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Abstract

Cardiovascular diseases are the most common causes of death and impose a significant chal-
lenge in modern health care. These diseases are frequently associated with heart failure (HF).
While the gold standard in HF therapy is heart transplantation, the availability of donor hearts is
limited, especially in the case of pediatric HF. This critical limitation can be mitigated through
early treatment in patients advancing towards HF. However, timely and suitable treatments re-
quire a detailed understanding of the many HF-associated compensatory mechanisms that are
characterized by growth and remodeling. In this thesis, the knowledge about cardiac growth
and remodeling is advanced by developing computational models of cardiac mechanics. These
models can eventually support patient-specific therapies by in-silico predictions of long-term
responses and, thereby, reduce the number of necessary heart transplantations.
This thesis presents a unique data set, which is derived from a growth hormone receptor knock-
out pig model designed to resemble the characteristics of healthy human pediatric heart develop-
ment. The data set comprises motion-computer tomography (motion-CT) scans that capture the
physiological motion and morphology over 40 days. This acquired data allows the calibration
of beating heart and cardiac growth models as well as the construction of a representative heart
shape.
The atlas construction method is employed on the acquired data set to derive a representative he-
art shape, which serves as a generic heart shape that can be used when patient-specific treatments
are unfeasible.
The computational model of the beating heart combines a three-dimensional structural represen-
tation of the heart with a zero-dimensional model of the vascular system. Within the structural
model of the heart, the contraction of heart muscle fibers is integrated through an active stress
model. The active stress model is calibrated utilizing the model of the beating heart and an ob-
jective function that is derived from the segmentation of motion-CT scans. The vascular system
model comprises Windkessel elements, whose calibration through scalar-valued optimization
involves both the acquired data set and literature data.
The cardiac growth model is based on the kinematic growth framework. For its calibration,
precise alignment of consecutive motion-CT images, despite potential variations in the positi-
on between scans, is guaranteed by applying a surface matching formulation with a rigid body
mode-free projection. In addition, the calibration of the growth parameters is based on an image-
based Bayesian inverse problem formulation. A novel signaling network that incorporates local
insulin-like growth factor 1 production based on mechanical stimuli is introduced. Physiological
ranges for the normalized input concentrations are defined. Moreover, a global sensitivity analy-
sis is conducted to identify the most influential factors governing heart growth. Finally, a novel
coupling between the signaling network and cardiac growth model is presented and analyzed.
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Zusammenfassung
Kardiovaskuläre Erkrankungen sind die häufigste Todesursache und stellen eine bedeutende
Herausforderung im modernen Gesundheitswesen dar. Diese Erkrankungen werden häufig mit
Herzinsuffizienz in Verbindung gebracht. Der Goldstandard in der Therapie von Herzinsuffizienz
ist die Herztransplantation. Allerdings begrenzt die eingeschränkte Verfügbarkeit von Spender-
herzen den Zugang für alle bedürftigen Patienten, besonders wenn es um kindliche Herzinsuf-
fizienz geht. Diese kritische Einschränkung kann gemildert werden durch eine frühzeitige Be-
handlung von Patienten, die sich der Herzinsuffizienz nähern. Allerdings benötigen rechtzeitige
und geeignete Behandlungen ein detailliertes Verständnis der vielen kompensatorischen Mecha-
nismen bei Herzinsuffizienz, die durch Wachstum und Anpassung (engl. ’growth and remodel-
ling’, G&R) charakterisiert werden. In dieser Arbeit wird das Verständnis von Wachstum und
Anpassung weiterentwickelt durch die Entwicklung computerbasierter Modelle der kardialen
Mechanik. Diese Modelle können letztendlich die patientenspezifische Therapie durch in-silico
Vorhersagen langfristiger Reaktionen unterstützen und somit die Anzahl notwendiger Herztrans-
plantationen reduzieren.
In dieser Arbeit wird ein einzigartiger Datensatz präsentiert, der aus einem Wachstumshormon-
rezeptor Knockout Schweinemodell abgeleitet ist und den Charakteristika der humanen kind-
lichen Herzentwicklung entspricht. Der Datensatz umfasst Bewegungs-Computertomographie
(motioan-CT)-Scans, die die physiologische Bewegung und Morphologie über einen Zeitraum
von 40 Tagen erfassen. Dieser erworbene Datensatz wird zur Kalibrierung des schlagenden Herz-
modells und des kardialen Wachstumsmodells sowie für die Konstruktion einer repräsentativen
Herzform verwendet.
Das computergestützte Modell des schlagenden Herzens kombiniert eine dreidimensionale struk-
turelle Darstellung des Herzens mit einem null-dimensionalen Modell des Kreislaufs. Das struk-
turelle Modell des Herzens enthält ein aktives Spannungsmodell, das die Kontraktion der Herz-
muskelfasern steuert. Das aktive Spannungsmodell verwendet das computergestützte Modell des
schlagenden Herzens und eine Zielfunktion, die auf der Segmentierung von motion-CT-Scans
basiert, zur Kalibrierung. Das Kreislaufmodell besteht aus Windkessel-Elementen, welche durch
skalare Optimierung kalibriert werden, wobei sowohl der erworbene Datensatz als auch Litera-
turdaten einbezogen werden.
Das kardiale Wachstumsmodell basiert auf dem kinematischen Wachstumsansatz. Für die Ka-
librierung wird eine konsistente Ausrichtung aufeinanderfolgender Bilder trotz möglicher Va-
riationen in der Position zwischen den Scans sichergestellt, indem die Oberflächenanpassung
mit einer starrkörperfreien Projektion angewendet wird. Zusätzlich erfolgt die Kalibrierung der
Wachstumsparameter auf Grundlage einer bildbasierten Bayesian inversen Problemformulie-
rung. Ein neuartiges Signalnetzwerk, das die lokale Produktion von insulinähnlichem Wachs-
tumsfaktor 1 basierend auf mechanischen Reizen integriert, wird eingeführt. Physiologische Be-
reiche für die normalisierten Eingangskonzentrationen werden definiert. Darüber hinaus wird
eine globale Sensitivitätsanalyse durchgeführt, um die einflussreichsten Faktoren für das Wachs-
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tum des Herzens zu identifizieren. Abschließend wird eine neuartige Kopplung zwischen dem
Signalnetzwerk und dem kardialen Wachstumsmodell präsentiert und analysiert.

iv



Danksagung

Diese Arbeit entstand während meiner Zeit als Doktorand am Lehrstuhl für Mechanik auf Höchst-
leistungsrechnern der Technischen Universität München sowie während meiner Tätigkeit bei der
Firma AdjuCor GmbH. An dieser Stelle möchte ich allen danken, die mich während dieser Zeit
sowohl im akademischen als auch im beruflichen Umfeld begleitet und unterstützt haben.
Der größte Dank gebührt meinem Doktorvater, Prof. Dr. Michael W. Gee, für die Möglichkeit,
diese Arbeit zu realisieren. Sein Vertrauen in meine Fähigkeiten sowie seine Unterstützung wa-
ren von unschätzbarem Wert. Durch seine offene Art wurden stets neue Denkanstöße und Moti-
vationsschübe vermittelt.
Ein besonderer Dank gilt auch dem industriellen Kooperationspartner, Prof. Dr. Stephen Wildhirt
von der Firma AdjuCor GmbH, der mir sein Vertrauen entgegengebracht hat und jederzeit bereit
war, medizinische Fragen zu beantworten. In diesem Zusammenhang möchte ich auch den ande-
ren Mitarbeitern der Firma AdjuCor danken, deren Beiträge und Hilfsbereitschaft meine Arbeit
bereichert haben. Besonders hervorheben möchte ich Dr. Andreas Maier, der nicht nur mein
Mentor war, sondern mir während meiner gesamten Promotionszeit tatkräftig zur Seite stand.
Sein Rat und seine Unterstützung waren für mich von großer Bedeutung. Zudem gilt mein Dank
Michael Schmid, der während meiner Promotionszeit ein guter Freund geworden ist und mich
in dieser Zeit begleitet sowie stets motiviert hat.
Darüber hinaus möchte ich meinen Kollegen am Lehrstuhl für Mechanik auf Höchstleistungs-
rechnern danken, die während meiner Promotionszeit eine angenehme und hilfsbereite Atmo-
sphäre geschaffen haben. Die spannenden fachlichen Diskussionen und die entstandenen Freund-
schaften haben meinen Alltag bereichert. Ein besonderer Dank geht an Mikhail Zverlov, Ta-
har Arjoune, Lukas Rinderer, Ludwig Wagmüller, Willem Schüttler, Claus Kratzer, Dr. Lukas
Bruder und Dr. Alexander Schein für den inspirierenden Austausch.
Zusätzlich danke ich meinen Freunden für ihre Unterstützung und die gemeinsamen Erlebnisse.
Besonders hervorheben möchte meine engen Freunde Dr. Konstantin Key und Dr. Karsten Paul,
die mich während meines Studiums und meiner gesamten Promotionszeit begleitet haben und
entscheidend für meinen Weg waren. Ein ebenso großer Dank gilt meiner Freundin Rebecca,
die mich während meiner Promotion entscheidend unterstützt und mein Leben bereichert hat.
Zudem möchte ich meiner Familie danken. Ohne meine Mutter, Sabine, und meine Schwester,
Alina, wäre ich nicht der Mensch, der ich heute bin. Sie haben mir stets den Rückhalt gegeben,
den ich brauchte, und mich in schwierigen Zeiten unermüdlich unterstützt. Ohne sie wäre dieser
Weg erheblich herausfordernder gewesen.

München, im November 2024 Christian Bilas

v





Inhaltsverzeichnis

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Cardiovascular system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Mathematical fundamentals 9
2.1. Continuum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Stresses and constitutive laws . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3. Balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4. Initial boundary value problem . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5. Dimensionally-reduced fluid mechanics . . . . . . . . . . . . . . . . . 14

2.2. Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1. Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2. Discretization in space . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3. Discretization in time . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4. Nonlinear solution techniques . . . . . . . . . . . . . . . . . . . . . . 21

2.3. Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1. Parametrization and identification problem . . . . . . . . . . . . . . . 22
2.3.2. Bayesian inverse problem . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3. Lagrangian formulation and adjoint method . . . . . . . . . . . . . . . 24
2.3.4. Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5. Similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. Shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1. Surface matching problem . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2. Atlas construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1. Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2. Sobol indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Cardiac mechanics 37
3.1. Computational cardiovascular mechanics . . . . . . . . . . . . . . . . . . . . 37

3.1.1. Segmentation and geometry construction . . . . . . . . . . . . . . . . 37
3.1.2. Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3. Boundary conditions of the embedding tissue . . . . . . . . . . . . . . 42
3.1.4. Prestressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.5. 3D-0D coupled cardiovascular mechanics . . . . . . . . . . . . . . . . 44

vii



3.2. Computational cardiac growth mechanics . . . . . . . . . . . . . . . . . . . . 51
3.2.1. Kinematics of growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2. Phenomenological growth model . . . . . . . . . . . . . . . . . . . . 54

3.3. Signaling growth network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1. Heart growth network . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2. Hill differential equation approach . . . . . . . . . . . . . . . . . . . . 57
3.3.3. Signaling network evaluation . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.4. Coupling the signaling network and cardiac mechanics . . . . . . . . . 63

4. Application 65
4.1. Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1. Cardiac cycle calibration data . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2. Growth mechanics calibration data . . . . . . . . . . . . . . . . . . . . 67

4.2. Atlas computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1. Problem setup and parameter setting . . . . . . . . . . . . . . . . . . . 69
4.2.2. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3. 3D-0D heartbeat model calibration . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1. Flow network calibration . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2. Numerical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.3. Active stress calibration . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4. Patient-specific numerical results . . . . . . . . . . . . . . . . . . . . 79
4.3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4. Surface matching problem for growth . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1. Problem setup and parameter setting . . . . . . . . . . . . . . . . . . . 82
4.4.2. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5. Cardiac growth model calibration . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1. Growth prediction for two consecutive images . . . . . . . . . . . . . 86
4.5.2. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6. Signaling network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6.1. Global sensitivity analysis of signaling networks . . . . . . . . . . . . 90
4.6.2. Coupling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5. Summary and outlook 97

A. Mathematical model details 99
A.1. Tensor notation and mathematical operators . . . . . . . . . . . . . . . . . . . 99
A.2. Windkessel model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3. Derivation of the weak form . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.4. Probability space and random variables . . . . . . . . . . . . . . . . . . . . . 103
A.5. L-BFGS and optimization framework . . . . . . . . . . . . . . . . . . . . . . 104
A.6. Surface matching linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



B. Cardiac mechanics model 111
B.1. Active stress discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2. Growth material linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C. Signaling network 115
C.1. Heart growth signaling network . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.2. Demonstrator network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.3. Asymptotical stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
C.4. Signaling network model evaluation . . . . . . . . . . . . . . . . . . . . . . . 120

D. Numerical results 123
D.1. Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
D.2. Computational domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
D.3. Global sensitivity analysis of signaling network . . . . . . . . . . . . . . . . . 125

Literaturverzeichnis 131

ix





Abbildungsverzeichnis
1.1. Simplified sketch of the cardiovascular system with the heart at its center. . . . 3
1.2. The left heart function during a cardiac cycle. . . . . . . . . . . . . . . . . . . 4

2.1. Nonlinear continuum mechanics setting. . . . . . . . . . . . . . . . . . . . . . 10
2.2. 2-element windkessel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. 4-element windkessel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4. Diode windkessel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5. Elastance windkessel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. Exemplary CT image of the heart at the 80% diastolic state. . . . . . . . . . . . 38
3.2. Exemplary lumina of the left and right ventricle and outer layer of the myocardium. 39
3.3. Exemplary computational domain of a porcine heart. . . . . . . . . . . . . . . 40
3.4. Exemplary visualization of fiber and sheet direction. . . . . . . . . . . . . . . 41
3.5. Time dependent active stress evolution. . . . . . . . . . . . . . . . . . . . . . 42
3.6. Three-dimensional heart model coupled to the dimensionally reduced vascular

system network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7. Left and right atrial elastance evolution over a cardiac cycle. . . . . . . . . . . 48
3.8. Visualization of the multiplicative split of the deformation gradient. . . . . . . 54
3.9. Reduced and modified signaling network. . . . . . . . . . . . . . . . . . . . . 58
3.10. Different reaction types within a signaling network. . . . . . . . . . . . . . . . 58
3.11. Nonlinear Hill activation function. . . . . . . . . . . . . . . . . . . . . . . . . 59
3.12. Ordinary differential equation solution of the heart growth signaling network. . 62
3.13. Reduced and modified signaling network output concentration CellArea over the

input concentration of isoproterenol. . . . . . . . . . . . . . . . . . . . . . . . 63

4.1. Left and right ventricular volume over a cardiac cycle. . . . . . . . . . . . . . 66
4.2. Artificial pressure curves for the left and right heart. . . . . . . . . . . . . . . . 67
4.3. Left and right ventricular end-diastolic volumes over time. . . . . . . . . . . . 68
4.4. Segmented 80% diastolic state of the same heart over 40 days. . . . . . . . . . 69
4.5. Epicardial surfaces for all six pigs. . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6. Solution of the atlas construction problem. . . . . . . . . . . . . . . . . . . . . 71
4.7. Calibration of the systemic arterial windkessel model. . . . . . . . . . . . . . . 73
4.8. Calibration of the aortic valve. . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9. Calibration of the active stress functions for the left and right ventricle. . . . . . 78
4.10. Flow network state variables over one cardiac cycle. . . . . . . . . . . . . . . . 80
4.11. Deformation of the heart over a cardiac cycle. . . . . . . . . . . . . . . . . . . 81
4.12. Initial configuration of the surface matching problem. . . . . . . . . . . . . . . 83
4.13. Final configuration of the surface matching problem. . . . . . . . . . . . . . . 84
4.14. Projected solution of the surface matching problem. . . . . . . . . . . . . . . . 85

xi



4.15. Objective function value during the growth calibration process. . . . . . . . . . 87
4.16. Final distribution of the optimized growth parameter over the heart. . . . . . . 88
4.17. Comparison of the grown configuration with the measured data. . . . . . . . . 89
4.18. First- and total-order sensitivities for the REF and R&M network. . . . . . . . 91
4.19. Convergence of Sobol indices. . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.20. Concentration of species Stretch over the heart. . . . . . . . . . . . . . . . . . 93
4.21. CellArea concentration over the heart. . . . . . . . . . . . . . . . . . . . . . . 94

A.1. Resistance element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2. Compliance element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3. Inertance element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4. 3-element windkessel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.1. Reference signaling network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.2. Demonstrator signaling network. . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.3. Numerical solution of the demonstrator network. . . . . . . . . . . . . . . . . 119
C.4. Difference of DSS between the R&M and REF network. . . . . . . . . . . . . 122

D.1. Left and right ventricular stroke volume over time. . . . . . . . . . . . . . . . 124
D.2. Visualization of the finite element mesh. . . . . . . . . . . . . . . . . . . . . . 125
D.3. Visualization of boundary value problem. . . . . . . . . . . . . . . . . . . . . 126
D.4. Numerical solution of the spatial resolution study. . . . . . . . . . . . . . . . . 127
D.5. Sensitivity indices of CellArea with respect to the input concentrations for the

reference and reduced and modified network. . . . . . . . . . . . . . . . . . . 128

xii



Tabellenverzeichnis

2.1. First- and total-order sensitivity estimators. . . . . . . . . . . . . . . . . . . . 36

3.1. Baseline constitutive model parameters. . . . . . . . . . . . . . . . . . . . . . 43
3.2. Spring and dashpot boundary condition parameters. . . . . . . . . . . . . . . . 43
3.3. Pressure states and flow rates within the flow network. . . . . . . . . . . . . . 47
3.4. Baseline parameters for flow network. . . . . . . . . . . . . . . . . . . . . . . 48
3.5. Baseline values for the initial network state variables. . . . . . . . . . . . . . . 50

4.1. Overview of the atlas problem parameters. . . . . . . . . . . . . . . . . . . . . 71
4.2. Optimized flow network parameters. . . . . . . . . . . . . . . . . . . . . . . . 76
4.3. Overview of the numerical parameters for the 3D-0D coupled problem. . . . . 77
4.4. Optimized active stress parameters for the 3D-0D coupled problem. . . . . . . 78
4.5. Overview of the surface matching parameters. . . . . . . . . . . . . . . . . . . 83
4.6. Overview of the growth identification problem parameters. . . . . . . . . . . . 86
4.7. Initial, grown and measured volumes of the left and right ventricles. . . . . . . 88

C.1. List of all species within the reference and reduced and modified network. . . . 116

D.1. End-diastolic volumes for all pigs. . . . . . . . . . . . . . . . . . . . . . . . . 123
D.2. End-systolic volumes for all pigs. . . . . . . . . . . . . . . . . . . . . . . . . 124
D.3. Initial and final volumes of the left and right ventricles. . . . . . . . . . . . . . 126
D.4. Global sensitivity estimators for CellArea with respect to the input species in the

reference network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
D.5. Global sensitivity estimators for CellArea with respect to the input species in the

reduced and modified network. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiii





Acronyms

ANOVA analysis of variance
AV aortic valve point
AVP atrioventricular plane
BSA body surface area
CAE computer-aided engineering
CER cycle error criterion
CO cardiac output
CT computer tomography
DOF degree of freedom
DSS direct stationary solutions
EDV end-diastolic volume
EF ejection fraction
ESV end-systolic volume
FD finite difference
FEM finite element method
FSI fluid structure interaction
G&R growth and remodeling
GHR growth hormone receptor
GLS global longitudinal strain
GMRES generalized minimal residual method
HF heart failure
HR heart rate
HU Hounsfield units
IBVP initial boundary value problem
L-BFGS limited-memory Broyden-Fletcher-Goldfarb-Shanno
LDDMM large deformation diffeomorphic metric mapping
LV left ventricle
LVB left ventricular bottom point
MAP maximum a posteriori
MC monte carlo
MULF modified updated Lagrangian formulation
MVP mitral valve posterior point
OAT one at a time
ODE ordinary differential equation
PDF probability density function
PTC pseudo-transient continuation
R&M reduced and modified network

xv



REF reference network
RKHS reproducing kernel Hilbert space
RV right ventricle
SIMPLE semi-implicit method for pressure-linked equations
STL stereolithographic
SV stroke volume
TV total variation

xvi



Nomenclature

Symbols Description

Subscripts and superscripts
(•)ar arterial circulation quantity
(•)at atrial quantity
(•)base heart base quantity
(•)c heart cavity quantity
(•)e element
(•)epi heart epicardium quantity
(•)ext external quantity
(•)in inlet quantity
(•)int internel quantity
(•)kin kinematic quantity
(•)` left heart quantity
(•)lid lid quantity
(•)out outlet quantity
(•)pul pulmonary circulation quantity
(•)r right heart quantity
(•)sys systemic circulation quantity
(•)v ventricular quantity
(•)ven venous circulation quantity

Domains and surfaces
Ω0 reference configuration
Ωg intermediate growth configuration
Ω current configuration
Γ surface area
Γu Dirichlet boundary
Γn Neumann boundary
∂Ω surface of the current configuration

Continuum physics
P first Piola-Kirchhoff stress tensor
S second Piola-Kirchhoff stress tensor
Ce elastic material tangent
Ψe elastic strain energy function
e Euler-Almansi strain tensor

xvii



Symbols Description
E Green-Lagrange strain tensor
C material tangent
ϕ mapping from reference to current configuration
a acceleration vector
b volumetric body force
σ Cauchy stress tensor
n outward surface normal in current configuration
t traction vector in current configuration
x position vector in current configuration
ρ density in current configuration
F deformation gradient
J determinat of the deformation gradient
u displacement vector
I identity matrix
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1. Introduction

1.1. Motivation

Heart failure (HF) is a life-threatening clinical condition and affects more than 26 million people
worldwide [117]. Despite improvements in medical care, heart diseases remain the leading cause
of death in Europe and Northern America, contributing to 23% of all deaths in Germany and the
United States [22, 110, 124].
HF is characterized by a complex clinical syndrome in which the heart is incapable of maintai-
ning a cardiac output (CO) sufficient to meet metabolic requirements [82]. Symptoms of HF,
such as fatigue, shortness of breath, and lower extremity edema, reveal the heart’s struggle to
pump blood effectively [154]. The outcome is ultimately fatal [135].
While the burden of HF is substantial across all age groups, it is a more pressing concern when
it comes to pediatric cases. Considering the number of individuals affected, cases of adult HF
significantly surpass the number of pediatric cases. However, pediatric HF emerges as a critical
public health concern. When a child is hospitalized for HF, the costs are notably higher than
those for adults due to the frequent need for surgical or catheter-based interventions. Beyond the
financial burden, the emotional impact on the family is profound [67].
The etiology of HF in pediatric cases significantly differs from that observed in adults. The
most prevalent factor contributing to pediatric heart failure is structural congenital heart disease,
characterized by abnormalities in the heart’s structure present from birth [30]. Cardiomyopathies,
which lead to impaired pumping function, are the primary cause of heart failure in children with
a structurally normal heart [97].
Understanding and treating HF in children leads to distinctive challenges. The overall treat-
ment goals are similar to HF in adults, which are correcting underlying problems, minimizing
morbidity and mortality, and improving functional status and quality of life [68]. However, a
fundamental difference emerges since only a few drugs that have proven effective in adults with
HF have gained regulatory approval for use in children [112]. Surgical and interventional ad-
vancements have significantly reduced morbidity and mortality associated with structural heart
disease. However, when it comes to cardiomyopathy, only little progress has been made in im-
proving the significant mortality and morbidity. Heart transplantation stands as the preferred
therapy for end-stage HF in children resistant to surgical and medical interventions. Yet, after
one year post-transplantation, the survival chances reach up to 85%, and the overall survival after
20 years post-transplantation is even only 40% [68].
To increase these numbers, the early identification of patients advancing toward HF is essential
for implementing timely and suitable treatments. Additionally, integrating predictions of long-
term response to treatments supports clinical decision-making, enhancing the overall effectiven-
ess of patient care. Computational models of cardiac mechanics have the potential to support
patient-specific therapies by in-silico. In this context, biophysical models of organs provide the
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opportunity to non-invasively estimate clinical quantities of interest. The value of computer-
aided engineering (CAE) is linked to the dynamic progressions, which are the ever-increasing
speed of computing hardware and, the continuous refinement of computational approaches con-
cerning physical models, and the robustness of predictions. To complement these hardware ad-
vancements, the evolution of software is equally imperative, ensuring a seamless transition and
optimizing the overall efficiency in engineering problem-solving.
This work advances the knowledge about cardiac growth and remodeling. Therefore, a unique
data set, which resembles the characteristics of healthy pediatric heart development, is presented.
This data set is employed for the calibration of a beating heart and cardiac growth model as well
as to construct a representative heart shape. This representative heart shape can be used when
patient-specific treatments are unfeasible. As a foundation for the development of cardiac growth
models, the beating heart model is calibrated to the acquired data set. Subsequently, the patient-
specific cardiac growth model is derived based on the data set. Another cardiac growth model
employs signaling cascades on a cellular level as a growth measure.
In the remainder of this section, the medical background is explored to provide the necessary
foundation. For a more profound overview, the reader is referred to [13, 72]. Subsequently, the
particular research objectives are outlined.

1.2. Cardiovascular system

The cardiovascular system is an intricate network of veins and arteries, forming a closed circu-
latory system. Its primary function is to serve as the central transport system for blood, ensuring
the circulation of oxygen, nutrients, and waste products throughout the body. At its center, the
heart, which is a muscular organ situated in the thoracic cavity, is located and is responsible for
driving the circulatory process.
The heart is suspended by its attachment to the major vessels within a fibrous sac called the
pericardium. It is composed of three types of cardiac muscle fibers: The atrial muscle fibers, the
ventricular muscle fibers, and the conductive muscle fibers. The atrial and ventricular muscles
are similar to skeletal muscles, while the conductive muscles consist of specialized fibers that
can be stimulated and contracted. This unique combination allows electrical signals to travel,
leading to the contraction of individual cells within the fibers. Simplified, the cardiac muscle can
be thought of as a network formed by many cardiac muscle cells [78].
The heart is divided into four chambers, forming two separate pumps organized in series: the
right heart, which transports blood into the lungs, and the left heart, which is responsible for
pumping blood throughout the peripheral or systemic organs into the rest of the body. Each
pump is subdivided into an atrium as the receiving chamber and a ventricle as the discharging
chamber. The atrium serves as a weak first pump, supplying the ventricle with a continuous
blood flow. The primary pumping force results from the ventricle. The pathway of blood flow
through the circulatory system and the four-chambered heart is depicted in Fig. 1.1.
Deoxygenated blood returns from the systemic organs through the superior and inferior vena
cavae to the right atrium. Subsequently, it travels through the tricuspid valve into the right ven-
tricle and is pumped through the pulmonary valve into the pulmonary artery. After traversing
the pulmonary capillary beds, the now-oxygenated blood returns to the left atrium through the
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Abbildung 1.1.: Simplified sketch of the cardiovascular system with the heart at its center. First,
oxygenated blood is ejected from the left ventricle through the aortic valve into
systemic circulation via the aorta. Simultaneously, deoxygenated blood is de-
livered to the pulmonary circulation via the pulmonary artery into the lungs.
Within the capillary networks, oxygen consumption and re-oxygenation take
place. Subsequently, the ventricles relax, and filling through the left and right
atria starts. The figure is reprinted and modified with permission under a Crea-
tive Commons license [26].

pulmonary veins. The blood flow then proceeds through the mitral valve into the left ventricle
and is pumped through the aortic valve into the aorta.

The cardiac events occurring within one heartbeat are called the cardiac cycle. The resulting
blood pressure and volume curves during a cardiac cycle are exemplary shown in Fig. 1.2. Fur-
thermore, a single heartbeat is divided into five phases [54].

• Phase 1: Atrial contraction initiates the cardiac cycle as the atrioventricular valves open
while the semilunar valves remain closed. During this phase, the atria contract to actively
support the filling of the ventricles, which results in an increase in the ventricular volume.

3



Is
ov

olu
m
ic 

co
nt

ra
cti

on

Ej
ec

tio
n

Is
ov

olu
m
ic 

re
lax

at
ion

Ra
pid

 in
flo

w

Dias
ta

sis

At
ria

l s
ys

to
le

Aortic pressure

Atrial pressure

Ventricular pressure

Ventricular volume

Electrocardiogram

Phonocardiogram

Systole Diastole Systole

1st 2nd 3rd

P
R

T
Q S

a c vPr
es

su
re

 (
m

m
H

g)

120

100

80

60

40

20

0

V
ol

um
e 

(m
L)

130

90

50

Aortic valve
opens

Aortic valve
closes

Mitral valve
closes

Mitral valve
opens

Abbildung 1.2.: The left heart function during a cardiac cycle. The figure is published under a
Creative Commons license [18].

• Phase 2: Isovolumetric contraction is characterized by the closure of both the atrio-
ventricular and semilunar valves. Here, the ventricular myocytes, primarily aligned in a
circumferential orientation, start to contract. This contraction generates tension within the
ventricular walls, leading to an increase in chamber pressure while keeping the volume
constant.

• Phase 3: Ejection of blood from the ventricular chambers starts when the ventricular
pressures exceed the pressures within the aorta (on the left side) and the pulmonary artery
(on the right side). This phase of the cardiac cycle is known as systole. During systole,
the tricuspid and mitral (atrioventricular) valves remain closed due to the higher pressures
within the ventricles. Consequently, ventricular volume and pressure decrease.

• Phase 4: Isovolumetric relaxation begins as soon as the ventricular pressure falls below
the aortic or pulmonary artery pressure, leading to the closure of the aortic and pulmona-
ry valves. Further, when the pressures in the ventricles fall below those in the atria, the
atrioventricular valves open. This phase of the cardiac cycle is known as diastole.
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• Phase 5: Ventricular filling marks the start of the last phase, where the ventricular volume
increases while the pressure remains constant.

Subsequently, atrial contraction initiates the next cardiac cycle. Under normal in-vivo conditions,
the heart rate (HR) determines the number of cardiac cycles per minute and typically averages
around 70 beats per minute.
Further crucial parameters in this context are the end-diastolic volume (EDV), which is measured
at the end of phase 1, and the end-systolic volume (ESV), determined at the end of phase 3. The
difference between EDV and ESV is called stroke volume (SV)

SV = EDV− ESV. (1.1)

The cardiac output (CO) relates the SV and HR

CO = SV ∗ HR. (1.2)

The ejection fraction (EF) acts as a standard parameter to assess the severity of HF and is defined
as

EF =
SV

EDV
. (1.3)

In a resting, healthy individual, the left ventricular EF is typically around 60%, and the right
ventricular EF is approximately 50% [114]. The CO is roughly 5 liters per minute. For children,
it is around 100 − 250 mL/(min kg) [32]. In heart failure, where the ventricles cannot pump
blood effectively, the CO is reduced. This leads to a diminished circulation of blood throughout
the body, impairing the delivery of oxygen and nutrients to vital organs and tissues. Subsequently
leading to limitations in physical activity.

