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ABSTRACT 

Digitizing existing structures is essential for applying digital methods in 
architecture, engineering, and construction. However, the adoption of data-

driven techniques for transforming point cloud data into useful digital models 
faces challenges, particularly in the industrial domain, where ground truth 
datasets for training are scarce. This paper investigates a solution leveraging 

synthetic data to train data-driven models effectively. In the investigated 
industrial domain, the complex geometry of building elements often leads to 

occlusions, limiting the effectiveness of conventional sampling-based synthetic 
data generation methods. Our approach proposes the automatic generation of 
realistic and semantically enriched ground truth data using surface-based 

sampling methods and laser scan simulation on industry-standard 3D models. 
In the presented experiments we use a neural network for point cloud semantic 

segmentation to demonstrate that compared to sampling-based alternatives, 
simulation-based synthetic data significantly improves mean class intersection 
over union performance on real point cloud data, achieving an up to 7% 

absolute increase. 
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1 INTRODUCTION 

As-is model representations of built facilities are of great 

value for numerous applications in Architecture, 
Engineering, Construction, and Operations (AECO). 
Owners, operators, and planners rely on them for their 

purposes (Borrmann et al., 2018). For building operators, 
for example, these models enable more efficient facility 

management (Pärn et al., 2017). Owners and their 
respective planners require them to restructure, renovate 
and do other activities that intervene with the current 

situation (Hammond et al., 2014). These models might be 
available to some extent for newly planned and erected 

buildings, albeit with reduced geometric detail depending 
on the chosen approach and use case (Gregor et al., 2009); 
in many cases, no digital models are available at all (Talebi, 

2014). 
At a later stage in the building lifecycle, the as-is status 

might deviate heavily from the as-designed or as-built 
status due to undocumented changes because models are 
rarely fully updated (Volk et al., 2014). Furthermore, the 

older an existing facility is, the less likely it becomes that its 
stakeholders possess any useful digital representation – 

recreating a detailed, semantic 3D model entirely by hand 
is extremely expensive and time-consuming (Fumarola & 
Poelman, 2011). The research field of "Scan-to-BIM" focuses 

on methods that allow automating parts of this process to 
digitize the existing building stock (Bosché et al., 2015; Lu 

& Brilakis, 2019). 
The as-is conditions of the built environment must be 

captured in the field first to provide the necessary data basis 

for approaches associated with Scan-to-BIM. Such data 
acquisition is preferably performed in 3D, using laser 

scanning or photogrammetry (Li et al., 2022), during the 
construction phase (Chern et al., 2023; Z. Wang et al., 2022) 
or in the context of existing projects (Tong et al., 2023; Wu 

et al., 2022; Zheng et al., 2022). This reality capture results 
in millions of points representing the object surfaces visible 

to the sensor in point clouds that can be very precise but are 
characterized by a few major shortcomings and cannot be 
directly used for further activities such as redesigning. Point 

clouds do not inherently carry semantic information, 
include noise, and lack closed surfaces caused by occlusions 

(Walsh et al., 2013). To convert them into formats valuable 
to engineering, facility management, and other activities, 

they must be processed intelligently to enrich them with 
further information or create surface or volumetric models 
that can seamlessly be used in subsequent processing steps. 

Traditionally, this is a manual task conducted by trained 
engineers (J. F. Hullo & Thibault, 2014): Pre-processed data 

is filtered, cut into subsets such as slices, and finally used to 
create 3D models by hand that are as close to the captured 
point cloud as possible. This process is time-consuming, 

yields subjective results, and is therefore inflexible and 
expensive. Lu & Brilakis (2019) investigated the effort 

required for manual modeling of bridge infrastructure, 
Agapaki et al. (2018), addressing the challenge of resource 
intensity, identified the most critical objects and their 

frequency in industrial models, along with the manual 
effort of modeling them. In (Fumarola & Poelman, 2011), 

different approaches applied to several projects are 
presented and evaluated concerning their degree of 
automation and individual requirements. J.-F. Hullo et al. 

(2015) report on a large-scale study that reconstructed a 
nuclear reactor building from terrestrial laser scanning 

(TLS) and RGB image data, in which around 70% of the 
overall required time was spent on CAD reconstruction. 
Due to these circumstances, many attempts have been 

made to automate parts of the Scan-to-BIM process, with 
scopes ranging from volumetric models on building level 

(Ochmann et al., 2016) to domain-specific solutions (Smith 
& Sarlo, 2022). Beyond the generation of a model, typical 
scenarios include urban applications related to traffic 

(Balado et al., 2019; Esmorís et al., 2023) and structural 
health monitoring (Oh et al., 2017; H. S. Park et al., 2007; S. 

W. Park et al., 2015; Zhou et al., 2022). 
The initial step of enriching the raw input point clouds 

with semantic information is highly labor-intensive as it 

requires the user to navigate large unstructured datasets to 
first identify and then manually separate objects and 

systems in 3D space. This step is also denoted as semantic 
segmentation and has received much attention because the 
underlying technical problem is relevant for those working 

with the built environment and in autonomous driving, 
geosciences, augmented and virtual reality applications, 

and many more. Traditional strategies to perform such 
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semantic enrichment rely on hand-crafted features or well-
known geometric properties of object classes (L. Ma et al., 

2018; Macher et al., 2017; Sharif et al., 2017); more recently, 
purely data-driven methods show the most promising 

results (Croce et al., 2021; Perez-Perez et al., 2021). 
However, the latter methods rely on the availability of large 
amounts of high-quality annotated point cloud data for 

method design and evaluation. The amount and quality of 
this annotated data are crucial to the success of automated 

methods of point cloud semantic enrichment. The process 
of manual annotation is costly and time-consuming, 
unambiguously pointed out by Huang et al. (2023) for the 

case of 2D ground penetrating radar data; for 3D point 
clouds, this issue is even more severe (Shi et al., 2021). 

In domains related to urban scenes or indoor office 
environments, an increasing amount of open-source data is 
available for these purposes. In this research, however, we 

are focusing on the data-weak domain of industrial 
facilities. While capturing manufacturing plants and 

refinery scenes has become widespread for more than 
fifteen years (Shellshear et al., 2015), industrial owners and 
operators usually do not annotate large amounts of this 

data, let alone publish it, due to confidentiality and 
employee privacy issues. Consequently, there are too few 

annotated point clouds for training the machine-learning 
models for automated point cloud segmentation.  

At the same time, for manufacturing plants that are 

subject to periodic changes due to product cycles and 
frequent adaptations for optimization, 3D design models 

have become an industry best practice for steel and plant 
construction (Wiendahl et al., 2015). This domain has been 
very active in developing and adapting digital methods with 

regards to 3D models for planning and operation (Gregor et 
al., 2009), evident, for instance, in national regulation for 

the standardization of 3D models used in the German car 
manufacturing industry (VDA, 2009). While detailed 3D 
models representing building structure and technical 

equipment can be utilized to generate synthetic ground 
truth data, their complex, intertwined geometry limits the 

value of synthetic data generated using conventional, 
sampling-based methods. Simulation methods for 
considering these specific conditions have not been 

investigated in this context. 
 

This paper presents a method to generate realistic, 
semantically rich ground truth data based on specimens of 

such 3D design models by applying state-of-the-art laser 
scan simulation. This type of simulation is able to consider 

the precision and accuracy of the used sensors through 
equipment parameters and the complexity of the 
surrounding scene's layout. In doing so, the paper aims to 

contribute to an increase in performance of point cloud 
semantic segmentation for domains with no publicly 

available datasets by introducing this level of realism to 
synthetic data, thus reducing the amount of manually 
annotated data necessary to achieve useful results. While 

much less computationally expensive, conventional 
methods to generate synthetic data based on such 3D 

models fail to achieve the amount of realism necessary to 
depict complex scenes in the industrial domain sufficiently 
to learn distinctive features for semantic segmentation. We 

conduct an extensive experiment to validate this increased 
effort the presented simulation-based method brings in 

comparison to conventional, sampling-based generation 
methods; results are analyzed and discussed in detail. The 
results of the experiment unambiguously show the 

superiority of the more realistic, simulation-based method 
to generate synthetic training data. Thus, the presented 

approach is able to facilitate existing Scan-to-BIM 
approaches by improving segmentation results while 
minimizing manual work. 

