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Abstract

Many machine learning approaches for decision making, such as reinforcement
learning, rely on simulators or predictive models to forecast the time-evolution of
quantities of interest, e.g., the state of an agent or the reward of a policy. Forecasts of
such complex phenomena are commonly described by highly nonlinear dynamical
systems, making their use in optimization-based decision-making challenging.
Koopman operator theory offers a beneficial paradigm for addressing this problem
by characterizing forecasts via linear time-invariant (LTI) ODEs, turning multi-
step forecasts into sparse matrix multiplication. Though there exists a variety
of learning approaches, they usually lack crucial learning-theoretic guarantees,
making the behavior of the obtained models with increasing data and dimensionality
unclear. We address the aforementioned by deriving a universal Koopman-invariant
reproducing kernel Hilbert space (RKHS) that solely spans transformations into LTI
dynamical systems. The resulting Koopman Kernel Regression (KKR) framework
enables the use of statistical learning tools from function approximation for novel
convergence results and generalization error bounds under weaker assumptions
than existing work. Our experiments demonstrate superior forecasting performance
compared to Koopman operator and sequential data predictors in RKHS.

1 Introduction

Dynamical systems theory is a fundamental paradigm for understanding and modeling the time
evolution of a phenomenon governed by certain underlying laws. Such a perspective has been
successful in describing countless real-world phenomena, ranging from engineering mechanics [1]
and human movement modeling [2] to molecular and quantum systems [3, 4]. However, as the
laws governing dynamical systems are often unknown, modeling and understanding the underlying
phenomena may have to rely on data rather than first principles. In this regard, machine learning
methods, which have shown immense potential in tackling complex tasks in domains such as language
models [5] and computer vision [6], are coming to the fore. Though powerful, state-of-the-art neural
vector fields [7] or flows [8] commonly compose highly nonlinear maps for forecast, i.e. computing

x (t) = x(0) +

∫ t

0

f(x(t))dt (1)

for, e.g. a scalar ODE ẋ = f(x). Hence, it is often challenging to use such models in optimization-
based decision making that relies on simulators or predictive models, e.g., reinforcement learning
[9–11]. A particularly beneficial perspective for dealing with the aforementioned comes from
Koopman operator theory [12–15]. Through a point-spectral decomposition of Koopman operators,
forecasts become superpositions of solution curves of a set of linear ODEs {żj = λjzj}Dj=1

x (t) =

D∑
k=1

eλjt zj(0), {x lift gj7−→ zj}Dj=1 (2)
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where a vector valued function span({gj}Dj=1) “lifts” x onto a manifold Z := span
(
{zj}Dj=1

)
.

Throughout, we refer to these models as linear time-invariant (LTI) predictors. The learning objective
of such representations is twofold: spanning system trajectories by the learned manifold Z and
constraining the LTI dynamics to it. The latter is a long-standing challenge of Koopmanism [16–20],
as manifold dynamics of existing approaches “leak-out” [21] and limit predictive performance.

Figure 1: Illustration of on-manifold dynamics of LTI predictors.

To tackle the aforesaid, we con-
nect the representation theories
of reproducing kernel Hilbert
spaces (RKHS) and Koopman
operators. As a first in the lit-
erature, we derive a universal
kernel whose RKHS exclusively
spans manifolds invariant un-
der the dynamics, as depicted
in Figure 1. A key corollary of
unconstrained manifold dynamics is the lack of essential learning-theoretic guarantees, making the
behavior of existing learned models unclear for increasing data and dimensionality. To address this,
we utilize equivalences to function regression in RKHS to formalize a statistical learning framework
for learning LTI predictors from sample trajectories of a dynamical system. This, in turn, enables
the use of statistical learning tools from function approximation for novel convergence results and
generalization error bounds under weaker assumptions than before [22–24]. Thus, we believe that
our Koopman Kernel Regression (KKR) framework takes the best of both RKHS and Koopmanism
by leveraging modular kernel learning tools to build provably effective LTI predictors.

The remainder of this paper is structured as follows: We briefly introduce LTI predictors and discuss
related work in Section 2. The derivation of the KKR framework, including the novel Koopman
RKHS, is presented in Section 3. In Section 4, we show the novel learning guarantees in terms of
convergence and generalization error bounds. They are validated in comparison to the state-of-the-art
through numerical experiments in Section 5.

Notation Lower/upper case bold symbols x/X denote spatial vector/matrix-valued quantities. A
trajectory defines a curve xT ⊂ X traced out by the flow over time T= [0, T ] from any (τ,x) ∈ T×X.
In discretizing T, collection of points xH ⊂ X from discrete time steps H={t0· · · tH} is considered.
The state/output trajectory spaces are denoted as XT⊆L2(T,X) / YT⊆L2(T,Y), with discrete-time
analogues XH⊆ℓ2(H,X) / YH⊆ℓ2(H,Y) with domain and co-domain separated by “,”. The vector
space of continuous functions on XT endowed with the topology of uniform convergence on compact
domain subsets is denoted C(XT ). The collection of bounded linear operators from YT to YT is
denoted as B(YT ). The adjoint of A ∈ B(·) is A∗. Discrete-time eigenvalues read µ:= eλ∆t, λ ∈ C.
A random variable X defined on a probability space (Ω,A, ρ) has expectation E[X] =

∫
Ω
X(ω)ρ(ω).

2 Problem Statement and Related Work
To begin, we formalize our problem statement and put our work into into context with existing work.

2.1 Problem Statement

Consider a forward-complete system1 comprising a nonlinear state-space model
ẋ = f(x), x0= x(0), (3a)
y = q(x), (3b)

on a compact domain X ⊂ Rd with a quantity of interest q∈C(X). The above system class includes
all systems with Lipschitz flow F t(x0) :=

∫ t

0
f(x(τ))dτ , e.g., mechanical systems [27].

Inspired by the spectral decomposition of Koopman operators, we look to replace the nonlinear
state-space model (3) by an LTI predictor

ż = Az, z0= g(x0), (4a)

y = c⊤z, (4b)
1Although we outline the scalar output case for ease of exposition, expanding to a vector-valued case is

possible w.l.o.g. If required, forward completeness can be relaxed to unboundedness observability [25, 26].
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with D̄ ∈ N and g a D̄-dimensional function approximator dense in C(X). Then, from initial
conditions X0⊆ X that form a non-recurrent domain XT , (4) admits a universal approximation of
the flow of (3) such that ∀ε > 0, ∃D̄ so that supx∈X0

|yT (t)− c⊤eAt g(x)| < ε, ∀t ∈ [0, T ] [28]2.
In this work, we aim to find a solution to the following constrained, functional optimization problem
(OR) Output reconstruction:

min
c,g,A

∥yT − c⊤gT ∥YT
, (5a)

(KI) Koopman-invariance:
such that g(x(t)) = eAt g(x(0)), ∀t ∈ [0, T ]. (5b)

Although the sought-out model (4) is simple, the above problem is non-trivial and much of the
existing body of work utilizes different simplifications that often lead to undesirable properties. In
the following, we elaborate on these properties and motivate our novel sample-based solution to
(5), which remains relatively simple but nonetheless ensures a well-defined solution with strong
learning guarantees.

2.2 Related Work

Koopman operator regression in RKHS Equipped with a rich set of estimators, operator regression
in RKHS seeks a sampled-data solution to

min
A

∥g(x(t))−A∗g(x(0))∥L2 , (6)

with A a Hilbert-Schmid operator [29] — commonly known as KRR, and EDMD (PCR) or RRR
when under different fixed-rank constraints [23, 24]. The choice of RKHS g is commonly one
that is dense in a suitable L2 space, e.g. that of the RBF kernel. By an additional projection, a
quantity of interest can be predicted via a mode decomposition of the estimated operator, leading
to a model akin to (4). In the light of (5), the feature map g is predetermined while violating (KI)
is merely minimized for a single time-instant t. As a consequence, such approaches are oblivious
to the time-series structure — offering limited predictive power over the time interval [0, T ] of a
trajectory as displayed in Figure 1. The extent to which (KI) is violated due to spectral properties
[30] or estimator bias [24] is known as spectral pollution [31]. The strong implications of this
phenomena, motivate regularization [32] and spectral bias measures [24] to reduce its effects. Due
to the above challenges, guarantees for Koopman operator regression (KOR) have only recently
gained increased attention. Often, however, existing theoretical results [29, 33] are generally not
applicable to nonlinear dynamics [34] due to the commonly unavoidable misspecification [35] of the
problem (6) incurred by neglecting (KI). The first more general statistical learning results [23, 24]
are derived in a stochastic setting under the assumption that the underlying operator is compact and
self-adjoint. In stark contrast, the same set of assumptions is restrictive for the deterministic setting
[35]: compactness only holds for affine deterministic dynamics [36, 37] while self-adjointness is
known to generally not hold for Koopman operators [13, 38, 39]. Regardless of the setting, however,
the state-of-the-art exhibits alarming properties: forecasting error not necessarily vanishing with
LTI predictor (4) rank [23, Theorem 1] and risk based on a single time-instant.

