computer science as well as the statistics community have been paying
special attention to data anonymization tools. Tools from the computer science field
typically include a mechanism that allows the user to specify a level of privacy risk a
priori, which will then be enforced on the data during anonymization automatically.
However, often, they focus on specific privacy, quality and transformation models. Ex-
amples are the UTD Anonymization toolbox [UT 12] and the Cornell Anonymization
Toolkit [Cor14]. In contrast, solutions from the statistics community do not support
the same level of automatism but have to be operated in a more manual manner. Typi-
cally, they facilitate an interactive process where transformation methods are specified
a priori, but privacy risks are quantified and measured a posteriori; which can be re-
peated until an acceptable risk level is achieved. Most well-known examples for these
types of tools are sdcMicro [Tem08] and µ-Argus [HW96]. In contrast, as mentioned
above, ARX is able to handle a multitude of different quality, privacy and transfor-
mation methods, as well as almost arbitrary combinations thereof. Furthermore, ARX
supports the non-interactive approach through automation, but it also facilitates in-
teractive anonymization by means of its graphical user interface in addition to the
application programming interface.
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3.3 Future Work
Our results from Ref.A.1 indicated that some general-purpose quality models are best
suited for different usage scenarios. One quality model in particular may be best suited
for general-purpose use, i.e. Non-Uniform Entropy. However, we also found that high
data quality, as measured by these models, does not necessarily correlate with the
actual usefulness of data. Therefore, we concluded in Ref.A.1 that in the future, it
should be worthwhile to investigate special-purpose quality models, which are models
that have been designed with a specific usage scenario in mind.

Ref.A.2. is a continuation of this work as the focus was on one particular special-pur-
pose quality model. It was specifically designed to capture data quality when the data
is used as a training set for creating prediction models to solve a classification task.
In this work, we were able to rebut findings from previous research, which stated that
due to insufficient data quality, anonymized data was not suitable for prediction tasks.
However, one major limitation of this work is that we could only support three types
of prediction models: logistic regression, naïve Bayes and random forest. Moreover,
while finding a suitable data quality model is challenging, selecting the correct predic-
tion model for a specific task is equally difficult. To overcome these limitations in the
future, ARX could be extended with the support of other interesting prediction models,
such as C4.5 decision trees or support vectors, as well as the support for benchmark
studies. These studies are often performed to experimentally compare different predic-
tion models in order to learn their suitability for specific tasks. Furthermore, besides
statistical classification, it could be interesting and beneficial to support other predic-
tion tasks that are particularly interesting in the medical domain, such as regression
and time-to-event analysis.

As described previously, a significant requirement of any data anonymization soft-
ware is the support of multiple usage scenarios. To achieve this, a variety of data
transformation, privacy and quality models, as well as algorithms, must be supported.
The work in Ref.A.3 provides a step towards a comprehensive data anonymization
tool where different methods and models can be used in combination. However, the
tool exhibits some limitations that should be overcome in future work. While ARX is
more scalable than other tools in the domain as it can process medium-sized datasets,
i.e. datasets containing up to 50 quasi-identifiers and up to a few million rows, this
is often not sufficient in the era of big data processing where datasets are multitudes
larger than that. There are different ways to tackle this issue. One possibility would be
to integrate more scalable data anonymization algorithms. Furthermore, an interesting
approach could be distributed data anonymization, where data as well as methods are
distributed across multiple machines in order to ease the load on a single machine.
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An Experimental Comparison of Quality Models for Health Data De-Identification

Johanna Eicher, Klaus A. Kuhn, Fabian Prasser

Institute of Medical Statistics and Epidemiology, University Hospital rechts der Isar, Technical University of Munich, Germany

Abstract

When individual-level health data are shared in biomedical 
research, the privacy of patients must be protected. This is 
typically achieved by data de-identification methods, which 
transform data in such a way that formal privacy requirements
are met. In the process, it is important to minimize the loss of 
information to maintain data quality. Although several models 
have been proposed for measuring this aspect, it remains 
unclear which model is best suited for which application. We
have therefore performed an extensive experimental 
comparison. We first implemented several common quality 
models into the ARX de-identification tool for biomedical data.
We then used each model to de-identify a patient discharge 
dataset covering almost 4 million cases and outputs were 
analyzed to measure the impact of different quality models on
real-world applications. Our results show that different models
are best suited for specific applications, but that one model 
(Non-Uniform Entropy) is particularly well suited for general-
purpose use.
Keywords:

Privacy, Personally identifiable information, Data 
anonymization 

Introduction

The collaborative collection and sharing of sensitive 
individual-level data has become an important aspect of modern 
biomedical research. The secondary use of health data for 
research purposes is a typical example [1]. To protect privacy 
in such scenarios, a broad spectrum of safeguards must be 
implemented, including data use agreements and fine-grained 
access control [2]. On the data-level, anonymization is a central 
safeguard. There are various ways and definitions. One 
important aspect is data de-identification, which focuses on 
protecting data from re-identification. For this purpose, datasets
are transformed in such a way that it becomes very difficult to 
link their records to identified individuals without investing a 
disproportionate amount of time and effort [3].
There are rule-based and computational approaches to the 
de-identification of health data. The Safe Harbor method of the 
US Health Insurance Portability and Accountability Act 
(HIPAA) [4] is a typical example for the former type. It 
���������	
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������
�����������������������������������
�����
alteration of attribute values that are associated with a high risk 
of re-��������
����� ������ �
���� 
��� �
������ In other 
jurisdictions, e.g. in Germany [3], regulations are less 
interpretable and computational methods to data 
de-��������
����� 
��� thus more important. Here, data is 
transformed (semi-) automatically to ensure that privacy risks 
are minimized.
The transformation of data inevitably leads to loss of 
information. Therefore, a balance has to be sought between an 
increase in privacy protection on one side and a decrease in data 

quality on the other. Privacy models and quality models are
used to quantify the two aspects. The contradiction between the 
two conflicting optimization goals is typically resolved by 
specifying a risk threshold for the privacy model. This reduces 
the de-identification process to a simpler optimization problem,
in which the objective is to make sure that risk thresholds are 
met while data quality is maximized [2].

Objective

Measuring data quality is a non-trivial issue as the nature of 
usefulness of data often depends on the use case [5]. As it is 
typically unknown in advance how the data will be analyzed,
models are needed, which quantify data quality for general-
purpose use. Fung et al. proposed to measure the similarity
(which can be defined in multiple ways) between the original 
and the de-identified data [6]. Domingo-Ferrer et al. noted that 
a quality model should capture the amount of information loss 
for a reasonable range of data uses [7]. They introduced two 
characteristics, analytically valid and analytically interesting,
which need to be present for a dataset to have little loss of 
information. In this context, analytical validity requires the 
preservation of certain statistical characteristics, while data is 
said to be analytically interesting if some useful attributes for 
further analyses remain intact [7].
A wide variety of general-purpose quality models, which aim 
to distinguish valid or interesting data from invalid or 
uninteresting data, have been proposed and used in scientific 
papers. Typically, these models define a decrease in data 
quality, as well as an increase in information loss, which can be 
quantified [5]. The notion of using information loss as an 
indicator for data quality is also prevalent in official statistics, 
namely the so-called score, which measures the trade-off 
between quality (information loss) and privacy (disclosure risk 
of the released data) [8]. Even though various papers have 
compared data de-identification algorithms, a systematic 
evaluation of quality models has not been conducted yet. 
Consequently, a guideline for selecting appropriate models for 
specific scenarios is missing. Potential application scenarios for 
de-identified data include the privacy-preserving sharing of 
data from research registries or health databases. De-identified 
data extracts may also be used to provide partners with an
overview of data, which is potentially available for sharing in a 
fine-grained form. Finally, de-identified data can also directly 
be used for advanced analytics and observational research, e.g. 
for building predictive models.
As a first step towards the development of a guideline, we have 
implemented and evaluated several general-purpose quality 
models with the intention of answering the following questions:

1. How do common models for measuring data quality 
influence the way in which datasets are transformed?

2. If different models are used, how are the obtained results 
related to each other?
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3. How well is de-identified data, obtained by using 
different quality models, suited for real-world 
applications?

Methods

Background

In data de-identification, the general attack vector assumed is 
linkage of a sensitive dataset with an identified dataset (or 
similar background knowledge about individuals). Identity 
disclosure (or re-identification) means that an individual is 
successfully linked to a specific data record [9]. This is a very 
important type of privacy breach, as it has legal consequences 
for data owners according to many laws and regulations 
worldwide. As a first step towards data de-identification,
directly identifying information (such as names) must be 
removed [10]. The remaining attributes, which may be used for 
linkage, are termed quasi-identifiers (or indirect identifiers, or 
keys). Such attributes are not directly identifying, but they may 
be used in combination for linkage. It is further assumed that 
they cannot simply be removed from a dataset, as they may be 
required for analyses and that corresponding information is 
likely to be available to an attacker. 

Figure 1 – Generalization hierarchies for “age” and “sex”

When data is de-identified, values of quasi-identifiers are 
transformed to ensure that the data fulfills privacy 
requirements. This can be performed with user-defined 
generalization hierarchies [11]. Examples are shown in Figure 
1. Here, values of the attribute “age” are transformed into 
intervals, with decreasing precision on increasing levels of 
generalization. Values of the attribute “sex” can only be 
suppressed. Generalization hierarchies are well suited for 
categorical attributes, but they can also be constructed for 
continuous attributes through categorization.

Figure 2 – Example showing different transformations 
represented as a generalization lattice

In order to transform the data, globally-optimal full-domain 
anonymization algorithms have been recommended. Such 
algorithms construct a search space in a structure called 
generalization lattice. An example for the lattice constructed 
from the hierarchies from Figure 1 is shown in Figure 2. The 
graph displays each node that represents a single 
transformation, which defines generalization levels for all 
quasi-identifiers. An arrow denotes that a transformation is a 
direct generalization of a more specialized transformation,
which means that it increments exactly one generalization level 
as defined by its predecessor. The original dataset (0, 0) is at 
the bottom, whereas the transformation with maximal 
generalization (2, 1) is at the top. The search space is then 

traversed to find a transformation, which results in output data 
that fulfills all privacy requirements, and at the same time 
provides optimal data quality.
Protection against re-identification is often implemented with 
the k-anonymity privacy model [9]. A dataset is k-anonymous 
if, regarding the quasi-identifiers, each record cannot be 
distinguished from at least k � 1 other records. This property 
can be used to define equivalence classes of indistinguishable 
records [12]. The basic idea is that an attacker will only be able 
to associate any individual with at least k records, which 
reduces the probability of correct linkage to not more than �

�
.

The left-most output dataset in Figure 2 fulfills 2-anonymity, 
which means the maximal re-identification risk of any record is 
50%.
In order to create de-identified datasets of high quality, attribute 
generalization can be combined with the suppression of data 
records. This means that records from equivalence classes,
which violate the privacy model (i.e. outliers), are 
automatically replaced with semantic-free placeholders. 
Because of record suppression, less generalization is required 
to ensure that the remaining records fulfill the privacy model, 
which increases the quality of de-identified datasets [13]. In the 
left-most dataset from Figure 2, one record has been suppressed 
in the output of applying the transformation (1, 0).
The aforementioned quality models are used to rank the 
different privacy-preserving output datasets and to select a 
transformation that maximizes data quality. The Loss model,
for example, measures data granularity by analyzing the extent 
to which the domain of an attribute is covered by the 
transformed values [14]. For the datasets shown in Figure 2, the 
reduction in data granularity is 30%, 16% and 50%, from left to 
right.

Quality Models

We have implemented the following quality models (QMs) into 
ARX, which is an open-source de-identification tool for 
biomedical data [13]:
� Average Equivalence Class Size (AECS) is a row-oriented 

model, which measures the average size of equivalence 
classes of indistinguishable records [15].

� Discernibility is a row-oriented model, which measures 
the size of equivalence classes combined with a penalty 
for suppressed records [16].

� Precision is a cell-oriented model, which quantifies data 
quality by reporting the amount of distortion of attribute 
values. Distortion is measured as the generalization level 
of an attribute value relative to the height of the attribute's 
generalization hierarchy [17].

� Loss is a cell-oriented model, which measures the 
granularity of data by determining the fraction of an 
attribute's domain that is covered by the transformed 
values [14].

� Ambiguity is a row-oriented model, which measures the 
degree of uncertainty in the resulting data [18].

� Kullback-Leibler (K.-L.) Divergence is a row-oriented 
model, which measures differences in the distributions of 
equivalence class sizes [19].

� Non-Uniform (N.-U.) Entropy is a column-oriented 
model, which measures differences in the distributions of 
attribute values induced by data transformations [20]. It 
is based on the concept of mutual information, which 
quantifies the amount of information that can be obtained 
about one variable by observing the other.
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Dataset

Table 1– Description of the patient discharge dataset

Attribute Type Description
Hospital ID Spatial A unique identifier 
Age Demographic Patient’s age at 

admission in years
Sex Demographic Patient’s sex
Ethnicity Demographic Patient’s ethnicity 
Race Demographic Patient’s racial 

background
ZIP Code Spatial Patient’s ZIP code of 

residence
County Spatial Patient’s county of 

residence
Length of stay Temporal Total number of days 

from admission to 
discharge

Admission quarter Temporal The calendar quarter the 
patient was admitted

Charge Sensitive Total charges for the 
stay

We used each quality model to de-identify a publicly available 
patient discharge dataset [21]. The dataset contains 3,985,166 
records and 10 attributes (Table 1). In our experiments, we have 
defined all spatial, demographic and temporal attributes as 
quasi-identifiers. As we will describe later, we used the
remaining sensitive attribute (charge) for determining the 
usefulness of output data.

Privacy Protection

We de-identified the dataset with attribute generalization and 
record suppression to produce output datasets, which fulfill the 
k-anonymity privacy model. We chose k =5, which is a typical 
parameter in the biomedical domain that specifies a
re-identification risk of not more than 20% for each record [2].

