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Abstract

Machine learning models such as deep neural networks (DNNs) rely on large-scale
datasets to be trained effectively, which is also the case for regression models in
particular applications such as genome-wide association studies (GWAS ). However,
it is very difficult to procure such large datasets in a centralized manner due to the
distributed nature of the data and the associated privacy regulations. Federated
learning (FL) addresses the data availability problem, but it poses new challenges
in terms of utility and network communication. Moreover, both FL and centralized
learning (CL) face the privacy challenge, where they might leak privacy-sensitive
information during training. Differentially private learning (DP) is the gold standard
to tackle the privacy challenge, but it adversely impacts the model utility. Considering
that, this dissertation aims to make the training procedure more efficient in terms of
utility, communication, and/or privacy in the privacy-related domains (FL, DP, and
DP-FL) given CL as baseline. In the first study, we introduce a tool called sPLINK
for GWAS, implementing the federated versions of the linear and logistic regression
models. We show that with high communication efficiency, sPLINK provides optimal
utility, which is identical to the utility from CL, for the regression models independent
of the data distribution across clients. In the second study, we demonstrate federated
DNN models can also achieve optimal utility similar to the regression models provided
that particular conditions hold for training components. In these studies, we do not
improve all three aforementioned factors at the same time, which is closely related to
the communication-utility-privacy (CUP) trade-off, stating that it is impossible to
enhance all three aspects simultaneously for given training components. We argue
that we can break the CUP trade-off by relaxing its underlying assumption, i.e. by
replacing a training component with a more efficient one. In the third and fourth
studies, we focus on the normalization layer of DNN models as a target training
component to this end. We propose two novel layers called the KernelNorm and
kernel normalized convolutional (KNConv) layers, and incorporate them into kernel
normalized convolutional networks (KNConvNets). We experimentally illustrate
KNConvNets are efficient not only in CL but also in FL, DP, and DP-FL. Finally, we
show that using a kernel normalized ResNet, we can simultaneously enhance utility,
communication, and privacy, and break the CUP trade-off.
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Zusammenfassung

Modelle des maschinellen Lernens wie tiefe neuronale Netzwerke (DNNs) sind auf
große Datensätze angewiesen, um effektiv trainiert werden zu können, was auch
für Regressionsmodelle in bestimmten Anwendungen wie genomweiten Assoziations-
studien (GWAS) gilt. Aufgrund der verteilten Daten und der damit verbundenen
Datenschutzbestimmungen ist es jedoch sehr schwierig, solche großen Datensätze zen-
tral zu beschaffen. Föderiertes Lernen (FL) löst das Problem der Datenverfügbarkeit,
stellt aber neue Herausforderungen an den Nutzen und die Netzwerkkommunikation.
Darüber hinaus sind sowohl FL als auch zentralisiertes Lernen (CL) mit dem Pro-
blem des Datenschutzes konfrontiert, da während des Trainings datenschutzrelevante
Informationen preisgegeben werden könnten. Differenziell privates Lernen (DP) ist
der Goldstandard, um das Problem der Privatsphäre zu lösen, aber wirkt sich negativ
auf den Modellnutzen aus. In Anbetracht dessen zielt diese Dissertation darauf ab,
das Trainingsverfahren in Bezug auf Nutzen, Kommunikation und/oder Datenschutz
in den datenschutzrelevanten Bereichen (FL, DP und DP-FL) effizienter zu gestalten,
wobei CL als Basis dient. In der ersten Studie stellen wir ein Tool namens sPLINK für
GWAS vor, das die föderierten Versionen der linearen und logistischen Regressions-
modelle implementiert. Wir zeigen, dass sPLINK bei hoher Kommunikationseffizienz
einen optimalen Nutzen bietet, der mit dem Nutzen von CL identisch ist, und zwar
für die Regressionsmodelle unabhängig von der Datenverteilung auf den Clients. In
der zweiten Studie zeigen wir, dass föderierte DNN-Modelle ähnlich wie Regressi-
onsmodelle einen optimalen Nutzen erzielen können, wenn bestimmte Bedingungen
für die Trainingskomponenten erfüllt sind. In dieser Studie werden nicht alle drei
oben genannten Faktoren gleichzeitig verbessert, was eng mit dem Kompromiss zwi-
schen Kommunikation, Nutzen und Privatsphäre (CUP) zusammenhängt, welcher
besagt, dass es unmöglich ist, alle drei Aspekte gleichzeitig für bestimmte Trainings-
komponenten zu verbessern. Wir argumentieren, dass wir den CUP-Kompromiss
beheben können, indem wir die zugrundeliegende Annahme lockern, d.h. indem wir
eine Trainingskomponente durch eine effizientere Komponente ersetzen. In der drit-
ten und vierten Studie konzentrieren wir uns auf die Normalisierungsschicht von
DNN-Modellen. Wir schlagen zwei neue Schichten vor, die KernelNorm- und die
kernelnormierte Faltungsschicht (KNConv), und integrieren sie in kernelnormierte
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Faltungsnetze (KNConvNets). Wir zeigen experimentell, dass KNConvNets nicht nur
in CL, sondern auch in FL, DP und DP-FL effizient sind. Schließlich zeigen wir, dass
wir mit einem kernelnormalisierten ResNet gleichzeitig den Nutzen erhöhen können,
Kommunikation und Privatsphäre verbessern und den CUP-Kompromiss aufheben
können.
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Introduction

Machine learning models have achieved growing popularity in a wide range of ap-
plications due to their considerable potential for tackling real-world problems [1, 2].
Deep neural network (DNN ) models, in particular, have successfully been employed
in numerous domains such as computer vision [3, 4], speech recognition [5], natural
language processing [6, 7], and medical imaging [8, 9]. Regression models, moreover,
are still popular in biomedical applications including genome-wide association studies
(GWAS ), which examine millions of single nucleotide polymorphisms (SNPs) to
discover potential associations between a particular SNP and disease [10].

DNNs, however, rely on large amounts of data to be trained effectively. This is
also the case for GWAS, where larger datasets result in discovering more associations
and more accurate genetic predictors [11, 12]. On the other hand, it is extremely
difficult to procure such large-scale datasets in a centralized manner. This is because
in practice, data is distributed across multiple locations under different administrative
domains, and moving the distributed data to a centralized site is close to impossible
due to the privacy rules and regulations [13, 14, 15]. We refer to this challenge as
large-scale data availability challenge.

Federated learning [16] addresses the data availability challenge by enabling
multiple clients (e.g. hospitals or mobile devices) to collaboratively train a global
model under the coordination of a central server without sharing their private data
with third parties [17]. Federated learning, on the other hand, poses new challenges
in terms of utility and network communication [18]. A model trained in a federated
fashion might deliver lower accuracy than the model trained on the centralized data,
particularly if data is not independent and identically distributed (NonIID) across
the clients [19]. Federated learning, moreover, might incur significant communication
overhead, requiring a remarkable amount of network traffic to be exchanged between
the server and clients [18].

Both centralized and federated learning face the privacy challenge, in which
the trained model or intermediate model parameters can leak the privacy-sensitive
information about a specific individual participating in the dataset [20, 21]. Prior
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1. Introduction

studies show the attacker can determine the presence of an individual in the training
dataset from the released centralized model or local model parameters shared with
the server in federated training (known as membership inference attacks) [22, 23, 24].
The revealed model parameters (e.g. gradients or weights) might also be exploited for
reconstructing the training samples (referred to as reconstruction attacks) [25, 26].

Differential privacy [27] is the gold standard to address the privacy challenge in
both centralized and federated environments. Differential privacy is a theoretical
framework and collection of methods to process or release data in a privacy-preserving
manner. In the context of DNNs, differentially private learning aims to limit the
information learnt about a specific sample in the training dataset by injecting random
noise into the clipped gradients of the model [28]. Differential privacy, however, faces
the utility challenge, where the model utility is adversely affected by the gradient
clipping and injected noise [29].

In summary, the training environments need to deal with different challenges,
depending on if data is centralized or distributed, and whether or not the training
procedure is differentially private. Given that, we categorize the learning environments
into the following:

• Centralized learning (CL): The training data is located in a centralized site,
and a single model is trained on the centralized data without using differential
privacy. This training setting is non-private.

• Federated learning (FL): Data is distributed across multiple clients, where each
client trains a local model on its private data, and only shares the model
parameters with the server, which in turn, aggregates the parameters from the
clients to obtain the global model. We refer to this environment as privacy-
enhancing or privacy-aware due to the fact that the clients keep their private
data on-site, enhancing data governance. However, it is not privacy-preserving
because the clients do not capitalize on differential privacy during training.

• Differentially private learning (DP): The data is centralized, and the model
is trained on the data using differential privacy. This training environment is
privacy-preserving due to the privacy guarantee offered by differential privacy.

• Differentially private federated learning (DP-FL): The training data is dis-
tributed across clients, and the clients train the local models in a federated and
differentially private manner. This environment is indeed privacy-preserving
because of the privacy guarantee from DP.
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Aim of the dissertation: The main goal of this thesis is to make the training
procedure more efficient or the most efficient in terms of utility, network communica-
tion, and/or privacy in federated or privacy-preserving learning environments given
centralized training as baseline. The cornerstones of the thesis are four peer-reviewed
publications, where the author of the thesis is the main contributor (sole first author):
(1) sPLINK [30], (2) utility-preserving federated learning [31], (3) kernel normalization
[32], and (4) kernel normalization for FL, DP, and DP-FL environments [33].

In the first study, we introduce a tool called sPLINK [30] (safe PLINK [34]) for
GWAS, which implements the federated versions of the chi-square test, and linear
and logistic regression models. We demonstrate that the aforementioned models
trained using sPLINK on distributed GWAS data in a federated fashion achieve
the same utility (in terms of p-values and set of identified significant SNPs) as the
corresponding models trained using PLINK in a centralized manner on the aggregated
GWAS data. We theoretically prove that this conclusion holds regardless of the data
distribution across the clients. In other words, we show that the federated training
procedures for the models deliver optimal utility, which is identical to utility from
the corresponding centralized learning procedures. They are also highly efficient in
terms of network communication because they need a few communication rounds
to compute the statistics. sPLINK, moreover, employs additive secret sharing [35]
to conceal the original values of the local parameters of the clients from the server,
further improving privacy. However, it is still considered as privacy-enhancing, but
not privacy-preserving because it does not preserve the privacy of the model outputs.

In the utility-preserving federated learning (UPFL) study [31], we theoretically
prove and experimentally validate that DNN models can also deliver optimal utility
in federated environments similar to chi-square and regression models provided that
specific conditions hold for the training algorithm, model, loss function, and optimizer
as the main DNN training components. In more detail, if the (1) training algorithm
selects all clients, instruments them to carry out a single local update per communi-
cation round, and enforces the server to use sample size based weighted averaging
as the aggregation function, (2) model and loss function are batch-independent and
deterministic, and (3) optimizer employs a linear momentum function, then the DNN
model trained in a federated manner has weights identical to those from centralized
training independent of how data is distributed across the clients. The equivalence
between the federated and centralized DNN models implies that they indeed achieve
identical utility. UPFL, however, is highly inefficient from the network communication
perspective, requiring a huge number of communication rounds for model convergence.
It is also a privacy-enhancing learning environment akin to ordinary FL.
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1. Introduction

In the UPFL paper, we also investigate the properties of the existing DNN training
components to determine which ones satisfy the necessary conditions for UPFL. Our
examination shows that, for instance, the convolutional and linear layers can be
incorporated in UPFL because they are batch-independent and deterministic. This is
not the case, however, for batch normalization (BatchNorm) [36], which is a batch-
dependent layer, where the normalization statistics of a given sample depends on the
other samples in the batch. Interestingly, a component not holding the necessary
conditions for UPFL typically causes utility reduction in NonIID federated settings
too, although the underlying theoretical analysis of UPFL does not imply it. For
example, the BatchNorm layer, federated averaging (FedAvg) algorithm [16], and
Adam optimizer [37], which cannot be incorporated in UPFL, indeed deliver lower
accuracy in NonIID environments compared to centralized training [19, 38, 39].

sPLINK and UPFL deliver optimal utility in non-privacy-preserving federated
environments. The former provides high communication efficiency, while the latter
incurs considerable communication overhead. In other words, sPLINK and UPFL
do not make the training procedure efficient in terms of all three aforementioned
perspectives. This is also closely related to the communication-utility-privacy (CUP)
trade-off, which states it is impossible to improve communication, utility, and privacy
simultaneously for given training components (i.e. algorithm, model, loss function,
and optimizer). Considering that, an interesting question arises:

Can we break the CUP trade-off? If so, how? The CUP trade-off holds
for given training components, i.e. the underlying assumption is that the training
components remain unchanged. Relaxing this assumption (by replacing a particular
component with a more efficient one) makes it possible to improve communication,
utility, and privacy at the same time.

In this dissertation, we focus on the model, or more precisely, the normalization
layer of the model to break the CUP trade-off. The motivation behind this choice
is the contradictory behavior of BatchNorm, as the most widely used normalization
layer, in centralized training and the privacy-related domains. While BatchNorm is
extremely efficient in CL, it is inapplicable to DP and DP-FL. This is because in
differentially private training, per-sample gradients are required, and the gradients of
a particular sample are not allowed to be affected by the other samples in the batch.
BatchNorm, on the other hand, breaks the independence among the samples in the
batch by taking into account the batch dimension during normalization [32]. This
makes BatchNorm inapplicable to privacy-preserving learning environments.

There are also batch-independent alternatives to BatchNorm such as layer nor-
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malization (LayerNorm) [40] and group normalization (GroupNorm) [41]. These
layers, however, cannot typically achieve the performance of BatchNorm in centralized
training, especially in image classification. Moreover, their performance is not as
much as expected in privacy-related domains.

Given that, in our kernel normalization study [32], we propose a novel batch-
independent normalization layer called KernelNorm as an efficient alternative to
the existing normalization layers for centralized, federated, and privacy-preserving
learning environments. The KernelNorm layer is akin to the pooling layers, except
that KernelNorm normalizes the elements specified by the kernel size instead of
computing average or maximum of the elements. Additionally, KernelNorm operates
over all channels rather than a single channel. The distinguishing characteristic of
KernelNorm is the overlapping normalization units, which enables it to extensively
benefit from the spatial correlation among the elements during normalization. Kernel-
Norm, moreover, introduces a regularization effect during training by using slightly
randomized normalization statistics (i.e. mean and variance) instead of the original
statistics to normalize the elements (partially inspired by BatchNorm).

We also introduce the kernel normalized convolutional (KNConv) layer as the
combination of KernelNorm and the traditional convolutional layer, where it first
applies KernelNorm to the input tensor, and then, computes the convolution (dot
product) between the normalized tensor and kernel weights. Due to the remarkable
computation overhead of this naive form of KNConv, we propose a computationally
efficient version of KNConv, in which the output of the convolutional layer is adjusted
using the mean and variance of the normalization units instead of actually normalizing
the elements. As an application of the proposed layers, we incorporate them into kernel
normalized residual networks (KNResNets), while foregoing the BatchNorm layers.
Through extensive experiments in centralized settings, we illustrate KNResNets (1)
achieve higher or very competitive performance compared to the batch normalized
counterparts, and (2) significantly outperform the other batch-independent (e.g.
LayerNorm and GroupNorm) competitors in almost all considered cases. We also
demonstrate KNResNet-18 provides higher accuracy than layer and group normalized
ResNet-18 in differentially private training on the down-sampled ImageNet dataset
[42]. In simple words, we show KernelNorm combines the performance advantage of
BatchNorm with the batch-independence benefit of LayerNorm/GroupNorm.

In our last study [33], we extensively investigate the performance of KernelNorm
in FL, DP, and DP-FL environments using VGG [43], DenseNet [44], and ResNet [45,
46] models. Our experimental evaluation indicates that kernel normalized models
provide considerably higher accuracy and communication efficiency (convergence
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1. Introduction

rate) compared with non-normalized, and layer/group normalized counterparts in
all three aforementioned environments. We also propose a kernel normalized ResNet
architecture called KNResNet-13, and improve the state-of-the-art accuracy on the
CIFAR-10 [47] and Imagenette (a subset of ImageNet) [48] datasets in DP settings.

In summary, KernelNorm is a batch-independent layer, and thus, is applicable
to privacy-preserving machine learning. KernelNorm is also a local normalization
layer, which extensively considers spatial correlation among the elements during
normalization. Our extensive experimental results demonstrate the efficiency of kernel
normalized models not only in CL, but also in FL, DP, and DP-FL.

Breaking the CUP trade-off using KernelNorm: In a DP-FL environment,
we first train ResNet-9-GN (based on GroupNorm) on CIFAR-10, where samples are
distributed across clients in a NonIID fashion (more experimental details in Appendix
B). The clients employ differential privacy with ε=8.0 and δ=10−5 to train the local
models. Note that ε and δ are the privacy parameters, whose lower values imply
stronger privacy. ResNet-9-GN achieves accuracy of 47.13% in this setting. Next, we
replace ResNet-9-GN with the corresponding kernel normalized model, ResNet-9-KN,
and train it with privacy parameters of ε=7.0 and δ=10−5. ResNet-9-KN delivers
accuracy of 49.95%, implying that ResNet-9-KN improves utility by 2.82% compared
to ResNet-9-GN while providing stronger privacy. Moreover, ResNet-9-KN achieves
higher communication efficiency than ResNet-9-GN according to Figure 1.1. These
experimental results indicate that ResNet-9-KN enhances communication, utility, and
privacy simultaneously, and breaks the CUP trade-off.
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Figure 1.1: Breaking the CUP trade-off : With stronger privacy and in a
fewer number of communication rounds, kernel normalized ResNet-9 achieves higher
accuracy than group normalized ResNet-9.

8



Organization

This dissertation is organized in fours parts: Part I includes three chapters, of
which the current one is Chapter 1. Chapter 2 provides a brief background on
neural networks, centralized training, federated learning, differential privacy, and
differentially private federated training, and discusses the related work. Chapter 3
summarizes the key contributions of the dissertation. Part II consists of Chapters
4-7, which present four first-author publications that constitute the core of the thesis.
Each chapter presents the corresponding paper in a self-contained section, starting
with the synopsis of the paper. Part III comprises Chapter 8, which provides the
conclusions of the dissertation, and Chapter 9, which discusses the potential future
directions for the thesis. Part IV contains supplementary materials associated with
the publications, and the experimental setup for the CUP trade-off experiment.
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Method

We provide a brief background on neural network models as well as different training
environments including centralized, federated, differentially private, and differentially
private federated environments in which the models are trained. In this dissertation,
we particularly focus on convolutional neural networks [49], a special type of neural
networks which are popular in image vision tasks such as image classification [3] and
semantic segmentation [50].

2.1 Convolutional Neural Networks (CNNs)

A CNN model consists of multiple layers including the input layer, hidden layers, and
the output layer stacked on top of each other. The data is fed into the input layer,
which conducts an initial transformation to change the representation of the data;
the hidden layers perform more complex transformations on the data representation
obtained from the input layer; the output layer carries out the final prediction of the
model. In the following, we overview the widely used layers in convolutional networks.
Unless otherwise stated, we assume that the input data is a set of 2-dimensional
images, and thus, the input of the layers is a 4-dimensional tensor with batch, channel,
height, and width as dimensions.

Convolutional (Conv) layer: The Conv layer is the major building block of CNNs,
which takes the number of input channels (filters) chin, number of output channels
chout, kernel size (i.e. height and width) (kh, kw), stride (sh, sw), and padding (ph, pw)
as the main arguments. The Conv layer first pads the input tensor; then, it computes
the dot-product between the kernel weights and a subset of elements from the input
tensor specified by the kernel window. Next, it slides the kernel window sw elements
along the width dimension and performs the dot-product computation with the new
area. If there is not enough elements in the width dimension, it slides the window sh
elements in the height dimension, and repeats the dot-product calculation procedure.
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2. Method

If the input tensor is of shape (m, chin, h, w), in which m is batch size, chin is
the number of channels, h is height, and w is width, then the output tensor from the
Conv layer has the following shape:

(m, chout, ⌊
h+ 2 · ph − kh

sh
⌋+ 1, ⌊w + 2 · pw − kw

sw
⌋+ 1),

that is, the Conv layer might change the size of the channel, height, and width
dimensions of the input tensor depending on the values of the kernel size, stride,
padding, and the number of output channels.

The Conv layer has total of chin.chout.kh.kw learnable (trainable) parameters.
Note that if the bias flag of the Conv layer is set, then it will have chout additional
trainable parameters. It is worth mentioning that the Conv layer has other arguments
such as the number of groups, and the dilation value. We do not include them in our
description for simplicity purposes. We assume that the value of the aforementioned
arguments is unit.

Pooling layers: The pooling layers take kernel size (kh, kw), stride (sh, sw), and
padding (ph, pw) as arguments similar to the Conv layer. The difference is that the
pooling layers compute the maximum (max-pooling) or average (average-pooling)
over the elements specified by the kernel window instead of performing dot-product
calculation. Moreover, they operate on a single input channel rather than all channels.

The shape of the output from the pooling layers is as follows:

(m, chin, ⌊
h+ 2 · ph − kh

sh
⌋+ 1, ⌊w + 2 · pw − kw

sw
⌋+ 1),

i.e. the pooling layers do not change the size of the channel dimension, but they
might modify the width and height of the input tensor. Unlike the Conv layer, the
pooling layers have no trainable parameters.

Linear (fully-connected) layer: The fully-connected layer performs a linear
transformation on the input tensor. More precisely, if the input X=(x1, . . . , xl) is a
one-dimensional tensor of size l, W=(w1, . . . , wl) is the weight tensor of a linear layer
with l input neurons and a single output neuron, and b is the bias value, then the
output is computed as follows:

o = X ·W + b = x1 · w1 + . . .+ xl · wl + b,
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2.1. Convolutional Neural Networks (CNNs)

that is, the output is the dot-product of the input tensor and weights of the linear
layer with bias added. This is the simplest form of the linear layer, which is equivalent
to the regression model.

The linear layer, in general, takes the number of input neurons nin and output
neurons nout as arguments, and performs the dot-product computation independently
for each output neuron. If the input tensor is of shape (m, nin), then the output tensor
from the linear layer has the shape of (m, nout). The layer has total of nout · (1 + nin)
trainable parameters assuming that the bias flag is set.

Activation layers: The activation layers carry out non-linear transformations on the
input tensor. The rectified linear unit (ReLU) activation is the most widely adopted
activation layer in CNNs. The ReLU activation maps the non-positive values to zero,
but performs identity mapping on the positive values. There are other variants of
ReLU such as LeakyReLU [51] and SELU [52], which might improve the performance
of the model compared to ReLU in particular tasks. In general, activation layers have
no learnable parameters, and their output has identical shape to the input tensor’s.

Normalization layers: The normalization layer is another major building block of
convolutional networks. The existing state-of-the-art normalization layers are based
on standard normalization, i.e zero-mean and unit-variance. In more details, they (1)
consider a subset of elements from the input tensor as their normalization unit [32],
(2) compute the mean and variance over the elements of the normalization unit, (3)
normalize the elements by first subtracting the mean from each element, and then,
dividing the result by the square root of the variance:

Û =
U − µU√
σ2
U + ϵ

,

where Û is the normalized unit, U is the normalization unit, µU and σ2
U are the mean

and variance of the normalization unit, respectively, and ϵ is a small constant (e.g.
10−5) for numerical stability, (4) concatenate the resulting normalized units together
to obtain the whole normalized tensor, and (5) apply the per-channel shift and scale
parameters to the whole normalized tensor to compute the final output tensor:

Yi = αi · X̂i + βi,

where Y is the output tensor, X̂ is the whole normalized tensor, and β and α are the
per-channel shift and scale parameters, respectively, and i is the channel number.
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The normalization layers are different from each other in the normalization units
they consider during normalization. In the following, we provide a brief overview on
the popular normalization layers from that aspect assuming that the input tensor is
of shape (m, chin, h, w).

BatchNorm [36]: The BatchNorm layer considers all elements in the batch, height,
and width dimensions as its normalization unit. Given that, BatchNorm has chin

normalization units. Because BatchNorm employs the batch dimension during
normalization, it is not a batch-independent layer.

LayerNorm [40]: The normalization unit of LayerNorm includes all elements from
the channel, width, and height dimensions. LayerNorm has, thus, m normalization
units. LayerNorm is a batch-independent layer due to the fact that it does not
consider the batch dimension for normalization.

InstanceNorm [53]: The InstanceNorm layer incorporates all elements from the
height and width dimensions during normalization. In other words, it carries out
normalization independently of the batch and channel dimensions. InstanceNorm has
m · chin normalization units.

GroupNorm [41]: The GroupNorm layer employs a subset of elements from the
channel dimension, but all elements from the width and height dimensions for
normalization. It has m · g normalization units, where g is the number of groups.
Note that LayerNorm and InstanceNorm are special cases of GroupNorm, in which
g=1 and g=chin, respectively.

It is worth noting that these normalization layers do not modify the shape of the
input tensor. Moreover, shift and scale are trainable parameters, and as a result, they
have 2chin learnable parameters. The readers are referred to [32] for more detail on
the normalization layers.

CNN architectures: There are various CNN architectures, which use the aforemen-
tioned layers in different ways. In the following, we overview some of the well-known
CNN architectures:

VGGNets [43]: The VGG architecture employs the Conv layers with kernel size of
(3, 3) as the main building blocks. The architecture uses max-pooling with kernel
size and stride of (2, 2) to downsample the input tensor. Each layer is only connected
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to the subsequent layer. In other words, the output of each layer is only given as
input to the next layer. It is worth noting that VGGNets inherit many architectural
aspects from AlexNet [3], which revealed, for the first time, the true potential of deep
CNNs for image classification.

ResNets [45]: Residual networks are based on residual blocks, where the final output
of the block is the summation of the input of the block and the output of the last
layer in the block. In other words, the output of some layers are used as input not
only to the subsequent layer but also to the sum operation at the end of the block.
There are two types of residual blocks in ResNets: basic blocks, which consist of
two Conv layers with kernel size of (3, 3), and bottleneck blocks that include three
Conv layers with kernel sizes of (1, 1), (3, 3), (1, 1), respectively. ResNets employ
convolutional residual blocks with stride of (2, 2) to downsample the input tensor.

DenseNets [44]: The DenseNet architecture is based on dense blocks in which the
output of a given Conv layer is fed into all subsequent Conv layers. The dense blocks
can be of type basic or bottleneck. The former includes the Conv layers with kernel
size of (3, 3), whereas the latter incorporates two Conv layers with kernel sizes of (1,
1) and (3, 3), respectively. DenseNets use average-pooling with kernel size and stride
of (2, 2) for downsampling the input.

EfficientNets [54]: The key idea behind the EfficientNet architecture is ”compound
scaling”, where the number of filters in the Conv layers, the number of layers of
the model, and the resolution of the input images are scaled in a balanced fashion.
EfficientNets employ grouped Conv layers with various kernel sizes including (5, 5)
and (1, 1) as major building blocks. The architecture capitalizes on the Conv layers
with stride of (2, 2) to downsample the input.

All the aforementioned architectures use a final linear layer to perform the classifi-
cation task, and their default normalization layer is BatchNorm. VGGNets, ResNets,
and DenseNets employ ReLU as the activation layer, whereas the EfficientNet archi-
tecture is based on the Sigmoid Linear Unit (SiLU) activation function.

2.2 Centralized Learning (CL)

In a CL environment, a single model is trained on a centralized dataset. CL is
considered as non-private because data from multiple sites needs to be moved to a
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centralized location, which can violate privacy. We use the model performance in the
CL setting as our baseline throughout the thesis. In the following, we describe the
training procedure for the regression and neural network models in CL environments.
Focusing on supervised learning, we presume thatMW is the model characterized by
parameters W , L is the loss function, and D = [S1, . . . , Sn] is the centralized dataset
containing n samples, where Sj=(Xj, yj) is the j-th sample in the dataset, Xj is the
feature values of the sample, and yj is the corresponding target value.

Linear regression: We capitalize on the ordinary least squares (OLS) method [55]
to compute the parameters of the linear regression model as follows:

W = (XTX)−1(XTY ), (2.1)

where W is the model parameters, X and Y are the matrices containing the feature
and target values of all samples, respectively, T is the transpose operation, and (·)−1

indicates the matrix inverse.

Logistic regression: We employ the Newton-Raphson method [55] to calculate the
parameters of the logistic regression model. The computation of the parameters is
performed in an iterative manner as the following:

Ŷ =
1

1 + e−XWi−1
, (2.2)

∇ = XT (Y − Ŷ ), (2.3)

H = (XT ◦ (Ŷ ◦ (1− Ŷ ))T )X, (2.4)

L =
∑

(Y ◦ log Ŷ + (1− Y ) ◦ log(1− Ŷ )), (2.5)

Wi = Wi−1 +H−1∇, (2.6)

where Wi and Wi−1 are the value of the parameters in the current and previous
iterations, respectively, ∇ is the gradient vector, H is the Hessian matrix, L is the
log-likelihood value, and ◦ indicates the element-wise multiplication. The training
process continues until the difference between the log-likelihood values in the current
and previous iterations becomes less than a given threshold.

Neural networks: Gradient descent is a widely used optimization algorithm for
training neural networks. It comes with different versions among which mini-batch
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gradient descent (MBGD) [56] is the most popular one. The MBGD algorithm first
shuffles the dataset, and then divides the dataset samples into mini-batches of size m.
For a given mini-batch, it computes the gradient value associated with parameter
w ∈ W as follows:

Gw(W,B, YB) =
∂L(YB,MW (B))

∂w
,

Gi = [gi,1, . . . , gi,m], gi =
1

m

m∑

j=1

gi,j,
(2.7)

where B is a mini-batch from D, YB is the corresponding vector of target values, Gw is
the gradient function associated with parameter w, Gi is the vector of gradient values
corresponding to the samples of the mini-batch in iteration i, gi,j is the gradient
value associated with j-th sample of the mini-batch, and gi is the gradient value
corresponding to w, which is the average of the gradient values over the mini-batch.

After computing the gradient value, the model parameter is updated by a gradient
descent-based optimizer as follows:

wi = wi−1 − ηV(gp, . . . , gi, ⋆), (2.8)

where wi−1 is the value of the parameter in the previous iteration, gi is the gradient
value in the current iteration i, η is learning rate, V(gp, . . . , gi, ⋆) is the momentum
function that computes the final gradient using the gradients in the current and
previous iteration(s) (p is also an iteration number and p < i), and ⋆ means the
function can take additional arguments.

For instance, the momentum function of the widely adopted SGD optimizer is as
the following:

VSGD(g1, . . . , gi, ξ) = ξi−1g1 + . . .+ ξi−kgk + . . .+ gi, 1 ≤ k < i, (2.9)

where ξ is the momentum value. That is, the momentum function of SGD takes the
momentum value ξ and the gradient values from the first iteration to the current
iteration i > 1 as inputs, and linearly combines them.

2.3 Federated Learning (FL)

In a FL setting, multiple clients as data holders train a joint (global) model under the
orchestration of a server while keeping their data on-site [16]. FL is considered as a
privacy-enhancing (or privacy-aware) environment because the raw data is not moved
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off-site unlike CL. FL, however, is not privacy-preserving because no differential
privacy is employed during training. FL settings, in general, can be categorized into
cross-device or cross-silo [17]. In the former, there are a large number of clients with
unstable network connection (for instance mobile devices), and a fraction of clients is
randomly selected by the server to participate in training. In the latter, there are few
clients with reliable network connection (e.g. hospitals), and all clients participate
in training in all communication rounds. In the following, we describe the cross-silo
federated training process for the regression and neural network models.

Federated linear regression: Each client j computes αj=XT
j Xj and βj=XT

j Yj as
local parameters, where Xj and Yj are the feature matrix and target vector of the
client’s local data. In the aggregation phase, the server first takes sum over the local
parameters from all k clients:

α =

j=k∑

j=1

αj, (2.10)

β =

j=k∑

j=1

βj, (2.11)

then, it calculates the global values of the linear regression parameters as follows:

W g = (α)−1(β). (2.12)

Federated logistic regression: Each client j calculates gradient (∇j), Hessian
matrix (Hj), and log-likelihood (Lj) values over its local data:

Ŷj =
1

1 + e−XjW
g
i−1

, (2.13)

∇j = XT
j (Yj − Ŷj), (2.14)

Hj = (XT
j ◦ (Ŷj ◦ (1− Ŷj))

T )Xj, (2.15)

Lj =
∑

(Yj ◦ log Ŷj + (1− Yj) ◦ log(1− Ŷj)), (2.16)

where W g
i−1 indicates the global values of the model parameters in iteration i − 1

obtained from the server. The server adds up the values of the local parameters from
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the clients to compute the corresponding global values:

∇ =

j=k∑

j=1

∇j, H =

j=k∑

j=1

Hj, L =

j=k∑

j=1

Lj, (2.17)

then, it updates the global values of the model accordingly:

W g
i = W g

i−1 +H−1∇. (2.18)

The server also compares the newly computed log-likelihood value to the one from
the previous iteration. If their difference is less than a given threshold, it completes
the training process.

Federated neural networks: Federated averaging (FedAvg) [16] is the most com-
monly used algorithm for training neural networks in FL settings. In FedAvg, each
client j trains the model obtained from the server on its local data using the MBGD
algorithm, and shares the local parameters W l

i,j or accumulated local gradients Gl
i,j

and its sample size nj with the server, which in turn, aggregates the local parame-
ters/gradients from the clients using weighted averaging to compute the global model
parameters:

W g
i =

∑k
j=1 njW

l
i,j∑k

j=1 nj

= W g
i−1 − η

∑k
j=1 njG

l
i,j∑k

j=1 nj

, (2.19)

where i indicates the communication round.

2.4 Differentially Private Learning (DP)

Differential privacy provides a theoretical framework and a collection of methods
for processing and releasing data in a privacy-preserving fashion [27]. Formally, a
randomised mechanismM preserves (ε, δ) differential privacy if, all databases D and
D′ differing in the data of one individual and all measurable subsets S of the range
ofM, satisfy the following inequality:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ, (2.20)

where P is the probability of an event, and ε ≥ 0 and 0 ≤ δ ≤ 1 are privacy parameters,
whose lower values imply stronger privacy.
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Algorithm 1: Differentially private SGD (DP-SGD) [28]

Input: Samples {S1, . . . , Sn}, loss function L(W ) = 1
n

∑
j L(W,xj), learning

rate ηi, noise scale σ, group size l, and gradient norm bound C.

W0 ← Random initialization
for i from 0 to T − 1 do

Li ← Take a set of random samples with sampling probability l/n

// Compute per-sample gradients

for each sample xj ∈ Li do
gi(xj)← ∇Wi

L(Wi, xj)

// Clip gradients

ḡi(xj)← gi(xj)/max
(
1,

∥gi(xj)∥2
C

)

// Add noise

g̃i ← 1
l

(∑
j ḡi(xj) +N (0, σ2C2I)

)

// Update parameters

Wi+1 ← Wi − ηig̃i
Output: WT and calculate the overall privacy cost (ε, δ) using a privacy

accountant technique.

In the context of neural networks, a DP environment trains a single model on a
centralized dataset using the differentially private stochastic gradient descent (DP-
SGD) algorithm [28], where the role of the database is played by the individual
(per-sample) gradients of the loss function with respect to the parameters. As
shown in Algorithm 1, DP-SGD (1) computes the per-sample gradients, (2) clips
the gradients, (3) adds random noise to the clipped gradients, and (4) update the
parameters using the average of the noisy clipped per-sample gradients.
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2.5 Differentially Private Federated Learning

(DP-FL)

A DP-FL environment consists of multiple clients and a server that coordinates the
training procedure akin to FL. In DP-FL, however, the clients employ the DP-SGD
algorithm to train the global model on their local data in a differentially private
manner, and share differentially private gradients or parameters with the server. Given
that, DP-FL is also considered as privacy-preserving similar to DP environments.
Note that the server aggregates the private parameters/gradients from the clients
using weighted averaging similar to FL.

2.6 Related Work

Given a brief background on different learning environments, we discuss the related
work in the areas of federated, differentially private, and differentially private federated
training, whose focus is on improving the efficiency of machine learning models similar
to this dissertation.

Federated learning (FL) [16] enables multiple clients to participate in model
training without sharing their private data with third parties. Federated training,
however, poses new challenges in terms of utility, network communication, and privacy
[18], which have been addressed in a body of prior works.