Learning via Koopman eigenspaces Geared towards LTI predictors and closer to our own problem
setting (2), another distinct family of approaches aims to directly learn the operator’s invariant
subspaces [28, 40–42]. The goal is to fit g(·) based on approximate Koopman operator eigenfunctions
that still fit the output of interest (OR). However, existing data-driven approaches in this line of
work rely on ad-hoc choices and lack essential learning-theoretic properties such as feasibility and
uniqueness of solutions — prohibiting provably accurate and automated LTI predictor learning.

Kernels for sequential data Motivated by the lack of priors that naturally incorporate streaming
and sequential data, there is an increasing interest in signatures [43]. They draw from the rich
theory of controlled differential equations (CDEs) [44, 45] and build models that depend on a
time-varying observation history. An RKHS suitable for sequence modeling is induced by a signature
transformation of a base/static RKHS. Generally, if the latter is universal, so are the signature
kernels [46]. While arguably more general and well-versed for discriminative and generative tasks
[47], forecasting using signature kernels [48] comes at a price, as their nonlinear dependence on
observation streams leads to a significant complexity increase compared to LTI predictors.

2Background on prerequisite Koopman operator theory can be found in the supplementary material.
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Motivated by the restrictions of existing Koopman-based predictors, we propose a function approxi-
mation approach that exploits exploits time-series data and Koopman operator theory to provably
learn LTI predictors. Through a novel invariance transform we can satisfy (KI) by construction and
directly minimize the forecasting risk over an entire time-interval (OR). In simple terms: Koopman
operator regression fixes g(·) and regressesA and c in (5), whereas our KKR approach selectsA to
jointly regress c and g(·). Similar in spirit to generalized Laplace analysis [21, 49], our approach
allows the construction of eigenmodes from data without inferring the operator itself. Crucially, we
demonstrate that selectingA requires no prior knowledge as confirmed by our theoretical results and
experiments. To facilitate learning LTI predictors, we derive universal RKHSs that are guaranteed
to satisfy (KI) over trajectories — a first in the literature. The resulting equivalences to function
regression in RKHS allow for more general and complete learning guarantees in terms of consistency
and risk bounds that are free of restrictive operator-theoretic assumptions.

3 Koopman Kernel Regression

With the optimization (5) being prohibitively hard due to nonlinear and possibly high dimensional
constraints, we eliminate the constraints (5b) by enforcing the feature map g(·) to have the dynamics
of intrinsic LTI coordinates associated with Koopman operators, i.e., their (open) eigenfunctions [21].
Definition 1. A Koopman eigenfunction ϕλ∈C∈C(X) satisfies ϕλ(x)= e−λt ϕλ(F

t(x)),∀t ∈ [0, T ].

It is proven that Koopman eigenfunctions from Definition 1 are universal approximators of continuous
functions [28] — making them a viable replacement for the feature map g(·) in (4). However, follow-
ing their definition, it is evident that Koopman eigenfunctions are by no means arbitrary due to their
inherent dependence on the dynamics’ flow. Using the well-established fact that Koopman operators
compose a function with the flow, i.e., Ktg(·) = g(F t(·)), it becomes evident the eigenfunctions
from Definition 1 are (semi)group invariants, as they remain unchanged after applying {e−λt Kt}Tt=0.
Thus, inspired by the seminal work of Hurwitz on constructing invariants [50], we can equivalently
reformulate (5) as an unconstrained problem and jointly optimize over eigenfunctions3.
Lemma 1 (Invariance transform). Consider a function g ∈ C(X0) over a set of initial conditions
X0 ⊆ X that form a non-recurrent domain XT . The invariance transform IT

λ transforms g into an
Koopman eigenfunction ϕλ ∈ C(XT ) for (3a) with LTI dynamics described by λ ∈ C

ϕλ(xT ) = IT
λ g(x0) :=

∫ T

τ=0

e−λ(τ−t) g(F τ (x0))dτ. (7)

The above Lemma 1 is a key stepping stone towards deriving a representer theorem for LTI predictors.
However, it is also interesting in its own right as it provides an explicit expression for the flow of an
eigenfunction from any point in the state space. Thus, it provides a recipe to obtain a function space
that fulfills (KI) by construction. As we show in the following, a sufficiently rich set of eigenvalues
[28] and Lemma 1 will allow for a reformulation of (5) into an unconstrained problem

min
M

∥yT −M(xT )∥YT
. (8)

where the operator M(·):=1⊤[ϕλ1
(·) · · ·ϕλD̄

(·)]⊤ is universal and consisting of Koopman-invariant
functions.

3.1 Functional Regression Problem

Notice that the problem reformulation (8) is still intractable, as a closed-form expression for the
flow map is generally unavailable even for known ODEs. This requires integration schemes that can
introduce inaccuracies over a time interval [0, T ]. Thus, to make the above optimization problem
tractable, data samples are used — ubiquitous in learning dynamical systems.

Assumption 1. A collection of N pairs of trajectories DN={x(i)
T , y

(i)
T }Ni=1∈(XT×YT )

N is available.

By aggregating different invariance transformations (7) into the mode decomposition operator

M(·)≡
∑D̄

j=1ϕλj
(·): XT 7→ YT , (9)

3Proofs for all theoretical results can be found in the supplementary material.
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we can formulate a supervised learning approach in the following.

Learning Problem With Assumption 1 and Lemma 1, the sample-based approximation of problem
(8) reduces to solving

min
M

∑N
i=1 ∥y

(i)
T −M(x

(i)
T )∥YT

. (10)

while preserving the mode decomposition structure (9). To realize the above learning problem, we
resort to the theory of reproducing kernels [51, 52] and look for an operator M̂ ∈ H, where H
is an RKHS. A well-established approach using RKHS theory is to select M̂ as a solution to the
regularized least squares problem

M̂ = argmin
M∈H

N∑
i=1

∥y(i)T −M(x
(i)
T )∥2YT

+ γ∥M∥2H, (11)

with γ∈R+ and ∥·∥H a corresponding RKHS norm. As our target is a function-valued mapping M(·)
– an operator – ∥·∥H is induced by an operator-valued kernel K : XT×XT 7→ B(YT ) mapping to the
space of bounded operators over the output space [53]. The salient feature of the above formulation
(11) is its well-posedness: its solution exists and is unique for any H, expressed as

M̂(·)=
∑N

i=1 K(·,x(i)
T )βi, βi ∈ YT (12)

through a representer theorem [54]. Still, due to the Koopman-invariant structure (9) from Lemma 1,
the choice of the RKHS H for M̂ is not arbitrary. Thus, the question is how to craft H so the solution
M̂ is decomposable into Koopman operator eigenfunctions (9), forming an LTI predictor.

Firstly, it is obvious that (9) consists of summands that may lie in different RKHS, denoted as
{Hλj}D̄j=1. Then, H is constructed from the following direct sum of Hilbert spaces [55]:

H̃ = Hλ1 ⊕ · · · ⊕ HλD̄ so that H = range(S):={f1+. . .+fD̄ : f1∈Hλ1 , . . . , fD̄∈HλD̄} (13)

with S : H̃ → H, (f1 · · · fD̄) 7→ f1 + . . . + fD̄ the summation operator [56]. Thus, to construct
H, a specification of the RKHS collection {Hλj}D̄j=1 is required, so that it represents Koopman
eigenfunctions from (9).

Theorem 1 (Koopman eigenfunction kernel). Consider trajectory data {x(i)
T }Ni=1 from Assumption 1,

a λ ∈ C and a universal (base) kernel k : X×X 7→ R. Then, the kernel Kλ : XT×XT 7→ B(YT )

Kλ(xT ,x
′
T ) =

∫ T

τ=0

∫ T

τ ′=0

e−λ(τ−t) k (xT (τ),x
′
T (τ

′)) e−λ∗(τ ′−t) dτdτ ′, (14)

(i) defines an RKHS Hλ,
(ii) is universal for every eigenfunction of Definition (1) corresponding to λ,

(iii) induces a data-dependent function space span
{
Kλ(·,x(1)

T ), . . . ,Kλ(·,x(N)
T )

}
that is

Koopman-invariant over trajectory-data {x(i)
T }Ni=1.

In Theorem 1, we derive an eigenfunction RKHS by defining its corresponding kernel that embeds the
invariance transformation (7) over data samples. Also, we would like to highlight that the above result
addresses a long-standing open challenge in the Koopman operator community [19–21], i.e., defining
universal function spaces that are guaranteed to be Koopman-invariant. Now, we are ready to introduce
the Koopman kernel as the kernel obtained by combining “eigen-RKHS” as described in (13).
Proposition 1 (Koopman kernel). Consider trajectory data DN of Assumption 1 and a set of kernels
{Kλj}D̄j=0 from Theorem 1. Then, the kernel K : XT×XT 7→ B(YT ) given by

K(xT ,x
′
T ) =

∑D̄
j=1 K

λj (xT ,x
′
T ) (15)

(i) defines an RKHS H := S(Hλ1 ⊕ · · · ⊕ HλD̄ ),
(ii) is universal for any output (3b), provided a sufficient amount4 of eigenspaces D̄.

