
Technische Universität München
TUM School of Computation, Information and Technology

On the Algorithmic Impact of Scientific

Computing on Machine Learning

Severin Maximilian Reiz

Vollständiger Abdruck der von der TUM School of Computation,
Information and Technology der Technischen Universität München zur

Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation: 1. Prof. Dr. Hans-Joachim Bungartz

2. Prof. George Biros

3. Prof. Dr. Felix Dietrich

Die Dissertation wurde am 24.01.2024 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology

am 17.06.2024 angenommen.

2

Contents

I Introduction 11

1 Introduction 13
1.1 H-matrices . 13
1.2 Neural networks . 14
1.3 Main contributions . 15
1.4 Structure of the thesis . 16

II Foundations, state of the art, and related work 17

2 H-Matrices 19
2.1 Hierarchical matrix algorithms . 20

2.1.1 Algebraic compression algorithms . 20
2.1.2 Low-rank representation . 21
2.1.3 Hierarchical matrix multiplication . 23
2.1.4 Hierarchical pseudo-inverse . 23
2.1.5 Hierarchical matrix applications . 24
2.1.6 Summary . 24

2.2 Metric trees, neighbor search, and skeletonization 25
2.2.1 Geometric tree algorithms . 25
2.2.2 Low-rank approximations for GOFMM . 27
2.2.3 Neighbor calculation using randomized k-d trees 29
2.2.4 FMM vs. HSS representation . 30
2.2.5 Summary . 31

2.3 Applications of matrix algorithms . 31
2.3.1 Gaussian kernel density estimation . 32
2.3.2 Diffusion maps . 32
2.3.3 Arnoldi iteration . 33

2.4 Summary . 34

3 Artificial neural networks 37
3.1 Scientific computing for deep learning . 37

3.1.1 Linear regression . 38
3.1.2 Multilayer perceptron . 38

3.2 Convolutional neural networks . 39
3.2.1 Convolutional layer . 40
3.2.2 Pooling layer . 41
3.2.3 Dropout layer . 42
3.2.4 Fully-connected layer . 42

3.3 Uncertainty in deep learning . 42
3.3.1 Types of uncertainty . 43
3.3.2 Frequentist approach of treating prediction uncertainty 43
3.3.3 Variational inference . 44
3.3.4 Bayes by backpropagation . 44
3.3.5 Summary . 45

3.4 Network architectures . 45

3

CONTENTS

3.4.1 Shallow networks . 45

3.4.2 Computer vision networks . 46

3.4.3 Natural language processing architectures 51

3.4.4 Transfer learning . 56

3.4.5 Summary . 58

3.5 Summary . 59

4 Optimization methods 61

4.1 State-of-the-art deep learning optimization approaches 61

4.1.1 Stochastic gradient descent . 62

4.1.2 Adaptive moments . 63

4.1.3 Other strategies for neural network optimization 63

4.1.4 Summary . 63

4.2 2nd-order optimization for deep learning . 64

4.2.1 Pearlmutter approach . 64

4.2.2 Newton’s method . 65

4.2.3 Ingredients of proposed 2nd-order optimizer: Newton-CG 65

4.2.4 Related work on 2nd-order optimization for deep learning 67

4.3 Summary . 68

III Methods, implementation, and experimental results 69

5 Computational setup 71

5.1 SuperMUC-NG . 72

5.2 Multiple GPU: DGX-1 for deep learning . 72

5.3 Linux cluster . 73

5.4 Smartphone: TUM-lens . 73

5.4.1 Image classification . 74

5.4.2 Object detection . 74

5.4.3 Sign language detection . 77

5.5 Summary . 77

6 H-Matrices 81

6.1 Implementation: Geometry-oblivious fast multipole method 81

6.1.1 Gram distance notion . 82

6.1.2 GOFMM ingredients . 83

6.1.3 Additional remarks . 86

6.2 Implementation: GOFMM Python interface . 87

6.2.1 Python bindings using SWIG . 87

6.2.2 GOFMM integration into datafold . 89

6.3 Test matrices . 91

6.3.1 Input/Output implementations . 91

6.3.2 Synthetic data and kernel matrices . 92

6.3.3 Gauss-Newton Hessian . 92

6.3.4 Datafold matrices . 92

6.3.5 Parameter selection and accuracy metrics. 94

6.4 Results: GOFMM for kernel matrices . 94

6.4.1 Performance measurements: weak and strong scaling 95

4

CONTENTS

6.4.2 Timing comparison to ScaLAPACK and STRUMPACK 98
6.4.3 Gauss–Newton Hessian matrix . 99
6.4.4 Summary of GOFMM results on SPD matrices 102

6.5 Results: Python interface . 103
6.5.1 Accuracy measurements of the matrix-vector multiplication 103
6.5.2 Factorization using the pseudo-inverse . 103
6.5.3 Eigenvector decomposition for datafold 105
6.5.4 Summary of GOFMM Python integration using SWIG 107

6.6 Summary . 107

7 2nd-order optimizer for artificial neural networks 109
7.1 Implementation: Newton-CG . 109

7.1.1 Newton-CG: optimizer features . 110
7.1.2 Automatic differentiation framework . 111
7.1.3 Datasets . 115
7.1.4 Summary of implementation . 117

7.2 Results: Newton-CG global convergence analysis 117
7.2.1 Test functions: Quadratic, Rosenbrock and Rastrigin 119
7.2.2 Regression . 120
7.2.3 Variational autoencoder . 121
7.2.4 Bayesian neural networks . 121
7.2.5 Image classification . 125
7.2.6 Natural language processing . 128
7.2.7 Summary . 130

7.3 Results: Newton-CG with data-parallelism . 130
7.3.1 Parallel runs . 131
7.3.2 Sequential timing comparisons . 131
7.3.3 Summary . 132

7.4 Summary of Newton-CG for neural networks . 133

IV Conclusion and outlook 135

8 Algorithmic impact of SciComp on ML 137
8.1 Conclusion . 137

8.1.1 H-Matrices with GOFMM . 137
8.1.2 2nd-order optimizer Newton-CG . 138

8.2 Outlook . 138

A SWIG Code compilation 141
A.1 GOFMM files . 141
A.2 SWIG file tools.i . 142
A.3 Compilation and installation . 142

B Newton-CG installation 145
B.1 Installation . 145
B.2 Usage . 145

5

6

Acknowledgements

My biggest achievement with this thesis is earning the re-
spect of my professor, colleagues, and friends. I sincerely
thank everyone I have worked with for the scientific dis-
cussions. I feel that I often voice critical thoughts, which
sometimes is beneficial, but it may not be easy to always
cope with that.
First, I would like to thank my Professor Hans-Joachim Bun-
gartz, for supporting me throughout all phases of my doc-
toral journey. When I had an idea or a proposal, he always
supported it; when I was in doubt or a difficult phase, he
always suggested a solution. Additionally, thanks to him, I
always felt secure regarding funding, although my academic
work (research, teaching, and chair work) phase for this the-
sis was relatively long. Furthermore, I am thankful for my
second advisor, Prof. George Biros, whom I thankfully vis-
ited several times during my work. My thesis would have
taken another route if your collaboration had not inspired
me.
Second, I want to express my gratitude to my collaborators,
colleagues, and the thoughtful academic environment. A
big thanks goes to the group of TUM-I5 (mls) and all criti-
cal thinkers and technology-interested students for enriching
discussions. I appreciate their feedback and the cynic humor
that often comes alongside.
Third, a big appreciation goes to my colleagues and friends
who helped proofread the thesis, namely Friedrich, Michael,
Keerthi, and Benni. Also, I thank my girlfriend Lena for all
the support she has given me, especially in the last phase
of my PhD. Academic work often keeps the mind busy, and
compared to most industry jobs (and the career progress
there), PhD’ing was sometimes a time of deprivation. I en-
joyed the flexibility in the last six years with my long-lasting
friends, family, and sports colleagues.
Lastly, the academic environment was very thought-
stimulating, and I found many friends alongside the aca-
demic life. Thankfully, we contemporaries live in a time and
place, where society allows funding for such scientific and
personal developments.

7

8

Abstract

In scientific computing and machine learning, matrices and matrix multiplications are often
the backbone of algorithms. An implementation with a naive dense matrix suffers from a
memory and runtime complexity of O(N2). On the one hand, researchers often restrict their
implementation to sparse matrices, which, however, may not be sufficient to capture the whole
space in modeling; on the other hand, a domain-specific approximation scheme suffers from
generality.

One approach for a symbiosis of computational efficiency and generality are hierarchical
matrices (or short H-matrices), as they promise O(N logN) complexity, despite being general
in their algebraic construction. Algorithms using H-matrices are shown to be advantageous
originally for the discretization of elliptic partial differential equations or related integral equa-
tions. Hence, with the code GOFMM developed along this thesis, we extend geometry-oblivious
applicability and overcome the existing limiting quadratic complexity, outperforming the exact
multiplication using Intel MKL DGEMM, ScaLAPACK, or the approximate one with the popular
structured matrix package STRUMPACK for a wide range of problems. In addition, we offer an
interface to Python and couple GOFMM with the diffusion maps code datafold. We show weak
and strong scaling for matrices up to 200K × 200K up to 128 Intel “Skylake” nodes (with 6144
cores) of SuperMUC-NG. With GOFMM, it is possible to integrate hierarchical approximation in
many fields in a problem-agnostic way, allowing memory and runtime benefits, especially for
large-scale systems.

Another approach is to avoid setting up the matrix entirely. With Newton-CG developed
along this thesis, we study second-order optimization for large-scale neural networks. It does not
set up the Hessian matrix but rather relies only on matrix-vector products with the Hessian.
In our study, we apply it to a potpourri of cases from regression, variational auto-encoders,
Bayesian neural networks, image classification, and natural language processing. Newton-CG

performs on par or better for several cases, running almost as fast as the state-of-the-art opti-
mizers SGD and Adam. For the other cases, it is only slightly worse. We implement a data-
parallel scheme with Horovod and apply Newton-CG, for example, on a ResNet50 architecture
with 16M unknowns using an NVIDIA DGX-1 with 8 A100 GPUs. Newton-CG is non-intrusive
in the sense that it can be easily integrated into any deep-learning data pipeline.

In summary, with this thesis, we overcome the quadratic memory and runtime complexity of
matrices for many scenarios. We enable users to integrate these approximations non-intrusively
in their applications with the publicly available parallel frameworks GOFMM and Newton-CG.

9

10

PART I

INTRODUCTION

11

12

No one is so crazy that he can’t find someone
even more crazy who understands him.

Friedrich Nietzsche (1844 - 1900)

1
Introduction

Scientific computing and machine learning (ML) are widely used in today’s computational
software world: simulations of engineering problems or physics, kernel ridge regression of point
clouds, or classification problems. Different types of techniques exist, ranging to numerical
treatment of partial differential equations, Gaussian processes, graph operators, and neural
networks in various forms. Deep learning models are particularly prominent and are commonly
used for a wide variety of applications, notably in safety-critical fields such as autonomous
driving and medical image processing, natural language processing (GPT), and ML for scientific
computing.

With humankind constantly pushing limits to go larger, the underlying techniques have be-
come increasingly compute-intensive. While hardware can keep pace with compute requirements
to some degree (partly by using accelerators), software techniques using intelligent compute-
efficient approximation algorithms gain immense focus. In many cases, at the core of these
methods are linear algebra methods, most notably matrices. Large matrices have tremendous
memory and compute demands. Nevertheless, they are needed in the numerical treatment for
simulation models. Large matrices can also occur in optimization techniques for deep learning
models.

This thesis is two-fold, where both approximate large matrices: First, we start withH-matrix
algorithms, and second, we cover a second-order optimization algorithm for neural networks.

1.1 H-matrices

The numerical treatment of large dense matrices of size N × N suffers from O(N2) or even
higher cost concerning storage and computational operations. With the ubiquity of needs to go
larger, this complexity becomes a severe issue. In many simulation algorithms, even a matrix-
vector multiplication turns out to be a computational bottleneck. Hierarchical matrices (or
short H-matrices) promise almost linear cost, i.e. O(N logN), for matrix operations (multipli-
cation, inversion, decomposition) [Hac15,Beb08]. This concept is rooted in employing low-rank
compression techniques on block partitions of the matrix.

Our approach: In this thesis, we describe a novel tunable algorithm called GOFMM for the ap-
proximation of dense symmetric positive definite (SPD) matrices. It can be used for compressing
a dense matrix and accelerating matrix-vector multiplication operations or pseudo-inverses.

Let K ∈ RN×N be a dense SPD matrix, i.e. K = KT and xTKx > 0, ∀x ∈ RN , x ̸= 0.
We construct an approximation K̃ such that ∥K̃ −K∥ ≤ ϵ∥K∥, where ϵ is a user-defined error
tolerance. We define a matrix K̃ with hierarchical low-rank structure, i.e., K̃ is an H-Matrix,
by (more details in Chapter 2 and Chapter 6)

K̃ = D + S + UV, (1.1)

13

CHAPTER 1. INTRODUCTION

where D is block-diagonal with every block being an H-Matrix, U and V are low rank approx-
imations, and S is sparse. At the base of the recursive definition, the blocks of D are small
dense matrices. An H-Matrix matvec requires O(N logN) work, while the complexity constant
depends on the rank of U and V .

One important observation is that this hierarchical low-rank structure is not invariant to row
and column permutations. While state-of-the-art frameworks, e.g., HODLR and STRUMPACK, use
lexicographic ordering, we introduce a distance notion for ordering and sampling. We exploit
the fact that SPD matrices can be constructed by scalar products of unknown Gram vectors ϕ,
namely Kij = ⟨ϕi, ϕj⟩. Therefore, the distance between rows/columns i and j can be computed
by

||ϕi − ϕj ||22 = ⟨ϕi − ϕj , ϕi − ϕj⟩ = = ⟨ϕi, ϕi⟩︸ ︷︷ ︸
Kii

−2 ⟨ϕi, ϕj⟩︸ ︷︷ ︸
Kij

+ ⟨ϕj , ϕj⟩︸ ︷︷ ︸
Kjj

.

Note that this does not require the Gram vectors ϕ, but only three entries of the matrix Kij .

Limitations: Current frameworks utilizing H-matrices predominantly employ H−arithmetic
in the context of elliptic partial differential equations, leveraging a beneficial lexicographic
ordering resulting from the modeling approach, and hence, do not require the geometry-oblivious
Gram-distance. Although similar matrices are rare in real-world applications, it is quite common
to find matrices that can be approximated arbitrarily well by an H-Matrix. In a nuanced
approach, H−arithmetic seeks to uncover underlying structures within a matrix, projecting
selected data points to capture the essence of the entire set. As a result, these matrices are also
occasionally referred to as data-sparse.

Constructing an H-matrix requires low-rank decompositions on partitions of the matrix.
A naive approach makes compute effort much higher than a straightforward matrix-vector
multiplication. The pre-factor of O(N logN) depends not only on the rank of the off-diagonals
but also on the construction technique of the low-rank representation. While we use several
heuristics to control these costs, there is a potential compromise on accuracy to an extent where
it becomes challenging to ensure guaranteed tolerance.

1.2 Neural networks

Over the past decade, machine learning (ML) and deep learning (DL) methods have become
the most successful learning algorithms in a wide variety of tasks. They are widespread in many
applications and ubiquitous in industry or academia. In the context of scientific computing, ML
methods offer a way to construct cheap and efficient surrogate models with similar accuracy to
existing models.

However, the reasons behind their success (as well as their failures in some respects) are
largely unexplained. For almost all methods, numerical optimization is necessary to tune the
parameters or hyperparameters of the corresponding method. It is widely believed that the
success of deep learning is not just due to the deep architecture of the models but also due to
the behavior of the optimization algorithms used for training them. Even though numerical op-
timization is a comparably mature field that offers many solution approaches, the optimization
problem associated with real-world, large-scale ML scenarios is non-trivial and computationally
very demanding: The dimensionality of the underlying spaces is high, the amount of parameters
to be optimized is enormous, and the cost function (the loss) is typically mathematically com-
plicated being non-convex and possessing many local optima and saddle points in general (e.g.,
the ResNet50 scenario discussed in the thesis has about 16 million degrees of freedom in the

14

1.3. MAIN CONTRIBUTIONS

form of corresponding weights). Additionally, the performance of a method typically depends
not only on the ML approach (network) but also on the scenario of the application (dataset).

From the zoo of different optimization techniques, certain first-order methods, such as the
stochastic gradient descent (SGD), have been very popular and represent the de facto fallback
in many cases. In short, a deep learning model with depth D comprises of a chained function
f(W,x) = f (D)(. . . f (2)(f (1)(W,x))). A network loss function L : Rn → R is applied after
the last layer in relation to the ground truth. The optimization problem consists of finding the
weightsW associated with all functions f (i). The SGD with mini-batches computes intermediate
weights Wk in iteration k with weight update dk via Wk = Wk−1 − α∇L(Wk−1︸ ︷︷ ︸

dk

) where

∇L(Wk−1) denotes the gradient of the total loss L w.r.t. the weights W, and α is the so-called
hyperparameter learning-rate (for details see Chapter 4).

Adaptive moments (Adam) approaches include momentum terms in the update (with sev-
eral additional hyperparameters) and are state-of-the-art for many applications. However, these
algorithms are first-order, memory-bound due to low computational intensity and lack in con-
cise mathematical foundations, explanations, and suggestions for hyperparameter tuning. We
propose a second-order approach with higher computational intensity and more intuitive hy-
perparameters.

Our approach: Looking beyond first-order methods, second-order methods, however, come
at the price of evaluating the Hessian matrix of the problem, which typically is way too costly
for real-world large-scale ML scenarios. The Newton-Raphson method for second-order schemes
readsHL(Wk)d

k = −∇L(Wk), whereHL is the Hessian matrix for the loss function L,∇L(Wk)
the gradient, and dk the weight update for Wk associated with the network. In terms of
size, HL ∈ RN×N corresponds to the amount of parameters optimized for this network. Due
to its size, it is infeasible to construct the dense Hessian; hence, we solely use the Hessian
matrix-vector product HL(W)s. We use the Pearlmutter trick, i.e. we can also multiply an
arbitrary vector to the gradient already and then differentiate the product, i.e. HL(W)s =
∇w(∇wL(W) · s) [Pea94]. For details we refer to Chapter 4 and Chapter 7.

With this, we can solve the Newton-Raphson equation with the conjugate gradients (CG)
iterative linear Krylov solver at costs similar to SGD and Adam per step. By theory, we should
suffice with fewer steps.

Limitations: With this trick, we can exceed the existing limitations for second-order Hessian
matrices. However, some other issues remain. The optimization behavior is very problematic
and dependent on network architecture. The optimization surface is very high-dimensional (cor-
responding to the amount of parameters of the network), and non-convexity and ill-conditioned
states are likely to appear.

For this, we implemented a second-order optimization algorithm with tunable features. We
applied it to several large-scale networks (up to 16 million parameters) on an NVIDIA A100
DGX-1 machine. The Hessian product can also be used for explainability, network pruning,
quantifying uncertainty, or a detailed analysis of the training process when necessary.

1.3 Main contributions

The main contributions of this thesis are two-fold : Hierarchical matrices (H-matrices) and
second-order optimization. Lastly, we add a miscellaneous contribution in terms of public
outreach and science coordination.

15

CHAPTER 1. INTRODUCTION

H-matrices: For hierarchical matrices we developed novel matrix algorithms. GOFMM is im-
plemented in C++ with distributed memory parallelism through the message-passing interface
MPI. We show scalability up to 128 nodes on SuperMUC-NG for compression and evaluation.
We applied it to several matrices arising from kernels of data clouds, partial differential equa-
tions, graphs, and more. We demonstrate that it is not a galactic algorithm, which means an
algorithm has such a high time complexity constant that it never surpasses the performance of
theoretically worse algorithms. In practice, we outperform the exact MKL DGEMM or the popular
structured matrix package STRUMPACK. Next, we also interfaced GOFMM to be called directly from
Python, integrating it to the diffusion maps code datafold. We use the fast matrix-vector
(matvec) for an iterative eigenvalue solver.

Second-order optimization: We developed Newton-CG, a second-order training algorithm
for large-scale neural networks. It has several parameters to steer convergence (Tikhonov reg-
ularization τ , Armijo step-size restriction, learning rate α, a learning rate scheduler). We
parallelized it with Horovod using a data-parallel approach. We executed it on an NVIDIA
A100 DGX-1 machine with up to 8 GPU s simultaneously. We applied it on networks with up
to 16 million parameters from regression, variational autoencoder, bayesian neural networks,
image classification, and natural language processing. It became evident that the saved epochs
in convergence speed for Newton-CG or lower optima is very problem-dependent. We imple-
mented it non-intrusively in the DL-affine Tensorflow framework, making it easy to integrate
into existing pipelines.

Miscellaneous: This thesis makes several contributions related to each of the topics. The
thesis was written in the context of the German Priority Program 1648 Software for Exascale
Computing SPPEXA1 with many fruitful engagements for science coordination in conferences
and annual plenary meetings, benefiting this thesis as well as research by others. The program
by the funding agency Deutsche Forschungsgemeinschaft is summarized in this book article
[BNN+20] and in SIAM News [RB20]. In addition, we launched the Android application TUM-
lens in an effort to reach out to the public community.

1.4 Structure of the thesis

As the thesis is two-fold, there are chapters in parallel threads. The theory of the H-matrix
block is explained in Chapter 2, followed by implementation and results in Chapter 6. The
Newton-CG block is comprised of the two theory chapters, Chapter 3 for the deep learning basics
and Chapter 4 for the optimization basics. The methods, implementation, and experimental
results are discussed in Chapter 7. The computational setup, including clusters and the Android
Smartphone application, is described in Chapter 5. We close with a conclusion and outlook in
Chapter 8.

To get to the meat of the thesis, skip the introduction and the theory. For H-matrix and
GOFMM go immediately to Section 6.1, and the results in Section 6.4 and Section 6.5. For
Newton-CG the algorithm implementation is explained in Section 7.1 and the following sections
for the results. The conclusion (Chapter 8) summarizes the results and discusses them regarding
outlook into the future.

1http://www.sppexa.de/

16

http://www.sppexa.de/

PART II

FOUNDATIONS, STATE OF THE ART,
AND RELATED WORK

17

18

The tired body finds its pillow everywhere, but
when the mind is tired, where should it rest?

Georg Büchner (1813 - 1837)

2
H-Matrices

This doctoral thesis is (mainly) two-fold: the first topic develops algorithms in the field of
hierarchical matrices (short: H-Matrices) with the code GOFMM, and the second topic addresses
algorithms for second-order neural network optimization, with the code Newton-CG. In this first
theory chapter, we begin with the theory of H-Matrices, the basis of the GOFMM code, which we
coupled to other codes and applied it to a range of problems, including an iterative algorithm
for eigenvalue computation (Arnoldi iteration).

This chapter explains numerical and computational algorithms for large-scale. The grand
algorithmic challenge often is to make algorithms suitable for high-dimensions d and large-
scale problem sizes N . For this, those algorithms must be parallel and scalable, which require
high amounts of allowed parallel computations and little need of communicating in between.
Most groundbreaking developments follow these algorithmic paradigms: 1. hierarchic employ-
ing the inner structure of the problem; 2. recursive also allowing finely grained parallelism for
many cores with large N ; 3. dynamic-adaptive to allow problem-agnosticism for potentially
dynamically changing requirements. Examples include the multi-grid methods or other multi-
level algorithms; the same algorithmic patterns are similarly followed for domain decomposition
methods, octrees, and many more. The development of H-matrices and GOFMM also follow the
same pattern: hierarchic, recursive, and dynamic-adaptive.

We start with general H-matrix algorithms (Section 2.1) in particular for a hierarchal off-
diagonal low-rank format, a variant in the family of H-matrices. An H-matrix implementation
can involve a singular value decomposition for compression, and we illustrate how this can be
done hierarchically for off-diagonal blocks of a matrix. We also show that with this format, we
can compute a faster hierarchical matrix multiplication, and we can use this H-matrix format
for a pseudo-inverse. Additionally, we review related work in linear algebra with H-matrices.

We continue in Section 2.2 to explain the foundations of the geometry-oblivious fast mul-
tipole method, GOFMM, which we developed along the thesis. This GOFMM scheme also forms a
variant of an H-matrix implementation. We introduce the respective algorithms and explain
the difference between the fast multipole and the hierarchical semi-separable format.

Lastly, we cover applications of hierarchical matrix algorithms in Section 2.3. We created
the matrix cases ourselves to have complete control over analyzing the test case. We most
excessively experimented with Gaussian kernel matrices, so we describe Gaussian kernel density
estimation in detail. Furthermore, we identified a computational bottleneck in a representa-
tive manifold learning algorithm: the computation of eigenvalues. Hence, we address this issue
with our GOFMM H-matrix variant and couple these two algorithms in the result section. Conse-
quently, we describe the two representative algorithms from the established field of numerical
linear algebra, Arnoldi, and the more recent manifold learning algorithm, diffusion maps, a
(non-)linear dimensionality reduction algorithm. Eigendecomposition tends to be the computa-
tional bottleneck of such algorithms, and we address this using an iterative eigendecomposition
method, namely the Arnoldi method. This coupling scheme opens myriad possibilities for other

19

CHAPTER 2. H-MATRICES

algorithms of the respective fields.
We close with a summary at the end of the chapter, i.e. in Section 2.4.

2.1 Hierarchical matrix algorithms

Domain-specific compression algorithms, such as the one by Barnes and Hut [BH86] and the later
fast multipole method [GR87], are widely used in computational physics, especially molecular
dynamics. H-matrices are an algebraic generalization, and they originate in matrices for the
discretization of elliptic partial differential equations and, integral equations and other problems.
In this section, we introduce these H-matrices, explain how the singular value decomposition
can be used hierarchically, and how a hierarchical matrix multiplication and pseudo-inverse can
be computed. We also state some related work, other approaches, and other software packages.

2.1.1 Algebraic compression algorithms

Let us look at a general matrix-vector product

u = Kw

where u ∈ RN are called potentials, K ∈ RN×N the system matrix and w ∈ RN the weights.
H-matrices is an umbrella term for a family of different H-matrix variants, and here we

first introduce the hierarchical off-diagonal low-rank matrix (HODLR) variant. We wish to
approximate K in a recursive definition by a hierarchical matrix of the form

K ≈ K̃ := D + UV ,

where D is a block-diagonal matrix, whose blocks can recursively again be a hierarchical, U, V
a block low-rank approximation matrix representing off-diagonal blocks.

Figure 2.1: Visualization of a HODLR variant of a hierarchical matrix (H-matrix) of the form
K̃ := D+UV . Off-diagonal blocks are hierarchically represented by a low-rank approximation,
visualized by the blue and green submatrices. On the left: fully dense (hierarchy level 0); on the
right: H-matrix with hierarchy level 3. For details on the HODLR variant, see also Figure 2.2
and the section around it.

Figure 2.1 shows a visual definition of an H-matrix, of an HODLR to be exact. The hier-
archical construct can be imagined as structural compressions of matrix blocks. This scheme
reduces the number of entries significantly, as seen by the ratio of whitespace on the right H-
matrix in relation to the fully dense on the left. In some sense, the structural compressions
of blocks lead to thin and wide matrices. So, to some extent, this can be seen as “important”
vectors (blue) that are multiplied by a projection matrix (green) to get an approximation of the
block (gray off diagonals of the upper level, left). Consequentially, such matrices are sometimes

20

2.1. HIERARCHICAL MATRIX ALGORITHMS

referred to as data-sparse since we can find important vectors, “skeletons”, which represent the
cluster.

We chose the above definition for H-matrices, particularly HODLR, as it is the most catchy
variant. However, as mentioned, there are more classes of low-rank structured matrices. Later,
we will mention hierarchical semi-separable matrices (HSS), which are similar to HODLR, as
they also assume hierarchical low rank on the off-diagonals. However, the low-rank representa-
tion of off-diagonals in HSS matrices is constructed by a nested basis from the lower level [Li21].
Hence, they are not as “catchy” and easy to visualize.

The Barnes and Hut [BH86] algebraic variant or the fast multipole method (FMM, by
Greengard and Rokhlin [GR87]) also have a nested basis in the construction of the low-rank off-
diagonals. However, they additionally have a bucket of geometrically near-interactions that are
kept track of with, e.g., Verlet-lists (for details, see Section 2.2). In an algebraic view, this can
be resembled by an additional sparse matrix. For constructing an FMM, we can first subtract
the sparse matrix from the full dense matrix, then perform a HODLR H-matrix-variant on the
rest. Hence, we define a FMM of the form

K ≈ K̃ := D + UV + S

where D,U, V are matrices as above, and S a sparse matrix, representing points in off-diagonals
that are nevertheless regarded important such that they need to be multiplied directly. The
terms “near”/“far” originate in geometric tree-based approximation algorithms, i.e. Barnes-
Hut [BH86] and FMM.

Hence, using an FMM, we can use this additive splitting and write

u ≈ K̃w = (D + UV + S)w ,

where we can split the multiplications and add them afterward, i.e., we mathematically use the
distributive law. Furthermore, we wish that K̃ has less direct entries than K and, thus, reduces
storage and speeds up arithmetic operations. Any algorithm that computes K̃ from K, where
K̃ is cheaper than K, can be called a compression algorithm. [GTY97, Beb08] For details on
compression, see Subsection 2.1.2 and for splitted multiplication, see Subsection 2.1.3.

Similarly, we can use this splitting approach in computing a solution of N linear algebraic
equations

Kx = b ,

where K is dense and nonsingular, b ∈ RN given and x a N -dimensional solution vector. One
approach is to calculate a pseudo-inverse solution by a compressed K̃, for details see Subsec-
tion 2.1.4. Another approach can use a fast matrix-vector product in iterative solution methods
(preconditioned conjugate gradient [S+94], GMRES [SS86], Arnoldi iteration [Arn51] etc.). The
number of iterations in the solver depends on the condition of the matrix; preconditioning is
indispensable, but for certain problems, finding a suitable preconditioner can be difficult; for
further details, see Subsection 2.3.3. Almost always, a bottleneck of iterative solvers lies in
memory and runtime expensive matrix-vector multiplications. [GTY97,AD13]

In general, these ideas of matrix compression are based on the observation that matrices can
often not be represented by global low-rank, but it is reported that for many model problems
“some” blocks can be compressed with a low-rank decomposition (for scenarios, see Subsec-
tion 2.1.5).

2.1.2 Low-rank representation

For every matrix K ∈ RN×N we can compute a singular value decomposition (SVD). An SVD
is the “golden standard” and textbook method of compression algorithms due to tight theoretic

21

CHAPTER 2. H-MATRICES

bounds. It reads

K = UΣV T ,

where U, V ∈ RN×N are orthogonal matrices, and Σ ∈ RN×N is a diagonal matrix, whose
diagonal entries are the singular values σi, i.e. Σii = σi in the ordering σ1 ≥ σ2 ≥

We call a matrix low-rank with rank r if we can compute a singular value decomposition,
where σr ≤ ϵ for a small ϵ > 0 and r ≪ N . We can then write a rank-r approximation G by
cutting off at some location r, and write

G := UΣrV
T with (Σr)ii =

{
σi if i ≤ r
0 otherwise

.

We can estimate the compression error by the Eckart-Young-Mirsky theorem in terms of the
(r + 1)th singular value, i.e. ||K −G|| ≤

√
σr+1 + · · ·+ σN ≤ σr+1 [Hac15,Kre].

In Figure 2.2, we show the structure of a so-called HODLR matrix (remember from the
previous section, hierarchical off-diagonal low-rank). Note that a block-diagonal matrix K̃ can

again be a HODLR matrix, an H-matrix-variant, e.g. the left-upper K
(2)
11 from tree level (2)

with diagonal index 11. For example, in this case, in Figure 2.2, a full square matrix needs N2

computations for dense multiplication. In HODLR, each level of the tree contains N/2l ·2l = N
numbers; on each level, we need around N · r computations for the off-diagonals, given a fixed
approximation rank of r. We have at most logN levels, i.e. logN summands, leading to
O(N logN) overall. The on-diagonal computations are just in the order of O(N).'

&

$

%
N

N

2 N
22

N
22

N

2 N
22

N
22

. . .

. . .

. . .

. . .

N

N

2
N

22
N

22

N

2
N

22
N

22...
...

...
...

[
K̃

(2)
11 (UΣV ∗)

(2)
21

(UΣV ∗)
(2)
21 K̃

(2)
22

]
(UΣV ∗)

(1)
12

(UΣV ∗)
(1)
21

[
K̃

(2)
33 (UΣV ∗)

(2)
34

(UΣV ∗)
(2)
43 K̃

(2)
44

]
 ≈ K̃(0)

Figure 2.2: Recursive definition of the hierarchical off-diagonal low-rank representation
(HODLR). Binary trees on top and left are formed for the off-diagonal contributions. One tree
would be sufficient, but for the unsymmetrical case, this allows more flexibility. Note that for a

level (1) tree (holding
N

2
entries), the nodes hold itself, i.e., the off-diagonal, and its children, i.e.

the on-diagonal, leading two sub-matrices. The on-diagonal is then split for the next level. We
assume a fixed rank-r for the off-diagonals in each node, and due to some induced compression
errors, we only write “≈” instead of “=”.

We can set the stopping criterion of this recursive structure either as maximum tree-level

depth or from a leaf-node-size m, which we use mostly. A recursion depth can be K
(l)
11 consisting

of a single element (m=1); however, we stop at a leaf node size m ≥ 1 due to practical reasons,
such as limited benefit of rank-r on small matrices. Theoretically, for small sizes, there is no
benefit of rank-r and even disadvantages due to construction effort. AVX vector units and cache
lines need to be considered for numerical calculations on a computer. Thus, depending on the
problem and the computational resource, values like m = 64 are beneficial.

22

2.1. HIERARCHICAL MATRIX ALGORITHMS

2.1.3 Hierarchical matrix multiplication

Considering the task of a matrix-vector product, we have a system matrix K ∈ RN×N , which
we multiply with a weight vector w ∈ RN to get a potential u ∈ RN , i.e.

u = K · w .

Let us now decompose the matrix K in blocks of the form K =

[
K11 K12

K21 K22

]
and the vectors

in blocks of the form u =

[
u1
u2

]
and w =

[
w1

w2

]
.

We can then formulate the block-wise matrix-vector product separated with commas as

u11 := K11w1 , u12 := K12w2 , u21 := K21w1 , u22 := K22w2 .

Finally, the intermediate terms need to be summed up, leading to u1 = u11 + u12 and
u2 = u21 + u22, resulting in the upper resultant vector u. [Hac15]

The benefit of this simple additive arithmetic, again the distributive law, is limited if the
matrices are dense and fully populated, as the complexity is still O(N2).

In HODLR, however, we assume that the blocks K12,K21 ∈ RN/2×N/2 can be approximated

with a low-rank representation, (UΣV ∗)
(1)
12 , (UΣV ∗)

(1)
21 . With a rank-r approximation, the mul-

tiplication with a vector is only of complexity 2 ·N/2 ·r = N ·r, where we hope for r ≪ N/2. We
have a maximum of log2N levels. For a fixed rank-r, this results in O(N log2N) complexity.

This block-wise multiplication is the core of the evaluation algorithm. We specify details
for GOFMM, the algorithm developed along the thesis, later in Section 2.2 and in Section 6.1.
In Section 6.4 we show empirical data showing this O(N logN) computational complexity for
GOFMM.

2.1.4 Hierarchical pseudo-inverse

As mentioned before, and provoked in the introductory paragraph of Subsection 2.1.1, we can
use a splitting approach also in computing a direct solution of N linear algebraic equations

Kx = b

where K is dense and nonsingular, b ∈ RN given and x a N -dimensional solution vector.
Again, let us split our matrix in four blocks,

K =

[
K11 K12

K21 K22

]
.

With this, we can compute the inverse using the so-called Sherman-Morisson-Woodbury
(SMW) formula that is also widely used by other fields or works. [DYBM23,BG99] Let us use
this significant property of a block-wise splitting and write the inverse of K as

K−1 =

[
K−1

11 +K−1
11 K12S

−1K21K
−1
11 −K−1

11 K12S
−1

−S−1K21K
−1
11 S−1

]
where S = K22 −K21K

−1
11 K12 is the so-called Schur complement. With a hierarchical matrix,

H-matrix, we refer to this as H-inverse.
This SMW formula is an exact formula, and the proof can be found in literature, see e.g.

[Rie92,Hac15]. It is well known that computing an inverse numerically is instable [Huc96]. In

23

CHAPTER 2. H-MATRICES

our HODLR setting, we use approximations of matrix blocks in addition as a new source of
error, e.g. on the off-diagonal block K12. Hence, we sometimes call this pseudo-inverse as a note
of caution caused by numerical instabilities. Others use such a pseudo-inverse for hierarchical
preconditioning and smoothening with some iterative method, e.g. [LBG06]. We have done
experiments on a preconditioned conjugate gradient scheme as well [YRB19].

2.1.5 Hierarchical matrix applications

Wolfgang Hackbusch, his colleagues, and collaborators have driven many fundamental research
projects in this area for around 20 years. They have found use cases for elliptic differential
equations with a geometric motivation and for integral equations with a Galerkin discretization
or a collocation method. In [LBG06] H-preconditioning was done on advection/ diffusion prob-
lems. In [Hac15] Hackbusch already mentions that many interesting kernel functions depend
on the distance, K(x − y), similar to radial basis function kernels for point clouds, which we
also describe in Subsection 2.3.1 and employ in Section 6.4. The area evolved, and some col-
laborators from this peer group show runtime advantages of a high-performance block low-rank
representation (BLR), another H-matrix variant, also for elliptic equations. [INK18]

A more recent and more high-performance-oriented development is the structured matrix
package STRUMPACK [RLGN16], which is a software library providing linear algebra routines and
linear system solvers for sparse and dense rank matrices. It was developed at NERSC and
is now integrated into the Exascale Computing Project (ECP) with nice software integrations
by the US Department of Energy. Several groups are involved, e.g., in [GS22], a multifrontal
factorization algorithm is developed for regular mesh PDE problems or test matrices from
sparse matrix collections. In [LXG+21], the focus was butterfly factorization with randomized
matrix-vector multiplications.

To summarize, we gave a non-exhaustive description of some related work, mainly H-
matrices [Hac15] and the structured matrix package STRUMPACK [RLGN16]. In the following
Section 2.2, we show the foundations of our package GOFMM, which we compare to STRUMPACK in
Subsection 6.4.2. Our method finds a matrix re-ordering by design, and others often assume a
given suitable partition.

2.1.6 Summary

In this section, named hierarchical matrix algorithms, we introduced concepts of H-matrix
algebra for matrix multiplication and computing an H-inverse.

We started by describing general algebraic compression algorithms and how they relate
to geometric analytic approximations from computational physics by Barnes and Hut [BH86].
With this, we discussed a low-rank decomposition, namely SVD. We explained how it can be
used hierarchically on off-diagonal blocks, leading to a hierarchical off-diagonal low-rank scheme.

Next, we explained how block-wise matrix-vector multiplication can lead to lower complex-
ities, assuming a HODLR structure. In addition, we showed that we can use the Sherman-
Morrison-Woodbury formula with the Schur complement to compute the inverse of a block
matrix. In HODLR with low-rank blocks, this also outlines a favorable algorithm.

Finally, we showed some H-matrix applications and related work in the field. This includes
mainly H-matrices from [Hac15] and the structured matrix package STRUMPACK [RLGN16].

24

2.2. METRIC TREES, NEIGHBOR SEARCH, AND SKELETONIZATION

2.2 Metric trees, neighbor search, and skeletonization

After having introduced general H-matrix variants in the previous section, in this section,
we focus on the algorithms for the geometry-oblivious fast multipole method (GOFMM), which
we developed along the thesis. We start with the geometric predecessor ASKIT, explaining
the geometry-oblivious distance notion and the algebraic low-rank representation. We discuss
our randomized neighbor computation algorithm and differentiate between the fast multipole
method (FMM) and hierarchically semi-separable (HSS) representation.

2.2.1 Geometric tree algorithms

Tree structures that represent an underlying geometric setting are often called geometric trees.
Examples are octrees and kd-trees - two structures we will briefly introduce and compare in the
first paragraph.

We continue this section with a motivation from the N -body problem, which forms the
ground for ASKIT: Approximate kernel independent treecode and other fast multipole method
codes. Our approach is an extension of ASKIT, but nevertheless, our idea of GOFMM is also sparked
by the N -body problem. After the N -body problem motivation, we describe a hierarchical
interaction calculation algorithm, like the multipole expansions used in computational physics
for molecular dynamics. We will cover textbook methods for algebraic compression algorithms
in the next Subsection 2.2.2.

Octrees vs. k-dimensional trees

For computational fluid dynamics, molecular dynamics, or other simulations in 3 dimensions,
the domain is often decomposed using an octree, see Figure 2.3 (a). In molecular dynamics, for
example, the hierarchic view comes from the fact that molecules are much more likely to interact
with near molecules. The so-called butterfly effect, that an event on one side of the domain has
large immediate effects on the other side, is quite unlikely, compared to near interactions, i.e.,
through collisions or near force fields, if the model is chosen well. A slower, time-dependent
transport is possible in most molecular dynamics models through some particle exchange layers,
so-called ghost cells, or similar methods.

With this analogy in mind, we also decompose the geometric space in Barnes-Hut schemes or
fast multipole methods that we use for the thesis. However, this octree splitting is unsuitable for
high dimensions, as an octree grows with dimensions (2d = 8 for three dimensions). We would
result in 24 = 16 dimensions for a 4-dimensional tree. We have some randomized point clouds
in high dimensional space in our setting, often d > 100. A randomized binary k-dimensional
tree is more suitable for such high-dimensional point clouds, and thus, popular in data analysis.
For simplicity, we illustrate a k-d tree, short for k-dimensional, where here we have k = 2, with
random projection axes in Figure 2.3 (b). The point cloud is decomposed in an equalized split,
so the 16 points are in buckets of 8 after the first split, i.e. in level. We split the point buckets
subsequently, and for the query points, which are q1 and q2, we go to a level-four tree. The
points q1andq2 are quite far away, and with a very high probability, those points are also in
oppositely located leaves in the binary tree. Recall that this also fits our assumption that near
points are put in near buckets, where interactions are possibly high, and far points are placed
in far-away tree nodes.