1.3. Research objectives
As outlined in Sec. 1.1, the potential value of computational biomedical models in supporting
clinical analysis, decision-making, and predicting long-term responses is substantial. The prima-
ry objective of this thesis is to advance models in the field of computational cardiac mechanics,
focusing on patient-specific calibration.
The specific research contributions are as follows:

• Data acquisition: The initial step toward developing patient-specific computational car-
diac mechanics models is to acquire a data set that captures the physiological motion and
morphology of the heart. This involves taking motion-computer tomography (motion-CT)
scans on porcine hearts, ensuring that the heartbeat is covered in multiple images. To ac-
count for growth-related changes, these CT scans are repeated over time. The data set is
specifically designed to resemble the heart size of children, which leads to the choice of
growth hormone receptor (GHR) knockout pigs [60, 61].

• Identification of a representative heart shape: In various engineering tasks, the repre-
sentation of a data set by a single shape that captures the essential morphological and
geometrical features is crucial. The atlas construction method [37] is employed to create a
representative heart shape, which acts as a generic heart shape of the acquired data set.
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• Calibration of the beating heart: The evaluation of the cardiac heartbeat model con-
tains the solution of a nonlinear elastodynamic boundary value problem, which returns
the material deformation throughout the heartbeat and temporally resolved pressure and
flow values within the cardiovascular system [62]. The objective is to calibrate the model
parameters using the acquired data set based on an inverse problem formulation [63].

• Patient-specific computational cardiac growth model: To ensure consistent alignment
of consecutive images, the objective is to employ a method based on the surface matching
formulation [51]. This method guarantees accurate image alignment despite potential va-
riations in the patient’s position between scans. Subsequently, the objective is to use an
image-based inverse analysis framework [80] to calibrate the computational cardiac grow-
th model. The overall application of this model is to predict heart growth and potential
individual disease-related deviations, aiding doctors in their treatment decisions and the
selection of suitable implants and prostheses.

• Identification and modeling the cardiac growth signaling cascades: Signaling net-
works capture the complex interplay of mechanical and biochemical stimuli for heart
growth on a cellular level [45, 55, 56, 153]. The goal is to identify a network that, first, is
capable of modeling the local insulin-like growth factor 1 (IGF1) production in response
to mechanical stimuli and, second, can be used to predict a quantity to drive heart growth.
Furthermore, the aim is to use global sensitivity analysis, based on Sobol indices [132],
to identify the most influential factors governing heart growth within this novel network.
Subsequently, the objective is to couple this network with computational cardiac mecha-
nics models, utilizing inputs from the cardiac heartbeat model to predict heart growth.

Parts of these objectives were developed in cooperation with an industrial partner. Therefore,
some applications may not be fully explicated within this thesis. The primary focus remains on
methodological advancements. For example, the atlas construction method has been utilized to
identify a representative heart shape, while its application is not detailed.

1.4. Outline

The remainder of this thesis is structured as follows:

Chapter 2 outlines the mathematical fundamentals. In Sec. 2.1, the fundamentals of nonlinear
continuum mechanics are derived. Sec. 2.2 summarizes the spatial and temporal discretization
methods as well as the iterative solution techniques for nonlinear systems of equations. Sec. 2.3
introduces the parametrization framework to the nonlinear systems of equations. The surface
matching framework based on the surface currents is presented in Sec. 2.4. Finally, in Sec. 2.5,
the global sensitivity analysis based on Sobol’s indices is derived.

The formulation of the computational cardiovascular mechanics models is given in Chapter 3.
Sec. 3.1 focuses on the segmentation, geometry construction, and computational formulation
of the beating heart, as well as the coupling with the vascular system. Sec. 3.2 describes the
kinematic growth framework and the corresponding parametrization. In Sec. 3.3, the signaling
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network, which describes the heart growth signaling cascades, is outlined.

Chapter 4 presents numerical examples for the proposed frameworks. In Sec. 4.1, the data col-
lection process and evaluation are discussed. In Sec. 4.2, the representative shape of the acquired
data set is shown. Subsequently, Sec. 4.3 presents the calibration of the computational model
of the beating heart. The alignment of consecutive CT images using the surface matching fra-
mework is shown in Sec. 4.4. In Sec. 4.5, the calibration of the kinematic growth framework is
outlined. Sec. 4.6 presents the results of the global sensitivity analysis and the coupling between
the cardiac mechanics models and the signaling networks.

Chapter 5 concludes this thesis and describes possible extensions for future work.
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2. Mathematical fundamentals

This chapter summarizes the mathematical fundamentals used within the computational models
of this work. Sec. 2.1 introduces the fundamental governing equations of nonlinear continuum
mechanics. Subsequently, Sec. 2.2 provides the concepts to approximate the solution of the resul-
ting nonlinear initial boundary value problem using the finite element method. Sec. 2.3 discusses
the inverse analysis framework for parameter optimization. Thereafter, in Sec. 2.4, the compu-
tational method of shape analysis is outlined. Finally, in Sec. 2.5, global sensitivity analysis is
presented.

2.1. Continuum mechanics

This section presents a brief overview of the governing equations of continuum mechanics, in-
cluding crucial aspects such as kinematics, stress principles, balance laws, and constitutive rela-
tions. Subsequently, the initial boundary value problem for dynamical problems is derived. For
a more profound introduction to continuum mechanics, the reader is referred to [64]. Note that
in this work, all higher-order tensors are denoted by bold symbols, and a general overview of
tensorial notation and mathematical operations is given in App A.1.

2.1.1. Kinematics

The general geometrical setup of nonlinear continuum mechanics is depicted in Fig. 2.1.
Let Ω0 ∈ R3 denote the reference or material configuration of a continuous body with particle
position X at time t = 0. Correspondingly, the spatial or current configuration Ωt of the same
body with particle position x is introduced. The deformation of the body is characterized by the
bijective nonlinear deformation map ϕ that transforms the material position X into the spatial
position x for all times t,

ϕ(X, t) =

{
Ω0 → Ωt,

X → x(X, t).
(2.1)

The finite displacement field between the two configurations is defined as

u(X, t) = x(X, t)−X. (2.2)

The material time derivative is denoted by

˙(•) =
d
dt

(•). (2.3)
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Abbildung 2.1.: Nonlinear continuum mechanics setting with reference configuration Ω0 and
current configuration Ωt of a continuum body.

The first- and second-time derivatives of the displacement field result in the velocity and accele-
ration field,

v(X, t) = u̇(X, t), (2.4)
a(X, t) = v̇(X, t) = ü(X, t). (2.5)

The material gradient of the deformation mapping is called the deformation gradient F and is
defined as

F (X, t) =
∂ϕ(X, t)

∂X
. (2.6)

For the sake of simplicity and readability, in the following, the dependency of kinematic quanti-
ties on time t and spaceX is omitted.
The second-order tensor field F is used to transform an infinitesimal line segment dX from
the reference configuration into the current configuration dx, which is called a push-forward
operation,

dx = FdX. (2.7)

Its inverse defines the pull-back operation

dX = F−1dx. (2.8)

The determinant J of the deformation gradient

J = det(F ) > 0, (2.9)
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serves as a measure of the change of the infinitesimal volume element dv and dV in the current
and reference configuration, respectively and it reads

dv = JdV . (2.10)

Similarly, using Nanson’s formula, the deformation of an infinitesimal surface element is given
by

da = JF−TdA, (2.11)

where da and dA are the infinitesimal surface elements in the current and reference configura-
tion, respectively.
Defining metrics of strain is essential for characterizing the material’s behavior. Two commonly
used definitions of strain are the material Green-Lagrange strain tensor

E =
1

2
(C − I) , (2.12)

and the spatial Euler-Almansi strain tensor

e =
1

2

(
I − b−1

)
, (2.13)

where

C = F TF , (2.14)

is the right Cauchy-Green deformation tensor, which is invariant to rigid body motion and

b = FF T , (2.15)

is the left Cauchy-Green deformation tensor associated with the spatial configuration.

2.1.2. Stresses and constitutive laws

The relationship between stress and strain is a fundamental aspect of describing the behavior
of deformable materials. In this context, stress can be thought of as the force responsible for
deformation, while strain quantifies the resulting deformation. According to Cauchy’s stress
theorem, the relationship between the spatial surface traction t and the spatial outward surface
normal n at an arbitrary point x on a cut through a body is linear. This relationship is described
by the symmetric second-order Cauchy stress tensor σ,

t(x,n) = σ(x)n. (2.16)

This theorem can also be formulated in terms of the reference outward normal N , and the refe-
rence coordinateX , resulting in

t0 = t(X,N ) = P (X)N . (2.17)
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Here,P represents the non-symmetric first Piola-Kirchhoff stress tensor, which is obtained from
the Cauchy stress tensor by a pull-back operation

P = JσF−T . (2.18)

Given that the first Piola-Kirchhoff stress tensor is a two-point tensor defined in the reference
and current configuration, an alternative stress measure is introduced. This alternative measure,
known as the second Piola-Kirchhoff stress tensor S, is defined only in the material configurati-
on, and it reads

S = F−1P . (2.19)

The second Piola-Kirchhoff stress tensor is symmetric, making it a suitable quantity for formu-
lating constitutive laws in the context of total Lagrangian solid mechanics. This symmetry is
crucial for objectivity, ensuring that the stress measures are independent of the choice of coor-
dinate systems or observers and remain invariant under arbitrary rigid body motions, thereby
providing a consistent description of material behavior. Using the second Piola-Kirchhoff stress
tensor, the reference traction force T is defined as

T (X,N ) = S(X)N . (2.20)

Constitutive theories aim to mathematically model the behavior of materials and link the stress
response of a material to strain measures. Within this thesis, models with homogeneous hyper-
elasticity are used. These materials postulate the existence of a so-called strain energy function
Ψ(F ), which maps a second-order tensor to a scalar with units of energy per volume [J/m3]. Un-
der the assumption of isotropic material behavior, Ψ can be represented using the three principal
invariants of the right Cauchy-Green tensor C,

Ψ = Ψ(C) = Ψ(I1(C), I2(C), I3(C)), (2.21)

with

I1(C) = tr(C), (2.22)

I2(C) =
1

2

[
(tr(C))2 − tr(C2)

]
, (2.23)

I3(C) = det(C) = J2. (2.24)

Recalling Eq. (2.14) and Eq. (2.12), the strain energy function can also be written as

Ψ(C) = Ψ(F ) = Ψ(E). (2.25)

Within compressible isotropic hyperelasticity, the deformation can be split into an isochoric
and volumetric part, adopting a penalty-based approach. This allows for practical handling of
near-incompressible behavior and provides flexibility in addressing various degrees of volume
changes, and it reads

Ψ(I1(C), I2(C), I3(C)) = Ψiso(Ī1(C), Ī2(C)) + Ψvol(J) (2.26)
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with the modified invariants

Ī1(C) = J−2/3I1(C), (2.27)

Ī2(C) = J−4/3I2(C), (2.28)
Ī3(C) = 1. (2.29)

By differentiating a given strain energy function Ψ, the first Piola-Kirchhoff stress tensor can be
computed as

P =
∂Ψ

∂F
, (2.30)

and the second Piola-Kirchhoff stress tensor is given by

S = 2
∂Ψ

∂C
=
∂Ψ

∂E
. (2.31)

Further, the material tangent to the stress-strain relationship is computed via

C = 2
∂S

∂C
= 4

∂2Ψ

∂C2
. (2.32)

This fourth-order tensor will be used in nonlinear continuum mechanic problems, see Sec. 2.2.4.

2.1.3. Balance equations
Conservation of mass In a closed mechanical system, i.e., without growth or remodeling,
the total massm of the body is conserved. With respect to the reference configuration, this yields

dm
dt

=
d
dt

∫
Ω0

ρ0 dV =

∫
Ω0

ρ̇0 dV = 0, (2.33)

and thus, in local form

ρ̇0 = 0, in Ω0. (2.34)

The local form in the current configuration can be derived using Reynold’s transport theorem
[12] and is given by

ρ̇+ ρ∇x · u̇ = 0, in Ωt. (2.35)

The densites ρ and ρ0 are defined as the ratio of a material element mass dm over its deformed
or undeformed volume, respectively.

Balance of linear momentum As a generalized version of Newton’s first law of motion,
the balance of linear momentum states that changes in linear momentum must correspond to all
external forces acting on a body. In reference configuration, it is given by

ρ0ü = ∇X · P + b0, (2.36)

while in the current configuration, it reads

ρü = ∇x · σ + b, (2.37)

where b and b0 are volumetric forces defined as the ratio of the material element force db over
its deformed or undeformed volume, respectively.
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Balance of angular momentum The balance of angular momentum states that the change
in angular momentum must equal all external moments acting on the body. It can be demons-
trated that for both the reference and current configuration, the angular momentum imposes the
condition that both the Cauchy stress tensor σ and the second Piola-Kirchhoff stress tensor S
must be symmetric

σ = σT , (2.38)

S = ST . (2.39)

2.1.4. Initial boundary value problem

The equations presented above fully describe the kinematics and stress-strain relations in a con-
tinuum. Generally, problems in nonlinear continuum mechanics can be addressed by an initial
boundary value problem (IBVP) in a given time span t ∈ [t0, T ]. In material description, the
IBVP reads

∇X · P + b0 = ρ0ü in Ω× [t0, T ], (2.40)
u = û on Γu × [t0, T ], (2.41)

P ·N = t0 on Γn × [t0, T ], (2.42)
u(X, t0) = û(X) in Ω0, (2.43)
u̇(X, t0) = v̂(X) in Ω0. (2.44)

The Dirichlet and Neumann boundaries in the reference configuration Γu and Γn, respectively,
are disjunct sets and form the surface ∂Ω of the reference domain. Dirichlet boundary conditions
specify values of the displacements u, whereas Neumann boundary conditions specify a traction
force t0. Equations (2.43) and (2.44) are the initial conditions at time t = t0 for the displacement
and the velocity field, respectively. The set of equations (2.40)-(2.44) are also called the local
or strong form since they describe the local mechanical behavior at every material point and at
every time.

2.1.5. Dimensionally-reduced fluid mechanics

As discussed in Sec. 1.2, the heart operates in a closed-loop system, where blood flows conti-
nuously through the circulatory system. Hence, when modeling cardiac mechanics, it is essential
to account for the circulatory system and blood flow. This can be achieved in various ways, such
as employing complex Fluid-Structure Interaction (FSI) methods, as discussed in [91]. Howe-
ver, in this thesis, a simplified dimensional reduced mechanical model is used to approximate
the vascular system. Here, so-called 0-dimensional (0D) lumped parameter Windkessel models
are employed.
Within these models, the relationship between the quantities of interest, the pressure p, and flow
rate q is modeled. For a comprehensive overview, the reader is referred to [158]. The following
section provides an overview of all necessary components based on the insights from [62]. The-
se components are motivated by principles found in electrical circuits. A detailed description of
each component and the derivation of all windkessel model equations can be found in App. A.2.

14



2-element windkessel The 2-element windkessel model describes the circulatory system’s
venous behavior and is depicted in Fig. 2.2. In analogy, this model operates as a low-pass filter
element. The model equation reads

C
dpin

dt
+
pin − pout

R
= qin. (2.45)

Abbildung 2.2.: 2-element windkessel model.

4-element windkessel The 4-element windkessel model is used to describe the arterial cir-
culation and is presented in Fig. 2.3. Its model equation is given by [144]

C
dpin

dt
+
pin − pout

R
+
LC

R

d2pin

dt2
=

(
1 +

Z

R

)
qin +

(
CZ +

L

R

)
dqin

dt
+
LCZ

R

d2qin

dt2
. (2.46)

Abbildung 2.3.: 4-element windkessel model.

Diode element The diode element models the heart valves and is shown in Fig. 2.4. It induces
a pressure drop in the presence of flow. Unlike the resistance, the proportionality constant R̃
varies with the direction of the pressure gradient across the valve. The model equations read

R̃q = pin − pout, (2.47)

R̃ =

{
Rmax for pin < pout,

Rmin for pin > pout.
(2.48)
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Abbildung 2.4.: Diode windkessel model.

Elastance model The Elastance model is used to model the atrial compartments and is de-
picted in Fig.2.5. It represents a capacity to store and release fluid. Consequently, the rate of
change in a compartment volume describes the reduction in flow rate. The model equations read

dV
dt
− qin + qout = 0, (2.49)

pin = [(Emax − Emin)y(t) + Emin](V − V 0). (2.50)

Abbildung 2.5.: Elastance windkessel model.

2.2. Finite element method
The finite element method (FEM) [70, 165] is based on variational formulations of differen-
tial problems, like the ones introduced in Sec. 2.1.4. The corresponding variational problems,
assuming sufficient regularity of the solutions, share identical solutions with their differential
counterparts. Specifically, it is possible to analyze differential problems using functional ana-
lysis by first obtaining their linear variational forms, see Sec. 2.2.1. After obtaining the weak
form, the computational domain is approximated by so-called finite elements, see Sec. 2.2.2.
Sec. 2.2.3 explains temporal discretization needed for dynamic problems. Finally, in Sec. 2.2.4,
iterative solution techniques for nonlinear systems of equations are presented.

2.2.1. Weak formulation
To derive the weak form, the balance law in Eq. (2.40) is multiplied with a so-called weighting or
test function1 δu from an appropriate vector space V and afterward integrated over the reference

1In the context of structural mechanics, the test function is also referred to as the virtual displacement.
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computational domain and it reads∫
Ω0

[ρ0ü−∇X · P − b0] δu dV = 0 ∀δu ∈ V . (2.51)

Subsequently, suitable infinite-dimensional solution manifolds and spaces for the solutions u
and the test function δu are defined, respectively,

u ∈ U = {u ∈ [H1(Ω0)]3| u = û on Γu}, (2.52)
δu ∈ V = {δu ∈ [H1(Ω0)]3| δu = 0 on Γu}. (2.53)

Here, U denotes the solution space, V the trial function space, and H1(Ω0) is a Sobolev space
on Ω0. The Dirichlet boundary conditions are consistently imposed by selecting appropriate
function spaces.
Using the divergence theorem, the boundary conditions of the IBVP and the transformation from
the first to the second Piola-Kirchhoff stress tensor yields the well-known principle of virtual
work in the material description. A more detailed derivation is given in App. A.3. The final form
of the weak form reads

δW = δWkin + δW int − δWext = 0 ∀δu ∈ V , (2.54)

with the kinematic virtual work

δWkin =

∫
Ω0

ρ0ü · δu dV , (2.55)

the internal virtual work

δW int =

∫
Ω0

S : δE dV , (2.56)

and the external virtual work

δWext =

∫
Ω0

b0 · δu dV +

∫
Γn

t0 · δu dA. (2.57)

2.2.2. Discretization in space
The weak form of the IBVP (2.54) is the starting point for the finite element method. First, the
computational domain is divided into finite elements, which are a set of geometrically simple
shapes, e.g., tetrahedra,

Ω0 ≈ Ω̃0 =

nel⋃
e=1

Ωe
0, (2.58)

where nel is the total number of elements that are used to approximate the domain Ω0. Second,
the continuous problem is reformulated as a discrete problem. Therefore, the global continuous
function u is substituted with the discrete solution uh ∈ Uh ⊂ U and the test function δu is
substituted with the virtual displacement δuh ∈ Vh ⊂ V . Given a finite element with a total of nn
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element nodes, each of these nodes is associated with a shape function Ni(X), i ∈ {1, . . . , nn}.
The set of all shape functions within one finite element is denoted asN e(X). The displacement
vector uh for each finite element is defined as the linear combination of the nodal displacements
de and its shape functionsN e(X),

uh

∣∣∣
Ωe

0

≈ ueh(X, t) = N e(X) de(t). (2.59)

Similarly, the virtual displacement δuh is approximated as

δuh

∣∣∣
Ωe

0

≈ δueh(X, t) = N e(X) δde(t), (2.60)

where δde is the virtual displacement vector. Using the same shape functions for the solution uh
and the weighting function δuh is called the Bubnov-Galerkin method2 [148].
For the sake of simplicity and readability, the dependencies of Eq. (2.59) and Eq. (2.60) on
position X and time t are omitted. In this work, the finite element method is based on the
isoparametric concept, i.e., the chosen basis functions are also used to represent the geometry

Xh

∣∣∣
Ωe

0

≈Xe
h = N e X̃e

h, (2.61)

where X̃e
h are the nodal coordinates. For a given finite element with nn element nodes, the shape

function matrixN e ∈ R3×nel reads

N e =

N1 0 0 . . . Nnn 0 0
0 N1 0 . . . 0 Nnn 0
0 0 N1 . . . 0 0 Nnn

 . (2.62)

The basic idea for shape functions is to choose a set of simple polynomials, where the ith shape
function takes the value of 1 at the ith node and 0 at every other node. Furthermore, they sum up
to 1 at every location inside the finite element, which is the so-called partition of unity. The most
common shape functions are Lagrange polynomials.
The element displacement vector de ∈ R3nn and the virtual displacement vector δde ∈ R3nn are
given as

de =



de1,1
de1,2
de1,3

...
denn,1

denn,2

denn,3


, δde =



δde1,1
δde1,2
δde1,3

...
δdenn,1

δdenn,2

δdenn,3


, (2.63)

where di,j and δdi,j of element e are the displacement and virtual displacement of node i in
spatial direction j, respectively.

2Choosing different basis functions yields the so-called the Petrov-Galerkin method.
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With all the necessary tools available, the weak from Eq. (2.54) can now be approximated as the
sum over all finite elements

δW ≈
nel∑
e=1

[
M ed̈

e
+ f eint − f eext

]
· δde = 0, ∀δde. (2.64)

The element mass matrixM e fulfills

M ed̈
e · δde =

∫
Ω0

ρ0
eüeh · δueh dV . (2.65)

The nonlinear element internal force vector f eint includes all kinematic and constitutive contribu-
tions and fulfills

f eint · δde =

∫
Ω0

Se : δEe dV . (2.66)

The element external force vector f eext includes contributions of prescribed body forces and
boundary tractions and fulfills

f eext · δde =

∫
Ω0

be0 · δueh dV +

∫
Γn

T e · δueh dA. (2.67)

According to the fundamental lemma of variational calculus, the discretized global principle of
virtual work (2.64) has to be satisfied for arbitrary virtual displacements δde. Thus, the final
global balance of linear momentum yields

Md̈+ f int − f ext = 0, (2.68)

with the global mass matrix M ∈ Rndof×ndof , the global internal force vector f int ∈ Rndof , the
global external force vector f ext ∈ Rndof , the global displacement vector d ∈ Rndof , the global
virtual displacement vector δd ∈ Rndof and ndof as the global number of degrees of freedom.
Note that to obtain the global mass matrix, internal force and external force vector, assembly
procedures are required. These procedures involve aggregating the contributions from individual
elements into the corresponding global quantities, accounting for the connectivity and boundary
conditions of the finite element model [165].
While damping is prevalent in nearly all engineering applications, the global balance equation
(2.68) does not account for damping. To address this, it is common practice to introduce the
Rayleigh damping matrixD ∈ Rndof×ndof as

D = cMM + cf
∂f int

∂d
, (2.69)

with cM [1/s] being the constant scale factor for the mass matrix and cf [s] as the scale factor of
the so-called tangent stiffness matrix.
Finally, the spatially discretized computational model reads

Md̈+Dḋ+ f int − f ext = 0. (2.70)

Note that the displacements d = d(t) and the forces f int = f int(d, t) and f ext = f ext(d, t) are
time-dependent functions. Therefore, discretization in time is explained in the following section.
For steady-state problems, i.e., problems with no temporal dependency, Eq. (2.70) simplifies to

f int − f ext = 0. (2.71)
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2.2.3. Discretization in time
This section presents time integration schemes for solving first- and second-order ordinary dif-
ferential equations (ODEs). In contrast to spatial discretization, time discretization in this work
is achieved through the finite difference (FD) method.
For first-order ODEs, the one-step-θ scheme is used

(•)n − (•)n−1

∆t
= θf((•)n) + [1− θ]f((•)n−1), (2.72)

with the scalar parameter θ ∈ [0, 1] and time step n. For θ = 0 the explicit time integration
scheme called Forward-Euler scheme is obtained, wheres θ = 1 yields the fully implicit method
called Backward-Euler scheme.
For second-order ODE’s like Eq. (2.70), the generalized-α scheme is applied [25]. Therein, the
discretized equation of motion in residual form reads

r = Man+1−αm +Dvn+1−αf + f
n+1−αf

int − fn+1−αf

ext , (2.73)

where αm ∈ [0, 1] and αf ∈ [0, 1] are scalar constants defined as

αm =
2ρ∞ − 1

ρ∞ + 1
, (2.74)

αf =
ρ∞

ρ∞ + 1
, (2.75)

with constant parameter ρ∞ ∈ [0, 1] which adjusts the numerical dissipation of the time inte-
gration. The midpoint accelerations, velocities, displacements, and forces are defined as linear
combinations of their respective current and previous time step values

an+1−αm = [1− αm]an+1 + αma
n, (2.76)

vn+1−αf = [1− αf ]vn+1 + αfv
n, (2.77)

dn+1−αf = [1− αf ]dn+1 + αfd
n, (2.78)

f
n+1−αf

int = [1− αf ]fn+1
int + αff

n
int, (2.79)

f
n+1−αf

ext = [1− αf ]fn+1
ext + αff

n
ext. (2.80)

As the displacement field d is the only primary variable, the reconstruction of the velocity and
acceleration is introduced as

an+1 =
1

β∆t2
[dn+1 − dn]− 1

β∆t
vn − 1− 2β

2β
an, (2.81)

vn+1 =
γ

β∆t
[dn+1 − dn]− γ − β

β
vn − γ − 2β

2β
∆tan, (2.82)

with the scalar constants β ∈ [0, 1
2
] and γ ∈ [0, 1] as

β =
1

4
(1− αm + αf )

2, (2.83)

γ =
1

2
− αm + αf . (2.84)
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2.2.4. Nonlinear solution techniques

To solve the nonlinear equation (2.73) for the discrete vector of unknowns dn+1, an iterative
solution technique is used. Here, the Newton-Raphson method [163] is chosen. It requires a
linearization of Eq. (2.73) at the end of the time step, which reads

Lin r(dn+1
i ) = r(dn+1

i ) +Keff(dn+1
i )∆dn+1

i+1 , (2.85)

where the index i is the step of the Newton-Raphson algorithm and Keff denotes the dynamic
effective tangential stiffness matrix given as

Keff(d
n+1−αf

i ) =

[
1− αm
β∆t2

M +
(1− αf )γ
β∆t

D(dn+1−αf ) + (1− αf )KT(dn+1−αf )

]
i

, (2.86)

where

KT(dn+1−αf ) =
∂f int(d

n+1−αf )

∂dn+1
− ∂f ext(d

n+1−αf )

∂dn+1
. (2.87)

is the tangential stiffness matrix KT, including geometrical and material stiffness contributions
from the finite elements. Furthermore, this stiffness matrix is the discrete representation of the
material tangent in Eq. (2.32).

The update for a new displacement field reads

dn+1
i+1 = dn+1

i + ∆dn+1
i+1 , (2.88)

where the displacement increment ∆dn+1
i+1 results from the solution of the linear equation system

in Eq. (2.85) and is given by

Keff(d
n+1−αf

i )∆dn+1
i+1 = −r(dn+1

i ). (2.89)

The iteration process is continued until convergence is reached, i.e., the residual and displace-
ment increment 2-norms are below a certain tolerance.

||r(dn+1
i )||2 ≤ εres, (2.90)

||∆dn+1
i+1 ||2 ≤ εinc. (2.91)

Although the Newton-Raphson scheme typically exhibits quadratic convergence, it can encoun-
ter issues at critical points like bifurcation problems, snap-through phenomena, or abrupt load
changes. To address these challenges, it is common practice to complement it with a line search
algorithm or other regularization techniques such as pseudo-transient continuation (PTC) sche-
me [44].
Solving a large linear system, as the one in Eq. (2.89), can be computationally expensive. These
systems can be solved efficiently if the condition number of the matrix Keff is close to 1, indi-
cating a well-conditioned problem. Preconditioning techniques can be employed to reduce the
condition number and enhance the overall numerical stability of the system [23].
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2.3. Parameter estimation

Numerous parameters in cardiac mechanics models, such as the myocardial tissue contractility
or the muscle growth rate, are intricately linked to a patient’s unique physiology and anatomy,
making their determination through in-vivo experiments impossible. Consequently, developing
patient-specific models involves an iterative procedure called inverse analysis. In this context,
the weak form of the IBVP in Eq. (2.54) is called the forward problem. The task of finding the
matching parameters is known as the so-called parameter identification or inverse problem.
In Sec. 2.3.1, the parametrization of the IBVP is outlined. Subsequently, in Sec. 2.3.2, the sta-
tistical formulation of the identification problem is presented. In Sec. 2.3.3, the Lagrangian for-
mulation and the corresponding adjoint equations are derived. In Sec. 2.3.4, the regularization
of the parametrization is briefly discussed. Finally, in Sec. 2.3.5, the similarity measure between
two surfaces is presented. For a more detailed overview of the following framework, the reader
is referred to [16, 79, 80].

2.3.1. Parametrization and identification problem

To establish the parameter identification framework and define the inverse problem, the para-
metrization θ is introduced. These parameters are assumed to vary in space and are therefore
represented as

θ = θ(X). (2.92)

The parameters θ can be incorporated into the equations in two ways: One option is to integrate
them within the parametrized strain energy function, which reads

Ψ(C) = Ψθ(C,θ). (2.93)

Another option is to integrate these parameters into the deformation gradient, which results in a
modified version of the weak formulation Eq. (2.54) of the nonlinear solid mechanics problem

δW(u(θ), δu,θ) = 0 ∀δu ∈ V . (2.94)

Within this thesis, the latter formulation is used, and the modified weak form in Eq. (2.94) acts
as the forward problem F (u(θ), θ).
To complete the terminology, the system’s current state is defined as Û , while the observation
Z represents the given measurements. In the case of cardiac mechanics models, measurements
are, for example, computed tomography (CT) images. The observation operator C establishes
the relationship between the current state of the system and the observations.
The overall objective of the identification problem is to find a parametrization θ such that

Z = C(F (u(θ),θ)). (2.95)

However, the direct solution approach to this identification problem via inversion suffers from
severe shortcomings [79]. More precisely, given an exact distribution θ∗, the solution of the
weak form causes a potential discrepancy between the model output and the real system state.
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Furthermore, errors in the measurements can increase this discrepancy. Therefore, the identi-
fication problem is typically formulated as an optimization problem to minimize an objective
function J .
In this context, regularization of the output least-squares formulation is employed

θ∗ = argmin
θ

J (θ) = argmin
θ

(
||Z − C(F (u(θ),θ))||2Z +R(θ)

)
, (2.96)

where R is the regularization functional controlling the norm of the solution θ∗. Regularization
of the parameters is essential as the optimization problem can become ill-conditioned, i.e., the
solution can become non-unique, non-convex, or could have multiple minimum, and a minor
alteration in the observations can result in significant variations in the optimal parameters θ∗.
The observation norm || • ||Z depends on the specific choice of the measurements. For example,
for scalar-valued measurements, the 2-norm could be used, and in the case of CT images, this
norm could compare surfaces to each other.
This deterministic solution approach, however, is unable to account for variability in the optimal
solution induced by the noise of the measurements. Therefore, the identification problem has to
be formulated in a probabilistic manner. This probabilistic framework is based on the Bayesian
paradigm, which is explained in the following section.