This study targets academics and professionals seeking 
practical solutions in industrial applications. It explores the 

potential of neural networks for point cloud semantic 
segmentation in domains where open datasets are 
unavailable. Our approach tests the hypothesis that 

synthetic datasets can effectively train models for industrial 
use. We offer comprehensive explanations for creating 

these synthetic datasets and conduct thorough experiments 
to validate their practicality in industrial contexts. 
Additionally, the paper extends the body of knowledge by 

comparing various data generation methods, highlighting 
their unique potentials and limitations. 

The paper is structured as follows: Section 1 introduces 
the research topic and provides an overview of our 
approach. In Section 2, we review relevant prior research to 

establish the context and motivation for our work. Section 
3 presents our methodological approach, detailing the 
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methods and techniques used in our study. Section 4 
discusses the extensive experiments conducted and 

presents the obtained results. Section 5 is dedicated to the 
discussion of our findings and their implications. Finally, in 
Section 6, we conclude our presentation and provide 

directions for future research. 

2 RELATED WORKS 

This paper presents an approach to address the scarcity 
of training data in point cloud semantic segmentation 
within the industrial domain. The following subsections 

provide an overview of relevant related works, point cloud 
enrichment, domain-specific training data, and 

investigations into the potential of synthetically generated 
training data. 

2.1 Point Cloud Enrichment 

All options to investigate and further process the 

captured data of an existent structure depend on the 
information that can be recognized in the point cloud. If the 
objects of interest possess well-known geometric 

properties, this can be achieved using specifically chosen 
geometric features. One popular method is principal 

component analysis, which was, for example, applied in 
(Yokoyama et al., 2013) to detect poles in urban scenes. The 
well-known Stanford 3D Indoor Scene Dataset (S3DIS, 

introduced by Armeni et al. (2016)) was processed with a 
peak-gap-peak pattern to detect void spaces of walls to 

separate rooms. Czerniawski et al. (2016) use specific local 
curvature to detect pipes. 

The application of data-driven methods allows 

algorithms to learn the critical features from annotated 
training data instead of exploiting prior knowledge about 

geometry or materials. In our approach, point cloud 
semantic segmentation with supervised deep learning 
(PCSS as per Xie et al. (2019)) was chosen as it allows us to 

generate point-wise class predictions. Current learning-
based methods are able to capture critical features for a 

large number of classes at once. In further steps, this 
enables the targeted application of class-specific instance 
segmentation and reconstruction methods. 

PointNet (Qi, Su, et al., 2017) and its successor 
PointNet++ (Qi, Yi, et al., 2017) were crucial development 

steps for the discipline because the underlying architecture 
allowed deep learning on points directly without 

translating them into a structured representation like a 
voxel grid first (i.e., VoxNet (Maturana & Scherer, 2015)). 
The performance of architectures, evaluated on a few 

specific datasets, has constantly been improving since then. 
Xie et al. (2019) and Zhang et al. (2019) present recent 

overviews of the topic; online resources such as Papers With 
Code (2021) can help to provide an up-to-date roundup in 
this fast-changing environment. The work of Mirzaei et al. 

(2022) contains a comprehensive overview of methods used 
by state-of-the-art point cloud deep learning network 

architectures. Among others, a notable performance 
increase for semantic segmentation on point clouds was 
achieved by applying Kernel Point Convolutions (Thomas 

et al., 2019) and Point Cloud Transformers (Guo et al., 
2021). 

In the domain of AECO, these developments were 
followed with much interest, as they offer a universal first 
step towards a solution of the automation of the Scan-to-

BIM process, compared to the application of hand-crafted 
features. Perez-Perez et al. (2021) introduced Scan2BIM-

Net, a combination of different networks for semantic 
segmentation of a case-study indoor environment point 
cloud dataset.  

Industrial facilities pose more specific challenges than 
commercial buildings, along with different important 

object classes. Yin et al. (2021) adapted the PointNet++ 
architecture to their version of ResPointNet++ to achieve 
improved results for PCSS in an industrial environment. In 

(Agapaki & Brilakis, 2020), PointNet++ was extended by a 
neighborhood consideration to enhance its performance on 

the authors' manually annotated industrial dataset. The 
same authors expanded their scope to an instance 
segmentation approach, starting from an ideal set of 

semantic segments using a search algorithm and boundary 
segmentation (Agapaki, 2020). 

2.2 Domain-specific Training Data for Point 
Cloud Semantic Segmentation 

As for all data-driven methods, the performance of 

network architectures for point cloud semantic 
segmentation heavily depends on the quality and quantity 
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of available training data (Gao et al., 2020). This issue has 
been addressed and partially solved for some domains with 

the availability of such large-scale open-source datasets. For 
indoor office environments, well-known examples are the 

aforementioned S3DIS (Armeni et al., 2016) and ScanNet 
(Dai et al., 2017). For outdoor urban scenes relevant to the 
development of autonomous driving and smart 

infrastructure, among others, there are the datasets of 
KITTI (Geiger et al., 2013), Vaihingen (Rottensteiner et al., 

2013), Paris-Lille (Roynard et al., 2018), and more. 
Some of the introduced works applying methods of PCSS 

in AECO have specifically addressed the industrial domain 

(Agapaki & Brilakis, 2020; Yin et al., 2021) and introduced 
their work along with datasets the authors prepared and 

used for the development and validation of their methods. 
To this date, there are no labeled point cloud datasets 
publicly available for complete industrial scenes, which has 

been identified as a significant bottleneck for the wider 
adoption of PCSS by Cazorla et al. (2021). 

2.3 Synthetic Training Data for Semantic 
Segmentation 

For applications where such ground truth data is rare, 

researchers and practitioners have considered 
circumventing the effort for manual data collection and 
labeling along with potential privacy issues by utilizing 

synthetic data. Among those approaches are attempts in 2D 
to generate images and depth maps from 3D models with 

HoliCity (Zhou et al., 2020) and to extract frames from video 
games (Richter et al., 2016). Similar efforts to generate 
synthetic images have been made by Hong et al. (2021) in 

the AECO domain. 
To generate point clouds that exhibit realistic properties 

to imitate real laser scan point clouds, some approaches 
work on top of existing simulation tools, such as the 
CARLA simulator for autonomous driving (Dosovitskiy et 

al., 2017). This framework was used to simulate laser scan 
point clouds in an urban environment similar to the KITTI 

dataset (Geiger et al., 2013) to create the so-called KITTI-
CARLA dataset (Deschaud, 2021) and similarly for the 
PARIS-CARLA-3D (Deschaud et al., 2021) dataset. With 

SynthCity, Griffiths & Boehm (2019) provide a synthetic 
point cloud dataset representing urban scenes along with a 

highly realistic, textured 3D model of the city. 

To investigate the value synthetic data has for use as 
training data and thus the added value it can bring to Scan-

to-BIM toolchains, several related contributions are 
relevant for this work: Frías et al. (2022) used BIM objects 

to generate synthetic point clouds by sampling, to then 
render them to images and use them for object 
classification. For the application in historical buildings, 

Morbidoni et al. (2020) used synthetic, sampling-based 
point cloud data generated based on structural components 

of available 3D models to train an adapted version of 
DGCNN (Y. Wang et al., 2019) for semantic segmentation. 
In the context of office environments, some studies (J. W. 

Ma et al., 2020; Zhai et al., 2022) used the S3DIS dataset to 
investigate the potential of synthetic point cloud data for 

training a neural network for point cloud semantic 
segmentation. 