Therefore, a k-dimensional binary tree with some randomized projection axes works similarly
well and expands nicely to high dimensions. The tree size does not depend on the spatial
dimension d, but rather on the number of points or the desired depth level of the tree.

25

CHAPTER 2. H-MATRICES

(a) Octree taken from [Dul24]

◦

◦

◦ ◦
◦

◦

◦

◦

◦
◦

◦

◦

◦

◦

◦

◦

q1

q2

16

8

4

2

q1 .

2

4

2 2

8

4

2 2

4

2 2

q2 .

(b) Randomized k-dimensional tree, expanded to three levels
and four levels for query points q1, q2

Figure 2.3: Difference between a structured octree and a randomized k-d tree.

Geometric motivation from N-body problems

N -body methods are used in many disciplines: simulations of celestial gravitational, Coulomb,
and Lennard-Jones potentials; in waves and scattering or fluids and transport; in data analysis,
a similar problem occurs in scientific machine learning, geostatistics, and image analysis. [Rei17]

Given a set of N targets xi ∈ Rd, a set of N sources xj ∈ Rd, weights wj and a kernel
function K(xi, xj) (some pairwise potential), we want to compute a target potential ui,

ui = u(xi) =

N∑
j=1

K(xi, xj)wj .

This operation can be viewed as a matrix-vector product with complexity O(N2) and is often
the computational bottleneck of such simulations.

We want to reduce this complexity by exploiting geometrical information. This can be done
with analytical methods for classical Barnes-Hut in a hierarchical structure; for example, Near-
Lists are kept in Linked cells or in Verlet lists. In a “matrix” view (i.e., algebraic), this relates
to exploiting possible low-rank blocks in matrix K
(Kij = K(xi, xj)). We rewrite

ui =
∑

p∈Neari

Kipwp +
∑

p∈Fari

Kipwp ,

where Neari is a set of near points, whose contributions need to be regarded individually and
Fari being the set of far points, whose contributions can sufficiently be computed by an analytic
approximation, or algebraically, by a low-rank approximation. [Rei17]

Hierarchical interaction calculation algorithm

The idea of such approximations relies on the observation that an interaction force with respect
to a far-away individual point may be approximately neglected; however, the force with respect
to a far-away cluster of points may not be neglected but can be approximated. Thus, we want to
group far-away points in clusters hierarchically. In Subsection 2.2.4, we discuss near-far pruning
criteria.

In this way, we will calculate for a single point i some interactions from Near points jNear
individually, but interactions from Far clusters (Farj′ ⊂ {xj}j∈Far) only approximately (we
aggregate weights at skeletons or center of mass of clusters, for example, for gravitational
fields).

26

2.2. METRIC TREES, NEIGHBOR SEARCH, AND SKELETONIZATION

In celestial simulations, one can assume that we represent a clustered formation of stars (or
solar systems, galaxies) in terms of their accumulated mass located at their center of mass. For
points (comets, planets, stars) in different clusters, we approximate the incoming gravitational
force from that cluster by its aggregated mass, e.g. at its center of mass. In this context, this
represents a pseudo-point since we do not necessarily have a data point located at the center of
mass. While this is not a problem per se, alternatively, we can use (one or more) actual data
points serving as “skeletons” at which we aggregate the mass of its underlying cluster. [Rei17]

2.2.2 Low-rank approximations for GOFMM

In this section, we relate the geometric tree algorithms from the previous section to Gram
matrices. We show algebraic compression algorithms for GOFMM, namely a reduced singular
value decomposition for reference and the interpolative decomposition that we use. We also
relate the decompositions to randomized linear algebra, which is the state-of-the-art approach
used in recent literature, with which our interpolative decomposition could be replaced in the
future.

As already sparked in Chapter 1 in the geometric-oblivious fast multipole method (GOFMM),
we exploit the fact that SPD matrices can be seen as a Gramian matrix. Any Gramian can be
constructed by scalar products of unknown Gram vectors ϕ, namely

Kij = ⟨ϕi, ϕj⟩ .

With this in mind, we can express the above distance algorithms without the actual geomet-
ric distance, but in terms of Gram distance. In a kernel matrix, a data point (source) generates
a row of a matrix, and a potential can be formed in columns at any target point. We can
compute the distance between rows and columns i and j with the Euclidean Gram-ℓ2 distance

||ϕi − ϕj ||22 = ⟨ϕi − ϕj , ϕi − ϕj⟩ = = ⟨ϕi, ϕi⟩︸ ︷︷ ︸
Kii

−2 ⟨ϕi, ϕj⟩︸ ︷︷ ︸
Kij

+ ⟨ϕj , ϕj⟩︸ ︷︷ ︸
Kjj

.

Note that this does not require the Gram vectors ϕ, but only 3 entries of the matrix Kij . Gram
vectors are not unique; they can be computed from a given matrix, e.g., with a Cholesky-
decomposition K = LLT . Computing them is far too expensive and not necessary for our
purposes.

We observed sometimes limited capabilities of the Near/far-field Euclidean assumption in
Gram-vector spaces, so we also developed a Gram-angle criterion. Although this may appear
arbitrary, the idea is sparked by an observation relating the rank of an off-diagonal block to the
degree of orthogonality between sets of Gram vectors. Consider disjoint index sets α, β ⊂ I and
the corresponding matrix of interactions Kαβ. If we define ϕα to be the matrix with columns
{ϕi}i∈α, and define {ϕj}j∈β similarly, then Kαβ = ϕTαϕβ. We may view Kαβ as a projection of
ϕβ onto the span of ϕα, so the rank of Kαβ is equal to the dimension of the projection. Thus, we
require a measure of distance that clusters Gram vectors to form orthogonal subspaces rather
than small volumes as above. [Rei17]

With the law of cosines, c2 = a2 + b2 − 2ab cos γ, we can express the angular distance again
by three entries of the matrix, i.e.

cos(∢(ϕi, ϕj)) =
⟨ϕi, ϕj⟩
∥ϕi∥ · ∥ϕj∥

=
⟨ϕi, ϕj⟩√

⟨ϕi, ϕi⟩⟨ϕj , ϕj⟩
.

With these two defined Gram distances, we can apply the previous far-field approximation
algorithms with respect to Gram vector distance. With this in mind, we will cover algebraic
compression in the next two paragraphs. In Subsection 2.2.3, we then explain how we compute
Gram-neighbors, and in Subsection 2.2.4, we define our near-far pruning criterion for Gramians.

27

CHAPTER 2. H-MATRICES

Reduced singular value decomposition

In our hierarchical matrix, we first compute compressions on the leaf level. With rank-reveling
decomposition, we compute “important” columns, so-called skeletons that are aggregate “clus-
ters”. Those are passed upward in the tree, and we obtain a very skinny matrix by agglomerating
some columns through rank-revealing factorization. We use the terms thin, narrow, or skinny
interchangeably. The textbook reference decomposition for such matrices would be a reduced
singular value decomposition.

Since we mostly compute low-rank decompositions for narrow matrices, i.e. N << M , we
want to additionally discuss a reduced form of the singular value decomposition (SVD). For a
matrix G ∈ RM×N , we are seeking a SVD decomposition

G = UΣV ∗

where U ∈ RM×N , V ∈ RN×M are unitary matrices and Σ ∈ RM×N is a non-negative diagonal
matrix with singular values on the diagonal, i.e. (Σii = σi). They are, in fact, the non-negative
square roots of eigenvalues to GG∗ or G∗G. A regular singular value decomposition can be
calculated by successive Householder transformations on A using an intermediate bidiagonal
matrix J ∈ Rm×n and a subsequent diagonalization of J . We usually use a QR decomposition
of A for a reduced thin version. Overall, the computation of the singular value decomposition
requires O(MN2) operations (where M ≥ N). [GK65,Beb08,Rei17]

Using this approach, we can approximate for a (N−q)×q block of matrixK ∈ RN×M , its off-
diagonal term, let us call it G ∈ R(N−q)×q. This leads, among other matrices, to U ∈ R(N−q)×q.
Assuming that N is large (and q is fairly small), this approach becomes very unfavorable in
terms of memory because we need to save the basis U, V for the decomposition. [Rei17]

Interpolative decomposition

Roughly speaking, in an interpolative decomposition, given a matrix G of rank k, the goal is to
find k columns of the matrix, such that they form a suitable basis for the remaining columns.
With this, we can use the columns as a nested basis for the parent.

This approach gives us benefits in terms of memory storage and saves operations, leading
to a complexity of O(kMN). For any matrix G ∈ RM×N of rank k there exists a subset of
columns from G building Gcol ∈ RM×k and a projection matrix P ∈ Rk×N , such that

GcolP = G .

Additionally, some subset of P consists of the k × k identity matrix and P is not too large.
[LWM+07,Rei17]

Let us suppose the rank of the matrix G is s > k, and k ≤ N,M . We can find a Gcol ∈ RM×s

and P ∈ Rs×N , such that
GcolP ≈ G ,

and can estimate the error as

∥GcolP −G∥2 ≤ σs+1

√
s(n− s) + 1 ,

where σs+1 is the (s+ 1)st singular value of G. [LWM+07,Rei17]
An interpolative decomposition can be calculated using a rank-revealing QR decomposition.

[Beb08] We decompose G into [Rei17]

GΠ = QR ,

28

2.2. METRIC TREES, NEIGHBOR SEARCH, AND SKELETONIZATION

where Q ∈ CM×N has orthonormal columns, R ∈ RN×N is upper triangular and Π ∈ RN×N is
a permutation matrix from a pivoted QR. We can split that into

GΠ = QR =
[
Qleft Qright

] [R11 R12

0 R22

]
≈

[
Qleft Qright

] [R11 R12

0 ��HHR22

]
where Qleft ∈ RN×s, R11 ∈ Rs×s (and appropriate other sizes), whereas we can guarantee that
∥R22∥ = O(σs+1). We approximate by disregarding R22 and simplify to

GΠ ≈
[
QleftR11 QleftR12

]
= Qleft

[
R11 R12

]
We now write

Gcol = QleftR11

where we term Gcol as the first s columns of GΠ; since Π represents a permutation matrix Gcol

turns out to be a subset of columns of G. We refer to the source points corresponding to the
columns Gcol as the skeleton points to this node. Using the approximation assumption

GcolP ≈ GΠ

we rewrite
QleftR11P = Qleft

[
R11 R12

]
and simplify this expression to

R11P =
[
R11 R12

]
It remains to solve a system of linear equations for P ∈ Rs×n; it appears that P involves an
s× s identity matrix, namely (in MATLAB notation, where the backslash operator (\) denotes
solving a system of linear equation,) [Rei17]

P =
[
Ids×s R12\R11

]
.

In conclusion, we calculate a low-rank factorization of a matrix block using the interpolative
decomposition; we have bounded the error in terms of the (s + 1)st singular value. However,
those rank-revealing factorizations are less reliable than the SVD [Beb08].

In literature, interpolative decompositions are numerically often computed using randomized
approaches. We use the rank-revealing QR decomposition for simplicity and better theoretic
guarantees. An asymptotically more efficient algorithm that involves randomized linear algebra
is described here [LWM+07], which could replace our version in the future. The randomized
interpolative decomposition is used in the software framework STRUMPACK [RLGN16].

2.2.3 Neighbor calculation using randomized k-d trees

We get approximate skeletons, the “important” columns, by a rank-revealing interpolative de-
composition. To compute this decomposition on all rows of the matrix would be too expensive.
Leverage scores are a theoretical measure of the importance of rows, but they are too expensive
to compute in practice. As a heuristic, we use the assumption that close points are important
and far points can be agglomerated. By this, we can significantly reduce the number of rows
for the low-rank decomposition. We randomly sample from “neighbors”, i.e. important rows.

To compute neighbors, we use randomized k-d trees (RKDT). A k-d tree is a high-dimensional
binary tree for points in k-dimensional space. [DECM98] Gram vectors are usually very high
dimensional, as they are possibly in the N -dimensional space. Usually, there is an underlying
structure, leading to lower-dimensional subspaces. An RKDT is known to adopt to intrinsic

29

http://portal.nersc.gov/project/sparse/strumpack/

CHAPTER 2. H-MATRICES

dimension and, therefore, the algorithm of choice for finding neighbors in high-dimensional
space.

We split our index sets I hierarchically at a median pivot in projection to some random
direction ϕp−ϕk. This can be done with either two Gram notions ℓ2) and ∢, as the user desires.
It splits the index set into into two children left and right, I = Il + Ir according to

(ℓ2) a fictive orthogonal hyper-plane defined by the median,

(∢) or fictive hyper-cones defined by a (roughly) equal-sized split.

We do this hierarchically to a leaf node size of roughly the number of desired neighbors k
(user parameter), i.e. for the RKDT m=k. For each point on the leaf level, buckets of candidate
neighbors are formed (all points that were in a leaf together). This process of getting candidate
neighbors can be repeated several times, employing the randomized splits and getting more
potential candidate neighbors.

For all points, we compute distances to all their candidate neighbors exhaustively. We sort
them and form a list of k nearest neighbors. We sample from all neighbors of the respective
leaf for the relevant rows.

It is suggested to over-sample a few rows too many to make sure to catch the interactions
(exploration). We suggest sampling about twice as many rows as the maximum allowed rank
of the off-diagonals, smax (user parameter).

In summary, we calculate neighbors approximately using a randomized k-dimensional tree,
short RKDT. From these neighbor lists, we sample rows that capture somewhat the most
important behavior, i.e., resemble the leverage scores. Therefore, we reduce the complexity of
low-rank decompositions by reducing the size of the respective matrices.

2.2.4 FMM vs. HSS representation

In the results chapter and in H-matrix literature, the terms FMM and HSS often occur. FMM

stands for fast multipole method and HSS for hierarchical semi-separable matrices. In GOFMM,
we use this user-defined criterion for Near/Far pruning, i.e., to decide whether a point is near
or far. In this section, we clarify the two H-matrix variants.

A fast multipole method (FMM) originates from molecular dynamics in computational physics.
There, one defines a cut-off radius at which one needs to compute an exact Near field interaction.
There are different variants of keeping track of them (e.g., Verlet lists), but the goal is always to
approximately accurately catch all near points, the ones that are within a user-defined distance
range. All points inside this circle/ball are regarded individually, and all points outside are
considered for the far field and approximated.

Recall that we introduced GOFMM as a hierarchical matrix variant of the form (see also
Equation 1.1)

K̃ = D + UV + S ,

where D is block-diagonal with every block being an H-Matrix, U and V are low rank approxi-
mations, and S is sparse.

By an equalized split, some points on the border may have some points that are within the
cut-off radius inside its leaf, but some may belong to another leaf despite being near (inside the
cut-off radius). In GOFMM, we resemble those Near-lists with a sparse “update” matrix S.

However, the distances considered are in Gram vector space, and thus in a very high-
dimensional space. Euclidean distances in high dimensions become less meaningful, and often,
all points are relatively equally far away. Our remedy is to refrain to neighbor lists, with
which we can roughly keep track of the ratio of Near-interactions. We define all points that are

30

2.3. APPLICATIONS OF MATRIX ALGORITHMS

neighbors to each other as being regarded in the near field and all others as being in the far field.
The same heuristic notion has been made in ASKIT [MB15], which is also a high-dimensional
fast multipole method and served as an inspiration for GOFMM.

In regularH-matrix variants, usually, it is assumed that the close interactions are sufficiently
covered by the low-rank factors U, V . We let the user decide whether to follow this trust-worthy
assumption or whether to improve the multiplication approximation by additional Near-points.
Hence, a user can decide on the parameter FMM or HSS.

The separate sparse interaction matrix S complicates the pseudo-inverse calculation signif-
icantly. For reference, see the Sherman-Morisson-Woodbury in Subsection 2.1.4. This Schur
complement strategy would need to be done again, with multiplications of dense and sparse
matrices, resulting in dense matrices. We avoid this complication and allow the pseudo inverse
only for HSS.

2.2.5 Summary

In Section 2.2, we introduced the foundations necessary for the GOFMM H-matrix variant. We
started in Figure 2.2.1 by a geometric hierarchical interaction calculation algorithm, which is
implemented in the approximate kernel independent treecode (ASKIT), which is a predecessor
of GOFMM.

Next, we introduced in Subsection 2.2.2 the Gram notion for the geometry-oblivious fast
multipole method, called GOFMM, which was developed along this thesis. We defined a Gram-ℓ2
and a Gram-angle criterion. We also describe the interpolative decomposition, which we use for
computing low-rank representations of the off-diagonals.

In Subsection 2.2.3, we explain our neighbor calculation algorithm using randomized k-
dimensional trees. In high-dimensions, and the Gram vector space is high dimensional by
nature for most last matrices, plain distances are not very meaningful. Hence, as a remedy, we
use neighbors for an estimate of near and far point lists. We use the neighbor sets for randomly
sampling rows and for near-far pruning.

Lastly, in Subsection 2.2.4, we explain the difference between the FMM (fast multipole method)
H-matrix variant and the pure HSS (hierarchical semi-separable) version. Whether to use FMM or
HSS can be chosen by the user, i.e. in a user parameter in GOFMM. Since we are working in very
high dimensions, we do not support a user-defined cut-off radius; instead, we approximately
define the near-field from aggregated neighbor lists, and consider everything else in the far field.
Using FMM can enhance the multiplication accuracy. Note that a pseudo-inverse can only be
computed with the HSS variant for practical reasons in GOFMM.

2.3 Applications of matrix algorithms

Following the theoretical foundations of H-matrices and GOFMM, we dedicate this section to sce-
narios whereH-matrices can show significant benefits. Here, we describe two different examples,
as they are representative methods for the field of statistics and manifold learning combined
with numerical linear algebra.

We created the test cases ourselves to have complete control over the analysis. We experi-
mented excessively with Gaussian kernel matrices. The most significant advantage of Gaussian
kernel matrices is the ability to compare the geometry-oblivious scheme using matrices only
with the geometric version using point clouds.

In a second step, we look at a recent manifold learning algorithm called diffusion maps,
where an eigendecomposition is the computational bottleneck. We address this issue and look
at the traditional methods from the established field of numerics. For example, we have chosen

31

CHAPTER 2. H-MATRICES

the Arnoldi iteration since it involves only matrix-vector multiplications. Hence, we describe
the field of manifold learning and numerics vividly by exemplary algorithms of the field. This
combination opens myriad possibilities for other coupling schemes. Therefore, we describe two
representative examples from manifold learning and numerical linear algebra. We have coupled
them using the H-matrix-variant GOFMM. Consequentially, in Subsection 2.3.2, we describe the
diffusion maps algorithm and show that the computational bottleneck is the eigendecomposi-
tion. In Subsection 2.3.3, we explain an iterative eigendecomposition algorithm, where we used
GOFMM’s fast matrix-vector product.

2.3.1 Gaussian kernel density estimation

Since we use Gaussian kernel matrices excessively in the results section, we define the Gaussian
kernel density estimation (KDE) separately in this theory section. We also list a few other
kernel functions for point clouds, with the advantage that we can compare the geometry-aware
variant approximate kernel independent treecode (ASKIT) to it.

Assume that we have point cloud data of the form X1, ..., Xn ∈ Rd that are independently,
identically distributed samples from some distribution with probability density function(PDF)
f̂h(x). Our goal is to estimate the unknown density f(x), with the means of statistics. Then,
its kernel density estimator can be written as [Par62,Nad65]

f̂n(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
, (2.1)

where h is the bandwidth for the kernel, i.e. characterizing the skewness of the curve, and
K : Rd → R a given kernel function. The probability density at x sums up all local kernel
density at x centering at each different Xi. The kernel function can be chosen according to the
statistical distribution. One of the most common examples is the Gaussian distribution [Nad65],
that is

K(x) =
exp

(
−∥x∥2 /2

)
v1,d

, v1,d =

∫
exp

(
−∥x∥2 /2

)
,

defining the Gaussian KDE together with Equation 2.1. In practice, we compute a static kernel
matrix of data point clouds. For our purposes, we also evaluate the kernel functions at the
same points Xi, leading to a square symmetric matrix. We can also calculate the value at x
for a locally fitted Gaussian curve. In the end, we sum up all values of x for the estimated
PDF. [Ge20]

There are several other kernels that can have some advantages, depending on the dataset.
Examples are the quadratic (K(x, y) = (xT y)), inverse quadratic(K(x, y) = 1/(xT y)) or polyno-
mial (K(x, y) = (xT y)d), the Helmholtz kernel (K(x, y) = e2πiκ|x−y|/|x− y|) and many others.

Kernel functions can be formed from any point cloud data. For high-dimensional datasets,
the hope is to find a lower-dimensional substructure. For practical reasons, we sample point
clouds from the multivariate Gaussian distribution in 6 dimensions for most of our cases in a
random order.

Note that we can also run the geometric code ASKIT as a reference. GOFMM often finds
a similar partition; other H-matrix codes often assume a suitable ordering given, and hence,
GOFMM has advantages for such randomly-ordered point cloud kernels.

2.3.2 Diffusion maps

Diffusion maps, a non-linear method for reducing dimensionality in data clouds, estimate in-
formation regarding the data manifold without any prior knowledge of the underlying function

32

2.3. APPLICATIONS OF MATRIX ALGORITHMS

or data geometry. In contrast to approaches like isomaps that directly rely on Euclidean or
geodesic distances, Diffusion maps employ an affinity or similarity matrix generated through
a kernel function with only positive and symmetric values. Similar to Gaussian KDE, given a
dataset X = {x1, x2, x3, . . . , xn} and e.g., a Gaussian kernel function, a similarity matrix can
be computed as [GRNB23]

Wij = w(i, j) = e
−||xi−xj ||

2
2

σ2 ,

with xi, xj as data points and σ2 for the bandwidth of the kernel around the point xi. This
is similar to the point-kernel matrix generation from above (K03-K09) but more versatile using
the code datafold.

As outlined in Algorithm 2.1, the similarity matrix, which is computed inside datafold,
is normalized with the density Q (degree of vertex) and the density parameter α to capture
the influence of the data distribution on our approximations. When α = 0, the density greatly
influences how the underlying geometry is captured; for α = 1, it is pretty independent of the
geometry. For these reasons, normalization is done with α = 1, and a Markov chain obtains the
transition probabilities.

Algorithm 2.1 Diffusion Maps [CL06]

1: Compute Wij ▷ Similarity matrix

2: Compute normalized weights Wα
ij =

Wij

Qα
i ·Qα

j
▷ Qα: Influence of density

3: Define Markov chain Pij =
Wα

ij

Qα
i

▷ P: Transition matrix

4: Perform t random walks to obtain P t

5: Perform eigendecomposition on P t ▷ λr: eigenvalues, ψr: eigenvectors
6: Lower dimension d(t) = max{ l : λtl < δλt1 } ▷ δ: Predetermined precision factor

The transition matrix P t is set up by performing random walks for time steps t. For
exposing the underlying lower dimension of the dataset, an eigendecomposition is necessary. As
for complexities, and reported in practice, this is the most expensive part of the algorithm. For a
dense matrix, a direct eigendecomposition requires O(N3) operations, while for sparse systems,
usually iterate approximate eigendecompositions like the Arnoldi iteration are used. [GRNB23]

2.3.3 Arnoldi iteration

In Subsection 6.5.3, we compute an eigendecomposition of the transition matrix in datafold

with GOFMM. Hence, in this section, we describe the theoretical foundations of this algorithm.

An Arnoldi method belongs to the class of iterative methods that compute eigenvalues
and are an extension of the so-called power methods. The power method involves multiplying
a matrix with a random vector iteratively and progressively until the dominant components
persist, representing the most significant eigencomponents, i.e. of the form Ax,Ax2, Ax3,
We use the Implicitly restarted Arnoldi method, which is a slight variation. [GRNB23]

33

CHAPTER 2. H-MATRICES

Algorithm 2.2 Algorithm - k-step ArnoldiFactorization(A,x) [Sor92]

1: x1 ← x
||x|| ▷ Computes first Krylov vector x1

2: w ← Ax1 ▷ Computes new candidate vector
3: α1 ← xH1 w
4: r1 ← w − α1x1
5: X1 ← [x1] ▷ Orthonormal basis of Krylov subspace
6: H1 ← [α1] ▷ Upper Hessenberg matrix
7: for all j = 1...k − 1 do ▷ For k steps, compute orthonormal basis X and projection
8: βj ← ||rj || ; xj+1 ← rj

βj

9: Xj+1 ← [Xj , xj+1] ; Ĥj ←
[
Hj , βje

T
j

]T
▷ ej is unit standard coordinate basis

10: z ← Axj
11: h← XH

j+1z; rj+1 ← z −Xj+1h ▷ Gram-Schmidt Orthogonalization

12: Hj+1 ← [Ĥj , h]
13: end for

We list the Arnoldi method in Algorithm 2.2. Note that given a start vector x1 only matrix-
vector products with the matrix A occur. The matrix H is an upper Hessenberg matrix whose
eigenvalues converge to the ones of A. If we reduce the complexity of a dense matrix product
Ax, we result in a lower overall complexity, depending on the number of steps.

In fact, we use the Implicitly restarted Lanczos method, a variant of the Arnoldi fac-
torization. Arnoldi also works for non-hermitian matrices, while a Lanczos requires symmetry.
We use the SciPy variant for the implementation of Lanczos methods. [GRNB23]

2.4 Summary

Chapter 2 builds the theoretical foundations for the the developed GOFMM framework, and the
results in Chapter 6.

We started this chapter with an introduction to hierarchical matrix algorithms in Section 2.1.
After defining the H-matrix variant, we showed the textbook singular value decomposition to
compute a low-rank representation. We demonstrated how this can be used hierarchically on
matrix off-diagonals. Then, we described how a block-wise multiplication scheme for so-called
hierarchical off-diagonal low-rank matrices can lead to O(N logN) computational complexity.
With the Sherman-Morisson-Woodbury formula, we can compute an approximate inverse of
a block-wise matrix. The applications of H-matrices are versatile. Early use cases include
discretizations of elliptic partial equations and integral equations. A more recent software
package is the structured matrix package STRUMPACK.

In the next Section 2.2, we formulated a geometric N -body problem that also occurs in
computational physics, simulations, and data analysis. These geometric hierarchical algorithms
are used for the predecessor of GOFMM, called approximate kernel independent treecode (ASKIT).
We then introduced the geometry-oblivious distance notion for GOFMM, as the Gram-ℓ2 or Gram-
angle distance. We explained the interpolative decomposition, the low-rank approximation for
GOFMM. We moved on to the neighbor computations using randomized trees and specified the
difference between a fast multipole method (FMM) and a hierarchical semi-separable format of
an H-matrix. Details on the implementation of GOFMM can also be found in Section 6.1.

This chapter’s last Section 2.3 explained the foundations of our H-matrix application cases.
First, we created several matrices by point clouds, for example, using the Gaussian kernel density
estimation. This allows us to compare the geometric-oblivious to the geometry-aware variant.

34

2.4. SUMMARY

Second, we showed how classical and dusty numerical linear algebra can impact recent data-
learning algorithms. Therefore, we explained the diffusion maps algorithms from datafold, a
representative manifold learning algorithm. The computational bottleneck is the eigendecom-
position of the transition matrix. To address this issue, we looked in the field of linear algebra.
The Arnoldi method is a representative algorithm for the iterative eigendecomposition. There-
fore, we vividly discuss the foundations of the Arnoldi method, which paves the way for using it
together with GOFMM in the implementation in Subsection 6.2.1. This opens myriad possibilities
for more iterative algorithms and other computation-hungry applications.

In summary, this Chapter 2 forms the theoretical foundation of H-matrices for GOFMM. The
implementations and results using this H-matrix variant are explained in Chapter 6.

35

36

Essentially, all models are wrong, but some are
useful.

George Box (1919 - 2013)

3
Artificial neural networks

This chapter deals with the second topic of the thesis, namely neural network optimization. It
explains the theory behind neural networks for deep learning, hence, it builds the application
case for the later Chapter 4 called Optimization methods. Results based on this theory are
shown in Chapter 7.

In Figure 3.1 we display a common data engineering pipeline. A considerable effort is spent
on data pre-processing, including labeling, data cleaning, normalization and data augmentation.
A data scientist then searches for the right neural network architecture by experience or using
some heuristics. Then a model is trained and packaged. Validating the model with the domain
task is important, and once accepted, the model can be deployed and monitored. This is an
iterative process, which often needs several cycles of development. Note that enormous compute
resources are spent globally on hyperparameter tuning, including neural architecture search as
well as training parameters. Since such data pipelines are very widespread in engineering, any
slight improvement can have a large benefit on the overall system.

Prepare
data

Archi-
tecture
Search

Model
Training

Package
Model

Validate
Model

Deploy &
Monitor
Model

Figure 3.1: Data engineering pipeline. Often, this is an iterative process where considerable
effort is spent on data preparation, validation, and model deployment, which we do not describe
in this chapter.

This chapter starts with the basic theory of neural networks in Section 3.1, then explains
some more sophisticated operations in neural network layers in Section 3.2. Section 3.3 explains
how uncertainty - be it in the inputs or in parameter space - can be incorporated in neural net-
works. Furthermore, we continue with Section 3.4 by explaining the network architectures later
used with a second-order optimizer in this thesis. We conclude with as summary (Section 3.5).

3.1 Scientific computing for deep learning

The field of machine learning has many subfields, and the most prominent division is formed
by supervised and unsupervised learning. Supervised learning is a subfield of machine learning,
where the targets of the samples are known. Unsupervised algorithms, however, find clusters
and classes by themselves without this knowledge. [B+95]

In this chapter, we restrict the theory to supervised learning and describe only popular
working technologies. Essentially, machine learning describes parametric function approxima-

37

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

tion. We begin with a one-layer linear regression model in Subsection 3.1.1 and move towards
a multilayer perceptron in Subsection 3.1.2.

3.1.1 Linear regression

The motivation of regression tasks is to predict one or more continuous target variables given a
d-dimensional input data vector, x ∈ Rd. With datasets D = {(xi, yi)}Ni=1, where x ∈ RD and
y ∈ R, where x are the input features and y are the target outputs.

The simplest feed-forward model is a linear combination of the input variables

f(xi,W) = w0 +
N∑
i=1

(w
(d)
i xi) .

We then form an error function, e.g. the square loss, which we call lsq for a single sample,
and a capitalized Lsq for the sum of it, i.e.

Lsq =
N∑
i=1

lsq =
1

2

N∑
i=1

(f(xi,W)− yi)2 .

To find the appropriate weights W , we use optimization algorithms to minimize the loss
function, which we describe in Chapter 4.

3.1.2 Multilayer perceptron

Consider a feed-forward neural network defined as the parameterized function f(X,W). The
function f is composed by vector-valued functions f (d), d = 1, . . . , D, which represent each one
layer in the network of depthD, in the following way: f(x) = f (D)(f (D−1)(. . . f (2)(f (1)(x))) [RNB23].

The function corresponding to a network layer (d) and the output of the j-th neuron are
computed via

z
(d)
j =

z
(d)
1

z
(d)
2
...

z
(d)

M(d)

 and z
(d)
j = f

(d)
j (z(d−1)) = ϕ(

M(d−1)∑
i=1

(w
(d)
ji f

(d−1)
i) + w

(d)
j0)

with activation function ϕ and weights w. All weights w are comprised in a large matrix
W (d) ∈ RM(d)×M(d−1)

which represents parameters for f . We denote the aggregation of all
weights with the tensor W, i.e. W = [W (0),W (1), . . .W (D)]. Hence, we sometimes write
f(X,W), where W is not an input but a model parameter that the function depends on. Note
that each W can be of different sizes; hence, it is a list of different matrices with potentially
different sizes.

For a supervised learning task, the optimization problem consists now of finding weights W
such that a given loss function l will be minimized for given training samples X,Y ,

min
W

L(X,Y,W) . (3.1)

A prominent example of a loss function for binary classification is the categorical cross-entropy

Lentr(X,Y,W) := −
N∑

i=1

yi log(f
(D)(X,W)) .

Note that only the last layer function f (D) of the network directly shows up in the loss, but all
layers are indirectly relevant due to the optimization for all weights in all layers [RNB23].

38

3.2. CONVOLUTIONAL NEURAL NETWORKS

Stochasticity: Optimizers look at stochastic mini batches of data, i.e. disjoint collections
of data points. The union of all mini batches will represent the whole training data set. The
reason for considering data in chunks of mini-batches and not in total is that the backpropaga-
tion in larger neural networks will face severe issues w.r.t. memory. Hence, the mini-batch loss
function is now defined by

Lentr(x, y,W) := −
batch-size∑

i=1

yi log(f
(D)(X,W)) ,

where the mini batch is varied in each optimization step in a round-robin manner [RNB23].

Nonlinear Activation Function: After finishing the previous linear or convolutional
operation, one then applies a nonlinear activation function ϕ. The output from the previous
linear operation is passed to a nonlinear activation function [YNDT18]. Some examples are
sigmoid, tanh, softmax and rectified linear unit (ReLU). ReLU, a widespread activation function
is ϕ(x) = max(0, x). Sigmoid is chosen to be advantageous for differentiation, i.e. ϕ(x) = 1

1+e−x .
Softmax is commonly used in the last layer, as it normalizes the exponential of the vector z, i.e.
ϕi(x) =

ezi∑M
j=0 e

zj
. In multi-class classification, another advantage of softmax in the final layer is

that it can be seen as a probability of belonging in a certain category. [LBH15]

3.2 Convolutional neural networks

Amultilayer perceptron maps the input linearly to the next layer; non-linearities can be achieved
with a nonlinear activation function. This, however, is especially for images not the most efficient
way. Computers need to capture information intelligently to be efficient and accurate. Similar
to image compression algorithms, a convolution is an efficient way to grasp pixel semantics.
Therefore, convolution operations have become imperative for image processing and have been
shown to be vital for image classification with deep learning. Convolutional Neural Networks
(CNN) are an artificial neural network layer with at least one convolutional layer. [GBC16b]
These layers occur in most image processing and image recognition pipelines. CNNs apply,
besides other ingredients, convolution kernels of different sizes in different layers in a sliding
window approach to extract features. For a brief introduction to CNN, e.g. see [LBH15]. For
example, they also occur in many layers of the prominent ResNet-50 network structure: It
has 50 layers in total, with around 10 with convolutions; the interesting part of ResNets are,
however the skip connections to avoid the problem of diminishing gradients, that we deal with
later in Subsection 3.4.2.

Here, we lay the foundations of CNNs, also depicted in Figure 3.2. The input picture of
the car with its contours can be well captured with a convolution, as shown in the figure. The
figure also shows that many convolutions and pooling are performed in the early layers, which
they call feature learning. It is followed by the so-called classification block with flatten and
fully-connected layers, and in the last layer a Softmax normalization, as described previously.
Therefore, we start this section with the convolutional operator in Subsection 3.2.1, how a
convolution is applied to a pixel image. We move pooling layers in Subsection 3.2.2, a dropout
layer in Subsection 3.2.3, and close with the fully connected layer in Subsection 3.2.4.

39

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Figure 3.2: Convolutional Neural Network Architecture Example. Figure taken from [Sah].

3.2.1 Convolutional layer

A convolutional layer consists of a convolution operation or a small tensor multiplication. In
general, the convolution is an operation on two functions I and K; the first, I, is the color
intensity (pixels), and the latter, K, the chosen kernel. It is defined by

S(t) = (I ∗K)(t) =

∫
I(a)K(t− a)da .

If we use a 2D discrete pixel image I as input with a 2D discrete kernel K, we can write this
two-dimensional discrete convolution as a matrix multiplication with

S(i, j) = (I ∗K)(i, j) =
∑
x

∑
y

I(x, y)K(i− x, j − y) .

Color images have at least a channel for intensity of red, green, and blue at each pixel position
(hence, the abbreviation RGB). Assume that each image is a 3D-tensor and Vi,j,k describes the
value of channel i at row j and column k. Then we can write our kernel as a 4D-tensor with
Kl,i,j,k denoting the connection strength (weight) between a unit in input channel i and output
channel l at an offset of k rows and l columns between input and output [RNB23].

A kernel is basically a sliding window of smaller size than the whole picture that moves over
the whole image. This allows features, such as a contour change, to be captured in one or more
dimensions in the hidden layer. The network architecture designer defines the so-called kernel
size and the stride, to characterize the kernels:

• Kernel size: Basically the size of the moving window. The network designer has empir-
ically chosen values, and, to our knowledge, there is no rigid theoretical explanation on
choosing the values. The kernel size is usually square and an odd number, typically such
as 3× 3, and sometimes 5× 5 or 7× 7.

• Stride: The stride is the offset between overlapping different kernel windows. Naturally,
this defines, therefore, the number of kernels for this layer, and hence, the width of the
feature layer. Usually, several convolution layers are stacked, so the network designer
chooses the depth of the feature map.

A similar occurence can be seen in the previously described Figure 3.2, especially in the
block of feature learning. The contours of the car object are best captured with a convolution.

40

3.2. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.3: Three types of pooling operations. Figure extracted from [AZH+21].

To sum up, the main objective of this operation in the CNN architecture is to extract
features. It starts from low-level features such as edges, orientation, and colors to high-level
features such as object classification, recognition, and segmentation. The first layers capture
the low-level features, while adding layers will capture high-level features.

3.2.2 Pooling layer

The main aim of the pooling layer is to downsample and diminish the feature map’s dimension-
ality. It lowers the number of parameters and also simplifies the model’s complexity [ON15].
A visual explanation could involve the observation that in real-life images, not all image re-
gions are equally important, but rather, essential sections could be pooled. The pooling is done
mathematically by taking a portion of pixels from one layer and reducing it to just one pixel in
the next layer. There are two types of pooling:

• Max Pooling: Max pooling is the most popular and empirically best technique. It
extracts a portion from the input activation values (sometimes called feature map), and
it outputs the maximum value, discarding all other values [YNDT18]. The most common
filter size is 2 × 2, with a stride equal to 2. Of course, the height and width can change
here, but the depth often remains unchanged. Moreover, with this setup, the feature map
is reduced by a factor of 2 per dimension.

• Average Pooling: Average pooling extracts a portion from the input (sometimes called
feature map) and calculates the average value from all values. The output result is the
average of all values in the relevant section. Similarly, with this setup, the feature map is
reduced by a factor of 2 per dimension.

The process is visualized and summarized in Figure 3.3. The relevant section is the 2 × 2
section in the left upper corner. The average of the left upper corner is roughly 12; the digits
after the comma are cut off. The other numbers of average pooling display the other 4 sections.
Max pooling for the upper left corner yields 25, and the other numbers for the other sections,
respectively. These 2D operations are eliminating both 3/4 of the parameters, respectively. The
global average of the whole field yields 16.

41

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

3.2.3 Dropout layer

In most networks, dropout layers can also be found, which are necessary and state-of-practice.
We only loosely define it here, as it is not a mathematical operation in the feed-forward eval-
uation mode. A dropout layer is only used for training, and it is a simple way to prevent
overfitting. It basically thins out the fully-connected net by stochastically dropping some con-
nections during training. This allows other features to be strongly trained, which could have
faded in a full training process.

For evaluation, a dropout layer is void, i.e. the fully-connected net is evaluated regarded
without a dropout. For training, a dropout improves regularization and prevent overfitting. [SHK+14]

3.2.4 Fully-connected layer

After performing all the convolutional and pooling layers, the output feature map is flattened
(converted to a 1D array). This array is then often connected to one or more fully-connected
layers, similar to the multilayer perceptron model in Subsection 3.1.2. A weight matrix is used
to connect each input node to each output node. As visualized in Figure 3.2, this process
concludes the feature extraction phase, and we have the flattened output feature map. We
then enter the classification phase with many fully-connected layers. Activation functions, such
as ReLU or sigmoid, are formed around each fully-connected layer, in the same way as the
multilayer perceptron. In some sense, a fully-connected layer is the same as a layer in the
multilayer perceptron model. In the last layer, there is usually the same number of neurons in
dimensions for the fully connected layer as classes in our task.

As mentioned for activation functions in Subsection 3.1.2, in the last layer for multi-class
classification we often apply a softmax function (also occurs in Figure 3.2). We expect a
difference between the nonlinear activation function values on the last fully-connected layer and
the output class feature. The shear value is irrelevant, but instead we need to put the value
in relation to other values on this level, to get a rough probability of a class. Softmax helps
by producing class probabilities; it outputs values ranging from 0 to 1 with a summation of all
values equal to 1. Thus, the activation function of the last layer is usually a softmax function
for the multi-class classification task. [YNDT18]

3.3 Uncertainty in deep learning

One of the biggest challenges in all areas of machine learning is deciding on an appropriate
model complexity. Models with too low complexity will not fit the data well, while models
possessing high complexity will generalize poorly and provide bad prediction results on unseen
data, a phenomenon widely known as overfitting. Three commonly deployed strategies to coun-
teract this problem are (1) hold-out or cross-validation on one hand, where part of the data
is kept from training in order to optimize hyperparameters of the respective model that corre-
spond to model complexity, (2) controlling the effective complexity of the model by inducing a
penalty term on the loss function on the other hand, or (3) a dropout layer (mentioned before
in Subsection 3.2.2). The second approach is known as regularization. Another approach is
applying Bayesian techniques on neural networks, such as weights as a probability distribution.
A dropout layer, approach (3)m can also be seen as a Bayesian approximation. [B+95]

Deep learning is used for safety-critical fields such as medical image processing and au-
tonomous driving, where we need to quantify uncertainty reliably. This theory section aims
to introduce the Bayesian techniques for our purposes of Bayesian neural networks, for which
we run second-order optimization later in Chapter 7. We start this section by introducing the

42

3.3. UNCERTAINTY IN DEEP LEARNING

different types of uncertainty (Subsection 3.3.1), and move towards the frequentists approach
in Subsection 3.3.2 and the necessary variational inference (Subsection 3.3.3), introduce the
so-called implementation type Bayes by Backpropagation (Subsection 3.3.4) .