Above, we have derived the “Koopman-RKHS” H for solving the problem (11) with a uni-
versal RKHS spanning Koopman eigenfunctions. Thus, the sample-data solution for an
eigenfunction flow follows from the functional regression problem (11) and takes the form
ϕλj (·) =

∑N
i=1 K

λj (·,x(i)
T )βi, βi∈YT — providing a basis for the LTI predictor.

4Sufficient amount is a rich enough set of eigenvalues {eλj [0,T ]}D̄j=1 from B1(0) in C [57, Theorem 3.0.2].
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3.2 Practicable LTI Predictor Regression

As a functional approximation problem, the solution of (11) is not parameterized by vector-valued
coefficients, but rather functions of time. Although there are a few options to deal with function-valued
solutions [53], we consider a vector-valued solution. A common drawback of such a discretization
involves the loss of the inter-sample relations along the continuous signal. Crucially, this problem
does not apply in our case, as the inter-sample relationships remain modeled for the discrete-time
“Koopman kernel” due to its causal structure. Importantly, the vector-valued solution allows us to
preserve all of the desirable properties derived in the continuous case.

Consider sampling [0, T ] at H=T/∆t regular intervals to yield a discrete-time dataset from Assump-
tion 1, discretized at points H ≡ {t0· · ·tH}. As a discretization of a function over time, with a slight
abuse of notation, we denote the target vectors as yH = [y(t0) · · · y(tH)]⊤. Thus, we are solving the
time- and data-discretized version of the problem (5) that takes the form of a linear coregionalization
model [58, 59].

Corollary 1 (Time-discrete Koopman kernel). Consider trajectory data {x(i)
H }Ni=1 and let µj := eλj∆t,

µ⊤
j :=[µ0

j · · ·µH
j ]. Then, the scalar-induced matrix kernelKµj: XH×XH 7→ B(YH)

Kµj (xH,xH
′) = µjµ

∗
j
⊤ 1

(H+1)2

∑H
m=0

∑H
n=0µ

−m
j kj (xH(tm),xH

′(tn))µ
∗−n
j︸ ︷︷ ︸

kµj(xH,xH
′)

, (16)

satisfies the properties (i)–(iii) from Theorem 1 over H, so that it defines an RKHS Hµj , is universal
per Definition 1 over H with span{Kµ(·,x(1)

H ), . . . ,Kµ(·,x(N)
H )} (KI) over {x(i)

H }Ni=1. Given a
collection of kernels {Kµj}D̄j=0, the matrix Koopman kernelKµj: XH×XH 7→ B(YH)

K(xH,xH
′) =

∑D̄
j=1K

µj (xH,xH
′), (17)

satisfies the properties (i)–(ii) from Proposition 1 over H, defining RKHS H∆t:=S(Hµ1⊕· · ·⊕HµD̄ ).

Now, we are fully equipped to obtain the time-discrete solution to our initial problem (5) provided a
dataset of trajectories. Before presenting the solution to Koopman Kernel Regression, we introduce
some helpful shorthand notation. We use the following kernel matrix abbreviations: kXX =
[k(x(a),x(b))]Na,b=1, k(x,X) = [k(x,x(b))]Nb=1, KXX = [K(x(a),x(b))]Na,b=1 and K(x,X) =

[K(x,x(b))]Nb=1.

Proposition 2 (KKR). Consider a discrete-time dataset of Assumption 1, D∆t
N ={x(i)

H , y
(i)
H }Ni=1, and

let y⊤
H=[y

(1)⊤
H · · ·y(N)⊤

H ] with ⊗ the Kronecker product. Then,

αj = k−1
X0X0

k
µj

XHXH

(
IN ⊗ µ∗⊤

j

)
β, β=(KXHXH

+γIH+1⊗IN )−1yH (18)

defines a unique time-sampled solution to (11) in terms of eigenfunctions ϕ̂(x0) = [kjx0X0
αj ]

D̄
j=1,

determining an LTI predictor5 with Λ = diag([µ1 · · ·µD]),

z+ = Λz, z0= ϕ̂(x0), (19a)

ŷ = 1⊤z. (19b)

Notice how in (18), we re-scale the trajectory domain to that of the state-space. This enables us to
write the forecast of (19), with a slight abuse of notation, using an extended observability matrix [60]

ŷH = Γϕ̂(x0), Γ :=
[
1⊤ 1⊤Λ · · · 1⊤ΛH

]⊤
. (20)

The confinement to a non-recurrent domain plays a crucial role in making the base kernel RKHSs
isometric to “eigen-RKHSs” Hkj ∼= Hkµj via invariance transforms, guaranteeing a feasible return
from the time-series domain XT to the state-space domain X0 ⊆ X for evaluating the model over
initial conditions.
Remark 1. The salient feature of our proposed KKR framework compared to existing methods is
the fact that Koopman-invariance (KI) over data samples is independent from the outcome of an
optimization algorithm, e.g. minimizing the forecasting risk to compute β in (18). Thus, we are able
to directly optimize for a downstream task (forecasting) (OR) given a suitably rich set of eigenvalues.

5For discrete-time predictors, we omit the time-step specification and denote the next state with “(·)+”.
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3.3 Selecting Eigenvalues

Until now, we have used the sufficient cardinality D̄ ∈ N of an eigenvalue set that encloses [61] or
is the true spectrum. However, we have provided no insight regarding the selection of D̄ spectral
components or how they can be estimated. Here, we go beyond the learning-independent and non-
constructive existence result of [28] and provide a consistency guarantee and relate it to sampling
eigenvalues without the knowledge of the true spectrum.

Proposition 3. Consider the oracle Koopman kernelK(xH,xH
′) and a dense set {µj}∞j=1 in B1(0).

Then, ∥K(xH,xH
′)−

∑D
j=1K

µj (xH,xH
′)∥B(YH) → 0, ∀ xH,xH

′ ∈ XH as D → ∞.

As shown in Proposition 3, even if we do not know the oracle kernel, we can arbitrarily approximate
it by sampling from a dense set supported on the closed complex unit disk B1(0) [57, Theorem 3.0.2]
with the error vanishing in the limit D→∞. There is no loss of generality when considering the unit
disk as any finite radius disk can be scaled in the interval [0, T ]. Furthermore, approximation of the
oracle kernel by sampling a distribution over B1(0) leads to an almost sure O(1/

√
D) convergence

rate. It is conceivable that faster rates can be obtained in practice by including prior knowledge to
shape the spectral distribution, e.g. using well-known concepts such as leverage-scores or subspace
orthogonality [62, 63]. Based on spectral priors one can include a more biased sampling technique
by precomputing components of the operator spectrum, e.g. computing Fourier averages [64], to
determine the phases ωj of complex-conjugate pairs µj,± = |µj | e±iωj and sample the modulus from
another physics-informed distribution. However, rigorous considerations of optimized and efficient
sampling are beyond the scope of this paper and rather a topic of future work.

3.4 Numerical Algorithm and Time-Complexity

Algorithm 1 Regression and LTI Forecasts using KKR

Data D={x(i)
H , y

(i)
H }Ni=1, Eigenvalues {µj}Dj=1

function REGRESS(D, {µj}Dj=1)
form Gramians kX0X0, {k

µj

XHXH
}Dj=1,KXHXH

fit mode operator M̂(·) : XH 7→ YH (18, right)
recover eigenfunctions ϕ̂(·) : X0 7→ Z0 (18, left)
construct Γ : Z0 7→ YH (20, right)
return LTI predictor Γϕ̂(·) : X0 7→ YH

end function
function FORECAST(x0)

“lift” z0 = ϕ̂(x0)
rollout ŷH = Γz0
return trajectory ŷH

end function

For a better overview, the pseudocode for
regression and forecasting of our method
are shown in Algorithm 1. We also put the
time-complexity of our algorithm into per-
spective w.r.t. Koopman operator regres-
sion of PCR/RRR [23] and ridge regres-
sion using state-of-the-art signature ker-
nels [48] (RR-Sig-PDE) in Table 1. The
training complexity of our KKR is com-
parable to that of RR-Sig-PDE regression
and generally better than that of PCR/RRR.
Given that accurate LTI forecasts require
higher-rank predictors, the seemingly mild
quadratic dependence makes D2 > NH
and leads to a more costly matrix inversion.
Furthermore, our LTI predictor also has a
slightly better forecast complexity due to

not depending on trajectory length. Obviously, due to a mere matrix multiplication after an initial
nonlinear map, LTI predictors have a significantly lower evaluation complexity than the nonlinear
predictor of Sig-PDE’s. Due to requiring updated observation sequences as inputs, Sig-PDE kernels
introduce a raw evaluation complexity that is also quadratic in sequence length.