Experimental Design

We addressed the first research question, i.e. how quality 
models influence the way in which datasets are transformed, 
analyzing how much generalization and record suppression had 
to be used in the de-identification process to achieve optimal 
data quality. The former is expressed as a generalization degree
for each attribute, which is defined as the relative generalization 
level to which it was transformed. The latter is expressed as the 
number of removed records.
To answer the second question, i.e. how the results obtained 
with different models are related to each other, we used each 
model to assess the quality of the optimal solutions obtained 
with all other models. To make the different quantifications of 
quality comparable to each other, we normalized them: a value 
of 0% represents the original data and a value of 100% 
represents a dataset where all information has been removed.
Finally, to answer the third question, i.e. how well the 
de-identified data is suited for real-world applications, we 
analyzed the impact of the different methods of data 
transformation on typical use cases. Moreover, we employed 

statistical classification, which is a common application 
scenario for individual-level data [22]. The aim was to predict 
the values of a selected class attribute from a set of feature 
attributes. This is implemented with supervised learning, where 
a model is created from a training set. We used the discharge 
dataset to build logistic regression models [23], which were
able to predict the height of the bill for hospital stays, i.e.
whether the charge for a stay was below $10,000, between 
$10,000 and $50,000, or greater than $50,000.
To be able to quantify the analytical validity of the de-identified 
data, we created classifiers, which could be evaluated using the 
original input data; although they have only been trained with 
de-identified output data. For this purpose, we implemented the 
approach presented in [22] into ARX. For evaluating different 
predictors, we used 10-fold cross-validation. We normalized all 
resulting prediction accuracies into the range [0, 1], where 0% 
represents the accuracy of the trivial ZeroR method, which 
simply always returns the most frequent class value from the 
original dataset [23], and 100% represents the accuracy of a
logistic regression model trained with the original, unmodified 
input dataset.

Results

How do common models for measuring data quality 
influence the way in which datasets are transformed?

Table 2 – Generalization degrees and removed records (RR).

QM Generalization degrees RR
AECS 5�100%, 4�0% 25%
Disc. 6�100%, 1�57%, 2�0% 0%
Precision 1�100%, 1�60%, 1�33%, 6�0% 7%
Loss 1�67%, 1�60%, 1�57%, 1�33%, 5�0% 5%
Ambiguity 4�100%, 1�67%, 1�57%��	��!"��	�	#"��1�0% 0%
K.-L. Div. 2�	!!"��	�	#"��&�!" 21%
N.-U. Ent. 4�100%, 1�71%, 1�50%, 3�0% 10%

Table 2 shows the generalization degrees, and the number of 
removed records for the outputs obtained by de-identifying the 
discharge dataset with each quality model.
It can be seen that the fraction of removed records varied 
between 0% and 25%. With each quality model, at least one 
attribute was preserved as-is, while just the result obtained with 
the Loss model did not contain at least one completely 
generalized attribute. The dataset was transformed with high 
degrees of generalization when AECS, Discernibility, 
Ambiguity or N.-U were used. Entropy was used to quantify the 
loss of information. Just little generalization was used when 
quality was measured with Precision, Loss and 
K.-L. Divergence. No records were removed when 
Discernibility or Ambiguity were used, while a large proportion 
of the records was removed when quality was measured with
AECS and K.-L. Divergence. With the models Precision, Loss 
and N.-U. Entropy, the dataset was transformed with a balanced 
combination of both attribute generalization and record 
suppression.

Table 3 – Relative information loss in percent

QM used for de-identification
QM used for 
evaluation AECS Discernibility Precision Loss Ambiguity K.-L. Divergence N.-U. Entropy

AECS 0.0004 0.0096 0.0019 0.0024 0.0930 0.0011 0.0011
Discernibility 24.5553 0.0390 6.9322 5.4202 0.0424 20.5476 9.6655
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How are the datasets obtained with different models 
related to each other?

Table 3 shows how the different models assessed the quality of 
output data obtained using the other models. Each column 
represents the result of de-identifying the data with a single 
model as indicated. In each row, a model was used to assess the 
quality of the output obtained with the other models. 
Consequently, the highlighted values on the diagonal represent 
the optimum for each model.
It can be seen that, in terms of AECS, all results had comparable 
data quality. However, information loss was considered very 
low in general. When using Discernibility and Ambiguity,
results obtained with the other models were determined to be 
much worse and quality values differed by orders of magnitude. 
When using Precision and Loss, quality values were within a 
reasonable range, considering the transformations, which were 
applied to the data (Table 2). However, both models, as well as
K.-L. Divergence, measured big differences between the 
different solutions. When using N.-U. Entropy, the quality of 
the results from the different models was placed in a reasonable 
range, and different solutions were considered to be of rather 
comparable quality.

How well is de-identified data obtained with different 
quality models suited for real-world applications?

Before building the prediction models, we performed a feature 
selection process. The results showed that neither the age of a
patient nor the length of a stay was predictive for the prices 
charged by the hospitals. Therefore, we built classifiers, which 
predicted the charge from the spatial features hospital-ID and 
county of residence, the demographic parameters sex, ethnicity
and race, as well as temporal information in form of the 
admission quarter.

Figure 3– Relative accuracies of logistic regression models
The results obtained by training models with the output of using 
AECS, Loss and Ambiguity performed not very well with
prediction accuracies below 30%. Figure 3 shows the results 
obtained using the remaining quality models. It can be seen that 
when using Discernibility, Precision, K.-L. Divergence and 
N.-U. Entropy, the de-identification process had just negligible 
effects on the performance of the prediction models; we 
measured relative accuracies between 94% and 98%. This 
means that the models performed almost as well as models 
trained with unmodified input data.

Discussion

Our experiments indicate that different models are suited best 
for different application scenarios. When using the AECS 
model, datasets were de-identified with a high degree of 
generalization and a high degree of record suppression. 
Moreover, predictive models created from the output obtained 

with AECS exhibited sub-optimal performance. This shows
that the model is not suited well for real-world applications in 
biomedicine. When using the models Discernibility or 
Ambiguity, datasets were de-identified with attribute 
generalization only. This means that the models are suited well 
for de-identifying small datasets, e.g. from rare disease 
networks or data collections from sparsely populated regions,
where statistical power may otherwise be reduced 
disproportionally. Using the models Precision, Loss or 
N.-U. Entropy resulted in a balanced application of both 
attribute generalization and record suppression. This means that 
the output data is well suited for providing potential data 
sharing partners with an overview of available data, as instance-
level and schema-level information is preserved. Finally, the 
models Discernibility, Precision, K.-L. Divergence and N.-
U. Entropy are suited well for 
de-identifying data that is to be used for predictive modeling. 
The latter two models are based on stringent information 
theoretic foundations, and it is thus not surprising that output 
obtained with them is suited well for machine learning 
purposes. In contrast, we did not expect to obtain such good 
results when using Discernibility and Precision, as both are 
rather simple in nature.
Our results have also shown that the utility or usefulness of data 
does not necessarily correlate with the degree of quality 
measured by general-purpose models. In future work, we also 
plan to investigate special-purpose quality models, which are 
models that have been designed with specific usage scenarios 
in mind. 
The application scenario investigated in this article, statistical 
classification, is a well-known example of a specific application 
scenario. While our results have shown that data 
de-identified with general-purpose quality models can be suited 
well for this context, specialized quality models also have been 
proposed. They minimize the loss of information for features,
which are most discriminating for a specified class attribute [6].
This has been shown to optimize output data for classification 
purposes [16].
Another application scenario is the de-identification of
diagnosis codes for use in association studies between 
phenotypic and genotypic data [24]. The transactional 
characteristics of such data require that irrelevant inter-attribute 
relationships are removed, which can be achieved with 
specialized de-identification algorithms that also require 
specific data quality models. In future work, we plan to 
investigate such models, e.g. utility constraints [24] as well.

Conclusion

Non-Uniform Entropy is a quality model, which has frequently 
been recommended for de-identifying health data, e.g. by 
Emam et al. [25]. Based on the results of our experiments, we 
can confirm that the model provides the best results for general-
purpose usage. With this model, de-identified data contained 
instance-level and schema-level information. Moreover, 
statistical power was reduced by only 10%. Finally, by using 
de-identified data with optimal quality according to this model 
as a training set, we were able to build a statistical classifier 
with good prediction accuracy.

Precision 66.4688 72.8116 26.9124 28.0155 62.9714 39.6713 62.0003
Loss 66.4688 68.4609 18.4723 9.3869 49.3907 38.2668 56.4513
Ambiguity 24.5547 0.0280 6.9172 5.3887 0.0070 20.5426 9.6612
K.-L. Divergence 83.8570 96.7961 45.6947 49.2434 72.6321 27.8739 55.1117
N.-U. Entropy 62.4520 65.9717 48.9954 51.8416 81.0103 44.4787 39.4218
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Abstract

Background: Modern data driven medical research promises to provide new insights into the development and
course of disease and to enable novel methods of clinical decision support. To realize this, machine learning models
can be trained to make predictions from clinical, paraclinical and biomolecular data. In this process, privacy protection
and regulatory requirements need careful consideration, as the resulting models may leak sensitive personal
information. To counter this threat, a wide range of methods for integrating machine learning with formal methods of
privacy protection have been proposed. However, there is a significant lack of practical tools to create and evaluate
such privacy-preserving models. In this software article, we report on our ongoing efforts to bridge this gap.

Results: We have extended the well-known ARX anonymization tool for biomedical data with machine learning
techniques to support the creation of privacy-preserving prediction models. Our methods are particularly well suited
for applications in biomedicine, as they preserve the truthfulness of data (e.g. no noise is added) and they are intuitive
and relatively easy to explain to non-experts. Moreover, our implementation is highly versatile, as it supports binomial
and multinomial target variables, different types of prediction models and a wide range of privacy protection
techniques. All methods have been integrated into a sound framework that supports the creation, evaluation and
refinement of models through intuitive graphical user interfaces. To demonstrate the broad applicability of our
solution, we present three case studies in which we created and evaluated different types of privacy-preserving
prediction models for breast cancer diagnosis, diagnosis of acute inflammation of the urinary system and prediction
of the contraceptive method used by women. In this process, we also used a wide range of different privacy models
(k-anonymity, differential privacy and a game-theoretic approach) as well as different data transformation techniques.

Conclusions: With the tool presented in this article, accurate prediction models can be created that preserve the
privacy of individuals represented in the training set in a variety of threat scenarios. Our implementation is available as
open source software.

Keywords: Biomedical data, Prediction models, Machine learning, Classification, Privacy protection, Data
anonymization

Background
The digitalization of healthcare promises to enable per-
sonalized and predictive medicine [1]. Based on digital
data that characterize patients and probands at compre-
hensive depth and breadth [2], machine learning mod-
els can be created that are able to detect unknown
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relationships between biomedical parameters and enable
decision support systems by using the knowledge about
such relationships to infer or predict parameters (hence-
forth called target variables), e.g. diagnoses or outcomes
[3]. However, in such data-driven environments, it is
becoming increasingly challenging to protect the data
used for creating such models from privacy breaches [4].
Data privacy involves ethical, legal and societal aspects
[5] and different layers of protection mechanisms must
therefore be implemented [6, 7].
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reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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On the technical level, current efforts in the area of
machine learning for health data put a significant focus
on distributed learning which overcomes the need to
share data across institutional boundaries to create the
large datasets needed for training purposes [8, 9]. Cryp-
tographic secure multiparty computation approaches are
an important technique in this context [10]. Although
this solves some of the privacy issues, it is important to
realize that privacy protection must be addressed on mul-
tiple levels, including the output data level where it must
be ensured that the resulting prediction models cannot
be used to extract personal information [11]. Prediction
models, which learn from anonymized data are a common
solution to this problem. The core concept behind data
anonymization is to transform data in such a manner that
privacy risks are reduced while the reduction of risks is
balanced against a reduction of data utility [12, 13]. Sev-
eral high-profile re-identification attacks have shown that
simply removing all directly identifying attributes (e.g.
names and addresses) is not sufficient for this purpose
[14, 15]. Laws and regulations, e.g. the Privacy Rule of the
U.S. Health Insurance Portability and Accountability Act
(HIPAA) [16] or the European General Data Protection
Regulation [17], define different approaches to address
this issue.
In recent years, several easy-to-use tools have been

developed that make methods of data anonymization
available to a broad range of users. At the same time,
various methods for addressing output data privacy in
machine learning have been proposed by the research
community, but robust implementations that can be
applied in practice are lacking. In this article, we report on
our ongoing efforts to bring both worlds together by inte-
grating machine learning techniques into a well-known
data anonymization tool. In prior work, we have laid the
groundwork for the results presented in this article by
(1) implementing a method into the tool that ensures
that anonymized output data is suitable as training data
for creating prediction models, and (2) integrating logis-
tic regression models into the tool in such a way that
they can be used to assess the performance of mod-
els created from anonymized data [18]. In this software
article, we present a wide range of enhancements that
significantly broaden the applicability of the approach.
In detail, we

1. added a method to make anonymized output data
suitable for the training of multiple models that can
predict different target variables,

2. implemented additional types of prediction models
to enable assessing the performance of different types
of privacy-preserving machine learning techniques,

3. integrated the approach with further anonymization
methods, including differential privacy, which is a

state-of-the-art approach offering strong privacy
protection,

4. implemented a wide range of additional metrics and
visualizations for assessing the impact of privacy
protection on prediction performance,

5. added support for further data transformation
techniques, such as data aggregation.

The resulting tool is highly versatile, as it supports
binomial and multinomial target variables, different types
of prediction models and a wide range of methods of
privacy protection. Moreover, all techniques have been
integrated into a sound framework that supports the cre-
ation, evaluation and refinement of models through intu-
itive graphical user interfaces. We demonstrate the broad
applicability of our approach by creating different types
of privacy-preserving models for breast cancer diagnosis,
diagnosis of acute inflammation of the urinary system and
prediction of the contraceptive method used by women
using different anonymization and prediction techniques.
The results show that accurate prediction models can be
created that preserve privacy in a variety of threat sce-
narios. Our implementation is available as open source
software.

Implementation
The software described in this article has been developed
by extending ARX, an open source anonymization tool
which has specifically been designed for applications to
biomedical data [19]. In this section, we will focus on the
two most important functionalities implemented, which
are (1) methods for the automated creation of privacy-
preserving predictionmodels and (2)methods for evaluat-
ing and fine-tuning the resulting models. In the individual
sections, we will describe how we addressed particularly
complex challenges.