Many studies in that regard focus on enhancing the utility of the model in FL,
mainly by proposing new training algorithms as alternatives to FedAvg. The FedProx
algorithm [38] adds a proximal term to the loss function of the clients to act as a
regularizer and to enforce the local models of the clients not to be far from the global
model. FedNova [57] aggregates the local models from the clients by a normalized
averaging function instead of weighted averaging to eliminate the inconsistencies
between them. FedMMB [58] instruments the clients to perform a limited and constant
number of local updates per communication round, which results in more frequent
aggregation of the local models on the server, improving the global model utility.

Another category of studies aim to enhance communication efficiency using
gradient quantization [59, 60] and/or gradient sparsification [61, 62, 63]. In gradient
quantization, the gradient values are quantized using a fewer number of bits to reduce
the amount of the traffic transferred in the network. Gradient sparsification, on the
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other hand, does not communicate some of the gradients (e.g. those with very small
values) between the server and clients to alleviate the communication overhead.

The other line of work, referred to as hybrid federated learning [64], addresses the
privacy challenge in FL by combining it with other techniques such as secure multi-
party computation (SMPC ) [35], and/or differential privacy1 [27]. The aim of the
hybrid FL is to hide the original values of the local parameters of the clients from third
parties including the server, further enhancing privacy in federated environments.

The HyFed2 framework [65] combines the additive secret sharing based SMPC
with FL, where clients first mask the values of the local parameters with noise, and
then share the noisy parameters with server, and the noise values with compensator.
The compensator adds up the noise values, and shares the aggregated noise with the
server, which in turn, first aggregates the noisy parameters of the clients, and then
subtracts the aggregated noise from the noisy aggregated parameters to obtain the
final values of the global parameters, which are identical to those from ordinary FL.

The sPLINK [30], Flimma3 [66], and Fever-PCA4 [67] tools are based on the HyFed
framework. sPLINK implements the chi-square test and linear/logistic regression
models for hybrid federated GWAS; Flimma develops the hybrid federated version of
linear regression for differential gene expression analysis; Fever-PCA implements the
federated principal component analysis (PCA) for population stratification in GWAS.

PySyft [68, 69] is a hybrid FL library introduced by OpenMined, which provides a
rich application programming interface (API) to develop ordinary FL, SMPC-FL, and
DP-FL applications. FeatureCloud5 [70] aims to mitigate the complexity of developing
and running federated applications (Apps) by providing a platform equipped with
an AI store to publish and reuse Apps. The AI store of FeatureCloud consists of
a variety of Apps including federated random forest [71], Kaplan-Meier estimator
[72], linear regression [30, 66], logistic regression [30], and neural networks. Akin
to HyFed, FeatureCloud employs the additive secret sharing method to conceal the
original values of the clients’ parameters from the server.

Interestingly, the CUP trade-off is identifiable in the aforementioned studies: The
FedProx and FedMMB algorithms enhance utility at the expense of communication
efficiency, which is also the case in our UPFL study [31]. Similarly, the gradient
quantization and sparsification techniques provide higher communication efficiency

1The related work of DP-FL is discussed later in this section.
2HyFed is developed by the author of this thesis.
3The author of the dissertation is the joint first author in Flimma.
4The thesis’s author contributed to Fever-PCA.
5The dissertation’s author contributed to the FeatureCloud platform.
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but lower model utility. The SMPC-FL based tools including sPLINK and Flimma
improve privacy, but double the communication overhead compared to ordinary FL.

Differentially private learning (DP) [27, 28] preserves privacy in both centralized
and federated environments, but at the cost of utility. Given that, many of the related
studies in the DP area focus on improving the utility of differentially private models
by proposing new neural network architectures or training procedures.

Klause et al. [73] introduce a 9-layer ResNet architecture, ResNet-9, where the
output of the aggregation operation in the residual blocks is further normalized.
Remerscheid et al. [74] present a DenseNet-based architecture called SmoothNet,
which leverages higher number of filters in the dense blocks compared to the original
DenseNets. Cheng et al. [75] propose a framework dubbed DPNAS based on the
neural architecture search technique to automate the design of differentially private
models. De et al. [76] employ the augmentation multiplicity technique [77], which
calculates the per-sample gradients by taking average over the gradients from different
augmentations of the sample, in DP settings and show that it significantly improves
the accuracy of the differentially private model.

Similar to the above-mentioned studies, we propose a novel kernel normalized
residual architecture called KNResNet-13 for DP environments as part of our last study
(KernelNorm for privacy-related domains) [33]. We show KNResNet-13 outperforms
both SmoothNets and ResNet-9, which are based on GroupNorm, in terms of accuracy
on CIFAR-10 and Imagenette. Moreover, we capitalize on a modified version of
augmentation multiplicity, which incurs much lower computational overhead compared
to the original version, to further improve the state-of-the-art accuracy on CIFAR-10.

Differentially private federated learning (DP-FL) enforces the clients to employ
differential privacy for hiding the original values of their local parameters from third
parties. The main advantage of DP-FL is that it provides a formal privacy guarantee
thanks to differential privacy, and thus, it is privacy-preserving unlike SMPC-FL. In
the following, we briefly discuss the related work in the DP-FL area.

Wei et al. [78] examine the model convergence behavior in DP-FL environments,
and show that for a given privacy budget, (1) higher number of clients participated
in training leads to faster convergence rate, and (2) there is an optimal number of
communication rounds, which results in optimal model convergence rate. Kaissis
et al. [79] introduce PriMIA as an open-source DP-FL framework to train deep
convolutional networks for medical imaging applications in a federated fashion, while
preserving privacy. Noble et al. [80] propose DP-SCAFFOLD, which is a variant of the
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SCAFFOLD [81] algorithm, aiming to cope with the challenge of data heterogeneity
across clients in federated environments under differential privacy constraints.

Akin to Wei et al. [78], we investigate the model performance in DP-FL environ-
ments, but in the context of normalization layers in our last study [33]. We show that
the proposed KernelNorm layer significantly outperforms the competitors including
LayerNorm and GroupNorm in terms of both accuracy and communication efficiency
for a given privacy budget. Moreover, we illustrate how to break the CUP trade-off
in DP-FL settings using a kernel normalized ResNet in this dissertation (Chapter 1).
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Summary of Contributions

We make the following contributions in this dissertation:

1. We introduce the sPLINK tool for GWAS, implementing the hybrid federated
versions of the chi-square test and linear/logistic regression models [30].

2. We theoretically and experimentally demonstrate that sPLINK achieves optimal
utility for the aforementioned models independent of the data distribution across
the clients, which is not the case for meta-analysis as the main competitor [30].

3. We analytically prove and experimentally validate that the DNN models can
also achieve optimal utility in federated settings similar to the regression models,
and pinpoint the necessary conditions to this end [31].

4. We investigate the properties of different training algorithms, model layers,
loss functions, and optimizers to determine which one(s) satisfy the necessary
conditions for UPFL [31].

5. We propose two batch-independent layers called KernelNorm and KNConv, and
incorporate them into KNConvNets in general, and KNResNets in particular
while forgoing the BatchNorm layers [32, 33].

6. Through extensive experiments, we show that KNResNets deliver higher or
highly competitive accuracy compared to the batch normalized ResNets for
image classification and semantic segmentation in centralized training. KNRes-
Nets, moreover, significantly outperform the batch-independent competitors
including LayerNorm and GroupNorm based counterparts [32].

7. We draw a detailed performance comparison among KernelNorm, LayerNorm,
GroupNorm, and NoNorm (no normalization) in FL, DP, and DP-FL environ-
ments, and show that KernelNorm based models achieve considerably higher
accuracy and communication efficiency (convergence rate) than the competitors
in all three considered environments [33].
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3. Summary of Contributions

8. We propose a kernel normalized residual architecture, KNResNet-13, and pro-
vide the state-of-the-art accuracy values on CIFAR-10 and Imagenette in DP
environments, when trained from scratch [33].

9. Through an elegant experiment, we illustrate that we can break the CUP
trade-off using KernelNorm-based models, enhancing communication, utility,
and privacy simultaneously in DP-FL environments (Chapter 1).
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Synopsis: Genome-wide association studies (GWAS) examine millions of single
nucleotide polymorphisms (SNPs) to identify the association between a particular
SNP and given disease. Prior studies illustrate that larger GWAS datasets lead to more
accurate results. However, it is a daunting challenge to procure large-scale GWAS
datasets in a centralized manner. This is because the data is distributed across different
sites such as hospitals, and it is almost impossible to move the data to a centralized
location due to privacy regulations and concerns. To address this challenge, we
introduce a federated tool called sPLINK (safe PLINK ), which performs GWAS on
distributed datasets without moving the private data off-site. sPLINK implements the
federated versions of three popular models in GWAS, i.e. chi-square, linear regression,
and logistic regression. sPLINK also employs secure multi-party computation to
hide the original values of the local parameters of the clients from third parties
including the server. We theoretically show and experimentally validate that sPLINK
achieves ideal utility, which is identical to utility from centralized training using
PLINK, independent of the data distribution across the clients (sites). This is not
the case for meta-analysis as our main competitor, which aggregates the statistics
from multiple GWAS. Moreover, we demonstrate sPLINK is highly efficient from
the network communication perspective, requiring a few communication rounds to
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conduct GWAS. In summary, sPLINK integrates the privacy-enhancing property of
meta-analysis with the ideal performance benefit of centralized learning.
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Abstract

Meta-analysis has been established as an effective approach to combining summary
statistics of several genome-wide association studies (GWAS). However, the accuracy of
meta-analysis can be attenuated in the presence of cross-study heterogeneity. We
present sPLINK, a hybrid federated and user-friendly tool, which performs privacy-aware
GWAS on distributed datasets while preserving the accuracy of the results. sPLINK is
robust against heterogeneous distributions of data across cohorts while meta-analysis
considerably loses accuracy in such scenarios. sPLINK achieves practical runtime and
acceptable network usage for chi-square and linear/logistic regression tests. sPLINK is
available at https://exbio.wzw.tum.de/splink.

Keywords: sPLINK, PLINK, Federated learning, Genome-wide association studies,
GWAS, Meta-analysis, Privacy

Background
Genome-wide association studies (GWAS) test millions of single nucleotide polymor-
phisms (SNPs) to identify possible associations between a specific SNP and disease [1].
They have led to considerable achievements over the past decade including better com-
prehension of the genetic structure of complex diseases and the discovery of SNPs playing
a role in many traits or disorders [2, 3]. GWAS sample size is an important factor in
detecting associations, and larger sample sizes lead to identifying more associations and
more accurate genetic predictors [2, 4].
PLINK [5] is a widely used open source software tool for GWAS. Themajor limitation of

PLINK is that it can only perform association tests on local data. If multiple cohorts want
to conduct collaborative GWAS to take advantage of larger sample sizes, they can pool
their data for a joint analysis (Fig. 1a); however, this is close to impossible due to privacy

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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Fig. 1 Comparison of sPLINK (c), aggregated analysis (a), and meta-analysis (b) approaches: Aggregated
analysis requires cohorts to pool their private data for a joint analysis. The meta-analysis approaches
aggregate the summary statistics from the cohorts to estimate the combined p-values. In sPLINK, the cohorts
calculate the model parameters (M) from the local data and global model, generate noise (N), and make the
parameters noisy (M′) in an iterative manner. The aggregated noise and noisy parameters are in turn
aggregated to update the global model or build the final model. sPLINK combines the advantages of the
aggregated analysis and meta-analysis, i.e. robustness against heterogeneous data and enhancing the
privacy of cohorts’ data. Yellow/blue color indicates case/control samples

restrictions and data protection issues, especially concerning genetic and medical data.
Hence, the field has established methods for meta-analysis of individual studies, where
only the results and summary statistics of the individual analyses have to be exchanged
[6] (Fig. 1b).
There are several software packages such as METAL [7], GWAMA [8], and PLINK [5]

that implement different meta-analysis models including fixed or random effect models
[9]. Although meta-analysis approaches are privacy-aware, i.e. the raw data is not shared
with third parities, they suffer from twomain constraints: first, they rely on detailed plan-
ning and agreement of cohorts on various study parameters such as meta-analysis model
(e.g. fixed effect or random effect), meta-analysis tool (e.g., METAL or GWAMA), het-
erogeneity metric (e.g. Cochran’sQ or the I2 statistic), the covariates to be considered, etc
[4]. Second and more importantly, the statistical power of meta-analysis can be adversely
affected in the presence of cross-study heterogeneity, leading to inaccurate estimation of
the joint results and yielding misleading conclusions [10, 11].
To address the aforementioned shortcomings, privacy-aware collaborative GWAS can

be developed using homomorphic encryption (HE) [12], secure multi-party computation
(SMPC) [13], and federated learning [14, 15]. In HE, the cohorts encrypt their private data
and share it with a single server, which performs operations on the encrypted data from
the cohorts to compute the association test results. In SMPC, there are several comput-
ing parties and the cohorts extract a separate secret share (anonymized chunk) [16] from
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the private data and send it to a computing party. The computing parties calculate inter-
mediate results from the secret shares and exchange the intermediate results with each
other. Each computing party computes the final results given all intermediate results. In
federated learning, the cohorts extract model parameters (e.g. Hessian matrices) from the
private data and share the parameters with a central server. The server aggregates the
parameters from all cohorts to calculate the association test results.
Kamm et al. [17] and Cho et al. [18] proposed GWAS frameworks based on SMPC. The

former developed simple association tests including Cochran–Armitage and chi-square
(χ2) and the latter implemented only the Cochran–Armitage test for trend. Shi et al.
[19] presented an SMPC-based logistic regression framework for GWAS. Constable et al.
[20] implemented an SMPC-based framework for minor allele frequency and chi-square
computation. These frameworks inherit the limitations of SMPC itself: They follow the
paradigm of “move data to computation,” where they put the processing burden on a few
computing parties. Consequently, they are computationally expensive [21] and are not
scalable for large-scale GWAS. Moreover, they suffer from the colluding-parties problem
[17] in which, if the parties send the secret shares of the cohorts to each other, the whole
private data of the cohorts is exposed.
Lu et al. [22], Morshed et al. [23], and Kim et al. [24] developed chi-square, linear

regression, and logistic regression tests using HE for GWAS, respectively. Sadat et al. [25]
introduced the SAFETY framework based on HE and Intel Software Guard Extensions
technology, which implements the linkage disequilibrium, Fisher’s exact test, Cochran-
Armitage test for trend, and Hardy-Weinberg equilibrium statistical tests. Similar to
SMPC-based methods, they are not computationally efficient because a single server
carries out operations over encrypted data, causing considerable overhead [26]. Addition-
ally, HE-based methods introduce accuracy loss in the association test results [23, 24].
This is because HE only supports addition and multiplication, and as a result, non-linear
operations in regression tests should be approximated using those two operations.
To address the computational limitation of HE/SMPC-based methods, the association

tests can be implemented in a federated fashion. Federated learning-based methods fol-
low the paradigm of “move computation to data,” distributing the heavy computations
among the cohorts while performing lightweight aggregation (simple operations such as
addition andmultiplication of the parameters) at the central server.Wang et al. [27] intro-
duced EXPLORER for distributed logistic regression algorithm. EXPLORER is a model
but not a tool for GWAS. Moreover, it does not provide a “guarantee for optimal global
solution,” implying that its results can be different from the aggregated analysis in gen-
eral. GLORE [28, 29] implemented a federated logistic regression test but the parameter
values computed by each cohort are revealed to the server.
Several hybrid federated frameworks including HyFed [30] have been introduced to

improve the privacy of federated learning by hiding the local parameters of a cohort
from third parties. HyFed is a suitable framework for developing federated GWAS algo-
rithms because it provides enhanced privacy while preserving the accuracy of the results.
It also supports federated mode, where different components can run in separate physical
machines and securely communicate with each other over the Internet.
In this paper, we present a hybrid federated tool called sPLINK (safe PLINK) based on

the HyFed framework for privacy-aware GWAS. sPLINK consists of four main compo-
nents (Fig. 2): Web application (WebApp) to configure the parameters (e.g. association
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Fig. 2 Architecture of sPLINK : (1) The coordinator creates a new project through the WebApp component
and (2) invites a set of cohorts to join the project; (3) the cohorts join the project and select the dataset using
the client component. The project is started automatically, when all cohorts joined. The computation of the
test results is performed in a an iterative manner, where the clients (4) obtain the global parameters from the
server, (5) compute the local parameters, mask them with noise, and share the noise and noisy local
parameters with the compensator and server, respectively; (6) the compensator aggregates the noise values
and sends the aggregated noise to the server; the server calculates the global parameters by aggregating the
noisy local parameters and the negative of the aggregated noise; (7) after the computation is done, the
cohorts and coordinator can access the results. All communications are performed in a secure channel over
HTTPS protocol. The cohorts can use Linux distributions, Microsoft Windows, or MacOS to run the client
component

test) of the new study; client to compute the local parameters, mask them with noise, and
share the noise with compensator and noisy local parameters with server; compensator
to aggregate the noise values of the clients and send the aggregated noise to the server;
server to compute the global parameters by adding up the noisy local parameters and the
negative of the aggregated noise. Notice that the utility of the global model is preserved
because the aggregated noise from the compensator cancels out the accumulated noise
from the noisy local parameters during the aggregation.
Unlike PLINK, sPLINK is applicable to distributed data in a privacy-aware fashion.

In sPLINK, neither the private data of cohorts leaves the site nor the original values of
the local parameters are revealed to the other parties (Fig. 1c). Contrary to the existing
HE/SMPC-based methods, sPLINK is computationally efficient because heavy compu-
tations are distributed across the cohorts while simple aggregation is performed on the
server and compensator. Compared to the current federated tools like GLORE, sPLINK
not only provides enhanced privacy but also supports multiple association tests including
logistic and linear regression [31], and chi-square [32] for GWAS.
The advantage of sPLINK over the meta-analysis approaches is twofold: usability and

robustness against heterogeneity. sPLINK is easier to use for collaborative GWAS com-
pared tometa-analysis. In sPLINK, a coordinator initiates a collaborative study and invites
the cohorts. The only decision the cohorts make is whether or not to join the study.
After accepting the invitation, the cohorts just select the dataset they want to employ
in the study. More importantly, sPLINK is robust to data heterogeneity (phenotype and
confounding factors). It gives the same results as aggregated analysis even if the pheno-
type distribution is imbalanced or if confounding factors are distributed heterogeneously
across cohorts. In contrast, meta-analysis tools typically lose statistical power in such
imbalanced or heterogeneous scenarios (details in the “Results” section).
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Results
We first verify sPLINK by comparing its results with those from aggregated analysis con-
ducted with PLINK for all three association tests on a real GWAS dataset from the SHIP
study [33]. We refer to this dataset as the SHIP dataset, which comprises the records of
3699 individuals with serum lipase activity as phenotype. The quantitative version repre-
sents the square root transformed serum lipase activity, while the dichotomous (binary)
version indicates if the serum lipase activity of an individual is above or below the 75th
percentile. The SHIP dataset contains around 5 million SNPs as well as sex, age, smok-
ing status (current-, ex-, or non-smoker), and daily alcohol consumption (in g/day) as
confounding factors (Table 1).
We employ the binary phenotype for logistic regression and the chi-square test, and

the quantitative phenotype for linear regression. We incorporate all four confounding
factors in the regressionmodels and no confounding factor in the chi-square test.We hor-
izontally (sample-wise) split the dataset into four parts, simulating four different cohorts
(Additional file 1: Table S1). PLINK computes the statistics for each association test using
the whole dataset while sPLINK does it in a federated manner using the splits of the indi-
vidual cohorts. To be consistent with PLINK, sPLINK calculates the same statistics as
PLINK for the association tests.
We compute the difference between the p-values as well as the Pearson correlation

coefficient (ρ) of p-values from sPLINK and PLINK. We use -log10(p-value) because the
p-values are typically small and -log10(p-value) can be a better indicator of small p-value
differences. According to Fig. 3a–c, the p-value difference is zero for most of the SNPs.
We also observe that the maximum difference is 0.162 for a SNP in the linear regression.
sPLINK and PLINK report 4.441 × 10−16 and 3.058 × 10−16 as p-values for the SNP,
respectively. This negligible difference can be attributed to inconsistencies in floating
point precision.
The correlation coefficient of p-values from sPLINK and PLINK for all three tests

is 0.99, which is consistent with the results of p-value difference from Fig. 3a–c. We
investigate the overlap of significantly associated SNPs between sPLINK and PLINK. We

Table 1 Description of datasets

Dataset # Samples # SNPs Adjustments Phenotype

SHIPa 3699 ∼5M Sex, age, smoking status,
daily alcohol consumption

SLAb, dichotomous (75th
percentile, 934 cases, 2765
controls)

SLA, quantitative,
Mean±SDc 1.23±0.3

COPDGened 5343 ∼600K Sex, age, smoking status,
pack years of smoking

COPDe, dichotomous,
(2811 cases, 2532 controls)

FEV1f, quantitative,
Mean±SD 2.993±0.635

FinnGen 135,615 ∼ 1M Sex and age Hypertension, dichoto-
mous, (34,257 cases,
101,358 controls)

aStudy of Health in Pomerania
bSerum lipase activity
cStandard deviation
dGenetic Epidemiology of chronic obstructive pulmonary disease
eChronic obstructive pulmonary disease
fForced expiratory volume in one second
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Fig. 3 �log10(p-value) between sPLINK and PLINK as well as the set of SNPs identified by sPLINK and PLINK as
significant for logistic regression (a, d), linear regression (b, e), and chi-square test (c, f), respectively. For most
of the SNPs, the difference is zero, indicating that sPLINK gives the same p-values as PLINK. The negligible
difference between p-values for the other SNPs can be attributed to differences in floating point precision.
The spikes in some genomic positions are due to the strong association of the corresponding SNPs, which
result in higher absolute error. sPLINK and PLINK also recognize the same set of SNPs as significant. Genomic
positions (ticks in a–c) indicate chromosome numbers. The details of the experiments are available in
Additional file 1: Table S1

consider a SNP as significant if its p-value is less than 5 × 10−8 (genome-wide signif-
icance). PLINK and sPLINK recognize the same set of SNPs as significant (Fig. 3d–f).
Notably, the identified SNPs, e.g. rs8176693 and rs632111, lying in genes ABO (intronic)
and FUT2 (3-UTR), respectively, have also been implicated in a previous analysis of this
dataset [34]. We also leverage the Bonferroni significance threshold (which is ≈ 1× 10−8

for our tests) to compare the overlapping significant SNPs from sPLINK and PLINK. The
results remain similar and the associated plot is available at Additional file 1: Fig. S1.
These results indicate that p-values computed by sPLINK in a federated manner are the
same as those calculated by PLINK on the aggregated data (ignoring negligible floating
point precision error). In other words, the federated computation in sPLINK preserves
the accuracy of the results of the association tests.
Next, we compare sPLINK with some existing meta-analysis tools, namely PLINK,

METAL, and GWAMA. We leverage the COPDGene (non-hispanic white ethnic group)
[35] and FinnGen (data release 3) [36] datasets. The COPDGene dataset has an equal dis-
tribution of case and control samples unlike the SHIP dataset. It contains 5343 samples
(ignoring 1327 samples with missing phenotype value) and around 600K SNPs. We uti-
lize chronic obstructive pulmonary disease (COPD) as the binary phenotype and include
sex, age, smoking status, and pack years of smoking as confounding factors [37]. FinnGen
is much larger dataset (in terms of sample size) compared to the SHIP and COPDGene
datasets. It consists of 135,615 samples (ignoring 23 samples with missing phenotype
value) and about 1 million SNPs. We use Hypertension as the (binary) phenotype and
adjust for sex and age as confounding factors (Table 1).
To simulate cross-study heterogeneity [38] on the COPDGene dataset, we consider six

different scenarios: Scenario I (Balanced), Scenario II (Slightly Imbalanced), Scenario III
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(Moderately Imbalanced), Scenario IV (Highly Imbalanced), Scenario V (Severely Imbal-
anced), and Scenario VI (Heterogeneous Confounding Factor) (Figs. 4a and 5). In each
scenario, we partition the dataset into three splits with the same sample size (more details
in Additional file 1: Table S2). The distribution of all four confounding factors is homoge-
neous (similar) across the splits for the first five scenarios. The splits have the same (and
balanced) case-control ratio in Scenario I and Scenario VI but their case-control ratio is
different for the imbalanced scenarios (Fig. 4a). In Scenario VI, the values of two con-
founding factors (i.e. smoking status and age) are homogeneously distributed among the
splits; however, the distribution of sex and pack years of smoking is slightly and highly
heterogeneous across the splits, respectively (Fig. 5). We obtain the summary statistics
(e.g. minor allele, odds ratio, and standard error) for each split to conduct meta-analyses.
The results are then compared to the federated analysis employing sPLINK. Figure 6a
shows the Pearson correlation coefficient of -log10(p-value) between each tool and the
aggregated analysis for all six scenarios. Figure 6c depicts the number of SNPs correctly
identified as significant by the tools (true positives).
According to Fig. 6a, the correlation of p-values between sPLINK and the aggre-

gated analysis is ∼ 1.0 for all six scenarios, implying that sPLINK gives the same
p-values as the aggregated analysis regardless of how phenotypes or confounding fac-
tors have been distributed across the cohorts. In contrast, the correlation coefficient
for the meta-analysis tools shrinks with increasing imbalance/heterogeneity, indicating
loss of accuracy. Figure 6c illustrates that sPLINK correctly identifies all four significant
SNPs in all scenarios. In the balanced scenario, almost all meta-analysis tools perform
well and recognize all significant SNPs. An exception is METAL, which misses one of
them. However, they miss more and more significant SNPs as the phenotype imbal-
ance across the splits increases. In the Highly Imbalanced and Severely Imbalanced
scenarios, the meta-analysis tools cannot recognize any significant SNP. This is also
the case if the distribution of some confounding factors becomes heterogeneous across
the cohorts (Scenario VI). We checked the number of SNPs wrongly identified as sig-
nificant by the tools (false positives) too. sPLINK has no false positive in any of the
scenarios and the meta-analysis tools introduce zero or one false positive depending on
the scenario.

Fig. 4 Scenario I-V : The case-control ratio is the same for all splits in the balanced scenario (I) while the splits
have different case-control ratios in the imbalanced scenarios (II–V). All three splits have the same sample size
in the COPDGene dataset as well as the balanced scenario in the FinnGen dataset. For the imbalanced
scenarios in the FinnGen dataset, the splits have different sample sizes
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Fig. 5 Scenario VI (Heterogeneous Confounding Factor) for the COPDGene case study: The phenotype
distribution is the same and balanced; the values of smoking status and age are homogeneously distributed;
the distribution of sex and pack years of smoking are slightly and highly heterogeneous across the splits,
respectively

To show that our findings on the COPDGene dataset also hold true for a much larger
dataset, we repeat the simulations on the FinnGen dataset (more details in Additional
file 1: Table S3). Similar to the COPDGene case study, we divide the dataset into three
splits and define Scenario I to Scenario V, where the splits have the same case-control
ratio (1.0) and sample size (22,838) as in Scenario I but different case-control ratios in
the remaining scenarios (Fig. 4b); Unlike the COPDGene case study in which the sample
size of the splits are equal for all scenarios including the imbalanced ones, the splits have
different number of samples in the imbalanced scenarios of the FinnGen case study. For
instance, split1, split2 and split3 have 22,838, 12,561, and 99,345 samples in Scenario V,
respectively (a split with lower case-control ratio has larger sample size). It implies that
the aggregated datasets have different number of samples in the scenarios, and as a result,
there are different set of significant SNPs in each scenario of the FinnGen case study (total
of 110, 116, 199, 304, and 446 significant SNPs in Scenario I to Scenario V, respectively).
Figures 6b and 6d illustrate the Pearson correlation coefficient and percentage of

correctly identified significant SNPs for each scenario on the FinnGen case study, respec-
tively. According to Fig. 6b, the correlation coefficient diminishes for the meta-analysis
tools as the scenario becomesmore andmore imbalanced. This is also the case for the per-
centage of the SNPs correctly identified as significant by each meta-analysis tool (Fig. 6d).
These results are consistent with those from the COPDGene case study. Moreover, we
observed that themeta-analysis tools report high number of false positives (14–88) in Sce-
nario IV. Thus, the limitations of meta-analysis tools towards class imbalance observed
in the COPDGene dataset can be reproduced on a large dataset. However, sPLINK always
provides the same results as PLINK with the aggregated analysis (the “Methods” section,
Figs. 3 and 6a, c).
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Fig. 6 The Pearson correlation coefficient (ρ) of -log10(p-value) between each tool and aggregated analysis
(a, b) and the number (c) and the percentage (d) of SNPs correctly identified as significant (true positives) by
each tool. F and R stand for fixed-effect and random-effect, respectively. The details of the experiments are
available in Additional file 1: Table S2, and Table S3

We also leverage the Spearman correlation to check whether or not the meta-analysis
tools maintain the ordering of significance compared to the aggregated analysis. Our
results show that this is not the case, and the Spearman correlation values for the meta-
analysis tools reduce as the phenotype imbalance across the splits increases, similar to the
results from Fig. 6, where the Pearson correlation is used. The corresponding plot can be
found in Additional file 1: Figure S2.
Table 2 shows a concise comparison between sPLINK and the state-of-the-art

approaches. Unlike PLINK, sPLINK is privacy-aware, where the private data never
leaves the cohorts. sPLINK is also robust against the imbalance/heterogeneity of phe-
notype/confounding factor distributions across the cohorts. sPLINK always delivers the
same p-values as aggregated analysis and correctly identifies all significant SNPs inde-
pendent of the phenotype or confounding factor distribution in the cohorts. In contrast,
meta-analysis tools lose their statistical power in imbalanced phenotype scenarios, miss-
ing some or all significant SNPs. This is also the case if the phenotype distribution
is balanced but the values of confounding factor(s) have heterogeneously been dis-
tributed across the datasets. Compared to the existing SMPC/HE-based approaches,
sPLINK is computationally efficient and supports multiple association tests including chi-
square and linear/logistic regression. sPLINK provides enhanced privacy by hiding the
model parameters of each cohort from the third parties while federated learning-based
frameworks such as GLORE reveal them to the server.
Finally, wemeasure the runtime and network bandwidth usage of sPLINK for each asso-

ciation test using the COPDGene dataset partitioned into three splits of the same sample
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Table 2 Comparison between sPLINK and the state-of-the-art approaches

Tool/Study Privacy-
aware

Robust to het-
erogeneity

Computationally
efficient

Linear
regres-
sion

Logistic regres-
sion

PLINK ✗ ✓ ✓ ✓ ✓

Meta-analysis ✓ ✗ ✓ ✓ ✓

Kamm et al. [17] ✓ ✓ ✗ * ✗

Cho et al. [18] ✓ ✓ ✗ * ✗

Morshed et al. [23] ✓ ✗ ✗ ✓ ✗

Kim et al. [24] ✓ ✗ ✗ ✗ ✓

GLORE [28] ✓ ✓ ✓ ✗ ✓

sPLINK ✓ ✓ ✓ ✓ ✓

*The study supports the Cochran–Armitage test, which is computationally comparable to linear regression

size. We use COPD in chi-square as well as logistic regression and FEV1 in linear regres-
sion as phenotype. We include age, sex, smoking status, and pack years of smoking as
confounding factors only for the regression tests. The server and WebApp packages are
installed on a physical machine located at Freising (Germany) while the compensator is
running on a machine atOdense (Denmark). Three commodity laptops located atMunich
or Freising are running the client package and host the splits. They communicate with the
server and compensator through the Internet. The system specification of the machines
and laptops as well as the details of the experiments can be found in Additional file 1:
Table S4 and S5.
Figure 7a plots the sPLINK’s runtime for each association test. sPLINK computes the

results for chi-square, linear regression, and logistic regression in 8 min, 20 min, and
75 min, respectively. Sending parameters from the clients to the server and compen-
sator contributes the most in sPLINK’s runtime. Compared to Kamm et al. [17], sPLINK
is almost 13 times faster for chi-square test (8 min vs. 110 min1 ) with less powerful
hardware, larger sample size (5343 vs. 1080), and more number of SNPs (∼ 580K vs.
∼ 263K).
Figure 7b depicts the network usage of sPLINK. The clients, server, and compensator

exchange total of 0.967 GB, 2.49 GB, and 11.06 GB traffic in chi-square, linear regres-
sion, and logistic regression, respectively. Logistic regression has higher volume of traffic

Fig. 7 Runtime and network bandwidth consumption of sPLINK. Logistic regression is the most
time-consuming association test and exchanges the highest traffic over the network due to the iterative
nature of the algorithm. The experimental setup can be found in Additional file 1: Table S5

1The best result from Kamm et al. [17] has been considered.
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exchange because the computation of beta coefficients are performed in an iterative fash-
ion. A fair comparison between sPLINK and SMPC-based frameworks from the network
communication aspect is tricky. However, in general, (hybrid) federated learning-based
approaches consume more network bandwidth than SMPC-based ones.
We also conduct a set of experiments to investigate how the runtime and network band-

width consumption of sPLINK change with varying number of samples, SNPs, and clients.
The results demonstrate that the traffic exchanged over the network is independent of
the sample size and linearly increases with the number of SNPs and clients (as expected).
Moreover, runtime is not affected much by the sample size thanks to the multi-threading
capability of sPLINK ’s client package, and linearly/non-linearly increases with the num-
ber of SNPs/clients. The corresponding plots are available in Additional file 1: Fig. S3, S4,
and S5.

Discussion
We first provide a general discussion on the privacy of the existing tools for collabora-
tive GWAS including sPLINK. To be more accurate, we draw a distinction between the
privacy-aware and privacy-preserving definitions [39]. In a privacy-aware approach, it is
not required to share the private data with a third party. A privacy-aware approach is
privacy-preserving if the approach offers a privacy guarantee that captures the privacy
risk associated with individual samples in the dataset. Given that, meta-analysis, SMPC,
HE, federated learning, and hybrid federated learning based on SMPC are privacy-aware
because they do not share the raw data with a third party. In meta-analysis/federated
learning, the summary statistics/model parameters of each cohort are shared with a third
party. In SMPC-based hybrid federated learning, the aggregated (global) parameters are
revealed to the server and cohorts. These approaches, including HE and SMPC, reveal
the final model too. However, these methods are not privacy-preserving because none
of them provides a privacy guarantee indicating to what extent the revealed information
leaks the private data of a particular sample in the dataset. To our knowledge, differential
privacy (DP) [40] and DP-based hybrid federated learning can offer such a guarantee at
the cost of the utility of the model and are considered as privacy-preserving approaches.
While privacy-aware approaches do not offer a privacy guarantee, they might provide

stronger/weaker privacy compared to each other based on the amount and nature of
the information they share with third parties. For instance, HE-based methods provide
stronger privacy because they only reveal the final model (results) while other privacy-
aware approaches disclose not only the final results but also other information such as
summary statistics or local parameters. Similarly, sPLINK provides enhanced privacy in
comparison with existing federated learning based tools such as GLORE. This is because
GLORE discloses the local parameters of each cohort to the server, which is not revealed
in sPLINK.
sPLINK is a privacy-aware tool, assuming honest-but-curious server, compensator, and

clients, which (I) follow the protocol as it is; for instance, the server always sends the global
beta values resulted from the aggregation but not the beta values tampered with such
as all zeros to the clients, and (II) do not collude with each other, e.g. the compensator
never shares the individual noise values of the clients with the server and similarly, the
server does not send the noisy local parameters to the compensator, but (III) they try to
reconstruct the raw data using the model parameters. Additionally, (IV) there are at least
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three different cohorts participating in the study, and their client components as well as
the server and compensator components are running in separate physical machines.
Given these assumptions, we discuss the privacy of the masking mechanism of sPLINK

(inherited from HyFed) for the supported association tests. To this end, we use the infor-
mation theoretic criterion called mutual information between two random variables X
and Y [30, 41]:

I(X,Y ) = H(X) − H(X|Y )

whereH(X) andH(X|Y ) indicate the entropy of X and the conditional entropy of X given
Y, respectively. The mutual information measures (in bits) the decrease in uncertainty
about X having the knowledge of Y. In sPLINK, the noisy local parameter M′

L is a secret
share from the local parameter ML (the secret), and random variables X and Y indicate
the distributions ofML andM′

L, respectively.
The local parameter ML of a client is either a non-negative integer (e.g. sample count,

allele count, or contingency table) or floating-point number (e.g. Hessian or covariance
matrix) in the association tests. For non-negative integers, sPLINK capitalizes on addi-
tive secret sharing based on modular arithmetic over the finite field Zp={0, 1, p − 1},
in which p is a prime number [13]. For floating-point numbers, sPLINK employs real
value secret sharing based on Gaussian (Normal) distribution [42, 43] (more details in
“Methods” section).
For non-negative integers, noise NL is generated from a uniform distribution over Zp,

andM′
L is the modular addition ofML andNL:M′

L = (ML +NL) mod p. For this scheme,
it has been shown that the knowledge of Y (noisy local parameter) provides no informa-
tion about X (local parameter), which means the mutual information between them is
zero: I(X,Y ) = 0 [13, 16]. Notice that this is the case for any value of prime number p.
For floating-point numbers, noise NL is generated using Gaussian distribution with

variance of σ 2
N . Assuming that the variance of X is σ 2

ML
, the mutual information between

X and Y is maximum if Y follows the Gaussian distribution (variance σ 2
ML

+ σ 2
N ) [43].