2.3.2. Bayesian inverse problem
The theoretical background of the concepts of probability theory, random variables, expected
values, and variance is briefly summarized in App. A.4 and is based on [10].
To transform the identification problem into a statistical setting, the observations Z and the
parameters θ are interpreted as random variables

Z ∼ p(Z), (2.97)
θ ∼ p(θ), (2.98)

with p(Z) and p(θ) being the prior probability densities ofZ and θ, respectively. The conditional
probability of θ, while knowing Z, is called posterior density and is defined by the application
of Bayes’ theorem and reads

p(θ|Z) =
p(Z|θ)p(θ)

p(Z)
, (2.99)

where the conditional probability p(Z|θ) is referred to as the likelihood of the observations for
given parameters. To establish a concept of optimality, the constant model evidence p(Z) with
respect to θ is omitted, and it is sufficient to observe the proportionality

p(θ|Z) ∝ p(Z|θ)p(θ). (2.100)

The Bayesian reinterpretation of the identification problem is similar to the optimization pro-
blem presented in Eq. (2.96). However, the outcome is a probability density function instead
of yielding a single-point estimate. The objective is to maximize the posterior density p(θ|Z),
which leads to the application of the maximum a posteriori (MAP) estimation.
The remainder of this section is used to derive the formulation of the statistical identification
problem and to provide definitions of the likelihood function p(Z|θ) and the prior p(θ).
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2.3.3. Lagrangian formulation and adjoint method
It is often challenging to directly discretize the MAP estimation and solve for a maximum poste-
rior density. Therefore, a common approach is to transform the statistical identification problem
in Eq. (2.100) into a minimization problem similar to Eq. (2.96). This is achieved by redefining
the objective function as

J (u(θ),θ) :=
1

2σ2
D(Z, F (u(θ),θ)) + αR(θ), (2.101)

where σ is the variance of the distance measure,D(•, •) is called the similarity measure between
two surfaces explained in Sec. 2.3.5, and α is the regularization weight associated with the
regularization function R(θ) explained in Sec. 2.3.4. For a specific choice of the function p(•),
maximizing the posterior in Eq. (2.100) becomes [80]

argmax
θ

p(Z|θ)p(θ) = argmin
θ

J (u(θ),θ). (2.102)

To solve this minimization problem using gradient-based optimization, the gradient of the ob-
jective function J with respect to the parameter θ has to be evaluated. The gradient is obtained
using the chain rule and reads

dJ
dθ

=
∂J
∂u

∂u

∂θ
+
∂J
∂θ

. (2.103)

Note that evaluating the gradient using FD is not feasible due to the high computational cost in
the case of large mechanical models, as the number of model evaluations scales with the number
of optimization parameters. Therefore, the adjoint method is selected to compute the gradient,
as the number of model evaluations is independent of the parameter dimension [49].

Gradient computation

Starting from a continuous formulation, the Lagrangian L is introduced as a function of the
objective functional J from Eq. (2.101) and the weak form in Eq. (2.54) and it reads

L(u(θ),λ,θ) : = J (u(θ),θ) + δW(u(θ),λ,θ), (2.104)

=
1

2σ2
D(Z, F (u(θ),θ)) + αR(θ) + λT δW(u(θ),θ), (2.105)

where λ is the vector of Lagrange multipliers. Note that λ replaces the test functions δde in
Eq. (2.64). Furthermore, the residual δW evaluated at the solution u∗ for an arbitrary θ has to
vanish, and therefore, the following equivalence is enforced

argmin
θ

J (u(θ),θ) ≡ argmin
θ

L(u(θ),λ,θ). (2.106)

Now, the gradient from Eq. (2.103) can be rewritten as

dJ
dθ

=
dL(u(θ),λ,θ)

dθ
=
∂J
∂u

∂u

∂θ
+
∂J
∂θ

+ λT
[
∂δW
∂u

∂u

∂θ
+
∂δW
∂θ

]
. (2.107)
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Rearranging Eq. (2.107) yields

dL(u(θ),λ,θ)

dθ
=

[
∂J
∂u

+ λT
∂δW
∂u

]
∂u

∂θ
+
∂J
∂θ

+ λT
∂δW
∂θ

. (2.108)

Since the gradient ∂u/∂θ can only be computed through the nonlinear solution, a straightfor-
ward computation of this gradient is complex. Hence, the free-choice Lagrange parameter λ is
chosen such that the first term in Eq. (2.108) vanishes. This equation is referred to as the adjoint
equation, and it reads

∂J
∂u

+ λT
∂δW
∂u

= 0. (2.109)

Note that the gradient of the residual δW with respect to the displacement field u is the tangent
stiffness matrixKT, see Eq. (2.87). The first term of the adjoint equation (2.109) solely depends
on the choice of the similarity measure D, since the regularization function R is independent of
the displacement field u. Their definition and gradient computation are discussed in Sec. 2.3.4
and Sec. 2.3.5.
Inserting the solution of the adjoint equation (2.109) into Eq. (2.108), the gradient becomes

dL(u(θ),λ,θ)

dθ
=
∂J
∂θ

+ λT
∂δW
∂θ

. (2.110)

Therein, the first term solely depends on the choice of the regularization function R, whereas the
second term depends on the mechanical problem. For steady-state problems, see Eq. (2.71), the
gradient of the weak form with respect to the parameters θ is given by

∂δW
∂θ

=
∂(f int − f ext)

∂θ
. (2.111)

The external force vector f ext does not depend on the parameters θ and thus, from Eq. (2.56) it
follows

∂(S : δE)

∂θ
=
∂S

∂θ
: δE + S :

∂δE

∂θ︸ ︷︷ ︸
=0

. (2.112)

The gradient of the second Piola-Kirchhoff stress tensor with respect to the parameters θ de-
pends on the choice of the strain energy function and the corresponding mechanical problem,
and this is discussed in Sec. 3.2.

Rewriting Eq. (2.109) and Eq. (2.110) yield

1

2σ2

∂D(Z, F (u(θ),θ))

∂u
+ λTKT = 0, (2.113)

dL(u(θ),λ,θ)

dθ
= α

∂R

∂θ
+ λT

∂S

∂θ
: δE. (2.114)

In summary, the identification problem starts with evaluating the forward problem F (u(θ),θ).
Subsequently, the objective function in Eq. (2.101) is computed. Thereafter, the adjoint equa-
tion (2.113) is solved, and then it is used to evaluate the gradient in Eq. (2.114). To solve the
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optimization problem, the limited-memory BFGS (L-BFGS) method is used [15, 109]. This
method is part of the quasi-Newton method, which approximates the Hessian of the objective
function by using gradient information. An outline of the L-BFGS method and the optimization
framework can be found in App. A.5.
In the following, the regularization functionR(θ), the similarity measureD(Z, F (u(θ),θ)) and
their corresponding gradient computation are discussed.

2.3.4. Regularization

Here, the regularization of the identification problem is achieved by employing the total variation
(TV) functional [126]. It measures the total variation or total change in a measurement. As a
regularization term, it penalizes rapid changes in the identified parameters, favoring solutions
with smoother variations. Unlike classical Tikhonov regularization, total variation regularization
has proven effective in handling discontinuous parameters [155]. Another advantage of TV is
that it suppresses noise in the identified parameters and helps to find stable and robust solutions.
Within this thesis, the graph based-version of the TV functional is used [58], which reads

R(θ) =

nel∑
i=1

(
ni∑
j=1

wij(θj − θi)2 + εtv
2

)1/2

, (2.115)

where ni is the number of parameters adjacent to θi, wij are the weights associated with the pa-
rameter θj and θi and εtv ≥ 0 is a hyperparameter maintaining the functional’s differentiability.
As shown in the previous section, the gradient of the regularization with respect to the optimiza-
tion parameter θ is needed, see Eq. (2.114). For its derivation, the reader is referred to [79].

2.3.5. Similarity measure

The comparison between two geometries based on their surfaces is achieved by the distance mea-
sure. In this thesis, the so-called surface currents are used to define the distance measure. They
were first introduced within the framework of large deformation diffeomorphic metric mapping
(LDDMM) [35]. Within this framework, the aim is to find an optimal mapping between two
shapes or geometries, allowing for large deformations and preserving geometric features. This
framework is discussed in Sec. 2.4. A thorough mathematical description of surface currents can
be found in [36, 50].

A surface current, denoted as S(ω) ∈ W∗ on a surface S, is a linear functional acting upon the
space of test functions w ∈ W , defining the differential 2-form ω given by

S(ω) :=

∫
S
w · n dΓ, (2.116)

where n is the surface normal vector,W is a Hilbert space andW∗ its corresponding dual space.
The Hilbert space is a mathematical space equipped with an inner product 〈•, •〉W , for studying
functions and sequences. Its dual space consists of continuous linear functionals, providing a
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natural extension for linear algebra. Following the Riesz representation theorem [51], for every
surface current a dual representationKS

n ∈ W is given by

S(ω) = 〈KS
n,w〉W , ∀w ∈ W . (2.117)

The dual space norm ||KS
n|| allows the definition of a norm in the space of currentsW∗ as

||S||2W∗ = 〈KS
n,K

S
n〉W =

∫
S
KS
n · n dΓ, (2.118)

Based on this norm, a distance measure between two surfaces can be defined as

D(Z,S) =
1

2
||Z − S||2W∗ , (2.119)

where Z is the observation or measured surface and S is the surface representation resulting
from the forward model F (u(θ),θ).
To compute the integral in Eq. (2.118), the Hilbert spaceW is formulated as a reproducing kernel
Hilbert space (RKHS) [5]. In a RKHS, each point in space corresponds to a function, and the
inner product between functions can be computed using a reproducing kernel, which simplifies
the computation of integrals. The inner product between two surfaces Z and S is given by

〈Z,S〉W∗ =

∫
Z

∫
S
nZ(x) · k(x, y) · nS(y) dΓdΓ, (2.120)

where nZ and nS are the basis representations of surface Z and S, respectively. The function
k(•, •) : R3 7→ R represents the kernel functional. In this work, the Gaussian kernel is used,
which is defined as

k(x, y) = exp
(
−||x− y||

2

σW 2

)
, (2.121)

with the spatial scale of the covariance σW [79].
The distance measure between two surfaces in the space of currents can then be written as

||Z − S||2W∗ =〈Z,Z〉W∗ − 2〈Z,S〉W∗ + 〈S,S〉W∗

=

∫
Z

∫
Z

nZ(x) · k(x, y) · nZ(y) dΓdΓ

− 2

∫
Z

∫
S
nZ(x) · k(x, y) · nS(y) dΓdΓ

+

∫
S

∫
S
nS(x) · k(x, y) · nS(y) dΓdΓ.

(2.122)

For a more detailed derivation, the reader is referred to [152].
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Discretization in space

Similar to the finite element discretization in Sec. 2.2.2, a discretization for the surfaces in space
is needed to numerically compute Eq. (2.122). The surfaces are obtained from the volume dis-
cretization outlined in Sec. 2.2.2. In this thesis, each surface is discretized using triangles, where
each triangle consists of a normal vector n ∈ R3 and a center point c ∈ R3.
Using this discretization, the distance measure in Eq. (2.122) becomes

D(Z,S) = ||Z − S||2W∗ ≈
nZ∑
i

nZ∑
j

nZi · k(cZi , c
Z
j ) · nZj

− 2
nZ∑
i

nS∑
j

nZi · k(cZi , c
S
j ) · nSj

+
nS∑
i

nS∑
j

nSi · k(cSi , c
S
j ) · nSj ,

(2.123)

where cZi , cSi , nZi and nSi are the center points and normal vectors of the i-th triangle for the
measured surface Z and the current surface S, respectively. The number of triangles in each
discretization is given by nZ and nS . Note that the kernel function can also be interpreted as
a matrix. For example, for surfaces Z and S it results in K ∈ RnZ×nS . The computational
complexity of Eq. (2.123) is O

(
nZnS +

(
nS
)2
)

. The first scalar product of the observation Z
with itself does not change and can thus be evaluated once, whereas, for a new surface S, the
second and third scalar products have to be re-evaluated.

Gradient computation

The gradient of the distance measure with respect to the displacement field u is required, see Eq.
(2.113). Using the definition of D, this gradient can be written as

∂D(Z,S)

∂u
=

∂

∂u
〈Z,Z〉W∗︸ ︷︷ ︸

=0

−2
∂

∂u
〈Z,S〉W∗ +

∂

∂u
〈S,S〉W∗ . (2.124)

The derivative of the first scalar product vanishes since the observation Z does not depend on
the displacement field u. Specifically, only the normal vectors nS and the center point cS are a
function of the displacement field. Hence, using the chain rule, the gradient of the second scalar
product in Eq. (2.123) is given by

∂

∂u
〈Z,S〉W∗ =

nZ∑
i

nS∑
j

nZi ·
∂k(cZi , c

S
j )

∂cSk

∂cSk
∂u

nSj +
nZ∑
i

nS∑
j

nZi · k(cZi , c
S
j )
∂nSj
∂u

. (2.125)
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The gradient of the last scalar product results in

∂

∂u
〈S,S〉W∗ =

nS∑
i

nS∑
j

∂nSi
∂u
· k(cSi , c

S
j )nSj

+
nS∑
i

nS∑
j

nSi ·
∂k(cSi , c

S
j )

∂cSk

∂cSk
∂u

nSj

+
nS∑
i

nS∑
j

nSi · k(cSi , c
S
j )
∂nSj
∂u

.

(2.126)

The derivative of the Gaussian kernel is given by

∂k(ci, cj)

∂ck
=

(
−2

σW 2
k(ci, cj)(ci − cj)

)
(δik − δjk) , (2.127)

where δij is the Kronecker-delta function, defined as

δij =

{
1 for i = j,

0 for i 6= j.
(2.128)

Note that k(ci, ci) = 1 holds and thus, the kernel gradient vanishes at i = j.
The derivative of normal vectors nS and center points cS with respect to the displacement field
u are given by the push-forward operation of the surface currents based on the solution of the
nonlinear problem in Eq. (2.70), see [79] for an explicit derivation.

2.4. Shape analysis

The large deformation diffeomorphic metric mapping framework presented in [35, 102, 104]
aims to find a mapping between two geometries. The term diffeomorphic emphasizes that the
transformations involved are smooth and invertible, ensuring a one-to-one correspondence bet-
ween points in the original and transformed shapes. LDDMM is particularly valuable for ana-
lyzing and comparing shapes undergoing significant deformations. It provides a robust method
for capturing complex spatial variations in structures. Furthermore, this framework provides an
estimation of an average model of the given shapes, which is called template or atlas shape. For
a more detailed derivation, the reader is referred to [38, 152] and further examples are given in
[76, 98].
In Sec. 2.4.1, the surface matching algorithm is presented, and subsequently, the framework to
compute the atlas shape is outlined in Sec. 2.4.2.

2.4.1. Surface matching problem

Surface matching is a registration method that allows matching an object S to another object T .
Starting from an initial shape configuration S0 with a finite number of surface points x0 ∈ R3np ,
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the idea is to find a time-dependent mapping function Φt(x0) with t ∈ [0, 1] such that

S0 = Φ0(x0) = x(t = 0) = x0, (2.129)
S1 = Φ1(x0) = x(t = 1) = x1. (2.130)

The surface S1 represented by the surface points x1 then leads to the deformation of interest
given by S1 ≈ T . For any time t > 0, this mapping defines a path and is a diffeomorphism.
In addition to the time-dependent surface points x(t), the so-called control points c(t) ∈ R3ncp

and parameter weights momenta α(t) ∈ R3ncp are introduced. The control points offer flexi-
bility in the surface representation. They can either coincide with the surface points such that
c(t) = x(t), which is referred to as dense mode or they can be strategically chosen to optimize
specific characteristics. Notably, the dimensionality of the control points is typically much smal-
ler than that of the surface points, making it computationally efficient. Further, the velocity field
v(t,xi(t)) ∈ R3 at any time t at space location xi ∈ R3 is defined as

v(t,xi(t)) = ẋi(t) =

ncp∑
k=1

k(xi(t), ck(t))αk(t), (2.131)

with αk(t), ck(t) ∈ R3 and initial condition x(0) = x0. This equation of motion is called flow
of diffeomorphisms. Note that the kernel function k(•, •) is defined as the Gaussian kernel, see
Eq. (2.121) with kernel width parameter σV .
Similarly, the equation of motion applies to the control points and is given in matrix notation as

ċ(t) = K(c(t), c(t))α(t), (2.132)

withK ∈ Rncp×ncp and initial condition c(0) = c0.
For the sake of simplicity and readability, the time dependency of the velocity v(t), control points
c(t), and the momenta α(t) is omitted.
With a fixed set of initial control points c0, the time-varying vectors α define a path Φt(x0)
leading to a deformation of the initial shape S0. However, the vectors defining a specific defor-
mation are not unique. A unique set of vectors α is obtained by minimizing the integral of the
kinetic energy Ekin ∈ R given by

Ekin =
1

2

∫ 1

0

||v||2dt =
1

2

∫ 1

0

αTK(c, c)α dt. (2.133)

It can be shown that minimizing the kinetic energy leads to a specific set of differential equations
[38] and together with Eq. (2.132), the system of differential equations called shoot is given by

ċk =

ncp∑
p=1

k(ck, cp)αp,

α̇k = −
ncp∑
p=1

αTkαp∇1k(ck, cp),

(2.134)

with initial conditionα(0) = α0. The operator∇1 denotes the derivative with respect to the first
input argument and ∇1k(ck, cp) = ∇2k(ck, cp) holds due to the symmetry of the kernel opera-
tor, see Eq. (2.127). This system is parameterized by initial positions of the control points c0 and
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initial momenta α0. The positions of control points c and momenta α at any time t is computed
by integrating Eq. (2.134) from initial conditions. Integrating Eq. (2.131) with the new control
points c and momenta α yields a trajectory of the surface points x and a new surface S1 at time
t = 1.

Within the optimization framework for the surface matching problem, the parameter α0 is esti-
mated such that the mapping Φt(x0) results in the deformation of interest T . Therefore, a vari-
fold metric between two surfaces is needed. In this case, the surface norm from Eq. (2.122) is
chosen.
Finally, the optimization problem with objective function J ∈ R of the surface matching pro-
blem reads

min
α0

J = min
α0

 1

σ2
||T − S1||2W∗︸ ︷︷ ︸

D(T ,S1)

+Ekin

 , (2.135)

where σ acts as a regularization term similar to Eq. (2.101)

Gradient computation

Similar to Sec. 2.3.3, the gradient of the objective function is needed to solve the optimization
problem. In this case, the surface distance measure is only evaluated at time t = 1. In contrast,
the kinetic energy Ekin is a time-dependent function evaluated at any point in time. However,
the optimization parameter α0 is solely defined at time t = 0. Hence, a straightforward gradient
computation is not possible. Therefore, an adjoint-based approach is used to compute the gradi-
ent.

First, the system of differential equations (2.134) is rewritten in short notation as

Ṡ = F (S) =

[
F c(S)
Fα(S)

]
, with S =

[
c
α

]
, and S0 =

[
c0

α0

]
, (2.136)

where S represents the state of the system and F is the shoot function defined by Eq. (2.134).
Similarly, a short notation for Eq. (2.131) is given by the flow function G and reads

ẋ = G(x,S), with x(0) = x0. (2.137)

Similar to the identification problem, the objective function is extended by the residual formula-
tion of Eq. (2.136) and Eq. (2.137). Introducing the Lagrange multipliers ξ and θ, the Lagrangian
formulation of the objective function reads

L(x0,S0, ξ, θ) =
1

σ2
D(T ,S1) + Ekin

∣∣∣
t=0

+

∫ 1

0

(F (S)− Ṡ)ξ dt+

∫ 1

0

(G(x,S)− ẋ)θ dt.
(2.138)
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The gradients of the objective function L with respect to the initial position x0 and the initial
state S0 are given by

∂L
∂x0

= θ0, (2.139)

∂L
∂S0

=
∂Ekin

∂S0

∣∣∣∣∣
t=0

+ ξ0. (2.140)

Further, the corresponding adjoint equations are

θ̇ =
∂G(x,S)

∂x
θ, with θ1 =

1

σ2

∂D(T ,S1)

∂x1

, (2.141)

ξ̇ =
∂F (S)

∂S
ξ +

∂G(x,S)

∂S
θ, with ξ1 = 0. (2.142)

The explicit derivation of these gradients is presented in App. A.6. Note that the gradient of the
distance measure in Eq. (2.141) in case of surface currents is explicitly given in Eq. (2.124).

Numerical solution

Given an initial surface S0 with surface points x0, control points c0, and initial conditionsα0, the
surface matching framework starts with evaluating the forward problem in Eq. (2.134) and Eq.
(2.131). Subsequently, the objective function in Eq. (2.135) is computed. Thereafter, the first-
order ordinary differential adjoint equations Eq. (2.141) and Eq. (2.142) are solved backward
in time for θ0 and ξ0 using the one-step-θ method with θ = 1, see Sec. 2.2.3. Afterward, the
solutions are used to compute the gradient with respect to the initial momenta α0 in Eq. (2.140).
To update the initial state parameter α0, the L-BFGS is used, see App. A.5. This iterative process
to compute the optimal path to match one surface to another is shown in Alg. 1.

Algorithm 1 Surface matching computation

Require: x(t = 0), c(t = 0),α(t = 0) . initial conditions
1: while not converged do
2: solve forward problem Eq. (2.134) and Eq. (2.131).
3: evaluate objective function Eq. (2.135)
4: solve adjoint equations Eq. (2.141) and Eq. (2.142)
5: compute gradient Eq. (2.140)
6: update α0 . using L-BFGS
7: end while

2.4.2. Atlas construction

The atlas shape A refers to a set of initial surface and control points derived from a set of
provided measurements and serves as a Fréchet mean, defined as the minimizer of the sample
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variance [37, 38, 75]. Given a set of initial shapes {S1,S2, ...,SnSh}, the minimization problem
reads

min
xA0 ,c

A
0

JA = min
xA0 ,c

A
0

nSh∑
i=1

 1

σ2
||A − S i||2W∗ + Ei

kin︸ ︷︷ ︸
see (2.135)

 , (2.143)

where nSh is the number of provided surfaces, xA0 and cA0 are the initial surface and control points
of the atlas shape A, respectively. The first component operates on the deformation parameters
to optimize the alignment between the atlas A and each provided measurement S i. The kinetic
energy Ei

kin of the ith observation characterizes the sample variance required to establish a mean
for all observations and is given by

Ei
kin =

(
αi0
)T
K(cA0 , c

A
0 )αi0. (2.144)

Starting from an initial topology with a set of surface points xA0 and control points cA0 , the
surface matching problem is solved between the atlas and each observation individually to find
the optimal initial moments αi0. Thereafter, the surface points xA0 and control points cA0 are
updated using their gradients, which are defined as

∂JA
∂xA0

=

nSh∑
i=1

θi0, (2.145)

∂JA
∂cA0

=

nSh∑
i=1

ξi0 +
∂Ei

kin

∂ci0

∣∣∣∣∣
t=0

, (2.146)

where the individual summands result from the surface matching problems and the gradients
therein. The iterative process to compute the atlas shape is shown in Alg. 2.

Algorithm 2 Atlas construction computation

Require: xA0 , cA0 . initial conditions
1: while not converged do
2: for i = 1 : nSh do
3: match atlas A to S i Eq. (2.135) . surface matching problem
4: end for
5: compute gradient Eq. (2.145) and Eq. (2.146)
6: update xA0 and cA0 . using L-BFGS
7: evaluate objective function Eq. (2.143)
8: end while

2.5. Sensitivity analysis
Sensitivity analysis can be used to identify the uncertainty the model inputs convey to the model
outputs. In general, it is differentiated between local and global sensitivity analysis. In local
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sensitivity analysis, the change in the model output for a fixed set of input values is investigated.
In contrast, in global sensitivity analysis, the change in the model output over a range of inputs is
described. Furthermore, nonlinear effects and interactions between inputs can be analyzed. For
a more detailed overview of sensitivity analysis, the reader is referred to [133, 139, 141].
In the following, in Sec.2.5.1, a brief summary of global sensitivity analysis is outlined. Subse-
quently, in Sec. 2.5.2, the computation of global sensitivity measures is presented.

2.5.1. Global sensitivity analysis
Given a model of the form y = f(x), where x = (x1, x1, ..., xk) ∈ Rk represent the independent
model inputs and y is the scalar model output. Assuming a finite mean value f0 and variance V ,
the model output y can be decomposed into first-order effects and higher-order interactions [74,
132]. The decomposition reads

y = f0 +
∑
i

f i(xi)︸ ︷︷ ︸
first order

+
∑
i<j

f ij(xi, xj)︸ ︷︷ ︸
second order

+ · · ·+ f 1...k(x1, . . . , xk)︸ ︷︷ ︸
kthorder

, (2.147)

where f i depends solely on xi, f ij on xi and xj , etc. [74]. In case the summands of Eq. (2.147)
are uncorrelated, the total variance Vtot of the model output can be decomposed into

Vtot(y) =
∑
i

V i(f i(xi)) +
∑
i<j

V ij(f ij(xi, xj)) + · · ·+ V 1...k(f 1...k(x1, . . . , xk)), (2.148)

where the variances are defined as [140]

V i(fi(xi)) = V xi(Ex~i
(y|xi)), (2.149)

V ij(fij(xi, xj)) = V xi,xj(Ex~i,j
(y|xi, xj))− V i(fi(xi))− V j(fj(xj)), (2.150)

and analogously for higher-order terms. Here, Ex~i
(y|xi) is the expectation of y when xi is

distributed and observed and V xi is the variance of y for the input xi [133]. The expression x~i
denotes that all model inputs expect the ith are varied to compute the mean value [118].
The decomposition in Eq. (2.147) and Eq. (2.148) is called analysis of variance (ANOVA) de-
composition [14, 133]. Based on this decomposition, so-called Sobol indices as global sensitivity
estimators can be defined [140]. The remainder of this section is used to outline the computation
of Sobol indices.

2.5.2. Sobol indices
The first-order sensitivity index Si for an input is obtained by dividing each term in Eq. (2.148)
by the unconditional model output variance Vtot(y) [118] and they read

Si =
V xi(Ex~i

(y|xi))
Vtot(y)

, (2.151)

It measures the first-order contributions of xi to the model output variance, and they are used
to rank model inputs according to their contribution to the model output uncertainty, which is
called factor prioritization [131].
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The total-order indices

T i =
Ex~i

(V xi(y|x~i))
Vtot(y)

= 1− V x~i
(Exi(y|x~i))
Vtot(y)

. (2.152)

measure the first-order effects of the model together with interaction terms between other para-
meters up to the kth order [66]. If T i ≈ 0, xi has a negligible contribution to the variance of y.
Further, it describes the expected variance when all inputs except xi are fixed. Therefore, total-
order indices are applied to distinguish influential from non-influential model inputs and reduce
the dimensionality of the uncertainty space, which is called factor fixing [118].

Computation of Sobol Indicies

In case of many model inputs, the evaluation of the variances in Eq. (2.151) and Eq. (2.152) is
computationally expensive [132]. Therefore, the variances are computed using the Monte Car-
lo (MC) method [145], which avoids imposing any assumptions on the functional form of the
response function [130]. Here, MC sampling can be performed using random or quasi-random
numbers, e.g., Latin Hypercube Sampling [142] or Sobol’ quasi-random numbers [139]. For
that, the so-called base sample matrices A and B ∈ RnI×nS are introduced and each matrix is
sampled individually and independent of each other [118]. Exemplary, the matrixA reads

A =


x11 · · ·

...
xs1 · · ·

...
xnS1 · · ·

x1i
...
xsi
...

xNSi︸ ︷︷ ︸
ith input

· · · x1nI
...

· · · xsnI
...

· · · xnSnI


}
sth sample . (2.153)

where nI is the number of inputs, and nS is the number of samples. Furthermore, the matrixA(i)
B

is introduced, where all columns are from A except the ith which is used from B and similarly
the matrix B(i)

A is formed. With these matrices, sensitivity estimators to compute Si and T i
are defined and are listed in Tab. 2.1. These estimators are based on the work of Sobol [73,
140] (Sob), Saltelli [132] (Sat), Jansen [74, 132] (Jan), and Homma [66] (Hom). Therein, the
term f(A)j denotes a function evaluation, where the j th column of A serves as model input.
Accordingly, the terms f(B)j , f(A

(i)
B )j and f(B

(i)
A )j are defined.

The computational cost to evaluate the function f for all samples in A or B scales with nS . To
evaluate all samples from the matrices A(i)

B or B(i)
A with i = 1, ..., nI , the computational cost

scales with nI · nS .
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Tabelle 2.1.: First- and total-order sensitivity estimators.
Si, see Eq. (2.151) Reference
SSob
i = 1

nS

∑nS

j=1[f(A)jf(A
(i)
B )j − f0

2] [140]
SSat
i = 1

nS

∑nS

j=1[f(B)j(f(A
(i)
B )j − f(A)j)] [132]

SJan
i = Vtot(y)− 1

2nS

∑nS

j=1[f(A)j − f(B
(i)
A )j]

2 [74]

T i, see Eq. (2.152)
THom
i = 1

nS

∑nS

j=1[f(A)j(f(A)j − f(A
(i)
B )j)] [66]

T Sob
i = 1

nS

∑nS

j=1[f(A)j(f(A)j − f(A
(i)
B )j)] [73]

T Jan
i = 1

2nS

∑nS

j=1[f(A)j − f(A
(i)
B )j]

2 [74, 132]
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3. Cardiac mechanics

This chapter summarizes the mathematical concepts used within the cardiac mechanics models
of this work. Sec. 3.1 presents the computational model of the contracting heart coupled to the
vascular system. Subsequently, Sec. 3.2 outlines the kinematic heart growth framework. Final-
ly, in Sec. 3.3, signaling networks used to represent the complex interplay of mechanical and
biochemical stimuli for heart growth on a cellular level are discussed.

3.1. Computational cardiovascular mechanics

In this section, the computational cardiac mechanics of the beating heart are explained, star-
ting with the identification of the computational domain and its meshing, see Sec. 3.1.1. Sub-
sequently, the constitutive laws for the myocardium are presented in Sec. 3.1.2. In Sec. 3.1.3,
the boundary conditions of the embedding tissue are discussed. In Sec. 3.1.4, models that ad-
dress the impact of blood pressure acting on the geometry of the heart are outlined. Finally, Sec.
3.1.5 presents the governing equations, coupling conditions between the structural part and the
vascular system, and the corresponding IBVP.

3.1.1. Segmentation and geometry construction

Within this thesis, computed tomography (CT) was used to monitor the heart geometry and was
provided by the university hospital Rechts der Isar of the Technische Universität München.
In CT images, the differentiation of regions and organs within the human body is achieved using
Hounsfield Units (HU). HU serves as a measure of X-ray attenuation, also known as radiodensity,
of the imaged material. Radiodensity, a physical property of the material, ensures consistent
image information regardless of the specific CT scanner used. In the human body, the HU vary
from -1000 HU (air) to approximately 3000 HU [121]. Here, a low value is displayed in a darker
gray, whereas high values appear in a brighter gray.
The heart is segmented using the software Simpleware™ ScanIP (Version S-2021.06; Synopsys,
Inc., Mountain View, USA). For the mechanical heartbeat model, see Sec. 3.1.5, and for the
growth model, see Sec. 3.2, the heart is segmented at its 80% diastolic state, which corresponds
to the time right before the atria start to contract. The choice of this specific moment is due to
the heart’s minimal motion at this stage, making it an optimal choice for segmentation.
The heart model generation is based on the work in [62]. Within the segmentation process,
the lumina of the left and right ventricles, as well as the outer layer of the myocardium, are
segmented, see Fig. 3.1. The atria and valves are not part of the computational domain, and
hence, they are not segmented. Furthermore, three characteristic points are identified for a unique
alignment. These points are the lowest left ventricular point (LVB), the posterior mitral valve
point (MVP), and the aortic valve point (AV). Within the alignment process, the LVB to AV line
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is interpreted as a z-axis, and AV, LVB and MVP define the y-z plane. Following segmentation
and smoothing, the three geometries are exported in the form of stereolithographic (STL) files,
see Fig.3.2.