Methods for creating privacy-preserving predictionmodels
In predictive modeling, the goal is to predict the value of
a predefined target variable from a given set of values of
feature variables as accurately as possible. Typical appli-
cation scenarios in medicine include knowledge discovery
and decision support.
Our tool implements the common supervised learn-

ing approach, where a model is created from a
training set. It focusses on classification tasks where tar-
get variables are categorical and values of the target
variable are called classes [20]. To create privacy-
preserving prediction models, our tool implements super-
vised learning from anonymized data. To maximize
the performance of the resulting models it utilizes
the optimization procedures provided by ARX to pro-
duce anonymized output data that is suited for this
purpose.
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At its core, ARX utilizes user-defined generalization
hierarchies to transform data. A simple example is shown
in Fig. 1. As can be seen, generalization hierarchies store
the original attributes’ values in the leaf nodes while inner
nodes contain generalized representations of the values
from the leaf nodes of the according subtree. When a
hierarchy is used to transform the values of an attribute,
all values are replaced by the corresponding inner nodes
on a given level of the hierarchy. In the example, values
of the attribute “age” are transformed into age groups by
replacing them with the corresponding generalized values
on level 2 of the hierarchy, while values of the attribute
“sex” are left as-is (which corresponds to “transforming”
them to level 0 of the hierarchy). In an abstract sense,
the anonymization process implemented by ARX basi-
cally produces all possible output datasets by applying
all possible combinations of generalizations to the input
dataset. For each possible output, two parameters are
measured: (1) privacy protection, and (2) data utility. After
this process, ARX returns the transformed dataset that
satisfies pre-defined privacy protection levels and which is
most useful. In practice, ARX implements a wide range of
pruning strategies and optimization techniques to avoid
needing to analyze all possible output datasets (see, e.g.
[19, 21]). Moreover, ARX supports further transformation
techniques which are implemented by extending the basic
anonymization process outlined in this paragraph. Fur-
thermore, privacy protection as well as data utility can be
measured using different models. We will briefly intro-
duce the most important methods used in this article in
the remainder of this section.

Privacymodels
In ARX, privacy models are used to specify and quantify
levels of protection. The methods for creating privacy-
preserving prediction models presented in this arti-
cle are compatible with all privacy models currently

implemented by ARX (an overview is provided on the
project website [22]). In this paper, we will use the fol-
lowing models to showcase our solution: (1) k-anonymity,
which protects records from re-identification by requiring
that each transformed record is indistinguishable from at
least k − 1 other records regarding attributes that could
be used in linkage attacks [15], (2) differential privacy
which guarantees that the output of the anonymization
procedure is basically independent of the contribution of
individual records to the dataset, which protects output
data from a wide range of risks [23, 24], and (3) a game-
theoretic model which employs an economic perspective
on data re-identification attacks and assumes that adver-
saries will only attempt re-identification in case there is a
tangible economic benefit [25, 26].

Utility models
ARX supports a wide range of models for quantifying (and
hence optimizing) the utility of output data. To optimize
output towards suitability as a training set for prediction
models, we have implemented themethod by Iyengar [27].
The basic idea is to distinguish between the removal of
structure and the removal of noise by measuring the het-
erogeneity of values of class attributes in groups of records
that are indistinguishable regarding the specified feature
variables. For instance, if the age of individuals and the
occurrence of a certain disease exhibits a strong corre-
lation, the relationship between these two attributes is
most likely best captured by adequate age groups instead
of more granular data. In prior work, we have already
described a basic implementation of the approach [18].
However, the implementation had several important limi-
tations, which resulted from the compressed internal data
representation used by ARX [19]: (1) it only supported
one class variable, (2) it required that class variables were
addressed by a privacy model, and (3) it required that
no transformations were applied to target variables. To

Fig. 1 Example of attribute transformation based on generalization hierarchies. Values of the attributes “age” and “sex” are transformed using level 2
and level 0, respectively, of their associated hierarchies
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overcome these limitations we had to rewrite major parts
of the internals of the software and the resulting utility
model is now the most complex model supported. Finally,
we also had to develop and implement a specialized score
function with proven mathematical properties to support
differential privacy [24].

Transformationmodels
Based on the generic mechanism described above, ARX
provides support for a wide range of transformation tech-
niques. Different methods for transforming data can also
be used in combination. Typically, this is done to preserve
as much output data utility as possible and to preserve
important schematic properties of data, such as the data
types of variables. Figure 2 shows an example of the dif-
ferent methods supported: (1) Random sampling is a com-
monmethod to reduce the certainty of attackers about the
correctness of re-identifications. It is also a major building
block of differential privacy in ARX [24]. (2)Aggregation is
a method where sets of numeric attribute values are trans-
formed into a common aggregated value. (3) Suppression
means that values are simply removed from a dataset,
which may be applied on the cell-, record- or attribute-
level. (4)Masking is a method where individual characters
are removed. (5) Categorization means that continuous
variables are mapped to categories. (6) Generalization is a
methodwhere attribute values are replaced by less specific
values based on user-defined generalization hierarchies or
classifications, such as the International Classification of
Diseases [28].

In the output dataset shown in Fig. 2, the risk of a
record being re-identified correctly is not higher than
33.3% (3-anonymity). In addition, the anonymization pro-
cedure fulfills (ε, δ)-differential privacy with ε ≈ 0.92
and δ ≈ 0.22, under the assumption that all changes
other than sampling have been implemented using a data-
independent transformation method [24]. While support
for the transformations utilized in the example is pro-
vided out-of-the-box by ARX, implementing evaluation
methods for prediction models trained on this data needs
careful attention, as we will describe in the next section.

Classificationmodels
To enable users to assess the performance of different
types of prediction techniques, we implemented a generic
interface to prediction models and integrated three meth-
ods as is shown in Fig. 3: (1) Logistic regression, where the
relationship between the feature variables and the target
variable is expressed as a linear model which is trans-
formed using a logarithmic function [20]. Since support
for this model was already established in previous work,
we only had to make minor adjustments to integrate it
with the new interface. (2) Naïve Bayes [29], which makes
strong (hence naïve) assumptions about the independence
of the distributions of the feature variables based on
Bayes’ theorem. The only dependency is assumed to exist
between the target variable and each of the feature vari-
ables. Predictions are made by simply calculating the pos-
terior probabilities of each of the classes using the prior
probability of the feature vector. (3) Random forest [30],

Fig. 2 Example of different transformation schemes used in data anonymization. 1: Sampling, 2: Aggregation, 3: Suppression, 4: Masking, 5:
Categorization, 6: Generalization
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Fig. 3 Classification models supported by the current implementation. A generic wrapper has been developed to encapsulate the implementation
specifics of different machine learning libraries

which belongs to the class of ensemble learning methods.
This means that the predictions of multiple models are
combined into a single prediction. The individual models
are decision trees generated from independently sampled
training data by selecting a random subset of the features
at each split in the learning process.
We tested a wide range of implementations that are

compatible with ARX’s license and decided that we need
to rely on different frameworks to integrate scalable
implementations of different techniques. For this reason,
we had to create a common interface already mentioned
above to abstract away the details of specific implemen-
tations. We integrated logistic regression from Apache
Mahout [31] and both naïve Bayes and random forest from
Smile [32].

Assessing prediction performance
Preprocessing training data
The creation of prediction models typically involves

the process of reviewing models and iteratively refining
parameters to achieve optimal performance. This requires
metrics for performance assessment. A commonly used
method is to calculate performance measures using k-
fold cross-validation [33]. In this process, the records of
a dataset are first divided randomly into k partitions of
equal size, which are then iteratively analyzed by using
each of the k partitions as evaluation and all other parti-
tions as training data. This process yields k results which
are combined to derive an overall estimate of the model’s
performance.
When classification models are built from anonymized

data, it needs to be evaluated how anonymization has
affected their performance. This cannot be implemented
“naively” by comparing the results of performing k-fold
cross-validation on the anonymized data and of perform-
ing k-fold cross-validation on input data. Instead, a clas-
sifier must be built from transformed output data in such
a way that the model is able to make predictions based
on features which have not been transformed. As a result,

the model can be evaluated using unmodified input data
to obtain relative performance estimates [34]. This can
be achieved by implementing a preprocessing step which
transforms a given set of previously unknown features in
the same manner in which the anonymized training data
has been transformed before passing it to the classifier
to make predictions [35]. Figure 4 visually contrasts both
approaches. It can be seen that in the naive approach two
classifiers are built from two different datasets (input and
output), evaluated against these datasets and then their
accuracy is compared to derive a relative performance.
In our tool, the second classifier is built from output
data but evaluated on (preprocessed) input data to obtain
comparable results for both models.
Our tool creates privacy-preserving models by training

them on anonymized data. This results in the challenge
that the prediction models created can only be applied to
data that has been transformed in the same way as the
anonymized training dataset. Thus, we had to ensure that
the resulting prediction models are able to interpret fea-
tures from output data as well as input data correctly. This
is challenging when the domain of attribute values is not
preserved during anonymization, as in these cases, the
input contains values which are not present in the output
and thus the classifier would have to be evaluated with
values which it has not seen during training. As a solu-
tion, we implemented a preprocessing step that accounts
for the different types of transformations supported (see
beginning of this section).
Whether the preprocessing step needs to be applied to

a specific variable depends on the type of the variable
and the transformation method utilized. Table 1 shows an
overview. “N/A” indicates that the transformation method
cannot be used for variables of the according type. For
instance, aggregation is typically only applied to numeric
attributes. It can be seen that for all types of suppres-
sion (cell, attribute, record), random sampling as well as
aggregation, evaluation data does not have to be prepro-
cessed. The reason is that the domain is being preserved
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Fig. 4 Different approaches for measuring the relative performance of a privacy-preserving classifier. Our tool implements a method that makes
sure that the performance of prediction models can be expressed relative to the performance of models trained on unmodified data

during transformation.With all remaining transformation
schemes, data needs to be preprocessed before handing
it to the classifier for evaluation. As can be seen, prepro-
cessing only needs to be performed for attribute values
that have been generalized or categorized. In both cases,
this can be implemented by applying the same general-
ization hierarchies or categorization functions to input
data that have also been used to anonymize the training
dataset. During the evaluation process this is performed
automatically as all relevant information on how input
data has been transformed is known to the software. For
the purpose of utilizing the output data generated by ARX
to build a privacy-preserving prediction model outside
of the software, according export functionalities (e.g. for
hierarchies) are provided.

Performance assessment
All implemented classification models are able to handle
multinomial classification tasks, where the target vari-
ables need not be dichotomous. The main reason behind

Table 1 Overview of transformation schemes and their
preprocessing requirements

Transformation scheme Preprocessing required

Numeric attributes Categorical attributes

Cell suppression No No

Attribute suppression No No

Record suppression No No

Generalization Yes Yes

Categorization Yes N/A

Aggregation No N/A

Random sampling No No

this design decision is that we wanted our methods to
integrate seamlessly with the remaining functionalities of
ARX, without imposing any major restrictions. However,
assessing the performance of multinomial classifiers is
non-trivial and subject of ongoing research [20]. Our pre-
vious implementation therefore only supported very rudi-
mentary performance measurements [18]. One method
to overcome this limitation is the one-vs-all approach, in
which the performance of a n-nomial classifier is assessed
by interpreting it as a collection of n binomial classifiers,
each of which is able to distinguish one selected class from
all others.
We decided to implement this method as it is sim-

ple and enables utilizing typical parameters for prediction
performance. Our implementation currently supports the
following measures: (1) sensitivity, also called recall or
true positive rate. (2) Specificity, also called true nega-
tive rate. (3) The Receiver Operating Characteristic (ROC)
curve, which plots the true positive rate (i.e. the sen-
sitivity) for a single class against the false positive rate
(1-specificity) [36]. The ROC curve shows the trade-off
between sensitivity and specificity for every possible cut-
off for a prediction, i.e. any increase in sensitivity will be
accompanied by a decrease in specificity. (4) The Area
Under the ROCCurve (ROCAUC), which summarizes the
ROCperformance of a classifier andwhich is equivalent to
the probability that the classifier will assign a higher score
to a randomly chosen positive event than to a randomly
chosen negative event [36]. (5) The Brier score, which
measures the mean squared distance between predicted
and actual outcomes [37].
In addition to the models described previously, we

always evaluate the performance of the Zero Rule (0-
R) algorithm, which ignores the feature variables and
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simply always returns the most frequent class value.
The performance of this simplistic “prediction model”
is frequently used as a realistic baseline for assess-
ing the performance of more sophisticated machine
learning algorithms. In our tool, the performance
of privacy-preserving models is reported in absolute
terms as well as relative to baseline (0-R) and the
selected classifier, both trained on unmodified input
data.
As an additional measure specific to our application sce-

nario, we implemented the skill score, which quantifies
the relative accuracy of a classification model over some
reference accuracy [38]. In our case, the relative accu-
racy is the accuracy of the classification model built from
anonymized data over the accuracy of the model built
from original data. Typically, the accuracy is represented
by ametric such as the Brier score, leading to the following
definition:

Brier skill score = 1 − Brieranonymized
Brieroriginal

A skill score of zeromeans that the Brier scores for models
built on output and input data are equal. If the score is in
the range ] 0, 1] then the model built on output data per-
formed better and if it is in the range [−∞, 0[, the model
trained on the original data performed better.

Results
Interfaces for end users and applications
ARX’s views and interfaces for data anonymization and
privacy risk analysis have been described in previous pub-
lications [19, 39] and are also explained in depth on the
project website [22]. Here, we will focus on the views and
interfaces provided for analyzing the performance of pre-
diction models. All methods described in the previous
sections have been implemented into the Graphical User
Interface (GUI) and they are also available via the soft-
ware’s comprehensive Application Programming Interface
(API).
Figure 5 shows a screenshot of the graphical inter-

face in which methods for configuring prediction mod-
els as well as for assessing their performance have been
implemented. Areas 1 and 2 can be used to graphically
assess the performance of privacy-preserving models.
Both views are available side-by-side for input data and
output data to allow for visual comparisons. They show
basic performance parameters and ROC curves for mod-
els built with original and anonymized data, respectively.
Areas 3 and 4 can be used to select target variables as well
as feature variables and to configure model types and their
parameters.

Case studies
In this section, we will present three case studies to illus-
trate our solution and to show its practical applicability.
For this purpose, we have selected three datasets to build
different types of models for different biomedical predic-
tion tasks. We have deliberately selected datasets that are
challenging to anonymize as they contain a small number
of records (between 120 and 1473). We will use the visual-
izations provided by ARX to discuss the utility and privacy
protection provided by the resulting models. In all cases,
we measured execution times for data anonymization as
well as model building and evaluation of not more than a
few seconds on commodity hardware.