For the experiment presented by (J. W. Ma et al., 2020), 

a subset of the S3DIS dataset ("Area 1") was remodeled 
manually in an engineering application. The pure geometry 

of the objects in the model was then exported to sample 
evenly spaced points on a 3D grid within the objects' 
volumes to generate synthetic training data and finally 

annotate the point cloud on an instance level with 
accordingly reduced manual effort. Subsequently, this data 

was used to train neural networks for semantic 
segmentation. The study showed that an increase of 7.1% in 
accuracy was feasible by augmenting a small real-world 

dataset with an additional large set of synthetic, sampling-
based data. Finally, an experiment was conducted to 

investigate the potential of hybrid training datasets with 
varying compositions between real and synthetic data in 
steps of 20%. In this, the dataset with 80% real and 20% 

synthetic data fell short only 1.52% of the best-performing 
real dataset in terms of accuracy. These findings, while 

promising, leave some questions as to the realism of the 
data generated using the presented method for sampling 
based on a volumetric grid. We presume that with more 

realistic synthetic data, better results can also be obtained 
on real data. 

The above-introduced research shows the lack of 
suitable training data as a critical bottleneck for applying 
data-driven methods for point cloud semantic 

segmentation in specific domains beyond commonly used, 
unspecific benchmark environments. Beyond existing 
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related works, an investigation of domain-specific potential 
added value of synthetic data used for training networks is 

identified as a research gap that this paper aims to fill. The 
industrial domain poses specific challenges in terms of 
relevant object classes, and complex, intertwined object 

surfaces openly visible in the facilities. These boundary 
conditions motivate the implementation of two different 

methods of synthetic data generation that allow us to take 
into account these particular circumstances to varying 
extents. Complex industrial facilities often possess detailed 

3D models, representing at least the as-designed status of 
the building structure, technical equipment in the 

buildings, and, depending on the domain, production 
equipment, logistic systems, and more. These models 
include complete scenes and can be leveraged to create 

synthetic point cloud data that can be used to train 
networks for point cloud semantic segmentation. 

Depending on the chosen method and on the quality and 
structure of the available models, the data generation 
process can be fully automated or achieved with very little 

manual effort: Large amounts of annotated point cloud data 
can be generated automatically to train and improve data-

driven methods for flexible requirements for respective 3D 
models of industrial facilities. 

3 Research Methodology 

This paper investigates to which extent synthetic point 
clouds of varying quality can be used to address the 

challenge that the insufficient availability of annotated 
training data poses to the applicability of data-driven 
approaches for point cloud semantic segmentation for 

building infrastructure in the industrial domain. 

FIGURE 1. Data preparation workflow, highlighting differences 
between conventional, manual annotation and the generation of 
synthetic, annotated data using existing 3D models. 

The manual effort otherwise required to annotate such 
datasets can be completely avoided or reduced drastically 

while avoiding human errors in the annotation process. The 
only fixed requirement persists in the input 3D models, 
which are, in many cases, readily available. FIGURE 1 

depicts the underlying logical structure of the presented 
method. The quality and inherent value of the resulting, 

synthetically generated point clouds are highly dependent 
on the quality of the underlying 3D models, especially 
regarding the level of detail and completeness- and the 

chosen method for the point cloud generation.  
This paper aims to investigate the value of different types 

of synthetic data as training data for point cloud semantic 
segmentation applications in direct comparison. Two ways 
to generate synthetic, annotated point cloud data based on 

3D models of industrial facilities are introduced and applied 
to an illustrative model; two independent reference datasets 

are collected by terrestrial laser scanning in industrial 
facilities and manually annotated to enable the evaluation 
of real-world applicability and generalization potential. 

Subsequently, several semantic segmentation experiments 
are performed using a fixed training and testing setup for 

all mentioned datasets as training and test data, 
respectively. The final evaluation is performed with regard 
to the real laser scan datasets to show the extent of actual 

industrial applicability. 
Beyond the applicability of homogeneous, synthetic 

training data, in a second experiment, the purely synthetic 
datasets are combined with small subsets of real data to 
investigate the potential value that can be achieved with 

minor manual annotation. This combination of synthetic 
data with real-world data is expected to improve results and 

is therefore referred to as augmentation in the following. 
While this implies an increased effort for data preparation, 
it is a handy solution to achieve results with no significant 

shortcomings. 

3.1 Point cloud datasets 

The objective of the conducted experiments is to assess 
the practical applicability of synthetic data within the 

context of industrial facilities. To achieve this, we employ 
suitable reference datasets in the form of real laser scan 
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point clouds captured using industry-standard TLS 
equipment. 

There are multiple solutions to create a synthetic point 
cloud based on a given 3D model. In this paper, two 

alternatives are presented and compared: one based on 
sampling and one using state-of-the-art laser scan 
simulation. Both methods allow for the preservation of the 

semantics of the model in the process such that the 
resulting point cloud is fully annotated and can directly be 

used to train a neural network model for semantic 
segmentation. The described steps are chosen such that the 
procedure can be applied based on any conventional 3D 

model. No color or material attributes are used in either 
approach. While they would help to improve model 

performance (Zhai et al., 2022), standard industrial 3D 
models do not commonly contain this information: to 
ensure industrial applicability with no overhead effort for 

data preparation, only the model geometry is taken into 
account for data generation. FIGURE 2 depicts an 

overview of the process of generating the synthetic point 
clouds as described in the following. 

In the first step, the modeled scene must be split into 

separate entities representing semantic classes or instances. 
All objects are first exported separately into individual OBJ 

(Wavefront OBJ) files to comply with a pre-defined class 
split according to the classes that should be included in the 
semantic segmentation. The effort necessary for this step 

depends on the model structure in terms of semantics and 
how well they can be mapped to the classes that should be 

investigated in the point cloud. In a single-layered 3D CAD 
model, this step has to be performed manually: connected 
objects that include multiple classes might have to be 

separated. If the model contains all necessary information 
for this split and is, for example, stored in the Industry 

Foundation Classes (IFC) format (ISO, 2018), this can be 
fully automated by parsing relevant object properties. The 
further steps undertaken differ between simulation and 

sampling. 
 

 
FIGURE 2. Steps for the process of generating the simulation- and 
sampling-based synthetic point clouds: Model data preparation (left), 
simulation-based data generation (middle) and sampling-based data 
generation (right). 

Multiple solutions are available to simulate a laser scan 
on a given 3D geometry. As the resulting data should 

resemble an actual laser scan, equipment, and 
measurement behavior should be emulated as well as 
possible; model semantics must be included in the resulting 

point cloud to avoid any manual annotation effort. The 
measurement itself is based on a line-of-sight evaluation 

between a sensor emitting laser rays in patterns according 
to equipment-specific functionality and the surface of an 
object in the scene. Depending on distance, incidence angle, 

surface material parameters, and equipment parameters 
such as precision, simulation engines return s close to real 

laser scans. 
Existing solutions for this include the educational 

platform of VRScan3D (Luhmann et al., 2022), the Blender-

based (Blender Online Community, 2021) tool of BlenSor 
with a focus on mobile scanning platforms and depth-

cameras (RGB-D) (Gschwandtner et al., 2011) and 
Helios++ (Winiwarter et al., 2021), with a wide variety of 
applications and flexible setup opportunities including 

different sensor types and mobile platforms. For this 
context, Gonzalez Stefanelli et al. (2022) present an 

overview of suitable platforms for data generation based on 
3D building models. In our approach, we use Helios++ for 
laser scan simulation. The simulation kernel is based on ray 

tracing, simulating laser beams by sampling from 
probabilistic distributions, and considering material-

specific reflectivity parameters. 
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FIGURE 3. "BIM-to-Scan" workflow, in terms of data content, 
application, and file formats used, adapted from Noichl et al. (2021). 

The process of generating synthetic, annotated point 
clouds based on semantic 3D models through laser scan 

simulation is depicted in FIGURE 3. As a primary step for 
data preparation for laser scan simulation, the 3D model is 
exported from the authoring tool using conventional CAD 

exchange formats (*.fbx, *.dwg) or *.ifc format. All of these 
exchange formats can be imported into Blender by default 

or using specific add-ins 1. After import into Blender, OBJ 
objects are collected in a scene in Blender to a Helios 
simulation scene by using our adaption of the 

Blender2Helios tool (Neumann, 2020). The simulation tool 
itself allows for customizing all aspects of the simulation. In 

a set of XML files, the user can define scanner properties 
such as range, resolution, precision, and field of view.  