Method Training H-step forecast
KKR (ours) O(N3H3+DN2H2d) O(DH+DNd)
PCR/RRR O(D2N2H2+N2H2d) O(DH+DNHd)

RR-Sig-PDE O(N3H3+N2H2l2d) O(NH2l2d)

N # trajectories
H trajectory length
D predictor rank
l # time-delays
d dim(input data)

Table 1:
Time com-
plexities.

4 Learning Guarantees

With a completely defined KKR estimator, we assess its essential learning-theoretic properties, i.e.,
the behavior of the learned functions w.r.t. to the ground truth with increasing dataset size.
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4.1 Consistency

Although well-established in most function approximation settings [65–67], the setting of Koopman-
based LTI predictor learning for nonlinear systems is void of consistency guarantees. Here we use a
definition of universal consistency from [68] that describes the uniform convergence of the learned
function to the target function as the sample size goes to infinity for any compact input space X and
every target function q∈C(X). The existing convergence results for Koopman-based LTI predictors
[69] are in the sense of strong operator topology — allowing the existence of empirical eigenvalues
that are not guaranteed to be close to true ones even with increasing data [70]. This lack of spectral
convergence has a cascaded effect in Koopman operator regression as, in turn, the convergence of
eigenfunctions and mode coefficients is not guaranteed. Here, the convergence of modes is replaced
by the convergence of eigenfunctions, and convergence of spectra is replaced by the convergence of
(20) to the mode decomposition operator M̂ ≡ Γϕ̂→ M≡Γϕ with the estimate denoted by (̂·).
Theorem 2 (Universal consistency). Consider a universal kernel K (17) and a data distribution
supported on XH×YH. Then, as N → ∞, ∥M−M̂∥YH → 0 and ∥ϕµj−ϕ̂µj∥YH → 0,∀j=1, . . ., D.

4.2 Generalization Gap: Uniform Bounds

Due to formulating the LTI predictor learning problem as a function regression problem in an
RKHS, we can utilize well-established concepts from statistical learning to provide bounds on the
generalization capabilities of KKR. Given a dataset of trajectories, the following empirical risk is
minimized

R̂N (M̂) := 1
N

∑
i∈[N ] ∥y

(i)
H − M̂(x

(i)
H )∥2YH

which is “in-sample” mean square error (MSE) w.r.t. a trajectory-data generating distribution ρD
of i.i.d. initial conditions. The true risk/generalization error of an estimator is the “out-of-sample”
MSE of the model on the entire domain and denoted as R(·). Those quantities are, in essence, the
model’s performance on test and training data, respectively. Allowing for statements on the test
performance with an increasing amount of data by means of training performance is a desirable
feature in data-driven learning. Hence, we analyze our model in terms of the generalization gap

|R(M̂)− R̂N (M̂)| =
∣∣∣E(xH,yH)∼ρD [∥yH−M̂(xH)∥2YH

]− 1
N

∑N
i=1 ∥y

(i)
H −M̂(x

(i)
H )∥2YH

∣∣∣ . (21)

To ensure a well-specified problem, we require models in the hypothesis to admit a bounded norm.
Assumption 2 (Bounded RKHS Norm). The unknown function M has a bounded norm in the RKHS
H∆t attached to the Koopman kernelK(·, ·), i.e., ∥M∥H∆t ≤ B for some B ∈ R+.

The above smoothness assumption is mild, e.g., satisfied by band-limited continuous trajectories [71]
and computable from data [72, 73]. In stark contrast, well-specified Koopman operator regression
[23] requires the operator to map the RKHS onto itself, which is a very strong assumption [34, 35].

To derive the main result of this section, we utilize the framework of Rademacher random variables
for measuring complexity of our model’s hypothesis space, a concept generally explored in [74] and
more particularly for classes of operator-valued kernels in [75]. Conveniently, the derivation is, in
terms of the RKHS H∆t, similar to standard methods on RKHS-based complexity bounds [74]. We
use well-known results based on concentration inequalities to provide high probability bounds on a
model’s generalization gap in terms of those complexities. Finally, we upper bound any constant with
quantities specified in our assumptions and can state the following result.

Theorem 3 (Generalization Gap of KKR). Let D∆t
N = {x(i)

H , y
(i)
H }Ni=1 be a dataset as in Assumption 1

consistent with a Lipschitz system on a non-recurrent domain. Then the generalization gap (21) of a
model M̂ from Proposition 2 under Assumption 2 is, with probability 1− δ, upper bounded by

|R(M̂)− R̂N (M̂)| ≤ 4RB

√
κH2

N
+

√
8 log 2

δ

N
∈ O

(
H√
N

)
, (22)

where R is an upper bound on the loss in the domain, and κ the supremum of the base kernel.

We observe an overall dependence of order O(1/
√
N) w.r.t. data points, resembling the regular Monte

Carlo rate to be expected when working with Rademacher complexities. Remarkably, an increase
in the order of the predictor D cannot widen the generalization gap but will eventually decrease the
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Figure 2: Forecasting performance (48 i.i.d. runs) for the bi-stable system for H=14 and N=50
for respectively optimal DKKR=100, DPCR=10 and 15 delays for Sig-PDEs. Left: Exemplary
trajectories showing the advantage of learning with time-series kernels. Right: The generalization
gap with an increasing forecast horizon, demonstrating generalization advantages of KKR.

empirical risk due to the consistency of eigenspaces (Proposition 3). Combined, our findings are
a substantial improvement, both quantitatively and in terms of interpretability, over existing risk
bounds on forecasting error [23, Theorem 1]. Additionally, our intuitive non-recurrence requirement
is easily verifiable from data. In contrast, the Koopman operator regression in RKHS comes with
various strong assumptions [35] that require commonly unavailable expert knowledge. Also, the
generalization of existing Koopman-based statistical learning approaches depends on rank while ours
is rank-independent. The significant implications of our results are demonstrated in the following.

5 Numerical Experiments

In our experiments6, we report the squared error of the forecast vector for the length of data trajectories
averaged over multiple repetitions with corresponding min-max intervals. We validate our theoretical
guarantees and compare to state-of-the-art operator and time-series approaches in RKHS. For fairness,
the same kernel and hyperparameters are chosen for our KKR, PCR (EDMD), RRR [23] and
regression with signature kernels (Sig-PDE) [48]. Note, PCR and RRR are provided with the same
trajectory data split into one-step data pairs while the time and observation time-delays are fed as
data to the Sig-PDE regressor due to its recurrent structure. Along with code for reproduction of our
experiments, we provide a JAX [76] reliant Python module implementing a sklearn [77] compliant
KKR estimator at https://github.com/TUM-ITR/koopcore.

Bi-stable system Consider an ODE ẋ = ax+ bx3 that arises in modeling of nonlinear friction. The
parameters are a = 4, b = −4, making for a bi-stable system at fixed points ±1. The numerical
results are depicted in Figure 2. Sample trajectories both on training and testing data indicate the
utility of the forecast risk minimization of KKR. While EDMD correctly captures the initial trend
of most trajectories it fails to match the accuracy of Sig-PDE or our KKR predictors that utilize
time-series structure. Furthermore, the behavior of KKR’s generalization gap for an increasing time
horizon T = H∆t,∆t = 1/14s closely matches our theoretical analysis.

Van der Pol oscillator Consider an ODE ẍ = ẋ(2− 10x2)− 0.8x describing a dissipative system
whose nonlinear damping induces a stable limit cycle — a phenomenon present in various dynamics.

Table 2: Average risk (20 runs) [×10−2] for Van der Pol for
various spectral sampling and lengthscales, N=200, H=14.

ρ(µ) uniform boundary-biased physics-informed
D 16 200 16 200 16 200

Rℓ=101 13.7 5.38 11.2 5.38 5.60 5.58
Rℓ=100 6.46 0.78 4.10 0.78 0.97 0.92
Rℓ=10−1 7.12 1.74 4.33 1.74 1.83 1.80

In Figure 3 two fundamental effects
are validated: the generalization gap
with increasing data and consistency
with test risk that does not deterio-
rate for increasing eigenspace cardi-
nality. The performance of PCR/RRR
is strongly tied to predictor rank while
Sig-PDE’s less so w.r.t. delay length.
Crucially, our KKR approach does not require a careful choice of the eigenspace cardinality to
perform for a specific amount of data. Although the eigenvalues that determine the eigenspaces
are randomly chosen from a uniform distribution in the unit ball, KKR consistently outperforms
PCR/RRR. In Table 2 we show the spectral sampling and hyperparameter effects. We employ the
following strategies: uniform - uniform distribution on the complex unit disk, boundary-biased - a
distribution on the complex unit disk skewed towards the unit circle, physics-informed - eigenvalues
of various vector field Jacobians. As expected, physics-informed performs well with lower rank

6Additional details on the numerical experiments can be found in the supplementary material.
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compared to uninformed approaches. However, it is outperformed by unit-ball sampling approaches
for higher rank due to a lack of coverage. Table 3 includes CPU timings for completeness.
#data = N×H=200×14 KKR PCR RRR Sig-PDE
Training [s]/Forecast [ms] 8.0/ 54 90/ 84 88/150 8.6/5900

Table 3: Computation
times for Van der Pol.