Thus, the upper bound on the mutual information between X and Y is:

I(X,Y ) = 1
2
log2(1 + σ 2

ML

σ 2
N

)

That is, the amount of reduction in uncertainty about the local parameters having the
knowledge of the noisy local parameters depends on the relative variance of the cor-
responding distributions. Therefore, using larger values for variance in the Gaussian
random generator will provide lower information leakage. The value of mean for the
Gaussian random generator does not remarkably impact the privacy and can be set to
zero [43], which is the case for sPLINK. The default value of σ 2

N is 1012 for sPLINK, which
is large enough for typical GWAS, but it can be set to higher values if needed to ensure

that
σ 2
ML
σ 2
N

remains small.
Notice that although sPLINK significantly enhances the privacy of data compared to

existing federated learning tools by hiding the local parameters of clients from a third
party, it does not eliminate the possibility of data reconstruction using the aggregated
parameters or final results. For example, the XTX parameter (covariance matrix) in the
linear regression algorithm can be exploited to determine the sex of the patients if the
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total number of samples across all cohorts is comparable to the number of the confound-
ing factors. However, for a reliable GWAS study, the total sample size is considerably
larger than the number of confounding factors, and therefore, the reconstruction of the
cohorts’ private data from the aggregated parameters can be difficult (but still possible) in
practice. A similar argument is also applicable to meta-analysis approaches, which reveal
the summary statistics of each cohort to a third party.
The value of prime number p impacts the correctness of the masking mechanism. To

ensure the correctness, overflowmust not occur in
∑i=K

i=1 NLi and
∑i=K

i=1 M′
Li calculations,

and
∑i=K

i=1 MLi < p. sPLINK uses the default value of p = 254 − 33, which is the largest
prime number than can fit in 54-bit integer. A higher value of p can be employed to han-
dle larger integer values but at the expense of a lower number of clients [30]. Likewise,
too large values of variance σ 2

N (e.g. 1030) can impact the precision of the results. With
default values of p and σ 2

N , however, our experiments indicate that there are no statistically
significant differences between the results from sPLINK with and without the masking
mechanism for all three association tests (the experimental setup of Fig. 7 is used in the
experiments).
sPLINK currently supports chi-square and linear/logistic regression tests, but it can

be extended to compute other useful statistics in GWAS such as minor allele frequency
(MAF), Hardy-Weinberg equilibrium (HWE), and linkage disequilibrium (LD) between
SNPs in a privacy-aware manner. The federated computation of the aforementioned
statistics in sPLINK is expected to be straightforward because they are based on the allele
frequencies, and sPLINK already calculates the minor and major allele counts in theNon-
missing count step of its computational workflow (the “Methods” section). Moreover,
population stratification using the principal component analysis (PCA) will be addressed
in the future version of sPLINK due to the complexity of the problem. sPLINK ’s imple-
mentation of the association tests is horizontally-federated, where the datasets have
different samples but the same features (i.e. SNP and confounding factors). However, cor-
recting for population structure using sPLINK requires a vertically-federated [44] PCA
algorithm because the eigenvectors should be computed from the sample by sample
covariance matrix, and therefore, the samples and features swap roles in the federated
PCA (SNPs are considered as samples and patients as features) [45]. Vertical federated
learning algorithms are still understudied, and they are consideredmore complicated than
the horizontal algorithms.
Additionally, the federated PCA algorithm should be an iterative, randomized algorithm

[46] so that it can handle large GWAS datasets with a practical amount of main memory.
The iterative nature of the algorithmwill present network and runtime challenges because
it might need dozens or hundreds of iterations and exchange huge traffic over the net-
work to converge to the final eigenvectors. From the privacy perspective, a recent study
[45] demonstrates that even if we assume the federated PCA and linear regression algo-
rithms individually provide perfect privacy, federated population stratification in GWAS,
where the eigenvectors are used as the confounding factors in the association test, does
not necessarily offer perfect privacy. Consequently, the server can reconstruct the SNP or
binary confounding factor values in polynomial time. To tackle this issue, they suggested
that the final eigenvectors should be computed at the clients and themodel parameter val-
ues should be hidden from the server. The federated population stratification in sPLINK
should be implemented taking into account those suggestions.
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We showed that sPLINK is robust against an important source of data heterogeneity,
namely the heterogeneous distribution of the phenotype or confounding factor values
across the distributed datasets of the cohorts. Population heterogeneity across the cohorts
is another source of data heterogeneity in GWAS, which is commonly tackled by pop-
ulation stratification using the PCA algorithm. sPLINK currently does not address this
kind of data heterogeneity but the future versions of the tool will support population
stratification to this end.

Conclusions
We introduce sPLINK, a user-friendly, hybrid federated tool for GWAS. sPLINK enhances
the privacy of the cohorts’ data without sacrificing the accuracy of the test results. It
supports multiple association tests including chi-square, linear regression, and logistic
regression. sPLINK is consistent with PLINK in terms of the input data formats and
results. We compare sPLINK to aggregated analysis with PLINK as well as meta-analysis
with METAL, GWAMA, and PLINK. While sPLINK is robust against the heterogeneity
of phenotype or confounding factor distributions across separate datasets, the statisti-
cal power of the meta-analysis tools is declined in imbalanced/heterogeneous scenarios.
We argue that sPLINK is easier to use for collaborative GWAS compared to meta-
analysis approaches thanks to its straightforward functional workflow. We also show that
sPLINK achieves practical runtime, in order of minutes or hours, and acceptable network
usage. sPLINK is an open-source tool and its source code is publicly available under the
Apache License Version 2.0. sPLINK is a novel and robust alternative to meta-analysis,
which performs collaborative GWAS in a privacy-aware manner. It has the potential to
immensely impact the statistical genetics community by addressing current challenges in
GWAS including cross-study heterogeneity and, thus, to replace meta-analysis as the gold
standard for collaborative GWAS.

Methods
Federated learning [14, 15] is a type of distributed learning, where multiple cohorts col-
laboratively learn a joint (global) model under the orchestration of a central server [47].
The cohorts never share their private data with the server or the other cohorts. Instead,
they extract local parameters from their data and send them to the server. The server
aggregates the local parameters from all cohorts to compute the global model parameters
(or global results), which in turn, are shared with all cohorts. While federated learning is
privacy-aware, where the private data of the cohorts is not shared with the server, studies
[48, 49] have shown that for some models such as deep neural networks, the raw data can
be reconstructed from the parameters shared by the cohorts.
To improve the privacy of federated learning, privacy-enhancing technologies (PETs)

such as DP, HE, or SMPC can be combined with federated learning to avoid revealing the
original values of the local parameters to third parties including the server [50]. DP-based
hybrid federated learning approaches can provide a privacy guarantee but their final
results might be considerably impacted by the random noise employed for the perturba-
tion of the model. HE-based aggregation methods can incur remarkable computational
overhead because they require the cohorts to encrypt/decrypt the local/global model
parameters and the server to perform the aggregation over the encrypted parameters.
SMPC-based hybrid federated learning methods [30, 51] increase the network bandwidth
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usage but does not adversely affect the final results. HyFed is an open-source hybrid
federated framework, which combines federated learning with additive secret sharing-
based SMPC to enhance the privacy of the federated algorithms while preserving the
utility (performance) of the global model. HyFed provides a generic API (application
programming interface) to develop federated machine learning algorithms. It supports
the federated mode of operation, where different components of the framework can
be installed in separate physical machines and securely communicate with each other
through the Internet.
sPLINK implements a hybrid federated approach using the HyFed API to enhance the

privacy of data. sPLINK works with distributed GWAS data, where samples are individu-
als and features are SNPs and categorical or quantitative phenotypic variables. While the
samples are different across the cohorts, the feature space is the same because sPLINK
only considers SNPs and phenotypic variables that are common among all datasets (hori-
zontal or sample-based federated learning)[44]. The client package of sPLINK is installed
on the local machine of each cohort with access to the private data. The compensator is
running in a separate machine. sPLINK’s server and WebApp packages are installed on a
central server.
In sPLINK, the original values of the parameters computed from the private data in one

cohort is not revealed to the server, compensator, or other cohorts, improving the privacy
of the cohorts’ data. sPLINK provides the chunking capability to handle large datasets
containingmillions of SNPs. The chunk size (configured by the coordinator) specifies how
many SNPs should be processed in parallel. Larger chunk sizes allow for more parallelism,
and therefore less running time in general but require more computational resources
(e.g. CPU and main memory) from the local machines of the cohorts, the server, and
compensator. sPLINK ’s client package is multi-threaded, where the number of cores is
configurable by the participants. This makes the computation of the model parameters
in the cohorts very fast, especially for large datasets. While we provide a readily usable
web service running at exbio server (https://exbio.wzw.tum.de/splink) and online com-
pensator at compbio server (https://compensator.compbio.sdu.dk), the server, WebApp,
and compensator packages can, of course, be deployed on customized physical machines.
The functional workflow of sPLINK is comprised of the following steps:

1. Project creation: The coordinator creates the project (new study) through the
Web interface. To this end, she/he first specifies the project name, association test
name, chunk size, and the list of confounding features (only for regression tests),
and then, generates a unique project token for each cohort.

2. Cohort invitation: The coordinator sends the project ID (automatically
generated) and token to each participant (a human entity interacting with the
client package in a cohort) through a secure channel such as email for inviting the
cohorts to the project.

3. Cohort joining: The participants use their corresponding username, password,
project ID, and token to join the project. After joining, they can view the general
information of the project such as the coordinator, server/compensator
name/URL, and etc. If they agree to proceed, they choose the dataset they want to
employ in the study. To be consistent with PLINK, sPLINK supports .bed (value of
SNPs), .fam (sample IDs as well as sex and phenotype values), .bim (chromosome
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number, name, and base-pair distance of each SNP), .cov (value of confounding
factors), and .pheno (phenotype values that should be used instead of those in .fam
file) file formats as specified in the PLINK manual [52]. For linear regression,
phenotype values must be quantitative while for logistic regression and chi-square,
phenotype values have to be binary (control/case are encoded as 1/2).

4. Federated computation: In sPLINK, the association test results are computed by
the client package (running on the local machines of cohorts), server package
(running in the central server), and compensator (running in its own machine) in a
federated manner. The computation is iterative and consists of six general steps:

(a) Get global parameters: All clients obtain the required global parameters
MG from the server.

(b) Compute local parameters: Each client i computes the local parameters
MLi using the local data and global parameters.

(c) Mask local parameters: Each client i generates random noise NLi with
the same shape asMLi , and masksMLi with NLi to obtain the noisy local
parametersM′

Li .
(d) Share noisy local parameters and noise: Each client i sharesM′

Li and
NLi with the server and compensator, respectively.

(e) Aggregate noise: The compensator computes the aggregated noise N
given the noise values from the clients and sends the aggregated noise N
to the server.

(f) Compute global parameters: The server calculates (unmasks) the global
parameters given the noisy local parameters and the negative of the
aggregated noise.

5. Result download: The final results are automatically downloaded for the cohorts
but the coordinator needs to download them manually through the web interface.
Similar to PLINK, sPLINK reports minor allele name (A1) and p-value (P) for all
three association tests, chi-square (CHISQ), odds ratio (OR), minor allele
frequency in cases (F_A), and minor allele frequency in controls (F_U) for
chi-square test, and the number of non-missing samples (NMISS), beta (BETA),
and t-statistic (STAT) for linear and logistic regression tests.

sPLINK inherits its maskingmechanism fromHyFed, whichmasks the local parameters
with non-negative integer and floating-point values in different ways. For a local parame-
ter with a non-negative integer value, sPLINK considers a finite field Zp={0, 1, p − 1} (p
is a prime number) [13], where each client i generates a uniform random integer from Zp
as noiseNLi and masks its local parameterMLi withNLi by performing themodular addi-
tion over Zp: M′

Li = (MLi + NLi ) mod p. Notice that MLi ,NLi ,M′
Li ∈ Zp. For MLi with a

floating-point value, each client i generates noise NLi using Gaussian random generator
with zero-mean and variance σ 2

N , and masks MLi with NLi using the ordinary addition:
M′

Li =MLi + NLi .
The compensator computes the aggregated noise N by taking sum over the noise val-

ues of the clients using the modular or ordinary addition depending on the data type of
the noise: if NLi is non-negative integer, then N = (

∑i=K
i=1 NLi ) mod p; if NLi is floating-

point type, then N =
∑i=K

i=1 NLi . To calculate the global parameters with non-negative
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integer values, the server first computes the aggregated noisy parameter by taking sum
over the noisy local parameters using the modular addition, and then subtracts the aggre-
gated noise from the aggregated noisy parameter using the modular subtraction: MG =
(((

∑i=K
i=1 M′

Li ) mod p) - N) mod p. For model parameters with floating-point values,
the server adds up the noisy local parameters and the negative of the aggregated noise
using the ordinary addition:MG =

∑i=K
i=1 M′

Li − N .
The computational workflow of sPLINK involves seven steps common among all asso-

ciation tests as well as a couple of steps specific to each association test (Fig. 8). In the first
three steps (i.e. Init, SNP name, and Allele name) as well as the sixth step (Minor allele),
the clients only communicate with the server, where the name of the SNPs and alleles
(which are not considered private) are directly shared with the server. In the remaining
steps, the compensator is involved and clients mask the local parameters with noise to
hide their original values from the server. The formulas associated with the steps indi-
cate how the clients compute local parameters and how the server calculates the global
parameters using the noisy local parameters of the clients and the aggregated noise from
the compensator. In the following, we provide an overview of each step:

1. Init: Each client i opens the files of the dataset selected by the participant to be
employed in the study and creates its phenotype vector (Yi) and feature matrix (Xi),
which includes the value of SNPs and confounding factors. It is worth noting that
there is a separate feature matrix for each SNP but the phenotype vector is the
same for all SNPs. Assume a dataset containing three SNPs named SNP1, SNP2,
and SNP3 and age and sex as confounding features. There will be three different
feature matrices, one feature matrix per SNP. For instance, the feature matrix of
SNP1 has three columns including SNP1, age, and sex values. Phenotype vector
and feature matrix are the private data of the cohorts. They cannot be shared with
the server, compensator, or the other cohorts. The aggregation process in the
server just makes sure that all clients successfully initialized their data.

2. SNP name: Each client shares the SNP names with the server. In the aggregation
process, the server computes the intersection of all SNP names. Only common
SNPs are considered in the computation of the association test results.

3. Allele name: Each client sends the allele names (e.g. G,A) of each SNP to the
server. In the aggregation process, the server ensures that all cohorts employ the
same allele names for the SNPs. Notice that the clients sort the allele names to
avoid revealing which one is minor or major allele.

4. Sample count: Each client i calculates its local sample count Ti (number of
samples in its dataset including missing samples, which is the size of vector Yi).
The server computes the corresponding global sample count: T = (((

∑i=K
i=1 T ′

i )

mod p) - NT ) mod p, where T ′
i is the noisy local sample count of client i : T ′

i =
(Ti + Ni) mod p and NT is the aggregated noise from the compensator: NT =
(
∑i=K

i=1 Ni) mod p.
5. Non-missing count: In this step, SNPs are split into chunks which can be

processed in parallel. The chunking capability is provided to handle very large
datasets containing millions of SNPs. The clients compute the non-missing sample
count by filtering out the missing samples (value of -9 is considered as missing).
Likewise, they calculate the local allele count by counting the number of alleles in
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Fig. 8 Computational workflow of sPLINK : The first six steps and the last step are common among all
association tests. Contingency table is specific to the chi-square test while Beta and Standard error are
regression test related steps

each SNP. In the aggregation process, the server computes the global non-missing
sample count (n) and allele count using the corresponding noisy parameters and
the aggregated noise similar to the sample count step. Finally, the server
determines the global minor allele based on the values of the global allele counts.

6. Minor allele: The clients compare their local minor allele with the global minor
allele. If they are the same, they do nothing. Otherwise, they update the mapping of
SNP values read from .bed file. Each SNP value can be 0, 1, 2, or 3 (missing value).
These values are encoded based on the minor allele name. If the minor allele is
changed, the value of the SNP needs to be swapped if it is 0 or 2. Thus, if a client’s
minor allele is different from global minor allele, it inverses the mapping of SNP
values (0 → 2 and 2 → 0). The aggregation in the server makes sure that all clients
successfully completed this step.

7. Association test specific steps: In the following, we elaborate on the steps
specific to each association test. Regarding regression tests, sPLINK implements
the federated versions of ordinary least squares linear regression and
Newton-Raphson method based logistic regression.
Chi-square: The only test-specific step for the chi-square test is Contingency
table, where each client i computes its local contingency table containing minor
allele frequency for cases (ti), minor allele frequency for controls (ri), major allele
frequency for cases (qi), and major allele frequency for controls (si). The server
aggregates the noisy contingency tables from the clients (t′i , r′i, q′

i, and s′i are the
elements of the table) and the corresponding aggregated noise from the
compensator (Nt , Nr , Nq, and Ns) to compute the global (observed) contingency
table (Table 3). It also calculates the expected contingency table based on the
observed contingency table (Table 4).
Given the observed contingency table (O) and the expected contingency table (E),
the server computes odds ratio (OR), χ2, and p-value (P) as follows:

OR = t × s
q × r

(1)
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Table 3 Global (observed) contingency table

Minor allele Major allele Total

Case t = (((
∑i=K

i=1 t
′
i ) mod p) - Nt ) mod p q = (((

∑i=K
i=1 q

′
i) mod p) - Nq) mod p t + q

Control r = (((
∑i=K

i=1 r
′
i ) mod p) - Nr ) mod p s = (((

∑i=K
i=1 s

′
i) mod p) - Ns) mod p r + s

Total t + r q + s 2n

χ2 =
∑ (E − O)2

E
(2)

P = 1 − Ft(χ2, 1) (3)

where Ft is the cumulative distribution function (CDF) of χ2 distribution (degree
of freedom is 1).
Linear regression: Beta and Standard error are two steps specific to linear
regression test. In the Beta step, each client i computes XT

i Xi and XT
i Yi, where XT

i
is the transpose of Xi. In the aggregation process, the server performs the following
calculations (K is the number of clients):

XTX =
i=K∑

i=1
(XT

i Xi)
′ − NXTX (4)

XTY =
i=K∑

i=1
(XT

i Yi)
′ − NXTY (5)

β = (XTX)−1(XTY ) (6)

where (XT
i Xi)′ and (XT

i Yi)′ are the noisy local parameters from the clients, NXTX
and NXTY are the corresponding aggregated noise from the compensator, and ()−1

indicates the inverse matrix.
In the Standard error step, each client i calculates the local sum square error (SSE)
Ei by having the global β vector.

Ŷi = Xiβ (7)

Ei =
∑

(Yi − Ŷi)2 (8)

and then the server calculates the global standard error vector (SE) as follows:

E =
i=K∑

i=1
E′
i − NE (9)

VAR = (
E

n − m − 1
)(XTX)−1 (10)

SE = √
diag(VAR) (11)

Table 4 Expected contingency table

Minor allele Major allele

Case (t+q)×(t+r)
2n

(t+q)×(q+s)
2n

Control (r+s)×(t+r)
2n

(r+s)×(q+s)
2n
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where E′
i and NE are the noisy SSE values and the corresponding aggregated noise,

respectively; n is the global non-missing sample count, m is the number of features
(1 + number of confounding factors), and diag is the main diagonal of the matrix.
Given the standard error vector, the server computes the T statistic (T) and
p-value (P) as follows:

T = β

SE
(12)

DF = n − m − 1 (13)

P = 2 × (1 − Ft(|T |, DF)) (14)

in which DF is degree of freedom and Ft is the CDF of T distribution.
Logistic regression: Similar to linear regression, logistic regression has two
specific steps: Beta and Standard error. However, the Beta step is iterative in
logistic regression (maximum number of iterations is specified by the coordinator
and its default value is 20). In each iteration, each client i computes local gradient
(∇i), Hessian matrix (Hi) and log-likelihood (Li) as follows:

Ŷi = 1
1 + e−Xiβ

(15)

∇i = XT
i (Yi − Ŷi) (16)

Hi = (XT
i ◦ (Ŷi ◦ (1 − Ŷi))T )Xi (17)

Li =
∑

(Yi ◦ log Ŷi + (1 − Yi) ◦ log(1 − Ŷi)) (18)
where β is the global beta vector from the previous iteration and ◦ indicates
element-wise multiplication.
The server aggregates the noisy local gradients (∇′

i ), Hessian matrices (H ′
i ) and

log-likelihood values (L′
i) from K clients and the associated aggregated noise values

N∇ , NH , NL as follows:

∇ =
i=K∑

i=1
∇′
i − N∇ (19)

H =
i=K∑

i=1
H ′
i − NH (20)

L =
i=K∑

i=1
L′
i − NL (21)

Then, it updates the β values accordingly:

βnew = βold + H−1∇ (22)

where βold is the β value from the previous iteration. The server also compares the
newly computed log-likelihood value (L) with the one from previous iteration
(Lold). If their difference is less than a pre-specified threshold, β values converged,
and therefore, it stops updating beta.
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In the Standard error step, the server shares the global β values with the clients.
Each client i computes its local Hessian matrix (Hi) using the global β . The server
gets the noisy local Hessian matrices from K clients and the aggregated noise from
the compensator and applies the following formula to obtain the global standard
error vector (SE):

SE =
√
√
√
√diag

(
( i=K∑

i=1
H ′
i − NH

)−1
)

(23)

Having standard error values, the server calculates T statistics and p-value (P) as
follows:

T = β

SE
(24)

P = 1 − Ft(|T |2, 1) (25)

where Ft is CDF of χ2 distribution (degree of freedom is 1).
8. Result: The computation of association test results have been completed for all

chunks and the results are shared with all cohorts.

The client and server components of sPLINK has been written using the Python API of
the HyFed framework [53]. TheWebApp component has been implemented using Angu-
lar and HTML/CSS. sPLINK employs the algorithm-agnostic compensator of the HyFed
framework. The pandas package [54] is used in the client component to open the dataset
files while NumPy [55] is leveraged to pre-process the data and to compute the local
parameters. In the server component, the NumPy and SciPy [56] packages are used for
aggregation and computing p-values.
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Synopsis: We theoretically prove and experimentally show that deep neural network
(DNN) models trained on distributed data in a federated fashion can achieve the same
utility as those trained on the corresponding centralized data provided that particular
conditions are satisfied for the training algorithm, model, loss function, and optimizer
as the main components of DNN training. More precisely, if the (1) DNN model and
loss function are batch-independent and deterministic, (2) training algorithm selects
all clients, instruments them to perform a single local update per communication
round, and enforces the server to aggregate the local parameters from the clients
using sample size based weighted averaging, and (3) optimizer employs a linear
momentum function, then the models from the federated and centralized training are
equivalent, and thus, they provide identical utility. We refer to a training environment
satisfying the aforementioned conditions as utility-preserving federated learning
(UPFL). Next, we evaluate the properties of the existing DNN training components
to determine which one(s) can be incorporated in UPFL. Our evaluations indicate
that, for instance, the federated averaging algorithm, which performs multiple local
updates per round, does not hold the necessary conditions for UPFL. This is also the
case for the Adam optimizer and its variants that use non-linear momentum functions
as well as batch normalization, which is not a batch-independent layer. The federated
full gradient descent algorithm, on the other hand, can be incorporated in UPFL.
Moreover, the popular loss functions such as cross-entropy, the SGD optimizer, and
widely used layers including convolutional and linear layers also meet the necessary
conditions for UPFL. The main limitation of UPFL is remarkable communication
overhead. In other words, UPFL delivers ideal utility at the expense of network
communication efficiency.
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ABSTRACT
We investigate the concept of utility-preserving federated learning
(UPFL) in the context of deep neural networks. We theoretically
prove and experimentally validate that UPFL achieves the same ac-
curacy as centralized training independent of the data distribution
across the clients. We demonstrate that UPFL can fully take ad-
vantage of the momentum and weight decay techniques compared
to centralized training, but it incurs substantial communication
overhead. Ordinary federated learning, on the other hand, provides
much higher communication efficiency, but it can partially bene-
fit from the aforementioned techniques to improve utility. Given
that, we propose a method called weighted gradient accumulation
to gain more benefit from the momentum and weight decay akin to
UPFL, while providing practical communication efficiency similar
to ordinary federated learning.

CCS CONCEPTS
• Distributed machine learning → Federated learning; •Ma-
chine learning → Deep neural networks.
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Federated learning, Utility-preserving federated learning, Weighted
gradient accumulation
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1 INTRODUCTION
Deep neural networks (DNNs) have successfully been applied to a
diverse range of applications including computer vision [4], natural
language processing [20], and biomedicine [26]. DNNs, however,
depend on large-scale datasets to effectively train the model, which
is challenging to procure in a centralized fashion because of the
privacy concerns and regulations [6]. Federated learning (FL) [17]
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addresses this issue by enabling clients as data holders to collabo-
ratively train a global model under the orchestration of a central
server without sharing their private data with a third party [10].
FL, on the other hand, has faced several challenges including utility
(accuracy) and network communication. FL might deliver lower
accuracy compared to centralized training, especially if the data
is not independent and identically distributed (NonIID) across the
clients [8, 17]. FL can also incur high communication overhead,
exchanging considerable amount of traffic over the network [13].

Prior studies on the utility challenge mainly focus on narrow-
ing the accuracy gap between federated and centralized training.
FedProx [14] is a slightlymodified version of FederatedAveraging
(FedAvg), the de facto standard training algorithm in FL, which adds
a proximal term to the local loss functions of the clients to act as a
regularizer and enforce the local models not to be far from the global
one. FedNova [27] is another variant of FedAvg, which aggregates
the local updates by a normalized averaging method to eliminate
the inconsistencies between local updates. FedOpt [24] introduces
variants of the adaptive optimizers including Adam [11], which are
more efficient than the original counterparts in FL. Although these
methods further enhance performance in federated environments,
they do not deliver the same utility as centralized training.

In this study, we theoretically show FL can achieve utility iden-
tical to that from the centralized training provided that particular
conditions are satisfied for the model, training algorithm, optimizer,
and loss function as the major components in DNN training. In
more detail, if the (1) model and loss function are batch-independent
and deterministic, (2) training algorithm selects all clients in each
communication round, enforces the clients to carry out a single
local update per round, and employs sample-size based weighted
averaging at the server, and (3) optimizer computes the final gra-
dient values using a linear combination of the gradient values in
the current and previous iterations (based on momentum), then
the federated and centralized models are equivalent, and as a re-
sult, they achieve the same utility regardless of data distribution
across the clients. We refer to a federated environment consisting of
components satisfying the aforementioned properties as utility-
preserving federated learning (UPFL).

Next, we investigate the aforementioned properties for well-
known (1) training algorithms such as FedAvg and FedProx, feder-
ated full gradient descent (FedFGD), and federated single mini-batch
(FedSMB) [18] as its variant, (2) optimizers including SGD, Adam,
and its variants, (3) loss functions such as cross-entropy and focal
loss [16], and (4) model layers including the convolutional layer,
batch normalization (BatchNorm) [9], and group normalization
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(GroupNorm) [28]. Our analysis indicates that a federated envi-
ronment consisting of the FedFGD or FedSMB algorithm, SGD opti-
mizer, cross-entropy or any other batch-independent loss function,
and a model with widely-used layers except BatchNorm is utility-
preserving. We also experimentally validate the theoretical results
on CIFAR-10 [12] and Imagenette [7].

Our theoretical analysis and experimental evaluation provides
new insights into the utility challenge in federated environments:
(I) UPFL incorporates many DNN training components initially
designed for centralized training such as the SGD optimizer, cross-
entropy loss function, and models consisting of convolutional,
GroupNorm, and linear layers; (II) the main difference between
UPFL and ordinary FL is the training algorithm. While the former
is based on FedFGD or FedSMB, the latter leverages FedAvg or its
variants. Interestingly, the factor that distinguishes FedFGD/FedSMB
from FedAvg is the number of local updates per communication
round. The former algorithms perform a single local update, whereas
the latter one carries out multiple local updates per round.

Given that, we thoroughly investigate the impact of the number
of local updates per round on communication efficiency and utility.
Our results indicate that (I) UPFL (single local update per round)
requires a huge number of communication rounds for model con-
vergence; ordinary FL (multiple local updates per round), on the
other hand, dramatically enhances the communication efficiency
compared to UPFL; (II) UPFL can fully take advantage of the mo-
mentum and weight decay techniques to enhance model accuracy,
whereas ordinary FL can partially benefit from the aforementioned
techniques. Considering this observation, an interesting question
arises: How can a federated training algorithm benefit from mo-
mentum and weight decay considerably (ideally fully) with practical
communication efficiency (multiple local updates per round)?

As a first step towards addressing this question, we present a
method called weighted gradient accumulation (WGA), where
the local gradients in the initial updates have more weights than
those in the final updates during gradient accumulation at the
clients. The logic behind this idea is that the local models are closer
to the global model during initial local updates than the final ones.
We show WGA achieves higher accuracy gain using momentum
and weight decay compared to ordinary FL with a comparable
number of communication rounds.

In summary, we make the following contributions in this paper:

• We investigate the concept of UPFL in the context of deep
learning, and theoretically prove that it achieves the same
utility as centralized training regardless of the data distribu-
tion across the clients.

• We experimentally validate the theoretical results on two
different datasets.

• We illustrate UPFL can fully benefit from momentum and
weight decay, but incurs considerable communication over-
head. Ordinary FL, on the other hand, significantly improves
communication efficiency, but can partially take advantage
of the before-mentioned techniques.

• We introduce the WGA method to provide more accuracy
gain from momentum and weight decay compared to ordi-
nary FL with competitive communication efficiency.

2 METHOD
We first provide preliminary material on gradient descent, and cen-
tralized and federated training. Next, we present the properties
that DNN training components should hold to be incorporated in
UPFL, and formally prove UPFL achieves the same utility as cen-
tralized training. Finally, we analyze the characteristics of different
training algorithms, optimizers, loss functions, and model layers to
determine whether they satisfy the necessary conditions for UPFL.

2.1 Preliminaries
Gradient descent is the most commonly used optimization algorithm
for training DNNs. Assume that 𝑤 is a model parameter, 𝑔 is the
corresponding gradient, 𝑤𝑖 and 𝑔𝑖 are the values of 𝑤 and 𝑔 in
iteration 𝑖 , respectively, 𝜂 is learning rate, and V(𝑔𝑝 , . . . , 𝑔𝑖 ,★) is
the momentum function that computes the final gradient value (𝑝 is
also an iteration number and 𝑝 ≤ 𝑖). The gradient descent-based
optimizers update𝑤 as follows:

𝑤𝑖 = 𝑤𝑖−1 − 𝜂 · V(𝑔𝑝 , . . . , 𝑔𝑖 ,★) (1)
where ★means the function can take additional arguments.

Gradient descent comes with different versions including full
gradient descent (FGD) and mini-batch gradient descent
(MBGD). In FGD, the gradients are calculated using all samples of the
dataset, whereas MBGD computes the gradients using amini-batch of
samples from the dataset. Focusing on supervised learning tasks, let
D = [𝑆1, . . . , 𝑆𝑛] be a dataset of 𝑛 samples, where 𝑆 𝑗 indicates the 𝑗-
th sample of the dataset,𝑌 = [𝑦1, . . . , 𝑦𝑛] be a vector of target values
associated with the samples of D,M𝑊 be a model characterized
by a vector of parameters𝑊 , and L be a loss function. The FGD
gradient function corresponding to parameter𝑤 ∈𝑊 is:

G𝑤 (𝑊,D, 𝑌 ) = 𝜕L(𝑌,M𝑊 (D))
𝜕𝑤

,

𝐺𝑖 = [𝑔𝑖,1, . . . , 𝑔𝑖,𝑛], 𝑔𝑖 =
1
𝑛

𝑛∑︁
𝑗=1

𝑔𝑖, 𝑗 ,
(2)

where 𝑔𝑖, 𝑗 is the gradient value associated with 𝑗-th sample of D
in iteration 𝑖 , and𝐺𝑖 is a vector of gradient values corresponding
to all samples of D.

The MBGD algorithm first shuffles the dataset, and then divides it
into mini-batches of𝑚 samples. Assuming B is a mini-batch from
D, and 𝑌B is the corresponding vector of target values, we have:

G𝑤 (𝑊,B, 𝑌B) =
𝜕L(𝑌B ,M𝑊 (B))

𝜕𝑤
,

𝐺𝑖 = [𝑔𝑖,1, . . . , 𝑔𝑖,𝑚], 𝑔𝑖 =
1
𝑚

𝑚∑︁
𝑗=1

𝑔𝑖, 𝑗
(3)

Notice that FGD performs a single iteration (i.e. parameter update)
per epoch, while MBGD carries out ⌈ 𝑛𝑚 ⌉ iterations per epoch, where
epoch is the number of iterations required to employ all samples of
the dataset during training.

A federated training algorithm consists of a client selection pro-
cedure, local optimization method on the client side and an aggre-
gation function on the server side. Each selected client 𝑗 can apply
FGD, MBGD, or their variants as the local optimization method to
its dataset for computing 𝑤𝑙

𝑖, 𝑗 (the local value of parameter 𝑤 ) or
𝑔𝑙𝑖, 𝑗 (the local value of gradient 𝑔) in iteration 𝑖 . The aggregation
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function A instruments the server to aggregate the local values
of the parameter/gradient from 𝑘 clients in order to compute the
global value of the parameter:

𝑤𝑖 = A(𝑤𝑙
𝑖,1, . . . ,𝑤

𝑙
𝑖,𝑘 ,★) = 𝑤𝑖−1 − 𝜂 · A(𝑔𝑙𝑖,1, . . . , 𝑔𝑙𝑖,𝑘 ,★) (4)

Weighted averaging based on the train sample size is the widely
used aggregation function in FL. This function takes the weighted
average over the local values of the parameter/gradient from the
clients, in which the train sample size of a client determines its
relative weight during averaging:

A(𝑤𝑙
𝑖,1, . . . ,𝑤

𝑙
𝑖,𝑘 , 𝑛1, . . . , 𝑛𝑘 ) =

∑𝑘
𝑗=1 𝑛 𝑗 ·𝑤𝑙

𝑖, 𝑗∑𝑘
𝑗=1 𝑛 𝑗

(5)

A(𝑔𝑙𝑖,1, . . . , 𝑔𝑙𝑖,𝑘 , 𝑛1, . . . , 𝑛𝑘 ) =
∑𝑘

𝑗=1 𝑛 𝑗 · 𝑔𝑙𝑖, 𝑗∑𝑘
𝑗=1 𝑛 𝑗

, (6)

where 𝑛 𝑗 is the train sample size of client 𝑗 . In the remainder of the
paper, we refer to the aggregation functions in equations 5 and 6
simply as weighted averaging.

2.2 Utility-Preserving Federated Learning
We define a set of properties that training components should sat-
isfy for UPFL, and prove models trained by UPFL and centralized
training are equivalent.

Batch-independence: LetX = [𝑋1, . . . , 𝑋𝑚] be a batch of input
values, F be the mapping function of a DNN layer with parameters
𝑊 , and Y = [𝑌1, . . . , 𝑌𝑚] be the output of the layer, where Y =
F𝑊 (X). The layer is batch-independent if the output of the layer
for a particular input is independent of the other input values in
the batch, i.e. 𝑌𝑖 = F𝑊 (𝑋𝑖 ) for 𝑖 = {1, . . . ,𝑚} or in other words,
Y = [F𝑊 (𝑋1), . . . , F𝑊 (𝑋𝑚)]. A model is batch-independent if all
the constituent layers of the model are batch-independent.