Furthermore, scanning locations in the survey are 

specified, as well as the scene itself, which is built from a set 
of geometric objects stored in separate OBJ files. The 

simulation itself takes into account these equipment 
parameters to simulate rays cast from the virtual scanner's 
sensor location, trace them, and report intersections with 

the scene as hits. Therefore, any point in the resulting point 
cloud can be clearly attributed to the class information from 

the underlying object. This depicts a perfect, error-free 
annotation as part of the process that is reproducible and 
scalable (Winiwarter et al., 2021). The user-definable 

parameters include the field of view, resolution, and precise 
coordinates of the laser scan sensor in the scene. The 

simulated point cloud possesses realistic properties, such as 
occlusions and minor measurement inaccuracies. After the 
simulation step is complete, we calculate the mean surface 

density of the simulation-based synthetic point cloud for 
later use in creating the sampling-based synthetic data (cf. 

FIGURE 2). 

 
1 such as https://blenderbim.org/ 

While laser scan simulation produces realistic results, it 
is also computationally expensive. Point clouds can be 

generated directly on the previously prepared parts of the 
3D model as we process them as a triangulated mesh in OBJ 
format. There are various methods to do so: As they 

describe the surface, triangle vertices can be directly 
interpreted as points of the point cloud. Depending on mesh 

resolution and face size, this can lead to sparse clouds and 
highly irregular point densities. To achieve a more uniform 
point distribution, points can be randomly sampled on each 

face's surface, with the number of points per face 
determined by the face's area. Poisson disk sampling 

(Corsini et al., 2012) is an alternative method that is able to 
distribute points on the faces of the triangulated mesh 
representation of the model even more homogeneously. 

These methods are common practice in the field and are 
implemented in widely used open-source tools like 

CloudCompare (CloudCompare, 2021) or MeshLab 
(Cignoni et al., 2008). 

We start the sampling process by first over-sampling 

points for each semantic object. Based on the initial class 
split, a manually defined, high number of points is sampled 

on the surface of the class objects using the random 
sampling functionality of CloudCompare (CloudCompare, 
2021). The number of points is chosen so that the resulting 

surface density exceeds the mean surface density from the 
simulation. By doing so, the full surfaces of all meshes are 

covered with points, regardless of location or orientation. 
Surfaces within a model that are either contained within 
other objects or located within other geometric bodies, like 

layers within walls or ceilings, are incorporated into the 
resulting point cloud. 

After sampling, the surface density is calculated based 
on the surface geometry to ensure the chosen amount of 
points is sufficient to obtain the mean surface density of the 

simulation-based point cloud. Otherwise, sampling is 
repeated with an increased number of points until the 

target is met. The over-sampling step is necessary because 
it is impossible to sample points to generate a specific point 
density without prior calculations on the underlying 

geometry. After a sufficient point density has been verified, 

https://blenderbim.org/
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the over-sampled point cloud is down-sampled to ensure 
the same minimum point spacing as in the simulation-

based point cloud (cf. FIGURE 2). 
The resulting point clouds have the same mean surface 

density but different overall properties. FIGURE 4 
illustrates these differences in properties concerning local 
point densities and occlusions in a simple example. 

 
FIGURE 4. Exemplary pipe cross-section segment from three 
different point cloud sources: Synthetic sampling-based (left), 
synthetic simulation-based (middle), and real laser scan (right). 

3.2 Semantic Segmentation 

The core steps of our experiments are the training, 
testing, and evaluation of a state-of-the-art neural network 

for point cloud semantic segmentation on variations of our 
data. For semantic segmentation, the method of Kernel 
Point Convolutions (KPConv) (Thomas et al., 2019) is 

currently among the best-performing convolution methods. 
For network architecture, we therefore use the Kernel 

Point Fully Convolutional Neural Network (KP-FCNN), 
which is a fully convolutional network for semantic 
segmentation introduced by the authors along with 

KPConv (Thomas et al., 2019). This architecture is well 
established, has been used in related studies (Deschaud et 

al., 2021; Soilán et al., 2021), and is among the best-
performing architectures for semantic segmentation on 
S3DIS (Papers With Code, 2021), a core benchmark for 

point cloud semantic segmentation for indoor scenes in the 
built environment. The presented work uses the available 

Pytorch implementation, as published on Hugues Thomas' 
public GitHub repository (Thomas, 2021). 

This work focuses on investigating the value of different 

types of point cloud data used for training a neural network 
for semantic segmentation. The specific performance in 

question is the trained network's ability to correctly predict 
class labels per point in a real laser scanning point cloud test 
set that is not used in the training phase. To do so, one and 

the same neural network architecture is trained on a variety 
of datasets of synthetic, real, and hybrid point clouds from 

scratch. After running inference on the real laser scanning 
point cloud test set, these results are compared to the 

ground truth class labels of the test set. In this final 
evaluation step, the metrics of F1-score and Intersection 

over Union (IoU) are investigated. These metrics can be 
calculated based on correct predictions (denoted as true 

positives TP and true negatives TN) and false predictions 
(denoted as false positives FP and false negatives FN) as 
follows: 

 
• Precision: 

𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (1) 

• Recall: 

𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (2) 

• F1-score: 

𝐹𝐹1 = 2 ×
𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

=
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 1
2

(𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹)
 (3) 

• Intersection over Union IoU: 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (4) 

 

For evaluating results in point cloud semantic 
segmentation, Intersection over Union or Jaccard Index 
(Equation 4) is commonly used as a measure of similarity 

between the ground truth point cloud dataset and the 
predicted point classes. While IoU is a measure of similarity 

between the ground truth and the prediction labels, the F1-
score depicts the harmonic mean of precision and recall as 
a balanced measure of accuracy. Both metrics are evaluated 

at the class level to prevent skewed results that overestimate 
performance in imbalanced datasets. To evaluate overall 

experiment performance, this is implemented by first 
calculating the metric per class and subsequently the mean 
over all classes of the dataset per Equation 5, with C as the 

overall number of classes and µ as a placeholder of the 
respective investigated metric (cf. equations 3, 4), mc 

indicates the calculation of a mean class metric. 

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝐶𝐶

� 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0

 (5) 

 
Furthermore, a variety of confusion matrices is 

evaluated to identify specific patterns of misprediction 

between certain classes. Instead of absolute values, 
confusion matrices are presented in normalized form in 

order to keep the content clear, facing imbalanced data. 
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4 EXPERIMENTS AND RESULTS 

Several experiments were performed in the framework 
of this contribution using a state-of-the-art network for 
point cloud semantic segmentation on varying training- 

and test datasets. The difference between each experiment 
is mainly in the training dataset used. The individual 

datasets are presented in more detail below. 

4.1 Datasets 

Two real industrial facilities are part of these 

experiments: an active industrial cooling plant and a 
cleared factory hall. These facilities were chosen because 
they contain all typical objects for industrial buildings, 

including steel beams, pipe runs, ventilation ducts, and 
cable routing. Nevertheless, they differ significantly from 

each other. The cooling plant has a footprint of roughly 
640m2, comprising a built volume of 4480m3; the factory 
hall is significantly larger than the cooling plant, with a 

footprint of 2850m2 and a built volume of roughly 36200m3. 
The cooling plant facility represents the core of this 

investigation, as it allowed performing the case study to its 
full extent: A detailed as-designed 3D model of the facility 
was available, along with the actual access to the facility to 

conduct a laser scan. Thus, it was possible to create point 
clouds reflecting this facility in the three independent ways 

introduced in Section 3.1: two synthetic point clouds using 
sampling and simulation and an actual laser scan depicting 
the real as-is situation in the facility. 

To investigate how the findings of the core case study 
hold in transfer to a different exemplary dataset in a typical 

industrial use case, the same laser scanning system as in the 
cooling plant to collect point cloud data from a cleared 
factory hall before it was repurposed. 

TABLE 1. Point cloud classes with corresponding integer ID. 