Abbildung 3.1.: Exemplary CT image of the heart at the 80% diastolic state. On the left side is
the coronal view, and on the right side is the axial view. The left ventricle is
marked in red, the right ventricle in blue, and the outer layer of the myocardium
in orange.

The finite element mesh of the exported STL files is created using the Trelis® software. A Python
interface allows for the automation of the heart mesh construction. Starting with the imported
surfaces, the lumina of the left and right ventricles are subtracted from the heart contour. After-
wards, all three volumes are intersected at the atrioventricular plane (AVP). This plane intersects
the posterior mitral valve leaflet and is perpendicular to the line between the LVB and AV. Since
valves are not explicitly segmented, two artificial lids are introduced to close the ventricular vo-
lumes. The resulting five surfaces are then meshed using the built-in tetrahedral meshing scheme
TetMesh. In Fig. 3.3(a), the final computational domain of the heart is shown. Fig. 3.3(b) depicts
a cut-through of the heart exposing the ventricle lumina. Furthermore, the computational domain
is represented by five surfaces, Γlid as the abluminal surface of the covering lids, Γbase refers to
the heart base, Γepi as the the epicardial surface, and Γ`v and Γrv are the left and right ventri-
cular surfaces, respectively. In Fig. 3.3(c-d), an example mesh of the computational domain is
presented.
Since myocardial tissue has orthotropic material behavior [65], it is essential to incorporate its
anisotropy into the model. Therefore, the two fiber directions f0 as the muscle fiber direction
and s0 as the sheet direction are introduced. On the epicardium, the muscle fiber inclines −60◦

with respect to the circumference of the ventricles and is responsible for generating the active
contraction force. It rotates its orientation to 60◦ on the endocardial wall. The sheet direction s0

is orthogonal to the fiber direction f0. Both directions are in plane and orthogonal to the surface
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Abbildung 3.2.: Exemplary lumina of the left and right ventricle, as well as the outer layer of the
myocardium exported as STL. The inner surface of the left ventricle is repre-
sented in red, the inner surface of the right ventricle in blue, and the outer layer
of the myocardium in orange.

normal direction r0. The fiber and sheet direction are constructed based on the work in [107] and
are depicted in Fig. 3.4.

3.1.2. Constitutive model

To model the passive-active material behavior, a constitutive equation for the second Piola-
Kirchhoff stress S is needed, see Sec. 2.1.2. For the myocardial tissue, the constitutive model is
based on an additive decomposition of the stress into a hyperelastic passive part and an active
stress contribution [4] and reads

S =
∂Ψ

∂E
+ τa(t)f0 ⊗ f0. (3.1)

For the passive material, the strain energy density proposed in [65] is given by

Ψ =
a0

2b0

[
exp

(
b0(Ī1 − 3)

)
− 1
]

+
κ

2
[J − 1]2 +

af
2bf

[
exp

(
bf (f0

TCf0 − 1)2
)
− 1
]

+
as
2bs

[
exp

(
bs(s0

TCs0 − 1)2
)
− 1
]

+
afs
2bfs

[
exp

(
bfs(f0

TCs0)2
)
− 1
]
,

(3.2)

where a0, b0, κ, af , bf , as, bs, afs, and bfs are positive material constants. The first two summan-
ds model the isotropic part of material response under an isochoric-volumetric split, whereas the
remaining three summands model an anisotropic, passive material response. Since the myocar-
dium is assumed to be incompressible, the bulk modulus κ is chosen to be large, see Tab. 3.1.
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(a) (b)

(c) (d)

Abbildung 3.3.: Exemplary computational domain of a porcine heart. The epicardium is shown
in orange, and the left and right ventricles are represented in red and blue, re-
spectively. In (a), the full computational domain of the heart is shown, whereas
in (b), a cut-through of the heart is depicted, exposing the ventricle volumes. In
(c), an example mesh of the epicardium is shown, and in (d), an example mesh
of the ventricle lumina is depicted.

The strain energy function for the artificial lids is based on a Neo-Hookean material under a
volumetric-isochoric split, and it reads

Ψlid =
µlid

2
[Ī1 − 3] +

κlid

2
[J − 1]2, (3.3)

with Lamé constants µlid and κlid. The second part of Eq. (3.1) models the active stress con-
tribution in fiber direction f0. The time dependent active stress τa(t) results from the solution
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Abbildung 3.4.: Exemplary visualization of fiber and sheet direction on a 3-dimensional ventri-
cular model of a porcine heart with muscle fiber orientation f0 (red) and sheet
orientation s0 (green).

of [62]

τ̇a(t) = −|u(t)|τa(t) + σ0 max(0, u(t)), (3.4)

where σ0 is called the contractility, which adjusts the maximum of the active stress. The scaling
function u is defined by

u(t) = f̂(t) · αmax + (1− f̂(t)) · αmin, (3.5)

with αmax as the upstroke rate and αmin as the relaxation rate. The activation function f̂ reads

f̂(t) = (K(t− c1) + 1) · H [K(t− c1) + 1]−K(t− c1) · H [K(t− c1)]

−K(t− c2) · H [K(t− c2)] + (K(t− c2)− 1) · H [K(t− c2)− 1] ,
(3.6)

where the Heaviside functionH : R 7→ [0, 1] is defined as

H [(•)] :=

{
0 for (•) < 0,

1 for (•) > 0.
(3.7)

The parameter K is a positive constant and the parameters c1 and c2 are defined by the contrac-
tion time tcontr and the relaxation time trelax as

c1 = tcontr +
αmax

K(αmax − αmin)
, (3.8)

c2 = trelax −
αmax

K(αmax − αmin)
. (3.9)

Note that ∂τa/∂C = 0 and thus only the passive material contributes to the material tangent,
see Eq. (2.32). In Fig. 3.5, the active stress τa is depicted using the material parameters from
Tab. 3.1. The parameter tcontr marks the start of the contraction, and at t = trelax the relaxation
starts. The duration of one cardiac cycle is denoted by Tcycl. The ODE (3.4) is solved using the
Backward-Euler scheme with initial value τa(0) = 0, see Eq. (2.72). An explicit derivation of its
solution is given in App. B.1.
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tcontr trelax Tcycl
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time [s]
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1
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u

f̂

Abbildung 3.5.: Time-dependent active stress evolution τa (red) over one cardiac cycle Tcycl,
based on the scaling function u (blue) and the activation function f̂ (black). At
tcontr, the contraction starts, and at trelax, muscle fiber relaxation begins.

3.1.3. Boundary conditions of the embedding tissue

To model the embedding tissue, so-called Robin boundary conditions are used [53]. They are
employed at the heart base as well as at the covering lids and the epicardial surface. Therefore,
two types of boundary conditions are defined.
First, the boundary conditions at the heart base are modeled based on springs and dashpots,
which are locally proportional to the displacement and velocity acting in all directions and lea-
ding to the following traction force

t0
base
k,c = −kbaseu− cbaseu̇. (3.10)

Second, springs and dashpots acting in reference surface normal direction are introduced, and
they induce the traction force defined as

t0
i,⊥
k,c = −(N ⊗N )(k⊥i u+ c⊥i u̇) = k⊥i (u ·N )N − c⊥i (u̇ ·N )N , (3.11)

where the index i ∈ {base, epi, lid} represents the surface on which the boundary condition is
acting. The parameters kbase and k⊥i can be interpreted as spring stiffness per reference surface
area [kPa/mm]. In contrast, the constants cbase and c⊥i can be interpreted as dashpot damping
per unit reference surface area [kPa s/mm]. An overview of all baseline parameters is given in
Tab. 3.2. Unless stated otherwise, these parameters are chosen for all simulations.

3.1.4. Prestressing

Patient-specific cardiac geometries reconstructed from medical screening are subjected to in-
vivo blood pressure. This becomes particularly important when employing specific constitutive
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Tabelle 3.1.: Baseline constitutive model parameters.
symbol value unit equation

passive myocardial material
a0 0.059 [kPa] (3.2)
af 18.472 [kPa] (3.2)
as 2.481 [kPa] (3.2)
afs 0.216 [kPa] (3.2)
b0 8.023 [-] (3.2)
bf 16.026 [-] (3.2)
bs 11.120 [-] (3.2)
bfs 11.436 [-] (3.2)
κ 103 [kPa] (3.2)
ρ0 10−6 [kg/mm3] (3.39)

lid material
µlid 50 [kPa] (3.3)
κlid 10 [kPa] (3.3)
ρ0 10−6 [kg/mm3] (3.39)

active contraction
σ0 70 [kPa] (3.4)
αmin -30 [1/s] (3.5),(3.8),(3.9)
αmax 30 [1/s] (3.5),(3.8),(3.9)
K 5 [-] (3.6),(3.8),(3.9)
tcontr 0.2 · Tcycl [s] (3.8)
trelax 0.53 · Tcycl [s] (3.9)

Tabelle 3.2.: Spring and dashpot boundary condition parameters.
symbol value unit equation

boundary conditions
kbase 0.25 [kPa/mm] (3.10)
k⊥base 1.25 [kPa/mm] (3.11)
k⊥epi 0.075 [kPa/mm] (3.11)
k⊥lid 0.05 [kPa/mm] (3.11)
cbase 0.0005 [kPa s/mm] (3.10)
c⊥base 0.0005 [kPa s/mm] (3.11)
c⊥epi 0.0005 [kPa s/mm] (3.11)
c⊥lid 0.0005 [kPa s/mm] (3.11)

models based on experimentally derived material parameters. In continuum mechanics, this cor-
responds to a non-stress-free reference configuration. To address the already acting stresses and
strains in the imaged configuration, prestressing based on the so-called Modified Updated Lag-
rangian Formulation (MULF) is used [47, 48].
To determine the prestresses acting in the reference configuration, the image configuration is
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enforced by keeping it fixed while gradually applying the intended load. The accumulated de-
formation gradient from all preceding load increments reads

F p = F nF n−1...F 0. (3.12)

This deformation gradient results in a stress state embedded in the imaged configuration, see Eq.
(2.30). This process allows for an estimation of the stress state in a fixed configuration without
reconstructing the stress-free configuration. In any follow-up simulation, where deformation oc-
curs (given by F d), the accumulated deformation gradient F p is additionally considered, such
that the total deformation gradient is given by

F = F dF p. (3.13)

The advantage of this method is that it is computationally efficient and reliable. An alternative
method for prestressing is to solve an inverse problem to find the stress-free reference configura-
tion, which transforms into the imaged configuration after applying the load under consideration.
This method is the so-called inverse design or inverse elastostatics method [48, 113].

Finally, the IBVP from Sec. 2.1.4 for the prestressing stage is given by

∇X · P = 0 in Ω, (3.14)

P ·N = t0
i
p on Γiv, i ∈ {r, `}, (3.15)

P ·N = t0
base
k + t0

base,⊥
k on Γbase, (3.16)

P ·N = t0
i,⊥
k on Γi, i ∈ {epi, lid}. (3.17)

The traction t0ip is prescribed on the endocardial surfaces of the ventricles and is defined by the
constant prescribed ventricular pressures p̂iv as

t0
i
p = −p̂ivJF−TN . (3.18)

Note that since the prestressing stage is a quasi-static problem, no dashpot components will
appear in Eq. (3.10) and Eq. (3.11).

3.1.5. 3D-0D coupled cardiovascular mechanics

The heart and cardiovascular system form a closed loop, where the dynamics of the cardiovas-
cular system influence the contraction pattern of the heart and vice versa. Consequently, it is
essential to represent this interaction as a two-way coupled problem.
First, the vascular system is introduced as the 0-dimensional (0D) flow network using the wind-
kessel elements introduced in Sec. 2.1.5, and it is based on the work in [62]. Fig. 3.6 depicts the
flow network consisting of 16 equations. It is described by eight pressure states and eight flow
rates, see Tab. 3.3 for a detailed explanation.
In particular, the flow network consists of four windkessel models. The venous systemic and
pulmonary systems are represented by 2-element windkessel models, whereas 4-element wind-
kessel models describe the arterial systemic and pulmonary circulation. Furthermore, the four
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valves are represented by diode elements, and the two atria are modeled with elastance functi-
ons. At the epicardial surface of the heart, the spring and dashpot elements are used to model the
embedding tissue.
The equations of the flow network read

left heart

left atrial mass
dV `

at(u)

dt
− qpul

ven + q`v,in = 0, (3.19)

mitral valve momentum
1

R̃`
v,in

[p`at − p`v]− q`v,in = 0, (3.20)

left ventricular mass
dV `

v(u)

dt
− q`v,in + q`v,out = 0, (3.21)

aortic valve momentum
1

R̃`
v,out

[p`v − psys
ar ]− q`v,out = 0, (3.22)

systemic circulation

systemic arterial mass Csys
ar

[
dpsys

ar

dt
− Zsys

ar

dq`v,out

dt

]
− q`v,out + qsys

ar = 0, (3.23)

systemic arterial momentum
Lsys

ar

Rsys
ar

dqsys
ar

dt
+

1

Rsys
ar

[
psys

ven − psys
ar + Zsys

ar q
`
v,out

]
+ qsys

ar = 0, (3.24)

systemic venous mass Csys
ven

dpsys
ven

dt
− qsys

ar + qsys
ven = 0, (3.25)

systemic venous momentum
Lsys

ven

Rsys
ven

dqsys
ven

dt
+

1

Rsys
ven

[prar − psys
ven] + qsys

ven = 0, (3.26)

right heart

right atrial mass
dV r

at(u)

dt
− qsys

ven + qrv,in = 0, (3.27)

tricuspid valve momentum
1

R̃r
v,in

[prat − prv]− qrv,in = 0, (3.28)

right ventricular mass
dV r

v(u)

dt
− qrv,in + qrv,out = 0, (3.29)

pulmonary valve momentum
1

R̃r
v,out

[prv − ppul
ar ]− qrv,out = 0, (3.30)

pulmonary circulation

pulmonary arterial mass Cpul
ar

[
dppul

ar

dt
− Zpul

ar

dqrv,out

dt

]
− qrv,out + qpul

ar = 0, (3.31)

pulmonary arterial momentum
Lpul

ar

Rpul
ar

dqpul
ar

dt
+

1

Rpul
ar

[
ppul

ven − ppul
ar + Zpul

ar q
r
v,out

]
+ qpul

ar = 0, (3.32)

pulmonary venous mass Cpul
ven

dppul
ven

dt
− qpul

ar + qpul
ven = 0, (3.33)

pulmonary venous momentum
Lpul

ven

Rpul
ven

dqpul
ven

dt
+

1

Rpul
ven

[
p`ar − ppul

ven

]
+ qpul

ven = 0. (3.34)
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Abbildung 3.6.: Three-dimensional heart model coupled to the dimensionally reduced vascular
system network, including pulmonary and systemic circulation. The two vent-
ricular chambers are modeled as a 3D structural mechanics model, and the two
atria are modeled within the 0D flow network by the elastance model. Spring
and dashpot elements at the epicardial surface of the heart model the embed-
ding tissue.

The time-dependent cavity volumes are V `
at, V

`
v, V r

at and V r
v for the left atrium, left ventricle, right

atrium, and right ventricle cavity volume, respectively. The ventricular volumes are computed
from the 3D structure model as the boundary integral over the ventricular surfaces Γ`v and Γrv and
their corresponding inner lid surfaces Γ`lid and Γrlid, see Fig. 3.3. The volume computation reads

V i
v(u) =

1

3

∫
Γi

v∪Γi
lid

x · n da =
1

3

∫
Γi

v∪Γi
lid

(X + u) · JF−TN dA, i ∈ {r, `}. (3.35)
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Tabelle 3.3.: Pressure states and flow rates within the flow network.
symbol state equation

pressure states [kPa]
p`at left atrial pressure (3.20)
p`v left ventricular pressure (3.20),(3.22)
psys

ar systemic arterial pressure (3.22),(3.23),(3.24)
psys

ven systemic venous pressure (3.24),(3.25),(3.26)
prat right atrial pressure (3.28)
prv right ventricular pressure (3.28),(3.30)
ppul

ar pulmonary arterial pressure (3.30),(3.31),(3.32)
ppul

ven pulmonary venous pressure (3.32),(3.33),(3.34)
flow rates [mL/s]

q`v,in inflow rate left ventricle (3.19),(3.20),(3.21)
q`v,out outflow rate left ventricle (3.21),(3.22),(3.23),(3.24)
qsys

ar systemic arterial flow rate (3.23),(3.24),(3.25)
qsys

ven systemic venous flow rate (3.25),(3.26),(3.27)
qrv,in inflow rate right ventricle (3.27),(3.28),(3.29)
qrv,out outflow rate right ventricle (3.29),(3.30),(3.31),(3.32)
qpul

ar pulmonary arterial flow rate (3.31),(3.32),(3.33)
qpul

ven pulmonary venous flow rate (3.19),(3.33),(3.34)

The atria volumes V i
at are derived from the elastance models given by

piat = Ei
at(t) (V i

at − V i
at,u), i ∈ {r, `}, (3.36)

where V i
at,u is the unstressed volume of the atria and piat the atrial pressure. The time-varying

elastance function is used to model atrial contraction and relaxation as

Ei
at(t) = (Ei

at,max − Ei
at,min) · yiat(t) + Ei

at,min, i ∈ {r, `}, (3.37)

with Ei
at,max and Ei

at,min as the maximal and minimal atrial elastances. The atrial activation func-
tion is given as

yiat(t) =


1

2

[
1− cos

(
2πt

∆tact

)]
, for t ≤ ∆tact,

0, for t > ∆tact,

i ∈ {r, `}, (3.38)

where ∆tact is the duration of atrial activation. An exemplary evolution of atrial elastance is
depicted in Fig. 3.7.
All baseline model parameters of the flow network are based on [62, 144, 157] and are listed in
Tab. 3.4. Unless stated otherwise, these model parameters are used for all simulations.

Coupling and IBVP

To couple the flow network with the 3D structural model of the heart, coupling boundary condi-
tions are needed. In this work, the structural heart model provides ventricle volumes, which are
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Abbildung 3.7.: Left (red) and right (blue) atrial elastance evolution over a cardiac cycle.

Tabelle 3.4.: Baseline parameters for flow network.
symbol value equation
system resistances/ impedances [kPa s/mm3]
Rsys

ar 120 · 10−6 (3.24)
Rsys

ven
1
5
Rsys

ar (3.26)
Rpul

ar
1
8
Rsys

ar (3.32)
Rpul

ven
1
8
Rsys

ar (3.34)
Zsys

ar
1
20
Rsys

ar (3.23)
Zpul

ar 0 · 10−6 (3.31)
valve resistances (2.48) [kPa s/mm3]

R`,min
v,in 10−6 (3.20)

R`,max
v,in 10 (3.20)

R`,min
v,out 10−6 (3.22)

R`,max
v,out 10 (3.22)

Rr,min
v,in 5 · 10−6 (3.28)

Rr,max
v,in 10 (3.28)

Rr,min
v,out 10−6 (3.30)

Rr,max
v,out 10 (3.30)

symbol value equation
system capacitances [mm3/kPa]
Csys

ar 1.3770 · 104 (3.23)
Csys

ven 30Csys
ar (3.25)

Cpul
ar 2 · 104 (3.31)

Cpul
ven 2.5Cpul

ar (3.33)
system inertances [kPa s2/mm3]
Lsys

ar 0.667 · 10−6 (3.24)
Lpul

ar 0 (3.32)

symbol value unit equation
atrial elastance

E`
at,min 9 · 10−6 [kPa/mm3] (3.37)

E`
at,max 2.9 · 10−5 [kPa/mm3] (3.37)

Er
at,min 8 · 10−6 [kPa/mm3] (3.37)

Er
at,max 1.8 · 10−5 [kPa/mm3] (3.37)

∆tact 0.4 · Tcycl [s] (3.38)
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incorporated into the flow network through the left and right ventricular mass balances (3.21)
and (3.29). The ventricle pressure state variables of the flow network are applied as traction
boundary conditions on the structural heart model.

Finally, the IBVP from Sec. 2.1.4 for the 3D structural problem reads

∇X · P = ρ0v̇ in Ω, (3.39)

P ·N = t0
i
p on Γiv, i ∈ {r, `}, (3.40)

P ·N = t0
base
k + t0

base,⊥
k on Γbase, (3.41)

P ·N = t0
i,⊥
k on Γi, i ∈ {epi, lid}. (3.42)

The traction boundary conditions for the embedding tissue remain unchanged, similar to the
prestressing stage, and they are given in Eq. (3.10) and Eq. (3.11). The pressure traction boundary
condition t0ip from Eq. (3.18) becomes

t0
i
p = −pivJF−TN , (3.43)

where piv results from the solution of the 0D flow network.

Numerical solution

The full system is solved monolithically using Newton-Raphson iterations, see Sec. 2.2.4. The-
refore, the 16 network variables are interpreted as a vector of unknowns at time step n

qn = [p`at, p
`
v, p

sys
ar , p

sys
ven, p

r
at, p

r
v, p

pul
ar , p

pul
ven, (3.44)

q`v,in, q
`
v,out, q

sys
ar , q

sys
ven, q

r
v,in, q

r
v,out, q

pul
ar , q

pul
ven]

n. (3.45)

Based on this representation, the fully coupled linearized system reads[
K3D K3D,0D

K0D,3D K0D

]n
i

[
∆d
∆q

]n
i+1

= −
[
r3D

r0D

]n
i

, (3.46)

which is solved for ∆dni+1 and ∆qni+1 to update the solutions[
d
q

]n
i+1

=

[
d
q

]n
i

+

[
∆d
∆q

]n
i+1

. (3.47)

Here, the matrix K3D ∈ Rndof×ndof is the effective tangential stiffness matrix from Eq. (2.86).
The off-diagonal matrixK3D,0D ∈ Rndof×16 describes the dependence of the structural mechanics
problem on the vascular model and reads

K3D,0D
∣∣∣n
i

=
∂r3D

∂q

∣∣∣∣∣
n

i

. (3.48)
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The second off-diagonal matrix K0D,3D ∈ R16×ndof governs the dependence of the vascular
model on the structural mechanics problem and reads

K0D,3D
∣∣∣n
i

=
∂r0D

∂d

∣∣∣∣∣
n

i

. (3.49)

The stiffness matrixK0D ∈ R16×16 is given by

K0D
∣∣∣n
i

=
∂r0D

∂q

∣∣∣∣∣
n

i

. (3.50)

For a more detailed derivation, the reader is referred to [62].

The vascular system is described by a system of ODEs, and therefore initial conditions are
required, and they are listed in Tab. 3.5.

Tabelle 3.5.: Baseline values for the initial network state variables.
symbol initial value
pressure states [kPa]
p`at 0.606
p`v 0.6
psys

ar 12
psys

ven 2.266
prat 0.0606
prv 0.6
ppul

ar 2.4
ppul

ven 1.6

symbol initial value
flow rates [mL/s]

q`v,in 0
q`v,out 0
qsys

ar 0
qsys

ven 0
qrv,in 0
qrv,out 0
qpul

ar 0
qpul

ven 0

As explained in Sec. 1.2, the cardiovascular system is a closed loop, and hence, the solution
of the heartbeat prediction must fulfill some periodicity requirements. Therefore, the so-called
periodic state is considered as developed if some of the state variables become periodic, i.e., the
value at the beginning of the cycle t = 0 has to be equal to the value at the end of the cycle
t = Tcycl. The periodic state is achieved when the so-called cycle error criterion (CER), denoted
by εcycl, is fulfilled

εcycl = max
(∣∣∣∣psys

ar (Tcycl)− psys
ar (0)

psys
ar (0)

∣∣∣∣ , ∣∣∣∣ppul
ar (Tcycl)− ppul

ar (0)

ppul
ar (0)

∣∣∣∣ ,∣∣∣∣psys
ven(Tcycl)− psys

ven(0)

psys
ven(0)

∣∣∣∣ , ∣∣∣∣ppul
ven(Tcycl)− ppul

ven(0)

ppul
ven(0)

∣∣∣∣ ,∣∣∣∣V `
v(Tcycl)− V `

v(0)

V `
v(0)

∣∣∣∣ , ∣∣∣∣V r
v(Tcycl)− V r

v(0)

V r
v(0)

∣∣∣∣) ≤ εtol,

(3.51)

where εtol is the prescribed tolerance.
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Given the initial values at t = 0, all 0D network state quantities evaluated at t = Tcycl result
from the evaluation of the cardiac cycle. To fulfill Eq. (3.51), identifying the periodic state can
be reformulated as finding a set of initial conditions q(t = 0) for the flow network. To find
such initial conditions, multiple cardiac cycles are evaluated, where after each cycle, the initial
conditions are updated using the previous results at t = Tcycl. The iterative process to evaluate a
cardiac cycle until a periodic state is achieved is shown in Alg. 3.

Algorithm 3 periodic state computation

Require: q(t = 0) . initial conditions
1: while not converged(εcycl > εtol) do
2: p̂`v ← q(p`v(t = 0)) . update pressure traction (3.18)
3: p̂rv ← q(prv(t = 0)) . update pressure traction (3.18)
4: compute prestressing stage Eq. (3.14)-(3.17)
5: compute cardiac cycle Eq. (3.39)-(3.42)
6: compute cycle error criterion εcycl Eq. (3.51)
7: q(t = 0)← q(t = Tcycl) . update initial conditions
8: end while

3.2. Computational cardiac growth mechanics

Cardiac growth and remodeling (G&R) refers to the dynamic processes through which the heart
adapts its structure and function in response to various physiological and pathological stimuli.
These adaptive changes are crucial for maintaining optimal cardiac performance. This section
provides an overview of the key aspects of cardiac G&R and summarizes previous research in
this field.

Numerous studies have delved into the complex mechanisms of cardiac G&R. For example, in
[108], it is investigated how the heart can adapt its geometry and function to diverse stimuli
and the underlying molecular processes. In [119] and [146], the adaptation of heart function in
response to changes in pumping demand has been discussed. At the cellular level, research in
[39] has explored sarcomerogenesis, while studies in [156] have investigated myocardial fibrosis.
Cardiac G&R can be triggered by natural factors such as pregnancy and athletic pursuits, which
is called physiological hypertrophy, or in response to abnormal conditions like valve dysfunction
and genetic mutations, called pathological hypertrophy. Both types are briefly discussed in the
following.
Physiological hypertrophy is considered a compensatory mechanism, leading to an increase in
cardiac mass due to the growth of cardiomyocytes in both length and width. A heart displaying
physiological hypertrophy maintains or even enhances its systolic function, and it was shown
that the left ventricular dimension in trained athletes is significantly larger [42, 105]. Important-
ly, this improvement in function does not result in alterations to the extracellular matrix or the
development of fibrosis [24]. Furthermore, it’s worth noting that physiological hypertrophy is
entirely reversible [100]. For example, in the case of pregnancy, elevated hormone levels, incre-
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ased blood volume, and cardiac output trigger an adaptive hypertrophy in the left ventricle that
returns to the normal condition within two weeks [151].
Pathological hypertrophy is characterized as an initial, adaptive, and compensatory reaction to
abnormal ventricular loading or the presence of mutant sarcomeric proteins [46]. Nonetheless,
this form of hypertrophy can eventually become maladaptive, leading to myocardial fibrosis and
disruptions in myocyte function. These changes can detrimentally affect both systolic and dia-
stolic function, ultimately culminating in irreversible cardiac growth and heart failure [59, 138].
There are typically two classical categories of pathological hypertrophy, which are distinguished
by the changes in ventricular geometry resulting from the underlying condition.
First, concentric hypertrophy involves the thickening of the ventricular wall and an increase in
cardiac mass while the chamber volume remains relatively unchanged. This phenomenon occurs
due to the parallel deposition of sarcomeres in cardiomyocytes [59].
Second, eccentric hypertrophy, also known as dilated hypertrophy, is characterized by the di-
lation of the chamber volume. Unlike concentric hypertrophy, there is only a slight change in
the thickness of the ventricular wall. This type of hypertrophy results from the serial addition of
sarcomeres and the lengthening of cardiomyocytes [59].
Numerous heart diseases can lead to the development of these two primary forms of pathological
cardiac hypertrophy. Three predominant causes are highlighted as follows.

• Pressure overloading refers to an external abnormal mechanical loading condition where
the ventricular afterload is increased. To counteract this elevated afterload, the contractile
stress in the sarcomeres increases to generate the necessary force for pumping blood out
of the left ventricle and into the rest of the body [116].

• Volume overloading represents another type of abnormal ventricular loading. In this sce-
nario, the left or right ventricle becomes filled with an excessive amount of blood during
diastole, resulting in an elevated ventricular preload [116].

• Hypertrophic cardiomyopathy stands out as the most common form of genetic heart disea-
se. It arises due to mutations in the sarcomeric proteins found in the myocardium, which
is the muscular tissue of the heart. This genetic condition can lead to abnormal cardiac
growth and structure [99].

Over the past decades, the focus on computational and mathematical modeling of cardiac G&R
has increased. These models offer the potential to deepen the comprehension of the complex
behaviors and interactions within living systems. Further, with the help of these models, dif-
ferent hypotheses, as the choice of mechanical stimuli [106, 125] and the reversal of cardiac
hypertrophy [95] on the hypertrophic behavior of the heart, were investigated.
The multiplicative split framework from [122] has been used in many different applications. It
was initially used to model arterial growth, see for example [90, 123] or to model growth in the
developing heart, see [96, 120, 147]. Therein, the growth deformation gradient was defined as
a differential equation involving the deviation of a growth stimulus from its periodic value [96]
and was applied to a ventricle geometry in [88].
Another research focus has been the development of constitutive growth laws that govern the
formulation of the growth deformation gradient. The debate over which stimulus or combina-
tion of stimuli drives cardiac growth continues. Still, conventional cardiac growth models have
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typically employed stress, strain, or a combination of both to stimulate the evolution of the defor-
mation gradient. There has been a growing emphasis on determining the most effective stimulus
or combination of stimuli to reliably induce stable growth, along with an increased focus on inte-
grating multiscale and mechanical aspects. For example, [160] conducted a comparative analysis
of eight established growth laws in response to cyclic stretches designed to simulate either vo-
lume or pressure overload. However, only two models could reach a steady-state growth in both
simulations [83, 96].
Additionally, signaling pathways have been incorporated in modeling heart growth, see for ex-
ample [41, 162]. They describe the hormonal and mechanical signaling cascades, which are
active transcriptional factors that induce heart growth. A more detailed overview is given in
Sec. 3.3.
Instead of using the kinematic growth model from [122], cardiac G&R can also be described
using the so-called homogenized constraint mixture model [71]. Therein, the different constitu-
ents of tissue exhibit unique production and turnover rates within a single continuum mixture.
An example application is given in [28] for G&R in arteries and vessels.

Within the scope of this thesis, the kinematic growth model presented in [122] is used and is
therefore discussed within the following section. For further insights into recent G&R studies,
the reader is referred to [103, 136].