Flow past a cylinder We consider high-dimensional data of velocity magnitudes in a
Kármán vortex street under varying initial cylinder placement, as illustrated in Figure 5.

Figure 5: Flow illustration. Area of
initial cylinder positions shaded.

The cylinder position is varied on a 7×7 grid in a 50×100-
dimensional space and the flow is recorded over H=99. The
quantity of interest is a velocity magnitude sensor placed in
the wake of the cylinder. In forecasting from an initial ve-
locity field, KKR outperforms PCR by orders-of-magnitude
as shown in Figure 4. We omit Sig-PDE regression due to
persistent divergence after ≈ 20 steps. The latter is hardly
surprising, given that Sig-PDE models iterate one step pre-
dictions based only on the shapes of time-delays while LTI
models directly output time-series from initial conditions.

6 Conclusion

We presented a novel statistical learning framework for learning LTI predictors using trajectories of
a dynamical system. The method is rooted in the derivation of a novel RKHS over trajectories, which
solely consists of universal functions that have LTI dynamics. Equivalences with function regression in
RKHS allow us to provide consistency guarantees not present in previous literature. Another key con-
tribution is a novel rank-independent generalization bound for i.i.d. sampled trajectories that directly
describes forecasting performance. The significant implications of the proposed approach are con-
firmed in experiments, leading to superior performance compared to Koopman operator and sequential
data predictors in RKHS. In this work, we confined our forecasts to a non-recurrent domain for a spe-
cific length of trajectory data, where the choice of spectra is arbitrary. However, exploring more effica-
cious spectral sampling schemes is a natural next step for extending our results to asymptotic regimes
that include, e.g., periodic and quasi-periodic behavior. It has to be noted that vector-valued kernel
methods have limited scalability with a growing number of training data and output dimensionality.
Therefore, exploring solutions that improve scalability is an important topic for future work. Further-
more, to enable the use of LTI predictors in safety-critical domains, the quantification of the forecast-
ing error is essential. Hence, deriving uniform prediction error bounds for KKR is of great interest.
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Supplementary Material

The supplementary material is organized as follows.

• Appendix A contains additional background on non-recurrence and spectral theory of
Koopman operators. Additionally, it contains a notation table.

• Proofs of theoretical results are found in Appendix B.
• Finally, Appendix C includes more details on the experimental section, as well as additional

experiments.

Table 4: Summary of used notation

Notation Description

T time interval [0, T ]
H collection of points from discretizing the time interval T at times {t0, · · · tH}
X compact state-space set
X0 compact set of initial conditions that form a non-recurrent domain

xT /xH a continuous/discrete time state trajectory
XT /XH space of continuous/discrete-time state trajectories
yT /yH a continuous/discrete time output trajectory
YT /YH space of continuous/discrete-time output trajectories

Kt time-t Koopman operator
M/M̂ true/learned mode decomposition operator
K/K/k operator/matrix/scalar-valued kernels
λ/µ continuous/ discrete-time eigenvalue

Kλj/Kµj/kj operator/matrix/base kernel of the j-th Koopman eigenfunction
Hk RKHS of a scalar base kernel k
Hkµj RKHS of a scalar kernel kµj

Hµj RKHS of matrix valued kernelKµj induced by scalar kernel kµj

Hλ/Hµ continuous/discrete-time Koopman eigenfunction RKHS λ/µ ∈ C
H/H∆t continuous/discrete-time Koopman RKHS
IT
λ /IH

µ invariance transform for time/step length T /H and eigenvalue λ/µ ∈ C
D(·) dataset for an estimator (·)
DN dataset of N time-continuous sample trajectories pairs (x(i)

T , y
(i)
T )i∈[N ]

D∆t
N dataset of N time-discrete sample trajectories pairs (x(i)

H , y
(i)
H )i∈[N ]

B(·) set of bounded operators over a domain
Br(0) closed ball of radius-r in C
Γ extended observability matrix
ϕ̂(·) vector-valued function of learned Koopman eigenfunctions
RN (·) true forecast risk/generalization error of an estimator
R̂N (·) empirical forecast risk of an estimator based on N data samples
RN (·) true Rademacher complexity of of a hypothesis class based on N samples
R̂N (·) empirical Rademacher complexity of a hypothesis class based on N samples
L(·) loss function determining the metric for risk, e.g. squared error
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A Non-recurrence and Koopman Operator Theory

Remark 2 (Operator boundedness). Consider a forward complete system on a compact set X and
a continuous flow F t. It is well-known that a time-t Koopman operator Kt is then a contraction
semigroup on C(X) [78]. Due to forward completeness of the flow, we therefore obtain a Banach
algebra C(X) with a bounded semigroup {Kt}t≥0 ∈ B(C(X)).
Definition 2 (Non-recurrence). A non-recurrent domain is one where flow does not intersect itself.

Non-recurrence is commonly ensured by a choice of the time interval [0, T ] so no periodicity is
exhibited. Note that it does not mean the system’s behavior is not allowed the be periodic, but our
perception of it via data does. Effectively this prohibits the multi-valuedness of eigenfunctions –
allowing them to define an injective feature map. Thus, non-recurrence is a certain but general
condition that bounds the time-horizon T in which it is feasible to completely describe the nonlinear
system’s flow via an LTI predictor (4). It makes for a less-restrictive and intuitive condition compared
to existing RKHS approaches [23, 24] that rely on the self-adjointness and compactness of the actual
Koopman operator which is rarely fulfilled and hard to verify without prior knowledge.
Lemma 2 (Universality of Eigenfunctions). Consider an quantity of interest q ∈ C(X), a forward-
complete system flow F t(·) on a non-recurrent domain X0 (Definition 2) of a compact set X. Then,
the output trajectory y(t) = q(x(t)),∀t ∈ [0, T ] is arbitrarily closely described by the eigenpairs
{λj , ϕj}j∈N⊆(C×C(X)) of the Koopman operator semigroup {Kt}Tt=0

7 so that ∀ε > 0,∃D̄ ∈ N

|q(x(t))−
∑D̄

j=1 e
λjt ϕj(x0)| < ε,∀t ∈ [0, T ]. (23)

Proof 1 (Lemma 2). With continuous eigenfunctions for continuous systems proved valid in [21,
Lemma 5.1],[28, Theorem 1], the space of continuous functions over a compact set is naturally the
space of interest. On a non-recurrent domain, there exist uniquely defined non-trivial eigenfunctions
and, by [57, Theorem 3.0.2], the spectrum is rich – with any eigenvalue in the closed complex
unit disk legitimate [79]. Further, by [28, Theorem 2], this richness is inherited by the Koopman
eigenfunctions — making them universal approximators of continuous functions.
Remark 3 (Choosing the spectral distribution λ ∼ ρ(µ)). The choice of our measure of integration
might seem arbitrary, and it indeed is. Since we, in general, do not assume knowledge of the spectrum
of the Koopman-semigroup, we have to make an approximation. To this end, an educated guess
on where the (point-) spectrum might be located is helpful. As elaborated above, the Hille-Yosida-
Theorem provides a convenient way to connect the practically attainable growth rates to bounds on the
spectrum. Why would sampling spectral features in a set enclosing the spectrum be enough to obtain
the spectral decomposition of the Koopman operator? Recalling that the spectral decomposition
consists of projections to eigenspaces, we state a well-known result. The Riesz projection operator
Pλ : C 7→ {g ∈ C : Kg = λg} to an eigenspace of K can be represented by

Pλ =
1

2πi

∫
γλ

ds

s−K
,

where γλ is a Jordan curve enclosing λ and no other point in σ(K) [61]. Obviously⋃
λ∈σ(K) range(Pλ) = C, iterating on the fact that we can represent the operator T by its spectral

components. It becomes apparent that sampling from a set enclosing σ(λ) can be seen as sampling
curves, eventually enclosing sufficient spectral components. And as stated, one can choose arbitrary
measures on C as long as one ensures they enclose the spectrum. The preceding analysis sheds
light on the connection of our approach to the Laplace-Stieltjes transform and the spectral pollution
occurring in EDMD-type algorithms.