Case study 1: acute inflammation of the urinary system
In the first case study, we used a dataset containing 120
records that were originally collected for testing expert
systems. The task is to diagnose two diseases of the
urinary system: acute inflammation of the bladder and
acute nephritises. The dataset contained nine numeric
and binary attributes, two of which represented the tar-
get classes. More details can be found in the original
publication [40] and the publicly available version of the
dataset [41]. As a privacy model we used k-anonymity,
which protects the records in the training set from re-
identification.We used common parameterizations of 5 ≤
k ≤ 25 and random forests as predictionmodels. Data was
transformed using aggregation, generalization and record
suppression.
Figure 6 shows the results obtained for one of the

two target variables (inflammation of urinary bladder).
For comparison, the blue line shows the performance
achieved when always returning the most frequent class
attribute (0-R). In the first two plots, the ROC of mod-
els trained on unmodified training data and anonymized
data is identifical. We measured a relative ROC AUC
(relative to the trivial classifier and to the performance
of models trained on input data) of 100% for k = 5 and
k = 10 and k = 15. For higher values of k, performance
dropped to 87.72% for k = 20, 48.37% for k = 25. The
Brier skill scores changed from 0 to 0.08, −0.78, −1.25
and −4.05. For k ≤ 20, which offers a very high degree of
protection [42], the resulting privacy-preserving models
exhibited high prediction power.
When anonymizing data, ARX may determine that an

optimal balance between privacy protection and output
data utility is achieved by completely generalizing (and
thereby actually removing) one or multiple attributes.
This can be interpreted as automated dimensionality
reduction or feature selection. Figure 7 shows that for k =
15 three out of six feature variables were removed (Miss-
ings = 100%). From the results presented in the previous
paragraph we can see that this had only a minor impact on
prediction performance, which implies that the variables
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Fig. 5 Screenshot of the view implemented for assessing the performance of privacy-preserving prediction models. Area 1: Comparison of basic
performance parameters, Area 2: ROC curves for models built with original and anonymized data, Area 3: Selection of feature and class variables,
Area 4: Selection and configuration of model parameters

that have been removed are not predictive for the target
variable. If the target variable needs to be protected from
inference attacks, this information can be used as an indi-
cator that the variables that have been removed may not
needed to be transformed at all.
Finally, Fig. 8 shows re-identification risk profiles pro-

vided by ARX (cf. [39]). A risk profile summarizes the
risks of all records in a dataset, by associating each pos-
sible risk level with the relative number of records which
are affected. It can be seen that k-anonymity with k = 15

significantly reduced the risk of re-identification for all
records in the dataset, highlighting the high degree of
privacy protection that can be achieved with negligible
effects on prediction performance.

Case study 2: breast cancer cytopathology
In the second case study, we utilized a dataset which
contained 699 records collected by the University of Wis-
consin Hospitals to study methods for predicting the
malignancy of breast tissue from cytopathology reports. It

Fig. 6 ROC performance in the case study using k-anonymous data for training random forests on the acute inflammation dataset. The False
Positive Rates (FPR) and True Positive Rates (TPR) are plotted against the x-axes and y-axes, respectively. It can be seen that data anonymization had
a negative impact on the performance of the resulting prediction models only for k ≥ 15
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Fig. 7 Automated dimensionality reduction performed by ARX starting from k = 15 when anonymizing the acute inflammation dataset. For larger
values of k, ARX performs automated dimensionality reduction during data anonymization. By comparing the results with the ROC curves in Fig. 6 it
can be seen that the removal of three out of six feature variables had only a minor impact on prediction performance

contained 10 numeric and binary attributes, one of which
represented the target class (malignant or benign tissue).
The dataset and further details are available online [41].
For privacy protection, we utilized (ε, δ)-differential pri-

vacy with ε ∈ {2, 1.5, 1.0, 0.5, 0.1} and δ = 10−3. We
used logistic regression as modeling technique. Imple-
menting differential privacy requires randomization and
we therefore report on the best model obtained from five
anonymization processes performed for each parameteri-
zation. Data was transformed using random sampling, cat-
egorization, generalization and record suppression. The
results are shown in Fig. 9.
As can be seen in the figure, prediction performance

decreased with decreasing values of epsilon, which was
to be expected as the degree of privacy protection
increases when epsilon decreases. Moreover, the results
confirm prior findings which indicated that a value of
about ε = 1 is an optimal parameterization for the

differentially private anonymization algorithm imple-
mented by ARX [24]. Furthermore, we studied the effect
of randomization on the stability of the performance of
the models created. The prediction model trained on
unmodified input data achieved a ROC AUC of about
99.2%. For the five models created with ε = 1 we mea-
sured a ROC AUC of between 85.8% and 92.27% (88.28%
on average) which equals a relative ROC AUC of between
61.63% and 83.96% (74.80% on average) compared to base-
line performance and the model trained on unmodified
data. The Brier skill score varied between -1.38 and -3.45
(-2.66 on average), which is quite good considering the
high degree of privacy protection provided.
Finally, Fig. 10 shows the risk profiles provided by ARX

for the best model obtained using ε = 1. As can be
seen, re-identification risks were reduced to an extent
even larger than in the previous case study. Moreover, we
also found that ARX performed significant dimensionality

Fig. 8 Impact of data anonymization on re-identification risk profiles for the acute inflammation dataset. As can be seen, k-anonymity with k = 15
significantly reduced the risk of re-identification for all records in the dataset
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Fig. 9 ROC performance in the case study using differential privacy for training logistic regression models to predict the malignancy of breast tissue.
The False Positive Rates (FPR) and True Positive Rates (TPR) are plotted against the x-axes and y-axes, respectively. It can be seen that data
anonymization had a significant impact on prediction performance, but acceptable accuracy could still be observed for ε ≥ 1

reduction and that malignancy was basically predicted
from a single attribute (bland chromatin).

Case study 3: use of contraceptivemethods
In the third case study, we utilized a dataset consisting
of 1473 records from the 1987 National Indonesia Con-
traceptive Prevalence Survey to predict the contraceptive
method used of women based on their demographic and
socio-economic characteristics. The dataset contained 10
numeric, categorical and binary attributes, one of which
represented the target class (type of contraceptive method
used). More details can be found in the original publica-
tion [43] and the dataset is available online [41].
For privacy protection, we employed an innovative

game-theoretic method that works on the assumption
that adversaries will only attack a dataset (or prediction
model) if there is a tangible economic benefit. For param-
eterizing the method, we followed the proposal by Wan
et al. [25]: the cost for the adversary of trying to re-
identify an individual was set to $4 (a number that has
been derived from the costs of obtaining detailed personal
information online) and the monetary benefit of includ-
ing a record into the training set was assumed to be $1200

(this number was derived from an analysis of grant fund-
ing received and data shared by the Electronic Medical
Records and Genomics (eMERGE) Network [44], which is
funded by the National Institute of Health (NIH)).
We considered a single free parameter G, which spec-

ified the monetary gain of the adversary in case of suc-
cessful re-identification and, at the same time, the mon-
etary loss for the data controller for each successfully
re-identified record. By varying this single parameter we
were able to investigate a wide variety of scenarios, in
which either the data controller or the adversary was at an
advantage. For prediction, we used Naïve Bayes classifiers.
Data was transformed using categorization, generaliza-
tion as well as cell and record suppression.
Overall, as can be seen in Fig. 11, we found that

anonymizing the dataset with G = 0, 500, 1000, 1500 and
2000 had only a very limited impact on the performance of
the resulting privacy-preserving prediction models. Mod-
els trained on unmodified input data achieved a ROC
AUC of 71.82%.Wewere not able to observe a relationship
between privacy parameters and the prediction perfor-
mance of the privacy-preserving models. The reason is
that the game-theoretic model contains an implicit data

Fig. 10 Impact of data anonymization on re-identification risk profiles for the breast cancer dataset. As can be seen, the differential privacy model
with ε = 1 resulted in the strongest reductions to re-identification risks of all models used in the case studies
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Fig. 11 Impact of data anonymization on prediction performance in the contraceptive methods case study. The False Positive Rates (FPR) and True
Positive Rates (TPR) are plotted against the x-axes and y-axes, respectively. As can be seen, data anonymization using the game-theoretic model had
only a very minor impact on prediction accuracy

quality model that does not directly reflect the suitabil-
ity of data for training prediction models. We measured a
relative ROC AUC between 77.33% and 100% (90.35% on
average) and Brier skill scores between -0.04 and 0 (-0.02
on average). Analogously to the other studies, we observed
a significant reduction of re-identification risks.

Discussion
Comparison with prior work
Early work has suggested that anonymization destroys
the utility of data for machine learning tasks [45]. Many
methods for optimizing anonymized data as a training set
for prediction models have since been developed. They
show that this is not actually true. Initially, these meth-
ods focused on simple anonymization techniques, such
as k-anonymity, and simple prediction models, such as
decision trees and on applications in distributed settings
[35, 46]. As a result of these developments, evaluat-
ing (novel) anonymization methods by measuring the
usefulness of output data for predictive modeling tasks
has become a standard practice in academia [47, 48].
More recently, a broader spectrum of prediction and
privacy models has been investigated. Some authors
proposed general-purpose anonymization algorithms to
optimize prediction performance. While most of these
algorithms have been designed in such a way that the
resulting anonymized data is guaranteed to provide a
degree of protection based on specific privacymodels only
[49, 50], they allow for any type of prediction model to
be used. In contrast, in other works, privacy-preserving
algorithms for optimizing the performance of specific
prediction models were developed [51, 52]. Many recent
studies focused on sophisticated models, such as support
vector machines [51, 53, 54] and (deep) neural networks
[55–57]. More complex and comprehensive privacy mod-
els have also received significant attention. In particular,
the differential privacy model was investigated extensively
[53, 55, 56, 58–62]. It is notable, that among these more
modern approaches, a variety has focused on biomedical
data [56, 57, 60]. We note, however, that these devel-
opments originate from the computer science research

community and if the developed algorithms are published,
then typically only in the form of research prototypes.
In parallel, several practical tools have been developed

that make methods of data anonymization available to
end-users by providing easy-to-use graphical interfaces.
Most notably, μ − ARGUS [63] and sdcMicro [64] are
tools developed in the context of official statistics, while
ARX has specifically been designed for applications to
biomedical data [19]. μ-ARGUS and sdcMicro focus on
the concept of a posteriori disclosure risk control which is
prevalent in the statistics community. In this process, data
is mainly transformed manually in iterative steps, while
data utility, usefulness and risks are monitored continu-
ously by performing statistical analyses and tests. ARX
implements a mixture of this approach and the a priori
disclosure risk control methodology. This means that data
is anonymized semi-automatically. In each iteration, the
data is sanitized in such a way that predefined thresholds
on privacy risks are met while the impact on data utility
is minimized. A balancing is performed by repeating this
process with different settings, thereby iteratively refin-
ing output data. This approach has been recommended
for anonymizing health data (see, e.g. [7, 12] and [13])
and it enables ARX to support an unprecedentedly broad
spectrum of techniques for transforming data and mea-
suring risks. All three tools provide users with methods
for assessing and optimizing the usefulness of anonymized
data for a wide variety of applications. ARX is, however,
the only tool providing support for privacy-preserving
machine learning.

Limitations and future work
Currently, our tool only supports three different types of
prediction models, i.e. logistic regression, naïve Bayes and
random forest, for which we could find scalable imple-
mentations that are compatible to ARX in terms of their
technical basis and licensing model. However, further
approaches, e.g. C4.5 decision trees and support vector
machines, have also received significant attention in the
literature (see e.g. [49–51, 53, 54, 58, 60, 62]). In future
work, we plan to extend our implementation accordingly.

64



Eicher et al. BMCMedical Informatics and DecisionMaking           (2020) 20:29 Page 12 of 14

Moreover, choosing the right type of prediction model
for a specific dataset and task is challenging, as there
are no general recommendations [20]. Therefore, bench-
mark studies are often performed, in which the results
of different models are experimentally compared for a
specific dataset using a complex process involving the
separation of data into training sets, evaluation sets and
validation sets [65]. In future work, we plan to extend our
implementation to support such benchmark studies for
privacy-preserving models as well.
In this article we have focused on transformation tech-

niques supported by ARX for which a preprocessing
step can be implemented by applying a known transfor-
mation function to features (see “Preprocessing training
data” section). The software, however, also supports trans-
formation approaches where it is not clear how a given
feature must be transformed to match the representa-
tion used for training purposes. Local generalization is
an important example. In this case, the same attribute
value can be transformed to different generalized repre-
sentations in different records of the training set. When
providing features to the model to make predictions, it is
therefore unclear how the values of such attributes must
be generalized. One approach to overcome this challenge
is to apply all possible transformations and to then analyze
which transformation results in the prediction with the
highest confidence. However, this involves a high degree
of complexity and we therefore plan to develop more
scalable approaches in the future.
Finally, our current implementation focuses on classifi-

cation tasks. In future work, we plan to provide support
for further learning and prediction tasks that are of spe-
cific importance to medical research. Important examples
include regression and time-to-event analysis [20].

Conclusions
In this paper, we have presented a comprehensive tool
for building and evaluating privacy-preserving prediction
models. Our implementation is available as open source
software. We have further presented three case studies
which show that, in many cases, a high degree of pri-
vacy protection can be achieved with very little impact on
prediction performance. Our tool supports a wide range
of transformation techniques, methods for privacy pro-
tection and prediction models. The methods supported
are particularly well suited for applications to biomedical
data. Notably, the truthful transformationmethods imple-
mented prevent implausible data from being created (e.g.
combinations or dosages of drugs which are harmful for
a patient) [66]. Moreover, methods of privacy preserva-
tion have been implemented in a way that is relatively
easy to explain to ethics committees and policy makers,
as they basically rely on the intuitive idea of hiding in a
crowd [24]. To our knowledge, ARX is the only publicly

available anonymization tool supporting a comprehensive
set of methods for privacy-preserving machine learning in
an integrated manner.
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Summary
The race for innovation has turned into a race for data. Rapid developments
of new technologies, especially in the field of artificial intelligence, are accom-
panied by new ways of accessing, integrating, and analyzing sensitive personal
data. Examples include financial transactions, social network activities, loca-
tion traces, and medical records. As a consequence, adequate and careful pri-
vacy management has become a significant challenge. New data protection
regulations, for example in the EU and China, are direct responses to these
developments. Data anonymization is an important building block of data pro-
tection concepts, as it allows to reduce privacy risks by altering data. The
development of anonymization tools involves significant challenges, however.
For instance, the effectiveness of different anonymization techniques depends
on context, and thus tools need to support a large set of methods to ensure
that the usefulness of data is not overly affected by risk-reducing transforma-
tions. In spite of these requirements, existing solutions typically only support
a small set of methods. In this work, we describe how we have extended an
open source data anonymization tool to support almost arbitrary combinations
of a wide range of techniques in a scalable manner. We then review the spec-
trum of methods supported and discuss their compatibility within the novel
framework. The results of an extensive experimental comparison show that our
approach outperforms related solutions in terms of scalability and output data
quality—while supporting a much broader range of techniques. Finally, we
discuss practical experiences with ARX and present remaining issues and chal-
lenges ahead.
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1 INTRODUCTION

In the era of big data processing and artificial intelligence, the race for innovation has become a race for data. The spectrum
of personal data that is collected electronically covers almost all aspects of our lives. Important examples of sensitive
personal information include financial transactions, data about activities in social networks, location traces collected via
mobile phone networks and medical records.1 These data bear a tremendous potential for modern technologies to enable
progress in a wide range of fields, such as economics, science, and public security. Possible applications vary from product
recommender systems to health care decision support, computational criminology, and terrorism informatics.2,3 Yet, in
order to unlock this potential, data often need to be published, shared with third parties or reused for other purposes than
the ones for which it was originally collected. This is a challenging task, as privacy concerns and restrictions imposed by
national and international data protection laws, for example, the US Health Insurance Portability and Accountability Act
(HIPAA),4 the European General Data Protection Regulation (GDPR),5 or the Chinese national standard on the protection
of personal information,6 need to be considered.