3.3.1 Types of uncertainty

In general, there are two types of uncertainty. Aleatoric uncertainty captures noise in the data,
possibly induced, for example, by measurement inaccuracy. Thus, it cannot be reduced by
increasing the amount of training data but can be treated by frequentist neural networks, i.e.,
a probabilistic network that is applied several times. On the other hand, epistemic uncertainty
can be understood as the uncertainty about which model is appropriate, which has been dif-
ficult to judge in computer vision. The model uncertainty can be reduced by additional data
and, equally important, by quantifying the epistemic uncertainty for unseen data, out-of-data
samples that are not properly represented by the training data can be identified as such. Prob-
abilistic approaches to deep learning exist for both types of uncertainty. Aleatoric uncertainty
can be modeled by placing a distribution on the output of the model [KG17], while for epistemic
uncertainty, one would place a prior distribution on the network weights, as described in Sub-
section 3.3.3. In [KG17] Kendall and Gal also identify scenarios where either of the two types of
uncertainty is especially important. They argue that aleatoric uncertainty should be treated in
situations with large amounts of data, where epistemic uncertainty is sufficiently small, as well
as in real-time applications where Monte Carlo sampling is too expensive. In contrast, epis-
temic uncertainty should be carefully treated in cases of small data sets with sparse data and in
safety-critical situations, where out-of-data samples need to be recognized. However, they also
emphasize that aleatoric and epistemic uncertainty can be taken into account simultaneously
and showcase how this can be achieved. [KG17]

For the sake of this thesis, this motivated us for Bayesian neural networks, with which we
can approach epistemic model uncertainty and aleatoric with a frequentist’s approach.

3.3.2 Frequentist approach of treating prediction uncertainty

The ultimate goal of modeling uncertainty is to express the uncertainty in the prediction in
a meaningful and comprehensive way. First, multiple forward passes and, hence, predictions
are conducted for each sample and averaged over the class probabilities, catching measurement
errors and, thus, aleatoric uncertainty. Steinbrener [SPP20] suggests to use these predictions
to compute quantiles and check whether all predictions in the considered credible interval vote
for the same class. If that is not the case, they consider the prediction to be unconfident.
Moreover, we are interested in the ratio of predictions in relation to the overall prediction in
order to receive a continuous metric of confidence. Another straightforward approach is to set
a limit to the average class probability

p ≥ 1

number of classes

mark overall predictions below p as unconfident and check if a low-class probability coincides
with a high standard deviation among the predictions. Note that it is not sufficient to consider
a single prediction of a Bayesian neural network to judge its confidence. Information about
confidence can only be provided by an ensemble of several predictions together with an additional
quantity, such as standard deviation or a confidence interval. [Wei21,G+16]

In addition, Kendall and Gal gradually remove samples with low prediction confidence from
the test set in order to verify the correlation between confidence and accuracy. [KG17]

43

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

3.3.3 Variational inference

Due to the large number of weights in deep learning models and the activation nonlinearities,
the exact weights posterior is intractable. Therefore, a family of tractable surrogate distri-
butions is considered, and eventually, the member that incarnates the best approximation is
picked as surrogate posterior. A common choice for the family of distributions are parametric
distribution, where the parameters remain to be determined, e.g. Gaussians with variable mean
and variance. [B+95]

In order to deduce a measure for the goodness of approximation, start by considering the
evidence p(D).

The log-evidence log p(D) can be decomposed as

log p(D) = L(q(w|θ)) +DKL(q(w|θ)p(w|D))

where q(w|θ) is a member of a fixed family of parametric distributions,

L(q(w|θ)) :=
∫
q(w|θ) log(p(w,D)

q(w|θ)
)dw

and

DKL(q(w|θ)p(w|D)) := −
∫
q(w|θ) log(p(w|D)

q(w|θ)
)dw

denotes the Kullback-Leibler divergence from p(w|D) to q(w|θ).
The first term of the decomposition is referred to as evidence lower bound (ELBO). From

p(D) being constant, it also follows that maximizing the ELBO is equivalent to minimizing
the Kullback-Leibler divergence that will serve as an objective to determine the best surrogate
posterior. [B+95] We use this ELBO term in the loss function for our implementation in the
framework Tensorflow Probability for Subsection 7.2.4.

3.3.4 Bayes by backpropagation

Bayes by Backprop is a variational inference scheme for learning the posterior distribution of
the weights of a neural network. It assumes that weights are drawn from Gaussian probabil-
ity distributions with mean and variance, i.e. N (θ|µ, σ2). In Bayes by Backprop (BBB) the
variational free energy is minimized. The posterior consists of the likelihood and the evidence,
resulting in a sum of the log-likelihood and a Kullback-Leibler divergence term. [BCKW15]

In this subsection, we follow the BBB approach and consider probability distributions over
the weights of a neural network [B+95], specifically the posterior distribution of the weights
given the data p(W |D). Applying Bayes’ theorem yields

p(W |D) = p(D|W)p(W)

p(D)
,

where p(D) serves as normalization constant and is referred to as evidence, p(D|W) is called the
likelihood function and p(W) is the prior probability that captures prior assumptions about the
distribution of the weights. The Bayesian prior is mathematically similar to L2-regularization
[VVMA19]. Due to the fact that the concept of regularization already comes with the Bayesian
framework, an important benefit of BNNs is that they are robust to overfitting without the
need to hold out a validation set [SLL19], which makes them suitable for small data sets.
Furthermore, since the network weights are probabilistic, it is possible to assign a measure of
confidence to predictions and, as a consequence, circumvent overconfident predictions for unseen
data that is not represented well by the training data.

44

3.4. NETWORK ARCHITECTURES

We use the implementations from the Tensorflow Probability framework, see also Sub-
section 7.1.2. In a nuanced approach, instead of convolutions and dense layers, we use Ten-
sorFlow Probability’s Dense Variational and Flipout layers (1D/2D, respectively). DenseVari-
ational implements a dense multiplication layer with a weight probability distribution identical
to the Bayes by Backprop approach [tfpb]. Flipout implements a convolutional layer of the
aforementioned Flipout estimator by Wen et al. [tfpa,WVB+18]. In image recognition, often
2D-convolutional layers occur. In order to include a Bayesian term in a regular visual network,
we re-factored such convolutions with a 2D-Flipout estimator.

3.3.5 Summary

In summary, in this section, we started with the different types of uncertainty, epistemic uncer-
tainty introduced by the model and aleatoric uncertainty, e.g., by input measurement noise. We
show that we can quantify this prediction uncertainty by a frequentist approach, that is, with a
histogram of forward runs. A variational inference model gives us an estimation to get the best
approximation function to the intractable posterior. For Bayesian neural networks, we limit
ourselves to the Bayes by backdrop approach, which sets a probabilistic distribution of mean
and variance on the network weights. With variational inference, we minimize the likelihood
and evidence terms to get the optimal probability distribution of network weights, allowing us
to estimate uncertainty and other interesting analysis tasks.

3.4 Network architectures

In this section, we describe some more sophisticated network architectures with their theory, i.e.,
the architectures for which we apply second-order optimization in Chapter 7. We do not dwell on
the theory for finding a suitable network design, as this involves the history of developments in
the quickly growing field. We refer to the initial models with their mechanisms occasionally. In
this section, however, we focus on popular network architectures that we used for second-order
optimization in Chapter 7, including the network features and their consequences.

We start with shallow networks with regression and convolutions in Subsection 3.4.1, and
move towards the residual nets for image classification in Subsection 3.4.2. In this section, we
also describe the most complicated network design in the transformer architecture in Subsec-
tion 3.4.3. We close, as always, with a summary, mentioning the building blocks of the network
architectures (Subsection 3.4.5).

Due to the model complexity of computer vision and natural language processing architec-
ture structures, their subsections are more lengthy. We regard the simple models as equally
important for second-order optimization, as we can find relevant optimization behavior pat-
terns. Similar building blocks can be found in ResNets and transformers, as well as their
derived models.

3.4.1 Shallow networks

We handcrafted small architectures for small datasets to test our algorithms and find optimiza-
tion behavior. We started with one-layer networks, similar to regression problems. We also
experimented with convolutional neural nets for some image classifications, which we describe
afterwards.

45

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Regression problems

A linear regression problem is mathematically equivalent to a one-layer network with respective
weight matrix multiplication and activation functions. For linear regression, typically, a least-
square problem is solved; for neural networks usually, gradient-based algorithms are used. Even
though the algorithm for finding the weights is often different, the evaluation in the feedforward
mode is equivalent.

The literature on shallow neural networks is vast; here, we give a general introduction.
In [BCFW21], a theoretical convergence analysis was done for one-layer networks by showing
strong convexity and convergence for infinitely wide networks. We do not dwell on the re-
sults, because its practicability is limited. As most algorithms depend heavily on the network
architecture and the dataset, we refrain to empirical measurements for Newton-CG.

Convolutional Nets

For small datasets in data analysis, a small network is usually sufficient. Convolutional nets
are networks that involve at least one convolution layer. A convolutional first layer can greatly
improve accuracy for datasets involving small images. Usually, 2D convolutions are applied
on images, followed by some lower dimensions. A similar approach is followed for the so-called
U-Net architecture [LSD15], which is now very popular in network design. The underlying foun-
dation is a dimensionality reduction using several layers to a latent space with skip connections.
We used self-crafted convolution nets that we stacked together for completeness. Our aim was,
however, to address popular large models, as described in the next section.

3.4.2 Computer vision networks

Our goal was to test the algorithms on state-of-the-art networks that are popular in computer
vision. We describe Residual Nets (short: ResNets) and the adaptions and extensions MobileNet
and InceptionNet in separate sections, which in Chapter 7 we use for second-order optimization.
We also look at the NasNet, a strategy for neural architecture search.

ResNet

Residual Networks (ResNet) are one of the most prominent architectures in deep learning for
Computer vision; it was introduced in 2015 by Shaoqing Ren, Kaiming He, Jian Sun, and Xi-
angyu Zhang [HZRS16]. In order to solve more complex tasks, the trend is to make architectures
deeper by adding more layers to the architecture, which leads to improving performance and ac-
curacy of classification and recognition tasks, among other side effects. However, one side-effect
of adding more layers (i.e., deeper networks) is that training becomes harder. The so-called
problem of vanishing gradients appears, which means the gradient for parameters deeply hid-
den in the network becomes embarrassingly small, so it becomes very slow in training. This
leads to saturation and degrading of accuracy. [HZRS16]

46

3.4. NETWORK ARCHITECTURES

Figure 3.4: Residual learning: ResNet building block. Figure adapted from [HZRS16].

ResNets overcome the problem of vanishing gradients mentioned above by using the Residual
blocks (in each ResNet layer), i.e., adding another bypass connection. In Figure 3.4, the residual
block ResNet is shown, where we see a direct connection that allows us to skip one or more layers
in the model. This is the core part of the ResNet part, sometimes also called identity shortcut
connection, or just skip connection, and addresses the problem of vanishing gradients. [HZRS16]
These skip connections tackle the vanishing gradient problem by doing two main things:

1. Allowing the gradient to flow through a shortcut path.

2. Skipping layers that affect the performance by regularization.

As shown in the figure, the residual block is formed by skipping a layer or more in between
using the skip connection method. Stacking these residual blocks together forms the ResNet.

ResNets consist of these residual blocks, which open a family of different architectures asso-
ciated with it. The popular models are usually denoted by their depth, for example. The first
version of a ResNet was ResNet-34, which has 34 layers. Its main idea was to insert the shortcut
connection to turn the plain network into a residual network. The plain network is inspired by
the VGG networks, which have a convolution network of 3× 3 filters [HZRS16]. If we compare
VGG and ResNet, we deduce that ResNet has lower complexity with fewer filters. The ResNet
had the same number of filters for each identical output feature map size and inversely scaled
the number of filters to the feature map size. When the feature map size is halved, the number
of filters is doubled, as this maintains the time complexity per layer.

The shortcut connections are used directly through addition, as the input and output di-
mensions are the same. Two implementations are possible, zero-padding or addition projection
shortcuts. The first would increase the dimension, while the latter uses an addition to match
the output size. [Rui18]

There are other updated versions of ResNet, such as the popular ResNet50, ResNet101,
and ResNet152. ResNet50, for example, is based on the basic ResNet model but has one major
difference. It uses a stack of 3 layers instead of 2 originally used in the basic ResNet model. This
decreases the time taken to train the layers and results in better accuracy than the basic ResNet
model. ResNets are a popular image classification benchmark for optimizers; [YGS+21] used a
ResNet18 on ImageNet, which reached similar values regarding accuracy and speed compared
to our ResNet50 model.

MobileNetV2

MobileNetV2 is a CNN model that was developed by Google. It is an enhancement model
that was built and developed after the original, very similar model MobileNet. However, Mo-

47

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

bileNetV2 model uses inverted residual blocks with bottleneck features [SHZ+18]. As observed
from its name, MobileNet models were introduced to be used to do deep learning tasks on the
mobile device itself without the need to send the data to the server to do the work and then
send the results back to the mobile device. To accomplish this, the size of the network and the
complexity cost are reduced, resulting in the name MobileNet. Thus, in the original MobileNet
model, depth-wise separable convolution is introduced, which helps in reducing the size and
cost, and is suitable for any device with low computational power, such as mobile devices. In
MobileNetV2, the performance and the memory efficiency is better than the original model by
introducing the inverted residual blocks.

Figure 3.5: Comparison of convolutional blocks between MobileNetV1 and MobileNetV2 mod-
els. Figure taken from [SHZ+18].

There are two types of blocks in MobileNetV2; one is a residual block with a stride of 1,
and the other uses stride 2 for downsampling. Each type of blocks contains 3 layers [SHZ+18].
These layers are represented as follows:

1. First Layer: 1× 1 convolution with ReLU6 (Relu6 caps the linearity at 6; robust when
used with low-precision computation).

2. Second Layer: depthwise convolution works by applying a single convolutional filter per
input channel. So, a lightweight filtering is achieved.

3. Third Layer: 1× 1 convolution without non-linearity (ReLU6) to reduce the depth and
cap the increase of linear influence.

The overall architecture of MobileNetV2 is summarized in Table 3.1.
To summarize, this model developed by Google is an efficient improvement for devices with

low computational power, such as mobile phones. They allow the performance of some ML
tasks on the device without a process in the backend in a cloud. MobileNetV2 is similar to
the original MobileNetV1 model but has some modifications in convolutional kernel sizes that
enhance the model’s accuracy.

InceptionV3

InceptionV3 is a CNN deep learning model that was also developed by a team from Google.
This model is an upgrade and a superior version of the original and basic model “Inception”.

48

3.4. NETWORK ARCHITECTURES

Table 3.1: Overall Architecture of MobileNetV2 model. “bottleneck” is one of the upper
mentioned conv blocks with a linear layer before the summation, see Figure 3.5.

Input Operator expansion factor output channel sequence of layers stride

2242 x 3 conv2d - 32 1 2

1122 x 32 bottleneck 1 16 1 1

1122 x 16 bottleneck 6 24 2 2

562 x 24 bottleneck 6 32 3 2

282 x 32 bottleneck 6 64 4 2

142 x 64 bottleneck 6 96 3 1

142 x 96 bottleneck 6 160 3 2

72 x 160 bottleneck 6 320 1 1

72 x 320 conv2d 1x1 - 1280 1 1

72 x 1280 avgpool 7x7 - - 1 -

1 x 1 x 1280 conv2d 1x1 - k - -

The idea is to make the model wider rather than deeper by having parallel layers by applying
more than one filter of different sizes to the same level. Overfitting of the data can be avoided
by using this technique. The InceptionV1 model is composed of a block of 4 parallel layers:

1. 1× 1 convolution

2. 3× 3 convolution

3. 5× 5 convolution

4. 3× 3 max pooling

A problem with this approach is that using 5× 5 convolution is pretty expensive; it requires
high computational power and, thus, high runtime. To overcome this problem, the developers
added a 1× 1 convolutional layer above [SLJ+15].

InceptionV3 model was released in 2015 as an advanced version of InceptionV1 model. It
consists of 42 layers and has a lower error rate compared to the InceptionV1 and InceptionV2
models, which makes it an optimized version of these predecessors. The major enhancements
for this model, as per the authors of the work, are:

1. Factorization into Smaller Convolutions: The key factor of the InceptionV1 model
is size reduction; InceptionV3 strengthens this by factorizing the large convolutions into
smaller ones. Thus, the 5×5 convolution that was used in InceptionV1, as mentioned be-
fore, is replaced by two 3×3 convolutional layers. This reduces parameters, and therefore,
the computational cost is reduced [SVI+16].

2. Spatial Factorization into Asymmetric Convolutions: Further reduction in the
convolutions was proposed by the authors by asymmetric convolutions to make the model
more efficient. (Asymmetric convolutions are of form n× 1). Thus, the 3× 3 convolutions
is replaced by 1 × 3 convolution followed by 3 × 1 convolution. The result of this step is
that the network is cheaper, and thus the computational cost [SVI+16].

Figure 3.6 shows the inception module after applying the two enhancement techniques.
This shows the 4 parallel layers and the filter concatenation.

49

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Figure 3.6: Module 3: Inception modules with expanded filter bank outputs. Figure taken
from [SVI+16].

There are two additional features, i.e., Auxiliary Classifiers and Grid Size Reduction, that
we do not further discuss here. In summary, the InceptionV3 model is made up of 42 layers,
which makes it higher than that compared to InceptionV1 and InceptionV2. The efficiency is
increased compared to both. Table 3.2 shows the complete architecture of this model [SVI+16],
where the output size of each module is the input size of the next one.

Table 3.2: Outline of the InceptionV3 network architecture

type patch size /stride input size

conv 3× 3/2 299x299x3

conv 3× 3/1 149x149x32

conv padded 3× 3/1 147x147x32

pool 3× 3/2 147x147x64

conv 3× 3/1 73x73x64

conv 3× 3/2 71x71x80

conv 3× 3/1 35x35x192

3xInception Module 1 35× 35× 288

5xInception Module 2 17× 17× 768

2xInception Module 3 8× 8× 1280

pool 8× 8 8x8x2048

linear logits 1× 1× 2048

softmax classifier 1× 1× 1000

Outlook: NasNet

Last, we present an architecture for Neural Architecture Search that we did not use for image
classification but is used for finding the right architecture. Neural Architecture Search Network
(NasNet) was introduced again by a Google team in 2017. The main objective of NasNet is a
gradient-based method for finding the best CNN architecture by considering it as a reinforcement
learning problem. In reinforcement learning, a reward is given to the system whenever an action
is done, achieving an acceptable answer or data. The main idea of NasNet is searching for the
best combination of everything, including the number of layers, filter size, output channels ,

50

3.4. NETWORK ARCHITECTURES

etc. In this context, on a given dataset, the accuracy of the searched architecture is considered
the reward after the search action is performed.

Figure 3.7: An overview of Neural Architecture Search. Figure taken from [ZL16].

As shown in Figure 3.7, NasNet consists of two main components, which are the controller
and the child network. The objective of the controller is to use a recurrent network to generate
a string (variable-length string) that specifies the structure and connectivity of a neural net-
work. The child network trains the network on the data and results in an accuracy, which is
considered as reward. Then, the gradient is computed based on this reward, and the controller
is updated. In the following iteration, the architectures with higher accuracies will be granted
higher probabilities by the controller. Thus, we can say that the controller learns to improve
its search over time [ZL16].

Summary

In this section we introduced the architectures ResNet, MobilenetV2, and InceptionV3 that
we used for second-order optimization in Chapter 7, in particular for Subsection 7.2.5. These
network architectures are tweaked with stacked blocks and skip-connection layers, in order to
address the problem of vanishing gradients, computational efficiency and high accuracy.

We also briefly outlook into the NasNet architecture, which uses reinforcement learning to
find the best architecture regarding depth, width and layer structures.

3.4.3 Natural language processing architectures

Natural language processing (NLP) is another popular application of machine learning besides
Computer vision. NLP has gained popularity in recent years with Google Translation, the rec-
ommendation system for movies or online shops, social media sentiment analysis, advertising,
and, most recently, generative pre-trained transformer (GPT) and its variants. NLP uses math-
ematical approaches to understand and manipulate human language. Among these approaches,
deep learning (or neural network) approaches have already shown the dominating performance
over traditional computer linguistic approaches across many different NLP tasks in the past
decade.

In the following sections, we will introduce the basics of NLP (e.g., Word embedding) and
then the most popular neural networks in machine translation used in this thesis, the transformer
architecture.

51

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Word embedding

In word embedding, single words are presented with a vector in high-dimensional space, i.e.,
sentences are point clouds with positions. [JM09] Each word is mapped to a fixed embedding;
its real-valued vector encodes the word’s semantic meaning. The underlying idea is to cap-
ture semantic relationships between words, i.e., “close” words in vector space possess a similar
meaning. For the purpose of illustration, we can define arbitrary example mappings for the four
words, “mom”, “dad” , “happy” and “sad”: “mom” to (0.2, 0.2, 0.4), “dad” to (0.2, 0.1, 0.4),
“happy” to (−0.4,−0.5,−0.2) and “sad” to (−0.4,−0.3,−0.3). The specific values in the vec-
tors are not standardized and can be created using various techniques for word embeddings.
From an embedding space, a mathematical function like cosine similarity can be used to show
the vectors’ distance and distinguish the clusters. In grammar and semantics “mom”, “dad”
are close nouns. “happy” and “sad” are adjectives, and in semantic text analysis they are the
critical keyword to present states or customers’ feedback. In machine translation, the task is
often to predict the next word based on the previous words in the sentence. For example, given
a predicting sentence, “she is my . . .,” It is intuitive to find the “. . .” around the noun and
person cluster instead of the adjective cluster.

There are two classes of word embedding methods: sparse and dense. Sparse vector models
have high dimensionalities from 20, 000 to 50, 000. Most of the elements in the vector are
zeros, and standard methods are term frequency-inverse document frequency(tf-idf) [Ram99]
and positive pointwise mutual information (PPMI) [NN94]. On the contrary, dense vector
models have much lower dimensionalities of 50 to 1, 000, with most elements being non-zero.
Popular and open-source dense word embedding models are word2vec from Google [MCCD13],
GloVe from Stanford University [PSM14], and fastText from Facebook [BGJM17], which are
fine-trained on much text data. On a different note, these methods can also be used for the
concept of word analogies. For example, reflecting a gender relationship analogy, “man : woman
: son : daughter”. A machine can do reasoning like a human to understand “a man is to a
woman as a son is to a daughter.” is a classic example of recognizing patterns and relationships
within language. Some of these embeddings are so powerful that the vector representation of
the daughter is very similar to that of v(son)− v(man) + v(woman).

Dense word embeddings are more popularly used in practice than sparse ones since short
dimensionality may be easier to use for features in deep learning. The dense vector generalizes
better than sparse ones, storing explicit counts. In both, sparse or dense, word embeddings,
word and document similarities are computed by some dot product function between vectors.
In practice, word embedding is often not built from scratch, but existing ones are heavily used,
which large NLP companies have already crunched and optimized.

In Subsection 7.2.6, we use the pre-trained fasttext word embedding in our model. It has
also proven highly useful in text classification, semantic analysis, and neural machine translation
(NMT) [QSF+18]. This topic has been part of Yi-Han Hsieh’s Master Thesis advised in the
course of this PhD thesis. [Hsi21]

Transformer

The transformer is the primary model in our NLP implementation. The model comes from
the most influential paper on NLP, written by a Google group in 2017, called Attention is All
you Need [VSP+17]. The transformer made an enormous success in machine translation and
is now the backbone of the generative pre-trained transformer models (GPT). A transformer
is a sequence-to-sequence (Seq2Seq) model and entirely relies on the self-attention mechanism
without any complex recurrent or convolutional neural networks, as, for example, recurrent
neural networks (RNN) or LSTM [HS97]. Seq2Seq models have mainly two components, i.e.,

52

3.4. NETWORK ARCHITECTURES

Encoder and Decoder. In between, a vector called context vector connects each other. The
encoder and the decoder for basic models have traditionally been RNN-based networks such as
LSTM, or GRU. In more advanced models, like Transformer and BERT [DCLT18], Encoder
and Decoder optimizations include self-attention and feed-forward neural Networks, and there
are no recurrent structures.

Figure 3.8 shows the famous overview transformer’s architecture. Like most other competi-
tive models, a transformer architecture consists of an encoder-decoder structure. The interesting
part, and what makes it superior, is inside the encoder and the decoder. The transformer com-
putes a representation of a given sequence by paying attention to different positions of the
input sequence. Due to the properties of the multi-head self-attention mechanism, in trans-
former models parallelism can be employed for efficient training.

encoder layer

decoder layer

(source) (target)

Figure 3.8: The Transformer - model architecture. Figure adapted from [VSP+17].

Next, we sequentially explain the concepts behind the ingredients of the transformer model:
1. the input and outputs, 2. the positional encoding, 3. the encoder/decoder structure, and 4.
the attention mechanism with the multi-head self-attention.

1. Inputs and Outputs: Before handling the complex structure inside, let us first state the
inputs and outputs of the encoder and the decoder. The raw input of the encoder is a sentence
with words that is then pre-processed with a word embedding. Pre-processing involves con-
verting the source and target sequence(or sentence) into the vector presentation with positional
encoding and a word-embedding layer. We have explained word embedding in Subsection 3.4.3
and cover positional encoding in a later paragraph.

53

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Since a transformer only uses the self-attention mechanism, it finds the context by itself,
and we do not need to specify a context vector, as is required in many other NLP models.

We have used the transformer for a Portuguese-to-English translation. The source is the
raw input of the encoder, and the target is the raw input of the decoder. For training, we have
source and target available; for testing, the goal is to find the target by itself. For example, in
the Portuguese-to-English translation, the source is the tokenized Portuguese sentence, and the
target is the tokenized English sentence.

2. Encoder & Decoder: The encoder consists of stacked identical encoder layers. Each
encoder unit has two sub-layers. The first sub-layer is a multi-head self-attention layer. The
second sub-layer is a Position-wise Feed-Forward Networks (FFN) consisting of two fully-
connected layers with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2

Here, FFN adds nonlinearities from the self-attention; without these activations, it would
just be a weighted average. In addition, since each vector of the later mentioned multi-head
attention mechanism is independent of each other, parallelization can be applied here, which is
an excellent advantage over the recurrent structures in other Seq2Seq models.

Moreover, a residual connection is added around each of the two sub-layers, followed by
layer normalization. So, the output of each sub-layer is LayerNorm(x+ SelfAttention(x)) or
LayerNorm(x+FFN(x)). These additional tricks make the loss landscape smoother for more
accessible training.

The decoder also consists of stacked identical decoder layers. Each sub-layer also uses a
residual connection and a layer normalization. Besides, the decoder unit has an additional sub-
layer between the first and second sub-layers. This additional sub-layer takes both the encoder’s
output and the first sub-layer’s output. Slightly different from the first sub-layer encoder unit,
a masking is added inside the scaled dot-product attention. See paragraph 4. multi-head
attention. The idea of masking ensures that the decoder does not peek into the future and only
relies on the known outputs at previous positions when predicting a sequence. So, it masks out
(setting to −∞) all sequences after position i when predicting position i.

The number of encoder and decoder layers, FFN’s inner dimensionality, and the number
of heads are the main hyper-parameters in the transformer model. We have denoted them
as num layers, dff, and num heads in our implementation. d model is determined by the
word embedding layer. Check the Appendix B for the hyperparameters JSON file and other
implementation details.

3. Positional Encoding: Since, for reasons of performance, there is no recurrence and no
convolution in the self-attention mechanism, we also lack built-in position information. There-
fore, it is required to encode the position information of the sentence before it goes into the
self-attention layer, see also Figure 3.9.

Firstly, the source and the target sentences are tokenized and converted into the vectors
in the dmodel space through the corresponding embedding layers. Then, we sum up a unique
positional vector and an embedding vector since both dimensions are the same (dmodel). Finally,
tokens will be closer in the dmodel space based on the similarity of meaning and their position
in the sentence. This process is shown in the Figure 3.9.

Besides, Figure 3.10 shows the visualization of final vectors. The function which produces
the positional vector can be hand-crafted or learned from data. We follow the suggested word-
embedding and language task as in [tut]. We use the functions that have also been used in the

54

3.4. NETWORK ARCHITECTURES

2021/10/2 positional_en.drawio

1/1

Encoder/Decoder

Word Embedding

source/target tokens

Positional Encoding()

Figure 3.9: Pre-processing of words (tokens) with positional encoding and word embed-
ding [Hsi21].

Figure 3.10: Tokens of the positional encoding in dmodel = 512 space and length of sentence
= 2048. The x axis is the position index in the sentence and the y axis is the dimension index
in dmodel = 512 space. Figure generated using [tut].

original paper [VSP+17],

PEpos,2i = sin
(
pos/10002i/dmodel

)
, and

PEpos,2i+1 = cos
(
pos/10002i/dmodel

)
,

where pos is the position and i is the dimension of the word embedding. This is displayed in
Figure 3.10, generated with the corresponding Tensorflow Keras tutorial [tut].

4. Multi-head self-attention: The foundation behind this layer is the attention mech-
anism that in different variants, has appeared in other architectures before (Additive atten-
tion: [BCB16], [LPM15], Self-attention: [CDL16]). In the transformer architechture [VSP+17],
this multi-head self-attention mechanism is incorporated in the so-called Scaled Dot-Product
Attention term, and it depends on query vectors (stacked in a matrix Q), key vectors (K))
and query vectors Q). A Self-Attention Layer relies entirely on its input sequence (unlike
additive attention), and it uses the self-attention mechanism to calculate all the hidden states’
attention, i.e., the alignment score w.r.t each other. We call the single-head attention function
Attention(Q,K,V).

55

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

The motivation for Multi-head attention is that we want to look at multiple places in the
sentence at once in parallel. So, the multi-head mechanism runs through the scaled dot-product
attention multiple times in parallel rather than only computing the attention once.

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ,i,KWK,i,V WV,i)
(3.2)

where h is is the number of attention heads, i ranges from 1 to h and dk = dv = dmodel/h.
WQ,i ∈ Rdmodel×dk , WK,i ∈ Rdmodel×dk , WV,i ∈ Rdmodel×dv , and WO,i ∈ Rhdv×dv are parameter
matrices to be learned. In the model, h is also one of the hyperparameters.

Since the heads reduce the dimensions of parameter matrices, the total computational cost
is similar to that of single-head attention with full dimensionality [VSP+17].

Summary

A very popular branch of deep learning is natural language processing. The transformer ar-
chitecture is superior to many other models, including a sequence-to-sequence model with an
encoder/decoder structure. A big advantage is the multi-head attention mechanism that allows
simultaneous focus on more parts of the sequence, allowing parallelism and a high range of
capturing information.

In Subsection 7.2.6, we applied second-order optimization on the transformer architecture
for a translation task.

3.4.4 Transfer learning

Recent progress in architectures and algorithms, including innovations like residual blocks and
attention layers and the exponentially increasing amount of available data, clearly strongly
supports the black-box deep learning-based approach to hand-crafted expert systems, especially
in the field of image classification or natural language processing. Given the feature hierarchy
in neural architectures of for word embeddings, i.e. the gained knowledge, a new use case opens
up: transfer learning.

Transfer learning (TL) deals with applying already gained knowledge for generalization to a
different but related domain [YCBL14,Li]. Generating an adequately sized and well-annotated
dataset tailored to a particular task in the domains of image classification or natural language
processing is a resource-intensive, expensive, and time-consuming process. Consequently, de-
velopers in academia and smaller companies often work with significantly smaller training and
testing data sets compared to the renowned datasets, such as CIFAR and ImageNet, or the
WebText for GPT2 [KH+09]. Furthermore, the training process is time-consuming and relies
heavily on specialized, high-performance hardware, particularly in terms of memory. Since
modern ResNets for image classification require around 2-3 weeks to train on ImageNet (de-
pending on the power of the computational resources), re-starting this process from scratch for
each single slightly modified task is hardly efficient. Transformer architectures consume even
more time and require even more resources. The concept of transfer learning involves utilizing
the knowledge acquired by a pre-trained model to enhance its performance in the specific task
we are focused on. This allows for reducing the cost of pre-processing and augmenting a new
dataset, and reduces training time and deploying the model. [YCBL14]

We will now explore the two most essential techniques for implementing transfer learning,
for example, in image classification. The model highly profits if the model is pre-trained on a
large dataset that has many classes and generalizes well to many tasks, e.g. ImageNet.

56

3.4. NETWORK ARCHITECTURES

Figure 3.11: Visualization of the transfer learning approach. Left: classical, right: transfer
learning. Figure based on [PY09].

Fixed feature extractor

In almost all our models, the final layer is a fully-connected layer that produces an output vector
representing the scores of the classes (for ImageNet 1000 and for NLP, this depends on model
hyperparameters). A fixed feature extractor has been created by eliminating this layer while
keeping the rest of the hidden layers unchanged. [Li,SRASC14] Maintaining the model’s feature
hierarchy allows us to subsequently utilize this extractor on the training set for our specific
task of interest. This leads to a multidimensional vector that holds knowledge in some sort of
latent space, i.e., the values of the activation functions of the network’s final hidden layer for
each input image. Following the iteration through all training examples and applying a ReLU
activation function to the resulting CNN codes, we train a fresh linear classifier, like softmax or
SVM. This classifier takes the place of the previously removed output layer. In summary, the
fixed feature extractor method enables us to utilize the pre-trained model’s weights to extract
features ready-to-use. These features are then employed to train a classifier tailored to our
specific task of interest.

Fine-Tuning

Fine-tuning enables the transfer of our new model to a different domain by utilizing the pre-
trained weights and biases as the initialization for the backpropagation process. The advantage
of this technique is that it selectively updates the parameters where it needs to. With this,
it adjusts the model’s feature hierarchy and makes it capable of generalizing to the new task.
Typically, we want to keep the generic, low-level features while adapting and updating the
higher-level features to suit the context of the new domain. However, while a higher prediction
accuracy can be observed with fine-tuning, one must treat the result with caution: the effec-
tiveness depends on the size and similarity of the new training data to the initial dataset. Due
to the high risk of overfitting, this technique is error-prone, especially for small datasets. [Li]

Benefits

As with any other task in machine learning, it is hard to put a set of defined rules that are
applicable. However, we can list some points that help us decide when to use transfer learning.
Similar to many tasks in machine learning, it is challenging to define a rigid suggestion when
TL should be used. However, we list a few guidelines that assist in determining when to employ
transfer learning.

57

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

1. Infeasible to train from scratch, as there is no access to or not enough training data
available.

2. There already exists a universal model that has been optimized on a huge amount of data
from a comparable task.

3. When we have two similar tasks that have the same kind of input.

Transfer learning can enhance deep learning in three key aspects. First, the initial accuracy
in the current task can be quickly reached by re-using knowledge transferred from a previous
task without additional learning. Second, the convergence speed of learning the new task can be
accelerated using knowledge from the prior model, in contrast to training from scratch. Third,
TL may benefit from the transferred knowledge as opposed to no knowledge from scratch. [TS10]

We can also discuss the benefits of transfer learning with Figure 3.12 from [TS10].

• Higher start: The initial performance of the model is higher than by not employing
transfer learning.

• Higher slope: Regarding the convergence speed of the model, accuracy improves quicker
than training from scratch.

• Higher asymptote: The final accuracy of the transfer learning model is much higher
than without transfer learning.

Figure 3.12: Three ways in which transfer might improve learning Figure taken from [TS10].

TL allows us to create complex models for specific tasks with limited amounts of labeled
training data by re-using knowledge from a pre-trained model. Since this strategy is notably
robust, it is considered to be a driving factor in the field of deep learning [Ng16]. We presented
two strategies, a fixed feature extractor and fine-tuning, that have been reported to perform
well on many different visual tasks [Li,SRASC14,YCBL14]. Since sharing research contributions
and full digital models is a common practice in DL, a wide variety of pre-trained models are
available, which can be utilized for transfer learning. However, it should be noted that the
underlying model must be suitable for the new task of interest when applying TL.

3.4.5 Summary

In this section, we introduced the intricate neural network architectures on which we will apply
second-order optimization in Chapter 7.

58

3.5. SUMMARY

We started with shallow networks, which boil down to a linear regression problem, or with
convolution nets, occurring in hand-crafted U-Net-type architectures (Subsection 3.1.1). For
computer vision, the family of Residual nets(ResNets) and derived models have been most
popular. ResNets have skip-connections in the residual block, and MobileNets have improved
computational efficiency and inception nets. We explained these architectures, for which we will
run second-order optimization in the results chapter, in Subsection 3.4.2. Lastly, we covered
the transformer model for natural language processing, which we used for second-order opti-
mization of a Portuguese-English translation task in Subsection 7.2.6. We explained the details
of the transformer architecture, which is also the backbone of most translation tasks, and the
generative pre-trained transformer. In Subsection 3.4.3, we explain the word embedding and
the encoder/decoder structure, with the input/output sequences, the positional encoding, and
the attention mechanism.

In the next Subsection 3.4.4, we explain the field of transfer learning. With a fixed feature
extractor or fine-tuning, knowledge from existing models can be re-used, and a new target task
can be addressed more efficiently.

In summary, the focus of this section is explaining the details of the deep network architec-
tures that we used for second-order optimization in Chapter 7.

3.5 Summary

This theory Chapter 3 called artificial neural networks lays out the foundation of neural networks
for the results Chapter 7.

We started this chapter in Section 3.1 with the basics of artificial neural networks from
a scientific computing context. We showed how deep learning models are formed with the
multilayer perceptron model.

We moved on in Section 3.2 to define the different layers in a convolutional neural network.
Besides the convolution layer, poling and drop-out often occur, as well as fully-connected layers.

A grand challenge in machine learning is to decide on model quality and to estimate the
uncertainty, especially for safety-critical fields. After explaining the artificial neural networks,
in Section 3.3 we described the types of uncertainty, aleatoric and epistemic, and variational
inference. In an approach called Bayes-by-Backprop, a probability distribution is placed around
the network weights. With such a trained model, we can treat the prediction uncertainty in
what we refer to as Bayesian neural networks.

In the next Section 3.4, we explained the intricate architecture design used for data analysis,
computer vision, and natural language processing. We start with shallow networks for data
analysis, such as linear regression and convolutions, and move towards computer vision. There,
we outlined the advantages of skip connections in residual networks and showed the details
of ResNets, MobileNets, and InceptionNets. As for natural language processing, we explained
the transformer architecture with an encoder/decoder design. The attention mechanism was
a breakthrough in the field, leading to technologies like the generative pre-trained transformer
(GPT). Lastly, we showed that with transfer learning, existing models can be re-used efficiently
to address a new target task. This opens a family of derived models to the previous intricate
pre-trained architectures.

In summary, in this chapter, we introduced deep learning for the purpose of second-order
optimization in this thesis. The state-of-the-art model architectures are becoming very so-
phisticated, with some allowing uncertainty estimation. The remarkable expansion of available
data has led to breakthroughs in image classification with residual nets and natural language
processing with the transformer architecture.

59

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

In the next Chapter 4, we will cover optimization methods, in particular for neural networks.

60

A mathematical formula should never be
“owned” by anybody! Mathematics belongs to
God.

Donald Knuth (*1938)

4
Optimization methods

This chapter, called “Optimization methods,” introduces the theory of the second part of the
thesis, neural network optimization (Chapter 7). Optimization is nowadays quite virulently
used, some referring to the mature field in mathematics of (non-)convex optimization, others
referring to parameter search, and others claiming that machine learning is just parameter
optimization or statistics. Here, we refer to the theory of deep learning optimizers, which
limits the context to suitable methods; this Chapter 4 builds the foundation for our results
on a neural network optimization in Chapter 7. We begin with the common optimization
approaches for deep learning (DL) in Section 4.1, and describe mainly stochastic gradient descent
in Subsection 4.1.1 and Adam in Subsection 4.1.2. Next, we lay out the theory for the proposed
second-order optimizer Newton-CG in Section 4.2. We close with a summary (Section 4.3).

Our approach follows the approach of Newton-Krylov methods; a survey for this is in liter-
ature comprised of books by Knoll and Keyes [KK04] or by Meister [Mei11], and extended for
many applications [WDE07,WN+99, Ste83]. It is generally suggested to first use strategies of
conventional lower-order iteratively (pre-training), and once the optimization process is suffi-
ciently close to a minimum, address the Newton-type method around a trust region in a ball of
convergence.

4.1 State-of-the-art deep learning optimization approaches

Let’s recall that the neural network layer consists of a linear combination of the input variables,

f(xi,W) = w0 +
N∑
i=1

(w
(d)
i xi) .

In Deep learning (DL), network layer functions are intricately linked through a chaining
process, i.e., f(x) = f (D)(. . . f (2)(f (1)(x))). We then form an error function, e.g., the square
loss,

Lsq =
1

2

N∑
i=1

(f(xi,W)− yi)2 .

To find the appropriate weights W , we use optimization algorithms to minimize the loss
function. For a supervised learning task, the optimization problem consists now of finding all
weights W comprised in a weight tensor W that minimize a given loss function l for given
training samples X,Y :

min
W

L(X,Y,W) . (4.1)

61

CHAPTER 4. OPTIMIZATION METHODS

A prominent example of a loss function for binary classification is the categorical cross-entropy

Lentr(X,Y,W) := −
N∑

l=1

yi log(f
(D)(X,W)) .

Note that only the last layer function f (D) of the network directly shows up in the loss, but
all layers are indirectly relevant (due to the chaining f(x) = f (D)(f (D−1)(. . .) [RNB23]. Hence,
the optimization addresses all weights in all layers.

DL optimization differs slightly from pure optimization, as it measures losses indirectly to
some training sets, and it may be intractable. In contrast, pure optimization, where minimizing
the function f (or rather a global F =

∑N
i=0 f as the sum of all samples) directly of the function

is the goal itself, in contrast to the chained objective function L. [GBC16a]

4.1.1 Stochastic gradient descent

In order to solve the optimization problem (4.1), different first-order methods exist (for a survey,
see, e.g., [GBC16a]). For deep learning methods, the algorithmic choice is limited, as many
data chunks need to be processed (memory intensive), and higher order methods are generally
prohibitively expensive with the amounts of optimization parameters (memory and compute
expensive). Therefore, the first order is the state of practice, despite being low accurate. Because
we know from optimization literature that higher-order methods often prevail and are state-of-
practice in other fields, we later propose and try a lumped second-order scheme.

The pure gradient descent without momentum is computing intermediate weights Wk in
iteration k via

Wk = Wk−1 − ak−1∇L(Wk−1) ,

where ∇L(Wk−1) denotes the gradient of the total loss function L w.r.t. the weights W and
ak−1 is the so-called learning-rate.

Computing this gradient globally (w.r.t. all data points) is very expensive because it requires
differentiating the model for every sample in the entire dataset, requiring memory access to the
whole dataset and all intermediate layers.

Stochasticity

DL Optimizers look at stochastic mini batches of data, i.e. disjoint collections of data points.
The union of all mini batches will represent the whole training data set. The reason for con-
sidering data in chunks of mini-batches and not in total is that the back-propagation in larger
neural networks will face severe issues w.r.t. memory. Hence, the mini-batch loss function for
binary classification, where the mini-batch is varied in each optimization step in a round-robin
manner, is now defined by

L(x, y,W) := −
batch-size∑

i=1

yi log(f
(D)(X,W)) .