ID class name 

0 wall 
1 floor 
2 ceiling 
3 beam 
4 railing 
5 pipe fitting 
6 pipe accessories 
7 ventilation duct 
8 cable routing 
9 bracing 
10 tank 
11 clutter 
12 equipment 
13 noise 

 
The classes used to annotate those point clouds are 

introduced in TABLE 1. These classes do not follow a use-
case-specific structure but represent the major object types 
present in the case study facilities. 

To gather the real laser scan datasets, a TLS scan was 
performed with the help of a professional surveying expert 

inside the case study cooling plant and the cleared factory 
hall. The cooling plant is the core case study dataset; the 
factory hall is a highly different facility yet comparable in 

terms of present classes. Excerpts of the two point clouds 
are depicted in FIGURE 5 to illustrate this difference.  

 

 
 

FIGURE 6. Investigated datasets, dataset splits indicated: cooling 
plant (top) and factory hall (bottom), 10m for scale. 

FIGURE 5. Investigated laser scan datasets, exemplary sections of the 
cooling plant (left) and factory hall (right), equal scale. 
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In the cooling plant, a total of 28 single scans were 
conducted using a FARO Focus S laser scanner, registered 
and processed through the manufacturer's native 

processing software; targetless registration could be 
performed as the surveyor had ensured sufficient overlaps. 

The resulting, registered, de-noised point cloud comprises 
7 × 108 points (cf. FIGURE 6). For the factory hall, a total 
number of 15 single scans was conducted at a higher 

resolution than in the cooling plant to ensure sufficient 
density for the larger required scanning distances, which 

led to a total number of 6.7 × 108 points. The cooling plant 
point cloud was down-sampled with a minimum distance 
of 5mm and the factory hall to a distance of 10mm between 

points to create a more uniform point density throughout 
the datasets and reduce overall size for further processing. 

In the factory hall, the minimum point spacing had to be 
increased to keep the final resulting point cloud in a 
manageable size. Consecutively, the data was divided into 

even, box-shaped segments and down-sampled to 5 × 105 
points per segment to be fit for processing a web-based 

annotation tool. Manual labeling was then conducted with 
the AWS SageMaker GroundTruth tool (Amazon Web 

Services, 2021) with the classes introduced in TABLE 1. 
Annotation was performed by hand and took a total of 82 

hours to complete for the cooling plant dataset, and 57 
hours for the factory hall due to the simpler overall 
structure and experience gained from the first dataset. 

After this, the manually collected label information was 
realigned with the input point clouds. Subsequently, the 

annotated points' class information was extrapolated to the 
points not present in the working sets after down-sampling 
using a k-nearest-neighbor-approach (𝑘𝑘 = 5). As a result, 

the real laser scan datasets are fully annotated with their 
original number of points. 

 
Generating the synthetic datasets started from one 

industrial facility 3D model for both versions of data 

generation. The 3D CAD model used for this experiment 
depicts the as-designed status of the cooling plant facility. 

Semantic information on the contained objects is therefore 
organized in layers according to the responsible crafts 
involved in the construction project. Starting from this 3D 

CAD model, all objects were exported separately into 
individual files according to their layer-based semantics. 

Subsequently, the resulting collections of objects were 
further split or combined to comply with the pre-defined 
class split as introduced in TABLE 1. 

The resulting OBJ files were then processed in different 
ways for the methods of simulation and sampling. For the 

simulation version, the sensor parameters and scanning 
locations in Helios were defined to be identical to those of 
the real TLS scan to keep the result as close to reality as 

possible. These results, a comparison to the real laser scan 
and the exact scanning parameters used are presented in 

Noichl et al. (2021); the simulation took around one hour to 
complete. In the final step, the simulation-based point 
cloud was combined from the single scans and 

subsequently down-sampled to a minimum point spacing 
of 5mm like the real laser scanning point cloud. The mean 

surface density in the resulting point cloud was calculated 
as roughly 25000 pts. in a radius of 5 cm using 
CloudCompare. For the sampling method, the separate OBJ 

files were processed as described with CloudCompare (cf. 
FIGURE 2). Over-sampling was performed with 106 points 

 
(a) 

 
(b) 

FIGURE 7. Distributions of points per class in comparison between 
dataset types in cooling plant: (a) total points per class and dataset 
type (b) normalized share of class per dataset type. 
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per object to achieve sufficient density. Subsequently the 
resulting individual point clouds were down-sampled to the 

required mean surface density of 25000 pts in a 5cm radius. 
For larger objects where down-sampling would not reduce 
the absolute number of points, we repeated the process with 

increasing initial point numbers until this requirement was 
fulfilled. This iterative process took less than 10 minutes in 

total to compute. The separate point clouds were then 
combined and down-sampled with a minimum point 
spacing of 5cm, like both other datasets. Note that neither 

generation method requires specific registration as the 
global object coordinates are known from the beginning 

and preserved through the process- hence, these individual 
point clouds can be combined without further 
computation. 

After the preparation of the full point clouds, all three 
cooling plant datasets are split into training, augmentation, 

and test sets. The distinct augmentation set is used for 
training the network and depicts the sets of data to replace 
and be replaced with data from the real laser scanning 

datasets to investigate the value of hybrid, augmented point 
cloud data. To create distinct datasets, the inliers of two 

bounding boxes in two corners of the cooling plant point 
clouds are separated from the full point clouds. The 
remaining major parts of the cooling plant point clouds are 

used as training sets. As the primary purpose of the factory 
hall dataset is testing the ability to generalize, only a small 

part of the dataset is separated for data augmentation 
purposes; the rest remains as the testing dataset. As an 
overview of the point cloud data used in the experiment, the 

real laser scan dataset of the cooling plant is depicted in 
FIGURE 6, along with an illustration of the introduced 

dataset splits for the cooling plant and factory hall datasets. 
The resulting total and per set point numbers are 
summarized in TABLE 2, which shows the variation 

between the data types and datasets. 
 

 
 
 

 

TABLE 2. Dataset splits per data source type. 

dataset cooling plant factory hall 

split sampling simulation laser scan laser scan 

size 
points share points share points share points share 

[106] [%] [106] [%] [106] [%] [106] [%] 

train 127.6 74.7 56.4 72.5 41.0 72.8 - - 

aug. 20.9 12.2 10.1 13.0 7.2 12.8 1.2 3.0 

test 22.4 13.1 11.3 14.5 8.1 14.4 38.2 97.0 

total 170.9 100.0 77.8 100.0 56.3 100.0 39.4 100.0 

 

The actual objects vary between the as-designed and as-
is state of the cooling plant facility; therefore, the class split 
varies between the individual datasets. Although to a lesser 

degree, the numbers also differ between the two synthetic 
datasets due to occlusions – further amplified by modeling 

details in the original CAD models. The collected numbers 
of points per class and dataset are collected in FIGURES 7a 
and 7b. As depicted in FIGURE 7a, the distribution of 

points over the various classes is quite imbalanced, which 
is challenging for applying machine learning algorithms 

but very common for point cloud scenes, as can be seen in 
similar experiments (J. W. Ma et al., 2020; Soilán et al., 
2021). The class analysis is omitted for the factory hall 

dataset to keep the study concise. While other datasets and 
types that aim for classification tasks (2D and 3D) can be 

extended by more samples of specific classes to reduce class 
imbalance, datasets depicting full scenes for semantic 
segmentation (2D and 3D) cannot be balanced easily. 

Publicly available datasets such as S3DIS (Armeni et al., 
2016) and KITTI (Geiger et al., 2013) show similar 

characteristics. 

FIGURE 8. Experiment workflow for experiments 1 and 2 with 
regard to data sources and process steps. 
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However, the normalized evaluation in FIGURE 7b 
shows that the overall point distribution per class is 
comparable throughout the datatypes. The overall dataset 

split is, therefore, comparable. 
 