B Proofs of Theoretical Results

Proof for Section 3 Koopman Kernel Regression
Proof 2 (Lemma 1). Due to the boundedness of finite-time trajectories of a forward complete system
and a continuous g∈ C(X0) we have well-defined Haar integral invariants [80]

ϕλ(xT ) =

∫ T

τ=0

e−λ(τ−t) Kτg(x(0))dτ =

∫ T

0

e−λ(τ−t) g(F τ (x0))dτ. (24)

7Note that, compared to “Koopman Mode Decomposition”, we let the eigenfunctions absorb the spatial mode
coefficients (possible w.l.o.g.) as they correspond to eigenfunctions and not eigenvalues [12, Definition 9].
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Then, ϕλ : X0 7→ C(X0) [81, p. 64] is an invariant function for {e−λτ Kτ}Tτ=0 considering a
normalized measure dτ(T ) = 1 – fulfilling the Koopman-invariance condition. By simple algebraic
manipulation we verify that ϕλ indeed has LTI dynamics

ϕλ(xT ) =

∫ T

τ=0

e−λ(τ−t) g(F τ (x0))dτ

= eλt
∫ T

τ=0

e−λτ g(F τ (x0))dτ

= eλt ϕλ(x0). (25)

Proof 3 (Theorem 1). (i) Due to the one-to-one relationship between kernel functions and RKHS we
can examine Hλ by its kernel Kλ(·, ·). We notice that due to the property that pointwise converging
sequences of kernels are again kernels [52, Corollary 4.17]. Showing that Kλ is a kernel thus
reduces to showing that the double integral exists. Now, since our continuity assumptions on the
system ensure the convergence of the Haar-integrals [81, p. 64], we can conclude that any valid
integration scheme [82, Theorem A.1.5] induces a uniformly converging sequence of kernels.

(ii) We will prove the statement by showing that the universality of the base kernel for continuous
functions makes the Koopman eigenfunction RKHS Hλ universal for continuous Koopman-invariant
functions at eigenvalue λ ∈ C. It is clear that feature map of the kernel is {e−λτ Kτ}Tτ=0-invariant,
and we only need to prove the completeness part. Let X0 be a compact subset in X, and ϵ > 0. Then,
the non-recurrent domain defined by XT = ∪t∈[0,T ]F

t(X0) under the continuous map (t,x) 7→
F t(x) is also a compact set. By using a universal RKHS Hk, we know there exists f ∈ Hk so that

sup
x∈XT

|f(x)− ϕλ(x)| ≤ ϵ.

Consider now a {e−λτ Kτ}Tτ=0-invariant group-averaged map fλ(x) =
∫ T

τ=0
e−λτ f (x(τ))) dτ

from the Koopman eigenfunction RKHS Hλ induced by Lemma 1. Then due to

sup
x∈X0

|fλ(x)− ϕλ(x)| = sup
x∈X0

∣∣∣∣∣
∫ T

τ=0

(
e−λτ f (x(τ))− e−λτ ϕλ (x(τ))

)
dτ

∣∣∣∣∣
(triangle inequality) ≤ sup

x∈X0

∫ T

τ=0

∣∣(e−λτ f (x(τ))− e−λτ ϕλ (x(τ))
)∣∣ dτ

≤
∫ T

τ=0

sup
x∈X0

∣∣(e−λτ f (x(τ))− e−λτ ϕλ (x(τ))
)∣∣ dτ

(Cauchy–Schwarz inequality) ≤
∫ T

τ=0

∣∣e−λτ
∣∣ sup
x∈X0

|f (x(τ))− ϕλ (x(τ))| dτ

≤ sup
τ ′∈[0,T ]

∣∣∣e−λτ ′
∣∣∣ ∫ T

τ=0

sup
x∈XT

|f (x)− ϕλ (x)| dτ

= max{1,
∣∣e−λT

∣∣}Tϵ,
we can approximate any Koopman eigenfunction ϕλ with a Koopman-invariant function fλ to
arbitrary accuracy.

(iii) With the knowledge of an explicit LTI feature representation from Lemma 1, we show that
Hλ satisfies Koopman-invariance along sampled trajectories {x(i)

T }Ni=1. For representing an open
eigenfunction over an initial condition, we choose an RKHS Hk of a universal kernel k(·, ·) : X×X 7→
R. As a consequence of Mercer’s theorem [83], there exists a feature map ξ : Rd 7→ Hk for every
kernel k(·, ·) such that

k(·, ·) = ⟨ξ(·), ξ(·)⟩Hk . (26)

Due to universality of k(·, ·) and continuity of eigenfunctions [21], there exists a parameter vector θ
so that

g(x
(i)
T (0)) = ⟨θ, ξ(x(i)

T (0))⟩Hk , ∀i = 1, . . . , N. (27)
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To enforce Lemma 1 at data points we utilize an RKHS Hλ induced by IT
λ : Hk → Hλ. Due to

universality for arbitrary continuous Koopman eigenfunctions by (ii), there exists a parameter vector
α so that

fλ(x
(i)
T ) = ⟨α, IT

λ ξ(x
(i)
T (0))⟩Hλ , ∀i = 1, . . . , N. (28)

From (28) we recognize a modified feature map ψ(·) = IT
λ ξ(·), representing the eigenfunction flow

at x(i)
T , i = 1, . . . , N , ∀t ∈ [0, T ]

fλ(xT ) = ⟨α,ψ(x(i)
T )⟩Hλ , ∀i = 1, . . . , N, (29)

inducing a kernel
Kλ(·, ·) = ⟨ψ(·),ψ(·)⟩Hλ . (30)

By exploiting inner product properties, we recognize

Kλ(·, ·) = ⟨IT
λ ξ(·), IT

λ ξ(·)⟩Hλ , (31)

leading to

Kλ(xT ,x
′
T ) = IT

λ (IT
λ )

∗⟨ξ(xT (0)), ξ(x
′
T (0)⟩Hk = IT

λ k(xT (0),x
′
T (0))IT ′

λ∗ . (32)

Finally, by applying the operators to the kernel, we obtain the induced “Koopman kernel”

Kλ(xT ,x
′
T ) =

∫ T

τ=0

∫ T

τ ′=0

k (xT (τ),x
′
T (τ

′)))

eλ(τ−t) eλ∗(τ ′−t)
dτdτ ′. (33)

fulfilling Lemma 1 along sampled trajectories x(i)
T , i, . . . , N .

Proof 4 (Proposition 1). (i) We show that H is an RKHS by showing it is associated with a kernel
which is the limit of a pointwise converging sequence of kernels [52, Corrollary 4.17]. Since Kλ is a
finite sum, it is bounded by virtue of its elements being bounded, which is due to Theorem 1,(i).

(ii) Universality of H is guaranteed by using eigenspace universality [28, Theorem 2] and applying
Theorem 1 (ii) component-wise. Our goal is to represent a function in terms of an LTI predictor, the
mode composition of the Koopman operator. Due to Lemma 2, we know the exact mode decomposition
M is countable so the contribution of neglected eigenspaces can be made arbitrarily small by choosing
D̄ large enough.

∥yT − M̂(xT )∥YT
= ∥M(xT )− M̂(xT )∥YT

= ∥1⊤[ϕλ1
· · ·ϕλD̄

](xT )− 1⊤[ϕ̂λ1
· · · ϕ̂λD

· · · ](xT )∥YT

= ∥ϕλ1
− ϕ̂λ1

+ · · ·+ ϕλD̄
− ϕ̂λD̄

+

∞∑
j=D̄+1

ϕλj
∥YT

≤ ∥ϕλ1
− ϕ̂λ1

∥YT
+ · · ·+ ∥ϕλD̄

− ϕ̂λD̄
∥YT

+ δ

Proposition 1 (ii)
≤ ϵ1 + · · ·+ ϵD̄ + δ

Now choosing D̄ such that δ < ϵ and ϵi =
ϵ−δ
D̄

, yields the assertion.

Proof 5 (Corollary 1). (i) By considering the integral equation (14) at H regular intervals ∆t so that
H = T/∆t with ∀t ∈ {tk}Hk=0 the integrals are replaced by sums. Due to considering normalized
measures of dτ(T ) and dτ ′(T ) in (14), each sum is normalized by the number of elements (H + 1),
resulting in (16). All properties from Theorem 1 transfer straightforwardly using the same arguments
as in Proof 3.