Data privacy can be addressed on multiple levels. The Five Safes framework describes one approach to conceptualize
relevant safeguards in data management processes.7 First, it can be important to ensure that projects are safe, which for
example requires organizational measures that ensure that data use is appropriate. Second, it can be important to ensure
that people working with the data are safe and trustworthy, for example by using strong authentication and authorization
measures. Third, the data itself can be made safe, meaning that risks of re-identification are reduced to an acceptable
minimum. Fourth, safe settings can be set up to reduce the risk of privacy breaches during processing, for example, by
means of cryptographic protocols for secure multiparty computation.8 Finally, the disclosure risk of output data can also
be controlled to ensure that results do not leak sensitive personal information.

Data anonymization is an important building block for achieving safe input and output data. The basic idea is to
transform data in such a way that privacy risks are reduced while the reduction of risks is balanced against a reduction of
data utility.9-13 Several high-profile re-identification attacks have demonstrated that this is a complex task requiring tool
support.14,15 For instance, simply removing directly identifying attributes, such as names or social security numbers, will
typically not be enough to prevent privacy breaches.16-18 More formal approaches are required, which employ mathemat-
ical and statistical models for quantifying risks and the impact of anonymization on data usefulness. Moreover, complex
algorithms must be employed to balance both aspects in a scalable manner. We note that formal data anonymization is
different from basic techniques of data masking or random data generation.19 In this work, we focus on non-interactive
microdata anonymization, which means that protected records are created from the records of an input dataset11 and we
do not cover interactive query anonymization, as, for example, implemented by PINQ20 or Airavat.21

1.1 Background

The obvious first step in any data anonymization process is to remove all direct identifiers of individuals.11 The next—and
far more challenging—step is to modify the dataset in a way that reduces the risk that an attacker is able to successfully link
identified or identifiable individuals to one or multiple records or other sensitive information contained in the dataset.17,22

In this process, the risk of such privacy breaches is quantified by mathematical or statistical privacy models (typically
involving a threshold for what level of risk is deemed acceptable) and the utility of output data is quantified by a utility
model. Figure 1 shows an abstract overview of an anonymization algorithm: A procedure searches through the space of all
possible outputs, which is defined by one or multiple data transformation models, to find a solution which fulfills the risk
thresholds specified for the privacy model and at the same time provides optimal output according to the utility model.

F I G U R E 1 Abstract process implemented by data
anonymization algorithms. A search procedure traverses the
space of possible outputs while privacy models are used for
assessing privacy risks and utility is evaluated using a utility
model
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F I G U R E 2 Example of data
transformation methods. A variety of
transformation techniques typically need to be
combined with each other to effectively
anonymize a dataset

An example using a combination of multiple transformation models is shown in Figure 2. As can be seen, a trans-
formation might involve procedures such as taking a random sample of the records from the input dataset, aggregating
numerical values and replacing them by their mean, suppressing individual values, masking parts of strings, categoriz-
ing numerical attributes, and generalizing categorical attributes. To reduce the risk of successful linkage attacks or the
confidence an attacker might have in the correctness of linkage, these transformations may reduce the fidelity of data or
introduce uncertainty by introducing noise.

Obviously, anonymization algorithms that support such complex transformation schemes cannot be implemented
by simply searching the space of all potential output datasets for an optimal solution, as the search spaces are typically
far too large. As a consequence, a wide range of heuristic strategies23,24 and sophisticated clustering algorithms25-29 have
been developed. We emphasize, however, the importance of keeping the abstract model of data anonymization proce-
dures implementing a specific combination of risk, utility, and transformation models in mind. For example, previous
algorithms are typically only able to implement a specific combination of selected models, which severely limits their
practical applicability.

As a consequence, the range of publicly available open source solutions is surprisingly small. It is well known that the
effectiveness of different anonymization techniques highly depends on context, which includes the dimensionality, vol-
ume, and statistical properties of data.12,30,31 Other important aspects that need to be considered include which types of
applications or analyses the data are to be used for, whether the data will be released publicly or with additional access con-
trol and whether the data are tabular or have longitudinal or transactional characteristics. To ensure that anonymization
software can be utilized for different application scenarios, different algorithms, and different methods for transform-
ing data and quantifying reductions in usefulness must therefore be supported.11 Moreover, many anonymization
techniques involve significant computational complexity32 which makes it challenging to implement them in a scalable
manner.

1.2 Related work

The current landscape of open source anonymization software basically consists of three types of solutions:

• First, there are tools originating from the computer science community (typically research prototypes), such as the UTD
Anonymization Toolbox,33 the Cornell Anonymization Toolkit,34 TIAMAT,35 Anamnesia36 or SECRETA37 and source
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code published as supplementary material to articles (eg, References 38 and 39). These solutions are able to automati-
cally enforce privacy guarantees specified by users a priori. However, they usually only support a limited set of privacy
models and focus on specific privacy and data transformation models.

• Second, there are tools originating from the statistics community, with sdcMicro40 and 𝜇-Argus41 being the most promi-
nent examples. These tools implement a more manual approach which enables them to support a wider variety of
methods for measuring risks, transforming data, and analyzing the usefulness of output data. Privacy risks are typi-
cally quantified after transformations have been applied (a posteriori), which leads to an interactive anonymization
process involving repeated and incremental transformations of a dataset.

• More recently, a wide range of commercial solutions has become available, often as a result to the requirements laid out
in the GDPR. These closed-source tools focus on commercial markets. Typically, little is known about the underlying
algorithms and they are not available for experimental evaluations and comparisons.

The ARX Data Anonymization Tool positions itself between these extremes with the aim of providing open software
achieving a high degree of automation while at the same time providing supporting a wide range of techniques. In the past,
various individual features and functionalities of ARX have been described in specific publications. Examples include
anonymization methods based on statistical models,42 game-theory,43 differential privacy,44 and an initial version of ARX's
support for privacy-preserving data mining.45 In addition, we have published two overview articles about ARX over the
course of the years. The first article, which was published in 2014, focused on version 2.2.0 of ARX46 while the second
article, which was published in 2015, covered version 3.0.0 and introduced the application programming interface.47

However, previous versions of ARX provided only limited support for complex data transformation models. We addressed
this limitation in the work described in this article.

1.3 Contributions

In the data anonymization space, it is of significant importance to distinguish between privacy models, transformation
models, utility models, and anonymization algorithms. In general, a wide range of models needs to be supported to be
able to address different real-world anonymization problems. However, prior algorithms typically only support a specific
combination of methods. While previous versions of ARX already supported multiple privacy and utility models, only
a small set of transformation techniques was available. In this work, we present a novel approach that has been imple-
mented into the software to support (almost) arbitrary combinations of privacy and utility models with a wide range of
data transformation techniques while preserving scalability.

We first present the core design principles that enable ARX to support multiple techniques for measuring privacy
risks as well as output data utility while providing computational efficiency. Second, we present a novel approach for
extending this design to significantly improve its genericity and flexibility regarding supported transformation methods.
Next, we review the spectrum of methods supported and discuss their compatibility within the enhanced anonymization
framework of the software. Then we present an extensive experimental comparison with related software. Our results
show that ARX often outperforms other solutions in terms of scalability and—at the same time—output data quality, all
while supporting a much broader spectrum of techniques. Finally, we discuss practical experiences with ARX, present
remaining challenges and outline how we plan to address them in future work.

2 FLEXIBLE DATA ANONYMIZATION IN ARX

2.1 Basic design

At its core, ARX uses a highly efficient globally-optimal search algorithm for transforming data with full-domain gener-
alization and record suppression. The transformation of attribute values is implemented through domain generalization
hierarchies, which represent valid transformations that can be applied to individual-level values. Two examples are shown
in Figure 3. Here, values of an attribute "age" are transformed into intervals with decreasing precision over increasing
levels of generalization. Values of the attribute “sex“ can only be suppressed. We note that assigning generalization level
zero to an attribute leaves its values unchanged. In ARX, generalization hierarchies can be specified by the user or created
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F I G U R E 3 Examples of domain generalization hierarchies. The hierarchy to the left specifies possible generalizations of values for the
attributes sex and the hierarchy to the right specifies generalizations for the attribute age

automatically for categorical and continuous attributes. In the latter case, this is accomplished by specifying functions
for performing on-the-fly categorization of the value domain (eg, creating a grouping of heights or weights).

With full-domain generalization, all values of an attribute are transformed to the same generalization level in all
records.11 The set of all possible combinations of generalization levels for all attributes forms a generalization lattice,
where each element is called a generalization scheme. The generalization lattice for the example hierarchies from Figure 3
together with an example dataset to which various generalization schemes have been applied is shown in Figure 4.
Each node represents a single generalization scheme, which defines generalization levels for all attributes in the dataset.
An arrow between two schemes indicates that they differ by exactly one generalization level. The transformation (0,0)
represents the original dataset whereas the transformation (3,1) represents the dataset which results from maximal gen-
eralization. Referring to the overview from Figure 1, the optimal scheme from the lattice can be determined by going
through all schemes one-by-one. In each step, the generalization scheme is applied (Step A), all records that do not adhere
to the privacy requirements are suppressed (Step B) and the utility of the resulting output dataset is calculated (Step C).
In the end, the optimal solution (ie, the output dataset with the highest utility) is returned. In the example, the privacy
requirement is k-anonymity with k = 2, which means that each record must be indistinguishable from at least one other
record (see Section 2.3 for more details on privacy models). In both output datasets created through generalization, the
records three and four violate the privacy requirement and thus they have to be suppressed. After this, output data utility
is measured to enable selecting the optimal solution. A simple utility model would be the number of cells that have not
been suppressed (ie, that have a value different from “*”). In this case, the output dataset on the left would have a utility
of eight while the output dataset on the right would have a utility of four. In practice, more sophisticated utility models
are typically used, as is described in Section 2.3.

Anonymization algorithms using full-domain generalization are among the oldest approaches that have been devel-
oped in the field. Well-known examples include globally-optimal algorithms, such as Incognito48 or OLA49 and heuristic
algorithms for data of higher dimensionality, such as DataFly.23 ARX implements its own algorithms, Flash and Light-
ning, that significantly outperform prior approaches in the low-dimensional50 as well as the high-dimensional setting,12

respectively. Both algorithms make heavy use of ARX's compressed in-memory data representation47 and advanced
pruning-strategies.31 Moreover, ARX employs a specialized record-suppression strategy that enables the software to sup-
press individual records for a specific generalization scheme, even when the privacy model used can only be evaluated

F I G U R E 4 Example of full-domain generalization. It shows a generalization lattice and the results of applying two generalization
schemes to a dataset followed by the suppression of records that do not adhere to the privacy requirements
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for the overall dataset13 (an example is average re-identification risk; further privacy models supported by ARX will be
described in Section 2.3).

An important advantage of this class of search-based algorithms is that they are generic, which means that a wide range
of privacy and utility models can be plugged into the system. The most important downside is that they are very inflexible
in terms of supported transformation schemes and global generalization does not adjust well to the multidimensional
distribution of data. This typically results in significant reductions to the quality of output data.

2.2 Implementing advanced transformation methods

To overcome these limitations, we developed an approach for using the scalable basic algorithms of ARX as building
blocks for implementing a wider range of more flexible transformation models. The basic idea is to iteratively apply the
full-domain generalization algorithm to different subsets of an input dataset, resulting in different generalization schemes
being used for the different subsets.

Horizontal partitioning strategy: What is needed for this purpose, is a partitioning strategy that reduces the overall
degree of generalization applied. Such a strategy can be constructed using the basic algorithms provided by the software
as follows. ARX supports the specification of a limit on the number of suppressed records. Moreover, records that have been
suppressed may either be considered when calculating the overall utility of a transformed output dataset or they may be
ignored entirely (ie, when calculating data utility, suppressed records are considered to be unmodified). To automatically
partition and anonymize a dataset with n records, users only need to specify a limit on the maximal number of partitions
(p) that can be created. From this limit, the minimal number of records in each partition can be derived (np = n

p
). As

is illustrated in Figure 5, ARX then sets the suppression limit accordingly and anonymizes the dataset while ignoring
the impact of record suppression on data utility. This process is then iteratively repeated for the records that have been
suppressed in the previous step until less than np suppressed records remain.

Vertical partitioning strategy (ie, grouping or clustering): To also support data aggregation, we developed a clustering
strategy that is also based upon ARX's core algorithms as follows. The basic idea is to use the generalization scheme
computed in each iteration not to transform the dataset, but to determine the clusters of values that need to become
indistinguishable. In a subsequent postprocessing step, attributes of records within these clusters are then made indis-
tinguishable by applying aggregation functions to the values from the input dataset of selected attributes (hence, vertical
partitions) within each cluster (returning, eg, the mean or dynamic intervals). Vertical partitioning is performed auto-
matically by ARX for attributes for which the user has configured aggregate functions. Further details on the horizontal
as well as the vertical partitioning strategy, including pseudocode and examples, are provided in Appendices A and B.