The sampling-based dataset has the overall highest 
number of points. In this dataset, all model surfaces are 
covered in points; neither occlusions nor model parts 

within convex volumes are spared. However, the difference 
between simulation-based and real laser scan data is not 

that significant. In the simulation, occlusions are 
realistically considered, as investigated in (Noichl et al., 
2021), and depicted in FIGURE 9. With this, the explicitly 

stated limitation of sampling-based approaches, as 
identified in the study presented in (J. W. Ma et al., 2020), 

which used a volume-based sampling approach, is fulfilled. 
Still, the overall number of points in the simulated point 
cloud is slightly increased compared to the actual laser scan 

point cloud, as the used model is incomplete regarding 
highly complex surfaces and temporary and movable 

objects in the existing facility. First, the class of "noise" is 
only present in the real dataset. The synthetic datasets are 
generated using an as-designed model of the facility and 

therefore inherently do not contain non-essential or 
temporary objects. As the applied pre-processing includes a 

minimum distance down-sampling step, the reduced 
surface complexity leads to a reduced number of remaining 

points. Furthermore, after capture, the real laser scan point 
cloud was cleaned of noise resulting from the facility's 

highly reflective materials, below-minimum distance 
surfaces, and incidence angles. 

4.2 Experiment Setup 

Two separate experiments were conducted to evaluate 

the validity of the proposed approach of using synthetic 
point cloud data for training the KP-FCNN architecture for 

point cloud semantic segmentation. The main steps of this 
experiment were repeated for 

• three homogeneous datasets; two synthetic point 

clouds, inclusive of one sampling-based and one 
simulation-based version, and one real laser 

scanning point cloud (Experiment 1) 
• four hybrid datasets of synthetic data augmented 

with a fixed amount of real laser scanning data, two 

from the cooling plant and the factory hall datasets 
each (Experiment 2) 

To describe the steps of experiment 1, FIGURE 8 
provides an overview of the process: Data preparation for 
all three datasets, semantic segmentation, and evaluation of 

results. The machine learning model parameters remained 
unchanged through all trials to avoid any distortion 

between single experiments. For the processing in the KP-
FCNN, point cloud data was pre-processed in the first step 
by down-sampling using a voxel grid with a consistent voxel 

size of 0.02m. The radius of the Kernel for convolutions to 
be applied on the points of the point clouds was set to 1.5m. 

The learning rate was fixed to 0.01, the batch size to 6, and 
the maximum number of epochs to 500. After training was 
complete, the networks were tested on the designated 

testing parts of the real laser scan point clouds. Thus, it was 
possible to investigate how well the network performed on 

this real test data after training on each specific training set. 
Subsequently, the evaluation metrics introduced in section 
3.2 were calculated for each run and finally compared 

between experiment runs. 

4.3 Experiment 1: Homogeneous training 
data 

The first experiment investigates how well synthetic 
point cloud data can be used as training data for a neural 

network to perform point cloud semantic segmentation on 

  
(a)                                                        (b) 

 
(c) 

FIGURE 9. Comparison between point cloud snippets: (a) sampling-
based, (b) simulation-based and (c) real, laser scanned point cloud, 
semantic classes of ground truth color-coded. 
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a real laser scanning point cloud. More precisely, 
homogeneous sets of sampling-based and simulation-based 

synthetic data were used to enable a direct comparison and 
quantify their value for application on real-world problems. 
The introduced network architecture was trained and 

tested separately on all datasets introduced above. As 
depicted in FIGURE 10, for both synthetic data runs, the 

loss stabilized around 350 epochs; the chosen 500 epochs of 
learning seem suitable for this task. 

 
FIGURE 10. Loss curves for 500 epochs training purely on synthetic 
data; sampling-based and simulation-based. 

As performance on synthetic data was not the purpose of 
this investigation, the performance of these trained 

networks on the designated test datasets was tested in the 
next step. As introduced in Section 4.1, this data was 
extracted from the real laser scan point clouds and was not 

used in training any of the networks. The test set point 
clouds with predicted class labels were then evaluated 

against the manually created ground truth. The resulting 
mean metrics were calculated over all classes per Equations 
1 - 5 and are depicted in Table TABLE 4. 

 
TABLE 3. Results for Experiment 1: Mean class Intersection over 
Union (mcIoU) and mean class F1-score (mcF1) for varying setups, 
training on cooling plant datasets: synthetic data generated by means 
of sampling (SAM) and simulation (SIM); real laser scanning data 
(REAL) for reference. 

test dataset cooling plant factory hall 

training setup SAM SIM REAL SAM SIM REAL 

mcIoU 0.23 0.30 0.69 0.15 0.22 0.26 

mcF1 0.30 0.38 0.75 0.20 0.28 0.36 

 

For the cooling plant test set, the network trained on 
sampling-based data achieved a mean class Intersection 
over Union (mcIoU) of 23%, while the one trained on 

simulation-based data reached 30%. The network trained 
on the real laser scan data significantly outperformed both 

with a mcIoU of 69%. In terms of mcIoU, the simulation-
based dataset outperformed the sampling-based by seven 
percentage points, amounting to an increase of 30% relative 

to the sampling-based performance. For the mean class F1-
score (mcF1), the relative improvement averaged 27%. 

For the factory hall dataset, the results ranged lower but 
showed the same characteristics. The model trained on real 
data yielded the highest results (mcIoU 26%, mcF1 36%), 

noticeably less than the cooling plant. The type and 
dimension of objects in the cooling plant and factory hall 

datasets vary significantly. Despite this, the similarity 
between the separate training and testing sets within the 
same dataset is high. For sampling- and simulation-based 

training data, the difference between the datasets is less 
evident, resulting in lower but comparable results for the 

factory hall. For those, the difference in value between 
sampling- and simulation-based data was identical to the 
one measured for the cooling plant dataset, with an 

absolute increase of 7% mcIoU and 8% mcF1. 
 

TABLE 4. Results for Experiment 1 on cooling plant data: Class-wise 
F1-score for training on homogeneous datasets generated by means 
of sampling (SAM) and simulation (SIM); real laser scanning data 
(REAL) for reference. 

 SAM SIM REAL 

wall 0.72 0.93 0.97 

floor 0.97 0.93 0.99 

ceiling 0.02 0.09 1.00 

beam 0.67 0.77 0.96 

pipe fitting 0.53 0.57 0.92 

pipe accessories 0.46 0.55 0.89 

ventilation duct 0.00 0.00 0.63 

cable routing 0.48 0.49 0.95 

bracing 0.00 0.07 0.93 

tank 0.04 0.28 0.32 

clutter 0.00 0.00 0.82 

equipment 0.36 0.42 0.91 

noise 0.00 0.00 0.24 

 
For the cooling plant test data, TABLE 4 presents the F1-

score for each class. Among the two synthetic candidate 
datasets, the simulation-based dataset outperforms the 

sampling-based dataset in most classes, with the differences 
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ranging between 1% and 10%. However, there are a few 

exceptions. The ventilation duct and clutter classes both 
have 0% F1-score because they are not properly represented 

in the synthetic dataset, and clutter is absent from all 
synthetic datasets. Moreover, the wall and tank classes 
show significant improvements of +21% and +24%, 

respectively, due to the discrepancy between their surface 
representation in the 3D CAD model and the visible 

surfaces in the facility. For example, the walls are modeled 
with several layers that are all used for sampling but are 
inherently occluded in the laser scan simulation. 

Conversely, the sampling-based dataset performs 4% better 
for the floor class. Although this study's findings cannot 

fully explain this specific exception, the overall results 
strongly favor the simulation-based dataset over the 
sampling-based dataset. 

FIGURE 11 shows a snippet of point predictions per 
experiment run along with visualized false predictions. 

Well-performing and failing classes can be distinguished as 
follows: wall, floor, pipe fittings, and pipe accessories range 

above 50%. The visual check and false prediction figures of 
FIGURE 11 indicate this. The confusion matrices for 

Experiment 1 are depicted in FIGURE 12. A clear result in 
comparing both experiments is the inability to produce 
good results for elements that are not or are poorly depicted 

in the utilized 3D models. In both trials of Experiment 1, the 
facility's ceiling is poorly predicted (cf. FIGURES 11 and 

12). 
As shown in FIGURES 8a and 8b, the ceiling is depicted 

by a simple plane in the underlying as-designed model. 