Similarly, let L(𝑌,𝑌 ) be a loss function, and 𝑌 = [𝑦1, . . . , 𝑦𝑚]
and 𝑌 = [𝑦1, . . . , 𝑦𝑚] be batches of the target and predicted out-
put values, respectively. The loss function is batch-independent if it
computes the distance between a particular target and predicted
value independently of the other values in the batches; that is,
L(𝑌,𝑌 ) = [L(𝑦1, 𝑦1), . . . ,L(𝑦𝑚, 𝑦𝑚)].

Determinism: A layer is deterministic if applying the layer to
the same input always produces the same output. In other words,
the mapping function of the layer is not a randomized function. A
model is deterministic if all layers of the model are deterministic.

Momentum function linearity: The momentum function of
an optimizer is linear if the function linearly combines the gradient
values from iteration 𝑝 to current iteration 𝑖 for obtaining the final
gradient value to update the parameter:

V(𝑔𝑝 , . . . , 𝑔𝑖 , 𝛼𝑝 , . . . , 𝛼𝑖 ) = 𝛼𝑝 · 𝑔𝑝 + . . . + 𝛼𝑖 · 𝑔𝑖 , (7)
where 𝛼𝑝 , . . ., 𝛼𝑖 are constant values.

Proposition 2.1. Federated learning and centralized training
using full gradient descent are equivalent, that is the parameters from
the federated and centralized models are identical in each iteration, if
the (1) model is batch-independent and deterministic, (2) loss function
is batch-independent, (3) optimizer uses a linear momentum function,
and (4) training algorithm selects all clients, the clients perform a
single local update per communication round using all samples of

their datasets, and the server employs weighted averaging as the
aggregation function.

Proof. The proof can be found in Appendix A. □

The equivalence between the federated and centralized training
implies the corresponding models achieve the same utility. In other
words, federated learning fully preserves the utility compared to
centralized training.

2.3 Suitability Analysis
We explore the properties of well-known training algorithms, opti-
mizers, model layers, and loss functions to determine which one
can be incorporated in UPFL.

2.3.1 Federated Training Algorithms. The algorithms differ from
each other in the number of local updates per round and the aggre-
gation method assuming that all clients are selected for training in
each communication round. FedAvg is the de facto standard algo-
rithm for FL, which instruments the clients to use MBGD for local
optimization and server to employ weighted averaging as the ag-
gregation function. Each client 𝑗 with train sample size 𝑛 𝑗 performs
𝜏 𝑗 = 𝑒 · ⌈𝑛 𝑗

𝑚 ⌉ local updates in each round, where 𝑒 is the number
of local epochs, and𝑚 is the batch size. FedProx and FedNova are
modified versions of FedAvg, but the number of local updates per
round in both algorithms is the same as FedAvg.

In FedAvg and its variants, the batch size and number of local
updates per round are coupled to each other because the batch size
determines both the number of training samples in the batch and
the number of local updates per round. The algorithm proposed
by [18] (we refer to it as federated constant-mini-batches (FedCMB)
addresses this issue by specifying the number of local updates (or
mini-batches) and batch size using two different hyper-parameters,
where the clients perform a constant (and multiple) number of local
updates per round independently of the given batch size.

FedFGD, on the other hand, enforces the clients to conduct a
single local update using all samples of their local datasets in each
round and leverages weighted averaging as the aggregation func-
tion at the server. FedSMB [18] is a variant of FedFGD in which the
clients perform one local update per round using a singlemini-batch
of samples instead of the whole dataset.

Given that, FedFGD satisfies the necessary conditions outlined
in Proposition 2.1, which is not the case for FedAvg, FedProx, and
FedNova because they conduct multiple local updates per round.
Regarding FedSMB, we can replace D𝑙

𝑗 (the local dataset of client
𝑗 ) with B𝑙

𝑗 (a mini-batch of size𝑚 from D𝑙
𝑗 ), and D (centralized

dataset) with
⋃𝑘

𝑗=1 B𝑙
𝑗 (the aggregation of the local mini-batches of

𝑘 clients) in the proof of Proposition 2.1 (Appendix A). For a given
communication round, the federated training with FedSMB of batch
size𝑚 becomes equivalent to the centralized training with MBGD of
batch size𝑚 · 𝑘 , where 𝑘 is the number of clients. Notice that an
additional assumption should be made here: the train sample sizes
of the clients are identical and divisible by the mini-batch size𝑚.

Corollary 2.2. FedFGD and FedSMB can be incorporated as train-
ing algorithms in UPFL.
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2.3.2 Optimizers. The stochastic gradient descent based optimizers
including SGD, Adam, and its variants employ different momentum
functions to compute the final gradient value for updating the
model parameters. The SGD optimizer calculates the final gradient
value as follows:

𝜐𝑖 = 𝜉 · 𝜐𝑖−1 + 𝑔𝑖 ,
where 𝜉 is the momentum value, and 𝜐0 = 0. In other words, the
momentum function of SGD takes the momentum value 𝜉 and the
gradient values from the first iteration to the current iteration 𝑖 > 1
as inputs, and linearly combines them:

V𝑆𝐺𝐷 (𝑔1, . . . , 𝑔𝑖 , 𝜉) = 𝜉𝑖−1 ·𝑔1 + . . . + 𝜉𝑖−𝑘 ·𝑔𝑘 + . . . +𝑔𝑖 , 1 ≤ 𝑘 ≤ 𝑖 .

Given Equation 7, the momentum function of SGD is linear, where
𝛼𝑘 = 𝜉𝑖−𝑘 .

The Adam optimizer computes the final gradient value 𝑔𝑓 as
follows:
𝜐𝑖 = 𝛽1 · 𝜐𝑖−1 + (1 − 𝛽1) · 𝑔𝑖 , 𝛾𝑖 = 𝛽2 · 𝛾𝑖−1 + (1 − 𝛽2) · (𝑔𝑖 )2

𝜐𝑖 =
𝜐𝑖

1 − (𝛽1)𝑖
, 𝛾𝑖 =

𝛾𝑖
1 − (𝛽2)𝑖

, 𝑔𝑓 =
𝜐𝑖√
𝛾𝑖 + 𝜖

,

where the coefficients 𝛽1 and 𝛽2 are hyper-parameters, and 𝜐0 =
𝛾0 = 0. According to the formulas, Adam’s momentum function
is not linear (notice (𝑔𝑖 )2 and √

𝛾𝑖 ). Likewise, the other adaptive
optimizers including AdaMax [11], Adadelta [29], and Adagrad [2]
employ non-linear momentum functions.

Corollary 2.3. SGD employs a linear momentum function, and
thus, SGD satisfies the necessary condition for UPFL.

2.3.3 Loss Functions. A loss function L(𝑦,𝑦) provides a criterion
that measures the distance between the value predicted by the
model, i.e. 𝑦, and the target value 𝑦 for a particular input 𝑥 . Given
a batch-independent model, the binary cross-entropy loss function,
for example, calculates the loss value as follows:

L(𝑦,𝑦) = −(𝑦 · log(𝑦) + (1 − 𝑦) · log(1 − 𝑦))
Ŷ = [𝑦1, . . . , 𝑦𝑚], L(Y, Ŷ) = [L(𝑦1, 𝑦1), . . . ,L(𝑦𝑚, 𝑦𝑚)]

This indicates binary cross-entropy is batch-independent. This is
also the case for other popular loss functions such as multi-class
cross-entropy and focal loss.

Corollary 2.4. All widely-used loss functions including cross-
entropy and focal loss are batch-independent. Thus, they can be em-
ployed as loss function in UPFL.

2.3.4 Model Layers. A model layer can be considered as a func-
tion that maps a given input to output. For instance, the mapping
function of BatchNorm is as follows:

𝜇𝑋 =
1
𝑚

·
𝑚∑︁
𝑖=1

𝑋𝑖 , 𝜎2
𝑋 =

1
𝑚

·
𝑚∑︁
𝑖=1

(𝑋𝑖 − 𝜇𝑋 )2,

𝑋𝑖 =
𝑋𝑖 − 𝜇𝑋√︃
𝜎2
𝑋 + 𝜖

, 𝑌𝑖 = 𝛾 · 𝑋𝑖 + 𝛽 = F𝛾,𝛽 (𝑋1, . . . , 𝑋𝑚),

where [𝑋1, . . . , 𝑋𝑚] is the input batch of size𝑚, 𝑋𝑖 is the 𝑖𝑡ℎ input
element in the batch, 𝑌𝑖 is the corresponding output, 𝜇𝑋 and 𝜎2

𝑋 are
the mean and variance of the input batch, respectively, 𝜖 is a small
constant for numerical stability, and 𝛾 and 𝛽 are the BatchNorm’s
learnable parameters.

As another example, the output of each neuron in the fully-
connected layer is a linear transformation of the input:

𝑌𝑖 = 𝑤 · 𝑋𝑖 + 𝑏 = F𝑤,𝑏 (𝑋𝑖 ),
where𝑤 and 𝑏 are the learnable parameters of the layer.

According to the equations, the output of BatchNorm for a partic-
ular input element depends on the other input values in the batch,
and consequently, the BatchNorm layer is not batch-independent.
The fully-connected layer, on the other hand, computes the out-
put for each element independently of the other elements in the
batch. Thus, the fully-connected layer is batch-independent. The
batch-independence property also holds for other layers widely
used in image vision such as convolutional, max/average-pooling,
GroupNorm, as well as activation functions including ReLU. These
layers are deterministic too.

Corollary 2.5. Most of the widely-adopted layers in image vi-
sion such as the convolutional, fully-connected (linear), max/average-
pooling, and GroupNorm, and all activation functions including ReLU
are batch-independent and deterministic, and as a result, they can be
incorporated in UPFL.

Note that if a component does not satisfy the necessary con-
ditions for UPFL, the weights from the federated and centralized
models become different (Proof of Proposition 2.1 in Appendix A).
Theoretically, this does not imply the federatedmodel delivers lower
utility compared to the centralized model. However, the component
typically causes utility reduction in practice under NonIID settings
as also shown in prior studies [15, 17, 24]. For instance, FedAvg,
which performs multiple local updates per round, achieves lower ac-
curacy than centralized training [14, 17]. BatchNorm, which is not
a batch-independent layer, dramatically reduces utility in federated
environments [15]. Adaptive optimizers including Adam, which
are not based on a linear momentum function, result in significant
accuracy reduction in FL compared to centralized training [24].

3 EXPERIMENTAL VALIDATION
We experimentally validate the theoretical results from Section 2.
In the following, we first describe the datasets, models, and training
procedures used in the experiments (more details in Appendix B),
and then provide the results.

Datasets. The CIFAR-10 dataset [12] includes 50000 train and
10000 test samples of shape 32×32 from 10 classes. The Imagenette
dataset [7] is a subset of Imagenet [1], containing 9469 train and
3925 test samples from 10 ”easily classified” classes. The feature
values of the samples in both datasets are divided by 255. The
samples of Imagenette are resized to 128×128.

Models.We employ the VGG-6 architecture from [21, 25] and
the original implementation of ResNet-18 [5] from PyTorch [22].
VGG-6 consists of the convolutional, max-pooling, average-pooling,
and fully-connected layers. ResNet-18 includes GroupNorm in ad-
dition to the aforementioned layers. Both models use ReLU as the
activation function.

Centralized training. The VGG-6 and ResNet-18 models are
trained on 25000 training samples from CIFAR-10 and 5000 training
samples from Imagenette, respectively (due to the memory limita-
tion regarding FGD). The loss function is cross-entropy; optimizer
is SGD with momentum of 0.9. For the FGD algorithm, the VGG-6
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Table 1: Mean square error (MSE) between the model weights from the centralized and FedFGD-based UPFL. The centralized
and federated models have the same weights, ignoring the numerical errors during computations; IID: 10 classes per client;
Moderately-NonIID: 5 classes per client; Extremely-NonIID: 1 class per client.

(a) VGG-6-CIFAR-10

Iteration/Round IID Moderately-NonIID Extremely-NonIID

1 4 × 10−20 4 × 10−20 4 × 10−20

10 2 × 10−17 2 × 10−17 2 × 10−17

100 1 × 10−15 1 × 10−15 8 × 10−16

1000 1 × 10−8 3 × 10−8 1 × 10−8

10000 5 × 10−7 6 × 10−7 3 × 10−7

(b) ResNet-18-Imagenette

Iteration/Round IID Moderately-NonIID Extremely-NonIID

1 2 × 10−19 2 × 10−19 2 × 10−19

10 2 × 10−15 1 × 10−15 2 × 10−15

100 1 × 10−11 2 × 10−11 4 × 10−12

1000 1 × 10−9 2 × 10−9 1 × 10−9

2500 3 × 10−9 3 × 10−9 2 × 10−9

Table 2: Test accuracy of the models from the centralized and UPFL. The federated models achieve very close accuracy values
compared to the corresponding centralized models independent of data distribution across the clients.

(a) FGD/FedFGD

Model Dataset Centralized IID Moderately-NonIID Extremely-NonIID
VGG-6 CIFAR-10 64.66±0.40 64.59±0.28 64.55±0.30 64.68±0.28
ResNet-18 Imagenette 65.69±0.10 65.68±0.29 65.47±0.49 65.67±0.17

(b) MBGD/FedSMB

Model Dataset Centralized IID Moderately-NonIID Extremely-NonIID
VGG-6 CIFAR-10 75.41±0.16 75.42±0.10 75.44±0.32 75.45±0.26
ResNet-18 Imagenette 62.34±0.25 62.46±0.25 62.66±0.88 62.26±0.69

and ResNet-18 models are trained for 10000 and 2500 iterations,
respectively. The initial learning rates are 0.01 and 0.001, which
are reduced by factor of 0.99 every 20 and 5 iterations for the VGG-
6-CIFAR-10 and ResNet-18-Imagenette case studies, respectively.
For the MBGD algorithm, VGG-6 and ResNet-18 are trained with
learning rate of 0.0125 for 50 epochs (i.e. 12500 and 2500 iterations,
respectively) with batch size of 100.

Federated training. The federated environments consist of 10
clients, where the centralized CIFAR-10 and Imagenette datasets
(with 25000 and 5000 training samples, respectively) have evenly
been distributed across the clients. We consider three different
class distributions among the clients: (1) IID, where each client
has samples from all 10 classes, (2) moderately NonIID, in which
each client has samples from only 5 classes, and (3) extremely
NonIID, where the clients have samples only from a single class.
The federated training algorithms are FedFGD and FedSMB, and
all clients are selected in each communication round. The loss
function, optimizer, models, learning rate decay procedure, and
number of communication rounds (iterations) are the same as the
corresponding centralized training. Moreover, the global models
are initialized with the same weights as the associated centralized
models. Note that the federated environments are utility-preserving
according to Section 2.

Results. Table 1 lists the mean square error (MSE) between
the model weights from the centralized and FedFGD-based UPFL
for both VGG-6-CIFAR-10 and ResNet-18-Imagenette case studies.
According to the table, the MSE values are close to zero, and as
a result, the weight of the models are identical up to numerical
precision. The insignificant difference between the model weights
is due to the numerical errors from gradient computation, weighted
averaging, and etc. Given that, the centralized and federated models
have the same weights, which validates Proposition 2.1.

Table 2 shows the test accuracy values achieved by the models
trained using FGD and MBGD in centralized setting and using FedFGD
and FedSMB in utility-preserving federated setting. The federated
models deliver accuracy values highly close to those from the cor-
responding centralized models regardless of the data distribution
across the clients. This indicates UPFL preserves utility compared
to centralized training (indeed implied by our theoretical analysis).

4 PRACTICAL APPLICATION
According to our theoretical analysis and experimental validation,
(1) UPFL achieves the same utility as centralized training, (2) many
of the components popular in centralized training such as the cross-
entropy loss function, SGD optimizer, and convolutional layer can
be incorporated into UPFL too, and (3) one of the main charac-
teristics that differentiates UPFL from ordinary FL is the training
algorithm, or more precisely, the number of local updates per com-
munication round in the training algorithm. In UPFL, the clients
perform exactly one local update per round, whereas ordinary FL
enforces the clients to conduct multiple local updates per round.
Given that, we delve more deeply into the impact of the number
of local updates on utility and communication efficiency. Here is a
brief description of the datasets, models, and training procedures
employed in the experiments (more details in Appendix B).

Datasets. CIFAR-100 includes samples from 100 classes, mak-
ing it a more challenging dataset than its CIFAR-10 counterpart.
We also created our own ImageNet subset, ImageNet-50, which is
more difficult to classify compared to Imagenette. ImageNet-50 con-
tains 25000 training (500 samples per class) and 5000 (100 samples
per class) test samples of shape 160×160 from 50 classes, which
are easy-to-classify using pretrained ResNet-18/34/50, DenseNet-
121/161/169, and EfficientNet-b0/b1. For data augmentation, the
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train samples of CIFAR-100 are randomly cropped after 4×4 padding,
horizontally flipped, and normalized using mean and standard de-
viation (ST) of the dataset. Similarly, we apply horizontal flipping,
and random cropping of shape 128×128 to the train samples of
ImageNet-50, and normalize them using mean and ST of ImageNet.

Models.We adopt the GroupNorm-based VGG-11 and ResNet-
18 as models. Both models contain only batch-independent and
deterministic layers.

Centralized training. We train VGG-11 and ResNet-18 on
CIFAR-100 and ImageNet-50, respectively, in three different configu-
rations: (1) zero-momentum and zero-weight-decay, (2) momentum
of 0.9 and zero-weigh-decay, and (3) momentum of 0.9 and weight
decay of 0.0005. The loss function is cross-entropy, optimizer is
SGD, and training algorithm is MBGD with batch size of 100.

Federated training. The federated environments in both VGG-
11-CIFAR-100 and ResNet18-ImageNet-50 case studies include 10
clients. In the former, each client has 5000 samples from 10 classes,
wheres the clients have 2500 samples from 5 classes in the latter.
Thus, the class distribution across the clients can be contemplated
as highly NonIID in both cases. The optimizer, loss function, and
configurations (i.e. momentum and weight decay) are the same as
those in centralized training. We consider three different number
of local updates per round: single, few, and many, where the clients
perform 1, 5, and 100 local updates per round, respectively. The
data augmentation at the clients is the same as centralized training.

Our observations show that applying momentum and weight
decay on the client-side does not provide an accuracy gain if clients
perform multiple local updates per round, and thus, we apply them
on the server-side as follows:

𝑔𝑖 =

∑𝑘
𝑗=1 𝑛𝑖, 𝑗 · 𝑔𝑙𝑖, 𝑗∑𝑘

𝑗=1 𝑛𝑖, 𝑗
, 𝑢𝑖 = 𝜉𝑠 ·𝑢𝑖−1+𝑔𝑖+𝜆𝑠 ·𝑤𝑖−1, 𝑤𝑖 = 𝑤𝑖−1−𝜂 ·𝑢𝑖 ,

where 𝑔𝑙𝑖, 𝑗 is the accumulated gradient value from client 𝑗 in round
𝑖 , 𝑛𝑖, 𝑗 is the number of samples used for training, 𝜉𝑠 and 𝜆𝑠 are the
server-side momentum and weight decay, respectively, and 𝑢0=0.

Results. Tables 3-4 list the test accuracy values and communi-
cation rounds for different number of local updates per round and
batch sizes, respectively. As shown in the tables, (1) UPFL (single
local update per round) fully takes advantage of momentum and
weight decay to improve accuracy compared to centralized training,
but incurs substantial communication overhead, (2) ordinary FL
(multiple local updates per round) remarkably enhances commu-
nication efficiency; however, it partially benefits from momentum
and weight decay, (3) smaller batch sizes deliver higher accuracy
than larger ones. In other words, UPFL sacrifices network efficiency
to achieve ideal utility and to benefit from momentum and weight
decay fully. Ordinary FL, on the other hand, aims to improve com-
munication efficiency, which leads to utility reduction and partial
benefit from the aforementioned techniques.

Because both utility and network communication are crucial
factors in FL, this question arises: How can a federated training
algorithm take advantage of momentum and weight decay consider-
ably (ideally completely) while maintaining practical communication
efficiency by performing multiple local updates per round?

As an initial step towards addressing that question, we propose
a method called weighted gradient accumulation (WGA), in which

the local gradients of the clients from initial iterations (updates)
have more weights than those in the final iterations during gradient
accumulation on the client side. The logic behind WGA is that the
local models in the initial iterations are closer to the global model
than those in final ones. Assuming that a given client performs
𝜏 local updates per round, WGA computes the final accumulated
gradient as follows:

𝑔𝑙𝑎𝑐𝑐 = 𝛼1 · 𝑔𝑙1 + . . . + 𝛼𝜏 · 𝑔𝑙𝜏 , where 𝛼1 > 𝛼2 > . . . > 𝛼𝜏 = 1 (8)

In our experiments, for instance, we set 𝛼1=𝜏 , and 𝛼𝑖=(𝑖 − 2)·
1− 𝜏

2
𝜏−2 + 𝜏

2 for 2 ≤ 𝑖 ≤ 𝜏 . That is, the coefficients of the first and
second iterations are 𝜏 and 𝜏

2 , respectively, and are linearly reduced
from 𝜏

2 to 1 in the remaining iterations.
Table 5 and Figure 1 show the test accuracy and communica-

tion efficiency of WGA (combined with FedCMB) and FedCMB (𝜏=5) as
baseline, respectively. WGA provides more accuracy gain using the
momentum and weight decay techniques, and enhances communi-
cation efficiency compared to FedCMB.

5 RELATEDWORK
Some of the related work on the utility challenge in FL are experi-
mental works that investigate the model performance in different
federated settings. The study from [8] performs extensive experi-
ments using various datasets to understand the impact of NonIID
data on the performance of the federated models. It concludes that
distributed learning over NonIID data is a burdensome problem
whose difficulty highly depends on the degree of the data hetero-
geneity. Similarly, the work by [23] evaluates the impact of the
data heterogeneity on FL for medical imaging, and suggest several
strategies to mitigate the utility reduction in the NonIID federated
scenarios. Our analysis, on the other hand, indicates that the ad-
verse impact of NonIID data on utility is only the case for ordinary
FL, where clients perform multiple local updates per round. In other
words, NonIID data is not a challenge for UPFL, which can provide
the same accuracy as the centralized training regardless of data
distribution across clients.

Another category of studies including FedProx [14] and FedNova
[27] propose new training algorithms to mitigate the performance
issues of FedAvg in the NonIID federated environments as we dis-
cussed in Section (1). Although they partially alleviate the utility
problem of FedAvg, they cannot still achieve the same utility as cen-
tralized training. Our study, however, theoretically and experimen-
tally demonstrate that a model trained under the UPFL environment
can provide utility identical to centralized training.

The other line of work focuses on simple algorithms in NonIID
federated environments. sPLINK [19] develops federated versions
of the chi-square, linear, and logistic regression algorithms. Sim-
ilarly, Flimma [30] and Fever-PCA [3] implement the federated
linear regression and principal component analysis algorithms.
These studies indeed demonstrate that the federated algorithms
are equivalent to the corresponding centralized counterparts, and
therefore, they provide the same utility as centralized training. Our
study takes a similar approach, but in the context of deep neural
networks, which is more challenging and complicated than the
aforementioned methods.
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Table 3: Test accuracy versus the number of local updates per round (𝜏) and batch size (𝑚) with and without server-side
momentum (𝜉𝑠 ) and weight decay (𝜆𝑠 ): Single/multiple local update(s) per round can fully/partially benefit from momentum
and weight decay; Smaller batch sizes achieve higher accuracy; Δ: accuracy gain from momentum and weight decay.

(a) VGG-11-CIFAR-100

Environment Algorithm 𝜏 𝑚 (𝜉𝑠=0, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=5𝑒-4) Δ

Centralized MBGD NA 100 66.47±0.07 68.55±0.15 72.55±0.09 6.08
UPFL FedSMB 1 10 66.54±0.41 68.65±0.19 72.50±0.21 5.96
FL FedCMB 5 10 66.36±0.35 67.33±0.01 68.71±0.19 2.35
FL FedAvg 5 1000 62.26±0.09 63.06±0.31 62.35±0.06 0.80
FL FedCMB 100 10 66.78±0.14 66.66±0.54 67.19±0.47 0.41
FL FedAvg 100 50 64.68±0.11 64.49±0.31 64.86±0.39 0.18

(b) ResNet-18-ImageNet-50

Environment Algorithm 𝜏 𝑚 (𝜉𝑠=0, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=5𝑒-4) Δ

Centralized MBGD NA 100 64.58±0.25 67.73±0.13 74.13±0.17 9.55
UPFL FedSMB 1 10 64.55±0.06 67.83±0.20 74.20±0.13 9.65
FL FedCMB 5 10 64.35±0.18 65.62±0.61 66.67±0.60 2.32
FL FedAvg 5 500 60.95±0.69 62.36±0.37 62.48±0.46 1.53
FL FedCMB 100 10 65.19±0.80 65.23±0.31 65.68±0.52 0.49
FL FedAvg 100 25 64.95±0.20 65.65±0.22 65.08±0.37 0.70

Table 4: Communication rounds versus local updates per round (𝜏): More local updates per round requires fewer communication
rounds for model convergence, improving communication efficiency.

(a) VGG-11-CIFAR-100

Environment Algorithm 𝜏 𝑚 (𝜉𝑠=0, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=5𝑒-4)
UPFL FedSMB 1 10 90000 55000 90000
FL FedCMB 5 10 10000 9000 10000
FL FedAvg 5 1000 5000 4000 5000
FL FedCMB 100 10 2500 2000 2500
FL FedAvg 100 50 2500 2000 2500

(b) ResNet-18-ImageNet-50

Environment Algorithm 𝜏 𝑚 (𝜉𝑠=0, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=0) (𝜉𝑠=0.9, 𝜆𝑠=5𝑒-4)
UPFL FedSMB 1 10 98000 60000 98000
FL FedCMB 5 10 8000 7000 8000
FL FedAvg 5 500 4000 3500 4000
FL FedCMB 100 10 4000 4000 4000
FL FedAvg 100 25 3500 3500 3500

Table 5: Weighted gradient accumulation (WGA) improves test accuracy, and benefits more from momentum and weight decay
compared to the baseline.

Algorithm Model Dataset 𝜏 𝜉𝑠 𝜆𝑠 Accuracy Δ

FedCMB VGG-11 CIFAR-100 5 0.0 0.0 66.36±0.35 —
FedCMB VGG-11 CIFAR-100 5 0.9 5𝑒-4 68.71±0.19 2.35

FedCMB+WGA (ours) VGG-11 CIFAR-100 5 0.9 5𝑒-4 69.34±0.08 2.98

FedCMB ResNet-18 ImageNet-50 5 0.0 0.0 64.35±0.18 —
FedCMB ResNet-18 ImageNet-50 5 0.9 5𝑒-4 66.67±0.60 2.32

FedCMB+WGA (ours) ResNet-18 ImageNet-50 5 0.9 5𝑒-4 67.77±0.13 3.42
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Figure 1: Weighted gradient accumulation (WGA) enhances communication efficiency compared to the baseline.

6 CONCLUSION AND FUTUREWORK
In the context of deep learning, we define utility-preserving feder-
ated learning as an environment in which the DNN model is batch-
independent and deterministic, loss function is batch-independent
too, optimizer employs linear momentum function, and federated
training algorithm selects all clients to participate in training, in-
struments them to perform a single local update per round, and
enforces the server to apply weighted averaging during aggrega-
tion. Next, we theoretically prove and experimentally validate UPFL
can provide the same utility as centralized training, and thus, it
preserves the model utility compared to centralized training.

Our analysis shows the main property that distinguishes UPFL
from ordinary FL is the number of local updates per round. The
clients in UPFL carry out exactly one local update per round, while
ordinary FL instruments the clients to perform multiple local up-
dates per round. Our evaluations demonstrate the former incurs
considerable communication overhead, but it can fully benefit from
the momentum and weight decay techniques to improve accuracy.
The latter remarkably enhances communication efficiency; however,
it can partially take advantage of the before-mentioned techniques.
Given that, we propose weighted gradient accumulation to combine
the benefits of UPFL and ordinary FL, and illustrate it can bene-
fit from momentum and weight decay more akin to UPFL, while
providing higher communication efficiency similar to ordinary FL.

We focus on cross-silo federated learning [10], where all clients
are selected in each round. Theoretical analysis and empirical study
of UPFL andWGA for cross-device FL, in which a fraction of clients
are chosen to participate in training, is an interesting direction for
future works.
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A PROOFS
Additivity. A gradient function has the additive property with
respect to input batch if the underlying loss function and model
are batch-independent and deterministic.

Proof. LetL be the loss function,M𝑊 be the model, and𝑤 be a
learnable parameter of the model. Because L is batch-independent
and M𝑊 is deterministic and batch-independent, the resulting
gradient function G𝑤 is deterministic and batch-independent too.
Therefore, G𝑤 calculates the gradient value for each sample deter-
ministically, and independently of the other samples in the batch,
and as a result, the gradient values can be grouped into arbitrary
batches. That is, if B, B1, . . ., B𝑘 are batches of sizes𝑚,𝑚1, . . .,𝑚𝑘 ,
respectively, and B = B1

⋃
. . .

⋃B𝑘 and B𝑝
⋂B𝑞 = ∅ for 𝑝 ≠ 𝑞,

we have:
G𝑤 (𝑊,B, 𝑌B) =

𝜕L(𝑌B ,M𝑊 (B))
𝜕𝑤

=
𝜕L(𝑌1,M𝑊 (𝑆1))

𝜕𝑤

⋃
. . .

⋃ 𝜕L(𝑌𝑚,M𝑊 (𝑆𝑚))
𝜕𝑤

=
𝑚1⋃
𝑟=1

𝜕L(𝑌𝑟 ,M𝑊 (𝑆𝑟 ))
𝜕𝑤

⋃
. . .

𝑚⋃
𝑟=𝑚−𝑚𝑘+1

𝜕L(𝑌𝑟 ,M𝑊 (𝑆𝑟 ))
𝜕𝑤

=
𝜕L(𝑌B1 ,M𝑊 (B1))

𝜕𝑤

⋃
. . .

⋃ 𝜕L(𝑌B𝑘
,M𝑊 (B𝑘 ))
𝜕𝑤

= G𝑤 (𝑊,B1, 𝑌B1 )
⋃

. . .
⋃

G𝑤 (𝑊,B𝑘 , 𝑌B𝑘
) □

□

Proposition 2.1. Federated learning and centralized training us-
ing full gradient descent are equivalent if the (1) model is batch-
independent and deterministic, (2) loss function is batch-independent,
(3) optimizer uses a linear momentum function, and (4) training al-
gorithm selects all clients, the clients perform a single local update
per communication round using all samples of their local datasets,
and the server employs weighted averaging as the aggregation
function.

Proof. Assume a centralized environment with dataset D =
[𝑆1, ..., 𝑆𝑛] of 𝑛 samples and the corresponding target vector 𝑌 =
[𝑦1, ..., 𝑦𝑛], and a federated setting consisting of 𝑘 clients, where
D𝑙

𝑗 , 𝑌
𝑙
𝑗 , and 𝑛 𝑗 indicate the local dataset, target vector, and train

sample size of client 𝑗 , respectively. Moreover, the aggregation of
the clients’ data is the same as the centralized data: D =

⋃𝑘
𝑗=1 D𝑙

𝑗 ,
𝑌 =

⋃𝑘
𝑗=1 𝑌

𝑙
𝑗 , 𝑛 =

∑𝑘
𝑗=1 𝑛 𝑗 ,D𝑙

𝑝
⋂D𝑙

𝑞 = ∅ and 𝑌 𝑙
𝑝
⋂
𝑌 𝑙
𝑞 = ∅ for 𝑝 ≠ 𝑞.

In the centralized setting, modelM𝑊 characterized by a vector of
parameters𝑊 is trained on datasetD. In the federated environment,
the clients train the same modelM𝑊 on their local datasets. The
initial value of 𝑤 ∈𝑊 for both federated and centralized models
are identical. The clients and centralized training utilize the same
optimizer O and loss function L.

Let 𝑤 ∈ 𝑊 be a model parameter, 𝑤 𝑓
𝑖 and 𝑤𝑐

𝑖 be the (global)
value of𝑤 from the federated and centralized training in iteration 𝑖 ,
respectively.We prove by induction that𝑤 𝑓

𝑖 = 𝑤𝑐
𝑖 for every iteration

𝑖 ≥ 1.
^ Base case (i=0):𝑤 𝑓

0 = 𝑤𝑐
0 according to the assumption that the

initial values of𝑤 𝑓
𝑖 and𝑤𝑐

𝑖 are identical.
^ Inductive hypothesis: Assume𝑤 𝑓

1 =𝑤𝑐
1 , . . .,𝑤

𝑓
𝑖−1 =𝑤𝑐

𝑖−1.^ Inductive step: Based on the properties of the federated training
algorithm, all 𝑘 clients are selected in each round, and each selected
client 𝑗 first computes the local values of gradients for its 𝑛 𝑗 train
samples, then calculates the local value of gradient in the current
iteration by taking average over the gradients from all 𝑛 𝑗 samples,
and finally computes the local value of𝑤 :

𝐺𝑙
𝑖, 𝑗 = [𝑔𝑖, 𝑗,1, . . . , 𝑔𝑖, 𝑗,𝑛 𝑗 ], 𝑔𝑙𝑖, 𝑗 =

1
𝑛 𝑗

𝑛 𝑗∑︁
ℎ=1

𝑔𝑖, 𝑗,ℎ

𝑤𝑙
𝑖, 𝑗 = 𝑤

𝑓
𝑖−1 − 𝜂 · (𝛼𝑝 · 𝑔𝑙𝑝,𝑗 + . . . + 𝛼𝑖 · 𝑔𝑙𝑖, 𝑗 )

Notice that the momentum function of the optimizer is linear ; thus,
a linear combination of the final gradient values from iterations 𝑝
to 𝑖 is employed to calculate the parameter’s local value.

On the server, the global value of𝑤 is calculated by aggregating
the local values of𝑤 from all 𝑘 clients using weighted averaging:

𝑤
𝑓
𝑖 =

1∑𝑘
𝑗=1 𝑛 𝑗

· (𝑛1 ·𝑤𝑙
𝑖,1 + . . . + 𝑛𝑘 ·𝑤𝑙

𝑖,𝑘 )

=
1
𝑛
· 𝑛1 · (𝑤 𝑓

𝑖−1 − 𝜂 · (𝛼𝑝 · 𝑔𝑙𝑝,1 + . . . + 𝛼𝑖 · 𝑔𝑙𝑖,1)) + . . .

. . . + 1
𝑛
· 𝑛𝑘 · (𝑤 𝑓

𝑖−1 − 𝜂 · (𝛼𝑝 · 𝑔𝑙𝑝,𝑘 + . . . + 𝛼𝑖 · 𝑔𝑙𝑖,𝑘 ))

= 𝑤
𝑓
𝑖−1 −

1
𝑛
· 𝜂 · 𝛼𝑝 · (𝑛1 · 𝑔𝑙𝑝,1 + . . . + 𝑛𝑘 · 𝑔𝑙𝑝,𝑘 ) − . . .

. . . − 1
𝑛
· 𝜂 · 𝛼𝑖 · (𝑛1 · 𝑔𝑙𝑖,1 + . . . + 𝑛𝑘 · 𝑔𝑙𝑖,𝑘 )

= 𝑤
𝑓
𝑖−1 − 𝜂 · 𝛼𝑝 · 1

𝑛
· (

𝑛1∑︁
ℎ=1

𝑔𝑝,1,ℎ + . . . +
𝑛𝑘∑︁
ℎ=1

𝑔𝑝,𝑘,ℎ) − . . .

. . . − 𝜂 · 𝛼𝑖 · 1
𝑛
· (

𝑛1∑︁
ℎ=1

𝑔𝑖,1,ℎ + . . . +
𝑛𝑘∑︁
ℎ=1

𝑔𝑖,𝑘,ℎ)

The aggregation of the clients’ data is identical to the centralized
data, model is deterministic and batch-independent, and loss func-
tion is batch-independent. Thus, the gradient function holds the
additive property, and the gradient values from the clients in a par-
ticular iteration can be grouped into a single batch of gradients
corresponding to all samples:

= 𝑤
𝑓
𝑖−1 − 𝜂 · 𝛼𝑝 · 1

𝑛
· (𝑔𝑝,1 + . . . + 𝑔𝑝,𝑛) − . . .