Note that the stochastic gradient descent (SGD) includes stochasticity by changing the loss
function to the input of a specific mini-batch of data, i.e. using parts of the global sum, which
may result in different behavior. Each mini-batch of data provides a noisy estimator of the
average gradient over all data points, hence the term stochastic. Technically, this is realized by
switching the mini-batches in a round-robin manner to reach the full dataset (one full sweep is
called an epoch; frequently, more than one epoch of iterations is necessary to achieve quality in
the optimization) [RNB23].

62

4.1. STATE-OF-THE-ART DEEP LEARNING OPTIMIZATION APPROACHES

Another motivation for using stochasticity in DL stems from the observation that optimizers
often get stuck in a local minimum or in saddle points. Stochasticity helps in escaping from
local minima or saddle points. Multicore architectures are usually underutilized, and hence, in
a data-parallel approach, one can run different mini-batches embarrassingly parallel.

4.1.2 Adaptive moments

The family of Adaptive moments (Adam) methods updates weight values by moving averages
of the gradient sk with estimates of the 1st moment (the mean) and the 2nd raw moment (the
uncentered variance).

The approach called AdaGrad performs well for some but not all deep learning models. It
directly uses these estimators:

Wk+1 =Wk − αk
sk

δ +
√
rk

, (4.2)

where sk is the gradient g, rk = rk−1 + g ⊙ g and δ is a small constant.

The Adam method corrects for the biases in the estimators by using the estimators ŝk = sk
1−βk

1

and r̂k = rk
1−βk

2
instead of sk and rk. Good default settings for the tested machine learning

problems described in this paper are a0 = 0.001, β1 = 0.9, β2 = 0.999, and δ = 10−8.

4.1.3 Other strategies for neural network optimization

Several other gradient-based optimization algorithms exist, prominent in DL. RMSprob falls into
the class of adaptive learning rates and generalizes AdaGrad for non-convex settings by changing
the gradient accumulation into an exponentially weighted moving average. The Nesterov’s
Accelerated Gradient Method is suited for large fluctuations and allows faster convergence for
convex problems compared to SGD. [SBC15]

The approach of Quasi-Newton methods (with the most prominent as Broyden-Fletcher-
Goldfarb-Shanno, BFGS) is to approximate the Hessian inverse with a low-rank update matrix.
Like the method of conjugate gradients, the BFGS algorithm iterates with line searches towards
the second-order curvature. Unlike conjugate gradients, however, the approach’s success is in a
greater range around the local minimum. Thus, relative to conjugate gradients, BFGS has the
advantage that it can spend less time refining each line search. On the other hand, the BFGS
algorithm must store the inverse Hessian matrix (O(N2) memory), making BFGS impractical
for most modern deep learning models that typically have millions of parameters. The L-BFGS
algorithm adapts limited memory, stopping at a sequence of vectors representing the projection.
[GBC16a]

A whole other class of optimization algorithms is defined by the Consensus-based optimiza-
tion (CBO) methods. The idea involves several starting values (in a Monte Carlo fashion) and
chooses the best guess with a certain refinement. It is a derivative-free optimization method for
minimizing non-convex and non-smooth functions globally. [FKR22] Currently, it is not very
popular for DL.

4.1.4 Summary

We have introduced several exciting learning algorithms, SGD, AdaGrad, and Adam, just to
name a few important ones for this thesis. They are mostly based on auto-differentiating the
system,i.e., they compute the gradient. All of them are facing the challenge of optimizing deep
models by adapting the learning rate for each model parameter (a process called hyperparameter

63

CHAPTER 4. OPTIMIZATION METHODS

Figure 4.1: Increasing number of model parameters each year for prominent DL architectures.
Figure taken from [BSH+21].

tuning). In practice, much compute time is spent finding these hyperparameters. At this point,
a natural question poses: choosing the best optimization algorithm for which scenario? While
we refer to benchmark studies, e.g. Descending through a crowded valley – benchmarking deep
learning optimizers [SSH21], or other benchmarks [DSN+23]; in this thesis, we later introduce
yet another training algorithm. Our ultimate goal is to have more intuitive (mathematically-
motivated) hyperparameters.

4.2 2nd-order optimization for deep learning

The second-order optimizer implemented and used for the results of this work consists of a
Newton scheme with a matrix-free conjugate gradient (CG) solver for the linear systems of
equations arising in each Newton step [RNB23]. The effect of the Hessian on a given vector
(i.e., matrix-vector multiplication result) is realized via the so-called Pearlmutter approach and
avoids setting up the Hessian explicitly.

4.2.1 Pearlmutter approach

In Figure 4.1, the increasing network sizes over the years are plotted. It seems that with more
computing power available, the networks (and the tasks) are also growing. The explicit setup
of the Hessian is memory-expensive due to the quadratic dependence on the model parameters
(weights); e.g., a 16M×16M matrix requires about 1 TB of memory. The Hessian arises as
a matrix of size N × N , and like most linear algebra computations, exact direct computation
(which are sufficient but never necessary for NN problems) cost O(N3) time. [YGKM20]. In
order not to be only theoretically useful, a method should be checked against the more-or-less
new architectures.

We can obtain “cheap” access to the problem’s curvature information by computing the
Hessian-vector product [RNB23]. This method is called Fast Exact Multiplication by the Hes-
sian H (see [Pea94], e.g.). Specifically, it computes the Hessian vector product Hs for any s in
just two (instead of the number of weights N) backpropagations (i.e. automatic differentiations
for 1st derivative components).

64

4.2. 2nd-ORDER OPTIMIZATION FOR DEEP LEARNING

For our formulation of the problem, it is defined as:

HL(W)s =

n∑
i=1

si
δ2

δw1δwi
L(W)

n∑
i=1

si
δ2

δw2δwi
L(W)

...
n∑

i=1
si

δ2

δwnδwi
L(W)

=

δ
δw1

n∑
i=1

si
δ

δwi
L(W)

δ
δw2

n∑
i=1

si
δ

δwi
L(W)

...

δ
δwn

n∑
i=1

si
δ

δwi
L(W)

= ∇w(∇wL(W) · s)

We apologize for the slight abuse of notation. H is the Hessian matrix (or HL with respect to
the loss function L), the H symbol refers to the Hierarchical matrix from the chapter before.
The Pearlmutter approach in algorithmic form is shown in Algorithm 4.3.

Algorithm 4.3 Pearlmutter

Require: X,Y,W, s: Compute HLs = ∇w(∇wL(W) · s)
Require: W0: Initial estimate for W.
1: g0 ← gradient(L(W)) ▷ Back-Prop
2: intermediate← matmul(g0, s) ▷ Matrix-Multiplication
3: Hs← gradient(intermediate) ▷ Back-Prop
4: return Hs

The resulting formula is both efficient and numerically stable [Pea94]. In the implementa-
tion, we denote this building block as Pearlmutter. By the multiplication with a vector, we
get the directional second derivative of the function. In mathematical terms, this falls under
the Gateaux derivative, which is a generalization of the concept of directional derivatives in
differential calculus. For differentiable functions, it also coincides with the Fréchet-derivative,
for which there exists a nice theory in literature.

4.2.2 Newton’s method

Recall the Newton-Raphson equation

HL(W
k)dk = −∇L(Wk) (4.3)

for the network loss function L : Rn → R, where W is the vector of network weights and
Wk the current iterate of Newton’s method to solve for the update vector dk. The size of
the Hessian is Rn×n, which becomes infeasible to store with state-of-the-art weight parameter
ranges of ResNets (or similar).

The weighted update step is thus,

Wk = Wk−1 − αk−1dk .

We define the regularized Newton equation later in Equation 4.4], and the algorithm is outlined
later in the implementation chapter in Algorithm 7.5.

4.2.3 Ingredients of proposed 2nd-order optimizer: Newton-CG

This section introduces a few methods we need for our Newton-CG algorithm. We list the
ingredients here as we need them; they do not follow a hierarchy from a field, but rather, they
explain examples of different fields.

65

CHAPTER 4. OPTIMIZATION METHODS

Conjugate gradient step

Since we have a matrix-vector product available without setting up the full matrix (with Pearl-
mutter), we employ an iterative solver scheme that requires matrix products only. We therefore
employ a few (inaccurate) CG-iterations to solve Newton’s regularized equation (4.4), thus result-
ing in an approximated Newton method. The standard CG-algorithm is e.g. described in [S+94];
in particular, no direct matrix access is required since the algorithm relies only on products
with vectors.

Algorithm 4.4 Conjugate Gradients

Require: A, b: ▷ We want to solve Ax = b for x.
Require: x0: ▷ Initial estimate for x.
1: r0 ← Ax0 − b, p0 ← −r0, k ← 0
2: while rk too large do

3: αk ←
r⊤k rk
p⊤k Apk

▷ Compute step size

4: xk+1 ← αkpk ▷ Apply step
5: rk+1 ← rk + αkApk ▷ Compute new residual

6: βk+1 ←
r⊤k+1rk+1

r⊤k rk
▷ Factor, such that pk−1 and pk are conjugate w.r.t. A

7: pk+1 ← −rk+1 + βk+1pk ▷ Compute new step direction
8: k ← k + 1
9: end while

Tikhonov Regularization

Recall the Newton equation

HL(Wk)dk = −∇L(Wk)

for a neural network loss function L : Rn → R, where W is the vector of network weights and
Wk the current iterate. Due to the large number of weights in practical neural networks, the
Hessian may be ill-conditioned, i.e.

κ(HL) :=
λmax

λmin
≫ 1

with λmin/max being the minimal/maximal eigenvalue of HL. In a geometric view, this behavior
resembles starting values, where the function leads to a very far point due to a high/low slope
(saddle point).

Since the Hessian frequently has a high condition number, which implies near-singularity
and provokes imprecision, a general ansatz is to apply regularization techniques to counteract a
bad condition. A common choice is Tikhonov regularization. To this end, a multiple of the unit
matrix is added to the Hessian of the loss function such that the regularized system is given by

(H(Wk) + τI)dk = H(Wk)dk + τIdk = −∇L(Wk) (4.4)

Note that for large τ the solution will converge to a fraction of the negative gradient
−∇L(Wk), similar to a stochastic gradient descent method.

66

4.2. 2nd-ORDER OPTIMIZATION FOR DEEP LEARNING

Armijo step size restriction

Line-search methods offer an intuitive approach to find suitable step lengths. For stability
purposes, it helps to introduce a step size restriction. The Armijo condition reads

L(Wk+1)− L(Wk) ≤ ∇L (Wk) pk .

If fulfilled, it falls back to the SGD update step, the negative gradient −∇L (Wk). Note
that γ → 1 leads to a greedy step selection, but it may cause stagnation.

Line-search methods offer an intuitive approach to finding suitable step lengths.

It can be shown that the Armijo step size exists for every descent direction. A proof can
be found in [UU12] alongside further step size rules. The different building bricks can then be
combined in any optimization algorithm. [Suk20]

Stochasticity and dampening

As autodifferentiation with all samples is infeasible in DL (w.r.t. memory), we also must relax
the proposed 2nd-order optimizer with this constraint. There are voices that argue that with
stochasticity, the advantages of a 2nd-order optimizer are decreased, as for each batch, a different
surface is optimized. While this is a worthwhile consideration, mini-batching (stochasticity) was
necessary for our implementation of large architectures and data sets.

The requirements additionally include a learning-rate size parameter. While due to stochas-
ticity, the loss surfaces change significantly for different batches, adding a dampening to the
Newton scheme significantly improved convergence behavior. Note that state-of-the-art opti-
mizers include a schedule with changing learning rates. For Newton-CG we also require the
learn-rate scheduler to be at fair comparison.

Complexity

The method described above requires O(bn) operations for the evaluation of the gradient, where
n is the number of network weights and b is the size of the mini-batch. The Pearlmutter trick
requires two back-propagations instead of one for SGD/Adam. In addition, for the solution of
the Newton-like equation O(2mbn) is needed, where m is the number of iterations conducted by
the CG solver until a sufficient approximation to the solution is reached. Although the second-
order optimizer requires more work than ordinary gradient descent, it may still be beneficial
since, under the conditions that it promises local superlinear (at best quadratic) convergence,
i.e. ∃γ ∈ (0, 1), l ≥ 0, such that

||Wk+1 −W∗|| ≤ γ||Wk −W∗|| ∀k > l

where W⋆ is a local minimum (see [Suk20,RNB23]).

4.2.4 Related work on 2nd-order optimization for deep learning

Optimization literature is vast, and this includes many variants for convex or non-convex
optimization problems. Newton-CG is not new; it has been applied to other optimization
problems [WDE07], and the theory is vast [WN+99, Ste83]. Some variants include Newton-
GMRES [BM01], which extends the trust regions space using a GMRES solver.

Related work for training supervised learning optimization problems in the last few years is
very fast, and it is a challenge to keep track of the newest developments. A thorough review of
0ptimization methods in large-scale machine learning is given in [BCN18]. This led (amongst

67

CHAPTER 4. OPTIMIZATION METHODS

other reports, conferences, and workshops) to a vivid discussion about next-generation opti-
mizers for large-scale machine learning, including the balance between diminishing noise with
stochasticity and incorporating second-order derivative approximations. The most popular and
useful method for approximate second-order neural network training is KFAC [MG15]. It avoids
setting up the Hessian by using a likelihood function for the Fisher information matrix. An
efficient implementation is ChainerKFAC [OTU+19]. To name a few others (no claim for com-
pleteness), AdaHessian incorporates second-order information using the Hutchinson method and
sets the learning rate according to this Hessian eigenvalue estimate. [YGS+21] Newton-MR is a
very interesting study of convexity and inexactness conditions; they use a variant of a Newton-
GMRES and especially report Newton-MR’s advantage of an increased ball-of-convergence and
compare a few methods. [RLXM22] Other work employs the classical BFGS update formula in
its limited memory form for neural networks. [BHNS16]

In contrast, the Hessian itself may be indefinite in many cases. A remedy would be classical
Gauss-Newton methods, especially for least squares loss functions; there are also several works
on this. [BRB17,GZDH20] A complete other approach works on the generalization of optimizers,
making theoretic proofs why SGD generalizes better than ADAM. [ZFM+20]

4.3 Summary

We start in Section 4.1 by recalling the optimization problem for deep learning. We explain
the state-of-the-art optimizers, in particular SGD and Adam, with many details and perks.
We also touch a few other optimizers, but essentially all of them require some non-intuitive
optimization parameters (hyperparameters). Hence, in practice, a lot of compute time is spent
on naive hyperparameter tuning.

We continue in the next Section 4.2 by explaining theory on 2nd-order optimization for Deep
Learning. We begin with the Pearlmutter approach, a scheme to get a fast Hessian matrix-vector
multiplication with just two back-propagation steps. We move towards the Newton method, ex-
plaining the ingredients of our proposed Newton-CG optimizer, including the conjugate gradient
method, Tikhonov regularization, Armijo step size restriction, stochasticity, and dampening.
The second-order methods promise a similar complexity to state-of-the-art first-order methods,
promising (at best) quadratic convergence and, hence, fewer steps. This motivates many ben-
efits with higher computational efficiency regarding memory-boundness, scenarios with sparse
data, or parallel execution.

In the last few years, there was a vivid discussion in the field of 2nd-order optimization for
deep learning. We review related work in Subsection 4.2.4. At this point, a natural question is:
“what is the best optimization algorithm for which scenario?” For this, on the one hand, we refer
to benchmark studies of deep learning optimizers, including hyperparameter tuning, e.g. [SSH21,
DSN+23]. On the other hand, our approach is to compare later in the implementation and
results chapter Chapter 7 the proposed Newton-CG algorithm to the state-of-the-art optimizers
SGD and Adam for various scenarios, offering a nice guide for the most suitable optimizer.

68

PART III

METHODS, IMPLEMENTATION, AND
EXPERIMENTAL RESULTS

69

70

Citius, altius, fortius – communiter (Latin, in
English: faster, higher, stronger – together)

Motto of the Olympic Games

5
Computational setup

This chapter explains the computational resources used for the experiments in this thesis. The
main objective is to show that several models can be run on several hierarchies of computer
architectures, and even intricate models can be evaluated on edge devices like smartphones.

In this chapter, we use the hierarchy from Figure 5.1 for ordering in this chapter. In history,
when there was the wave of computational simulations in the early 2000’s, much emphasis on
compute infrastructure lay on clusters. Nowadays, with the upcoming Internet of things with
edge computing, designing software also for small systems and AI applications is imperative, i.e.
from edge device to HPC.1. Results forH-matrices and Newton-CG are described later; however,
we use this chapter especially for describing our showcasing project TUM-lens, which we also
describe beyond computational setup. Hence, it appears longer for the phone application, since
we intertwine computational setup and results for the Android application TUM-lens, whereas
for the others, we dedicate separate results chapters.

SuperMUC-NG (skx.supermuc.lrz.de, Sec. 5.1)

DGX-1 or LRZ Compute Cloud (ai.lrz.de, Sec. 5.2)

Linux Cluster (lxlogin8.lrz.de, Sec. 5.3)

MAC-cluster pproc-be.in.tum.de

Workstation atsccs14

Laptop

Phone (Sec. 5.4)

Figure 5.1: Contiguous compute architectures of various size of random access memory and
FLOPS; the teletype typesetting denotes the ssh address.

For the first part of the thesis, H-Matrices and GOFMM, we used SuperMUC-NG (Section 5.1)
and the Linux cluster (Section 5.3). For performance runs of the deep learning part, we em-
ployed several GPU workstations, as well as NVIDIA’s DGX-1 with 8 A100 GPUs (Section 5.2).

1According to the US National Science Foundation (NSF) visions and goals for the NSF-AI Institute ICICLE
(Intelligent Cyberinfrastructure with Computational Learning in the Environment, see icicle.osu.edu)

71

icicle.osu.edu

CHAPTER 5. COMPUTATIONAL SETUP

We implemented an Android application, TUM-Lens (Section 5.4), to showcase image classifi-
cation, object detection, and sign language recognition, running on a little edge device, like a
smartphone.

5.1 SuperMUC-NG

SuperMUC-NG is Leibniz Supercomputing Centre’s flagship cluster (abbreviation from German
Leibniz Rechenzentrum: LRZ), currently #40 on the TOP-500 list2. It is currently the second
largest in Germany after JUWELS Booster-System from Forschungszentrum Jülich (# 18) and
only slightly ahead of Hawk from HLRS (# 42). It has in total 311,040 compute cores with
a main memory of 719 TB and a peak performance of 26.9 PetaFlop/s. All compute nodes
of SuperMUC-NG are Intel Xeon Skylake processors equipped with fast 100 Gbit/s OmniPath
network interconnects. There exists also a Phase-2, where some compute nodes are equipped
with 2 GPUs each. Currently, it is not accessible to HPC users, as they are struggling with
power consumption of the GPU nodes [SW23]. Hence, we did not use it in this thesis.

Login is recommended through a secure shell inside the Münchener Wissenschaftsnetz (MWN)
or with a virtual private network (VPN) through skx.supermuc.lrz.de. We have requested
compute quota through a test project for GOFMM, which was granted for 300,000 compute core
hours. The machine and documentation details can be found here 3. We conducted our GOFMM
experiments on the Skylake partitions of LRZ and TACC4. Each node on both machines has
two 24-core Intel Xeon Platinum 8160 “Skylake” processors, which have two AVX-512 units.
We use this system for Chapter 6.

5.2 Multiple GPU: DGX-1 for deep learning

For the deep learning part of the thesis, we used several GPU architectures for testing and
prototyping the Tensorflow part; at first, a chair workstation with a NVIDIA Tesla P100 and
later a Quadro RTX 5000. We intended to measure the performance more accurately and hence
moved towards LRZ’s AI system5. Compute jobs are submitted through SLURM, and we use this
system for Chapter 7.

Nvidia DGX systems are designed to accelerate deep learning applications with improved
GPU-GPU communication. For high performance, they are sometimes referred to as “Super-
computer in a box”, as they consist of 4 to 16 Nvidia Tesla GPUs. The big advantage is fast
memory transfer, as an NVLink mesh network connects GPUs. We display the different versions
shortly in the following Table 5.1.

Table 5.1: GPU Accelerators and Their Specifications

Accelerator Name Memory Bandwidth Release Year

P100 Pascal 720.00E0GB s−1 ∼2016
V100 Volta 900.00E0GB s−1 ∼2018
A100 Ampere 2039.00E0GB s−1 ∼2020
H100 Hopper 3072.00E0GB s−1 ∼2022

2Nov. 2023
3https://doku.lrz.de/supermuc-ng-10745965.html
4Texas advanced Compute Center with Stampede 2
5https://doku.lrz.de/lrz-ai-systems-11484278.html

72

https://doku.lrz.de/supermuc-ng-10745965.html
https://doku.lrz.de/lrz-ai-systems-11484278.html

5.3. LINUX CLUSTER

Note that starting with the Ampere A100, they are equipped with a TPU unit. The TPUs
are employed especially when using NVIDIA GPU containers (NGC)6; hence, it is recommended
to be used by LRZ. In fact, NGC is a software hub for GPU-optimized applications, especially
for tensor computational frameworks like Tensorflow or Horovod. The corresponding NGC
container includes NVLink communications, and NGC used the MLPerf as HPC benchmark.

5.3 Linux cluster

LRZ also hosts a smaller system called Linux Cluster with an older segment CoolMUC-2 and a
newer KNL segment CoolMUC-3. CoolMUC-2 cluster7 has 812 nodes with 64GB memory per
node. The nodes have 28-way Intel Xeon E5-2690 v3 (“Haswell”) CPUs and FDR14 Infiniband
interconnects. CoolMUC-38 has 148 nodes with 64 cores per node and 4 hyper threads per
core. It has 64-way Knight’s Landing (KNL) 7210-F many-core processors for parallel/vector
processing and is equipped with Intel Omnipath OPA1 interconnects between the nodes.

We use this system for Chapter 6. Accuracy measurements that require an OpenMP number
of threads less than 28 were performed on CoolMUC-2 and the rest on CoolMUC-3. Compute
jobs are submitted through SLURM. We have used several queues with different features, such as
maximum runtime or nodes. The memory or maximum runtime limits the size of the respective
run.

5.4 Smartphone: TUM-lens

During the work with students in our seminar “Computational Aspects of Machine Learning”,
as well as other courses and theses, the question arose how image classifications are implemented
on a smartphone. Usually, they upload the images to a server, do postprocessing there, and use
the uploaded data to improve their models. A few years ago, there was a considerable debate
around federated learning, i.e. to train on multiple local devices and aggregate on a global
model [LFTL20]. With this in mind, we investigated the possibility of running some of our
models in an IPython notebook, classifying a Laptop’s webcam stream using the TensorFlow-
Slim image classification model library (SLIM9). Afterwards, with the Bachelor Thesis of Max
Jokel, we started TUM-lens, an application for local live image classification [Jok20]. After that,
there followed several other student thesis theses [Dre21,Alh22,Kar22]. As we do not dedicate
a separate result chapter for this, we explain the results of the edge device here in this section.

We started with a Java implementation, moved to Kotlin, and added feature after feature.
Even with our first prototype, we were impressed by the short inference time despite the large
models. The code is available in LRZ’s GitLab10 and GitHub11. The Android application can
be downloaded in the Google Play Store here12.

In the following, we explain the features and three different modules: image classification,
object detection, and sign language recognition. The first milestone is image classification
in Subsection 5.4.1. We continued in development with an object detection mechanism in
Subsection 5.4.2. There, application size became an issue, which we solved using a dynamic

6https://doku.lrz.de/5-using-nvidia-ngc-containers-on-the-lrz-ai-systems-10746648.html
7https://doku.lrz.de/coolmuc-2-11484376.html
8https://doku.lrz.de/coolmuc-3-11484375.html
9https://github.com/tensorflow/models/tree/master/research/slim

10https://gitlab.lrz.de/exaniml/tum-lens
11https://github.com/severin617/tum-lens
12https://play.google.com/store/apps/details?id=com.maxjokel.lens

73

https://doku.lrz.de/5-using-nvidia-ngc-containers-on-the-lrz-ai-systems-10746648.html
https://doku.lrz.de/coolmuc-2-11484376.html
https://doku.lrz.de/coolmuc-3-11484375.html
https://github.com/tensorflow/models/tree/master/research/slim
https://gitlab.lrz.de/exaniml/tum-lens
https://github.com/severin617/tum-lens
https://play.google.com/store/apps/details?id=com.maxjokel.lens

CHAPTER 5. COMPUTATIONAL SETUP

model zoo. Lastly, we added a different feature, namely translating sign language locally using
the DGS Korpus dataset (Subsection 5.4.3).

5.4.1 Image classification

Image classification and object detection are vital tasks in the computer vision field. We show
a short introduction of those tasks in Figure 5.2 showing the differences. In short, image
classification maps an image to a certain probability of classes; we do neural network training
for this task later in the thesis in Subsection 7.2.5. Object detection works by surrounding each
object of interest in a given image or video with a boundary box, providing it with a label.
Object detection combines two tasks: image classification and object localization (surrounding
the object in the image with a bounding box).

Figure 5.2: Difference between image classification, object localization, and object detection
Figure taken from [Tir].

Image classification was our first implementation using Java. In the modern version, we
have migrated to Kotlin. We used CameraX to capture the camera stream and allowed a
CameraSelector to switch between the front and back cameras.

We crop and downsize the frame to a quadratic image of size 64×64 (similar as in ImageNet).
In a loop, we evaluate a Tensorflow lite model that is trained with ImageNet or another dataset.
Hence, evaluation is run on each frame with an inference time of around 50ms, 20 frames per
second. There are several other features to be set, but the main objective was to keep it simple
and interchangeable. To anticipate an example from later, in Figure 5.3 (a), we tested it on
different dog breeds, as dog pictures are widely prominent in ImageNet, a dataset with 1000
classes consisting of 1.3m images. For mixed breeds, it can help in suggesting the dog’s origins
if, e.g., the dog owner does not know its origin. There are distinct visual features like nose, tail,
ears, etc. that can help with this task.

5.4.2 Object detection

Object detection is another vital task in the computer vision field. As shown in the previous
Figure 5.2, object detection is an image classification task combined with object localization
(surrounding the object in the image with a bounding box). There are two types of object
detection, and they are as follows:

• Single-class object detection: Detecting a single class instance in an image.

74

5.4. SMARTPHONE: TUM-LENS

(a) Image classification (b) Traffic (c) Home workplace

Figure 5.3: Screenshots of live image classification and object detection in TUM-Lens, devel-
oped along the thesis.

75

CHAPTER 5. COMPUTATIONAL SETUP

(a) Image classification (b) Different models (c) Settings and delay time

Figure 5.4: Screenshots of the object selection and settings screen

• Multi-class object detection: Identifying the labels of all the objects in an image.

Nowadays, object detection is used in many applications, such as self-driving cars, tracking
objects, face detection, face recognition, activity recognition, medical imaging, automatic image
annotation, and many more applications in the computer vision field. It is a vital topic in a
visual identification activity. [VNRP19,PPR18] It works by iteratively placing bounding boxes
around it on different parts of the image and refine. The most prominent one is Objectron13,
which builds the foundation of our module. It follows the following objectives:

1. Verification: verify that the object is present in the image.

2. Detection & Localization: detect the object in the image and then localize its specific
location.

3. Classification: select potential categories for the object before classifying it.

4. Naming: identify the location of the objects in the image and their labels

5. Description: describe the object’s relationships and actions in line with the image con-
text

We integrated it in TUM-Lens using another module to be selected in the top pane. As
expected, the object detection is a bit slower, and the inference time is around 600ms, with a

13https://github.com/google-research-datasets/Objectron/

76

https://github.com/google-research-datasets/Objectron/

5.5. SUMMARY

frame rate of around 2fps. In Figure 5.3 (b) and (c), we show the object identification screens.
In the scenario of traffic in (b), it can be used to count cars or in autonomous driving scenarios.
In (c), we simply exposed it to the home workplace, showing different objects like a chair,
laptop, or backpack.

In Figure 5.4 (a), we see two objects in the image. TUM-lens suggests celluar phone with 41%
accuracy; clearly, it does not capture the second object, a mouse. Note that image classification
is not very suitable for this picture as there are two objects shown. Object detection would be
more reasonable.

Settings

In Figure 5.4, we display the image classification and the settings pane. In Figure 5.4 (b), we see
the different models like inception net that was trained on the CINIC-10 dataset. Below, you can
also set the thread number and processing unit (NNAPI abbreviates from Neural Network API
and uses respective accelerators if equipped in the phone). The user can also switch between
cameras, use the flash, or insert some delay for slower (and more readable) results.

In Figure 5.4 (c) we show the model zoo. For each model, the weights must be stored on
the device, which makes up the biggest portion of the application’s file size. One larger model
needs around 20MB of storage despite compression. We moved towards an online location14 for
models that can be downloaded on-the-fly with the small blue buttons.

5.4.3 Sign language detection

More students were interested in the project after publishing the smartphone app in the
Google Play Store. We came about sign language recognition from the DGS Korpus (Deutsche
Gebärdensprache). Max Karpfinger came up with a pipeline that does not involve the direct
image pixels. Instead, from a picture of two hands, he uses MediaPipe to get the location of
fingertips, knuckles, etc., as an output vector. From this, he trained a fairly small convolutional
net on the DGS Korpus database towards their labels. [Kar22] Thereafter, we integrated the
pipeline in a new module in TUM-lens.

In Figure 5.5, we selected the sign language recognition in the upper white pane. In Fig-
ure 5.5 (a), you can select the models, again to be downloaded from the server to save app size.
It also shows that it cannot detect the left and right hand, as this is required for the analysis.

In Figure 5.5 (b), I (the writer, doctoral candidate) show the gesture for staying calm. The
suggestions predict this with high certainty. The $ sign denotes gestures, in contrast to normal
“words” that are without (see the second option RUND).

In summary, we do not reach very high accuracy as the data is too small, and the models
are not developed mature enough. However, it shows that those applications are handy and can
be adapted to various tasks in the future.

5.5 Summary

In summary, we have employed compute infrastructure on various levels. The GOFMM and H-
matrix-arithmetic were run on supercomputers and clusters. They have many compute nodes,
Skylake, Knights Landing, and Haswell nodes. The significant advantage is the fast Infiniband
interconnections for memory connections, which are necessary to show scalability for distributed
memory parallelism using the message passing interface (MPI).

14https://www5.in.tum.de/~reiz/osama/

77

https://www5.in.tum.de/~reiz/osama/

CHAPTER 5. COMPUTATIONAL SETUP

(a) Settings and model selection.
The sign recognition requires two
detect two hands to return results

(b) $ denotes gesture; app suggests
gesture ”ruhig bleiben”, ”remain
calm” wit 99% certainty. German
language due to DGS data labeling
in German

Figure 5.5: Screenshots of the sign language detection

78

5.5. SUMMARY

For deep learning, there are different requirements. A multi-threaded GPU is very beneficial;
with Horovod, we also used multiple GPUs. Memory transfer between CPU-GPU or GPU-
GPU usually dominates the runtime. NVIDIA DGX-1 machines are very beneficial, as they are
optimized for memory transfer. In addition, we used the NGC containers, which are optimized
for such machines. Hence, Newton-CG can be run on any GPU setting; our production runs are
performed on an NVIDIA DGX-1.

Lastly, for showcasing purposes, we implemented a demonstrator TUM-lens, a live local
image classification Android application. It offers image classification, object detection, and
sign language recognition. For smaller software sizes, we employ an online model zoo. Some of
its models are trained with Newton-CG. TUM-lens is available in the Google Playstore15.

15https://play.google.com/store/apps/details?id=com.maxjokel.lens

79

https://play.google.com/store/apps/details?id=com.maxjokel.lens

80

The aim of the technique of hierarchical matri-
ces is to perform all matrix operations (includ-
ing matrix-matrix multiplication, inversion, and
LU decomposition) in almost linear cost, which
means O(N log∗ N) including logarithmic fac-
tors.

Wolfgang Hackbusch (*1948) 6
H-Matrices

Dense SPD matrices are often the computational bottleneck of an algorithm; they appear in
partial differential equations, integral equations, and Hessian operators for statistical learning
in diffusion maps or graph operators. With geometric information, setting up a dense matrix is
avoided, e.g., by restricting to local support to get sparse matrices in, e.g., partial differential
equations, or by clustering points and using, e.g., geometric distance cut-off. The foundations
of H-matrices are explained in Chapter 2.

It is not possible to use geometric information when only given a black-box matrix. GOFMM
introduces a row/column distance metric using the ℓ2 or angular distance in Gram vector space.
This scheme can be done for every matrix, reducing memory requirements and computational
cost of operations such as the matrix-vector multiplication from O(N2) to O(NlogN). We also
allow with GOFMM a pseudo-inverse factorization. We applied it to many matrices and offer also a
Python version to be used in other codes. Therefore, we identified the computational bottleneck
of the diffusion maps algorithm and enabled the eigenvector decomposition with matrix-vector
products from GOFMM.

In Figure 6.1, we show random Gaussian data points. If you were to introduce a radial basis
function (RBF) kernel on the data, it would be natural to approximate (or disregard) the data
from far away clusters. GOFMM tries to do this in an algebraic sense for an RBF-kernel matrix.

This chapter presents the methods, implementation, and results of the H-Matrices/GOFMM
part. We start by explaining the implementation of GOFMM and the SWIG interface for Python, as
well as the test cases (Section 6.1). We then explain how our code performs with the geometric
kernels (Section 6.4). Section 6.4.1 explains the distributed-parallel results and compares it to
another H-Matrix code, STRUMPACK and a Gauss-Newton Hessian multiplication and factoriza-
tion. We continue with the Python interface (Section 6.5), which is formed by the applications
to the diffusion map manifold operator code datafold. We close with a summary in Section 6.6.

6.1 Implementation: Geometry-oblivious fast multipole method

In Chapter 2, we have reviewed the theoretic foundations of H-matrices for the geometry-
oblivious fast multipole method. Our code is also called similar, to which we refer to with
GOFMM. In this Section 6.1, we give details about the implementation of GOFMM.

We start in Subsection 6.1.1 by recalling the geometry-oblivious Gram distance notion and
outline the splitting of indices in near and far-field.

Next, in Subsection 6.1.2, we explain the ingredients for GOFMM. We go through the steps of
GOFMM pseudocode, where we start with a (1) static reordering tree and move to (2) neighbor
computation. We then perform the (3) compression, (4) multiplication, and (5) factorization.

In Subsection 6.1.3, we give additional remarks for parameters to steer the approximation
accuracy and acknowledge joint contributions.

81

CHAPTER 6. H-MATRICES

Figure 6.1: 2D Gaussian kernel density estimation plot with GOFMM. Black dots are the
original data points, while colored contours are their density approximation. It is natural to
approximate interactions of far-away points; with no points given for a SPD matrix, GOFMM
enables algebraic approximation using a Gram-Vector distance metric, trying to resemble
far-field approximation.

6.1.1 Gram distance notion

Any SPD Matrix can be constructed by scalar products of unknown Gram vectors ϕ, namely

Kij = ⟨ϕi, ϕj⟩

where ϕ are unknown Gram vectors. The Gram vectors can be computed with a Choleksy
factorization (they are not unique), but this is not necessary for our purposes.

In this Gram-vector space, we can compute distances between rows i and j and sort them
according to Gram-distance without any knowledge of the underlying geometry (i.e., geometric
structure on how the matrix was created). For most applications, local support and lexico-
graphic ordering are beneficial for the (sparsity) structure of the matrix. In detail, we formulate
two distances strategies: Gram-ℓ2 and Gram-angle (introduced in [CLRB17]), given by

• Gram-ℓ2

||ϕi − ϕj ||22 = ⟨ϕi − ϕj , ϕi − ϕj⟩ =
= ⟨ϕi, ϕi⟩︸ ︷︷ ︸

Kii

−2 ⟨ϕi, ϕj⟩︸ ︷︷ ︸
Kij

+ ⟨ϕj , ϕj⟩︸ ︷︷ ︸
Kjj

,

• and Gram-angle ∢

cos(∢(ϕi, ϕj)) =
⟨ϕi, ϕj⟩
∥ϕi∥ · ∥ϕj∥

=
⟨ϕi, ϕj⟩√

⟨ϕi, ϕi⟩⟨ϕj , ϕj⟩
.

Note that Gram ℓ2 or the angle ∢ between rows or columns can be computed by only 3
entries of the respective matrix, so it’s very cheap compared to many distance computations in
a high-dimensional Euclidean geometric space.

82

6.1. IMPLEMENTATION: GEOMETRY-OBLIVIOUS FAST MULTIPOLE METHOD

Let us assume that interactions (kernels) between points degrade with (Gram-)distance.
Such an assumption/approximation is used in far-field approximation algorithms, splitting the
points into close and far away points. Those approximations are commonly used in Molecular
Dynamics for gravitational field or force calculations, like the Barnes Hut [BH86] and fast
multipole method [GR87]. Hence, we split the summation,

ui =
∑

p∈Neari

Kipwp +
∑

p∈Fari

Kipwp

where Neari is a set of near points, whose contributions need to be regarded individually, and
Fari being the set of far points, which contributions can sufficiently be computed by a low-rank
approximation. Since plain distance is less meaningful in high dimensions, we often disregard the
exact distance value but rather decide upon Near and Far estimates by counting the neighbors
in respective leaves.

6.1.2 GOFMM ingredients

In the following, we go through the five steps of: 1. Reordering, 2. Neighbors, 3. Compression,
4. Multiplication and 5. Factorization. They basically form the pseudocode for GOFMM and are
displayed in Figure 6.2. In the following, we describe those steps and refer to the Theory in
Section 2.2 and the sections around it, where necessary.

Reordering
of matrix for
Near and Far

Neighbor
calculation
from random
projection
ϕp − ϕk tree

⋆⋆⋆
⋆

⋆

⋆

⋆

⋆

⋆
⋆

⋆

⋆

⋆
⋆

⋆
⋆

■

■

■
■ ■

■

■
■

Com-
pression

K21 ≈ GcolP

Multi-
plication∑

p∈Neari

Kipwp

+
∑

p∈Fari

Kipwp

Factoriza-
tion on HSS

structure
using SMW
formula

H−1 = D−1 . . .

Figure 6.2: Pseudo-code of different steps in GOFMM

1. Reordering

In the reordering step, we first calculate an index p, as ϕp being farthest away from the center

of mass ϕ̂ of corresponding points in the tree node

ϕp = argmax
j

∥∥∥ϕ̂− ϕj∥∥∥
where we sort then by the Gram-distance to the approximate center of mass ϕ̂ by

∥∥∥ϕ̂− ϕj∥∥∥2 =
∥∥∥∥∥

N∑
i=1

ϕi − ϕj

∥∥∥∥∥
2

=
N∑
i=1

∥ϕi∥2 + ∥ϕj∥2 − 2
N∑
i=1

< ϕi, ϕj > .

We find ϕp as the furthest point ϕp in Gram-distance by taking the maximum maximum
(argmax) of all rows j. Instead of summing i until N for the exact center, in practice, we
only compute the distance to an approximate center by summing over a random subset; hence,

83

CHAPTER 6. H-MATRICES

we find ϕp. Subsequently, we find the index k to ϕk being on the opposite end of the distri-
bution, i.e., being far-most away from ϕp. We then sort the other elements according to this
projection axis ϕp − ϕk and split by the median for a static hierarchical tree ordering.

2. Neighbor calculation for sampling rows

To compute neighbors, instead of an exhaustive search, we use a random k-d tree algorithm
using a random projection axis (in literature, often RKDT). In each iteration and for each
hierarchical split, we select a random direction ϕp − ϕk (p and k are not the ones from above;
they are random here), and split a tree node using our two Gram notions ℓ2) and ∢ into two
children left and right

(ℓ2) using a fictive orthogonal hyper-plane defined by the median,

(∢) or fictive hyper-cones defined by a (roughly) equal-sized split.

We compute distances exhaustively from the set of candidate neighbors (all points that were in
a leaf together) and sample rows from the k nearest neighbors.

3. Compression

For a hierarchical off-diagonal low-rank decomposition, we need to compute respective low-
rank decompositions. The most accurate bound for errors can be achieved with a singular
value decomposition (G ≈ UΣV ∗); however, one must store matrices U,Σ, V in memory. As
described in Section 2.2, an interpolative decomposition instead uses G ≈ GcolP , where Gcol is
a subset of columns of G. We can bound the error for a rank s estimation with some factors,
as described in Section 2.2. The big advantage of the interpolative decomposition is that
we only need to store the indices of the respective columns (assuming we have access to entries
of G) and a s × N projection matrix P . Note that the projection matrix P consists of the
first columns of the identity matrix (s × s), through which we can also save some storage. In
summary, an interpolative decomposition gives us memory benefits.

Thus, we look at a hierarchical split matrix of the form

K =

[
K

(1)
11 K

(1)
12

K
(1)
21 K

(1)
22

]
=

[
K

(1)
11 [ĜcolP]

(1)
12

(ĜcolP)
(1)
21 K

(1)
22

]

=

[

K
(2)
11 (ĜcolP)

(2)
21

(ĜcolP)
(2)
21 K

(2)
22

]
(ĜcolP)

(1)
12

(ĜcolP)
(1)
21

[
K

(2)
33 (ĜcolP)

(2)
34

(ĜcolP)
(2)
43 K

(2)
44

]
 = . . . ,

(6.1)

where we approximate the off-diagonal G using an interpolative decomposition, G ≈ GcolP with
Gcol as the first s columns of the off-diagonal. We do this recursively to form a hierarchy, hence
H-matrix.

A reader may have found that we use Ĝ instead of G. In order to keep the computational
effort low, limiting the matrix sizes of the off-diagonals is vital. On the lowest leaf level with
node size m we use the matrix of size k×m, where k ≈ 2m. k are sampled rows from neighbors.
Alternatively, we can also read them user-given from memory, or additional rows can be sampled
if there aren’t enough.