(ii) The construction of the kernel matrix sum directly follows directly follows the direct Hilbert
space sum

H̃∆t = Hµ1 ⊕ · · · ⊕ HµD̄ so that H∆t = range(S):={f1+ . . .+ fD̄ : f1∈Hµ1 , . . . , fD̄∈HµD̄}
(34)

All properties straightforwardly transfer from Proposition 1 using the same arguments as in Proof 4.
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Proof 6 (Proposition 2). It is easily recognizable that the time-discretization of problem (11) reads

min
β⊤=[β1···βN ]

∑N
i=1 ∥y

(i)
H −K(x

(i)
H ,XH)βi∥2YH

+ γβ⊤
i K(x

(i)
H ,x

(i)
H )βi. (35)

with β the unique solution to the system of linear equations

(K(XH,XH) + γIH+1 ⊗ IN ) [β⊤
1 , . . . ,β

⊤
N ]⊤︸ ︷︷ ︸

β

= [y
(1)⊤

H , . . . , y
(N)⊤

H ]⊤︸ ︷︷ ︸
yH

, (36)

Due to being a particular case linear coregionalization models [58, 59], it follows that the approxi-
mations ϕ̂j(·) of Koopman eigenfunctions satisfying Definition 1 over trajectory samples {x(i)

H }Ni=1
are uniquely defined by

ϕ̂j(xH) =

N∑
i=1

(
kµj

(
xH,x

(i)
H

)
⊗ µ∗⊤

j

)
βi = k

µj

XHXH

(
IN ⊗ µ∗⊤

j

)
β. (37)

As a consequence of a non-recurrent domain, the time-discrete invariance transformation is a bijection
at time-instances of the trajectory. Therefore, a base kernel RKHS Hkj

is isometrically isomorphic to
Hkµj with isometry IH

µj
, it is guaranteed ∀xH ∈ D∆t

N | x0≡ xH(0)

ϕ̂j(x0) = ϕ̂j(xH), (38a)

kjX0X0
αj = k

µj

XHXH

(
IN ⊗ µ∗⊤

j

)
β. (38b)

Then via αj = k−1
X0X0

k
µj

XHXH

(
IN ⊗ µ∗⊤

j

)
β eigenfunctions are uniquely determined as

ϕ̂(x0) =
[
kjx0X0

αj

]D̄
j=1

, (39)

concluding the proof.

Proof 7 (Proposition 3). Due to [57, Theorem 3.0.2], we consider, w.l.o.g., a dense set {µj}∞j=1

in B1(0) and a finite-rank kernel K̃ =
∑D

j=1K
µj (xH,xH

′). As the “oracle” kernel K =∫
µ∼ρ(B1(0))

Kµ(xH,xH
′) dµ is an operator norm limit of compact Riemann sums K̃ on a Hilbert

space YH, it is a compact operator. Thus, by [55, Theorem II (p. 374)], K̃ → K uniformly as
D → ∞.

Proof 8 (Theorem 2). Consider a universal Koopman kernel K. Consider the base kernel is
Mercer and recall the properties of the invariance transformation from the proof of Corollary 1:
the matrix-valued kernel K is trace-class as IH

µ IH∗
µ is a bounded self-adjoint operator [66] and

the base kernel is Mercer [83]. With Proposition 3, the universal consistency is immediate via
[68]. Thus, as N → ∞, the mode decomposition is consistent ∥M − M̂∥YH → 0 and the same
immediately follows for individual eigenfunctions as the universality of summand RKHSs is unaffected
so ∥ϕµj

− ϕ̂µj
∥YH

→ 0, j = 1, . . . , D.

Proofs for Section 4 Generalization Gap: Uniform Bounds We use the seminal result of [74],
which we will restate here for completeness.
Theorem 4 (Rademacher Generalization Risk Bound, [74] – Theorem 8, 11). Consider a loss function
L : Y × A → [0, 1]. Let F be a class of functions with signature X → A and let {Xi, Yi}Ni=1
be independently selected according to the probability measure P. then, for any integer n and any
δ ∈ (0, 1), with probability at least 1− δ over samples of length n, every f ∈ F satisfies

E[L(Y, f(X))] ≤ ÊN[L(Y, f(X))] + 2L(L0)RN(F) +

√
8 log 2

δ

N
,

where L0(y, a) = L(y, a)− L̃(y, 0).

To apply it to our use-case, we need to quantify the Rademacher complexities of our hypothesis space
for which we make the following assumption.
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Assumption 2 (Bounded RKHS Norm). The unknown function M has a bounded norm in the RKHS
H∆t attached to the Koopman kernelK(·, ·), i.e., ∥M∥H∆t ≤ B for some B ∈ R+.

An extension of classical results for operator-valued Rademacher complexities:

Lemma 3 (Rademacher Complexities of the Koopman Kernel). Consider the, Mercer, Koopman
kernel K and H∆t its RKHS as defined Corollary 1 and TKg =

∫
XH
K(·,xH)g(xH) dx̃H the

corresponding integral operator on L2(XH). Then under Assumption 2, the Rademacher complexities
of H∆t are upper bounded by

Asymptotic: RN(H∆t) ≤ B√
N

√
trace (TK) Non-Asymptotic: R̂N(H∆t) ≤ B

N

√
trace

(
TN
K

)
,

Proof 9 (Lemma 3). We derive an upper bound on the Rademacher complexities of the Koopman
kernel using a procedure similar to the one described in [74, Lemma 22]. Let Xi be random element
of (XH, ρD) and σ a vector of independent uniform random functions on {−1, 1}, then the n-th
Rademacher complexity of F is defined as

RN(F) = Eσ,ρD sup
f∈F

1

N

N∑
i=1

|⟨σi, f(Xi)⟩|
scalar
= Eσ,ρD sup

f∈F

1

N

N∑
i=1

σif(Xi).

The empirical case R̂n is similar to the expectation of σ. Now consider the Rademacher complexities
of the RKHS H∆t corresponding to the Koopman kernel for some fixed D, with respect to initial
conditions x(i)

H drawn from (XH, ρD).

RN(H∆t
N ) = Eσ,ρD sup

M∈H∆t
N

1

N

N∑
i=1

|⟨σi,M(x
(i)
H )⟩|

≤

RN(H∆t) = Eσ,ρD sup
M∈H∆t

1

N

N∑
i=1

|⟨σi,M(x
(i)
H )⟩| Pre-RKHS property

≤ Eσ,ρD sup
M∈H∆t

1

N

N∑
i=1

∥σi∥2∥M(x
(i)
H )∥2 Hölder’s inequality

= EρD sup
M∈H∆t

1

N

N∑
i=1

∥M(x
(i)
H )∥2 property of Rademacher functions

≤ EρD sup
∥β∥≤B

1

N

N∑
i=1

∥K(x
(i)
H , ·)β∥2 by construction

≤ EρD

1

N

N∑
i=1

B∥K(x
(i)
H , ·)∥2 operator norm

= EρD

B

N

N∑
i=1

√
K(x

(i)
H ,x

(i)
H ) reproducing property

By applying concavity and the respective definition, it follows that

RN(H∆t) ≤ B√
N

√√√√ 1

N

N∑
i=1

EρDK(x
(i)
H ,x

(i)
H ) =

B√
N

√
trace (TK)

and

R̂N(H∆t) ≤ B

N

N∑
i=1

√
K(x

(i)
H ,x

(i)
H ) ≤ B

N

√
trace

(
TN
K

)
.

Note that the different exponent in n stems from the different definitions of the operator and matrix
trace.
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Apart from the data density dependencies, the complexity of the hypothesis space is captured by the
trace of the integral operator, the Grammian, iterating on a well-known property of RKHS methods.
Naturally, this provides little insight asymptotically as the trace of an operator is not immediately
assessable. Treatment of the trace in the asymptotic case is provided in the following result on the
excess risk of KKR, which we are now ready to state.

Theorem 3 (Generalization Gap of KKR). Let D∆t
N = {x(i)

H , y
(i)
H }Ni=1 be a dataset as in Assumption 1

consistent with a Lipschitz system on a non-recurrent domain. Then the generalization gap (21) of a
model M̂ from Proposition 2 under Assumption 2 is, with probability 1− δ, upper bounded by

|R(M̂)− R̂N (M̂)| ≤ 4RB

√
κH2

N
+

√
8 log 2

δ

N
∈ O

(
H√
N

)
, (22)

where R is an upper bound on the loss in the domain, and κ the supremum of the base kernel.

Proof 10 (Theorem 3). The statements follow by combining Theorem 4 with approximations of the
Rademacher complexities of the Koopman kernel RKHS provided in Lemma 3. In the asymptotic case,
the behaviour of trace (TK) is of interest. We employ the following upper bound.

trace (TK) =
∑
i

⟨TKei, ei⟩ by definition

=
∑
i

〈
T

1
2

Kei, T
1
2

K

⋆

ei

〉
trace-class property

=

∫
X
⟨K(·,xH),K(·,xH)⟩dxH kernel trick

=

∫
X
K(xH,xH) dxH reproducing property

=

∫
X

∫
ρµ

Kµ(xH,xH) dµdxH Koopman kernel

=

∫
X

∫
ρµ

C(µ,H)K0
µ(xH,xH) dµdxH Koopman kernel flow

≤ ∥C(µ,H)∥
∫
X

∫
ρµ

Kµ(xH,xH) dµdxH Fubini’s Theorem

≤ ∥C(µ,H)∥ sup
xH

[Kµ
0 ]H

∫
X

∫
ρµ

dxH dµ Gershgorin Circle Theorem

= ∥C(µ,H)∥κH
∫
X

∫
ρµ

dx dµ bounded kernel

= ∥C(µ,H)∥κH
∫
X
dx appropriate normalization

≤ 1HκH = κH2

∫
X
dx Gershgorin Circle Theorem (again)

WhereKµ = C(µ,H)K0
µ is the decomposition of the eigenfunction kernel into an evaluation at a

point in spaceK0
µ = Kµ|t=0 and its flow in time C(µ,H) = µk ⊗ µk ⋆ ∈ CH×H defined by the

outer product of the eigenfunction flow. Consequently, the last inequality follows from the fact that
exponential frequencies, especially when sampled from the unit disk, do not explode within a finite
number of steps H .