As a result of the implementation of these two partitioning approaches, the software now supports combinations of
four different types of transformation methods, which are listed in Table 1. With the new horizontal partitioning strategy,
ARX can be configured to apply the same transformation scheme to all records in a dataset (full-domain generalization)
or to apply different transformation schemes to different subsets of the records (multi-dimensional generalization).51 The
maximal number of transformations that may be used can be specified. ARX always guarantees that identical records
in the input dataset will be transformed identically. With the new vertical partitioning strategy, hierarchies can also be

F I G U R E 5 Recursive application of the core transformation process for horizontal partitioning. ARX is able to apply full-domain
generalization of attribute values followed by record suppression recursively to different subsets of a dataset
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T A B L E 1 Overview of transformation models supported by ARX

Transformation model Type of attribute

Type Implementation Categorical Numeric
Supported in prior
versions

Generalization Multi-dimensional generalization ✓ ✓ —

Full-domain generalization ✓ ✓ ✓

Top- and bottom-coding — ✓ ✓

Categorization — ✓ ✓

Suppression Cell-level ✓ ✓ –

Attribute-level ✓ ✓ ✓

Record-level ✓ ✓ ✓

Sampling Random ✓ ✓ ✓

By query ✓ ✓ ✓

Microaggregation Arithmetic and geometric mean — ✓ –

Median and mode ✓ ✓ –

Set ✓ ✓ –

Interval — ✓ –

used to form clusters in which sets of attribute values can then be transformed into a common value by user-specified
aggregation functions. Here, we have implemented support for the arithmetic and geometric mean, intervals, sets as well
as median and mode for numerical attributes and sets, median and mode for categorical attributes. With the addition of
the two partitioning schemes, we were able to extend ARX with six new transformation methods.

If transformation rules have been specified that only enable a suppression of values, a global transformation process
will result in attribute suppression, while a local transformation process will result in a cell suppression scheme.52 Inde-
pendently of the specific transformation models specified, ARX may return a solution in which some of the records have
been suppressed (typically only a tiny fraction). Generalization hierarchies can also be represented as functions, which can
be used to perform on-the-fly categorization of continuous attributes during anonymization. Top- and bottom-coding can
be implemented by using hierarchies that truncate values exceeding a user-specified range. We note that ARX contains
multiple methods and wizards to automatically or semi-automatically construct hierarchies to apply these transforma-
tion methods. Finally, ARX supports drawing a sample from the input dataset. Methods that can be used for this purpose
include matching a dataset against another dataset, querying the dataset using an expressive query language and ran-
dom sampling. This can be used to relate a dataset to an underlying population table or to reduce privacy risks. Random
sampling is further used to introduce randomness into the differential privacy mechanism supported by the software (see
next section).

2.3 Compatibility of methods

ARX supports a wide range of privacy and utility models. In this section, we discuss their compatibility with the hor-
izontal and vertical partitioning strategies integrated into the software. The use of horizontal partitioning requires
that privacy models can be enforced independently on different subsets of the data and that utility can be estimated
by calculating it independently for different subsets. The use of vertical partitioning requires utility to be estimated
accordingly.

ARX implements a wide range of privacy models that address different threats, such as membership disclosure, attribute
disclosure, and identity disclosure.11 Moreover, the privacy models address different assumptions about the intent and
background knowledge of adversaries, such as the prosecutor model, journalist model, and the marketer model.67 Syntactic
models enforce restrictions on the structure of data, statistical models estimate risks in relationship to a larger underlying
population or the success probabilities of attacks while semantic models have more direct relationships to mathematical
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notions of privacy. An overview of the models supported by ARX is shown in Table 2. Many models are supported in
different variants.

An overview of the compatibility of the privacy models supported by ARX with different transformation techniques
is provided in Table 3. Most incompatibilities are due to the way in which sampling is used in the software to implement
privacy models. The method for taking a sample of the dataset is used to implement differential privacy, to specify pop-
ulation tables and to implement the horizontal partitioning algorithm. Consequently, privacy models that use sampling
can currently not be combined with local transformation models. This is one of the shortcomings of the current develop-
ment stage of the software that we plan to address in future work (see Section 6). Moreover, we note that in some cases
it is also not obvious whether the privacy guarantees specified by a model also hold when data are partitioned. We have
formally proven this for most models, but not yet for population uniqueness. For this reason, local transformation is cur-
rently deactivated for this model in the software. The current version of the differential privacy algorithm implemented in
ARX is not compatible with the horizontal or vertical partitioning methods, as carefully randomized partitioning schemes
would be required to ensure that privacy is not violated.44

In ARX, many different data utility models can be used as optimization functions. As is shown in Table 4, the software
supports general-purpose models, which can be utilized when it is unknown in advance how output data will be used, and
special-purpose (or workload-aware) models which quantify the usefulness of data for specific applications.11 Utility mod-
els typically estimate data utility by quantifying the amount of information loss, for example, by measuring differences or
similarities between the input and the output dataset. Models can roughly be classified as measuring information loss on
the attribute-level, cell-level, record-level, or dataset-level. Typical examples for changes on these levels are differences in
the distributions of attribute values, reductions in the granularity of data, differences in the distinguishability of records,
or changes to overall scores, such as the accuracy of prediction models trained on the data. Notably, its strong support of
methods for building and evaluating prediction models makes ARX also one of the most comprehensive tools available
for privacy-preserving data mining.

Table 5 outlines the compatibility of the utility models with the transformation techniques supported by ARX. Incom-
patibilities resulting from vertical partitioning arise when using microaggregration operators. During the anonymization
process, utility is only estimated for affected cells based on generalization. Incompatibilities resulting from horizon-
tal partitioning are due to the fact that the frequencies of values in the input and output dataset are only known
for the partition that is currently being processed. We emphasize that all utility models supported by ARX can still
be used with all transformation methods. The quantification of utility reported by the system may be slightly off,
however.

T A B L E 2 Overview of privacy models supported by ARX

Privacy model Type
Disclosure
model

Attacker
model

Population
table

𝛿-Presence53 Syntactic/statistical Membership Journalist ✓

k-Anonymity54 Syntactic/statistical Identity Prosecutor —

Average risk42 Syntactic/statistical Identity Marketer —

k-Map54 Syntactic/statistical Identity Journalist ✓

k-Map with frequency estimators55,56 Statistical Identity Journalist —

Population uniqueness57-60 Statistical Identity Marketer —

𝓁-Diversity61,62 Syntactic/statistical Attribute Prosecutor —

t-Closeness63 Syntactic/statistical Attribute Prosecutor —

𝛿-Disclosure privacy64 Syntactic/statistical Attribute Prosecutor —

𝛽-Likeness65 Syntactic/statistical Attribute Prosecutor —

Game-theoretic model (prosecutor)43,66 Semantic Identity Prosecutor —

Game-theoretic model (journalist)43,66 Semantic Identity Journalist ✓

(𝜖, 𝛿)-Differential privacy44 Semantic All All —
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T A B L E 4 Overview of utility models supported by ARX

Utility model Type Scope Optimization Visual analysis

Missings Generic Cell ✓ ✓

Granularity/loss68 Generic Cell ✓ ✓

Precision22 Generic Cell ✓ ✓

Nonuniform entropy69,70 Generic Attribute ✓ ✓

Average distinguishability51 Generic Record ✓ ✓

Discernibility32,49 Generic Record ✓ ✓

Ambiguity29 Generic Record ✓ ✓

Record-level entropy66 Generic Record ✓ ✓

Sum of squared errors Generic Record — ✓

Publisher benefit43 Special purpose Record ✓ ✓

Classification accuracy45,68,71 Special purpose Datasets ✓ ✓

3 EXPERIMENTAL DESIGN

3.1 Tools and algorithms

In previous work, we have already shown that ARX outperforms prior algorithms in terms of scalability and/or data
utility when implementing global data transformation schemes.12,44,50 In this article, we show that this is also true for
local generalization schemes enabled by the horizontal and vertical partitioning strategies described in Section 2.1. For
this purpose, we compare our tool to related software. Specifically, we focus on the following transformation schemes:

• Multi-dimensional generalization: Solves an anonymization problem by generalization. Values are transformed by
replacing them with values from the provided hierarchies. Identical records will also be transformed identically.51

• Local generalization: Solves an anonymization problem by local generalization. Generalization can be performed
without hierarchies, for example, by creating sets of values or intervals and identical records can be transformed
differently.51

In our evaluation, we focus on tools that implement highly automated anonymization processes, analogously to ARX.
Moreover, the privacy models implemented by these tools interpret datasets as population data describing one individual
per record. When calculating frequencies, missing values are treated as an own category that only matches other miss-
ing values. As a baseline for evaluating the performance of multi-dimensional generalization, we used the well-known
Mondrian algorithm51 as implemented by the open source UTD Anonymization Toolbox (version 2012).33 Following a
top-down partitioning approach, Mondrian starts off with the trivial partition which contains all records of the dataset
and keeps partitioning until no further partitions can be formed without violating the privacy requirements specified.
As a baseline regarding local generalization, we used the authors' implementation of the algorithm proposed by Sánchez
et al38 (details can be found in the supplementary material of the article72). This approach interprets categorical attributes
as integer-valued, clusters records based on their centroids and then forms groups of indistinguishable records in each
cluster by replacing values with corresponding intervals. We note that the competing algorithms have specifically been
designed for the respective data transformation schemes implemented, while ARX supports all of them in an integrated
manner using a single algorithm. When implementing local generalization with ARX we employ an aggregate function
to generalize values within clusters in the output dataset. Finally, we note that in all experiments attributes were either
generalized by replacing them with values from a generalization hierarchy or by replacing them with intervals. In the
experiments with local generalization, all attributes were interpreted as numbers, as this is the approach implemented by
the algorithm by Sánchez et al38 We note that this comes without loss of generality, as the dynamic forming of intervals
over numbers representing categories is equivalent to the forming of sets containing the values encoded by the numbers
contained in the interval.
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3.2 Datasets

We used six real-world datasets, most of which have already been utilized for evaluating previous work on data
anonymization: (1) US Census, an excerpt from the 1994 census database, which serves as the de facto standard for evalu-
ations of anonymization algorithms, (2) Competition, introduced in the KDD data mining competition in 1998, (3) Crash
Statistics, NHTSA crash statistics from their Fatality Analysis Reporting System, (4) Time Use Survey, data from the Amer-
ican Time Use Survey, (5) Health Interviews, results from the Integrated Health Interview Series, and (6) Community
Survey, responses to the American Community Survey, an ongoing survey conducted by the US Census bureau on demo-
graphic, social, and economic characteristics from randomly selected people living in the United States. The sizes of the
datasets on disk range between 2.52 MB (US Census) and 107.56 MB (Health Interviews). To ensure compatibility with the
algorithm by Sánchez et al and to simplify the distribution of data together with the source code used in the experiments,
we performed dictionary encoding on all categorical attributes.38 The datasets have different characteristics, which are
listed in Table 6:

• Dimensionality, that is, the number of attributes. With 30 attributes the Community Survey dataset is of high
dimensionality. All other datasets contain either eight or nine attributes and are of medium dimensionality.

• Volume, that is, the number of records. The datasets US Census, Competition, and Community Survey contain between
30 162 and 68 725 records and are of low volume. With a size of 100 937 and 539 253 records, respectively, the datasets
Crash Statistics and Time Use Survey are of medium volume while Health Interviews is a high volume dataset
comprising 1 193 504 records.

• Identifiability, which is based on the number of unique patterns of attribute values contained in the data. Each such
combination has the potential to identify individuals in the dataset and thus the number of patterns can be used
for risk estimation.73 We have calculated the number of these so-called minimal sample uniques (MSUs) using the
SUDA2 algorithm provided by sdcMicro, modified to print the number of MSUs identified. In addition to the overall
number of MSUs per dataset we report the average number of MSUs per cell. The more MSUs the higher is the risk
of re-identification and therefore identifiability. While Community Survey and Competition are of high and medium
identifiability, respectively, all other datasets are of low identifiability.

For reference, further properties of the datasets are presented in Appendix C. As a rule of thumb, higher dimension-
ality, volume, or identifiability can be expected to increase execution times and decrease output data utility. We note that
some of the evaluation datasets are samples from a larger population, which have been created using complex sampling
designs. These aspects could be used to derive more exact risk estimates during data anonymization. The tools considered
in our evaluation, however, only implement privacy models that make worst-case assumptions and they do not imple-
ment mechanisms for considering complex data structures. Hence, we did not include special variables, such as strata
variables or sampling weights, into our evaluation datasets and assumed that all datasets describe one individual per
record. We emphasize that this is a frequent assumption in many domains, for example, in medical research, which is
also often made when comparing automated data anonymization procedures. Moreover, this approach allows for a fair
comparison between the tools covered in this section. We will discuss its limitations in Section 6.

T A B L E 6 Overview of the datasets and their complexity in terms of dimensionality, volume as well as identifiability

Dimensionality Volume Identifiability

Dataset Attributes Complexity Records Complexity MSUs MSUs/cell Complexity

US Census 9 Medium 30 162 Low 62 809 0.23 Low

Competition 8 Medium 63 441 Low 791 475 1.56 Medium

Crash Statistics 8 Medium 100 937 Medium 175 271 0.22 Low

Time Use Survey 9 Medium 539 253 Medium 321 406 0.07 Low

Health Interviews 9 Medium 1 193 504 High 2 888 220 0.27 Low

Community Survey 30 High 68 725 Low 15 708 409 7.6 High

As a rule of thumb, higher degrees of complexity can be expected to increase execution times and decrease output data utility.
Abbreviation: MSU, minimal sample unique.
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3.3 Configuration and setup

When selecting privacy models to use in the evaluation, the individual methods supported by the tools and algorithms
listed above must be considered. ARX supports all models presented in Table 2. The Mondrian algorithm from the
UTD Anonymization Toolbox, however, only supports k-anonymity and the algorithm by Sánchez et al supports only
k-anonymity and t-closeness. We therefore decided to present results for the k-anonymity privacy model, because it is the
only model supported by all competitors. We are well aware of the weaknesses of k-anonymity and emphasize that ARX
also supports multiple more recent models, as described in the previous sections.