. . . − 𝜂 · 𝛼𝑖 · 1
𝑛
· (𝑔𝑖,1 + . . . + 𝑔𝑖,𝑛)

= 𝑤
𝑓
𝑖−1 − 𝜂 · (𝛼𝑝 · 1

𝑛
·

𝑛∑︁
𝑠=1

𝑔𝑝,𝑠 + · · · + 𝛼𝑖 · 1
𝑛
·

𝑛∑︁
𝑠=1

𝑔𝑖,𝑠 )

= 𝑤
𝑓
𝑖−1 − 𝜂 · (𝛼𝑝 · 𝑔𝑝 + . . . + 𝛼𝑖 · 𝑔𝑖 )

Based on the inductive hypothesis,𝑤 𝑓
𝑖−1 = 𝑤𝑐

𝑖−1, so:

𝑤
𝑓
𝑖 = 𝑤𝑐

𝑖−1 − 𝜂 · (𝛼𝑝 · 𝑔𝑝 + . . . + 𝛼𝑖 · 𝑔𝑖 ) = 𝑤𝑐
𝑖

□
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B REPRODUCIBILITY

Table 6: Experimental settings associated with result tables; FGD: full gradient descent; MBGD: mini-batch gradient descent; WGA:
weighted gradient accumulation; N: number of training samples;𝑚: batch size; 𝜂: learning rate; 𝜔 : learning rate decay factor; 𝜅:
learning rate decay period (iterations); 𝜉𝑠 : server-side momentum; 𝜆𝑠 : server-side weight decay; 𝜏 : number of local updates per
round;

(a) Centralized
Table # Config Model Dataset 𝑁 Algorithm 𝑚 Iterations 𝜂 𝜔 𝜅

1a & 2a — VGG-6 CIFAR-10-Subset 25000 FGD — 10000 0.01 0.99 20
1b & 2a — ResNet-18 Imagenette-Subset 5000 FGD — 2500 0.001 0.99 5

2b — VGG-6 CIFAR-10-Subset 25000 MBGD 100 12500 0.0125 — —
2b — ResNet-18 Imagenette-Subset 5000 MBGD 100 2500 0.0125 — —

3a & 4a (𝜉𝑠=0,𝜆𝑠=0) VGG-11 CIFAR-100 50000 MBGD 100 90000 0.05 0.99 500
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=0) VGG-11 CIFAR-100 50000 MBGD 100 55000 0.05 0.99 500
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) VGG-11 CIFAR-100 50000 MBGD 100 90000 0.025 0.99 500
3b & 4b (𝜉𝑠=0.0,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 MBGD 100 98000 0.05 0.5 18750
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 MBGD 100 60000 0.025 0.5 18750
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) ResNet-18 ImageNet-50 25000 MBGD 100 98000 0.05 0.5 18750

(b) Utility-preserving federated learning
Table # Config Model Dataset 𝑁 Algorithm 𝑚 Iterations 𝜂 𝜔 𝜅

1a & 2a — VGG-6 CIFAR-10-Subset 25000 FedFGD — 10000 0.01 0.99 20
1b & 2a — ResNet-18 Imagenette-Subset 5000 FedFGD — 2500 0.001 0.99 5

2b — VGG-6 CIFAR-10-Subset 25000 FedSMB 10 12500 0.0125 — —
2b — ResNet-18 Imagenette-Subset 5000 FedSMB 10 2500 0.0125 — —

3a & 4a (𝜉𝑠=0,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedSMB 10 90000 0.05 0.99 500
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedSMB 10 55000 0.05 0.99 500
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) VGG-11 CIFAR-100 50000 FedSMB 10 90000 0.025 0.99 500
3b & 4b (𝜉𝑠=0.0,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedSMB 10 98000 0.05 0.5 18750
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedSMB 10 60000 0.025 0.5 18750
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) ResNet-18 ImageNet-50 25000 FedSMB 10 98000 0.05 0.5 18750

(c) Ordinary federated learning
Table # Config Model Dataset 𝑁 Algorithm 𝜏 𝑚 Iterations 𝜂 𝜔 𝜅

3a & 4a (𝜉𝑠=0,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedCMB 5 10 10000 0.025 0.99 100
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedCMB 5 10 9000 0.01 0.99 100
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) VGG-11 CIFAR-100 50000 FedCMB 5 10 10000 0.025 0.99 100
3a & 4a (𝜉𝑠=0,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedAvg 5 1000 5000 0.025 0.99 50
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedAvg 5 1000 4000 0.025 0.99 50
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) VGG-11 CIFAR-100 50000 FedAvg 5 1000 5000 0.025 0.99 50
3a & 4a (𝜉𝑠=0,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedCMB 100 10 2500 0.025 0.99 25
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedCMB 100 10 2000 0.025 0.99 25
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) VGG-11 CIFAR-100 50000 FedCMB 100 10 2500 0.025 0.99 25
3a & 4a (𝜉𝑠=0,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedAvg 100 50 2500 0.025 0.99 25
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=0) VGG-11 CIFAR-100 50000 FedAvg 100 50 2000 0.025 0.99 25
3a & 4a (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) VGG-11 CIFAR-100 50000 FedAvg 100 50 2500 0.025 0.99 25
3b & 4b (𝜉𝑠=0.0,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedCMB 5 10 8000 0.025 0.5 1500
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedCMB 5 10 7000 0.025 0.5 1500
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) ResNet-18 ImageNet-50 25000 FedCMB 5 10 8000 0.025 0.5 1500
3b & 4b (𝜉𝑠=0.0,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedAvg 5 500 4000 0.05 0.5 500
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedAvg 5 500 3500 0.05 0.5 500
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) ResNet-18 ImageNet-50 25000 FedAvg 5 500 4000 0.05 0.5 500
3b & 4b (𝜉𝑠=0.0,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedCMB 100 10 4000 0.025 0.5 600
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedCMB 100 10 4000 0.025 0.5 600
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) ResNet-18 ImageNet-50 25000 FedCMB 100 10 4000 0.025 0.5 600
3b & 4b (𝜉𝑠=0.0,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedAvg 100 25 3500 0.025 0.5 500
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=0.0) ResNet-18 ImageNet-50 25000 FedAvg 100 25 3500 0.025 0.5 500
3b & 4b (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) ResNet-18 ImageNet-50 25000 FedAvg 100 25 3500 0.025 0.5 500

5 (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) VGG-11 CIFAR-100 50000 FedCMB+WGA 5 10 10000 0.01 0.99 100
5 (𝜉𝑠=0.9,𝜆𝑠=5𝑒-4) ResNet-18 ImageNet-50 25000 FedCMB+WGA 5 10 8000 0.025 0.5 1500
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Synopsis: Existing convolutional neural networks (CNNs) frequently rely upon batch
normalization (BatchNorm) to be trained effectively. BatchNorm can significantly
enhance the performance of CNNs by smoothening the optimization landscape, and
alleviating the problem of vanishing gradients. BatchNorm, however, performs poorly
with small batch sizes, and is inapplicable to differentially private learning. These
limitations are due to the fact that BatchNorm breaks the independence among
the samples in the batch, and consequently, it is not a batch-independent layer.
To overcome the drawbacks of BatchNorm, batch-independent normalization layers
such as layer normalization (LayerNorm) and group normalization (GroupNorm)
have been introduced. These layers, however, do not typically achieve the perfor-
mance of BatchNorm in centralized training, and their efficiency is not as expected
in differentially private learning. To address these problems, we propose kernel
normalization (KernelNorm) and kernel normalized convolutional (KNConv)
layers, and incorporate them into kernel normalized convolutional networks (KNCon-
vNets) as the main building blocks. We implement KNConvNets corresponding to
the state-of-the-art ResNets, KNResNets, while forgoing BatchNorm layers. Through
extensive experiments, we illustrate KNResNets provide higher or competitive perfor-
mance compared to the BatchNorm counterparts in image classification and semantic
segmentation. They also significantly outperform their batch-independent competi-
tors including LayerNorm and GroupNorm in centralized and differentially private
training. Given that, KernelNorm combines the batch-independence property of
LayerNorm/GroupNorm with the performance advantage of BatchNorm.
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Abstract

Existing convolutional neural network architectures frequently rely upon batch normaliza-
tion (BatchNorm) to effectively train the model. BatchNorm, however, performs poorly
with small batch sizes, and is inapplicable to differential privacy. To address these limi-
tations, we propose the kernel normalization (KernelNorm) and kernel normalized
convolutional layers, and incorporate them into kernel normalized convolutional networks
(KNConvNets) as the main building blocks. We implement KNConvNets corresponding to
the state-of-the-art ResNets while forgoing the BatchNorm layers. Through extensive exper-
iments, we illustrate that KNConvNets achieve higher or competitive performance compared
to the BatchNorm counterparts in image classification and semantic segmentation. They
also significantly outperform their batch-independent competitors including those based on
layer and group normalization in non-private and differentially private training. Given that,
KernelNorm combines the batch-independence property of layer and group normalization
with the performance advantage of BatchNorm 1.

1 Introduction

Convolutional neural networks (CNNs) (LeCun et al., 1989) are standard architectures in computer vision
tasks such as image classification (Krizhevsky et al., 2012; Sermanet et al., 2014) and semantic segmentation
(Long et al., 2015b). Deep CNNs including ResNets (He et al., 2016a) achieved outstanding performance
in classification of challenging datasets such as ImageNet (Deng et al., 2009). One of the main building
blocks of these CNNs is batch normalization (BatchNorm) (Ioffe & Szegedy, 2015). The BatchNorm layer
considerably enhances the performance of deep CNNs by smoothening the optimization landscape (Santurkar
et al., 2018), and addressing the problem of vanishing gradients (Bengio et al., 1994; Glorot & Bengio, 2010).

BatchNorm, however, has the disadvantage of breaking the independence among the samples in the batch
(Brock et al., 2021b). This is because BatchNorm carries out normalization along the batch dimension
(Figure 1a), and as a result, the normalized value associated with a given sample depends on the statistics
of the other samples in the batch. Consequently, the effectiveness of BatchNorm is highly dependent on

1The code is available at: https://github.com/reza-nasirigerdeh/norm-torch
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batch size. With large batch sizes, the batch normalized models are trained effectively due to more accurate
estimation of the batch statistics. Using small batch sizes, on the other hand, BatchNorm causes reduction
in model accuracy (Wu & He, 2018) because of dramatic fluctuations in the batch statistics. BatchNorm,
moreover, is inapplicable to differential privacy (DP) (Dwork & Roth, 2014). For the theoretical guarantees
of DP to hold for the training of neural networks (Abadi et al., 2016), it is required to compute the gradients
individually for each sample in a batch, clip the per-sample gradients, and then average and inject random
noise to limit the information learnt about any particular sample. Because per-sample (individual) gradients
are required, the gradients of a given sample are not allowed to be influenced by other samples in the batch.
This is not the case for BatchNorm, where samples are normalized using the statistics computed over the
other samples in the batch. Consequently, BatchNorm is inherently incompatible with DP.

To overcome the limitations of BatchNorm, the community has introduced batch-independent normalization
layers including layer normalization (LayerNorm) (Ba et al., 2016), instance normalization (InstanceNorm)
(Ulyanov et al., 2016), group normalization (GroupNorm) (Wu & He, 2018), positional normalization (Po-
sitionalNorm) (Li et al., 2019), and local context normalization (LocalContextNorm) (Ortiz et al., 2020),
which perform normalization independently for each sample in the batch. These layers do not suffer from the
drawbacks of BatchNorm, and might outperform BatchNorm in particular domains such as generative tasks
(e.g. LayerNorm in Transformer models (Vaswani et al., 2017)). For image classification and semantic seg-
mentation, however, they typically do not achieve performance comparable with BatchNorm’s in non-private
(without DP) training. In DP, moreover, these batch-independent layers might not provide the accuracy
gain we expect compared to non-private learning. This motivates us to develop alternative layers, which are
batch-independent but more efficient in both non-private and differentially private learning.

Our main contribution is to propose two novel batch-independent layers called kernel normalization
(KernelNorm) and the kernel normalized convolutional (KNConv) layer to further enhance the per-
formance of deep CNNs. The distinguishing characteristic of the proposed layers is that they extensively take
into account the spatial correlation among the elements during normalization. KernelNorm is similar to a
pooling layer, except that it normalizes the elements specified by the kernel window instead of computing the
average/maximum of the elements, and it operates over all input channels instead of a single channel (Figure
1g). KNConv is the combination of KernelNorm with a convolutional layer, where it applies KernelNorm to
the input, and feeds KernelNorm’s output to the convolutional layer (Figure 2). From another perspective,
KNConv is the same as the convolutional layer except that KNConv first normalizes the input elements
specified by the kernel window, and then computes the convolution between the normalized elements and
kernel weights. In both aforementioned naive forms, however, KNConv is computationally inefficient because
it leads to extremely large number of normalization units, and therefore, considerable computational over-
head to normalize the corresponding elements. To tackle this issue, we present computationally-efficient
KNConv (Algorithm 1), where the output of the convolution is adjusted using the mean and variance of
the normalization units. This way, it is not required to normalize the elements, improving the computation
time by orders of magnitude.

As an application of the proposed layers, we introduce kernel normalized convolutional networks
(KNConvNets) corresponding to residual networks (He et al., 2016a), referred to as KNResNets, which
employ KernelNorm and computationally-efficient KNConv as the main building blocks while forgoing the
BatchNorm layers (Section 3). Our last contribution is to draw performance comparisons among KNRes-
Nets and the competitors using several benchmark datasets including CIFAR-100 (Krizhevsky et al., 2009),
ImageNet (Deng et al., 2009), and Cityscapes (Cordts et al., 2016). According to the experimental results
(Section 4), KNResNets deliver significantly higher accuracy than the BatchNorm counterparts in image
classification on CIFAR-100 using a small batch size. KNResNets, moreover, achieve higher or competitive
performance compared to the batch normalized ResNets in classification on ImageNet and semantic segmen-
tation on CityScapes. Furthermore, KNResNets considerably outperform GroupNorm and LayerNorm based
models for almost all considered case studies in non-private and differentially private learning. Considering
that, KernelNorm combines the performance advantage of BatchNorm with the batch-independence benefit
of LayerNorm and GroupNorm.
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Figure 1: Normalization layers differ from one another in their normalization unit (highlighted in blue
and green). The normalization layers in (a)-(f) establish a one-to-one correspondence between the input
and normalized elements (i.e. no overlap between the normalization units, and no ignorance of an element).
The proposed KernelNorm layer does not impose such one-to-one correspondence: Some elements (dash-
hatched area) are common among the normalization units, contributing more than once to the output, while
some elements (uncolored ones) are ignored during normalization. Due to this unique property of overlapping
normalization units, KernelNorm extensively incorporates the spatial correlation among the elements during
normalization (akin to the convolutional layer), which is not the case for the other normalization layers.

2 Normalization Layers

Normalization methods can be categorized into input normalization and weight normalization (Salimans
& Kingma, 2016; Bansal et al., 2018; Wang et al., 2020; Qi et al., 2020). The former techniques perform
normalization on the input tensor, while the latter ones normalize the model weights. The aforementioned
layers including BatchNorm, and the proposed KernelNorm layer as well as divisive normalization (Heeger,
1992; Bonds, 1989), (Ren et al., 2017) and local response normalization (LocalResponseNorm) (Krizhevsky
et al., 2012) belong to the category of input normalization. Weight standardization (Huang et al., 2017b; Qiao
et al., 2019) and normalizer-free networks (Brock et al., 2021a) fall into the category of weight normalization.

In the following, we provide an overview on the existing normalization layers closely related to KernelNorm,
i.e. the layers which are based on input normalization, and employ standard normalization (zero-mean and
unit-variance) to normalize the input tensor. For the sake of simplicity, we focus on 2D images, but the
concepts are also applicable to 3D images. For a 2D image, the input of a layer is a 4D tensor of shape (n,
c, h, w), where n is batch size, c is the number of input channels, h is height, and w is width of the tensor.
Normalization layers differ from one another in their normalization unit, which is a group of input elements
that are normalized together with the mean and variance of the unit.

The normalization unit of BatchNorm (Figure 1a) is a 3D tensor of shape (n, h, w), implying that
BatchNorm incorporates all elements in the batch, height, and width dimensions during normalization.
LayerNorm’s normalization unit (Figure 1b) is a 3D tensor of shape (c, h, w), i.e. LayerNorm considers
all elements in the channel, height, and width dimensions for normalization. The normalization unit of
InstanceNorm (Figure 1c) is a 2D tensor of shape (h, w), i.e. all elements of the height and width
dimensions are taken into account during normalization.

GroupNorm’s normalization unit (Figure 1d) is a 3D tensor of shape (cg, h, w), where cg indicates the
channel group size. Thus, GroupNorm incorporates all elements in the height and width dimensions and a
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subset of elements specified by the group size in the channel dimension during normalization. Positional-
Norm’s normalization unit (Figure 1e) is a 1D tensor of shape c, i.e. PositionalNorm performs channel-wise
normalization. The normalization unit of LocalContextNorm (Figure 1f) is a 3D tensor of shape (cg, r,
s), where cg is the group size, and (r, s) is the window size. Therefore, LocalContextNorm considers a subset
of elements in the height, width, and channel dimensions during normalization.

BatchNorm, LayerNorm, InstanceNorm, and GroupNorm consider all elements in the height and width
dimensions for normalization, and thus, they are referred to as global normalization layers. PositionalNorm
and LocalContextNorm, on the other hand, are called local normalization layers (Ortiz et al., 2020) because
they incorporate a subset of elements from the aforementioned dimensions during normalization. In spite of
their differences, the aforementioned normalization layers including BatchNorm have at least one thing in
common: There is a one-to-one correspondence between the original elements in the input and the normalized
elements in the output. That is, there is exactly one normalized element associated with each input element.
Therefore, these layers do not modify the shape of the input during normalization.

3 Kernel Normalized Convolutional Networks

The KernelNorm and KNConv layers are the main building blocks of KNConvNets. KernelNorm takes
the kernel size (kh, kw), stride (sh, sw), padding (ph, pw), and dropout probability p as hyper-parameters.
It pads the input with zeros if padding is specified. The normalization unit of KernelNorm (Figure 1g) is
a tensor of shape (c, kh, kw), i.e. KernelNorm incorporates all elements in the channel dimension but a
subset of elements specified by the kernel size from the height and width dimensions during normalization.
The KernelNorm layer (1) applies random dropout (Srivastava et al., 2014) to the normalization unit to
obtain the dropped-out unit, (2) computes mean and variance of the dropped-out unit, and (3) employs the
calculated mean and variance to normalize the original normalization unit:

U ′ = Dp(U), (1)

µu′ = 1
c · kh · kw

·
c∑

ic=1

kh∑

ih=1

kw∑

iw=1

U ′(ic, ih, iw),

σ2
u′ = 1

c · kh · kw
·

c∑

ic=1

kh∑

ih=1

kw∑

iw=1

(U ′(ic, ih, iw) − µu′ )2,

(2)

Û = U − µu′√
σ2

u′ + ϵ
, (3)

where p is the dropout probability, Dp is the dropout operation, U is the normalization unit, U ′ is the
dropped-out unit, µu′ and σ2

u′ are the mean and variance of the dropped-out unit, respectively, ϵ is a small
number (e.g. 10−5) for numerical stability, and Û is the normalized unit.

Partially inspired by BatchNorm, KernelNorm introduces a regularizing effect during training by intentionally
normalizing the elements of the original unit U using the statistics computed over the dropped-out unit
U ′. In BatchNorm, the normalization statistics are computed over the batch but not the whole dataset,
where the mean and variance of the batch are randomized approximations of those from the whole dataset.
The “stochasticity from the batch statistics” creates a regularizing effect in BatchNorm according to Ba
et al. (2016). KernelNorm employs dropout to generate similar stochasticity in the mean and variance
of the normalization unit. Notice that the naive option of injecting random noise directly into the mean
and variance might generate too much randomness, and hinder model convergence. Using dropout in the
aforementioned fashion, KernelNorm can control the regularization effect with more flexibility.

The first normalization unit of KernelNorm is bounded to a window specified by diagonal points (1, 1) and
(kh, kw) in the height and width dimensions. The coordinates of the next normalization unit are (1, 1 + sw)
and (kh, kw + sw), which are obtained by sliding the window sw elements along the width dimension. If
there are not enough elements for kernel in the width dimension, the window is slid by sh elements in the
height dimension, and the above procedure is repeated. Notice that KernelNorm works on the padded input
of shape (n, c, h + 2 · ph, w + 2 · pw), where (ph, pw) is the padding size. The output X̂ of KernelNorm
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is the concatenation of the normalized units Û from Equation 3 along the height and width dimensions.
KernelNorm’s output is of shape (n, c, hout, wout), and it has total of n · hout

kh
· wout

kw
normalization units,

where hout and wout are computed as follows:

hout = kh · ⌊h + 2 · ph − kh

sh
+ 1⌋, wout = kw · ⌊w + 2 · pw − kw

sw
+ 1⌋

In simple terms, KernelNorm behaves similarly to the pooling layers with two major differences: (1) Ker-
nelNorm normalizes the elements specified by the kernel size instead of computing the maximum/average
over the elements, and (2) KernelNorm operates over all channels rather than a single channel. KernelNorm
is a batch-independent and local normalization layer, but differs from the existing normalization layers in
two aspects: (I) There is not necessarily a one-to-one correspondence between the original elements in the
input and the normalized elements in the output of KernelNorm. Stride values less than kernel size lead to
overlapping normalization units, where some input elements contribute more than once in the output (akin
to the convolutional layer). If the stride value is greater than kernel size, some input elements are completely
ignored during normalization. Therefore, the output shape of KernelNorm can be different from the input
shape. (II) KernelNorm can extensively take into account the spatial correlation among the elements during
normalization because of the overlapping normalization units.

KNConv is the combination of KernelNorm and the traditional convolutional layer (Figure 2). It takes the
number of input channels chin, number of output channels (filters) chout, kernel size (kh, kw), stride (sh,
sw), and padding (ph, pw), exactly the same as the convolutional layer, as well as the dropout probability p
as hyper-parameters. KNConv first applies KernelNorm with kernel size (kh, kw), stride (sh, sw), padding
(ph, pw), and dropout probability p to the input tensor. Next, it applies the convolutional layer with chin

channels, chout filters, kernel size (kh, kw), stride (kh, kw), and padding of zero to the output of KernelNorm.
That is, both kernel size and stride values of the convolutional layer are identical to kernel size of KernelNorm.

From another perspective, KNConv is the same as the convolutional layer except that it normalizes the input
elements specified by the kernel window before computing the convolution. Assuming that U contains the
input elements specified by the kernel window, Û is the normalized version of U from KernelNorm (Equation
3), Z is the kernel weights of a given filter, ⋆ is the convolution (or dot product) operation, and b is the bias
value, KNConv computes the output as follows:

KNConv(U, Z, b) = Û ⋆ Z + b (4)

KNConv (or in fact KernelNorm) leads to extremely high number of normalization units, and consequently,
remarkable computational overhead. Thus, KNConv in its simple format outlined in Equation 4 (or as a
combination of the KernelNorm and convolutional layers) is computationally inefficient. Compared to the
convolutional layer, the additional computational overhead of KNConv originates from (I) calculating the
mean and variance of the units using Equation 2, and (II) normalizing the elements by the mean and variance
using Equation 3.

Input tensor Normalized tensor 

Weights 

Bias 

Output  
KernelNorm Layer

Convolutional Layer

Figure 2: KNConv as the combination of the KernelNorm and convolutional layers. KNConv first applies
KernelNorm with kernel size (3, 3) and stride (2,2) to the input tensor, and then gives KernelNorm’s output to
a convolutional layer with kernel size and stride (3, 3). That is, the kernel size and stride of the convolutional
layer and the kernel size of KernelNorm are identical.
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Computationally-efficient KNConv reformulates Equation 4 in a way that it completely eliminates the
overhead of normalizing the elements:

KNConv(U, Z, b) = Û ⋆ Z + b =
c∑

ic=1

kh∑

ih=1

kw∑

iw=1

(U(ic, ih, iw) − µu′√
σ2

u′ + ϵ
) · Z(ic, ih, iw) + b

= (
c∑

ic=1

kh∑

ih=1

kw∑

iw=1

U(ic, ih, iw) · Z(ic, ih, iw) − µu′ ·
c∑

ic=1

kh∑

ih=1

kw∑

iw=1

Z(ic, ih, iw)) · 1√
σ2

u′ + ϵ
+ b

= (U ⋆ Z − µu′ ·
c∑

ic=1

kh∑

ih=1

kw∑

iw=1

Z(ic, ih, iw)) · 1√
σ2

u′ + ϵ
+ b

(5)

According to Equation 5 and Algorithm 1, KNConv applies the convolutional layer to the original unit,
computes the mean and standard deviation of the dropped-out unit as well as the sum of the kernel weights,
and finally adjusts the convolution output using the computed statistics. This way, it is not required to
normalize the elements, improving the computation time of KNConv by orders of magnitude.

In terms of implementation, KernelNorm employs the unfolding operation in PyTorch (2023b) to imple-
ment the sliding window mechanism in the kn_mean_var function in Algorithm 1. Moreover, it uses the
var_mean function in PyTorch (2023c) to compute the mean and variance over the unfolded tensor along
the channel, width, and height dimensions.

The defining characteristic of KernelNorm and KNConv is that they take into consideration the spatial
correlation among the elements during normalization on condition that the kernel size is greater than 1×1.
Existing architectures (initially designed for global normalization), however, do not satisfy this condition. For
instance, all ResNets use 1×1 convolution for downsampling and increasing the number of filters. ResNet-
50/101/152, in particular, contains bottleneck blocks with a single 3×3 and two 1×1 convolutional layers.
Consequently, the current architectures are unable to fully utilize the potential of kernel normalization.

KNConvNets are bespoke architectures for kernel normalization, consisting of computationally-efficient
KNConv and KernelNorm as the main building blocks. KNConvNets are batch-independent (free of Batch-
Norm), which primarily employ kernel sizes of 2×2 or 3×3 to benefit from the spatial correlation of elements
during normalization. In this study, we propose KNConvNets corresponding to ResNets, called KNResNets,
for image classification and semantic segmentation.

Algorithm 1: Computationally-efficient KNConv layer
Input: input tensor X, number of input channels chin, number of output channels chout, kernel size

(kh, kw), stride (sh, sw), padding (ph, pw), bias flag, dropout probability p, and epsilon ϵ

// 2-dimensional convolutional layer
conv_layer = Conv2d(in_channels=chin, out_channels=chout, kernel_size=(kh, kw), stride=(sh, sw),

padding=(ph, pw), bias=false)
// convolutional layer output
conv_out = conv_layer(input=X)
// mean and variance from KernelNorm
µ, σ2 = kn_mean_var(input=X, kernel_size=(kh, kw), stride=(sh, sw), padding=(ph, pw),
dropout_p=p)

// KNConv output
kn_conv_out = (conv_out - µ · ∑

conv_layer.weights) /
√

σ2 + ϵ
// apply bias
if bias then

kn_conv_out += conv_layer.bias

Output: kn_conv_out
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(a) Basic block
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(b) Bottleneck block
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(c) Transitional block

Figure 3: KNResNet blocks: Basic blocks are employed in KNResNet-18/34, while KNResNet-50 is based
on bottleneck blocks. Transitional blocks are used in all KNResNets for increasing the number of filters and
downsampling. The architectures of KNResNet-18/34/50 are available in Figures 5-6 in Appendix A.

KNResNets comprise three types of blocks: residual basic block, residual bottleneck block, and transitional
block (Figure 3). Basic blocks contain two KNConv layers with kernel size of 2×2, whereas bottleneck blocks
consist of three KNConv layers with kernel sizes of 2×2, 3×3, and 2×2, respectively. The stride value in both
basic and bottleneck blocks is 1×1. The padding values of the first and last KNConv layers, however, are
1×1 and zero so that the width and height of the output remain identical to the input’s (necessary condition
for residual blocks with identity shortcut). The middle KNConv layer in bottleneck blocks uses 1×1 padding.
Transitional blocks include a KNConv layer with kernel size of 2×2 and stride of 1×1 to increase the number
of filters, and a max-pooling layer with kernel size and stride of 2×2 to downsample the input.

We propose the KNResNet-18, KNResNet-34, and KNResNet-50 architectures based on the aforementioned
block types (Figure 5 in Appendix A). KNResNet-18/34 uses basic and transitional blocks, while KNResNet-
50 mainly employs bottleneck and transitional blocks. For semantic segmentation, we utilize KNResNet-
18/34/50 as backbone (Figure 6 in Appendix A), but the kernel size of the KNConv and max-pooling layers
in basic and transitional blocks is 3×3 instead of 2×2.

4 Evaluation

We compare the performance of KNResNets to the BatchNorm, GroupNorm, LayerNorm, and LocalCon-
textNorm counterparts. For image classification, we do not include LocalContextNorm in our evaluation
because its performance is similar to GroupNorm (Ortiz et al., 2020). The experimental evaluation is
divided into four categories: (I) batch size-dependent performance analysis, (II) image classification on Im-
ageNet, (III) semantic segmentation on Cityscapes, and (IV) differentially private image classification on
ImageNet32×32.

We adopt the original implementation of ResNet-18/34/50 from PyTorch (Paszke et al., 2019), and the
PreactResNet-18/34/50 (He et al., 2016b) implementation from Kuang (2021). The architectures are based
on BatchNorm. For GroupNorm/LocalContextNorm related models, BatchNorm is replaced by Group-
Norm/LocalContextNorm. Regarding LayerNorm based architectures, GroupNorm with number of groups
of 1 (equivalent to LayerNorm) is substituted for BatchNorm. The number of groups of GroupNorm is
32 (Wu & He, 2018). The number of groups and window size for LocalContextNorm are 2 and 227×227,
respectively (Ortiz et al., 2020).

For low-resolution datasets (CIFAR-100 and ImageNet32×32), we replace the first 7×7 convolutional layer
with a 3×3 convolutional layer and remove the following max-pooling layer. Moreover, we insert a normal-
ization layer followed by an activation function before the last average-pooling layer in the PreactResNet
architectures akin to KNResNets (Figure 5 at Appendix A). The aforementioned modifications considerably
enhance the accuracy of the competitors. For semantic segmentation, we employ the fully convolutional net-
work architecture (Long et al., 2015a) with BatchNorm, GroupNorm, LayerNorm, and LocalContextNorm
based ResNet-18/34/50 as backbone. For KNResNets, we use fully convolutional versions of KNResNet-
18/34/50 (Figure 6 at Appendix A).
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Table 1: Test accuracy versus batch size on CIFAR-100.
Model Normalization Parameters B=2 B=32 B=256
ResNet-18-LN LayerNorm 11.220 M 72.68±0.22 73.17±0.16 71.99±0.45
PreactResNet-18-LN LayerNorm 11.220 M 73.51±0.10 73.36±0.15 72.91±0.07
ResNet-18-GN GroupNorm 11.220 M 74.62±0.12 74.46±0.05 74.46±0.08
PreactResNet-18-GN GroupNorm 11.220 M 74.82±0.24 74.74±0.44 74.62±0.36
ResNet-18-BN BatchNorm 11.220 M 72.11±0.25 78.52±0.20 77.72±0.04
PreactResNet-18-BN BatchNorm 11.220 M 72.57±0.19 78.32±0.09 77.83±0.16
KNResNet-18 (ours) KernelNorm 11.216 M 79.10±0.10 79.29±0.02 78.84±0.10
ResNet-34-LN LayerNorm 21.328 M 73.74±0.26 73.88±0.37 72.48±0.57
PreactResNet-34-LN LayerNorm 21.328 M 74.79±0.13 74.34±0.42 73.10±0.42
ResNet-34-GN GroupNorm 21.328 M 75.76±0.14 75.72±0.06 75.44±0.27
PreactResNet-34-GN GroupNorm 21.328 M 75.82±0.05 75.85±0.28 75.76±0.25
ResNet-34-BN BatchNorm 21.328 M 73.06±0.23 79.21±0.09 78.27±0.19
PreactResNet-34-BN BatchNorm 21.328 M 72.20±0.19 79.09±0.03 78.59±0.24
KNResNet-34 (ours) KernelNorm 21.323 M 79.28±0.09 79.53±0.15 79.16±0.21
ResNet-50-LN LayerNorm 23.705 M 75.83±0.25 75.74±0.14 74.37±0.58
PreactResNet-50-LN LayerNorm 23.705 M 74.28±0.31 74.57±0.32 73.41±0.15
ResNet-50-GN GroupNorm 23.705 M 77.03±0.62 77.02±0.08 74.79±0.14
PreactResNet-50-GN GroupNorm 23.705 M 75.67±0.27 76.08±0.18 75.52±0.13
ResNet-50-BN BatchNorm 23.705 M 71.02±0.15 80.39±0.06 77.89±0.06
PreactResNet-50-BN BatchNorm 23.705 M 70.83±0.41 80.28±0.15 78.88±0.21
KNResNet-50 (ours) KernelNorm 23.682 M 80.24±0.18 80.18±0.10 80.09±0.26

4.1 Batch size-dependent performance analysis

Dataset. The CIFAR-100 dataset consists of 50000 train and 10000 test samples of shape 32×32 from 100
classes. We adopt the data preprocessing and augmentation scheme widely used for the dataset (Huang
et al., 2017a; He et al., 2016b;a): Horizontally flipping and randomly cropping the samples after padding
them. The cropping and padding sizes are 32×32 and 4×4, respectively. Additionally, the feature values are
divided by 255 for KNResNets, whereas they are normalized using the mean and standard deviation (SD)
of the dataset for the competitors.

Training. The models are trained for 150 epochs using the cosine annealing scheduler (Loshchilov & Hutter,
2017) with learning rate decay of 0.01. The optimizer is SGD with momentum of 0.9 and weight decay of
0.0005. For learning rate tuning, we run a given experiment with initial learning rate of 0.2, divide it by
2, and re-run the experiment. We continue this procedure until finding the best learning rate (Table 5 in
Appendix B). Then, we repeat the experiment three times, and report the mean and SD over the runs.

Results. Table 1 lists the test accuracy values achieved by the models for different batch sizes. According
to the table, (I) KNResNets dramatically outperform the BatchNorm counterparts for batch size of 2, (II)
KNResNets deliver highly competitive accuracy values compared to BatchNorm-based models with batch
sizes of 32 and 256, and (III) KNResNets achieve significantly higher accuracy than the batch-independent
competitors (LayerNorm and GroupNorm) for all considered batch sizes.

4.2 Image classification on ImageNet

Dataset. The ImageNet dataset contains around 1.28 million training and 50000 validation images. Fol-
lowing the data preprocessing and augmentation scheme from TorchVision (2023a), the train images are
horizontally flipped and randomly cropped to 224×224. The test images are first resized to 256×256, and
then center cropped to 224×224. The feature values are normalized using the mean and SD of ImageNet.

Training. We follow the experimental setting from Wu & He (2018) and use the multi-GPU training script
from TorchVision (2023a) to train KNResNets and the competitors. We train all models for 100 epochs with
total batch size of 256 (8 GPUs with batch size of 32 per GPU) using learning rate of 0.1, which is divided
by 10 at epochs 30, 60, and 90. The optimizer is SGD with momentum of 0.9 and weight decay of 0.0001.
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Table 2: Image classification on ImageNet.
Model Normalization Parameters Top-1 accuracy
ResNet-18-LN LayerNorm 11.690 M 68.34
ResNet-18-GN GroupNorm 11.690 M 68.93
ResNet-18-BN BatchNorm 11.690 M 70.28
KNResNet-18 (ours) KernelNorm 11.685 M 71.17
ResNet-34-LN LayerNorm 21.798 M 71.64
ResNet-34-GN GroupNorm 21.798 M 72.63
ResNet-34-BN BatchNorm 21.798 M 73.99
KNResNet-34 (ours) KernelNorm 21.793 M 74.60
ResNet-50-LN LayerNorm 25.557 M 73.80
ResNet-50-GN GroupNorm 25.557 M 75.92
ResNet-50-BN BatchNorm 25.557 M 76.41
KNResNet-50 (ours) KernelNorm 25.556 M 76.54

Results. Table 2 demonstrates the Top-1 accuracy values on ImageNet for different architectures. As
shown in the table, (I) KNResNet-18 and KNResNet-34 outperform the BatchNorm counterparts by around
0.9% and 0.6%, respectively, (II) KNResNet-18/34/50 achieves higher accuracy (by about 0.6%-3.0%) than
LayerNorm and GroupNorm based competitors, and (III) KNResNet-50 delivers almost the same accuracy
as the batch normalized ResNet-50.

4.3 Semantic segmentation on CityScapes

Dataset. The CityScapes dataset contains 2975 train and 500 validation images from 30 classes, 19 of which
are employed for evaluation. Following Sun et al. (2019); Ortiz et al. (2020), the train samples are randomly
cropped from 2048×1024 to 1024×512, horizontally flipped, and randomly scaled in the range of [0.5, 2.0].
The models are tested on the validation images, which are of shape 2048×1024.