As described in Section 2.2, we use a pivoted QR to compute the interpolative decompo-
sition, G Π = Q R with Π that reshuffles the rows (pivot element). The projection matrix P is

84

6.1. IMPLEMENTATION: GEOMETRY-OBLIVIOUS FAST MULTIPOLE METHOD

computed by a triangular solve with R11P = [R11R12]. As for adaptive rank selections (see
also Section 2.2), we employ the rank revealing QR factorization and choose an approximation
rank as the limit when the diagonal entry Rii falls below a user-given tol (see Section 2.2 for the
connection between Rii and the singular value for correspondence to tolerance). Furthermore,
if we cannot reach the desired tolerance, we cap off at the integer smax. The selected columns
are then called skeletons, and Ĝ consists of the required rows (from neighbors or similar) and
columns (from skeletons).

Hence, on a leaf level we do for both neighbors and skeletons:

• neigh: Sample rows from neighboring indices

Nα = ∪iNi where i ∈ α

• skel: Select skeletons and save

Sα = ∪iSi where i ∈ Sα .

On interior levels, we must use an additional heuristic to choose neighbors and skeletons.
For neighbors, we simply exempt nodes that are already inside. For skeletons, we merge the
two children. It would be too expensive to do this more accurately since approaching the root,
the interpolative decompositions would get prohibitively expensive. Hence, we build skeletons
from the lower level.

• Use columns from children Sleft ∪ Sright

• Sample rows from children skeleton neighborsN s
α = (Nleft∪Nright)\(Nodesleft∪Nodesright)

Hence, we compute the ID on Ĝ consisting of required rows (from neigbors or similar) and
columns (from skeletons). We call the compression phase also skeletonization.

The advantage of our approach is the good and easy rank estimate. Many researchers
refrain to randomized approaches, which we did not include due to difficulties in handling these
libraries; we solely rely on LAPACK, which does not include Randomized Matrix Algorithms.
In the future, one can use other methods like randomized approximate matrix decompositions.
[HMT11]

4. Multiplication

After having computed a compression, we can then employ this to save arithmetic operations
by using the approximation. We differ between the hierarchical semi-separable scheme (HSS)
and, inspired by geometric schemes in molecular dynamics, the fast multipole method (FMM).
In an HSS scheme, we follow a matrix multiplication from Equation 6.1. In a multiplication
ui =

∑
p∈Neari

Kipwp +
∑

p∈Fari
Kipwp the near field is considered to be the diagonal blocks

from Equation 6.1, respectively, and the far field is the off-diagonals, respectively. We sometimes
refer to vector w as charges.

In an FMM scheme for a geometric low-dimensional case (up to 3D), often a cut-off radius is
used to determine the Near and far-field particles. Verlet lists are used to keep track of the Near
and Far field contributions. As we are in high dimensions, this distance becomes less meaningful.
Instead, we determine Near and Far fields by neighbors. If one neighbor falls into another leaf,
this leaf is added to the near-list. We limit this sometimes with a parameter budget, i.e. that
we allow a certain percentage of Near-field (e.g. 10%); this compromises accuracy, of course.

85

CHAPTER 6. H-MATRICES

In order to use the far-field approximation, we first need to accumulate charges at skeletons.
We start at the leaf and go to the root in a post-order traversal. We then compute the skeleton-
skeleton interactions in any order, followed by a pre-order traversal to come from skeleton
potentials to the leaf node. We then add the near-field interactions.

This follows the approach from ASKIT, a predecessor of GOFMM; a more detailed analysis can
be found in [MXT+15a].

5. Factorization

In GOFMM, we do matrix splitting of the form H = D + UV + S where D,UV, S are block-
diagonal, low-rank, and sparse matrices. We differ between HSS (hierarchical semi-separable,
no sparse corrections) and FMM, while FMM expects corrections involving a distance notion of
particles near the edge of two leaves (ghost region), i.e. for us with a neighbor based metric.
This is resembled in the sparse correction matrix S. For this factorization, we only allow HSS,
as sparse corrections would require more intricate treatment using the Schur complement.

We have applied the Sherman-Morrison-Woodbury formula on blocks of the matrix for
approximate inversion. Given H = D + UV we can write the Sherman-Morrison-Woodbury
(SMV) as

H−1 = D−1 −D−1U(I + V D−1U)V D−1,

where D is a (block) diagonal matrix and is much easier to invert.
We see that only (approximate) inversions of smaller matrices are needed. We have done

this through partial pivoted LU Factorizations on blocks of the matrix; we see that many blocks
are zero, as we follow the publication [YRB19], a direct H-matrix-inversion in GOFMM. It uses
the so-called ULV-factorization; a similar work recently by Deshmukh, Yokota et al. [DYBM23]
recently for H-matrices.

6.1.3 Additional remarks

We tested GOFMM for several test matrices. We assembled the test cases ourselves to control
properties and analyze behavior; they are described in Section 6.3.

Parameters and approximation error

GOFMM allows different distance metrics: Gram-ℓ2, Gram-angle, and geometric-ℓ2. For compres-
sion, we set parameters

• m (leaf node size),

• s (maximum rank),

• τ (accuracy tolerance used to adaptively select the rank), and

• κ (number of neighbors used for S and for sampling).

We also allow the parameter budget where the user can define a desired percentage of direct
evaluations - to control cost vs. accuracy. The relative error ϵ2 is computed by a Frobenius
norm towards a (sampled) exact matvec (see Equation 6.2).

Throughout, we use relative error ϵ2 defined as the following

ϵ2 = ∥K̃w −Kw∥F /∥Kw∥F , where w ∈ RN×r. (6.2)

This metric requires O(rN2) work; to reduce the computational effort, we instead sample 100
rows of K. In all tables and plots, we use “Comp” and “Eval” to refer to the compression and
evaluation time in seconds.

86

6.2. IMPLEMENTATION: GOFMM PYTHON INTERFACE

Joint contributions and acknowledgement:

GOFMM and the further development MPI-GOFMM was joint work with George Biros’ group, namely
Chenhan Yu, James Levitt, Chao Chen, and George Biros. I, Severin Reiz, tested the geometry-
oblivious distance metric and the algorithms on black box SPD matrices from an idea by George
Biros. We analyzed eigenvalue spectra of off-diagonal low ranks with a theoretic Python script
with different numbering schemes. Chenhan did the C++ OpenMP and MPI-based implemen-
tation of MPI-GOFMM and the large performance runs. In MPI-GOFMM, I implemented the matrix
partitioning schemes, as well as neighbor indexing for approximate nearest neighbors, optimiza-
tion using the std::sort and a coarse formulation of the factorization. For the accuracy test,
I added an automatic latex table generator and flags in main for Gram-ℓ2, Gram-angle, and
geometric-ℓ2 argument flags. James introduced the Gram-angle criterion and advanced a lot
on the geometric-ℓ2 schemes. George laid out many theoretical explanations, isolated some
theoretically strange behaviors, and thereby smoothened some bugs. He also wrote the matrix
generation scripts in MATLAB. For the analysis of the Gauss-Newton Hessians, Chao Chen has
written the autoencoder PyTorch implementation, including the sampling scheme for matrix
generation.

MPI-GOFMM is implemented in C++ with MPI (MPI THREAD MULTIPLE is required) and OpenMP.
MPI-GOFMM’s only dependencies are multi-threaded BLAS/LAPACK and MPI (we used the Intel MPI
library on TACC/LRZ respectively)1. All runs are performed in single precision. In [CRB18]
we estimated the computational efficiency by FLOPS counts for a matrix multiplication to 27%
to peak performance.

6.2 Implementation: GOFMM Python interface

To analyze GOFMM (and its Hierarchical matrix approximation scheme), it is cumbersome to store
it in dense memory in the proper format and then apply the GOFMM C++ code. Besides, other
offered interfaces (like point-cloud or MLP that generate entries on-the-fly, etc) are also not
handy for another application code. Our ultimate goal was to allow GOFMM in numpy directly.
Especially in order to couple it to datafold, we required a python interface for GOFMM. The
ultimate goal is to allow for broader applicability of GOFMM.

6.2.1 Python bindings using SWIG

A popular wrapper for this is the Simplified Wrapper and Interface Generator (SWIG2).
It is a tool to wrap code written in C++ to scripting languages, e.g. Python. It is available in
github3 and can be installed with pip4.

In order to wrap a C++ code with SWIG for Python simply a header needs to be written (e.g.,
tools.i); the C++ code needs to be compiled, the SWIG script linked and then a python library
(in addition to executable and shared object file) is generated. The Python library can then be
imported, and the linked methods can be executed from there.

It was necessary to adapt the GOFMM C++ classes and the compile process, where we modified
test gofmm.cpp and gofmm.hpp (see appendix Listing A.1). In detail, we created a GOFMM tree
class (gofmmTree) to encapsulate the functionality and wrap the command line helper.

1See the repository https://github.com/severin617/hmlp-1
2https://swig.org
3https://github.com/severin617/gofmm_swig_python
4https://pypi.org/project/gofmm1/

87

https://github.com/severin617/hmlp-1
https://swig.org
https://github.com/severin617/gofmm_swig_python
https://pypi.org/project/gofmm1/

CHAPTER 6. H-MATRICES

Afterwards, we wrote the bindings file tools.i with the algorithms we intended to wrap.
The general setting of SWIG and other wrapper snippets are included in the file tools.i. We list
an example of the matrix loading in Listing A.2. With SWIG, we successfully transported the
augmented GOFMM data structure with a modified container and matrix operations from C++
to Python. A big challenge was to interface the 2D arrays from numpy to the SPD matrix class
from GOFMM, which we managed by a standard numpy snippet suggested online.

In the compile process, SWIG is then executed to initialize the bindings; afterwards, the cpp
files are compiled and linked with the flags from GOFMM (using g++). The biggest challenges
was to find the necessary include flags which required several development cycles.

Listing 6.1: Compile process of the SWIG bindings

1 swig -o toolswrap.cpp -c++ -python tools.i

2

3 g++ -o tools_wrap.os -c -I/usr/include/python3 .8 -I/home/getianyi /. local/lib/

python3 .8/site -packages/numpy/core/include/ -I../ gofmm/ -I../ include/ -I../

frame/ -I ../ frame/base/ -I../ frame/containers/ toolswrap.cpp -fPIC

4

5 g++ -O3 -fopenmp -m64 -fPIC -D_POSIX_C_SOURCE =200112L -fprofile -arcs -ftest -

coverage -fPIC -DUSE_BLAS -mavx -std=c++11 -lpthread -fopenmp -lm -L/usr/

local/lib/ -lopenblas tools_wrap.os -o _tools.so -shared -Wl ,-rpath ,./

build: libhmlp.so -Wl ,-rpath ,./ build: libhmlp.so -Wl ,-rpath ,/usr/local/lib -

lblas -Wl ,-rpath ,/usr/local/lib -llapack

From Python, the wrapped GOFMM functions are now easy to call. Simply, the library needs
to be imported, and next, the class gofmmTree can be used; at first, it must be initialized with
the executable and the setting. Note that we use a class called denseSpd, which is a converted
2D-numpy array to the GOFMM matrix structure. It is the user’s responsibility to check for
SPD-ness beforehand. Out of curiosity, we also tried GOFMM on non-spd matrices. Although the
Gram distance assumptions are not given, they sometimes yield acceptable results. We cannot
give guarantees as we do not know what happens theoretically without Gram distances. GOFMM
and the SWIG interface are research projects still under development with regular updates; we
do not exercise a production/release cycle.

In Python (see Listing 6.2), we import the library tools and can do a static compression
using gofmmTree per constructor. mul denseSPD performs the multiplication with the vector
wData.

Listing 6.2: Python include for using GOFMM functions

1 gofmmCalculator = tools.gofmmTree(self.executable , self.spdSize ,

2 self.m,

3 self.k, self.s, self.nrhs ,

4 self.stol , self.budget ,

5 self.distance , self.matrixtype ,

6 self.kerneltype , self.denseSpd)

7

8 # return a 1D array which is a 2D matrix flattened row -wise

9 c = gofmmCalculator.mul_denseSPD(self.wData , self.lenMul)

10 c.resize(self.spdSize , self.nrhs)

A numpy reshape is necessary for getting the expected numpy matrix multiplication normal
output (with correct shape). The reason is that there is no default typemap for 2D array as an
output although there is one as an input. As a result, we need to resize the 1D flattened array
into 2D afterwards (see Listing 6.2).

88

6.2. IMPLEMENTATION: GOFMM PYTHON INTERFACE

6.2.2 GOFMM integration into datafold

In this Subsection 6.2.2, we explain how we used the SWIG Python bindings in datafold. We
first motivate the hierarchical approximation for diffusion maps. For simplicity, we created a
Charlicloud container, a docker-like container for portability. We explain how we have employed
the LinearOperator class of SciPy and close with a summary.

Hierarchical approximations for diffusion maps

In the diffusion maps algorithm listed in the Theory chapter (see Subsection 2.3.2), the eigen-
decomposition on the transition matrix is the most expensive part of the algorithm. As for the
standard form, it scales with O(N3) where N is the data dimension. The eigendecomposition is
used to obtain the underlying lower dimension of the dataset. We perform an Arnoldi iteration
with the linear operator class for finding eigenvectors and eigenvalues. There, we accelerate
the matrix-vector multiplications using hierarchical matrix approximations. Assuming we have
around O(N logN) GOFMM multiplication cost, this results in roughly O(N2 logN).

We either (1) use the Arnoldi-iteration with GOFMM matvec from scipy’s eigsh (explained
below) or (2) we store the matrix in memory and run GOFMM separately. For stategy (1) the
advantage is the handiness in integration, strategy (2) allows bigger cases.

Charliecloud

This is collaborative work for Keerthi Gaddameedi’s Master’s Thesis [Gad22]. To improve soft-
ware usability, namely not having to deal with compilation repeatedly, we created a docker file
with commands to install all the runtime dependencies followed by installation of GOFMM and
datafold. LRZ Linux cluster only offers such images to be used with Charliecloud, as docker is
not suitable for cluster settings. Hence, we converted the docker image of GOFMM+datafold to
Charliecloud according to the manual. This conversion to a charliecloud image involves the com-
mand ch-builder2tar <docker-image> /dir/to/save. Then, the charliecloud image is ex-
ported to the Linux cluster and unpacked with the command ch-tar2dir <charliecloud-image>

/dir/to/unpack. Once the compressed image is unpacked, the environment variables are set,
and GOFMM is compiled. Finally, the SWIG interface file is compiled to generate Python versions
of GOFMM C++ functions.

Figure 6.3 shows the function dependencies of our implementation in a UML diagram. Note
that we used the class FullMatrix, where we specified a few static variables used for the GOFMM
integration. This extends the LinearOperator class of scipy.sparse.linalg. We describe this
in the following.

LinearOperator

SciPy [VGO+20] is open-source, free software for Python with modules for common tasks of
scientific computing from linear algebra, (sparse) solvers, interpolation, etc. Usually, the di-
rect matrix operations are included in numpy, and the linear algebra algorithms are gathered
in SciPy. It contains seven array/matrix classes suitable for different types of representations,
such as Compressed Sparse Row (CSR), Compressed Sparse Column (CSC), Coordinate for-
mat (COO), etc. It also accommodates methods to build various kinds of sparse matrices
and has the algebra algorithms in linalg. In the submodule linalg, we find an abstract in-
terface named LinearOperator for iterative solvers to perform matrix-vector products. This
interface consists of methods such as matmat(x), matvec(x), transpose(x) for matrix-matrix

89

CHAPTER 6. H-MATRICES

multiplication, matrix-vector multiplication, and transposition of a matrix. A concrete sub-
class of LinearOperator can be instantiated with matvec(x) or matmat(x) methods and with
attributes for shape and dtype. Depending on the type of matrices at hand, corresponding
matvec methods may also be implemented.

A class called FullMatrix is derived from LinearOperator interface which belongs to
scipy.sparse.linalg package (see Figure 6.3).

scipy.sparse.linalg provides algorithms for computing matrix inverses, norms, decompo-
sitions, and linear system solvers. The functionality we are interested in is the matrix decompo-
sitions. In Table 6.1, we list the different decomposition algorithms in the module. The method
we use to decompose diffusion maps from datafold is scipy.sparse.linalg.eigsh [VGO+20].
It requires either an ndarray, a sparse matrix, or LinearOperator as parameters (which we
use). It optionally takes the number of desired eigenvalues and eigenvectors k. The algorithm
solves the eigenproblem Ax[i] = λix[i] and returns two arrays - λ for eigenvalues and k eigen-
vectors X[:, i], where i is the column index corresponding to the eigenvalue.

scipy.sparse.linalg.eigsh uses the iterative Krylov-type method called implicitly restarted
Lanczos (see Subsection 2.3.3) method to solve the system for eigenvalues and vectors. It is a
wrapper for the ARPACK functions SSEUPD and DSEUPD, which implement the implicitly
restarted Lanczos method to solve the system for eigenvalues and vectors [(LA07]. Although
SciPy usually calls this for sparse settings, we overload it and use a dense interface. For us,
this was the easiest way to force SciPy to use an iterative scheme with matvecs.

Table 6.1: Matrix Factorizations in scipy.sparse.linalg.

scipy.sparse.linalg.eigs Computes eigenvalues and vectors of square matrix

scipy.sparse.linalg.eigsh
Computes eigenvalues and vectors of real symmetric or
complex Hermitian matrix

scipy.sparse.linalg.lobpcg
Locally Optimal Block Preconditioned Conjugate Gradi-
ent Method

scipy.sparse.linalg.svds Partial Singular Value Decompositions

scipy.sparse.linalg.splu LU decomposition of sparse square matrix

scipy.sparse.linalg.spilu Incomplete LU decomposition of sparse square matrix

scipy.sparse.linalg.SuperLU LU decomposition of a sparse matrix

Figure 6.3: UML Diagram of datafold with GOFMM integration. GOFMM FullMatrix class
extends the LinearOperator class and, thus, is used in the implicitly restarted Lanczos method
of scipy.sparse.linalg.eigsh. The figure is joint work with Keerthi Gadameedi [Gad22].

90

6.3. TEST MATRICES

In summary, our pipeline can analogously be extended to any other of the algorithms above.
We are using the GOFMM fast matvecs through the GOFMM Python interface and apply on matrices
scipy.sparse.linalg.eigsh. By this, we employ the implicitly restarted Lanczos method to
solve the system for eigenvalues and vectors with H-matrix approximation.

Summary

In this Subsection 6.2.2, we started with a complexity analysis showing that we can reduce the
eigendecomposition complexity to O(N2 logN) with the fast GOFMM matvec. For portability,
we created a Charliecloud image of the code, similar to a docker container for HPC clusters.
We also discuss the function dependencies in a UML diagram for the coupling of GOFMM and
datafold. Furthermore, we reviewed SciPy’s LinearOperator class and explained how we can
use different decomposition algorithms. We interfaced the matrix vector multiplication with
GOFMM and used the implicitly restarted Lanczos using SciPy’s linalg.eigsh. Our approach is
versatile, and we could use GOFMM for any other iterative algorithm implemented in SciPy in a
straightforward way.

6.3 Test matrices

GOFMM only works on SPD-matrices; this restriction, however, still includes many matrices from
a wide field of scientific computing applications. Without claiming completeness, we study a
potpourri of cases covering different properties in order to see benefits and pitfalls. To have
full control over the properties, we assembled the matrices ourselves. In the first step in this
subsection, we explain how we implement the Input/Output. Then, we dive into the gener-
ation of the synthetic test matrices (and kernel matrices from public datasets) as they were
tested in [CLRB17,CRB18,YRB19]. Next, we describe the Gauss-Newton Hessians analyzed
in [CRY+21]. We close by explaining the matrices from diffusion maps [GRNB23].

6.3.1 Input/Output implementations

GOFMM supports both double and single precision; it requires binary storage format of float-
after-float (4 bytes per entry, or 8 for double precision). Hence, the file size is N × N ×
4 (or 8 for double precision). For the dense interface, GOFMM uses the std::ifstream, the stan-
dard input stream class, to operate on files. We then use open, read, and close from the
beginning with the sizeof(float) ×N2. We primarily use single precision since we suffice with
approximate error rates in the range of 1E-3 to 1E-5, where a double precision format would
not add any further accuracy.

For saving a matrix in MATLAB, we can use the file I/O with fopen and fclose, and we use
fwrite with the option ’single’ (for writing an IEEE single 32-bit float). In Python, we use
the file I/O with open (option "wa", means write append), write (a for single (32-bit)/double
(64-bit) float) and close. Note that for large matrices, we can write the matrix in batches, i.e.,
opening the file and closing it, writing row after row. We also experimented with writing dense
Hessians from convolutional nets to memory, called pythoncnn5. In pythoncnn, we rely on this
batched write (row-by-row) in order to allow for bigger cases.

5https://github.com/severin617/pythoncnn

91

https://github.com/severin617/pythoncnn

CHAPTER 6. H-MATRICES

6.3.2 Synthetic data and kernel matrices

This section deals with the dense interface to GOFMM, mostly generated with a MATLAB script
6. The underlying idea is to cover a range of applications occurring in the simulation of partial
differential equations, integral equations, kernels from statistical learning, or graph operators.
We generated 27 matrices emulating different problems.

In Table 6.2, we list a range of dense matrices that were used for analysis for GOFMM. They
appear in some publications [CLRB17,CRB18,YRB19], so we kept the notation as is, and some
do not necessarily appear in this thesis. This covers PDE-problems (such as K01-K03, K11-18)
and kernel matrices of pint clouds (K04-K10) or kernel matrices (K-) from datasets (K-MNIST,
K-COVTYPE, K-HIGGS, K-SUSY). We also analyzed a few dense graph operators (G01-G05).

In detail for kernel matrices, GOFMM also offers to load data points from disk and use them
only for the kernel evaluation. We do not use them for geometric repartitioning or sampling. In
this case, every Kij evaluation has a computational cost of O(1), the evaluation of a Gaussian
kernel using points xi and xj .

6.3.3 Gauss-Newton Hessian

For an analysis of Hessians of neural networks, we computed dense Gauss-Newton Hessian(GNH)
matrices corresponding to the weights at the end of training. For the convolutional nets (CNN),
we used the Python Tensorflow script called pythoncnn and fcnn7 using PyTorch. The MLP
networks are implemented in MATLAB, and training of networks is performed with an SGD
library8 in MATLAB9.

Let us now define the Jacobian of xL (the output vector at level L) and the gradient and
Gauss-Newton Hessian of F .

Ji = ∇wF (xLi),
g = ∇w

∑n
i fi =

∑n
i J

T
i qi

H =
∑n

i=1 J
T
i QiJi = JTQJ,

where J is a of dimension dn-by-N , with Ji being its ith d-by-N block row and batch size n;
and Q is block-diagonal matrix with n blocks of size d-by-d, each block being equal to Qi. We
remark that the Gauss-Newton Hessian is not the same as the true Hessian as in the coming
Chapter 7.

Regarding the network architecture test, we are very flexible in the design of the experiments.
We list the cases in Table 6.3 below. The most significant focus lay on autoencoder neural
networks. Note that we chose simple examples for the GNH, but they can be extended to more
intricate and much bigger networks. Evaluating the Gauss-Newton Hessian is computationally,
and memory-expensive. For this purpose, joint work with Chao Chen and George Biros led to
a sampling scheme for the multilayer perceptron in [CRY+21], which we do not describe here.

6.3.4 Datafold matrices

For completeness, we also list the cases for the Python interface from Section 6.5. Those are
created with numpy, scipy, scikit-learn and datafold.

In Table 6.4, we list the cases; the first is used for the parameter studies, the latter two for
Arnoldi-iteration for the iterative eigendecomposition.

6Joint work with George Biros
7Joint work with Chao Chen
8https://github.com/hiroyuki-kasai/SGDLibrary
9Joint work with George Biros

92

https://github.com/hiroyuki-kasai/SGDLibrary

6.3. TEST MATRICES

Table 6.2: Kernel matrices that are used for this thesis. As the numbering suggests, we
analyzed many more cases which are not dealt with here, as they do not add any necessary new
insight.

Identifier Description

K01 Forward 2D Poisson operator

K02 2D regularized inverse Laplacian squared, resembling the Hessian opera-
tor of a PDE-constrained optimization problem. Laplacian is discretized
using a 5-stencil finite-difference scheme with Dirichlet boundary condi-
tions on a regular grid.

K03 Same setup with the oscillatory Helmholtz operator and 10 points per
wavelength

K04-K06 Kernel matrices in six dimensions: Gaussians with different bandwidths,
narrow and wide

K07 Kernel matrices in six dimensions: Laplacian Green’s function

K08-K10 Kernel matrices in six dimensions: Quadratic, inverse quadratic, and
polynomial kernel

K11 Inverse squared 1D variable coefficient Poisson problem operator

K12-14 2D advection-diffusion operators on a regular grid with highly variable
coefficients

K15 & 16 2D pseudo-spectral advection-diffusion-reaction operators with variable
coefficients

K17 3D pseudo-spectral operator with variable coefficients.

K18 inverse squared Laplacian in 3D with variable coefficients.

G01–G05 Inverse graph Laplacian of the powersim, poli large, rgg n 2 16 s0,
denormal, and conf6 0-8x8-30 graphs from UFL (http://yifanhu.
net/GALLERY/GRAPHS/search.html)

K-MNIST Gaussian kernel matrix with bandwidth h; 60K data points, 780D, digit
recognition; see http://yann.lecun.com/exdb/mnist/

K-COVTYPE Gaussian kernel matrix with bandwidth h; 100K data points, 54D, car-
tographic variables; see https://archive.ics.uci.edu/dataset/31/

covertype)

K-HIGGS Gaussian kernel matrix with bandwidth h; 500K data points, 28D,
physics; see https://archive.ics.uci.edu/dataset/280/higgs

K-SUSY Kernel matrix with data from high energy physics; see https://

archive.ics.uci.edu/ml/datasets/SUSY

93

http://yifanhu.net/GALLERY/GRAPHS/search.html
http://yifanhu.net/GALLERY/GRAPHS/search.html
http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/dataset/31/covertype)
https://archive.ics.uci.edu/dataset/31/covertype)
https://archive.ics.uci.edu/dataset/280/higgs
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY

CHAPTER 6. H-MATRICES

Table 6.3: Gauss-Newton Hessian matrices that are used for this thesis. The naming has been
chosen to be consistent with the publications, e.g. [CRY+21].

Identifier #weights layers Description

H02 100k 768→100→200→10 Hessian from ReLU neural network; trained
to 95% accuracy on mnist [LeC98]

gnh mnist 16.5k 768→25→10 Similarly trained on mnist [LeC98]; the nu-
merical rank of its Hessian is small its nu-
merical rank is low, less than 100.

gnh cifar10 62.5k 3072→20 CIFAR-10 dataset [KH+09] from 32 × 32
RGB images. Trained with batch size 32
to about 60% accuracy. Its numerical rank
to 1E-4 ∥H∥2 is r=1500 with n = 500;
andr = 4302 with n = 5000.

gnh enco1 15k 784→10→784 Autoencoder for the MNIST data set. Here
we have subsampled the 28-by-28 images

gnh enco2 54k 3072→10→3072 Autoencoder for CIFAR-10 dataset [KH+09]

gnh enco3 121k 3072→20→3072 Autoencoder for CIFAR-10 dataset [KH+09]

In addition, we also have scripts for a running datafold with a uniform distribution10 and
with swiss-roll11, which can be found in the Github repository.

6.3.5 Parameter selection and accuracy metrics.

Similar to the SVD for arbitrary matrices, both work complexity and accuracy cannot be
simultaneously guaranteed. We can control accuracy and complexity via the parameters m
(leaf node size), s (maximum rank), τ (adaptive tolerance), κ (number of neighbors), budget (a
key parameter for amount of direct evaluations and for switching between HSS and FMM) and
partitioning (Kernel, Angle, Lexicographic, geometric, random). We use m =256–512;
on average this gives good overall runtime. The adaptive tolerance τ , reflects the error of the
subsampled block and may not correspond to the output error ϵ2. Depending on the problem,
τ may underestimate the rank. Similarly, this may occur in HODLR, STRUMPACK, and ASKIT. We
use τ between 1E-2 and 1E-7, s = m, k = 32 and 3% budget. To enforce a HSS approximation,
we use 0% budget. The Gaussian bandwidth values are taken from [MXT+15b] and produce
optimal learning rates.

6.4 Results: GOFMM for kernel matrices

Dense SPD matrices are often the computational bottleneck of an algorithm; they appear in
many areas of scientific computing. By nature, an exact dense matrix-vector multiplication is
of complexity O(N2), leading to a memory size limit for DGEMM at around 35, 000× 35, 000 on a
single “Skylake” node (see Figure 6.4). Using hierarchical approximations (tree-code) without
MPI-parallel code GOFMM we theoretically have around O(N logN) complexity. In this section,
we show for which matrix sizes our algorithm, GOFMM, outperforms the conventional matrix
multiplication, sacrificing accuracy. For clarity, we trade accuracy for lower complexity and for
big sizes, therefore lower runtime.

10https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html
11https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html

94

https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html

6.4. RESULTS: GOFMM FOR KERNEL MATRICES

Table 6.4: Datafold test matrices. Combination of the framework GOFMM, and extends
datafold by offering a hierarchical variant for the eigendecomposition. The software setup
allows reproducibility and portability.

Identifier size Description

py 10D Gaussian KDE 4096 Gaussian KDE generated with a python script for
variable sizes, with numpy’s cdist. Variable size of
1024× 1024 up to 4096× 4096

py MNIST 8192 The MNIST database (Modified National Institute of
Standards and Technology database) [LeC98] is a large
database of handwritten digits that is commonly used
for training various image processing systems. MNIST
has a testing sample size of 10,000 and a training size
of 60,000, where each sample has 784 dimensions. Ker-
nel matrix generated with datafold and can be used
up to 32,000 (due to max 60,000 images)

py scurve 16384 3D S-curve dataset12 is generated using scikit− learn

We tested this in Figure 6.4 on a K04 type matrix: We multiplied a Gaussian Kernel
matrix from a synthetic point cloud with a right-hand-side matrix of size N − by − 1000. We
used only a single node in order not to defray different effects. For GOFMM, we added the one-
time compression time and evaluation (multiplication). We can see that for this case GOFMM

outperforms the dense exact case starting around N = 6000. Of course, the right-hand-side size
of size N − by − 1000 is beneficial for this analysis, however: we can see the quadratic growth
of the exact multiplication (blue crosses MKL dgemm) vs. the N logN behavior (see Figure 6.4).
The break-even point for GOFMM comp+eval may be shifted depending on the matrix case or
on the number of right-hand-sides. Still, the different scaling effects are becoming increasingly
significant, and the benefit grows with larger matrix sizes.

Summarizing, GOFMM cannot ensure both accuracy and computational effort. However, hop-
ing for good H-approximability, we can assume that starting around size 6000 and 1000 right
hand sides, GOFMM can outperform an exact multiplication. The benefit grows with larger matrix
sizes.

6.4.1 Performance measurements: weak and strong scaling

Having discovered that a hierarchical matrix approximation has a break-even point, it is neces-
sary to see what the limit on the size is and whether it scales across multiple nodes. Scaling to
distributed memory is imperative for allowing larger matrices since not the whole but a smaller
block needs to be stored on a node. With an exact method (dgemm, in distributed memory
ScaLAPACK) almost no communication is necessary; with tree-codes like GOFMM, more nodes
also mean significantly more communication overhead.

We have looked at performance measurements, including FLOP counts in [CLRB17,CRB18,
YRB19]. Here, we ran experiments on the Skylake partition of SuperMUC-NG; at largest, it runs
there on dense matrices of 200k (k denotes one thousand, i.e. ,000). In the first subsubsection,
we explain our weak scaling measurements; in the second subsubsection, the strong scaling
results.

95

CHAPTER 6. H-MATRICES

5000 15000 25000 35000

0

10

20

30

Matrix size

R
u
n
ti
m
e
(s
)

MKL dgemm
GOFMM

Figure 6.4: Matrix multiplication of a square N ×N matrix with number of right hand sides
nrhs = 1000 on a single node of SuperMUC (Skylake). Comparison of a simple C-script using
MKL DGEMM and GOFMM. The break-even point (if we allow approximations) is at about 6000×6000
for nrhs = 1000.

Weak scaling

In a weak scaling run, the computational effort per core/node (computational resource) is kept
constant. Hence, in linear complexity algorithms, this corresponds to a constant problem size
per core/node. An ordinary matrix multiplication scales quadratically, so (for weak scaling)
doubling the core/node would result in a

√
2-times global problem size in order to keep the

computational work per node constant. This would result in uneven sizes, and GOFMM can exhibit
issues for such problem sizes. In general, multiple of leaf-node-size is beneficial m × 2l with l
levels. Note that we double the problem size in the following when doubling the computation
resource. This is also indicated through the dotted and dashed ideal scaling lines in Figure 6.5.

If we had perfect linear scaling, we expect this to be constant across all weak scaling runs;
additional runtime would be caused by communication overhead. We assume GOFMM is nearly
O(N logN). In theory, we hope GOFMM to be O(NrO) where rO is the off-diagonal rank –
with a certain adaptive rank selection and a certain accuracy this is increasing with problem
size. Now, if we compare this to a normal matrix-matrix multiplication, having quadratic
complexity, doubling the problem size results in 4-times the computational work, and with
doubling compute nodes, this results in twice as long runtime. This is shown by the dotted
“Ideal quadratic complexity scaling” line; the logarithm line is almost identical to the dashed
linear complexity line.

We looked at runtimes in seconds of the one-time matrix compression and the multiplication
with a vector of N-by-512 in Figure 6.5 (For parameters see13). For one node, the problem size
comprised of 6.25k-by-6.25k. Compression took 1.4s and evaluation (with 512 right-hand-sides)
0.10s.

Runtime scaling of GOFMM compression in Figure 6.5 (a) ranges nearly between linear O(N)
and O(N2). Although with this inaccurate complexity estimate, we cannot measure the parallel
efficiency (and communication overhead) of GOFMM, it still shows us: with increasing matrix size,

13GOFMM parameters: m = 768, s = 768, stol = 1E − 3, k = 64

96

6.4. RESULTS: GOFMM FOR KERNEL MATRICES

1 2 4 8 16

5

10

15

20

1.4 1.7

3.6

4.7

5.8

Nodes

R
u
n
ti
m
e
(s
)

GOFMM compression
Ideal linear complexity scaling
Ideal quadratic complexity scaling

(a) Compression time in seconds for a problem size of N-by-N
roughly 6.25k per node, i.e. 6.25k-by-6.25k for 1 node and 12.5k-
by-12.5k for 2 nodes.

1 2 4 8 16

0.5

1

1.5

0.10
0.13

0.19
0.23

0.26

Nodes

GOFMM evaluation
Ideal linear complexity scaling
Ideal quadratic complexity scaling

(b) Multiplication time in seconds with a N-by-512 random
right-hand-side

Figure 6.5: Weak scaling measurements of a Gaussian kernel matrices generated synthetically
with 6-D point clouds with roughly 6.25k per node, i.e. 2 nodes corresponding to 12.5k-by-
12.5k, 16 nodes to ∼ 100k-by-100k. Memory and the exact multiplication of a dense matrix
scales quadratically; hence, the 2-node problem would correspond to 4 times as memory/com-
putationally expensive (dotted). Log scale on the x-axis, linear scale on the y-axis. Next to the
data cross is the runtime in seconds. Results run on Skylake partition of SuperMUC-NG. Each
node has 48 cores, 16 Nodes, hence corresponding to 768 cores.

the difference between quadratic complexity and GOFMM is increasing. H-matrix approximation
is very beneficial for large matrices compared to an exact dense multiplication.

Figure 6.5 (b) shows the matrix-multiplication (we also call it evaluation) runtimes of GOFMM
with increasing problem size and increasing nodes. The runtime for 1 node and a problem size
of 6.25k is 0.10s, and for 16 nodes 6.25k · 16 ≈ 100k about 0.26s. Assuming O(N logN), ideal
scaling would result in 0.10s · log(16) ≈ 0.12s. Instead, 0.26s suggests about 50% parallel
efficiency.

In summary, we show weak scaling results of GOFMM until 16 nodes, 768 cores, and still see
about 50% parallel efficiency for GOFMM in Figure 6.5.

The corresponding results from this plot to Figure 6.4 are 25k, corresponding to the 4-node
weak scaling run in Figure 6.5. In the weak scaling run, we use roughly half as many right-hand
sides, and we see 20s, so for DGEMM on 500 nrhs, we assume around 10s on a single node;
GOFMM takes 3.8s on 4 nodes (compression + eval time). If we extrapolate the 10s with ideal
scaling to 4 nodes, we expect around 2.5s. Hence, this still slightly favors the optimized MKL
DGEMM 4 node run due to the assumed ideal scaling of the DGEMM. However, if more right-hand
sides are given (1000 as in the example of Figure 6.4), GOFMM can outperform DGEMM.

Similarly, we see at large matrices (above 25k) GOFMM reaches orders of magnitude improve-
ments against an exact DGEMMmultiplication, which suffers from quadratic complexity and GOFMM

has N logN . Due to more communication inGOFMM, however, we must expect degrading parallel
efficiency significantly above 16 nodes or 768 cores.

97

CHAPTER 6. H-MATRICES

Strong scaling

In a strong scaling experiment, one leaves the problem size constant while increasing the com-
putational resources (nodes). Hence, a constant problem size can become more challenging to
scale as computational work per node diminishes while adding communication overhead.

In Figure 6.6, we show strong scaling measurements for GOFMM compression and evaluation
for a 100k-by-100k synthetic kernel matrix. GOFMM can work with dense matrices of 200k starting
at 2 nodes, prohibiting this for this analysis.

In Figure 6.6 on the left we see the one-time compression time (For parameter see14). For
size 100k and this 6D random Gaussian kernel matrix on one node compression takes around 13s;
for multiplication with a 100k-by-512 vector (right) 1.35s. The parallel efficiency starts from our
baseline 1-node (100%), ranging until 4% in compression and 11% in evaluation on 128 nodes
(6144 cores). Especially for compression, there is no runtime gain beyond 16 nodes. Runtime for
128 nodes is similar to runtime for 16 nodes. Having a limit on maximum acceptable efficiency
is not unusual for a parallel code; also, increases in runtimes are possible as communication
times are increasing. For this reason, we highlight multiplication runtime scaling [CRB18] and
accept the one-time compression cost.

In Figure 6.6 on the right, we also see diminishing parallel efficiency up to 128 nodes. With
16 nodes, we see about 52% parallel efficiency reported, which means a runtime about 8 times
smaller than on a single node. Interestingly, with theoretic calculations (assuming N logN)
complexity in weak scaling, we compute a similar number. Note that for the weak scaling
analysis, we also have a 100k matrix for 16 nodes.
Especially above 64 nodes, the matrix multiplication evaluation time also does not decrease
with more resources; still, with 64 nodes, our runtime is 16 times lower than on a single node.

In summary, we performed strong scaling measurements of GOFMM up to 128 nodes of Su-
perMUC (Skylake), see Figure 6.6. We see adequate scaling up to 16 nodes, and with a dense
matrix of 100k, significant runtime benefits over theoretic dense exact multiplication.

6.4.2 Timing comparison to ScaLAPACK and STRUMPACK

While good scaling results are vital to show good efficiency of the method and its implementa-
tion, it does not provide any details on whether other methods are superior. We here at least
compare GOFMM to an exact ScaLAPACK (distributed version of a DGEMM) and the structured ma-
trix package STRUMPACK (STRUctured Matrices PACKage) [RLGN16], which to our knowledge
is the most competitive distributed memory software for dense rank-structured matrices.

In Table 6.5, we compare overall wallclock timings for ScaLAPAck, STRUMPACK, and GOFMM.
For a generic setup, we used 4 Skylake nodes of Stampede2. We multiplied several test matrices
(K** have size 102k, G03 89k, H02 98k) with a matrix of size N-by-2048. While the runtimes
of ScaLAPACK are independent of the case (no approximation), STRUMPACK and GOFMM vary
significantly depending on the matrix structure. STRUMPACK stuggles with almost all of the
cases15, while GOFMM outperforms both others for all kernel matrices (K**) and the graph
Laplacian G03. With the Hessian (H02) it also struggles, and there a dense exact multiplication
is faster.

This comparison is not to show general superiority to STRUMPACK; it simply lays out a few
examples where GOFMM’s method proves to be better and shows that GOFMM is very competitive.
The matrix K** is ordered randomly, as the points are randomly generated. GOFMM with the
Gram distance metric seems to be beneficial, whereas STRUMPACK does not reorder, which seems

14GOFMM parameters: m = 768, s = 768, stol = 1E − 3, k = 64
15For STRUMPACK we used the lexicographic ordering

98

6.4. RESULTS: GOFMM FOR KERNEL MATRICES

1 2 4 8 16 32 64 128

1

10

ideal scaling

100%

83%

66%

49%

31% 16% 8% 4%

Nodes

R
u
n
ti
m
e
(s
)

(a) Compression time in seconds up to leaf node size of 768. Non-
ideal scaling due to diminshing parallelism close to root.

1 2 4 8 16 32 64 128

0.1

1

ideal scaling

100%

73%

74%

64%

52%

34%
20% 11%

Nodes

(b) Multiplication time in seconds with a 100k-by-512 ran-
dom right-hand-side

Figure 6.6: Strong scaling measurements of a Gaussian kernel matrices generated synthetically
with 6-D point clouds, all roughly of size 100k-by-100k. Next to the data cross, we annotate
the parallel efficiency in percent. Results run on Skylake partition of SuperMuc-NG. Each node
has 48 cores, 128 Nodes hence corresponds to 6144 cores.

to be not very beneficial. We are optimistic that for their testsuit with Poisson/convection, it
is state-of-the-art [GLR+16]. However, we have no access to it for comparison. The ultimate
goal is simply to provoke other ideas, solicit feedback, and give alternatives.

Table 6.5: Comparison between ScaLAPACK, STRUMPACK, and MPI-GOFMM for several different
matrices. All results are on four Stampede-2 nodes. All the matrices are roughly 100k-by-100k.
We report the time in seconds to do a dense matrix-matrix multiplication with ScaLAPACK
(no approximation), and then the accuracy, compression time, and multiplication time for
STRUMPACK and MPI-GOFMM respectively. The error ϵ2 is defined in both cases from a rough
Froebenius norm, see Section 6.1.