Common parameterizations for k-anonymity used in the literature are k = 2, 3, 5, 10, which equal thresholds for pros-
ecutor re-identification risk of 50%, 33%, 20% and 10%. We vary this parameter and the number of attributes that must
be protected from linkage (the so-called quasi-identifiers [QI]) to study the effect of different risk thresholds and data
dimensionality on output data utility as well as scalability. We note that increasing the number of quasi-identifiers is a
simple way to significantly increase the number of anonymization problems studied and that it can also provide more
detailed insights into the effect of data dimensionality on the algorithms' performance. When varying k we included all
quasi-identifiers and when varying the number of quasi-identifiers we used k = 5. We evaluated the scalability of the dif-
ferent solutions by measuring elapsed real execution times. In order to obtain stable results, we calculated averages over
multiple runs of each algorithm (the number of runs for each experiment was determined based on the stability of runtime
measurements). For practical reasons, we introduced a hard time limit of 3600 seconds and runs that did not terminate
within that time frame were cancelled.

To evaluate output data utility, we used a simple and intuitive general-purpose model, called Granularity, which mea-
sures the value-level precision of output data.68 For reference, a formal definition is presented in Appendix D. All utility
measurements have been normalized into a range of [0, 1], such that 100% represents an unmodified dataset, and 0%
represents the a dataset from which all information has been removed. We note that general-purpose utility models have
limitations regarding their ability to capture the usefulness of output data for specific application scenarios, for example,
regression modeling. However, at the extreme points of general-purpose utility estimates, such models also provide a
good indicator for the usefulness of data for specific applications. For example, a general-purpose utility of close to 100%
indicates that almost no changes have been made to the data, which typically also corresponds with usefulness for per-
forming concrete analyses. Analogously, a general-purpose utility of 50%, for example, indicates that significant changes
have been made to the data, which typically also significantly impacts usefulness for specific applications.

The experiments were performed on a desktop machine equipped with a quad-core 3.2 GHz Intel Core i5 CPU running
a 64-bit Windows NT kernel and a 32-bit JVM (1.8.0_202_x86). All tools tested leveraged only one of the CPU cores of the
benchmark system. Our implementation of the benchmark and the datasets used are available online.74

4 RESULTS OF EXPERIMENTS AND DISCUSSION

4.1 Comparison with the UTD Anonymization Toolbox

Figure 6 shows the execution times measured when performing multidimensional generalization. We note that in some
settings we were not able to process the datasets Crash Statistics, Health Interviews, and Community Survey with the
implementation of the Mondrian algorithm from the UTD Anonymization Toolbox, since the application terminated with
an error. In the figure, this is indicated by “x”. Regarding the other setups, it can be seen that higher volume or identifia-
bility resulted in higher execution time (Time Use Survey, Health Interviews). With ARX execution times increased with
increasing privacy parameters, while with the UTD Anonymization Toolbox execution times decreased with increasing
privacy protection. For processing the high-dimensional dataset, ARX needed not more than 1000 seconds, while all other
datasets could be processed in not more than 100 seconds. The UTD Anonymization Toolbox needed significantly more
time in all cases.

Figure 7 shows the data utility measured in the experiments. It can be seen that in all cases ARX returned output data
to which almost no modifications had been made. The results show that data utility slightly decreased when the degree
of privacy protection increased. When using the UTD Anonymization Toolbox, however, significant changes were made
to input data, resulting in utility estimates as low as 60% in some cases. It can further be seen that with ARX output
data utility decreased monotonically when the number of quasi-identifiers increased. This trend could generally also be
observed for the UTD Anonymization Toolbox. Some instabilities could however be observed when processing the Time
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F I G U R E 6 Comparison of the execution times of ARX and the UTD Anonymization Toolbox. Note: On y-axes, logarithmic scaling was
used. In the bar charts, the symbol “x” indicates a missing data point due to the algorithm exceeding the time limit or terminating with an error

F I G U R E 7 Comparison of the data utility obtained using ARX and the UTD Anonymization Toolbox. Note: On y-axes, logarithmic
scaling was used. In the bar charts, the symbol “x” indicates a missing data point due to the algorithm exceeding the time limit or terminating
with an error

Use Survey and Crash Statistics datasets. We note that the fact that ARX is able to significantly reduce the uniqueness
of records in the Community Survey dataset with only about 10% reduction in data granularity implies that correlations
exist between many of the attributes of the dataset. We conclude that, in our experiments with multidimensional gen-
eralization, the algorithm implemented by ARX exhibited significantly higher scalability than the Mondrian algorithm
implemented by the UTD Anonymization Toolbox and at the same time provided higher degrees of output data utility.

4.2 Comparison with the algorithm by Sánchez et al

Figure 8 shows the execution times measured when comparing ARX to the local generalization algorithm by Sánchez
et al. It can be seen that ARX performed comparable to this algorithm in low-dimensional settings, while ARX performed
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F I G U R E 8 Comparison of the execution times of ARX and the algorithm by Sánchez et al. Note: On y-axes, logarithmic scaling was used

worse in high-dimensional settings. It can further be seen that ARX was less scalable when processing the dataset with
high identifiability. The results also show that ARX outperformed the algorithm by Sánchez et al when processing the
Time Use Survey dataset, which has the second highest volume of the datasets considered, but very low identifiability. This
can be explained by the fact that the optimizations implemented into ARX are particularly effective when identifiability
is low31,50 and that the runtime complexity of the approach by Sánchez et al is dominated by sorting the dataset. This also
implies that the performance of the algorithm by Sánchez et al mostly depends on the number of records contained in a
dataset, which is also reflected by our results.

Figure 9 shows the data utility measured in the experiments. It can be seen that in all cases ARX returned output
datasets to which almost no modifications had been made. When using the approach by Sánchez et al, however, significant
changes were made to input data, again resulting in utility estimates as low as 60% in some cases. This is remarkable, as
the transformation method implemented by ARX is less flexible, as it always guarantees that identical records in input
data are transformed to identical records in the output dataset. Again, data utility decreased monotonically when risk

F I G U R E 9 Comparison of the data utility obtained using ARX and the algorithm by Sánchez et al
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thresholds increased but the effect was much stronger when using the algorithm by Sánchez et al. We conclude that, in
our experiments with local generalization, the approach by Sánchez et al exhibited higher scalability but the algorithm
implemented by ARX provided higher degrees of output data utility.

5 SUMMARY AND PRACTICAL EXPERIENCES

In this article, we have presented an overview of the current development state of the ARX Data Anonymization Tool.
We have described recent extensions to the software that enable users to utilize a wide variety of data transformation
methods that were previously only supported by specific tools or algorithms. We have presented the results of an extensive
experimental evaluation which has shown that ARX often outperforms related software. The development of methods
that make ARX so flexible was not only a major methodological challenge, but it also contributed significantly to the
success of the software. To illustrate this, we briefly present some examples of official policies and guidelines, research
projects, and data publishing activities that have made use of the software.

On the level of guidelines, ARX has for example been mentioned by the European Medicines Agency as a solution for
implementing quantitative risk assessments when implementing Policy 007075 on the sharing of data from clinical trials.76

Moreover, ARX has been listed in a guideline by the European Union Agency for Network and Information Security
(ENISA) on methods for implementing privacy and data protection by design principles.77 Another guideline mentioning
ARX has been released by the UK Anonymization Network (UKAN), which is an organization promoting and advising on
best practices in data anonymization.78 The document has also been adapted by the Office of the Australian Information
Commissioner.79 ARX has also been covered in a comprehensive analysis of anonymization tools released by the Direc-
torate for Research, Studies, Evaluation and Statistics of the central administration of the French Ministry of Social Affairs
and Health.80 It has further been mentioned in a report on requirements and implementation options for anonymization
services by the Finnish Ministry of Transport and Communications,81 in a guide to data anonymization by the Personal
Data Protection Commission of Singapore,82 a security standard released by the Polish Ministry of Digitalization,83 a
report on data anonymization by the Dutch Ministry of Justice and Security84 as well as a report by the Korean Ministry of
Science and ICT.85 These examples show the importance of open source anonymization tools for supervisory authorities.

On the level of scientific data management, various institutions have included ARX into software collections. Exam-
ples include the Finnish Social Science Data Archive,86 EPFL,87 the University of Guelph,88 the University of Munich,89

and the University of Kassel.90 The graphical frontend of ARX is also frequently used in training courses. For example,
the Korea Internet & Security Agency (KISA) and the TMF e.V., the umbrella organization for networked medical
research in Germany, offer regular training programs.91,92 ARX has further been covered in many handbooks on the
topic.40,93,94 Recently ARX has also been integrated into the big data processing framework KNIME,95 and one of ARX's
core algorithms has been selected to form the backbone of SAP HANA Data Anonymization.96

ARX has also been used in several research projects, mostly through its application programming interface. One
important area is research on privacy-preserving big data analytics platforms. For example, Costa et al described a plat-
form for big data management in the telecommunication sector that offers privacy-enhancing features through ARX.97

Kim et al proposed a distributed analytics platform based on ensemble learning for healthcare data. They used data
anonymized with ARX as a baseline in experimental comparisons.98 A second line of research using ARX focuses on
trust and access control. An interesting example is the article by Armando et al, which describes a risk-aware access
control framework for information disclosure. The presented prototype includes a risk mitigation module which uses
adaptive anonymization operations implemented on top of ARX.99 Another example is the work by Jiang et al, in which
game-theoretic methods have been used to develop a credibility model in cooperative networks and ARX has been
included in the evaluation.100 The development of new data anonymization methods is another area in which ARX is fre-
quently utilized. An interesting example is the work by Stammler et al, who have used ARX to implement and evaluate
an enhanced variant of the 𝓁-diversity privacy model which uses an asymptotically unbiased estimator for the Shan-
non entropy.62 Li et al have proposed and implemented a graph-based framework for privacy-preserving data publishing,
which they evaluated by comparing the output of their framework with the output of ARX.101 Moreover, Xu et al pro-
posed a contract-based approach to handle the trade-off between privacy and utility, which has been implemented on top
of ARX.102 Finally, Park et al have developed a data synthesis mechanism based on Generative Adversarial Networks and
they used ARX as a baseline technology in their evaluation.103

ARX has also been used to anonymize datasets for public and private dissamination. However, since official guidelines
unfortunately do not usually provide specific instructions on how data needs to be anonymized, only little information
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is publicly available on practical applications. One example is the work by Kuzilek et al describing the Open University
Learning Analytics Dataset, which is a representative subset of student data collected at the Open University. The data
were anonymized using ARX in a process that has been certified by the Open Data Institute.104 As another example, Ursin
et al have used ARX to assess and manage the re-identification risk of a large dataset from the Norwegian Cervical Cancer
Screening Program.105

6 LIMITATIONS AND CHALLENGES AHEAD

ARX's flexibility and a relatively intuitive and easy-to-use interface are key factors that contributed to the software's
success. However, we emphasize that the methods implemented by the software are complex from a mathematical and sta-
tistical perspective and, as a consequence, anonymization in real-world settings can usually only be carried out by experts.
For example, risks models must be selected according to the context, and risks must then be reduced precisely to an extent
that ensures that the data are reliably protected. In addition, one must be aware of the intended use of a dataset to ensure
that the anonymized data remain useful. Moreover, there are several limitations that we plan to address in future work.

First, ARX does currently not support many methods provided by data anonymization tools from the statistics com-
munity, such as sdcMicro. Important examples include methods for considering the effect of complex sampling designs on
re-identification risks when anonymizing data or different means of calculating the frequency of records for risk estima-
tion. The main reason why we have not yet implemented such techniques is that they are not frequently used in the area
of health data privacy, which is our primary application domain. However, we plan to extend the software in this direction
in future work. Another area of future work is to compare ARX to other algorithms using transformation methods not
studied in this article. Important examples include cell suppression and methods for aggregating continuous variables in
such a way that they remain continuous and keep their scale of measure (eg, replacing them by the mean within clusters).

Second, while ARX is much more scalable than many other solutions in the field, it can currently only be used to
anonymize medium-sized datasets with up to a few million rows and up to 50 quasi-identifying variables. Nowadays, data
controllers often need to deal with gigabytes and terabytes of data, with in some cases hundreds of attributes that need to
be protected. One example is large sparse datasets used for creating machine learning models.106 Due to its high degree
of automatization, ARX is well suited for implementing anonymization operators that can then be distributed amongst
a large number of nodes to enable or speed up the processing of very large datasets. However, integrating appropriate
strategies for distributing data and processing the results obtained from different nodes is challenging. This is particularly
true for ARX, where parallelization strategies must be implemented carefully to not impact the flexibility of the software.

Another important area of future development is to improve ARX's abilities to process high-dimensional data along
two axes. First, we plan to improve the scalability of finding solutions to anonymization problems with a high num-
ber of quasi-identifiers by implementing an alternative to the algorithm currently used by the software. The genetic
algorithm proposed by Wan et al for anonymizing genetic data is an interesting candidate66 but integrating it is chal-
lenging due to the different context in which it was proposed. Second, we plan to improve the utility of output data in
high-dimensional settings by implementing methods to better handle complex inter-attribute relationships.107 One possi-
ble solution to this problem is to treat the data as transactional, that is, set-valued, and to employ specific privacy models,
such as km-anonymity,108 which is implemented by Anamnesia36 and SECRETA.37

Another related area with significant challenges ahead is to improve the compatibility of the privacy models imple-
mented with local transformation methods. In this context, we plan to redesign our sampling subsystem to ensure that
also models that rely on sampling can be used when applying local data transformation. Moreover, for some models,
for example, those that use statistical models to estimate population uniqueness, it is not yet clear whether their pri-
vacy guarantees hold in the local transformation context. We plan to formally analyze this and to develop variants that
can be used with local transformations if needed. These steps are also needed to guarantee privacy-preservation in the
distributed settings outlined above. Finally, our differential privacy algorithm44 needs to be extended with differentially
private procedures which incorporate the horizontal and vertical partitioning methods.

We further plan to include more methods from the area of statistical disclosure control and further less formal trans-
formation methods into ARX. An important example is the SUDA2 algorithm,73 which can be used to implement various
types of risk analysis and anonymization and which is frequently used in the statistics community. Furthermore, we plan
to include data masking techniques (eg, for random data generation and shuffling) into the software to enable users to
combine formal methods of data anonymization with a wide range of such basic transformation operations.