 
(a)                                                         (b) 

 
(c)                                                         (d) 

           
(e)                                                         (f) 

FIGURE 11. Experiment 1: Point class predictions, network trained 
on sampling-based (a) and simulation-based (c) datasets; False 
predictions (red) for training on sampling-based (b) and simulation-
based (d) datasets; Ground Truth class labels (e) and legend for a, c, 
e (f). 

 
(a) 

 
(b) 

FIGURE 12. Confusion matrices of the real laser scanning test set 
for models trained on (a) sampling-based and (b) simulation-based 
synthetic training data. 
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While this representation might be sufficient for planning 
purposes, it lacks the geometric precision needed to 

produce synthetic point clouds for training a neural 
network for semantic segmentation. 

The bracing elements themselves are modeled in detail, 

but the proximity to the ill-represented ceiling class leads to 
poor results for this class as well. For the sampling case, 

predictions for pipe accessories are mixed between pipe 
fitting and pipe accessories, while in the simulation-based 
trial, the predictions are more homogeneously pipe 

accessories. 

4.4 Experiment 2: Augmented training data 

To improve the network's performance, the purely 
synthetic training point cloud data was augmented with 

smaller amounts of annotated, real laser scan data. In a 
practical application, these conditions could be achieved by 

generating a large amount of synthetic data leveraging 
industrial facility 3D models; in addition to that, a small 
amount of point cloud data from the facility in question or 

a similar one would be manually annotated and added to 
the synthetic data to form a hybrid training dataset. 

In this experiment, the designated augmentation part of 
the synthetic datasets was replaced by the respective 
augmentation counterpart of the real laser scan point 

clouds for this second experiment. Thus, the underlying 
dataset split was not changed (cf. FIGURE 6) while aiming 

to overcome the shortcomings identified in the first 
experiment. For the reasons laid out in section 4.1, the total 
number of points varied between the datasets. Hence, the 

augmentation set of 7.2 × 106 points or 12.8% of the real 
laser scan dataset led to a different percentage of the overall 

available points for training in the respective augmented 
dataset set. For the sampling-based dataset, the substituted 
augmentation set constitutes 5.3% of the available points 

for training in the simulation-based version 11.3%. The 
underlying calculations were based on the dataset-specific 

numbers of points and relative splits introduced in TABLE 
2. Except for the datasets used, all parameters remained 
unchanged from Experiment 1. Similar to the first 

experiment, training loss stabilized around 350 epochs; 
therefore, the copied training parameters were acceptable 

for the second experiment.  

TABLE 5. Results for Experiment 2 cooling plant dataset: Macro 
mean class Intersection over Union (mcIoU) and mean class F1-score 
(mcF1) for varying setups, training on synthetic datasets generated 
by means of sampling (SAM+) and simulation (SIM+) (88%) 
augmented by 12% real laser scanning data; 100% real laser scanning 
data (REAL) for reference; ΔSAM, ΔSIM indicate the absolute changes in 
comparison to Experiment 1. 

 SAM+ ΔSAM SIM+ ΔSIM REAL 

mcIoU 0.60 +0.37 0.65 +0.35 0.69 

mcF1 0.65 +0.35 0.72 +0.34 0.75 

 

Both trained networks were again tested on the test set 
taken from the real laser scan dataset. Same as in 

Experiment 1, this data was not used in any training. As a 
result, the performance increases significantly for both 
configurations. In this setup, the augmented sampling-

based data achieves 60% mcIoU, and the simulation-based 
data even goes as high as 65%, which is close to the 

performance of the complete real training dataset with a 
mcIoU of 69% on the real testing data. The augmented 
simulated data thus missed the benchmark achieved by the 

real data by only 4%, with the augmented sampling-based 
alternative performing significantly worse with a remaining 

delta of 9%. Relatively, the simulation-based augmented 
dataset outperforms the sampling-based version by 8.3%. 

 
TABLE 6. Results for Experiment 2 on cooling plant dataset: Class-
wise F1-score for training on datasets generated by sampling (SAM+) 
and simulation (SIM+) augmented by 12% real data, homogeneous 
real laser scan data (REAL) for reference; ΔSAM, ΔSIM indicate the 
absolute changes in comparison to Experiment 1. 

 SAM+ ΔSAM SIM+ ΔSIM REAL 

wall 0.97 +0.25 0.98 +0.05 0.97 

floor 0.99 +0.02 0.99 +0.06 0.99 

ceiling 0.99 +0.97 0.99 +0.90 1.00 

beam 0.96 +0.29 0.96 +0.19 0.96 

railing 0.00 - 0.00 - 0.00 

pipe fitting 0.88 +0.35 0.90 +0.33 0.92 

pipe accessories 0.77 +0.31 0.81 +0.26 0.89 

ventilation duct 0.00 - 0.66 +0.66 0.63 

cable routing 0.94 +0.46 0.95 +0.46 0.95 

bracing 0.93 +0.93 0.93 +0.86 0.93 

tank 0.07 +0.03 0.27 -0.01 0.32 

clutter 0.65 +0.65 0.64 +0.64 0.82 

equipment 0.91 +0.55 0.89 +0.47 0.91 

noise 0.00 - 0.14 +0.14 0.24 
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In a more detailed description, the F1-scores are depicted 

per class in TABLE 6. As in the first experiment, the 
simulation-based approach outperforms the sampling-

based approach across most classes. There are two minor 
exceptions (clutter and equipment), where the latter 
achieves slightly higher results, but in summary, the results 

are clearly in favor of the simulation-based alternative, as 
indicated in the macro mean introduced in TABLE 5. In 

addition to the well-performing classes of Experiment 1, 
after augmentation, results range above 50% for the classes 
of ceiling, beam, ventilation duct, cable routing, bracing, 

clutter, and equipment. These classes now constitute the 
majority of classes overall; the results are convincing for the 

entire scene. 
The most significant improvement between 

Experiments 1 and 2 can be found in the classes of ceiling 

and bracing. As identified during Experiment 1, this area of 
the facility has a very simplified geometry in the as-

designed model that is used for generating the synthetic 

datasets. This issue was solved by adding a small amount of 
real laser scan points to the training set. 

Visually, FIGURE 14 shows a clear improvement in 
comparison to the results of Experiment 1 (FIGURE 11) as 
well. While the overall mispredictions are drastically 

improved, in comparison to the first experiment, the 
geometric differences between the data types are less 

obvious. Both synthetic approaches, however, fail to 
properly predict point classes for movable items (classified 
as clutter, such as fire extinguishers) and secondary support 

structures. As the synthetic datasets are based on an as-

 
(a)                                                         (b) 

 
(c)                                                         (d) 

           
(e)                                                         (f) 

FIGURE 14. Experiment 2: Point class predictions, network trained 
on sampling-based (a) and simulation-based (c) datasets; False 
predictions (red) for training on sampling-based (b) and simulation-
based (d) datasets; Ground Truth class labels (e) and legend for a, c, 
e (f). 

 
(a) 

 
(b) 

FIGURE 13. Confusion matrices of the real laser scanning test set 
for models trained on (a) augmented sampling-based and (b) 
augmented simulation-based synthetic training data. 
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designed model of the facility, those objects are not 
included in those point clouds.  

We extended our experiment to the factory hall point 
cloud to investigate the potential such a hybrid dataset has 
in the context of a different facility. For this, a small part of 

the factory hall dataset was designated as augmentation 
data; the entire rest of the point cloud was designated as 

testing data. Just like in the first implementation of the 
experiment, the model was trained on a dataset of synthetic 
cooling plant data augmented with real data from the 

cooling plant. Subsequently, the synthetic cooling plant 
training data was augmented with the augmentation part of 

the factory hall dataset; training the model was repeated 
with this hybrid dataset. Finally, both of these models 
trained on hybrid point cloud datasets were used to perform 

inference on the factory hall test set; all results of this are 
collected in TABLE 7. 