ScaLAPACK STRUMPACK MPI-GOFMM
case multiplication ϵ2 compression multiplication ϵ2 compression multiplication
K04 4.1 0.17 224 7.5 1.7E-05 1.69 0.09
K07 4.0 0.02 15.8 3.3 1.0E-04 1.45 0.04
K11 4.1 0.01 93.6 2.2 7.9E-06 1.52 0.04
K12 4.1 0.11 222 4.3 6.6E-05 1.64 0.05
G03 2.8 0.10 33.5 2.1 7E-05 1.44 0.04
H02 3.9 0.09 19.6 5.3 7.0E-04 11.65 0.57

6.4.3 Gauss–Newton Hessian matrix

With the evolution of deep learning, training time takes up increasing portions of computing
time globally. If this could be sped up only slightly, this would have a significant outcome.
Hence, we propose the research question of whether matrix approximation can be applied to

99

CHAPTER 6. H-MATRICES

deep learning Hessians. Our goal here is to empirically show a pattern that for these small
academic networks, GOFMM can compress Gauss-Newton Hessians, that in the future it can be
used for model analysis, and if surfaces are smooth enough, be used in second-order optimization.

Hence, we applied GOFMM to several Gauss-Newton Hessian matrices in the following. The
most prominent method in the current deep learning second-order community is KFAC [MG15],
which resembles a block-diagonal Fisher matrix. It avoids setting up the Hessian and approx-
imates it with Kroenecker products. On the one hand, this study can be seen as orthogonal
to KFAC, simply trying to find structure, allowing for approximations. On the other hand, we
also observed that many training Hessians have significant rank and thus cannot be compressed
globally – by a single SVD – and a hierarchical treatment is necessary (hierarchical off-diagonal
low-rank).

There are several settings and parameters in GOFMM to control accuracy and computational
effort. The leaf node size m steers the depth of the binary hierarchical tree structure. Variable s
is the maximum hierarchical compression rank, where stol is used as a local tolerance measure.
Variable k nearest neighbors are used for sampling (in FMM also for sparse corrective terms). For
clarity, and order to not distract the reader, we defined static test conditions that we used for
forward multiplication and approximate HSS-factorization computation 16.

In the multiplication case, we distinguish between HSS and FMM.Hierarchically Semi-Separable
(HSS) approximation (H = D + UV) use no sparse corrective terms, whereas in FMM the sparse
correction terms H = D+UV + S are included. The compression effort is similar between HSS

and FMM; for the evaluation phase, GOFMM has a parameter for the maximum percentage of sparse
corrections. Naturally, we allow 0% and 10% sparse corrections for HSS and FMM, respectively.

Measurements in Table 6.6 and Table 6.7 are obtained from four nodes of “Stampede 2”
resulting in a total of 192 cores.

Matrix-Vector Multiplication

We analyzed several Gauss-Newton Hessians (GNH) from exemplary deep learning networks
(implementation details can be found in Section 6.3). Our results here evolved in the course
of work in [CRY+21]. In addition to the GOFMM analysis of GNHs here, some aspects of the
publication also involve sampling, which we do not describe here17.

The Table 6.6 shows the multiplication results of GNHs of variable sizes N . We differ
between parameters HSS/FMM and low of high accuracy. At first, GNHs are compressible, and
we find for all cases suitable parameter settings to achieve 3 digits of accuracy (ϵF ≤ 1.3E− 3).
We also see that the HSS format performs quite well for almost all cases and we see that the
FMM format sometimes helps 1 digit in accuracy ϵF .

In general, better approximations (smaller errors) can be obtained through either high ac-
curacy configuration; additionally, including FMM format with sparse corrections (more storage)
helps slightly. Notice that this setting keeps full diagonal blocks (due to the assumption) and
compresses only off-diagonal blocks, so further compression could be achieved if diagonal blocks
are also compressed. FMM requires more accesses to the matrix, which we denote with %K as
the percentage of entries accessed from the matrix. As described above, we usually limit this to
around 10% with FMM; however, due to uneven neighbor/leaf distributions, this lies somewhere
between 20-30% for FMM.

Let us look at the biggest case, 20 in Table 6.6: Compared to Table 6.5 we see similar

16GOFMM parameters:
low accuracy: m = 128, s = 128, stol = 1E − 3, k = 64
high accuracy: m = 1024, s = 2048, stol = 1E − 5, k = 64

17In collaboration with Chao Chen

100

6.4. RESULTS: GOFMM FOR KERNEL MATRICES

compression and multiplication runtimes (one higher, one lower due to desired accuracy). GNHs
are a bit harder to compress than Radial Basis Function kernel matrices. Nevertheless, if
multiplied to many right hand sides, as e.g. in an iterative solver, it can be beneficial.

Our method targets the regime in which the rank is significant (rank(H) ≥ 1

4
N) and hence

H is not globally low-rank, but H is nearly hierarchical off-diagonal low-rank. In summary, we
see that H-matrix-arithmetic allows compression of GNHs with about 3-5 digits of accuracy. In
addition, we reported in [CRY+21] that H-matrix-approximation performs much better than
global low-rank (randomized SVD)18.

Table 6.6: Timing and approximation of full GNH matrices that are precomputed with 1000
data points (n = 1000 in Eq. (6.3.3)). H-matrix approximations are computed with low- and
high-accuracy settings, as well as FMM/HSS format. The HSS format with low accuracy is usually
the fastest scheme with the most compression. Measurements are run on 4 nodes of Stampede2,
resulting in 192 cores.

Parameters GOFMM results
net N scheme acc tComp (in s) tMult (in s) %K ϵF
1 gnh mnist 16.5k HSS low 0.44E0 0.02E0 0.4% 2.3E−2
2 HSS high 1.81E0 0.07E0 4.78% 1.6E−2
3 FMM low 0.48E0 0.08E0 19.17% 1.6E−2
4 FMM high 2.84E0 0.08E0 23.98% 1.4E−4
5 gnh cifar10 62.5k HSS low 1.20E0 0.03E0 0.60% 6.2E−2
6 HSS high 26.29E0 0.26E0 9.46% 2.4E−3
7 FMM low 1.34E0 0.57E0 29.06% 1.5E−2
8 FMM high 27.16E0 0.91E0 35.74% 1.3E−3
9 gnh enco1 15k HSS low 0.62E0 0.03E0 2.1% 1.6E−1
10 HSS high 8.93E0 0.13E0 27.3% 4.4E−4
11 FMM low 0.59E0 0.04E0 24.5% 1.2E−1
12 FMM high 8.99E0 0.12E0 29.2% 5.6E−4
13 gnh enco2 55k HSS low 0.23E0 0.02E0 0.48% 1.4E−1
14 HSS high 9.34E0 0.16E0 3.53% 1.4E−4
15 FMM low 1.14E0 0.21E0 18.2% 1.2E−1
16 FMM high 14.50E0 0.33E0 21.3% 9.4E−5
17 gnh enco2 121k HSS low 2.81E0 0.04E0 0.25% 1.4E−1
18 HSS high 37.91E0 0.63E0 3.42% 8.8E−5
19 FMM low 2.92E0 1.20E0 20.02% 9.2E−2
20 FMM high 36.94E0 2.02E0 31.4% 1.5E−4

Linear Solver for HSS

A GNH often appears in Newton’s equation, where it is required to solve a system of linear
equations. In the previous subsection, we mentioned that a fast hierarchical matrix multiplica-
tion can be used in an iterative solver since it involves matrix products. In this section, we look
at an approximate solver, sometimes so coarse to be called a preconditioner. Using H-matrix-
arithmetic, there is a numerically cheap way to compute the (approximate) inverse of the GNH.
However, as typical for (approximate) inverses, this may be numerically instable.

18In collaboration with Chao Chen

101

CHAPTER 6. H-MATRICES

In this section, we look at HSS inversion using GOFMM; in Table 6.7, we have tabulated the
factorization time, fraction of accessed entries %K, and error ϵF . The error measures ϵF are
computed by a sampled normed error H ∗H−1 and the identity matrix.

We observe that the low accuracy HSS schemes provide reasonable error measures for mul-
tiplication (see previous Table 6.6); however, for the factorization (Table 6.7) the errors for
low accuracy are quite off (see # ≥ 1E + 2) (23, 25, 27, 29). It seems that we see numerical
instabilities. The high accuracy schemes provide reasonable accuracies (usually ≤ 1E − 3 in
22, 26, 28, 30). The factorization times for the high accuracy runs, however, are orders of
magnitudes higher (runs 22, 24, 26, 28, 30). This cost is a serious concern and may prohibit
GNH treatment; however, if one keeps the GNH constant for a few steps or only uses it for
smoothing, this cost may be acceptable.

Table 6.7: Timing and preconditioning for small networks, where full GNH matrices are used.
The HSS format with high accuracy leads to good preconditioners. Measurements are run on 4
nodes of Stampede2, resulting in 192 cores.

Parameters GOFMM results
net N scheme acc tFact (in s) %K ϵF
21 mnist 16.5k HSS low 0.06E0 0.41% 8.9E−4
22 HSS high 2.48E0 5.1% 1.2E−6
23 cifar10 65.5k HSS low 0.25E0 0.59% 7.2E+4
24 HSS high 32.45E0 9.4% 3.5E−1
25 enco 15k HSS low 0.06E0 2.1% 2.6E+3
26 HSS high 7.79E0 27.3% 8.8E−4
27 enco 54k HSS low 0.07E0 0.45% 2.4E2
28 HSS high 11.60E0 4.3% 8.1E−5
29 enco 121k HSS low 0.25E0 0.25% 4.3E+3
30 HSS high 38.15E0 3.5% 1.1E−4

6.4.4 Summary of GOFMM results on SPD matrices

As a motivation, we began with the quadratic complexity of matrix-vector multiplication. While
the break-even point of a hierarchical compression depends on the problem setting and the
number of right-hand-sides, we reported for a Gaussian kernel matrix and 1000 right-hand-
sides. We saw a break-even at a matrix size of 6k, and with the quadratic increase, the runtime
difference between exact and hierarchical becomes tremendous.

Next, we showed weak and strong scaling results for matrices with a maximum size of
100k × 100k. With a sweet spot at around 16 nodes, we get around 30% parallel efficiency for
the one-time compression, while we get 50% for the multiplication. GOFMM shows, especially for
iterative multiplication, huge benefits. Additionally, GOFMM outperforms the exact ScaLAPACK,
and the structured matrix package STRUMPACK for several cases (Table 6.5).

We continue with a a modern neural network application, namely Gauss-Newton Hessians
(GNH). We saw that a hierarchical semi-separable (HSS) or a fast multipole method (FMM)
can compress several pre-trained GNHs. For multiplication, we easily achieve several digits of
accuracy, whereas for factorization, some numerical instabilities occur for low accuracy approx-
imations.

In summary, we saw several benefits of H-matrix-arithmetic on multiplication and factor-
ization of several interesting benchmark problems. While GOFMM (with the geometric-oblivious
distance notion) shows competitive results, we do not claim completeness. There is active

102

6.5. RESULTS: PYTHON INTERFACE

research on several H-matrix-schemes for other applications, like structured matrix package
STRUMPACK (STRUctured Matrices PACKage) [RLGN16] or the most recently published ULV
factorization by Deshmukh, Yokota et al. [DYBM23].

6.5 Results: Python interface

In addition to the runtime measurements of the C++ implementation, we implemented a Python
interface to allow users to call GOFMM directly on numpy matrices. This primarily serves the
purpose of quick prototyping and error checking. We implemented this with the simple wrapper
interface generator called SWIG (see Subsection 6.2.1 for details). We also offer this in a separate
container for reproducibility.

The experiments were performed on the CoolMUC-2 cluster of the Leibniz Supercomputing
Centre5. It has 812 28-way Intel Xeon E5-2690 v3 (”Haswell”) based nodes with 64GB memory
per node and FDR14 Infiniband interconnect.

We start with a study on the impact of the GOFMM parameters, mainly leafSize and ap-
proximation rank. For the matrix multiplication, this is covered in Subsection 6.5.1, for the
pseudo-inverse in Subsection 6.5.2.

Secondly, we cover the combination of GOFMM and datafold in Subsection 6.5.3, results
we published in [GRNB23]. Here, we use GOFMM for an eigendecomposition, i.e. we use the
matrix product of GOFMM to perform an iterative Arnoldi-based eigendecomposition. We start
with the scurve dataset, where we compare the result of scipy’s exact product with the GOFMM
approximate one. Then, we cover the MNIST dataset. At the end, as always, we close this
section with a summary.

6.5.1 Accuracy measurements of the matrix-vector multiplication

In this subsection, we use a kernel density estimation case with a Gaussian radial basis function.
We use 2D data points, as it is suitable for GOFMM and it is visually representative.

The inputs are randomly generated from a 2D normal distribution, and depicted in Fig-
ure 6.1. Our goal is to reassemble these data points geometry-oblivious and classify them ac-
cording to their neighboring density. As usual, first, we do the compression using skeletonize.
Second, we use the fast matrix-vector multiplication using evaluate directly from Python by
calling the SWIG-generated function.

In Table 6.8, we tabulate the root squared errors from multiplication with a randomly drawn
vector (normal distribution) of size N×1.19 We use moderate size matrices of 1024, 2048, 4096.
Rank means the maximum off-diagonal compression rank. If we allow only a maximum rank of
8, GOFMM always fails to provide adequate accuracy.

We also see in the table that with a higher allowed maximum rank, we achieve the desired
accuracy. This can also be achieved with small leafSizes, i.e. the tree is deep.

In summary, for a matrix-vector multiplication GOFMM is fairly accurate, and hence, we can
confirm correctness and suggest its use. We used the same interface for the eigendecompositions
in Subsection 6.5.3.

6.5.2 Factorization using the pseudo-inverse

Similarly, we also checked the accuracy in the Python interface for the pseudo-inverse, which
we also briefly covered in Subsection 6.4.3.

19For other settings, we use k=64 and stol= 1E-5.

103

CHAPTER 6. H-MATRICES

Table 6.8: Root squared error of MATVEC on a 2D Gaussian KDE. Blank results for 1024
leaf size for the first set (size 1024), as this would mean no compression.

Size: 1024 x 1024

maxRank

leafSize
8 32 128 256 512

8 3.48 1.85 1.68 1.39 1.08

32 1.18E-4 7.78E-5 6.44E-5 6.23E-5 1.28E-4

128 6.00E-5 5.81E-5 6.30E-5 5.85E-5 8.60E-4

256 6.47E-5 6.64E-5 6.38E-5 5.57E-5 7.08E-4

Size: 2048 x 2048

maxRank

leafSize
8 32 128 256 512 1024

8 3.94 1.93 1.73 1.58 1.44 8.54E-1

32 1.54E-4 8.24E-5 7.80E-5 7.55E-5 1.16E-4 1.46E-4

128 7.79E-5 7.85E-5 7.46E-5 7.44E-5 7.98E-4 9.15E-5

256 8.03E-5 8.24E-5 7.94E-5 8.07E-5 8.08E-5 8.83E-5

512 8.18E-5 7.99E-5 8.56E-5 8.09E-5 8.34E-5 8.86E-5

1024 7.55E-5 7.54E-5 7.60E-5 7.56E-5 7.73E-5 8.32E-5

Size: 4096 x 4096

maxRank

leafSize
8 32 128 256 512 1024

8 3.58 1.93 1.82 1.78 1.65 1.29

32 9.29E-5 1.12E-4 8.73E-5 8.45E-5 1.27E-4 1.25E-4

128 8.53E-5 8.58E-5 8.75E-5 8.42E-5 8.94E-5 8.77E-5

256 8.81E-5 9.21E-5 8.85E-5 8.54E-5 8.61E-5 8.43E-5

512 8.62E-5 8.52E-5 8.61E-5 8.50E-5 8.65E-5 8.84E-5

104

6.5. RESULTS: PYTHON INTERFACE

Table 6.9: Root squared error of the approximate inverse on 2D Gaussian KDE

Size: 1024 x 1024

maxRank

leafSize
8 32 128 256 512

8 3.75E-2 1.85E-2 1.57E-2 1.49E-2 1.21E-2

32 3.61E-5 3.60E-5 4.00E-5 5.16E-5 7.09E-5

128 6.43E-5 6.55E-5 6.61E-5 6.60E-5 7.41E-5

256 3.31E-4 3.31E-4 3.31E-4 3.31E-4 3.31E-4

Size: 2048 x 2048

maxRank

leafSize
8 32 128 256 512 1024

8 5.93E-2 2.71E-2 2.22E-2 1.84E-2 1.57E-2 1.32E-2

32 3.76E-5 3.67E-5 4.06E-5 5.30E-5 7.33E-5 1.04E-4

128 6.87E-5 6.97E-5 6.99E-5 6.93E-5 7.73E-5 1.01E-4

256 9.38E-5 9.41E-5 9.28E-5 9.33E-5 9.23E-5 1.03E-4

512 1.28E-4 1.27E-4 1.29E-4 1.28E-4 1.29E-4 1.29E-4

1024 6.55E-4 6.55E-4 6.55E-4 6.55E-4 6.55E-4 6.55E-4

Size: 4096 x 4096

maxRank

leafSize
8 32 128 256 512 1024

8 8.58E-2 4.00E-2 3.21E-2 3.02E-2 3.06E-2 2.21E-2

32 3.73E-5 3.74E-5 4.14E-5 5.37E-5 7.25E-5 1.05E-4

128 7.15E-5 7.07E-5 7.14E-5 7.03E-5 7.89E-5 1.01E-4

256 9.87E-5 9.89E-5 9.87E-5 9.87E-5 9.95E-5 1.07E-4

512 1.33E-4 1.33E-4 1.33E-4 1.33E-4 1.33E-4 1.33E-4

In Table 6.9, we again varied leafSize and the maximum approximation rank. We measured
the root mean squared error with the Froebenius norm to ||K ∗ K−1 − I||F . Surprisingly,
we are not so much affected by the numerical instabilities of the inverse as they occurred in
Subsection 6.4.3. In general20 the lower ranks or leafSizes seem to not interfere too much
with the errors. The errors range from 1E-2 to 1E-5, with the lower errors more towards larger
maximum ranks.

An error of around 1E-4 for an inverse is relatively low, and we can confirm the correctness
of the pseudo-inverses.

6.5.3 Eigenvector decomposition for datafold

In the following, we observe an interesting application: in the diffusion maps algorithm (Al-
gorithm 2.1), the eigendecomposition is the computational bottleneck. Our goal is to use H-
matrix-arithmetic to reduce this for a dense matrix.

In this subsection, we used GOFMM’s matrix-vector multiplication for an iterative eigende-
composition. As described in Subsection 6.2.1, we overloaded the LinearOperator class with
GOFMM’s multiplication.

We start with the 3D S-curve dataset and show then the results for MNIST. These results
are also published in [GRNB23].

20Remember stol=1E-5

105

CHAPTER 6. H-MATRICES

(a) scipy (b) GOFMM

Figure 6.7: Eigenvector comparison for the S-curve dataset

S-curve

A 3D S-curve dataset21 is generated using scikit-learn [PVG+11] with 16384 points in the
dataset. A 3D S-curve has an underlying intrinsic dimension of 2, and we apply a diffusion
maps algorithm to compute this. Since our focus lies in the eigendecompositions of the kernel
matrix, eigenpairs are computed using two solvers. The first set of values is computed using
the scipy solver, and these are taken as reference values. The approximations of our GOFMM

matvec implementation are computed 22. We computed the difference between the exact and
the GOFMM eigenvalues in the Froebius norm. For this case, the overall error is observed to
be in the range of 9E − 4.

We can compare the embeddings obtained from both solvers by fixing the first non-trivial
eigenvector and comparing it to the other eigenvectors. Eigenvector comparison for both scipy

solver and GOFMM can be observed to be qualitatively very similar in Figure 6.7.

MNIST

The MNIST database (Modified National Institute of Standards and Technology database)
[LeC98] is a large database of handwritten digits that is commonly used for training various
image processing systems. MNIST has a testing sample size of 10,000 and a training size of
60,000 where each sample has 784 dimensions.
For a matrix size of 8192, the eigenvector comparison23 for both solvers look qualitatively similar
as visible in Figure 6.8. The Frobenius norm of the difference of the first five eigenvalues is also
in the range of 1E − 4.

The parameters required to obtain the results we obtained in the course of the work show
that the approach is very problem-dependent. If we use a low-accuracy matvec, we run into

21https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html
22GOFMM parameters: m = 512, s = 512, stol = 1E − 7
23GOFMM parameters: m = 512, s = 512, stol = 1E − 7

106

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html

6.6. SUMMARY

(a) scipy (b) GOFMM

Figure 6.8: Eigen vector comparison for MNIST

divergence of the eigenvalues. As already mentioned in [CLRB17], problems with very dense
kernel matrices are well-suited for hierarchical approaches.

6.5.4 Summary of GOFMM Python integration using SWIG

In summary, we implemented Python bindings of the C++ codebase using SWIG. We performed
accuracy measurements of the matrix-vector multiplication (matvec, see Subsection 6.5.1) and
factorization (see Subsection 6.5.2).

Firstly, we varied the leaf node size and the maximum approximation rank for 2D synthetic
Gaussian kernel matrices. We saw that the maximum allowed rank has the most significant
influence, and also, a very deep tree, i.e., a small leaf node size, allows for errors of around 1E-4.
We expected good accuracies for the matvec but also observed good factorization accuracies in
the same range.

Secondly, in Subsection 6.5.3, we applied the matvec for an iterative eigendecomposition for
the application datafold, a diffusion maps code. We compared its eigenvectors qualitatively
to scipy’s exact multiplication and saw no significant difference for the datasets S-curve and
MNIST. Quantitatively, we measured the Froebenius norm on the first 5 eigenvectors, reaching
accuracies of 9E-4 and 1E-4, respectively.

In summary, we offer a Python version of the GOFMM C++ code frame - which is versatile
and can be used for prototyping and finding other application cases. It can also be used in a
container, where we employed Charliecloud for usage on LRZ’s Linux Cluster.

6.6 Summary

In summary, we started in Section 6.1 by explaining the methods and the implementation of
GOFMM. In addition, we cover the Python bindings using SWIG, as well as the overloading of the
LinearOperator class to be used in iterative scipy algorithms, in particular in conjunction

107

CHAPTER 6. H-MATRICES

with datafold. Also, we explain the test matrices ranging from synthetic data and kernel
matrices to Gauss-Newton Hessians from neural networks to diffusion maps matrices.

In a second step (Section 6.4), we see that GOFMM with O(N logN) behavior can be signif-
icantly faster for matrices above 6.5k than a classical exact scheme, like MKL’s DGEMM. We
perform weak and strong scaling measurements on LRZ’s SuperMUC-NG up to 128 nodes (6144
cores). On islands of 16 nodes, we reach about 30% parallel efficiency for the one-time compres-
sion and around 50% for multiplication. We also compare against a popularH-matrix-arithmetic
code called STRUMPACK and the distributed exact version called ScaLAPACK. We observed for most
cases – from several kernel matrices over graph Laplacians – GOFMM shows significantly lower
runtime and better accuracy compared with STRUMPACK.

We continue with Gauss-Newton Hessians (GNH), where we saw that a hierarchical semi-
separable (HSS) or a fast multipole method (FMM) can compress several pre-trained GNHs. For
multiplication, we easily achieve several digits of accuracy, whereas for factorization, some
numerical instabilities occur for low accuracy approximations.

In Section 6.5, we checked the correctness of multiplication and factorization using a pa-
rameter study, where we varied GOFMM parameters. We continue with analyzing matrices from
diffusion maps. We applied GOFMM’s matvec in an iterative eigendecomposition for the applica-
tion datafold, reaching above 1E-3 accuracy.

In summary, we described and analyzed GOFMM, showing benefits in accuracy and lower
runtime and their interplay. Those benefits become more significant for large matrices. Includ-
ing Python bindings, with this work, we show several interesting applications, such as kernels,
Hessians, and diffusion maps.

108

Intelligence is the ability to avoid doing work,
yet getting the work done.

Linus Torvalds (*1969)

7
2nd-order optimizer for artificial neural networks

This thesis consists of two major result chapters: The first is Chapter 6 H-matrix, the second is
Chapter 7 2nd-order optimizer for Artificial Neural Networks. A 2nd-order scheme is beneficial
since it promises local quadratic convergence in the vicinity of a minimum (we often relax this
to superlinear convergence).

2nd-order algorithms for neural networks were infeasible due to quadratic growth of memory
requirements of setting up the Hessian with growing number of network parameters; with this
novel tunable algorithm called Newton-CG we enable a second-order scheme approximately by
only requiring the Hessian-matrix vector product.

Newton-CG requires about twice as much compute work as an ordinary gradient descent in
the best case (1 CG-iteration). A 2nd-order optimizer increases the computational intensity on
data (memory), i.e. flops per byte. Since many data algorithms are memory-bound, additional
computations (as required by Newton-CG) are “free”. Hence, this extra computing work often
does not increase the time to solution.

We used existing and prominent deep learning models and our newly implemented versatile
optimizer Newton-CG (with many features) on them.

In this Chapter 7, the implementation methods and results of the second-order neural net-
work optimization are explained. We start with the implementations, including variants of the
optimizer Newton-CG and the network architectures using an auto-differentiation framework;
we also explain the datasets (Section 7.1). We continue with results for a global convergence
analysis, where we show convergence plots for various neural network architectures and observe
a very problem-dependent behavior (Section 7.2). Then, we employ data-parallelism and ana-
lyze results for parallel performances for Newton-CG (Section 7.3). We close this chapter with a
summary in Section 7.4.

7.1 Implementation: Newton-CG

Recall the Tikhonov-regularized Newton-Raphson equation

(HL(Wk) + τI)dk = −∇L(Wk)

for the network loss function L : Rn → R. Wk is the current iterate vector of network weights,
∇L the gradient of the loss function andHL its Hessian; the goal is to solve for the update vector
dk, resulting in Wk+1 = Wk + αdk with learning-rate α. Many Hessians are not symmetric
positive-definite, so we use a Tikhonov regularization that adds a scaled identity matrix, i.e.
H+τI. The size of the equation system is RN×N , with the number of weights N , which becomes
infeasible to store with state-of-the-art weight parameter ranges of ResNets (or similar).

Instead of allocating the dense Hessian matrix, we use Hessian information only through
the fast matvec with the Pearlmutter trick (see Subsection 4.2.1). To solve the regularized
Newton’s equation (see also Equation 4.4 from the theory section), we use the iterative solution

109

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

method conjugate gradients (CG). Such a method is often called Newton-CG; when referring
to our code we use Newton-CG, except for headings. Our Newton-CG method is summarized in
Algorithm 7.5.

Algorithm 7.5 Newton-CG

Require: W0: Starting point
Require: τ : Tikhonov regularization/damping factor
1: k ← 0
2: while Wk not converged do
3: k ← k + 1
4: pk ← CG((H + τI) ,−∇L (Wk)) ▷ Tikhonov: Approx (H + τI) pk = −∇L (Wk)
5: if ∇L (Wk)

⊤ pk > γ then pk ← −∇L (Wk) ▷ Armijo: Feasibility check.
6: end if
7: αk ← α ▷ Compute or use a given step size.
8: Wk ←Wk−1 + αkpk
9: end while

Note that we added the Armijo feasibility check. If the conditions are fulfilled, then we fall
back to the gradient descent update step. See Subsection 4.2.3 for details.

7.1.1 Newton-CG: optimizer features

Neural networks are becoming more sophisticated, and with it, the number of parameters in
neural networks grows rapidly (see also Figure 4.1 and the section around it). As the optimiza-
tion domain corresponds to the number of parameters in a neural network, training them is a
very high-dimensional optimization task. One suffers with non-convexity and non-smoothness,
with data-batching one deals with stochasticity, and hyperparameter tuning with the sheer mil-
lions of weights. Such problems often tend to be difficult to optimize, and implementations
struggle with data scarcity. Our goal here is a novel tunable algorithm that satisfies our wish
list, and apply it to a broad range of problems.

The optimizer aims to be fast and reliable and to be able to work on a reduced number
of weights. We reach the former by a mathematical regularization and the latter by layer-
wise optimization (e.g., standard practice for TensorFlow optimizers). With Python outer-
loop scripting, we can do automated hyperparameter tuning, perform sensitivity analysis or
uncertainty quantification, and transfer this to other datasets (transfer learning) or generalize
this e.g., in a smartphone application. We can integrate this and achieve better for explainabilty.

In Table 7.1 we list the features of our Newton-CG implementation. They can be used in
an outer loop for hyperparameter tuning or similar. However, one goal was also to reduce the
number of hyperparameters. A devil’s advocate may rightfully comment that it seems that we
exchanged the hyperparameters of in-practice optimizers (Adam, SGD: lr, β1,2 with others, see
Table 7.1). However, the hyperparameters from Newton-CG have strong mathematical founda-
tions and can be chosen with knowledge from numerical optimization; in turn, they can also
be auto-tuned – on a small subset of the problem or according to a table for a corresponding
optimization task (regression, auto-encoder, computer vision or transformer). We refer to the
very problem-dependent behavior, tabulated in Table 7.3. This allows for a look-up table on
which problem requires which algorithm and hyperparameter set.

A suitable setting starts with a first-order algorithm and then gradually moves towards a
more exact second-order. Newton-CG allows for this with regularization parameter τ .

110

7.1. IMPLEMENTATION: NEWTON-CG

Table 7.1: Newton-CG optimizer features: Optional arguments; if not specified, defaults are
used. cg-tolerance and max cg-steps are necessary to either limit computational effort or
enforce a certain tolerance. Newton-CG cannot ensure both computational budget and accuracy.

Optional Parameters Typical Range Comment

learning-rate 1× 10−5 – 1 Pure Newton uses 1. Decrease for better
stability.

learning-rate

scheduler

exponential

decay, cyclic lr

Arbitrary function. Many common opti-
mizers rely heavily on this feature.

Tikhonov

regularization

1× 10−7 – 1 If high, converges to SGD.

cg-tolerance 1×10−7 – 1×10−3 Stopping criterion for CG – whichever is
reached first.

max cg-steps 1 – 20 Stopping criterion for CG – whichever is
reached first.

armijo step-size

restriction

0.01 – 1 Acceptance criterion at which Newton-step
is accepted or SGD fall-back is used.

7.1.2 Automatic differentiation framework

We previously experimented with a MATLAB implementation for multilayer perceptron (MLP)
(autoencoder) networks1 without convolutions in [CRB18,CRY+21]; we precomputed the Hes-
sian, stored it in memory and analyzed it, e.g. with the dense matrix interface of GOFMM.

Since more recent networks often involve convolutions, where backpropagation is not as
straightforward as in MLP, we also experimented with a custom precomputed Hessians (via
TensorFlow), showing good GOFMM approximation behavior. However, we were restricted in size
because we again stored the matrix as a file in memory with quadratic complexity; additionally,
this procedure did not support a feedback into the training process for weights (second-order
optimizer). Therefore, the restriction (and goal at the same time) was to stay within the code
framework without an extensive interface to another library.

Inspired by iterative method literature and autodifferention, we then came up with a mat-vec
only second-order scheme called Newton-CG, without using GOFMM. The Newton-CG optimization
strategy is independent of the implementation and, of course, is suitable in any setting where
(1) second-order is beneficial and (2) storing Hessians is infeasible w.r.t. memory consumption.
We (again) choose the differentiation framework TensorFlow, since it is widely used in the
community and fits our requirements. For an integrated survey and outreach, the Newton-CG

was implemented as TensorFlow optimizer ; using pip, it is public and can be installed and
applied to most machine learning pipelines2; thus, it outreaches to the deep learning community
and is reproducible.

1Written in collaboration with Chao Chen and George Biros
2For installation instructions, please follow the newest version from https://github.com/severin617/

Newton-CG

111

https://github.com/severin617/Newton-CG
https://github.com/severin617/Newton-CG

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

+ learning rate: float

+ tau: float

+ cg tol: float

+ max iter: int

+ epsilon: float

...

apply gradients

vv (a,b): Tensor

pearlmutter hessian (grad, var, s): Tensor

cg solve (Ax, b, cg tol t, max iter t): Tensor

newton step (grad, var, coefficients): Tensor

resource compute dense (grad, var): Tensor

...

Newton-CG

Model Dataset

model.fit generator()

Keras Optimizer v2

Optimizer

Tensorflow

Figure 7.1: UML sketch of class Newton CG inheriting from base
tf.python.keras.optimizer v2.Optimizer v2. It can be applied to any sequential
model and dataset. For recursive structures, we limit the depth, as for Subsection 7.2.6.

TensorFlow optimizer

The TensorFlow programming model consists of two main steps: (1) Define computations in the
form of a “stateful dataflow graph” and (2) execute this graph. At the heart of model training in
TensorFlow lies the Optimizer ; we used tf.python.keras.optimizer v2.Optimizer v2 sub-
classed similar to different optimization algorithms (e.g., we compared to Adam or SGD). The base
class handles the two main steps of optimization: compute gradients() and apply gradients().
We re-use the same computational graph for backpropagation of the intermediate gradient-
vector product as described by [YGKM20].

When applying the gradients, for each variable that is optimized, the method
resource compute dense(grad, var) is called with the variable and its (earlier computed)
gradient. In this method, the update step for this variable is computed. It has to be overwritten
by any subclassing optimizer. We implemented two versions of our optimizer: one inheriting
from the optimizer in tf.train and one inheriting from the Keras Optimizer v2. The latter
is shown in Figure 7.1. The constructor accepts the learning rate (plus optionally learning
rate scheduler) as well as the Newton-CG hyperparameters: regularization factor τ (in code
written plain tau), the CG-convergence-tolerance and the maximum number of CG iterations,
see Table 7.1. Internally, the parameters are converted to tensors and stored as python object
attributes. The main logic happens in the above mentioned resource compute dense(grad,

var) method. You can find the implementation here3).

Data parallelism with Horovod

Horovod is a data-parallel distributed training framework (open source) for TensorFlow, Keras,
PyTorch, and Apache MXNet, that scales a training script up to many GPUs using MPI [SB18].

The following Table 7.2 summarizes the data and model parallelism in the context of neural
network optimization. In the first step, we apply Horovod for the data-parallelization of the
second-order Newton-CG approach. Here, data-parallelization describes the same operations
performed in parallel on different batches of data. In the second step, the whole algorithms can

3https://github.com/severin617/Newton-CG/blob/main/newton_cg/newton_cg.py#L127

112

https://github.com/severin617/Newton-CG/blob/main/newton_cg/newton_cg.py#L127

7.1. IMPLEMENTATION: NEWTON-CG

Figure 7.2: Data parallelism approach: arrows correspond to a compute worker (GPU).
(1) 8 GPUs compute (Newton-CG) individual weight update for corresponding batch (8 arrows),
and (2) accumulate it with all others (AllReduce, 8 arrows point towards a single point); (3)
accumulate result (weight update) is applied to whole network (single arrow). Step (3) is not
equivalent to a weight update of an 8-times as big data-batch. Hence, the parallel algorithm
is slightly different from the sequential version. Similar in a red-black Gauß-Seidel iteration
(parallel) than sequential (only black) Gauß-Seidel.

be parallelized through model-parallelism, which—in contrast to data-parallelism—performs
different operations in parallel on the same data. We did not pursue the latter due to sufficient
parallel efficiency and wait for further studies to determine whether we see a breakthrough of
Newton-CG in terms of the number of steps or accuracy (or similar 2nd order algorithms).

Table 7.2: Comparison of data and model parallelism

Data parallelism Model parallelism

Operations performed on different
batches of data.

Parallel operations performed on
same data (in identical batch).

In order to show the applicability of the proposed second-order optimizer for real-world
large-scale networks, it is necessary for parallel optimization computations to allow for faster
runtimes. We decided to use the relatively simple and prominent strategy of data-parallelism.
Data-parallel strategies distribute data across different compute units, and each unit operates
on the data in parallel. So in our setting, we compute different Newton-CG steps on i different
mini-batches in parallel, and the resulting update vectors are accumulated using an Allreduce
(see Figure 7.2). Note that this is different to e.g. a i-times as big batch or i-times as many steps
since this would use an updated weight when computing gradient information via backpropa-
gations. In a smoothly defined function, this could converge to a similar minimum; however,
due to stochasticity, this may not (i.e., the parallel algorithm is slightly different from the serial
version).

In academic research, some groups have switched to PyTorch or Jax ; TensorFlow is portable
since it uses the same backend. Figure 7.3 shows that TensorFlow, PyTorch or Jax all use the
autodifferentiation backend called XLA (or OpenXLA). Hence, this should allow for performance
portability, and the underlying exact framework is ephemeral. OpenXLA allows for different
back-end implementations and device optimizations. In some scripts, we need to modify the
TensorFlow device list with xla gpu inside tf.python.keras.optimizer v2.Optimizer v2 –
in order to force GPU usage.

113

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

For best performance, we suggest using NVIDIA NGC Containers because they are opti-
mized for NVIDIA GPUs and updated by NVIDIA on a regular basis.4 Most test runs, and the
ones for best performances, were conducted on the Leibniz Rechenzentrum (LRZ) AI System
DGX-1 A100 Architecture with 8 NVIDIA Tesla A100 and 80 GB per GPU (see Section 5.2).
Jobs are submitted with SLURM in the respective partition, nodes, and specifications.

TensorFlow Probability

Second-order may benefit not only in situations where the optimization not only involves
scalar/vector parameters but probability distributions around the weight parameters. Conti-
nuity of optimization objectives (like a probability distribution) may favor a 2nd-order scheme.
To this end, we looked at Bayesian Neural Networks (BNN) in Subsection 7.2.4. In the im-
plementation, we aimed to use synergies in the development effort, hence to stay within the
TensorFlow framework. For such tasks, there exists TensorFlow Probability (TFP), a library
built on top of TensorFlow itself; TFP inherits from TensorFlow, and thus it is possible to
use the same previous optimizers (among others) for probabilistic models, and for our purpose,
Bayesian Neural Networks.

Regarding Bayesian network layers in TensorFlow Probability, dense layers in neural
networks are replaced by TensorFlow Probability’s Dense Variational; and for the convolu-
tional layer TensorFlow Probability’s Flipout layers (1D/2D respectively). DenseVariational
implements a dense multiplication layer with a weight probability distribution (see Bayes by
Backprop) [tfpb]. Flipout implements a convolutional layer of the aforementioned Flipout esti-
mator by Wen et al. [tfpa,WVB+18]. In image recognition, often 2D-convolutional layers occur.
In order to include a Bayesian term in a regular visual network, we re-factored such convolutions
with a 2D-Flipout estimator.

Figure 7.3: OpenXLA pipeline, taken from https://opensource.googleblog.com/2023/

03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html

4See https://doku.lrz.de/5-using-nvidia-ngc-containers-on-the-lrz-ai-systems-10746648.html

114

https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html
https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html
https://doku.lrz.de/5-using-nvidia-ngc-containers-on-the-lrz-ai-systems-10746648.html

7.1. IMPLEMENTATION: NEWTON-CG

TensorFlow models

Our optimizer can be integrated into almost all TensorFlow scripts; it can be installed using
pip5 and applied to most machine learning pipelines; thus, it reaches out to the deep learning
community and is reproducible.

The scripts that we used are collected on our general Newton-CG GitHub page. For the
transformer case, we worked with several code bases outside this since the recurrent structure
of the transformer architecture required loop unrolling and different things. We have had
several git forks on the LRZ gitlab6, but for reproducibility and outside reach, we migrated the
most current version to GitHub. It can be found under https://github.com/severin617/

nlp-newton-cg.

7.1.3 Datasets

In this section, we explain the datasets that we used in the results chapter. We decided to
dedicate a section to it in order not to distract the reader too much in the global convergence
analysis results section.

Life expectancy: Dataset involves life expectancy estimation influenced by several factors
(e.g., country, infant deaths, diphtheria, GDP) 7. Note that the dataset is relatively small
(around 180 entries, where every entry belongs to a country).

Boston housing: The Boston Housing Dataset is publicly available, e.g. at Kaggle, or directly
in TensorFlow. The governmental Census Service collected it in the Boston/Massachusetts area.
It includes 14 factors, including crime rate, air quality, age, house features, price and population
proportion.8

MNIST: MNIST is a collection of handwritten digits. It consists of 60000 pictures with
28 × 28 grey-scale pixels. We used 48000 samples for training, validated them on 12000, and
finally tested them on 10000 images. The MNIST data was preprocessed by dividing every pixel
of the grey-scale image by 255 in order to scale all values to [0.0, 1.0].

Breast Cancer Wisconsin: The Breast Cancer Wisconsin dataset9 contains features from
cell nuclei from breast mass, we display an example picture in Figure 7.4. The data set is
relatively small; it only contains 357 benign and 212 malignant samples. Per sample, it con-
tains 30 features, such as geometrical descriptions of the nuclei (size, radius, contour), see also
Figure 7.4.

5for the most current version on how-to, please refer to https://github.com/severin617/Newton-CG
6see https://gitlab.lrz.de/exaniml/nlp-newton-cg
7See https://valueml.com/predicting-the-life-expectancy-using-tensorflow/
8Dataset is available here https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset or

here https://www.tensorflow.org/api_docs/python/tf/keras/datasets/boston_housing
9Publicly available: https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

115

https://github.com/severin617/nlp-newton-cg
https://github.com/severin617/nlp-newton-cg
https://github.com/severin617/Newton-CG
https://gitlab.lrz.de/exaniml/nlp-newton-cg
https://valueml.com/predicting-the-life-expectancy-using-tensorflow/
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/boston_housing
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

Figure 7.4: Example picture of the Breast Cancer Wisconsin (Diagnostic) Data Set. The data
set is preprocessed; for each sample, there are 30 feature descriptors computed. We work on
the 30 descriptor vectors, not on the images themselves. Not a single descriptor (size, contour,
etc.) determines the target, so a non-expert cannot judge benign/malignant state. Figure taken
from kaggle dataset URL in footnote above.

BreKHis: The breast cancer histopathology database BreaKHis [SOPH15] consists of 7909
histopathology images acquired by biopsy on 82 patients. The microscopic pictures are from
different magnifying factors (40− 400×) and are 3-channel RGB 700× 460 pixel pictures with
8-bit depth. Both benign and malignant samples are included and, moreover labeled as one of
eight tumor types and assigned to an anonymous patient ID. [Wei21]

Benign tumors usually show slow growth and are considered relatively harmless. Malignant
tumors are, however, in everyday language, equivalent to cancer. They are invasive, quickly
grow and spread metastases, and cause death over the long run. It is, therefore, imperative to
distinguish such cells.

Figure 7.5 shows in the top row four distinct benign types (adenosis, fibroadenoma, phyllodes
tumor, and tubular adenona) and four malignant (carcinoma, lobular carcinoma, mucinous
carcinoma and papillary carcinoma). Its form characterizes the cells and a medical doctor can
diagnose the types on the way it looks under the microscope.