The last ingredient we need is an approximation of the Lipschitz constant L(L0). Consider the
Representation-Error ∥yT − M̂(xT )∥ ≤ R. On our non-recurrent domain of finite time yT does not
diverge, neither does M̂(xT ), since we solve a regularized problem. This entails the boundedness of
L by R. Thus, the squared error loss is Lipschitz with constant L = supx

∂
∂xL(x) = 2R.

We can now combine the preceding investigations with Theorem 4 and obtain our claim immediately.
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Figure 6: Forecasting risks for the bi-stable system over a time-horizon H = 14. Left: Forecast
generalization gap for D ∈ {10 : , 41 : , 400 : } is depicted with a growing number of
data points. Right: Test risk behavior with an increasing amount of eigenspaces is shown for
N ∈ {19 : , 62 : , 200 : }, demonstrating the benefits of KKR.

C Numerical Evaluation Details and Additional Experiments

All of the experiments were performed on a machine with 2TB of RAM, 8 NVIDIA Tesla P100
16GB GPUs and 4 AMD EPYC 7542 CPUs.

The comparisons to PCR (EDMD) and RRR are done utilizing MIT-licensed code accompanying
[23] available at https://github.com/csml-iit-ucl/kooplearn8. Signature kernels implementation is
that of Sig-PDEs accompanying [48], available at https://github.com/crispitagorico/sigkernel9. For
forecasting with Sig-PDE we fit a ridge regressor from observation time-delays and times to their
successor. The prediction is then concatenated to the history and used to forecast subsequent steps. To
ensure that Sig-PDE forecasts the same times in {0, . . . ,H∆t} we simulate the systems backwards
in time and train Sig-PDE with observations from the interval {−l∆t, . . . ,H∆t}.

C.1 Numerical Evaluation Details

Normalizing the invariance transform We normalize the invariance transformation of each eigen-
value by the norm of its pullback ∥ e−λt ∥T/ ∥µh∥H. Normalizing increases numerical stability
significantly as for discrete-time eigenvalues close to the origin the pullback µ−k go to infinity. Be-
yond mere numerical convenience, this also provides intuition on what the invariance transformation
does. Consider the aforementioned case µ → 0, then the eigenfunction decays infinitesimally fast:
the invariance transformation becomes an indicator at the final time δT (t).

Details on the bi-stable system experiment We chose N = 50 datapoints. For the base kernel
we utilize the radial basis function (RBF) kernel k(x,x′) = e

1
2ℓ2

∥x−x′∥2

with a length scale of
ℓ = 0.05, covering the whole state space, while allowing for sufficient distinction of trajectories
due the time-horizon H = 14 fulfilling our non-recurrence assumption. We trained models for
EDMD and KKR with predictor rank D in a range from 1 to 100 and chose the best performing for
each method. Unsurprisingly, KKR performs best with 100 eigenfunctions while EDMD attains its
minimizer at 10.

Van der Pol oscillator experiment detail We utilize RBF kernels with a length scale of ℓ = 0.1.

C.2 Additional Experiments

Eigenspace and sample cardinality dependence To provide more intuition on how our method,
and as a baseline EDMD, performs dependent on the number of samples and eigenfunctions used, we

8last accessed version "0.1.24" at https://github.com/csml-iit-ucl/kooplearn/tree/legacy_kooplearn from
April 25, 2023

9last accessed version from July 25, 2023
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Figure 7: Forecasting risks for the Van der Pol oscillator over a time-horizon H = 14. Left: Forecast
generalization gap for D ∈ {10 : , 50 : , 200 : } is depicted with a growing number of
data points. Right: Test risk behavior with an increasing amount of eigenspaces is shown for
N ∈ {19 : , 62 : , 200 : }, demonstrating the benefits of KKR.
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Figure 8: Norm difference of the sampled kernel to the specified kernel. Left: Norm difference of the
kernel for the Van der Pol oscillator is depicted with a growing number of eigenvalues. Right: Norm
difference of the kernel for the bi-stable system is depicted with a growing number of eigenvalues.

provide parameterized versions of the experiments from the main text. Bite that the bi-stable system
experiment is here run with parameters a = 4, b = −16. Figure 6 depicts these dependencies for the
bi-stable system, while Figure 7 displays the same experiments for the Van der Pol oscillator. We
observe that KKR admits the sane property of increased excess and test performance with increasing
cardinality of eigenspaces D. It also becomes clear that, due to limited data, increase in the number
of eigenfunctions has, at some point, diminished returns for the test risk of KKR. Nevertheless,
additional eigenfunctions do not deteriorate the test risk, a salient feature or our approach compared
to EDMD that might yield worse performance on test data – as predicted by [23].

Validation of other theoretical results Using Monte-Carlo-Integration, we verify the convergence
of the kernel (17) in the misspecified case by Figure 8. We sample eigenvalues from the uniform
distribution on the complex unit disk. We use the kernel with D = 2× 105 as a baseline and average
the difference of the operator-valued kernel to the baseline with the Frobenius norm. Results are
averaged over N = 5 different points over 20 (i.i.d.) runs each with time-horizon H = 14.

Kármán vortex street In fluid dynamics, a Kármán vortex street is a phenomenon that is observed
when a laminar flow is disturbed by a solid object. We consider a cylinder. After a settling phase, the
transient, periodically oscillating vortices behind the cylinder eventuate. This phenomenon occurs, for
example, in the airflow behind a car or a wind turbine. Therefore, predicting the effect of vortex streets
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Figure 9: Observable trajectories of the simulated cylinder flow and the surrogate model Left:
Samples from the training data are depicted. Right: The test data is depicted.
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Figure 10: Velocity magnitudes in a developing Kármán vortex street behind a cylinder at different
times. Yellow color indicates high and blue low magnitude.

on velocity fields is highly relevant for engineers in the aero- and hydro-dynamic design of systems
since the frequency of oscillation might cause undesirable resonance. Fluid dynamics simulations
solving some variation of the Navier-Stokes equations, usually by discretizing space into a grid, are
employed to predict the aforementioned effects. However, integrating these simulations in complex
multi-physics simulations is challenging due to their relatively high computational complexity –
making fluid simulation a bottleneck. Thus, surrogate modelling of the effect of interest through
a faster-to-evaluate model is of great interest. Nevertheless, as the states of a fluid simulation are
usually velocities or other quantities at each grid point, the data available to train surrogate models is
high-dimensional and, thus, often challenging to handle.

To demonstrate that our method is capable of performing well with high dimensional data in the
context described above, we employ it to obtain a simplified representation – an LTI predictor – of
the measurements of a sensor in a Kármán vortex street under variation of the initial condition. The
variation is a deviation in the cylinder placement. The setup is depicted in Figure 10. To obtain the
ground truth, we employ a solver based on the Lattice-Boltzmann Method [84] from an MIT-licensed
implementation available at https://github.com/Ceyron/machine-learning-and-simulation/tree/main/
english/simulation_scripts. We specify a Reynolds number of 40, a 100×50 grid and an inlet velocity
at (0, y) of 0.05m/s in x-direction. The cylinder position is varied by up to three grid points in each
direction around (20, 25), amounting to 49 different initial conditions, for which sample trajectories
are computed. We randomly split those into 44 training and five testing samples. Simulation yields
our state – the velocity magnitudes at each grid point d = 100× 50 = 5000 – over horizon length
H = 99. Therefore, a trajectory can be interpreted as a sequence of images. A sample trajectory
can be found next to this document in the supplemental. We place a virtual sensor at (80, 25), such
that the corresponding velocity magnitude is our observable. Using the knowledge that the Kármán
vortex street admits stable periodic behaviour, we select Koopman operator eigenvalues λ that are
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purely imaginary, for the stable periodic manifold, or purely decaying, for the transient regime
[13, 21]: µ = eλ∆t, where λ ∼ ρλ = uniform ({±aj,−a|0 ≤ a ≤ 1}). We fit a KKR model with
D = 500 and an RBF base kernel with length scale ℓ = 30. The model enables us to forecast the
observable using an image of the velocity magnitudes – a 5000 dimensional vector – as input. In
Figure 9, our model’s prediction is compared to ground truth. We observe that training trajectories
are accurately reconstructed, with good performance on test data, despite the low number of training
samples N = 45. Notably, reproducing the dataset using KKR takes ≈ 0.05 seconds (average over
1000 calls), while simulating the ground tooth takes ≈ 1 second per run (average over 49 runs), both
using one GPU unit – demonstrating suitability for surrogate models.
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