 
TABLE 7. Results for Experiment 2 on the factory hall dataset: 
Macro mean class Intersection over Union (mcIoU) and mean class 
F1-score (mcF1) for varying setups, training on synthetic datasets 
generated by means of sampling (SAM) and simulation (SIM) 
augmented with real laser scanning data from cooling plant dataset 
(+), and factory hall dataset (*); ΔSAM, ΔSIM indicate the absolute 
changes in comparison to Experiment 1. 

 SAM+ ΔSAM SIM+ ΔSIM SAM* ΔSAM SIM* ΔSIM 

mcIoU 0.23 +0.08 0.26 +0.04 0.35 +0.20 0.37 +0.15 

mcF1 0.29 +0.09 0.34 +0.06 0.42 +0.22 0.45 +0.17 

 
The results show similar characteristics as in experiment 

1, as the model performance on the factory hall dataset is 

below the results for the cooling plant. By augmentation of 
the synthetic cooling plant training data with real data from 

the cooling plant dataset, the performance increase on the 
factory hall dataset ranges between 5% and 10%, and the 
absolute added value of simulated data over sampling-

based data is clear with 3% and 5%. Noticeably, the model 
trained on real training data from the cooling plant 

performs similarly to the model trained on the augmented, 
synthetic cooling plant dataset (cf. TABLE 3). 

Even at this small size, the augmentation set from the 

factory hall leads to the best performance. The difference in 
performance between sampling- and simulation-based data 

is persistent at 2% - 3%. 

4.5 Comparison with related experiments 

The closest related study is the one introduced by J. W. 
Ma et al. (2020). In contrast to the mentioned paper's 
method for data generation, the sampling technique used in 

this paper is limited to the surface of the objects instead of 
the full volume of the object, which brings the presented 

method significantly closer to an actual laser scan that is 
limited to object surfaces. Furthermore, points are sampled 
using a random distribution instead of a grid for the 

presented sampling-based approach; the simulation-based 
version introduces TLS-specific properties such as realistic 

placement-dependent occlusions, range-dependent 
resolution, and precision. In their further studies regarding 
point densities, J. W. Ma et al. (2020) seem to have used 

random down-sampling, which lifts the spatial restriction 
of the grid to a certain degree. 

Despite the limitations in comparability regarding 
dataset and sampling technique, this study shows that the 
simulated synthetic dataset carries significantly more 

information than the already improved sampling-based 
alternative while saving storage space. This was shown in 

the results of the presented experiments, where the dataset 
generated by simulation has shown increased value for 
training a neural network to perform well on real, unseen 

data, in comparison to sampling-based synthetic data, both 
for homogeneous synthetic as well as synthetic data 

augmented with real laser scan points. 

5 DISCUSSION 

Synthetic point clouds generated through simulation 

depict reality better than sampling-based alternatives. 
Specifically in the industrial domain, where LiDAR is the 

predominant acquisition technique and complicated 
geometries often lead to strong occlusions, it makes sense 
to apply data generation methods that result in data that is 

as close as possible to real data. The experiments presented 
in this paper investigate the value that synthetic point cloud 

data created using two alternative methods have as training 
data for neural networks for semantic segmentation. 

In the two introduced experiments, diverging goals are 

followed. While Experiment 1 aims to clarify the added 
value of generating more realistic synthetic point cloud data 
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for training neural networks for point cloud semantic 
segmentation, Experiment 2 aims to match the 

performance of a neural network trained on real laser 
scanning data with a minor trade-off by adding a small 

subset of manually prepared ground truth data. 
As both of the experiments are successful, they are 

substantial and show that, without pre-trained networks or 

large-scale labeled data, new domains can be tackled with 
regard to point cloud semantic segmentation, given that 3D 

models of comparable scenes are available.  
While sampling-based methods are a valid option, 

employing simulation-based approaches leads to fewer 

overall points in the point cloud training set, saving storage 
space and significantly improving overall performance. In 

the presented method of data generation, the only 
necessary manual intervention remains in preparing the 
CAD model for simulation by assigning object classes 

according to the chosen class structure. This step is 
necessary if the available 3D model does not possess 

instance-level semantics – which was the case in the 
presented experiment. This step can be fully automated by 
parsing and filtering object semantics in a complete and 

correct BIM or 3D CAD model with full semantic 
information on the instance level.  

Depending on the use case, the overall results of 
Experiment 1 might be insufficient for robust further 
processing due to weak results for certain classes. With the 

results of Experiment 2, it could be shown that with limited 
manual intervention, synthetic data leads to robust results 

that provide a good trade-off between expensively 
annotated real-world scan data and the cheap solution of 
sampling-based synthetic data. 

The presented approach comes with several limitations. 
As the experiments have shown, the quality of the 3D model 

is decisive for the value of the synthetic data generated on 
its basis. Poor representation of actual geometric features 
directly influenced the generalization power of our method 

and led to poor prediction performance for affected classes 
and neighboring objects belonging to other classes. 

The experiments showcase the application of the 
proposed method for generating synthetic point cloud data 
only on one facility. Furthermore, compared to other 

ground truth point cloud datasets for semantic 
segmentation, the presented three datasets representing the 

cooling plant are relatively small. In general, this is a 
shortcoming for the training of a neural network.  

To evaluate the potential of such a baseline of training 
data to generalize and perform inference on other datasets, 

a second point cloud dataset of real laser scan data was 
added to the experiment. The results of these extended 
experiments on the second dataset are in line with the 

findings on the first dataset. It could be shown that, with 
very limited additional annotation effort, the baseline 

training data could be extended to be useful for a 
significantly different dataset in terms of purpose, layout, 
size, and included object classes. 

The comparability of the presented method is inherently 
limited due to the absence of established benchmarks and 

public data. For example, access to their models and 
sampled data would be required to evaluate the added value 
of the presented method in comparison to the work using a 

manually remodeled part of S3DIS and volumetric grid-
based sampling (J. W. Ma et al., 2020). To this date, there is 

a lack of publicly available ground truth datasets showing 
full industrial scenes that could be used as a starting point 
for training their own models and benchmarking developed 

approaches. 

6 CONCLUSION AND OUTLOOK 

This paper proposes to integrate realistic synthetic 
ground truth data into a workflow for point cloud semantic 
segmentation for the industrial domain, where the absence 

of publicly available ground truth datasets prevents the 
implementation of standard approaches with readily 

available annotated real ground truth data for training. At 
the same time, the industrial domain poses specific 
challenges, mainly regarding geometry, resulting 

occlusions, and specific classes. The presented work shows 
that realistic synthetic data is helpful for semantic 

segmentation. Furthermore, compared with data generated 
in a sampling-based method, the synthetic data created 
using laser scanning simulation shows a substantial 

performance increase. Creating such synthetic data 
requires no manual effort, given suitable 3D models are 

available- thus, they can be generated quickly with 
complete, error-less class annotations. Furthermore, as 
they depict the laser scan in terms of occlusions and surface 

coverage, in comparison with a full, sampling-based 
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approach, around half of the overall point cloud size is 
sufficient for reaching the same mean surface density as the 

real point cloud dataset. Combined with a small amount of 
real laser scan data, synthetic datasets can produce results 
close to the presented benchmark achieved using purely 

real scanning data. Thus, applying scan simulations 
provides significant effort-saving potential in further 

processing steps in Scan-to-BIM. 
 
While it has been shown that the approach yields 

promising results for the industrial domain, extending 
similar investigations with comparable parameters to a 

wider variety of applications, such as infrastructure or 
conventional office indoor spaces, would allow for more 
general statements about the value and limitations of this 

approach. Semantic segmentation, while arguably the most 
valuable approach for semantic enrichment in laser scan 

point clouds for further processing and model 
reconstruction currently, is inherently limited to object 
classes and could be enhanced significantly by instance 

segmentation. Another interesting continuation of this 
research is identified in an extension of the presented 

synthetic training data generation method with this 
instance aspect, addressing this remaining gap. 
Furthermore, an investigation of the applicability for 

different domains with specific requirements and classes 
seems interesting, along with the impact of model quality 

on the process. 
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