Figure 7.5: Histopathology images of eight types of breast tumors (first row: benign, second
row: malignant). Figures taken from [SOPH15].

ImageNet: The ImageNetLarge Scale Visual Recognition Challenge 2012 (ILSVRC2012)
alongside published the first version of ImageNet with around 14 million images, 1000 classes,
and around 1300 images per class. The pictures can be scaled; we use square images of
4096(64 × 64) input units, whereas a JPEG format can be comfortably scaled, and therefore
scaling to PNG-style pixels. This is our largest dataset that we also used for parallel perfor-
mances; it is publicly available after accepting the (academic) usage terms.

116

7.2. RESULTS: NEWTON-CG GLOBAL CONVERGENCE ANALYSIS

CINIC10: CINIC1010 contains CIFAR-10 images and a few selected from Imagenet. CIFAR,
in contrast to MNIST, contains more realistic pictures of objects. CINIC10 contains 210,000
images downsampled to 32× 32, and is considered a bridge between CIFAR and ImageNet, for
benchmarking or testing. It can be split into train/validation/testing set accordingly.

Coffemugs: We also experimented with self-made photos of coffee mugs from the university
chair kitchen. The challenges of real-world and editing for public use became evident: many
photos (we only had 50) and preprocessing in the lighting, etc., are necessary for meaningful re-
sults. In addition, data augmentation would help significantly. While it works methodologically,
we note the efforts of original authors of public datasets for their preprocessing work.

Intel image classification dataset: The dataset11 was published for a challenge to dis-
tinguish similar looking landscape photos. It only has 6 classes of all similar-looking classes
(landscape “scene” photos, classes are ’buildings’, ’forest’, ’glacier’, ’mountain’, ’sea’, ’street’).

fastText: fastText was developed and trained by Facebook on large text corpora, such as news
articles, Common Crawl12 andWikipedia. Both Portuguese(cc.pt.300.vec) and English(cc.en.300.vec)
dense pre-trained word embedding files contain ≈ 2 million word vectors with dimension 300.
An example for the word vectors are:

’that’ -0.0315 0.0328 ... -0.0239 -0.0125 0.0045 0.0145 -0.0080

’with’ 0.0149 -0.1152 ... 0.0758 -0.0099 -0.0632 -0.0068 -0.0139

7.1.4 Summary of implementation

The implementation here aims to show the feasibility of a 2nd-order optimizer for arbitrary
neural networks; this enables the data science community to reproduce this to their test cases.
Our method is non-intrusive and can be integrated into existing ML pipelines. Other codes can
use it in a plug-and-play fashion. We achieve feasibility through algorithmic approximation of
a true Newton scheme, i.e. a coarse approximation using a few CG-steps; we do not rely on a
high-performance implementation of Newton-CG.

We implemented a TensorFlow and Keras optimizer for our Newton-CG scheme with many
features, like lr-scheduler, regularization τ , Armijo step size restriction, etc. This opens myriad
possibilities for use in most TensorFlow models; it also allows for Bayesian Neural Networks
using TensorFlow Probability or Transformer architectures by restricting the recursion depth.
Our optimizer can be used on multiple GPUs with data-parallelism using Horovod.

In Subsection 7.1.3 we also described all datasets used for the result chapter.

7.2 Results: Newton-CG global convergence analysis

After implementing a novel algorithm, it is imperative to test it thoroughly, from a simple
correctness check to large models. In many studies, authors simply show that their code is
superior to some baseline - which could have been generated by cherry-picking the suitable
results and hyperparameters. It is best practice to also report downfalls and “fairly” compare the
addendum (the addition/modification to a common benchmark). For mathematical papers, a
challenge often appears in the implementation/application to large-scale problems and datasets.

10Available here: https://datashare.ed.ac.uk/handle/10283/3192
11https://www.kaggle.com/puneet6060/intel-image-classification
12https://commoncrawl.org

117

https://datashare.ed.ac.uk/handle/10283/3192

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

Deep learning’s “accuracy” is a random metric – it often jumps and is extremely sensitive. We
focus on the validation loss, which in most cases relates but is more continuous.

We have performed a comparative study for benchmarks from different fields. We observed
that our Newton-CG algorithm is very problem-dependent. We start from the most basic
function optimization – from a quadratic function to the Rosenbrock function from optimization
literature.

The analysis of the 2nd order optimizer for artificial neural networks is divided into 5 fields:
regression, autoencoders, Bayesian, vision and natural language processing. We have observed
that the optimization behavior is very problem-dependent (see Table 7.3). Disclaimer: For
some cases, the 2nd order does not pay off, despite Armijo feasibility check and regularization.
Our goal here is not to revolutionize an optimizer suitable for all settings; instead, we find
benefits for machine learning benchmarks in order to suggest benefits for specific tasks.

In detail, for artificial neural networks, we move on to a shallow 1-layer network (basically
regression) implemented with auto-differentiation (so we can use our TensorFlow Newton-CG),
showing very promising results (++ in regression in Table 7.3). We had much hope for the
variational auto-encoder since it involves many layers (non-linearities) where a second-order
could outperform a first-order (SGD); Newton-CG results are subpar (◦). Subsequently, ex-
pectations have been high for Bayesian Neural Networks, as optimization involves not only
scalar parameters but probability distributions around the weight parameters (basically two
parameters, mean and variance). Results vary depending on dataset and model architecture
(◦ to ++). For image classification simple convolutional netwrks work well for Newton-CG
+ , but deep ResNets/MobileNet/InceptionNet with (≈ 50 layers) shows nice benefits + ; once
Newton-CG beats Adam, once SGD, hence it offers the best out of two worlds; however, transfer
learning show mediocre behavior (- to ◦). For natural language processing, a transformer
architecture for a translation task, Newton-CG shows benefits in validation (prevents overfitting
a bit +).

Table 7.3: Comparison of qualitative behavior of Adam, SGD, and Newton-CG.
As metrics we used a mixture of Loss, Stability and speed in terms of required epochs to reach
a validation loss minimum

scenario description
optimizer

Adam SGD Newton-CG

life expectancy - - - ++
regression

Boston housing + - - ++

variational autoencoder mnist + + ◦
mnist ◦ + +
wisc ++ + ◦bayesian nn
BreaKHis - - ++

resnet-50 imagenet ◦ ◦ ◦
mobile-net ◦ + +
inception-net + ◦ +image-classification
transfer learning + ◦ -

natural language transformer ◦ ◦ +

118

7.2. RESULTS: NEWTON-CG GLOBAL CONVERGENCE ANALYSIS

(a) objective function x2 + 4y2 (b) Rosenbrock function (1 − x)2 +
100(y − x2)2

(c) Rastrigin function

Figure 7.6: Optimization steps for Gradient decent (in green), Adam (in blue), and Newton-CG

(in orange). Starting values are varied for better visibility, (2,-1.5), (2,-2.5), and (2,-2), respec-
tively. Use zoom to see the optimal point marked tiny with min.

7.2.1 Test functions: Quadratic, Rosenbrock and Rastrigin

We use this section to check the correctness of the implementation and application to low-
dimensional function optimization. Therefore, we wrote a Python script that outputs the results
of a Hessian with unit vectors, essentially returning the Hessian itself. For functions without a
simple symbolic Hessian, we had a central difference scheme to compute (approximate) single
entries of the Hessian. We use the official TensorFlow optimizers.

Next, we tested whether our approach can find the minimum of a 2D-quadratic function
after one step, compared to Adam/SGD, which struggle to find the right direction if its iso-lines
are an ellipsoid. We constructed the 2D quadratic objective function x2 + 4y2, and checked

reconstruction of the 2 × 2 Hessian to its analytical form:

[
1 0
0 4

]
). As expected, after one

Newton step, our approach reaches the minimum (see Figure 7.6 (a)). Stochastic gradient
descent boils down to normal gradient descent in these normal function optimizations. Adam
also, respectively, does not profit from higher-order gradients and needs many steps (similar to
SGD).

A challenging benchmark function in optimization is the quartic Rosenbrock function (1 −
x)2 +100(y− x2)2. Due to its shape, it is sometimes also referred to as the “banana” function.
In the subplot (b), a blue banana may be recognized(Figure 7.6), or on a bigger 3D plot, one
sees the banana shape better; the minimum is marked small at (1, 1). We observe that SGD
and Newton-CG oscillate and do not find the minimum (1, 1); Adam finds it after ≈ 500 steps.
This is not surprising, as many optimization algorithms fail for this challenging function.

The Rastrigin function f(x) = An+
∑n

i=0[x
2
i−Acos(2πxi)] is a (locally) non-convex function

from mathematical optimization, a “bumpy parabola surface” with the minimum in (1, 1).
For the plot (Figure 7.6) we use constants A = 10 and n = 2. We observe that with naive
parameter choice, SGD, Adam, and Newton-CG get stuck in a local minimum. Stochasticity (mini-
batches) can improve this behavior. We also allow for hyperparameter optimization and used
the popular Python package hyperopt [BYC13]. A completely different approach is Consensus-
based optimization (CBO). It yields significantly better results for the Rastrigin function and
would eventually reach the minimum by sufficiently many sampling starting points [FKR22].
CBO is suitable for such cases with many local optima.

119

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

0 10 20 30 40

102

103

Epochs

L
os
s

Figure 7.7: Semi-logarithmic loss plot for a 1-layer network training (regression) of the life-
expectancy dataset. Hyperparameters were chosen as default values; no pretraining was nec-
essary.

7.2.2 Regression

After a general function optimization, we switch to a shallow network scenario. In other words,
we follow Occam’s razor, i.e., problem solving with the simplest set of elements, or in other
words, from simple to complicated. There is a vast literature on shallow network optimization
and many theoretical results up to infinite-wide shallow networks [Uns23,BCFW21]; we simply
interpret a regression problem as a 1-layer network and analyze this. We have a ReLU activation
function and a square loss function. This is then similar to a least-square fit for a linear regression
model.

Synthetic data: Shallow network

Regarding regression, there are many sources online – we chose life-exp involving life expectancy
estimation (see Subsection 7.1.3, it includes several factors, such as country, infant deaths,
diphtheria, GDP). We built a 1-layer network with a square loss function.

Figure 7.7 shows that Newton-CG outperforms the state-of-the-art optimizers Adam and SGD

from TensorFlow significantly. Also, note the logarithmic Y-axis and the values of the scale.
Newton-CG is better in orders of magnitude, the superlinear, or even quadratic convergence in
contrast to SGD and Adam becomes visible, as well as a much lower final loss. Note that the
dataset is fairly small, the computational cost is hence negligible. Loss is age estimation error;
for a set of ≈ 180 entries, this corresponds to 0.5 years misestimation of life expectancy on
average.

Boston housing dataset

We used a simple 1-layer network, with a single dense layer and a sigmoid activation function
to Predict Boston Housing Prices. First, we experimented with a zero-weight initialization;
however, due to much better applicability, we moved to a standard TensorFlow initializer with
normally distributed random variables. For better clarity, we worked with fixed learning rates,

120

7.2. RESULTS: NEWTON-CG GLOBAL CONVERGENCE ANALYSIS

0 10 20 30 40 50

10−5

10−4

10−3

10−2

10−1

100

101

102

Epochs

L
o
ss

Adam

Newton-CG

SGD

Figure 7.8: Predicting Boston housing prices with 3 different optimizers, Adam, Newton-CG
and SGD. Surprisingly, Adam’s loss seems to oscillate between local minima, SGD stuck. Due to
semi-log plot Newton-CG outperforms the former by orders of magnitude.

e.g. 1E-3. Since the data is relatively small (506 data points), we can work on the full dataset
at once, and no mini-batching is necessary.

Figure 7.8 shows the mean squared error loss. It can be observed that the stochastic gradient
descent optimizer is stuck and is not suitable for training. Adam seems to find several local
minima and stays there until hopping to the next. We were surprised by this result but were
able to reproduce it. Newton-CG is a stable optimizer and very suitable for this simple regression
(i.e. 1-layer) model.

7.2.3 Variational autoencoder

Variational Autoencoders (VAE) are widely used in many areas. They consist of input space,
an encoder to a latent space, and a decoder to an output dimension.

We use our TensorFlow Keras version of the optimizers. We built the script with an input
dimension (due to MNIST) of 784, and a very simple dense layer to intermediate dimension 64,
and then to a latent dimension of 2. The decoder is the inverse, respectively. A loss, we use the
sum of a binary cross entropy and a term for Kullback-Leibler (short: KL) divergence loss.

Figure 7.9 shows the optimization behavior of the three optimizers Adam, Newton-CG and
SGD. The fastest and lowest results are yielded by Adam, SGD reaches a similar minimum but at a
much slower pace. Newton-CG struggles with this problem. It results in a much higher validation
loss at the end compared to the other two. A hyperparameter study on learning-rate and
tau could help, but we observed struggles for Newton-CG in this variational autoencoder case.
The motivation for 2nd-order was continuity in the optimization domain of VAE; however, the
results do not confirm this expectation.

7.2.4 Bayesian neural networks

Bayesian Neural Networks (BNN) are a class of probabilistic neural networks. In this thesis, we
look at BNN models, where weights are not scalar values, but weights rather contain probability

121

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

0 20 40 60 80

700

750

Epochs

V
a
li
d
at
io
n
lo
ss

Adam
Newton-CG
SGD

Figure 7.9: Validation loss of a simple variational autoencoder on the MNIST dataset for 100
Epochs. Note the semi-logarithmic plot and the scale limits; although Newton-CG looks much
worse, the difference marginal.

distributions. From intuition, it is hard to explain a distinct weight as a scalar value for a
randomly chosen network architecture (from literature or experience). BNNs with a probabilistic
view of weights are, therefore, inspired by (stochastic) measurement/input data and the random
nature of network architecture.

In BNN training, the goal is to find the mean and variance for all weights. The “forward-
pass” can then deliver a probability distribution of the network output. Either the probability
distribution is passed through the network. Another simpler (and faster) way is to sample from
weight distributions, similar to normal forward evaluation. To get uncertainties, this process can
be repeated multiple times, and judgment can be drawn from a histogram of output probabilities.

Parts of this analysis has also been published in our proceedings paper [RNB23].

MNIST Multilayer perceptron

The first experiments with Bayesian neural networks of this work were conducted on the MNIST
database of handwritten digits [LeC98]. There are two types of BNNs trained, one as a multi-
layer perceptron, the latter involving convolutions. We only show the results of the former here
due to convolutions shown in architectures for the other dataset (BreaKHis in the following
subsection).

The multilayer perceptron BNN consists of two dense variational layers mapping the input
(784 dimensions) to 1024 (hidden dimension) and, finally, 10 output dimensions. It uses a
ReLU and softmax activation functions. As an optimization objective function, we use the loss
as a sum of cross entropy loss and KL divergence. We have experimented with a learning rate
scheduler, yielding no significant improvements.

Figure 7.10 (a) shows the loss on the validation set for the three tested optimizers. On the
one hand, we can see that Newton-CG behaves very similarly to stochastic gradient descent. This
may be caused by a high regularization term, as for high Tikhonov regularization τ , Newton-CG
is approximately equivalent to SGD. On the other hand, Adam seems to struggle regarding the
validation loss.

122

7.2. RESULTS: NEWTON-CG GLOBAL CONVERGENCE ANALYSIS

0 5 10 15

102

Epochs

V
a
li
d
at
io
n
L
o
ss

Adam
Newton-CG
SGD

(a) BNN MNIST validation loss

0 5 10 15

0.3

0.8

1

Epochs

V
a
l
C
a
te
g
o
ri
ca
l
A
cc
u
ra
cy

Adam
Newton-CG

SGD

(b) MNIST accuracy cross entropy. Higher (close to 1) is better

Figure 7.10: Validation loss of a BNN for MNIST. Note the semi-log scaling in both plots.
Interestingly, accuracy and validation loss behavior differ for Adam.

The categorical cross entropy behavior shows a different response than the validation-loss
behavior, see Figure 7.10 (b). Adam shows continuously better accuracy values than Newton-CG

and SGD. Hence, training behavior cannot be concluded from loss only. Especially in this case,
as loss is constructed from a sum of different terms (crossentropy loss and KL divergence).

Breast Cancer Wisconsin (Diagnostic) dataset

In a second step, we applied the Newton-CG optimizer in various settings to the Breast Cancer
Wisconsin Diagnostic Data Set. Our initial motivation to apply BNN to medical imaging was
due to the high degree of reliability through quantifying uncertainty in this area.

As said, we only display the dense network without convolutions here. It consists of two
dense layers (soft plus activation) with sizes 512 and 2 (output: benign or malignant). It is
initialized, and the posterior is built in a similar way as the previous Bayesian network. We use
a batch size of 128, default hyperparameters, and for Newton-CG, a regularization of 10.

Figure 7.11 shows the validation loss of the multilayer perceptron model for the breast cancer
data set. Adam shows the best (and stable) optimization behavior, whereas Newton-CG seems
to struggle. This shows the limitation of the optimizer; a greater regularization would bring
the loss to the stable green SGD line. However, let us reiterate that we used only default levels
for hyperparameters and see limitations here. As the data set is small, runtimes are almost
negligible for this case.

Breast Cancer Histopathological Database (BreaKHis)

Next, we use medical images from BreaKHis. This study uses a similar network architecture for
the Non-Bayesian network (see Table 7.4). Convolutions have been replaced with the proba-
bilistic flipout layers (2D) and dense layers with DenseVariational. The idea was to use a proven
architecture and only add an uncertainty measure through the Bayesian Neural Network.

123

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

0 10 20 30 40

101

Epochs

L
os
s

Adam
Newton-CG
SGD

Figure 7.11: Breast cancer Wisconsin dataset multilayer percepton validation loss

Table 7.4: Architecture details of the network layers. CONV+POOL∗ are replaced with 2D
Bayesian Flipout layers and Dense with Dense Variational. Adapted from Table II of [SOPH16].

Layers

1 2 3 4 5

Type CONV+POOLmaxCONV+POOLavgCONV+POOLavgFlatten Dense Dense

Channel 32 32 64 - 64 2

Filter Size (3, 3) (3, 3) (3, 3) - - -

Convolution Stride (1, 1) (1, 1) (1, 1) - - -

Pooling Size (2, 2) (2, 2) (2, 2) - - -

Pooling Stride (2, 2) (2, 2) (2, 2) - - -

Padding SAME SAME SAME - - -

124

7.2. RESULTS: NEWTON-CG GLOBAL CONVERGENCE ANALYSIS

0 200 400 600 800 1,000

100

101

102

103

Epochs

L
os
s

Adam
Newton-CG
SGD

Figure 7.12: Validation cross-entropy as loss for a (convolutional) Bayesian Neural Network
for the BreaKHis dataset.

In contrast to the above implementation with feed-forward layers, no learning rate scheduler
is used. The initial learning rates are set to lr = 0.001 for Adam and lr = 0.01 for both Newton-CG

and SGD. The KL-loss is re-weighted by dividing it by the size of the entire training set. We use
a training batch size of 64 and a validation batch size of 8.

Figure 7.12 shows the validation loss behavior of the different optimizers. It can be observed
that Newton-CG shows advantages compared to SGD and Adam in convergence speed and final
loss. The final loss is similar to Adam, so we assume it finds a similar minimum.

7.2.5 Image classification

Image classification is a core area in deep learning and has paved the way for development efforts
in machine learning. Hence, image classification lays out important benchmarks for optimizers,
architectures, and so on. Therefore, we trained the image networks with data from Imagenet.

As for architectures, we followed the zoo of models from the official TensorFlow research
repository, called TensorFlow-Slim image classification model library. We tested with many
architectures from there, including smaller datasets and varied settings. In the following, we
explain the necessary pretraining and then discuss different architectures(e.g., ResNet) and
last-layer training (transfer learning).

ResNet50

Residual neural networks (or short ResNets) have played a prominent role in our analysis phase.
Its core residual blocks with skip-connection layers (see Subsection 3.4.2) are used in many image
classification architectures. ResNet50 refers to a 50-layer deep network. This, and similar
networks from the TensorFlow Slim or Keras, are also used for the TUM-Lens showcasing
application (see Subsection 5.4.1). Besides, due to long training time and stable behavior,
it was our core case for parallel performances with Horovod. We used the Keras version of
Newton-CG for the runs here.

125

https://github.com/tensorflow/models/tree/master/research/slim

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

Pretraining: Especially for the large image classification models, we saw that Newton-CG was
diverging, and we needed some pretraining with an ordinary method. A second-order scheme
can only perform well in convex regions, which are more likely sufficiently close to a minimum.
If the optimizer “jumps” out of a current local minimum, it can also exhibit divergence. We
try to tackle this with regularization and learning rate (schedulers). The ResNet-50 model
was pretrained for 200 epochs to improve second-order convergence, with Imagenet and a SGD

optimizer 13. It gradually reached a validation loss of around 4.4 and a top-5 accuracy of 0.68.

Results: Figure 7.13 shows the optimization results for the ResNet-50 architecture trained for
50 epochs. With similar parameters14 there is hardly any difference between Adam, Newton-CG
and SGD here – it seems that the large dataset smoothens out differences and it only depends
on data: more data, lower loss. While we found this result surprising, we are confident since we
reproduced this behavior several times. It may be caused by pre-training, as it converges well
in this region.

We compared the loss behavior to literature [YGS+21] and reached similar accuracies for a
slightly different architecture (ResNet18 with 18 layers instead of 50 for ResNet50).

0 10 20 30 40 50

3.8

4

4.2

Epochs

V
al
id
at
io
n
L
os
s

Adam
Newton-CG
SGD

Figure 7.13: Full training Total validation loss of a ResNet50 architecture on ImageNet

MobileNetV2

Similarly, we applied the training process on other architectures for the same ImageNet dataset.
As described in Subsection 3.4.2 MobileNetV2 is designed for smaller cost for evaluation, so
that is suitable for a smartphone. Training of MobileNetV2 is still computationally expensive,
and (full training) must be performed offline, e.g. on a cluster.

For this, we used the TensorFlow implementation of Newton-CG - which can be watched
with Tensorboard. For postprocessing plotting, we used the tf eventfiles. Pretraining would be

13Following parameters were utilized in the pretraining: training/val-batch-size: 64, learning-rate: 0.001,
momentum: 0.9, weight-decay: 0.00005. After each step, ten validation steps were used to calculate the top 5
accuracy, resulting in a final loss of 4.5332 and a final top 5 accuracy of 0.6800 after 2e5 steps.

14Following parameters were utilized: training/val-batch-size: 96, learning-rate: 0.001, momentum: 0.9, weight-
decay exponential: 0.00005, for ADAM default β1,2 values.

126

7.2. RESULTS: NEWTON-CG GLOBAL CONVERGENCE ANALYSIS

similarly expensive as for the ResNet. We circumvent this by using a pretrained checkpoint file
from the TensorFlow hub that has been trained with SGD on 200 epochs. For training, we use
the following parameters15.

Figure 7.14 shows the optimization behavior of the validation loss for 40 epochs. While
Adam is decreasing slowly, SGD (despite first-order without momentum) is outperforming Adam

significantly. Newton-CG is performing similarly as SGD and hence, is outperforming Adam in
convergence speed and final loss.

0 10 20 30 40

3

5

7

9

Epochs

V
al
id
at
io
n
L
os
s

Adam
Newton-CG
SGD

Figure 7.14: Total validation loss of fully training a MobileNetV2 architecture on ImageNet

Inception Net

As for a complete image classification analysis, we also report results for the InceptionV3 archi-
tecture. As explained in Subsection 3.4.2, an Inception Net has a skip-connection and a parallel
track of convolutions of different sizes in a layer (the inception block) and augments them then
to a longer vector. Respectively, other layers are chosen such that we reach the same output
dimension, in our case 1000 classes in ImageNet.

As for pretraining, we used a pretrained checkpoint from the TensorFlow Hub, which has
been trained with SGD on 200 epochs. Note that for implementation, similar to in MobileNet,
we used the pure TensorFlow version of Newton-CG and restricted to training the last 5 layers
to avoid memory problems. We use the same parameters as for the MobileNetV216.

Figure 7.15 shows the total for 40 epochs. SGD seems to be stuck in a local minima 17. Adam
and Newton-CG are significantly better. Adam gets slightly lower in final validation loss (note
that the difference is small due to the logarithmic scale in the y-axis). Newton-CG is almost
similarly good both in convergence speed and final validation loss value.

15Batch size of 96 and a learning rate of 1E − 5. As for Newton-CG we use regularization tau of 1E − 2 and
allow a maximum of 20 cg-steps. Other parameters, e.g. those required by Adam or SGD, we use the default
values from literature.

16e.g., learning rate 1E − 5
17Another set of hyperparameters could help. Manual tuning on a handful of configurations did not yield

adequately better results.

127

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

While in MobileNet Newton-CG outperformed Adam, in InceptionV3, it outperformed SGD.
It seems that the loss landscape of these both architectures is very suitable for Newton-CG, and
for this, for these cases, Newton-CG combines the best of the two worlds (Adam and SGD).

0 10 20 30 40

3

5

7

9

Epochs

V
al
id
a
ti
on

lo
ss

Adam
Newton-CG

SGD

Figure 7.15: Total validation loss of a fully training a InceptionV3 architecture on ImageNet

Transfer learning

An efficient approach to tailor a given trained model to another task is transfer learning. From
a pre-trained MobileNetV2, we added a last layer and thereby tuned it to a classification task
for the CINIC10 data. The optimization results are shown in Figure 7.16. The total loss of
Newton-CG at first decreases similarly as SGD. After about an epoch, Adam catches up and leads
to a lower validation loss compared to SGD. Newton-CG suffers from a divergence of the current
optimum starting at about 2.5 epochs. This subpar behavior could be caused by some stronger
diverging effects caused by the Hessian iterative solver. A higher regularization can help, but
second-order effects would smear out. This is another example that caution should be advised
when dealing with higher-order methods for machine learning.

Additionally, we have performed several other transfer learning examples, such as the Intel
image classification dataset. Training and evaluation work well; we have this architecture also
on TUMlens. We also tried this approach on self-made photos of coffee mugs with mediocre
results - preprocessing regarding lighting, rotation etc. of a dataset is imperative.

7.2.6 Natural language processing

With the rise of large language models (LLM), which form the basis of general purpose tech-
nology (GPT) (nowadays also reported in general news outlets), it is natural to also try the
Newton-CG optimizer for natural language processing (NLP). After our results, we saw similar
work done by others, using a second-order optimizer for language models [LLH+23]. The chal-
lenge for NLP optimizing lies in backdifferentiation with a recursive structure that may occur
in these models. We again used our Newton-CG TensorFlow implementation and capped the
recursion depth at 5 levels.

128

7.2. RESULTS: NEWTON-CG GLOBAL CONVERGENCE ANALYSIS

0 1 2 3 4 5

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Epochs

V
al
id
at
io
n
L
os
s

Adam
Newton-CG
SGD

Figure 7.16: Validation loss in a transfer learning example for the CINIC10 dataset

Pre-trained word embedding

Word embeddings turn word tokens into vectors before entering the transformer, as mentioned
in Subsection 3.4.3. Significant computing efforts are needed to train the word embedding
layers from scratch (about 5 million parameters). For our study here, the vocabulary size of the
tokenizer is set to 8000, and the dimension of the embedding layer in the transformer model is
hence R8000×300. We acknowledge that this number of trainable variables (8000× 300 = 2.4m)
results in infeasible computing necessities and we chose a pre-trained word embedding from
others [Hsi21,Mov22]. We also use pre-trained word embedding, since (1) TensorFlow requires a
sparse weight update for this (tf.keras.layers.Embedding) and (2) our focus is on the transformer
part.

We used the pre-trained word embedding from fastText [MGB+17]. For the natural language
processing test case, we used the upper-mentioned translation task and employed the network
architecture (transformer) in conjunction with Keras and our respective optimizer.18

We use the Transformer implementation with a flexible number of layers. For the results
below, we used a single layer with 15 heads (see multi-head attention in the transformer model
architecture). We use a learning rate of 1E-2 and for Newton-CG a regularization factor tau= 5.0.
For the rest, we use default hyperparameters. In order to employ the full benefits of a second-
order scheme, the starting value must be sufficiently close to a local minimum. We use a
pre-training with Adam for 20 epochs with standard settings.

Results

In Figure 7.17, we show the optimization behavior of the transformer; on the left is the training
loss, and on the right is the validation loss. We see that the training loss of Adam actually
degrades (increases), but the validation loss decreases. This is surprising. Literature reports that
Adam often generalizes better for nlp problems than SGD [ZKV+20]. This still does not explain
the training-validation loss behavior but explains that the final validation is lower besides a
higher final training loss than SGD. Newton-CG performs subpar to the other optimizers in these

18Code available here: https://github.com/severin617/nlp-newton-cg

129

https://github.com/severin617/nlp-newton-cg

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

0 10 20 30 40 50

2.7

2.8

2.9

3.0

3.1

3.2

Epochs

(a) Training loss

0 10 20 30 40 50

1.4

1.6

1.8

2.0

2.2

Epochs

Adam
Newton-CG
SGD

(b) Validation loss

Figure 7.17: Transformer loss for natural language processing task comparing Newton-CG with
SGD and Adam.

runs. BLEU scores are basically a measure for a sequence of several translated words. We found
that for some validation BLEU scores, our Newton-CG can yield better results [Hsi21]. A final
conclusion cannot be drawn, but rather, we can say that all have their benefits.

Despite the observed better generalization of Adam to SGD, [ZFM+20] theoretically analyze
the generalization gap and sharp minima. Their theoretic analysis yields that SGD generalizes
better than Adam. Empirically, we cannot always confirm the theoretical results.

7.2.7 Summary

In summary, we showed the applicability and benefits of an approximate 2nd-order scheme on a
broad range of deep learning domains and large-scale architectures. We tabulated their quality
in Table 7.3 with metrics convergence speed, stability, and final loss.

We measured predominately benefits of Newton-CG compared to Adam and SGD in neural
network training. For example, in regression problems, in a Bayesian Neural Network for breast
cancer diagnostics (including weight probability distributions), or in MobileNet or Inception-
Net in computer vision. For some others, like other Bayesian Nets, a transfer learning example,
or some NLP parts, we saw some disadvantages. Naturally, there are also limitations, since
2nd-order is susceptible to instabilites. We observed the pattern that usually, in well-formed
convergence regions, Newton-CG performs better than ADAM and SGD in trust/convergence re-
gions, whereas in areas where the other two optimizers struggle, Newton-CG also struggles. For
clarity, we can also refer back to the Table 7.3.

7.3 Results: Newton-CG with data-parallelism

In the previous Section 7.2, called global convergence analysis, we have seen that for several
state-of-the-art exemplary cases, using second-order information for training neural networks is
beneficial. In this section, we address the computational performance of Newton-CG.

130

7.3. RESULTS: NEWTON-CG WITH DATA-PARALLELISM

Table 7.5: Newton-CG runtimes per epoch with batch-size 512, ResNet50 on ImageNet

1 GPU 2 GPUs 4 GPUs 8 GPUs

NVIDIA A100 runtime 238s 121s 65s 37s
A100 parallel efficiency 100% 98.3% 91.5% 80.4%

In the first Subsection 7.3.1, we apply Newton-CG in a data-parallel way to multiple GPUs.
With this, we observe strong scaling results for the Newton-CG implementation using Horovod

for a ResNet50.
In the second Subsection 7.3.2, we compare the timings of Newton-CG to the regular state-

of-the-art optimizers Adam and SGD. With this, we identify the additional cost for the benefit of
a second-order optimization algorithm.

7.3.1 Parallel runs

Training with Keras and Horovod was used to show the applicability and scalability of the
proposed second-order optimization. However, especially for large networks from image classi-
fication are notoriously hard to train from scratch. Our goal is to first use a first-order method
(or a method of choice) and use second-order for fine-tuning only.

Exploiting parallelism allows for distributing work in case of failures (e.g. resilience), us-
age of modern compute architectures with accelerators, and ultimately, lower time-to-solution.
All network architectures shown before can be run in parallel, in the data parallel approach
explained in section 7.1.2.

For the following measurements, we fully trained the Keras ResNet50 model on the DGX-1
partition of the LRZ, since it is our biggest network model and, therefore, allows for the biggest
parallelism gains (see Table 7.5)19. Note that the batch size is reduced with GPUs, in order
to account for a similar problem to be solved when increasing the amount of workers (strong
scaling). However, it cannot be entirely related to strong scaling, since the algorithm changes
with workers/GPUs as explained in Figure 7.2, and the section around it. In a parallel setup,
the loss is calculated for a smaller mini-batch, and then the update is accumulated. This is
different to looking at a bigger batch, since the loss function is a different one (computed for
mini-batch per GPU only).

7.3.2 Sequential timing comparisons

Similarly, for the parallel runtime analysis above, we conducted a single GPU performance study
also for the two other optimizers. SGD and Adam take 255 seconds and 214 per epoch, respectively.
This is in a similar runtime range as Newton-CG with 238s. We can assume that in this big
scenario, the runtime is dominated by memory transfer, and the one vs. two backpropagations
hardly make a difference.

We also tabulated the runtimes of the other runs in Table 7.6. We observe the pattern
that the size of the dataset has the most considerable influence on time per epoch. Timings of
optimizers are sometimes similar, and sometimes they differ significantly.

For some runs, we indicate < 1 as runtime. For us, such runtimes are negligible, and we
expect that a user can be satisfied with the extra work from the Newton-CG scheme.

The number of CG iterations can increase runtimes proportionally by the number of iter-
ations. Hence, for competitive timings with other optimizers, many CG-iterations should be

19On the LRZ cluster, we had to reduce to 20% training images for lower memory disk usage and 60% of the
optimization layers, 30 layers for ResNet50.

131

CHAPTER 7. 2nd-ORDER OPTIMIZER FOR ARTIFICIAL NEURAL NETWORKS

avoided but suffice with a very coarse Newton approximation. We assume that in cases like
MNIST, BreaKHis, or transformer, the computational cost of Newton-CG may be caused by
extra CG-steps. We allow 20 by default, matching roughly the increase factor.

For similar runtimes between Adam, SGD and Newton-CG (like ResNet, MobileNet), we assume
runtime is dominated by memory transfer of the dataset, not the backpropagation computa-
tions. Hence, sometimes we may afford an approximate second-order optimizer without longer
runtimes, since we simply increase the computational intensity of the (already) loaded data.
Adam and SGD seem to be memory-bound in these cases.

Table 7.6: Time-per-epoch in seconds of Adam, SGD, and Newton-CG

scenario description
optimizer

Adam SGD Newton-CG

life expectancy < 1 < 1 < 1
regression

Boston housing < 1 < 1 < 1

variational autoencoder mnist 5 5 60

mnist 1 1 16
wisc < 1 < 1 < 1bayesian nn
breakhis 1 1 16

resnet-50 imagenet 255 214 245
mobile-net imagenet ≈ 720 ≈ 690 ≈ 780
inception imagenet 60 38 100image-classification
transfer learning 119 114 100

natural language transformer 30 29 720

7.3.3 Summary

In addition to the convergence analysis from Section 7.2, where we show that Newton-CG is
beneficial with respect to optimization speed, we enabled here in Section 7.3 our Newton-CG

implementation also for Multi-GPU usage. We applied it to our biggest model, full training
of a ResNet-50 Keras model on a DGX-1 with 8 GPUs. With our data-parallel approach, we
achieved 80% parallel efficiency. That means, by using 8 GPUs instead of 1, we get our final
result 6.43 times faster (6.43/8 ≈ 80%).

We have compared all sequential runtimes in Table 7.6. For some runs, we see similar
runtimes of Adam, SGD and Newton-CG - in these cases, we can assume the algorithms are
memory-bound, so we get the extra computations of 2nd-order for free, i.e. they do not add to
runtime. For small dataset models with < 1s runtime, we deem runtimes are negligible, and
the gain from extra accuracy is more important. Some Newton-CG runtimes are, however, much
longer since the number of CG-iterations adds computational costs proportionally.

Let us stress, the two goals of this section:

1. Newton-CG parallelizes well. With Horovod on 8 A100 GPUs in a NVIDIA DGX-1, we
have achieved 80% parallel efficiency.

2. Newton-CG has small additional cost. As the analyzed algorithms are memory-bound,
Newton-CG runtimes are hardly longer than for SGD or Adam.

Therefore, we believe that Newton-CG is very competitive to the state-of-the-art and offers to
be an excellent alternative for future deep learning training algorithms.

132

7.4. SUMMARY OF NEWTON-CG FOR NEURAL NETWORKS

7.4 Summary of Newton-CG for neural networks

In summary, we showed the applicability and benefits of an approximate 2nd-order scheme
on modern large-scale neural networks. True Newton schemes are limited in network size for
analysis, as the memory requirements outgrow modern computing systems quickly. Our version,
Newton-CG, applies a few CG steps to the Newton equation, so it only requires a Hessian matrix-
vector product that we obtain cheaply by two backpropagations. Therefore, we were able to
apply it to a broad range of deep-learning domains and large-scale architectures.

We measured predominately benefits of Newton-CG compared to Adam and SGD in neural
network training. For example, we saw benefits in regression problems, in a Bayesian Neu-
ral Network for breast cancer diagnostics (including weight probability distributions), or in
MobileNet or InceptionNet in computer vision. For some others, like other Bayesian Nets, a
transfer learning example, or some NLP parts, we saw some challenges. This is natural, since
2nd-order schemes are susceptible to instabilities. We observed the pattern that usually, in
friendly convergence regions, Newton-CG performs well (inside trust/convergence regions). In
contrast, in areas where the other two optimizers struggle, Newton-CG also struggles. For a
summary, we refer to Table 7.3, which benchmarks all our scenarios and compares Newton-CG
to other optimizers.

With Horovod, we parallelized the algorithm with data-parallelism to an 8 NVIDIA A100
GPU machine (DGX-1), achieving around 80% parallel efficiency. We also tabulated all other
runtimes and observed sometimes only a small additional cost of the 2nd-order scheme, but
sometimes a large discrepancy between time-per-epoch due to a challenging region in optimiza-
tion. We believe that these optimizers are memory-bound, and hence, this would allow for more
computations without additional runtime. However, Newton-CG runtime scales proportionally
with a number of CG-iterations, resulting sometimes in larger runtimes.

We show that Newton-CG is competitive to state-of-the-art optimizers with concepts like
Tikhonov regularization and Armijo step size restriction. For regression problems, vision net-
works, or fine-tuning, it can be very beneficial. With that Newton-CG, or other 2nd-order
algorithms, are imperative in benchmarking neural network training algorithms, e.g. [DSN+23],
or in the large study “Descending through a Crowded Valley - Benchmarking Deep Learning
Optimizers” [SSH21]. For PyTorch, the library ASDL offers some approximate second-order
primitives20 [OIY+23]. Second-order can also help in fine-tuning and model analysis for hav-
ing fewer trainable parameters, e.g. using the low-rank adaption for GPT and large language
models. [HSW+21]

20https://github.com/kazukiosawa/asdl

133

https://github.com/kazukiosawa/asdl

134

PART IV

CONCLUSION AND OUTLOOK

135

136

Truth is ever to be found in the simplicity and
not in the multiplicity and confusion of things.

Isaac Newton (1642 - 1726)

8
Algorithmic impact of scientific computing on

machine learning

This thesis made several contributions related to H-matrices and second-order optimization for
neural networks. After the previous result chapters, in this chapter, we summarize, discuss, and
conclude the key findings. We start with a summary and discussion in Section 8.1 of both parts
of the thesis, H-Matrices and Newton-CG, and sketch out a possible outlook into the future in
Section 8.2.

8.1 Conclusion

In Chapter 6 called H-matrix we have analyzed many dense matrices and observed that GOFMM
can outperform an exact MKL DGEMM or the structured matrix package STRUMPACK. In Chap-
ter 7 called Newton-CG, we have observed a very problem-dependent behavior for several deep
learning (DL) networks and seen cases where Newton-CG can outperform the state-of-the-art
stochastic gradient descent (SGD) or adaptive moments (Adam). While we treat the H-matrix
and second-order optimization for neural networks as separate chapters in this thesis, there
are several building blocks where the topics overlap. In particular, we have analyzed several
Gauss-Newton Hessians from auto-encoder networks in Subsection 6.4.3. We have avoided the
combination of a GOFMM treatment in the second-order training process due to runtime and
memory overhead. While there are experiments with GOFMM to compute entries on the fly or
save them in memory out-of-core, this creates tremendous overhead. On the one hand, GOFMM
currently does not allow a matrix-vector product as matrix input. On the other hand, the DL
community is very reluctant to outer-community change (with a software stack), and effects
alter depending on the size and architecture. Hence, to analyze such problem-agnostic effects,
we have developed Newton-CG, that only requires a matvec and avoids the expensive part of
setting up and compression (required by GOFMM). We also refer to the concurrent goals in the
simulation triangle, see Section 8.2 and Figure 8.1.

8.1.1 H-Matrices with GOFMM

The numerical treatment of large-sized matrices, in particular, of fully populated matrices,
suffers from quadratic or cubic cost concerning storage and matrix operations. To address
this, on the one hand, setting up the matrix could be avoided by mechanistic modeling of the
geometric domain and with domain-specific approximations, if necessary (white-box approach).
We, on the other hand, developed a black-box approach that, given a matrix, finds structure,
applies compression, and saves runtime for large matrices with a complexity of O(N logN).

GOFMM uses a geometry-oblivious notion to compute distances for reordering and sampling.
We have empirically demonstrated the complexity of O(N logN). Depending on the use case,

137

CHAPTER 8. ALGORITHMIC IMPACT OF SCICOMP ON ML

we saw around 1000 multiplications (called nrhs) benefits starting at N = 6, 000. We performed
weak and strong scaling measurements up to 128 nodes, finding a sweet spot around 16 nodes
with about 50% parallel efficiency for multiplication. We also looked at a Gauss-Newton Hessian
regarding multiplication and factorization. Next, we interfaced GOFMM to numpy and analyzed
matrices from diffusion maps, computed with datafold. We have employed the GOFMM’s fast
matrix-vector for an iterative Arnoldi eigendecomposition, achieving (depending on parameters)
around 9E − 4 accuracy in the Froebenius norm.

In summary, we observed the promised O(N logN) complexity for H-matrices. The black-
box modeling is very non-intrusive for simulation codes. GOFMM outperforms state-of-the-art
methods for large sizes and some cases. In the future, with more high-dimensional domains
in data science or other fields, we believe that more H-type algorithms are used. GOFMM is an
excellent candidate and a valuable resource for future development.