Training. Following Sun et al. (2019); Ortiz et al. (2020), we train the models with learning rate of 0.01,
which is gradually decayed by power of 0.9. The models are trained for 500 epochs using 2 GPUs with batch
size of 8 per GPU. The optimizer is SGD with momentum of 0.9 and weight decay of 0.0005. Notice that
we use SyncBatchNorm instead of BatchNorm in the batch normalized models.

Table 3: Semantic segmentation on CityScapes.
Model Normalization Parameters mIoU Pixel accuracy Mean accuracy
ResNet-18-LN LayerNorm 13.547 M 59.10±0.46 92.42±0.17 69.43±0.58
ResNet-18-GN GroupNorm 13.547 M 62.33±0.52 93.23±0.01 71.58±0.55
ResNet-18-LCN LocalContextNorm 13.547 M 62.25±0.67 92.99±0.06 71.59±0.68
ResNet-18-BN BatchNorm 13.547 M 63.90±0.06 93.77±0.02 73.15±0.14
KNResNet-18 (ours) KernelNorm 13.525 M 64.37±0.14 93.73±0.01 73.46±0.12
ResNet-34-LN LayerNorm 23.655 M 60.19±0.32 92.73±0.17 70.12±0.33
ResNet-34-GN GroupNorm 23.655 M 64.21±0.58 93.59±0.07 74.32±0.49
ResNet-34-LCN LocalContextNorm 23.655 M 64.75±0.38 93.31±0.09 74.25±0.37
ResNet-34-BN BatchNorm 23.655 M 66.94±0.34 94.27±0.03 76.50±0.41
KNResNet-34 (ours) KernelNorm 23.399 M 67.61±0.17 94.13±0.05 76.58±0.19
ResNet-50-LN LayerNorm 32.955 M 57.88±0.84 92.31±0.21 68.25±0.75
ResNet-50-GN GroupNorm 32.955 M 62.14±0.68 93.34±0.04 71.66±0.64
ResNet-50-LCN LocalContextNorm 32.955 M 64.03±0.02 93.07±0.14 73.40±0.03
ResNet-50-BN BatchNorm 32.955 M 65.19±0.50 93.98±0.03 74.65±0.62
KNResNet-50 (ours) KernelNorm 32.874 M 68.02±0.13 94.22±0.04 77.03±0.05
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Results. Table 3 lists the mean of class-wise intersection over union (mIoU), pixel accuracy, and mean of
class-wise pixel accuracy for different architectures. According to the table, (I) KNResNet-18/34 and the
BatchNorm-based counterparts achieve highly competitive mIoU, pixel accuracy, and mean accuracy, whereas
KNResNet-50 delivers considerably higher mIoU and mean accuracy than batch normalized ResNet-50, (II)
KNResNets significantly outperform the batch-independent competitors (the LayerNorm, GroupNorm, and
LocalContextNorm based models) in terms of all considered performance metrics. Surprisingly, ResNet-50
based models perform worse than ResNet-34 counterparts for the competitors possibly because of the smaller
kernel size they employ in ResNet-50 compared to ResNet-34 (1×1 instead of 3×3).

4.4 Differentially private image classification on ImageNet32×32

Dataset. ImageNet32×32 is the down-sampled version of ImageNet, where all images are resized to 32×32.
For preprocessing, the feature values are divided by 255 for KNResNet-18, while they are normalized by the
mean and SD of ImageNet for the layer and group normalized ResNet-18.

Training. We train KNResNet-18 as well as the GroupNorm and LayerNorm counterparts for 100 epochs
using the SGD optimizer with zero-momentum and zero-weight decay, where the learning rate is decayed by
factor of 2 at epochs 70, and 90. Note that BatchNorm is inapplicable to differential privacy. All models use
the Mish activation (Misra, 2019). For parameter tuning, we consider learning rate values of {2.0, 3.0, 4.0},
clipping values of {1.0, 2.0}, and batch sizes of {2048, 4096, 8192}. We observe that learning rate of 4.0,
clipping value of 2.0, and batch size of 8192 achieve the best performance for all models. Our differentially
private training is based on DP-SGD (Abadi et al., 2016) from the Opacus library (Yousefpour et al., 2021)
with ε=8.0 and δ=8×10−7. The privacy accountant is RDP (Mironov, 2017)

Table 4: Differentially private image classification on ImageNet32×32.

Model Normalization Parameters Top-1 accuracy
ResNet-18-BN BatchNorm 11.682 M NA
ResNet-18-LN LayerNorm 11.682 M 20.81
ResNet-18-GN GroupNorm 11.682 M 20.99
KNResNet-18 (ours) KernelNorm 11.678 M 22.01

Results. Table 4 lists the Top-1 accuracy values on ImageNet32×32 for different models trained in the
aforementioned differentially private learning setting. As can be seen in the table, KNResNet-18 achieves
significantly higher accuracy than the layer and group normalized ResNet-18.

5 Discussion

KNResNets incorporate only batch-independent layers such as the proposed KernelNorm and KNConv layers
into their architectures. Thus, they perform well with very small batch sizes (Table 1) and are applicable to
differentially private learning (Table 4), which are not the case for the batch normalized models. Unlike the
batch-independent competitors such as LayerNorm, GroupNorm, and LocalContextNorm based ResNets,
KNResNets provide higher or very competitive performance compared to the batch normalized counterparts
in image classification and semantic segmentation (Tables 1-3). Moreover, KNResNets converge faster than
the batch, layer, and group normalized ResNets in non-private and differentially private image classification as
shown in Figure 4. These results verify our key claim: the kernel normalized models combine the performance
benefit of the batch normalized counterparts with the batch-independence advantage of the layer, group, and
local-context normalized competitors.

The key property of kernel normalization is the overlapping normalization units, which allows for kernel
normalized models to extensively take advantage of the spatial correlation among the elements during nor-
malization. Additionally, it enables KernelNorm to be combined with the convolutional layer effectively
as a single KNConv layer (Equation 5 and Algorithm 1). The other normalization layers lack this prop-
erty. BatchNorm, LayerNorm, and GroupNorm are global normalization layers, which completely ignore
the spatial correlation of the elements. LocalContextNorm partially considers the spatial correlation dur-
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(a) CIFAR-100-ResNet-50 (B=2)
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(b) ImageNet-ResNet-34 (B=256)
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(c) ImageNet-ResNet-50 (B=256)
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(d) ImageNet32×32-ResNet-18 (ε=8.0, δ=8×10−7)

Figure 4: Convergence rate of the models for different case studies: Kernel normalized models converge
faster than the competitors. Notice that BatchNorm is inapplicable to differential privacy; B: batch size.

11



Published in Transactions on Machine Learning Research (02/2024)

ing normalization because it has no overlapping normalization units, and must use very large window sizes
to achieve practical computational efficiency. Our evaluations illustrate that this characteristic of kernel
normalization lead to significant improvement in convergence rate and accuracy achieved by KNResNets.

Normalizing the feature values of the input images using the mean and SD of the whole dataset is a popular
data preprocessing technique, which enhances the performance of the existing CNNs due to feeding the
normalized values into the first convolutional layer. This is unnecessary for KNConvNets because all KNConv
layers including the first one are self-normalizing (they normalize the input first, and then, compute the
convolution). This makes the data preprocessing simpler during training of KNConvNets.

Compared to the corresponding non-normalized networks, the accuracy gain in KNResNets originates from
normalization using KernelNorm and regularization effect of dropout. To investigate the contribution of each
factor to the accuracy gain, we train KNResNet-50 on CIFAR-100 with batch size of 32 in three cases: (I)
without KernelNorm, (II) with KernelNorm and without dropout, (III) with KernelNorm and dropout. The
models achieve accuracy values of 71.48%, 78.32%, and 80.18% in (I), (II), and (III), respectively. Given that,
normalization using KernelNorm provides accuracy gain of around 7.0% compared to the non-normalized
model. Regularization effect of dropout delivers additional accuracy gain of about 2.0%.

Prior studies show that normalization layers can reduce the sharpness of the loss landscape, improving
the generalization of the model (Lyu et al., 2022; Keskar et al., 2016). Given that, we train LayerNorm,
GroupNorm, and BatchNorm based ResNet-18 as well as KNResNet-18 on CIFAR-10 to compare the gen-
eralization ability and loss landscape of different normalization methods (experimental details in Appendix
C). The layer, group, batch, and kernel normalized models achieve test accuracy of 90.32%, 90.58%, 92.11%,
93.27%, respectively. Figure 7 (Appendix C) visualizes the loss landscape for different normalization layers.
According to the figure, KNResNet-18 provides flatter loss landscape compared to batch normalized ResNet-
18, which in turn, has smoother loss landscape than the group and layer normalized counterparts. These
results indeed indicate that KNResNet-18 and BatchNorm-based ResNet-18 with flatter loss landscapes
provide higher generalizability (test accuracy) than LayerNorm/GroupNorm based ResNet-18.

There is a prior work known as convolutional normalization (ConvNorm) (Liu et al., 2021), which takes
into account the convolutional structure during normalization similar to this study. ConvNorm performs
normalization on the kernel weights of the convolutional layer (weight normalization). Our proposed layers,
on the other hand, normalize the input tensor (input normalization). In terms of performance on ImageNet,
the accuracy of KNResNet-18 is higher than the accuracy of the ConvNorm+BatchNorm based ResNet-18
reported in Liu et al. (2021) (71.17% vs. 70.34%).

We explore the effectiveness of KernelNorm on the ConvNext architecture (Liu et al., 2022) in addition
to ResNets. ConvNext is a convolutional architecture, but it is heavily inspired by vision transformers
(Dosovitskiy et al., 2020), where it uses linear (fully-connected) layers extensively and employs LayerNorm as
the normalization layer instead of BatchNorm. To draw the comparison, we train the original ConvNextTiny
model from PyTorch and the corresponding kernel normalized version (both with around 28.5m parameters)
on ImageNet using the training recipe and code from TorchVision (2023b) (more experimental details in
Appendix B). The original model, which is based on LayerNorm, provides accuracy of 80.87%. The kernel
normalized counterpart, on the other hand, achieves accuracy of 81.25%, which is 0.38% higher than the
baseline. Given that, KernelNorm-based models are efficient not only with ResNets, but also with more recent
architectures such as ConvNext, which incorporates several architectural elements from vision transformers
into convolutional networks.

We also make a comparison between KNResNets and the BatchNorm-based counterparts from the computa-
tional efficiency and memory usage perspectives (Tables 6 and 7 in Appendix D). For the batch normalized
models, we employ two different implementations of the BatchNorm layer: The CUDA implementation (Py-
Torch, 2023a) and the custom implementation (D2L, 2023) using primitives provided by PyTorch. Because
the underlying layers of KNResNets (i.e. KernelNorm and KNConv) are implemented using primitives from
PyTorch, we directly compare KNResNets with ResNets based on the latter implementation of BatchNorm
to have a fair comparison. According to Table 6, KNResNet-50 (our largest model) is only slower than batch
normalized ResNet-50 by factor of 1.66. This slowdown is acceptable given the fact that KernelNorm is a
local normalization layer with much more normalization units than BatchNorm as a global normalization
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layer (Figure 1). The CUDA-based implementation of BatchNorm, moreover, is faster than that based on
primitives from PyTorch by factor of 1.8. We can expect a similar speedup for KNResNets if the underlying
layers are implemented in CUDA. Additionally, the memory usage of KNResNets is higher than the Batch-
Norm counterparts as expected, which relates to the current implementation of the KNConv layer (more
details in Appendix D). Notice that the most efficient implementation of KNResNets is not the focus of this
study, and is left as a future line of improvement. Our current implementation, however, provides enough
efficiency that allows for training KNResNet-18/34/50 on large datasets such as ImageNet.

6 Conclusion and Future Work

BatchNorm considerably enhances the model convergence rate and accuracy, but it delivers poor perfor-
mance with small batch sizes. Moreover, it is unsuitable for differentially private learning due to its depen-
dence on the batch statistics. To address these challenges, we propose two novel batch-independent layers
called KernelNorm and KNConv, and employ them as the main building blocks for KNConvNets, and the
corresponding residual networks referred to as KNResNets. Through extensive experimentation, we show
KNResNets deliver higher or very competitive accuracy compared to BatchNorm counterparts in image clas-
sification and semantic segmentation. Furthermore, they consistently outperform the batch-independent
counterparts such as LayerNorm, GroupNorm, and LocalContextNorm in non-private and differentially
private learning settings. To our knowledge, our work is the first to combine the batch-independence of
LayerNorm/GroupNorm/LocalContextNorm with the performance advantage of BatchNorm in the context
of convolutional networks.

The performance investigation of KNResNets for object detection, designing KNConvNets corresponding
to other popular architectures such as DenseNets (Huang et al., 2017a), and optimized implementations of
KernelNorm and KNResNets in CUDA are promising directions for future studies.

Acknowledgement

We would like to thank Javad TorkzadehMahani for assisting with the implementations and helpful discus-
sions on the computationally-efficient version of the kernel normalized convolutional layer. We would also like
to thank Sameer Ambekar for his helpful suggestion regarding fairer comparison among the normalization
layers from the computational efficiency perspective.

This project was funded by the German Ministry of Education and Research as part of the PrivateAIM
Project, by the Bavarian State Ministry for Science and the Arts, and by the Medical Informatics Initiative.
The authors of this work take full responsibility for its content.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 308–318, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regularizations
in training deep networks? Advances in Neural Information Processing Systems, 31, 2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

AB Bonds. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex.
Visual neuroscience, 2(1):41–55, 1989.

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the performance
gap in unnormalized resnets. arXiv preprint arXiv:2101.08692, 2021a.

13



Published in Transactions on Machine Learning Research (02/2024)

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale image recog-
nition without normalization. In International Conference on Machine Learning, pp. 1059–1071. PMLR,
2021b.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understand-
ing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3213–3223,
2016.

D2L. Batch normalization. https://d2l.ai/chapter_convolutional-modern/batch-norm.html, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9:211–407, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–
256. JMLR Workshop and Conference Proceedings, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pp. 630–645. Springer, 2016b.

David J Heeger. Normalization of cell responses in cat striate cortex. Visual neuroscience, 9(2):181–197,
1992.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-
tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4700–4708, 2017a.

Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered weight normalization in acceler-
ating training of deep neural networks. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2803–2811, 2017b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generalization gap and sharp minima. In International Con-
ference on Learning Representations, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Liu Kuang. Pytorch models for ciafr-10/100. https://github.com/kuangliu/pytorch-cifar/, 2021.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1
(4):541–551, 1989.

14



Published in Transactions on Machine Learning Research (02/2024)

Boyi Li, Felix Wu, Kilian Q Weinberger, and Serge Belongie. Positional normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. Advances in neural information processing systems, 31, 2018a.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. https://github.com/tomgoldstein/loss-landscape, 2018b.

Sheng Liu, Xiao Li, Yuexiang Zhai, Chong You, Zhihui Zhu, Carlos Fernandez-Granda, and Qing Qu. Convo-
lutional normalization: Improving deep convolutional network robustness and training. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Sys-
tems, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11976–11986, 2022.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440,
2015a.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440,
2015b.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normalization
layers: Sharpness reduction. Advances in Neural Information Processing Systems, 35:34689–34708, 2022.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium
(CSF), pp. 263–275. IEEE, 2017.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681,
2019.

Anthony Ortiz, Caleb Robinson, Dan Morris, Olac Fuentes, Christopher Kiekintveld, Md Mahmudulla Has-
san, and Nebojsa Jojic. Local context normalization: Revisiting local normalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11276–11285, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

PyTorch. Batch normalization. https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.
html, 2023a.

PyTorch. Unfold operation in pytorch. https://pytorch.org/docs/stable/generated/torch.nn.
Unfold.html, 2023b.

PyTorch. var_mean function in pytorch. https://pytorch.org/docs/stable/generated/torch.var_
mean.html, 2023c.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning for visual
recognition. In International conference on machine learning, pp. 7824–7835. PMLR, 2020.

15



Published in Transactions on Machine Learning Research (02/2024)

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-batch training with batch-channel
normalization and weight standardization. arXiv preprint arXiv:1903.10520, 2019.

Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, and Richard S. Zemel. Normalizing the normal-
izers: Comparing and extending network normalization schemes. In International Conference on Learning
Representations, 2017.

Tim Salimans and Diederik P Kingma. Weight normalization: a simple reparameterization to accelerate
training of deep neural networks. In Proceedings of the 30th International Conference on Neural Informa-
tion Processing Systems, pp. 901–909, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization? Advances in neural information processing systems, 31, 2018.

Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. In 2nd International
Conference on Learning Representations, ICLR 2014, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao, Dong Liu, Yadong Mu, Xinggang Wang,
Wenyu Liu, and Jingdong Wang. High-resolution representations for labeling pixels and regions. arXiv
preprint arXiv:1904.04514, 2019.

TorchVision. Classification training script in pytorch. https://github.com/pytorch/vision/tree/main/
references/classification#resnet, 2023a.

TorchVision. Classification training script in pytorch. https://github.com/pytorch/vision/tree/main/
references/classification#convnext, 2023b.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal convolutional neural net-
works. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11505–11515, 2020.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pp. 3–19, 2018.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani Malek,
John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and Ilya Mironov. Opa-
cus: User-friendly differential privacy library in PyTorch. arXiv preprint arXiv:2109.12298, 2021.

16



Published in Transactions on Machine Learning Research (02/2024)

A KNResNet Architectures
R

eL
U

   
 K

N
C

on
v-

2x
2

R
eL

U

   
 K

N
C

on
v-

2x
2

R
eL

U

   
 K

N
C

on
v2

x2

  M
ax

-p
oo

l 2
x2

R
eL

U

   
 K

N
C

on
v-

3x
3

R
eL

U

   
 K

N
C

on
v-

3x
3

R
eL

U

   
 K

N
C

on
v-

3x
3

  M
ax

-p
oo

l 3
x3

Basic block

R
eL

U

   
 K

N
C

on
v-

2x
2

R
eL

U

   
 K

N
C

on
v-

3x
3

R
eL

U

   
 K

N
C

on
v-

2x
2

Bottleneck block

R
eL

U

   
 K

N
C

on
v-

2x
2

  M
ax

-p
oo

l-2
x2

R
eL

U

   
 K

N
C

on
v-

3x
3

  M
ax

-p
oo

l 3
x3

Transitional block
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(b) KNResNet-18 (image classification)
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(c) KNResNet-34 (image classification)
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(d) KNResNet-50 (image classification)

Figure 5: KNResNets for image classification: The dropout probability of the KNConv and KernelNorm
layers are 0.05 and 0.25, respectively. For low-resolution images (e.g. CIFAR-100 with image shape of 32×32),
the first KNConv layer is replaced by a KNConv layer with kernel size 3×3, stride 1×1, and padding 1×1,
and the following max-pooling layer is removed. The kX (k=2/3/4/5) notation above the blocks means k
blocks of that type. The numbers above arrows indicate the number of input/output channels of the first/last
KNConv layer in the block. For KNResNet-18, the number of the output channels of the first KNConv layer
(or the number of input channels of the second KNConv layer) is 256, 256, 512, and 724 for the first, second,
third, and fourth set of basic blocks, respectively. For KNResNet-34, it is 256, 320, 640, and 843. For
KNResNet-50, the number of output channels of the first and second KNConv layers are 64, 128, 201, and
512 in the first, second, third, and fourth set of bottleneck blocks, respectively. In KNResNet-50, the last
transitional block and the last set of residual blocks use KNConv1×1 instead of KNConv2×2 to keep the
number of parameters comparable to the original ResNet-50.
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(b) KNResNet-18 (semantic segmentation)
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(c) KNResNet-34 (semantic segmentation)
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(d) KNResNet-50 (semantic segmentation)

Figure 6: KNResNets for semantic segmentation: The dropout probability of the KNConv and Kernel-
Norm layers are 0.1 and 0.5, respectively. For KNResNet-18, the number of the output channels of the first
KNConv layer (or the number of input channels of the second KNConv layer) is 128, 256, 512, and 625 for
the first, second, third, and fourth set of basic blocks. For KNResNet-34, they are 128, 256, 256, and 512,
respectively. For KNResNet-50, the number of input/output channels of the middle KNConv layer are 128,
256, 458, and 512 for the first, second, third, and fourth set of bottleneck blocks. Unlike their counterparts
for image classification, the KNConv and max-pooling layers in basic and transitional blocks employ kernel
size of 3×3 instead of 2×2.
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B Reproducibility

Table 5: Learning rate values achieving the highest accuracy on CIFAR-100.

Model Normalization B=2 B=32 B=256
ResNet-18-LN LayerNorm 0.0015625 0.0125 0.05
PreactResNet-18-LN LayerNorm 0.0015625 0.0125 0.05
ResNet-18-GN GroupNorm 0.0015625 0.025 0.1
PreactResNet-18-GN GroupNorm 0.0015625 0.025 0.1
ResNet-18-BN BatchNorm 0.00078125 0.025 0.2
PreactResNet-18-BN BatchNorm 0.00078125 0.025 0.2
KNResNet-18 KernelNorm 0.0015625 0.05 0.2
ResNet-34-LN LayerNorm 0.0015625 0.0125 0.05
PreactResNet-34-LN LayerNorm 0.0015625 0.0125 0.05
ResNet-34-GN GroupNorm 0.0015625 0.025 0.1
PreactResNet-34-GN GroupNorm 0.0015625 0.025 0.1
ResNet-34-BN BatchNorm 0.00078125 0.025 0.1
PreactResNet-34-BN BatchNorm 0.000390625 0.025 0.2
KNResNet-34 KernelNorm 0.0015625 0.05 0.2
ResNet-50-LN LayerNorm 0.00078125 0.0125 0.05
PreactResNet-50-LN LayerNorm 0.0015625 0.0125 0.05
ResNet-50-GN GroupNorm 0.00078125 0.0125 0.05
PreactResNet-50-GN GroupNorm 0.0015625 0.025 0.1
ResNet-50-BN BatchNorm 0.000390626 0.0125 0.1
PreactResNet-50-BN BatchNorm 0.000195313 0.0125 0.2
KNResNet-50 KernelNorm 0.0015625 0.025 0.2

ConvNext on ImageNet: To train the LayerNorm and KernelNorm based ConvNextTiny models on
ImageNet, we employ the code and recipe from TorchVision (2023b), where the models are trained with total
batch size of 1024 using the AdamW optimizer, learning rate of 0.001, and cosine learning rate scheduler for
600 epochs. Note that we use 4 GPUs with batch size of 256 per GPU rather than 8 GPUs with batch size
of 128 per GPU in the original recipe due to the resource limitation.
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C Loss Landscape
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(c) BatchNorm

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5

Lo
ss

0

20

40

60

80

100

Ac
cu

ra
cy

(d) KernelNorm

Figure 7: Loss landscape of different normalization layers: Kernel normalized ResNet-18 has flatter loss
landscape compared to the batch, group, and layer normalized counterparts on CIFAR-10.

ResNet-18 on CIFAR-10: To compare the generalization ability and loss landscape of different normaliza-
tion layers, we train BatchNorm, GroupNorm, LayerNorm, and KernelNorm based ResNet-18 on CIFAR-10.
All models are trained for 70 epochs using batch size of 128 and tuned over learning rate values of {0.05, 0.1}.
The weight decay is zero. The optimal learning rate is 0.05/0.05/0.1/0.1 for layer/group/batch/kernel nor-
malized ResNet-18. The preprocessing and augmentation scheme and the other training settings are the
same as the CIFAR-100 experiments in Section 4. We employ the source code from Li et al. (2018a;b) to
visualize the loss landscape in Figure 7.
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D Running Time and Memory Usage

Table 6: Training and inference time per epoch for ImageNet: The experiments are conducted with 8
NVIDIA A40 GPUs with batch size of 32 per GPU; m: minutes, s: seconds.

Model Normalization Implementation Training time Inference time
ResNet-50-BN BatchNorm CUDA 13m 23s 6s
ResNet-50-BN BatchNorm Primitives from PyTorch 23m 49s 10s
KNResNet-50 (ours) KernelNorm Primitives from PyTorch 39m 33s 19s
ResNet-34-BN BatchNorm CUDA 9m 12s 5s
ResNet-34-BN BatchNorm Primitives from PyTorch 12m 46s 5s
KNResNet-34 (ours) KernelNorm Primitives from PyTorch 27m 15s 12s
ResNet-18-BN BatchNorm CUDA 5m 28s 4s
ResNet-18-BN BatchNorm Primitives from PyTorch 7m 46s 4s
KNResNet-18 (ours) KernelNorm Primitives from PyTorch 13m 58s 7s

Table 7: Memory usage on ImageNet: The experiments are conducted with a single NVIDIA RTX A6000
GPU with batch size of 32; GB: Gigabytes.

Model Normalization Implementation Memory usage (GB)
ResNet-50-BN BatchNorm CUDA 5.7
ResNet-50-BN BatchNorm Primitives from PyTorch 8.2
KNResNet-50 (ours) KernelNorm Primitives from PyTorch 13.6
ResNet-34-BN BatchNorm CUDA 3.6
ResNet-34-BN BatchNorm Primitives from PyTorch 4.4
KNResNet-34 (ours) KernelNorm Primitives from PyTorch 9.4
ResNet-18-BN BatchNorm CUDA 3.2
ResNet-18-BN BatchNorm Primitives from PyTorch 3.7
KNResNet-18 (ours) KernelNorm Primitives from PyTorch 7.2

The memory usage of KNResNets is higher than the BatchNorm counterparts. This observation is related
to the current implementation of the KNConv layer, where the unfolding operation is performed in the
kn_mean_var function (Algorithm 1) to compute the mean and variance of the units. We implemented
KNConv in this fashion to avoid changing the CUDA implementation of the convolutional layer, which
requires a huge engineering and implementation effort, and is outside the scope of our expertise.

In a hypothetical implementation of KNConv in CUDA, it would be possible to compute the mean/variance
of the units directly inside the convolutional layer, and completely remove the kn_mean_var function,
leading to substantially reducing the memory usage. This is because the units to compute convolution and
mean/variance are the same, and those units are already available in the convolutional layer implementation.

Table 8: Inference time | memory usage for different stride, width (W) and height (H) values. The
experiments are carried out with a single NVIDIA RTX A6000 GPU using batch size of 256 on the test set of
CIFAR-100. The model contains four KNConv layers with kernel size of 3×3 and 256 channels; s: seconds,
GB: Gigabytes.

W/H=32×32 W/H=64×64 W/H=128×128
Stride=1×1 2.44s | 2.80GB 8.43s | 4.94GB 33.45s | 13.44GB
Stride=2×2 0.64s | 2.24GB 1.07s | 2.72GB 2.91s | 4.59GB
Stride=3×3 0.58s | 2.16GB 0.79s | 2.40GB 1.71s | 3.28GB
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Abstract—Normalization is an important but understudied
challenge in privacy-related application domains such as fed-
erated learning (FL), differential privacy (DP), and differentially
private federated learning (DP-FL). While the unsuitability of
batch normalization for these domains has already been shown,
the impact of other normalization methods on the performance
of federated or differentially private models is not well-known.
To address this, we draw a performance comparison among layer
normalization (LayerNorm), group normalization (GroupNorm),
and the recently proposed kernel normalization (KernelNorm)
in FL, DP, and DP-FL settings. Our results indicate LayerNorm
and GroupNorm provide no performance gain compared to the
baseline (i.e. no normalization) for shallow models in FL and DP.
They, on the other hand, considerably enhance the performance
of shallow models in DP-FL and deeper models in FL and DP.
KernelNorm, moreover, significantly outperforms its competitors
in terms of accuracy and convergence rate (or communication
efficiency) for both shallow and deeper models in all considered
learning environments. Given these key observations, we propose
a kernel normalized ResNet architecture called KNResNet-13 for
differentially private learning. Using the proposed architecture,
we provide new state-of-the-art accuracy values on the CIFAR-10
and Imagenette datasets, when trained from scratch.

Index Terms—Differential Privacy, Federated Learning, Kernel
Normalization, Group Normalization, Batch Normalization

I. INTRODUCTION

Deep convolutional neural networks (CNNs) are popular
in a diverse range of image vision tasks including image
classification [1]. Deep CNNs rely on large-scale datasets to
effectively train the model, which might be difficult to provide
in a centralized manner [2]. This is because datasets are often
distributed across different sites such as hospitals, and contain
sensitive data which cannot be transferred to a centralized
location due to privacy regulations [3]. Even if such datasets
become available, training algorithms can pose privacy risks
to the individuals participating in the dataset, leaking privacy-
sensitive information through the trained model [4]–[6].

To appear in the IEEE Conference on Secure and Trustworthy Machine
Learning (SaTML), February 2023.

Federated learning (FL) [7] addresses the large-scale data
availability challenge by enabling clients to jointly train a
global model under the coordination of a central server without
sharing their private data. Network communication, on the
other hand, emerges as a new challenge in federated environ-
ments, requiring a large number of communication rounds for
model convergence, and exchanging a large amount of traffic
in each round [8]. FL also causes utility (e.g. in terms of
accuracy) reduction due to the Non-IID (not independent and
identically distributed) nature of the data across the clients
[9]. Finally, although FL eliminates the requirement of data
sharing, it might still lead to privacy leakage, where the private
data of the clients can be reconstructed from the model updates
shared with the server [10]–[12].

Differential privacy (DP) [13] copes with the privacy chal-
lenge in both centralized and federated environments by in-
jecting random noise into the model gradients to limit the
information learnt about a particular sample in the dataset [14].
DP, however, adversely affects the model utility similar to FL
because of the injected noise. In general, there is a trade-off
between privacy and utility in DP, where stronger privacy leads
to lower utility [15].

Batch normalization (BatchNorm) [16] is the de facto nor-
malization layer in popular deep CNNs such as ResNets [17]
and DenseNets [18], which remarkably improves the model
convergence rate and accuracy in centralized training. Batch-
Norm, however, is not suitable for FL and DP settings. This
is because BatchNorm relies on the IID distribution of feature
values in the batch [16], which is not the case in federated
settings. Moreover, per-sample gradients are required to be
computed in DP that is impossible for batch-normalized CNNs
[14]. Batch-independent layers such as layer normalization
(LayerNorm) [19], group normalization (GroupNorm) [20],
and the recently proposed kernel normalization (KernelNorm)
[21] do not suffer from the BatchNorm’s limitations, and
therefore, are applicable to FL and DP.



Normalization challenge. Unsuitability of BatchNorm for
federated and differentially private learning has presented a
real challenge in the corresponding environments. Unlike the
other challenges (i.e. utility, network communication, and
privacy), the normalization issue has remained understudied
in the context of FL and DP. Previous works [9], [22]
illustrate that GroupNorm outperforms BatchNorm in terms
of accuracy in federated settings. Likewise, GroupNorm also
delivers higher accuracy than LayerNorm in differentially
private learning [23]–[25]. Additionally, KernelNorm achieves
significantly higher accuracy and faster convergence rate com-
pared to LayerNorm and GroupNorm in both FL and DP
settings according to the original study [21].

However, the prior studies have not made a comparison
between different normalization layers and the NoNorm (no
normalization layer) case in the first place. Moreover, the
experimental evaluation regarding FL and DP environments
is limited in the original KernelNorm study [21], focusing on
a cross-silo federated setting (few clients with relatively large
datasets) [26] and a shallow model in DP. Finally, the perfor-
mance comparisons in the previous works do not consider dif-
ferentially private federated learning (DP-FL) settings. Given
that, two fundamental questions arise: (1) Do LayerNorm,
GroupNorm, and KernelNorm also deliver higher performance
than NoNorm in FL, DP, and DP-FL environments?, and (2)
Does KernelNorm still outperform other normalization layers
in cross-device FL (many clients with small datasets), in DP-
FL, and using deeper models in DP?

Key findings. We conduct extensive experiments using
the VGG-6 [27], ResNet-8 [21], PreactResNet-18 [28], and
DenseNet20×16 [18] models trained on the CIFAR-10/100
[29] and Imagenette [30] datasets in FL, DP, and DP-FL
settings to address those questions. The findings are as follows:

1) LayerNorm and GroupNorm do not necessarily out-
perform the NoNorm case for shallow models in FL
and DP settings. For instance, LayerNorm and Group-
Norm provide slightly lower accuracy and communica-
tion efficiency than NoNorm in the cross-silo federated
setting, where the shallow VGG-6 model is trained
on CIFAR-10. Similarly, LayerNorm and GroupNorm
achieve lower accuracy than NoNorm using the shallow
ResNet-8 model on CIFAR-10 in DP (Section III).

2) KernelNorm significantly outperforms NoNorm, Lay-
erNorm, and GroupNorm in terms of communication
efficiency (convergence rate) and accuracy in both cross-
silo and cross-device FL, with both shallow and deeper
models in DP, and using shallow models in DP-FL
environments (Section III).

Solution. Based on our findings, we advocate employing
KernelNorm as the effective normalization layer for FL, DP,
and DP-FL settings. Given that, we propose a KernelNorm-
based ResNet architecture called KNResNet-13, and show it
delivers considerably higher accuracy than the state-of-the-art
GroupNorm-based architectures on CIFAR-10 and Imagenette
in differentially private learning environments (Section IV).

Contributions. We make the following contributions: (I)
we show LayerNorm and GroupNorm do not deliver higher
accuracy than NoNorm with shallow models in FL and DP
settings, (II) we illustrate the recently proposed KernelNorm
layer has a great potential to become the de facto normalization
layer in privacy-enhancing/preserving machine learning, and
(III) we propose the KNResNet-13 architecture, and provide
new state-of-the-art (SOTA) accuracy values on CIFAR-10 and
Imagenette using the proposed architecture in DP environ-
ments, when trained from scratch.

II. PRELIMINARIES

Federated learning (FL). A federated environment con-
sists of multiple clients as data holders and a central server
as coordinator. FL is a privacy-enhancing technique, which
enables the clients to train a global model without sharing their
private data with a third party. In FL, or more precisely in the
FederatedAveraging (FedAvg) algorithm [7], the server
randomly chooses K clients, and sends them the global model
parameters W g

i in each communication round i. Next, each
selected client j trains the global model on its local dataset
using mini-batch gradient descent, and shares the local model
parameters W l

i,j with the server. Finally, the server takes the
weighted average over the local parameters from the clients
to update the global model:

W g
i+1 =

∑K
j=1 Nj ·W l

i,j∑K
j=1 Nj

,

where Nj is the number of samples in client j.
A cross-device federated setting contains a large number of

clients such as mobile devices with small datasets [26]. The
server selects a fraction of clients in each round. Moreover,
the underlying assumption is that the communication between
clients and server is unstable, and the clients might drop out
during training. A cross-silo setting, on the other hand, consists
of few clients such as hospitals or research institutions with
relatively large datasets and stable network connection [26].
All clients participate in model training in all communication
rounds. For more details on federated learning, the readers are
referred to [7] and [26].

Differential privacy (DP). The differential privacy ap-
proach provides a theoretical framework and collection of
techniques for privacy-preserving data processing and release
[13]. Its guarantees are formulated in an information-theoretic
fashion and describe the upper bound on the multiplicative
information gain of an adversary observing the output of a
computation over a sensitive database. This definition endows
DP with a robust theoretical underpinning and ascertains that
its guarantees hold in the presence of adversaries with un-
bounded prior knowledge and under infinite post-processing.
Moreover, DP guarantees are compositional, meaning that they
degrade predictably when a DP system is executed repeatedly
on the same database. Formally, a randomised mechanism M
is said to preserve (ε, δ)-DP if, for all databases D and D′



differing in the data of one individual and all measurable
subsets S of the range of M, the following inequality holds:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ,

where P is the probability of an event, ε ≥ 0 and 0 ≤ δ < 1.
Of note, this inequality must hold also if D and D′ are
swapped. The guarantee is given over the randomness of M.
Intuitively, this characterisation implies that the output of the
mechanism should not change too much when one individual’s
data is added or removed from a database, or equivalently,
the influence of one individual’s data on the result of the
computation should be small.

The application of DP to the training of neural networks is
usually (and in our work) based on the differentially private
stochastic gradient descent (DP-SGD) algorithm [14]. Here,
the role of the database is played by the individual (per-
sample) gradients of the loss function with respect to the
parameters. For the DP guarantee to be well-defined, the inter-
mediate layer outputs (activations), leading to the computation
of a per-sample gradient, are not allowed to be influenced by
more than one sample. Hence, layers like BatchNorm, which
normalize the activations of a layer by considering either
other samples in the batch or the statistics of previously seen
batches, cannot be employed in DP. We refer the readers to
[13], [14], [31] for more information on differential privacy.