3.2.1. Kinematics of growth
The multiplicative split of the deformation gradient, see Eq. (2.6), is introduced as

F = FeFg, (3.52)

where Fe is the elastic deformation and Fg corresponds to the inelastic or growth deformation. In
the nonlinear continuum mechanics setting, applying Fg to the reference configuration Ω0 leads
to an intermediate configuration Ωg, see Fig. 3.8.
In this intermediate configuration, local kinematic compatibility conditions are not imposed.
Hence, the mapping from Ω0 to Ωg is not necessarily differentiable in space and can therefore not
be described by a mapping function ϕg [160]. The mapping from the intermediate configuration
Ωg to the current configuration Ωt is defined by the elastic deformation gradient Fe.
As a result of the multiplicative split, the elastic right Cauchy-Green deformation tensor from
Eq. (2.14) is defined as

Ce = Fe
TFe = Fg

−TCFg
−1, (3.53)

and the elastic second Piola-Kirchhoff stress tensor from Eq. (2.19) reads

Se = FgSFg
T . (3.54)

Furthermore, growth is not supposed to induce stresses directly. Hence, the strain energy function
is reformulated in terms of the elastic right Cauchy-Green deformation tensor and is defined as

Ψe(C) = Ψ(Ce), (3.55)
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Abbildung 3.8.: Visualization of the multiplicative split of the deformation gradient. The inter-
mediate configuration Ωg arises from applying the growth deformation gradient
Fg to the reference configuration Ω0. The mapping from Ωg to Ωt is defined by
the elastic deformation gradient Fe.

Similar to Eq. (2.31) and Eq. (2.32), the elastic second Piola-Kirchhoff and the elastic material
tangent is given by

Se = 2
∂Ψe

∂Ce

, and Ce = 4
∂2Ψe

∂Ce
2
. (3.56)

3.2.2. Phenomenological growth model
In this section, the specific growth law suitable for modeling physiological heart growth is pre-
sented. The growth deformation gradient Fg is described by the growth stretch. Specifically, the
underlying growth law is chosen based on [83] and reads

Fg(ϑ) = ϑ1f0 ⊗ f0 + ϑ2(s0 ⊗ s0 + r0 ⊗ r0), (3.57)

with r0 as the surface normal direction, perpendicular to f0 and s0. Since these three directions
form an orthonormal basis, it follows that

I = f0 ⊗ f0 + s0 ⊗ s0 + r0 ⊗ r0, (3.58)

holds and thus, Eq. (3.57) can be rewritten as

Fg(ϑ1, ϑ2) = ϑ1f0 ⊗ f0 + ϑ2(I − f0 ⊗ f0). (3.59)

This growth law is motivated by cylindrical growth, where a cylinder is regarded as an appro-
ximation of the muscle fiber. Consequently, two growth directions are defined, one in the fiber
direction and the other one in the cross-fiber direction. This assumes that sarcomeres are added
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equally in parallel in both cross-fiber directions, that is, transversely isotropic growth. As the
material needs to be deposited in two directions, the second growth stretch ratio is applied to
both cross-fiber directions and has to be lower than the first growth stretch.
Following [83], the relation between the two growth stretches reads

ϑ1 = ϑ (3.60)

ϑ2 =
√
ϑ. (3.61)

This choice simplifies the parameter optimization problem for the growth stretch ϑ described in
Sec. 2.3.
Note that the gradient of S with respect to the growth stretch ϑ is needed in case of the parameter
estimation framework, see Eq. (2.112). This linearization is given in App. B.2.

IBVP

The growth stretch ϑ(X, t) is a spatial field, defining growth at point X at time t. In this work,
a temporal constant growth rate cϑ(X) is assumed due to the lack of available information.
Additionally, it is assumed that there is no significant growth acceleration within the considered
timeframe of physiological growth. Thus, the evolution equation for ϑ(X, t) is given by

ϑ̇(X, t) = cϑ(X). (3.62)

Its solution reads

ϑ(X, t) = ϑ(X, t0) +

∫ Tgrowth

t0

cϑ(X)dt = ϑ(X, t0) + cϑ(X)(Tgrowth − t0), (3.63)

where Tgrowth − t0 is the duration of the growth time. The initial condition is chosen to be
ϑ(X, t0) = 1 everywhere.
Finally, the IBVP from Section 2.1.4 for the growth mechanics model reads

∇X · P = 0 in Ω, (3.64)

P ·N = t0
i
p on Γiv, i ∈ {r, `}, (3.65)

P ·N = t0
base
k + t0

base,⊥
k on Γbase, (3.66)

P ·N = t0
i,⊥
k on Γi, i ∈ {epi, lid}. (3.67)

The traction boundary conditions for the embedding tissue remain unchanged and are given in
(3.10) and (3.11). The growth computation is performed after evaluating the cardiac cycle, see
Section 3.1.5. Therefore, the end-diastolic configuration is chosen as the reference configuration
of the growth model. Hence, the pressure traction boundary condition t0ip from (3.43) is still
applied, where the constant piv equals the end-diastolic pressure. Note that the same strain energy
function as in Eq. (3.2) is used.
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3.3. Signaling growth network
As already outlined in Sec. 3.2, cardiac G&R is a complex interplay between biochemical and
mechanical stimuli [45, 56]. This interplay across different time and length scales is pivotal to
understanding cardiac G&R [55, 153]. In particular, the underlying cellular processes must be
considered if one wants to predict the influence of hormones and pharmacologic interventions
on growth.
On a cellular level, the hormone insulin-like growth factor 1 (IGF1) plays a central role in G&R.
When IGF1 binds to its receptor IGF1R, multiple signaling pathways are triggered, which re-
gulate cell proliferation, differentiation, metabolism, and survival [150]. Primarily synthesized
in the liver, IGF1 travels through the bloodstream to the heart, activating an endocrine effect
[93]. However, it can also be locally produced in response to mechanical stretches, leading to an
autocrine or paracrine effect [161]. The absence of IGF1 restricts cardiomyocyte growth in hy-
pertension, ultimately contributing to heart failure. Thus, the local production of IGF1 emerges
as a critical factor for heart growth and has to be considered in the context of G&R [164].
The local cellular processes are often described by various intracellular signaling pathways and
growth factors, which can be represented by signaling networks [45, 55, 56, 153]. They consist
of a set of species and a set of reactions determining their mutual dependencies. Species refer
to the molecular entities involved in the signaling network, such as proteins, small molecules,
nucleic acids, and complexes formed by these molecules. Reactions represent the biochemical
interactions or transformations that occur between species, e.g., protein-protein binding. Within
these signaling networks, the species CellArea has been used to describe heart growth [41].
In the past, these signaling networks were based on kinetic models [134], Boolean models [1],
fuzzy logic analysis [2], or normalized Hill differential equations [87, 159]. The analysis of these
signaling networks is challenging due to the high number of parameters and interactions between
species. A detailed overview is given in [94].
Signaling networks were used to predict the effects of hormones and pharmaceutical interven-
tions on cardiac G&R. For example, they were used to model hypertrophic signaling within a
single cardiomyocyte and to predict growth in response to both mechanical and hormonal chan-
ges in the system [128] and validated against in-vivo measurements in [45]. In [41], a signaling
network was coupled with a finite element model of the left ventricle by using the network output
as input of the computational model to predict cardiac G&R.
In this work, the local IGF1 production is incorporated into an existing signaling network for
cardiac G&R. Thereafter, the resulting signaling network is coupled to the cardiac growth me-
chanics presented in Sec. 3.2. In the following, the resulting signaling network is presented in
Sec. 3.3.1. Subsequently, in Sec. 3.3.2, the mathematical model to evaluate a signaling network
is outlined, and in Sec. 3.3.3, an exemplary evaluation is shown. Finally, in Sec. 3.3.4, the coup-
ling to the cardiac growth mechanics is discussed. Parts of the presented work in this section are
submitted in [9].

3.3.1. Heart growth network

As a starting point, an established signaling network originally published in [128] and subse-
quently utilized in other studies [41, 45, 77] was used. For the sake of completeness, this network
is shown in the App. Fig. C.1. Throughout this work, it is referred to as the reference (REF) net-
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work. The REF network consists of 106 species, 193 reactions with 17 inputs and 7 outputs, and
is organized in 19 layers, where all species in a layer depend only on species in previous layers.
All species depicted in the first layer are called input species, whereas species in the last layer
are called output species. The input species Stretch represents the local mechanical stimulus,
whereas the output species CellArea can be used to quantify heart growth [41]. All other species
are hormonal and biochemical factors. A detailed list of all species within the network can be
found in the App. in Tab. C.1.

The REF network is modified in two steps. First, since the goal is to analyze heart growth, the
signaling network is simplified such that all species and reactions that do not influence the output
quantity of interest CellArea are removed.
Second, an additional species, denoted as l-IGF1, which accounts for the local IGF1 producti-
on, is incorporated into the second layer of the network. It is connected to Stretch and IGF1R.
Furthermore, the species IGF1 is renamed as g-IGF1 and now only represents the global IGF1
production.

Following the work in [161], the l-IGF1 production is initiated by a calcium influx through
transient receptor potential vanilloid 4 (TRPV4)-calcium channels, which trigger IGF1 gene ex-
pression. Resident cardiac macrophages are in physical contact with cardiomyocytes via focal
adhesion complexes and contribute to the l-IGF1 production process. Furthermore, it has been
shown in [164] that locally produced IGF1 is a crucial requirement for functional heart remode-
ling processes. Tissue-resident macrophages are also involved in tissue development, remodeling
and immune adaption [20].

The resulting signaling network is referred to as the reduced and modified (R&M) network and
is shown in Fig. 3.9.

3.3.2. Hill differential equation approach

Let S represent the set of all species in a signaling network and I ⊂ S denote the set of all input
species as the species without ingoing reactions. Each species s ∈ S is defined by a concentration
cs ∈ [0, cs,max]. Here, cs = 0 corresponds to the lowest and cs = cs,max to the highest possible
level of activation. Furthermore, a network evaluation is denoted as y = f(cI), with cI = {ci ∈
[0, ci,max]|i ∈ I}. In the case of the REF and R&M networks, the output y corresponds to the
concentration cCellArea.

Within the Hill differential equation approach, four different reaction types are introduced, and
they are shown in Fig. 3.10. They are exemplified for X,Y,Z ∈ S. In a single activation, species
X activates species Z, whereas in an inhibition, species X inhibits the activation of species Z. In
an OR activation, either species X or Y can activate Z, and in an AND activation, both species
X and Y must be active to activate species Z. Furthermore, a reaction weight w is assigned to
each reaction.
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Abbildung 3.9.: Reduced and modified (R&M) signaling network containing 80 species, 140
reactions, and 18 layers. It consists of 15 input species. CellArea remains the
only output species. The model connection from Stretch to IGF1R was added
(blue), based on [161, 164].
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Abbildung 3.10.: Different reaction types within a signaling network reaction weight w [9].

The Hill activation function f→Z
act : [0, 1] 7→ [0, 1] from species X to Z is defined by

f→Z
act (cX) := wXZ

BcnX
Kn + cnX

, (3.68)
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where wXZ ∈ [0, 1] is the reaction weight, B = EC50
n−1

2EC50
n−1

and K = (B − 1)
1
n . The parameter

EC50 is the input species concentration required to result in half-maximal activation of the cor-
responding output species. Based on the work in [87], EC50 = 0.5, n = 1.4 and the parameters
B and K ensure that

fact(1) = 1, (3.69)
fact(EC50) = 0.5. (3.70)

The Hill coefficient n determines the steepness of the Hill curve and is depicted in Fig. 3.11.
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Abbildung 3.11.: Nonlinear Hill activation function with w = 1 and EC50 = 0.5 [9].

The inhibition function f→Z
inh : [0, 1] 7→ [0, 1] from species X to Z is given by

f→Z
inh (cX) := 1− f→Z

act (cX). (3.71)

The logical functions OR : [0, 1] × [0, 1] 7→ [0, 1] and AND : [0, 1] × [0, 1] 7→ [0, 1] between
species X, Y and Z read

OR
(
f→Z

act (cX), f→Z
act (cY)

)
:= f→Z

act (cX) + f→Z
act (cY)− f→Z

act (cX)f→Z
act (cY), (3.72)

AND
(
f→Z

inh (cX), f→Z
act (cY)

)
:= f→Z

inh (cX) f→Z
act (cY). (3.73)

These AND and OR functions are applied recursively in case of more than two inputs as in the
REF and R&M network. Exemplary, for three inputs, they read

AND
(
•, •, •

)
:= AND

(
•,AND(•, •)

)
, (3.74)

OR
(
•, •, •

)
:= OR

(
•,OR(•, •)

)
. (3.75)
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Further, the gradients for all different reaction types are defined as

Single activation from X to Z
dcZ

dcX
= cZ,max

df→Z
act (cX)

dcX
,

(3.76)

AND activation to Z for N inputs

dcZ

dcX
= cZ,max

df→Z
act (cX)

dcX

N∏
I

f→Z
act (ci), with I ∈ S\{X},

(3.77)

OR activation to Z for N inputs
dcZ

dcX
= cZ,max

df→Z
act (cX)

dcX

[
1−OR

(
f→Z

act (cj, 0)
)]
, with j ∈ S\{X}.

(3.78)

The derivative of the activation function with respect to an input cX reads

df→Z
act (cX)

dcX
= wB

(
ncn−1

X

Kn + cnX
− nc2n−1

X

(Kn + cnX)2

)
. (3.79)

The derivative of the inhibition function follows from Eq. (3.71) and results in

df→Z
inh (cX)

dcX
= −df→Z

act (cX)

dcX
. (3.80)

Within the Hill differential equation approach, the temporal development of the species concen-
trations is modeled. Therefore, the reaction time constants τ s with s ∈ S are introduced, which
influence the reaction dynamics of the corresponding activation. For the sake of simplicity and
readability, the arrow in the Hill activation and inhibition functions is omitted. Exemplary, for
the REF and R&M network, the Hill ODEs read

dcCalcium

dt
=

1

τCalcium
[OR(fact(cIP3), fact(cPKA))cCalcium,max − cCalcium] , (3.81)

dcHDAC

dt
=

1

τHDAC
[OR(finh(cCaMK), finh(cPKC), finh(cPKD))cHDAC,max − cHDAC] , (3.82)

dcERK5

dt
=

1

τERK5
[fact(cMEK5)cERK5,max − cERK5] , (3.83)

dcp38

dt
=

1

τ p38
[OR(fact(cMEK36), fact(cMEK4))cp38,max − cp38] , (3.84)

dcMEF2

dt
=

1

τMEF2
[OR(finh(cHDAC), fact(cERK5), fact(cp38))cMEF2,max − cMEF2] , (3.85)

dcCellArea

dt
=

1

τCellArea
[OR(finh(cfoxo), fact(cATF2), fact(ccJun), fact(cCREB),

fact(cGATA4), fact(cMEF2))cCellArea,max − cCellArea].

(3.86)

The stationary solution of this system of ODEs is characterized by the condition

dcs
dt

= 0 ∀s ∈ S\I. (3.87)
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The direct stationary solutions (DSS) are obtained by using Eq. (3.87) and they read

cDSS
Calcium = OR(fact(cIP3), fact(cPKA))cCalcium,max, (3.88)

cDSS
HDAC = OR(finh(cCaMK), finh(cPKC), finh(cPKD))cHDAC,max, (3.89)

cDSS
ERK5 = fact(cMEK5)cERK5,max, (3.90)

cDSS
p38 = OR(fact(cMEK36), fact(cMEK4))cp38,max, (3.91)

cDSS
MEF2 = OR(finh(cHDAC), fact(cERK5), fact(cp38))cMEF2,max, (3.92)

cDSS
CellArea = OR(finh(cfoxo), fact(cATF2), fact(ccJun), fact(cCREB),

fact(cGATA4), fact(cMEF2))cCellArea,max.
(3.93)

As all signaling networks in this work are arranged hierarchically in layers, the DSS can be
computed using forward substitution consecutively from the first to the last layer. Furthermore,
to compute the gradient of a specific species with respect to a previous species, chain rule can be
used. For illustration purposes, a demonstrator network is shown in the App. C.2. Additionally,
a proof that all signaling networks presented in this work are asymptotically stable is given in
App. C.3. Hence, the stationary solutions are independent of the choice of the initial conditions.

3.3.3. Signaling network evaluation

Here, the REF and R&M networks are evaluated using the Hill differential equations approach.
For the evaluation, the parameters are set as follows: cs,max = 1, τ s = 1 ∀s ∈ S\I. All down-
stream reaction weights w are set to 1 [41] and the pseudo time interval is set to [0, 40]. All input
nodes, including Stretch, are consistently set to a constant value of ci = 0.06, i ∈ I throughout
the entire simulation time. This assumption is based on the expectation of low basal activation
under normal in-vivo conditions [45]. The system of ODEs is numerically solved with a third-
order explicit Runge-Kutta method for nonstiff ODEs [11].
In Fig. 3.12, the time-dependent concentrations of the species Calcium, HDAC, ERK5, p38,
MEF2, and CellArea are depicted for the REF and R&M network. Furthermore, the DSS are
shown for the R&M network.
All shown concentrations approach a stationary value in both networks. Compared to the REF
network, within the R&M network, the concentration cCellArea attains a higher stationary value
due to the additional pathway from Stretch to l-IGF1. The concentration cCalcium attains a value
close to zero due to the nonlinear behavior of the Hill activation function with a low-level input
concentration. Since the concentration of Calcium is low, the downstream concentrations of
CaMK, PKC, and PKD are also low. These species inhibit the activation of species HDAC and
resulting from Eq. (3.71), cHDAC attains a value of 1. Similarly to cCalcium, the concentration cERK5

and cp38 are low. The species HDAC, ERK5, and p38 determine the concentration of species
MEF2, see Eq. (3.85). The dynamic effects of the system lead to a drastic increase of cMEF2 in
the beginning until the concentration cHDAC reaches 1. Subsequently, MEF2 is determined by the
behavior of ERK5 and p38. The concentration cCellArea has a similar structure compared to the
concentration cMEF2.
In the following, only the stationary solutions of the presented signaling networks are computed
due to the following reasons:
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Abbildung 3.12.: Heart growth signaling network ODE solution of the REF and R&M network
in comparison. The direct stationary solution (DSS) is shown for the R&M
network [9].
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• The timescale of heart growth is significantly larger than the timescale of dynamic hormo-
nal changes.

• The initial transient oscillations of the concentrations in Fig. 3.12 arise from the arbitra-
rily chosen initial values and do not allow a statement on heart growth. Furthermore, no
literature data is currently available to improve the choice of the initial conditions.

Physiological input range

Within the REF and R&M network, a strong monotonic behavior between the inputs cI and the
output cCellArea is observed. Further, only inhibitions can introduce a non-monotonic behavior.
However, from Eq. (3.71), it can be seen that two consecutive inhibitions cancel each other out.
Within the R&M network, only the pathway between PKA and Raf1 includes a single inhibition.
However, since PKA also activates two other pathways, it still shows a monotonic behavior with
respect to CellArea. This is depicted in Fig. 3.13, where the concentration cCellArea over the input
concentration cISO, which activates the PKA pathways, is shown. Whenever the inputs exceed
small threshold values, cCellArea reaches 1. Therefore, the upper limit for physiological input
concentrations is c̃i,max � 1. In App. C.4 in Fig. C.4, a heatmap plot is shown which depicts
the difference in the DSS between the R&M and REF networks.
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Abbildung 3.13.: R&M signaling network output concentration of species CellArea over input
concentration cISO, where all other input concentrations are set to 0. For any
concentration cISO > 0.35, the output concentration cCellArea reaches 1 [9].

3.3.4. Coupling the signaling network and cardiac mechanics
To couple the presented signaling networks to the cardiac mechanics models outlined in Sec. 3.1
and Sec. 3.2, so-called transfer functions are needed. A transfer function maps a key output of a
model to inputs of the other model. Specifically, in this case, two transfer functions are needed.
The first transfer function is designed to map a mechanical quantity obtained from the cardiac
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cycle evaluation to the concentration of input species Stretch of the signaling networks. The
second transfer function is used to map the output concentration of CellArea of both networks to
a growth rate needed to compute cardiac growth.
Since the signaling networks incorporate a single normalized input concentration for the species
Stretch that activates stretch-related intracellular pathways, the transfer function is required to
compute a single strain metric from the cardiac cycle evaluation. In this work, the maximal fiber
strain is used as a strain metric. It is defined as a mapping from the Green-Lagrange strain tensor
E in fiber direction f0 and reads [83]

Eff = f0
TEf0. (3.94)

A linear transfer function between Eff and cStretch is used, which reads

cStretch = cStretch,max max(Eff ). (3.95)

The value of the maximal concentration cStretch,max will be discussed in Sec. 4.6. For simplicity,
in the second transfer function, the concentration cCellArea ∈ [0, 1] is interpreted as the growth
rate cϑ and it reads

cϑ(X) = cCellArea. (3.96)
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4. Application
In this chapter, the patient-specific cardiac mechanics results are presented. In Sec. 4.1, the
measurements needed for the patient-specific calibration process are outlined. In Sec. 4.2, the
application of the atlas construction is presented. Subsequently, in Sec. 4.3, the calibration of
the 3D-0D coupled cardiovascular mechanics model from Sec. 3.1.5 is discussed. In Sec. 4.4,
the application of the surface matching framework from Sec. 2.4.1 is presented. Subsequent-
ly, in Sec. 4.5, the calibration of the cardiac growth mechanics model from Sec. 3.2 is shown.
In Sec. 4.6, a global sensitivity analysis of the signaling networks from Sec. 3.3 is performed.
Furthermore, the coupling results to the growth mechanics model are discussed.

4.1. Measurements
The measurements for the patient-specific calibration in this study were conducted on a porcine
heart model. This heart model is based on genetically modified donor pigs, which are develo-
ped for xenotransplantation [86]. Specifically, the growth hormone receptor (GHR) was deleted
in these pigs, resulting in a reduced growth potential. It was shown that these pigs, at age six
months, exhibited significant reductions in body weight of around 61% and heart weight of
around 63% compared to control pigs. Additionally, the mean minimal diameter of cardiomyo-
cytes in the GHR-deleted pigs was reduced by 28% [60, 61].
The data collection process involved taking motion-CT images of the porcine heart, starting from
the day of life 40 and continuing every ten days until the day of life 80. More precisely, six pigs,
which will be denoted as P1 to P6 throughout this thesis, were analyzed. In this context, motion-
CT is a technique that captures the entire cardiac cycle, showing the heartbeat from R-wave to
R-wave in 10% steps, see Fig. 1.2. It’s important to note that ethics approval has been granted
for this study.
The collected data serve three primary purposes:

• First, the 80% diastolic state is segmented to establish a reference configuration for all
cardiac mechanics models, as outlined in Sec. 3.1.1.

• Second, each phase in a motion-CT is segmented to generate a volume over time relation-
ship, which is used to calibrate the cardiac cycle evaluation discussed in Sec. 3.1.5.

• Third, the CT images taken every ten days are segmented at the 80% diastolic state and
are used to calibrate the cardiac growth mechanics model explained in Sec. 3.2.

During the data collection process, pig P3 passed away after the initial examination. Additio-
nally, pig P4 encountered challenges during the CT imaging acquisition, resulting in data that
cannot be utilized. Consequently, these two subjects are excluded from the dataset presentation.
In App. D.1, a detailed overview of the collected data is presented.
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An example of a porcine heart segmented at the 80% diastolic state is depicted in Fig. 3.2.
In the following, the calibration data for the cardiac cycle evaluation is presented in Sec. 4.1.1.
Subsequently, in Sec. 4.1.2, the calibration data for the cardiac growth mechanics model is
shown.

4.1.1. Cardiac cycle calibration data

Fig. 4.1 depicts the volume curve over the heart phase for the left (LV) and right (RV) ventricle
for pig P2 obtained from segmenting its motion-CT at day of life 40. The measured heart rate
(HR) during this CT data collection was 90 beats per minute.
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Abbildung 4.1.: Left and right ventricular volume segmented over a cardiac cycle at day of life
40 for pig P2. At 100%, the value equals the volume at 0%.

At 0%, corresponding to the R-wave, the maximal volume, i.e., the EDV, is observed. Subse-
quently, systole begins, leading to blood ejection and a resulting decrease in volume. At 40%,
the minimal volume, i.e., the ESV, is reached. Diastole starts, leading to a gradual increase in
volume. Due to the periodic nature of the cardiac cycle, 100% corresponds to 0%.
As explained in Sec. 1.2, the stroke volume (SV) is defined as the difference between the EDV
and the ESV, see Eq. (1.1). In this case, the SV of the left ventricle is around 6.67 mL and for
the right ventricle approximately 5.83 mL. Note that these values are slightly different due to
variations in the workload and function of each ventricle. In a healthy cardiovascular system, the
stroke volume of both ventricles balances out over time to ensure adequate blood flow throughout
the body. However, minor differences in stroke volume are normal and compensated for by the
body’s regulatory mechanisms. Additionally, it’s important to consider the segmentation bias,
which influences the computed volumes. The SVs for pigs P1-P6 from day of life 40 to 80 are
depicted in App. D.1 in Fig. D.1.
To calibrate the cardiac cycle evaluation for these heart geometries, pressure over time curves
within the vascular system are necessary. However, in this study no pressure measurements are
available. Therefore, the volume data obtained from segmentation are used as a basis to search
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for suitable pressure data curves of human children in the literature, which are considered as a
substitute. This literature data will then be used to calibrate all presented models. The process
to find the according literature is explained below. It’s important to note that there might be
physiological differences; however, the focus remains on the calibration process methods.
In general, the pressure data is often provided in correlation with age, such that the strategy in-
volves an indirect comparison. First, the volume data is compared to the body surface area (BSA)
for human children. A LV EDV value of 14.15 mL corresponds to a BSA value of approximately
0.4617 m2, while 25 mL is roughly equivalent to a BSA value of 0.6166 m2. Similarly, an RV
EDV value of 9.4 mL corresponds to a BSA of around 0.4820 m2, and 20 mL to approximately
0.6328 m2 [17, 52, 92]. Second, the BSA values are compared to corresponding age groups.
For a BSA value of 0.4617 m2, the estimated age is approximately 12 months, and a value of
0.6166 m2 corresponds to about 24 months [111, 137]. According to [43], at this age, the left
ventricular pressure is around 85 to 100 mmHg, and the HR is around 80 to 150 beats per minute.
Fig. 4.2 shows the resulting pressure curves with a HR of 90 beats per minute. On the left, the left
ventricular pressure p̃`v and the aortic pressure p̃sys

ar are depicted. On the right, the right ventricular
pressure p̃rv and the pulmonary pressure p̃pul

ar is shown. All measured quantities presented in this
work are denoted with a tilde (•̃).
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Abbildung 4.2.: Artificial pressure over time curves for the left and right heart.

4.1.2. Growth mechanics calibration data
The left and right ventricular EDVs for pigs P1-P6 from the day of life 40 to 80 are depicted in
Fig. 4.3. A value of zero is assigned whenever a measurement is unavailable.
At day of life 40, the mean left ventricular volume is observed to be the lowest at 12 mL with a
standard deviation of 2.35 mL. Note that as time progresses, the volumes increase, but the trend
is not strictly linear. For instance, from the day of life 40 to 50, the mean left ventricular volume
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Abbildung 4.3.: Left and right ventricular EDVs over lifetime. A value of zero means that the
measurement at that point in time is not available. To calculate the mean value,
any values of zero are omitted from the computation.

increases by around 1.5 mL, whereas from the day of life 60 to 70, the growth is around 6.3 mL.
A similar behavior is observed for the right ventricle.

In Fig. 4.4, the CT images, the segmentations, and the resulting .stl shapes for pig P2 from the
day of life 40 to 80 are shown. Similar to Fig. 4.3, a volume increase from the day of life 40 to
80 is observed.

To calibrate the growth model presented in Sec. 3.2, the first step involves aligning the CT
images. However, the alignment of consecutive cardiac images is inherently challenging due to
the patient variability in positioning during CT scans, leading to both rotational and translatio-
nal effects. To address this problem, stable reference points within the CT scans emerge as a
potential solution for defining a unique alignment. Anatomical landmarks such as AV, MVP,
and LVB, introduced in Sec. 3.1.1, serve as promising candidates for stable reference points.
However, identifying these points consistently is challenging due to the image quality and the
segmentation process noise, leading to the potential persistence of rigid body mode effects.
Ideally, growth as a biological phenomenon should be characterized without the interference
of rigid body motions. To address this concern, the surface matching framework, detailed in
Sec. 2.4, is employed to align the resulting geometries. This process is presented in Sec. 4.4.
Before patient-specific cardiac growth is discussed, first, the conventional, patient-agnostic ap-
proach of computing a representative heart shape with the atlas construction method is presented
in the following section.
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Abbildung 4.4.: Segmented 80% diastolic state of the heart of pig P2 from day of life 40 to 80.

4.2. Atlas computation

In this section, the application of the atlas construction method from Sec. 2.4.2 is presented. The
aim is to find a representative heart shape of the epicardial surface of the heart geometries for
pigs P1 to P6 at day of life 40. In the following, in Sec. 4.2.1, the problem setup is outlined.
Subsequently, in Sec. 4.2.2, the results are shown and discussed in Sec. 4.2.3.

4.2.1. Problem setup and parameter setting

Fig. 4.5 depicts the epicardial surfaces for all six pigs at day of life 40. These shapes are denoted
by S i with i ∈ {1, ..., nSh = 6}. The initial alignment is performed using the AV, MVP, and
LVB as their individual coordinate system as explained in Sec. 3.1.1. Afterward, the shapes are
translated to their center of mass, establishing it as the origin.
The objective is to find an atlas shape A that captures the key features within the given data
set. Additionally, the kinematic energy required to align and transform the atlas shape to match
each surface S i is minimized, see Eq. (2.143). As outlined in Alg. 2, an initial atlas with surface
points xA0 and control points cA0 has to be chosen. In this case, the epicardial surface of pig P1 is
chosen as initial atlas A0 = SP1. Furthermore, within the atlas construction problem, a surface
matching problem is solved starting from the atlas shape to each given surface S i. Hence, the
kernel widths σW , σV , the regularization parameter σ, and initial conditions for the momenta α0

have to be chosen.
The varifold kernel width σW needs to be sufficiently large to maintain sensitivity to variations
in the relative position between meshes and to smooth noise. Too small values may lead to

69



Abbildung 4.5.: Epicardial surfaces for all six pigs at day of life 40.

distorted shapes or artifacts. However, large values are prone to homogenizing all shapes and
thereby compromising the accuracy of the matching process [38].
The deformation kernel width σV should be comparable with the expected scale of shape varia-
tions. Deformations are primarily constructed by integrating translations within neighborhoods
characterized by a radius of σV . Smaller values causes the model to account for more distinct
local variations, resulting in less effective integration of information from larger anatomical re-
gions. Conversely, larger values tend to favor a model that emphasizes minimal deformation or
limited local variations [38].
As the initial conditions, the momenta α0 are initialized to zero for each surface matching pro-
blem. Additionally, the dense mode is employed, signifying c(t) = x(t).
The adjoint equations Eq. (2.141) and Eq. (2.142) are solved using the one-step-θ method with
θ = 1 and five pseudo time steps. The resulting optimization problem is solved using the L-
BFGS method, see App. A.5.
All relevant parameters used for this computation are provided in Tab. 4.1 and will be discussed
in Sec. 4.2.3.