8.1.2 2nd-order optimizer Newton-CG

In the second part of the thesis, we developed Newton-CG. We show benefits in training epochs
for shallow networks, as well as some image classification and transformer architectures. With
Bayesian neural networks, we explored weight uncertainties. We observed very problem-dependent
behavior in some cases, where Newton-CG does not satisfy our high expectations. We paral-
lelized Newton-CG with Horovod, a framework for data parallelism. With data-parallelism, we
achieved around 80% parallel efficiency on 8 GPUs, and generally, Newton-CG is as fast as SGD
and Adam.

This second-order analysis can accelerate neural network training and help in the explainabil-
ity of deep learning architectures. Since it is written in Tensorflow for Python, it is non-intrusive
and can be integrated in machine learning pipelines. It is common in machine learning to tune
different hyperparameter sets to judge the validity of the network and training state, exhausting
tremendous computing resources. We have experienced that Newton-CG is less prone to such
effects, and Newton-CG can help in error estimation or be used for fine-tuning the optimization
state.

In summary, we observed the pattern of Newton-CG that usually, in well-formed trust/con-
vergence regions, it performs on-par or better than ADAM and SGD. In contrast, in areas where
the other two optimizers struggle, Newton-CG also struggles.

However, limitations of the 2nd-order optimizer for DL must be noted. The analyzed prob-
lems are very high-dimensional and, therefore, suffer from non-smoothness, potentially leading
to the observed problem-dependent behavior. As there occurred several “AI winters”, i.e. pe-
riods of reduced funding and interest in artificial intelligence research, currently, second-order
optimization for neural networks is in winter times, while general AI is in summer times. There
has been a spike in second-order optimization for DL around 2018, but currently, it seems to be
adopted by the industry for fine-tuning models, for analysis, or in scenarios of sparse data. It is
not practiced in mostly low-accurately trained current scenarios for academia. However, also in
academia, another nature of problems could be needed, in particular when the problem ensures
smoothness in the optimization surface, or another mathematical scheme could post-smoothen
it. Then, this debate about the broad applicability of the 2nd-order optimizer for DL training
could be reinvigorated.

8.2 Outlook

This thesis has an interdisciplinary appeal: scholars from different computational subfields in
computer science, mathematics, physics, or engineering will find it of particular interest [BRU+20].

138

8.2. OUTLOOK

Simulation Speed Development Cost

Accuracy

Figure 8.1: Concurrent goals in the simulation triangle. Accuracy vs. Simulation Speed
vs. Development Speed. We added the inner rotating triangles, as there may be additional
dimensions (computational resources, external factors) or skewness.

We embark on exploring innovative mathematical concepts and analyze them through imple-
mentation and on a wide range of problems. Our focus extends to addressing their parallel
performances and optimizing computational efficiency.

Let us analyze the thesis with the concurrent goals in the simulation triangle, see Figure 8.1.
It poses the question, how to adaptively approach a global minimum for resource requirements
given a prescribed total target (accuracy and precision). The triangle may be interpreted as: low
development cost often comes with low simulation speed and low accuracy. For achieving high

accuracy in simulation models, either high simulation speed (long runtime) or high development
cost (or a balance) must be spent. In other words, as economics claims, there is no free lunch.
If the last performance percentages are tweaked through mechanistic modeling in a white-box
approach, the approach is very problem-depending. With empirical modeling, we address a more
problem-agnostic black-box approach that balances accuracy, simulation speed and development
speed.

We have encountered several times the concurrency between accuracy and runtime and its
interplay in this thesis. As changes take time, our methods in this thesis are not yet adopted
widely, and changes at different levels may be necessary. We show that they already can
outperform existing methods for some cases, but definitely are already very competitive for a
wide range of problems. Our ideas and methods address pressing issues in the field, and maybe
they are yet just a stone throw in the right direction. We strongly believe that the algorithms
will be adopted in the coming years.

As for the future, on the one end, the application of GOFMM has been made accessible for
experimentation, allowing users to assess the potential value ofH-matrices for incorporation into
a simulation code. A swift evaluation can be performed using NumPy, while the C++ codebase
can be used for high-performance. On the other end, Newton-CG can be used to analyze a wide
range of differentiable optimization problems in DL or other fields. It is non-intrusive and can
be integrated into data pipelines in a plug-and-play fashion. There remain many interesting
future problems where this second-order scheme can help in training, fine-tuning, or for analysis
purposes.

139

140

Proprietary software is an injustice. Sharing is
good, and with digital technology, sharing is
easy.

Richard Stallman (*1953)

A
SWIG Code compilation

The GOFMM C++ code originated in a collaboration with George Biros’ group, in particular Chen-
han Yu and James Levitt. In addition to our contributions there, we wrote a SWIG file to
convert the GOFMM code from C++ into Python. To access it publicly, it’s easiest to also use the
GitHub version, https://github.com/severin617/gofmm_swig_python.

For using the C++ variant of GOFMM, we refer to the ReadMe for the GOFMM C++ version.
The package includes other codes, hence he called it “High-Performance Machine Learning
Primitives”, on GitHub here https://github.com/ChenhanYu/hmlp.

A.1 GOFMM files

SWIG is a software tool that connects programs written in C or C++ with scripting languages
such as Python or R. With SWIG, we are able to call the main function on the Python command
line for example. However, one major obstacle for compiling the SWIG file is linking. We need
to link the proper Python version to some indispensable shared object files in order to generate
the Python wrapper. We added commentary to the linking part in the SWIG file swig.sh for
reference below, which should work straightforwardly on LRZ’s Linux cluster .

Now, we need to pack a user configuration for arguments at the command line into a vector
of char pointer. We will explain this procedure in the framework of our augmented GOFMM

prototype in Listing A.1.

Listing A.1: Adaptations of GOFMM in test gofmm.cpp

1 class gofmmTree {

2 /* This data structure gofmmTree enables storage of configuration

3 parameters needed to execute mainly the following two operations:

4 1. Mat -vec multiplication

5 2. GOFMM Pseudo -inverse

6 */

7 private:

8 SPDMATRIX_DENSE K; // SPD Matrix

9 std::vector <const char*> argv; // holder for configuration parameters

10

11 /* Configuration parameters */

12 std:: string executable; // ./ test_gofmm

13 int n; // problem size

14 int m; // maximum leaf node size

15 int k; // number of neighbors

16 int s; // maximum off -diagonal ranks

17 int nrhs; // number of right hand sides

18 T stol; // user tolerance

19 T budget; // user computation budget [0,1]

20 std:: string distance; // distance type (geometry , kernel , angle)

21 // spdmatrix type (testsuit , dense , ooc , kernel , userdefine)

141

https://github.com/severin617/gofmm_swig_python
https://github.com/ChenhanYu/hmlp

APPENDIX A. SWIG CODE COMPILATION

22 std:: string matrixtype;

23 std:: string kerneltype; // kernelmatrix type (gaussian , laplace)

24

25 public:

26 /* Constructors and destructors */

27 gofmmTree (); // default constructor

28

29 // User -defined constructor: fill the inputs into the object fields above

30 gofmmTree(std:: string executableName , int n0 , int m0 , int k0 , int s0 ,

31 int nrhs0 , T stol0 , T budget0 , std:: string distanceName ,

32 std:: string matrixtypeName , std:: string kerneltypeName ,

33 SPDMATRIX_DENSE K0);

34

35 // Convert all initialized configuration parameters to a vector (argv)

36 void convert_to_vector ();

37

38 /* Operations: mul + inverse */

39 void mul_denseSPD(DATA_s w, double* mul_numpy , int len_mul_numpy);

40 void invert_denseSPD(T lambda , double* inv_numpy , int len_inv_numpy);

41 };

A.2 SWIG file tools.i

In order to wrap a code for Python, SWIG requires a tools.i files to specify which functions in
particular need to be wrapped. A challenge was to get the right notation for numpy arrays,
that you will find in the tools.i file on GitHub. We here list the necessary lines for the routine
load denseSPD from console

Listing A.2: SWIG snippet for load denseSPD from console

1 %apply (float* IN_ARRAY2 , int DIM1 , int DIM2) \ // IN_ARRAY2: Input 2D

2 {(float* numpyArr , int row_numpyArr , int col_numpyArr)}

Then, for the SWIG wrapper for mul denseSPD, we also require integers and numpy arrays,
see Listing A.3.

Listing A.3: SWIG snippet for mul denseSPD

1 %apply (double* ARGOUT_ARRAY1 , int DIM1) \ // ARGOUT: output array

2 {(double* mul_numpy , int len_mul_numpy)}

ARGOUT ARRAY1 specifies that the argument mul numpy is a 1D output array. This means,
it should be the return value of the routine. One may ask why we choose a 1D array as the
return instead of the 2D since the multiplication Kw has the 2D type. The reason is that there
is no default typemap for 2D array as an output although there is one as an input. As a result,
we need to resize the 1D flattened array into 2D afterwards. This is easy to accomplish in
Python.

A.3 Compilation and installation

In order to use SWIG please install it from their website: https://swig.org/. Then, the C++
version of GOFMM must be compiled, and then compiled and linked with the libraries of swig.
For this, we wrote swig.sh, amongst others, see the GitHub page.

As mentioned in Section 6.1, it was cumbersome to find the respective files and link it, so it
can be properly used. The linking flags for the Linux cluster are listed below, and can be used

142

https://swig.org/

A.3. COMPILATION AND INSTALLATION

for reference. The link line advisor by Intel is also a great resource: https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

Listing A.4: SWIG snippet for swig.sh

1 cp tools.i build/

2 cd build

3 swig -o toolswrap.cpp -c++ -python tools.i

4 # Create a wrapper file for tools

5 # -I/usr/include/python3 .8: for Python.h file

6 # -I/home/getianyi /. local/lib/python3 .8/site -packages/numpy/core/include /: for

arrayobject.h

7 g++ -o tools_wrap.os -c -I/usr/include/python3 .8 -I/home/getianyi /. local/lib/

python3 .8/site -packages/numpy/core/include/ -I../ gofmm/ -I../ include/ -I../

frame/ -I ../ frame/base/ -I../ frame/containers/ toolswrap.cpp -fPIC

8 # Create a shared library. Note: we must link the lapack and blas libs

9 # at run time together with hmlp in order to construct a python -portable

10 # _tools.so

11 g++ -O3 -fopenmp -m64 -fPIC -D_POSIX_C_SOURCE =200112L -fprofile -arcs -ftest -

coverage -fPIC -DUSE_BLAS -mavx -std=c++11 -lpthread -fopenmp -lm -L/usr/

local/lib/ -lopenblas tools_wrap.os -o _tools.so -shared -Wl ,-rpath ,./

build: libhmlp.so -Wl ,-rpath ,./ build: libhmlp.so -Wl ,-rpath ,/usr/local/lib -

lblas -Wl ,-rpath ,/usr/local/lib -llapack

For the Python Package Index (PyPI) installation under a different Linux configurations,
the user first must install all necessary dependencies such as the library libblas.so. Then, one
can install it from https://pypi.org/project/gofmm1/. We cannot only depend on the PyPi
installation, as we require libhmlp.so, which is bound to your architecture (Linux configura-
tion). Software publishers usually have pre-compiled versions for all necessary operating systems
under different “wheels”; since we are a small academic group, we cannot provide “wheels” for
any operating system without great effort.

143

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://pypi.org/project/gofmm1/

144

If you are reading this and you want to discuss
upon it, I will buy you a coffee or a beer.

Severin Reiz (*1992)

B
Newton-CG installation

For reproducibility, we also share Newton-CG freely, e.g. on GitHub, see https://github.com/
severin617/Newton-CG. To increase outreach, a user can also get it from the Python Package
Index, from here https://test.pypi.org/simple/newton-cg/.

B.1 Installation

To install Newton-CG directly, just do the following commands, as we recommended to use it
with a new conda environment:

Listing B.1: Install Newton-CG

1 conda create -n tf1 python =3.7

2 conda activate tf1

3 pip install -r tensorflow ==1.15 keras ==2.3

4 pip install -i https :// test.pypi.org/simple/ newton -cg ==0.0.3

B.2 Usage

You can use easily load it and use the optimizer in any existing tensorflow or keras script, or
also, for tensorflow probability in Bayesian Neural Networks:

Listing B.2: Instantiate EHNewtonOptimizer (Efficient Hessian Newton)

1 import newton_cg as es

2 optimizer = es.EHNewtonOptimizer(

3 learning_rate ,

4 tau=FLAGS.eso_tau ,

5 cg_tol=FLAGS.eso_cg_tol ,

6 max_iter=FLAGS.eso_max_iter)

You can use also a learning-rate scheduler, and call model.fit , which is a Tensorflow API to
start the optimization process. You can also perform training step-by-step for each Newton-step.

Listing B.3: Adapt the learning rate and call model.fit

1 # lr scheduler

2 from clr_callback import CyclicLR

3 clr_trig2 = CyclicLR(mode=’exp_range ’, base_lr =0.00001 , max_lr =0.0001 ,

step_size=1, gamma =0.5) #gamma =0.9994)

4

5 model.fit(data_X , data_Y , epochs=1, callbacks =[clr_trig2])

For parallelization, you can use the data-parallel approach of horovod, like this:

145

https://github.com/severin617/Newton-CG
https://github.com/severin617/Newton-CG
https://test.pypi.org/simple/newton-cg/

APPENDIX B. NEWTON-CG INSTALLATION

Listing B.4: Parallel Newton-CG with Horovod

1 import newton_cg as es

2 import horovod as hvd

3 hvd.init()

4 # Horovod: pin GPU to be used to process local rank (one GPU per process)

5 config = tf.ConfigProto ()

6 config.gpu_options.allow_growth = True

7 config.gpu_options.visible_device_list = str(hvd.local_rank ())

8 K.set_session(tf.Session(config=config))

9 opt = EHNewtonOptimizer(initial_lr)

10 es.opt = hvd.DistributedOptimizer(opt , compression=compression)

Beware that alongside horovod setup with MPI and suitable CUDA drivers is tedious. You may
get a docker image from NVIDIA directly1, but we had to nevertheless make major adaptions
here and there. We refer to the documentation and help from stackoverflow, as the data science
community is very large.

In the GitHub version, we also added the archictecures as Tensorflow/Keras script. For
development, we have used the GitLab repository, i.e. https://gitlab.lrz.de/tum-i05/

public/keras-second-order-optmizer.
The datasets for computer vision (Imagenet) and for NLP model (Portuguese-English Trans-

lation), requires large memory (and possibly small batch-size).
Also, the program could need a long time to run due to Imagenet size (You may use pre-

trained checkpoint file that you find e.g. here: https://github.com/tensorflow/models/

tree/master/research/slim). We, howerver, have trained from scratch and have the corre-
sponding checkpoint files on our file systems (we can share upon request).

For natural language processing, we currently only have it on GitLab, which is public to any-
one after accepting the terms and conditions, see https://gitlab.lrz.de/tum-i05/public/

nlp-newton-cg. For some models it is required to unroll recurrent structures in the model
(RNN) and using pre-trained word embeddings. Hyperparameters can be set in the JSON file
called config.json , see here: https://gitlab.lrz.de/tum-i05/public/nlp-newton-cg/

-/blob/main/config.json.
We suggest to start using Newton-CG, in the straightforward regression, small MNIST CNN

or Bayesian Neural Network models, as they run fast and require less memory.

1ngc.nvidia.com

146

https://gitlab.lrz.de/tum-i05/public/keras-second-order-optmizer
https://gitlab.lrz.de/tum-i05/public/keras-second-order-optmizer
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://gitlab.lrz.de/tum-i05/public/nlp-newton-cg
https://gitlab.lrz.de/tum-i05/public/nlp-newton-cg
https://gitlab.lrz.de/tum-i05/public/nlp-newton-cg/-/blob/main/config.json
https://gitlab.lrz.de/tum-i05/public/nlp-newton-cg/-/blob/main/config.json

The secret to creativity is knowing how to hide
your sources.

Albert Einstein (1879 - 1955)

Bibliography

[AD13] Sivaram Ambikasaran and Eric Darve. An O(N log(N)) Fast Direct Solver for
Partial Hierarchically Semi-Separable Matrices. Journal of Scientific Computing,
57(3):477–501, 2013. 21

[Alh22] Osama Alhartani. Transfer Learning and Dynamic Loading in TUM-Lens. Master’s
Thesis, Technical University of Munich, 2022. 73

[Arn51] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the
matrix eigenvalue problem. Quarterly of applied mathematics, 9(1):17–29, 1951.
21

[AZH+21] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan,
Omran Al-Shamma, José Santamaŕıa, Mohammed A Fadhel, Muthana Al-Amidie,
and Laith Farhan. Review of deep learning: Concepts, cnn architectures, chal-
lenges, applications, future directions. Journal of big Data, 8:1–74, 2021. 41

[B+95] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford
university press, 1995. 37, 42, 44

[BCB16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate, 2016. 55

[BCFW21] Kristian Bredies, Marcello Carioni, Silvio Fanzon, and Daniel Walter. Linear con-
vergence of accelerated generalized conditional gradient methods. arXiv preprint
arXiv:2110.06756, 2021. 46, 120

[BCKW15] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural network. In International conference on machine
learning, pages 1613–1622. PMLR, 2015. 44

[BCN18] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for
large-scale machine learning. SIAM Review, 60(2):223–311, 2018. 67

[Beb08] Mario Bebendorf. Hierarchical matrices. Springer, 2008. 13, 21, 28, 29

[BG99] Steffen Börm and Lars Grasedyck. H-Lib-a library for H-and H2-matrices. Max
Planck Institute for Mathematics in the Sciences.[Online]. Available: http://www.
hlib. org, 1999. 23

[BGJM17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information, 2017. 52

[BH86] Josh Barnes and Piet Hut. A hierarchical O(N logN) force-calculation algorithm.
Nature, 324(6096):446–449, 1986. 20, 21, 24, 83

[BHNS16] R. H. Byrd, S. L. Hansen, Jorge Nocedal, and Y. Singer. A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–
1031, 2016. 68

[BM01] Stefania Bellavia and Benedetta Morini. A globally convergent newton-gmres sub-
space method for systems of nonlinear equations. SIAM Journal on Scientific
Computing, 23(3):940–960, 2001. 67

147

BIBLIOGRAPHY

[BNN+20] Hans-Joachim Bungartz, Wolfgang E. Nagel, Philipp Neumann, Severin Reiz, and
Benjamin Uekermann. Software for exascale computing: Some remarks on the
priority program sppexa. In Hans-Joachim Bungartz, Severin Reiz, Benjamin Uek-
ermann, Philipp Neumann, and Wolfgang E. Nagel, editors, Software for Exascale
Computing - SPPEXA 2016-2019, pages 3–18, Cham, 2020. Springer International
Publishing. 16

[BRB17] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton
optimisation for deep learning. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 557–565. PMLR, 06–11 Aug
2017. 68

[BRU+20] Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann,
and Wolfgang E Nagel. Software for exascale computing-SPPEXA 2016-2019.
Springer Nature, 2020. 138

[BSH+21] Liane Bernstein, Alexander Sludds, Ryan Hamerly, Vivienne Sze, Joel Emer, and
Dirk Englund. Freely scalable and reconfigurable optical hardware for deep learn-
ing. Scientific reports, 11(1):3144, 2021. 64

[BYC13] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
In International conference on machine learning, pages 115–123. PMLR, 2013. 119

[CDL16] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks
for machine reading, 2016. 55

[CL06] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Compu-
tational Harmonic Analysis, 21:5–30, 2006. Special Issue: Diffusion Maps and
Wavelets. 33

[CLRB17] D Yu Chenhan, James Levitt, Severin Reiz, and George Biros. Geometry-oblivious
FMM for Compressing of Dense Matrices. In Proceedings of SC17, 2017. 82, 91,
92, 95, 107

[CRB18] D Yu Chenhan, Severin Reiz, and George Biros. Distributed-memory hierarchical
compression of dense spd matrices. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 183–197. IEEE,
2018. 87, 91, 92, 95, 98, 111

[CRY+21] Chao Chen, Severin Reiz, Chenhan D Yu, Hans-Joachim Bungartz, and George
Biros. Fast approximation of the gauss–newton hessian matrix for the multilayer
perceptron. SIAM Journal on Matrix Analysis and Applications, 42(1):165–184,
2021. 91, 92, 94, 100, 101, 111

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018. 53

[DECM98] Amalia Duch, Vladimir Estivill-Castro, and Conrado Martinez. Randomized k-
dimensional binary search trees. In Algorithms and Computation: 9th International
Symposium, ISAAC’98 Taejon, Korea, December 14–16, 1998 Proceedings 9, pages
198–209. Springer, 1998. 29

148

BIBLIOGRAPHY

[Dre21] David Drews. Implementing a Mobile App for Object Detection. Master’s thesis,
Technical University of Munich, 2021. 73

[DSN+23] George E Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chan-
dramouli Shama Sastry, Philipp Hennig, Sourabh Medapati, Runa Eschenhagen,
Priya Kasimbeg, Daniel Suo, et al. Benchmarking neural network training algo-
rithms. arXiv preprint arXiv:2306.07179, 2023. 64, 68, 133

[Dul24] Saurab Dulal. octree construction and nearest neighborhood
search(nns). https://dulalsaurab.github.io/computerscience/

octree-construction-and-nns/, retrieved on Jan 14 2024. 26

[DYBM23] Sameer Deshmukh, Rio Yokota, George Bosilca, and Qinxiang Ma. O (n) dis-
tributed direct factorization of structured dense matrices using runtime systems.
In Proceedings of the 52nd International Conference on Parallel Processing, pages
1–10, 2023. 23, 86, 103

[FKR22] Massimo Fornasier, Timo Klock, and Konstantin Riedl. Convergence of anisotropic
consensus-based optimization in mean-field law. In Juan Luis Jiménez Laredo,
J. Ignacio Hidalgo, and Kehinde Oluwatoyin Babaagba, editors, Applications of
Evolutionary Computation, pages 738–754, Cham, 2022. Springer International
Publishing. 63, 119

[G+16] Yarin Gal et al. Uncertainty in deep learning. PhD thesis, University of Cambridge,
2016. 43

[Gad22] Keerthi Gaddameedi. Efficient and scalable kernel matrix approximation using
hierarchical decomposition. Master’s thesis, Technical University of Munich, 2022.
89, 90

[GBC16a] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. 62, 63

[GBC16b] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org. 39

[Ge20] Tianyi Ge. Python software suite of geometric-oblivious fmm. Master’s thesis,
TUM informatics, 2020. 32

[GK65] Gene Golub and William Kahan. Calculating the singular values and pseudo-
inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics,
Series B: Numerical Analysis, 2(2):205–224, 1965. 28

[GLR+16] Pieter Ghysels, Xiaoye S Li, François-Henry Rouet, Samuel Williams, and Artem
Napov. An efficient multicore implementation of a novel HSS-structured multi-
frontal solver using randomized sampling. SIAM Journal on Scientific Computing,
38(5):S358–S384, 2016. 99

[GR87] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.
Journal of computational physics, 73(2):325–348, 1987. 20, 21, 83

[GRNB23] Keerthi Gaddameedi*, Severin Reiz*, Tobias Neckel, and Hans-Joachim Bungartz.
Efficient and scalable kernel matrix approximations using hierarchical decompo-
sition. accepted for publication in conference issue for BenchCouncil IC 2023 in
Springer CCIS, 2023. 33, 34, 91, 103, 105

149

https://dulalsaurab.github.io/computerscience/octree-construction-and-nns/
https://dulalsaurab.github.io/computerscience/octree-construction-and-nns/
http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY

[GS22] Pieter Ghysels and Ryan Synk. High performance sparse multifrontal solvers on
modern GPUs. Parallel Computing, 110:102897, 2022. 24

[GTY97] SA Goreinov, EE Tyrtyshnikov, and A Yu Yeremin. Matrix-free iterative solution
strategies for large dense linear systems. Numerical linear algebra with applications,
4(4):273–294, 1997. 21

[GZDH20] Matilde Gargiani, Andrea Zanelli, Moritz Diehl, and Frank Hutter. On the promise
of the stochastic generalized gauss-newton method for training dnns. arXiv preprint
arXiv:2006.02409, 2020. 68

[Hac15] Wolfgang Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer
Series in Computational Mathematics 49. Springer-Verlag Berlin Heidelberg, 1
edition, 2015. 13, 22, 23, 24

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM review, 53(2):217–288, 2011. 85

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997. 52

[Hsi21] Yi-Han Hsieh. Second order training for natural language processing using newton-
cg optimizer. Master’s thesis, Technical University of Munich, Oct 2021. 52, 55,
129, 130

[HSW+21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685, 2021. 133

[Huc96] Thomas Huckle. Sparse approximate inverses for preconditioning of linear equa-
tions. In Conferentie van Numeriek Wiskundigen, Woudschoten, Zeist, The
Netherlands. Citeseer, 1996. 23

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016. 46, 47

[INK18] Akihiro Ida, Hiroshi Nakashima, and Masatoshi Kawai. Parallel hierarchical matri-
ces with block low-rank representation on distributed memory computer systems.
In Proceedings of the International Conference on High Performance Computing
in Asia-Pacific Region, pages 232–240, 2018. 24

[JM09] Dan Jurafsky and James H. Martin. Speech and language processing : an in-
troduction to natural language processing, computational linguistics, and speech
recognition. Pearson Prentice Hall, Upper Saddle River, N.J., 2009. 52

[Jok20] Lukas Maximilian Jokel. Implementing a tensorflow-slim based android app for
image classification. Bachelor thesis, Technical University of Munich, 2020. 73

[Kar22] Maximilian Karpfinger. Sign Language Translation on Mobile Devices. Master’s
thesis, Technical University of Munich, 2022. 73, 77

150

BIBLIOGRAPHY

[KG17] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? Advances in neural information processing systems,
30, 2017. 43

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. Master’s thesis, University of Toronto, 2009. 56, 94

[KK04] D.A. Knoll and D.E. Keyes. Jacobian-free newton–krylov methods: a survey of
approaches and applications. Journal of Computational Physics, 193(2):357–397,
2004. 61

[Kre] Daniel Kressner. Low rank approximation lecture 1. https://sma.epfl.ch/ anchp-
common/lecture1.pdf. 22

[(LA07] Los Alamos Computer Science Institute (LACSI). Arpack software.
http://lacsi.rice.edu/software/arpak/default.htm, 2007. 90

[LBG06] Sabine Le Borne and Lars Grasedyck. H-matrix preconditioners in convection-
dominated problems. SIAM journal on matrix analysis and applications,
27(4):1172–1183, 2006. 24

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015. 39

[LeC98] Yann LeCun. The mnist database of handwritten digits. Website, 1998. 94, 95,
106, 122

[LFTL20] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated
learning. Computers & Industrial Engineering, 149:106854, 2020. 73

[Li] Fei-Fei Li. Cs231n: Convolutional neural networks for visual recognition. 56, 57,
58

[Li21] X Sherry Li. Scalable and robust hierarchical matrix factorizations via random-
ization. In Conference on Fast Direct Solvers (Online), 2021. 21

[LLH+23] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A
scalable stochastic second-order optimizer for language model pre-training, 2023.
128

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective ap-
proaches to attention-based neural machine translation, 2015. 55

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3431–3440, 2015. 46

[LWM+07] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark
Tygert. Randomized algorithms for the low-rank approximation of matrices. Pro-
ceedings of the National Academy of Sciences, 104(51):20167–20172, 2007. 28, 29

[LXG+21] Yang Liu, Xin Xing, Han Guo, Eric Michielssen, Pieter Ghysels, and Xiaoye Sherry
Li. Butterfly factorization via randomized matrix-vector multiplications. SIAM
Journal on Scientific Computing, 43(2):A883–A907, 2021. 24

151

BIBLIOGRAPHY

[MB15] William B March and George Biros. Far-field compression for fast kernel summa-
tion methods in high dimensions. Applied and Computational Harmonic Analysis,
2015. 31

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013. 52

[Mei11] Andreas Meister. Numerik linearer gleichungssysteme, volume 4. Springer, 2011.
61

[MG15] James Martens and Roger Grosse. Optimizing neural networks with kronecker-
factored approximate curvature. In International conference on machine learning,
pages 2408–2417. PMLR, 2015. 68, 100

[MGB+17] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-
mand Joulin. Advances in pre-training distributed word representations. arXiv
preprint arXiv:1712.09405, 2017. 129

[Mov22] Danylo Movchan. Implementing a learning-rate scheduler in a newton-cg optimizer
for deep learning. Bachelor’s thesis, Technical University of Munich, Oct 2022. 129

[MXT+15a] William B. March, Bo Xiao, Sameer Tharakan, Chenhan D. Yu, and George Biros.
A kernel-independent fmm in general dimensions. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’15, New York, NY, USA, 2015. Association for Computing Machin-
ery. 86

[MXT+15b] William B. March, Bo Xiao, Sameer Tharakan, Chenhan D. Yu, and George Biros.
Robust treecode approximation for kernel machines. In Proceedings of the 21st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1–
10, Sydney, Australia, August 2015. 94

[Nad65] EA Nadaraya. On non-parametric estimates of density functions and regression
curves. Theory of Probability & Its Applications, 10(1):186–190, 1965. 32

[Ng16] Andrew Ng. Nuts and bolts of building ai applications using deep learning. NIPS
Keynote Talk, 2016. 58

[NN94] Yoshiki Niwa and Yoshihiko Nitta. Co-occurrence vectors from corpora vs. distance
vectors from dictionaries. In COLING 1994 Volume 1: The 15th International
Conference on Computational Linguistics, 1994. 52

[OIY+23] Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten Hoefler.
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch, 2023. 133

[ON15] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015. 41

[OTU+19] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi
Matsuoka. Large-scale distributed second-order optimization using kronecker-
factored approximate curvature for deep convolutional neural networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12359–12367, 2019. 68

152

BIBLIOGRAPHY

[Par62] Emanuel Parzen. On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076, 1962. 32

[Pea94] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computa-
tion, 6(1):147–160, 1994. 15, 64, 65

[PPR18] Ajeet Ram Pathak, Manjusha Pandey, and Siddharth Rautaray. Application of
deep learning for object detection. Procedia computer science, 132:1706–1717,
2018. 76

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In EMNLP, volume 14, pages 1532–1543, 2014.
52

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
106

[PY09] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transac-
tions on knowledge and data engineering, 22(10):1345–1359, 2009. 57

[QSF+18] Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sarguna Janani Padmanabhan,
and Graham Neubig. When and why are pre-trained word embeddings useful for
neural machine translation?, 2018. 52

[Ram99] Juan Ramos. Using TF-IDF to Determine Word Relevance in Document Queries,
1999. 52

[RB20] Severin Reiz and Hans-Joachim Bungartz. SPPEXA: Software for Exascale Com-
puting. SIAM News, Volume 53(Oct. 2020), 2020. 16

[Rei17] Severin Reiz. Black Box Hierarchical Approximations for SPD Matrices. Master’s
thesis, TUM, Apr 2017. betreuer: Levitt, James; pruefer: Biros, George; Bungartz,
Hans-Joachim. 26, 27, 28, 29

[Rie92] Kurt S Riedel. A sherman–morrison–woodbury identity for rank augmenting ma-
trices with application to centering. SIAM Journal on Matrix Analysis and Appli-
cations, 13(2):659–662, 1992. 23

[RLGN16] François-Henry Rouet, Xiaoye S Li, Pieter Ghysels, and Artem Napov. A
distributed-memory package for dense hierarchically semi-separable matrix com-
putations using randomization. ACM Transactions on Mathematical Software
(TOMS), 42(4):1–35, 2016. 24, 29, 98, 103

[RLXM22] Fred Roosta, Yang Liu, Peng Xu, and Michael W. Mahoney. Newton-mr: Inexact
newton method with minimum residual sub-problem solver. EURO Journal on
Computational Optimization, 10:100035, 2022. 68

[RNB23] Severin Reiz, Tobias Neckel, and Hans-Joachim Bungartz. Neural nets with a new-
ton conjugate gradient method on multiple gpus. In Parallel Processing and Ap-
plied Mathematics: 14th International Conference, PPAM 2022, Gdansk, Poland,
September 11–14, 2022, Revised Selected Papers, Part I, pages 139–152. Springer,
2023. 38, 39, 40, 62, 64, 67, 122

153

BIBLIOGRAPHY

[Rui18] Pablo Ruiz Ruiz. Understanding and visualizing resnets–towards data science. en
ĺınea], 2018. 47

[S+94] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient
method without the agonizing pain, 1994. 21, 66

[Sah] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks - the ELI5
way. https://towardsdatascience.com. 40

[SB18] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv preprint arXiv:1802.05799, 2018. 112

[SBC15] Weijie Su, Stephen Boyd, and Emmanuel J. Candes. A differential equation for
modeling nesterov’s accelerated gradient method: Theory and insights, 2015. 63

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014. 42

[SHZ+18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4510–
4520, 2018. 48

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015. 49

[SLL19] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive guide to
bayesian convolutional neural network with variational inference. arXiv preprint
arXiv:1901.02731, 2019. 44

[SOPH15] Fabio A Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte. A
dataset for breast cancer histopathological image classification. Ieee transactions
on biomedical engineering, 63(7):1455–1462, 2015. 116

[SOPH16] Fabio Alexandre Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte.
Breast cancer histopathological image classification using convolutional neural net-
works. In 2016 international joint conference on neural networks (IJCNN), pages
2560–2567. IEEE, 2016. 124

[Sor92] Danny C Sorensen. Implicit application of polynomial filters in ak-step arnoldi
method. Siam journal on matrix analysis and applications, 13(1):357–385, 1992.
34

[SPP20] Jan Steinbrener, Konstantin Posch, and Jürgen Pilz. Measuring the uncer-
tainty of predictions in deep neural networks with variational inference. Sensors,
20(21):6011, 2020. 43

[SRASC14] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition workshops, pages
806–813, 2014. 57, 58

154

https://towardsdatascience.com

BIBLIOGRAPHY

[SS86] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on scientific and
statistical computing, 7(3):856–869, 1986. 21

[SSH21] Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
crowded valley-benchmarking deep learning optimizers. In International Confer-
ence on Machine Learning, pages 9367–9376. PMLR, 2021. 64, 68, 133

[Ste83] Trond Steihaug. The conjugate gradient method and trust regions in large scale
optimization. SIAM Journal on Numerical Analysis, 20(3):626–637, 1983. 61, 67

[Suk20] Julian Suk. Application of second-order optimisation for large-scale deep learning.
Masterarbeit, TUM, May 2020. 67

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2818–
2826, 2016. 49, 50

[SW23] David Schneller and Mario Wille. Personal conversation. Personal Conversation,
Dec 2023. 72

[tfpa] tfp.layers.Convolution2DFlipout. https://www.tensorflow.org/probability/

api_docs/python/tfp/layers/Convolution2DFlipout. Accessed 8-12-22. 45,
114

[tfpb] tfp.layers.DenseVariational. https://www.tensorflow.org/probability/api_

docs/python/tfp/layers/DenseVariational. Accessed 8-12-22. 45, 114

[Tir] Nikhil Tirumala. Evolution of object detection networks. https://cogneethi.

com/evodn/object_detection_intro/. 74

[TS10] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques,
pages 242–264. IGI global, 2010. 58

[tut] TF NLP Transformer tutorial. https://www.tensorflow.org/text/tutorials/
transformer. Accessed 8-12-23. 54, 55

[Uns23] Michael Unser. Ridges, neural networks, and the radon transform. Journal of
Machine Learning Research, 24(37):1–33, 2023. 120

[UU12] Michael Ulbrich and Stefan Ulbrich. Nichtlineare Optimierung. Springer-Verlag,
2012. 67

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 2020. 89, 90

[VNRP19] Abdul Vahab, Maruti S Naik, Prasanna G Raikar, and SR Prasad. Applications
of object detection system. International Research Journal of Engineering and
Technology, 6(4):4186–4192, 2019. 76

155

https://www.tensorflow.org/probability/api_docs/python/tfp/layers/Convolution2DFlipout
https://www.tensorflow.org/probability/api_docs/python/tfp/layers/Convolution2DFlipout
https://www.tensorflow.org/probability/api_docs/python/tfp/layers/DenseVariational
https://www.tensorflow.org/probability/api_docs/python/tfp/layers/DenseVariational
https://cogneethi.com/evodn/object_detection_intro/
https://cogneethi.com/evodn/object_detection_intro/
https://www.tensorflow.org/text/tutorials/transformer
https://www.tensorflow.org/text/tutorials/transformer

BIBLIOGRAPHY

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,
2017. 52, 53, 55, 56

[VVMA19] Mariia Vladimirova, Jakob Verbeek, Pablo Mesejo, and Julyan Arbel. Understand-
ing priors in bayesian neural networks at the unit level. In International Conference
on Machine Learning, pages 6458–6467. PMLR, 2019. 44

[WDE07] Martin Weiser, Peter Deuflhard, and Bodo Erdmann. Affine conjugate adaptive
newton methods for nonlinear elastomechanics. Optimisation Methods and Soft-
ware, 22(3):413–431, 2007. 61, 67

[Wei21] Hanna Weigold. Second-order optimization methods for bayesian neural networks.
Master’s Thesis, Technical University of Munich, 2021. 43, 116

[WN+99] Stephen Wright, Jorge Nocedal, et al. Numerical optimization. Springer Science,
35(67-68):7, 1999. 61, 67

[WVB+18] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout:
Efficient pseudo-independent weight perturbations on mini-batches. arXiv preprint
arXiv:1803.04386, 2018. 45, 114

[YCBL14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? Advances in neural information processing
systems, 27, 2014. 56, 58

[YGKM20] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian:
Neural networks through the lens of the hessian. In 2020 IEEE international
conference on big data (Big data), pages 581–590. IEEE, 2020. 64, 112

[YGS+21] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and
Michael Mahoney. Adahessian: An adaptive second order optimizer for machine
learning. In proceedings of the AAAI conference on artificial intelligence, vol-
ume 35, pages 10665–10673, 2021. 47, 68, 126

[YNDT18] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi.
Convolutional neural networks: an overview and application in radiology. Insights
into imaging, 9(4):611–629, 2018. 39, 41, 42

[YRB19] Chenhan D. Yu, Severin Reiz, and George Biros. Distributed o(n) linear solver for
dense symmetric hierarchical semi-separable matrices. In 2019 IEEE 13th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC),
pages 1–8, 2019. 24, 86, 91, 92, 95

[ZFM+20] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al.
Towards theoretically understanding why sgd generalizes better than adam in deep
learning. Advances in Neural Information Processing Systems, 33:21285–21296,
2020. 68, 130

[ZKV+20] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim,
Sashank Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for
attention models? Advances in Neural Information Processing Systems, 33:15383–
15393, 2020. 129

156

BIBLIOGRAPHY

[ZL16] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learn-
ing. arXiv preprint arXiv:1611.01578, 2016. 51

157

	I Introduction
	Introduction
	H-matrices
	Neural networks
	Main contributions
	Structure of the thesis

	II Foundations, state of the art, and related work
	H-Matrices
	Hierarchical matrix algorithms
	Algebraic compression algorithms
	Low-rank representation
	Hierarchical matrix multiplication
	Hierarchical pseudo-inverse
	Hierarchical matrix applications
	Summary

	Metric trees, neighbor search, and skeletonization
	Geometric tree algorithms
	Low-rank approximations for GOFMM
	Neighbor calculation using randomized k-d trees
	FMM vs. HSS representation
	Summary

	Applications of matrix algorithms
	Gaussian kernel density estimation
	Diffusion maps
	Arnoldi iteration

	Summary

	Artificial neural networks
	Scientific computing for deep learning
	Linear regression
	Multilayer perceptron

	Convolutional neural networks
	Convolutional layer
	Pooling layer
	Dropout layer
	Fully-connected layer

	Uncertainty in deep learning
	Types of uncertainty
	Frequentist approach of treating prediction uncertainty
	Variational inference
	Bayes by backpropagation
	Summary

	Network architectures
	Shallow networks
	Computer vision networks
	Natural language processing architectures
	Transfer learning
	Summary

	Summary

	Optimization methods
	State-of-the-art deep learning optimization approaches
	Stochastic gradient descent
	Adaptive moments
	Other strategies for neural network optimization
	Summary

	2nd-order optimization for deep learning
	Pearlmutter approach
	Newton's method
	Ingredients of proposed 2nd-order optimizer: Newton-CG
	Related work on 2nd-order optimization for deep learning

	Summary

	III Methods, implementation, and experimental results
	Computational setup
	SuperMUC-NG
	Multiple GPU: DGX-1 for deep learning
	Linux cluster
	Smartphone: TUM-lens
	Image classification
	Object detection
	Sign language detection

	Summary

	H-Matrices
	Implementation: Geometry-oblivious fast multipole method
	Gram distance notion
	GOFMM ingredients
	Additional remarks

	Implementation: GOFMM Python interface
	Python bindings using SWIG
	GOFMM integration into datafold

	Test matrices
	Input/Output implementations
	Synthetic data and kernel matrices
	Gauss-Newton Hessian
	Datafold matrices
	Parameter selection and accuracy metrics.

	Results: GOFMM for kernel matrices
	Performance measurements: weak and strong scaling
	Timing comparison to ScaLAPACK and STRUMPACK
	Gauss–Newton Hessian matrix
	Summary of GOFMM results on SPD matrices

	Results: Python interface
	Accuracy measurements of the matrix-vector multiplication
	Factorization using the pseudo-inverse
	Eigenvector decomposition for datafold
	Summary of GOFMM Python integration using SWIG

	Summary

	2nd-order optimizer for artificial neural networks
	Implementation: Newton-CG
	Newton-CG: optimizer features
	Automatic differentiation framework
	Datasets
	Summary of implementation

	Results: Newton-CG global convergence analysis
	Test functions: Quadratic, Rosenbrock and Rastrigin
	Regression
	Variational autoencoder
	Bayesian neural networks
	Image classification
	Natural language processing
	Summary

	Results: Newton-CG with data-parallelism
	Parallel runs
	Sequential timing comparisons
	Summary

	Summary of Newton-CG for neural networks

	IV Conclusion and outlook
	Algorithmic impact of SciComp on ML
	Conclusion
	H-Matrices with GOFMM
	2nd-order optimizer Newton-CG

	Outlook

	SWIG Code compilation
	GOFMM files
	SWIG file tools.i
	Compilation and installation

	Newton-CG installation
	Installation
	Usage