Differentially private federated learning (DP-FL). Al-
though FL enhances data privacy by eliminating the require-
ment of data sharing, the model parameters shared with
the server can still cause privacy leakage. To overcome this
problem, the clients can rely on DP to train the global model
on their local data, and share differentially private models with
the server. This way, the clients can benefit from the guarantees
of DP in federated environments.

Normalization. The normalization layers play a crucial role
in deep CNNs. They can smoothen the optimization landscape
[32] and effectively address the problem of vanishing gradients
[33], leading to improved model performance. The normaliza-
tion layers are different from each other in their normalization
unit, which is a subset of elements from the original input
that are normalized together with the mean and variance of the
unit [21]. Assume that the input is a 4-dimensional tensor with
batch, channel, height, and width as dimensions. BatchNorm
[16] considers all elements in the batch, height, and width
dimensions as its normalization unit. LayerNorm [19], on the
other hand, performs normalization across all elements in the
channel, height, and width dimensions but separately for each
sample in the batch. The normalization unit of GroupNorm
[20] contains all elements in the height and width dimensions
similar to LayerNorm, but a subset of elements (specified by
the group size) in the channel dimension.

BatchNorm, LayerNorm, and GroupNorm are referred to as
global normalization layers because they consider all elements
in the height and width dimensions during normalization [34].
There is also a one-to-one correspondence between the input
and output elements in the aforementioned layers, implying
that they do not modify the input shape [21]. These layers have

shift and scale as learnable parameters too for ensuring that the
distributions of the input and output elements remain similar
[16]. In contrast to BatchNorm, LayerNorm and GroupNorm
are batch-independent because they perform normalization
separately for each sample in the batch.

KernelNorm [21] performs normalization along the chan-
nel, height, and width dimensions but independently of the
batch dimension akin to LayerNorm and GroupNorm. The
normalization unit of KernelNorm, however, is a tensor of
shape (c, kh, kw), where c is the number of input channels,
and (kh, kw) is the kernel size. Thus, KernelNorm considers
all elements in the channel dimension but a subset of elements
specified by the kernel size from the height and width dimen-
sions during normalization. In simple words, KernelNorm is
similar to the pooling layers, except that KernelNorm normal-
izes the elements instead of computing average or maximum,
and carries out operation over all channels rather than on a
single channel.

Formally, KernelNorm (1) applies dropout to the original
normalization unit U to obtain the dropped-out unit U ′, (2)
calculates the mean and variance of U ′, and (3) employs the
computed mean and variance to normalize U :

U ′ = Dp(U), (1)

µu′ =
1

c · kh · kw
·

c∑

ic=1

kh∑

ih=1

kw∑

iw=1

U ′(ic, ih, iw),

σ2
u′ =

1

c · kh · kw
·

c∑

ic=1

kh∑

ih=1

kw∑

iw=1

(U ′(ic, ih, iw)− µu′)2,

(2)

Û =
U − µu′√
σ2
u′ + ϵ

, (3)

where p is the dropout [35] probability, µu′ and σ2
u′ are the

mean and variance of U ′, respectively, and Û is the normalized
unit. Partially inspired by BatchNorm, KernelNorm introduces
a regularizing effect during training through normalizing the
elements of the original unit U via the statistics calculated
over the dropped-out unit U ′.

KernelNorm is a local normalization layer. Moreover, it
has no learnable parameters, and its output might have very
different shape than the input. Similar to LayerNorm and
GroupNorm, KernelNorm is batch-independent because it per-
forms normalization separately for each sample of the batch.
The kernel normalized convolutional (KNConv) layer [21] is
the combination of the KernelNorm and convolutional layer,
where the output of the former is given as input to the latter.

The modern CNNs are batch-normalized, leveraging the
BatchNorm and convolutional layers in their architectures. The
corresponding layer/group-normalized networks are obtained
by simply replacing BatchNorm with LayerNorm/GroupNorm.
The kernel-normalized counterparts [21], on the other hand,
employ the KernelNorm and KNConv layers as the main
building blocks, while forgoing the BatchNorm layers. For
more details on the normalization layers, the readers can see
[16], [19]–[21].



III. EVALUATION

We conduct extensive experiments to investigate the per-
formance of different batch-independent normalization layers
including LayerNorm, GroupNorm, and KernelNorm in the
cross-silo and cross-device FL as well as DP and DP-FL
environments. In the following, we first provide the description
of the datasets, models, and case studies, and then discuss the
results and findings.

A. Experimental Setup

Datasets. The CIFAR-10/100 dataset [29] contains 50000
train and 10000 test samples of shape 32 × 32 from 10/100
classes. The Imagenette dataset (160-pixel version) [30] is a
subset of Imagenet [36], including 9469 train and 3925 valida-
tion images from 10 ”easily classified” labels. The feature val-
ues are divided by 255 for KernelNorm based models, whereas
they are normalized using the mean and standard deviation
of CIFAR-10/100 or ImageNet for NoNorm, LayerNorm, and
GroupNorm based counterparts. The samples of Imagenette
are resized to 128× 128.

Models. We adopt the VGG-6 architecture from [27],
ResNet-8 model from [21], PreactResNet-18 implementa-
tion from [37], and DenseNet-20×16 (depth of 20 and
growth rate of 16) implementation from [38]. In layer/group-
normalized networks, BatchNorm is substituted by Layer-
Norm/GroupNorm. In the NoNorm case, the BatchNorm lay-
ers are either removed or replaced with the identity layer.
The kernel-normalized counterparts are implemented by re-
moving the BatchNorm layers, replacing the convolutional
layers with KNConv, and inserting a KernelNorm layer before
the final average-pooling layer in the ResNet, PreactResNet,
and DenseNet models. In FL, the models employ the ReLU
activation. In DP, on the other hand, the activation function
is Mish [39], which was successfully used in [24] to achieve
SOTA accuracy. We implement the models in the PyTorch
library (version 1.11) [40].

Case Studies. We design nine different case studies (four in
FL, three in DP, and two in DP-FL) to make the performance
comparison among the normalization layers:

1) CIFAR-10-VGG-6 (cross-silo FL): This case study
aims to train the shallow VGG-6 model on the low-
resolution CIFAR-10 dataset in a cross-silo federated
environment containing 10 clients, where each client has
samples from only 2 classes. The sample sizes of the
clients are almost the same.

2) CIFAR-10-VGG-6 (cross-device FL): Similar to the
cross-silo counterpart, but in a cross-device federated
setting including 100 clients, where 20 clients are ran-
domly selected in each round.

3) CIFAR-100-PreactResNet-18 (cross-silo FL): The aim
of this case study is to train the deeper PreactResNet-18
model on more challenging, low-resolution CIFAR-100
dataset in a cross-silo federated environment consisting
of 10 clients with samples from 20 labels. The clients
have highly similar sample sizes.

4) CIFAR-100-PreactResNet-18 (cross-device FL): Akin
to the cross-silo counterpart, but in a cross-device fed-
erated setting consisting of 100 clients, where 20 clients
are randomly chosen by the server in each round.

5) CIFAR-10-ResNet-8 (DP): The goal of this case study
is to train the shallow ResNet-8 model on the low-
resolution CIFAR-10 dataset in the DP environment.

6) CIFAR-10-DenseNet-20×16 (DP): This case study
aims to train the deeper DenseNet-20×16 model on the
low-resolution CIFAR-10 dataset in the DP setting.

7) Imagenette-PreactResNet-18 (DP). The purpose of this
case study is to train the deeper PreactResNet-18 model
on the medium-resolution Imagenette dataset in the
differentially private environment.

8) CIFAR-10-VGG-6 (DP-FL): This case study aims to
train the VGG-6 model on the CIFAR-10 dataset in a
differentially private federated setting with 10 clients,
where the clients have samples from 4 classes. The
sample sizes of the clients are highly similar.

9) CIFAR-10-ResNet-8 (DP-FL): Similar to the previous
case study, but with ResNet-8 as the model.

Federated training. We employ five different values for
learning rate tuning in the federated case studies: η={0.005,
0.01, 0.025, 0.05, 0.1}. The KernelNorm based models are
trained for 400 and 1000 communication rounds in the CIFAR-
10 and CIFAR-100 case studies, respectively. The number of
rounds for the NoNorm, LayerNorm, and GroupNorm based
models is as twice as the kernel normalized counterparts
due to their slower convergence rate. The group size is the
default value of 32 for the GroupNorm layer [20]. The dropout
probability for KNConv and KernelNorm layers are 0.1 and
0.5, respectively. The loss function is cross-entropy, optimizer
is SGD with momentum of zero, and training algorithm is
FedAvg with number of local epochs of 1.

Differentially private training. We set ε=6.0 and δ = 10−5

for all DP case studies. Regarding parameter tuning, we use
learning rate values of η={1.0, 1.5, 2.0} and clipping values
of C={1.0, 1.5, 2.0}. The ResNet-8, DenseNet-20×16, and
PreactResNet-18 models are trained for 50, 70, and 70 epochs,
respectively. The learning rate is divided by 2 at epochs (T-30)
and (T-10), where T is the number of epochs (i.e. 50 or 70).
The group size of GroupNorm is 16 for DenseNet-20×16, but
32 for the other models. Notice that we cannot set group size
to 32 for DenseNet-20×16 because the number of channels
must be divisible by the group size. The dropout probability
is 0.1 for all KNConv layers in the kernel normalized models.
For ResNet-8, the dropout probability of KernelNorm is 0.25,
whereas it is 0.5 for DenseNet-20×16 and PreactResNet-18.

We employ cross-entropy as loss function, zero-momentum
SGD as optimizer, and the Opacus library (version 1.1) [41]
for model training. We observe that changing the kernel size of
the shortcut connections in PreactResNet-18 from 1×1 to 2×2
slightly enhances the accuracy of the kernel normalized model,
but provides no accuracy gain for the competitors. Thus, the
aforementioned kernel size remains 1×1 for NoNorm, Layer-
Norm, and GroupNorm, whereas it is 2×2 for KernelNorm.



TABLE I: Federated learning: Test accuracy for different normalization layers; NoNorm (no normalization) slightly
outperforms LayerNorm and GroupNorm in (a); KernelNorm delivers higher accuracy than the competitors; B: batch size.

(a) CIFAR-10-VGG-6 (cross-silo FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 80.19±0.29 78.93±0.43 78.63±0.56 83.64±0.41
64 79.23±0.31 78.97±0.36 79.4±0.38 82.13±0.25

(b) CIFAR-10-VGG-6 (cross-device FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 80.95±0.27 81.89±0.32 81.39±0.47 84.13±0.26
64 80.72±0.06 81.43±0.19 81.44±0.18 83.77±0.11

(c) CIFAR-100-PreactResNet-18 (cross-silo FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 61.89±0.13 68.16±0.44 67.86±0.1 71.72±0.19
64 60.8±0.33 66.9±0.41 66.45±0.18 71.29±0.21

(d) CIFAR-100-PreactResNet-18 (cross-device FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 63.54±0.22 68.05±0.92 68.23±0.13 71.75±0.24
64 63.33±0.36 67.84±0.43 67.47±0.24 71.99±0.09
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Fig. 1: Federated learning: Communication efficiency for various normalization layers; KernelNorm provides significantly
higher communication efficiency than the competitors. Surprisingly, NoNorm outperforms both LayerNorm and GroupNorm
in terms of communication efficiency in most cases, i.e (a), (b), (d); batch size is 64.

Differentially private federated training. We set ε=8.0
and δ=10−5 for both DP-FL case studies. We leverage learning
rate values of η={0.01, 0.025, 0.05} and clipping values
of C={1.0, 1.5, 2.0} for parameter tuning. The group size
of GroupNorm is 32, and the dropout probabilities of the
KNConv and KernelNorm layers are 0.1 and 0.25, respectively.
The models are trained for 100 communication rounds with a
fixed learning rate. The loss function, optimizer, and training
algorithm are cross-entropy, SGD with momentum of zero,
and FedAvg with number of local epochs of 1, respectively.

B. Results

For all case studies, we first determine the optimal learn-
ing rate (and clipping value) based on the model accuracy
on the test dataset (see Appendix). We repeat the experi-
ment achieving the highest accuracy three times and report
mean/median/mean and the standard deviation of the runs for
the FL/DP/DP-FL case studies. We consider the average over
the last 10 communication rounds, final accuracy, and the
average over the last 3 rounds as the representative accuracy
of the run in the FL, DP, and DP-FL settings, respectively.



TABLE II: Differential privacy: Test accuracy for various normalization layers; NoNorm (no normalization) delivers slightly
higher accuracy than LayerNorm and GroupNorm in (a); KernelNorm considerably outperforms the competitors; ε=6.0, δ=10−5.

(a) CIFAR-10-ResNet-8 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

512 65.11±0.29 70.01±0.19 70.27±0.08 72.18±0.15
1024 69.05±0.4 71.38±0.5 71.75±0.45 74.31±0.14
2048 72.7±0.25 71.67±0.42 71.73±0.31 75.46±0.34
3072 71.99±0.14 69.39±0.27 68.99±0.27 75.48±0.24

(b) CIFAR-10-DenseNet-20×16 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

256 57.03±0.48 65.62±0.7 66.16±0.56 68.49±0.24
512 64.15±0.74 69.24±0.68 68.72±0.65 70.86±0.44
1024 64.98±0.6 69.68±0.8 69.57±0.97 72.74±0.34
2048 65.29±0.53 66.66±0.78 67.31±0.26 72.49±0.39

(c) Imagenette-PreactResNet-18 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

512 25.27±3.95 54.83±0.65 56.7±0.19 59.1±0.33
1024 53.69±0.83 54.54±0.23 57.17±0.42 58.9±0.42
2048 53.53±0.99 53.3±0.32 54.59±0.27 56.11±0.26
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(a) CIFAR-10-ResNet-8 (DP)
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(b) CIFAR-10-DenseNet-20×16 (DP)
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(c) Imagenette-PreactResNet-18 (DP)

Fig. 2: Differential privacy: Convergence rate for different normalization layers; kernel normalized models provides much
faster convergence rate than the competitors; batch size is 2048, 1024, and 1024 for (a), (b), and (c), respectively.



TABLE III: Differentially private federated learning: Test accuracy for different normalization layers; KernelNorm delivers
considerably higher accuracy than the competitors; ε=8.0, δ=10−5.

(a) CIFAR-10-VGG-6 (DP-FL)

B NoNorm LayerNorm GroupNorm KernelNorm

256 30.5±0.44 38.23±0.37 37.29±0.71 46.79±0.81
512 29.73±1.01 39.47±0.48 39.75±0.65 45.37±0.22
1024 33.43±1.33 39.19±0.64 38.85±0.97 47.11±0.37

(b) CIFAR-10-ResNet-8 (DP-FL)

B NoNorm LayerNorm GroupNorm KernelNorm

256 34.76±0.95 38.43±1.48 40.69±1.03 45.18±0.34
512 36.11±0.7 41.09±0.33 41.8±0.41 46.75±0.48
1024 38.19±0.19 41.41±1.08 41.39±0.82 48.45±1.09
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Fig. 3: Differentially private federated learning: Convergence rate for various normalization layers; kernel normalized models
deliver higher convergence rate than the competitors; batch size is 512.

Federated learning. Table I lists the test accuracy val-
ues for the FL case studies. According to the table, (1)
NoNorm slightly outperforms LayerNorm and GroupNorm
in the CIFAR-10-VGG-6 (cross-silo FL) case study, whereas
LayerNorm and GroupNorm deliver higher accuracy com-
pared to NoNorm in the other case studies; (2) KernelNorm
achieves considerably higher accuracy than the competitors.
Fig. 1 illustrates the communication efficiency (i.e. accuracy
versus communication round) for the FL case studies. As
shown in the figure, (1) NoNorm, surprisingly, provides higher
communication efficiency than LayerNorm and GroupNorm
for most case studies; (2) KernelNorm achieves remarkably
higher communication efficiency compared with NoNorm,
LayerNorm, and GroupNorm.

Differential privacy. Table II and Fig. 2 demonstrate the
test accuracy and convergence rate of different normalization
layers for the DP case studies, respectively. According to the
table and figure, (1) NoNorm slightly outperforms LayerNorm
and GroupNorm in terms of accuracy in the CIFAR-10-
ResNet-8 (DP) case study, but LayerNorm and GroupNorm
achieve higher accuracy compared to NoNorm in the other
case studies, (2) KernelNorm provides higher accuracy than
the competitors in all DP case studies, and (3) KernelNorm
based models converge much faster than those based on
NoNorm, LayerNorm, and GroupNorm.

Differentially private federated learning. Table III lists
the test accuracy values, and Fig. 3 illustrates the convergence
rate of different normalization layers for the DP-FL case
studies. As shown in the table and figure, (1) the NoNorm
based models deliver much lower accuracy and slower con-

vergence rate than LayerNorm, GroupNorm, and KernelNorm
based ones, and (2) the kernel normalized models achieve
considerably higher accuracy and faster convergence rate than
the competitors.

C. Findings
Based on our experimental evaluation, (I) LayerNorm and

GroupNorm do not necessarily outperform NoNorm in shallow
networks such as VGG-6/ResNet-8 under the FL/DP settings.
However, they achieve significant accuracy gain compared
to NoNorm for deeper models (e.g. DenseNet-20×16 and
PreactResNet-18) in FL and DP as well as shallow models in
DP-FL, and (II) KernelNorm delivers remarkably higher ac-
curacy and convergence rate (communication efficiency) than
NoNorm, LayerNorm, and GroupNorm with both shallow and
deeper networks trained in FL (cross-silo and cross-device)
and DP as well as shallow models in DP-FL. Therefore,
KernelNorm is the most effective normalization method for
FL, DP, and DP-FL settings.

IV. KERNEL NORMALIZED RESNET-13
The experimental results from the previous section indicate

KernelNorm outperforms the competitors in the DP setting
using models that originally designed based on global nor-
malization layers such as BatchNorm (e.g. PreactResNets or
DenseNets). The existing architectures, however, are not nec-
essarily optimal for KernelNorm. For instance, the kernel size
of 1×1 in the shortcut connections of the ResNet architecture
is not beneficial for KernelNorm, which requires kernel sizes
greater than 1 to benefit from the spatial correlation of the
elements during normalization.
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(c) KNResNet-13 architecture

Fig. 4: KNResNet-13 architecture consists of kernel normalized residual and transitional blocks. The kernel size, stride, and
padding of the KNConv layers are 3× 3, 1× 1, and 1× 1, respectively. The kernel size of max-pooling is 2× 2. The dropout
probability of KNConv and KernelNorm are 0.1 and 0.5, respectively. For medium-resolution images, the first KNConv layer
is replaced by a KNConv layer with kernel size 7 × 7, stride 2 × 2, and padding 3 × 3, followed by a Mish activation and
2× 2 max-pooling layer. The numbers indicate the input/output channels (filters) of KNConv or neurons of the linear layer.

Given that, we propose a bespoke ResNet architecture for
KernelNorm (Fig. 4) to improve the SOTA accuracy values
on the CIFAR-10 and Imagenette datasets in differentially
private learning settings. We refer to the proposed architecture
as KNResNet-13, which includes twelve kernel normalized
convolutional layers and a final classification (linear) layer.

The convolutional blocks in KNResNet-13 are either resid-
ual (Fig. 4a) or transitional (Fig. 4b). The residual blocks
contain two KNConv layers with the same number of input and
output channels. The transitional blocks include a KNConv
and max-pooling layer, aiming to downsample the input. All
KNConv layers have kernel size 3× 3, stride 1× 1, padding
1 × 1, and dropout probability 0.1. The kernel size of the
max-pooling layers is 2 × 2. The architecture employs Mish
as the activation function. The last residual block is followed
by a KernelNorm layer with dropout probability 0.5, Mish
activation, 2×2 adaptive average-pooling, and linear layer with
1024 neurons. For medium-resolution images (e.g. 224×224),
the first KNConv layer is replaced by a 7× 7 KNConv layer
followed by the Mish activation and 2× 2 max-pooling layer.

In the following, we describe the data preprocessing and
differentially private training procedure for the CIFAR-10 and
Imagenette datasets. Then, we provide the accuracy values
achieved by the KNResNet-13 model and compare them with
those from the recent studies.

CIFAR-10. The only data preprocessing step is to divide
the feature values by 255. KNResNet-13 is trained for T =
50, 70, 70, and 80 epochs with batch sizes of B=4096, 4096,
3072, and 3072 for ε=2.0, 4.0, 6.0, and 8.0, respectively. The
learning rate is 2.0, clipping value is 1.5, and δ is 10−5. The
learning rate is divided by 2 at epochs (T - 30) and (T - 10).
The optimizer is SGD with momentum of zero.

CIFAR-10 with augmentation multiplicity. The augmen-
tation multiplicity is a recently proposed technique by De et
al. [23], which computes the gradients for a given sample
by taking average over the gradients computed for different
augmentations of the same sample. For the CIFAR-10 dataset,
this technique applies the sequence of random horizontal
flipping and random cropping of size 32 × 32 and padding
4 × 4 to obtain an augmented version of a given sample.
Here, we employ a slightly different way of augmentation
multiplicity because the original technique provides negligible
accuracy gain for our model. We first compute the gradients for
the original sample, horizontally flipped (i.e. with probability
of 1.0), and randomly cropped version of the sample, and
then take the average over them to calculate the per-sample
gradients. For ε=2.0, 4.0, 6.0, and 8.0, KNResNet-13 is
trained for 80, 80, 100, and 100 epochs, respectively. The
other training details are the same as CIFAR-10 with no
augmentation multiplicity (previous paragraph).

Imagenette. We adopt the 320-pixel version of the dataset
and resize the images to 224 × 224. We train KNResNet-13
with η=1.5, C=1.5, ε=7.0, δ=10−5, and zero-momentum SGD
for 100 epochs, where η is divided by 2 at epochs 70 and 90.

Results. Table IV lists the test accuracy values from
KNResNet-13 and the recent studies on CIFAR-10, CIFAR-10
with augmentation multiplicity, and Imagenette. KNResNet-13
delivers significantly higher accuracy than the models based
on GroupNorm or NoNorm for all considered ε values on
CIFAR-10 without augmentation multiplicity. Compared to
kernel normalized ResNet-8 [21], KNResNet-13 provides up
to 2% accuracy gain depending on the ε value.

On CIFAR-10 with augmentation multiplicity, KNResNet-
13 outperforms both wide ResNet-16-4 and ResNet-40-4 [43]



TABLE IV: Differential privacy: Comparison of the test accuracy values from the proposed KNResNet-13 architecture with
those from the recent studies; δ=10−5.

(a) CIFAR-10

Study Model Normalization ε Test accuracy

Klause et al. (2022) [24] ResNet-9 GroupNorm 9.88 73.0
Nasirigerdeh et al. (2022) [21] ResNet-8 KernelNorm 8.0 76.66
Ours KNResNet-13 KernelNorm 8.0 78.51±0.35

Dörmann et al. (2021) [42] VGG-8 NoNorm 7.42 70.1
Klause et al. (2022) [24] ResNet-9 GroupNorm 7.42 71.8
Remerscheid et al. (2022) [25] DenseNet-14 GroupNorm 7.0 73.5
Nasirigerdeh et al. (2022) ResNet-8 KernelNorm 6.0 75.46
Ours KNResNet-13 KernelNorm 6.0 77.09±0.31

Dörmann et al. (2021) [42] VGG-8 NoNorm 4.21 66.2
Nasirigerdeh et al. (2022) ResNet-8 KernelNorm 4.0 73.32
Ours KNResNet-13 KernelNorm 4.0 74.51±0.19

Klause et al. (2022) [24] ResNet-9 GroupNorm 2.89 65.6
Nasirigerdeh et al. (2022) ResNet-8 KernelNorm 2.0 68.08
Ours KNResNet-13 KernelNorm 2.0 68.05±0.07

(b) CIFAR-10 with augmentation multiplicity (K)

Study Model Normalization K ε Test accuracy

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 8.0 79.5
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 8.0 81.4
Ours KNResNet-13 KernelNorm 3 8.0 80.8 ±0.22

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 6.0 77.0
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 6.0 78.8
Ours KNResNet-13 KernelNorm 3 6.0 79.09±0.07

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 4.0 71.9
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 4.0 73.5
Ours KNResNet-13 KernelNorm 3 4.0 76.19±0.04

De et al. (2022) [23] Wide ResNet-16-4 GroupNorm 16 2.0 64.9
De et al. (2022) [23] Wide ResNet-40-4 GroupNorm 32 2.0 65.9
Ours KNResNet-13 KernelNorm 3 2.0 70.57±0.24

(c) Imagenette

Study Model Normalization ε Test accuracy

Klause et al. (2022) [24] ResNet-9 GroupNorm 7.42 64.8
Klause et al. (2022) [24] ResNet-9 GroupNorm 9.88 67.1
Remerscheid et al. (2022) [25] DenseNet-14 GroupNorm 7.0 69.7
Ours KNResNet-13 KernelNorm 7.0 72.24±0.48

with much lower augmentation multiplicity (3 vs. 16 vs. 32)
for ε values of 2.0, 4.0, and 6.0. On Imagenette, KNResNet-13
achieves around 3% and 7% higher accuracy than GroupNorm
based DenseNet-14 [25] and ResNet-9 [24], respectively.

Given the results from Table IV, we provide new SOTA
accuracy values on the CIFAR-10 and Imagenette datasets,
when trained from scratch:

• On CIFAR-10 without augmentation multiplicity, the ac-
curacy values of 74.51%, 77.09%, and 78.51% for ε=4.0,
6.0, and 8.0, respectively.

• On CIFAR-10 with augmentation multiplicity, the accu-
racy values of 70.57%, 76.19%, and 79.09% for ε=2.0,
4.0, and 6.0, respectively.

• On Imagenette, the accuracy value of 72.24% for ε=7.0.



V. DISCUSSION

Our experimental evaluation shows KernelNorm delivers
higher performance than LayerNorm and GroupNorm in FL,
DP, and DP-FL. This can be because KernelNorm is a local
normalization method, taking into account the spatial correla-
tion of the elements in the height and width dimensions during
normalization. This leads to faster convergence rate compared
to global batch-independent layers including LayerNorm and
GroupNorm, likely due to the smoother optimization landscape
[24]. It implies KernelNorm requires less amount of total
injected noise to achieve a target accuracy value for a given
privacy budget in DP, and a fewer number of communication
rounds, and thus, higher communication efficiency in FL.

Moreover, LayerNorm and GroupNorm have scale and
shift as learnable parameters. In FL these parameters are
aggregated, while they are perturbed with noise in DP. The
performance of the layer and group normalized models can
negatively be impacted in both cases. KernelNorm, however,
is free of these learnable parameters, which can be another
factor in superior performance of KernelNorm compared to
LayerNorm and GroupNorm.

Finally, the feature values are not required to be normalized
with the per-channel mean and standard deviation of the
dataset in KernelNorm based models due to self-normalizing
nature of KNConv, which normalizes the input before com-
puting convolution. This is beneficial, especially in federated
environments, because it is not required for clients to share
the mean and standard deviation of their local datasets with
server to compute the corresponding global values.

Given the aforementioned properties and its superior per-
formance, KernelNorm has a great potential to become the
standard normalization layer for federated learning, differential
privacy, and differentially private federated learning.

VI. RELATED WORK

There are few studies that compare the performance of
various normalization layers in federated settings. Hsieh et
al. [9] experimentally show GroupNorm delivers higher ac-
curacy than BatchNorm in supervised FL. Zhang et al. [22]
demonstrate this also holds for semi-supervised FL. However,
these studies have not compared GroupNorm with NoNorm as
the baseline. Our experiments illustrate GroupNorm does not
necessarily provide accuracy gain compared to NoNorm for
shallow models in supervised federated settings.

Several studies investigate the performance of different
batch-independent normalization layers for differentially pri-
vate learning. Klause et al. [24] and Remerscheid et al.
[25] show GroupNorm outperforms LayerNorm in terms of
accuracy in DP settings. Nasirigerdeh et al. [21] illustrate
KernelNorm delivers considerable accuracy gain compared to
both LayerNorm and GroupNorm in DP. These prior works,
however, do not consider NoNorm as the baseline for compar-
ison. Our evaluation indicates NoNorm slightly outperforms
both LayerNorm and GroupNorm for the shallow ResNet-
8 model on CIFAR-10, whereas KernelNorm still provides
significant accuracy improvement compared to NoNorm for

the aforementioned setting. The experimental evaluation of
Nasirigerdeh et al. [21], moreover, is limited to a single case
study. We conduct more extensive experiments with deeper
models on both low-resolution and medium-resolution datasets
to draw the performance comparisons among NoNorm, Lay-
erNorm, GroupNorm, and KernelNorm.

Some studies propose novel architectures or data augmen-
tation techniques to enhance the accuracy of differentially
private models. Klause et al. [24] present a 9-layer ResNet
architecture in which an additional normalization is performed
after the addition operation of the residual block, and show
their architecture improves the accuracy compared to the
original ResNet architecture. Remerscheid et al. [25] introduce
a novel DenseNet-based architecture called SmoothNet, which
employs 3 × 3 convolutional layers with a high number of
filters in the DenseNet blocks, and demonstrate it outperforms
the previous ones in terms of accuracy. Both architectures em-
ploy GroupNorm as their normalization layer. We propose the
KNResNet-13 architecture based on KernelNorm, and show it
delivers considerably higher accuracy than the aforementioned
architectures on CIFAR-10 and Imagenette.

De et al. [23] present the augmentation multiplicity tech-
nique, which computes the per-sample gradients by taking
average over the gradients from different augmentations of
the sample. We adopt this technique to train the proposed
KNResNet-13 architecture on CIFAR-10. The accuracy from
KNResNet-13 is higher than the wide ResNet-16-4 and
ResNet-40-4 used in [23] for ε values of 2.0, 4.0, and 6.0.

VII. CONCLUSION AND FUTURE WORK

We address the normalization challenge in the context of
federated and differentially private learning. Through extensive
experiments, we demonstrate: (1) in FL and DP, using no
normalization layer in the architecture of shallow networks
such as VGG-6 and ResNet-8 delivers slightly higher accuracy
than LayerNorm and GroupNorm, (2) on deeper models such
as DenseNet-20×16 and PreactResNet-18 in FL and DP as
well as the shallow models in DP-FL, however, LayerNorm
and GroupNorm considerably outperform NoNorm, and (3) the
recently proposed KernelNorm method achieves significantly
higher accuracy and convergence rate compared to NoNorm,
LayerNorm, and GroupNorm in FL, DP, and DP-FL.

Given the superior performance of KernelNorm, we propose
a kernel normalized ResNet architecture called KNResNet-13
for differentially private learning. Using the proposed archi-
tecture, we provide new SOTA accuracy values on CIFAR-
10 with and without augmentation multiplicity as well as
Imagenette for different ε values, when trained from scratch.

We employ a low augmentation multiplicity value (i.e. 3) in
our study due to the remarkable computational overhead of the
technique. KNResNet-13 might deliver even higher accuracy
with larger augmentation multiplicity values (e.g. 16 or 32),
which can be an investigated in future studies. Additionally,
the performance evaluation of kernel normalized architectures
on the large Imagenet-32×32 dataset [36] is an interesting
direction for future works.



REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25, 2012.

[2] Eric Horvitz and Deirdre Mulligan. Data, privacy, and the greater good.
Science, 349(6245):253–255, 2015.

[3] Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with
gaussian differential privacy. Harvard data science review, 2020(23),
2020.

[4] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive
privacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In 2019 IEEE
symposium on security and privacy (SP), pages 739–753. IEEE, 2019.

[5] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In 2017
IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2017.

[6] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Pri-
vacy risk in machine learning: Analyzing the connection to overfitting.
In 2018 IEEE 31st computer security foundations symposium (CSF),
pages 268–282. IEEE, 2018.

[7] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR, 2017.

[8] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions. IEEE
Signal Processing Magazine, 37(3):50–60, 2020.

[9] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons.
The non-iid data quagmire of decentralized machine learning. In Inter-
national Conference on Machine Learning, pages 4387–4398. PMLR,
2020.

[10] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages
691–706. IEEE, 2019.

[11] Ligeng Zhu and Song Han. Deep leakage from gradients. In Federated
Learning, pages 17–31. Springer, 2020.

[12] Dmitrii Usynin, Daniel Rueckert, Jonathan Passerat-Palmbach, and
Georgios Kaissis. Zen and the art of model adaptation: Low-utility-
cost attack mitigations in collaborative machine learning. Proceedings
on Privacy Enhancing Technologies, 2022(1):274–290, 2022.

[13] Cynthia Dwork and Aaron Roth. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci., 9:211–407,
2014.

[14] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318, 2016.

[15] Mário S Alvim, Miguel E Andrés, Konstantinos Chatzikokolakis, Pier-
paolo Degano, and Catuscia Palamidessi. Differential privacy: on the
trade-off between utility and information leakage. In International
Workshop on Formal Aspects in Security and Trust, pages 39–54.
Springer, 2011.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional conference on machine learning, pages 448–456. PMLR, 2015.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[19] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016.

[20] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the
European conference on computer vision (ECCV), pages 3–19, 2018.

[21] Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Daniel Rueckert, and
Georgios Kaissis. Kernel normalized convolutional networks. arXiv
preprint arXiv:2205.10089, 2022.

[22] Zhengming Zhang, Zhewei Yao, Yaoqing Yang, Yujun Yan, Joseph E
Gonzalez, and Michael W Mahoney. Benchmarking semi-supervised
federated learning. arXiv preprint arXiv:2008.11364, 17:3, 2020.

[23] Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja
Balle. Unlocking high-accuracy differentially private image classifica-
tion through scale. arXiv preprint arXiv:2204.13650, 2022.

[24] Helena Klause, Alexander Ziller, Daniel Rueckert, Kerstin Hammernik,
and Georgios Kaissis. Differentially private training of residual networks
with scale normalisation. arXiv preprint arXiv:2203.00324, 2022.

[25] Nicolas W Remerscheid, Alexander Ziller, Daniel Rueckert, and Geor-
gios Kaissis. Smoothnets: Optimizing cnn architecture design for
differentially private deep learning. arXiv preprint arXiv:2205.04095,
2022.

[26] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
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APPENDIX

TABLE V: Federated learning: Learning rate values giving the highest accuracy for each normalization layer; B: batch size.
(a) CIFAR-10-VGG-6 (cross-silo FL)

B NoNorm LayerNorm GroupNorm KernelNorm

16 0.025 0.025 0.01 0.025
64 0.025 0.025 0.05 0.025

(b) CIFAR-10-VGG-6 (cross-device FL)
B NoNorm LayerNorm GroupNorm KernelNorm

16 0.025 0.025 0.05 0.025
64 0.05 0.025 0.05 0.05

(c) CIFAR-100-PreactResNet-18 (cross-silo FL)
B NoNorm LayerNorm GroupNorm KernelNorm

16 0.01 0.01 0.005 0.025
64 0.01 0.01 0.01 0.05

(d) CIFAR-100-PreactResNet-18 (cross-device FL)
B NoNorm LayerNorm GroupNorm KernelNorm

16 0.01 0.01 0.005 0.025
64 0.05 0.01 0.01 0.1

TABLE VI: Differential privacy: Learning rate values giving the highest accuracy for each normalization layer; B: batch size.
(a) CIFAR-10-ResNet-8 (DP)

B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.0
1024 2.0 2.0 1.5 1.5
2048 2.0 2.0 2.0 2.0
3072 2.0 2.0 2.0 2.0

(b) CIFAR-10-DenseNet-20×16 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.5 2.0 1.5
512 1.0 2.0 2.0 1.5
1024 1.5 2.0 1.5 1.5
2048 2.0 2.0 2.0 1.5

(c) Imagenette-PreactResNet-18 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.5
1024 1.0 1.0 1.0 2.0
2048 1.5 1.0 1.0 2.0

TABLE VII: Differential privacy: Clipping values giving the highest accuracy for each normalization layer; B: batch size.

(a) CIFAR-10-ResNet-8 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.0
1024 1.0 1.5 2.0 1.5
2048 2.0 2.0 2.0 2.0
3072 2.0 2.0 2.0 2.0

(b) CIFAR-10-DenseNet-20×16 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.5 2.0 1.5
512 1.0 1.5 1.5 1.5
1024 2.0 2.0 2.0 1.5
2048 2.0 1.5 2.0 1.0

(c) Imagenette-PreactResNet-18 (DP)
B NoNorm LayerNorm GroupNorm KernelNorm

512 1.0 1.0 1.0 1.5
1024 1.0 1.5 1.0 1.0
2048 1.0 1.0 1.0 1.0

TABLE VIII: Differentially private federated learning: Learning rates giving the highest accuracy for each norm layer.