Finally, we are working on many features to make the software even more reliable and usable in practical applications.
For example, we have recently integrated the data anonymization operations provided by ARX into the ETL environment
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Pentaho Data Integration,109 and we are working to integrate them into further environments, such as Talend Open
Studio.110 A significant challenge in this process is to not negatively impact the flexibility of the software.
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APPENDIX A PSEUDOCODE OF THE ALGORITHM

The core of the flexible transformation process described in this article is a routine which performs full-domain attribute
generalization followed by record suppression and value aggregation (the latter is also called vertical partitioning). This
process is sketched in Figure A1. The suppression limits is used to specify that not more thans records may be suppressed.
The process of optimal full-domain generalization followed by record suppression and aggregation is encapsulated in the
call to the method generalizeAndAggregate. This method is not described in further detail, as the underlying algo-
rithms Flash and Lightning have been covered in previous publications.12,50 The only difference to the original algorithms
is that the effect of record suppression is ignored when calculating the utility of the output produced by the available
generalization schemes.

Figure A2 illustrates how the the method transformRecords is being applied to subsets of the records from the
input dataset to implement the horizontal partitioning strategy. The pseudocode is formulated iteratively rather than
recursively for ease of understanding.

In line 7, full-domain generalization is performed on the dataset d, resulting in the dataset t. t may contain records,
which either have been transformed (ie, values generalized or aggregated) or which have been suppressed. The original
versions of suppressed records are then extracted from t via the method extractSuppressionCandidates in line 8.
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F I G U R E A1 Pseudocode illustrating the method transformRecords [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E A2 Pseudocode illustrating the anonymization method [Colour figure can be viewed at wileyonlinelibrary.com]

These records are then processed in the next iteration if the termination condition (line 9) is not met. In line 13, the
method extractTransformedRecords returns all records which have been subject to attribute generalization or
aggregation. These are then added to the intermediate result (line 14). The parameter partitions (also called p in
Section refsec:advanced) determines the maximal number of iterations. In each iteration, the suppression limit used when
calling transformRecords is calculated appropriately in line 6 to guarantee that the condition in line 9 is satisfied
within at most partitions iterations. The choice of partitions balances execution times against data quality.

APPENDIX B EXAMPLE ILLUSTRATING THE APPROACH

In this section, we provide an example illustrating an application of our algorithm. In this process, we use the example
dataset from Figure 4, which we have extended with two additional attributes height and income. Domain generalization
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F I G U R E B1 Domain generalization hierarchies for the additional attributes. The hierarchy to the left specifies possible generalizations
of values of the attribute height and the hierarchy to the right specifies possible generalizations of values of the attribute income
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hierarchies for the attributes age and sex have been provided in Figure 3. Hierarchies for the additional attributes are
presented in Figure B1 below.

Figure B2 shows the original dataset as well as all steps executed to generate a 2-anonymous output dataset by applying
local generalization to the attributes age and sex as well as aggregating height by replacing values with the arithmetic
mean and aggregating income by generating dynamic intervals around values in each cluster. The algorithm terminates
after two iterations, where each iteration consists of three steps. Cells transformed in each step are highlighted in grey.
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F I G U R E B2 Example illustrating the partitioning strategies. Cells transformed in each step are highlighted in grey
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• In step (1a), the first horizontal partitioning step, the dataset is generalized and clusters are formed. To this end, a
generalization scheme is applied to the original dataset resulting in three clusters each containing two records. The
second cluster contains two suppressed records. These will be transformed in the next iteration. The attributes age and
sex are transformed using the generalization hierarchies.

• In step (1b), the first vertical partitioning step, the attribute height is aggregated by replacing the values in each cluster
with the average of the associated values from the input dataset.

• Finally, in the last step of the first iteration, (1c), which constitutes the second vertical partitioning step, the attribute
income is aggregated by replacing the values in each cluster with dynamic intervals around the associated input values.

In the second iteration, the same process is repeated in steps (2a), (2b), and (2c) for the two records suppressed in the
first iteration, resulting in the final output dataset.

APPENDIX C SPECIFICATION OF THE DATASETS USED IN THE EXPERIMENTS

In this appendix, we present more details about the datasets used in the experiments. We note that we used the datasets
to compare the performance (in terms of scalability and output data utility) of different anonymization algorithms to
each other and not to perform case studies using a specific anonymization algorithm. The properties of the datasets
which are most important for this comparison (ie, volume, dimensionality, uniqueness of data) are listed in Table 6. For
reference, we list further details about the attributes of the datasets in this section. We note that in practice the selection
of quasi-identifiers needs to be performed in a context-specific manner considering additional safeguards such as access
restrictions (see Section 6). Analogously to many other studies using the same or similar datasets, we therefore simply
selected a set of privacy-relevant attributes for each dataset to perform the comparison. As can be seen in the following
paragraphs, the selected attributes included demographics (eg, age, marital status, sex), social parameters (eg, education,
insurance coverage), financial data (eg, income), and health parameters (eg, weight, health problems). Finally, we note
that all datasets are also available in our online repository.74

Table C1 presents a list of the attributes of the “US Census” dataset, which comprises eight categorical attributes and
one numeric attribute. The heights of the generalization hierarchies used for anonymization varied between two and
five. The dataset contains an excerpt from the 1994 US census database from which records containing “null” values
have been removed. We note that this dataset is a de facto standard dataset for comparing anonymization algorithms and
that we have removed records containing “null” values only to replicate the setup most commonly used, not because the
algorithms studied are not able to handle missing data (see Section 3.1). Further information is available online: http://
archive.ics.uci.edu/ml/datasets/adult.

Table C2 presents a list of the attributes of the “Competition” dataset. As can be seen, the dataset comprises two cate-
gorical and six numeric attributes. The heights of the generalization hierarchies used for anonymization varied between
two and six. The dataset originates from the 1998 KDD data mining competition. Further information is available online:
http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.

Table C3 presents a list of the attributes of the “Crash statistics” dataset, which comprises seven categorical attributes
and one numeric attribute. The heights of the generalization hierarchies used for anonymization varied between two and
six. We note that the attributes “ideathmon” and “ideathday” are categorical, because the dataset contains special cate-
gories for missing values (“not applicable” and “unknown”). The dataset originates from the Fatality Analysis Reporting
System (FARS) of the US National Highway Traffic Safety Administration (NHTSA) and can be accessed here: ftp://ftp.
nhtsa.dot.gov/FARS/.

Table C4 presents a list of the attributes of the “Time Use Survey” dataset, which comprises eight categorical attributes
and one numeric attribute. The heights of the generalization hierarchies used varied between two and six. The dataset
originates from the American Time Use Survey. Further information is available online: http://atusdata.org/index.shtml.

Table C5 presents a list of the attributes of the “Health Interviews” dataset. As can be seen, the dataset comprises
five categorical and four numeric attributes. The heights of the generalization hierarchies used for anonymization var-
ied between two and six. The dataset originates from the US Integrated Health Interview Series. Further information is
available online: https://nhis.ipums.org/nhis/.

Table C6 presents a list of the attributes of the “Community Survey” dataset, which comprises 27 categorical and three
numeric attributes. The heights of the generalization hierarchies used for anonymization varied between two and five.
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T A B L E C1 Specification of the “US
Census” dataset

Attribute Data type Distinct values Hierarchy height
sex Categorical 2 2

age Numeric 72 5

race Categorical 5 2

marital-status Categorical 7 3

education Categorical 16 4

native-country Categorical 41 3

workclass Categorical 7 3

occupation Categorical 14 3

salary-class Categorical 2 2

The table presents a list of the attributes contained in the dataset, which consists of 30 162 records.

T A B L E C2 Specification of the
“Competition” dataset

Attribute Data type Distinct values Hierarchy height
ZIP Numeric 13 294 6

AGE Numeric 94 5

GENDER Categorical 6 2

INCOME Numeric 7 3

STATE Categorical 53 2

RAMNTALL Numeric 814 5

NGIFTALL Numeric 81 5

MINRAMNT Numeric 58 5

The table presents a list of the attributes contained in the dataset, which consists of 63 441 records.

T A B L E C3 Specification of the “Crash
Statistics” dataset

Attribute Data type Distinct values Hierarchy height
iage Numeric 99 6

irace Categorical 20 3

ideathmon Categorical 14 4

ideathday Categorical 33 4

isex Categorical 3 2

ihispanic Categorical 10 3

istatenum Categorical 51 4

iinjury Categorical 8 3

The table presents a list of the attributes contained in the dataset, which consists of 100 937 records.

T A B L E C4 Specification of
the “Time Use Survey” dataset

Attribute Data type Distinct values Hierarchy height
Region Categorical 4 3

Age Numeric 83 6

Sex Categorical 3 2

Race Categorical 23 3

Marital status Categorical 7 3

Citizenship status Categorical 6 3

Birthplace Categorical 155 3

Highest level of school completed Categorical 18 4

Labor force status Categorical 6 3

The table presents a list of the attributes contained in the dataset, which consists of 539 253 records.
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Attribute Data type Distinct values Hierarchy height

YEAR Numeric 13 6

QUARTER Numeric 4 3

REGION Categorical 4 3

PERNUM Numeric 25 4

AGE Numeric 86 5

MARSTAT Categorical 10 3

SEX Categorical 2 2

RACEA Categorical 16 2

EDUC Categorical 26 2

The table presents a list of the attributes contained in the dataset, which consists of 1 193 504 records.

T A B L E C5 Specification of the “Health
Interviews” dataset

Attribute Data type Distinct values Hierarchy height

Insurance purchased Categorical 2 2

Workclass Categorical 10 3

Divorced Categorical 3 2

Income Numeric 464 5

Sex Categorical 2 2

Mobility Categorical 4 2

Military service Categorical 5 2

Self-care Categorical 3 2

Grade level Categorical 17 3

Married Categorical 3 2

Education Categorical 25 4

Widowed Categorical 3 2

Cognitive Categorical 3 2

Insurance Medicaid Categorical 2 2

Ambulatory Categorical 3 2

Living with grandchildren Categorical 3 2

Age Numeric 93 4

Insurance employer Categorical 2 2

Citizenship Categorical 5 3

Indian Health Service Categorical 2 2

Independent living Categorical 3 2

Weight Numeric 561 5

Insurance Medicare Categorical 2 2

Hearing Categorical 2 2

Marital status Categorical 5 3

Vision Categorical 2 2

Insurance Veteran's Association Categorical 2 2

Relationship Categorical 18 3

Insurance Tricare Categorical 2 2

Childbirth Categorical 3 2

The table presents a list of the attributes contained in the dataset, which consists of 68 725 records.

T A B L E C6 Specification
of the “Community Survey”
dataset
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The dataset contains the data collected in the state of Massachusetts during the year 2013 as responses to the American
Community Survey (ACS), an ongoing survey conducted by the US Census Bureau on demographic, social and economic
characteristics from randomly selected people living in the US. Further information is available online: https://www.
census.gov/programs-surveys/acs/.

APPENDIX D DEFINITION OF THE UTILITY MODEL USED IN THE EXPERIMENTS

In this appendix, we present a formal definition of the utility model used in the experiments. We denote the num-
ber of records in the dataset with n and the number of attributes in the dataset with m. The “granularity” model is a
general-purpose utility measure based on the “loss” model proposed by Iyengar.68 It is defined as:

1 − 1
m

∑
1≤x≤m

loss(x), (D1)

where loss(x) ∈ [0, 1] returns the information loss for attribute x.
The information loss for an attribute x, denoted by loss(x) ∈ [0, 1], is defined as the average information loss over all

values of this attribute in the dataset:

loss(x) = 1
n

∑
1≤y≤n

loss(x, y). (D2)

The information loss per value, denoted by loss(x, y) ∈ [0, 1], is calculated depending on the type of the attribute x and
the transformation applied to the attribute:

1. For categorical and numeric attributes transformed using an associated generalization hierarchy, information loss per
cell is defined as:

loss(x, y) =
leafs(x, value(x, y)) − 1

leafs(x, root(x)) − 1
, (D3)

where value(x, y) returns the value of attribute x in record y, root(x) returns the value of the root node of the general-
ization hierarchy for attribute x and leafs(x, v) returns the number of leaf nodes rooted at the value v in the hierarchy
of attribute x.

2. For numeric attributes which have been transformed into intervals (either by using a generalization hierarchy in which
inner nodes represent intervals or by dynamic aggregation into intervals), information loss per cell is defined as:

loss(x, y) =
|upper(value(x, y)) − lower(value(x, y))|

|max(x) − min(x)| , (D4)

where value(x, y) returns the value of attribute x in record y, lower(v) returns the lower bound of the interval described
by value v, upper(v) returns the upper bound of the interval described by value v, min(x) returns the smallest value of
attribute x in the input dataset and max(x) returns the largest value of attribute x in the input dataset.

3. For values which have been suppressed, information loss is defined as:

loss(x, y) = 1, if value(x, y) is suppressed, (D5)

which equals the information loss measured for attribute values which have been completely generalized or trans-
formed into an intervals covering the complete domain of a numeric attribute.

4. For all other values, information loss is defined as:

loss(x, y) = 0, in all other cases, (D6)
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which implies that the model is not able to capture changes to data utility caused by other types of transformation, for
example, by aggregating numeric values by replacing them with their mean.

We note that the model has been implemented in a manner that takes care of a wide range of edge cases. For example,
it is made sure that no division by zero occurs should the domain of a variable consist of only one value and it is considered
whether upper or lower bounds of intervals are inclusive or exclusive should the domain of a variable consist of integer
values only. In summary, the model returns values in the range [0, 1], where the original dataset has a utility of 100%
and a transformed dataset in which all attribute values have been removed (either by generalization, suppression or by
replacing them with intervals covering the complete domain of the attribute) has a utility of 0%.

Finally, we note that the fact that this model is not able to capture changes to data utility caused by aggregation
operators other than the forming of dynamic intervals (eg, operators which replace values with their mean) is not relevant
for the experiments presented in this article. The reason is that we only used generalization, suppression and replacement
by dynamic intervals as other transformation operators are not supported by the tools to which we compared our software.
ARX does, however, support further utility models such as the sum of squared errors, which can be used to analyze the
impact of further types of aggregation (see Section 2.3).
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CHAPTER 4: Contributions

Attribution-Noncommercial 4.0 International

Deed � reformatted for display in this thesis

You are free to:

1. Share � copy and redistribute the material in any medium or format

2. Adapt � remix, transform, and build upon the material

3. The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

1. Attribution � You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not in

any way that suggests the licensor endorses you or your use.

2. NonCommercial - You may not use the material for commercial purposes.

3. No additional restrictions � You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public

domain or where your use is permitted by an applicable exception or limitation .

No warranties are given. The license may not give you all of the permissions necessary for

your intended use. For example, other rights such as publicity, privacy, or moral rights may

limit how you use the material.

Deed Source / Canonical URL

https://creativecommons.org/licenses/by-nc/4.0/
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