4.2.2. Numerical results

The atlas shape consists of 14, 037 surface points. The dimensions of the problem span from
−26.443 to 24.4686 mm along the x-axis, −22.4883 to 22.1572 mm along the y-axis, and
−16.6587 to 18.4174 mm along the z-axis. In each iteration of the atlas construction, six sur-
face matching problems are solved together with the computation of the gradients. Therefore,
the implementation is optimized for efficiency and computational performance through paralle-
lization. Each of the six independent surface matching problems is solved on a dedicated core,
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Tabelle 4.1.: Overview of the atlas problem parameters.
atlas constructing parameter

parameter symbol value unit
varifold kernel width σV 3 [mm]
deformation kernel width σW 1 [mm]
regularization σ 1.0 · 10−3 [mm2]
time step ∆t 0.2 [s]
initial momenta α(t = 0) 0 [-]
initial atlas shape A0 SP1 [-]

allowing for simultaneous processing. The optimization stopped after 15 iterations where the
relative change in the gradient norm was below 1%, and the obtained result is illustrated in Fig.
4.6. The resulting atlas shape A is shown in red, and the initial shapes S i are depicted in gray.
In the beginning, the objective function value was 2.3103 · 105, and after 15 iterations, the value
dropped to 4.12 · 104.

Abbildung 4.6.: Solution of the atlas construction problem. The given epicardial surfaces are
depicted in gray, whereas the resulting atlas shape is shown in red.

4.2.3. Discussion
The atlas construction problem is developed to analyze a given data set from medical imaging.
The primary objective of this method is to estimate a template shape that serves as a representa-
tive model for the anatomical structures under examination. This method is robust to noise and
capable of smoothing out imperfections within the anatomical structures.

71



The specific selection of the parameters can be intricate, particularly the choice of kernel widths.
To identify optimal parameters, a recommended approach involves solving a series of surface
matching problems to determine suitable kernel widths. While this iterative process can be time-
consuming, it is indispensable since the kernel widths determine the accuracy of the model.
Notably, the kernel width σV is important as with larger values, the template shape captures
less variations and gets smoother, whereas, for small values, the template shape captures finer
details [38].
To enhance the performance, the independent surface matching problems were solved in paral-
lel. However, the dense mode, where the control points are equal to the surface points, resulted
in a high-dimensional feature space, leading to computational inefficiency due to increased di-
mensionality. This limitation can be addressed through the incorporation of control points. The
selection and significance of these control points are extensively discussed in [36].
In this thesis, the given data set consisted of six shapes, and one atlas shape was computed. A
promising extension could be to modify the method such that in case of a larger data set, the
method estimates n template shapes. These multiple atlas shapes should be different from each
other, but all represent distinct subsets of the given data set. The advantage of this approach
would be that the user does not have to cluster the data set manually beforehand. This is par-
ticularly interesting because users may lack insight into optimal clustering strategies in certain
cases.
The atlas shape can be used as a reference heart shape for a generic medical treatment, particular-
ly when a patient-specific treatment is unfeasible. However, the primary goal is patient-specific
treatment. Therefore, in the following section, the calibration process for the beating heart model
is outlined, serving as the basis for the cardiac growth models.

4.3. 3D-0D heartbeat model calibration

In this section, the patient-specific evaluation of the cardiac cycle mechanical model is presented.
Therefore, the parameters of the 3D and 0D models are estimated based on the measurements
from Sec. 4.1. In Sec. 4.3.1, the calibration of the flow network parameters is outlined. Since the
3D-0D coupled problem is used as a forward model to calibrate the parameters of the 3D model,
its solution process is explained in Sec. 4.3.2. Subsequently, the calibration procedure for the
active stress model is presented in Sec. 4.3.3. Finally, the calibrated cardiac cycle evaluation is
shown in Sec. 4.3.4 and discussed in Sec. 4.3.5.

4.3.1. Flow network calibration

The flow network, presented in Fig. 3.6, consists of four different windkessel models. The wind-
kessel models are connected in series and measurements have been identified between each
windkessel model. Thus, the calibration of the windkessel parameters is performed individually.
In contrast to considering the full coupled model as the forward problem to calibrate all rele-
vant parameters, this allows for a dimensionally-reduced, robust, computationally efficient, and
well-posed inverse problem formulation. It is important to note, that all flow or volume based
measurements are derived from the motion-CT images and the pressure data sets are artificial as
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explained in Sec. 4.1.1. Furthermore, all measured quantities presented in the previous section
are denoted with a tilde (•̃) and are depicted with dashed lines.
In the following, the calibration process for each windkessel model in the flow network is shown.

4-element windkessel model

Within a 4-element windkessel model, there are four parameters to calibrate, see Eq. (2.46). In
the case of the systemic arterial system, the parameters are Lsys

ar , Rsys
ar , Zsys

ar and Csys
ar . However,

the inertance Lsys
ar and the resistance dependent impedance Zsys

ar are not optimized. They have
only a minor impact on the solution, and according to literature, these parameters exhibit only
negligible variations [144, 157]. Their values are listed in Tab. 3.4.
Fig. 4.7 shows the calibration workflow, where on the left side, the measured left ventricular
outflow q̃`v,out enters the windkessel model as input from the segmentation and the aortic pressure
p̃sys

ar , depicted on the right, is the target output quantity.
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Abbildung 4.7.: Calibration of the systemic arterial windkessel model. The input is the measured
left ventricular outflow q̃`v,out. The target output is the measured aortic pressure
p̃sys

ar . The optimization parameters are the resistance Rsys
ar and the capacitance

Csys
ar . The optimized pressure curve psys

ar is shown on the right.

For the calibration, the pressure pulse is used [143]. Here, the difference between the measured
and computed pressure pulse is minimized. The pressure pulse is defined as the difference bet-
ween the maximal and minimal value of the pressure curve. For example, the measured pressure
pulse is given by

∆p̃ = max(p̃sys
ar )−min(p̃sys

ar ). (4.1)

Another objective in the cardiac cycle computation is reaching the periodic state. Therefore, the
windkessel models require periodicity, i.e., the last value of the computed pressure has to be
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equal to its initial value, or in this case, the previous value of the computed pressure has to be
similar to the measured pressure value. These two requirements lead to the following scalar-
valued objective function

min
R

sys
ar ,C

sys
ar

J = min
R

sys
ar ,C

sys
ar


[
|∆p̃−∆p|

∆p̃

]
︸ ︷︷ ︸

pressure pulse

+
|psys

ar − p̃sys
ar |

p̃sys
ar︸ ︷︷ ︸

periodicity

∣∣∣∣∣
Tcycl

 . (4.2)

Note that this objective function does not address differences in extreme values, as it is not crucial
for this model. The primary emphasis here is on accurately capturing the pressure pulse, which
serves as the main driver. To optimize the resistance and capacitance parameters, an Interior-
Point optimization method is used [19]. The corresponding ODE of the 4-element windkessel
model is solved using an explicit Runge-Kutta method for nonstiff ODEs [34].
The optimized systemic parameters are listed in Tab. 4.2 and the resulting curve is shown in Fig.
4.7 on the right. Note that a time shift between the measured and computed curve is observed.
This time discrepancy results from the challenge to align the measurements from the segmenta-
tion with the artificial pressure data. However, the focus is on approximating the pressure pulse
together with the periodicity, and hence, the time shift between the curves is negligible.
The same optimization method is used for the pulmonary arterial system. Here, the right ventri-
cular outflow q̃rv,out is used as input, whereas the pulmonary pressure p̃pul

ar is set as target output
quantity. Similar to the systemic arterial system, the inertance Lpul

ar and the resistance dependent
impedance Zpul

ar are not optimized. Their values are listed in Tab. 3.4. The optimization results
for the pulmonary arterial system parameters are listed in Tab. 4.2.

2-element windkessel model

Within a 2-element windkessel model, there are two parameters to calibrate, see Eq. (2.45). In
the case of systemic venous circulation, these parameters are Rsys

ven and Csys
ven. The estimation of

these parameters relies on the dependencies identified in [157], as presented in Tab. 3.4. The
results for the systemic venous circulation and the pulmonary venous circulation are listed in
Tab. 4.2.

Valve model

Within the valve model, there are two parameters to calibrate, see Eq. (2.48). In the case of the
aortic valve, these parameters are R`,min

v,out and R`,max
v,out . The maximal resistance value serves as a

lower boundary, regulating the backflow through the valve. Assuming a healthy valve with no
backflow, this value is set to a high value based on the work in [62] and remains uncalibrated.
The resistance values for the mitral and tricuspid valves remain uncalibrated due to the absence
of available measurements. These values are listed in Tab. 3.4.
The calibration workflow for the minimal resistance parameter is depicted in Fig. 4.8. Here, the
measured left ventricular pressure p̃`v and the measured aortic pressure p̃sys

ar are used as inputs,
whereas the measured left ventricular outflow q̃`v,out is used as target output quantity.
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Abbildung 4.8.: Calibration of the aortic valve model. The input are the measured left ventricu-
lar pressure p̃`v and the aortic pressure p̃sys

ar . The target output is left ventricular
outflow q̃`v,out. The optimization parameter is the minimal valve resistanceR`,min

v,out .
The optimized flow curve q`v,out with respect to the area under the curve is shown
on the right.

The calibration objective ensures that the computed flow through the valve is equal to the mea-
sured flow. The resulting scalar-valued objective function reads

min
R`,min

v,out

J = min
R`,min

v,out

(∫ Tcycl

0

∣∣q̃`v,out − q`v,out

∣∣
q`v,out

dt

)
. (4.3)

Similar to the 4-element windkessel model, this objective function does not consider differences
in extreme values, as only the integral value is considered important. The optimization is per-
formed using an Interior-Point optimization and the result is listed in Tab. 4.2. The same op-
timization method is used for the pulmonary valve. Here, the right ventricular pressure p̃rv and
the measured pulmonary pressure p̃out

ar are used as inputs, whereas the measured right ventricular
outflow q̃rv,out is used as target output quantity. This optimization result is listed in Tab. 4.2.

Elastance model

Within the elastance model, there are three parameters to calibrate, see Eq. (2.50). In the case of
the left atrium, these parameters are V `

at,u, E`
at,min and E`

at,max.
According to the literature [29], the pressure within the left atrium typically ranges from 5 to
9 mmHg, while in the right atrium, it varies between 0 to 4 mmHg. Eq. (3.37) at minimal
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activation, i.e., y(t) = 0 and at maximal atria activation, i.e., y(t) = 1, yields

pat,min = Emax(V at,min − V at,u), (4.4)
pat,max = Emin(V at,max − V at,u), (4.5)

where the minimal and maximal atrial volume results from segmentation. For the left atrium
these values are V `

at,min = 4.99 mL and V `
at,max = 5.4 mL, whereas for the right atrium the values

result in V r
at,min = 6.2 mL and V r

at,max = 9.5 mL. Note that at a maximal atria activation, the
volume reaches its minimum. The unstressed volumes are estimated based on [62] and are set to
V `

at,u = 4.5 mL and V r
at,u = 5.5 mL for the left and right atrium, respectively.

With these values and Eq. (4.4) and Eq. (4.5), the elastance values for the left and right atria can
be estimated and the results are listed in Tab. 4.2.

Tabelle 4.2.: Optimized flow network parameters.
symbol value unit

4-element windkessel model
Rsys

ar 9.255 · 10−4 [kPa s/mm3]
Csys

ar 700 [mm3/kPa]
Rpul

ar 8.228 · 10−5 [kPa s/mm3]
Cpul

ar 800 [mm3/kPa]
2-element windkessel model

Rsys
ven 1.6456 · 10−4 [kPa s/mm3]

Csys
ven 21000 [mm3/kPa]

Rpul
ven 8.228 · 10−5 [kPa s/mm3]

Cpul
ven 2000 [mm3/kPa]

valve model
R`,min

v,out 2.014 · 10−5 [kPa s/mm3]
Rr,min

v,out 3.02 · 10−5 [kPa s/mm3]
elastance model

E`
at,min 1.5 · 10−4 [kPa/mm3]

E`
at,max 3 · 10−4 [kPa/mm3]

Er
at,min 7 · 10−6 [kPa/mm3]

Er
at,max 9 · 10−5 [kPa/mm3]

4.3.2. Numerical parameters

The heart model is discretized using 4-node linear displacement-based tetrahedral finite ele-
ments with an edge length of approximately 1.5 mm. This results in 50, 642 finite elements with
11, 501 nodes and 14, 503 DOFs. A graphical representation of the finite element, together with
a spatial resolution study, is given in the App. D.2 in Fig. D.2. As described in Alg. 3, the first
step is prestressing the reference configuration. The ventricular pressure load is applied in 10
steps using a PTC enhanced Newton-Raphson nonlinear solver with initial value kptc

0 = 3.33,
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see Sec. 2.2.4. Subsequently, the computation of the cardiac cycle starts. As a model assump-
tion, the heart rate is set to 90 beats per minute, and thus, the duration of the cardiac cycle is
Tcycl = 2

3
s. This results in an atrial activation time of ∆tact = 0.4 · Tcycl = 0.266 s, see Tab. 3.4.

The ventricular contraction starts at tcontr = 0.2 ·Tcycl = 0.133 s and ventricular relaxation starts
at trelax = 0.53 · Tcycl = 0.35 s, see Tab. 3.1. The temporal discretization of the flow network is
done using the one-step-θ scheme with θ = 0.5, see Sec. 2.2.3. Temporal discretization of the
structural model is performed by the generalized-α scheme using 1000 time steps of size 2

3000
s

and ρ∞ = 0.8. The resulting linear block systems, see Eq. (3.46), are solved iteratively using a
parallel GMRES method implemented in the software Trilinos [57]. To further improve conver-
gence, a SIMPLE type preconditioning [40] is added for the full block system, while algebraic
multigrid preconditioning [127] is applied to the structural block. The model parameters for the
flow network are taken from Tab. 3.4 unless redefined in Sec. 4.3.1. The parameters for boundary
conditions are taken from Tab. 3.2. The active stress model parameters are listed in Tab. 3.1. The
tolerance of the cycle error criterion (CER) is set to εtol = 0.01, see Eq. (3.51). This value is
primarily chosen based on experience, as a 1% relative change is sufficient to consider the state
as periodic.
Relevant parameters are provided in Tab. 4.3.

Tabelle 4.3.: Overview of the numerical parameters for the 3D-0D coupled problem.
cardiac cycle evaluation parameter
parameter symbol value unit

cardiac cycle duration Tcycl
2
3

[s]
atrial activation time ∆tact 0.266 [s]
ventricular contraction time tcontr 0.133 [s]
ventricular relaxation time trelax 0.35 [s]
time step size ∆t 2

3000
[s]

first-order time discretization θ 0.5 [-]
time discretization dissipation factor ρ∞ 0.8 [-]
cycle error criterion εtol 0.01 [-]

4.3.3. Active stress calibration

Within the active stress model, there are three parameters to calibrate for each ventricle, see Eq.
(3.4). These parameters are the contractility σ0 and upstroke rate αmax and relaxation rate αmin.
The active stress functions for the left and right ventricles are calibrated by minimizing the
difference between the measured and computed volumes. The upstroke rate αmax solely affects
the active stress curve between tcontr and trelax. In contrast, the relaxation rate αmin influences
the curve from trelax until the end of the cardiac cycle. The contractility σ0 affects the maximal
contraction, and thus, the minimal volume, see Fig. 3.5.
To calibrate these parameters, three measured volumes are used here. The first measured volume
is obtained at tmid

contr = 0.24 s, defined as the midpoints between tcontr and trelax. The second
volume corresponds to the ESV at tmax

contr = 0.4 s. The third volume is obtained during mid-
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relaxation at tmid
relax = 0.55 s. Based on these points, the scalar-valued objective function reads

min
σ`
0,α

`
max,α

`
min

J = min
σ`
0,α

`
max,α

`
min

∑
i

∣∣∣Ṽ `

v − V `
v

∣∣∣
Ṽ
`

v

∣∣∣∣∣
ti

 , with ti ∈ {tmid
contr, t

max
contr, t

mid
relax}. (4.6)

To optimize the parameters, a gradient descent algorithm is used in combination with a finite
differences approach. Fig. 4.9 depicts the measured volumes as well as the final computed volu-
me curve with optimized parameters for the left and right ventricles. Note that in the beginning,
atrial contraction causes the volumes to increase before the contraction of the ventricles starts.
The resulting parameters for the left and right ventricle are listed in Tab. 4.4.
Furthermore, the measured stroke volumes of S̃V

`
= 6.2 mL and S̃V

r
= 5.5 mL agree with the

computed stroke volumes of SV` = 5.84 mL and SVr = 5.23 mL.
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Abbildung 4.9.: Calibration of the active stress functions for the left and right ventricle.

Tabelle 4.4.: Optimized active stress parameters for the 3D-0D coupled problem.
symbol value unit

left ventricle
σ`0 60 [kPa]
α`min -25 [1/s]
α`max 25 [1/s]

symbol value unit
right ventricle

σr0 55 [kPa]
αrmin -29 [1/s]
αrmax 29 [1/s]
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4.3.4. Patient-specific numerical results

The periodic state is computed using all stated parameters above, and it is reached after eight
cardiac cycles, resulting in a CER = 0.008406.
The patient-specific periodic state flow network variables are depicted in Fig. 4.10. At time
t = 0 s atrial contraction starts causing the atrial pressure to increase, see Fig. 4.10 (a) and
(b). During this period, blood flows from the atria into the ventricles, see Fig. 4.10 (b) and
(c). Atrial contraction ends at time t = 0.133 s and the atrioventricular valves close. Thereafter,
isovolumetric contraction begins until the ventricular pressures surpass the aortic and pulmonary
pressures, initiating ventricular ejection, see Fig. 4.10 (a) and (b). The ejected ventricular blood
flow is depicted in Fig. 4.10 (c) and (d). At time t = 0.4 s, ventricular ejection ends, and the
semilunar valves close since the ventricular pressure is below the aortic or pulmonary pressure.
Subsequently, isovolumetric relaxation continues until time t = 0.46 s, where the ventricular
pressure aligns with the atrial pressure again. The rest of the cardiac cycle is passive ventricular
filling, see Fig. 4.10 (c) and (d).
Fig. 4.10 (e) depicts the volume-pressure curves over one cardiac cycle for the left and right
ventricle. The integral of the area in a volume-pressure loop corresponds to the accomplished
mechanical work of the ventricles.
Fig. 4.11 depicts the 3D structural model of the ventricular heart during one cardiac cycle. The
initial configuration is shown at time t = 0 s. Thereafter, the mid ventricular contraction at time
tmid

contr = 0.24 s, the maximal contraction at time tmax
contr = 0.4 s and the mid relaxation at time

tmid
relax = 0.55 s configurations are depicted. Note that at time t = Tcycl, the final configuration

resembles the initial configuration.

4.3.5. Discussion

The presented model was utilized to estimate a periodic state within a cardiac cycle. It couples
a 3D structural model of the ventricular heart with a flow network accounting for the vascular
system. The primary objective of this section was to calibrate the periodic state in a patient-
specific setting. Therefore, various parameters need calibration.
The flow network consists of four windkessel models, which are connected in series. The arterial
systemic and pulmonary circulation are represented by 4-element windkessel models, and the
venous systemic and pulmonary systems are described by 2-element windkessel models. Heart
valves are modeled using a diode element, and the behavior of the atria is approximated using an
elastance model. As outlined in Sec. 4.1.1, the volume and flow based measurements are derives
from the motion-CT images and the pressure data sets are identified from literature [17, 52, 92,
111, 137]. Hence, the parameters within each windkessel model were calibrated individually.
The calibration method was based on scalar-valued optimization, which is computationally effi-
cient and robust. An Interior-Point optimization method, together with an explicit Runge-Kutta
method for nonstiff ODEs, was used to optimize the parameters. The windkessel models are
simple approximations of the vascular system and therefore, they cannot precisely replicate the
prescribed pressure and flow curves, see Fig. 4.7 and Fig. 4.8. As the focus of this thesis was
solely on the overall integral behavior of the vascular system, the used windkessel models yield
accurate results such that this approximation is suitable. In cases where no measurements were
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Abbildung 4.10.: Flow network state variables over one cardiac cycle.
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Abbildung 4.11.: Deformation of the heart over one cardiac cycle.

available, the parameters were estimated based on literature data [144, 157]. Generally, a higher
quantity of measurements leads to improved calibration and more accurate results.
The 3D structural model of the ventricular heart was generated from CT images, as outlined
in Sec. 3.1.1. Since this work focuses on ventricular contraction and ventricular growth, the
atria and valves were not segmented but were approximated by the flow network. The fiber
and sheet directions are established through generic and rule-based models and do not rely on
patient-specific measurements. To improve accuracy and to attain a more physiologically accu-
rate representation, methods presented in [8, 115] could be employed. The embedding tissue
boundary conditions were also not calibrated but taken based on previous work in [62], as no
measurements were available.
To approximate the already acting stresses and strains in the imaged configuration, prestressing
based on the Modified Updated Lagrangian Formulation (MULF) was used, see Sec. 3.1.4. This
method is computationally efficient and robust. An alternative approach for prestressing is in-
verse design analysis, which involves solving an inverse problem to determine the stress-free
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reference configuration. This configuration transforms into the imaged configuration after app-
lying the load under consideration [48, 113]. The advantage of this method is a more accurate
stress-state representation in the imaged configuration. However, it suffers from computational
inefficiency due to the fact that this problem is highly nonlinear and has a non-unique solution
space.
The constitutive model consisted of a passive material model and an active stress model. The
passive material was based on [65] and was not calibrated due to the absence of available da-
ta for calibration. Within the active stress model, there were three parameters to calibrate for
each ventricle, namely the contractility, upstroke rate, and relaxation rate. These parameters we-
re calibrated using the cardiac cycle evaluation as a forward model and objectives based on the
segmented volumes in Fig. 4.1. The forward model was evaluated until a periodic state was
achieved. To optimize the parameters a gradient-based optimization was used, where the gradi-
ent was approximated using finite differences.
One limitation of this model is that the activation of the contraction is temporally prescribed and
spatially constant. One advantage of spatially constant activation is that it is easy to calibrate.
Additionally, it effectively captures the overall integral behavior, such as the stroke volume. Ho-
wever, a disadvantage is that it does not capture spatial resolution. To address this constraint,
cardiac electrophysiology offers a potential solution where the propagation of the electromecha-
nical activation is studied and temporally and spatially resolved [149].
In conclusion, the methodologies presented in this section demonstrate the capability to effec-
tively calibrate the computational 3D-0D model based on the patient-specific data outlined in
Sec. 4.1.1. This calibration process can be repeated for all motion-CT data sets from day of life
40 to 80. The resulting configuration serves as a starting point for the subsequent cardiac growth
simulations, which are discussed in Sec. 4.5 and Sec. 4.6. The calibration process of the cardiac
growth model requires precisely aligned images, which can be ensured by solving the surface
matching problem discussed in the next section.

4.4. Surface matching problem for growth

As discussed in Sec. 4.1.2, the alignment of consecutive images is not straightforward. Therefore,
the surface matching framework presented in Sec. 2.4.1 is used to overcome this problem. In the
following, in Sec. 4.4.1, the problem setup is outlined. After that, in Sec. 4.4.2, the results are
shown and discussed in Sec. 4.4.3.

4.4.1. Problem setup and parameter setting

The surface matching is shown for Pig 2 between CT1 and CT2, taken at day of life 40 and
50, respectively. The geometry from CT1 is denoted by S0, and the geometry from CT2 acts as
the target shape, denoted by T . Similar to the atlas construction method in Sec. 4.2, the initial
alignment is performed by using AV, MVP, and LVB as a coordinate system. Thereafter, the
shapes are translated to their center of mass. The initial configuration of the surface matching
problem is illustrated in Fig. 4.12, where the geometry S0 is represented in grey with the surface
mesh, and the target geometry T is depicted in red.

82



Abbildung 4.12.: Initial configuration of the surface matching problem. The initial geometry S0

is represented in gray, and the target geometry T is depicted in red.

The objective is to find the initial momenta α0 such that the resulting shape S1 represents the
target shape T . Similar to the atlas construction, the surface matching quality is measured using
the surface currents similarity measure, where the kernel widths σW and σV have to be chosen.
As the initial conditions, the momenta α0 are initialized to zero. Additionally, the dense mode is
employed, signifying c(t) = x(t). The adjoint equations Eq. (2.141) and Eq. (2.142) are solved
using the one-step-θ method with θ = 1 and ten pseudo time steps. The resulting optimization
problem, see Alg. 1, is solved using the L-BFGS method, see App. A.5.
All relevant parameters are provided in Tab. 4.5.

Tabelle 4.5.: Overview of the surface matching parameters.
surface matching parameter

parameter symbol value unit
varifold kernel width σV 5 [mm]
deformation kernel width σW 2 [mm]
regularization σ 1.0 · 10−3 [mm2]
time step ∆t 0.1 [s]
initial momenta α(t = 0) 0 [-]
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4.4.2. Numerical results

The numerical model for the surface matching problem in Fig. 4.12 consists of 5, 430 surface
nodes for initial shape S0 and 6, 139 surface nodes for target shape T . Hence, the meshes do
not coincide topologically. The optimization ended after 100 iterations. The obtained results
are illustrated in Fig. 4.13. The resulting shape S1 is shown in gray, and the target shape T
is depicted in red. The results of the surface matching problem reveal a significant similarity
between the two shapes. In the beginning, the surface norm between S0 and T is 65, 428.19.
After 100 iterations, the surface norm results in 136.76. To better understand the results, for
every surface point of S1, the closest point distance to T is computed and yields a mean value
of 0.55 mm and a maximum value of 1.36 mm.

Abbildung 4.13.: Final configuration of the surface matching problem. The resulting shape S1 is
shown in gray, and the target shape T is depicted in red.

Despite the similarity between the two shapes, a significant mesh distortion is evident in the
results. These distortions are primarily attributed to the rigid body modes of translation and
rotation. To achieve a rigid body mode-free transformation from S0 to S1, a subspace projection
is applied. The used projector removes translation and rotation components in the solution of the
momenta α(t) and is based on a so-called subspace projection [7, 21]. Applying these projected
momenta to the initial shape S0 results in a new shape S̃1, which is orthogonal to the space of
rigid body modes.
Fig. 4.14 depicts the resultant shape S̃1 compared to the target shape T . It can be observed that
the image does not fit the target shape T as well as the result shown in Fig. 4.13. However, there
is no mesh distortion anymore, making the shape S̃1 an optimal choice as a target geometry
for the growth model as outlined in Sec. 4.1.2. The surface norm between S̃1 and T results in
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1, 420.57. The mean value of the closest point distances is 0.612 mm, and the maximal value
results in 3.284 mm.

Abbildung 4.14.: Projected solution of the surface matching problem.

4.4.3. Discussion
The surface matching framework is designed for the statistical analysis of complex 3D anatomi-
cal shapes, and it is versatile enough to deal with generated surfaces from various segmentation
methods. The primary objective of this method is to estimate a transformation path from one
shape to another. It is robust to noise and mesh imperfections.
However, similar to the atlas construction method, the selection of the parameters can be intri-
cate, particularly the choice of kernel widths. The accuracy of the model is influenced by the
selection of the kernel widths and regularization parameter [38]. Too large values result in an
overly smoothed solution, where geometrical features vanish. Conversely, too small values con-
tribute to capturing undesirable noise. One potential extension could involve the development of
methods for automatically tuning these hyperparameters.
The employed dense mode, where the control points are equal to the surface points, resulted
in a high-dimensional feature space, leading to a computationally costly formulation due to the
increased dimensionality. To overcome this constraint, control points could be used. Control
points are a minimal set of points representing the most important features of the geometry. The
choice of control points is a critical aspect of the surface matching framework and is extensively
discussed in [36].
As a postprocessing step to the surface matching problem, a projector was employed to eliminate
the rigid body modes of translation and rotation within the momenta. This resulted in a new sha-
pe. While this shape exhibited a larger deviation from the target shape compared to the original
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result, there was no mesh distortion. While the use of a projector was a viable solution, an alter-
native and potentially more effective approach would be the reformulation of the optimization
problem by directly optimizing for rigid-body-mode-free momenta.
It is important to note that within the scope of this thesis, surface matching serves as a prepro-
cessing step to the growth identification problem. Therefore, computational efficiency was not
a primary concern, and the focus remained on the accuracy and reliability of the transformation
path estimation. Given the absence of rigid body modes, the new shape proves to be a favorable
choice as a target for the growth identification problem, see Sec. 4.5.

4.5. Cardiac growth model calibration
In this section, the calibration of the growth parameter based on the Bayesian inverse problem
from Sec. 2.3 is presented. Therefore, in Sec. 4.5.1, the problem setup is outlined. Subsequently,
in Sec. 4.5.2, the results are presented and discussed in Sec. 4.5.3.

4.5.1. Growth prediction for two consecutive images

The growth calibration is focused on pig P2 from day of life 40 to 50. The initial configuration S0

at time instance t0 is derived after evaluating the cardiac cycle computation from Sec. 4.3 at day
of life 40. This step ensures the establishment of a physiological stress state within the heart.
The grown configuration at time instance Tgrowth is obtained by evaluating the forward model
S1 = F (u(θ),θ) presented in Sec. 3.2.2. The target geometry is the grown configuration at day
of life 50, representing the observation Z. The alignment between the initial and target shapes is
achieved through the surface matching application, as detailed in Sec. 4.4.
The objective in the calibration process is to determine a spatial distribution of the growth rate
parameter cϑ(X) such that the grown configuration S1 closely resembles the target shape Z.
Surface currents serve as a similarity measure to quantify the quality of the match. The compa-
rison focuses on the left and right ventricles, as well as the epicardial surface.
The associated kernel widths are set similarly to the surface matching application: The varifold
kernel width σV = 5 mm and the distance measure width σ = 1.0 · 10−3 mm2.
As regularization, the total variation functional is chosen. Therein, the parameters are set to
εtv = 1.0 · 10−3 mm/s and the overall regularization weight is set to α = 1 s/mm.
In summary, all relevant parameters are listed in Tab. 4.6.

Tabelle 4.6.: Overview of the growth identification problem parameters.
growth calibration parameter

parameter symbol value unit
varifold kernel width σV 5 [mm]
distance measure width σ 1.0 · 10−3 [mm2]
TV regularization weight α 1 [s/mm]
TV regularization prior εtv 1.0 · 10−3 [mm/s]
initial condition cϑ 0 [1/s]
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4.5.2. Numerical results

Similar to the cardiac cycle evaluation, the numerical model consists of 50, 642 finite elements
with an edge length of approximately 1.5 mm and 239, 619 DOFs for the displacement field. In
each iteration, one forward problem is solved to evaluate the objective function L(u(θ),λ,θ)
and compute its gradient. The optimization problem is solved using the L-BFGS method and it
ended after 150 iterations. The numerical costs for solving one step within the adjoint problem
consist of the solution to one forward problem, along with the calculation costs for the gradients,
which only increase by an additional linear system solve. Fig. 4.15 depicts the evolution of the
objective function value over the number of iterations. A noticeable pattern emerges, characteri-
zed by an initial decrease followed by subsequent small oscillations. Notably, beyond the 70− th
iteration, the development of further progress becomes increasingly challenging.
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Abbildung 4.15.: Objective function value during the growth calibration process over the number
of iterations.

In Fig. 4.16, the spatial distribution of the growth rate parameter cϑ across the heart is presented.
Notably, distinct patterns emerge, with elevated growth rate values observed in the ventricular
regions. Conversely, the septal area exhibits lower growth rate values.