(a) CIFAR-10-VGG-6 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 0.01 0.01 0.01 0.01
512 0.025 0.01 0.01 0.025
1024 0.025 0.01 0.025 0.025

(b) CIFAR-10-ResNet-8 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 0.01 0.01 0.01 0.01
512 0.025 0.01 0.01 0.01
1024 0.025 0.01 0.01 0.05

TABLE IX: Differentially private federated learning: Clipping values giving the highest accuracy for each norm layer.

(a) CIFAR-10-VGG-6 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.0 1.5 1.0
512 1.5 1.0 1.0 1.0
1024 2.0 1.5 2.0 2.0

(b) CIFAR-10-ResNet-8 (DP-FL)
B NoNorm LayerNorm GroupNorm KernelNorm

256 1.0 1.5 1.0 1.0
512 1.0 1.0 1.0 1.0
1024 1.0 1.0 2.0 2.0
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Conclusion

This dissertation focuses on enhancing the efficiency of machine learning models
including the regression and neural network models in terms of utility, network
communication (convergence rate), and/or privacy in federated, differentially private,
and differentially private federated learning environments given centralized training as
baseline. We present the core contributions of the dissertation in chapters 4-7 in the
form of four sole first-authored publications: sPLINK [30], UPFL [31], KernelNorm
[32], and KernelNorm for privacy-related domains [33].

In the first study, we introduce a software called sPLINK for GWAS, which
implements the hybrid federated versions of the chi-square, linear regression, and
logistic regression models. We analytically and experimentally demonstrate that
sPLINK provides ideal utility, which is identical to the utility from PLINK [34] on the
centralized (aggregated) data, independent of the data distribution across the clients.
sPLINK operates in a federated environment, where the private data of the clients is
not shared with a third party (privacy-enhancing). sPLINK is also efficient from the
communication perspective, requiring a few rounds to calculate the statistics.

In the second study, we theoretically prove and experimentally validate that the
DNN models can achieve ideal utility in federated settings akin to the regression
models provided that the (1) model and loss function are batch-independent and
deterministic, (2) optimizer uses a linear momentum function, and (3) training
algorithm selects all clients, the clients perform a single local update per round, and
the server employs weighted averaging as aggregation function. We refer to a federated
environment satisfying the above-mentioned conditions as UPFL, which preserves
utility compared to the corresponding centralized setting. UPFL, however, incurs
remarkable communication overhead. In other words, it sacrifices communication
efficiency for ideal utility. UPFL is also privacy-enhancing, but not privacy-preserving.

sPLINK and UPFL do not make the training procedure more efficient in terms of
communication, utility, and privacy at the same time. That is, they do not break the
CUP trade-off similar to many studies in the literature. To address this challenge, we
propose a novel normalization layer called KernelNorm in our third study.
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8. Conclusion

KernelNorm is a batch-independent and local normalization layer, which exten-
sively considers the spatial correlation among the elements in the width and height
dimensions during normalization. We also introduce KNConv as the combination
of the KernelNorm and convolutional layers. We incorporate the proposed Kernel-
Norm and KNConv layers as the main building blocks of KNResNets while forgoing
BatchNorm. Through extensive experiments, we show that KNResNets provide
higher or very competitive accuracy compared to BatchNorm-based counterparts, and
significantly outperform the batch-independent competitors including layer and group
normalized ResNets for image classification and semantic segmentation in centralized
settings. We also demonstrate that KNResNet-18 achieves higher accuracy than
LayerNorm and GroupNorm based ResNet-18 in differentially private learning.

In the last study, we draw an extensive comparison among KernelNorm, Layer-
Norm, GroupNorm, and NoNorm (no normalization) using the VGG, ResNet, and
DenseNet models in FL, DP, and DP-FL environments. Our results indicate that
the KernelNorm based models considerably outperform the competitors in all three
environments, and as a result, KernelNorm is the most efficient normalization layer
for privacy-related domains. We also propose the KNResNet-13 architecture for
differentially private training, and provide the state-of-the-art accuracy values on the
CIFAR-10 and Imagenette datasets, when trained from scratch.

Finally, we conduct an elegant experiment in a DP-FL environment to illustrate
how to break the CUP trade-off using kernel normalized models. Through our
experiment, we show that kernel normalized ResNet-9 can deliver higher accuracy with
lower privacy budget in fewer communication rounds compared to group normalized
ResNet-9, implying that it enhances utility, communication efficiency, and privacy
simultaneously, and breaks the CUP trade-off.
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Outlook

The sPLINK tool provides ideal utility and high communication efficiency for three
popular models in GWAS, i.e. chi-square and linear/logistic regression, in a privacy-
enhancing environment, where the private data of clients is not shared with third
parties. The current version of sPLINK, however, does not support population
stratification using PCA, which is essential in practical GWAS. The Fever-PCA tool
proposed by Hartebrodt et al. [67] addresses this limitation. Given that, combining
sPLINK with Fever-PCA to perform practical GWAS is a logical direction for future
research. Two main challenges, however, should be taken into account in this regard:
(1) Unlike sPLINK, Fever-PCA is not efficient from the network communication
perspective, requiring a couple of hundreds of rounds for model convergence, and
(2) both sPLINK and Fever-PCA are not privacy-preserving because they do not
employ differential privacy during training. The latter challenge is especially of great
importance for the GWAS community, which deals with private data of patients.

The proposed KernelNorm and KNConv layers are incorporated into KNConvNets,
which are efficient not only in CL but also in FL, DP, and DP-FL settings. The current
implementation of the proposed layers, however, is not optimal from the computation
aspect. This is because they are implemented using PyTorch [82] primitives but not
in CUDA. The implementation of the proposed layers in CUDA is a crucial step
towards the widespread adoptability of KNConvNets by the deep learning community.

We illustrate the effectiveness of KNConvNets for the image classification and
semantic segmentation tasks. The performance evaluation of KNConvNets for a
variety of application domains such as object detection [83], generative adversarial
networks (GANs) [84], diffusion generative models [85], and image denoising [86] is
an interesting direction for future studies.

The training algorithm, model, loss function, and optimizer are considered as the
main DNN training components. In this dissertation, we focus on model, or more
precisely, the normalization layer in model to break the CUP trade-off. Future studies
can follow orthogonal directions by focusing on the other training components to
improve utility, communication, and privacy simultaneously in DP-FL environments.
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Experimental details
We used PLINK V1.9 to generate the splits and perform the aggregated analysis; SNPs with minor allele
frequency below 0.05 were filtered out. The common SNPs among the splits have been considered in all analyses.
Tables S1-S3 list the sample size (case | control | total) and the number of SNPs for each split in the aggregated
analysis with PLINK, meta-analysis using PLINK, METAL, and GWAMA, and the federated analysis using
sPLINK.

Table S1 The SHIP case study

Association test Split1 Split2 Split3 Split4 Aggregated

Sample size # of SNPs Sample size # of SNPs Sample size # of SNPs Sample size # of common SNPs Sample size # of common SNPs
Chi-square 229 | 712 | 941 5070067 276 | 768 | 1044 5062964 245 | 761 | 1006 5070192 184 | 524 | 708 5077381 934 | 2765 | 3699 4878280

Logistic regression 229 | 712 | 941 5070067 276 | 768 | 1044 5062964 245 | 761 | 1006 5070192 184 | 524 | 708 5077381 934 | 2765 | 3699 4878280
Linear regression 941 5070067 1044 5062964 1006 5070192 708 5077381 3699 4878280

Table S2 The COPDGene case study

Scenario Split1 Split2 Split3 Aggregated
Sample size # of SNPs Sample size # of SNPs Sample size # of SNPs Sample size # of common SNPs

I 937 | 844 | 1781 584910 937 | 844 | 1781 584816 937 | 844 | 1781 585071 2811 | 2532 | 5343 580719
II 737 | 1044 | 1781 584928 937 | 844 | 1781 585108 1137 | 644 | 1781 584816 2811 | 2532 | 5343 580743
III 537 | 1244 | 1781 584978 937 | 844 | 1781 584983 1337 | 444 | 1781 584860 2811 | 2532 | 5343 580783
IV 337 | 1444 | 1781 585105 937 | 844 | 1781 584960 1537 | 244 | 1781 584655 2811 | 2532 | 5343 580709
V 237 | 1544 | 1781 585260 937 | 844 | 1781 585020 1637 | 144 | 1781 584658 2811 | 2532 | 5343 580789
VI 936 | 845 | 1781 585042 936 | 845 | 1781 585073 937 | 844 | 1781 584839 2811 | 2532 | 5343 580719

Table S3 The FinnGen case study

Scenario Split1 Split2 Split3 Aggregated
Sample size # of SNPs Sample size # of SNPs Sample size # of SNPs Sample size # of common SNPs

I 22838 997660 22838 997744 22838 997696 68514 994881
II 22838 997751 28547 997962 19983 997604 71368 995016
III 22838 997786 45676 998442 17129 997233 85643 995090
IV 22838 997722 68514 998843 14274 996997 105626 994999
V 22838 997803 99345 999114 12561 996775 134744 994918
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Supplementary results
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Fig. S1 The significant SNPs overlapped between sPLINK and PLINK for the SHIP case study considering
Bonferroni significance threshold, which is ≈ 1×10−8 in our case. sPLINK and PLINK identify the same set of
SNPs as significant.
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Fig. S2 The Spearman rank correlation coefficient between the p-values from each tool and the aggregated
analysis for the COPDGene and FinnGen case studies. F and R stand for fixed-effect and random-effect,
respectively.
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Fig. S3 Runtime and network bandwidth usage of sPLINK with varying number of SNPs
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Fig. S4 Runtime and network bandwidth usage of sPLINK with varying number of samples
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Fig. S5 Runtime and network bandwidth usage of sPLINK with varying number of clients

Experimental setup

Table S4 The system specification of the physical machines and laptops used to measure the runtime and network
bandwidth usage of sPLINK; Download/upload speeds are approximate values measured using speedtest-cli
(https://github.com/sivel/speedtest-cli); GB: Gigabyte; Mbps: Megabit per second

System name # of cores used Memory size (GB) Upload (Mbps) Download (Mbps) Location Experiment sets used

Server 8 12 411 527 Freising All
Compensator 4 12 810 830 Odense All

Laptop1 4 16 35 76 Munich All
Laptop2 4 16 10 58 Freising All
Laptop3 4 8 24 21 Freising 1
Laptop4 4 8 95 93 Freising 4

Desktop-PC 4 64 11 93 Freising 2,3,4

Table S5 The experimental setup used for measuring the runtime and network bandwidth usage of sPLINK;
COPDGene is employed as the dataset in all experiment sets; logistic regression is used in experiment sets 2-4;
In the first experiment of the experiment set 2 (i.e. sample size 1781 and SNP count 100K), 12 cores of the
Desktop-PC system is used instead of 4; K: 1000

Experiment set # Description # of clients Sample size per client # of SNPs Chunk size Beta iterations

1 chi-square | linear | logistic 3 1781 ∼ 580K 200K - | - | 20
2 varying # of SNPs 3 1781 100K, 200K, 400K 100K 20
3 varying # of samples 3 1K, 2K, 4K 100K 100K 5
4 varying # of clients 2,3,4,5 1K 100K 100K 5
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Supplementary Material: The
Setup for the CUP Trade-off
Experiment

The experiment associated with the CUP trade-off discussed in Chapter 1 is conducted
in a DP-FL environment consisting of 10 clients, where each client has 5000 samples
from 4 labels (out of 10 labels). That is, the sample size distribution is completely
balanced, but the label distribution is NonIID across the clients. The dataset is
CIFAR-10 [47], which includes total of 50000 train images and 10000 test images of
shape 32×32. The ResNet-9-GN architecture is adopted from [73], which uses Mish
[87] as the activation function. The number of groups of GroupNorm is 32. The
dropout probabilities for the KNConv and KernelNorm layers in ResNet-9-KN is 0.05,
and 0.25 respectively. The training algorithm is FedAvg [16] with local epochs of
1, optimizer is SGD with zero-momentum, and loss function is cross-entropy. Both
ResNet-9-GN and ResNet-9-KN are trained for 100 communication rounds.

The clients employ DP-SGD (Algorithm 1) to train the models on their local data
in a differentially private manner. The ResNet-9-GN and ResNet-9-KN models are
trained using the privacy parameter values of (ε=8.0, δ=10−5) and (ε=7.0, δ=10−5),
respectively. We perform parameter tuning using initial learning rate values of η={0.1,
0.05, 0.025, 0.0125}, clipping values of C={1, 1.5, 2.0}, and batch sizes of B={1024,
2048, 3072}. The earning rate is decayed by factor of 0.99 in each communication
round. The optimal parameter values obtained for ResNet-9-GN are η=0.025, C=1.5,
and B=2048. For ResNet-9-KN, they are η=0.1, C=1.5, and B=3072.

We repeat the experiment with the optimal parameter values three times and
report the mean accuracy of the runs as final accuracy. We consider the average
of the accuracy values in the last five communication rounds as the representative
accuracy of the run. Similarly, we employ moving average with window size of five to
smoothen the accuracy curves in Figure 1.1.
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Publication Rights & Licensing Policy

Updated on January 1, 2023

Introduction

ACM embraces a not-for-profit business model that aims to assure sustainable
revenue for the continued operation and enhancement of the ACM Publications
Program and the ACM Digital Library, while making ACM Publications available to
the widest possible global audience of computing professionals and students.

For over half a century, ACM has requested that authors transfer copyright of
their articles, so that ACM could act as a steward of their published work,
manage the publication process, respond to requests related to third-party rights
and permissions, and defend their published Works against misconduct such as
plagiarism or copyright infringement. Since that time, ACM's copyright and
permissions policies have been widely used as a model by other scholarly
publishers in adapting their own policies to the ever-changing realities of
electronic dissemination and open access publication.

Over the years, ACM has made regular updates to its copyright policy, which is
now in its 10th iteration, to ensure we are acting in the best interest of our
authors and the global computing community, such as we did in 2013 when ACM
introduced Exclusive, Non-exclusive, and Creative Commons licensing options as
part of our ACM eRights process for authors. Many of these changes were done
to support our authors with options enabling them to comply with government
open science mandates around the world and to retain the underlying intellectual
property of their Work.

Today, every ACM author of a scholarly Work accepted by an ACM Publication has
the option of retaining the copyright of their Work and granting ACM a license to
publish that Work in the ACM Digital Library. For Corresponding Authors affiliated
with ACM Open participating institutions or Corresponding Authors not affiliated
with an ACM Open institution, but who are willing to pay a reasonably priced
Article Processing Charge (APC), there is an additional option to select an
appropriate Creative Commons  license to facilitate sharing and reuse of their
Works, so the community may build on their Work without the need to obtain
additional permissions from ACM or the Author, provided proper attribution is
given.

As ACM continues to transition its entire scholarly Publication program to an
Open Access model, the use of Creative Commons  licensing is becoming
more prevalent. In fact, many of the large government Open Science mandates
around the world require the use of a Creative Commons or equivalent license
when research grant recipients publish Work funded by those governments.
Many private research funders are following suit (i.e. - Gates Foundation,
Welcome Trust, etc.).



With its stated goal of sustainably transitioning to a fully Open Access Publisher
around the end of 2025 and in response to calls for greater copyright retention
and intellectual property ownership by ACM's authorship, ACM is now taking the
most significant step forward since the creation of its Copyright Policy in 1994 by
effectively sensetting the existing Copyright Policy and replacing it with this new
Publication Rights and Licensing Policy. ACM will continue to register and hold
copyright and other intellectual property rights of ACM Journals, Magazines,
Conference Proceedings, Newsletters, Books, and other ACM Publications, but
after January 1, 2023 ACM will no longer hold copyright in any of the newly
published articles in ACM Publications. 

What is Changing?

ACM will continue to require authors to assign publication rights to ACM as a
condition of publishing the work. This is necessary to protect both ACM's authors
and ACM against infringement and misconduct by third parties.

During the June 2022 meeting of the ACM Publications Board, the Board took
perhaps the most significant "copyright-related" step taken in its
history by voting to end the “Copyright Transfer” option starting January 1,
2023. After January 1, 2023, when authors’ Works are accepted into any of
ACM’s Publications and enter the ACM Rights System via the link in their
Acceptance Email, the "Corresponding Author” will no longer be given the option
(currently listed as the 3rd of 3 options) of transfering copyright to ACM. For
published Works prior to that date where copyright has been transferred by the
Author to ACM, ACM will continue to be the copyright holder for such Works.

After January 1, 2023, there will be two remaining
options, as follows:

Institutional Paid Open Access / Permissions Release - This is the Open
Access option. Wording may vary slightly depending on whether the
Corresponding Author is affiliated with an ACM Open participating institution or
not. If not, they will be given the option to pay an Article Proceeding Charge
(APC). This option is the default when the Corresponding Author is affiliated
with an ACM Open participating institution. Authors selecting this option will
retain all rights to their Work and agree to grant ACM a non-exclusive
permission to publish their Work in the ACM Digital Library and have the
additional option of displaying a Creative Commons license on the published
version of their Work in the ACM Digital Library. 

Closed Access / Exclusive License to Publish - This is the Closed Access
option. Authors selecting this option will retain all rights to their Work and
grant ACM an exclusive license to publish their Work in the ACM Digital
Library. 

Creative Commons Licensing Options

If the Corresponding Author of a Work accepted into an ACM Publication is either
affiliated with an ACM Open participating institution  or has decided to pay
the Open Access Article Processing Charge  (APC), the Corresponding
Author will be given the additional option of applying a Creative Common license
to govern how their Work may be shared and reused. Most US and
European funding agencies prefer the use of the CC-BY 4.0 License, although



authors should check with their specific funder to learn if their funder has any
firm requirements on the version of Creative Commons license they must use as
part of the publishing process.

The current ACM Policy is to allow authors the option of selecting their preferred
version.  ACM currently offers 6 Creative Commons license options, including:

CC-BY 4.0 License - This license allows reusers to distribute, remix, adapt,
and build upon the material in any medium or format, so long as attribution is
given to the creator. The license allows for commercial use.

CC-BY 4.0-SA - This license allows reusers to distribute, remix, adapt, and
build upon the material in any medium or format, so long as attribution is
given to the creator. The license allows for commercial use. If you remix,
adapt, or build upon the material, you must license the modified material
under identical terms.

CC-BY 4.0-NC - This license allows reusers to distribute, remix, adapt, and
build upon the material in any medium or format for noncommercial purposes
only, and only so long as attribution is given to the creator. 

CC-BY 4.0-NC-SA - This license allows reusers to distribute, remix, adapt,
and build upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution is given to the creator. If you
remix, adapt, or build upon the material, you must license the modified
material under identical terms. 

CC-BY 4.0-ND - This license allows reusers to copy and distribute the
material in any medium or format in unadapted form only, and only so long as
attribution is given to the creator. The license allows for commercial use. 

CC-BY 4.0-NC-ND - This license allows reusers to copy and distribute the
material in any medium or format in unadapted form only, for noncommercial
purposes only, and only so long as attribution is given to the creator. 

Creative Common Zero (CC-0) License

There is one additional CC License that ACM Authors may apply to their research
artifacts (i.e. - data, code, etc.) called CC-0 . CC-O allows creators to give up
their copyright and put their Works in the worldwide public domain. CC-0 is no
longer offered in the ACM Rights system for ACM Publications, because it places
the Work in the public domain and is irreversible, which could create problems
for the author and ACM as the Publisher in the future. However, when ACM
Authors are depositing their research artifacts either in the ACM DL or a third-
party site such as GITHUB, some authors may wish to assign a CC-0 license to
those research artifacts. ACM cautions the use of CC-0 unless the author has
given significant consideration to this and would like to give away their copyright
and allow unrestricted use of their research artifacts to the public. When ACM
Authors choose to apply a CC-0 license to their research artifacts, they should
indicate this alongside the artifact(s) wherever that artifact is hosted inside or
outside the ACM Digital Library.

Defending Authors Against Misconduct

One of the major changes with the removal of the copyright transfer option is
that regardless of which option the Author selects, ACM commits to defending
their published Work in the ACM Digital Library against infringement and
misconduct without the requirement to hold copyright on the published Work. In



practice, ACM has been doing this for years, but is formalizing this commitment
in this new Policy. When an ACM Author agrees to have ACM serve as the
Publisher of Record for their accepted Work, protecting that Work against various
forms of infringement and misconduct by third parties is one of the services ACM
commits to provide to the Author. In return, ACM Authors agree to abide by all
of ACMs Publications Policies and cooperate with ACM staff, volunteers, and
advisers in their investigations and process to adjudicate allegations of
infringement and misconduct.

Requirement to Grant ACM Exclusive or Non-
Exclusive Publication Rights (applies to Journal,
Conference, and Magazine articles)

ACM requires that authors have the authority to grant publication rights to
ACM or that they obtain the necessary authorization to execute the grant of
publication rights and that they complete ACM's Rights Management Process as a
pre-condition for publishing their Work with ACM. Such grant applies to any
medium used by ACM for publication (i.e.- print, online, etc.). If Authors are
uncertain about their having the authority to grant these rights as a result of
their employer's intellectual property rights requirements or working for a
government employer with specific requirements, they should always check with
their employer before completing ACM's Rights Assignment process. Authors
should also take note of the following:

Authors should incorporate the appropriate Copyright or License notice and
ACM citation of the publication into copies they personally maintain on non-
ACM servers.

The author's grant of publication rights applies only to the Work as a whole,
and not to any embedded objects owned by third parties. An author who
embeds an object, such as an art image that is copyrighted by a third party,
must obtain that party's permission to include the object, with the
understanding that the entire work may be distributed as a unit in any
medium.

The requirement to obtain third-party permission does not apply if the author
embeds only a link to the copyright holder's object. Other requirements for
third-party permissions can be found below under the section called 3rd Party
Permissions. 

Authors who wish to embed a component of another ACM-copyrighted or
licensed work, e.g., an excerpt, a table, or a figure, must obtain an explicit
permission (there is no fee) from ACM.

Self-Archiving and Posting Rights

All ACM published authors of magazine ar�cles, journal ar�cles, and conference papers retain
the right to post the pre-submi�ed (also known as "pre-prints"), submi�ed, accepted, and peer-
reviewed versions of their work in any and all of the following sites:



Author's Homepage

Author's Ins�tu�onal Repository

Any Repository legally mandated by the agency or funder funding the research on which the
work is based

Any Non-Commercial Repository or Aggrega�on that does not duplicate ACM tables of
contents. Non-Commercial Repositories are defined as Repositories owned by non-profit
organiza�ons that do not charge a fee to access deposited ar�cles and that do not sell
adver�sing or otherwise profit from serving scholarly ar�cles.

Authors should include an appropriate citation and attribution statement on all
Submitted or Accepted versions of the Work similar to the following:

"© {Owner/Author | ACM} {Year}. This is the author's version of the
work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in
{SourcePublication}, http://dx.doi.org/10.1145/{number}."

For the avoidance of doubt, an example of a site ACM authors may post all versions of their work
to, with the excep�on of the final published "Version of Record", is arXiv. ACM does request
authors, who post to ArXiv or other permi�ed sites, to also post the published version's Digital
Object Iden�fier (DOI) alongside the pre-published version on these sites, so that easy access
may be facilitated to the published "Version of Record" upon publica�on in the ACM Digital
Library.

Examples of sites ACM authors may not post their work to are ResearchGate, Academia.edu,
Mendeley, or Sci-Hub, as these sites are all either commercial or in some instances u�lize
predatory prac�ces that violate copyright, which nega�vely impacts both ACM and ACM authors.

Current ACM Publica�ons Policy is that ACM sponsored and ICPS conferences may not impose
embargoes on authors pos�ng pre-prints of submissions on arXiv or disqualify such submissions
that have already been posted on arXiv at the �me of submission or during the peer review
process. This policy was most recently reaffirmed by the ACM Publica�ons Board in 2019. This
Policy is currently under reconsidera�on by the ACM Publica�ons Board and it is expected that
this policy will either be reaffirmed or updated by December 31, 2022.

Requirements for ACM Books Authors

Unlike other types of ACM Publications listed above, ACM Books authors shall
continue to be given the option of signing either a Copyright Transfer &
Publishing Agreement or Exclusive License to Publish Agreement. The reason for
this is that there are fundamental differences in how books are published,
marketed, sold, and distributed via the ACM Digital Library, 3rd party channels,
and in print that relate primarily to commercial considerations, financial
remuneration for ACM Books authors, and posting or self-archiving policies for
ACM Books, which differs from ACM's general posting and self-archiving policy for
journal, conference, and magazine authors. For more information, please see
the Publishing Policies related to ACM Books authors .



Definitive Versions of Record, Official Publication
Dates, and Corrections to the Version of Record

Preserving the scholarly record "as published" is a critical component of
maintaining the community and public's trust in scientific publications in general
and trust in ACM specifically. As a result, ACM is committed to the publication
and long term digital preservation of published works in the ACM Digital Library
and via several third-party digital preservations initiatives, including CLOCKS 
and Portico . ACM will create and maintain a definitive Version of Record (VoR)
of all ACM published works and share these with our digital preservation
providers. There are instances where VoRs are hidden in the ACM Digital Library
for legal or public safety reasons, to comply with other ACM Publications
Policies, such as in connection with the implementation of ACMs Name Change
Policy, when Retractions are made, or when Corrected Versions of Record
(CVoR) are added to ACM Digital Library citation pages when errata or corrigenda
are created in connection with a published work. ACM will provide the reason for
the Correction on the article's Digital Library citation page. ACM does not alter
works once published. There are times, however, when it is appropriate to
publish a revised or corrected version of a work; doing so requires the approval
of the responsible editor. Please see ACM's Publications Policy on the
Withdrawal, Correction, Retraction, and Removal of Works from ACM
Publications and ACM DL

Persistent Unique Identifiers for Every ACM Article

The DOI (Digital Object Identifier)  is the scholarly publishing standard (ISO
26324) identifier for articles published by ACM in the ACM Digital Library. Every
article in the ACM Digital Library shall have one and only one DOI.

The official publication date of an ACM published article will be considered the
date on which the article’s official Version of Record (VoR) is published online in
the ACM Digital Library, and the official VoR of an ACM article shall be the final
peer reviewed, accepted, edited, tagged, and identified (using a DOI or other
standardized identifier) definitive version that appears in ACM Publications (i.e. -
journals, magazines, conference proceedings, newsletters, books, etc.) inside the
ACM Digital Library.

For the avoidance of doubt, only the official VoR or in CVoR shall be considered
the “Published” version of the Work for purposes of attribution, rights &
permissions, prior art, investigations into potential ethics & plagiarism violations
or other forms of infringement, and relevant open access embargo periods. If a
new Work is substantially developed, i.e., it contains at least 25% new
substantive material, it is considered a new Derivative Work or Major Revision. It
is important to note that word counts are not an absolute measure, but rather a
useful guid, and in general the author must use their discretion when
determining if a new article is to be considered a new Derivative Work, a Minor
Revision, or a Major Revision. The owner/author controls all rights in the new
Work and may do as they wish with it. That said, it is commonly accepted
practice that for new Derivative or Major Revision Works, the author should
incorporate a citation to the previous work.

For example:



"This work is based on an earlier work: TITLE, in PUBLICATION, {VOL#,
ISS#, (DATE)} © Author, {YEAR}.
http://dx.doi.org/10.1145/{number}"

If the work is a *Minor Revision, the copyright or exclusive publishing license
remains with ACM and the Owner should use best efforts to display the ACM
citation, 

"© {Owner/Author {YEAR}. This is a minor revision of the work
published in PUBLICATION, {VOL#, ISS#, (DATE)}
http://dx.doi.org/10.1145/{number}"

The appropriate notice should appear both within the document and in the
metadata associated with the document. Instructions for how to do this will be
found in the instructions for authors in ACM's various publications.

Solicited Works

From time to time, ACM solicits works for publication. Examples are columns,
invited works, award lectures, and keynote speeches. ACM asks authors of such
works not to distribute copies or post these works on their Home Pages until
ACM has published them. Authors who wish to circulate before publication should
get permission from ACM. ACM considers lectures and speeches to be published
at the time they are given.

PERMISSIONS

ACM grants gratis permission for individual digital or hard copies made without
fee for use in academic classrooms and for use by individuals in personal
research and study. Further reproduction or distribution requires explicit
permission and possibly a fee.

ACM is now a signatory of the STM Permission Guidelines Initiative ,
which supports an approach to research based on common decency, respect,
fairness and mutual trust. These Guidelines are built to allow Signatory STM
Publishers to use limited amounts of material in other original published works
without charge, and with a minimum of effort needed for permissions clearance.
ACM joined the initiative in 2022 to lower the burden on authors to obtain third
party permissions when authoring works for ACM and third party publishers.

All copies should carry the original citation, the appropriate copyright and notice
of permission on the first page or initial screen of the document. (See §2.2
Copyright Notice .)

Most permission requests should go through ACM's automated rights system
available in the ACM Digital Library and pointed to by permissions@acm.org.
Requests that cannot be handled through the online system will take longer to
resolve: requestors may expect a response to their inquiry within seven business
days. 



Fair Use for Educational Purposes

Definition of classroom use: Copying and distributing single works by a
university/college instructor, where no fee is charged to the students, and the
distribution is limited to students enrolled in a university/college course and their
instructors.

Course Material - Permission granted without fee if the course material is
produced without charge to the student. (See Commercially produced Course
Packs below.)

Electronic Reserves - Permission granted without fee provided the library or
institution has an authentication mechanism for controlled access to the server
and a license to the ACM-published work. A college, university or other
accredited institution may place a copy of a definitive Version of Record of the
work in its library's electronic reserves for the duration of its educational
needs for that work, provided that access is limited to its enrolled students
(including those in its distance learning programs), faculty, and staff. Those
institutions without a current license to the work should
contact permissions@acm.org.

Distance Learning - Permission granted without fee for distance learning
students enrolled at the institution. They have the same access rights to those
ACM copyrighted materials licensed by their institution as any other student.
Since institutional access is authenticated by IP address, it is up to the
institution to provide a proxy server for its remote users, and to register the IP
address of that proxy with ACM.

Interlibrary Loan (ILL) - Permission granted without fee for an institution
with an ACM Digital Library license to download and print works for
Interlibrary Loan. The Digital Library may be used as the source for the
printed copy. The loan of the work is limited to printed copies, as part of
normal library functions.

Walk-Ins - Permission granted without fee for access to all ACM publications,
print or electronic, by all members of the community which a subscribing
library is charted to serve.

Open Access / Creative Commons Material - Permission is granted
without fee, provided proper attribution is given to the Author(s) and
Publisher at the time of use.

Commercial Republication

Definition of commercial republication: Any use that is not personal or non-profit
educational use. Includes reprinting by trade and scholarly publishers, and use in
corporate settings and their web sites, both internal and external. No direct
profit need be realized from the publication or sale of ACM material.

Commercial use normally requires a license and payment of release fees. All
reproductions other than those listed in this document require specific
permission and a fee payable to ACM. This includes republishing in textbooks,
commercially-produced course packs sold to students, anthologies, and other
edited publications, and posting or other electronic distributions, unless use is
done in connection with the STM Permission Guidelines Initiative . 



Commercially Produced Course Packs - Use of copyrighted or licensed
material in course packs sold to students requires an appropriate license. Send
requests to permissions@acm.org or go to http://www.copyright.com .

Print permission - A grant of permission involves consultation with the lead
author of the work, the publisher's agreement to pay the required fees, and
prominent display of the proper credit acknowledgment.

Electronic permission - Rules for commercial distribution will apply unless
the request falls under educational use as defined above. Fees for internal and
external commercial posting of ACM published material are tied to the term of
the license. All postings must include pointers to the correct Citation Page in
the ACM Digital Library.

Multiple copies - Producing multiple copies of ACM copyrighted or licensed
works for distribution to more than ten peers, co-workers, clients, etc.
requires a transactional license from the CCC and payment of the required per
copy fee Send requests to permissions@acm.org or go
tohttp://www.copyright.com .

Software - Owners/Authors of software grant ACM a non-exclusive
permission to publish and manage all rights and permissions themselves.

3rd Party Permissions

Lastly, another major change relating to how ACM handles rights and
permissions is that ACM has adopted STM Permissions Guidelines , which
simplifies the process for third parties (including researchers) to reuse ACM
published content in new works under development. This is a broad-based
publisher initiative that includes the vast majority of publishers in computing
literature. Other signatories of these guidelines are listed here . It is our goal
to simplify the process of publishing with ACM, and we welcome your feedback
after the above steps have been implemented.

ACM publications staff will monitor requests for permission not handled by ACM's
automated permissions system which is accessed via the ACM Digital Library.
Persons granted permission to copy an ACM published work should display the
appropriate Publication Notice followed by: "Included here by permission."

Edited Collections

Edited collections such as conference proceedings and newsletters are
copyrighted as a whole by ACM. Going forward after January 1, 2023, authors
will retain the copyright of individual components of those Works, such as
articles, letters-to-the-editor, abbreviated works, etc. For these individual
components, ACM will obtain either an exclusive or non-exclusive permission to
publish (conveyed tacitly or by the ACM Permission Form) that permits
publication in both print and online forms, and also grants ACM the right to
transform the work into any formats as necessary for use within the ACM Digital
Library or other media.

No ACM-copyrighted or exclusively licensed collection may be posted for open
distribution without prior permission from ACM and before it has been included in
the ACM Digital Library. Approved distributions must include a notice of this
permission along with the copyright notice for the Work. 



Links

ACM treats links as citations (references to objects) rather than as incorporations
(embedding of objects). Permission is not needed to create links to citations in
The ACM Digital Library or Online Guide to Computing Literature. ACM
encourages the widespread distribution of links to the definitive Version of
Records of its copyrighted works in the ACM Digital Library and does not require
that authors obtain prior permission to include such links in their new works.

However, someone who creates a work or a service whose pattern of links
substantially duplicates an ACM-copyrighted volume or issue should get prior
permission from ACM. One example: the creator of "A Table of Contents for the
Current Issue of TODS" -- consisting of citations and active links to author-
versions of the works in the latest issue of TODS -- needs ACM permission
because that creator is reproducing an ACM-copyrighted work. If all the links in
the "Table of Contents" pointed to the ACM-held definitive Version of Records,
ACM would normally give permission because then the new work advertises an
ACM work. To avoid misunderstandings, consult with ACM before duplicating an
ACM work via links.

If an author wishes to embed a copyrighted object---rather than a link---in a
new work, that author needs to obtain the copyright holder's permission.

Distributions From non-ACM Servers

Service providers do not need to obtain prior permission from ACM to locate and
dispense links to the ACM-held definitive Version of Records of works, but they
do need permission if they are making, collecting, or distributing copies of ACM-
copyrighted or licensed works.

Other Related Policies

Conference Publication Policy

Please see the Conference Publication Policy for additional expectations
related spcifically to ACM Conference Publications.

Inappropriate Content Policy

Please see ACM's Inappropriate Content Policy

Submitting and Investigating Potential Violations of this
Policy

See Policy on Submitting and Investigating Claims

Confidentiality Policy

See Confidentiality Policy

Communicating Results of Investigations

See Policy on Communicating Results of Investigations



Appealing Violation Decisions

See Appealing Policy Violation Decisions

Contact ACM

The ACM Director of Publications should be contacted for any:

Questions about the interpretation of this policy

Questions about appeals of decisions

Requests for deviations from, or extensions to, this policy

Reporting of egregious behavior related to this policy, including purposeful
evasion of the policy or false reporting

Mailing address:
ACM Director of Publications
Association for Computing Machinery
1601 Broadway, 10th Floor
New York, NY 10019-7434
Phone: +1-212-626-0659
Or via email:
scott.delman@hq.acm.org

 

ACM Case Studies 

Written by leading domain experts for software engineers, ACM Case Studies
provide an in-depth look at how software teams overcome specific
challenges by implementing new technologies, adopting new practices, or a
combination of both. Often through first-hand accounts, these pieces
explore what the challenges were, the tools and techniques that were used
to combat them, and the solution that was achieved.

CAREER RESOURCE

Lifelong Learning 

ACM offers lifelong learning resources including online books and courses
from Skillsoft, TechTalks on the hottest topics in computing and IT, and
more.

Become an ACM Distinguished Speaker!
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