In Fig. 4.17, the resulting grown configuration S1 is compared in six slices to the observationZ.
In each slice, the outline of the observation is shown in black, and the grown configuration is
colored. Qualitatively, a notable resemblance is observed between the grown configuration and
the observation, although a perfect alignment is not achieved.

The initial and final volumes of the grown configurations and the volumes measured for the
target shape, resulting from the surface matching application are listed in Tab. 4.7 for the left
and right ventricle. In comparison to the initial volumes, this yields a 14.7% increase for the
right ventricle and a 17.8% increase for the left ventricle.
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Abbildung 4.16.: Frontal and back view of the final distribution of the optimized growth para-
meter cϑ over the heart.

Tabelle 4.7.: Initial, grown and measured volumes of the left and right ventricles.
symbol value unit

initial configuration
V `

v(t0) 8.39 [mL]
V r

v(t0) 12.81 [mL]

grown configuration
V `

v(Tgrowth) 9.89 [mL]
V r

v(Tgrowth) 14.70 [mL]

measured target
Ṽ
`

v(Tgrowth) 10.3 [mL]
Ṽ
r

v(Tgrowth) 15.1 [mL]

4.5.3. Discussion

The identification problem presented in this section focused on calibrating the growth rate pa-
rameter for the reference geometry derived from pig P2 at day of life 40 to the target geometry
obtained at day of life 50. Thereby, the target geometry was obtained as a result of the surface
matching problem, see Sec. 4.4.
The results revealed a qualitative resemblance between the grown geometry, obtained by the
calibrated growth rate parameter, and the target geometry. However, a perfect match was not
achieved, and several factors contributed to this discrepancy.
First, finding optimal parameters is crucial and similar to the surface matching problem, finding
optimal parameters can be intricate. The selection of kernel widths, regularization, and noise pa-
rameters influences the spatial distribution. Ensuring that kernel width parameters are sufficiently
large is essential to maintain sensitivity to variations in the relative position between meshes and
to smooth noise. However, excessively small values can lead to geometrically distinct shapes.
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Abbildung 4.17.: Comparison of the grown configuration S1 with the observation Z. In each
slice, the grown configuration is depicted in colors, and the outline of the ob-
servation is shown in black.

The regularization parameter further smoothes the solution and has to be chosen large enough to
prevent unphysiological jumps in the spatial distribution of the growth rate. On the other hand,
excessively large values of the regularization parameter can influence the outcome, leading to
less accurate surface matching.

Furthermore, the computational effort required is substantial, given that the number of unknowns
corresponds to the number of elements utilized. In this case, a single iteration took around 15 min
on an Intel Xeon W-2235 CPU (3.80GHz) processor using 12 cores. The expense of 150 itera-
tions makes the process for finding optimal parameters both costly and time-consuming. To
address this challenge, a potential solution was proposed in [80], where Principal Component
Analysis was employed to reduce the number of parameters for calibration purposes. While this
approach proved to be more efficient than sampling the entire parameter space, the numerical
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costs remained substantial, and accurately assessing the approximation accuracy poses a diffi-
culty.
Another challenge lies in the definition of the target shape. Although the target shape was obtai-
ned through a rigid body mode-free projection from the surface matching problem, the resulting
displacement field may not be entirely physiological. Certain elements underwent substantial
compression, while others experienced high stretches. This can be seen in Fig. 4.16, where some
elements have to shrink by the same factor as neighboring elements have to grow. These scena-
rios are not covered by physiological growth mechanics. One potential solution to overcome this
challenge and to obtain a more homogenized growth rate distribution is the implementation of a
new mesh regularization, which could enhance the definition of a more physiologically accurate
target shape. More specifically, the implementation of a method could focus on reducing abrupt
transitions between compressed and stretched elements.
In conclusion, a trade-off exists between accuracy and practicality in the calibration of the growth
rate parameter. The application of this model focuses on predicting heart growth. The presented
calibration process can be repeated every ten days for all measurements outlined in Sec. 4.1.2.
To achieve this, the 3D-0D model has to be re-calibrated every ten days, as explained in Sec. 4.3.
Additionally, a new target shape has to be defined for each of these identification problems,
as detailed in Sec. 4.4. With this, a time extrapolation method based on the acquired growth
pattern can be used to predict future cardiac growth. Potential time extrapolation methods could
involve the use of a spline approximation or a neural network. This prediction could provide
valuable insights for doctors in developing effective therapeutic approaches, making informed
treatment decisions, and selecting appropriate implants and prostheses, thus enhancing patient
care strategies.

4.6. Signaling network

In this section, the cardiac growth model is coupled to the reference (REF) and reduced and
modified (R&M) signaling networks. In contrast to the previous section, the growth rate is now
determined as a result of the solution of the signaling network. First, a global sensitivity analysis
for the REF and R&M networks is performed to identify the most influential input species on
CellArea and is presented in Sec. 4.6.1. Subsequently, in Sec. 4.6.2, both signaling networks are
coupled to the kinematic growth framework to evaluate a cardiac growth simulation. Finally, in
Sec. 4.6.3, the presented results are discussed.

4.6.1. Global sensitivity analysis of signaling networks

The results presented in this section are submitted in [9]. As discussed in Sec. 3.3.3, the REF and
R&M signaling networks show strong monotonic behavior between the input concentrations and
the output concentration of the species CellArea. For too large input concentrations the output
concentrations results in cCellArea = 1. Therefore, a physiological input range is identified at
c̃i,max = 0.12 for all input species in both signaling networks.
The base sample matrices A and B are filled using Latin Hypercube sampling [101] on the
interval [0, 0.12] with number of samples nS = 1 · 106. Both networks are evaluated using the
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DSS. In Fig. 4.18, the sensitivity estimators SSat and T Jan of CellArea with respect to all input
species are depicted.
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Abbildung 4.18.: First- and total-order sensitivities for cCellArea for all input species in both net-
works [9].

Within the REF network, Stretch has a very low influence on CellArea, which changes in the
R&M network significantly. Both sensitivity indices for Stretch increase approximately by a
factor of five in the R&M network. In the R&M network, Stretch becomes one of the most influ-
ential factors on CellArea, together with g-IGF1, NE, and ANGII. Further, due to the increased
sensitivity of Stretch, the remaining sensitivities decrease.
The total-order sensitivity of g-IGF1 increases in the R&M network. This increase is based on
the interaction between the pathway from g-IGF1 to IGF1R and the novel pathway from Stretch
to l-IGF1 to IGF1R. The sensitivities of the species TNFa are small since it only enters one
OR-activation with six other species. Moreover, the sensitivities of CT1 and LIF are similar as
they are only connected to gp130LIFR.
To conclude the convergence of the sensitivity analysis, Fig. 4.19 shows the first- and total-
order estimators for both networks for the input node Stretch over the number of samples used
for their computation. Additionally, all six presented estimators from Tab. 2.1 are shown in the
App. D.3 in Fig. D.5 and induce convergence since the sensitivities for all estimators are similar.
A numeric representation of the sensitivities can be found in Tab. D.4 and Tab. D.5.

4.6.2. Coupling results
To couple the signaling network with the cardiac mechanics models, transfer functions are nee-
ded, as outlined in Sec. 3.3.4. The first transfer function from Eq. (3.95) is used to map the

91



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

0

0.1

0.2

Number Samples NS [−]

So
bo

li
nd

ic
es

[−
]

SJan
REF

SJan
R&M

T Sob
REF

T Sob
R&M

Abbildung 4.19.: Convergence of the Sobol indices for CellArea with respect to Stretch in both
networks over a varying number of samples [9].

maximal fiber strain, defined in Eq. (3.94), from the solution of the cardiac cycle evaluation pre-
sented in Sec. 4.3.4 to the input concentration cStretch. Using the results from the previous section,
the maximal physiological range for the species Stretch is set to c̃Stretch,max = 0.12. In Fig. 4.20,
the concentration cStretch over the computational heart domain is depicted.
Using this spatial distribution of the concentration cStretch, both signaling networks are evaluated
for each element. Similar to Sec. 3.3.3, the input concentrations for all other input species are set
to ci = 0.06, except the input concentration for the species g-IGF1. As presented in Sec. 4.1, the
data collection in this work was based on a porcine heart model, in which the growth hormone
receptor was deleted. The normal physiological sequence involves growth hormone binding to
its receptor in the liver and subsequently stimulating the synthesis of g-IGF1 [93]. However, due
to the GHR knockout, the global IGF1 concentration is reduced. Hence, the input concentration
is set to a value of cg−IGF1 = 0.
Both signaling networks are evaluated using the DSS. The resulting concentrations of the species
CellArea over the computational heart domain for the REF and R&M network are depicted in
Fig. 4.21.
The second transfer function from Eq. (3.96) associates the concentration cCellArea of the spe-
cies CellArea with the growth rate parameter cϑ, as detailed in Section 3.3.4. Subsequently, the
computational cardiac growth model is evaluated over the time span of ten days. The resulting
growth configurations for the REF and R&M networks are illustrated in Figure 4.21.
For the REF network, the growth configuration results in a final volume of 13.3 mL for the left
ventricle and 9.0 mL for the right ventricle. In comparison, for the R&M network, the growth
configuration results in a final volume of 13.7421 mL for the left ventricle and 9.11105 mL for
the right ventricle.
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Abbildung 4.20.: Concentration cStretch of the species Stretch over the computational heart do-
main.

4.6.3. Discussion

Based on research in [161] and [164], the local mechanically induced IGF1 was incorporated into
an existing signaling network for heart growth [128]. Therefore, a new species l-IGF1was added
into the network and connected to Stretch and IGF1R. Furthermore, all species and reactions
that do not influence CellArea, the quantity of the interest with respect to heart growth, were
removed to make the analysis of the network cheaper.
The presented sensitivity analysis for the species CellArea with respect to the input species,
see Fig. 4.18, shows that within the original REF network, the species Stretch has only a minor
contribution to heart growth compared to other influential quantities. However, it has been shown
in [69] that Stretch is a crucial factor for cardiomyocytes in heart growth. Within the R&M
network, Stretch became one of the most influential factors for growth and the sensitivities of
CellArea with respect to Stretch are approximately five times higher than in the REF network.
When evaluating the REF and R&M networks with the Hill-differential equation approach, the
transient effects due to arbitrary initial conditions are not physiologically interpretable, see Fig.
3.12. Furthermore, both networks converge to their stationary solution. Moreover, the selection
of suitable initial conditions and reaction time constants poses a challenge, primarily attributed
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Abbildung 4.21.: Concentration cCellArea of the species CellArea over the computational heart
domain resulting from the REF and R&M signaling network. The grown con-
figurations are shown as slices in black for the REF and in red for the R&M
network.

to the complexities associated with data acquisition. The timescale of dynamic hormonal and
biochemical changes is much smaller compared to the timescale of heart growth. This led to the
formulation of the direct stationary solutions (DSS), where reaction time constants and initial
conditions are no longer required.
Considering the nonlinear nature of the signaling networks with numerous interactions, a glo-
bal sensitivity analysis was conducted to identify the most influential factors on CellArea. The
computational cost for many model evaluations was reduced by the DSS approach. First- and
total-order sensitivities were estimated using a variance-based Monte Carlo approach, and a
physiological input range was identified for sampling the input concentrations.
Within the R&M network, the first-order sensitivity index revealed an increased sensitivity of
Stretch and decreased sensitivities of all other species. The total-order sensitivity, accounting for
interactions between the species, increased for Stretch and g-IGF1 while decreasing for all other
species.
As the most influential factors on CellArea, the species Stretch, NE, AngII, and g-IGF1were
identified. Research in [150, 161, 164] shows that locally produced IGF1 is necessary for phy-
siological heart growth. Moreover, the species NE is pivotal in regulating fundamental biological
properties such as growth in myocytes and other cell types within the heart [27, 84]. The species
AngII plays a role in the regulation of cardiac contractility, cell coupling, and impulse propaga-
tion, being implicated in cardiac growth and remodeling [6, 31].
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Additionally, the species TNFa has the lowest sensitivity and, therefore, the lowest influence on
heart growth. In physiological heart growth, it has been shown that the TNFa signaling cascade
is not required for normal cardiogenesis or that this pathway is redundant and compensated for
by alternate signaling pathways [129]. Conversely, in pathological cases, the concentration of
circulating TNFa is elevated [89] and can induce hypertrophy [85]. These findings are consistent
with the estimated sensitivity results.
Coupling the signaling network to the cardiac mechanics models presented in Sec. 3.1 and
Sec. 3.2 involves defining two transfer functions. For the first transfer function, which coup-
les the cardiac cycle evaluation with the input concentration of Stretch, a linear mapping using
the identified physiological range was chosen. The choice of different mechanical stimuli is dis-
cussed in [83, 160]. The second transfer function was based on a linear mapping between the
output concentration of CellArea and the growth rate cϑ. In general, the definition of these trans-
fer functions is not straightforward as they map a physical quantity into a space of normalized
concentrations and then back to a physically interpretable quantity.
In Fig. 4.20, the concentration of the species Stretch is depicted based on the maximal fiber strain
resulting from the cardiac cycle evaluation. Notably, the concentration value was lower in the
septum region, aligning with the expected physiological behavior where the septum undergoes
less contraction compared to the rest of the heart. The high concentration value within the left
ventricle results from the large left ventricular deformation during the cardiac cycle, which can
be observed in Fig. 4.11 at t = 0.24.
Both networks were evaluated in each element using the local concentration of Stretch as in-
put. The resulting distribution of the concentration of CellArea over the heart is illustrated
in Fig. 4.21. This distribution exhibited a similar structure to the concentration distribution of
Stretch due to the monotonic behavior of the signaling networks. Compared to the REF network,
within the R&M network, the overall concentration was higher, and thus, the growth response
was increased.
Another set of transfer functions was proposed in [41]. Therein, the minimum of the maximal
cross-fiber strain was used to derive a transfer function for Stretch by fitting the output of the
growth prediction to their measurements. However, this approach does not allow a general defi-
nition of transfer functions.
Calibrating the signaling network is challenging due to the high number of inputs and model
parameters. However, in a so-called factor fixing [118] approach, the sensitivity analysis results
can be used to reduce the dimensionality of the input space and calibrate the signaling networks.
In particular, the estimated growth rates from Sec. 4.5 could be used to define a mapping bet-
ween the models and calibrate the input concentrations. However, within the presented model
approach, the concentration of CellArea is always positive, i.e., shrinkage of elements cannot be
represented. Therefore, the obtained results from the identification problem in Sec. 4.5 cannot
be used to calibrate this model.
A possible extension could be to modify the model to allow for shrinking as well. Currently, the
growth response is always between 0 and 1, indicating a mass increase. However, as described
in [100], physiological hypertrophy is entirely reversible. Therefore, incorporating the possibility
of shrinking into the model would provide a more comprehensive representation of the dynamic
processes involved in cardiac growth and remodeling. This extension could involve introducing
mechanisms or parameters that allow for negative growth responses, reflecting the reversible
nature of hypertrophy.
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5. Summary and outlook
In modern health care, the most common causes of death are cardiovascular diseases associa-
ted with heart failure (HF). In HF therapy, heart transplantation is considered to be the gold
standard. However, the limited availability of donor hearts restricts its accessibility to all pa-
tients in need. This critical limitation can be addressed by the early identification of patients
progressing towards HF. However, early identification requires a detailed understanding of ma-
ny HF-associated mechanisms. Therefore, this thesis was motivated by the need to enhance the
understanding of cardiac growth and remodeling by developing computational models of cardiac
mechanics. These computational models have the potential to support clinical decision making
and predict long-term treatment responses in-silico.

The acquired data used for the patient-specific calibration of the cardiac mechanics models was
based on a growth hormone receptor knockout pig model due to its resemblance to the heart size
of children. Motion-CT images of the heart of six pigs were captured, ranging from day of life
40 to 80. A single CT scan calibrated the cardiac cycle evaluation, while a series of long-term
CT scans was used to calibrate the cardiac growth model.

The atlas construction method was employed to identify a representative heart shape of the ac-
quired data set for all six pigs at the day of life 40. The resulting shape acted as a generic heart
shape, which represents the key geometrical features of all other heart shapes. This heart shape
can be used for generic treatment methods when patient-specific treatments are unfeasible.

The cardiac cycle evaluation in this study relies on a 3D-0D model, combining a 3D structu-
ral model of the ventricular heart with a 0D vascular flow network comprising four windkessel
models. To calibrate the 3D-0D model, motion-CT and the pressure over time relationship were
utilized. Thereby, each windkessel model was calibrated individually. This approach allowed for
a well-posed and computationally efficient scalar-valued optimization. Whenever measurements
of pressure and flow were unavailable, artificial data was used to calibrate the corresponding pa-
rameters. Additionally, the active stress model was calibrated using the cardiac cycle evaluation
as the forward model. The objective function was based on three volumes obtained from the seg-
mentation of the motion-CT. The overall calibration results demonstrated promising agreement
between the model predictions and the observed data.

The growth model employed in this thesis was based on the kinematic growth framework, utili-
zing a growth law that approximates muscle fibers using a cylindrical model, focusing on radial
and circumferential growth. The calibration of this model required two consecutive CT images
segmented at the same heart phase. However, aligning two heart geometries from consecutive
images is not straightforward due to the patient’s variability in positioning within the CT scan.
Furthermore, physiological landmarks proved inadequate for the alignment task as they are chal-
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lenging to identify consistently for all images. Therefore, the surface matching framework was
used together with a rigid-body-mode-free projection as a post-processing step to define the new-
ly grown target shape.

The resulting heart shape was then used to calibrate the kinematic growth model. The calibration
process employed a Bayesian inverse problem formulation using surface currents as a similarity
measure. While a perfect match between the two shapes was not achieved, the results demons-
trated a sufficiently accurate overall resemblance.

A novel signaling network was proposed based on an existing network to model biochemical,
hormonal, and mechanical signaling pathways that can trigger heart growth. The novel network
incorporates the local IGF1 production based on mechanical stretch. To identify the most influ-
ential factors on heart growth, a global sensitivity analysis was performed for both the existing
and the novel networks. Therefore, the modeling approach was simplified by solving for the sta-
tionary solution. The results of the global sensitivity analysis based on Monte Carlo estimation
showed that within the novel signaling network, the influence of the mechanical stimuli Stretch
has a much higher influence on heart growth. Furthermore, the species g-IGF1, NE, and ANGII
are identified to be the most influential factors on heart growth.

Both presented signaling networks were coupled to the computational cardiac growth model.
Therefore, a transfer function was defined to map the maximal fiber strain from the cardiac cycle
evaluation to the signaling network normalized input concentration of the mechanical species
Stretch. Subsequently, the network was evaluated, and the resulting concentration of the species
CellArea was used to drive the cardiac growth model. The results showed that the proposed no-
vel network resulted in an increased growth response.

Potential future investigations for the presented models have been discussed in the relevant sec-
tions of the results in Chapter 4. Further investigations could include

• the development of an automatic segmentation tool: Manual segmentation of CT images
of the heart requires a trained expert and can be time-consuming. Therefore, machine
learning methods could be used to automate this process.

• the incorporation of pathological data: Including the data from pathological cases could
improve the models’ predictive capabilities.

• the usage of model order reduction: As the presented model evaluations are computatio-
nally expensive, model order reduction approaches could be used for acceleration.
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A. Mathematical model details

A.1. Tensor notation and mathematical operators

In this section, a brief overview of the mathematical operations is given. Therefore, index notati-
on is introduced. In this notation, each term can feature indices at most twice, with the condition
that identical indices are unrepeated. Unrepeated indices increase the tensorial order of expres-
sions, while, according to Einstein’s summation convention, repeated indices imply summation
over that index. Furthermore, temporal and spatial derivatives are indicated by a comma, follo-
wed by t and/or spatial indices, respectively.
Given the following vectors and matrices a, b ∈ R3,A,B ∈ R3×3.
The dot product or contraction of two vectors is given by

a · b = aibi. (A.1)

The double-dot or double contraction is defined as

A : B = AijBij. (A.2)

The dot product or inner product between a matrix and a vector is defined as

A · b = Aijbj. (A.3)

The trace of a matrix reads

tr(A) = Aii. (A.4)

The gradient of a tensor is defined as

∇A = Aij,k. (A.5)

The divergence is given by

∇ ·A = Aij,i. (A.6)

A.2. Windkessel model details

In this section, all 0D flow network components and Windkessel models are presented, and their
corresponding equations are derived based on work in [62, 158].
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Resistance The resistance is proportional to the flow rate, and its equation reads

R q = pin − pout. (A.7)

Abbildung A.1.: Resistance element.

Compliance The compliance can accumulate and release fluid in response to pressure chan-
ges, and its equation is given by

C
dp
dt

= qin − qout = qC . (A.8)

Abbildung A.2.: Compliance element.

Inertance The inertance generates a pressure reduction that is directly proportional to the
change in flow rate, and its equation reads

L
dq
dt

= pin − pout. (A.9)

Abbildung A.3.: Inertance element.
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Derivation of windkessel equations

2-element windkessel The equation for a 2-element windkessel model is derived using Eq.
(A.7) and Eq. (A.8). Using the terminology from Fig. 2.2, they read

C
dpin

dt
= qin − qout, (A.10)

qout =
pin − pout

R
. (A.11)

Inserting Eq. (A.11) into Eq. (A.10) yields Eq. (2.45).

3-element windkessel The 3-element windkessel model is depicted in Fig. A.4.

Abbildung A.4.: 3-element windkessel model.

The model equation is derived using the 2-element windkessel Eq. (2.45) and Eq. (A.7). The
system reads

C
dpin

dt
+
p̃− pout

R
= q2, (A.12)

q2 =
pin − p̃
Z

. (A.13)

Reformulating Eq. (A.13) yields

p̃ = pin − Zq2. (A.14)

Inserting Eq. (A.14) in Eq. (A.12) leads to

C
dpin

dt
+
pin − pout

R
= CZ

dqin

dt
+ qin +

Z

R
qin. (A.15)

4-element windkessel The equations for the 4-element windkessel model are depicted in
Fig. 2.3. Its model equation is derived using Eq. (A.15), Eq. (A.8) and Eq. (A.9). Using the
terminology from Fig. 2.3, they read

C
dpin

dt
+
pin − p2

R
=

(
1 +

Z

R

)
qin + CZ

dqin

dt
, (A.16)

L
dq2

dt
= p2 − pout, (A.17)

C
dpin

dt
= qin − q2. (A.18)
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Reformulating Eq. (A.17) and Eq. (A.18) yield

p2 = L
dq2

dt
+ pout, (A.19)

q2 = qin − C
dpin

dt
. (A.20)

Inserting Eq. (A.20) into Eq. (A.19) leads to

p2 = L
dqin

dt
− LC d2pin

dt2
+ pout. (A.21)

Finally, inserting Eq. (A.21) into Eq. (A.16) leads to

C
dpin

dt
+
pin − pout

R
=

(
1 +

Z

R

)
qin +

(
CZ +

L

R

)
dqin

dt
− LC

R

d2pin

dt2
+
LCZ

R

d2qin

dt2
. (A.22)

A.3. Derivation of the weak form
In this section, the weak form in reference configuration is derived. Starting with the balance
law from Eq. (2.40) and multiplying it with a test function δu and then integrating it over the
reference domain Ω0. This yields∫

Ω0

[ρ0ü−∇X · P − b0] δu dV = 0 ∀δu ∈ V . (A.23)

Using the identity

∇ · (AT · b) = b · (∇ ·A)−A : (∇b), (A.24)

it follows that∫
Ω0

∇X · P · δu dV =

∫
Ω0

∇X · (P δu) dV −
∫

Ω0

P : ∇Xδu dV . (A.25)

The divergence theorem (or Gauß theorem) relates the divergence of a vector field in an enclosed
volume to the flux of the vector field through a closed surface. Thereby, it transforms the volume
integral into a surface integral. Applied to the first term of Eq. (A.25), it yields∫

Ω0

∇X · (P δu) dV =

∫
Γn

PN dA =

∫
Γn

t0 dA. (A.26)

Furthermore, using Eq. (2.6), the following holds

P : ∇Xδu = P : δF . (A.27)

Inserting Eq. (A.26) and Eq. (A.27) into Eq. (A.25) yields∫
Ω0

∇X · P · δu dV =

∫
Γn

t0 dA−
∫

Ω0

P : δF dV . (A.28)
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Inserting Eq. (A.28) into Eq. (A.23) yields∫
Ω0

ρ0ü · δu dV −
∫

Γn

t0 dA+

∫
Ω0

P : δF dV −
∫

Ω0

b0δu dV = 0 ∀δu ∈ V . (A.29)

Using the definition of the Green-Lagrange strain tensor in Eq.(2.12), it follows that

δE =
1

2

(
δF TF + F T δF

)
=

1

2

(
F T δF TF + F T δF

)
= F T δF . (A.30)

Furthermore, it holds that

P : δF = FF−1︸ ︷︷ ︸
=I

P : δF = F F−1P︸ ︷︷ ︸
=S

see Eq. (2.19)

: δF = ST︸︷︷︸
=S

see Eq. (2.39)

: F T δF︸ ︷︷ ︸
=δE

see Eq. (A.30)

= S : δE. (A.31)

Inserting Eq. (A.31) into Eq. (A.29) yields the final form of the weak form in reference configu-
ration∫

Ω0

ρ0ü · δu dV −
∫

Γn

t0 dA+

∫
Ω0

S : δE dV −
∫

Ω0

b0δu dV = 0 ∀δu ∈ V . (A.32)

A.4. Probability space and random variables
Given a probability space (Ω,F , P ), the sample space Ω is the set of all possible outcomes, F
the associated σ-algebra and P a probability measure, which satisfies

0 ≤ P (A) ≤ 1, (A.33)
P (Ω) = 1, (A.34)

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai), (A.35)

where Ai ∈ F accounts for a specific event.
Conditional probability can then be defined by

P (A|B) =
P (A

⋂
B)

P (B)
, (A.36)

where A,B ∈ F and P (B) > 0. Using that P (A
⋂
B) = P (B

⋂
A) is symmetric, the so-called

Bayes’ theorem follows as

P (B|A) =
P (A|B)P (B)

P (A)
. (A.37)

Let X be a random variable defined as a measurable function on the sample space Ω. In the
continuous case, the probability P (X = x) can be expressed in terms of the Lebesgue integral,
which reads

P (X) =

∫
B
P (dx) =

∫
B
pX(x) dx. (A.38)
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In this case, x ∈ Rn is a real value, B is the Borel set on Rn and pX : Ω 7→ [0,∞[ is the so-called
probability density function (PDF).

The expected value or mean value of a random variable is defined as

EpX [X] =

∫
x pX(x) dx. (A.39)

The variance of the random variable reads

V pX [X] =

∫
(x− EpX [Y ])2p(x) dx = EpX

[
X2
]
− EpX [X]2 . (A.40)

The joint PDF pX,Y : X × Y 7→ [0,∞[ describes the joint probability for random variable
X ∈ BX and Y ∈ BY and is given by

P (X,Y ) =

∫
BX

∫
BY
pX,Y (x, y) dxdy. (A.41)

The conditional probability for X knowing Y = y is defined as

P (X|Y = y) =

∫
BX
pX(x|y) dx. (A.42)

Therein, the conditional PDF reads

pX(x|y) =
pX,Y (x, y)

pY (y)
. (A.43)

Using Eq. (A.37) leads to Bayes’ theorem as

pX(x|y) =
pY (y|x)pX(x)

pY (y)
, (A.44)

where pX(x|y) is the posterior PDF, pY (y|x) is the likelihood, pX(x) is the prior PDF and pY (y)
the model evidence.

A.5. L-BFGS and optimization framework
In this section, a brief overview of the limited-memory BFGS (L-BFGS) algorithm and the
optimization framework is given. Here, θ is the parameter to be optimized and J acts as the
objective function. Within the L-BFGS method, the Hessian is not computed directly. Starting
with initial guess H0 = I of the Hessian matrix and g(θ) = dJ

dθ , the update rule for the Hessian
at the n-th iteration reads

sn = θn+1 − θn, (A.45)
yn = g(θn+1)− g(θn), (A.46)

Hn+1 · sn = yn. (A.47)
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To determine a unique Hn+1, Eq. (A.47) is reformulated as an optimization problem, to which
the solution is given by the inverse Hessian, which reads

H−1
n+1 = (I +

snyn
yn · sn

)H−1
n (I +

ynsn
yn · sn

) +
snsn
sn · sn

, (A.48)

where

yn · sn > 0, (A.49)

has to be fulfilled to guarantee that the matrix H−1
n+1 is symmetric positive definite. This is

achieved using a line search strategy based on the Armijo-Goldstein condition [81].
The storage cost of the non-sparse inverse Hessian is considerably high. Therefore, within the
limited-memory BFGS, this matrix is never explicitly constructed. Only the m most recent in-
crements of sn and yn are used.
In A.1, the pseudo-code to solve the optimization problem is presented.

1 vector theta_0 = getInitialGuess();
2 vector F = callForwardProblem(theta_0);
3 double J_n = evaluateObjectiveFunction(F, theta_0);
4 vector Grad_n = evaluateObjectiveFunctionGradient(F, theta_0);
5
6 vector p = computeSearchDirection(Grad_n);
7
8 while(norm(Grad_n) > tol) // L-BFGS optimization loop
9 {

10 vector s_n = updateStep(s_0, p);
11
12 while(s_n > s_min) // line search
13 {
14 vector D = callForwardProblem(theta);
15 double J_np = evaluateObjectiveFunction(F, theta);
16 vector Grad_np = evaluateObjectiveFunctionGradient(F, theta);
17
18 if (J_np - J_n < tol) // check for sufficient decrease
19 {
20 J_n = J_np;
21 Grad_n = Grad_np;
22 break;
23 }
24 else
25 {
26 s_n = updateStep(s_n, p);
27 }
28 }
29 p = computeSearchDirection(Grad_n);
30 }

Listing A.1: Optimization framework pseudo code
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A.6. Surface matching linearization
In this section, the gradient of the Lagrangian formulation of the objective function from Eq.
(2.138) is presented.

Here, the time dependencies are denoted in index notation, e.g., θ(t = 0) = θ0 and θ(t = 1) =
θ1. First, the gradient of L with respect to x0 is derived, which reads

∂L
∂x0

=
1

σ2

∂D(T ,S1)

∂x1

∂x1

∂x0

+

∫ 1

0

(
∂G(x,S)

∂x

∂x

∂x0

− ∂ẋ

∂x0

)
θ dt. (A.50)

Using partial integration, the last part of the integral becomes

−
∫ 1

0

(
∂ẋ

∂x0

)
θ dt = −

∫ 1

0

∂x

∂x0

θ̇ dt+ θ0
∂x0

∂x0︸︷︷︸
=1

−θ1
∂x1

∂x0

. (A.51)

Inserting Eq. (A.51) into Eq. (A.50) and rearranging yields

∂L
∂x0

=

(
1

σ2

∂D(T ,S1)

∂x1

− θ1

)
︸ ︷︷ ︸

!
=0, constraint

∂x1

∂x0

+

∫ 1

0

(
∂G(x,S)

∂x
θ − θ̇

)
︸ ︷︷ ︸

adjoint equation

∂x

∂x0

dt+ θ0. (A.52)

The first adjoint equation and its initial condition are given by

∂G(x,S)

∂x
θ − θ̇ = 0, with

1

σ2

∂D(T ,S1)

∂x1

= θ1. (A.53)

The final gradient results in

∂L
∂x0

= θ0. (A.54)

Second, the gradient of L with respect to S0 is derived, which reads

∂L
∂S0

=
1

σ2

∂D(T ,S1)

∂x1

∂x1

∂S0

+
∂Ekin

∂S0

∣∣∣∣∣
t=0

+

∫ 1

0

(
∂F (S)

∂S

∂S

∂S0

− ∂Ṡ

∂S0

)
ξ dt

+

∫ 1

0

(
∂G(x,S)

∂S

∂S

∂S0

+
∂G(x,S)

∂x

∂x

∂S0

− ∂ẋ

∂S0

)
θ dt.

(A.55)

Using partial integration, the temporal derivatives become

−
∫ 1

0

(
∂Ṡ

∂S0

)
ξ dt = −

∫ 1

0

∂S

∂S0

ξ̇ dt+ ξ0
∂S0

∂S0︸︷︷︸
=1

−ξ1
∂S1

∂S0

, (A.56)

−
∫ 1

0

(
∂ẋ

∂S0

)
θ dt = −

∫ 1

0

∂x

∂S0

θ̇ dt+ θ0
∂x0

∂S0︸︷︷︸
=0

−θ1
∂x1

∂S0

. (A.57)
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Inserting Eq. (A.56) and Eq. (A.57) into Eq. (A.55) and rearranging yields

∂L
∂S0

=

(
1

σ2

∂D(T ,S1)

∂x1

− θ1

)
︸ ︷︷ ︸

=0, see (A.53)

∂x1

∂S0

+
∂Ekin

∂S0

∣∣∣∣∣
t=0

+

∫ 1

0

(
∂F (S)

∂S
ξ − ξ̇ +

∂G(x,S)

∂S
θ

)
︸ ︷︷ ︸

adjoint equation

∂S

∂S0

dt+ ξ0 − ξ1︸︷︷︸
!
=0

constraint

∂S1

∂S0

+

∫ 1

0

(
∂G(x,S)

∂x
− θ̇
)

︸ ︷︷ ︸
=0, see (A.53)

∂x

∂S0

dt.

(A.58)

The second adjoint equation and its initial condition are given by

∂F (S)

∂S
ξ − ξ̇ +

∂G(x,S)

∂S
θ = 0, with ξ1 = 0. (A.59)

The final gradient results in

∂L
∂S0

= ξ0 +
∂Ekin

∂S0

∣∣∣∣∣
t=0

. (A.60)

The evaluation of the gradient starts with solving the first adjoint equation (A.53) for θ0. The-
reafter, the solution is inserted into the second adjoint equation (A.59), which is solved for ξ0.
Finally, the gradients in Eq. (A.54) and Eq. (A.60) are computed.
However, for their evaluation, the partial derivatives are needed, and they are derived in the
following section.

Partial derivatives

The partial derivative of the surface measurement D is given in Eq. (2.124). For the sake of
simplicity, the Kronecker-delta function is used, see Eq. (2.128). Further, the different gradients
of the kernel function are given by

∂k(xi, ck)

∂xj
=
−2

σW 2
δij k(xi, ck)(xi − ck), (A.61)

∂k(xi, ck)

∂cj
=

2

σW 2
δjk k(xi, ck)(xi − ck), (A.62)

∂k(ci, ck)

∂cj
=
−2

σW 2
(δij − δjk) k(ci, ck)(ci − ck). (A.63)

The kinetic energy at time t = 0 is given by

Ekin

∣∣∣
t=0

=
1

2

ncp∑
k=1

ncp∑
p=1

αT0kk(c0k, c0p)α0p. (A.64)
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The derivative with respect to the initial control points c0 using Eq. (A.63) reads

∂Ekin

∂c0j

∣∣∣∣∣
t=0

=
1

2

ncp∑
k=1

ncp∑
p=1

αT0k
∂k(c0k, c0p)

∂c0j

α0p,

=
−1

σW 2

ncp∑
k=1

ncp∑
p=1

αT0k(δjk − δjp) k(c0k, c0p)(c0k − c0p)α0p.

(A.65)

The derivative with respect to the initial momenta α0 results in

∂Ekin

∂α0j

∣∣∣∣∣
t=0

=
1

2

ncp∑
k=1

ncp∑
p=1

k(c0k, c0p)
∂αT0kα0p

∂α0j

,

=
1

2

ncp∑
k=1

ncp∑
p=1

k(c0k, c0p)

[
∂αT0k
∂α0j

α0p +αT0k
∂α0p

∂α0j

]
,

=
1

2

ncp∑
k=1

ncp∑
p=1

k(c0k, c0p)
[
δjkα0p +αT0kδjp

]
.

(A.66)

The flow function for a surface point i is given by

G(xi,S) = ẋi =

ncp∑
k=1

k(xi, ck)αk. (A.67)

Its derivative with respect to the position x using Eq. (A.61) reads

∂G(xi,S)

∂xj
=

ncp∑
k=1

∂k(xi, ck)

∂xj
αk,

=
−2

σW 2
δij

ncp∑
k=1

k(xi, ck)(xi − ck)αk.
(A.68)

The derivative with respect to the control points c using Eq. (A.62) is given by

∂G(xi,S)

∂cj
=

ncp∑
k=1

∂k(xi, ck)

∂cj
αk,

=
2

σW 2

ncp∑
k=1

δjk k(xi, ck)(xi − ck)αk,

=
2

σW 2
k(xi, cj)(xi − cj)αj.

(A.69)

The derivative with respect to the momenta α results in

∂G(xi,S)

∂αj
=

ncp∑
k=1

k(xi, ck)
∂αk
∂αj

,

=

ncp∑
k=1

k(xi, ck)δjkI3,

= k(xi, cj)I3.

(A.70)
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The shoot function for the control points is given by

F c
k(S) = ċk =

ncp∑
p=1

k(ck, cp)αp. (A.71)

Its derivative with respect to the control points c using Eq. (A.63) reads

∂F c
k

∂cj
=

ncp∑
p=1

∂k(ck, cp)

∂cj
αp,

=
−2

σW 2

ncp∑
p=1

(δjk − δjp) k(ck, cp)(ck − cp)αp,

=
−2

σW 2
δjk

[
ncp∑
p=1

k(ck, cp)(ck − cp)αp

]

+
2

σW 2

[
ncp∑
p=1

δjp k(ck, cp)(ck − cp)αp

]
,

=
−2

σW 2
δjk

[
ncp∑
p=1

k(ck, cp)(ck − cp)αp

]
+

2

σW 2
k(ck, cj)(ck − cj(αj.

(A.72)

The derivative with respect to the momenta α is given by

∂F c
k

∂αj
=

ncp∑
p=1

k(ck, cp)
∂αp
∂αj

,

=

ncp∑
p=1

k(ck, cp)δjp I3,

= k(ck, cj)I3.

(A.73)

The shoot function for the momenta is given by

Fα
k (S) = α̇k = −

ncp∑
p=1

αTkαp∇1k(ck, cp),

=
2

σW 2

ncp∑
p=1

αTkαpk(ck, cp)(ck − cp).
(A.74)
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The derivative with respect to the control points c using Eq. (A.63) results in

∂Fα
k

∂cj
=

2

σW 2

ncp∑
p=1

αTkαp

[
∂k(ck, cp)

∂cj
(ck − cp) + k(ck, cp)

∂(ck − cp)
∂cj

]
,

=
2

σW 2

[
ncp∑
p=1

αTkαp
−2

σW 2
(δjk − δjp) k(ck, cp)(ck − cp)2

]

+
2

σW 2

[
ncp∑
p=1

αTkαpk(ck, cp)(δjk − δjp)

]
,

=
−4

σW 4
δjk

[
ncp∑
p=1

αTkαpk(ck, cp)(ck − cp)2

]

+
4

σW 4

[
ncp∑
p=1

αTkαpδjp k(ck, cp)(ck − cp)2

]

+
2

σW 2
δjk

[
ncp∑
p=1

αTkαpk(ck, cp)

]
− 2

σW 2

[
ncp∑
p=1

αTkαpk(ck, cp)δjp

]
,

=
−4

σW 4
δjk

[
ncp∑
p=1

αTkαpk(ck, cp)(ck − cp)2

]
+

4

σW 4
αTkαjk(ck, cj)(ck − cj)2

+
2

σW 2
δjk

[
ncp∑
p=1

αTkαpk(ck, cp)

]
− 2

σW 2
αTkαjk(ck, cj).

(A.75)

The derivative with respect to the momenta α reads

∂Fα
k

∂αj
=

2

σW 2

ncp∑
p=1

∂αTkαp
∂αj

k(ck, cp)(ck − cp),

=
2

σW 2

ncp∑
p=1

[
∂αTk
∂αj

αp +αTk
∂αp
∂αj

]
k(ck, cp)(ck − cp),

=
2

σW 2

ncp∑
p=1

[
δjkαp +αTk δjp

]
k(ck, cp)(ck − cp),

=
2

σW 2
δjk

[
ncp∑
p=1

αpk(ck, cp)(ck − cp)

]

+
2

σW 2

[
ncp∑
p=1

αTk δjp k(ck, cp)(ck − cp)

]
,

=
2

σW 2
δjk

[
ncp∑
p=1

αpk(ck, cp)(ck − cp)

]
+

2

σW 2
αTk k(ck, cj)(ck − cj).

(A.76)
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B. Cardiac mechanics model

B.1. Active stress discretization
To solve the time-dependent ODE (3.4), the Backward-Euler scheme is used. The initial value
is set to be τa(0) = 0. The Backward-Euler scheme is obtained by using the one-step-θ method
with θ = 1, see Eq. (2.72). The solution of the active stress model reads

τa
n − τa

n−1

∆t
= f(τa

n),

τa
n − τa

n−1

∆t
= −|un|τa

n + σ0 max(0, un),

τa
n + ∆t |un|τa

n = τa
n−1 + ∆t σ0 max(0, un),

τa
n =

τa
n−1 + ∆t σ0 max(0, un)

1 + ∆t |un|
.

(B.1)

Here, n denotes the current time step, and thus, the new active stress value is entirely defined by
its previous values.

B.2. Growth material linearization
In order to solve the identification problem Eq. (2.96), the gradient of S with respect to the
growth stretch ϑ is needed, see Eq. (2.112). Using the chain rule, the gradient becomes

∂S

∂ϑ
=

∂S

∂Fg

:
∂Fg

∂ϑ
. (B.2)

Using Eq. (3.52), the following holds

F T = Fg
TFe

T , (B.3)
F−1 = Fg

−1Fe
−1, (B.4)

F−T = Fe
−TFg

−T . (B.5)

Following Eq. (2.14), it holds

C = F TF = Fg
T Fe

TFe︸ ︷︷ ︸
=Ce

Fg = Fg
TCeFg. (B.6)

From Eq. (2.18) and Eq. (2.19), it follows that

S = JF−1σF−T = JFg
−1 JFe

−1σFe
−T︸ ︷︷ ︸

=Se

Fg
−T = Fg

−1SeFg
−T . (B.7)
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The first derivative in Eq. (B.2) can be computed using chain rule, and Eq. (B.7), leading to

∂S

∂Fg

=
∂

∂Fg

(Fg
−1SeFg

−T ),

=
∂Fg

−1

∂Fg

SeFg
−T︸ ︷︷ ︸

=FgS
see (B.7)

+Fg
−1 ∂Se

∂Fg

Fg
−T + Fg

−1Se︸ ︷︷ ︸
=SFg

T

see (B.7)

∂Fg
−T

∂Fg

.
(B.8)

Using that

∂Fg
−1

∂Fg

= −Fg
−2, (B.9)

∂Fg
−T

∂Fg

= −Fg
−2T , (B.10)

Eq. (B.8) becomes

∂S

∂Fg

= −Fg
−1S + Fg

−1 ∂Se

∂Fg

Fg
−T − SFg

−T . (B.11)

The partial derivative of Se with respect to Fg is given by

∂Se

∂Fg

=
∂Se

∂Ce︸︷︷︸
= 1

2
Ce

see (2.32)

:
∂Ce

∂C

∂C

∂Fg

(B.12)

Using Eq. (B.6), it follows that

∂Ce

∂C
=

∂

∂C
(Fg

−TCFg
−1),

= Fg
−TFg

−1,

= I,

(B.13)

and

∂C

∂Fg

=
∂

∂Fg

(Fg
TCeFg),

=
∂Fg

T

∂Fg

CeFg︸ ︷︷ ︸
=Fg

−TC
see (B.6)

+Fg
T ∂Ce

∂Fg

Fg + Fg
TCe︸ ︷︷ ︸

=CFg
−1

see (B.6)

∂Fg

∂Fg

,

= Fg
−TC +CFg

−1.

(B.14)

Following Eq. (B.13) and Eq. (B.14), the partial derivative of Se with respect to Fg becomes

∂Se

∂Fg

=
1

2
Ce :

[
Fg
−TC +CFg

−1
]
. (B.15)
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Inserting Eq. (B.15) into Eq. (B.11), the partial derivative of S with respect to Fg becomes

∂S

∂Fg

= −Fg
−1S + Fg

−1

[
1

2
Ce :

[
Fg
−TC +CFg

−1
]]
Fg
−T − SFg

−T . (B.16)

The second derivative from Eq. (B.2) can be computed using the growth law from Eq. (3.57) and
it reads

∂Fg

∂ϑ
= f0 ⊗ f0 −

1

2
ϑ−1/2(s0 ⊗ s0 + r0 ⊗ r0). (B.17)

Using Eq. (B.16) and Eq. (B.17), the gradient of S with respect to the growth stretch ϑ can be
computed, see Eq. (B.2).
Another way to compute this gradient is using a FD approximation, which reads

∂S

∂ϑ
=
S(ϑ+ ε) + S(ϑ)

ε
, (B.18)

with ε → 0. Since in the context of the finite element method, S is a 3 × 3 matrix, the com-
putational cost compared to the analytical linearization is low. However, this approach is only a
feasible choice for a low number of parameters ϑ.
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C. Signaling network

C.1. Heart growth signaling network
The reference (REF) network is depicted in Fig. C.1. A detailed list of all species within the REF
and R&M networks is presented in Tab. C.1.
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Abbildung C.1.: Reference (REF) network containing 106 species and 193 reactions [41, 45,
77, 128]. It consists of 17 inputs and 7 outputs and is arranged in 19 layers,
where all species in a layer depend only on species in previous layers. The
species Stretch and CellArea are represented as hexagons as they are related to
mechanical quantities. A black connection denotes a species activation, whereas
a red color represents an inhibition [9].
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Tabelle C.1.: List of all species within the REF and R&M network. Nodes that do not interact
with CellArea are marked with a *

abb. species layer
TNFa tumor necrosis factor



Layer 1

ISO isoproterenol
NE norepinephrine
PE phycoerythrin

ET1 endothelin-1
AngII angiotensin II

IGF1∗ (g-IGF1) (global) insulin-like growth factor
EGF epidermal growth factor

NRG1 neuregulin 1
TGFb transforming growth factor beta
IL6 interleukin 6
FGF fibroblast growth factor
CT1 cardiotrophin 1
LIF eukemia inhibitory factor

Stretch mechanical input
BNPi∗ brain natriuretic peptide input
ANPi∗ atrial natriuretic factor input
TNFR tumor necrosis factor receptor



Layer 2

bAR β-adrenergic receptor
aAR α adrenergic receptor

ET1R endothelin-1 receptor
AT1R angiotensin II receptor
l-IGF1 local insulin-like growth factor
EGFR epidermal growth factor receptor

ERBB
erythroblastic leukemia viral
oncogene homolog 2 and 3 or 4

TGFR transforming growth factor teceptors

IL6R
interleukin 6 receptor
and interleukin 6 signal transducer gp130

FGFR fibroblast growth factor receptor

gp130LIFR
leukemia inhibitory receptor alpha
and interleukin 6 signal transducer

Integrins integrins
GCA∗ guanylate cyclase A
NIK∗ NFkB inducing kinase


Layer 3

Gsa G protein alpha s
Gaq11 G protein alpha subunit q or 11
IGF1R insulin-like growth factor receptor
PLCg phopholipase C gamma 1
JAK janus kinase 1 or 2

SHP2 protein tyrosine phosphatase, non-receptor type 11
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FAK focal adhesion kinase
AC adenylyl cyclase

 Layer 4
Gbg G protein beta and gamma subunits

PLCb phospholipase C beta
STAT∗ STAT
cAMP cyclic AMP

 Layer 5IP3 inositol triphosphate
DAG diacylglycerol
PKA protein kinase A

}
Layer 6

Calcium calcium
}

Layer 7
CAM calmodulin

}
Layer 8PKC protein kinase C

CaN∗ calcineurin
 Layer 9

CaMK CaM kinase
TAK1 TGF-beta activated kinase 1
PKD protein kinase D
Ras rat sarcoma viral oncogene homolog

Raf1A activated raf1


Layer 10

PI3K phosphatidyl inositol 3 kinase
HDAC histone deacetylase

MEKK1 MAPK kinase kinase 1
Rac1 Ras-related C3 botulinum toxin substrate 1

MAP3K23 MAPK kinase kinase 2 or 3
PDK1 3-phosphoinositide dependent protein kinase-1

 Layer 11
MAP3K11 MAPK kinase kinase 11
MAP3K4 MAPK kinase kinase 4

RhoA∗ Ras homolog gene family, member A
MEK5 MAPK kinase 5
Raf1 Raf1


Layer 12

Akt protein kinase B
MEK36 MAPK kinase 3 or MAPK kinase 6
MEK4 MAPK kinase 4
MEK7 MAPK kinase 7
SRF∗ serum response factor
ERK5 ERK5

GSK3b glycogen synthase kinase 3 beta


Layer 13

foxo forkhead box O
mTor∗ mechanistic target of rapamycin
NOS∗ endothelial nitric oxide synthase

MEK12 MAPK kinase 1 or MAPK kinase 2
p38 p38 mitogen-activated protein kinase
JNK c-Jun N-terminal kinase
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elF4E∗ eukaryotic translation initiation factor 4E
 Layer 14p70s6k∗ 70 kDa ribosomal protein S6 kinase I

ATF2 activating transcription factor 2

IKK∗
inhibitor of kappa light polypeptide


Layer 15

gene enhancer B-cells, kinase beta
sGC∗ soluble guanylyl cyclase

ERK12 extracellular signal-regulated kinases 1 or 2
MAPKAPK MAPK-activated protein kinase

MEF2 myocyte enhancer factor-2
elF2B∗ eukaryotic initiation factor 2


Layer 16

IkB∗
nuclear factor of kappa light
polypeptide gene enhancer B-cells inhibitor

GATA4 protein GATA
MSK1 ribosomal protein S6 kinase, 90kDa, polypeptide 5
cFos∗ protein c-Fos

ELK1∗ ELK1
cJun protein cJun

cGMP∗ cyclic guanosine monophosphate
CREB cAMP response element binding

 Layer 17NFkB∗
nuclear factor kappa-light-chain-enhancer
of activated B cells

PKG1∗ cGMP-dependent protein kinase 1
NFAT∗ nuclear factor of activated T-cells

}
Layer 18

SERCA∗ sarcoplasmic reticulum


Layer 19

αMHC∗ α-myosin heavy chain
CellArea growth target node
βMHC∗ β-myosin heavy chain
BNP∗ brain natriuretic peptide
ANP∗ atrial naturetic peptide
sACT∗ skeletal α-actin

C.2. Demonstrator network
For illustration purposes, a demonstrator network is introduced containing all four reaction types
and is depicted in Fig. C.2.
Based on [87], the Hill differential equations for the demonstrator network can be written as

dcC

dt
=

1

τC

(
f→C

act (cA) cC,max − cC

)
, (C.1)

dcD

dt
=

1

τD

(
OR
(
f→D

act (cA), f→D
act (cB)

)
cD,max − cD

)
, (C.2)

dcE

dt
=

1

τE

(
AND

(
f→E

inh (cC), f→E
act (cD)

)
cE,max − cE

)
. (C.3)
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Abbildung C.2.: Demonstrator network containing all reaction types. It consists of five species
S = {A, B, C, D, E} with two input species I = {A,B} and one output species
E [9].

To solve the initial value problem for the demonstrator network, constant input concentrations
cA = 0.5 and cB = 0.6 are chosen. The remaining species are initialized to cs = 0 ∀ s ∈ S\I.
The maximal activation cs,max is set to 1 for all species s ∈ S, the reaction time parameter
τ s = 1 ∀s ∈ {C,D,E} and all reaction weights are set to 1. The system of ODEs in Eq. (C.1)-Eq.
(C.3) is numerically solved with a third-order explicit Runge-Kutta method for nonstiff ODEs
[11] on the pseudo time interval t ∈ [0, 20]. The numerical solution of the system is shown in
Fig. C.3.
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Abbildung C.3.: Numerical solution of the demonstrator network [9].
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It can be observed that all species in the network converge to a stationary solution. The species
C and D are activated, and their concentrations rise until they reach a stationary value. Following
that, the species E, which is inhibited by C, attains a stationary solution of cE = 0.411.
The direct stationary solutions (DSS) for the demonstrator network read

cDSS
C = fact(cA)cC,max, (C.4)

cDSS
D = OR(fact(cA), fact(cB))cD,max, (C.5)

cDSS
E = AND(finh(cC), fact(cD))cE,max. (C.6)

To examine the gradients of the network output concentration cE with respect to the inputs A
and B, chain rule and backward propagation through the network is used and lead to

dcE

dcA
=

dcE

dcC

dcC

dcA︸ ︷︷ ︸
path 1

+
dcE

dcD

dcD

dcA︸ ︷︷ ︸
path 2

= −0.832, (C.7)

dcE

dcB
=

dcE

dcD

dcD

dcB︸ ︷︷ ︸
path 3

= 0.264. (C.8)

This indicates that an increase of cA decreases the concentration cE as the inhibition before the
AND connection dominates. But if cB is increased, cE also increases.

C.3. Asymptotical stability
Given an autonomous system ċ = f(c) with Jacobian (Df)ij = ∂fi

∂cj
. Its solution is asym-

ptotically stable if the real parts of all eigenvalues of the Jacobian are negative ([33]). For the
demonstrator network,Df reads

Df =


− 1

τC
0 0

0 − 1

τD
0

1

τE

dAND
(
f→E

inh (cC), f→E
act (cD)

)
dcC

1

τE

dAND
(
f→E

inh (cC), f→E
act (cD)

)
dcD

− 1

τE

 . (C.9)

The eigenvalues of a lower triangular matrix are its diagonal entries [3]. Here, the demonstrator
network has only negative eigenvalues and is therefore asymptotically stable. Since all presented
signaling networks in this work are acyclic and hierarchically arranged in layers, the Jacobian al-
ways has a lower triangular structure. Hence, the REF or R&M networks are also asymptotically
stable.

C.4. Signaling network model evaluation
Fig. C.4 depicts a heatmap plot of the difference between the DSS of the R&M and the REF
networks. Here, all input concentrations are set to a value of ci = 0.06, i ∈ I, except for for the
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concentration cStretch, which varies from 0 to 1. On the y-axis all species in both networks are
shown. A positive value indicates and elevated concentration in the R&M network, whereas a
negative values denotes a higher concentration in the REF network.
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Abbildung C.4.: Difference of DSS between the R&M and REF network over a varying input
concentration cStretch. All other input concentrations are set to a fixed value of
ci = 0.06.
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D. Numerical results

D.1. Measurements
In Tab. D.1 and Tab. D.2, the end-diastolic and end-systolic volumes are presented for all six pigs
P1 to P6. The volumes are obtained after the segmentation and before cutting the surfaces at the
atrioventricular plane. Pig P4 faced difficulties during the CT imaging acquisition, resulting in
data available only for the 70% end-diastolic state, making it notably smaller in comparison to
the rest of the data set.

Tabelle D.1.: End-diastolic volumes for all pigs P1-P6.
CT1 CT2 CT3 CT4 CT5

life day 40 life day 50 life day 60 life day 70 life day 80

P1
LV volume 20.6 20.3 23.1 30.1 32.9
RV volume 16.1 18.9 19.2 23.2 27.2

P2
LV volume 18.1 20.4 18.7 29.1 32.7
RV volume 14.1 18.5 16.6 21.1 24.5

P3
LV volume 18,5 - - - -
RV volume 14,6 - - - -

P4
LV volume 7.1 11.2 11.5 13.2 19.7
RV volume 8.4 8.4 9.1 11.3 13.1

P5
LV volume 14.1 18.1 - 31.1 26.1
RV volume 9.8 15.5 - 22.9 24.1

P6
LV volume 14.4 16.7 19.4 - 27.5
RV volume 11.6 12.0 14.2 22.3

The stroke volume (SV) defined as the difference between the end-diastolic volume (EDV) and
the end-systolic volume (ESV) of the left or right ventricle are depicted for all pigs from the day
of life 40 to 80 in Fig. D.1.
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Tabelle D.2.: End-systolic volumes for all pigs P1-P6.
CT1 CT2 CT3 CT4 CT5

life day 40 life day 50 life day 60 life day 70 life day 80

P1
LV volume 8.124 7.76 13.48 11.45 14.20
RV volume 13.06 8.435 7.82 8.97 10.42

P2
LV volume 7.99 7.64 5.79 12.34 15.19
RV volume 8.80 8.58 8.62 13.25 12.94

P3
LV volume - - - - -
RV volume - - - - -

P4
LV volume - 6.96 7.36 10.69 17.14
RV volume - 8.09 8.44 11.18 14.97

P5
LV volume 7.33 8.05 - 13.28 12.38
RV volume 4.59 7.49 - 7.54 11.57

P6
LV volume 7.67 6.64 8.89 - 13.53
RV volume 6.74 5.27 6.89 - 10.97
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Abbildung D.1.: Left (top) and right (bottom) ventricular stroke volumes (SV) over time. A value
of zero means that the measurement at that point in time is not available. To
calculate the mean value, any values of zero are omitted from the computation.

D.2. Computational domain

In this section, the spatial resolution of the finite element mesh of the computational heart domain
is studied. The computational heart domain is discretized using a 1 mm and a 1.5mm tetrahedral
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mesh, and they are depicted in Fig. D.2. Using these discretizations, three finite element meshes
are generated. The first mesh is the 1 mm mesh, consisting of linear tetrahedral elements (linear,
1 mm). The second mesh is the 1.5 mm mesh, also composed of linear tetrahedral elements
(linear, 1.5 mm). The third mesh is the refined 1.5 mm mesh, incorporating quadratic tetrahedral
elements (quadratic, 1.5 mm).

Abbildung D.2.: Visualization of the 1.5 mm (left) and 1 mm (right) finite element computatio-
nal heart domain.

To analyze the spatial resolution, the following example is considered: At the heart base, a zero-
value Dirichlet boundary condition is chosen, and within the ventricles, an ortho-pressure boun-
dary condition is used, see Fig. D.3.
The corresponding IBVP reads

∇X · P = ρ0v̇ in Ω, (D.1)

P ·N = t0
i
p on Γiv, i ∈ {r, `}, (D.2)

u = 0 on Γbase, (D.3)

where the pressure traction t0ip is computed using Eq. (3.43) with a linearly increasing pressure
applied until it reaches 100 mmHg.
This system of equations is solved for all three tetrahedral meshes using the Newton method pre-
sented in Sec. 2.2.4. The solution to this problem is depicted in Fig .D.4 and the final volumes
are listed in Tab. D.3. It can be seen that all three meshes converge to a similar solution. There-
fore, the linear tetrahedral finite element mesh with an edge length of approximately 1.5 mm is
chosen for all simulations throughout this thesis.

D.3. Global sensitivity analysis of signaling network
In Fig. D.5, the first- and total-order sensitivity estimators for the REF and R&M network are
depicted. It can be seen that for the chosen sample size of NS = 1 · 106, all estimators converge
to the same solution.
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Abbildung D.3.: Visualization of the boundary value problem, with a zero-value Dirichlet boun-
dary condition at the heart base and an ortho-pressure boundary condition wi-
thin the ventricles.

Tabelle D.3.: Initial and final volumes of the left and right ventricles.
volumes [mL]

mesh left ventricle right ventricle
initial configuration 12.81 8.46
linear, 1 mm 20.25 15.597
linear, 1.5 mm 20.0028 15.3314
quadratic, 1.5 mm 20.63 16.11
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Abbildung D.4.: Numerical solution of the spatial resolution study. The deformation at the pres-
sure value of 100 mmHg is shown for all three computational meshes. Further-
more, the initial configuration is shown as a slice in gray.

Tabelle D.4.: Global sensitivity estimators for CellArea with respect to the input species in the
REF network [9].

Species Sjan Ssob Ssat Tjan Tsob Thom

TNFa 0.0008 0.0007 0.0020 0.0012 0.0013 0.0013
ISO 0.0237 0.0237 0.0250 0.0376 0.0372 0.0372
NE 0.1216 0.1225 0.1240 0.1755 0.1760 0.1760
PE 0.0351 0.0352 0.0367 0.0538 0.0543 0.0543
ET1 0.0218 0.0220 0.0233 0.0329 0.0330 0.0330
AngII 0.1223 0.1225 0.1241 0.1683 0.1681 0.1681
IGF1 0.0843 0.0841 0.0848 0.1162 0.1159 0.1159
EGF 0.0843 0.0838 0.0846 0.1161 0.1156 0.1156
NRG1 0.0841 0.0849 0.0867 0.1160 0.1159 0.1159
TGFb 0.0184 0.0179 0.0196 0.0253 0.0250 0.0250
IL6 0.0435 0.0435 0.0443 0.0607 0.0605 0.0605
FGF 0.0698 0.0701 0.0712 0.0964 0.0964 0.0964
CT1 0.0700 0.0696 0.0699 0.0985 0.0977 0.0977
LIF 0.0683 0.0686 0.0699 0.0983 0.0986 0.0986
Stretch 0.0145 0.0144 0.0159 0.0209 0.0208 0.0208
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Abbildung D.5.: Sensitivity indices of CellArea with respect to the input concentrations for the
REF and R&M network. The sensitivity analysis results for the REF network
are displayed in the top row, while the bottom row showcases the sensitivities
for the R&M network [9].
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Tabelle D.5.: Global sensitivity estimators for CellArea with respect to the input species in the
R&M network [9].

Species Sjan Ssob Ssat Tjan Tsob Thom

TNFa 0.0007 0.0008 0.0021 0.0012 0.0012 0.0012
ISO 0.0200 0.0202 0.0214 0.0345 0.0342 0.0342
NE 0.1016 0.1026 0.1038 0.1612 0.1618 0.1618
PE 0.0294 0.0297 0.0311 0.0494 0.0500 0.0500
ET1 0.0186 0.0189 0.0202 0.0304 0.0305 0.0305
AngII 0.1024 0.1036 0.1052 0.1555 0.1559 0.1559
IGF1 0.0933 0.0929 0.0935 0.1382 0.1377 0.1377
EGF 0.0731 0.0726 0.0733 0.1099 0.1097 0.1097
NRG1 0.0728 0.0739 0.0763 0.1100 0.1101 0.1101
TGFb 0.0162 0.0159 0.0176 0.0242 0.0240 0.0240
IL6 0.0374 0.0377 0.0385 0.0570 0.0569 0.0569
FGF 0.0610 0.0612 0.0624 0.0916 0.0917 0.0917
CT1 0.0599 0.0597 0.0601 0.0915 0.0907 0.0907
LIF 0.0583 0.0586 0.0597 0.0914 0.0917 0.0917
Stretch 0.0772 0.0771 0.0787 0.1187 0.1189 0.1189
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